WorldWideScience

Sample records for stretched wire measurement

  1. Analysis of ultra-relativistic charged particle beam and stretched wire measurement interactions with cylindrically symmetric structures

    International Nuclear Information System (INIS)

    Deibele, C.E.

    1996-01-01

    The beam impedance and wakefield are quantities which describe the stability of charged particles in their trajectory within an accelerator. The stretched wire measurement technique is a method which estimates the beam impedance and wakefield. Definitions for the beam impedance, the wakefield, and the stretched wire measurement are presented. A pillbox resonator with circular beampipes is studied for its relatively simple profile and mode structure. Theoretical predictions and measurement data are presented for the interaction of various charged particle beams and center conductor geometries between the cavity and beampipe. Time domain predictions for the stretched wire measurement and wakefield are presented and are shown to be a linear interaction

  2. Results of stretched wire field integral measurements on the mini-undulator magnet - comparison of results obtained from circular and translational motion of the integrating wire

    International Nuclear Information System (INIS)

    Solomon, L.

    1998-05-01

    Measurements of the multipole content of the Mini-Undulator magnet have been made with two different integrating wire techniques. Both measurements used 43 strand Litz wire stretched along the length of the magnet within the magnet gap. In the first technique, the wire motion was purely translational, while in the second technique the wire was moved along a circular path. The induced voltage in the Litz wire was input into a Walker integrator, and the integrator output was analyzed as a function of wire position for determination of the multipole content of the magnetic field. The mini-undulator magnet is a 10 period, 80 mm per period hybrid insertion device. For all the data contained herein the magnet gap was set at 49 mm. In the mini-undulator magnet, the iron poles are 18mm x 32mm x 86 mm, and the Samarium Cobalt permanent magnet blocks are 22mm x 21mm x 110mm. For this magnet, which is a shortened prototype for the NSLS Soft X-Ray Undulator Magnet, the undulator parameter K = 0.934 B (Tesla)λ(cm), and B(tesla) = 0.534/sinh(πGap/λ). At a gap of 49 mm, the magnetic field is 1590 Gauss

  3. Progress in ETA-II magnetic field alignment using stretched wire and low energy electron beam techniques

    International Nuclear Information System (INIS)

    Griffith, L.V.; Deadrick, F.J.

    1991-01-01

    Flux line alignment of the solenoidal focus magnets used on the ETA-II linear induction accelerator is a key element leading to a reduction of beam corkscrew motion. Two techniques have been used on the ETA-II accelerator to measure and establish magnet alignment. A low energy electron beam has been used to directly map magnetic field lines, and recent work has utilized a pulsed stretched wire technique to measure magnet tilts and offsets with respect to a reference axis. This paper reports on the techniques used in the ETA-II accelerator alignment, and presents results from those measurements which show that accelerator is magnetically aligned to within ∼ ± 200 microns

  4. Measurement of position and profile of undulator radiation in Indus-2 using scanning wire monitor

    International Nuclear Information System (INIS)

    Kant, Chander; Lal, Sohan; Raghuwanshi, V.K.; Prasad, Vijendra

    2015-01-01

    Two planar undulators (U1 and U2) for Atomic Molecular Spectroscopy (AMOS) beamline and Angle Resolved Photoelectron Spectroscopy (ARPES) beamline have been installed in Indus-2. The U1 undulator is designed to produce photons in the energy range of 6 eV to 250 eV and U2 undulator is designed to produce photons in the energy range of 30 eV to 600 eV. In order to measure the position and vertical profile of photon beams emitted from these undulators, one scanning wire monitor has been installed in each beamline front end. In these scanning wire monitors, a gold coated tungsten wire of 100 μm thickness, stretched between a fork shaped alumina ceramic holder, is scanned vertically perpendicular to the direction of propagation of photon beam by using a precisely controlled stepper motor. The photo-electron current generated in the wire is measured by an electrometer. A graphical user interface has been developed which facilitates the scanning as per the given range, plots the graphs and stores the scanned data in Excel file. This paper describes our experience and usefulness of these wire monitors during commissioning of planar undulators in Indus-2. (author)

  5. Feasibility studies on the direct wire readout on wire scanners in electron accelerators

    International Nuclear Information System (INIS)

    Markert, Michael

    2010-10-01

    This bachelor thesis deals essentially with the signal processing of a so-called wire scanner, a special monitor, which comes to application in the beam diagnostics of particle accelerators. In this direct wire readout the voltage signal, which is induced by the particle beam in the measurement wire of the wire scanner, shall be directly read out. The aim of this thesis is to show fundamental considerations and perform studies, which study, whether and how in the future by means of a suited data transmission as well as readout electronics conclusion on the most important parameters of the beam, like position and profile, are possible. The measurement system presented here is divided in three main components: Signal measurement, signal preparation, and signal stretching. A suited test facility was developed and is presented in detail, in which then all components, like for instance the transmission cables, the wire-scanner fork, and the developed measurement circuit, are studied, which are of importance for a faultless signal transmission and presentation. Extensive measurements on the single components, as well as calculations for the signal transmission on and in the wire scanner were performed, whereby a good agreement could be found. Thereafter a comparison and a selection of the component used in this project were made. Furthermore improvement proposals, new constructions, and outlooks are presented, which could be of importance in further works.

  6. High-performance, stretchable, wire-shaped supercapacitors.

    Science.gov (United States)

    Chen, Tao; Hao, Rui; Peng, Huisheng; Dai, Liming

    2015-01-07

    A general approach toward extremely stretchable and highly conductive electrodes was developed. The method involves wrapping a continuous carbon nanotube (CNT) thin film around pre-stretched elastic wires, from which high-performance, stretchable wire-shaped supercapacitors were fabricated. The supercapacitors were made by twisting two such CNT-wrapped elastic wires, pre-coated with poly(vinyl alcohol)/H3PO4 hydrogel, as the electrolyte and separator. The resultant wire-shaped supercapacitors exhibited an extremely high elasticity of up to 350% strain with a high device capacitance up to 30.7 F g(-1), which is two times that of the state-of-the-art stretchable supercapacitor under only 100% strain. The wire-shaped structure facilitated the integration of multiple supercapacitors into a single wire device to meet specific energy and power needs for various potential applications. These supercapacitors can be repeatedly stretched from 0 to 200% strain for hundreds of cycles with no change in performance, thus outperforming all the reported state-of-the-art stretchable electronics. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Development of austenitic stainless steel PC wire and strand

    International Nuclear Information System (INIS)

    Tsubono, Hideyoshi; Kawabata, Yoshinori; Yamaoka, Yukio

    1986-01-01

    The effects of aging and stress-aging (called hot stretching) at the temperatures from 120 deg C to 700 deg C on the mechanical properties, relaxation values, Charpy impact values and SCC behavior of hard drawn SUS 304, SUS 316 stainless steel wires have been studied. The main results obtained are as follows: (1) Yield and tensile strength of the wires increased by aging at 230 deg C and 530 deg C as well as by hot stretching. The strengthening after 230 deg C treatment may be due to the strain aging by C and the increase of strength after 530 deg C treatment results from precipitation of Cr 23 C 6 on dislocations. (2) Stress relaxation values up to 250 deg C are low due to precipitation of Cr 23 C 6 . Almost no difference can be observed between aging and hot stretching. (3) Impact value at -196 deg C of SUS 304 stainless steel wire which was measured with 1 mm V-notched specimen was found to be about the same as that of 9 % Ni steel. (4) It is considered that in comparison with high carbon PC wire SUS 304 stainless steel showing high tensile strength is insensitive to SCC in NH 4 SCN and NH 4 NO 3 solutions. (5) In practice, tension member of the austenitic stainless steel wire and strand which were produced by aging at 500 deg C may be useful in special industrial field, for example, (a) SUS 304, in cryogenic field use (b) SUS 316, in intensive magnetic field use as a nonmagnetic material. (author)

  8. Sensitive and simple method for measuring wire tensions

    International Nuclear Information System (INIS)

    Atac, M.; Mishina, M.

    1982-08-01

    Measuring tension of wires in drift chambers and multiwire proportional chambers after construction is an important process because sometimes wires get loose after soldering, crimping or glueing. One needs to sort out wires which have tensions below a required minimum value to prevent electrostatic instabilities. There have been several methods reported on this subject in which the wires were excited either with sinusoidal current under magnetic field or with sinusoidal voltage electrostatically coupled to the wire, searching for a resonating frequency with which the wires vibrate mechanically. Then the vibration is detected either visually, optically or with magnetic pick-up directly touching the wires. Any of these is only applicable to the usual multiwire chamber which has open access to the wire plane. They also need fairly large excitation currents to induce a detectable vibration to the wires. Here we report a very simple method that can be used for any type of wire chamber or proportional tube system for measuring wire tension. Only a very small current is required for the wire excitation to obtain a large enough signal because it detects the induced emf voltage across a wire. A sine-wave oscillator and a digital voltmeter are sufficient devices aside from a permanent magnet to provide the magnetic field around the wire. A useful application of this method to a large system is suggested

  9. Feasibility studies on the direct wire readout on wire scanners in electron accelerators; Durchfuehrbarkeitsstudien zur direkten Drahtauslese an Wirescannern in Elektronen-Beschleunigern

    Energy Technology Data Exchange (ETDEWEB)

    Markert, Michael

    2010-10-15

    This bachelor thesis deals essentially with the signal processing of a so-called wire scanner, a special monitor, which comes to application in the beam diagnostics of particle accelerators. In this direct wire readout the voltage signal, which is induced by the particle beam in the measurement wire of the wire scanner, shall be directly read out. The aim of this thesis is to show fundamental considerations and perform studies, which study, whether and how in the future by means of a suited data transmission as well as readout electronics conclusion on the most important parameters of the beam, like position and profile, are possible. The measurement system presented here is divided in three main components: Signal measurement, signal preparation, and signal stretching. A suited test facility was developed and is presented in detail, in which then all components, like for instance the transmission cables, the wire-scanner fork, and the developed measurement circuit, are studied, which are of importance for a faultless signal transmission and presentation. Extensive measurements on the single components, as well as calculations for the signal transmission on and in the wire scanner were performed, whereby a good agreement could be found. Thereafter a comparison and a selection of the component used in this project were made. Furthermore improvement proposals, new constructions, and outlooks are presented, which could be of importance in further works.

  10. Wire alignment system for ATF LINAC

    International Nuclear Information System (INIS)

    Hayano, H.; Takeda, S.; Matsumoto, H.; Matsui, T.

    1994-01-01

    A wire based alignment system is adopted to make less than 40μm precision alignment for injector linac of Accelerator Test Facility (ATF). The system consists of two stretched SUS wires, pickup coils and active mover stages. The position of pickup coils in a mount which will be installed into LINAC stages is set to the calculated wire position prior to installation. All of LINAC stages are then moved to keep the calculated position by the active mover. The test results of wire position detection in a long term are described. (author)

  11. Comparison of Analysis, Simulation, and Measurement of Wire-to-Wire Crosstalk. Part 2

    Science.gov (United States)

    Bradley, Arthur T.; Yavoich, Brian James; Hodson, Shane M.; Godley, Franklin

    2010-01-01

    In this investigation, we compare crosstalk analysis, simulation, and measurement results for electrically short configurations. Methods include hand calculations, PSPICE simulations, Microstripes transient field solver, and empirical measurement. In total, four representative physical configurations are examined, including a single wire over a ground plane, a twisted pair over a ground plane, generator plus receptor wires inside a cylindrical conduit, and a single receptor wire inside a cylindrical conduit. Part 1 addresses the first two cases, and Part 2 addresses the final two. Agreement between the analysis methods and test data is shown to be very good.

  12. Comparison of Analysis, Simulation, and Measurement of Wire-to-Wire Crosstalk. Part 1

    Science.gov (United States)

    Bradley, Arthur T.; Yavoich, Brian James; Hodson, Shame M.; Godley, Richard Franklin

    2010-01-01

    In this investigation, we compare crosstalk analysis, simulation, and measurement results for electrically short configurations. Methods include hand calculations, PSPICE simulations, Microstripes transient field solver, and empirical measurement. In total, four representative physical configurations are examined, including a single wire over a ground plane, a twisted pair over a ground plane, generator plus receptor wires inside a cylindrical conduit, and a single receptor wire inside a cylindrical conduit. Part 1 addresses the first two cases, and Part 2 addresses the final two. Agreement between the analysis, simulation, and test data is shown to be very good.

  13. Experience of precision measuring distances by invar wires at accelerators

    International Nuclear Information System (INIS)

    Porubaj, N.I.

    1977-01-01

    With a view to determining the deformations and displacements of the ring foundation of the ITEP accelerator, the method of very accurate distance measurements by means of invar wires and strips is described. Measurement errors are analyzed. This method has allowed to measure distances up to 40 m with a mean-square error of less than 40 μm. The calibration accuracy of 3 and 25-m measuring wires has been determined to be +- 27 μm. Time instability of the wires is +- 16 μm. It is shown that strips are more stable in time than wires. Elongation of 6, 19, 25 and 38 m invar wires has been measured as function of the tension time. The error due to tension of a 38-m wire may be tangible. Data on thermal coefficient variation in time has been obtained for invar wires and strips. The multiannual measurements of the ring foundation deformations show that variations of the mean radius are caused by increases of concrete temperature. Temperature increase by only 1 deg caused mean radius increase of 0.3 mm

  14. Vibrating wire apparatus for periodic magnetic structure measurement

    International Nuclear Information System (INIS)

    Temnykh, A.B.

    2003-01-01

    Devices with periodic magnetic structures such as wigglers and undulators are often key elements in synchrotron radiation sources. In applications where the coherence of the emitted radiation is important, magnetic field errors distorting the periodicity of the field can significantly reduce the performance of the devices. Thus, the measurement, localization, and correction of the field errors can be a critical issue. This article presents a new method for magnetic field measurements in periodic magnetic structures. The method uses a vibrating taut wire passing through the magnetic structure, and it involves measurements of the amplitudes and phases of the standing waves excited on the wire by the Lorentz force between an AC current in the wire and the surrounding magnetic field. For certain arrangements of the wire, vibrations in the wire will be excited by only non-periodic magnetic field component, i.e., by the error field. By measuring the phase and amplitude of these waves, one can reconstruct the error field distribution and then correct it. The method was tested on a permanent magnet wiggler with 19.8 cm period and a peak field of ∼7000G. It demonstrated ∼0.6G RMS sensitivity, δB rms /B rms ∼1.2x10 -4 and spatial resolution sufficient to identify poles generating the field error. Good agreement was found between field error measurements obtained with the vibrating wire method and with traditional Hall probe field mapping

  15. An automatic tension measurement system of MWPC wires

    International Nuclear Information System (INIS)

    D'Antone, I.; Lolli, M.; Torromeo, G.

    1992-01-01

    An electronic system is presented for automatic mechanical tension measurement to test wire chambers. The developed system works in the tension range from 50 g to 300 g; this large working range is obtained by using a microcontroller that performs a digital control on the bridge of an oscillator containing the wire of which the tension has to be measured. The microcontroller automatically brings the system towards the oscillation condition and subsequently, measuring the frequency, it evaluates, displays and sends to a host computer the value of the mechanical tension of the wires. The system is precise and allows fast measurements. A description of the hardware and software design is given. (orig.)

  16. Strain sensing systems tailored for tensile measurement of fragile wires

    Science.gov (United States)

    Nyilas, Arman

    2005-12-01

    Fundamental stress versus strain measurements were completed on superconducting Nb3Sn wires within the framework of IEC/TC90 and VAMAS/TWA16. A key task was the assessment of sensing systems regarding resolution, accuracy, and precision when measuring Young's modulus. Prior to actual Nb3Sn wire measurements metallic wires, consisting of copper and stainless steel having diameters similar to the Nb3Sn wire, were extensively investigated with respect to their elastic line properties using different types of extensometers. After these calibration tests Nb3Sn wire measurements of different companies resulted in several important facts with respect to total size and weight of the used extensometers. The size could be correlated to the initial stage of stress versus strain behaviour. In fact, the effect of wire curls resulting from the production line had a profound effect on Young's modulus measurements. Within this context, the possibility of determining Young's modulus from unloading compliance lines in the plastic regime of the stress-strain curve was considered. The data obtained using this test methodology were discussed under consideration of the composite nature of Nb3Sn wire. In addition, a non-contacting sensing system based on a double-beam laser extensometer was used to investigate the potential of this new sensing system.

  17. Strain sensing systems tailored for tensile measurement of fragile wires

    International Nuclear Information System (INIS)

    Nyilas, Arman

    2005-01-01

    Fundamental stress versus strain measurements were completed on superconducting Nb 3 Sn wires within the framework of IEC/TC90 and VAMAS/TWA16. A key task was the assessment of sensing systems regarding resolution, accuracy, and precision when measuring Young's modulus. Prior to actual Nb 3 Sn wire measurements metallic wires, consisting of copper and stainless steel having diameters similar to the Nb 3 Sn wire, were extensively investigated with respect to their elastic line properties using different types of extensometers. After these calibration tests Nb 3 Sn wire measurements of different companies resulted in several important facts with respect to total size and weight of the used extensometers. The size could be correlated to the initial stage of stress versus strain behaviour. In fact, the effect of wire curls resulting from the production line had a profound effect on Young's modulus measurements. Within this context, the possibility of determining Young's modulus from unloading compliance lines in the plastic regime of the stress-strain curve was considered. The data obtained using this test methodology were discussed under consideration of the composite nature of Nb 3 Sn wire. In addition, a non-contacting sensing system based on a double-beam laser extensometer was used to investigate the potential of this new sensing system

  18. A workplace stretching program. Physiologic and perception measurements before and after participation.

    Science.gov (United States)

    Moore, T M

    1998-12-01

    The purpose of this study was to implement a primary prevention program in the workplace targeted to prevent muscle strains. Physiologic and perception measurements were taken before and after participation in a stretching program developed to improve flexibility through conditioning. A one group pre-test post-test design was used with 60 employees enrolled in a 36 session stretching program in the workplace. Flexibility was measured by a flexibility profile including the sit and reach test, bilateral body rotation measurements, and shoulder rotation measurements. A statistically significant increase was found in all flexibility measurements at the conclusion of the study for the participants as a total group. Perception, as measured by the Fox Physical Self Perception Profile, was statistically significant in relation to participants' perceptions of their body attractiveness, physical conditioning, and overall self worth at the program's conclusion. In addition, participants who completed the program had zero occurrences of musculoskeletal injuries during the 2 month period. The results of this study suggest that continued development and implementation of stretching programs in the workplace may benefit employees by increasing flexibility and potentially preventing injuries due to muscle strains. Stretching programs in the workplace also may improve components of employees' perceptions of their physical bodies.

  19. Skin-friction measurements with hot-wire gages

    Science.gov (United States)

    Houdeville, R.; Juillen, J. C.; Cousteix, J.

    1983-11-01

    The development of two hot-wire gauges for implantation in wind-tunnel models and their application to the measurement of skin-friction phenomena are reported. The measurement principle is explained; the design and calibration of a single-wire gage containing a thermocouple for temperature determination (Cousteix and Juillen, 1982-1983) are summarized; and sample results for 2D and 3D flows with positive pressure gradients are shown. An advanced design employing a thin hot film deposited on an 80-micron-diameter quartz fiber extending into a 1-mm-sq 0.8-mm-deep cavity is characterized and demonstrated on a pulsed flow on a flat plate, Tollmien-Schlichting waves, and a turbulent boundary layer. Two cold-wire temperature sensors are added to this gage to permit detection of the skin of the skin friction in the separated flow over a cylinder.

  20. Velocity distribution measurement in wire-spaced fuel pin bundle

    International Nuclear Information System (INIS)

    Mizuta, Hiroshi; Ohtake, Toshihide; Uruwashi, Shinichi; Takahashi, Keiichi

    1974-01-01

    Flow distribution measurement was made in the subchannels of a pin bundle in air flow. The present paper is interim because the target of this work is the decision of temperature of the pin surface in contact with wire spacers. The wire-spaced fuel pin bundle used for the experiment consists of 37 simulated fuel pins of stainless steel tubes, 3000 mm in length and 31.6 mm in diameter, which are wound spirally with 6 mm stainless steel wire. The bundle is wrapped with a hexagonal tube, 3500 mm in length and 293 mm in flat-to-flat distance. The bundle is fixed with knock-bar at the entrance of air flow in the hexagonal tube. The pitch of pins in the bundle is 37.6 mm (P/D=1.19) and the wrapping pitch of wire is 1100 mm (H/D=34.8). A pair of arrow-type 5-hole Pitot tubes are used to measure the flow velocity and the direction of air flow in the pin bundle. The measurement of flow distribution was made with the conditions of air flow rate of 0.33 m 3 /sec, air temperature of 45 0 C, and average Reynolds number of 15100 (average air velocity of 20.6 m/sec.). It was found that circular flow existed in the down stream of wire spacers, that axial flow velocity was slower in the subchannels, which contained wire spacers, than in those not affected by the wire, and that the flow angle to the axial velocity at the boundary of subchannels was two thirds smaller than wire wrapping angle. (Tai, I.)

  1. Wire Position Monitoring with FPGA based Electronics

    International Nuclear Information System (INIS)

    Eddy, N.; Lysenko, O.

    2009-01-01

    This fall the first Tesla-style cryomodule cooldown test is being performed at Fermilab. Instrumentation department is preparing the electronics to handle the data from a set of wire position monitors (WPMs). For simulation purposes a prototype pipe with a WMP has been developed and built. The system is based on the measurement of signals induced in pickups by 320 MHz signal carried by a wire through the WPM. The wire is stretched along the pipe with a tensioning load of 9.07 kg. The WPM consists of four 50 (Omega) striplines spaced 90 o apart. FPGA based digitizer scans the WPM and transmits the data to a PC via VME interface. The data acquisition is based on the PC running LabView. In order to increase the accuracy and convenience of the measurements some modifications were required. The first is implementation of an average and decimation filter algorithm in the integrator operation in the FPGA. The second is the development of alternative tool for WPM measurements in the PC. The paper describes how these modifications were performed and test results of a new design. The last cryomodule generation has a single chain of seven WPMs (placed in critical positions: at each end, at the three posts and between the posts) to monitor a cold mass displacement during cooldown. The system was developed in Italy in collaboration with DESY. Similar developments have taken place at Fermilab in the frame of cryomodules construction for SCRF research. This fall preliminary cryomodule cooldown test is being performed. In order to prepare an appropriate electronic system for the test a prototype pipe with a WMP has been developed and built, figure 1. The system is based on the measurement of signals induced in pickups by 320 MHz signal carried by a wire through the WPM. The 0.5 mm diameter Cu wire is stretched along the pipe with a tensioning load of 9.07 kg and has a length of 1.1 m. The WPM consists of four 50 (Omega) striplines spaced 90 o apart. An FPGA based digitizer

  2. Stress effects on multifilamentary Nb3Sn wire

    International Nuclear Information System (INIS)

    Bartlett, R.J.; Taylor, R.D.; Thompson, J.D.

    1979-01-01

    Critical current I/sub c/ measurements were obtained on highly stabilized mf Nb 3 Sn wires as a function of heat treatment, stress, temperature, and applied magnetic field. The ratio of the area of the copper to bronze core-niobium tube is about 8, and the filaments are concentrated in the inner 30% of the wire cross section. Values of I/sub c/ and T/sub c/ were determined for samples subjected to a wide range of heat treatments. Diffusion reaction times and temperatures in the ranges 16 to 128 hr and 700 to 750 0 C provided a number of mf Nb 3 Sn wires having similar I/sub c/ characteristics. To some extent the residual compressive loading on the Nb 3 Sn wires varied with the particular heat treatment. This loading arises primarily from the differential contraction of the remaining bronze and the Nb 3 Sn layer when cooled from the reaction temperature to the operating temperature. It was found that, by controlled bending or stretching of the wires, whereby some of the strain in the Nb 3 Sn is relieved, the I/sub c/ at 14 K is increased by as much as 30% and the critical temperature is increased by up to 1 K

  3. Interferometer for electron density measurement in exploding wire plasma

    International Nuclear Information System (INIS)

    Batra, Jigyasa; Jaiswar, Ashutosh; Kaushik, T.C.

    2016-12-01

    Mach-Zehnder Interferometer (MZI) has been developed for measuring electron density profile in pulsed plasmas. MZI is to be used for characterizing exploding wire plasmas for correlating electron density dynamics with x-rays emission. Experiments have been carried out for probing electron density in pulsed plasmas produced in our laboratory like in spark gap and exploding wire plasmas. These are microsecond phenomenon. Changes in electron density have been registered in interferograms with the help of a streak camera for specific time window. Temporal electron density profiles have been calculated by analyzing temporal fringe shifts in interferograms. This report deals with details of MZI developed in our laboratory along with its theory. Basic introductory details have also been provided for exploding wire plasmas to be probed. Some demonstrative results of electron density measurements in pulsed plasmas of spark gap and single exploding wires have been described. (author)

  4. New potential for the Leitz Infinity Coordinate Measuring Machine

    CERN Document Server

    Sanz, Claude; MAINAUD DURAND , Hélène; Schneider, Jurgen; Steffens, Norbert; Morantz , Paul; Shore , Paul

    2015-01-01

    The following study is realised within the frame of the PACMAN project: a study on Particle Accelerator Components Metrology and Alignment to the Nanometre scale, which is a Marie Curie program supported by the European commission and hosted by CERN (European Organisation for Nuclear Research). The aim of this program is to develop and build a pre-alignment bench on which each component is aligned to the required level in one single step using a stretched wire. During the operation, the centre of the stretched wire is aligned with the magnetic axis of the magnet. Then, the position of the wire is measured to the highest possible accuracy using a 3D Coordinate Measuring Machine (CMM) Leitz PMM-C Infinity from HEXAGON Metrology. The research described in this paper is two-fold: on one hand we apply a strong magnetic field to the head of the CMM and evaluate its influence on the measurement accuracy; on the other hand we measure the position

  5. A simple homogeneous model for regular and irregular metallic wire media samples

    Science.gov (United States)

    Kosulnikov, S. Y.; Mirmoosa, M. S.; Simovski, C. R.

    2018-02-01

    To simplify the solution of electromagnetic problems with wire media samples, it is reasonable to treat them as the samples of a homogeneous material without spatial dispersion. The account of spatial dispersion implies additional boundary conditions and makes the solution of boundary problems difficult especially if the sample is not an infinitely extended layer. Moreover, for a novel type of wire media - arrays of randomly tilted wires - a spatially dispersive model has not been developed. Here, we introduce a simplistic heuristic model of wire media samples shaped as bricks. Our model covers WM of both regularly and irregularly stretched wires.

  6. Measurement of the geometric parameters of power contact wire based on binocular stereovision

    Science.gov (United States)

    Pan, Xue-Tao; Zhang, Ya-feng; Meng, Fei

    2010-10-01

    In the electrified railway power supply system, electric locomotive obtains power from the catenary's wire through the pantograph. Under the action of the pantograph, combined with various factors such as vibration, touch current, relative sliding speed, load, etc, the contact wire will produce mechanical wear and electrical wear. Thus, in electrified railway construction and daily operations, the geometric parameters such as line height, pull value, the width of wear surface must be under real-timely and non-contact detection. On the one hand, the safe operation of electric railways will be guaranteed; on the other hand, the wire endurance will be extended, and operating costs reduced. Based on the characteristics of the worn wires' image signal, the binocular stereo vision technology was applied for measurement of contact wire geometry parameters, a mathematical model of measurement of geometric parameters was derived, and the boundaries of the wound wire abrasion-point value were extracted by means of sub-pixel edge detection method based on the LOG operator with the least-squares fitting, thus measurements of the wire geometry parameters were realized. Principles were demonstrated through simulation experiments, and the experimental results show that the detection methods presented in this paper for measuring the accuracy, efficiency and convenience, etc. are close to or superior to the traditional measurements, which has laid a good foundation for the measurement system of geometric parameters for the contact wire of the development of binocular vision.

  7. Application of Hot-wire Method for Measuring Thermal Conductivity of Fine Ceramics

    Directory of Open Access Journals (Sweden)

    Shangxi WANG

    2016-11-01

    Full Text Available Ceramic substrate is preferred in high density packaging due to its high electrical resistivity and moderate expansion coefficient. The thermal conductivity is a key parameter for packaging substrates. There are two common methods to measure the thermal conductivity, which are the hot-wire method and the laser-flash method. Usually, the thermal conductivities of porcelain is low and meet the measurement range of hot-wire method, and the measured value by hot-wire method has little difference with that by laser-flash method. In recent years, with the requirement of high-powered LED lighting, some kinds of ceramic substrates with good thermal conductivity have been developed and their thermal conductivity always measured by the means of laser flash method, which needs expensive instrument. In this paper, in order to detect the thermal conductivity of fine ceramic with convenience and low cost, the feasibility of replacing the laser flash method with hot wire method to measure thermal conductivity of ceramic composites was studied. The experiment results showed that the thermal conductivity value of fine ceramics measured by the hot-wire method is severely lower than that by the laser-flash method. However, there is a positive relationship between them. It is possible to measure the thermal conductivity of fine ceramic workpiece instantly by hot-wire method via a correction formula.DOI: http://dx.doi.org/10.5755/j01.ms.22.4.12543

  8. Modified coaxial wire method for measurement of transfer impedance of beam position monitors

    Science.gov (United States)

    Kumar, Mukesh; Babbar, L. K.; Deo, R. K.; Puntambekar, T. A.; Senecha, V. K.

    2018-05-01

    The transfer impedance is a very important parameter of a beam position monitor (BPM) which relates its output signal with the beam current. The coaxial wire method is a standard technique to measure transfer impedance of the BPM. The conventional coaxial wire method requires impedance matching between coaxial wire and external circuits (vector network analyzer and associated cables). This paper presents a modified coaxial wire method for bench measurement of the transfer impedance of capacitive pickups like button electrodes and shoe box BPMs. Unlike the conventional coaxial wire method, in the modified coaxial wire method no impedance matching elements have been used between the device under test and the external circuit. The effect of impedance mismatch has been solved mathematically and a new expression of transfer impedance has been derived. The proposed method is verified through simulation of a button electrode BPM using cst studio suite. The new method is also applied to measure transfer impedance of a button electrode BPM developed for insertion devices of Indus-2 and the results are also compared with its simulations. Close agreement between measured and simulation results suggests that the modified coaxial wire setup can be exploited for the measurement of transfer impedance of capacitive BPMs like button electrodes and shoe box BPM.

  9. Modified coaxial wire method for measurement of transfer impedance of beam position monitors

    Directory of Open Access Journals (Sweden)

    Mukesh Kumar

    2018-05-01

    Full Text Available The transfer impedance is a very important parameter of a beam position monitor (BPM which relates its output signal with the beam current. The coaxial wire method is a standard technique to measure transfer impedance of the BPM. The conventional coaxial wire method requires impedance matching between coaxial wire and external circuits (vector network analyzer and associated cables. This paper presents a modified coaxial wire method for bench measurement of the transfer impedance of capacitive pickups like button electrodes and shoe box BPMs. Unlike the conventional coaxial wire method, in the modified coaxial wire method no impedance matching elements have been used between the device under test and the external circuit. The effect of impedance mismatch has been solved mathematically and a new expression of transfer impedance has been derived. The proposed method is verified through simulation of a button electrode BPM using cst studio suite. The new method is also applied to measure transfer impedance of a button electrode BPM developed for insertion devices of Indus-2 and the results are also compared with its simulations. Close agreement between measured and simulation results suggests that the modified coaxial wire setup can be exploited for the measurement of transfer impedance of capacitive BPMs like button electrodes and shoe box BPM.

  10. Beam profile measurement with flying wires at the Fermilab Recycler Ring

    Energy Technology Data Exchange (ETDEWEB)

    Carcagno, R.; Pishchalnikov, Yu.; Krider, J.; Hu, M.; Lorman, E.; Marchionni, A.; Pordes, S.; Wilson, P.; Zagel, J.; /Fermilab

    2005-05-01

    Flying wires were installed at the Fermilab Recycler Ring for transverse beam profile measurement for both proton and antiproton beams. The following note describes the system configuration, calibration and resolution of the flying wire system, interactions between the wires and the beam, as well as analysis of the transverse beam profile in the presence of a stochastic cooling system.

  11. Beam profile measurement with flying wires at the Fermilab Recycler Ring

    International Nuclear Information System (INIS)

    Carcagno, R.; Pishchalnikov, Yu.; Krider, J.; Hu, M.; Lorman, E.; Marchionni, A.; Pordes, S.; Wilson, P.; Zagel, J.

    2005-01-01

    Flying wires were installed at the Fermilab Recycler Ring for transverse beam profile measurement for both proton and antiproton beams. The following note describes the system configuration, calibration and resolution of the flying wire system, interactions between the wires and the beam, as well as analysis of the transverse beam profile in the presence of a stochastic cooling system

  12. Measurement of the saturation magnetostriction constant of amorphous wire

    International Nuclear Information System (INIS)

    Mitra, A.; Vazquez, M.

    1990-01-01

    Measurement of the magnetostriction constant of amorphous wire by conventional techniques is very difficult because of its small diameter. However, accurate determination of the magnetostriction constant is important in the study of amorphous wires. Here the saturation magnetostriction constant (λ s ) for a low-magnetostriction amorphous wire of nominal composition (Fe 6.3 Co 92.7 Nb 1 ) 77.5 Si 7.5 B 15 has been determined by means of the small-angle magnetization-rotation method. λ s has been evaluated to be 2.1x10 -7 for its as-received state. The dependence of thermal treatment is also reported

  13. A Novel Stretch Sensor to Measure Venous Hemodynamics

    Directory of Open Access Journals (Sweden)

    Syrpailyne Wankhar

    2018-07-01

    Full Text Available Chronic venous insufficiency is a debilitating condition causing varicose veins and venous ulcers. The pathophysiology includes reflux and venous obstruction. The diagnosis is often made by clinical examination and confirmed by Venous Doppler studies. Plethysmography helps to quantitatively examine the reflux and diagnose the burden of deep venous pathology to better understand venous hemodynamics, which is not elicited by venous duplex examination alone. However, most of these tests are qualitative, expensive, and not easily available. In this paper, we demonstrate the potential use of a novel stretch sensor in the assessment of venous hemodynamics during different maneuvers by measuring the change in calf circumference. We designed the stretch sensor by using semiconductor strain gauges pasted onto a small metal bar to form a load cell. The elastic and Velcro material attached to the load cell form a belt. It converts the change in limb circumference to a proportional tension (force of distension when placed around the calf muscle. We recorded the change in limb circumference from arrays of stretch sensors by using an in-house data acquisition system. We calculated the venous volume (VV, venous filling index (VFI, ejection fraction (EF and residual venous volume (RVV on two normal subjects and on two patients to assess venous hemodynamics. The values (VV > 60 ml, VFI 60%, RVV 2ml/s, EF 35% in patients were comparable to those reported in the literature.

  14. Method for wrapping a wire round a nuclear fuel rod

    International Nuclear Information System (INIS)

    Nakayasu, Fumio.

    1974-01-01

    Object: To provide a method for winding a wire round a nuclear fuel rod with accurate pitches without imparting any local strain or torsion to the wire. Structure: A wire is fixed on one end of the fuel rod, and the other end of the wire is secured to a universal joint leaving a winding allowance to the fuel rod. The wire is linearly stretched by a predetermined tension through the universal joint so as to provide an angle of development theta corresponding to the desired winding pitch, and then, the fuel rod may be rotated so that the end of the wire on the side of the universal joint is moved towards the fuel rod so as to render the angle of development theta constant in proportion to said rotation of the fuel rod. (Kamimura, M.)

  15. On the Humidity Sensitivity of Hot-Wire Measurements

    DEFF Research Database (Denmark)

    Larsen, Søren Ejling; Busch, N. E.

    1980-01-01

    The influence of humidity changes on hot-wire measurements is discussed. Indications are that the humidity sensitivity parameters obtained by the authors in an earlier paper should be changed. This means, however, that the agreement between predicted and measured sensitivities ceases to exist...

  16. New sensor and non-contact geometrical survey for the vibrating wire technique

    Energy Technology Data Exchange (ETDEWEB)

    Geraldes, Renan [Brazilian Synchrotron Light Laboratory (LNLS), Campinas, SP (Brazil); Junqueira Leão, Rodrigo, E-mail: rodrigo.leao@lnls.br [Brazilian Synchrotron Light Laboratory (LNLS), Campinas, SP (Brazil); Cernicchiaro, Geraldo [Brazilian Center for Research in Physics (CBPF), Rio de Janeiro, RJ (Brazil); Terenzi Neuenschwander, Regis; Citadini, James Francisco; Droher Rodrigues, Antônio Ricardo [Brazilian Synchrotron Light Laboratory (LNLS), Campinas, SP (Brazil)

    2016-03-01

    The tolerances for the alignment of the magnets in the girders of the next machine of the Brazilian Synchrotron Light Laboratory (LNLS), Sirius, are as small as 40 µm for translations and 0.2 mrad for rotations. Therefore, a novel approach to the well-known vibrating wire technique has been developed and tested for the precise fiducialization of magnets. The alignment bench consists of four commercial linear stages, a stretched wire, a commercial lock-in amplifier working with phase-locked loop (PLL), a coordinate measuring machine (CMM) and a vibration sensor for the wire. This novel sensor has been designed for a larger linear region of operation. For the mechanical metrology step of the fiducialization of quadrupoles an innovative technique, using the vision system of the CMM, is presented. While the work with pitch and yaw orientations is still ongoing with promising partial results, the system already presents an uncertainty level below 10 µm for translational alignment.

  17. Transverse Beam Halo Measurements at High Intensity Neutrino Source (HINS) using Vibrating Wire Monitor

    Energy Technology Data Exchange (ETDEWEB)

    Chung, M.; Hanna, B.; Scarpine, V.; Shiltsev, V.; Steimel, J.; Artinian, S.; Arutunian, S.

    2015-02-26

    The measurement and control of beam halos will be critical for the applications of future high-intensity hadron linacs. In particular, beam profile monitors require a very high dynamic range when used for the transverse beam halo measurements. In this study, the Vibrating Wire Monitor (VWM) with aperture 60 mm was installed at the High Intensity Neutrino Source (HINS) front-end to measure the transverse beam halo. A vibrating wire is excited at its resonance frequency with the help of a magnetic feedback loop, and the vibrating and sensitive wires are connected through a balanced arm. The sensitive wire is moved into the beam halo region by a stepper motor controlled translational stage. We study the feasibility of the vibrating wire for the transverse beam halo measurements in the low-energy front-end of the proton linac.

  18. Wire Scanner Beam Profile Measurements for the LANSCE Facility

    International Nuclear Information System (INIS)

    Gilpatrick, John D.; Gruchalla, Michael E.; Martinez, Derwin; Pillai, Chandra; Rodriguez Esparza, Sergio; Sedillo, James Daniel; Smith, Brian G.

    2012-01-01

    The Los Alamos Neutron Science Center (LANSCE) is replacing beam profile measurement systems, commonly known as Wire Scanners (WS). Using the principal of secondary electron emission, the WS measurement system moves a wire or fiber across an impinging particle beam, sampling a projected transverse-beam distribution. Because existing WS actuators and electronic components are either no longer manufactured or home-built with antiquated parts, a new WS beam profile measurement is being designed, fabricated, and tested. The goals for these new WS's include using off-the-shelf components while eliminating antiquated components, providing quick operation while allowing for easy maintainability, and tolerating external radioactivation. The WS measurement system consists of beam line actuators, a cable plant, an electronics processor chassis, and software located both in the electronics chassis (National Instruments LabVIEW) and in the Central Control Room (EPICS-based client software). This WS measurement system will measure Hand H + LANSCE-facility beams and will also measure less common beams. This paper describes these WS measurement systems.

  19. The Calculated and Measured Performance Characteristics of a Heated-Wire Liquid-Water-Content Meter for Measuring Icing Severity

    Science.gov (United States)

    Neel, Carr B.; Steinmetz, Charles P.

    1952-01-01

    Ground tests have been made of an instrument which, when assembled in a more compact form for flight installation, could be used to obtain statistical flight data on the liquid-water content of icing clouds and to provide an indication of icing severity. The sensing element of the instrument consists of an electrically heated wire which is mounted in the air stream. The degree of cooling of the wire resulting from evaporation of the impinging water droplets is a measure. of the liquid-water content of the cloud. Determination of the value of the liquid-water content from the wire temperature at any instant requires a knowledge of the airspeed, altitude, and air temperature. An analysis was made of the temperature response of a heated wire exposed to an air stream containing water drops. Comparisons were made of the liquid-water content as measured with several heated wires and absorbent cylinders in an artificially produced cloud. For one of the wires, comparative tests were made with a rotating-disk icing-rate meter in an icing wind tunnel. From the test results, it was shown that an instrument for measuring the concentration of liquid water in an air stream can be built using an electrically heated wire of known temperatureresistance characteristics, and that the performance of such a device can be predicted using appropriate theory. Although an instrument in a form suitable for gathering statistical data in flight was not built, the practicability of constructing such an instrument was illustrated. The ground-test results indicated that a flight heated-wire instrument would be simple and durable, would respond rapidly to variations in liquid-water content, and could be used for the measurement of water content in clouds which are above freezing temperature, as well as in icing clouds.

  20. 3D MHD Simulations of Radial Wire Array Z-pinches

    International Nuclear Information System (INIS)

    Niasse, N.; Chittenden, J. P.; Bland, S. N.; Suzuki-Vidal, F. A.; Hall, G. N.; Lebedev, S. V.; Calamy, H.; Zucchini, F.; Lassalle, F.; Bedoch, J. P.

    2009-01-01

    Recent experiments carried out on the MAGPIE (1 MA, 250 ns), OEDIPE (730 kA, 1.5 μs) and SPHINX (4 MA, 700 ns)[1] facilities have shown the relatively high level of scalability of the Radial Wire Array Z-pinches. These configurations where the wires stretch radially outwards from a central cathode offer numerous advantages over standard cylindrical arrays. In particular, imploding in a very stable and compact way, they seem suitable for coupling to small scale hohlraums. Making use of the 3D resistive magneto-hydrodynamic code GORGON[2] developed at Imperial College, the dynamic of the radial wire arrays is investigated. Influence of the cathode hotspots and wires angle on the x-ray emissions is also discussed. Comparison with experiments is offered to validate the numerical studies.

  1. Slice of LHC dipole wiring

    CERN Multimedia

    Dipole model slice made in 1994 by Ansaldo. The high magnetic fields needed for guiding particles around the Large Hadron Collider (LHC) ring are created by passing 12’500 amps of current through coils of superconducting wiring. At very low temperatures, superconductors have no electrical resistance and therefore no power loss. The LHC is the largest superconducting installation ever built. The magnetic field must also be extremely uniform. This means the current flowing in the coils has to be very precisely controlled. Indeed, nowhere before has such precision been achieved at such high currents. 50’000 tonnes of steel sheets are used to make the magnet yokes that keep the wiring firmly in place. The yokes constitute approximately 80% of the accelerator's weight and, placed side by side, stretch over 20 km!

  2. Wire Scanner Beam Profile Measurements for the LANSCE Facility

    Energy Technology Data Exchange (ETDEWEB)

    Gilpatrick, John D. [Los Alamos National Laboratory; Gruchalla, Michael E. [Los Alamos National Laboratory; Martinez, Derwin [Los Alamos National Laboratory; Pillai, Chandra [Los Alamos National Laboratory; Rodriguez Esparza, Sergio [Los Alamos National Laboratory; Sedillo, James Daniel [Los Alamos National Laboratory; Smith, Brian G. [Los Alamos National Laboratory

    2012-05-15

    The Los Alamos Neutron Science Center (LANSCE) is replacing beam profile measurement systems, commonly known as Wire Scanners (WS). Using the principal of secondary electron emission, the WS measurement system moves a wire or fiber across an impinging particle beam, sampling a projected transverse-beam distribution. Because existing WS actuators and electronic components are either no longer manufactured or home-built with antiquated parts, a new WS beam profile measurement is being designed, fabricated, and tested. The goals for these new WS's include using off-the-shelf components while eliminating antiquated components, providing quick operation while allowing for easy maintainability, and tolerating external radioactivation. The WS measurement system consists of beam line actuators, a cable plant, an electronics processor chassis, and software located both in the electronics chassis (National Instruments LabVIEW) and in the Central Control Room (EPICS-based client software). This WS measurement system will measure Hand H{sup +} LANSCE-facility beams and will also measure less common beams. This paper describes these WS measurement systems.

  3. Extensional viscosity for polymer melts measured in the filament stretching rheometer

    DEFF Research Database (Denmark)

    Bach, Anders; Rasmussen, Henrik K.; Hassager, Ole

    2003-01-01

    A new filament stretching rheometer has been constructed to measure the elongational viscosity of polymer melts at high temperatures. Two polymer melts, a LDPE and a LLDPE, were investigated with this rheometer. A constant elongational rate has been obtained by an iterative application of the Orr...

  4. A Steel Wire Stress Measuring Sensor Based on the Static Magnetization by Permanent Magnets

    Directory of Open Access Journals (Sweden)

    Dongge Deng

    2016-10-01

    Full Text Available A new stress measuring sensor is proposed to evaluate the axial stress in steel wires. Without using excitation and induction coils, the sensor mainly consists of a static magnetization unit made of permanent magnets and a magnetic field measurement unit containing Hall element arrays. Firstly, the principle is illustrated in detail. Under the excitation of the magnetization unit, a spatially varying magnetized region in the steel wire is utilized as the measurement region. Radial and axial magnetic flux densities at different lift-offs in this region are measured by the measurement unit to calculate the differential permeability curve and magnetization curve. Feature parameters extracted from the curves are used to evaluate the axial stress. Secondly, the special stress sensor for Φ5 and Φ7 steel wires is developed accordingly. At last, the performance of the sensor is tested experimentally. Experimental results show that the sensor can measure the magnetization curve accurately with the error in the range of ±6%. Furthermore, the obtained differential permeability at working points 1200 A/m and 10000 A/m change almost linearly with the stress in steel wires, the goodness of linear fits are all higher than 0.987. Thus, the proposed steel wire stress measuring sensor is feasible.

  5. Monorail snare technique for the recovery of stretched platinum coils: technical case report.

    Science.gov (United States)

    Fiorella, David; Albuquerque, Felipe C; Deshmukh, Vivek R; McDougall, Cameron G

    2005-07-01

    Coil stretching represents a potentially hazardous technical complication not infrequently encountered during the embolization of cerebral aneurysms. Often, the stretched coil cannot be advanced into the aneurysm or withdrawn intact. The operator is then forced to attempt to retract the damaged coil, which may result in coil breakage, leaving behind a significant length of potentially thrombogenic stretched coil material within the parent vessel. To overcome this problem, we devised a technique to snare the distal, unstretched, intact portion of the platinum coil by use of the indwelling microcatheter and stretched portion of the coil as a monorail guide. We have used this technique successfully in four patients to snare coils stretched during cerebral aneurysm embolization. Three of these patients were undergoing Neuroform (Boston Scientific/Target, Fremont, CA) stent-supported coil embolization of unruptured aneurysms. In all cases, the snare was advanced easily to the targeted site for coil engagement by use of the microcatheter as a monorail guide. Once the intact distal segment of the coil was ensnared, coil removal was uneventful, with no disturbance of the remainder of the indwelling coil pack or Neuroform stent. A 2-mm Amplatz Goose Neck microsnare (Microvena Corp., White Bear Lake, MN) was placed through a Prowler-14 microcatheter (Cordis Corp., Miami, FL). The hub of the indwelling SL-10 microcatheter (Boston Scientific, Natick, MA) was then cut away with a scalpel, leaving the coil pusher wire intact, and removed. The open 2-mm snare was then advanced over the outside of the coil pusher wire and microcatheter. The snare and Prowler-14 microcatheter were then advanced into the guiding catheter (6- or 7-French) as a unit over the indwelling SL-10 microcatheter. By use of the SL-10 microcatheter and coil as a "monorail" guide, the snare was advanced over and beyond the microcatheter and the stretched portion of the coil until the snare was in position to

  6. Approximate solutions of a nonlinear oscillator typified as a mass attached to a stretched elastic wire by the homotopy perturbation method

    International Nuclear Information System (INIS)

    Belendez, A.; Belendez, T.; Neipp, C.; Hernandez, A.; Alvarez, M.L.

    2009-01-01

    The homotopy perturbation method is used to solve the nonlinear differential equation that governs the nonlinear oscillations of a system typified as a mass attached to a stretched elastic wire. The restoring force for this oscillator has an irrational term with a parameter λ that characterizes the system (0 ≤ λ ≤ 1). For λ = 1 and small values of x, the restoring force does not have a dominant term proportional to x. We find this perturbation method works very well for the whole range of parameters involved, and excellent agreement of the approximate frequencies and periodic solutions with the exact ones has been demonstrated and discussed. Only one iteration leads to high accuracy of the solutions and the maximal relative error for the approximate frequency is less than 2.2% for small and large values of oscillation amplitude. This error corresponds to λ = 1, while for λ < 1 the relative error is much lower. For example, its value is as low as 0.062% for λ = 0.5.

  7. A Wire Position Monitor System for the ISAC-II Cryomodule Components Alignment

    CERN Document Server

    Rawnsley, B; Dutto, G; Fong, K; Laxdal, R E; Ries, T

    2004-01-01

    TRIUMF is developing ISAC-II, a superconducting (SC) linac. It will comprise 9 cryomodules with a total of 48 niobium cavities and 12 SC solenoids. They must remain aligned at liquid He temperatures: cavities to ±400 μm and solenoids to ±200 μm after a vertical contraction of ~4 mm. A wire position monitor (WPM) system based on a TESLA design has been developed, built, and tested with a prototype cryomodule. The system is based on the measurement of signals induced in pickups by a 215 MHz signal carried by a wire through the WPMs. The wire is stretched between the warm tank walls parallel to the beam axis providing a position reference. The sensors, one per cavity and two per solenoid, are attached to the cold elements to monitor their motion during pre-alignment, pumping and cool down. A WPM consists of four 50 Ω striplines spaced 90° apart. A GaAs multiplexer scans the WPMs and a Bergoz card converts the RF signals to DC X and Y voltages. National Ins...

  8. Measurement of the residual stress distribution in a thick pre-stretched aluminum plate

    Science.gov (United States)

    Yuan, S. X.; Li, X. Q.; M, S.; Zhang, Y. C.; Gong, Y. D.

    2008-12-01

    Thick pre-stretched aluminum alloy plates are widely used in aircraft, while machining distortion caused by initial residual stress release in thick plates is a common and serious problem. To reduce the distortion, the residual stress distribution in thick plate must be measured. According to the characteristics of the thick pre-stretched aluminum alloy plate, based the elastic mechanical theory, this article deduces the modified layer-removal strain method adapting two different strain situations, which are caused by tensile and compressive stress. To validate this method, the residual stresses distribution along the thick direction of plate 2D70T351 is measured by this method, it is shown that the new method deduced in this paper is simple and accurate, and is very useful in engineering.

  9. Design and fabrication of a three-finger prosthetic hand using SMA muscle wires

    Science.gov (United States)

    Simone, Filomena; York, Alexander; Seelecke, Stefan

    2015-03-01

    Bio-inspired hand-like gripper systems based on shape memory alloy (SMA) wire actuation have the potential to enable a number of useful applications in, e.g., the biomedical field or industrial assembly systems. The inherent high energy density makes SMA solutions a natural choice for systems with lightweight, low noise and high force requirements, such as hand prostheses or robotic systems in a human/machine environment. The focus of this research is the development, design and realization of a SMA-actuated prosthetic hand prototype with three fingers. The use of thin wires (100 μm diameter) allows for high cooling rates and therefore fast movement of each finger. Grouping several small wires mechanically in parallel allows for high force actuation. To save space and to allow for a direct transmission of the motion to each finger, the SMA wires are attached directly within each finger, across each phalanx. In this way, the contraction of the wires will allow the movement of the fingers without the use of any additional gears. Within each finger, two different bundles of wires are mounted: protagonist ones that create bending movement and the antagonist ones that enable stretching of each phalanx. The resistance change in the SMA wires is measured during actuation, which allows for monitoring of the wire stroke and potentially the gripping force without the use of additional sensors. The hand is built with modern 3D-printing technologies and its performance while grasping objects of different size and shape is experimentally investigated illustrating the usefulness of the actuator concept.

  10. The development of the high-tension wire for nuclear fusion superconductive magnet measurement

    International Nuclear Information System (INIS)

    Yoshida, Kiyoshi; Morita, Yohsuke; Yamazaki, Takanori; Watanabe, Kiyoshi; Furusawa, Ken-ichi.

    1987-01-01

    Following on tokamak critical plasma testing device JT-60, experimental fusion reactor JT-100 is being developed. The 6 kV high-tension wire has been developed for use in JT-100 under ultra-low temperature and high radiation environment. Used for superconductive magnet measurement, the wire is inserted in the vacuum vessel, being immersed within the liquid helium. As the insulating material of this wire, polyetherimido was found to be most suitable in the respects of radiation resistance and voltage-withstand property. In an electric wire covered with polyetherimido, which was made in trial, its test in voltage-withstand and bending characteristics at ultra-low temperature showed the wire to be usable for the intended purpose. (Mori, K.)

  11. Beam Profile Measurement with Flying Wires at the Fermilab Recycler Ring

    CERN Document Server

    Hu, Martin; Krider, John; Lorman, Eugene; Marchionni, Alberto; Pishchalnikov, Yu M; Pordes, Stephen; Slimmer, David; Wilson, Peter R; Zagel, James

    2005-01-01

    The Fermilab Recycler Ring is a high vacuum fixed energy antiproton storage ring with stochastic and electron cooling systems. Flying wires were installed at the Fermilab Recycler Ring for transverse beam profile measurement. The following note describes the system configuration, calibration and resolution of the flying wire system, as well as analysis of the transverse beam profile in the presence of both cooling systems.

  12. Stretch strength of Al-Li alloy sheet

    Energy Technology Data Exchange (ETDEWEB)

    Sato, K.; Sawa, Y.; Yokoyama, T.; Fujimoto, S. [Science Univ. of Tokyo (Japan). Dept. of Mech. Eng.; Sakamoto, T. [Kobe Steel Works, Tokyo (Japan)

    1998-07-01

    Stretch test on Al-Li alloy sheet was carried out in stretch rate of 0.01 to 0.2 mm/sec. The limiting stretch depth was measured in various conditions and the following results were obtained. (1) Stretch rate does not affect the limiting stretch depth of Al-Li alloy. (2) The limiting stretch depth is increased with increase of the profile radius. (3) Strain hardening exponent(n-value) and r-value of Lankford do not affect the limiting stretch depth. (4) Rapture pattern in stretch test of Al is {alpha} type rapture and that of Al-Li alloy is straight line type rapture. (orig.) 4 refs.

  13. Measurement of wire deflection on loading may indicate union in Ilizarov constructs, an in vitro model.

    Science.gov (United States)

    Lineham, Beth; Stewart, Todd; Harwood, Paul

    2018-02-02

    No entirely reliable method exists for assessing union during Ilizarov treatment. Premature removal results in potential treatment failure; hence, alternative methods warrant investigation. Wire deflection might provide an indication of fracture site deformation on weight bearing, indicating progress towards union. This study aimed to test a method for assessing wire deflection within an Ilizarov frame. (1) To assess the repeatability of our novel measurement method in measuring wire deflection within an Ilizarov frame in vitro. (2) To compare the amount of wire deflection in an unstable model with that in an intact bone model. (3) To assess accuracy of this method by comparing wire deflection measured with overall machine extension. Tests were performed on clinical grade-tensioned fine wire 4-ring Ilizarov constructs stabilising a simulated fracture, with and without an unstable defect. Models were sequentially loaded to 700 N using an Instron testing machine. A digital depth gauge attached to the superior ring measured relative wire displacement at the ring closest to the fracture. Tests were repeated 3 times. (1) Both unstable and stable bone models produced highly repeatable load deformation curves (R 2  = 0.98 and 0.99). (2) In the unstable model, wires tensioned at 882 and 1274 N produced mean maximum deflections of 2.41 and 2.69 mm compared with 0.05 and 0.04 mm in the intact bone model (significant p measurable difference in wire deflection between stable and unstable situations exists using this method which appears accurate and repeatable, with clear correlation between displacement and load and displacement and machine extension. This approach might be clinically applicable, and further clinical testing is required.

  14. Alignment tools used to locate a wire and a laser beam in the VISA undulator project

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, Z.; Ruland, R.; Dix, B.; Arnett, D. [Stanford Linear Accelerator Center, Menlo Park, CA (United States)

    1999-07-01

    Within the framework of the LCLS (Linac Coherent Light Source), a small experiment VISA (Visual to Infrared SASE (Self Amplified Stimulated Emission) Amplifier) is being performed at Brookhaven National Laboratory. VISA consists of four wiggler segments, each 0.99 m long. The four segments are required to be aligned to the beam axis with an rms error less than 50 {mu}m. This very demanding alignment is carried out in two steps. First the segments are fiducialized using a pulsed wire system. Then the wiggler segments are placed along a reference laser beam which coincides with the electron beam axis. In the wiggler segment fiducialization, a wire is stretched through a wiggler segment and a current pulse is sent down the wire. The deflection of the wire is monitored. The deflection gives information about the electron beam trajectory. The wire is moved until its x position, the coordinate without wire sag, is on the ideal beam trajectory. (The y position is obtained by rotating the wiggler 90 deg C.) Once the wire is on the ideal beam trajectory, the wire's location is measured relative to tooling balls on the wiggler segment. To locate the wire, a device was constructed which measures the wire position relative to tooling balls on the device. The device is called the wire finder. It will be discussed in this paper. To place the magnets along the reference laser beam, the position of the laser beam must be determined. A device which can locate the laser beam relative to tooling balls was constructed and is also discussed in this paper. This device is called the laser finder. With a total alignment error budget less than 50 {mu}m, both the fiducialization and magnet placement must be performed with errors much smaller than 50 {mu}m. It is desired to keep the errors from the wire finder and laser finder at the few {mu}m level. (authors)

  15. Sidewall roughness measurement of photonic wires and photonic crystals

    DEFF Research Database (Denmark)

    Svalgaard, Mikael; Frandsen, Lars Hagedorn; Garnæs, Jørgen

    2007-01-01

    The performance of nanophotonic building blocks such as photonic wires and photonic crystals are rapidly improving, with very low propagation loss and very high cavity Q-factors being reported. In order to facilitate further improvements in performance the ability to quantitatively measure...

  16. Minimisation of the wire position uncertainties of the new CERN vacuum wire scanner

    CERN Document Server

    AUTHOR|(CDS)2069346; Barjau Condomines, A

    In the next years the luminosity of the LHC will be significantly increased. This will require a much higher accuracy of beam profile measurement than actually achievable by the current wire scanner. The new fast wire scanner is foreseen to measure small emittance beams throughout the LHC injector chain, which demands a wire travelling speed up to 20 ms-1 and position measurement accuracy of the order of a few microns. The vibrations of the mechanical parts of the system, and particularly the vibrations of the thin carbon wire, were identified as the major error sources of wire position uncertainty. Therefore the understanding of the wire vibrations is a high priority for the design and operation of the new device. This document presents the work performed to understand the main causes of the wire vibrations observed in one of the existing wire scanner and the new proposed design.

  17. Passive Stretch Versus Active Stretch on Intervertebral Movement in Non - Specific Neck Pain

    International Nuclear Information System (INIS)

    Abd El - Aziz, A.H.; Amin, D.I.; Moustafa, I.

    2016-01-01

    Neck pain is one of the most common and painful musculoskeletal conditions. Point prevalence ranges from 6% to 22% and up to 38% of the elderly population, while lifetime prevalence ranges from 14,2% to 71%. Up till now no randomized study showed the effect between controversy of active and passive stretch on intervertebral movement. The purpose: the current study was to investigate the effect of the passive and active stretch on intervertebral movement in non - specific neck pain. Material and methods: Forty five subjects from both sexes with age range between 18 and 30 years and assigned in three groups, group I (15) received active stretch, ultrasound and TENS. Group II (15) received passive stretch, ultrasound and TENS. Group III (15) received ultrasound and TENS. The radiological assessment was used to measure rotational and translational movement of intervertebral movement before and after treatment. Results: MANOVA test was used for radiological assessment before and after treatment there was significant increase in intervertebral movement in group I as p value =0.0001. Conclusion: active stretch had a effect in increasing the intervertebral movement compared to the passive stretch

  18. Design project of the device for measuring the radioactivity of wires; Projekat uredjaja za merenje radioaktivnosti zica

    Energy Technology Data Exchange (ETDEWEB)

    Bokalovic, P; Bulovic, Lj [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1961-12-15

    This report includes the detailed design description and engineering drawings of the device and equipment for measuring the radioactivity of a wire. The wire is irradiated in the reactor core. The activity of the wire proportional to the neutron flux enables determining the neutron flux distribution. Activity is measured by GM counter.

  19. Wire Scanner Beam Profile Measurements: LANSCE Facility Beam Development

    International Nuclear Information System (INIS)

    Gilpatrick, John D.; Batygin, Yuri K.; Gonzales, Fermin; Gruchalla, Michael E.; Kutac, Vincent G.; Martinez, Derwin; Sedillo, James Daniel; Pillai, Chandra; Rodriguez Esparza, Sergio; Smith, Brian G.

    2012-01-01

    The Los Alamos Neutron Science Center (LANSCE) is replacing Wire Scanner (WS) beam profile measurement systems. Three beam development tests have taken place to test the new wire scanners under beam conditions. These beam development tests have integrated the WS actuator, cable plant, electronics processors and associated software and have used H - beams of different beam energy and current conditions. In addition, the WS measurement-system beam tests verified actuator control systems for minimum profile bin repeatability and speed, checked for actuator backlash and positional stability, tested the replacement of simple broadband potentiometers with narrow band resolvers, and tested resolver use with National Instruments Compact Reconfigurable Input and Output (cRIO) Virtual Instrumentation. These beam tests also have verified how trans-impedance amplifiers react with various types of beam line background noise and how noise currents were not generated. This paper will describe these beam development tests and show some resulting data.

  20. Wire Scanner Beam Profile Measurements: LANSCE Facility Beam Development

    Energy Technology Data Exchange (ETDEWEB)

    Gilpatrick, John D. [Los Alamos National Laboratory; Batygin, Yuri K. [Los Alamos National Laboratory; Gonzales, Fermin [Los Alamos National Laboratory; Gruchalla, Michael E. [Los Alamos National Laboratory; Kutac, Vincent G. [Los Alamos National Laboratory; Martinez, Derwin [Los Alamos National Laboratory; Sedillo, James Daniel [Los Alamos National Laboratory; Pillai, Chandra [Los Alamos National Laboratory; Rodriguez Esparza, Sergio [Los Alamos National Laboratory; Smith, Brian G. [Los Alamos National Laboratory

    2012-05-15

    The Los Alamos Neutron Science Center (LANSCE) is replacing Wire Scanner (WS) beam profile measurement systems. Three beam development tests have taken place to test the new wire scanners under beam conditions. These beam development tests have integrated the WS actuator, cable plant, electronics processors and associated software and have used H{sup -} beams of different beam energy and current conditions. In addition, the WS measurement-system beam tests verified actuator control systems for minimum profile bin repeatability and speed, checked for actuator backlash and positional stability, tested the replacement of simple broadband potentiometers with narrow band resolvers, and tested resolver use with National Instruments Compact Reconfigurable Input and Output (cRIO) Virtual Instrumentation. These beam tests also have verified how trans-impedance amplifiers react with various types of beam line background noise and how noise currents were not generated. This paper will describe these beam development tests and show some resulting data.

  1. Hot Wire Anemometer Turbulence Measurements in the wind Tunnel of LM Wind Power

    DEFF Research Database (Denmark)

    Fischer, Andreas

    downstream of the nozzle contraction. We used two different hot wire probes: a dual sensor miniature wire probe (Dantec 55P61) and a triple sensor fiber film probe (Dantec 55R91). The turbulence intensity measured with the dual sensor probe in the empty tunnel section was significantly lower than the one...

  2. EFFECTIVENESS OF PNF STRETCHING AND CYCLIC STRETCHING OF CALF TIGHTNESS ON COLLEGE GOING GIRLS

    Directory of Open Access Journals (Sweden)

    Ashlesha Sirari

    2015-06-01

    Full Text Available Background: Flexibility helps with injury prevention, the reduction of soreness following a workout, and a general sense of well-being. There are different stretching techniques and protocols for improvements in calf extensibility and flexibility. The purpose of the study was to investigate the effectiveness of two techniques i.e. CYCLIC and PNF stretching which improves calf flexibility. This study was done to find the effectiveness of calf Cyclic and PNF stretching technique to improve calf flexibility. Methods: 30 subjects with age group 21-22 years were randomly allocated to 2 groups equally. Group 1(n=15 were given CYCLIC and group 2(n=15 were given PNF stretching technique. Plantar flexion was used to measure the calf tightness which was done before and after the treatment. Treatment was given for 7 days and on the 7th day the calf tightness was again measured. Results: The mean difference of the CYCLIC is 4.6 and mean difference of PNF is 4.7 which indicate that CYCLIC and PNF both are effective to improve calf flexibility but PNF is more effective than CYCLIC to improve calf flexibility. Conclusion: The neurophysiological basis of PNF, stating that the excitatory efficient of the neuromuscular spindle or the inhibitory afferent of the Golgi tendon organ (GTO or both are responsible for the effects. During PNF stretch and isometric contraction of stretched agonists for extended period may cause activation of its neuromuscular spindle. The increase in tension created during the isometric contraction of the pre – lengthened agonist contracts concentrically. Both the fascia & the spindle of the agonist adjust to the nearly lengthened position. These impulses travel via causing post synaptic inhibition of the motor neuron to agonist increasing the tension from the GTO. These impulses can override the impulses coming from the neuromuscular spindles arousing the muscle to reflexly resist to the change in length, thus helping in lengthening

  3. EFFECTIVENESS OF PNF STRETCHING VERSUS STATIC STRETCHING ON PAIN AND HAMSTRING FLEXIBILITY FOLLOWING MOIST HEAT IN INDIVIDUALS WITH KNEE OSTEOARTHRITIS

    Directory of Open Access Journals (Sweden)

    Meena .V

    2016-10-01

    Full Text Available Background: Osteoarthritis (OA is a degenerative joint disease and one of the major public health problem that causesfunctional impairment and reduced quality of life. To compare the effectiveness of PNF Hold relax stretching versus Static stretching on pain and flexibility of hamstring following moist heat in individuals with knee osteoarthritis. Hamstring tightness is the major problem in knee osteoarthritis individuals. Therefore the need of study is comparing the effectiveness of PNF Hold relax stretching versus static stretching on pain and flexibility of hamstrings following moist heat in knee osteoarthritis participants. Determining the effects of PNF Hold relax stretching versus Static stretching along with moist heat on pain and hamstring flexibility by VAS and Active knee extension range of motion in knee osteoarthritis individuals. Methods: 30 subjects with symptoms of knee osteoarthritis were randomly distributed into 2 groups 15 in each group. PNF Hold relax stretching along with moist heat is compared to Static stretching along with moist heat. Pain was measured by Visual Analogue Scale (VAS and hamstring flexibility by Active knee Extension Range of Motion (AKEROM by universal goniometer. Measurements are taken pre and post intervention. Results: The results indicated PNF Hold relax stretching along with moist heat showed a statistically significant improvement in pain (p<0.05 and improvement in hamstring flexibility (p<0.05 when compared to Static stretching along with moist heat. Conclusion: Subjects with PNF Hold relax stretching along with moist heat showed significant improvement in pain reduction and improving hamstring flexibility than Static stretching along with moist heat.

  4. A Prototype Wire Position Monitoring System

    International Nuclear Information System (INIS)

    Wang, Wei

    2010-01-01

    The Wire Position Monitoring System (WPM) will track changes in the transverse position of LCLS Beam Position Monitors (BPMs) to 1(micro)m over several weeks. This position information will be used between applications of beam based alignment to correct for changes in component alignment. The WPM system has several requirements. The sensor range must be large enough so that precision sensor positioning is not required. The resolution needs to be small enough so that the signal can be used to monitor motion to 1(micro)m. The system must be stable enough so that system drift does not mimic motion of the component being monitored. The WPM sensor assembly consists of two parts, the magnetic sensor and an integrated lock-in amplifier. The magnetic sensor picks up a signal from the alternating current in a stretched wire. The voltage v induced in the sensor is proportional to the wire displacement from the center of the sensor. The integrated lock-in amplifier provides a DC output whose magnitude is proportional to the AC signal from the magnetic sensor. The DC output is either read on a digital voltmeter or digitized locally and communicated over a computer interface.

  5. Measurement of Resistive Plantar Flexion Torque of the Ankle during Passive Stretch in Healthy Subjects and Patients with Poststroke Hemiplegia.

    Science.gov (United States)

    Mizuno, Shiho; Sonoda, Shigeru; Takeda, Kotaro; Maeshima, Shinichiro

    2016-04-01

    Quantification of increased muscle tone for patients with spasticity has been performed to date using various devices to replace the manual scales, such as the modified Ashworth scale or the Tardieu scale. We developed a device that could measure resistive plantar flexion (PF) torque of the ankle during passive dorsiflexion (DF) as an indicator of muscle tone of ankle plantar flexors. The primary objective was to explore the test-retest intrarater reliability of a custom-built device. Participants were 11 healthy subjects (7 men, 4 women; mean age 47.0 years) and 22 patients with poststroke hemiplegia (11 hemorrhagic, 11 ischemic; 14 men, 8 women; mean age 57.2 years). The device was affixed to the ankle. Subjects were seated with knees either flexed or extended. The ankle was passively dorsiflexed from 20° of PF to more than 10° of DF at 5°/second (slow stretch) or 90°/second (fast stretch). Angle and torque were measured twice during the stretches. The intraclass correlation coefficients (ICCs) of torque at 10° of DF (T10) in the 4 conditions-slow and fast stretches with knee flexed or extended-were calculated. The T10 ICCs of the 4 conditions were .95-.99 in both groups. The healthy subjects showed significantly higher T10 of knee extension than of knee flexion during slow and fast stretches. The patients showed increased velocity-dependent torque during fast stretches. Excellent reliability was observed. The device is suitable for measuring resistive PF torque during passive stretch in a flexed knee condition. Copyright © 2016 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  6. Comparison and analysis of BNCT radiation dose between gold wire and JCDS measurement

    International Nuclear Information System (INIS)

    Kageji, T.; Mizobuchi, Y.; Nagahiro, S.; Nakagawa, Y.; Kumada, Hiroaki

    2006-01-01

    We compared and evaluated boron neutron capture therapy (BNCT) radiation dose between gold wire measurement and JAERI Computational Dosimetry System (JCDS). Gold wire analysis demonstrates the actual BNCT dose though it dose not reflect the real the maximum and minimum dose in tumor tissue. We can conclude that JCDS is precise and high-reliable dose planning system for BNCT. (author)

  7. Stretch Sensor Device

    DEFF Research Database (Denmark)

    2013-01-01

    The invention relates to a method for determining stretch values and movement of body parts, e.g. a foot, by analysing stretch data from a stretch sensor. By analysing data from the stretch sensor it is possible to determine stretch samples which are associated with particular motion phases...

  8. Wire-Mesh Tomography Measurements of Void Fraction in Rectangular Bubble Columns

    International Nuclear Information System (INIS)

    Reddy Vanga, B.N.; Lopez de Bertodano, M.A.; Zaruba, A.; Prasser, H.M.; Krepper, E.

    2004-01-01

    Bubble Columns are widely used in the process industry and their scale-up from laboratory scale units to industrial units have been a subject of extensive study. The void fraction distribution in the bubble column is affected by the column size, superficial velocity of the dispersed phase, height of the liquid column, size of the gas bubbles, flow regime, sparger design and geometry of the bubble column. The void fraction distribution in turn affects the interfacial momentum transfer in the bubble column. The void fraction distribution in a rectangular bubble column 10 cm wide and 2 cm deep has been measured using Wire-Mesh Tomography. Experiments were performed in an air-water system with the column operating in the dispersed bubbly flow regime. The experiments also serve the purpose of studying the performance of wire-mesh sensors in batch flows. A 'wall peak' has been observed in the measured void fraction profiles, for the higher gas flow rates. This 'wall peak' seems to be unique, as this distribution has not been previously reported in bubble column literature. Low gas flow rates yielded the conventional 'center peak' void profile. The effect of column height and superficial gas velocity on the void distribution has been investigated. Wire-mesh Tomography also facilitates the measurement of bubble size distribution in the column. This paper presents the measurement principle and the experimental results for a wide range of superficial gas velocities. (authors)

  9. An Intelligent Computerized Stretch Reflex Measurement System For Clinical And Investigative Neurology

    Science.gov (United States)

    Flanagan, P. M.; Chutkow, J. G.; Riggs, M. T.; Cristiano, V. D.

    1987-05-01

    We describe the design of a reliable, user-friendly preprototype system for quantifying the tendon stretch reflexes in humans and large mammals. A hand-held, instrumented reflex gun, the impactor of which contains a single force sensor, interfaces with a computer. The resulting test system can deliver sequences of reproducible stimuli at graded intensities and adjustable durations to a muscle's tendon ("tendon taps"), measure the impacting force of each tap, and record the subsequent reflex muscle contraction from the same tendon -- all automatically. The parameters of the reflex muscle contraction include latency; mechanical threshold; and peak time, peak magnitude, and settling time. The results of clinical tests presented in this paper illustrate the system's potential usefulness in detecting neurologic dysfunction affecting the tendon stretch reflexes, in documenting the course of neurologic illnesses and their response to therapy, and in clinical and laboratory neurologic research.

  10. Wire measurement of impedance of an X-band accelerating structure

    CERN Document Server

    Baboi, N; Dolgashev, V A; Jones, R M; Lewandowski, J R; Tantawi, S G; Wang, J W

    2004-01-01

    Several tens of thousands of accelerator structures will be needed for the next generation of linear collders known as the GLC/NLC (Global Linear Collider/Next Linear Collider). To prevent the beam being driven into a disruptive BBU (Beam Break Up) mode or at the very least, the emittance being signifcantly diluted, it is important to damp down the wakefield left by driving bunches to a manageable level. Manufacturing errors and errors in design need to be measurable and compared with predictions. We develop a circuit model of wire-loaded X-band accelerator structures. This enables the wakefield (the inverse transform of the beam impedance) to be readily computed and compared with the wire measurement. We apply this circuit model to the latest series of accelerating for the GLC/NLC. This circuit model is based upon the single-cell model developed in [1] extended here to complete, multi-cell structures.

  11. Further elucidation of nanofluid thermal conductivity measurement using a transient hot-wire method apparatus

    Science.gov (United States)

    Yoo, Donghoon; Lee, Joohyun; Lee, Byeongchan; Kwon, Suyong; Koo, Junemo

    2018-02-01

    The Transient Hot-Wire Method (THWM) was developed to measure the absolute thermal conductivity of gases, liquids, melts, and solids with low uncertainty. The majority of nanofluid researchers used THWM to measure the thermal conductivity of test fluids. Several reasons have been suggested for the discrepancies in these types of measurements, including nanofluid generation, nanofluid stability, and measurement challenges. The details of the transient hot-wire method such as the test cell size, the temperature coefficient of resistance (TCR) and the sampling number are further investigated to improve the accuracy and consistency of the measurements of different researchers. It was observed that smaller test apparatuses were better because they can delay the onset of natural convection. TCR values of a coated platinum wire were measured and statistically analyzed to reduce the uncertainty in thermal conductivity measurements. For validation, ethylene glycol (EG) and water thermal conductivity were measured and analyzed in the temperature range between 280 and 310 K. Furthermore, a detailed statistical analysis was conducted for such measurements, and the results confirmed the minimum number of samples required to achieve the desired resolution and precision of the measurements. It is further proposed that researchers fully report the information related to their measurements to validate the measurements and to avoid future inconsistent nanofluid data.

  12. Measurement of 3-Axis Magnetic Fields Induced by Current Wires Using a Smartphone in Magnetostatics Experiments

    Science.gov (United States)

    Setiawan, B.; Septianto, R. D.; Suhendra, D.; Iskandar, F.

    2017-01-01

    This paper describes the use of an inexpensive smartphone's magnetic sensor to measure magnetic field components (B[subscript x], B[subscript y] and B[subscript z]) induced by current wires in magnetostatic experiments. The variable parameters used to measure the magnetic sensor's capabilities were: the geometrical shapes of the wire, current…

  13. Stretching

    Science.gov (United States)

    ... after a workout. Stretching still can be a beneficial activity after you have sufficiently warmed up. The ... light aerobic activity and stretching. If you're running at a quick pace, you can slow down ...

  14. Quantitative cross-sectional measurement of solid concentration distribution in slurries using a wire-mesh sensor

    International Nuclear Information System (INIS)

    Dos Santos, Eduardo Nunes; Da Silva, Marco Jose; Schleicher, Eckhard; Reinecke, Sebastian; Hampel, Uwe

    2016-01-01

    Wire-mesh sensors have so far been widely applied in gas–liquid flows where resistance or capacitance distributions are measured and converted into gas or liquid holdup distributions. In this work we report on the qualification of the wire-mesh imaging technique for the measurement of cross-sectional solid concentrations in solid–liquid mixtures. As the dielectric constants of solid particles are different from those of gas, water or oil in the flow, measuring this property can be used as an indication of solid distribution. Experiments were performed in a stirred tank of 100 mm diameter equipped with a capacitance wire-mesh sensor. The wire-mesh sensor was operated at an acquisition speed of 4000 frames per second and has a spatial resolution of 6.25 mm. As solids we used silica sand particles (diameter ∼250 μm) which were suspended in water in a volume concentration range of 1% to 35% to form slurries. By varying the stirring speed, different solid concentration distributions were produced and investigated. In order to convert the measured relative permittivity distribution into a solid concentration distribution, an empirical approach was employed. (paper)

  15. Spasticity Measurement Based on Tonic Stretch Reflex Threshold in Children with Cerebral Palsy Using the PediAnklebot

    Directory of Open Access Journals (Sweden)

    Marco Germanotta

    2017-05-01

    Full Text Available Nowadays, objective measures are becoming prominent in spasticity assessment, to overcome limitations of clinical scales. Among others, Tonic Stretch Reflex Threshold (TSRT showed promising results. Previous studies demonstrated the validity and reliability of TSRT in spasticity assessment at elbow and ankle joints in adults. Purposes of the present study were to assess: (i the feasibility of measuring TSRT to evaluate spasticity at the ankle joint in children with Cerebral Palsy (CP, and (ii the correlation between objective measures and clinical scores. A mechatronic device, the pediAnklebot, was used to impose 50 passive stretches to the ankle of 10 children with CP and 3 healthy children, to elicit muscles response at 5 different velocities. Surface electromyography, angles, and angular velocities were recorded to compute dynamic stretch reflex threshold; TSRT was computed with a linear regression through angles and angular velocities. TSRTs for the most affected side of children with CP resulted into the biomechanical range (95.7 ± 12.9° and 86.7 ± 17.4° for Medial and Lateral Gastrocnemius, and 75.9 ± 12.5° for Tibialis Anterior. In three patients, the stretch reflex was not elicited in the less affected side. TSRTs were outside the biomechanical range in healthy children. However, no correlation was found between clinical scores and TSRT values. Here, we demonstrated the capability of TSRT to discriminate between spastic and non-spastic muscles, while no significant outcomes were found for the dorsiflexor muscle.

  16. Stretching positions for the coracohumeral ligament: Strain measurement during passive motion using fresh/frozen cadaver shoulders

    Directory of Open Access Journals (Sweden)

    Izumi Tomoki

    2011-01-01

    Full Text Available Abstract Background Contracture of the coracohumeral ligament is reported to restrict external rotation of the shoulder with arm at the side and restrict posterior-inferior shift of the humeral head. The contracture is supposed to restrict range of motion of the glenohumeral joint. Methods To obtain stretching position of the coracohumeral ligament, strain on the ligament was measured at the superficial fibers of the ligament using 9 fresh/frozen cadaver shoulders. By sequential measurement using a strain gauge, the ligament strain was measured from reference length (L0. Shoulder positions were determined using a 3 Space Tracker System. Through a combination of previously reported coracohumeral stretching positions and those observed in preliminary measurement, ligament strain were measured by passive external rotation from 10° internal rotation, by adding each 10° external rotation, to maximal external rotation. Results Stretching positions in which significantly larger strain were obtained compared to the L0 values were 0° elevation in scapula plane with 40°, 50° and maximum external rotation (5.68%, 7.2%, 7.87%, 30° extension with 50°, maximum external rotation (4.20%, 4.79%, and 30° extension + adduction with 30°, 40°, 50° and maximum external rotation (4.09%, 4.67%, 4.78%, 5.05%(P Conclusions Significant strain of the coracohumeral ligament will be achieved by passive external rotation at lower shoulder elevations, extension, and extension with adduction.

  17. Comparing the effects of 3 weeks of upper-body vibration training, vibration and stretching, and stretching alone on shoulder flexibility in college-aged men.

    Science.gov (United States)

    Ferguson, Steven L; Kim, Eonho; Seo, Dong-Il; Bemben, Michael G

    2013-12-01

    This study compared the effects of 3 weeks of upper-body vibration training, vibration and stretching, and stretching alone on shoulder flexibility in college-aged men. Twenty-one men were randomly assigned to vibration-stretching (VS; n = 8), vibration only (VO; n = 6), or stretching only (SO; n = 7) groups that trained 3 times per week for 3 weeks. All 3 groups performed 9 total sets of 30-second stretches. The VS group performed four 30-second upper-body vibration exercises and five 30-second upper-body stretching exercises. The VO group performed nine 30-second upper-body vibration exercises. The SO group performed nine 30-second upper-body stretching exercises. Shoulder flexion (SF), shoulder extension (SE), and shoulder transverse extension (STE) were assessed by a Leighton Flexometer and back scratch tests bilaterally (BSR, BSL) were measured via tape measure. A 1-way analysis of variance (ANOVA) evaluated groups at baseline and a 2-way repeated-measures ANOVA evaluated the interventions over time. At baseline, there were no group differences in age, height, or weight. There was a significant (p alone or combined with stretching, is a viable alternative to a standard stretching routine when attempting to increase shoulder flexibility. Adding vibration training to a flexibility regimen may improve the likelihood of regularly performing flexibility sessions because of increased variety.

  18. Stretching & Flexibility: An Interactive Encyclopedia of Stretching. [CD-ROM].

    Science.gov (United States)

    2002

    This CD-ROM offers 140 different stretches in full-motion video sequences. It focuses on the proper techniques for overall physical fitness, injury prevention and rehabilitation, and 23 different sports (e.g., golf, running, soccer, skiing, climbing, football, and baseball). Topics include stretching for sports; stretching awareness and education…

  19. Measurements of Flow Mixing at Subchannels in a Wire-Wrapped 61-Rod Bundle for a Sodium Cooled Fast Reactor

    International Nuclear Information System (INIS)

    Lee, Dong Won; Kim, Hyungmo; Ko, Yung Joo; Choi, Hae Seob; Euh, Dong-Jin; Jeong, Ji-Young; Lee, Hyeong-Yeon

    2015-01-01

    For a safety analysis in a core thermal design of a sodium-cooled fast reactor (SFR), flow mixing characteristics at subchannels in a wire-wrapped rod bundle are crucial factor for the design code verification and validation. Wrapped wires make a cross flow in a circumference of the fuel rod, and this effect lets flow be mixed. Therefore the sub-channel analysis method is commonly used for thermal hydraulic analysis of a SFR, a wire wrapped sub-channel type. To measure flow mixing characteristics, a wire mesh sensing technique can be useful method. A wire mesh sensor has been traditionally used to measure the void fraction of a two-phase flow field, i.e. gas and liquid. However, the recent reports that the wire mesh sensor can be used successfully to recognize the flow field in liquid phase by injecting a tracing liquid with a different level of electric conductivity. The subchannel flow characteristics analysis method is commonly used for the thermal hydraulic analysis of a SFR, a wire wrapped subchannel type. In this study, mixing experiments were conducted successfully at a hexagonally arrayed 61-pin wire-wrapped fuel rod bundle test section. Wire mesh sensor was used to measure flow mixing characteristics. The developed post-processing method has its own merits, and flow mixing results were reasonable

  20. The Application of the Method of Continuous Casting for Manufacturing of Welding Wire AMg6

    International Nuclear Information System (INIS)

    Azhazha, V.M.; Sverdlov, V.Ya.; Kondratov, A.A.; Rudycheva, T.Yu.

    2007-01-01

    The method of manufacturing semifinished item of high alloyed of aluminum, silver and copper alloys has been investigated on the basis of the continuous casting method. The sample of aluminum alloy AMg6 consist of small grains with the vios-cut dimension ∼ 15 mkm and which are stretched in the direction of longitudinal axis of the sample Such microstructure is favourable for plastic deformation of the sample. Welding wire which meets the demands of standards of commercial welding wires of this brand has been produced by the drawing from the sample

  1. Pressure drop measurements in LMFBR wire wrapped blanket assemblies

    International Nuclear Information System (INIS)

    Chiu, C.; Hawley, J.; Rohsenow, W.M.; Todreas, N.E.

    1977-07-01

    In this experiment, measurements of subchannel static pressure for an interior and edge subchannel were taken at two elevations in two wire-wrapped 61-pin bundles. One of the bundles has geometric characteristics of P/D = 1.067 and H/D = 8.0 (4 inch lead length and 0.501 inch rod diameter) and the other bundle has geometric characteristics of P/D = 1.067 and H/D = 4.0 (2 inch lead length and 0.501 inch rod diameter). The bundle average friction factors as well as the local subchannel friction factors for both interior and edge subchannels were determined from the experimental static pressure data. The average subchannel flow rates for both edge and interior subchannels were determined in a separate experiment. Results show that two correlations suggested by Rehme and Novendstern for the bundle average friction factor cannot predict the data within the range of experimental error. The bundle average friction factors for both bundles under test were underestimated by Rehme's correlation and overestimated by Novendstern's correlation. The results of the local subchannel friction factors indicate the effect of the wire lead length is more pronounced in the interior subchannel friction factor than in the edge subchannel friction factor. As the wire wrap lead length decreases, both interior and edge subchannel friction factors increase

  2. Pressure drop measurements in LMFBR wire wrapped blanket assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, C.; Hawley, J.; Rohsenow, W.M.; Todreas, N.E.

    1977-07-01

    In this experiment, measurements of subchannel static pressure for an interior and edge subchannel were taken at two elevations in two wire-wrapped 61-pin bundles. One of the bundles has geometric characteristics of P/D = 1.067 and H/D = 8.0 (4 inch lead length and 0.501 inch rod diameter) and the other bundle has geometric characteristics of P/D = 1.067 and H/D = 4.0 (2 inch lead length and 0.501 inch rod diameter). The bundle average friction factors as well as the local subchannel friction factors for both interior and edge subchannels were determined from the experimental static pressure data. The average subchannel flow rates for both edge and interior subchannels were determined in a separate experiment. Results show that two correlations suggested by Rehme and Novendstern for the bundle average friction factor cannot predict the data within the range of experimental error. The bundle average friction factors for both bundles under test were underestimated by Rehme's correlation and overestimated by Novendstern's correlation. The results of the local subchannel friction factors indicate the effect of the wire lead length is more pronounced in the interior subchannel friction factor than in the edge subchannel friction factor. As the wire wrap lead length decreases, both interior and edge subchannel friction factors increase.

  3. A Preliminary Design of a Wire Mesh Sensor for Measurement of Void Fraction

    International Nuclear Information System (INIS)

    Hong, Seong Ho; Kim, Jong Hwan; Song, Jin Ho; Hong, Seok Boong

    2006-01-01

    Steam explosion phenomena are accompanied with a multi-dimensional and multi-phase fluid flow and heat transfer phenomena. Void fraction is one of the major parameters, which governs the premixing behavior of melt particles in water and the explosion behavior of the pre-mixed fuel. However, efforts for the development of a reliable measurement technique for void fraction are still underway, as it deals with an interaction between a melt at a very high temperature and water in a short time scale. Hundreds of conductivity type probes installed in a test section enabled monitoring of the evolution of a melt-water interaction zone in the ECO test. A technique using a dual energy X-ray system was developed to measure gas fraction, liquid fraction, and melt fraction simultaneously for a small-scale steam explosion experiment. A high-energy X-ray system for monitoring multi-phase fractions is now being developed at CEA. Recently a measurement of multi-phase fractions by using a wire mesh system has been introduced. It has an advantage that the speed of the measurement is fast and a direct measurement is possible. As a part of a feasibility study on a wire mesh technique for a steam explosion experiment, this paper discusses the design of the wire mesh and the results of the preliminary calibration tests

  4. Measure of thermal neutron flux in the IPEN/MB-01 reactor using 197 Au wire activation detectors

    International Nuclear Information System (INIS)

    Marques, Andre Luis Ferreira

    1995-01-01

    This dissertation has aimed at developing a neutron flux measurement technique by means of detectors activation analysis. The main task of this work was the implementation of this thermal neutron flux measurement technique, using gold wires as activation detectors in the IPEN/MB-01 reactor core. The neutron thermal flux spatial distribution was obtained by gold wire activation technique, with wire diameters of 0.125 mm and 0.250 mm in seven selected reactor experimental channels. The values of thermal flux were about 10 9 neutrons/cm 2 .s. This experiment has been the first one conducted with gold wires in the IPEN/MB-01 reactor, being this technique implemented for use by experiments in flux mapping of the core

  5. Reduced Mechanical Stretch Induces Enhanced Endothelin B Receptor-mediated Contractility via Activation of Focal Adhesion Kinase and Extra Cellular-regulated Kinase 1/2 in Cerebral Arteries from Rat

    DEFF Research Database (Denmark)

    Spray, Stine; Rasmussen, Marianne N P; Skovsted, Gry F

    2016-01-01

    that rapid and sustained reduction in wall tension/stretch is a possible trigger mechanism for this vascular remodelling. Isolated rat middle cerebral artery (MCA) segments were incubated in a wire-myograph with or without mechanical stretch, prior to assessment of their contractile response to the selective...... expression to SMC expression and 2) an increased calcium sensitivity of the SMCs due to an increased expression of the calcium channel transient receptor potential canonical 1. Collectively, our results present a possible mechanism linking lack of vessel wall stretch/tension to changes in ETB receptor...

  6. Vibrating wire for beam profile scanning

    Directory of Open Access Journals (Sweden)

    S. G. Arutunian

    1999-12-01

    Full Text Available A method that measures the transverse profile (emittance of the bunch by detecting radiation arising at the scattering of the bunch on scanning wire is widely used. In this work information about bunch scattering is obtained by measuring the oscillation frequency of the tightened scanning wire. In such a way, the system of radiation (or secondary particles extraction and measurement can be removed. The entire unit consists of a compact fork with tightened wire and a scanning system. Normal oscillation frequency of a wire depends on wire tension, its geometric parameters, and, in a second approximation, its elastic characteristics. Normal oscillations are generated by interaction of an alternating current through the wire with magnetic field of a permanent magnet. In this case, it is suggested that the magnetic field of the accelerator (field of dipole magnets or quadrupole magnets be used for excitation of oscillations. The dependence of oscillation frequency on beam scattering is determined by several factors, including changes of wire tension caused by transverse force of the beam and influence of beam self-field. Preliminary calculations show that the influence of wire heating will dominate. We have studied strain gauges on the basis of vibrating wire from various materials (tungsten, beryl bronze, and niobium zirconium alloys. A scheme of normal oscillation generation by alternating current in autogeneration circuit with automatic frequency adjustment was selected. A special method of wire fixation and elimination of transverse degrees of freedom allows us to achieve relative stability better than 10^{-5} during several days at a relative resolution of 10^{-6}. Experimental results and estimates of wire heating of existing scanners show that the wire heats up to a few hundred grades, which is enough for measurements. The usage of wire of micrometer thickness diminishes the problem of wire thermalization speed during the scanning of the bunch.

  7. A fast wire scanner, used to measure the transverse density distribution of beams circulating in an accelerator or storage ring.

    CERN Multimedia

    Maximilien Brice

    2002-01-01

    Fast wire scanners are used to measure the transverse density distribution of beams circulating in an accelerator or storage ring. In order to minimize blow-up of the beam through multiple Coulomb scattering, the wires are very thin (in the version shown here it is actually a twisted strand of carbon fibres with a total diameter of about 25 microns) and are swept through the beam at high speed (a linear motor, not mounted here, accelerates the wires to up to 20 m/s). One measures either the secondary emission current from the wire, or the signal from a scintillator/photomultiplier combination downstream from the wire scanner receiving the shower from nuclear reactions of beam particles with the wire nuclei. There are four such fast wire scanners in the 26 GeV PS and eight in the 1.4 GeV Booster.

  8. submitter Dynamical Models of a Wire Scanner

    CERN Document Server

    Barjau, Ana; Dehning, Bernd

    2016-01-01

    The accuracy of the beam profile measurements achievable by the current wire scanners at CERN is limited by the vibrations of their mechanical parts. In particular, the vibrations of the carbon wire represent the major source of wire position uncertainty which limits the beam profile measurement accuracy. In the coming years, due to the Large Hadron Collider (LHC) luminosity upgrade, a wire traveling speed up to 20 $m s^{−1}$ and a position measurement accuracy of the order of 1 μm will be required. A new wire scanner design based on the understanding of the wire vibration origin is therefore needed. We present the models developed to understand the main causes of the wire vibrations observed in an existing wire scanner. The development and tuning of those models are based on measurements and tests performed on that CERN proton synchrotron (PS) scanner. The final model for the (wire + fork) system has six degrees-of-freedom (DOF). The wire equations contain three different excitation terms: inertia...

  9. X-ray residual stress measurements on cold-drawn steel wire

    NARCIS (Netherlands)

    Willemse, P.F.; Naughton, B.P.; Verbraak, C.A.

    1982-01-01

    The interplanar spacing d{hkl} versus sin2 ψ distributions were measured for the 211, 310, 220 and 200 reflections from severely cold-drawn 0.7% C steel wire with a diameter of 0.25 mm. From the shape of the curves it was concluded that, as well as a 110 fibre texture and elastic anisotropy, plastic

  10. Measurement of the wire tension and position of the muon detector in the CMS project

    International Nuclear Information System (INIS)

    Niu Weiping

    2004-01-01

    The Large Hadron Collider (LHC) is currently being constructed at CERN including the ATLAS (A Toroidal LHC Apparatus) and CMS. It this report, it is have a sample introduction of CMS Muon detector, the drift tube introduction and chamber construction. The scope of this report covers the drift tube design and technical description; measurement of the wire tension of the Muon detector and the quality control; measurement of the wire position of the Muon detector and the quality control and so on. (authors)

  11. Preliminary Single-Phase Mixing Test using Wire Mesh System in a wire-wrapped 37-rod Bundle

    International Nuclear Information System (INIS)

    Bae, Hwang; Kim, Hyungmo; Lee, Dong Won; Choi, Hae Seob; Choi, Sun Rock; Chang, Seokkyu; Kim, Seok; Euh, Dongjin; Lee, Hyeongyeon

    2014-01-01

    In this paper, preliminary tests of the wire-mesh sensor are introduced before measuring of mixing coefficient in the wire-wrapped 37-pin fuel assembly for a sodium-cooled fast reactor. Through this preliminary test, it was confirmed that city water can be used as a tracer for demineralized water as a base. A simple test was performed to evaluate the characteristics of a wire mesh with of a short pipe shape. The conductivity of de-mineralized water and city water is linearly increased for the limited temperature ranges as the temperature is increased. The reliability of the wire mesh sensor was estimated based on the averages and standard deviations of the plane image using the cross points. A wire mesh sensor is suitable to apply to a single-phase flow measurement for a mixture with de-mineralized water and city water. A wire mesh sensor and system have been traditionally used to measure the void fraction of a two-phase flow field with gas and liquid. Recently, Ylonen et al. successfully designed and commissioned a measurement system for a single-phase flow using a wire mesh sensor

  12. Filament stretching rheometer: inertia compensation revisited

    DEFF Research Database (Denmark)

    Szabo, Peter; McKinley, Gareth H.

    2003-01-01

    The necessary inertia compensation used in the force balance for the filament stretching rheometer is derived for an arbitrary frame of reference. This enables the force balance to be used to extract correctly the extensional viscosity from measurements of the tensile force at either end of the e......The necessary inertia compensation used in the force balance for the filament stretching rheometer is derived for an arbitrary frame of reference. This enables the force balance to be used to extract correctly the extensional viscosity from measurements of the tensile force at either end...

  13. The effect of warm-up, static stretching and dynamic stretching on hamstring flexibility in previously injured subjects.

    LENUS (Irish Health Repository)

    O'Sullivan, Kieran

    2009-01-01

    BACKGROUND: Warm-up and stretching are suggested to increase hamstring flexibility and reduce the risk of injury. This study examined the short-term effects of warm-up, static stretching and dynamic stretching on hamstring flexibility in individuals with previous hamstring injury and uninjured controls. METHODS: A randomised crossover study design, over 2 separate days. Hamstring flexibility was assessed using passive knee extension range of motion (PKE ROM). 18 previously injured individuals and 18 uninjured controls participated. On both days, four measurements of PKE ROM were recorded: (1) at baseline; (2) after warm-up; (3) after stretch (static or dynamic) and (4) after a 15-minute rest. Participants carried out both static and dynamic stretches, but on different days. Data were analysed using Anova. RESULTS: Across both groups, there was a significant main effect for time (p < 0.001). PKE ROM significantly increased with warm-up (p < 0.001). From warm-up, PKE ROM further increased with static stretching (p = 0.04) but significantly decreased after dynamic stretching (p = 0.013). The increased flexibility after warm-up and static stretching reduced significantly (p < 0.001) after 15 minutes of rest, but remained significantly greater than at baseline (p < 0.001). Between groups, there was no main effect for group (p = 0.462), with no difference in mean PKE ROM values at any individual stage of the protocol (p > 0.05). Using ANCOVA to adjust for the non-significant (p = 0.141) baseline difference between groups, the previously injured group demonstrated a greater response to warm-up and static stretching, however this was not statistically significant (p = 0.05). CONCLUSION: Warm-up significantly increased hamstring flexibility. Static stretching also increased hamstring flexibility, whereas dynamic did not, in agreement with previous findings on uninjured controls. The effect of warm-up and static stretching on flexibility was greater in those with reduced

  14. The effect of warm-up, static stretching and dynamic stretching on hamstring flexibility in previously injured subjects

    Directory of Open Access Journals (Sweden)

    Murray Elaine

    2009-04-01

    Full Text Available Abstract Background Warm-up and stretching are suggested to increase hamstring flexibility and reduce the risk of injury. This study examined the short-term effects of warm-up, static stretching and dynamic stretching on hamstring flexibility in individuals with previous hamstring injury and uninjured controls. Methods A randomised crossover study design, over 2 separate days. Hamstring flexibility was assessed using passive knee extension range of motion (PKE ROM. 18 previously injured individuals and 18 uninjured controls participated. On both days, four measurements of PKE ROM were recorded: (1 at baseline; (2 after warm-up; (3 after stretch (static or dynamic and (4 after a 15-minute rest. Participants carried out both static and dynamic stretches, but on different days. Data were analysed using Anova. Results Across both groups, there was a significant main effect for time (p 0.05. Using ANCOVA to adjust for the non-significant (p = 0.141 baseline difference between groups, the previously injured group demonstrated a greater response to warm-up and static stretching, however this was not statistically significant (p = 0.05. Conclusion Warm-up significantly increased hamstring flexibility. Static stretching also increased hamstring flexibility, whereas dynamic did not, in agreement with previous findings on uninjured controls. The effect of warm-up and static stretching on flexibility was greater in those with reduced flexibility post-injury, but this did not reach statistical significance. Further prospective research is required to validate the hypothesis that increased flexibility improves outcomes. Trial Registration ACTRN12608000638336

  15. Measurements of Flow Mixing at Subchannels in a Wire-Wrapped 37-Rod Bundle for a Sodium Cooled Fast Reactor

    International Nuclear Information System (INIS)

    Kim, Hyungmo; Bae, Hwang; Chang, Seok-Kyu; Choi, Sun Rock; Lee, Dong Won; Ko, Yung Joo; Choi, Hae Seob; Euh, Dong-Jin; Lee, Hyeong-Yeon

    2014-01-01

    For a safety analysis in a core thermal design of a sodium-cooled fast reactor (SFR), flow mixing characteristics at subchannels in a wire-wrapped rod bundle are very important. Wrapped wires make a cross flow in a around the fuel rod) of the fuel rod, and this effect lets flow be mixed. Experimental results of flow mixing can be meaningful for verification and validation of thermal mixing correlation in a reactor core thermo-hydraulic design code. A wire mesh sensing technique can be useful method for measuring of flow mixing characteristics. A wire mesh sensor has been traditionally used to measure the void fraction of a two-phase flow field, i.e. gas and liquid. However, it has been recently reported that the wire mesh sensor can be used successfully to recognize the flow field in liquid phase by injecting a tracing liquid with a different level of electric conductivity. This can be powerfully adapted to recognize flow mixing characteristics by wrapped wires in SFR core thermal design. In this work, we conducted the flow mixing experiments using a custom designed wire mesh sensor. To verify and validate computer codes for the SFR core thermal design, mixing experiments were conducted at a hexagonally arrayed 37-pin wire-wrapped fuel rod bundle test section. The well-designed wire mesh sensor was used to measure flow mixing characteristics. The developed post-processing method has its own merits, and flow mixing results were reasonable. In addition, by uncertainty analysis, the system errors and the random error were estimated in experiments. Therefore, the present results and methods can be used for design code verification and validation

  16. Immediate effects of different types of stretching exercises on badminton jump smash.

    Science.gov (United States)

    Jang, Hwi S; Kim, Daeho; Park, Jihong

    2018-01-01

    Since different types of stretching exercises may alter athletic performance, we compared the effects of three types of stretching exercises on badminton jump smash. Sixteen male collegiate badminton players performed one of three different stretching exercises in a counterbalanced order on different days. Static stretching had seven typical stretches, while dynamic stretching involved nine dynamic movements, and resistance dynamic stretching was performed with weighted vests and dumbbells. Before and after each stretching exercise, subjects performed 20 trials of jump smashes. Dependent measurements were the jump heights during jump smashes, velocities of jump-smashed shuttlecocks, and drop point of jump-smashed shuttlecocks. To test the effects of each stretching exercise, we performed mixed model ANOVAs and calculated between-time effect sizes (ES). Each stretching exercise improved the jump heights during jump smashes (type main effect: F(2,75)=1.19, P=0.31; static stretching: 22.1%, Pjump-smashed shuttlecocks (type main effect: F(2,75)=2.18, P=0.12; static stretching: 5.7%, P=0.61, ES=0.39; dynamic stretching: 3.4%, P=0.94, ES=0.28; resistance dynamic stretching: 6%, P=0.50, ES=0.66). However, there were no differences among the stretching exercises for any measurement. The drop point of jump-smashed shuttlecocks did not change (interaction: F(2,75)=0.88, P=0.42). All stretching exercises improved badminton jump smash performance, but we could not determine the best protocol. Since badminton requires high-speed movement and explosive force, we suggest performing dynamic stretching or resistance dynamic stretching.

  17. Flux wire measurements in Cavalier for verifying computer code applications

    International Nuclear Information System (INIS)

    Fehr, M.; Stubbs, J.; Hosticka, B.

    1988-01-01

    The Cavalier and UVAR research reactors are to be converted from high-enrichment uranium (HEU) to low-enrichment uranium (LEU) fuel. As a first step, an extensive set of gold wire activation measurements has been taken on the Cavalier reactor. Axial traverses show internal consistency to the order of ±5%, while horizontal traverses show somewhat larger deviations. The activation measurements will be converted to flux measurements via the Thermos code and will then be used to verify the Leopard-2DB codes. The codes will ultimately be used to design an upgraded LEU core for the UVAR

  18. Virtual Instrument Systems in Reality (VISIR) for Remote Wiring and Measurement of Electronic Circuits on Breadboard

    Science.gov (United States)

    Tawfik, M.; Sancristobal, E.; Martin, S.; Gil, R.; Diaz, G.; Colmenar, A.; Peire, J.; Castro, M.; Nilsson, K.; Zackrisson, J.; Hakansson, L.; Gustavsson, I.

    2013-01-01

    This paper reports on a state-of-the-art remote laboratory project called Virtual Instrument Systems in Reality (VISIR). VISIR allows wiring and measuring of electronic circuits remotely on a virtual workbench that replicates physical circuit breadboards. The wiring mechanism is developed by means of a relay switching matrix connected to a PCI…

  19. Wire screens as a tool for survey measurements of the unattached radon progeny in mines

    International Nuclear Information System (INIS)

    Janica, R.

    1996-07-01

    The radon hazard in mines is assessed by measuring the radioactivity accumulated on filters through which air is forced to flow. The filter collects both forms of the short-lived radon progeny, attached and unattached, and, therefore, the assessment is based on the measurement of the total radon progeny. Because of the special radiological significance of the unattached fraction of the short-lived radon progeny, the estimation of the radiation hazard to miners would be improved if the unattached fraction could be measured. This report describes two methods of measurement for the simultaneous determination of the unattached and the total radon progeny. The proposed methods comply with the criterion of practicality (imposed by the working conditions in the mine environment), that is, they are implemented using standard survey equipment and simple procedures. Both methods use wire screens to collect, preferentially, the unattached fraction. According to the first method, air is sampled through a wire screen and a backup filter, and the radioactivity accumulated on both the filter and the wire screen are measured separately using standard counting protocols (e.g. the Kusnetz protocol). The wire screen's efficiency for collecting the unattached radon progeny is determined, in advance, under laboratory conditions. The method assumes the validity of the collection efficiencies when the screens are used under field conditions. To avoid the uncertainty of the lab-determined collection efficiency, a new measuring method was proposed based on the sampling of air through two screens in series and a backup filter. The measurement of the ratio of the activities deposited on both screens allows an estimation of the screen collection efficiency under field conditions. Once this is done, the 'unattached fraction' and total radon progeny are determined by counting only one of the screens and the backup filter as described in the previous method. (author). 73 refs., 8 tabs., 21 figs

  20. Measuring the curvature of space with stretched strings

    International Nuclear Information System (INIS)

    Lyth, D.H.

    1983-01-01

    The equilibrium of a stretched string in curved space is studied. The problem is first formulated without detailed assumptions, then the force of gravity on the string is calculated from general relativity with a static metric. Apart from the latter calculation everything is done in ordinary space rather than in space-time. A number of simple cases are worked out explicitly. (author)

  1. Measurement of kinetic inductance of superconducting wires and application for measuring flux state of Josephson-junction loops

    Energy Technology Data Exchange (ETDEWEB)

    Shimazu, Y.; Yokoyama, T

    2004-10-01

    In order to realize strong coupling in a system of multiple flux qubits with a DC-SQUID, the use of kinetic inductance is advantageous because it can be much larger than geometrical inductance for narrow superconducting wires. We measured the inductance associated with narrow Al wires, and estimated the contributions of kinetic and geometrical inductances. The London penetration depth which determines the kinetic inductance is evaluated. We fabricated samples of two Josephson-junction loops and a DC-SQUID which are all coupled with kinetic inductances. The observed magnetic flux due to the loops is in good agreement with the result of numerical simulation based on the estimated inductances.

  2. A hot-wire method based thermal conductivity measurement apparatus for teaching purposes

    International Nuclear Information System (INIS)

    Alvarado, S; Marín, E; Juárez, A G; Calderón, A; Ivanov, R

    2012-01-01

    The implementation of an automated system based on the hot-wire technique is described for the measurement of the thermal conductivity of liquids using equipment easily available in modern physics laboratories at high schools and universities (basically a precision current source and a voltage meter, a data acquisition card, a personal computer and a high purity platinum wire). The wire, which is immersed in the investigated sample, is heated by passing a constant electrical current through it, and its temperature evolution, ΔT, is measured as a function of time, t, for several values of the current. A straightforward methodology is then used for data processing in order to obtain the liquid thermal conductivity. The start point is the well known linear relationship between ΔT and ln(t) predicted for long heating times by a model based on a solution of the heat conduction equation for an infinite lineal heat source embedded in an infinite medium into which heat is conducted without convective and radiative heat losses. A criterion is used to verify that the selected linear region is the one that matches the conditions imposed by the theoretical model. As a consequence the method involves least-squares fits in linear, semi-logarithmic (semi-log) and log-log graphs, so that it becomes attractive not only to teach about heat transfer and thermal properties measurement techniques, but also as a good exercise for students of undergraduate courses of physics and engineering learning about these kinds of mathematical functional relationships between variables. The functionality of the experiment was demonstrated by measuring the thermal conductivity in samples of liquids with well known thermal properties. (paper)

  3. Reliability Criteria for Thick Bonding Wire.

    Science.gov (United States)

    Dagdelen, Turker; Abdel-Rahman, Eihab; Yavuz, Mustafa

    2018-04-17

    Bonding wire is one of the main interconnection techniques. Thick bonding wire is widely used in power modules and other high power applications. This study examined the case for extending the use of traditional thin wire reliability criteria, namely wire flexure and aspect ratio, to thick wires. Eleven aluminum (Al) and aluminum coated copper (CucorAl) wire samples with diameter 300 μm were tested experimentally. The wire response was measured using a novel non-contact method. High fidelity FEM models of the wire were developed and validated. We found that wire flexure is not correlated to its stress state or fatigue life. On the other hand, aspect ratio is a consistent criterion of thick wire fatigue life. Increasing the wire aspect ratio lowers its critical stress and increases its fatigue life. Moreover, we found that CucorAl wire has superior performance and longer fatigue life than Al wire.

  4. Reliability Criteria for Thick Bonding Wire

    Science.gov (United States)

    Yavuz, Mustafa

    2018-01-01

    Bonding wire is one of the main interconnection techniques. Thick bonding wire is widely used in power modules and other high power applications. This study examined the case for extending the use of traditional thin wire reliability criteria, namely wire flexure and aspect ratio, to thick wires. Eleven aluminum (Al) and aluminum coated copper (CucorAl) wire samples with diameter 300 μm were tested experimentally. The wire response was measured using a novel non-contact method. High fidelity FEM models of the wire were developed and validated. We found that wire flexure is not correlated to its stress state or fatigue life. On the other hand, aspect ratio is a consistent criterion of thick wire fatigue life. Increasing the wire aspect ratio lowers its critical stress and increases its fatigue life. Moreover, we found that CucorAl wire has superior performance and longer fatigue life than Al wire. PMID:29673194

  5. Static stretching does not alter pre and post-landing muscle activation

    Directory of Open Access Journals (Sweden)

    Moss Wesley R

    2011-05-01

    Full Text Available Abstract Background Static stretching may result in various strength and power deficiencies. Prior research has not determined, however, if static stretching causes a change in muscle activation during a functional task requiring dynamic stability. The purpose of this study was to determine if static stretching has an effect on mean pre and postlanding muscle (vastus medialis VM, vastus lateralis VL, medial hamstring MH, and biceps femoris BF activity. Methods 26 healthy, physically active subjects were recruited, from which 13 completed a 14-day static stretching regimen for the quadriceps and hamstrings. Using the data from the force plate and EMG readings, a mean of EMG amplitude was calculated for 150 msec before and after landing. Each trial was normalized to an isometric reference position. Means were calculated for the VM, VL, MH, and BF from 5 trials in each session. Measures were collected pre, immediately following the 1st stretching session, and following 2 weeks of stretching. Results A 14-day static stretching regimen resulted in no significant differences in pre or postlanding mean EMG amplitude during a drop landing either acutely or over a 14-day period. Conclusions Static stretching, done acutely or over a 14-day period does not result in measurable differences of mean EMG amplitude during a drop landing. Static stretching may not impede dynamic stability of joints about which stretched muscles cross.

  6. Load-Deflection and Friction Properties of PEEK Wires as Alternative Orthodontic Wires.

    Science.gov (United States)

    Tada, Yoshifumi; Hayakawa, Tohru; Nakamura, Yoshiki

    2017-08-09

    Polyetheretherketone (PEEK) is now attracting attention as an alternative to metal alloys in the dental field. In the present study, we evaluated the load-deflection characteristics of PEEK wires in addition to their frictional properties. Three types of PEEK wires are used: two sizes of rectangular shape, 0.016 × 0.022 in² and 0.019 × 0.025 in² (19-25PEEK), and rounded shape, diameter 0.016 in (16PEEK). As a control, Ni-Ti orthodontic wire, diameter 0.016 in, was used. The three-point bending properties were evaluated in a modified three-point bending system for orthodontics. The static friction between the orthodontic wire and the bracket was also measured. The load-deflection curves were similar among Ni-Ti and PEEK wires, except for 16PEEK with slot-lid ligation. The bending force of 19-25PEEK wire was comparable with that of Ni-Ti wire. 19-25PEEK showed the highest load at the deflection of 1500 μm ( p 0.05). No significant difference was seen in static friction between all three PEEK wires and Ni-Ti wire ( p > 0.05). It is suggested that 19-25PEEK will be applicable for orthodontic treatment with the use of slot-lid ligation.

  7. Reliability Criteria for Thick Bonding Wire

    Directory of Open Access Journals (Sweden)

    Turker Dagdelen

    2018-04-01

    Full Text Available Bonding wire is one of the main interconnection techniques. Thick bonding wire is widely used in power modules and other high power applications. This study examined the case for extending the use of traditional thin wire reliability criteria, namely wire flexure and aspect ratio, to thick wires. Eleven aluminum (Al and aluminum coated copper (CucorAl wire samples with diameter 300 μm were tested experimentally. The wire response was measured using a novel non-contact method. High fidelity FEM models of the wire were developed and validated. We found that wire flexure is not correlated to its stress state or fatigue life. On the other hand, aspect ratio is a consistent criterion of thick wire fatigue life. Increasing the wire aspect ratio lowers its critical stress and increases its fatigue life. Moreover, we found that CucorAl wire has superior performance and longer fatigue life than Al wire.

  8. Stretch-minimising stream surfaces

    KAUST Repository

    Barton, Michael; Kosinka, Jin; Calo, Victor M.

    2015-01-01

    We study the problem of finding stretch-minimising stream surfaces in a divergence-free vector field. These surfaces are generated by motions of seed curves that propagate through the field in a stretch minimising manner, i.e., they move without stretching or shrinking, preserving the length of their arbitrary arc. In general fields, such curves may not exist. How-ever, the divergence-free constraint gives rise to these 'stretch-free' curves that are locally arc-length preserving when infinitesimally propagated. Several families of stretch-free curves are identified and used as initial guesses for stream surface generation. These surfaces are subsequently globally optimised to obtain the best stretch-minimising stream surfaces in a given divergence-free vector field. Our algorithm was tested on benchmark datasets, proving its applicability to incompressible fluid flow simulations, where our stretch-minimising stream surfaces realistically reflect the flow of a flexible univariate object. © 2015 Elsevier Inc. All rights reserved.

  9. Stretch-minimising stream surfaces

    KAUST Repository

    Barton, Michael

    2015-05-01

    We study the problem of finding stretch-minimising stream surfaces in a divergence-free vector field. These surfaces are generated by motions of seed curves that propagate through the field in a stretch minimising manner, i.e., they move without stretching or shrinking, preserving the length of their arbitrary arc. In general fields, such curves may not exist. How-ever, the divergence-free constraint gives rise to these \\'stretch-free\\' curves that are locally arc-length preserving when infinitesimally propagated. Several families of stretch-free curves are identified and used as initial guesses for stream surface generation. These surfaces are subsequently globally optimised to obtain the best stretch-minimising stream surfaces in a given divergence-free vector field. Our algorithm was tested on benchmark datasets, proving its applicability to incompressible fluid flow simulations, where our stretch-minimising stream surfaces realistically reflect the flow of a flexible univariate object. © 2015 Elsevier Inc. All rights reserved.

  10. Wire Scanner Motion Control Card

    CERN Document Server

    Forde, S E

    2006-01-01

    Scientists require a certain beam quality produced by the accelerator rings at CERN. The discovery potential of LHC is given by the reachable luminosity at its interaction points. The luminosity is maximized by minimizing the beam size. Therefore an accurate beam size measurement is required for optimizing the luminosity. The wire scanner performs very accurate profile measurements, but as it can not be used at full intensity in the LHC ring, it is used for calibrating other profile monitors. As the current wire scanner system, which is used in the present CERN accelerators, has not been made for the required specification of the LHC, a new design of a wire scanner motion control card is part of the LHC wire scanner project. The main functions of this card are to control the wire scanner motion and to acquire the position of the wire. In case of further upgrades at a later stage, it is required to allow an easy update of the firmware, hence the programmable features of FPGAs will be used for this purpose. The...

  11. Stretching Safely and Effectively

    Science.gov (United States)

    ... shown that stretching immediately before an event weakens hamstring strength. Instead of static stretching, try performing a " ... If you play soccer, for instance, stretch your hamstrings as you're more vulnerable to hamstring strains. ...

  12. The Relation Between Stretching Typology and Stretching Duration: The Effects on Range of Motion.

    Science.gov (United States)

    Thomas, Ewan; Bianco, Antonino; Paoli, Antonio; Palma, Antonio

    2018-04-01

    Different stretching strategies and protocols are widely used to improve flexibility or maintain health, acting on the muscle tendon-unit, in order to improve the range of motion (ROM) of the joints. This review aims to evaluate the current body of literature in order to understand the relation between stretching typology and ROM, and secondly to evaluate if a relation exists between stretching volume (either as a single training session, weekly training and weekly frequency) and ROM, after long-term stretching. Twenty-three articles were considered eligible and included in the quantitative synthesis. All stretching typologies showed ROM improvements over a long-term period, however the static protocols showed significant gains (p<0.05) when compared to the ballistic or PNF protocols. Time spent stretching per week seems fundamental to elicit range of movement improvements when stretches are applied for at least or more than 5 min, whereas the time spent stretching within a single session does not seem to have significant effects for ROM gains. Weekly frequency is positively associated to ROM. Evaluated data indicates that performing stretching at least 5 days a week for at least 5 min per week using static stretching may be beneficial to promote ROM improvements. © Georg Thieme Verlag KG Stuttgart · New York.

  13. Wire scanner data analysis for the SSC Linac emittance measurement

    International Nuclear Information System (INIS)

    Yao, C.Y.; Hurd, J.W.; Sage, J.

    1993-07-01

    The wire scanners are designed in the SSC Linac for measurement of beam emittance at various locations. In order to obtain beam parameters from the scan signal, a data analysis program was developed that considers the problems of noise reduction, machine modeling, parameter fitting, and correction. This program is intended as a tool for Linac commissioning and also as part of the Linac control program. Some of the results from commissioning runs are presented

  14. Four Channel Mini Wire Chamber to Study Cosmic Rays

    Science.gov (United States)

    Felix, J.; Rodriguez, G. J.

    2018-01-01

    Multiwire proportional chamber is a conventional technique to study radiation in general, and cosmic rays in particular. To study cosmic rays, it was planned, designed, constructed, characterized, and tested a four channel mini wire chamber, based on two 3 cm × 3 cm × 0.6 cm Aluminum frames, two 3 cm × 3 cm × 0.6 cm plastic frames, two 3 cm × 3 cm × 0.3 cm Aluminum frames, two electronic planes each with two Tungsten Gold plated 1 mil diameter wires, parallel and 1 cm apart each other at 25 g stretched-each plane was 90° rotated each other in the final assemble- and two Aluminum foil window to define the gas volume; it was operated with Argon 90%-CH4 10% gas mixture at 1 atmosphere and ambient temperature (20°C in the average). It is presented technical details, results on characterization, and preliminary results on cosmic rays detection.

  15. Evolution of cementite morphology in pearlitic steel wire during wet wire drawing

    DEFF Research Database (Denmark)

    Zhang, Xiaodan; Godfrey, Andrew; Hansen, Niels

    2010-01-01

    The evolution of the cementite phase during wet wire drawing of a pearlitic steel wire has been followed as a function of strain. Particular attention has been given to a quantitative characterization of changes in the alignment and in the dimensions of the cementite phase. Scanning electron...... microscope observations show that cementite plates become increasingly aligned with the wire axis as the drawing strain is increased. Measurements in the transmission electron microscope show that the cementite deforms plastically during wire drawing , with the average thickness of the cementite plates...... decreasing from 19 nm (ε = 0) to 2 nm (ε = 3.7) in correspondence with the reduction in wire diameter. The deformation of the cementite is strongly related to plastic deformation in the ferrite, with coarse slip steps, shear bands and cracks in the cementite plates/particles observed parallel to either {110...

  16. Effects of special composite stretching on the swing of amateur golf players.

    Science.gov (United States)

    Lee, Joong-Chul; Lee, Sung-Wan; Yeo, Yun-Ghi; Park, Gi Duck

    2015-04-01

    [Purpose] The study investigated stretching for safer a golf swing compared to present stretching methods for proper swings in order to examine the effects of stretching exercises on golf swings. [Subjects] The subjects were 20 amateur golf club members who were divided into two groups: an experimental group which performed stretching, and a control group which did not. The subjects had no bone deformity, muscle weakness, muscle soreness, or neurological problems. [Methods] A swing analyzer and a ROM measuring instrument were used as the measuring tools. The swing analyzer was a GS400-golf hit ball analyzer (Korea) and the ROM measuring instrument was a goniometer (Korea). [Results] The experimental group showed a statistically significant improvement in driving distance. After the special stretching training for golf, a statistically significant difference in hit-ball direction deviation after swings were found between the groups. The experimental group showed statistically significant decreases in hit ball direction deviation. After the special stretching training for golf, statistically significant differences in hit-ball speed were found between the groups. The experimental group showed significant increases in hit-ball speed. [Conclusion] To examine the effects of a special stretching program for golf on golf swing-related factors, 20 male amateur golf club members performed a 12-week stretching training program. After the golf stretching training, statistically significant differences were found between the groups in hit-ball driving distance, direction deviation, deflection distance, and speed.

  17. Residual strain dependence on the matrix structure in RHQ-Nb3Al wires by neutron diffraction measurement

    International Nuclear Information System (INIS)

    Jin Xinzhe; Nakamoto, Tatsushi; Tsuchiya, Kiyosumi; Ogitsu, Toru; Yamamoto, Akira; Ito, Takayoshi; Harjo, Stefanus; Kikuchi, Akihiro; Takeuchi, Takao; Hemmi, Tsutomu

    2012-01-01

    We prepared three types of non-Cu RHQ-Nb 3 Al wire sample with different matrix structures: an all-Ta matrix, a composite matrix of Nb and Ta with a Ta inter-filament, and an all-Nb matrix. Neutron diffraction patterns of the wire samples were measured at room temperature in the J-PARC ‘TAKUMI’. To obtain the residual strains of the materials, we estimated the lattice constant a by multi-peak analysis in the wires. A powder sample of each wire was measured, where the powder was considered to be strain free. The grain size of all the powder samples was below 0.02 mm. For the wire sample with the all-Nb matrix, we also obtained the lattice spacing d by a single-peak analysis. The residual strains of the Nb 3 Al filament were estimated from the two analysis results and were compared. The resulting residual strains obtained from the multi-peak analysis showed a good accuracy with small standard deviation. The multi-peak analysis results for the residual strains of the Nb 3 Al filaments in the three samples (without Cu plating) were all tensile residual strain in the axial direction, of 0.12%, 0.12%, and 0.05% for the all-Ta matrix, the composite matrix, and the all-Nb matrix, respectively. The difference in the residual strain of the Nb 3 Al filament between the composite and all-Nb matrix samples indicates that the type of inter-filament material shows a great effect on the residual strain. In this paper, we report the method of measurement, method of analysis, and results for the residual strain in the three types of non-Cu RHQ-Nb 3 Al wires. (paper)

  18. Time stretch and its applications

    Science.gov (United States)

    Mahjoubfar, Ata; Churkin, Dmitry V.; Barland, Stéphane; Broderick, Neil; Turitsyn, Sergei K.; Jalali, Bahram

    2017-06-01

    Observing non-repetitive and statistically rare signals that occur on short timescales requires fast real-time measurements that exceed the speed, precision and record length of conventional digitizers. Photonic time stretch is a data acquisition method that overcomes the speed limitations of electronic digitizers and enables continuous ultrafast single-shot spectroscopy, imaging, reflectometry, terahertz and other measurements at refresh rates reaching billions of frames per second with non-stop recording spanning trillions of consecutive frames. The technology has opened a new frontier in measurement science unveiling transient phenomena in nonlinear dynamics such as optical rogue waves and soliton molecules, and in relativistic electron bunching. It has also created a new class of instruments that have been integrated with artificial intelligence for sensing and biomedical diagnostics. We review the fundamental principles and applications of this emerging field for continuous phase and amplitude characterization at extremely high repetition rates via time-stretch spectral interferometry.

  19. Influence of the profile of Iridium-192 wire in measurements of quality control for use in brachytherapy

    International Nuclear Information System (INIS)

    Costa, Osvaldo L.; Zeituni, Carlos A.; Rostelato, Maria Elisa C.M.; Moura, Joao A.; Feher, Anselmo; Moura, Eduardo S.; Souza, Carla D.; Somessari, Samir L.; Peleias Junior, Fernando S.; Mattos, Fabio R.

    2013-01-01

    Brachytherapy is a method used in the treatment of cancerous tumors, by ionizing radiation produced by sources, introduced into the tumor area, this method seeks a more direct to the tumor, thereby maximizing the radiation dose to diseased tissue, while minimizing the dose to healthy tissues. One of the radionuclides used in brachytherapy is iridium-192. The Radiation Technology Center (CTR), of the Nuclear and Energy Research Institute (IPEN), has produced commercially, since 1998, iridium-192 wires used in low dose rate (LDR) brachytherapy. To produce this radionuclides, firstly an iridium-platinum wire is irradiated in the nuclear reactor IEA-R1 for 30 hours, with a neutron flux of 5x 10 13 n cm -2 s -1 , the wire is left to decay by 30 days to remove the main contaminants, and then goes through a quality control, before being sent to the hospital. In this quality control is checked the radiation homogeneity along each centimeter of the wire. To implement this procedure, is used a device, consisting of an ionization chamber, surrounded by a lead shield, with a samol 1 cm wide slit, linked to the ionization chamber is a voltage source, and a Keithley 617 electrometer, 2 minutes is the range used to measure the charge by the electrometer. The iridium wire is considered in accordance, when there is no variation higher than 5%, between the average measures and the maximum and minimum values. However, due to design features of the measurement system, the wire may appear to the detector through the slit in larger sizes than the ideal, improperly influencing the final quality control. This paper calculates the difference in size of these variations in profile, and their influence on the final count, it compares the actual values obtained, and describes the improvements, made in quality control procedures, that provided more accurate measurement data, analyzes the results, and suggests changes in devices, aimed at further improving the quality control of iridium-192

  20. The influence of foot position on stretching of the plantar fascia.

    Science.gov (United States)

    Flanigan, Ryan M; Nawoczenski, Deborah A; Chen, Linlin; Wu, Hulin; DiGiovanni, Benedict F

    2007-07-01

    A recent study found nonweightbearing stretching exercises specific to the plantar fascia to be superior to the standard program of weightbearing Achilles tendon-stretching exercises in patients with chronic plantar fasciitis. The present study used a cadaver model to demonstrate the influence of foot and ankle position on stretching of the plantar fascia. Twelve fresh-frozen lower-leg specimens were tested in 15 different configurations representing various combinations of ankle and metatarsophalangeal (MTP) joint dorsiflexion, midtarsal transverse plane abduction and adduction, and forefoot varus and valgus. Measurements were recorded by a differential variable reluctance transducer (DVRT) implanted into the medial band of the plantar fascia, and primary measurement was a percent deformation of the plantar fascia (stretch) with respect to a reference position (90 degrees ankle dorsiflexion, 0 degrees midtarsal and forefoot orientation, and 0 degrees MTP dorsiflexion). Ankle and MTP joint dorsiflexion produced a significant increase (14.91%) in stretch compared to the position of either ankle dorsiflexion alone (9.31% increase, p plantar fascia tissue-specific stretching exercises and lends support to the use of ankle and MTP joint dorsiflexion when employing stretching protocols for nonoperative treatment in patients with chronic proximal plantar fasciitis.

  1. Effect of wire shape on wire array discharge

    International Nuclear Information System (INIS)

    Shimomura, N.; Tanaka, Y.; Yushita, Y.; Nagata, M.; Teramoto, Y.; Katsuki, S.; Akiyama, H.

    2001-01-01

    Although considerable investigations have been reported on z-pinches to achieve nuclear fusion, little attention has been given from the point of view of how a wire array consisting of many parallel wires explodes. Instability existing in the wire array discharge has been shown. In this paper, the effect of wire shape in the wire array on unstable behavior of the wire array discharge is represented by numerical analysis. The claws on the wire formed in installation of wire may cause uniform current distribution on wire array. The effect of error of wire diameter in production is computed by Monte Carlo Method. (author)

  2. Effect of wire shape on wire array discharge

    Energy Technology Data Exchange (ETDEWEB)

    Shimomura, N.; Tanaka, Y.; Yushita, Y.; Nagata, M. [University of Tokushima, Department of Electrical and Electronic Engineering, Tokushima (Japan); Teramoto, Y.; Katsuki, S.; Akiyama, H. [Kumamoto University, Department of Electrical and Computer Engineering, Kumamoto (Japan)

    2001-09-01

    Although considerable investigations have been reported on z-pinches to achieve nuclear fusion, little attention has been given from the point of view of how a wire array consisting of many parallel wires explodes. Instability existing in the wire array discharge has been shown. In this paper, the effect of wire shape in the wire array on unstable behavior of the wire array discharge is represented by numerical analysis. The claws on the wire formed in installation of wire may cause uniform current distribution on wire array. The effect of error of wire diameter in production is computed by Monte Carlo Method. (author)

  3. Knotting in stretched polygons

    International Nuclear Information System (INIS)

    Rensburg, E J Janse van; Orlandini, E; Tesi, M C; Whittington, S G

    2008-01-01

    The knotting in a lattice polygon model of ring polymers is examined when a stretching force is applied to the polygon. By examining the incidence of cut-planes in the polygon, we prove a pattern theorem in the stretching regime for large applied forces. This theorem can be used to examine the incidence of entanglements such as knotting and writhing. In particular, we prove that for arbitrarily large positive, but finite, values of the stretching force, the probability that a stretched polygon is knotted approaches 1 as the length of the polygon increases. In the case of writhing, we prove that for stretched polygons of length n, and for every function f(n)=o(√n), the probability that the absolute value of the mean writhe is less than f(n) approaches 0 as n → ∞, for sufficiently large values of the applied stretching force

  4. Estimating back to front ratio of wire screen for measurement of thoron decay products

    International Nuclear Information System (INIS)

    Koli, Amruta; Khandare, Pallavi; Joshi, Manish; Mariam; Khan, Arshad; Sapra, B.K.

    2016-01-01

    Wire screens are widely used for measuring the fine fraction of radon/thoron decay products. Their capture efficiencies are generally defined at low aerosol concentration conditions as well as at low sampling flow rates. Effect of changes in sampling flow rate and aerosol concentration on wire screen capture efficiencies and counting correction factor has been studied in this work. Controlled experiments have been conducted using two different mesh sizes at two different aerosol concentration conditions. Experimental results were compared with the existing theories for capture efficiencies of wire screens given by Cheng and Yeh (1980) and Alonso et al. (2001); and semi empirical relation for the front to total ratio given by Solomon and Ren (1992). Theoretical predictions have been found to be relatively close to the experimental findings for moderate aerosol conditions but disagreement was observed in case of high aerosol concentration. The possible reasons for these differences have been discussed in this work. - Highlights: • Effect of Fiber Reynolds number on capture efficiency and back to front ratio of wire screen. • Experiments with Thoron decay products at moderate and elevated aerosol concentrations. • Comparison with theoretical estimates. • Fair agreement observed for moderate aerosol concentration.

  5. Impedance Characterisation of the SPS Wire Scanner

    CERN Document Server

    AUTHOR|(CDS)2091911; Prof. Sillanpää, Mika

    As a beam diagnostic tool, the SPS wire scanner interacts with the proton bunches traversing the vacuum pipes of the Super Proton Synchrotron particle accelerator. Following the interaction, the bunches decelerate or experience momentum kicks off-axis and couple energy to the cavity walls, resonances and to the diagnostic tool, the scanning wire. The beam coupling impedance and, in particular, the beam induced heating of the wire motivate the characterisation and redesign of the SPS wire scanner. In this thesis, we characterise RF-wise the low frequency modes of the SPS wire scanner. These have the highest contribution to the impedance. We measure the cavity modes in terms of resonance frequency and quality factor by traditional measurement techniques and data analysis. We carry out a 4-port measurement to evaluate the beam coupling to the scanning wire, that yields the spectral heating power. If combined with the simulations, one is able to extract the beam coupling impedance and deduce the spectral dissipa...

  6. Evolution of cementite morphology in pearlitic steel wire during wet wire drawing

    International Nuclear Information System (INIS)

    Zhang Xiaodan; Godfrey, Andrew; Hansen, Niels; Huang Xiaoxu; Liu Wei; Liu Qing

    2010-01-01

    The evolution of the cementite phase during wet wire drawing of a pearlitic steel wire has been followed as a function of strain. Particular attention has been given to a quantitative characterization of changes in the alignment and in the dimensions of the cementite phase. Scanning electron microscope observations show that cementite plates become increasingly aligned with the wire axis as the drawing strain is increased. Measurements in the transmission electron microscope show that the cementite deforms plastically during wire drawing , with the average thickness of the cementite plates decreasing from 19 nm (ε = 0) to 2 nm (ε = 3.7) in correspondence with the reduction in wire diameter. The deformation of the cementite is strongly related to plastic deformation in the ferrite, with coarse slip steps, shear bands and cracks in the cementite plates/particles observed parallel to either {110} α or {112} α slip plane traces in the ferrite.

  7. A Hot-Wire Method Based Thermal Conductivity Measurement Apparatus for Teaching Purposes

    Science.gov (United States)

    Alvarado, S.; Marin, E.; Juarez, A. G.; Calderon, A.; Ivanov, R.

    2012-01-01

    The implementation of an automated system based on the hot-wire technique is described for the measurement of the thermal conductivity of liquids using equipment easily available in modern physics laboratories at high schools and universities (basically a precision current source and a voltage meter, a data acquisition card, a personal computer…

  8. Monitoring and evaluation of wire mesh forming life

    Science.gov (United States)

    Enemuoh, Emmanuel U.; Zhao, Ping; Kadlec, Alec

    2018-03-01

    Forming tables are used with stainless steel wire mesh conveyor belts to produce variety of products. The forming tables will typically run continuously for several days, with some hours of scheduled downtime for maintenance, cleaning and part replacement after several weeks of operation. The wire mesh conveyor belts show large variation in their remaining life due to associated variations in their nominal thicknesses. Currently the industry is dependent on seasoned operators to determine the replacement time for the wire mesh formers. The drawback of this approach is inconsistency in judgements made by different operators and lack of data knowledge that can be used to develop decision making system that will be more consistent with wire mesh life prediction and replacement time. In this study, diagnostic measurements about the health of wire mesh former is investigated and developed. The wire mesh quality characteristics considered are thermal measurement, tension property, gage thickness, and wire mesh wear. The results show that real time thermal sensor and wear measurements would provide suitable data for the estimation of wire mesh failure, therefore, can be used as a diagnostic parameter for developing structural health monitoring (SHM) system for stainless steel wire mesh formers.

  9. Measuring the complex admittance and tunneling rate of a germanium hut wire hole quantum dot

    Science.gov (United States)

    Li, Yan; Li, Shu-Xiao; Gao, Fei; Li, Hai-Ou; Xu, Gang; Wang, Ke; Liu, He; Cao, Gang; Xiao, Ming; Wang, Ting; Zhang, Jian-Jun; Guo, Guo-Ping

    2018-05-01

    We investigate the microwave reflectometry of an on-chip reflection line cavity coupled to a Ge hut wire hole quantum dot. The amplitude and phase responses of the cavity can be used to measure the complex admittance and evaluate the tunneling rate of the quantum dot, even in the region where transport signal through the quantum dot is too small to be measured by conventional direct transport means. The experimental observations are found to be in good agreement with a theoretical model of the hybrid system based on cavity frequency shift and linewidth shift. Our experimental results take the first step towards fast and sensitive readout of charge and spin states in Ge hut wire hole quantum dot.

  10. Comparison between wire mesh sensor and gamma densitometry void measurements in two-phase flows

    Science.gov (United States)

    Sharaf, S.; Da Silva, M.; Hampel, U.; Zippe, C.; Beyer, M.; Azzopardi, B.

    2011-10-01

    Wire mesh sensors (WMS) are fast imaging instruments that are used for gas-liquid and liquid-liquid two-phase flow measurements and experimental investigations. Experimental tests were conducted at Helmholtz-Zentrum Dresden-Rossendorf to test both the capacitance and conductance WMS against a gamma densitometer (GD). A small gas-liquid test facility was utilized. This consisted of a vertical round pipe approximately 1 m in length, and 50 mm internal diameter. A 16 × 16 WMS was used with high spatial and temporal resolutions. Air-deionized water was the two-phase mixture. The gas superficial velocity was varied between 0.05 m s-1 and 1.4 m s-1 at two liquid velocities of 0.2 and 0.7 m s-1. The GD consisted of a collimated source and a collimated detector. The GD was placed on a moving platform close to the plane of wires of the sensor, in order to align it accurately using a counter mechanism, with each of the wires of the WMS, and the platform could scan the full section of the pipe. The WMS was operated as a conductivity WMS for a half-plane with eight wires and as a capacitance WMS for the other half. For the cross-sectional void (time and space averaged), along each wire, there was good agreement between WMS and the GD chordal void fraction near the centre of the pipe.

  11. Comparison between wire mesh sensor and gamma densitometry void measurements in two-phase flows

    International Nuclear Information System (INIS)

    Sharaf, S; Azzopardi, B; Da Silva, M; Hampel, U; Zippe, C; Beyer, M

    2011-01-01

    Wire mesh sensors (WMS) are fast imaging instruments that are used for gas–liquid and liquid–liquid two-phase flow measurements and experimental investigations. Experimental tests were conducted at Helmholtz-Zentrum Dresden-Rossendorf to test both the capacitance and conductance WMS against a gamma densitometer (GD). A small gas–liquid test facility was utilized. This consisted of a vertical round pipe approximately 1 m in length, and 50 mm internal diameter. A 16 × 16 WMS was used with high spatial and temporal resolutions. Air–deionized water was the two-phase mixture. The gas superficial velocity was varied between 0.05 m s −1 and 1.4 m s −1 at two liquid velocities of 0.2 and 0.7 m s −1 . The GD consisted of a collimated source and a collimated detector. The GD was placed on a moving platform close to the plane of wires of the sensor, in order to align it accurately using a counter mechanism, with each of the wires of the WMS, and the platform could scan the full section of the pipe. The WMS was operated as a conductivity WMS for a half-plane with eight wires and as a capacitance WMS for the other half. For the cross-sectional void (time and space averaged), along each wire, there was good agreement between WMS and the GD chordal void fraction near the centre of the pipe

  12. Damage percolation during stretch flange forming of aluminum alloy sheet

    Science.gov (United States)

    Chen, Zengtao; Worswick, Michael J.; Keith Pilkey, A.; Lloyd, David J.

    2005-12-01

    A multi-scale finite element (FE)-damage percolation model was employed to simulate stretch flange forming of aluminum alloys AA5182 and AA5754. Material softening and strain gradients were captured using a Gurson-based FE model. FE results were then fed into the so-called damage percolation code, from which the damage development was modelled within measured microstructures. The formability of the stretch flange samples was predicted based upon the onset of catastrophic failure triggered by profuse void coalescence within the measured second-phase particle field. Damage development is quantified in terms of crack and void areal fractions, and compared to metallographic results obtained from interrupted stretch flange specimens. Parametric study is conducted on the effect of void nucleation strain in the prediction of formability of stretch flanges to "calibrate" proper nucleation strains for both alloys.

  13. Energy Deposition in a Septum Wire

    CERN Document Server

    Ferioli, G; Knaus, P; Koopman, J; CERN. Geneva. SPS and LHC Division

    2001-01-01

    The present note describes a machine development (MD) aimed to confirm experimentally the need for protection of the extraction wire septum ZS in SPS long straight section LSS6 during LHC operation. Single wires identical to the ones mounted on the extraction septum were fixed on a fast wire scanner and put into the beam path. The beam heated the wire until it broke after a measured number of turns. The maximum single shot intensity the septum wires could withstand was thus calculated and compared with simulation results.

  14. Pulsed taut-wire measurement of the magnetic alignment of the ITS induction cells

    International Nuclear Information System (INIS)

    Melton, J.G.; Burns, M.J.; Honaberger, D.J.

    1993-01-01

    The mechanical and magnetic alignment of the first eight induction-cell, solenoid magnets of the Integrated Test Stand (ITS) for the Dual-Axis Radiographic Hydrodynamic Test (DARHT) facility were measured by observing the deflection of a fine, taut wire carrying a pulsed current. To achieve the required alignment (less than 0.25 mm offset and less than 5 mrad tilt), the magnet design uses quadrufilar windings and iron field-smoothing rings. After detailed measurements of each solenoid magnet, the cells are assembled and then mechanically aligned using a laser and an alignment target moved along the cell centerline. After the cells are in final position, the pulsed wire method is used to verify the magnetic alignment. The measurements show an average offset of the magnetic axes from the mechanical axis of 0. 15 mm, with a maximum offset of 0.3 mm. The average tilt of the magnetic axis was 0.7 mrad with a maximum tilt of 1.4 mrad. Tilts are corrected to less than 0.3 mrad, using dipole trim magnets assembled into each cell. Correction is limited noise

  15. PEEK (polyether-ether-ketone)-coated nitinol wire: Film stability for biocompatibility applications

    Energy Technology Data Exchange (ETDEWEB)

    Sheiko, Nataliia [Institut Charles Sadron, C.N.R.S. UPR 22, Université de Strasbourg, 23 rue du Loess, BP 84047, 67034 Strasbourg Cedex 2 (France); Kékicheff, Patrick, E-mail: patrick.kekicheff@ics-cnrs.unistra.fr [Institut Charles Sadron, C.N.R.S. UPR 22, Université de Strasbourg, 23 rue du Loess, BP 84047, 67034 Strasbourg Cedex 2 (France); Marie, Pascal; Schmutz, Marc; Jacomine, Leandro [Institut Charles Sadron, C.N.R.S. UPR 22, Université de Strasbourg, 23 rue du Loess, BP 84047, 67034 Strasbourg Cedex 2 (France); Perrin-Schmitt, Fabienne [Faculté de Médecine, INSERM, UMR-S 1121, “Biomaterials and Bioengineering”, Université de Strasbourg, 11 rue Humann, 67085 Strasbourg Cedex (France)

    2016-12-15

    Highlights: • A thin (12 μm) homogeneous PEEK film without any defects or voids is deposited on NiTi wires. • The coating remains stable in biological environment with negligible Ni ion release and no cytotoxicity. • Large pressure (>2 GPa) can only disrupt the coating film as shown by nanoscratch tests. • Coated spring wires sustain mechanical stress in continuous cycles of axial compression/stretching for >7 million cycles. - Abstract: High quality biocompatible poly-ether-ether-ketone (PEEK) coatings were produced on NiTi shape memory alloy wires using dipping deposition from colloidal aqueous PEEK dispersions after substrate surface treatment. The surface morphology and microstructure were investigated by Scanning Electron Microscopy at every step of the process from the as-received Nitinol substrate to the ultimate PEEK-coated NiTi wire. Nanoscratch tests were carried out to access the adhesive behavior of the polymer coated film to the NiTi. The results indicate that the optimum process conditions in cleaning, chemical etching, and electropolishing the NiTi, were the most important and determining parameters to be achieved. Thus, high quality PEEK coatings were obtained on NiTi wires, straight or curved (even with a U-shape) with a homogeneous microstructure along the wire length and a uniform thickness of 12 μm without any development of cracks or the presence of large voids. The biocompatibility of the PEEK coating film was checked in fibrobast cultured cells. The coating remains stable in biological environment with negligible Ni ion release, no cytotoxicity, and no delamination observed with time.

  16. PEEK (polyether-ether-ketone)-coated nitinol wire: Film stability for biocompatibility applications

    International Nuclear Information System (INIS)

    Sheiko, Nataliia; Kékicheff, Patrick; Marie, Pascal; Schmutz, Marc; Jacomine, Leandro; Perrin-Schmitt, Fabienne

    2016-01-01

    Highlights: • A thin (12 μm) homogeneous PEEK film without any defects or voids is deposited on NiTi wires. • The coating remains stable in biological environment with negligible Ni ion release and no cytotoxicity. • Large pressure (>2 GPa) can only disrupt the coating film as shown by nanoscratch tests. • Coated spring wires sustain mechanical stress in continuous cycles of axial compression/stretching for >7 million cycles. - Abstract: High quality biocompatible poly-ether-ether-ketone (PEEK) coatings were produced on NiTi shape memory alloy wires using dipping deposition from colloidal aqueous PEEK dispersions after substrate surface treatment. The surface morphology and microstructure were investigated by Scanning Electron Microscopy at every step of the process from the as-received Nitinol substrate to the ultimate PEEK-coated NiTi wire. Nanoscratch tests were carried out to access the adhesive behavior of the polymer coated film to the NiTi. The results indicate that the optimum process conditions in cleaning, chemical etching, and electropolishing the NiTi, were the most important and determining parameters to be achieved. Thus, high quality PEEK coatings were obtained on NiTi wires, straight or curved (even with a U-shape) with a homogeneous microstructure along the wire length and a uniform thickness of 12 μm without any development of cracks or the presence of large voids. The biocompatibility of the PEEK coating film was checked in fibrobast cultured cells. The coating remains stable in biological environment with negligible Ni ion release, no cytotoxicity, and no delamination observed with time.

  17. BSDB: the Biomolecule Stretching Database

    Science.gov (United States)

    Cieplak, Marek; Sikora, Mateusz; Sulkowska, Joanna I.; Witkowski, Bartlomiej

    2011-03-01

    Despite more than a decade of experiments on single biomolecule manipulation, mechanical properties of only several scores of proteins have been measured. A characteristic scale of the force of resistance to stretching, Fmax , has been found to range between ~ 10 and 480 pN. The Biomolecule Stretching Data Base (BSDB) described here provides information about expected values of Fmax for, currently, 17 134 proteins. The values and other characteristics of the unfolding proces, including the nature of identified mechanical clamps, are available at www://info.ifpan.edu.pl/BSDB/. They have been obtained through simulations within a structure-based model which correlates satisfactorily with the available experimental data on stretching. BSDB also lists experimental data and results of the existing all-atom simulations. The database offers a Protein-Data-Bank-wide guide to mechano-stability of proteins. Its description is provided by a forthcoming Nucleic Acids Research paper. Supported by EC FUNMOL project FP7-NMP-2007-SMALL-1, and European Regional Development Fund: Innovative Economy (POIG.01.01.02-00-008/08).

  18. UV laser beam profile measurement by means of the photoelectric effect on the wires of a proportional chamber

    International Nuclear Information System (INIS)

    Prokoviev, O.; Seiler, P.G.

    1989-01-01

    A simple technique to measure the profiles of pulsed UV laser beams is described. Irradiating a cathode wire of a proportional chamber with UV laser shots results in signals from the anode wire whose amplitudes are proportional to the UV light intensity. Profile scanning is performed by shifting the chamber across the beam. The chamber can also be used with reversed polarities. This leads to avalanches developing outwardly from the signal wire. In this case we observe a quadratic dependence of the pulse height on the UV light intensity. (orig.)

  19. Influence of the stretch wrapping process on the mechanical behavior of a stretch film

    Science.gov (United States)

    Klein, Daniel; Stommel, Markus; Zimmer, Johannes

    2018-05-01

    Lightweight construction is an ongoing task in packaging development. Consequently, the stability of packages during transport is gaining importance. This study contributes to the optimization of lightweight packaging concepts regarding their stability. A very widespread packaging concept is the distribution of goods on a pallet whereas a Polyethylene (PE) stretch film stabilizes the lightweight structure during the shipment. Usually, a stretch wrapping machine applies this stretch film to the pallet. The objective of this study is to support packaging development with a method that predicts the result of the wrapping process, based on the mechanical characterization of the stretch film. This result is not only defined by the amount of stretch film, its spatial distribution on the pallet and its internal stresses that result in a containment force. More accurate, this contribution also considers the influence of the deformation history of the stretch film during the wrapping process. By focusing on similarities of stretch wrappers rather than on differences, the influence of generalized process parameters on stretch film mechanics and thereby on pallet stability can be determined experimentally. For a practical use, the predictive method is accumulated in an analytic model of the wrapping process that can be verified experimentally. This paves the way for experimental and numerical approaches regarding the optimization of pallet stability.

  20. Creation of subsonic macro-and microjets facilities and automated measuring system (AMS-2) for the spatial - temporal hot - wire anemometric visualization of jet flow field

    Science.gov (United States)

    Sorokin, A. M.; Grek, G. R.; Gilev, V. M.; Zverkov, I. D.

    2017-10-01

    Macro-and microjets facilities for generation of the round and plane subsonic jets are designed and fabricated. Automated measuring system (AMS - 2) for the spatial - temporal hot - wire anemometric visualization of jet flow field is designed and fabricated. Coordinate device and unit of the measurement, collecting, storage and processing of hot - wire anemometric information were integrated in the AMS. Coordinate device is intended for precision movement of the hot - wire probe in jet flow field according to the computer program. At the same time accuracy of the hot - wire probe movement is 5 microns on all three coordinates (x, y, z). Unit of measurement, collecting, storage and processing of hot - wire anemometric information is intended for the hot - wire anemometric measurement of the jet flow field parameters (registration of the mean - U and fluctuation - u' characteristics of jet flow velocity), their accumulation and preservation in the computer memory, and also carries out their processing according to certain programms.

  1. A comparative evaluation of rate of space closure after extraction using E-chain and stretched modules in bimaxillary dentoalveolar protrusion cases.

    Science.gov (United States)

    Mitra, Rajat; Londhe, S M; Kumar, Prasanna

    2011-04-01

    Aim of this study was to compare the rate of space closure between E-chain mechanics in one side of upper arch and by elastomeric module with ligature wire on the contralateral side in same patient. Thirty bimaxillary dentoalveolar protrusion cases were taken up for comprehensive fixed orthodontic treatment after extraction of all first premolars to retract both upper and lower anterior teeth. After initial alignment and levelling, alginate impressions were made for upper and lower arches and models constructed. In the upper arch model a vernier caliper was used to measure the extraction space in both sides from middle point of distal surface of canine to the middle most point of mesial surface of second premolar. This is the amount of space present before the onset of retraction mechanics. During space closure procedure two different retracting components were applied in right and left sides of each case. On right side elastic chain (E-chain) applied in both upper and lower arches and on left side elastomeric module with steel ligature (0.010") stretched double its diameter fixed in both arches. Both the mechanisms produced approximately 250-300 g of force as measured by a tension gauge. After onset of retraction mechanism all patients were recalled after every six weeks for three visits. In all these three visits modules and E-chains were changed. In all three visits impression was made, models constructed, and the remaining available space was measured by a vernier caliper up to 0.1 mm level variations. Mean value for total space closure in case of E-chain was 2.777 mm whereas in case of module with ligature wire the value increased to 3.017 mm. Mean value for rate of space closure in case of E-chain was 0.2143 mm, whereas in case of module with ligature wire the value increased to 0.2343 mm with a standard deviation of 0.001104 and 0.001194, respectively. The standard deviation for total space closure was 0.1305 for E-chain and 0.1487 for module with ligature

  2. Acute effect of different stretching methods on isometric muscle strength

    Directory of Open Access Journals (Sweden)

    Gabriel Vasconcellos de Lima Costa e Silva

    2014-03-01

    This study investigated the acute effect of static stretching methods (SS and proprioceptive neuromuscular facilitation (PNF on the static muscle strength (SMS. Eleven young male subjects with strength training experience, performed 3 tests with a 48h interval between them, randomly selected, where each one subject carried out all procedures: a hand grip without stretching; b hand grip preceded by static stretching of wrist flexors muscles; c hand grip preceded by PNF stretching of wrist flexors muscles. The Shapiro-Wilk test verified the normality of data, and a one-way ANOVA with repeated measures, followed by Tukey’s post hoc test, evaluated the differences between the groups. The significance was set at p 0.05. In conclusion, both stretching methods had caused negative effects on isometric strength, reducing its levels.

  3. Short Durations of Static Stretching when Combined with Dynamic Stretching do not Impair Repeated Sprints and Agility.

    Science.gov (United States)

    Wong, Del P; Chaouachi, Anis; Lau, Patrick W C; Behm, David G

    2011-01-01

    This study aimed to compare the effect of different static stretching durations followed by dynamic stretching on repeated sprint ability (RSA) and change of direction (COD). Twenty-five participants performed the RSA and COD tests in a randomized order. After a 5 min aerobic warm up, participants performed one of the three static stretching protocols of 30 s, 60 s or 90 s total duration (3 stretches x 10 s, 20 s or 30 s). Three dynamic stretching exercises of 30 s duration were then performed (90 s total). Sit-and-reach flexibility tests were conducted before the aerobic warm up, after the combined static and dynamic stretching, and post- RSA/COD test. The duration of static stretching had a positive effect on flexibility with 36.3% and 85.6% greater sit-and-reach scores with the 60 s and 90 s static stretching conditions respectively than with the 30 s condition (p ≤ 0.001). However there were no significant differences in RSA and COD performance between the 3 stretching conditions. The lack of change in RSA and COD might be attributed to a counterbalancing of static and dynamic stretching effects. Furthermore, the short duration (≤ 90 s) static stretching may not have provided sufficient stimulus to elicit performance impairments. Key pointsThe duration of combined static and dynamic stretching had a positive effect on flexibility with 36.3% and 85.6% greater sit and reach scores with the 60 s and 90 s static stretching conditions respectively than with the 30 s condition (p ≤ 0.001).No significant differences in RSA and COD between the 3 stretching conditions.The lack of change in RSA and COD might be attributed to a counterbalancing of static and dynamic stretching effects.The short duration (≤ 90 s) static stretching may not have provided sufficient stimulus to elicit performance impairments.

  4. Short Durations of Static Stretching when Combined with Dynamic Stretching do not Impair Repeated Sprints and Agility

    Science.gov (United States)

    Wong, Del P.; Chaouachi, Anis; Lau, Patrick W.C.; Behm, David G.

    2011-01-01

    This study aimed to compare the effect of different static stretching durations followed by dynamic stretching on repeated sprint ability (RSA) and change of direction (COD). Twenty-five participants performed the RSA and COD tests in a randomized order. After a 5 min aerobic warm up, participants performed one of the three static stretching protocols of 30 s, 60 s or 90 s total duration (3 stretches x 10 s, 20 s or 30 s). Three dynamic stretching exercises of 30 s duration were then performed (90 s total). Sit-and-reach flexibility tests were conducted before the aerobic warm up, after the combined static and dynamic stretching, and post- RSA/COD test. The duration of static stretching had a positive effect on flexibility with 36.3% and 85.6% greater sit-and-reach scores with the 60 s and 90 s static stretching conditions respectively than with the 30 s condition (p ≤ 0.001). However there were no significant differences in RSA and COD performance between the 3 stretching conditions. The lack of change in RSA and COD might be attributed to a counterbalancing of static and dynamic stretching effects. Furthermore, the short duration (≤ 90 s) static stretching may not have provided sufficient stimulus to elicit performance impairments. Key points The duration of combined static and dynamic stretching had a positive effect on flexibility with 36.3% and 85.6% greater sit and reach scores with the 60 s and 90 s static stretching conditions respectively than with the 30 s condition (p ≤ 0.001). No significant differences in RSA and COD between the 3 stretching conditions. The lack of change in RSA and COD might be attributed to a counterbalancing of static and dynamic stretching effects. The short duration (≤ 90 s) static stretching may not have provided sufficient stimulus to elicit performance impairments. PMID:24149890

  5. Size measurement of radioactive aerosol particles in intense radiation fields using wire screens and imaging plates

    Energy Technology Data Exchange (ETDEWEB)

    Oki, Yuichi; Tanaka, Toru; Takamiya, Koichi; Ishi, Yoshihiro; UesugI, Tomonori; Kuriyama, Yasutoshi; Sakamoto, Masaaki; Ohtsuki, Tsutomu [Kyoto University Research Reactor Institute, Osaka (Japan); Nitta, Shinnosuke [Graduate School of Engineering, Kyoto University, Kyoto (Japan); Osada, Naoyuki [Advanced Science Research Center, Okayama University, Okayama (Japan)

    2016-09-15

    Very fine radiation-induced aerosol particles are produced in intense radiation fields, such as high-intensity accelerator rooms and containment vessels such as those in the Fukushima Daiichi nuclear power plant (FDNPP). Size measurement of the aerosol particles is very important for understanding the behavior of radioactive aerosols released in the FDNPP accident and radiation safety in high-energy accelerators. A combined technique using wire screens and imaging plates was developed for size measurement of fine radioactive aerosol particles smaller than 100 nm in diameter. This technique was applied to the radiation field of a proton accelerator room, in which radioactive atoms produced in air during machine operation are incorporated into radiation-induced aerosol particles. The size of 11C-bearing aerosol particles was analyzed using the wire screen technique in distinction from other positron emitters in combination with a radioactive decay analysis. The size distribution for 11C-bearing aerosol particles was found to be ca. 70 μm in geometric mean diameter. The size was similar to that for 7Be-bearing particles obtained by a Ge detector measurement, and was slightly larger than the number-based size distribution measured with a scanning mobility particle sizer. The particle size measuring method using wire screens and imaging plates was successfully applied to the fine aerosol particles produced in an intense radiation field of a proton accelerator. This technique is applicable to size measurement of radioactive aerosol particles produced in the intense radiation fields of radiation facilities.

  6. Landing Gear Components Noise Study - PIV and Hot-Wire Measurements

    Science.gov (United States)

    Hutcheson, Florence V.; Burley, Casey L.; Stead, Daniel J.; Becker, Lawrence E.; Price, Jennifer L.

    2010-01-01

    PIV and hot-wire measurements of the wake flow from rods and bars are presented. The test models include rods of different diameters and cross sections and a rod juxtaposed to a plate. The latter is representative of the latch door that is attached to an aircraft landing gear when the gear is deployed, while the single and multiple rod configurations tested are representative of some of the various struts and cables configuration present on an aircraft landing gear. The test set up is described and the flow measurements are presented. The effect of model surface treatment and freestream turbulence on the spanwise coherence of the vortex shedding is studied for several rod and bar configurations.

  7. The Acute Effects of Upper Extremity Stretching on Throwing Velocity in Baseball Throwers

    Directory of Open Access Journals (Sweden)

    Michael Williams

    2013-01-01

    Full Text Available Purpose. To examine the effects of static and proprioceptive neuromuscular facilitation (PNF stretching of the shoulder internal rotators on throwing velocity. Subjects. 27 male throwers (mean age = 25.1 years old, SD = 2.4 with adequate knowledge of demonstrable throwing mechanics. Study Design. Randomized crossover trial with repeated measures. Methods. Subjects warmed up, threw 10 pitches at their maximum velocity, were randomly assigned to 1 of 3 stretching protocols (static, PNF, or no stretch, and then repeated their 10 pitches. Velocities were recorded after each pitch and average and peak velocities were recorded after each session. Results. Data were analyzed using a repeated measures ANOVA. No significant interaction between stretching and throwing velocity was observed. Main effects for time were not statistically significant. Main effects for the stretching groups were statistically significant. Discussion. Results suggest that stretching of the shoulder internal rotators did not significantly affect throwing velocity immediately after stretching. This may be due to the complexity of the throwing task. Conclusions. Stretching may be included in a thrower's warm-up without any effects on throwing velocity. Further research should be performed using a population with more throwing experience and skill.

  8. Electrical conduction in 7 nm wires constructed on λ-DNA

    International Nuclear Information System (INIS)

    Lund, John; Dong Jianchun; Deng Zhaoxiang; Mao Chengde; Parviz, Babak A

    2006-01-01

    We examine the morphological and electrical characteristics of nanowires fabricated on DNA templates via palladium (Pd) reduction. λ-DNA molecules were stretched and aligned on a mica surface using a molecular combing technique, followed by an electroless deposition of palladium, resulting in formation of nanowires with nominal width of 7 nm. We investigated the size distribution of nanowires with atomic force microscopy and made electrical connections to the wires by metal evaporation through multiple shadow masks. Electrical characterization of the nanowires under various bias conditions, variable temperature, and with different contact metal work functions revealed a conduction mechanism resembling that of granular metals

  9. A comparison of disturbance levels measured in hypersonic tunnels using a hot-wire anemometer and a pitot pressure probe.

    Science.gov (United States)

    Stainback, P. C.; Wagner, R. D.

    1972-01-01

    Disturbance levels were measured in the test section of a Mach 5 blowdown jet using a constant-current, hot-wire anemometer and a pressure transducer. The disturbance levels, measured by the two instruments and normalized by local mean values, agreed within about 30%, with the pitot data higher than the hot-wire data. The rms disturbance levels measured with the hot-wire anemometer and converted to pitot pressures using a quasi-steady flow analysis, were about two-thirds the levels measured with the pitot probe. The variation of the normalized rms disturbance levels with stagnation pressure indicated that transition occurred in the boundary layer on the nozzle wall and influenced the outputs of the instruments located at the exit of the nozzle when the total pressure was about 35 N/sq cm. Below this pressure the disturbance levels decreased markedly. At higher pressures the disturbances were predominantly aerodynamic noise generated by the turbulent boundary layer on the nozzle wall.

  10. Applying hot-wire anemometry to directly measure the water balance in a proton exchange membrane fuel cell

    DEFF Research Database (Denmark)

    Al Shakhshir, Saher; Andreasen, Søren Juhl; Berning, Torsten

    2016-01-01

    In order to better understand and more accurately measure the water balance in a proton exchange membrane fuel cell, our group has recently proposed to apply hot wire anemometry in the fuel cell's anode outlet. It was theoretically shown that the electrical signal obtained from the hot wire sensor...... can be directly converted into the fuel cell water balance. In this work an ex-situ experimental investigation is performed to examine the effect of the wire diameter and the outlet pipe diameter on the voltage signal. For a laboratory fuel cell where the mass flow rate the anode outlet is small...... number Nu range between m = 0.137 and m = 0.246. In general, it is shown that applying hot wire anemometry yields in fact very clear voltage readings with high frequency, and it can be used as a diagnosis tool in various fuel cell applications....

  11. Equibiaxial cyclic stretch stimulates fibroblasts to rapidly remodel fibrin.

    Science.gov (United States)

    Balestrini, Jenna Leigh; Billiar, Kristen Lawrence

    2006-01-01

    Understanding the effects of the mechanical environment on wound healing is critical for developing more effective treatments to reduce scar formation and contracture. The aim of this study was to investigate the effects of dynamic mechanical stretch on cell-mediated early wound remodeling independent of matrix alignment which obscures more subtle remodeling mechanisms. Cyclic equibiaxial stretch (16% stretch at 0.2 Hz) was applied to fibroblast-populated fibrin gel in vitro wound models for eight days. Compaction, density, tensile strength, and collagen content were quantified as functional measures of remodeling. Stretched samples were approximately ten times stronger, eight-fold more dense, and eight times thinner than statically cultured samples. These changes were accompanied by a 15% increase in net collagen but no significant differences in cell number or viability. When collagen crosslinking was inhibited in stretched samples, the extensibility increased and the strength decreased. The apparent weakening was due to a reduction in compaction rather than a decrease in ability of the tissue to withstand tensile forces. Interestingly, inhibiting collagen crosslinking had no measurable effects on the statically cultured samples. These results indicate that amplified cell-mediated compaction and even a slight addition in collagen content play substantial roles in mechanically induced wound strengthening. These findings increase our understanding of how mechanical forces guide the healing response in skin, and the methods employed in this study may also prove valuable tools for investigating stretch-induced remodeling of other planar connective tissues and for creating mechanically robust engineered tissues.

  12. Effect of spinal manipulative therapy with stretching compared with stretching alone on full-swing performance of golf players: a randomized pilot trial☆

    Science.gov (United States)

    Costa, Soraya M.V.; Chibana, Yumi E.T.; Giavarotti, Leandro; Compagnoni, Débora S.; Shiono, Adriana H.; Satie, Janice; Bracher, Eduardo S.B.

    2009-01-01

    Abstract Objective There has been a steady growth of chiropractic treatment using spinal manipulative therapy (SMT) that aims to increase the performance of athletes in various sports. This study evaluates the effect of SMT by chiropractors on the performance of golf players. Methods Golfers of 2 golf clubs in São Paulo, Brazil, participated in this study. They were randomized to 1 of 2 groups: Group I received a stretch program, and group II received a stretch program in addition to SMT. Participants in both groups performed the same standardized stretching program. Spinal manipulative therapy to dysfunctional spinal segments was performed on group II only. All golfers performed 3 full-swing maneuvers. Ball range was considered as the average distance for the 3 shots. Treatment was performed after the initial measurement, and the same maneuvers were performed afterward. Each participant repeated these procedures for a 4-week period. Student t test, Mann-Whitney nonparametric test, and 1-way analysis of variance for repeated measures with significance level of 5% were used to analyze the study. Results Forty-three golfers completed the protocol. Twenty participants were allocated to group I and 23 to group II. Average age, handicap, and initial swing were comparable. No improvement of full-swing performance was observed during the 4 sessions on group I (stretch only). An improvement was observed at the fourth session of group II (P = .005); when comparing the posttreatment, group II had statistical significance at all phases (P = .003). Conclusions Chiropractic SMT in association with muscle stretching may be associated with an improvement of full-swing performance when compared with muscle stretching alone. PMID:19948307

  13. Prospective, randomized, controlled trial of polymer cable ties versus standard wire closure of midline sternotomy.

    Science.gov (United States)

    Marasco, Silvana F; Fuller, Louise; Zimmet, Adam; McGiffin, David; Seitz, Michael; Ch'ng, Stephanie; Gangahanumaiah, Shivanand; Bailey, Michael

    2018-04-16

    Midline sternotomy remains the most common access incision for cardiac operations. Traditionally, the sternum is closed with stainless steel wires. Wires are well known to stretch and break, however, leading to pain, nonunion, and potential deep sternal wound infection. We hypothesized that biocompatible plastic cable ties would achieve a more rigid sternal fixation, reducing postoperative pain and analgesia requirements. A prospective, randomized study compared the ZIPFIX (De Puy Synthes, West Chester, Pa) sternal closure system (n = 58) with standard stainless steel wires (n = 60). Primary outcomes were pain and analgesia requirements in the early postoperative period. Secondary outcome was sternal movement, as assessed by ultrasound at the postoperative follow-up visit. Groups were well matched in demographic and operative variables. There were no significant differences between groups in postoperative pain, analgesia, or early ventilatory requirements. Patients in the ZIPFIX group had significantly more movement in the sternum and manubrium on ultrasound at 4 weeks. ZIPFIX sternal cable ties provide reliable closure but no demonstrable benefit in this study in pain or analgesic requirements relative to standard wire closure after median sternotomy. Crown Copyright © 2018. Published by Elsevier Inc. All rights reserved.

  14. SHORT DURATIONS OF STATIC STRETCHING WHEN COMBINED WITH DYNAMIC STRETCHING DO NOT IMPAIR REPEATED SPRINTS AND AGILITY

    Directory of Open Access Journals (Sweden)

    Del P. Wong

    2011-06-01

    Full Text Available This study aimed to compare the effect of different static stretching durations followed by dynamic stretching on repeated sprint ability (RSA and change of direction (COD. Twenty-five participants performed the RSA and COD tests in a randomized order. After a 5 min aerobic warm up, participants performed one of the three static stretching protocols of 30 s, 60 s or 90 s total duration (3 stretches x 10 s, 20 s or 30 s. Three dynamic stretching exercises of 30 s duration were then performed (90 s total. Sit-and-reach flexibility tests were conducted before the aerobic warm up, after the combined static and dynamic stretching, and post- RSA/COD test. The duration of static stretching had a positive effect on flexibility with 36.3% and 85.6% greater sit-and-reach scores with the 60 s and 90 s static stretching conditions respectively than with the 30 s condition (p < 0.001. However there were no significant differences in RSA and COD performance between the 3 stretching conditions. The lack of change in RSA and COD might be attributed to a counterbalancing of static and dynamic stretching effects. Furthermore, the short duration (< 90 s static stretching may not have provided sufficient stimulus to elicit performance impairments

  15. Recent progress in methods for non-invasive measurements of local strain in practical superconducting wires and conductors using quantum beam techniques

    International Nuclear Information System (INIS)

    Osamura, Kozo; Machiya, Shutaro; Tsuchiya, Yoshinori; Suzuki, Hiroshi; Awaji, Satoshi; Takahashi, Kohki; Oguro, Hidetoshi; Harjo, Stefanus; Hemmi, Tsutomu; Nakamoto, Tatsushi; Sugano, Michinaka; Jin, Xinzhe; Kajiwara, Kentaro

    2014-01-01

    Practical superconducting wires are designed with a composite structure to meet the desired engineering characteristics by expert selection of materials and design of the architecture. In practice, the local strain exerted on the superconducting component influences the electromagnetic properties. Here, recent progress in methods used to measure the local strain in practical superconducting wires and conductors using quantum beam techniques is introduced. Recent topics on the strain dependence of critical current are reviewed for three major practical wires: ITER-Nb 3 Sn strand, DI-BSCCO wires and REBCO tapes. (author)

  16. Introducing measure-by-wire, the systematic use of systems and control theory in transmission electron microscopy

    International Nuclear Information System (INIS)

    Tejada, Arturo; Dekker, Arnold J. den; Van den Broek, Wouter

    2011-01-01

    Transmission electron microscopes (TEMs) are the tools of choice for academic and industrial research at the nano-scale. Due to their increasing use for routine, repetitive measurement tasks (e.g., quality control in production lines) there is a clear need for a new generation of high-throughput microscopes designed to autonomously extract information from specimens (e.g., particle size distribution, chemical composition, structural information, etc.). To aid in their development, a new engineering perspective on TEM design, based on principles from systems and control theory, is proposed here: measure-by-wire (not to be confused with remote microscopy). Under this perspective, the TEM operator yields the direct control of the microscope's internal processes to a hierarchy of feedback controllers and high-level supervisors. These make use of dynamical models of the main TEM components together with currently available measurement techniques to automate processes such as defocus correction or specimen displacement. Measure-by-wire is discussed in depth, and its methodology is illustrated through a detailed example: the design of a defocus regulator, a type of feedback controller that is akin to existing autofocus procedures. -- Highlights: ► High-throughput TEM operation is increasingly needed for research and industry. ► Autonomous high-throughput TEMs enabled by systems and control theory. ► Measure-by-wire is a new holistic automation oriented engineering view of TEM. ► A detailed example shows how to apply MBW to the automatic control of defocus.

  17. Comparison between wire-mesh sensors and conductive needle-probes for measurements of two-phase flow parameters

    International Nuclear Information System (INIS)

    Manera, A.; Ozar, B.; Paranjape, S.; Ishii, M.; Prasser, H.-M.

    2009-01-01

    Measurements of two-phase flow parameters such as void-fraction, bubble velocities, and interfacial area density have been performed in an upwards air-water flow at atmospheric pressure by means of a four-tip needle-probe and a wire-mesh sensor. For the first time, a direct comparison between the two measuring techniques has been carried out. Both techniques are based on the measurement of the fluid conductivity. For void-fraction and velocity measurements, similarity exists between the two methodologies for signal analysis. A significantly different approach is followed, instead, for the estimation of the interfacial area concentration: while the evaluation based on the needle-probe signal is carried out by using projections of the gas-liquid interface velocity, the evaluation based on the wire-mesh signals consist in a full reconstruction of the bubbles interfaces. The comparison between the two techniques shows a good agreement.

  18. Comparison between wire-mesh sensors and conductive needle-probes for measurements of two-phase flow parameters

    Energy Technology Data Exchange (ETDEWEB)

    Manera, A. [Paul Scherrer Institute, 5232 Villigen (Switzerland); Research Center Dresden Rossendorf, Dresden (Germany)], E-mail: annalisa.manera@psi.ch; Ozar, B.; Paranjape, S.; Ishii, M. [Purdue University, West Lafayette (United States); Prasser, H.-M. [Research Center Dresden Rossendorf, Dresden (Germany); ETH Zuerich, Sonneggstrasse 3, 8092 Zuerich (Switzerland)

    2009-09-15

    Measurements of two-phase flow parameters such as void-fraction, bubble velocities, and interfacial area density have been performed in an upwards air-water flow at atmospheric pressure by means of a four-tip needle-probe and a wire-mesh sensor. For the first time, a direct comparison between the two measuring techniques has been carried out. Both techniques are based on the measurement of the fluid conductivity. For void-fraction and velocity measurements, similarity exists between the two methodologies for signal analysis. A significantly different approach is followed, instead, for the estimation of the interfacial area concentration: while the evaluation based on the needle-probe signal is carried out by using projections of the gas-liquid interface velocity, the evaluation based on the wire-mesh signals consist in a full reconstruction of the bubbles interfaces. The comparison between the two techniques shows a good agreement.

  19. New devices for flow measurements: Hot film and burial wire sensors, infrared imagery, liquid crystal, and piezo-electric model

    Science.gov (United States)

    Mcree, Griffith J., Jr.; Roberts, A. Sidney, Jr.

    1991-01-01

    An experimental program aimed at identifying areas in low speed aerodynamic research where infrared imaging systems can make significant contributions is discussed. Implementing a new technique, a long electrically heated wire was placed across a laminar flow. By measuring the temperature distribution along the wire with the IR imaging camera, the flow behavior was identified.

  20. Beam Position and Phase Monitor - Wire Mapping System

    International Nuclear Information System (INIS)

    Watkins, Heath A.; Shurter, Robert B.; Gilpatrick, John D.; Kutac, Vincent G.; Martinez, Derwin

    2012-01-01

    The Los Alamos Neutron Science Center (LANSCE) deploys many cylindrical beam position and phase monitors (BPPM) throughout the linac to measure the beam central position, phase and bunched-beam current. Each monitor is calibrated and qualified prior to installation to insure it meets LANSCE requirements. The BPPM wire mapping system is used to map the BPPM electrode offset, sensitivity and higher order coefficients. This system uses a three-axis motion table to position the wire antenna structure within the cavity, simulating the beam excitation of a BPPM at a fundamental frequency of 201.25 MHz. RF signal strength is measured and recorded for the four electrodes as the antenna position is updated. An effort is underway to extend the systems service to the LANSCE facility by replacing obsolete electronic hardware and taking advantage of software enhancements. This paper describes the upgraded wire positioning system's new hardware and software capabilities including its revised antenna structure, motion control interface, RF measurement equipment and Labview software upgrades. The main purpose of the wire mapping system at LANSCE is to characterize the amplitude response versus beam central position of BPPMs before they are installed in the beam line. The wire mapping system is able to simulate a beam using a thin wire and measure the signal response as the wire position is varied within the BPPM aperture.

  1. LANSCE wire scanning diagnostics device mechanical design

    International Nuclear Information System (INIS)

    Rodriguez Esparza, Sergio

    2010-01-01

    The Los Alamos Neutron Science Center (LANSCE) is one of the major experimental science facilities at the Los Alamos National Laboratory (LANL). The core of LANSCE's work lies in the operation of a powerful linear accelerator, which accelerates protons up to 84% the speed oflight. These protons are used for a variety of purposes, including materials testing, weapons research and isotopes production. To assist in guiding the proton beam, a series of over one hundred wire scanners are used to measure the beam profile at various locations along the half-mile length of the particle accelerator. A wire scanner is an electro-mechanical device that moves a set of wires through a particle beam and measures the secondary emissions from the resulting beam-wire interaction to obtain beam intensity information. When supplemented with data from a position sensor, this information is used to determine the cross-sectional profile of the beam. This measurement allows beam operators to adjust parameters such as acceleration, beam steering, and focus to ensure that the beam reaches its destination as effectively as possible. Some of the current wire scanners are nearly forty years old and are becoming obsolete. The problem with current wire scanners comes in the difficulty of maintenance and reliability. The designs of these wire scanners vary making it difficult to keep spare parts that would work on all designs. Also many of the components are custom built or out-dated technology and are no longer in production.

  2. LANSCE wire scanning diagnostics device mechanical design

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Esparza, Sergio [Los Alamos National Laboratory

    2010-01-01

    The Los Alamos Neutron Science Center (LANSCE) is one of the major experimental science facilities at the Los Alamos National Laboratory (LANL). The core of LANSCE's work lies in the operation of a powerful linear accelerator, which accelerates protons up to 84% the speed oflight. These protons are used for a variety of purposes, including materials testing, weapons research and isotopes production. To assist in guiding the proton beam, a series of over one hundred wire scanners are used to measure the beam profile at various locations along the half-mile length of the particle accelerator. A wire scanner is an electro-mechanical device that moves a set of wires through a particle beam and measures the secondary emissions from the resulting beam-wire interaction to obtain beam intensity information. When supplemented with data from a position sensor, this information is used to determine the cross-sectional profile of the beam. This measurement allows beam operators to adjust parameters such as acceleration, beam steering, and focus to ensure that the beam reaches its destination as effectively as possible. Some of the current wire scanners are nearly forty years old and are becoming obsolete. The problem with current wire scanners comes in the difficulty of maintenance and reliability. The designs of these wire scanners vary making it difficult to keep spare parts that would work on all designs. Also many of the components are custom built or out-dated technology and are no longer in production.

  3. Diagnostics for exploding wires (abstract)

    International Nuclear Information System (INIS)

    Moosman, B.; Bystritskii, V.; Wessel, F.J.; Van Drie, A.

    1999-01-01

    Two diagnostics, capable of imaging fast, high temperature, plasmas were used on exploding wire experiments at UC Irvine. An atmospheric pressure nitrogen laser (λ=337.1 nm) was used to generate simultaneous shadow and shearing interferogram images with a temporal resolution of ∼1 ns and a spatial resolution of 10 μm. An x-ray backlighter imaged the exploding wire 90 degree with respect to the laser and at approximately the same instant in time. The backlighter spatial resolution as determined by geometry and film resolution was 25 μm. Copper wires of diameters (25, 50, and 100 μm) and steel wire d=25 μm were exploded in vacuum (10 -5 Torr) at a maximum current level of 12 kA, by a rectified marx bank at a voltage of 50 kV and a current rise time (quarter period) of 900 ns. Copper wires which were cleaned and then resistively heated under vacuum to incandescence for several hours prior to high current initiation, exhibited greater expansion velocities at peak current than wires which had not been heated prior to discharge. Axial variations on the surface of the wire observed with the laser were found to correlate with bulk axial mass differences from x-ray backlighting. High electron density, measured near the opaque surface of the exploding wire, suggests that much of the current is shunted outward away from the bulk of the wire. copyright 1999 American Institute of Physics

  4. Atom chips in the real world: the effects of wire corrugation

    Science.gov (United States)

    Schumm, T.; Estève, J.; Figl, C.; Trebbia, J.-B.; Aussibal, C.; Nguyen, H.; Mailly, D.; Bouchoule, I.; Westbrook, C. I.; Aspect, A.

    2005-02-01

    We present a detailed model describing the effects of wire corrugation on the trapping potential experienced by a cloud of atoms above a current carrying micro wire. We calculate the distortion of the current distribution due to corrugation and then derive the corresponding roughness in the magnetic field above the wire. Scaling laws are derived for the roughness as a function of height above a ribbon shaped wire. We also present experimental data on micro wire traps using cold atoms which complement some previously published measurements [CITE] and which demonstrate that wire corrugation can satisfactorily explain our observations of atom cloud fragmentation above electroplated gold wires. Finally, we present measurements of the corrugation of new wires fabricated by electron beam lithography and evaporation of gold. These wires appear to be substantially smoother than electroplated wires.

  5. Analytic modeling, simulation and interpretation of broadband beam coupling impedance bench measurements

    Energy Technology Data Exchange (ETDEWEB)

    Niedermayer, U., E-mail: niedermayer@temf.tu-darmstadt.de [Institut für Theorie Elektromagnetischer Felder (TEMF), Technische Universität Darmstadt, Schloßgartenstraße 8, 64289 Darmstadt (Germany); Eidam, L. [Institut für Theorie Elektromagnetischer Felder (TEMF), Technische Universität Darmstadt, Schloßgartenstraße 8, 64289 Darmstadt (Germany); Boine-Frankenheim, O. [Institut für Theorie Elektromagnetischer Felder (TEMF), Technische Universität Darmstadt, Schloßgartenstraße 8, 64289 Darmstadt (Germany); GSI Helmholzzentrum für Schwerionenforschung, Planckstraße 1, 64291 Darmstadt (Germany)

    2015-03-11

    First, a generalized theoretical approach towards beam coupling impedances and stretched-wire measurements is introduced. Applied to a circular symmetric setup, this approach allows to compare beam and wire impedances. The conversion formulas for TEM scattering parameters from measurements to impedances are thoroughly analyzed and compared to the analytical beam impedance solution. A proof of validity for the distributed impedance formula is given. The interaction of the beam or the TEM wave with dispersive material such as ferrite is discussed. The dependence of the obtained beam impedance on the relativistic velocity β is investigated and found as material property dependent. Second, numerical simulations of wakefields and scattering parameters are compared. The applicability of scattering parameter conversion formulas for finite device length is investigated. Laboratory measurement results for a circularly symmetric test setup, i.e. a ferrite ring, are shown and compared to analytic and numeric models. The optimization of the measurement process and error reduction strategies are discussed.

  6. wire chamber

    CERN Multimedia

    Proportional multi-wire chamber. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle. Proportional wire chambers allow a much quicker reading than the optical or magnetoscriptive readout wire chambers.

  7. Wire breakage in SLC wire profile monitors

    International Nuclear Information System (INIS)

    Field, C.; McCormick, D.; Raimondi, P.; Ross, M.

    1998-05-01

    Wire scanning beam profile monitors are used at the Stanford Linear Collider (SLC) for emittance preservation control and beam optics optimization. Twenty such scanners have proven most useful for this purpose and have performed a total of 1.5 million scans in the 4 to 6 years since their installation. Most of the essential scanners are equipped with 20 to 40 microm tungsten wires. SLC bunch intensities and sizes often exceed 2 x 10 7 particles/microm 2 (3C/m 2 ). The authors believe that this has caused a number of tungsten wire failures that appear at the ends of the wire, near the wire support points, after a few hundred scans are accumulated. Carbon fibers, also widely used at SLAC, have been substituted in several scanners and have performed well. In this paper, the authors present theories for the wire failure mechanism and techniques learned in reducing the failures

  8. Measurement of the thermal conductivity of liquid D2O by the transient hot-wire method

    International Nuclear Information System (INIS)

    Nagasaka, Y.; Hiraiwa, H.; Nagashima, A.

    1990-01-01

    The measurement of the thermal conductivity of liquid D 2 O (heavy water) started in 1951. Since then, many researchers have measured the thermal conductivity of heavy water mainly with the aid of steady-state methods such as the parallel plate method and the concentric cylinder method. It should be noted here that even in the case of pure H 2 O or D 2 O enclosed in metallic vessel for a couple of days, the electrical conductivity seems to be not low enough for precise transient hot-wire measurements. The purpose of this paper is to obtain precise thermal conductivity data of liquid D 2 O which can be the reference standard values by the transient hot-wire method. The temperature range covered was 4 degrees C to 80 degrees C with pressure up to 40 MPa and the experimental data have an estimated accuracy of ±0.5%

  9. Atomic Stretch: Optimally bounded real-time stretching and beyond

    DEFF Research Database (Denmark)

    Jensen, Rasmus Ramsbøl; Nielsen, Jannik Boll

    2016-01-01

    Atomic Stretch is a plugin for your preferred Adobe video editing tool, allowing real-time smooth and optimally bounded retarget-ting from and to any aspect ratio. The plugin allows preserving of high interest pixels through a protected region, attention redirection through color-modification, co......Atomic Stretch is a plugin for your preferred Adobe video editing tool, allowing real-time smooth and optimally bounded retarget-ting from and to any aspect ratio. The plugin allows preserving of high interest pixels through a protected region, attention redirection through color...

  10. Stretching of red blood cells at high strain rates

    Science.gov (United States)

    Mancuso, J. E.; Ristenpart, W. D.

    2017-10-01

    Most work on the mechanical behavior of red blood cells (RBCs) in flow has focused on simple shear flows. Relatively little work has examined RBC deformations in the physiologically important extensional flow that occurs at the entrance to a constriction. In particular, previous work suggests that RBCs rapidly stretch out and then retract upon entering the constriction, but to date no model predicts this behavior for the extremely high strain rates typically experienced there. In this Rapid Communication, we use high speed video to perform systematic measurements of the dynamic stretching behavior of RBCs as they enter a microfluidic constriction. We demonstrate that both the Kelvin-Voigt and Skalak viscoelastic models capture the observed stretching dynamics, up to strain rates as high as 2000 s-1. The results indicate that the effective elastic modulus of the RBC membrane at these strain rates is an order of magnitude larger than moduli measured by micropipette aspiration or other low strain rate techniques.

  11. Magnetic field measurements and mapping techniques

    CERN Multimedia

    CERN. Geneva

    2003-01-01

    These lectures will present an overview of the most common techniques used for the measurement of magnetic field in accelerator magnets. The formalism for a harmonic description of the magnetic field will be presented, including a discussion of harmonics allowed under various types of symmetries in the magnet. The harmonic coil technique for measurement of field harmonics will be covered in depth. Using examples from recent projects, magnetic measurements will be shown to be a powerful tool for monitoring magnet production. Measurements of magnetic axis using extensions of the harmonic coil technique, as well as other techniques, such as the colloidal cell and stretched wire, will be covered. Topics of interest in superconducting magnets, such as time decay and snapback, requiring relatively fast measurements of the harmonics, will also be described.

  12. FRECUENCIAS NATURALES EN VIGAS ACTIVAMENTE TORSIONADAS USANDO ALAMBRES DE ALEACIÓN CON MEMORIA DE FORMA (SMA | NATURAL FREQUENCIES IN ACTVELY TWISTED BEAMS USING SHAPE MEMORY ALLOY (SMA WIRES

    Directory of Open Access Journals (Sweden)

    Gaetano Starlacci

    2016-08-01

    Full Text Available Changes in the geometry and stiffness of structural members can be obtained using Shape Memory Alloys (SMA wires, previously stretched, and externally attached to the member in a helical pattern. The wire was modeled assuming transformation from a pure martensitic phase to a pure austenitic phase. Natural frequency values before and after the SMA wire activation attached to the beam were calculated using the finite element method and these values were compared with those obtained from a model developed for pre-twisted stress-free cantilever members. The results obtained showed the active torsion influence over the structural element in the values of natural frequencies calculated.

  13. The passive hamstring stretch test: clinical evaluation.

    Science.gov (United States)

    Fisk, J W

    1979-03-28

    The passive hamstring stretch test is described. Using a modified goniometer it is shown that independent measurements taken by trained examiners approximate very closely to each other. This establishes the test as a valid objective measurement. The possible value of this test as a research tool in low back pain problems is discussed.

  14. How to determine local stretching and tension in a flow-stretched DNA molecule

    DEFF Research Database (Denmark)

    Pedersen, Jonas Nyvold; Marie, Rodolphe; Kristensen, Anders

    2016-01-01

    We determine the nonuniform stretching of and tension in amega base pairs-long fragment of deoxyribonucleic acid (DNA) that is flow stretched in a nanofluidic chip. We use no markers, do not know the contour length of the DNA, and do not have the full DNA molecule inside our field of view. Instead......, we analyze the transverse thermal motion of the DNA. Tension at the center of the DNA adds up to 16 pN, giving almost fully stretched DNA. This method was devised for optical mapping of DNA, specifically, DNA denaturation patterns. It may be useful also for other studies, e.g., DNA......-protein interactions, specifically, their tension dependence. Generally, wherever long strands of DNA—e.g., native DNA extracted from human cells or bacteria—must be stretched with ease for inspection, this method applies....

  15. Comparison of PIV and Hot-Wire statistics of turbulent boundary layer

    International Nuclear Information System (INIS)

    Dróżdż, A; Uruba, V

    2014-01-01

    The paper shows a cross checking of turbulent boundary layer measurements using large field of view PIV and hot-wire anemometry techniques. The time-resolved PIV method was used for the experiments. The measuring plane was oriented perpendicularly to the wall and parallel to the mean flow. Hot wire measurement has been performed using the special probe with perpendicular hot wire. The HW point measurements were performed in the same place as PIV experiments. The hot-wire probe has the wire length of l + < 20 in considered range of Reynolds numbers. Various evaluation methods were applied on PIV data. The profiles of statistical characteristics of streamwise velocity components were evaluated from the data. Mean values, standard deviations as well as skewness and kurtosis coefficients were compared for a few values of Re θ . Reynolds number ranges from 1000 to 5500. The result shows that with the increasing Reynolds number the attenuation of fluctuations maximum in PIV measurements occurs with respect to Hot-Wire measurements, however representation of velocity fluctuations using the PIV method is satisfactory. The influence of wall-normal fluctuation component on Hot-Wire near wall peak was also investigated.

  16. Analysis of a filament stretching rheometer

    DEFF Research Database (Denmark)

    Kolte, Mette Irene; Rasmussen, Henrik K.; Hassager, Ole

    1996-01-01

    A finite element analysis of the stretching filament rheometer of Tirtaadmadja and Sridhar (1993) is presenetd. Simulations of the stretching of a filament of the polymet test solution, fluid A, between two plates are shown.......A finite element analysis of the stretching filament rheometer of Tirtaadmadja and Sridhar (1993) is presenetd. Simulations of the stretching of a filament of the polymet test solution, fluid A, between two plates are shown....

  17. EFFICACY OF MODIFIED PROPRIOCEPTIVE NEUROMUSCULAR FACILITATION STRETCHING WITH CRYOTHERAPY OVER MANUAL PASSIVE STRETCHING WITH CRYOTHERAPY ON HAMSTRING FLEXIBILITY

    Directory of Open Access Journals (Sweden)

    Shamik Bhattacharjee

    2016-04-01

    Full Text Available Background: Healthy individuals, to ease and accomplish their activities of daily living they need flexible body without any tightness in the muscles, particularly those used for a definite function. Cooling soft tissues in a lengthened position after stretching has been shown to promote more lasting increases in soft tissue length and minimize post stretch muscle soreness. There are less documented studies which compared modified proprioceptive neuromuscular facilitation (PNF stretch over passive manual stretch with cold application commonly after the interventions. Methods: Thirty high school going healthy students were divided into two groups- Group I received Passive Manual stretching (n=15 and Group II received modified PNF stretching (n=15 and both groups received cold application after the interventions for 10 minutes commonly for 5 days. ROM was taken on day 1, day 5 and day 7. Results: After day 7, Group II with Modified PNF stretching along with cold application showed a significant increase in range of motion tested with active knee extension test (AKET. Conclusion: Modified PNF stretching is considered to be the effective intervention in increasing and maintaining ROM in AKET over passive manual stretching with cold applications commonly after the interventions.

  18. A Japanese Stretching Intervention Can Modify Lumbar Lordosis Curvature.

    Science.gov (United States)

    Kadono, Norio; Tsuchiya, Kazushi; Uematsu, Azusa; Kamoshita, Hiroshi; Kiryu, Kazunori; Hortobágyi, Tibor; Suzuki, Shuji

    2017-08-01

    Eighteen healthy male adults were assigned to either an intervention or control group. Isogai dynamic therapy (IDT) is one of Japanese stretching interventions and has been practiced for over 70 years. However, its scientific quantitative evidence remains unestablished. The objective of this study was to determine whether IDT could modify lumbar curvature in healthy young adults compared with stretching exercises used currently in clinical practice. None of previous studies have provided data that conventional stretching interventions could modify spinal curvatures. However, this study provides the first evidence that a specific form of a Japanese stretching intervention can acutely modify the spinal curvatures. We compared the effects of IDT, a Japanese stretching intervention (n=9 males), with a conventional stretching routine (n=9 males) used widely in clinics to modify pelvic tilt and lumbar lordosis (LL) angle. We measured thoracic kyphosis (TK) and LL angles 3 times during erect standing using the Spinal Mouse before and after each intervention. IDT consisted of: (1) hip joint correction, (2) pelvic tilt correction, (3) lumbar alignment correction, and (4) squat exercise stretch. The control group performed hamstring stretches while (1) standing and (2) sitting. IDT increased LL angle to 25.1 degrees (±5.9) from 21.2 degrees (±6.9) (P=0.047) without changing TK angle (pretest: 36.8 degrees [±6.9]; posttest: 36.1 degrees [±6.5]) (P=0.572). The control group showed no changes in TK (P=0.819) and LL angles (P=0.744). IDT can thus be effective for increasing LL angle, hence anterior pelvic tilt. Such modifications could ameliorate low back pain and improve mobility in old adults with an unfavorable pelvic position.

  19. Thermosonic wire bonding of IC devices using palladium wire

    International Nuclear Information System (INIS)

    Shze, J.H.; Poh, M.T.; Tan, R.M.

    1996-01-01

    The feasibility of replacing gold wire by palladium wire in thermosonic wire bonding of CMOS and bipolar devices are studied in terms of the manufacturability, physical, electrical and assembly performance. The results that palladium wire is a viable option for bonding the bipolar devices but not the CMOS devices

  20. Mechanical behavior of M-Wire and conventional NiTi wire used to manufacture rotary endodontic instruments.

    Science.gov (United States)

    Pereira, Erika S J; Gomes, Renata O; Leroy, Agnès M F; Singh, Rupinderpal; Peters, Ove A; Bahia, Maria G A; Buono, Vicente T L

    2013-12-01

    Comparison of physical and mechanical properties of one conventional and a new NiTi wire, which had received an additional thermomechanical treatment. Specimens of both conventional (NiTi) and the new type of wire, called M-Wire (MW), were subjected to tensile and three-point bending tests, Vickers microhardness measurements, and to rotating-bending fatigue tests at a strain-controlled level of 6%. Fracture surfaces were observed by scanning electron microscopy and the non-deformed microstructures by transmission electron microscopy. The thermomechanical treatment applied to produce the M-Wire apparently increased the tensile strength and Vickers microhardness of the material, but its apparent Young modulus was smaller than that of conventionally treated NiTi. The three-point bending tests showed a higher flexibility for MW which also exhibited a significantly higher number of cycles to failure. M-Wire presented mechanical properties that can render endodontic instruments more flexible and fatigue resistant than those made with conventionally processed NiTi wires. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  1. Flexibility and stretching physiology : responses and adaptations to different stretching intensities.

    OpenAIRE

    Freitas, Sandro Remo Martins Neves Ramos

    2014-01-01

    Doutoramento em Motricidade Humana, especialidade de Biomecânica Research and reported literature regarding the conceptual, methodological, and training effects of stretching with different intensities are scarce. The purposes of this thesis were to: i) explore and develop methodological conditions to achieve the second purpose (studies: 1 to 3); ii) characterize the acute and chronic effects induced by different stretching intensities on skeletal muscle and joint mechanical properti...

  2. Two phase flow measurement and visualization using Wire Mesh Sensors (WMS)

    International Nuclear Information System (INIS)

    Rajalakshmi, R.; Robin, Roshini; Rama Rao, A.

    2016-01-01

    Two phase flow behavior studies have gained importance in nuclear power plants to enhance fuel performance and safety. In this paper, taking into consideration low cost, high space-time resolution and instantaneous mapping, electrical sensors such as wire mesh sensors (WMS) is proposed for measurement of void distribution and its visualization. The sensor works on the conductivity principle and by measuring the variations in conductivity values of the two phases, the flow distributions can be identified. This paper describes the conceptual design of the WMS for two phase void measurements, Mathematical modeling of the sensor for data evaluation, modeling of the sensor geometry and FEM simulation studies for optimizing sensor geometry and excitation parameters, CFD two phase flows simulations, development of suitable algorithm and programming for two phase visualization and void distribution studies, prototype sensor fabrication and testing

  3. A laser-wire system for the International Linear Collider

    Indian Academy of Sciences (India)

    A new laser-wire has been installed in the extraction line of the ATF at KEK. It aims at demonstrating ... beam size measurements to extract the phase space of the electron and positron ... the laser-wire (LW), instead of a conventional solid wire.

  4. Vibration of signal wires in wire detectors under irradiation

    International Nuclear Information System (INIS)

    Bojko, I.R.; Shelkov, G.A.; Dodonov, V.I.; Ignatenko, M.A.; Nikolenko, M.Yu.

    1995-01-01

    Radiation-induced vibration of signal wires in wire detectors is found and explained. The phenomenon is based on repulsion of a signal wire with a positive potential and a cloud of positive ions that remains after neutralization of the electron part of the avalanche formed in the course of gas amplification. Vibration with a noticeable amplitude may arise from fluctuations of repulsive forces, which act on the wire and whose sources are numerous ion clusters. A formula is obtained which allows wire oscillations to be estimated for all types of wire detectors. Calculation shows that oscillations of signal wires can be substantial for the coordinate accuracy of a detector working in the limited streamer mode at fluxes over 10 5 particles per second per wire. In the proportional mode an average oscillation amplitude can be as large as 20-30 μm at some detector parameters and external radiation fluxes over 10 5 . The experimental investigations show that the proposed model well describes the main features of the phenomenon. 6 refs., 8 figs

  5. Characterization of NbTi multifilamentary superconducting wires

    International Nuclear Information System (INIS)

    Vellego, G.

    1988-01-01

    Pirelli is developing superconducting mulfilamentary NbTi wires, with current carrying capacities of up to 500 A, for use in magnetic resonance imaging (MRI) systems and in small research magnets. Pirelli and IFUSP have developed a system for assessing wire performance, whose quality is comparable to the equivalent systems at the Brookhaven National Laboratory (BNL) and at the National Bureau of Standards (NBS). In particular, a high sensitivity is required for critical current measurements, so that the modern criteria for definition of critical current can be used. These involve conductor resistivities of the order of 10 -12 ohm-cm. The methods of measurements of critical current in applied magnetic fields, of residual resistance ratio and of copper to superconductor ratio are described. The results of the first tests performed in Pirelli wires and in wires of other manufacturers are described. These include tests on a NBS standard reference material. These results are of the same quality as results obtained at BNL or NBS on the same wires. So this system can be very useful throughout the Pirelli program. (author) [pt

  6. Two-phase flow pattern measurements with a wire mesh sensor in a direct steam generating solar thermal collector

    Science.gov (United States)

    Berger, Michael; Mokhtar, Marwan; Zahler, Christian; Willert, Daniel; Neuhäuser, Anton; Schleicher, Eckhard

    2017-06-01

    At Industrial Solar's test facility in Freiburg (Germany), two phase flow patterns have been measured by using a wire mesh sensor from Helmholtz Zentrum Dresden-Rossendorf (HZDR). Main purpose of the measurements was to compare observed two-phase flow patterns with expected flow patterns from models. The two-phase flow pattern is important for the design of direct steam generating solar collectors. Vibrations should be avoided in the peripheral piping, and local dry-outs or large circumferential temperature gradients should be prevented in the absorber tubes. Therefore, the choice of design for operation conditions like mass flow and steam quality are an important step in the engineering process of such a project. Results of a measurement with the wire mesh sensor are the flow pattern and the plug or slug frequency at the given operating conditions. Under the assumption of the collector power, which can be assumed from previous measurements at the same collector and adaption with sun position and incidence angle modifier, also the slip can be evaluated for a wire mesh sensor measurement. Measurements have been performed at different mass flows and pressure levels. Transient behavior has been tested for flashing, change of mass flow, and sudden changes of irradiation (cloud simulation). This paper describes the measurements and the method of evaluation. Results are shown as extruded profiles in top view and in side view. Measurement and model are compared. The tests have been performed at low steam quality, because of the limits of the test facility. Conclusions and implications for possible future measurements at larger collectors are also presented in this paper.

  7. Effects of Static Stretching and Playing Soccer on Knee Laxity.

    Science.gov (United States)

    Baumgart, Christian; Gokeler, Alli; Donath, Lars; Hoppe, Matthias W; Freiwald, Jürgen

    2015-11-01

    This study investigated exercise-induced effects of static stretching and playing soccer on anterior tibial translation (ATT) of the knee joint. Randomized controlled trial. University biomechanics laboratory. Thirty-one athletes were randomly assigned into a stretching (26.9 ± 6.2 years, 1.77 ± 0.09 m, 67.9 ± 10.7 kg) and a control group (27.9 ± 7.4 years, 1.75 ± 0.08 m, 72.0 ± 14.9 kg). Thirty-one amateur soccer players in an additional soccer group (25.1 ± 5.6 years, 1.74 ± 0.10 m, 71.8 ± 14.8 kg). All participants had no history of knee injury requiring surgery and any previous knee ligament or cartilage injury. The stretching group performed 4 different static stretching exercises with a duration of 2 × 20 seconds interspersed with breaks of 10 seconds. The soccer group completed a 90-minute soccer-specific training program. The control group did not perform any physical activity for approximately 30 minutes. Anterior tibial translation was measured with the KT-1000 knee arthrometer at forces of 67 N, 89 N, and maximal manual force (Max) before and after the intervention. There was a significant increase in ATT after static stretching and playing soccer at all applied forces. Maximal manual testing revealed a mean increase of ATT after static stretching of 2.1 ± 1.6 mm (P soccer of 1.0 ± 1.5 mm (P = 0.001). The ATT increase after static stretching at 67 and 89 N is significantly higher than in controls. At maximum manual testing, significant differences were evident between all groups. Static stretching and playing soccer increase ATT and may consequently influence mechanical factors of the anterior cruciate ligament. The ATT increase after static stretching was greater than after playing soccer. The observed increase in ATT after static stretching and playing soccer may be associated with changes in kinesthetic perception and sensorimotor control, activation of muscles, joint stability, overall performance, and higher injury risk.

  8. Wire Chamber

    CERN Multimedia

    Magnetoscriptive readout wire chamber. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  9. Wire chamber

    CERN Multimedia

    1967-01-01

    Magnetoscriptive readout wire chamber.Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  10. A Laser-Wire System for the International Linear Collider

    International Nuclear Information System (INIS)

    Delerue, N.; Dixit, S.; Gannaway, F.; Howell, D.; Qurshi, M.; Blair, G.; Boogert, S.; Boorman, G.; Driouichi, C.; Deacon, L.; Aryshev, A.; Karataev, P.; Terunuma, N.; Urakawa, J.; Brachmann, A.; Frisch, J.; Ross, M.

    2009-01-01

    A new laser-wire has been installed in the extraction line of the ATF at KEK. It aims at demonstrating that laser-wires can be used to measure micrometre scale beam size. In parallel, studies have been made to specify a laser suitable for the ILC laser-wires.

  11. A laser-wire system for the International Linear Collider

    Indian Academy of Sciences (India)

    A new laser-wire has been installed in the extraction line of the ATF at KEK. It aims at demonstrating that laser-wires can be used to measure micrometre scale beam size. In parallel, studies have been made to specify a laser suitable for the ILC laser-wires.

  12. Cyclic Stretch Alters Vascular Reactivity of Mouse Aortic Segments

    Directory of Open Access Journals (Sweden)

    Arthur Leloup

    2017-10-01

    Full Text Available Large, elastic arteries buffer the pressure wave originating in the left ventricle and are constantly exposed to higher amplitudes of cyclic stretch (10% than muscular arteries (2%. As a crucial factor for endothelial and smooth muscle cell function, cyclic stretch has, however, never been studied in ex vivo aortic segments of mice. To investigate the effects of cyclic stretch on vaso-reactivity of mouse aortic segments, we used the Rodent Oscillatory Tension Set-up to study Arterial Compliance (ROTSAC. The aortic segments were clamped at frequencies of 6–600 bpm between two variable preloads, thereby mimicking dilation as upon left ventricular systole and recoiling as during diastole. The preloads corresponding to different transmural pressures were chosen to correspond to a low, normal or high amplitude of cyclic stretch. At different time intervals, cyclic stretch was interrupted, the segments were afterloaded and isometric contractions by α1-adrenergic stimulation with 2 μM phenylephrine in the absence and presence of 300 μM L-NAME (eNOS inhibitor and/or 35 μM diltiazem (blocker of voltage-gated Ca2+ channels were measured. As compared with static or cyclic stretch at low amplitude (<10 mN or low frequency (0.1 Hz, cyclic stretch at physiological amplitude (>10 mN and frequency (1–10 Hz caused better ex vivo conservation of basal NO release with time after mounting. The relaxation of PE-precontracted segments by addition of ACh to stimulate NO release was unaffected by cyclic stretch. In the absence of basal NO release (hence, presence of L-NAME, physiological in comparison with aberrant cyclic stretch decreased the baseline tension, attenuated the phasic contraction by phenylephrine in the absence of extracellular Ca2+ and shifted the smaller tonic contraction more from a voltage-gated Ca2+ channel-mediated to a non-selective cation channel-mediated. Data highlight the need of sufficient mechanical activation of endothelial and

  13. Measurement of residual stress by using focused ion beam and digital image correlation method in thin-sized wires used for steel cords

    International Nuclear Information System (INIS)

    Yang, Y S; Park, C G; Bae, J G

    2008-01-01

    Residual stress in the axial direction of the steel wires has been measured by using a method based on the combination of the focused ion beam (FIB) milling and digital image correlation software. That is, the residual stress was calculated from the measured displacement field before and after the introduction of a slot along the steel wires. The displacement was obtained by the digital correlation analysis of high-resolution scanning electron micrographs, while the slot was introduced by FIB milling with low energy beam. The fitting of the experimental results to an analytical model with the independent Young's modulus determined allows us to find the residual stress. The complete experimental procedures are described and its feasibilities are also evaluated for the thin-sized steel wires

  14. Endovascular rescue method for undesirably stretched coil.

    Science.gov (United States)

    Cho, Jae Hoon

    2014-10-01

    Undesirable detachment or stretching of coils within the parent artery during aneurysm embolization can be related with thrombus formation, which can be caused occlusion of parent artery or embolic event(s). To escape from this situation, several rescue methods have been reported. A case with undesirably stretched coil in which another rescue method was used, is presented. When the stretched coil is still located in the coil delivery microcatheter, the stretched coil can be removed safely using a snare and a handmade monorail microcatheter. After a snare is lodged in the handmade monorail microcatheter, the snare is introduced over the coil delivery micorcatheter and located in the distal part of the stretched coil. After then, the handmade monorail microcatheter captures the stretched coil and the snare as one unit. This technique using a handmade monorail microcatheter and a snare can be a good rescue modality for the undesirably stretched coil, still remained within the coil delivery microcatheter.

  15. Contact wire positions and contact forces. Measurements at high-speed lines in China; Fahrdrahtlage und Kontaktkraefte. Messungen an Hochgeschwindigkeitsstrecken in China

    Energy Technology Data Exchange (ETDEWEB)

    Heland, Joerg; Rick, Frank; Sarnes, Bernhard [DB Systemtechnik GmbH, Muenchen (Germany); Puschmann, Rainer [Siemens AG, Erlangen (Germany). Infrastructure and Cities

    2012-07-15

    The reliable energy transmission from overhead contact line to pantograph of traction units without interruption decides on the successful operation of high-speed railway lines. Measurements of contact wire position and contact forces are suited to assess interaction of overhead contact line and pantograph. Chinese Railways actually implement the biggest electrification program for high-speed lines worldwide. For these projects contact wire position and contact forces are monitored by procedures developed in Germany. The experience confirms that keeping the contact wire position within the specified limits lead to a superior energy transmission up to 350 km/h. (orig.)

  16. Interchip link system using an optical wiring method.

    Science.gov (United States)

    Cho, In-Kui; Ryu, Jin-Hwa; Jeong, Myung-Yung

    2008-08-15

    A chip-scale optical link system is presented with a transmitter/receiver and optical wire link. The interchip link system consists of a metal optical bench, a printed circuit board module, a driver/receiver integrated circuit, a vertical cavity surface-emitting laser/photodiode array, and an optical wire link composed of plastic optical fibers (POFs). We have developed a downsized POF and an optical wiring method that allows on-site installation with a simple annealing as optical wiring technologies for achieving high-density optical interchip interconnection within such devices. Successful data transfer measurements are presented.

  17. A Novel Portable Absolute Transient Hot-Wire Instrument for the Measurement of the Thermal Conductivity of Solids

    Science.gov (United States)

    Assael, Marc J.; Antoniadis, Konstantinos D.; Metaxa, Ifigeneia N.; Mylona, Sofia K.; Assael, John-Alexander M.; Wu, Jiangtao; Hu, Miaomiao

    2015-11-01

    A new portable absolute Transient Hot-Wire instrument for measuring the thermal conductivity of solids over a range of 0.2 { W}{\\cdot }m^{-1}{\\cdot }{K}^{-1} to 4 { W}{\\cdot }m^{-1}{\\cdot }{K}^{-1} is presented. The new instrument is characterized by three novelties: (a) an innovative two-wires sensor which provides robustness and portability, while at the same time employs a soft silicone layer to eliminate the effect of the contact resistance between the wires and the sample, (b) a newly designed compact portable printed electronic board employing an FPGA architecture CPU to the control output voltage and data processing—the new board replaces the traditional, large in size Wheatstone-type bridge system required to perform the experimental measurements, and (c) a cutting-edge software suite, developed for the mesh describing the structure of the sensor, and utilizing the Finite Elements Method to model the heat flow. The estimation of thermal conductivity is modeled as a minimization problem and is solved using Bayesian Optimization. Our revolutionizing proposed methodology exhibits radical speedups of up to × 120, compared to previous approaches, and considerably reduces the number of simulations performed, achieving convergence only in a few minutes. The new instrument was successfully employed to measure, at room temperature, the thermal conductivity of two thermal conductivity reference materials, Pyroceram 9606 and Pyrex 7740, and two possible candidate glassy solids, PMMA and BK7, with an absolute low uncertainty of 2 %.

  18. USING HOT WIRE TECHNIQUE FOR MEASURING THERMAL CONDUCTIVITY OF INFUSIONS OF ORGANIC AND CONVENTIONAL COFFEE

    Directory of Open Access Journals (Sweden)

    Fernando Gordillo-Delgado

    2016-07-01

    Full Text Available The technique of hot wire, a versatile method of low cost and high accuracy for measuring the thermal conductivity of fluids through the increasing temperature of a wire that is immersed into the liquid and between its ends a potential difference is abruptly applied. Using well-known conductivity liquids: water, ethylene glycol and glycerine, the system was tested and calibrated. In this work, this procedure was used to measure the thermal conductivity of the infusion samples of organic and conventional coffee. The same roast degree of the beans was verified with a colorimeter and the preparation was made by pressing 22g of coffee powder in 110mL of water. The obtained data were subjected to Analysis of Variance (ANOVA and this confirmed that the differences in the thermophysical parameter in the two samples are significant with a confidence level of 95\\%. On this way, it was proved that the thermal conductivity value of the coffee infusion allows differentiate between organic and conventional coffee.

  19. Acute effects of static stretching on peak and end-range hamstring-to-quadriceps functional ratios

    Science.gov (United States)

    Sekir, Ufuk; Arabaci, Ramiz; Akova, Bedrettin

    2015-01-01

    AIM: To evaluate if static stretching influences peak and end-range functional hamstring-to-quadriceps (H/Q) strength ratios in elite women athletes. METHODS: Eleven healthy female athletes in an elite competitive level participated to the study. All the participants fulfilled the static stretching or non-stretching (control) intervention protocol in a randomized design on different days. Two static unassisted stretching exercises, one in standing and one in sitting position, were used to stretch both the hamstring and quadriceps muscles during these protocols. The total time for the static stretching was 6 ± 1 min. The isokinetic peak torque measurements for the hamstring and quadriceps muscles in eccentric and concentric modes and the calculations for the functional H/Q strength ratios at angular velocities of 60°/s and 180°/s were made before (pre) and after (post) the control or stretching intervention. The strength measurements and functional strength ratio calculations were based during the entire- and end-range of knee extension. RESULTS: The pre-test scores for quadriceps and hamstring peak torque and end range values were not significantly different between the groups (P > 0.05). Subsequently, although the control group did not exhibit significant changes in quadriceps and hamstring muscle strength (P > 0.05), static stretching decreased eccentric and concentric quadriceps muscle strength at both the 60°/s and 180°/s test speeds (P hamstring muscle strength at both the 60°/s and 180°/s test speeds (P 0.05). Furthermore, the functional H/Q strength ratios exhibited no significant alterations during the entire and end ranges of knee extension both in the static stretching or the control intervention (P > 0.05). CONCLUSION: According to our results, static stretching routine does not influence functional H/Q ratio. Athletes can confidently perform static stretching during their warm-up routines. PMID:26495249

  20. Dynamic Contractility and Efficiency Impairments in Stretch-Shortening Cycle Are Stretch-Load-Dependent After Training-Induced Muscle Damage

    NARCIS (Netherlands)

    Vaczi, Mark; Racz, Levente; Hortobagyi, Tibor; Tihanyi, Jozsef

    Vaczi, M, Racz, L, Hortobagyi, T, and Tihanyi, J. Dynamic contractility and efficiency impairments in stretch-shortening cycle are stretch-load-dependent after training-induced muscle damage. J Strength Cond Res 27(8): 2171-2179, 2013To determine the acute task and stretch-load dependency of

  1. Biaxial stretching of film principles and applications

    CERN Document Server

    Demeuse, M T

    2011-01-01

    Biaxial (having two axes) stretching of film is used for a range of applications and is the primary manufacturing process by which products are produced for the food packaging industry. Biaxial stretching of film: principles and applications provides an overview of the manufacturing processes and range of applications for biaxially stretched films. Part one reviews the fundamental principles of biaxial stretching. After an introductory chapter which defines terms, chapters discuss equipment design and requirements, laboratory evaluations, biaxial film structures and typical industrial processes for the biaxial orientation of films. Additional topics include post production processing of biaxially stretched films, the stress-strain behaviour of poly(ethylene terephthalate) and academic investigations of biaxially stretched films. Part two investigates the applications of biaxial films including fresh cut produce, snack packaging and product labelling. A final chapter investigates potential future trends for bi...

  2. COBRA-IV wire wrap data comparisons

    International Nuclear Information System (INIS)

    Donovan, T.E.; George, T.L.; Wheeler, C.L.

    1979-02-01

    Thermal hydraulic analyses of hexagonally packed wire-wrapped fuel assemblies are complicated by the induced crossflow between adjacent subchannels. The COBRA-IV computer code simultaneously solves the hydrodynamics and thermodynamics of fuel assemblies. The modifications and the results are presented which are predicted by the COBRA-IV calculation. Comparisons are made with data measured in five experimental models of a wire-wrapped fuel assembly

  3. X-ray power increase from symmetrized wire-array z-pinch implosions

    Energy Technology Data Exchange (ETDEWEB)

    Sanford, T.W.L.; Allshouse, G.O.; Marder, B.M. [and others

    1996-08-01

    A systematic experimental study of annular aluminum-wire z-pinches on the Saturn accelerator shows that, for the first time, the measured spatial characteristics and x-ray powers can approach those of two-dimensional, radiation-magneto-hydrodynamic simulations when large numbers of wires are used. Calculations show that the implosion begins to transition from that of individual plasma wires to that of a continuous plasma shell, when the circumferential gap between wires in the array is reduced below 1.4+1.3/-0.7 mm. This calculated gap coincides with the measured transition of 1.4 {+-}0.4 mm between the observed regimes of slow and rapid improvement in power output with decreasing gap. In the plasma shell regime, x-ray powers in excess of a factor of three over that generated in the plasma-wire region are measured.

  4. X-ray power increase from symmetrized wire-array z-pinch implosions

    International Nuclear Information System (INIS)

    Sanford, T.W.L.; Allshouse, G.O.; Marder, B.M.

    1996-08-01

    A systematic experimental study of annular aluminum-wire z-pinches on the Saturn accelerator shows that, for the first time, the measured spatial characteristics and x-ray powers can approach those of two-dimensional, radiation-magneto-hydrodynamic simulations when large numbers of wires are used. Calculations show that the implosion begins to transition from that of individual plasma wires to that of a continuous plasma shell, when the circumferential gap between wires in the array is reduced below 1.4+1.3/-0.7 mm. This calculated gap coincides with the measured transition of 1.4 ±0.4 mm between the observed regimes of slow and rapid improvement in power output with decreasing gap. In the plasma shell regime, x-ray powers in excess of a factor of three over that generated in the plasma-wire region are measured

  5. Wire scanner software and firmware issues

    International Nuclear Information System (INIS)

    Gilpatrick, John Doug

    2008-01-01

    The Los Alamos Neutron Science Center facility presently has 110 slow wire scanning profile measurement instruments located along its various beam lines. These wire scanners were developed and have been operating for at least 30 years. While the wire scanners solved many problems to operate and have served the facility well they have increasingly suffered from several problems or limitations, such as maintenance and reliability problems, antiquated components, slow data acquisition, and etc. In order to refurbish these devices, these wire scanners will be replaced with newer versions. The replacement will consist of a completely new beam line actuator, new cables, new electronics and brand new software and firmware. This note describes the functions and modes of operation that LabVIEW VI software on the real time controller and FPGA LabVIEW firmware will be required. It will be especially interesting to understand the overall architecture of these LabVIEW VIs. While this note will endeavor to describe all of the requirements and issues for the wire scanners, undoubtedly, there will be missing details that will be added as time progresses.

  6. A wireless vibrating wire sensor node for continuous structural health monitoring

    International Nuclear Information System (INIS)

    Lee, H M; Park, H S; Kim, J M; Sho, K

    2010-01-01

    Vibrating wire sensors (VWS) are generally used for strain measurements of structures in buildings and civil infrastructures. In this paper, a wireless vibrating wire sensor node is developed which can measure resonance frequencies from vibrating wire sensors and can remotely communicate the frequencies by wireless. The wireless sensor node consists of a sensor module, which excites the vibrating wire and reads the resonance frequencies, a wireless communication module, which transmits the wire's resonance frequencies to the user or administrator, and a processor that controls the two modules. The wireless sensor node has the following characteristics: it has multiple channels to enable measurement of multiple vibrating wire sensors (up to four) using a single sensor node; it has a power-saving feature that enables operation for up to one year; and lastly, the wireless unit uses the 424 MHz UHF (ultra-high frequency) band with good diffraction that has an effect on minimizing the influence of impediments such as structural or nonstructural elements. The wireless sensor node is tested in terms of its measurement precision and its wireless communication performance. As a result, it is confirmed that the node enables the long-term structural health monitoring of buildings and infrastructures

  7. Economic analysis of grid and wire wrap supported hydride and oxide fueled pressurized water reactors

    International Nuclear Information System (INIS)

    Shuffler, C.; Diller, P.; Malen, J.; Todreas, N.; Greenspan, E.; Petrovic, B.

    2009-01-01

    retrofitted designs which offer increased power relative to existing commercial PWRs. For the first comparison, no grid supported designs and only one wire wrap supported design (i.e., U-ZrH 1.6 Stretch Case) provide a lower levelized unit cost of electricity than the reference 'do-nothing' PWR. The primary cause of this conclusion is the capital costs incurred by retrofitted designs to change the core geometry and, for many designs, to upgrade primary and secondary loop components for operation at higher power than the reference PWR. The reference 'do-nothing' PWR cost in this first comparison includes only operations and maintenance as well as fuel cycle costs but does not include a capital component. For the second comparison, significant cost savings are demonstrated for both grid (15-19% savings) and wire wrap (30-40% savings) supported designs using U-ZrH 1.6 and UO 2 fuels. These cost savings are enabled by enhancing the pumping capacity of the primary system and, for wire wrap supported designs, by taking advantage of enhanced critical heat flux performance. The optimal geometry for retrofitted UO 2 and U-ZrH 1.6 fueled PWR cores supported by grid spacers is D rod = 6.5 mm and P/D = 1.39. The cost savings over the second case reference PWR are ∼19 and 15%, respectively. The cost savings for retrofitted PWRs that incorporate wire wrap spacing are even larger because of operation at even higher power. Cost savings over the reference PWR range between 30 and 40% for the U-ZrH 1.6 and UO 2 Achievable and Stretch Cases. The optimal geometries for the U-ZrH 1.6 Achievable and Stretch Cases are D rod = 8.08 mm, P/D = 1.41 and D rod = 8.71 mm, P/D = 1.39, respectively. The optimal geometries for the UO 2 Achievable and Stretch Cases are D rod = 7.13 mm, P/D = 1.42 and D rod = 9.34 mm, P/D = 1.27, respectively. Utilities seeking to meet rising demand by expanding capacity may therefore strongly benefit from retrofitting existing PWRs with either U-ZrH 1.6 or UO 2 fueled

  8. Correlation between structure and conductivity in stretched Nafion

    Science.gov (United States)

    Allahyarov, Elshad; Taylor, Philip

    2008-03-01

    We have used coarse-grained simulation methods to investigate the effect of stretching-induced structure orientation on the proton conductivity of Nafion-like polyelectrolyte membranes. Recent experimental data on the morphology of ionomers describe Nafion as an aggregation of polymeric backbone chains forming elongated objects embedded in a continuous ionic medium. Uniaxial stretching of a recast Nafion film causes a preferential orientation of these objects in the direction of stretching. Our simulations of humid Nafion show that this has a strong effect on the proton conductivity, which is enhanced along the stretching direction, while the conductivity perpendicular to the stretched polymer backbone is strongly reduced. Stretching also causes the perfluorinated side chains to orient perpendicular to the stretching axis. The sulphonate multiplets shrink in diameter as the stretching is increased and show a spatially periodic ordering in their distribution. This in turn affects the distribution of contained water at low water contents. The water forms a continuous network with narrow bridges between small water clusters absorbed in head-group multiplets. We find the morphological changes in the stretched Nafion to be retained upon removal of the uniaxial stress.

  9. Characterization of mechanical behavior of a porcine pulmonary artery strip using a randomized uniaxial stretch and stretch-rate protocol

    Directory of Open Access Journals (Sweden)

    Criscione John C

    2008-01-01

    Full Text Available Abstract Background Much of the experimental work in soft tissue mechanics has been focused on fitting approximate relations for specific tissue types from aggregate data on multiple samples of the tissue. Such relations are needed for modeling applications and have reasonable predictability – especially given the natural variance in specimens. There is, however, much theoretical and experimental work to be done in determining constitutive behaviors for particular specimens and tissues. In so doing, it may be possible to exploit the natural variation in tissue ultrastructure – so to relate ultrastructure composition to tissue behavior. Thus, this study focuses on an experimental method for determining constitutive behaviors and illustrates the method with analysis of a porcine pulmonary artery strip. The method characterizes the elastic part of the response (implicitly in terms of stretch and the inelastic part in terms of short term stretch history (i.e., stretch-rate Ht2, longer term stretch history Ht1, and time since the start of testing T. Methods A uniaxial testing protocol with a random stretch and random stretch-rate was developed. The average stress at a particular stretch was chosen as the hyperelastic stress response, and deviation from the mean at this particular stretch is chosen as the inelastic deviation. Multivariable Linear Regression Analysis (MLRA was utilized to verify if Ht2, Ht1, and T are important factors for characterizing the inelastic deviation. For acquiring Ht2 and Ht1, an integral function type of stretch history was employed with time constants chosen from the relaxation spectrum of an identical size strip from the same tissue with the same orientation. Finally, statistical models that characterize the inelasticity were developed at various, nominal values of stretch, and their predictive capability was examined. Results Inelastic deviation from hyperelasticity was high (31% for low stretch and declined

  10. Elastography Study of Hamstring Behaviors during Passive Stretching.

    Directory of Open Access Journals (Sweden)

    Guillaume Le Sant

    Full Text Available The mechanical properties of hamstring muscles are usually inferred from global passive torque/angle relationships, in combination with adjoining tissues crossing the joint investigated. Shear modulus measurement provides an estimate of changes in muscle-tendon stiffness and passive tension. This study aimed to assess the passive individual behavior of each hamstring muscle in different stretching positions using shear wave elastography.The muscle shear modulus of each hamstring muscle was measured during a standardized slow passive knee extension (PKE, 80% of maximal range of motion on eighteen healthy male volunteers. Firstly, we assessed the reliability of the measurements. Results were good for semitendinosus (ST, CV: 8.9%-13.4%, semimembranosus (SM, CV: 10.3%-11.2% and biceps femoris long-head (BF-lh, CV: 8.6%-13.3%, but not for biceps femoris short-head (BF-sh, CV: 20.3%-44.9%. Secondly, we investigated each reliable muscle in three stretch positions: 70°, 90° and 110° of hip flexion. The results showed different values of shear modulus for the same amount of perceived stretch, with the highest measurements in the high-flexed hip situation. Moreover, individual muscles displayed different values, with values increasing or BF-lh, SM and ST, respectively. The inter-subject variability was 35.3% for ST, 27.4% for SM and 30.2% for BF-lh.This study showed that the hip needs to be high-flexed to efficiently tension the hamstrings, and reports a higher muscle-tendon stress tolerance at 110° of hip angle. In addition muscles have different passive behaviors, and future works will clarify if it can be linked with rate of injury.

  11. Elastography Study of Hamstring Behaviors during Passive Stretching

    Science.gov (United States)

    Le Sant, Guillaume; Ates, Filiz; Brasseur, Jean-Louis; Nordez, Antoine

    2015-01-01

    Introduction The mechanical properties of hamstring muscles are usually inferred from global passive torque/angle relationships, in combination with adjoining tissues crossing the joint investigated. Shear modulus measurement provides an estimate of changes in muscle-tendon stiffness and passive tension. This study aimed to assess the passive individual behavior of each hamstring muscle in different stretching positions using shear wave elastography. Methods/Results The muscle shear modulus of each hamstring muscle was measured during a standardized slow passive knee extension (PKE, 80% of maximal range of motion) on eighteen healthy male volunteers. Firstly, we assessed the reliability of the measurements. Results were good for semitendinosus (ST, CV: 8.9%-13.4%), semimembranosus (SM, CV: 10.3%-11.2%) and biceps femoris long-head (BF-lh, CV: 8.6%-13.3%), but not for biceps femoris short-head (BF-sh, CV: 20.3%-44.9%). Secondly, we investigated each reliable muscle in three stretch positions: 70°, 90° and 110° of hip flexion. The results showed different values of shear modulus for the same amount of perceived stretch, with the highest measurements in the high-flexed hip situation. Moreover, individual muscles displayed different values, with values increasing or BF-lh, SM and ST, respectively. The inter-subject variability was 35.3% for ST, 27.4% for SM and 30.2% for BF-lh. Conclusion This study showed that the hip needs to be high-flexed to efficiently tension the hamstrings, and reports a higher muscle-tendon stress tolerance at 110° of hip angle. In addition muscles have different passive behaviors, and future works will clarify if it can be linked with rate of injury. PMID:26418862

  12. Detection of a buried wire with two resistively loaded wire antennas

    NARCIS (Netherlands)

    Vossen, S.H.J.A.; Tijhuis, A.G.; Lepelaars, E.S.A.M.; Zwamborn, A.P.M.

    2002-01-01

    The use of two identical straight thin-wire antennas for the detection of a buried wire is analyzed with the aid of numerical calculations. The buried wire is located below an interface between two homogeneous half-spaces. The detection setup, which is formed by a transmitting and a receiving wire,

  13. Fast wire scanner for intense electron beams

    Directory of Open Access Journals (Sweden)

    T. Moore

    2014-02-01

    Full Text Available We have developed a cost-effective, fast rotating wire scanner for use in accelerators where high beam currents would otherwise melt even carbon wires. This new design uses a simple planetary gear setup to rotate a carbon wire, fixed at one end, through the beam at speeds in excess of 20  m/s. We present results from bench tests, as well as transverse beam profile measurements taken at Cornell’s high-brightness energy recovery linac photoinjector, for beam currents up to 35 mA.

  14. wire chamber

    CERN Multimedia

    1985-01-01

    Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  15. Wire chamber

    CERN Multimedia

    Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  16. wire chamber

    CERN Multimedia

    Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  17. The effectiveness of manual stretching in the treatment of plantar heel pain: a systematic review

    Directory of Open Access Journals (Sweden)

    Parish Ben

    2011-06-01

    measures, blinded assessors and long-term follow up are needed to assess the efficacy of stretching.

  18. Insulated Wire Fed Floating Monopole Antenna for Coastal Monitoring

    Directory of Open Access Journals (Sweden)

    Z. M. Loni

    2018-04-01

    Full Text Available A thin, flexible, insulated wire submerged in seawater forms a coaxial cable which has attenuation at ultra-high frequency (UHF dependent on the operating frequency, the diameter of the insulating material and the diameter of the inner conductor. An extension of the insulated wire above the surface through a spherical float forms a monopole antenna. Attenuation through the wire depends on the conductivity and temperature of seawater. This paper reports the effect of electromagnetic (EM wave propagation at 433 MHz through insulated wires with different radii of the insulating material and inner conductor. The attenuation was calculated and measured in the range of 32-47 dB/m. The propagation from the monopole antenna to a fixed shore based receiver was measured to be approximately equal to 1 dB/m. The propagation measurements were compared with a shielded coaxial cable. Results show that the propagation range depends on the ratio of the insulation radius to conductor radius for insulated wire, however, a shielded coaxial cable showed no significant attenuation. The technique has applications in coastal wireless sensor networks where the water depth changes continually due to tide and wave motion.

  19. Wire Array Photovoltaics

    Science.gov (United States)

    Turner-Evans, Dan

    Over the past five years, the cost of solar panels has dropped drastically and, in concert, the number of installed modules has risen exponentially. However, solar electricity is still more than twice as expensive as electricity from a natural gas plant. Fortunately, wire array solar cells have emerged as a promising technology for further lowering the cost of solar. Si wire array solar cells are formed with a unique, low cost growth method and use 100 times less material than conventional Si cells. The wires can be embedded in a transparent, flexible polymer to create a free-standing array that can be rolled up for easy installation in a variety of form factors. Furthermore, by incorporating multijunctions into the wire morphology, higher efficiencies can be achieved while taking advantage of the unique defect relaxation pathways afforded by the 3D wire geometry. The work in this thesis shepherded Si wires from undoped arrays to flexible, functional large area devices and laid the groundwork for multijunction wire array cells. Fabrication techniques were developed to turn intrinsic Si wires into full p-n junctions and the wires were passivated with a-Si:H and a-SiNx:H. Single wire devices yielded open circuit voltages of 600 mV and efficiencies of 9%. The arrays were then embedded in a polymer and contacted with a transparent, flexible, Ni nanoparticle and Ag nanowire top contact. The contact connected >99% of the wires in parallel and yielded flexible, substrate free solar cells featuring hundreds of thousands of wires. Building on the success of the Si wire arrays, GaP was epitaxially grown on the material to create heterostructures for photoelectrochemistry. These cells were limited by low absorption in the GaP due to its indirect bandgap, and poor current collection due to a diffusion length of only 80 nm. However, GaAsP on SiGe offers a superior combination of materials, and wire architectures based on these semiconductors were investigated for multijunction

  20. Comparison of the effects of local cryotherapy and passive cross-body stretch on extensibility in subjects with posterior shoulder tightness.

    Science.gov (United States)

    Park, Kyue-Nam; Kwon, Oh-Yun; Weon, Jong-Hyuck; Choung, Sung-Dae; Kim, Si-Hyun

    2014-01-01

    The objective was to compare the immediate effects of local cryotherapy (LC) and passive cross-body stretch on the extensibility of the posterior shoulder muscle in individuals with posterior shoulder tightness. Eighty-seven healthy subjects with a between-shoulder difference in internal rotation (IR) range of motion (ROM) greater than 10° were randomly divided into three groups: LC group, stretching group, and control group (n = 29 in each group). Subjects in the LC group received LC on infraspinatus and posterior deltoid muscles and subjects in the stretching group performed passive cross-body stretch. Stretch sensation was measured at the end range of passive IR and horizontal adduction (HA) using numerical rating scale, and the pressure pain threshold (PPT) at the infraspinatus and posterior deltoid muscles was measured using pressure algometry. Passive and active ROM of IR and HA of the glenohumeral joint were measured using an inclinometer. All measurements were performed at pre-intervention, post- intervention, and 10-min follow-up. Stretch sensation was significantly decreased and PPT was significantly increased in the LC and stretching groups at post-intervention, and these effects were maintained at 10-min follow-up, compared to the control group. Both the LC group and stretching group had a significantly greater increase in passive and active ROM of IR and HA, compared to the control group at post-intervention and 10-min follow-up. However, there were no significant differences in stretch sensation, PPT, or ROM of IR and HA between the LC group and stretching group. LC can be used to decrease the stretch sensation and increase PPT and ROM of IR and HA as much as a stretching exercise. LC could be an alternative method for increasing the restricted ROM of glenohumeral IR and HA for individuals with posterior shoulder tightness, especially for patients and sports players who have severe stretching discomfort. Key PointsLocal cryotherapy (LC) decreased the

  1. Mechanical optimisation of a high-precision fast wire scanner at CERN

    CERN Document Server

    Samuelsson, Sebastian; Veness, Raymond

    Wire scanners are instruments used to measure the transverse beam prole in particle accelerators by passing a thin wire through the particle beam. To avoid the issues of vacuum leakage through the bellows and wire failure related to current designs of wire scanners, a new concept for a wire scanner has been developed at CERN. This design has all moving parts inside the beam vacuum and has a nominal wire scanning speed of 20 m/s. The demands on the design associated with this together with the high precision requirements create a need for\

  2. X-ray power increase from symmetrized wire-array Z-pinch implosions

    International Nuclear Information System (INIS)

    Sanford, T.W.L.; Allshouse, G.O.; Marder, B.M.

    1996-01-01

    A systematic experimental study of annular aluminum-wire z-pinches on the Saturn accelerator shows that, for the first time, the measured spatial characteristics and x-ray powers can approach those of two-dimensional, radiation-magneto-hydrodynamic simulations when large numbers of wires are used. Calculations show that the implosion begins to transition from that of individual plasma wires to that of a continuous plasma shell, when the circumferential gap between wires in the array is reduced below 1.4 +1.3/-0.7 mm. This calculated gap coincides with the measured transition of 1.4 ± 0.4 mm between the observed regimes of slow and rapid improvement in power output with decreasing gap. In the plasma-shell regime, x-ray powers in excess of a factor of three over that generated in the plasma-wire region are measured. (author). 5 figs., 16 refs

  3. X-ray power increase from symmetrized wire-array Z-pinch implosions

    Energy Technology Data Exchange (ETDEWEB)

    Sanford, T W.L.; Allshouse, G O; Marder, B M [Sandia Labs., Albuquerque, NM (United States); and others

    1997-12-31

    A systematic experimental study of annular aluminum-wire z-pinches on the Saturn accelerator shows that, for the first time, the measured spatial characteristics and x-ray powers can approach those of two-dimensional, radiation-magneto-hydrodynamic simulations when large numbers of wires are used. Calculations show that the implosion begins to transition from that of individual plasma wires to that of a continuous plasma shell, when the circumferential gap between wires in the array is reduced below 1.4 +1.3/-0.7 mm. This calculated gap coincides with the measured transition of 1.4 {+-} 0.4 mm between the observed regimes of slow and rapid improvement in power output with decreasing gap. In the plasma-shell regime, x-ray powers in excess of a factor of three over that generated in the plasma-wire region are measured. (author). 5 figs., 16 refs.

  4. Effectiveness of passive stretching versus hold relax technique in flexibility of hamstring muscle

    Directory of Open Access Journals (Sweden)

    Gauri Shankar

    2010-10-01

    Full Text Available Aim: To compare the effectiveness of passive stretching and hold relax technique in the flexibility of hamstring muscle. Methods: A total of 80 normal healthy female subjects between age group 20-30 years referred to the department of physiotherapy, Sumandeep Vidyapeeth University, sampling method being convenient sampling. The subjects were randomly divided in two groups i.e. passive stretching group (n=40 and PNF group (n=40 and given passive stretching and proprioceptive neuromuscular facilitation technique respectively. Active knee extension range was measured before and after the intervention by goniometer. Results: t test showed a highly significant (p=0.000 increase in range of motion in PNF group. Conclusion: Proprioceptive neuromuscular facilitation technique is more effective in increasing hamstring flexibility than the passive stretching.

  5. A New Flying Wire System for the Tevatron

    Science.gov (United States)

    Blokland, Willem; Dey, Joseph; Vogel, Greg

    1997-05-01

    A new Flying Wires system replaces the old system to enhance the analysis of the beam emittance, improve the reliability, and handle the upcoming upgrades of the Tevatron. New VME data acquisition modules and timing modules allow for more bunches to be sampled more precisely. The programming language LabVIEW, running on a Macintosh computer, controls the VME modules and the nuLogic motion board that flies the wires. LabVIEW also analyzes and stores the data, and handles local and remote commands. The new system flies three wires and fits profiles of 72 bunches to a gaussian function within two seconds. A new console application operates the flying wires from any control console. This paper discusses the hardware and software setup, the capabilities and measurement results of the new Flying Wires system.

  6. 49 CFR 236.74 - Protection of insulated wire; splice in underground wire.

    Science.gov (United States)

    2010-10-01

    ... underground wire. 236.74 Section 236.74 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RULES, STANDARDS, AND INSTRUCTIONS GOVERNING... wire; splice in underground wire. Insulated wire shall be protected from mechanical injury. The...

  7. 49 CFR 234.241 - Protection of insulated wire; splice in underground wire.

    Science.gov (United States)

    2010-10-01

    ... underground wire. 234.241 Section 234.241 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION GRADE CROSSING SIGNAL SYSTEM SAFETY... of insulated wire; splice in underground wire. Insulated wire shall be protected from mechanical...

  8. Experimental study on underwater electrical explosion of a copper wire

    International Nuclear Information System (INIS)

    Zhou Qing; Zhang Jun; Tan Xiangyu; Ren Baozhong; Zhang Qiaogen

    2010-01-01

    Through analyzing the physical process of underwater electrical wire explosion, electrical wire explosions with copper wires were investigated underwater using pulsed voltage in the time scale of a few microseconds. A self-integrating Rogowsky coil and a voltage divider were used for current and voltage at the wire load, respectively. The shock wave pressure is measured with a piezoelectric pressure probe at the same distance. The current rise rate was adjusted by changing the applied voltage, circuit inductance, length and diameter of copper wire. The change of the current rise rate had a great effect on the process of underwater electrical wire explosion with copper wires. At last, the effect of discharge voltage, circuit inductance, length and diameter of copper wire were obtained on the explosion voltage and current as well as shock wave pressure. (authors)

  9. Release of metal ions from round and rectangular NiTi wires

    Directory of Open Access Journals (Sweden)

    Arash Azizi

    2016-04-01

    Full Text Available Abstract Background The aim of this study was to evaluate the amount of nickel and titanium ions released from two wires with different shapes and a similar surface area. Methods Forty round nickel-titanium (NiTi arch wires with the diameter of 0.020 in. and 40 rectangular NiTi arch wires with the diameter of 0.016 × 0.016 in. were immersed in artificial saliva during a 21-day period. The surface area of both wires was 0.44 in.2. Wires were separately dipped into polypropylene tubes containing 50 ml of buffer solution and were incubated and maintained at 37 °C. Inductively coupled plasma atomic emission spectrometry (ICP-AES was used to measure the amount of ions released after exposure lengths of 1 h, 24 h, 1 week, and 3 weeks. Repeated measures ANOVA and Tukey tests were used to evaluate the data. Results The results indicated that the amount of nickel and titanium concentrations was significantly higher in the rectangular wire group. The most significant release of all metals was measured after the first hour of immersion. In the rectangular wire group, 243 ± 4.2 ng/ml of nickel was released after 1 h, while 221.4 ± 1.7 ng/ml of nickel was released in the round wire group. Similarly, 243.3 ± 2.8 ng/ml of titanium was released in the rectangular wire group and a significantly lower amount of 211.9 ± 2.3 ng/ml of titanium was released in the round wire group. Conclusions Release of metal ions was influenced by the shape of the wire and increase of time.

  10. wire chamber

    CERN Multimedia

    Was used in ISR (Intersecting Storage Ring) split field magnet experiment. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  11. The anchors of steel wire ropes, testing methods and their results

    Directory of Open Access Journals (Sweden)

    J. Krešák

    2012-10-01

    Full Text Available The present paper introduces an application of the acoustic and thermographic method in the defectoscopic testing of immobile steel wire ropes at the most critical point, the anchor. First measurements and their results by these new defectoscopic methods are shown. In defectoscopic tests at the anchor, the widely used magnetic method gives unreliable results, and therefore presents a problem for steel wire defectoscopy. Application of the two new methods in the steel wire defectoscopy at the anchor point will enable increased safety measures at the anchor of steel wire ropes in bridge, roof, tower and aerial cable lift constructions.

  12. The magnetoresistance of sub-micron Fe wires

    Science.gov (United States)

    Blundell, S. J.; Shearwood, C.; Gester, M.; Baird, M. J.; Bland, J. A. C.; Ahmed, H.

    1994-07-01

    A novel combination of electron- and ion-beam lithography has been used to prepare Fe gratings with wire widths of 0.5 μm and wire separations in the range 0.5-4 μm from an Fe/GaAs (001) film of thickness 25 nm. With an in-plane magnetic field applied perpendicular to the length of the wires, a harder magnetisation loop is observed using the magneto-optic Kerr effect (MOKE), compared with that observed in the unprocessed film. We observe a strong effect in the magnetoresistance (MR) when the magnetic field is applied transverse to the wires. It is believed that this effect originates from the highly non-uniform demagnetising field in each wire of the grating. These results demonstrate that the combination of MOKE and MR measurements can provide important information about the magnetisation reversal processes in magnetic gratings and can be used to understand the effect of shape anisotropy on magnetic properties.

  13. Stretched polygons in a lattice tube

    Energy Technology Data Exchange (ETDEWEB)

    Atapour, M [Department of Mathematics and Statistics, York University, Toronto, ON M3J 1P3 (Canada); Soteros, C E [Department of Mathematics and Statistics, University of Saskatchewan, Saskatoon, SK S7N 5E6 (Canada); Whittington, S G [Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6 (Canada)], E-mail: atapour@mathstat.yorku.ca, E-mail: soteros@math.usask.ca, E-mail: swhittin@chem.utoronto.ca

    2009-08-14

    We examine the topological entanglements of polygons confined to a lattice tube and under the influence of an external tensile force f. The existence of the limiting free energy for these so-called stretched polygons is proved and then, using transfer matrix arguments, a pattern theorem for stretched polygons is proved. Note that the tube constraint allows us to prove a pattern theorem for any arbitrary value of f, while without the tube constraint it has so far only been proved for large values of f. The stretched polygon pattern theorem is used first to show that the average span per edge of a randomly chosen n-edge stretched polygon approaches a positive value, non-decreasing in f, as n {yields} {infinity}. We then show that the knotting probability of an n-edge stretched polygon confined to a tube goes to one exponentially as n {yields} {infinity}. Thus as n {yields} {infinity} when polygons are influenced by a force f, no matter its strength or direction, topological entanglements, as defined by knotting, occur with high probability. (fast track communication)

  14. Stretched polygons in a lattice tube

    International Nuclear Information System (INIS)

    Atapour, M; Soteros, C E; Whittington, S G

    2009-01-01

    We examine the topological entanglements of polygons confined to a lattice tube and under the influence of an external tensile force f. The existence of the limiting free energy for these so-called stretched polygons is proved and then, using transfer matrix arguments, a pattern theorem for stretched polygons is proved. Note that the tube constraint allows us to prove a pattern theorem for any arbitrary value of f, while without the tube constraint it has so far only been proved for large values of f. The stretched polygon pattern theorem is used first to show that the average span per edge of a randomly chosen n-edge stretched polygon approaches a positive value, non-decreasing in f, as n → ∞. We then show that the knotting probability of an n-edge stretched polygon confined to a tube goes to one exponentially as n → ∞. Thus as n → ∞ when polygons are influenced by a force f, no matter its strength or direction, topological entanglements, as defined by knotting, occur with high probability. (fast track communication)

  15. Comparison of the Effects of Local Cryotherapy and Passive Cross-Body Stretch on Extensibility in Subjects with Posterior Shoulder Tightness

    Directory of Open Access Journals (Sweden)

    Kyue-nam Park

    2014-03-01

    Full Text Available The objective was to compare the immediate effects of local cryotherapy (LC and passive cross-body stretch on the extensibility of the posterior shoulder muscle in individuals with posterior shoulder tightness. Eighty-seven healthy subjects with a between-shoulder difference in internal rotation (IR range of motion (ROM greater than 10° were randomly divided into three groups: LC group, stretching group, and control group (n = 29 in each group. Subjects in the LC group received LC on infraspinatus and posterior deltoid muscles and subjects in the stretching group performed passive cross-body stretch. Stretch sensation was measured at the end range of passive IR and horizontal adduction (HA using numerical rating scale, and the pressure pain threshold (PPT at the infraspinatus and posterior deltoid muscles was measured using pressure algometry. Passive and active ROM of IR and HA of the glenohumeral joint were measured using an inclinometer. All measurements were performed at pre-intervention, post- intervention, and 10-min follow-up. Stretch sensation was significantly decreased and PPT was significantly increased in the LC and stretching groups at post-intervention, and these effects were maintained at 10-min follow-up, compared to the control group. Both the LC group and stretching group had a significantly greater increase in passive and active ROM of IR and HA, compared to the control group at post-intervention and 10-min follow-up. However, there were no significant differences in stretch sensation, PPT, or ROM of IR and HA between the LC group and stretching group. LC can be used to decrease the stretch sensation and increase PPT and ROM of IR and HA as much as a stretching exercise. LC could be an alternative method for increasing the restricted ROM of glenohumeral IR and HA for individuals with posterior shoulder tightness, especially for patients and sports players who have severe stretching discomfort.

  16. Acute effects of 15min static or contract-relax stretching modalities on plantar flexors neuromuscular properties.

    Science.gov (United States)

    Babault, Nicolas; Kouassi, Blah Y L; Desbrosses, Kevin

    2010-03-01

    The present study aimed to investigate the immediate effects of 15 min static or sub-maximal contract-relax stretching modalities on the neuromuscular properties of plantar flexor muscles. Ten male volunteers were tested before and immediately after 15 min static or contract-relax stretching programs of plantar flexor muscles (20 stretches). Static stretching consisted in 30s stretches to the point of discomfort. For the contract-relax stretching modality, subjects performed 6s sub-maximal isometric plantar flexion before 24s static stretches. Measurements included maximal voluntary isometric torque (MVT) and the corresponding electromyographic activity of soleus (SOL) and medial gastrocnemius (MG) muscles (RMS values), as well as maximal peak torque (Pt) elicited at rest by single supramaximal electrical stimulation of the tibial nerve. After 15 min stretching, significant MVT and SOL RMS decreases were obtained (-6.9+/-11.6% and -6.5+/-15.4%, respectively). No difference was obtained between stretching modalities. Pt remained unchanged after stretching. MG RMS changes were significantly different between stretching modalities (-9.4+/-18.3% and +3.5+/-11.6% after static and contract-relax stretching modalities, respectively). These findings indicated that performing 15 min static or contract-relax stretching had detrimental effects on the torque production capacity of plantar flexor muscles and should be precluded before competition. Mechanisms explaining this alteration seemed to be stretch modality dependent. Copyright 2009 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  17. Transient photoresponse in amorphous In-Ga-Zn-O thin films under stretched exponential analysis

    Science.gov (United States)

    Luo, Jiajun; Adler, Alexander U.; Mason, Thomas O.; Bruce Buchholz, D.; Chang, R. P. H.; Grayson, M.

    2013-04-01

    We investigated transient photoresponse and Hall effect in amorphous In-Ga-Zn-O thin films and observed a stretched exponential response which allows characterization of the activation energy spectrum with only three fit parameters. Measurements of as-grown films and 350 K annealed films were conducted at room temperature by recording conductivity, carrier density, and mobility over day-long time scales, both under illumination and in the dark. Hall measurements verify approximately constant mobility, even as the photoinduced carrier density changes by orders of magnitude. The transient photoconductivity data fit well to a stretched exponential during both illumination and dark relaxation, but with slower response in the dark. The inverse Laplace transforms of these stretched exponentials yield the density of activation energies responsible for transient photoconductivity. An empirical equation is introduced, which determines the linewidth of the activation energy band from the stretched exponential parameter β. Dry annealing at 350 K is observed to slow the transient photoresponse.

  18. Self-organization of mesoscopic silver wires by electrochemical deposition

    Directory of Open Access Journals (Sweden)

    Sheng Zhong

    2014-08-01

    Full Text Available Long, straight mesoscale silver wires have been fabricated from AgNO3 electrolyte via electrodeposition without the help of templates, additives, and surfactants. Although the wire growth speed is very fast due to growth under non-equilibrium conditions, the wire morphology is regular and uniform in diameter. Structural studies reveal that the wires are single-crystalline, with the [112] direction as the growth direction. A possible growth mechanism is suggested. Auger depth profile measurements show that the wires are stable against oxidation under ambient conditions. This unique system provides a convenient way for the study of self-organization in electrochemical environments as well as for the fabrication of highly-ordered, single-crystalline metal nanowires.

  19. The effect of electrostatic and gravity force on offset wire inside tube

    Science.gov (United States)

    Oh, S. H.; Hazineh, D.; Wang, C.

    2018-04-01

    In a straw-tube detector, a wire that is offset with respect to the tube axis experiences a Coulomb force when high voltage is applied between the anode wire and the tube. This force results in a shifting of the wire and straw, in addition to the gravitational sag, and is a function of the tube and wire radius, initial offset, high voltage, tension and length. The presence of such effects is well known, but the precise magnitude of the shift for the anode wires under conditions of detector operation have not been previously documented with measurable confidence. In this work, we provide the first systematic measurements for the wire shift in straw-tube detectors due to gravity and the electrostatic force using an x-ray scanner developed for the Mu2e experiment. The data are compared to the solutions of the differential equations governing the system, and we find a good match between the two. The solutions can predict the final wire and straw positions from the initial positions measured without the high voltage, and the final wire and straw positions can then be used as an input to the track reconstruction software to improve the track position resolution.

  20. The effect of warm-ups with stretching on the isokinetic moments of collegiate men.

    Science.gov (United States)

    Park, Hyoung-Kil; Jung, Min-Kyung; Park, Eunkyung; Lee, Chang-Young; Jee, Yong-Seok; Eun, Denny; Cha, Jun-Youl; Yoo, Jaehyun

    2018-02-01

    Performing warm-ups increases muscle temperature and blood flow, which contributes to improved exercise performance and reduced risk of injuries to muscles and tendons. Stretching increases the range of motion of the joints and is effective for the maintenance and enhancement of exercise performance and flexibility, as well as for injury prevention. However, stretching as a warm-up activity may temporarily decrease muscle strength, muscle power, and exercise performance. This study aimed to clarify the effect of stretching during warm-ups on muscle strength, muscle power, and muscle endurance in a nonathletic population. The subjects of this study consisted of 13 physically active male collegiate students with no medical conditions. A self-assessment questionnaire regarding how well the subjects felt about their physical abilities was administered to measure psychological readiness before and after the warm-up. Subjects performed a non-warm-up, warm-up, or warm-up regimen with stretching prior to the assessment of the isokinetic moments of knee joints. After the measurements, the respective variables were analyzed using nonparametric tests. First, no statistically significant intergroup differences were found in the flexor and extensor peak torques of the knee joints at 60°/sec, which were assessed to measure muscle strength. Second, no statistically significant intergroup differences were found in the flexor and extensor peak torques of the knee joints at 180°/sec, which were assessed to measure muscle power. Third, the total work of the knee joints at 240°/sec, intended to measure muscle endurance, was highest in the aerobic-stretch-warm-ups (ASW) group, but no statistically significant differences were found among the groups. Finally, the psychological readiness for physical activity according to the type of warm-up was significantly higher in ASW. Simple stretching during warm-ups appears to have no effect on variables of exercise physiology in nonathletes

  1. Resonant tunneling of electrons in quantum wires

    International Nuclear Information System (INIS)

    Krive, I.V.; Shekhter, R.I.; Jonson, M.; Krive, I.V.

    2010-01-01

    We considered resonant electron tunneling in various nanostructures including single wall carbon nanotubes, molecular transistors and quantum wires formed in two-dimensional electron gas. The review starts with a textbook description of resonant tunneling of noninteracting electrons through a double-barrier structure. The effects of electron-electron interaction in sequential and resonant electron tunneling are studied by using Luttinger liquid model of electron transport in quantum wires. The experimental aspects of the problem (fabrication of quantum wires and transport measurements) are also considered. The influence of vibrational and electromechanical effects on resonant electron tunneling in molecular transistors is discussed.

  2. STRENGTHENING OF A REINFORCED CONCRETE BRIDGE WITH PRESTRESSED STEEL WIRE ROPES

    Directory of Open Access Journals (Sweden)

    Kexin Zhang

    2017-10-01

    Full Text Available This paper describes prestressed steel wire ropes as a way to strengthen a 20-year-old RC T-beam bridge. High strength, low relaxation steel wire ropes with minor radius, high tensile strain and good corrosion resistance were used in this reinforcement. The construction process for strengthening with prestressed steel wire ropes—including wire rope measuring, extruding anchor heads making, anchorage installing, tensioning steel wire ropes and pouring mortar was described. Ultimate bearing capacity of the bridge after strengthening was discussed based on the concrete structure theory. The flexural strength of RC T-beam bridges strengthened with prestressed steel wire ropes was governed by the failure of concrete crushing. To investigate effectiveness of the strengthening method, fielding-load tests were carried out before and after strengthening. The results of concrete strain and deflection show that the flexural strength and stiffness of the strengthened beam are improved. The crack width measurement also indicates that this technique could increase the durability of the bridge. Thus, this strengthened way with prestressed steel wire rope is feasible and effective.

  3. Multifilamentary Cu-Nb3Sn superconductor wires

    International Nuclear Information System (INIS)

    Rodrigues, D.; Pinatti, D.G.

    1990-01-01

    This paper reports on one of the main technological problems concerning Nb 3 Sn superconducting wires production which is the optimization of heat treatments for the formation of the A-15 intermetallic compound. At the present work, Nb 3 Sn superconducting wire is produced by solid-liquid diffusion method which increases considerably the critical current values of the superconductor. Through this method, niobium, copper and Sn 7% wt Cu alloy are kept in the pure state. Thus, the method dispenses intermediate heat treatments of recrystallization during the manufacturing process of the wire. After the wire was ready, optimization work of heat treatments was accomplished aiming to obtain its best superconducting characteristics, Measurement of critical temperature, critical current versus magnetic field, normal and at room temperature resistivity were performed, as well as scanning electron microscopy for determination of Nb 3 Sn layers and transmission electron microscopy measurements of redetermining the grain sizes in Nb 3 Sn formed in each treatment. It was obtained critical current densities of 1.8 x 10 6 A/cm 2 in the Nb 3 Sn layer, at 10 Teslas and 4.2 K. The samples were analyzed by employing the superconducting collective flux pinning theories and a satisfactory agreement between the experimental and theoretical data was attained. The production process and the small size of the filaments used made a successful optimization of the wire possible

  4. Transient filament stretching rheometer I: force balance analysis

    DEFF Research Database (Denmark)

    Szabo, Peter

    1997-01-01

    The filament stretching device which is used increasingly as an apparatus for measuring extensional properties of polymeric liquids isanalysed. A force balance that includes the effects of inertia and surface tension is derived.The force balance may be used to correct for the effects of inertia...

  5. Stretch Marks

    Science.gov (United States)

    ... completely without the help of a dermatologist or plastic surgeon. These doctors may use one of many types of treatments — from actual surgery to techniques like microdermabrasion and laser treatment — to reduce the appearance of stretch marks. These techniques are ...

  6. Test plan for Enraf Series 854 level gauge wire testing

    International Nuclear Information System (INIS)

    Barnes, G.A.

    1994-01-01

    An Enraf Series 854 level gauge was installed on tank 241-S-106 during the first week of June 1994. On August 11, 1994, the gauge's stainless steel measuring wire broke. After examination and laboratory analysis, it was determined that the wire broke due to severe chloride ion corrosion. It is suspected that the chloride ion contamination came from the radiation induced breakdown of the polyvinyl chloride (PVC) riser liner. It is well documented that the breakdown of PVC due to radiation produces chloride containing compounds. This document provides a qualification test plan to remove and have analyzed the wire in all of the Enraf Series 854 that have been installed to date. These tests will confirm the presence or absence of chloride ions in the PVC liners and/or on the Enraf measuring wires installed in the tanks. This test will involve removing the 316 stainless steel wire drums from all of the existing Enraf Series 854 level gauges that have been installed. New 316 stainless steel wire drums shall be installed into the gauges and the gauges will be placed back into service. The wire that is removed from the gauges shall be sent to the 222-S Lab or the Pacific Northwest Laboratory (PNL) for analysis. Additional wire replacements will occur at intervals as determined necessary by the results of the laboratory analyses

  7. PS wire chamber

    CERN Multimedia

    1970-01-01

    A wire chamber used at CERN's Proton Synchrotron accelerator in the 1970s. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  8. Variation of high-power aluminum-wire array z-pinch dynamics with wire number, load mass, and array radius

    Energy Technology Data Exchange (ETDEWEB)

    Sanford, T.W.L.; Mock, R.C.; Marder, B.M. [and others

    1997-12-01

    A systematic study of annular aluminum-wire z-pinches on the Saturn accelerator shows that the quality of the implosion, (as measured by the radial convergence, the radiated energy, pulse width, and power), increases with wire number. Radiation magnetohydrodynamic (RMHC) xy simulations suggest that the implosion transitions from that of individual wire plasmas to that of a continuous plasma shell when the interwire spacing is reduced below {approximately} 1.4 mm. In this plasma-shell regime, many of the global radiation and plasma characteristics are in agreement with those simulated by 2D-RMHC rz simulations. In this regime, measured changes in the radiation pulse width with variations in load mass and array radius are consistent with the simulations and are explained by the development of 2D fluid motion in the rz plane. Associated variations in the K-shell yield are qualitatively explained by simple radiation-scaling models.

  9. Variation of high-power aluminum-wire array z-pinch dynamics with wire number, load mass, and array radius

    International Nuclear Information System (INIS)

    Sanford, T.W.L.; Mock, R.C.; Marder, B.M.

    1997-01-01

    A systematic study of annular aluminum-wire z-pinches on the Saturn accelerator shows that the quality of the implosion, (as measured by the radial convergence, the radiated energy, pulse width, and power), increases with wire number. Radiation magnetohydrodynamic (RMHC) xy simulations suggest that the implosion transitions from that of individual wire plasmas to that of a continuous plasma shell when the interwire spacing is reduced below ∼ 1.4 mm. In this plasma-shell regime, many of the global radiation and plasma characteristics are in agreement with those simulated by 2D-RMHC rz simulations. In this regime, measured changes in the radiation pulse width with variations in load mass and array radius are consistent with the simulations and are explained by the development of 2D fluid motion in the rz plane. Associated variations in the K-shell yield are qualitatively explained by simple radiation-scaling models

  10. Variation of high-power aluminum-wire array Z-pinch dynamics with wire number, load mass, and array radius

    Science.gov (United States)

    Sanford, T. W. L.; Mock, R. C.; Marder, B. M.; Nash, T. J.; Spielman, R. B.; Peterson, D. L.; Roderick, N. F.; Hammer, J. H.; De Groot, J. S.; Mosher, D.; Whitney, K. G.; Apruzese, J. P.

    1997-05-01

    A systematic study of annular aluminum-wire z-pinches on the Saturn accelerator shows that the quality of the implosion, (as measured by the radial convergence, the radiated energy, pulse width, and power), increases with wire number. Radiation magnetohydrodynamic (RMHC) xy simulations suggest that the implosion transitions from that of individual wire plasmas to that of a continuous plasma shell when the interwire spacing is reduced below ˜1.4 mm. In this "plasma-shell regime," many of the global radiation and plasma characteristics are in agreement with those simulated by 2D-RMHC rz simulations. In this regime, measured changes in the radiation pulse width with variations in load mass and array radius are consistent with the simulations and are explained by the development of 2D fluid motion in the rz plane. Associated variations in the K-shell yield are qualitatively explained by simple radiation-scaling models.

  11. Variation of high-power aluminum-wire array Z-pinch dynamics with wire number, load mass, and array radius

    International Nuclear Information System (INIS)

    Sanford, T. W. L.; Mock, R. C.; Marder, B. M.; Nash, T. J.; Spielman, R. B.; Peterson, D. L.; Roderick, N. F.; Hammer, J. H.; De Groot, J. S.; Mosher, D.; Whitney, K. G.; Apruzese, J. P.

    1997-01-01

    A systematic study of annular aluminum-wire z-pinches on the Saturn accelerator shows that the quality of the implosion, (as measured by the radial convergence, the radiated energy, pulse width, and power), increases with wire number. Radiation magnetohydrodynamic (RMHC) xy simulations suggest that the implosion transitions from that of individual wire plasmas to that of a continuous plasma shell when the interwire spacing is reduced below ∼1.4 mm. In this ''plasma-shell regime,'' many of the global radiation and plasma characteristics are in agreement with those simulated by 2D-RMHC rz simulations. In this regime, measured changes in the radiation pulse width with variations in load mass and array radius are consistent with the simulations and are explained by the development of 2D fluid motion in the rz plane. Associated variations in the K-shell yield are qualitatively explained by simple radiation-scaling models

  12. Acute effect of different stretching methods on flexibility and jumping performance in competitive artistic gymnasts.

    Science.gov (United States)

    Dallas, G; Smirniotou, A; Tsiganos, G; Tsopani, D; Di Cagno, A; Tsolakis, Ch

    2014-12-01

    The purpose of this study was to investigate the acute effects of 3 different warm up methods of stretching (static, proprioceptive neuromuscular facilitation, and stretching exercises on a Vibration platform) on flexibility and legs power-jumping performance in competitive artistic gymnasts. Eighteen competitive artistic gymnasts were recruited to participate in this study. Subjects were exposed to each of 3 experimental stretching conditions: static stretching (SS), proprioceptive neuromuscular facilitation stretching (PNF), and stretching exercises on a Vibration platform (S+V). Flexibility assessed with sit and reach test (S & R) and jumping performance with squat jump (SJ) and counter movement jump (CMJ) and were measured before, immediately after and 15 min after the interventions. Significant differences were observed for flexibility after all stretching conditions for S+V (+1.1%), SS (+5.7%) and PNF (+6.8%) (P=0.000), which remained higher 15 min after interventions (S+V (1.1%), SS (5.3%) and PNF (5.5%), respectively (P=0.000). PNF stretching increased flexibility in competitive gymnasts, while S+V maintained jumping performance when both methods were used as part of a warm-up procedure.

  13. Investigation of surface treatment of conductive wire in cylindrical atmospheric pressure plasmas

    International Nuclear Information System (INIS)

    Ye Rubin; Kagohashi, Tsutomu; Zheng Wei

    2009-01-01

    Polyethylene insulated electric wire was treated in He and Ar dielectric barrier discharge atmospheric pressure plasmas generated in a quartz tube wound with tubular electrodes. The wire was put penetrating through the high voltage and the grounded electrodes, improving the discharge and facilitating uniform surface treatment. In this work, the influences of conductivity of the wire on the effects of surface treatment and discharge behavior were investigated. Surface properties of the wire samples were analyzed by means of surface energy measurement and X-ray photoelectron spectroscopy. In order to reveal the mechanism for treating the conductive wire, I-V discharge waveforms were measured and time-resolved plasma images were taken. It was demonstrated that the conductive wire was involved in the discharge process, reducing the breakdown voltage significantly and enhancing the discharge. It shows that the discharge mode was strongly dependent on the conductivity of a wire. Intensive surface discharges developed along the conductive wire were found to be mainly responsible for noticeable improvement in the treatment effect.

  14. Torsion-induced magnetoimpedance in nanocrystalline Fe-based wires

    International Nuclear Information System (INIS)

    Santos, J.D.; Olivera, J.; Alvarez, P.; Sanchez, T.; Perez, M.J.; Sanchez, M.L.; Gorria, P.; Hernando, B.

    2007-01-01

    The magnetic field influence on the real and imaginary parts of axial-diagonal (ζ zz ) and off-diagonal (ζ φz ) components of the surface magnetoimpedance (MI) tensor has been studied in amorphous and nanocrystalline Fe 73.5 Si 13.5 B 9 Cu 1 Nb 3 wires. Twisted and untwisted wires were annealed at a temperature near to that of primary crystallization. The MI response has been measured at 1MHz and 5mA rms drive current in all the samples. Even though the higher values for both components of the MI tensor are achieved for the untwisted annealed wire, the most interesting features are observed in the torsion annealed wire

  15. Shape of a clamped stiff harpsichord wire driven at a resonant frequency

    Science.gov (United States)

    Hanson, Roger J.; Macomber, Hilliard Kent; Boucher, Mathew A.

    2002-05-01

    A wire transversely driven by a sinusoidal force at the resonant frequency of a vibrational mode vibrates at the driving frequency and at harmonics generated by nonlinear processes in the wire. If the amplitude of a harmonic is measured as a function of position along the wire, its shape is revealed. It differs significantly from a sinusoid in the vicinity of either end of the wire because the ends are clamped and the wire has significant stiffness. The shapes of various harmonics have been determined for a brass harpsichord wire, 70 cm long, from optical detector measurements made at different distances from a clamped end. Knowledge of shape facilitates the determination of antinode amplitudes of harmonics when the gross motion of the wire is so large that the detectors must be positioned near an end of the wire because of their very limited dynamic range. Some observations of harmonics and related phenomena were reported previously [Hanson et al., J. Acoust Soc. Am. 108, 2592 (2000); 106, 2141 (1999)]. The shape information is also needed to help separate nonlinear effects possibly occurring in the detectors from those of interest, occurring in the wire itself.

  16. Wire bonding in microelectronics

    CERN Document Server

    Harman, George G

    2010-01-01

    Wire Bonding in Microelectronics, Third Edition, has been thoroughly revised to help you meet the challenges of today's small-scale and fine-pitch microelectronics. This authoritative guide covers every aspect of designing, manufacturing, and evaluating wire bonds engineered with cutting-edge techniques. In addition to gaining a full grasp of bonding technology, you'll learn how to create reliable bonds at exceedingly high yields, test wire bonds, solve common bonding problems, implement molecular cleaning methods, and much more. Coverage includes: Ultrasonic bonding systems and technologies, including high-frequency systems Bonding wire metallurgy and characteristics, including copper wire Wire bond testing Gold-aluminum intermetallic compounds and other interface reactions Gold and nickel-based bond pad plating materials and problems Cleaning to improve bondability and reliability Mechanical problems in wire bonding High-yield, fine-pitch, specialized-looping, soft-substrate, and extreme-temperature wire bo...

  17. The local domain wall position in ferromagnetic thin wires: simultaneous measurement of resistive and transverse voltages at multiple points

    International Nuclear Information System (INIS)

    Hanada, R.; Sugawara, H.; Aoki, Y.; Sato, H.; Shigeto, K.; Shinjo, T.; Ono, T.; Miyajima, H.

    2002-01-01

    We have simultaneously measured the field dependences of voltages at multiple pairs of resistance and transverse voltage probes in ferromagnetic wires (with either magnetic or non-magnetic voltage probes). Both the resistive (through the giant magnetoresistance and anisotropic magnetoresistance) and transverse voltages (through the planar Hall effect) exhibit abrupt jumps, reflecting discrete motion of domain walls or rotations of magnetization. Voltage probes, even if non-magnetic, are found to affect the jump fields depending on the sample conditions. We demonstrate that the specific information on the domain (wall) motion along a thin ferromagnetic wire could be obtained from the jump fields. (author)

  18. Effect of Ankle Positioning During Hamstring Stretches for Improving Straight Leg Hip Flexion Motion.

    Science.gov (United States)

    Laudner, Kevin G; Benjamin, Peter J; Selkow, Noelle M

    2016-03-01

    To compare the effects of stretching the hamstrings with the ankle in either a plantar-flexed (PF) or dorsiflexed (DF) position for improving straight leg hip flexion range of motion (ROM) over a 4-week period. Randomized, single-blinded, pretest, posttest design. Athletic training facility. Each limb of 34 asymptomatic individuals (15 males, 19 females) was randomly assigned to one of the 3 groups. Twenty-four limbs received hamstring stretches with the ankle in DF, 24 limbs received hamstring stretches with the ankle in PF, and 20 limbs received no stretch (control). Ankle position (PF, DF) during hamstring stretching. We measured pretest and posttest passive straight leg hip flexion ROM with the test ankle in a neutral position. For the intervention groups, the test limb was passively stretched with the ankle held in end range DF or PF for their respective group. Each stretch was held for 30 seconds for a total of 3 applications. Two treatment sessions were completed per week for a total of 4 weeks. The control limbs received no stretching during the 4-week period. We conducted 1-way analyses of covariance to determine significant changes in ROM between groups (P hamstrings in either PF or DF improve straight leg hip ROM compared with a control group. The results of this study should be considered by clinicians when determining the optimal stretching techniques aimed at increasing hamstring length.

  19. Radius scaling of titanium wire arrays on the Z accelerator

    International Nuclear Information System (INIS)

    Coverdale, C.A.; Denney, C.; Spielman, R.B.

    1999-01-01

    The 20 MA Z accelerator has made possible the generation of substantial radiation (> 100 kJ) at higher photon energies (4.8 keV) through the use of titanium wire arrays. In this paper, the results of experiments designed to study the effects of initial load radius variations of nickel-clad titanium wire arrays will be presented. The load radius was varied from 17.5 mm to 25 mm and titanium K-shell (4.8 keV) yields of greater than 100 kJ were measured. The inclusion of the nickel cladding on the titanium wires allows for higher wire number loads and increases the spectral broadness of the source; kilovolt emissions (nickel plus titanium L-shell) of 400 kJ were measured in these experiments. Comparisons of the data to calculations will be made to estimate pinched plasma parameters such as temperature and participating mass fraction. These results will also be compared with previous pure titanium wire array results

  20. Thermal anchoring of wires in large scale superconducting coil test experiment

    International Nuclear Information System (INIS)

    Patel, Dipak; Sharma, A.N.; Prasad, Upendra; Khristi, Yohan; Varmora, Pankaj; Doshi, Kalpesh; Pradhan, S.

    2013-01-01

    Highlights: • We addressed how thermal anchoring in large scale coil test is different compare to small cryogenic apparatus? • We did precise estimation of thermal anchoring length at 77 K and 4.2 K heat sink in large scale superconducting coil test experiment. • We addressed, the quality of anchoring without covering entire wires using Kapton/Teflon tape. • We obtained excellent results in temperature measurement without using GE Varnish by doubling estimated anchoring length. -- Abstract: Effective and precise thermal anchoring of wires in cryogenic experiment is mandatory to measure temperature in milikelvin accuracy and to avoid unnecessary cooling power due to additional heat conduction from room temperature (RT) to operating temperature (OT) through potential, field, displacement and stress measurement instrumentation wires. Instrumentation wires used in large scale superconducting coil test experiments are different compare to cryogenic apparatus in terms of unique construction and overall diameter/area due to errorless measurement in large time-varying magnetic field compare to small cryogenic apparatus, often shielded wires are used. Hence, along with other variables, anchoring techniques and required thermal anchoring length are entirely different in this experiment compare to cryogenic apparatus. In present paper, estimation of thermal anchoring length of five different types of instrumentation wires used in coils test campaign at Institute for Plasma Research (IPR), India has been discussed and some temperature measurement results of coils test campaign have been presented

  1. Base Information Transport Infrastructure Wired (BITI Wired)

    Science.gov (United States)

    2016-03-01

    2016 Major Automated Information System Annual Report Base Information Transport Infrastructure Wired (BITI Wired) Defense Acquisition Management...Combat Information Transport System program was restructured into two pre-Major Automated Information System (pre-MAIS) components: Information...Major Automated Information System MAIS OE - MAIS Original Estimate MAR – MAIS Annual Report MDA - Milestone Decision Authority MDD - Materiel

  2. Effects of contract-relax vs static stretching on stretch-induced strength loss and length-tension relationship

    DEFF Research Database (Denmark)

    Balle, S S; Magnusson, S P; McHugh, M P

    2015-01-01

    The purpose of this study was to determine the acute effects of contract-relax stretching (CRS) vs static stretching (SS) on strength loss and the length-tension relationship. We hypothesized that there would be a greater muscle length-specific effect of CRS vs SS. Isometric hamstring strength wa...

  3. Simplified Transient Hot-Wire Method for Effective Thermal Conductivity Measurement in Geo Materials: Microstructure and Saturation Effect

    Directory of Open Access Journals (Sweden)

    B. Merckx

    2012-01-01

    Full Text Available The thermal conductivity measurement by a simplified transient hot-wire technique is applied to geomaterials in order to show the relationships which can exist between effective thermal conductivity, texture, and moisture of the materials. After a validation of the used “one hot-wire” technique in water, toluene, and glass-bead assemblages, the investigations were performed (1 in glass-bead assemblages of different diameters in dried, water, and acetone-saturated states in order to observe the role of grain sizes and saturation on the effective thermal conductivity, (2 in a compacted earth brick at different moisture states, and (3 in a lime-hemp concrete during 110 days following its manufacture. The lime-hemp concrete allows the measurements during the setting, desiccation and carbonation steps. The recorded Δ/ln( diagrams allow the calculation of one effective thermal conductivity in the continuous and homogeneous fluids and two effective thermal conductivities in the heterogeneous solids. The first one measured in the short time acquisitions (<1 s mainly depends on the contact between the wire and grains and thus microtexture and hydrated state of the material. The second one, measured for longer time acquisitions, characterizes the mean effective thermal conductivity of the material.

  4. Wire chamber gases

    International Nuclear Information System (INIS)

    Va'vra, J.

    1992-04-01

    In this paper, we describe new developments in gas mixtures which have occurred during the last 3--4 years. In particular, we discuss new results on the measurement and modeling of electron drift parameters, the modeling of drift chamber resolution, measurements of primary ionization and the choice of gas for applications such as tracking, single electron detection, X-ray detection and visual imaging. In addition, new results are presented on photon feedback, breakdown and wire aging

  5. Copper wire bonding

    CERN Document Server

    Chauhan, Preeti S; Zhong, ZhaoWei; Pecht, Michael G

    2014-01-01

    This critical volume provides an in-depth presentation of copper wire bonding technologies, processes and equipment, along with the economic benefits and risks.  Due to the increasing cost of materials used to make electronic components, the electronics industry has been rapidly moving from high cost gold to significantly lower cost copper as a wire bonding material.  However, copper wire bonding has several process and reliability concerns due to its material properties.  Copper Wire Bonding book lays out the challenges involved in replacing gold with copper as a wire bond material, and includes the bonding process changes—bond force, electric flame off, current and ultrasonic energy optimization, and bonding tools and equipment changes for first and second bond formation.  In addition, the bond–pad metallurgies and the use of bare and palladium-coated copper wires on aluminum are presented, and gold, nickel and palladium surface finishes are discussed.  The book also discusses best practices and re...

  6. Theoretical modelling of physiologically stretched vessel in magnetisable stent assisted magnetic drug targeting application

    International Nuclear Information System (INIS)

    Mardinoglu, Adil; Cregg, P.J.; Murphy, Kieran; Curtin, Maurice; Prina-Mello, Adriele

    2011-01-01

    The magnetisable stent assisted magnetic targeted drug delivery system in a physiologically stretched vessel is considered theoretically. The changes in the mechanical behaviour of the vessel are analysed under the influence of mechanical forces generated by blood pressure. In this 2D mathematical model a ferromagnetic, coiled wire stent is implanted to aid collection of magnetic drug carrier particles in an elastic tube, which has similar mechanical properties to the blood vessel. A cyclic mechanical force is applied to the elastic tube to mimic the mechanical stress and strain of both the stent and vessel while in the body due to pulsatile blood circulation. The magnetic dipole-dipole and hydrodynamic interactions for multiple particles are included and agglomeration of particles is also modelled. The resulting collection efficiency of the mathematical model shows that the system performance can decrease by as much as 10% due to the effects of the pulsatile blood circulation. - Research highlights: →Theoretical modelling of magnetic drug targeting on a physiologically stretched stent-vessel system. →Cyclic mechanical force applied to mimic the mechanical stress and strain of both stent and vessel. →The magnetic dipole-dipole and hydrodynamic interactions for multiple particles is modelled. →Collection efficiency of the mathematical model is calculated for different physiological blood flow and magnetic field strength.

  7. Applying hot wire anemometry to directly measure the water balance in a proton exchange membrane fuel cell - Part 1

    DEFF Research Database (Denmark)

    Berning, Torsten; Al Shakhshir, Saher

    2015-01-01

    In order to accurately determine the water balance of a proton exchange membrane fuel cell it has recently been suggested to employ constant temperature anemometry (CTA), a frequently used method to measure the velocity of a fluid stream. CTA relies on convective heat transfer around a heated wire...... the equations required to calculate the heat transfer coefficient and the resulting voltage signal as function of the fuel cell water balance. The most critical and least understood part is the determination of the Nusselt number to calculate the heat transfer between the wire and the gas stream. Different...... expressions taken from the literature will be examined in detail, and it will be demonstrated that the power-law approach suggested by Hilpert is the only useful one for the current purposes because in this case the voltage response from the hot-wire sensor E/E0 shows the same dependency to the water balance...

  8. Wire array Z-pinch insights for enhanced x-ray production

    Energy Technology Data Exchange (ETDEWEB)

    Sanford, T.W.; Mock, R.C.; Spielman, R.B. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1196 (United States); Haines, M.G.; Chittenden, J.P. [The Blackett Laboratory, Imperial College, London, SW7 2BZ (United Kingdom); Whitney, K.G.; Apruzese, J.P. [Naval Research Laboratory, Radiation Hydrodynamics Branch, Washington, D.C. 20375 (United States); Peterson, D.L. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Greenly, J.B.; Sinars, D.B. [Laboratory of Plasma Studies, Cornell University, Ithaca, New York 14853 (United States); Reisman, D.B. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Mosher, D. [Naval Research Laboratory, Pulsed Power Physics Branch, Washington, D.C. 20375 (United States)

    1999-05-01

    Comparisons of measured total radiated x-ray power from annular wire-array {ital z}-pinches with a variety of models as a function of wire number, array mass, and load radius are reviewed. The data, which are comprehensive, have provided important insights into the features of wire-array dynamics that are critical for high x-ray power generation. Collectively, the comparisons of the data with the model calculations suggest that a number of underlying dynamical mechanisms involving cylindrical asymmetries and plasma instabilities contribute to the measured characteristics. For example, under the general assumption that the measured risetime of the total-radiated-power pulse is related to the thickness of the plasma shell formed on axis, the Heuristic Model [IEEE Trans. Plasma Sci. {bold 26}, 1275 (1998)] agrees with the measured risetime under a number of specific assumptions about the way the breakdown of the wires, the wire-plasma expansion, and the Rayleigh{endash}Taylor instability in the r{endash}z plane, develop. Likewise, in the high wire-number regime (where the wires are calculated to form a plasma shell prior to significant radial motion of the shell) the comparisons show that the variation in the power of the radiation generated as a function of load mass and array radius can be simulated by the two-dimensional Eulerian-radiation- magnetohydrodynamics code (E-RMHC) [Phys. Plasmas {bold 3}, 368 (1996)], using a single random-density perturbation that seeds the Rayleigh{endash}Taylor instability in the r{endash}z plane. For a given pulse-power generator, the comparisons suggest that (1) the smallest interwire gaps compatible with practical load construction and (2) the minimum implosion time consistent with the optimum required energy coupling of the generator to the load should produce the highest total-radiated-power levels. {copyright} {ital 1999 American Institute of Physics.}

  9. Wire array Z-pinch insights for enhanced x-ray production

    Science.gov (United States)

    Sanford, T. W. L.; Mock, R. C.; Spielman, R. B.; Haines, M. G.; Chittenden, J. P.; Whitney, K. G.; Apruzese, J. P.; Peterson, D. L.; Greenly, J. B.; Sinars, D. B.; Reisman, D. B.; Mosher, D.

    1999-05-01

    Comparisons of measured total radiated x-ray power from annular wire-array z-pinches with a variety of models as a function of wire number, array mass, and load radius are reviewed. The data, which are comprehensive, have provided important insights into the features of wire-array dynamics that are critical for high x-ray power generation. Collectively, the comparisons of the data with the model calculations suggest that a number of underlying dynamical mechanisms involving cylindrical asymmetries and plasma instabilities contribute to the measured characteristics. For example, under the general assumption that the measured risetime of the total-radiated-power pulse is related to the thickness of the plasma shell formed on axis, the Heuristic Model [IEEE Trans. Plasma Sci. 26, 1275 (1998)] agrees with the measured risetime under a number of specific assumptions about the way the breakdown of the wires, the wire-plasma expansion, and the Rayleigh-Taylor instability in the r-z plane, develop. Likewise, in the high wire-number regime (where the wires are calculated to form a plasma shell prior to significant radial motion of the shell) the comparisons show that the variation in the power of the radiation generated as a function of load mass and array radius can be simulated by the two-dimensional Eulerian-radiation- magnetohydrodynamics code (E-RMHC) [Phys. Plasmas 3, 368 (1996)], using a single random-density perturbation that seeds the Rayleigh-Taylor instability in the r-z plane. For a given pulse-power generator, the comparisons suggest that (1) the smallest interwire gaps compatible with practical load construction and (2) the minimum implosion time consistent with the optimum required energy coupling of the generator to the load should produce the highest total-radiated-power levels.

  10. Wire Array Z-Pinch Insights for Enhanced X-Ray Production

    Energy Technology Data Exchange (ETDEWEB)

    Apruzese, J.P.; Chittenden, J.P.; Greenly, J.B.; Haines, M.G.; Mock, R.C.; Mosher, D.; Peterson, D.L.; Reisman, D.B.; Sanford, T.W.L.; Sinars, D.B.; Spielman, R.B.; Whitnery, K.G.

    1999-01-04

    Comparisons of measured total radiated x-ray power from annular wire-array z-pinches with a variety of models as a function of wire number, array mass, and load radius are reviewed. The data, which are comprehensive, have provided important insights into the features of wire-array dynamics that are critical for high x-ray power generation. Collectively, the comparisons of the data with the model calculations suggest that a number of underlying dynamical mechanisms involving cylindrical asymmetries and plasma instabilities contribute to the measured characteristics. For example, under the general assumption that the measured risetime of the total-radiated-power pulse is related to the thickness of the plasma shell formed on axis, the Heuristic Model [IEEE Trans. Plasma Sci., 26, 1275 (1998)] agrees with the measured risetime under a number of specific assumptions about the way the breakdown of the wires, the wire-plasma expansion, and the Rayleigh-Taylor instability in the r-z plane, interact. Likewise, in the high wire-number regime (where the wires are calculated to form a plasma shell prior to significant radial motion of the shell) the comparisons show that the variation in the power of the radiation generated as a function of load mass and array radius can be simulated by the 2-D Eulerian-radiation-magnetohydrodynamics code (E-RMHC) [Phys. Plasmas 3, 368 (1996)], using a single random-density perturbation that seeds the Rayleigh-Taylor instability in the r-z plane. For a given pulse-power generator, the comparisons suggest that (1) the smallest interwire gaps compatible with practical load construction and (2) the minimum implosion time consistent with the optimum required energy coupling of the generator to the load should produce the highest total-radiated-power levels.

  11. Wire array Z-pinch insights for enhanced x-ray production

    International Nuclear Information System (INIS)

    Sanford, T.W.; Mock, R.C.; Spielman, R.B.; Haines, M.G.; Chittenden, J.P.; Whitney, K.G.; Apruzese, J.P.; Peterson, D.L.; Greenly, J.B.; Sinars, D.B.; Reisman, D.B.; Mosher, D.

    1999-01-01

    Comparisons of measured total radiated x-ray power from annular wire-array z-pinches with a variety of models as a function of wire number, array mass, and load radius are reviewed. The data, which are comprehensive, have provided important insights into the features of wire-array dynamics that are critical for high x-ray power generation. Collectively, the comparisons of the data with the model calculations suggest that a number of underlying dynamical mechanisms involving cylindrical asymmetries and plasma instabilities contribute to the measured characteristics. For example, under the general assumption that the measured risetime of the total-radiated-power pulse is related to the thickness of the plasma shell formed on axis, the Heuristic Model [IEEE Trans. Plasma Sci. 26, 1275 (1998)] agrees with the measured risetime under a number of specific assumptions about the way the breakdown of the wires, the wire-plasma expansion, and the Rayleigh - Taylor instability in the r - z plane, develop. Likewise, in the high wire-number regime (where the wires are calculated to form a plasma shell prior to significant radial motion of the shell) the comparisons show that the variation in the power of the radiation generated as a function of load mass and array radius can be simulated by the two-dimensional Eulerian-radiation- magnetohydrodynamics code (E-RMHC) [Phys. Plasmas 3, 368 (1996)], using a single random-density perturbation that seeds the Rayleigh - Taylor instability in the r - z plane. For a given pulse-power generator, the comparisons suggest that (1) the smallest interwire gaps compatible with practical load construction and (2) the minimum implosion time consistent with the optimum required energy coupling of the generator to the load should produce the highest total-radiated-power levels. copyright 1999 American Institute of Physics

  12. Wire Array Z-Pinch Insights for Enhanced X-Ray Production

    International Nuclear Information System (INIS)

    Apruzese, J.P.; Chittenden, J.P.; Greenly, J.B.; Haines, M.G.; Mock, R.C.; Mosher, D.; Peterson, D.L.; Reisman, D.B.; Sanford, T.W.L.; Sinars, D.B.; Spielman, R.B.; Whitnery, K.G.

    1999-01-01

    Comparisons of measured total radiated x-ray power from annular wire-array z-pinches with a variety of models as a function of wire number, array mass, and load radius are reviewed. The data, which are comprehensive, have provided important insights into the features of wire-array dynamics that are critical for high x-ray power generation. Collectively, the comparisons of the data with the model calculations suggest that a number of underlying dynamical mechanisms involving cylindrical asymmetries and plasma instabilities contribute to the measured characteristics. For example, under the general assumption that the measured risetime of the total-radiated-power pulse is related to the thickness of the plasma shell formed on axis, the Heuristic Model [IEEE Trans. Plasma Sci., 26, 1275 (1998)] agrees with the measured risetime under a number of specific assumptions about the way the breakdown of the wires, the wire-plasma expansion, and the Rayleigh-Taylor instability in the r-z plane, interact. Likewise, in the high wire-number regime (where the wires are calculated to form a plasma shell prior to significant radial motion of the shell) the comparisons show that the variation in the power of the radiation generated as a function of load mass and array radius can be simulated by the 2-D Eulerian-radiation-magnetohydrodynamics code (E-RMHC) [Phys. Plasmas 3, 368 (1996)], using a single random-density perturbation that seeds the Rayleigh-Taylor instability in the r-z plane. For a given pulse-power generator, the comparisons suggest that (1) the smallest interwire gaps compatible with practical load construction and (2) the minimum implosion time consistent with the optimum required energy coupling of the generator to the load should produce the highest total-radiated-power levels

  13. Contact angles on stretched solids

    Science.gov (United States)

    Mensink, Liz; Snoeijer, Jacco

    2017-11-01

    The surface energy of solid interfaces plays a central role in wetting, as they dictate the liquid contact angle. Yet, it has been challenging to measure the solid surface energies independently, without making use of Young's law. Here we present Molecular Dynamics (MD) simulations by which we measure the surface properties for all interfaces, including the solids. We observe change in contact angles upon stretching the solid substrates, showing that the surface energy is actually strain dependent. This is clear evidence of the so-called Shuttleworth effect, making it necessary to distinguish surface energy from surface tension. We discuss how this effect gives rise to a new class of elasto-capillary phenomena. ERC Consolidator Grant No. 616918.

  14. A Systematic Review on the Effect of Mechanical Stretch on Hypertrophic Scars after Burn Injuries

    Directory of Open Access Journals (Sweden)

    Yu-ting Zhang

    2017-06-01

    Conclusion: From extensive literature search, there was no strong evidence indicating the positive effect of mechanical stretch using stretching exercise, massage, or splinting on hypertrophic scars. A firm conclusion cannot be drawn for the discrepancy of outcome measures and varied effectiveness. Most of the included studies lacked objective evaluation or control group for comparison. Further high quality studies with larger sample size and using standardized measurements are needed.

  15. Kink and kink-like waves in pre-stretched Mooney-Rivlin viscoelastic rods

    Directory of Open Access Journals (Sweden)

    Y. Z. Wang

    2015-08-01

    Full Text Available The present paper theoretically investigates kink and kink-like waves propagating in pre-stretched Mooney-Rivlin viscoelastic rods. In the constitutive modeling, the Cauchy stress tensor is assumed to consist of an elastic part and a dissipative part. The asymptotic method is adopted to simplify the nonlinear dynamic equations in the limit of finite-small amplitude and long wavelength. Using the reductive perturbation method, we further derive the well-known far-field equation (i.e. the KdV-Burgers equation, to which two kinds of explicit traveling wave solutions are presented. Examples are given to show the influences of pre-stretch and viscosity on the wave shape and wave velocity. It is shown that pre-stretch could be an effective method for modulating the two types of waves. In addition, such waves may be utilized to measure the viscosity coefficient of the material. The competition between the effects of pre-stretch and viscosity on the kink and kink-like waves is also revealed.

  16. Variation of high-power aluminum-wire array Z-pinch dynamics with wire number, load mass, and array radius

    Energy Technology Data Exchange (ETDEWEB)

    Sanford, T.W.; Mock, R.C.; Marder, B.M.; Nash, T.J.; Spielman, R.B. [Sandia National Laboratories, Albuquerque, New Mexico87185 (United States); Peterson, D.L.; Roderick, N.F. [Los Alamos National Laboratory, Los Alamos, New Mexico87545 (United States); Hammer, J.H.; De Groot, J.S. [Lawrence Livermore National Laboratory, Livermore, California94550 (United States); Mosher, D. [Naval Research Laboratory, Pulsed Power Physics Branch, Washington, District of Columbia20375 (United States); Whitney, K.G.; Apruzese, J.P. [Naval Research Laboratory, Radiation Hydrodynamics Branch, Washington, District of Columbia20375 (United States)

    1997-05-01

    A systematic study of annular aluminum-wire z-pinches on the Saturn accelerator shows that the quality of the implosion, (as measured by the radial convergence, the radiated energy, pulse width, and power), increases with wire number. Radiation magnetohydrodynamic (RMHC) xy simulations suggest that the implosion transitions from that of individual wire plasmas to that of a continuous plasma shell when the interwire spacing is reduced below {approximately}1.4mm. In this {open_quotes}plasma-shell regime,{close_quotes} many of the global radiation and plasma characteristics are in agreement with those simulated by 2D-RMHC rz simulations. In this regime, measured changes in the radiation pulse width with variations in load mass and array radius are consistent with the simulations and are explained by the development of 2D fluid motion in the rz plane. Associated variations in the K-shell yield are qualitatively explained by simple radiation-scaling models. {copyright} {ital 1997 American Institute of Physics.}

  17. Variation of high-power aluminum-wire array Z-pinch dynamics with wire number, load mass, and array radius

    International Nuclear Information System (INIS)

    Sanford, T.W.; Mock, R.C.; Marder, B.M.; Nash, T.J.; Spielman, R.B.; Peterson, D.L.; Roderick, N.F.; Hammer, J.H.; De Groot, J.S.; Mosher, D.; Whitney, K.G.; Apruzese, J.P.

    1997-01-01

    A systematic study of annular aluminum-wire z-pinches on the Saturn accelerator shows that the quality of the implosion, (as measured by the radial convergence, the radiated energy, pulse width, and power), increases with wire number. Radiation magnetohydrodynamic (RMHC) xy simulations suggest that the implosion transitions from that of individual wire plasmas to that of a continuous plasma shell when the interwire spacing is reduced below ∼1.4mm. In this open-quotes plasma-shell regime,close quotes many of the global radiation and plasma characteristics are in agreement with those simulated by 2D-RMHC rz simulations. In this regime, measured changes in the radiation pulse width with variations in load mass and array radius are consistent with the simulations and are explained by the development of 2D fluid motion in the rz plane. Associated variations in the K-shell yield are qualitatively explained by simple radiation-scaling models. copyright 1997 American Institute of Physics

  18. Modeling the electrical resistance of gold film conductors on uniaxially stretched elastomeric substrates

    Science.gov (United States)

    Cao, Wenzhe; Görrn, Patrick; Wagner, Sigurd

    2011-05-01

    The electrical resistance of gold film conductors on polydimethyl siloxane substrates at stages of uniaxial stretching is measured and modeled. The surface area of a gold conductor is assumed constant during stretching so that the exposed substrate takes up all strain. Sheet resistances are calculated from frames of scanning electron micrographs by numerically solving for the electrical potentials of all pixels in a frame. These sheet resistances agree sufficiently well with values measured on the same conductors to give credence to the model of a stretchable network of gold links defined by microcracks.

  19. THUNDER Piezoelectric Actuators as a Method of Stretch-Tuning an Optical Fiber Grating

    Science.gov (United States)

    Allison, Sidney G.; Fox, Robert L.; Froggatt, Mark E.; Childers, Brooks A.

    2000-01-01

    A method of stretching optical fiber holds interest for measuring strain in smart structures where the physical displacement may be used to tune optical fiber lasers. A small, light weight, low power tunable fiber laser is ideal for demodulating strain in optical fiber Bragg gratings attached to smart structures such as the re-usable launch vehicle that is being developed by NASA. A method is presented for stretching optical fibers using the THUNDER piezoelectric actuators invented at NASA Langley Research Center. THUNDER actuators use a piezoelectric layer bonded to a metal backing to enable the actuators to produce displacements larger than the unbonded piezoelectric material. The shift in reflected optical wavelength resulting from stretching the fiber Bragg grating is presented. Means of adapting THUNDER actuators for stretching optical fibers is discussed, including ferrules, ferrule clamp blocks, and plastic hinges made with stereo lithography.

  20. Measured longitudinal beam impedance of booster gradient magnets; TOPICAL

    International Nuclear Information System (INIS)

    James L Crisp and Brian J. Fellenz

    2001-01-01

    The Booster gradient magnets have no vacuum pipe which forces the beam image current to flow along the laminated pole tips. Both D and F style magnets were measured with a stretched wire to determine the longitudinal beam impedance caused by these laminations. Results are compared to calculations done 30 years ago. The inductive part of the magnet impedance is interesting because it partially compensates for the negative inductance effects of space charge on the beam. An R/L circuit consisting of 37K(center d ot) in parallel with between 40 and 100uH is a reasonable approximation to the total impedance of Booster magnet laminations

  1. Researching on Control Device of Prestressing Wire Reinforcement

    Science.gov (United States)

    Si, Jianhui; Guo, Yangbo; Liu, Maoshe

    2017-06-01

    This paper mainly introduces a device for controlling prestress and its related research methods, the advantage of this method is that the reinforcement process is easy to operate and control the prestress of wire rope accurately. The relationship between the stress and strain of the steel wire rope is monitored during the experiment, and the one - to - one relationship between the controllable position and the pretightening force of the steel wire rope is confirmed by the 5mm steel wire rope, and the results are analyzed theoretically by the measured elastic modulus. The results show that the method can effectively control the prestressing force, and the result provides a reference method for strengthening the concrete column with prestressed steel strand.

  2. Cyclic mechanical stretch enhances BMP9-induced osteogenic differentiation of mesenchymal stem cells.

    Science.gov (United States)

    Song, Yang; Tang, Yinhong; Song, Jinlin; Lei, Mingxing; Liang, Panpan; Fu, Tiwei; Su, Xudong; Zhou, Pengfei; Yang, Li; Huang, Enyi

    2018-04-01

    The purpose of this study was to investigate whether mechanical stretch can enhance the bone morphogenetic protein 9 (BMP9)-induced osteogenic differentiation in MSCs. Recombinant adenoviruses were used to overexpress the BMP9 in C3H10T1/2 MSCs. Cells were seeded onto six-well BioFlex collagen I-coated plates and subjected to cyclic mechanical stretch [6% elongation at 60 cycles/minute (1 Hz)] in a Flexercell FX-4000 strain unit for up to 12 hours. Immunostaining and confocal microscope were used to detect cytoskeleton organization. Cell cycle progression was checked by flow cytometry. Alkaline phosphatase activity was measured with a Chemiluminescence Assay Kit and was quantified with a histochemical staining assay. Matrix mineralization was examined by Alizarin Red S Staining. Mechanical stretch induces cytoskeleton reorganization and inhibits cell proliferation by preventing cells entry into S phase of the cell cycle. Although mechanical stretch alone does not induce the osteogenic differentiation of C3H10T1/2 MSCs, co-stimulation with mechanical stretch and BMP9 enhances alkaline phosphatase activity. The expression of key lineage-specific regulators (e.g., osteocalcin (OCN), SRY-related HMG-box 9, and runt-related transcription factor 2) is also increased after the co-stimulation, compared to the mechanical stretch stimulation along. Furthermore, mechanical stretch augments the BMP9-mediated bone matrix mineralization of C3H10T1/2 MSCs. Our results suggest that mechanical stretch enhances BMP9-induced osteoblastic lineage specification in C3H10T1/2 MSCs.

  3. A discrete electromechanical model for human cardiac tissue: effects of stretch-activated currents and stretch conditions on restitution properties and spiral wave dynamics.

    Science.gov (United States)

    Weise, Louis D; Panfilov, Alexander V

    2013-01-01

    We introduce an electromechanical model for human cardiac tissue which couples a biophysical model of cardiac excitation (Tusscher, Noble, Noble, Panfilov, 2006) and tension development (adjusted Niederer, Hunter, Smith, 2006 model) with a discrete elastic mass-lattice model. The equations for the excitation processes are solved with a finite difference approach, and the equations of the mass-lattice model are solved using Verlet integration. This allows the coupled problem to be solved with high numerical resolution. Passive mechanical properties of the mass-lattice model are described by a generalized Hooke's law for finite deformations (Seth material). Active mechanical contraction is initiated by changes of the intracellular calcium concentration, which is a variable of the electrical model. Mechanical deformation feeds back on the electrophysiology via stretch-activated ion channels whose conductivity is controlled by the local stretch of the medium. We apply the model to study how stretch-activated currents affect the action potential shape, restitution properties, and dynamics of spiral waves, under constant stretch, and dynamic stretch caused by active mechanical contraction. We find that stretch conditions substantially affect these properties via stretch-activated currents. In constantly stretched medium, we observe a substantial decrease in conduction velocity, and an increase of action potential duration; whereas, with dynamic stretch, action potential duration is increased only slightly, and the conduction velocity restitution curve becomes biphasic. Moreover, in constantly stretched medium, we find an increase of the core size and period of a spiral wave, but no change in rotation dynamics; in contrast, in the dynamically stretching medium, we observe spiral drift. Our results may be important to understand how altered stretch conditions affect the heart's functioning.

  4. A discrete electromechanical model for human cardiac tissue: effects of stretch-activated currents and stretch conditions on restitution properties and spiral wave dynamics.

    Directory of Open Access Journals (Sweden)

    Louis D Weise

    Full Text Available We introduce an electromechanical model for human cardiac tissue which couples a biophysical model of cardiac excitation (Tusscher, Noble, Noble, Panfilov, 2006 and tension development (adjusted Niederer, Hunter, Smith, 2006 model with a discrete elastic mass-lattice model. The equations for the excitation processes are solved with a finite difference approach, and the equations of the mass-lattice model are solved using Verlet integration. This allows the coupled problem to be solved with high numerical resolution. Passive mechanical properties of the mass-lattice model are described by a generalized Hooke's law for finite deformations (Seth material. Active mechanical contraction is initiated by changes of the intracellular calcium concentration, which is a variable of the electrical model. Mechanical deformation feeds back on the electrophysiology via stretch-activated ion channels whose conductivity is controlled by the local stretch of the medium. We apply the model to study how stretch-activated currents affect the action potential shape, restitution properties, and dynamics of spiral waves, under constant stretch, and dynamic stretch caused by active mechanical contraction. We find that stretch conditions substantially affect these properties via stretch-activated currents. In constantly stretched medium, we observe a substantial decrease in conduction velocity, and an increase of action potential duration; whereas, with dynamic stretch, action potential duration is increased only slightly, and the conduction velocity restitution curve becomes biphasic. Moreover, in constantly stretched medium, we find an increase of the core size and period of a spiral wave, but no change in rotation dynamics; in contrast, in the dynamically stretching medium, we observe spiral drift. Our results may be important to understand how altered stretch conditions affect the heart's functioning.

  5. Induced Voltage in an Open Wire

    Science.gov (United States)

    Morawetz, K.; Gilbert, M.; Trupp, A.

    2017-07-01

    A puzzle arising from Faraday's law has been considered and solved concerning the question which voltage will be induced in an open wire with a time-varying homogeneous magnetic field. In contrast to closed wires where the voltage is determined by the time variance of the magnetic field and the enclosed area, in an open wire we have to integrate the electric field along the wire. It is found that the longitudinal electric field with respect to the wave vector contributes with 1/3 and the transverse field with 2/3 to the induced voltage. In order to find the electric fields the sources of the magnetic fields are necessary to know. The representation of a spatially homogeneous and time-varying magnetic field implies unavoidably a certain symmetry point or symmetry line which depend on the geometry of the source. As a consequence the induced voltage of an open wire is found to be the area covered with respect to this symmetry line or point perpendicular to the magnetic field. This in turn allows to find the symmetry points of a magnetic field source by measuring the voltage of an open wire placed with different angles in the magnetic field. We present exactly solvable models of the Maxwell equations for a symmetry point and for a symmetry line, respectively. The results are applicable to open circuit problems like corrosion and for astrophysical applications.

  6. Stretching and jamming of finite automata

    NARCIS (Netherlands)

    Beijer, de N.; Kourie, D.G.; Watson, B.W.; Cleophas, L.G.W.A.; Watson, B.W.

    2004-01-01

    In this paper we present two transformations on automata, called stretching and jamming. These transformations will, under certain conditions, reduce the size of the transition table, and under other conditions reduce the string processing time. Given a finite automaton, we can stretch it by

  7. Progress in electrical and mechanical properties of rectangular MgB2 wires

    International Nuclear Information System (INIS)

    Kovac, P; Melisek, T; Kopera, L; Husek, I; Polak, M; Kulich, M

    2009-01-01

    Critical current densities and mechanical resistance of MgB 2 wires made by the rectangular wire-in-tube technique (RWIT) have been studied. Wires prepared from different precursor powders and variable sheath materials are compared. The best electrical performance (10 4 A cm -2 at 11.3 T) was measured for the wire with mechanically alloyed powder doped by SiC. While the critical current densities, J c , at 4.2 K are considerably influenced by the powder used, the differences at 20 K are much smaller. Flattened wires show different levels of critical current anisotropy influenced by the precursor powder used. Stress-strain characteristics and critical current degradation are strongly affected by the applied metallic materials and also by the filament's strength. The highest irreversible strain ε irr = 0.55% was measured for Ti/Cu/Monel sheathed wire with filaments from mechanically alloyed powder.

  8. Analysis of errors in the measurement of unattached fractions of radon and thoron progeny in a Canadian uranium mine using wire screen methods

    International Nuclear Information System (INIS)

    Khan, A.; Phillips, C.R.

    1987-01-01

    The unattached fraction of radon/thoron progeny in uranium mines is generally small and therefore difficult to measure accurately. The simple wire screen method provides a direct estimate of the unattached fraction from the screen count, or an indirect estimate from the difference between the reference and back-up filter counts. Wire screen method results are often difficult to analyse, especially when the unattached activity is small. Experimental data obtained in Canadian uranium mines are presented here, together with a detailed error analysis. The method consisting of counting the wire screen and the back-up filter is found to be the most precise method for unattached fraction determination. (author)

  9. Mesoscopic NbSe3 wires

    International Nuclear Information System (INIS)

    Zant, H.S.J. van der; Kalwij, A.; Mantel, O.C.; Markovic, N.

    1999-01-01

    We have fabricated wire structures with (sub)micron sizes in the charge-density wave conductor NbSe 3 . Electrical transport measurements include complete mode-locking on Shapiro steps and show that the patterning has not affected the CDW material. Our mesoscopic wires show strong fluctuation and hysteresis effects in the low-temperature current-voltage characteristics, as well as a strong reduction of the phase-slip voltage. This reduction can not be explained with existing models. We suggest that single phase-slip events are responsible for a substantial reduction of the CDW strain in micron-sized systems. (orig.)

  10. 2d-LCA - an alternative to x-wires

    Science.gov (United States)

    Puczylowski, Jaroslaw; Hölling, Michael; Peinke, Joachim

    2014-11-01

    The 2d-Laser Cantilever Anemometer (2d-LCA) is an innovative sensor for two-dimensional velocity measurements in fluids. It uses a micostructured cantilever made of silicon and SU-8 as a sensing element and is capable of performing mesurements with extremly high temporal resolutions up to 150 kHz. The size of the cantilever defines its spatial resolution, which is in the order of 150 μm only. Another big feature is a large angular range of 180° in total. The 2d-LCA has been developed as an alternative measurement method to x-wires with the motivation to create a sensor that can operate in areas where the use of hot-wire anemometry is difficult. These areas include measurements in liquids and in near-wall or particle-laden flows. Unlike hot-wires, the resolution power of the 2d-LCA does not decrease with increasing flow velocity, making it particularly suitable for measurements in high speed flows. Comparative measurements with the 2d-LCA and hot-wires have been carried out in order to assess the performance of the new anemometer. The data of both measurement techniques were analyzed using the same stochastic methods including a spectral analysis as well as an inspection of increment statistics and structure functions. Furthermore, key parameters, such as mean values of both velocity components, angles of attack and the characteristic length scales were determined from both data sets. The analysis reveals a great agreement between both anemometers and thus confirms the new approach.

  11. Theory of wire number scaling in wire-array Z pinches

    International Nuclear Information System (INIS)

    Desjarlais, M.P.; Marder, B.M.

    1999-01-01

    Pulsed-power-driven Z pinches, produced by imploding cylindrical arrays of many wires, have generated very high x-ray radiation powers (>200 TW) and energies (2 MJ). Experiments have revealed a steady improvement in Z-pinch performance with increasing wire number at fixed total mass and array radius. The dominant mechanism acting to limit the performance of these devices is believed to be the Rayleigh-Taylor instability which broadens the radially imploding plasma sheath and consequently reduces the peak radiation power. A model is presented which describes an amplification over the two-dimensional Rayleigh-Taylor growth rate brought about by kink-like forces on the individual wires. This amplification factor goes to zero as the number of wires approaches infinity. This model gives results which are in good agreement with the experimental data and provides a scaling for wire-array Z pinches. copyright 1999 American Institute of Physics

  12. Coaxial wire impedance measurements of BPM buttons for the PEP-II B- factory

    International Nuclear Information System (INIS)

    Corlett, J.N.

    1995-09-01

    The coaxial wire impedance measurement uses a conducting rod placed along the beam axis in the vacuum chamber, forming the center conductor in a coaxial line system. Tapers at either end of this section allow for smooth impedance transformation from the 50Ω lines used in common microwave measurement equipment, to the characteristic impedance of the vacuum chamber and center conductor, typically around 200Ω. RF and microwave absorptive material placed in the ends of the vacuum chamber and in the impedance matching tapers minimizes reflections which cause trapped modes within the apparatus, allowing measurements to be made above the traveling-wave cut-off frequency of the vacuum vessel (typically 2.5 - 3.0 GHz for PEP-II). A smooth vessel of the same cross-section as that containing the device under test is used in a reference measurement Resonances within the apparatus are difficult to avoid completely and require careful placing of absorptive material, manufacture of test and reference chambers, and assembly of apparatus

  13. Stretch-dependent slow force response in isolated rabbit myocardium is Na+ dependent.

    Science.gov (United States)

    von Lewinski, Dirk; Stumme, Burkhard; Maier, Lars S; Luers, Claus; Bers, Donald M; Pieske, Burkert

    2003-03-15

    Stretch induces functional and trophic effects in mammalian myocardium via various signal transduction pathways. We tested stretch signal transduction on immediate and slow force response (SFR) in rabbit myocardium. Experiments were performed in isolated right ventricular muscles from adult rabbit hearts (37 degrees C, 1 Hz stimulation rate, bicarbonate-buffer). Muscles were rapidly stretched from 88% of optimal length (L88) to near optimal length (L98) for functional analysis. The resulting immediate and slow increases in twitch force (first phase and SFR, respectively) were assessed at reduced [Na+]o or without and with blockade of stretch activated ion channels (SACs), angiotensin-II (AT1) receptors, endothelin-A (ET(A)) receptors, Na+/H+-exchange (NHE1), reverse mode Na+/Ca2+-exchange (NCX), or Na+/K+-ATPase. The effects of stretch on sarcoplasmic reticulum Ca2+-load were characterized using rapid cooling contractures (RCCs). Intracellular pH was measured in BCECF-AM loaded muscles, and action potential duration (APD) was assessed using floating electrodes. On average, force increased to 216+/-8% of the pre-stretch value during the immediate phase, followed by a further increase to 273+/-10% during the SFR (n=81). RCCs significantly increased during SFR, whereas pH and APD did not change. Neither inhibition of SACs, AT1, or ET(A) receptors affected the stretch-dependent immediate phase nor SFR. In contrast, SFR was reduced by NHE inhibition and almost completely abolished by reduced [Na+]o or inhibition of reverse-mode NCX, whereas increased SFR was seen after raising [Na+]i by Na+/K+-ATPase inhibition. The data demonstrate the existence of a delayed, Na+- and Ca2+-dependent but pH and APD independent SFR to stretch in rabbit myocardium. This inotropic response appears to be independent of autocrine/paracrine AT1 or ET(A) receptor activation, but mediated through stretch-induced activation of NHE and reverse mode NCX.

  14. Basic characteristics of thin wire arc plasma

    International Nuclear Information System (INIS)

    Urushihara, K.; Endoh, N.; Ono, S.; Teii, S.; Ishimura, T.

    1998-01-01

    The investigated plasma was generated by applying an electric current of about 50 A to a copper wire of 48 μm diameter in air. The development in time of emission spectra was measured and relative line intensity ratios were used to determine the temperature. The extension of the plasma was measured with a movable electrostatic probe which was placed next to the thin wire, and the electron density was estimated using the known electron mobility. The electron temperature was typically about 8000 K. On the other hand, the electron density tended to decrease with time from about 3.10 16 cm -3

  15. A Flying Wire System in the AGS

    International Nuclear Information System (INIS)

    Huang, H.; Buxton, W.; Mahler, G.; Marusic, A.; Roser, T.; Smith, G.; Syphers, M.; Williams, N.; Witkover, R.

    1999-01-01

    As the AGS prepares to serve as the injector for RHIC, monitoring and control of the beam transverse emittance become a major and important topic. Before the installation of the flying wire system, the emittance was measured with ionization profile monitors in the AGS, which require correction for space charge effects. It is desirable to have a second means of measuring profile that is less dependent on intensity. A flying wire system has been installed in the AGS recently to perform this task. This paper discusses the hardware and software setup and the capabilities of the system

  16. Dual wire welding torch and method

    Science.gov (United States)

    Diez, Fernando Martinez; Stump, Kevin S.; Ludewig, Howard W.; Kilty, Alan L.; Robinson, Matthew M.; Egland, Keith M.

    2009-04-28

    A welding torch includes a nozzle with a first welding wire guide configured to orient a first welding wire in a first welding wire orientation, and a second welding wire guide configured to orient a second welding wire in a second welding wire orientation that is non-coplanar and divergent with respect to the first welding wire orientation. A method of welding includes moving a welding torch with respect to a workpiece joint to be welded. During moving the welding torch, a first welding wire is fed through a first welding wire guide defining a first welding wire orientation and a second welding wire is fed through a second welding wire guide defining a second welding wire orientation that is divergent and non-coplanar with respect to the first welding wire orientation.

  17. Magnitude and duration of stretch modulate fibroblast remodeling.

    Science.gov (United States)

    Balestrini, Jenna L; Billiar, Kristen L

    2009-05-01

    Mechanical cues modulate fibroblast tractional forces and remodeling of extracellular matrix in healthy tissue, healing wounds, and engineered matrices. The goal of the present study is to establish dose-response relationships between stretch parameters (magnitude and duration per day) and matrix remodeling metrics (compaction, strength, extensibility, collagen content, contraction, and cellularity). Cyclic equibiaxial stretch of 2-16% was applied to fibroblast-populated fibrin gels for either 6 h or 24 h/day for 8 days. Trends in matrix remodeling metrics as a function of stretch magnitude and duration were analyzed using regression analysis. The compaction and ultimate tensile strength of the tissues increased in a dose-dependent manner with increasing stretch magnitude, yet remained unaffected by the duration in which they were cycled (6 h/day versus 24 h/day). Collagen density increased exponentially as a function of both the magnitude and duration of stretch, with samples stretched for the reduced duration per day having the highest levels of collagen accumulation. Cell number and failure tension were also dependent on both the magnitude and duration of stretch, although stretch-induced increases in these metrics were only present in the samples loaded for 6 h/day. Our results indicate that both the magnitude and the duration per day of stretch are critical parameters in modulating fibroblast remodeling of the extracellular matrix, and that these two factors regulate different aspects of this remodeling. These findings move us one step closer to fully characterizing culture conditions for tissue equivalents, developing improved wound healing treatments and understanding tissue responses to changes in mechanical environments during growth, repair, and disease states.

  18. THERMO-MECHANICALLY PROCESSED ROLLED WIRE FOR HIGH-STRENGTH ON-BOARD WIRE

    Directory of Open Access Journals (Sweden)

    V. A. Lutsenko

    2011-01-01

    Full Text Available It is shown that at twisting of wire of diameter 1,83 mm, produced by direct wire drawing of thermomechanically processed rolled wire of diameter 5,5 mm of steel 90, metal stratification is completely eliminated at decrease of carbon, manganese and an additional alloying of chrome.

  19. One century of Kirschner wires and Kirschner wire insertion techniques : A historical review

    NARCIS (Netherlands)

    Franssen, Bas B. G. M.; Schuurman, Arnold H.; Van der Molen, Aebele Mink; Kon, Moshe

    A century ago, in 1909, Martin Kirschner (1879-942) introduced a smooth pin, presently known as the Kirschner wire (K-wire). The K-wire was initiallly used for skeletal traction and is now currently used for many different goals. The development of the K-wire and its insertion devices were mainly

  20. Modification of permeability of frog perineurium to [14C]-sucrose by stretch and hypertonicity

    International Nuclear Information System (INIS)

    Weerasuriya, A.; Rapoport, S.I.; Taylor, R.E.

    1979-01-01

    An in vitro method has been developed to determine quantitatively the permeability of the perineurium to radiotracers at room temperature. The permeability to [ 14 C]sucrose of the isolated perineurium of the sciatic nerve of the frog, Rana pipiens, was measured at rest length, when the perineurium was stretched and after the perineurium had been subjected to hypertonic treatment. Mean permeability at rest length was calculated to be 5.6 +- 0.27 (S.E.M., n=45)x10 -7 cm/sec, and both stretch and hypertonic treatment increased the permeability. A 10% stretch increased permeability reversibly, whereas a 20% stretch or immersion of the perineurium in a hypertonic bath increased permeability irreversibly. Altered permeability under these conditions might be related to changes in the ultrastructure of tight junctions in the perineurium. (Auth.)

  1. Soft X-ray radiation power characteristics of tungsten wire arrays on Yang accelerator

    International Nuclear Information System (INIS)

    Zhang Siqun; Ouyang Kai; Huang Xianbin; Dan Jiakun; Zhou Rongguo; Yang Liang

    2013-01-01

    A series of experiments were carried out to research the X-ray radiation characteristics of tungsten wire arrays on Yang accelerator. In those experiments, we charged the Marx generator of 60 kV, and the load current of 0.85-1.00 MA, the rise time of 75-90 ns (10%-90%). A soft X-ray scintillator powermeter which responded flatly to 50-1800 eV X-rays was used to measure the power of soft X-ray emitted from implosion plasma. In this paper, we present the measuring results of time-resolved soft X-ray radiation power, and discuss the radiation characteristics of implosion plasma by analyzing the correlations of soft X-ray radiant power and the diameter, length, wire number of the tungsten wire arrays. The optimizing wire array configuration parameters on Yang are as follows: 8 mm array diameter, 15 mm wire length, and 24 wire number. We also present the radiant power difference in radial and axial directions of the wire arrays. (authors)

  2. Foam topology. Bending versus stretching dominated architectures

    International Nuclear Information System (INIS)

    Deshpande, V.; Ashby, M.; Fleck, N.

    2000-01-01

    Cellular solids can deform by either the bending or stretching of the cell walls. While most cellular solids are bending-dominated, those that are stretching-dominated are much more weight-efficient for structural applications. In this study we have investigated the topological criteria that dictate the deformation mechanism of a cellular solid by analysing the rigidity (or otherwise) of pin-jointed frameworks comprising inextensional struts. We show that the minimum node connectivity for a special class of lattice structured materials to be stretching-dominated is 6 for 2D foams and 12 for 3D foams. Similarly, sandwich plates comprising of truss cores faced with planar trusses require a minimum node connectivity of 9 to undergo stretching-dominated deformation for all loading states. (author)

  3. Effect of acute stretch injury on action potential and network activity of rat neocortical neurons in culture.

    Science.gov (United States)

    Magou, George C; Pfister, Bryan J; Berlin, Joshua R

    2015-10-22

    The basis for acute seizures following traumatic brain injury (TBI) remains unclear. Animal models of TBI have revealed acute hyperexcitablility in cortical neurons that could underlie seizure activity, but studying initiating events causing hyperexcitability is difficult in these models. In vitro models of stretch injury with cultured cortical neurons, a surrogate for TBI, allow facile investigation of cellular changes after injury but they have only demonstrated post-injury hypoexcitability. The goal of this study was to determine if neuronal hyperexcitability could be triggered by in vitro stretch injury. Controlled uniaxial stretch injury was delivered to a spatially delimited region of a spontaneously active network of cultured rat cortical neurons, yielding a region of stretch-injured neurons and adjacent regions of non-stretched neurons that did not directly experience stretch injury. Spontaneous electrical activity was measured in non-stretched and stretch-injured neurons, and in control neuronal networks not subjected to stretch injury. Non-stretched neurons in stretch-injured cultures displayed a three-fold increase in action potential firing rate and bursting activity 30-60 min post-injury. Stretch-injured neurons, however, displayed dramatically lower rates of action potential firing and bursting. These results demonstrate that acute hyperexcitability can be observed in non-stretched neurons located in regions adjacent to the site of stretch injury, consistent with reports that seizure activity can arise from regions surrounding the site of localized brain injury. Thus, this in vitro procedure for localized neuronal stretch injury may provide a model to study the earliest cellular changes in neuronal function associated with acute post-traumatic seizures. Copyright © 2015. Published by Elsevier B.V.

  4. Welding wire velocity modelling and control using an optical sensor

    DEFF Research Database (Denmark)

    Nielsen, Kirsten M.; Pedersen, Tom S.

    2007-01-01

    In this paper a method for controlling the velocity of a welding wire at the tip of the handle is described. The method is an alternative to the traditional welding apparatus control system where the wire velocity is controlled internal in the welding machine implying a poor disturbance reduction....... To obtain the tip velocity a dynamic model of the wire/liner system is developed and verified.  In the wire/liner system it turned out that backlash and reflections are influential factors. An idea for handling the backlash has been suggested. In addition an optical sensor for measuring the wire velocity...... at the tip has been constructed. The optical sensor may be used but some problems due to focusing cause noise in the control loop demanding a more precise mechanical wire feed system or an optical sensor with better focusing characteristics....

  5. Effect of Kinesiotaping and Stretching Exercise on Forward Shoulder Angle in Females with Rounded Shoulder Posture

    Directory of Open Access Journals (Sweden)

    Arghavan Hajibashi

    2014-12-01

    Full Text Available Background: Rounded shoulder posture is a common abnormal posture in upper quarter. Kinesiotape is a new intervention that recently used in rehabilitation. There are no studies have examined the effect of kinesiotape on rounded shoulder posture. Therefore the purpose of this study was to determine the effect of scapular kinesiotaping and pectoralis minor stretching exercise on forward shoulder angle in female subjects with rounded shoulder posture. Methods: Twenty female students aged between 18 to 25 years old with rounded shoulder posture participated in this study. Then, the subjects were randomly and equally assigned to two groups: the stretch group and the stretch plus kinesiotape group. Both groups were trained for doing home exercise to stretch Pectoralis minor bilaterally for two weeks. Kinesiotape group received kinesiotape on scapular area additionally. Forward shoulder angle was measured in four sessions including pre-intervention (first session, immediately after the first intervention (second session, fourth day (third session and at the end of two weeks (fourth session. Two-way repeated measures ANOVA (4×2 was used for data analysis. Results: kinesiotape group showed significant within-group decrease in forward shoulder angle between first session with three other sessions (P≤0.05.There was no significant within-group difference in stretch group and between groups (P=0.20 forward shoulder angle-by-group interaction in measurement sessions was significantly different (P=0.02 Conclusion: scapular kinesiotaping along with pectoralis minor stretching exercise improved rounded shoulder posture in subjects of the present study. kinesiotape is suggested as a complem

  6. Release measurement of great amount of waste. Conveyor belt versus wire mesh pallet systems

    Energy Technology Data Exchange (ETDEWEB)

    Sokcic-Kostic, Marina; Schultheis, Roland; Langer, Felix [NUKEM Technologies Engineering Services GmbH, Alzenau (Germany)

    2014-08-15

    Great amount of waste has to be measured for release during the decommissioning and rebuilding of nuclear facilities and installation. Since the enclosed storage or decontamination is very expensive it is advisable for economic reasons to separate contaminated material. The necessary measurement is however a time and cost intensive work which has carefully provided. There are two general methods to perform this task: one is a continuously running system on the basis of a conveyor belt system. The other approach is a discontinuously running system using wire mesh pallets. With the knowledge from existing installations this article will discuss the pro's and contra's and show the limits of the systems.

  7. Current Capacity of Ag/Bi-2223 Wires for Rotating Electric Machinery

    International Nuclear Information System (INIS)

    Hussennether, Volker; Leghissa, Martino; Neumueller, Heinz-Werner

    2006-01-01

    With focus on the application in rotating electric machines we measured the dependence of current capacity of Ag/Bi-2223 wires on temperature and magnetic field. Even for wires stemming from a single manufacturer we observe a significant spread of wire properties. We study different temperature and magnetic field dependence by a parallel path model which allows for a quantitative analysis. The implications of experiments and modelling are discussed with regard to the further wire development and for application within windings

  8. Influence of UV and Gamma radiations on the induced birefringence of stretched poly(vinyl) alcohol foils

    Science.gov (United States)

    Nechifor, Cristina-Delia; Zelinschi, Carmen Beatrice; Dorohoi, Dana-Ortansa

    2014-03-01

    The aim of our paper is to evidence the influence of Gamma and UV radiations on the induced birefringence of poly(vinyl alcohol) stretched foils. Thin foils of PVA were prepared and dried without modifying their surfaces. The polymeric foils were irradiated from 15 min to 6 h using UV and Gamma radiations. The induced by stretching under heating birefringence of PVA films was measured at λ = 589.3 nm with a Babinet Compensator. Physico-chemical processes (photo stabilization, photo degradation, oxidation) induced by irradiation of polymer matrix influence both the stretching degree and the anisotropy of etired foils. An increase of birefringence versus the stretching ratio of the PVA foils was evidenced for all studied samples. The dependence of the birefringence on the exposure time, stretching ratio and nature of radiation was also confirmed.

  9. Towards a wire-mediated coupling of trapped ions

    Science.gov (United States)

    Clark, Robert; Lee, Tony; Daniilidis, Nikos; Sankaranarayanan, S.; Häffner, Hartmut

    2008-03-01

    Most schemes for ion trap quantum computation rely upon the exchange of information between ion-qubits in the same trap region, mediated by their shared vibrational mode. An alternative way to achieve this coupling is via the image charges induced in a conducting wire that connects different traps. This was shown to be theoretically possible by Heinzen and Wineland in 1990, but some important practical questions have remained unaddressed. Among these are how the presence of such a wire modifies the motional frequencies and heating rates of trapped ions. We thus have realized this system as a 1 mm-scale planar segmented rf ion trap combined with an electrically floating gold wire of 25 microns diameter and length 1 cm. This wire is placed close to trapped ions using a set of piezoelectric nanopositioners. We present here experimental measurements of the motional frequencies and heating rates of a single trapped calcium ion as the wire is moved from 3.0 mm to 0.2 mm away from the ion. We discuss the implications of these results for achieving wire-mediated coupling in the present apparatus, as well as in future improved setups.

  10. Parameters Controlling Dimensional Accuracy of Aluminum Extrusions Formed in Stretch Bending

    International Nuclear Information System (INIS)

    Baringbing, Henry Ako; Welo, Torgeir

    2007-01-01

    For stretch formed components used in the automotive industry, such as bumper beams, it is of primary importance to control parameters affecting dimensional accuracy. The variations in geometry and mechanical properties induced in extrusion and stretch forming lead to subsequent dimensional inaccuracy of the final product. In this work, tensile and compression samples were taken at three different positions along AA7108W extruded profiles in order to determine material parameters for a constitutive model particularly suited for strong texture materials. In addition, geometry were measured and analyzed statistically in order to study its impact on local cross sectional distortions (sagging) and springback in stretch bending of a bumper beam. These full scale experiments were combined with analytical and numerical simulations to quantify the impact of each basic parameter on product quality. It is concluded that this methodology provides a means to systematically control the product quality by focusing on reducing the acceptance limits of the main parameters controlling basic mechanisms in stretch forming. Despite the assumptions and simplifications made in order to make the analytical expressions solvable, the approach has proven its capability in establishing accurate closed-form expressions including the main influential parameters

  11. Tensile stress dependence of the magnetostatic interaction between Fe-rich wires

    International Nuclear Information System (INIS)

    Gawronski, P.; Zhukov, A.; Blanco, J.M.; Gonzalez, J.; KuIakowski, K.

    2005-01-01

    We study the influence of the applied tensile stress on the magnetostatic interaction between two amorphous Fe-rich wires. The hysteresis loop is measured for: (i) conventional wires produced by in-rotation-water method, with diameter of 125μm (ii) cold-drawn wires with diameter of 50μm. The stress dependence of the interaction field is evaluated from the shape of the hysteresis loops, which show characteristic two-step behaviour. These steps mark the values of the switching field of the wires. For the conventional wires the tensile stress dependence of the interaction field can be explained as a result of the tensile stress dependence of the magnetization. For the cold-drawn wires, the interaction field shows a maximum with the applied stress. This behaviour is interpreted as a consequence of a local variation of the domain structure at the wire ends. It modifies the stray field, and-as a consequence-the switching field of the neighbouring wire

  12. Characteristics of the wire biconical antenna used for EMC measurements

    Science.gov (United States)

    Austin, Brian A.; Fourie, Andre P. C.

    1991-08-01

    The characteristics of a wire biconical antenna that determine its antenna factor were computed by using the method of moments code NEC-2. A fairly extensive validation exercise was conducted from which a suitable computer model was derived. The input impedance, gain, and radiation patterns of the antenna were computed for special cases where the biconical antenna is used above a conducting ground plane for open-field EMC (electromagnetic compatibility) testing. The effects of height above the ground plane and polarization of the antenna on these parameters were found and the antenna factor was corrected for them. The current distribution along the antenna elements was also examined, and it was found that significant pattern distortion can occur at some frequencies when a horizontal wire biconical antenna is used close to the ground. These results will allow this broadband antenna to be used with confidence in applications where previously only resonant dipoles were specified.

  13. Effects of a diamond-like carbon coating on the frictional properties of orthodontic wires.

    Science.gov (United States)

    Muguruma, Takeshi; Iijima, Masahiro; Brantley, William A; Mizoguchi, Itaru

    2011-01-01

    To test the hypothesis that a diamond-like carbon coating does not affect the frictional properties of orthodontic wires. Two types of wires (nickel-titanium and stainless steel) were used, and diamond-like carbon (DLC) films were deposited on the wires. Three types of brackets, a conventional stainless steel bracket and two self-ligating brackets, were used for measuring static friction. DLC layers were observed by three-dimensional scanning electron microscopy (3D-SEM), and the surface roughness was measured. Hardness and elastic modulus were obtained by nanoindentation testing. Frictional forces and surface roughness were compared by the Kruskal-Wallis and Mann-Whitney U-tests. The hardness and elastic modulus of the wires were compared using Student's t-test. When angulation was increased, the DLC-coated wires showed significantly less frictional force than the as-received wires, except for some wire/bracket combinations. Thin DLC layers were observed on the wire surfaces by SEM. As-received and DLC-coated wires had similar surface morphologies, and the DLC-coating process did not affect the surface roughness. The hardness of the surface layer of the DLC-coated wires was much higher than for the as-received wires. The elastic modulus of the surface layer of the DLC-coated stainless steel wire was less than that of the as-received stainless steel wire, whereas similar values were found for the nickel-titanium wires. The hypothesis is rejected. A DLC-coating process does reduce the frictional force.

  14. The acute effects of stretching with vibration on dynamic flexibility in young female gymnasts.

    Science.gov (United States)

    Johnson, Aaron W; Warcup, Caisa N; Seeley, Matthew K; Eggett, Dennis; Feland, Jeffery B

    2018-01-10

    While stretching with vibration has been shown to improve static flexibility; the effect of stretching with vibration on dynamic flexibility is not well known. The purpose of this study was to examine the effectiveness of stretching with vibration on acute dynamic flexibility and jump height in novice and advanced competitive female gymnasts during a split jump. Female gymnast (n=27, age: 11.5 ± 1.7 years, Junior Olympic levels 5-10) participated in this cross-over study. Dynamic flexibility during gymnastic split jumps were video recorded and analyzed with Dartfish software. All participants completed both randomized stretching protocols with either the vibration platform turned on (VIB) (frequency of 30 Hz and 2 mm amplitude) or off (NoVIB) separated by 48 h. Participants performed 4 sets of three stretches on the vibration platform. Each stretch was held for 30 s with 5 s rest for a total of 7 min of stretch. Split jump flexibility decreased significantly from pre to post measurement in both VIB (-5.8°±5.9°) (p<0.001) and NoVIB (-2.6°±6.1°) (p=0.041) conditions (adjusted for gymnast level). This effect was greatest in lower skill level gymnasts (p=0.003), while the highest skill level gymnasts showed no significant decrease in the split jump (p=0.105). Jump height was not significantly different between conditions (p=0.892) or within groups (p=0.880). An acute session of static stretching with or without vibration immediately before performance does not alter jump height. Stretching with vibration immediately prior to gymnastics competition decreases split jump flexibility in lower level gymnasts more than upper level gymnasts.

  15. Design of a wire imaging synchrotron radiation detector

    International Nuclear Information System (INIS)

    Kent, J.; Gomez-Cadenas, J.J.; Hogan, A.; King, M.; Rowe, W.; Watson, S.; Von Zanthier, C.; Briggs, D.D.; Levi, M.

    1990-01-01

    This paper documents the design of a detector invented to measure the positions of synchrotron radiation beams for the precision energy spectrometers of the Stanford Linear Collider (SLC). The energy measurements involve the determination, on a pulse-by-pulse basis, of the separation of pairs of intense beams of synchrotron photons in the MeV energy range. The detector intercepts the beams with arrays of fine wires. The ejection of Compton recoil electrons results in charges being developed in the wires, thus enabling a determination of beam positions. 10 refs., 4 figs

  16. Prolonged static stretching does not influence running economy despite changes in neuromuscular function.

    Science.gov (United States)

    Allison, Sarah J; Bailey, David M; Folland, Jonathan P

    2008-12-01

    The aim of this study was to examine the acute effects of prolonged static stretching (SS) on running economy. Ten male runners (VO2(peak) 60.1 +/- 7.3 ml x kg(-1) x min(-1)) performed 10 min of treadmill running at 70% VO2(peak) before and after SS and no stretching interventions. For the stretching intervention, each leg was stretched unilaterally for 40 s with each of eight different exercises and this was repeated three times. Respiratory gas exchange was measured throughout the running exercise with an automated gas analysis system. On a separate day, participants were tested for sit and reach range of motion, isometric strength and countermovement jump height before and after SS. The oxygen uptake, minute ventilation, energy expenditure, respiratory exchange ratio and heart rate responses to running were unaffected by the stretching intervention. This was despite a significant effect of SS on neuromuscular function (sit and reach range of motion, +2.7 +/- 0.6 cm; isometric strength, -5.6% +/- 3.4%; countermovement jump height -5.5% +/- 3.4%; all P influence running economy despite changes in neuromuscular function.

  17. Optofluidic time-stretch microscopy: recent advances

    Science.gov (United States)

    Lei, Cheng; Nitta, Nao; Ozeki, Yasuyuki; Goda, Keisuke

    2018-04-01

    Flow cytometry is an indispensable method for valuable applications in numerous fields such as immunology, pathology, pharmacology, molecular biology, and marine biology. Optofluidic time-stretch microscopy is superior to conventional flow cytometry methods for its capability to acquire high-quality images of single cells at a high-throughput exceeding 10,000 cells per second. This makes it possible to extract copious information from cellular images for accurate cell detection and analysis with the assistance of machine learning. Optofluidic time-stretch microscopy has proven its effectivity in various applications, including microalga-based biofuel production, evaluation of thrombotic disorders, as well as drug screening and discovery. In this review, we discuss the principles and recent advances of optofluidic time-stretch microscopy.

  18. Stretch due to Penile Prosthesis Reservoir Migration

    Directory of Open Access Journals (Sweden)

    E. Baten

    2016-03-01

    Full Text Available A 43-year old patient presented to the emergency department with stretch, due to impossible deflation of the penile prosthesis, 4 years after successful implant. A CT-scan showed migration of the reservoir to the left rectus abdominis muscle. Refilling of the reservoir was inhibited by muscular compression, causing stretch. Removal and replacement of the reservoir was performed, after which the prosthesis was well-functioning again. Migration of the penile prosthesis reservoir is extremely rare but can cause several complications, such as stretch.

  19. The Effect of Annealing on the Elastic Modulus of Orthodontic Wires

    Science.gov (United States)

    Higginbottom, Kyle

    Introduction: Nickel Titanium orthodontic wires are currently used in orthodontic treatment due to their heat activated properties and their delivery of constant force. The objective of this study was to determine the effect of annealing on the elastic modulus of Nickel Titanium, Stainless Steel and Beta-titanium (TMA) wires. Different points along the wire were tested in order to determine how far from the annealed ends the elastic modulus of the wires was affected. Methods: Eighty (80) orthodontic wires consisting of 4 equal groups (SS/TMA/Classic NitinolRTM/Super Elastic NitinolRTM) were used as the specimens for this study. All wires were measured and marked at 5mm measurements, and cut into 33.00mm sections. The wires were heated with a butane torch until the first 13.00mm of the wires were red hot. Load deflection tests using an InstronRTM universal testing machine were run at 5mm distances from the end of the wire that had been annealed. The change in elastic modulus was then determined. Results: There was a significant difference (F = 533.001, p = 0.0005) in the change in elastic modulus for the four distances. There was also a significant difference (F = 57.571, p = 0.0005) in the change in elastic modulus for the four wire types. There was a significant interaction (F = 19.601, p = 0.005) between wire type and distance, however this interaction negated the differences between the wires. Conclusion: 1) There are significant differences in the changes in elastic modulus between the areas of the wires within the annealed section and those areas 5mm and 10mm away from the annealed section. The change in elastic modulus within the annealed section was significantly greater at 8 mm than it was at 13mm, and this was significantly greater than 18mm and 23mm (5mm and 10mm beyond the annealed section). However, there was no statistical difference in the change in elastic modulus between 5mm and 10mm away from the annealed section (18mm and 23mm respectively). 2

  20. Scalable Nernst thermoelectric power using a coiled galfenol wire

    Science.gov (United States)

    Yang, Zihao; Codecido, Emilio A.; Marquez, Jason; Zheng, Yuanhua; Heremans, Joseph P.; Myers, Roberto C.

    2017-09-01

    The Nernst thermopower usually is considered far too weak in most metals for waste heat recovery. However, its transverse orientation gives it an advantage over the Seebeck effect on non-flat surfaces. Here, we experimentally demonstrate the scalable generation of a Nernst voltage in an air-cooled metal wire coiled around a hot cylinder. In this geometry, a radial temperature gradient generates an azimuthal electric field in the coil. A Galfenol (Fe0.85Ga0.15) wire is wrapped around a cartridge heater, and the voltage drop across the wire is measured as a function of axial magnetic field. As expected, the Nernst voltage scales linearly with the length of the wire. Based on heat conduction and fluid dynamic equations, finite-element method is used to calculate the temperature gradient across the Galfenol wire and determine the Nernst coefficient. A giant Nernst coefficient of -2.6 μV/KT at room temperature is estimated, in agreement with measurements on bulk Galfenol. We expect that the giant Nernst effect in Galfenol arises from its magnetostriction, presumably through enhanced magnon-phonon coupling. Our results demonstrate the feasibility of a transverse thermoelectric generator capable of scalable output power from non-flat heat sources.

  1. Scalable Nernst thermoelectric power using a coiled galfenol wire

    Directory of Open Access Journals (Sweden)

    Zihao Yang

    2017-09-01

    Full Text Available The Nernst thermopower usually is considered far too weak in most metals for waste heat recovery. However, its transverse orientation gives it an advantage over the Seebeck effect on non-flat surfaces. Here, we experimentally demonstrate the scalable generation of a Nernst voltage in an air-cooled metal wire coiled around a hot cylinder. In this geometry, a radial temperature gradient generates an azimuthal electric field in the coil. A Galfenol (Fe0.85Ga0.15 wire is wrapped around a cartridge heater, and the voltage drop across the wire is measured as a function of axial magnetic field. As expected, the Nernst voltage scales linearly with the length of the wire. Based on heat conduction and fluid dynamic equations, finite-element method is used to calculate the temperature gradient across the Galfenol wire and determine the Nernst coefficient. A giant Nernst coefficient of -2.6 μV/KT at room temperature is estimated, in agreement with measurements on bulk Galfenol. We expect that the giant Nernst effect in Galfenol arises from its magnetostriction, presumably through enhanced magnon-phonon coupling. Our results demonstrate the feasibility of a transverse thermoelectric generator capable of scalable output power from non-flat heat sources.

  2. 1998 wire development workshop proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    This report consists of vugraphs of the presentations at the conference. The conference was divided into the following sessions: (1) First Generation Wire Development: Status and Issues; (2) First Generation Wire in Pre-Commercial Prototypes; (3) Second Generation Wire Development: Private Sector Progress and Issues; (4) Second Generation Wire Development: Federal Laboratories; and (5) Fundamental Research Issues for HTS Wire Development.

  3. 1998 wire development workshop proceedings

    International Nuclear Information System (INIS)

    1998-04-01

    This report consists of vugraphs of the presentations at the conference. The conference was divided into the following sessions: (1) First Generation Wire Development: Status and Issues; (2) First Generation Wire in Pre-Commercial Prototypes; (3) Second Generation Wire Development: Private Sector Progress and Issues; (4) Second Generation Wire Development: Federal Laboratories; and (5) Fundamental Research Issues for HTS Wire Development

  4. Stretching of macromolecules and proteins

    International Nuclear Information System (INIS)

    Strick, T R; Dessinges, M-N; Charvin, G; Dekker, N H; Allemand, J-F; Bensimon, D; Croquette, V

    2003-01-01

    In this paper we review the biophysics revealed by stretching single biopolymers. During the last decade various techniques have emerged allowing micromanipulation of single molecules and simultaneous measurements of their elasticity. Using such techniques, it has been possible to investigate some of the interactions playing a role in biology. We shall first review the simplest case of a non-interacting polymer and then present the structural transitions in DNA, RNA and proteins that have been studied by single-molecule techniques. We shall explain how these techniques permit a new approach to the protein folding/unfolding transition

  5. Jack-knife stretching promotes flexibility of tight hamstrings after 4 weeks: a pilot study.

    Science.gov (United States)

    Sairyo, Koichi; Kawamura, Takeshi; Mase, Yasuyoshi; Hada, Yasushi; Sakai, Toshinori; Hasebe, Kiyotaka; Dezawa, Akira

    2013-08-01

    Tight hamstrings are reported to be one of the causes of low back pain. However, there have been few reports on effective stretching procedures for the tight hamstrings. The so-called jack-knife stretch, an active-static type of stretching, can efficiently increase the flexibility of tight hamstrings. To evaluate hamstring tightness before and after the 4-week stretching protocol in healthy volunteer adults and patients aged under 18 years with low back pain. For understanding the hamstrings tightness, we measured two parameters including (1) finger to floor distance (FFD) and (2) pelvis forward inclination angle (PFIA). Eight healthy adult volunteers who had no lumbar or hip problems participated in this study (mean age: 26.8 years). All lacked flexibility and their FFD were positive before the experiment. Subjects performed 2 sets of the jack-knife stretch every day for 4 weeks. One set consisted of 5 repetitions, each held for 5 s. Before and during the 4-week experiment, the FFD and PFIA of toe-touching tests were measured weekly. For 17 of the sports players aged under 18, only FFD was measured. In adult volunteers, FFD was 14.1 ± 6.1 cm before the experiment and decreased to -8.1 ± 3.7 cm by the end of week 4, indicating a gain in flexibility of 22.2 cm. PFIA was 50.6 ± 8.2 before the experiment and 83.8 ± 5.8 degrees after. Before and after the experiment, the differences were significant (p hamstrings.

  6. Ballistic stretching increases flexibility and acute vertical jump height when combined with basketball activity.

    Science.gov (United States)

    Woolstenhulme, Mandy T; Griffiths, Christine M; Woolstenhulme, Emily M; Parcell, Allen C

    2006-11-01

    Stretching is often included as part of a warm-up procedure for basketball activity. However, the efficacy of stretching with respect to sport performance has come into question. We determined the effects of 4 different warm-up protocols followed by 20 minutes of basketball activity on flexibility and vertical jump height. Subjects participated in 6 weeks (2 times per week) of warm-up and basketball activity. The warm-up groups participated in ballistic stretching, static stretching, sprinting, or basketball shooting (control group). We asked 3 questions. First, what effect does 6 weeks of warm-up exercise and basketball play have on both flexibility and vertical jump height? We measured sit and reach and vertical jump height before (week -1) and after (week 7) the 6 weeks. Flexibility increased for the ballistic, static, and sprint groups compared to the control group (p vertical jump height did not change for any of the groups. Our second question was what is the acute effect of each warm-up on vertical jump height? We measured vertical jump immediately after the warm-up on 4 separate occasions during the 6 weeks (at weeks 0, 2, 4, and 6). Vertical jump height was not different for any group. Finally, our third question was what is the acute effect of each warm-up on vertical jump height following 20 minutes of basketball play? We measured vertical jump height immediately following 20 minutes of basketball play at weeks 0, 2, 4, and 6. Only the ballistic stretching group demonstrated an acute increase in vertical jump 20 minutes after basketball play (p basketball play, as it is beneficial to vertical jump performance.

  7. Right wire in orthodontics: a review

    OpenAIRE

    Ali, Hashim

    2015-01-01

    Quality of orthodontic wire such as stiffness, hardness, resiliency, elasticity and working range are important determinants of the effectivenes of tooth movement. Commonly used types of orthodontic arch wire:1) stainless steel(ss) wire, 2) conventional nickel- titanium (NiTi)alloy wire,3) improved super elastic NiTi- alloy wire( also called low hysteresis(LH)wire), and titanium molybdenum alloy(TMA) wire.

  8. Textured YBCO films grown on wires: application to superconducting cables

    International Nuclear Information System (INIS)

    Dechoux, N; Jiménez, C; Chaudouët, P; Rapenne, L; Sarigiannidou, E; Robaut, F; Petit, S; Garaudée, S; Porcar, L; Soubeyroux, J L; Odier, P; Bruzek, C E; Decroux, M

    2012-01-01

    Efforts to fabricate superconducting wires made of YBa 2 Cu 3 O 7 (YBCO) on La 2 Zr 2 O 7 (LZO) buffered and biaxially textured Ni-5 at.%W (NiW) are described. Wires were manually shaped from LZO buffered NiW tapes. Different diameters were produced: 1.5, 2 and 3 mm. The wires were further covered with YBCO grown by metal organic chemical vapor deposition (MOCVD). We developed an original device in which the round substrate undergoes an alternated rotation of 180° around its axis in addition to a reel-to-reel translation. This new approach allows covering the whole circumference of the wire with a YBCO layer. This was confirmed by energy dispersive x-ray spectroscopy (EDX) analysis coupled to a scanning electron microscope (SEM). For all wire diameters, the YBCO layer thickness varied from 300 to 450 nm, and the cationic composition was respected. Electron backscattering diffraction (EBSD) measurements were performed directly on an as-deposited wire without surface preparation allowing the investigation of the crystalline quality of the film surface. Combining EBSD with XRD results we show that YBCO grows epitaxially on the LZO buffered NiW wires. For the first time, superconductive behaviors have been detected on round substrates in both the rolling and circular direction. J c reached 0.3 MA cm −2 as measured at 77 K by transport and third-harmonic detection. Those preliminary results confirm the effectiveness of the MOCVD for complex geometries, especially for YBCO deposition on small diameter wires. This approach opens huge perspectives for the elaboration of a new generation of YBCO-based round conductors. (paper)

  9. Insulation effect on thermal stability of Coated Conductors wires in liquid nitrogen

    Science.gov (United States)

    Rubeli, Thomas; Dutoit, Bertrand; Martynova, Irina; Makarevich, Artem; Molodyk, Alexander; Samoilenkov, Sergey

    2017-02-01

    Superconducting wires are not perfectly homogeneous in term of critical current as well as stabilization. In resistive fault current limiter applications this could lead to hot spots if the fault current is only slightly above the nominal current of the device. Increasing stabilization by using thicker silver coating for example may prevent this problem but this method implies longer wire length to maintain the same impedance during a fault. Very efficient cooling in another way to prevent hot spots, this can be achieved in nucleate boiling regime. Optimal insulation can be used to prevent film boiling regime, staying in nucleate boiling regime in a much broader temperature range. In this work a novel technique is used to monitor in real time the temperature of the wire during the quench. Using this method several increasing insulation thicknesses are tested, measuring for each the heat exchange rate to the nitrogen bath. Exchange rate measurements are made in quasistatic regime and during the re-cooling of the wire. SuperOx wires provided with different insulation thicknesses exhibit an excellent stability, far above a bare wire. On the other side, for very thick insulations the stability gain is lost. Re-cooling speeds dependency on insulation thicknesses is measured too.

  10. Application of irradiated wire

    International Nuclear Information System (INIS)

    Uda, I.; Kozima, K.; Suzuki, S.; Tada, S.; Torisu, S.; Veno, K.

    1984-01-01

    Rubber insulated wires are still useful for internal wiring in motor vehicles and electrical equipment because of flexibility and toughness. Irradiated cross-linked rubber materials have been successfully introduced for use with fusible link wire and helically coiled cord

  11. Muscle oxygenation and fascicle length during passive muscle stretching in ballet-trained subjects.

    Science.gov (United States)

    Otsuki, A; Fujita, E; Ikegawa, S; Kuno-Mizumura, M

    2011-07-01

    Muscle stretching transiently decreases muscle-blood flow corresponding to a muscle extension. It may disturb a balance between muscular oxygen demand and oxygen supply to muscles and reduce muscle oxygenation. However, muscle-stretching training may improve blood circulatory condition, resulting in the maintained muscle oxygenation during muscle stretching. The aim of this study was to investigate changes in muscle-blood volume (tHb) and tissue oxygenation index (TOI) during muscle stretching determined by using near-infrared spectroscopy (NIRS) in ballet-trained (BT) and untrained (C) subjects. 11 BT women who regularly perform muscle stretching and 11 C women participated in this study. Fascicle lengths, tHb and TOI in the tibialis anterior muscle were measured during passive plantar flexion from ankle joint angles of 120° (baseline) to 140°, 160°, the maximal comfortable position without pain (CP), and the maximal position (MP). At 160°, the % fascicle-length change from baseline was significantly lower in the BT than the C group, however, for the changes in tHb and TOI the significant interaction effect between the 2 groups was not detected. On the other hand, although the increases in the fascicle length from baseline to CP and MP were greater in BT than C, the tHb and TOI reductions were comparable between groups. We concluded that it appears that BT can extend their muscles without excessive reduction in muscle-blood volume and muscle oxygenation at relatively same but absolutely greater muscle-stretching levels than C. The attenuation in these indices during high-level muscle stretching may be associated with the repetitive muscle stretching of long-term ballet training. © Georg Thieme Verlag KG Stuttgart · New York.

  12. Polarimetry and Schlieren diagnostics of underwater exploding wires

    Science.gov (United States)

    Fedotov-Gefen, A. V.; Krasik, Ya. E.

    2009-11-01

    Nondisturbing laser-probing polarimetry (based on the Faraday and Kerr effects) and Schlieren diagnostics were used in the investigation of underwater electrical wire explosion. Measuring the polarization plane rotation angle of a probing laser beam due to the Faraday effect allows one to determine an axially resolved current flowing through the exploding wire, unlike commonly used current probes. This optical method of measuring current yields results that match those obtained using a current viewing resistor within an accuracy of 10%. The same optical setup allows simultaneous space-resolved measurement of the electric field using the Kerr effect. It was shown that the maximal amplitude of the electric field in the vicinity of the high-voltage electrode is ˜80 kV/cm and that the radial electric field is <1 MV/cm during the wire explosion. Finally, it was shown that the use of Schlieren diagnostics allows one to obtain qualitatively the density distribution behind the shock wave front, which is important for the determination of the energy transfer from the discharge channel to the generated water flow.

  13. Polarimetry and Schlieren diagnostics of underwater exploding wires

    International Nuclear Information System (INIS)

    Fedotov-Gefen, A. V.; Krasik, Ya. E.

    2009-01-01

    Nondisturbing laser-probing polarimetry (based on the Faraday and Kerr effects) and Schlieren diagnostics were used in the investigation of underwater electrical wire explosion. Measuring the polarization plane rotation angle of a probing laser beam due to the Faraday effect allows one to determine an axially resolved current flowing through the exploding wire, unlike commonly used current probes. This optical method of measuring current yields results that match those obtained using a current viewing resistor within an accuracy of 10%. The same optical setup allows simultaneous space-resolved measurement of the electric field using the Kerr effect. It was shown that the maximal amplitude of the electric field in the vicinity of the high-voltage electrode is ∼80 kV/cm and that the radial electric field is <1 MV/cm during the wire explosion. Finally, it was shown that the use of Schlieren diagnostics allows one to obtain qualitatively the density distribution behind the shock wave front, which is important for the determination of the energy transfer from the discharge channel to the generated water flow.

  14. Effect of discrete wires on the implosion dynamics of wire array Z pinches

    International Nuclear Information System (INIS)

    Lebedev, S. V.; Beg, F. N.; Bland, S. N.; Chittenden, J. P.; Dangor, A. E.; Haines, M. G.; Kwek, K. H.; Pikuz, S. A.; Shelkovenko, T. A.

    2001-01-01

    A phenomenological model of wire array Z-pinch implosions, based on the analysis of experimental data obtained on the mega-ampere generator for plasma implosion experiments (MAGPIE) generator [I. H. Mitchell , Rev. Sci. Instrum. 67, 1533 (1996)], is described. The data show that during the first ∼80% of the implosion the wire cores remain stationary in their initial positions, while the coronal plasma is continuously jetting from the wire cores to the array axis. This phase ends by the formation of gaps in the wire cores, which occurs due to the nonuniformity of the ablation rate along the wires. The final phase of the implosion starting at this time occurs as a rapid snowplow-like implosion of the radially distributed precursor plasma, previously injected in the interior of the array. The density distribution of the precursor plasma, being peaked on the array axis, could be a key factor providing stability of the wire array implosions operating in the regime of discrete wires. The modified ''initial'' conditions for simulations of wire array Z-pinch implosions with one-dimension (1D) and two-dimensions (2D) in the r--z plane, radiation-magnetohydrodynamic (MHD) codes, and a possible scaling to a larger drive current are discussed

  15. A multi-wire beam profile monitor in the AGS

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H.; Buxton, W.; Castillo, V.; Glenn, J.W. [and others

    1997-07-01

    A multi-wire beam profile monitor which can be used to directly monitor and control the optical matching between the Booster and AGS rings has been installed and tested in the AGS. Placement of a multi-wire monitor directly in the AGS provides profile measurements taken upon injection and the first two or more revolutions of the beam. The data from such measurements can be used to determine the optical properties of the beam transport line leading into the AGS.

  16. Mechanical stretching for tissue engineering: two-dimensional and three-dimensional constructs.

    Science.gov (United States)

    Riehl, Brandon D; Park, Jae-Hong; Kwon, Il Keun; Lim, Jung Yul

    2012-08-01

    Mechanical cell stretching may be an attractive strategy for the tissue engineering of mechanically functional tissues. It has been demonstrated that cell growth and differentiation can be guided by cell stretch with minimal help from soluble factors and engineered tissues that are mechanically stretched in bioreactors may have superior organization, functionality, and strength compared with unstretched counterparts. This review explores recent studies on cell stretching in both two-dimensional (2D) and three-dimensional (3D) setups focusing on the applications of stretch stimulation as a tool for controlling cell orientation, growth, gene expression, lineage commitment, and differentiation and for achieving successful tissue engineering of mechanically functional tissues, including cardiac, muscle, vasculature, ligament, tendon, bone, and so on. Custom stretching devices and lab-specific mechanical bioreactors are described with a discussion on capabilities and limitations. While stretch mechanotransduction pathways have been examined using 2D stretch, studying such pathways in physiologically relevant 3D environments may be required to understand how cells direct tissue development under stretch. Cell stretch study using 3D milieus may also help to develop tissue-specific stretch regimens optimized with biochemical feedback, which once developed will provide optimal tissue engineering protocols.

  17. Lattice stretching bistability and dynamic heterogeneity

    DEFF Research Database (Denmark)

    Christiansen, Peter Leth; Savin, A. V.; Zolotaryuk, A. V.

    2012-01-01

    A simple one-dimensional lattice model is suggested to describe the experimentally observed plateau in force-stretching diagrams for some macromolecules. This chain model involves the nearest-neighbor interaction of a Morse-like potential (required to have a saturation branch) and a harmonic second......-neighbor coupling. Under an external stretching applied to the chain ends, the intersite Morse-like potential results in the appearance of a double-well potential within each chain monomer, whereas the interaction between the second neighbors provides a homogeneous bistable (degenerate) ground state, at least...... stretched bonds with a double-well potential. This case allows us to explain the existence of a plateau in the force-extension diagram for DNA and α-helix protein. Finally, the soliton dynamics are studied in detail....

  18. Wire Array Solar Cells: Fabrication and Photoelectrochemical Studies

    Science.gov (United States)

    Spurgeon, Joshua Michael

    Despite demand for clean energy to reduce our addiction to fossil fuels, the price of these technologies relative to oil and coal has prevented their widespread implementation. Solar energy has enormous potential as a carbon-free resource but is several times the cost of coal-produced electricity, largely because photovoltaics of practical efficiency require high-quality, pure semiconductor materials. To produce current in a planar junction solar cell, an electron or hole generated deep within the material must travel all the way to the junction without recombining. Radial junction, wire array solar cells, however, have the potential to decouple the directions of light absorption and charge-carrier collection so that a semiconductor with a minority-carrier diffusion length shorter than its absorption depth (i.e., a lower quality, potentially cheaper material) can effectively produce current. The axial dimension of the wires is long enough for sufficient optical absorption while the charge-carriers are collected along the shorter radial dimension in a massively parallel array. This thesis explores the wire array solar cell design by developing potentially low-cost fabrication methods and investigating the energy-conversion properties of the arrays in photoelectrochemical cells. The concept was initially investigated with Cd(Se, Te) rod arrays; however, Si was the primary focus of wire array research because its semiconductor properties make low-quality Si an ideal candidate for improvement in a radial geometry. Fabrication routes for Si wire arrays were explored, including the vapor-liquid-solid growth of wires using SiCl4. Uniform, vertically aligned Si wires were demonstrated in a process that permits control of the wire radius, length, and spacing. A technique was developed to transfer these wire arrays into a low-cost, flexible polymer film, and grow multiple subsequent arrays using a single Si(111) substrate. Photoelectrochemical measurements on Si wire array

  19. Comparing Thermal Stability of NbTi and Nb$_3$Sn Wires

    CERN Document Server

    Breschi, M; Bottura, L; Devred, A; Trillaud, F

    2009-01-01

    The investigation of quenching in low temperature superconducting wires is of great relevance for a proper design of superconductive cables and magnets. This paper reports the experimental results of a vast measurement campaign of quench induced by laser pulses on NbTi and Nb$_{3}$Sn wires in pool boiling Helium I. A comparison of the quench behavior of two typical NbTi and Nb$_{3}$Sn wires is shown from different standpoints. Different qualitative behaviors of the voltage traces recorded during quenches and recoveries on NbTi and Nb$_{3}$Sn wires are reported and analyzed. It is shown that the Nb$_{3}$Sn wire exhibits a quench or no-quench behavior, whereas quenches and recoveries are exhibited by the NbTi wire. The two wires are also compared considering the behaviors of the two main parameters describing quench, i.e. quench energies and quench velocities, with respect to operation current and pulse duration and magnetic field. It is shown that the Nb$_{3}$Sn wire exhibits a ‘kink’ of the quench energy ...

  20. Wire core reactor for NTP

    International Nuclear Information System (INIS)

    Harty, R.B.

    1991-01-01

    The development of the wire core system for Nuclear Thermal Propulsion (NTP) that took place from 1963 to 1965 is discussed. A wire core consists of a fuel wire with spacer wires. It's an annular flow core having a central control rod. There are actually four of these, with beryllium solid reflectors on both ends and all the way around. Much of the information on the concept is given in viewgraph form. Viewgraphs are presented on design details of the wire core, the engine design, engine weight vs. thrust, a technique used to fabricate the wire fuel element, and axial temperature distribution

  1. Strain induced irreversible critical current degradation in highly dense Bi-2212 round wire

    CERN Document Server

    Bjoerstad, R; Rikel, M.O.; Ballarino, A; Bottura, L; Jiang, J; Matras, M; Sugano, M; Hudspeth, J; Di Michiel, M

    2015-01-01

    The strain induced critical current degradation of overpressure processed straight Bi 2212/Ag wires has been studied at 77 K in self-field. For the first time superconducting properties, lattice distortions, composite wire stress and strain have been measured simultaneously in a high energy synchrotron beamline. A permanent Ic degradation of 5% occurs when the wire strain exceeds 0.60%. At a wire strain of about 0.65% a drastic n value and Ic reduction occur, and the composite stress and the Bi-2212 lattice parameter reach a plateau, indicating Bi-2212 filament fracturing. The XRD measurements show that Bi-2212 exhibits linear elastic behaviour up to the irreversible strain limit.

  2. Development, implementation, and characterization of a standalone embedded viscosity measurement system based on the impedance spectroscopy of a vibrating wire sensor

    Science.gov (United States)

    Santos, José; Janeiro, Fernando M.; Ramos, Pedro M.

    2015-10-01

    This paper presents an embedded liquid viscosity measurement system based on a vibrating wire sensor. Although multiple viscometers based on different working principles are commercially available, there is still a market demand for a dedicated measurement system capable of performing accurate, fast measurements and requiring little or no operator training for simple systems and solution monitoring. The developed embedded system is based on a vibrating wire sensor that works by measuring the impedance response of the sensor, which depends on the viscosity and density of the liquid in which the sensor is immersed. The core of the embedded system is a digital signal processor (DSP) which controls the waveform generation and acquisitions for the measurement of the impedance frequency response. The DSP also processes the acquired waveforms and estimates the liquid viscosity. The user can interact with the measurement system through a keypad and an LCD or through a computer with a USB connection for data logging and processing. The presented system is tested on a set of viscosity standards and the estimated values are compared with the standard manufacturer specified viscosity values. A stability study of the measurement system is also performed.

  3. Development, implementation, and characterization of a standalone embedded viscosity measurement system based on the impedance spectroscopy of a vibrating wire sensor

    International Nuclear Information System (INIS)

    Santos, José; Ramos, Pedro M; Janeiro, Fernando M

    2015-01-01

    This paper presents an embedded liquid viscosity measurement system based on a vibrating wire sensor. Although multiple viscometers based on different working principles are commercially available, there is still a market demand for a dedicated measurement system capable of performing accurate, fast measurements and requiring little or no operator training for simple systems and solution monitoring. The developed embedded system is based on a vibrating wire sensor that works by measuring the impedance response of the sensor, which depends on the viscosity and density of the liquid in which the sensor is immersed. The core of the embedded system is a digital signal processor (DSP) which controls the waveform generation and acquisitions for the measurement of the impedance frequency response. The DSP also processes the acquired waveforms and estimates the liquid viscosity. The user can interact with the measurement system through a keypad and an LCD or through a computer with a USB connection for data logging and processing. The presented system is tested on a set of viscosity standards and the estimated values are compared with the standard manufacturer specified viscosity values. A stability study of the measurement system is also performed. (paper)

  4. Employing Hot Wire Anemometry to Directly Measure the Water Balance in a Proton Exchange membrane Fuel Cell

    DEFF Research Database (Denmark)

    Shakhshir, Saher Al; Hussain, Nabeel; Berning, Torsten

    2015-01-01

    Water management in proton exchange membrane fuel cells (PEMFC’s) remains a critical problem for their durability, cost, and performance. Because the anode side of this fuel cell has the tendency to become dehydrated, measuring the water balance can be an important diagnosis tool during fuel cell...... operation. The water balance indicates how much of the product water leaves at the anode side versus the cathode side. Previous methods of determining the fuel cell water balance often relied on condensing the water in the exhaust gas streams and weighing the accumulated mass which is a time consuming...... process that has limited accuracy. Currently, our group is developing a novel method to accurately determine the water balance in a PEMFC in real time by employing hot-wire anemometry. The amount of heat transferred from the wire to the anode exhaust stream can be translated into a voltage signal which...

  5. Stretch sensors for human body motion

    Science.gov (United States)

    O'Brien, Ben; Gisby, Todd; Anderson, Iain A.

    2014-03-01

    Sensing motion of the human body is a difficult task. From an engineers' perspective people are soft highly mobile objects that move in and out of complex environments. As well as the technical challenge of sensing, concepts such as comfort, social intrusion, usability, and aesthetics are paramount in determining whether someone will adopt a sensing solution or not. At the same time the demands for human body motion sensing are growing fast. Athletes want feedback on posture and technique, consumers need new ways to interact with augmented reality devices, and healthcare providers wish to track recovery of a patient. Dielectric elastomer stretch sensors are ideal for bridging this gap. They are soft, flexible, and precise. They are low power, lightweight, and can be easily mounted on the body or embedded into clothing. From a commercialisation point of view stretch sensing is easier than actuation or generation - such sensors can be low voltage and integrated with conventional microelectronics. This paper takes a birds-eye view of the use of these sensors to measure human body motion. A holistic description of sensor operation and guidelines for sensor design will be presented to help technologists and developers in the space.

  6. Development of Fe-based superconducting wires for liquid-hydrogen level sensors

    Science.gov (United States)

    Ishida, S.; Tsuchiya, Y.; Mawatari, Y.; Eisaki, H.; Nakano, A.; Yoshida, Y.

    2017-07-01

    We developed liquid-hydrogen (LH2) level sensors with Ba(Fe1-x Co x )2As2 superconducting wires (Co-Ba122 wires) as their detection elements. We fabricated Co-Ba122 wires with different Co concentrations x by using the powder-in-tube method. The superconducting transition temperatures of the wires were successfully controlled in the range of 20-25 K by changing x from 0.06 to 0.10. The resistance-temperature curves of the wires exhibited sharp superconducting transitions with widths of 0.5-1.0 K. In addition, we performed an operation test of the Co-Ba122 level sensors with LH2. Close correspondence between the output resistance and the actual LH2 level was observed for a sensor equipped with x = 0.09 wire, demonstrating that this sensor can accurately measure LH2 levels.

  7. Water Desalination with Wires

    NARCIS (Netherlands)

    Porada, S.; Sales, B.B.; Hamelers, H.V.M.; Biesheuvel, P.M.

    2012-01-01

    We show the significant potential of water desalination using a novel capacitive wire-based technology in which anode/cathode wire pairs are constructed from coating a thin porous carbon electrode layer on top of electrically conducting rods (or wires). By alternately dipping an array of electrode

  8. Genomic Mapping of Human DNA provides Evidence of Difference in Stretch between AT and GC rich regions

    Science.gov (United States)

    Reifenberger, Jeffrey; Dorfman, Kevin; Cao, Han

    Human DNA is a not a polymer consisting of a uniform distribution of all 4 nucleic acids, but rather contains regions of high AT and high GC content. When confined, these regions could have different stretch due to the extra hydrogen bond present in the GC basepair. To measure this potential difference, human genomic DNA was nicked with NtBspQI, labeled with a cy3 like fluorophore at the nick site, stained with YOYO, loaded into a device containing an array of nanochannels, and imaged. Over 473,000 individual molecules of DNA, corresponding to roughly 30x coverage of a human genome, were collected and aligned to the human reference. Based on the known AT/GC content between aligned pairs of labels, the stretch was measured for regions of similar size but different AT/GC content. We found that regions of high GC content were consistently more stretched than regions of high AT content between pairs of labels varying in size between 2.5 kbp and 500 kbp. We measured that for every 1% increase in GC content there was roughly a 0.06% increase in stretch. While this effect is small, it is important to take into account differences in stretch between AT and GC rich regions to improve the sensitivity of detection of structural variations from genomic variations. NIH Grant: R01-HG006851.

  9. Towards plant wires

    OpenAIRE

    Adamatzky, Andrew

    2014-01-01

    In experimental laboratory studies we evaluate a possibility of making electrical wires from living plants. In scoping experiments we use lettuce seedlings as a prototype model of a plant wire. We approximate an electrical potential transfer function by applying direct current voltage to the lettuce seedlings and recording output voltage. We analyse oscillation frequencies of the output potential and assess noise immunity of the plant wires. Our findings will be used in future designs of self...

  10. Bruxism: Is There an Indication for Muscle-Stretching Exercises?

    Science.gov (United States)

    Gouw, Simone; de Wijer, Anton; Creugers, Nico Hj; Kalaykova, Stanimira I

    Bruxism is a common phenomenon involving repetitive activation of the masticatory muscles. Muscle-stretching exercises are a recommended part of several international guidelines for musculoskeletal disorders and may be effective in management of the jaw muscle activity that gives rise to bruxism. However, most studies of muscle-stretching exercises have mainly focused on their influence on performance (eg, range of motion, coordination, and muscle strength) of the limb or trunk muscles of healthy individuals or individuals with sports-related injuries. Very few have investigated stretching of the human masticatory muscles and none muscle-stretching exercises in the management of (sleep) bruxism. This article reviews the literature on muscle-stretching exercises and their potential role in the management of sleep bruxism or its consequences in the musculoskeletal system.

  11. Stiffness of individual quadriceps muscle assessed using ultrasound shear wave elastography during passive stretching

    Directory of Open Access Journals (Sweden)

    Jingfei Xu

    2018-04-01

    Full Text Available Background: Until recently it has not been possible to isolate the mechanical behavior of individual muscles during passive stretching. Muscle shear modulus (an index of muscle stiffness measured using ultrasound shear wave elastography can be used to estimate changes in stiffness of an individual muscle. The aims of the present study were (1 to determine the shear modulus–knee angle relationship and the slack angle of the vastus medialis oblique (VMO, rectus femoris (RF, and vastus lateralis (VL muscles; (2 to determine whether this differs between the muscles. Methods: Nine male rowers took part in the study. The shear modulus of VMO, RF, and VL muscles was measured while the quadriceps was passively stretched at 3°/s. The relationship between the muscle shear modulus and knee angle was plotted as shear modulus–knee angle curve through which the slack angle of each muscle was determined. Results: The shear modulus of RF was higher than that of VMO and VL when the muscles were stretched over 54° (all p  0.05. The slack angle was similar among the muscles: 41.3° ± 10.6°, 44.3° ± 9.1°, and 44.3° ± 5.6° of knee flexion for VMO, RF, and VL, respectively (p = 0.626. Conclusion: This is the first study to experimentally determine the muscle mechanical behavior of individual heads of the quadriceps during passive stretching. Different pattern of passive tension was observed between mono- and bi-articular muscles. Further research is needed to determine whether changes in muscle stiffness are muscle-specific in pathological conditions or after interventions such as stretching protocols. Keywords: Muscle tension, Optimal length, Shear modulus, Slack angle, Stretch, Ultrasonography, Vastus lateralis, Vastus medialis

  12. Superharp: A wire scanner with absolute position readout for beam energy measurement at CEBAF

    International Nuclear Information System (INIS)

    Yan, C.

    1994-01-01

    Superharp is an upgrade CEBAF wire scanner with absolute position readout from shaft encoder. As high precision absolute beam position probe (Δx ∼ 10μm), three pairs of superharps are installed at the entrance, the mid-point, and the exit of Hall C arc beamline in beam switch yard, which will be tuned in dispersive mode as energy spectrometer performing 10 -3 beam energy measurement. With dual sensor system: the direct current pickup and the bremsstrahlung detection electronics, beam profile can be obtained by superharp at wide beam current range from 1 μA to 100 μA

  13. Hot fuel examination facility element spacer wire-wrap machine

    International Nuclear Information System (INIS)

    Tobias, D.A.; Sherman, E.K.

    1989-01-01

    Nondestructive examinations of irradiated experimental fuel elements conducted in the Argonne National Laboratory Hot Fuel Examination Facility/North (HFEF/N) at the Idaho National Engineering Laboratory include laser and contact profilometry (element diameter measurements), electrical eddy-current testing for cladding and thermal bond defects, bow and length measurements, neutron radiography, gamma scanning, remote visual exam, and photography. Profilometry was previously restricted to spiral profilometry of the element to prevent interference with the element spacer wire wrapped in a helix about the Experimental Breeder Reactor II (EBR-II)-type fuel element from end to end. By removing the spacer wire prior to conducting profilometry examination, axial profilometry techniques may be used, which are considerably faster than spiral techniques and often result in data acquisition more important to experiment sponsors. Because the element must often be reinserted into the nuclear reactor (EBR-II) for additional irradiation, however, the spacer wire must be reinstalled on the highly irradiated fuel element by remote means after profilometry of the wireless elements. The element spacer wire-wrap machine developed at HFEF is capable of helically wrapping fuel elements with diameters up to 1.68 cm (0.660 in.) and 2.44-m (96-in.) lengths. The machine can accommodate almost any desired wire pitch length by simply inserting a new wrapper gear module

  14. Scanning the melting curve of tungsten by a submicrosecond wire-explosion experiment

    International Nuclear Information System (INIS)

    Kloss, A.; Hess, H.; Schneidenbach, H.; Grossjohann, R.

    1999-01-01

    Measurements of temperature and density during a wire-explosion experiment at atmospheric pressure are described. The measurements encompass a parameter range from the solid to near the critical point. The influence of a polytetra-fluoroethylene coating of the wire, necessary to prevent surface discharges, on the temperature and density measurements is investigated. The melting curve of tungsten up to 4,000 K is determined

  15. Faraday and Kerr Effects Diagnostics for Underwater Exploding Wires

    Science.gov (United States)

    Sarkisov, G. S.; Fedotov-Gefen, A. V.; Krasik, Ya. E.

    2012-10-01

    Two-channel laser polarimeter was used to measure magnetic and electric fields in vicinity of underwater exploding wire. Nd:YAG Q-switch laser with 532nm wavelength, 100mJ energy and 5ns pulse width was used for probing. Single wire, parallel wires and X and V- shaped wires was used in experiments. Electric and magnetic field induced birefringes in the water results in changing of polarization stage of probing beam after propagation through this anisotropic medium. Magnetic field results in circular anisotropy of the water, while electric field creates linear anisotropy. Magnetic field results in rotation of polarization plan of linear-polarized probing beam. Electric field effect is more complicated- polarization plan of the laser beam subjected to pulsation and changing of ellipticity. Effect of electric field depends on initial probing geometry- angle between electrical field vector E and polarization plane of probing wave. In our exploding wire experiments we found influence of both Faraday and Kerr effects. It was demonstrated existence of Kerr effect inside bubbles at high voltage electrode. Effect of magnetic fields interaction for multi-wire loads was observed.

  16. Aerosols produced by evaporation of a uranium wire

    International Nuclear Information System (INIS)

    Morel, C.

    1968-03-01

    This work is devoted to the study of the aerosols formed when an uranium wire is evaporated in a normal or rarefied atmosphere, either with or without a drying agent. The heating of the wire can be either fast or slow. The first part is a study of aerosol production apparatus and of methods of measuring the aerosol. The second part presents the results obtained with various aerosols: the particles produced by the wire are less than one micron; during rapid heating, the granulometric distribution of the aerosol obeys a log-normal law; during slow heating, the distribution has two modes: one near 0.05 micron, the other close to 0.01 micron. (author) [fr

  17. Design considerations and challenges for mechanical stretch bioreactors in tissue engineering.

    Science.gov (United States)

    Lei, Ying; Ferdous, Zannatul

    2016-05-01

    With the increase in average life expectancy and growing aging population, lack of functional grafts for replacement surgeries has become a severe problem. Engineered tissues are a promising alternative to this problem because they can mimic the physiological function of the native tissues and be cultured on demand. Cyclic stretch is important for developing many engineered tissues such as hearts, heart valves, muscles, and bones. Thus a variety of stretch bioreactors and corresponding scaffolds have been designed and tested to study the underlying mechanism of tissue formation and to optimize the mechanical conditions applied to the engineered tissues. In this review, we look at various designs of stretch bioreactors and common scaffolds and offer insights for future improvements in tissue engineering applications. First, we summarize the requirements and common configuration of stretch bioreactors. Next, we present the features of different actuating and motion transforming systems and their applications. Since most bioreactors must measure detailed distributions of loads and deformations on engineered tissues, techniques with high accuracy, precision, and frequency have been developed. We also cover the key points in designing culture chambers, nutrition exchanging systems, and regimens used for specific tissues. Since scaffolds are essential for providing biophysical microenvironments for residing cells, we discuss materials and technologies used in fabricating scaffolds to mimic anisotropic native tissues, including decellularized tissues, hydrogels, biocompatible polymers, electrospinning, and 3D bioprinting techniques. Finally, we present the potential future directions for improving stretch bioreactors and scaffolds. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:543-553, 2016. © 2016 American Institute of Chemical Engineers.

  18. A primary study on meridian-stretching of injected FDG using PET MPItool

    International Nuclear Information System (INIS)

    He Yijie; Tian Jiahe; Chen Yingmao; Yin Dayi; Zhang Jinming; Zhang Shuwen; Shao Mingzhe; Yao Shulin; Ding Weimin; Liu Zilai

    2002-01-01

    Objective: To show the images of tracer-stretching along the acupuncture meridian by use of PET with multipurpose imaging tool (MPItool's) fusion function. Methods: On 5 healthy volunteers, the authors measured the classical acupuncture points accurately with the biophysical measuring method. 18 F-fluorodeoxyglucose (FDG) was injected into the selected points, the others points along the same meridian were labelled with 18 F-FDG applied on the correspondent skin area of 2 . With the same body position, the transmission image and emission image was acquired respectively and fused with MPItool and its 3D display system. Results: The authors clearly showed not only the meridian-stretching images of the tracer, but also figured out the depth of the study points. The depth at SHANGJUXU point was about 3.8 cm and at ZUSANLI point was about 5,0 cm. The depths basically fit the classically documented ones of the correspondent acupuncture points. Conclusions: Using PET MPItool the authors preliminarily demonstrated that the tracer injected at the acupuncture point stretches along the correspondent meridian, and the depths of the meridian and the points (SHANGJUXU, ZUSANLI) detected are almost accordant with the classically documented ones

  19. Development of a short sample test facility for evaluating superconducting wires

    International Nuclear Information System (INIS)

    Singh, M.R.; Kulkarni, D.G.; Sahni, V.C.; Ravikumar, G.; Patel, K.L.

    2002-01-01

    In this paper we describe a short sample test facility we have set up at Bhabha Atomic Research Centre (BARC). This facility has been used to measure critical currents of NbTi/Cu composite superconducting wires by recording V versus I data at 4.2 K. It offers sample current as large as 1500 A and a transverse magnetic field up to 7.4 T. A power law, V ∼I n( H) is fitted to the resistive transition region to estimate the exponent n, which is a measure of the uniformity of superconducting filaments in composite wires. It is observed that inadequate thermal stabilization of sample wire results in thermal runaway, which limits the V-I data to∼ 2μ V . This in turn affects the reliability of estimated filament uniformity. To mitigate this problem, we have used a sample holder made of OFHC-Cu which enhances thermal stabilization of the sample. With this sample holder, the results of measurements carried out on wires developed by the Atomic Fuel Division, BARC show a high filament uniformity (n ∼ 58). (author)

  20. Using wire shaping techniques and holographic optics to optimize deposition characteristics in wire-based laser cladding.

    Science.gov (United States)

    Goffin, N J; Higginson, R L; Tyrer, J R

    2016-12-01

    In laser cladding, the potential benefits of wire feeding are considerable. Typical problems with the use of powder, such as gas entrapment, sub-100% material density and low deposition rate are all avoided with the use of wire. However, the use of a powder-based source material is the industry standard, with wire-based deposition generally regarded as an academic curiosity. This is because, although wire-based methods have been shown to be capable of superior quality results, the wire-based process is more difficult to control. In this work, the potential for wire shaping techniques, combined with existing holographic optical element knowledge, is investigated in order to further improve the processing characteristics. Experiments with pre-placed wire showed the ability of shaped wire to provide uniformity of wire melting compared with standard round wire, giving reduced power density requirements and superior control of clad track dilution. When feeding with flat wire, the resulting clad tracks showed a greater level of quality consistency and became less sensitive to alterations in processing conditions. In addition, a 22% increase in deposition rate was achieved. Stacking of multiple layers demonstrated the ability to create fully dense, three-dimensional structures, with directional metallurgical grain growth and uniform chemical structure.

  1. Experimental hot-wire measurements in a centrifugal compressor with vaned diffuser

    International Nuclear Information System (INIS)

    Pinarbasi, Ali

    2008-01-01

    The purpose of this study was to improve the understanding of the flow physics in a centrifugal compressor with vaned diffuser. For this reason three component hot wire measurements in the vaneless space and vane region of a low speed centrifugal compressor are presented. A low speed compressor with a 19 bladed backswept impeller and diffuser with 16 wedge vanes were used. The measurements were made at three inter-vane positions and are presented as mean velocity, turbulent kinetic energy and flow angle distributions. The flow entering the diffuser closely resembles the classic jet-wake flow characteristic of centrifugal impeller discharges. A strong upstream influence of the diffuser vanes is observed which results in significant variations in flow quantities between the vane-to-vane locations. The circumferential variations due to the passage and blade wakes rapidly mix out in the vaneless space, although some variations are still discernible in the vaned region. The impeller blade wakes mix out rapidly within the vaneless space and more rapidly than in an equivalent vaneless diffuser. Although the flow is highly non uniform in velocity at the impeller exit, there is no evidence in the results of any separation from the diffuser vanes

  2. Direct measurements of wall shear stress by buried wire gages in a shock-wave boundary-layer interaction region

    Science.gov (United States)

    Murthy, V. S.; Rose, W. C.

    1977-01-01

    Detailed measurements of wall shear stress (skin friction) were made with specially developed buried wire gages in the interaction regions of a Mach 2.9 turbulent boundary layer with externally generated shocks. Separation and reattachment points inferred by these measurements support the findings of earlier experiments which used a surface oil flow technique and pitot profile measurements. The measurements further indicate that the boundary layer tends to attain significantly higher skin-friction values downstream of the interaction region as compared to upstream. Comparisons between measured wall shear stress and published results of some theoretical calculation schemes show that the general, but not detailed, behavior is predicted well by such schemes.

  3. Stretch induced endothelin-1 secretion by adult rat astrocytes involves calcium influx via stretch-activated ion channels (SACs)

    International Nuclear Information System (INIS)

    Ostrow, Lyle W.; Suchyna, Thomas M.; Sachs, Frederick

    2011-01-01

    Highlights: → Endothelin-1 expression by adult rat astrocytes correlates with cell proliferation. → Stretch-induced ET-1 is inhibited by GsMtx-4, a specific inhibitor of Ca 2+ permeant SACs. → The less specific SAC inhibitor streptomycin also inhibits ET-1 secretion. → Stretch-induced ET-1 production depends on a calcium influx. → SAC pharmacology may provide a new class of therapeutic agents for CNS pathology. -- Abstract: The expression of endothelins (ETs) and ET-receptors is often upregulated in brain pathology. ET-1, a potent vasoconstrictor, also inhibits the expression of astrocyte glutamate transporters and is mitogenic for astrocytes, glioma cells, neurons, and brain capillary endothelia. We have previously shown that mechanical stress stimulates ET-1 production by adult rat astrocytes. We now show in adult astrocytes that ET-1 production is driven by calcium influx through stretch-activated ion channels (SACs) and the ET-1 production correlates with cell proliferation. Mechanical stimulation using biaxial stretch ( 2+ threshold. This coupling of mechanical stress to the astrocyte endothelin system through SACs has treatment implications, since all pathology deforms the surrounding parenchyma.

  4. Polymer growth rate in a wire chamber with oxygen, water, or alcohol gas additives

    International Nuclear Information System (INIS)

    Boyarski, Adam M.

    2009-01-01

    The rate of polymer growth on wires was measured in a wire chamber while the chamber was aged initially with helium:isobutane (80:20) gas, and then with either oxygen, water, or alcohol added to the gas. At the completion of the aging process for each gas mixture, the carbon content on the wires was measured in a scanning electron microscope/energy dispersive X-ray (SEM/EDX) instrument. The same physical wires were used in all the gas mixtures, allowing measurement of polymer build-up or polymer depletion by each gas additive. It is found that the rate of polymer growth is not changed by the presence of oxygen, water, or alcohol. Conjecture that oxygen reduces breakdown by removing polymer deposits on field wires is negated by these measurements. Instead, it appears that the reduced breakdown is due to lower resistance in the polymer from oxygen ions being transported into the polymer. It is also observed that field wires bombarded by the electrons in the SEM and then placed back into the chamber show an abundance of single electrons being emitted, indicating that electron charge is trapped in the polymer layer and that a high electric field is necessary to remove the charge.

  5. 1 mil gold bond wire study.

    Energy Technology Data Exchange (ETDEWEB)

    Huff, Johnathon; McLean, Michael B.; Jenkins, Mark W.; Rutherford, Brian Milne

    2013-05-01

    In microcircuit fabrication, the diameter and length of a bond wire have been shown to both affect the current versus fusing time ratio of a bond wire as well as the gap length of the fused wire. This study investigated the impact of current level on the time-to-open and gap length of 1 mil by 60 mil gold bond wires. During the experiments, constant current was provided for a control set of bond wires for 250ms, 410ms and until the wire fused; non-destructively pull-tested wires for 250ms; and notched wires. The key findings were that as the current increases, the gap length increases and 73% of the bond wires will fuse at 1.8A, and 100% of the wires fuse at 1.9A within 60ms. Due to the limited scope of experiments and limited data analyzed, further investigation is encouraged to confirm these observations.

  6. Corrosion of Wires on Wooden Wire-Bound Packaging Crates

    Science.gov (United States)

    Samuel L. Zelinka; Stan Lebow

    2015-01-01

    Wire-bound packaging crates are used by the US Army to transport materials. Because these crates may be exposed to harsh environments, they are dip-treated with a wood preservative (biocide treatment). For many years, zinc-naphthenate was the most commonly used preservative for these packaging crates and few corrosion problems with the wires were observed. Recently,...

  7. Proportional wire chamber system for beam definition in precision total cross section measurements

    International Nuclear Information System (INIS)

    Carroll, A.S.; Chiang, I.H.; Kycia, T.F.

    1978-03-01

    A PWC system was developed and extensively used in precision measurements of total cross sections at low momenta (0.4 to 1.1 GeV/c) and at high momenta (23 to 370 GeV/c). This ''electronic collimator'' operated simultaneously in a fast (250 nsec) decision making mode, and a slower (0.5 msec) readout mode. The decision making mode utilized adjustable hard-wired logic to define acceptable incident beam trajectories and reject multiple beam tracks. A sample of the events were read into an on-line computer for beam tuning, for chamber diagnostics, and for study of the effect of small angle scattering to verify the total cross section extrapolation procedure

  8. Linear response of stretch-affected premixed flames to flow oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H.Y.; Law, C.K. [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States); Lieuwen, T. [School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States)

    2009-04-15

    The linear response of 2D wedge-shaped premixed flames to harmonic velocity disturbances was studied, allowing for the influence of flame stretch manifested as variations in the local flame speed along the wrinkled flame front. Results obtained from analyzing the G-equation show that the flame response is mainly characterized by a Markstein number {sigma}{sub C}, which measures the curvature effect of the wrinkles, and a Strouhal number, St{sub f}, defined as the angular frequency of the disturbance normalized by the time taken for the disturbance to propagate the flame length. Flame stretch is found to become important when the disturbance frequency satisfies {sigma}{sub C}St{sub f}{sup 2}{proportional_to} O(1), i.e. St{sub f}{proportional_to} O({sigma}{sub C}{sup -1/2}). Specifically, for disturbance frequencies below this order, stretch effects are small and the flame responds as an unstretched one. When the disturbance frequencies are of this order, the transfer function, defined as the ratio of the normalized fluctuation of the heat release rate to that of the velocity, is contributed mostly from fluctuations of the flame surface area, which is now affected by stretch. Finally, as the disturbance frequency increases to St{sub f}{proportional_to} O({sigma}{sub C}{sup -1}), i.e. {sigma}{sub C}St{sub f}{proportional_to} O(1), the direct contribution from the stretch-affected flame speed fluctuation to the transfer function becomes comparable to that of the flame surface area. The present study phenomenologically explains the experimentally observed filtering effect in which the flame wrinkles developed at the flame base decay along the flame surface for large frequency disturbances as well as for thermal-diffusively stable and weakly unstable mixtures. (author)

  9. The Effect of Static Stretch on Elastin Degradation in Arteries

    Science.gov (United States)

    Chow, Ming-Jay; Choi, Myunghwan; Yun, Seok Hyun; Zhang, Yanhang

    2013-01-01

    Previously we have shown that gradual changes in the structure of elastin during an elastase treatment can lead to important transition stages in the mechanical behavior of arteries [1]. However, in vivo arteries are constantly being loaded due to systolic and diastolic pressures and so understanding the effects of loading on the enzymatic degradation of elastin in arteries is important. With biaxial tensile testing, we measured the mechanical behavior of porcine thoracic aortas digested with a mild solution of purified elastase (5 U/mL) in the presence of a static stretch. Arterial mechanical properties and biochemical composition were analyzed to assess the effects of mechanical stretch on elastin degradation. As elastin is being removed, the dimensions of the artery increase by more than 20% in both the longitude and circumference directions. Elastin assays indicate a faster rate of degradation when stretch was present during the digestion. A simple exponential decay fitting confirms the time constant for digestion with stretch (0.11±0.04 h−1) is almost twice that of digestion without stretch (0.069±0.028 h−1). The transition from J-shaped to S-shaped stress vs. strain behavior in the longitudinal direction generally occurs when elastin content is reduced by about 60%. Multiphoton image analysis confirms the removal/fragmentation of elastin and also shows that the collagen fibers are closely intertwined with the elastin lamellae in the medial layer. After removal of elastin, the collagen fibers are no longer constrained and become disordered. Release of amorphous elastin during the fragmentation of the lamellae layers is observed and provides insights into the process of elastin degradation. Overall this study reveals several interesting microstructural changes in the extracellular matrix that could explain the resulting mechanical behavior of arteries with elastin degradation. PMID:24358135

  10. Magnesium diboride(MgB2) wires for applications

    International Nuclear Information System (INIS)

    Patel, Dipak; Kim, Jung Ho

    2016-01-01

    Field and temperature dependence of the critical current density, Jc, were measured for both un-doped and carbon doped MgB 2 /Nb/Monel wires manufactured by Hyper Tech Research, Inc. In particular, carbon incorporation into the MgB 2 structure using malic acid additive and a chemical solution method can be advantageous because of the highly uniform mixing between the carbon and boron powders. At 4.2 K and 10 T, Jc was estimated to be 25,000 - 25,300 Acm -2 for the wire sintered at 600 degrees C for 4 hours. The irreversibility field, Birr, of the malic acid doped wire was approximately 21.0 - 21.8 T, as obtained from a linear extrapolation of the J-B characteristic. Interestingly enough, the Jc of the malic acid doped sample exceeds 10 5 Acm -2 at 6 T and 4.2 K, which is comparable to that of commercial Nb-Ti wires

  11. Measurements of peripherical static pressure and pressure drop in a rod bundle with helical wire wrap spacers

    International Nuclear Information System (INIS)

    Ballve, H.; Graca, M.C.; Fernandez y Fernandez, E.; Carajilescov, P.

    1981-07-01

    The fuel element of a LMFBR nuclear reactor consists of a wire wrapped rod bundle with triangular array with the coolant flowing parallel to the rods. Using this type of element with seven rods conected to an air open loop. The hydrodinamics behavior of the flow for p/d = 1.20 and l/d = 15.0, was simulated. Several measurements were performed in order to obtain the static pressure distribution at the walls of the hexagonal duct, for Reynolds number from 4.4x10 3 to 48.49x10 3 and for different axial and transverse positions, in a wire wrap lead. The axial pressure drop was obtained and determined the friction factor dependence with the Reynolds number. From the obtained results, it was observed the non-dependency of the non-dimensionalized axial and transverse local static pressure distribution at the wall of the hexagonal duct, with the Reynolds number. The obtained friction factor is compared to the results of previous works. (Author) [pt

  12. Development of gas-liquid two-phase flow measurement technique in narrow channel. Application of micro wire-mesh sensor to the flow between parallel plates

    International Nuclear Information System (INIS)

    Ito, Daisuke; Kikura, Hiroshige; Aritomi, Masanori

    2009-01-01

    A novel two-phase flow measuring technique based on local electrical conductivity measurement was developed for clarifications of three-dimensional flow structure in gas-liquid two-phase flow in a narrow channel. The measuring method applies the principle of conventional wire-mesh tomography, which can measure the instantaneous void fraction distributions in a cross-section of a flow channel. In this technique, the electrodes are fixed on the inside of the walls facing each other, and the local void fractions were obtained by the electrical conductivity measurement between electrodes arranged on each wall. Therefore, the flow structure and the bubble behavior can be investigated by three-dimensional void fraction distributions in the channel with narrow gap. In this paper, a micro Wire-Mesh Sensor (μWMS) which has the gap of 3 mm was developed, and the instantaneous void fraction distributions were measured. From the measured distributions, three-dimensional bubble distributions were reconstructed, and bubble volumes and bubble velocities were estimated. (author)

  13. Short-term pressure induced suppression of the short-latency response: a new methodology for investigating stretch reflexes

    DEFF Research Database (Denmark)

    Leukel, Christian; Lundbye-Jensen, Jesper; Gruber, Markus

    2009-01-01

    During experiments involving ischemic nerve block, we noticed that the short-latency response (SLR) of evoked stretches in m. soleus decreased immediately following inflation of a pneumatic cuff surrounding the lower leg. The present study aimed to investigate this short-term effect of pressure......) were recorded. Additionally, stretches were applied with different velocities and amplitudes. Finally, the SLR was investigated during hopping and in two protocols that modified the ability of the muscle-tendon complex distal to the cuff to stretch. All measurements were performed with deflated...

  14. Improved Symmetry Greatly Increases X-Ray Power from Wire-Array Z-Pinches

    International Nuclear Information System (INIS)

    Sanford, T.W.; Allshouse, G.O.; Marder, B.M.; Nash, T.J.; Mock, R.C.; Spielman, R.B.; Seamen, J.F.; McGurn, J.S.; Jobe, D.; Gilliland, T.L.; Vargas, M.; Struve, K.W.; Stygar, W.A.; Douglas, M.R.; Matzen, M.K.; Hammer, J.H.; De Groot, J.S.; Eddleman, J.L.; Peterson, D.L.; Mosher, D.; Whitney, K.G.; Thornhill, J.W.; Pulsifer, P.E.; Apruzese, J.P.; Maron, Y.

    1996-01-01

    A systematic experimental study of annular aluminum-wire Z-pinches on a 20-TW electrical generator shows that the measured spatial characteristics and emitted x-ray power agree more closely with rad-hydro simulations when large numbers of wires are used. The measured x-ray power increases first slowly and then rapidly with decreasing interwire gap spacing. Simulations suggested that this increase reflects the transition from implosion of individual wire plasmas to one of an azimuthally symmetric plasma shell. In the plasma-shell regime, x-ray powers of 40TW are achieved. copyright 1996 The American Physical Society

  15. Local and Systemic Changes in Pain Sensitivity After 4 Weeks of Calf Muscle Stretching in a Nonpainful Population

    DEFF Research Database (Denmark)

    Bartholdy, Cecilie; Zangger, Graziella; Hansen, Lisbeth

    2016-01-01

    BACKGROUND: Stretching is often used in clinical practice for a variety of purposes, including pain therapy. The possible mechanism behind the effect of stretching remains to be clarified. AIM: To investigate whether 4 weeks of unilateral stretching of the calf muscles would affect local...... and central pain sensitivity. METHOD: This study was a randomized assessor-blinded clinical study. Healthy participants (age 18 to 40) were included and randomized. Participants in the intervention group were instructed to perform 2 stretching exercises targeting the calf muscles; 3 times 30 seconds, 7 days...... a week for 4 weeks on the dominant leg. Participants in the control group were instructed not to do any stretching for 4 weeks. Pressure pain threshold (PPT) and temporal summation (TS) of pressure pain were measured on the stretched calf, the contra-lateral calf, and contra-lateral lower arm using...

  16. Feasibility study of an active soft catheter actuated by SMA wires

    Science.gov (United States)

    Konh, Bardia; Karimi, Saeed; Miller, Scott

    2018-03-01

    This study aims to assess the feasibility of using a combination of thin elastomer tubes and SMA wires to develop an active catheter. Cardiac catheters have been widely used in investigational and interventional procedures such as angiography, angioplasty, electro- physiology, and endocardial ablation. The commercial models manually steer inside the patient's body via internally installed pull wires. Active catheters, on the other hand, have the potential to revolutionize surgical procedures because of their computer-controlled and enhanced motion. Shape memory alloys have been used for almost a decade as a trustworthy actuator for biomedical applications. In this work, SMA wires were attached to a small pressurized elastomer tube to realize deflection. The tube was pressurized to maintain a constant stress on the SMA wires. The tip motion via actuation of SMA wires was then measured and reported. The results of this study showed that by adopting an appropriate training process for the SMA wires prior to performing the experiments and adopting an appropriate internal pressure for the elastomer tube, less external loads on SMA wires would be needed for a consistent actuation.

  17. Energy losses in mixed matrix superconducting wires under fast pulsed conditions

    International Nuclear Information System (INIS)

    Wollan, J.J.

    1976-01-01

    Energy losses have been measured on a set of mixed matrix (CuNi, Cu, NbTi) superconducting wires at B's up to 1.5 x 10 7 G/s. The losses have been measured as a function of wire diameter, twist pitch, maximum applied field, and B. Both static and dynamic losses were measured for a field applied perpendicularly to the wire axis. The dynamic losses were measured by slowly applying an external field to a sample and then causing the field to decay exponentially in roughly 1 ms to 10 ms. Under low B (9 kG) and B (10 6 G/s) conditions the hysteretic loss dominated. At high B (21 kG) and B (1.5 x 10 7 G/s) the matrix losses became dominant. The systematic variation of the losses with the mentioned parameters will be presented and will be compared to theoretical predictions

  18. Forming Refractory Insulation On Copper Wire

    Science.gov (United States)

    Setlock, J.; Roberts, G.

    1995-01-01

    Alternative insulating process forms flexible coat of uncured refractory insulating material on copper wire. Coated wire formed into coil or other complex shape. Wire-coating apparatus forms "green" coat on copper wire. After wire coiled, heating converts "green" coat to refractory electrical insulator. When cured to final brittle form, insulating material withstands temperatures above melting temperature of wire. Process used to make coils for motors, solenoids, and other electrical devices to be operated at high temperatures.

  19. The stretch reflex and the contributions of C David Marsden

    Directory of Open Access Journals (Sweden)

    Kalyan B Bhattacharyya

    2017-01-01

    Full Text Available The stretch reflex or myotatic reflex refers to the contraction of a muscle in response to its passive stretching by increasing its contractility as long as the stretch is within physiological limits. For ages, it was thought that the stretch reflex was of short latency and it was synonymous with the tendon reflex, subserving the same spinal reflex arc. However, disparities in the status of the two reflexes in certain clinical situations led Marsden and his collaborators to carry out a series of experiments that helped to establish that the two reflexes had different pathways. That the two reflexes are dissociated has been proved by the fact that the stretch reflex and the tendon reflex, elicited by stimulation of the same muscle, have different latencies, that of the stretch reflex being considerably longer. They hypothesized that the stretch reflex had a transcortical course before it reached the spinal motor neurons for final firing. Additionally, the phenomenon of stimulus-sensitive cortical myoclonus lent further evidence to the presence of the transcortical loop where the EEG correlate preceded the EMG discharge. This concept has been worked out by later neurologists in great detail , and the general consensus is that indeed, the stretch reflex is endowed with a conspicuous transcortical component.

  20. Simultaneous measurements of thickness and temperature profile in a wavy liquid film falling freely on a heating wall

    International Nuclear Information System (INIS)

    Lyu, T.; Mudawar, I.

    1990-01-01

    This paper reports on a technique for measuring the thickness of liquid films that was developed and tested. The feasibility of this technique was demonstrated in stagnant liquid films as well as in liquid jets. A procedure for in-situ calibration of the thickness probe was developed, allowing the adaptation of the probe to measurements of wavy liquid films. The thickness probe was constructed from a platinum-rhodium wire that was stretched across the film. A constant DC current was supplied through the probe wire, and film thickness was determined from variations in the probe voltage drop resulting from the large differences in the electrical resistances of the wetted and unwetted segments of the wire. Unlike electrical admittance thickness probes, the new probe did not require dissolving an electrolyte in the liquid, making the new probe well suited to studies involving sensible heating of a film of pure dielectric liquid that is in direct contact with a current- carrying wall. Also presented is a composite probe that facilitated simultaneous measurements of temperature profile across a wavy liquid film and film thickness. Experimental results demonstrate a strong influence of waviness on liquid temperature in a film of deionized water falling freely on the outside wall of a vertical, electrically heated tube for film Reynolds numbers smaller than 10,000

  1. Ultrasonic cleaning of electrodes of wire chambers

    International Nuclear Information System (INIS)

    Krasnov, V.A.; Kurepin, A.B.; Razin, V.I.

    1980-01-01

    A technological process of cleaning electrodes and working volume surfaces of wire chambers from contaminations by the simultaneous mechanical action of the energy of ultrasonic oscillations and the chemical action of detergents is discussed. A device for cleaning wire electrodes of proportional chambers of 0.3x0.4 m is described. The device uses two ultrasonic generators with a total power of 0.5 kW. As a detergent use is made of a mixture of ethyl alcohol, gasoline and freon. In the process of cleaning production defects can be detected in the wire chambers which makes it possible to timely remove the defects. Measurements of the surface resistance of fiberglass laminate of printed drift chamber electrodes at a voltage of 2 kV showed that after completing the cleaning process the resistance increases 15-20%

  2. High conductivity carbon nanotube wires from radial densification and ionic doping

    Science.gov (United States)

    Alvarenga, Jack; Jarosz, Paul R.; Schauerman, Chris M.; Moses, Brian T.; Landi, Brian J.; Cress, Cory D.; Raffaelle, Ryne P.

    2010-11-01

    Application of drawing dies to radially densify sheets of carbon nanotubes (CNTs) into bulk wires has shown the ability to control electrical conductivity and wire density. Simultaneous use of KAuBr4 doping solution, during wire drawing, has led to an electrical conductivity in the CNT wire of 1.3×106 S/m. Temperature-dependent electrical measurements show that conduction is dominated by fluctuation-assisted tunneling, and introduction of KAuBr4 significantly reduces the tunneling barrier between individual nanotubes. Ultimately, the concomitant doping and densification process leads to closer packed CNTs and a reduced charge transfer barrier, resulting in enhanced bulk electrical conductivity.

  3. Development of Ti-sheathed MgB2 wires with high critical current density

    International Nuclear Information System (INIS)

    Liang, G; Fang, H; Hanna, M; Yen, F; Lv, B; Alessandrini, M; Keith, S; Hoyt, C; Tang, Z; Salama, K

    2006-01-01

    Working towards developing lightweight superconducting magnets for future space and other applications, we have successfully fabricated mono-core Ti-sheathed MgB 2 wires by the powder-in-tube method. The wires were characterized by magnetization, electrical resistivity, x-ray diffraction, scanning electron microscopy, and energy dispersive spectrometry measurements. The results indicate that the Ti sheath does not react with the magnesium and boron, and the present wire rolling process can produce MgB 2 wires with a superconducting volume fraction of at least 64% in the core. Using the Bean model, it was found that at 5 K, the magnetic critical current densities, J c , measured in magnetic fields of 0, 5, and 8 T are about 4.2 x 10 5 , 3.6 x 10 4 , and 1.4 x 10 4 A cm -2 , respectively. At 20 K and 0 T, the magnetic J c is about 2.4 x 10 5 A cm -2 . These results show that at zero and low fields, the values of the magnetic J c for Ti-sheathed MgB 2 wires are comparable with the best results available for the Fe-sheathed MgB 2 wires. At high fields, however, the J c for Ti-sheathed MgB 2 wires appears higher than that for the Fe-sheathed MgB 2 wires

  4. Nanostructure and mechanical properties of heavily cold-drawn steel wires

    International Nuclear Information System (INIS)

    Yang, Y.S.; Bae, J.G.; Park, C.G.

    2009-01-01

    The effects of microstructure on the mechanical properties of the high-carbon steel wires were investigated. The wires were fabricated with carbon content of 0.82 and 1.02 wt.% and drawing strain from 4.12 to 4.32. The bending fatigue resistance and torsion ductility were measured by a Hunter fatigue tester and a torsion tester specially designed for fine wires. As the carbon content and drawing strain increased, the fatigue resistance and the torsional ductility of the steel wires decreased, and the tensile strength increased. To elucidate the causes of these behaviors, the microstructure in terms of lamellar spacing (λ P ), cementite thickness (t C ) and morphology of cementite was observed using transmission electron microscopy (TEM) and 3-dimensional atom probe (3-DAP).

  5. A comparison of two stretching programs for hamstring muscles: A randomized controlled assessor-blinded study.

    Science.gov (United States)

    Demoulin, Christophe; Wolfs, Sébastien; Chevalier, Madeline; Granado, Caroline; Grosdent, Stéphanie; Depas, Yannick; Roussel, Nathalie; Hage, Renaud; Vanderthommen, Marc

    2016-01-01

    Most parameters regarding hamstring flexibility training programs have been investigated; however, the joint (i.e. hip or knee) on which the stretching should preferentially be focused needs to be further explored. This randomized controlled assessor-blinded study aimed to investigate the influence of this parameter. We randomly assigned 111 asymptomatic participants with tight hamstring muscles in three groups: a control group and two groups following a different home-based 8-week (five 10-minute sessions per week) hamstring stretching program (i.e. stretching performed by flexing the hip while keeping the knee extended [SH] or by first flexing the hip with a flexed knee and then extending the knee [SK]). Range of motion (ROM) of hip flexion and knee extension were measured before and after the stretching program by means of the straight leg raising test and the passive knee extension angle test, respectively. Eighty-nine participants completed the study. A significant increase in ROM was observed at post-test. Analyses showed significant group-by-time interactions for changes regarding all outcomes. Whereas the increase in hip flexion and knee extension ROM was higher in the stretching groups than in the CG (especially for the SH group p 0.05). In conclusion, the fact that both stretching programs resulted in similar results suggests no influence of the joint at which the stretching is focused upon, as assessed by the straight leg raising and knee extension angle tests.

  6. Field measurement of a Fermilab-built full scale prototype quadrupole magnet for the LHC interaction regions

    CERN Document Server

    Bossert, R; Di Marco, J; Fehér, S; Glass, H; Kerby, J S; Lamm, M J; Nobrega, A; Nicol, T H; Ogitsu, T; Orris, D; Page, T; Rabehl, Roger Jon; Sabbi, G L; Schlabach, P; Strait, J B; Sylvester, C D; Tartaglia, M; Tompkins, J C; Velev, G V; Zlobin, A V

    2002-01-01

    Superconducting low-beta quadrupole magnets for the interaction regions of the Large Hadron Collider have been developed by the US- LHC Accelerator Project. These 70 mm bore 5.5 m long quadrupoles are intended to operate in superfluid helium at 1.9 K with a nominal field gradient of 215 T/m. Following a series of 2 m long models, a full scale cryostated cold mass has been fabricated and cold tested at Fermilab. Magnetic field measurements of the prototype, including determination of the field axis using a single stretched wire, have been performed. These measurements and comparisons with results from the model magnets as well as field quality and alignment requirements are reported in this paper. (8 refs).

  7. Wire chambers: Trends and alternatives

    Energy Technology Data Exchange (ETDEWEB)

    Regler, Meinhard

    1992-05-15

    The subtitle of this year's Vienna Wire Chamber Conference - 'Recent Trends and Alternative Techniques' - signalled that it covered a wide range of science and technology. While an opening Vienna talk by wire chamber pioneer Georges Charpak many years ago began 'Les funerailles des chambres a fils (the burial of wire chambers)', the contrary feeling this year was that wire chambers are very much alive!.

  8. High-speed railway lines. Fatigue of contact wires

    Energy Technology Data Exchange (ETDEWEB)

    Avronsart, Stephane; Kalsbeek, Guido van [SNCF, La Plaine St. Denis (France); Mai, Si Hai; Massat, Jean Pierre; Nguyen-Tajan, Thi Mac-Lan [SNCF, Paris (France)

    2013-06-15

    With more than 30 years of operation of High-Speed Lines, SNCF has a large feedback on behaviour of components. Regarding the contact wire, the only operation of maintenance consists in measuring the thickness in order to estimate the remaining lifetime which in total is around 50 years. With such a long period of operation the question was raised on fatigue phenomena. The research project launched by SNCF on this topic in 2011 includes tests on copper material characteristics, modelling of the crack initiation and propagation and detection of cracks on the contact wire. The result of this research project could lead to request for changes in EN 50149 by introducing new material characteristic parameters for contact wire related to fatigue. (orig.)

  9. METODE ACTIVE ISOLATED STRETCHING (AIS DAN METODE HOLD RELAX STRETCHING (HRS SAMA EFEKTIF DALAM MENINGKATKAN FLEKSIBILITAS OTOT HAMSTRING PADA MAHASISWA AKADEMI FISIOTERAPI WIDYA HUSADA SEMARANG YANG MENGALAMI HAMSTRING MUSCLE TIGHTNESS (HMTs

    Directory of Open Access Journals (Sweden)

    Akhmad alfajri

    2015-08-01

    Full Text Available Students with Hamstring Muscle Tightness (HMTs will be at risk of Anterior Crusiatum Ligament (ACL, Low Back Pain (LBP and also Plantar Faciitis. One of the efforts to reduce tightness and improve hamstring muscle flexibility is stretching. Active Isolated Stretching (AIS and Hold Relax Stretching (HRS are the methods of influential stretching to improve muscle flexibility. The goal of the research is to prove that AIS method is equally effective with the HRS method to improve hamstring muscle flexibility to the HMTs patients. The research method was true experimental with pre and post test group design. The research was conducted for 3 weeks and the samples are 23 students in range of 18-25 years old students of physical therapy in Physical Therapy Academy of Widya Husada Semarang which divided into 2 groups; AIS group (n= 12 and HRS group (n= 11. The research used Sit and Reach Test (SRT as the measurement instrument. The result of the research was the average result of AIS group used SRT before treatment was 1.75 cm, SB= 4.309 and after treatment was 10. 58 cm, SB = 8. 005 within p= 0.000 (p 0.05. Those explain that the improvement of hamstring muscle flexibility to the two groups does not show any significant difference. Conclusion from this study was active isolated stretching method and hold relax stretching method are equally effective to improving muscle flexibility of hamstring muscle tightness students of physical therapy in Physical Therapy Academy of Widya Husada Semarang.

  10. Flying wire beam profile monitor at the J-PARC MR

    International Nuclear Information System (INIS)

    Igarashi, Susumu; Arakawa, Dai; Hashimoto, Yoshinori; Teshima, Masaki; Toyama, Takeshi; Hanamura, Kotoku

    2008-01-01

    A flying wire beam profile monitor has been assembled and installed at the main ring of the Japan Proton Accelerator Research Complex. The monitor is to measure the horizontal beam profile using a carbon fiber of 7 μmφ. The fiber crosses the beam with the speed of 10 m/s. Secondary particles from the beam-wire scattering is detected using a scintillation counter. The scintillator signal as a function of the wire position is to be reconstructed as a beam profile. The high scanning speed and the minimum material are necessary for the accurate beam profile measurement. The monitor has been operated in the beam commissioning run of the main ring. The beam profile data have been successfully acquired after the reduction of the beam background. (author)

  11. Superconductivity of powder-in-tube MgB{sub 2} wires

    Energy Technology Data Exchange (ETDEWEB)

    Glowacki, B A; Evetts, J E [IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge, CB3 OHE (United Kingdom); Department of Materials Science and Metallurgy, Pembroke Street, Cambridge, CB2 3QZ (United Kingdom); Majoros, M [IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge, CB3 OHE (United Kingdom); Institute of Electrical Engineering, Slovak Academy of Science, Dubravska Cesta 9, Bratislava (Slovakia); Vickers, M [Department of Materials Science and Metallurgy, Pembroke Street, Cambridge, CB2 3QZ (United Kingdom); Shi, Y [IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge, CB3 OHE (United Kingdom); McDougall, I [Oxford Instruments Plc, Eynsham, OX8 ITL (United Kingdom)

    2001-04-01

    A new class of 'powder-in-tube' Mg-B superconducting conductors has been prepared using two different methods: an in situ technique where an Mg + 2B mixture was used as a central conductor core and reacted in situ to form MgB{sub 2}, and an ex situ technique where fully reacted MgB{sub 2} powder was used to fill the metal tube. Conductors were prepared using silver, copper and bimetallic silver/stainless steel tubes. Wires manufactured by the in situ technique, diffusing Mg to B particles experienced {approx}25.5% decrease in density from the initial value after cold deformation, due to the phase transformation from Mg + 2({beta}-B){yields}MgB{sub 2} all with hexagonal structure. A comparative study of the intergranular current and grain connectivity in wires was conducted by AC susceptibility measurements and direct four point transport measurements. Using a SQUID magnetometer, magnetization versus magnetic field (M-H) curves of the round wires before and after sintering and reactive diffusion were measured at 5 K and in magnetic fields up to 5 T to define the J{sub cmag}. The direct current measurements were performed in self field at 4.2 K. A comparison between zero-field-cooled (ZFC) and field-cooled (FC) susceptibility measurements for sintered Ag/MgB{sub 2}, and reacted Cu/Mg + 2B conductors revealed systematic differences in the flux pinning in the wires which is in very good agreement with direct high transport current measurements. (author)

  12. The 2d-LCA as an alternative to x-wires

    Science.gov (United States)

    Puczylowski, Jaroslaw; Hölling, Michael; Peinke, Joachim

    2015-11-01

    The 2d-Laser Cantilever Anemometer (2d-LCA) is an innovative sensor for two-dimensional velocity measurements in fluids. It uses a micostructured cantilever made of silicon and SU-8 as a sensing element and is capable of performing mesurements with extremly high temporal resolutions up to 150kHz. The size of the cantilever defines its spatial resolution, which is in the order of 150 μm only. Another big feature is a large angular range of 180° in total. The 2d-LCA has been developed as an alternative measurement method to x-wires with the motivation to create a sensor that can operate in areas where the use of hot-wire anemometry is difficult. These areas include measurements in liquids and in near-wall or particle-laden flows. Unlike hot-wires, the resolution power of the 2d-LCA does not decrease with increasing flow velocity, making it particularly suitable for measurements in high speed flows. Comparative measurements with the 2d-LCA and hot-wires have been carried out in order to assess the performance of the new anemometer. The data of both measurement techniques were analyzed using the same stochastic methods including a spectral analysis as well as an inspection of increment statistics and structure functions. Furthermore, key parameters, such as mean values of both velocity components, angles of attack and the characteristic length scales were determined from both data sets. The analysis reveals a great agreement between both anemometers and thus confirms the new approach.

  13. Superconductivity of powder-in-tube MgB{sub 2} wires

    Energy Technology Data Exchange (ETDEWEB)

    Glowacki, B.A.; Evetts, J.E. [IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge, CB3 OHE (United Kingdom); Department of Materials Science and Metallurgy, Pembroke Street, Cambridge, CB2 3QZ (United Kingdom); Majoros, M. [IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge, CB3 OHE (United Kingdom); Institute of Electrical Engineering, Slovak Academy of Science, Dubravska Cesta 9, Bratislava (Slovakia); Vickers, M. [Department of Materials Science and Metallurgy, Pembroke Street, Cambridge, CB2 3QZ (United Kingdom); Shi, Y. [IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge, CB3 OHE (United Kingdom); McDougall, I. [Oxford Instruments Plc, Eynsham, OX8 ITL (United Kingdom)

    2001-04-01

    A new class of 'powder-in-tube' Mg-B superconducting conductors has been prepared using two different methods: an in situ technique where an Mg + 2B mixture was used as a central conductor core and reacted in situ to form MgB{sub 2}, and an ex situ technique where fully reacted MgB{sub 2} powder was used to fill the metal tube. Conductors were prepared using silver, copper and bimetallic silver/stainless steel tubes. Wires manufactured by the in situ technique, diffusing Mg to B particles experienced {approx}25.5% decrease in density from the initial value after cold deformation, due to the phase transformation from Mg + 2({beta}-B){yields}MgB{sub 2} all with hexagonal structure. A comparative study of the intergranular current and grain connectivity in wires was conducted by AC susceptibility measurements and direct four point transport measurements. Using a SQUID magnetometer, magnetization versus magnetic field (M-H) curves of the round wires before and after sintering and reactive diffusion were measured at 5 K and in magnetic fields up to 5 T to define the J{sub cmag}. The direct current measurements were performed in self field at 4.2 K. A comparison between zero-field-cooled (ZFC) and field-cooled (FC) susceptibility measurements for sintered Ag/MgB{sub 2}, and reacted Cu/Mg + 2B conductors revealed systematic differences in the flux pinning in the wires which is in very good agreement with direct high transport current measurements. (author)

  14. Review of wire chamber aging

    International Nuclear Information System (INIS)

    Va'Vra, J.

    1986-02-01

    This paper makes an overview of the wire chamber aging problems as a function of various chamber design parameters. It emphasizes the chemistry point of view and many examples are drawn from the plasma chemistry field as a guidance for a possible effort in the wire chamber field. The paper emphasizes the necessity of variable tuning, the importance of purity of the wire chamber environment, as well as it provides a practical list of presently known recommendations. In addition, several models of the wire chamber aging are qualitatively discussed. The paper is based on a summary talk given at the Wire Chamber Aging Workshop held at LBL, Berkeley on January 16-17, 1986. Presented also at Wire Chamber Conference, Vienna, February 25-28, 1986. 74 refs., 18 figs., 11 tabs

  15. Hemodynamic responses during and after multiple sets of stretching exercises performed with and without the Valsalva maneuver.

    Science.gov (United States)

    Lima, Tainah P; Farinatti, Paulo T V; Rubini, Ercole C; Silva, Elirez B; Monteiro, Walace D

    2015-05-01

    This study investigated the acute hemodynamic responses to multiple sets of passive stretching exercises performed with and without the Valsalva maneuver. Fifteen healthy men aged 21 to 29 years with poor flexibility performed stretching protocols comprising 10 sets of maximal passive unilateral hip flexion, sustained for 30 seconds with equal intervals between sets. Protocols without and with the Valsalva maneuver were applied in a random counterbalanced order, separated by 48-hour intervals. Hemodynamic responses were measured by photoplethysmography pre-exercise, during the stretching sets, and post-exercise. The effects of stretching sets on systolic and diastolic blood pressure were cumulative until the fourth set in protocols performed with and without the Valsalva maneuver. The heart rate and rate pressure product increased in both protocols, but no additive effect was observed due to the number of sets. Hemodynamic responses were always higher when stretching was performed with the Valsalva maneuver, causing an additional elevation in the rate pressure product. Multiple sets of unilateral hip flexion stretching significantly increased blood pressure, heart rate, and rate pressure product values. A cumulative effect of the number of sets occurred only for systolic and diastolic blood pressure, at least in the initial sets of the stretching protocols. The performance of the Valsalva maneuver intensified all hemodynamic responses, which resulted in significant increases in cardiac work during stretching exercises.

  16. Linear viscoelastic characterization from filament stretching rheometry

    DEFF Research Database (Denmark)

    Wingstrand, Sara Lindeblad; Alvarez, Nicolas J.; Hassager, Ole

    to measure both linear and nonlinear dynamics on a single apparatus. With a software modification to the FSR motor control, we show that linear viscoelasticity can be measured via small amplitude squeeze flow (SASF). Squeeze flow is a combination of both shear and extensional flow applied by axially......Traditionally, linear viscoelasticity is measured using small amplitude oscillatory shear flow. Due to experimental difficulties, shear flows are predominately confined to the linear and mildly nonlinear regime. On the other hand, extensional flows have proven more practical in measuring...... viscoelasticity well into the nonlinear regime. Therefore at present, complete rheological characterization of a material requires two apparatuses: a shear and an extensional rheometer. This work is focused on developing a linear viscoelastic protocol for the filament stretching rheometer (FSR) in order...

  17. Development of Aluminum-Lithium 2195 Gores by the Stretch Forming Process

    Science.gov (United States)

    Volz, M. P.; Chen, P. S.; Gorti, S.; Salvail, P.

    2014-01-01

    Aluminum-Lithium alloy 2195 exhibits higher mechanical properties and lower density than aluminum alloy 2219, which is the current baseline material for Space Launch System (SLS) cryogenic tank components. Replacement of Al 2219 with Al-Li 2195 would result in substantial weight savings, as was the case when this replacement was made on the shuttle external tank. A key component of cryogenic tanks are the gores, which are welded together to make the rounded ends of the tanks. The required thicknesses of these gores depend on the specific SLS configuration and may exceed the current experience base in the manufacture of such gores by the stretch forming process. Here we describe the steps taken to enhance the formability of Al-Li 2195 by optimizing the heat treatment and stretch forming processes for gore thicknesses up to 0.75", which envelopes the maximum expected gore thicknesses for SLS tanks. An annealing treatment, developed at Marshall Space Flight Center, increased the forming range and strain hardening exponent of Al-Li 2195 plates. Using this annealing treatment, one 0.525" thick and two 0.75" thick gores were manufactured by the stretch forming process. The annealing treatment enabled the stretch forming of the largest ever cross sectional area (thickness x width) of an Al-Li 2195 plate achieved by the manufacturer. Mechanical testing of the gores showed greater than expected ultimate tensile strength, yield strength, modulus, and elongation values. The gores also exhibited acceptable fracture toughness at room and LN2 temperatures. All of the measured data indicate that the stretch formed gores have sufficient material properties to be used in flight domes.

  18. Wire chambers: Trends and alternatives

    International Nuclear Information System (INIS)

    Regler, Meinhard

    1992-01-01

    The subtitle of this year's Vienna Wire Chamber Conference - 'Recent Trends and Alternative Techniques' - signalled that it covered a wide range of science and technology. While an opening Vienna talk by wire chamber pioneer Georges Charpak many years ago began 'Les funerailles des chambres a fils (the burial of wire chambers)', the contrary feeling this year was that wire chambers are very much alive!

  19. Synthesise of Zn O nano wires by direct oxidation method

    International Nuclear Information System (INIS)

    Farbod, M.; Ahangarpour, A.

    2007-01-01

    Zn O is a semiconductor which has a direct and wide energy band which is about 3.37 eV at room temperature. It has various applications from UV lasers, sensitive sensors, solar cells to photo catalysis applications. Zn O has different nano structures such as nanoparticles, nano wires, nano rods, nano tubes and nano belts. The one dimensional Zn O nano structures such as nano wires are very important because of their applications in nano electronics and nano photonics so different methods have been proposed to synthesize them. In this work large scale of Zn O nano wires are produced by direct oxidation a Zn substrate (which was cleaned by chemical methods) in air or oxygen atmosphere at 400 d eg C . Nano wires were investigated by scanning electron microscopy and energy dispersive x-ray measurements. Their diameter is about 30-150 nanometer and their length is about several micrometer. This method which acts without any catalyst is a convenient method to synthesis semiconductor nano wires.

  20. Charpak hemispherical wire chamber

    CERN Multimedia

    1970-01-01

    pieces. Mesures are of the largest one. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  1. Summary of the stretching tectonics research

    International Nuclear Information System (INIS)

    Yu Dagan

    1994-01-01

    The rise of stretching tectonics is established on the basis of recent structural geology theory, the establishment of metamorphic nucleus complex structural model on one hand plays an important promoting art to the development of stretching structure, on the other hand, it needs constant supplement and perfection in practice. Metamorphic nucleus complex is the carrier of comparatively deep geological information in vertical section of the crust and has wide distribution in the era of south China. Evidently, it can be taken as the 'key' to understanding the deep and studying the basement, Strengthening the study will play the important promoting role to the deep prospecting. The study of stretching tectonics is not only limited within the range of structure and metamorphism, but combine with the studies of sedimentation, magmatism, metamorphism and mineralization, thus form a new field of tectonic geology of self-developing system

  2. Electrodeposition of nickel nano wire arrays

    International Nuclear Information System (INIS)

    Nur Ubaidah Saidin; Kok Kuan Ying; Ng Inn Khuan; Nurazila Mat Zali; Siti Salwa Zainal Abidin

    2010-01-01

    Synthesis, characterization and assembly of one-dimensional nickel nano wires prepared by template directed electrodeposition are discussed in this paper. Parallel arrays of high aspect ratio nickel nano wires were electrodeposited using electrolytes with different cations and pH. The nano wires were characterized using X-ray diffractometry and scanning electron microscopy. It was found that the orientations of the electro deposited Ni nano wires were governed by the deposition current and the electrolyte conditions. Free standing nickel nano wires can be obtained by dissolving the template. Due to the magnetic nature of the nano wires, magnetic alignment was employed to assemble and position the free standing nano wires in the device structure. (author)

  3. Wire-number effects on high-power annular z-pinches and some characteristics at high wire number

    Energy Technology Data Exchange (ETDEWEB)

    SANFORD,THOMAS W. L.

    2000-05-23

    Characteristics of annular wire-array z-pinches as a function of wire number and at high wire number are reviewed. The data, taken primarily using aluminum wires on Saturn are comprehensive. The experiments have provided important insights into the features of wire-array dynamics critical for high x-ray power generation, and have initiated a renaissance in z-pinches when high numbers of wires are used. In this regime, for example, radiation environments characteristic of those encountered during the early pulses required for indirect-drive ICF ignition on the NIF have been produced in hohlraums driven by x-rays from a z-pinch, and are commented on here.

  4. Wire-number effects on high-power annular z-pinches and some characteristics at high wire number

    International Nuclear Information System (INIS)

    SANFORD, THOMAS W. L.

    2000-01-01

    Characteristics of annular wire-array z-pinches as a function of wire number and at high wire number are reviewed. The data, taken primarily using aluminum wires on Saturn are comprehensive. The experiments have provided important insights into the features of wire-array dynamics critical for high x-ray power generation, and have initiated a renaissance in z-pinches when high numbers of wires are used. In this regime, for example, radiation environments characteristic of those encountered during the early pulses required for indirect-drive ICF ignition on the NIF have been produced in hohlraums driven by x-rays from a z-pinch, and are commented on here

  5. Silicon Nano wires with MoS_x and Pt as Electrocatalysts for Hydrogen Evolution Reaction

    International Nuclear Information System (INIS)

    Hsieh, S.H.; Ho, S.T.; Chen, W.J.

    2016-01-01

    A convenient method was used for synthesizing Pt-nanoparticle//silicon nano wires nano composites. Obtained Pt-/silicon nano wires electrocatalysts were characterized by transmission electron microscopy (TEM). The hydrogen evolution reaction efficiency of the Pt-/silicon nano wire nano composite catalysts was assessed by examining polarization and electrolysis measurements under solar light irradiations. The electrochemical characterizations demonstrate that Pt-/silicon nano wire electrodes exhibited an excellent catalytic activity for hydrogen evolution reaction in an acidic electrolyte. The hydrogen production capability of Pt-/silicon nano wires is also comparable to /silicon nano wires and Pt/silicon nano wires. Electrochemical impedance spectroscopy experiments suggest that the enhanced performance of Pt-/silicon nano wires can be attributed to the fast electron transfer between Pt-/silicon nano wire electrodes and electrolyte interfaces.

  6. EFFECT OF DIFFERENT STRETCHING PROTOCOLS ON VERTICAL JUMP PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Emre Serin

    2018-04-01

    Full Text Available This study aimed to examine the effect of different stretching exercises on vertical jump performance. A total of 14 national male athletes sporting in the elite level took part in the study. The age average of the participants was 20.25±1.03 year, the average height was 1.80±.08 m, the average body weight was 77.14±18.91 kg, average of sporting age was 9.87±3.31 year and the average number of participation in international games was 10.0±3.31. As stretching protocol: Method 1 (5 minutes of jogging and 2 minutes of active rest followed by Method 2 (static stretching for 4 different muscle groups 3 repetitions for 15 seconds of static stretching, rest for 10 seconds between groups and then consecutively, Method 3 (Dynamic stretching exercises with 3 repetitions for 15 seconds and 10 seconds rest between different muscle groups were applied in the study. The vertical jump performance before and after different stretching exercises of the participants was determined by means of the vertical jump test using the smart speed lite system. Before and after the training of all athletes, HR was recorded with a heart rate monitor (RS 800, Polar Vantage NV, Polar Electro Oy, Finland with 5 seconds intervals. Before the study, the chest band of the heartbeat monitor was placed on the chest of the athlete and the HR was recorded from the monitor. SPSS 15.0 statistical package program was used for evaluation and calculation of the data. In this study in addition to descriptive statistics (mean and standard deviation paired samples t-test was used to determine the difference between the vertical jump performance of the participants before and after different stretching exercises. As a result, this study showed that; applying the dynamic and static stretching exercises consecutively affected the vertical jump performance 4.5 cm positively (p<.05. It is suggested that different dynamic and static stretching exercises should be included in the vertical jump.

  7. Self-Catalyzed CdTe Wires

    Directory of Open Access Journals (Sweden)

    Tom Baines

    2018-04-01

    Full Text Available CdTe wires have been fabricated via a catalyst free method using the industrially scalable physical vapor deposition technique close space sublimation. Wire growth was shown to be highly dependent on surface roughness and deposition pressure, with only low roughness surfaces being capable of producing wires. Growth of wires is highly (111 oriented and is inferred to occur via a vapor-solid-solid growth mechanism, wherein a CdTe seed particle acts to template the growth. Such seed particles are visible as wire caps and have been characterized via energy dispersive X-ray analysis to establish they are single phase CdTe, hence validating the self-catalysation route. Cathodoluminescence analysis demonstrates that CdTe wires exhibited a much lower level of recombination when compared to a planar CdTe film, which is highly beneficial for semiconductor applications.

  8. COMPARATIVE EFFECT OF STATIC AND DYNAMIC STRETCHING EXERCISE TO IMPROVE FLEXIBILITY OF HAMSTRING MUSCLES AMONG NON ATHLETES

    Directory of Open Access Journals (Sweden)

    Jibi Paul

    2014-10-01

    Full Text Available Background: Stretching exercises have been routinely used in persons with hamstring tightness and athletes to increase flexibility of muscle and to reduce joint injuries. Many studies have reported effect of static and dynamic stretching on flexibility of this muscle. Finding the best method to improve flexibility of hamstring muscle is important for athletes and individuals to reduce their injuries. Objective of the study was to find out the effect of static stretching exercise and dynamic stretching exercise on flexibility of hamstring muscle and also to compare the effect of static and dynamic stretching exercise on flexibility of hamstring muscle. Methods: This was a comparative experimental study with seventy four female healthy subjects from physiotherapy department of KPJ Healthcare University College, Malaysia. Convenient sampling method used to select the samples. The subjects were selected by inclusion criteria and randomly divided equally in to two with 37 subjects in each group. Static stretching exercise and dynamic stretching exercise were given as intervention program for four weeks respectively for experimental and control group. Pre and post data of restricted range of movement for knee extension was measured using goniometry and documented separately for both group. Result: In experimental and control group, pre-post statistical analysis found significant effect in increase of hamstring flexibility with P<0.0001, for right and left side. Comparative study between experimental and control group found that static stretching exercise have significant effect in increase of hamstring flexibility for right and left side with P<0.04. Conclusion: This study concluded that static stretching exercise is more effective to improve hamstring flexibility compared to dynamic stretching exercise.

  9. ONLINE TECHNOLOGICAL MONITORING OF INSULATION DEFECTS IN ENAMELED WIRES

    Directory of Open Access Journals (Sweden)

    V. M. Zolotaryov

    2017-08-01

    Full Text Available In this paper the authors used non-destructive technological monitoring of defects insulation enameled wire with poliimid polymer. The paper is devoted to the statistical method for processing, comparison and analysis of results of measurements of parameters of insulation of enameled wire because of mathematical model of trend for application in active technological monitoring is developed; the recommendations for parameters of such monitoring are used. It is theoretically justified and the possibility of determination of dependence of the error on the velocity of movement of a wire for want of quantifying of defects in enameled insulation by non-destructive tests by high voltage. The dependence of average value of amount of defects for enameled wire with two-sheeted poliimid insulation in a range of nominal diameter 0.56 mm is experimentally determined. The technological monitoring purpose is to reduce the quantifying defects of enameled insulation.

  10. Practical wiring in SI units

    CERN Document Server

    Miller, Henry A

    2013-01-01

    Practical Wiring, Volume 1 is a 13-chapter book that first describes some of the common hand tools used in connection with sheathed wiring. Subsequent chapters discuss the safety in wiring, cables, conductor terminations, insulating sheathed wiring, conductor sizes, and consumer's control equipments. Other chapters center on socket outlets, plugs, lighting subcircuits, lighting accessories, bells, and primary and secondary cells. This book will be very valuable to students involved in this field of interest.

  11. Wire EDM for Refractory Materials

    Science.gov (United States)

    Zellars, G. R.; Harris, F. E.; Lowell, C. E.; Pollman, W. M.; Rys, V. J.; Wills, R. J.

    1982-01-01

    In an attempt to reduce fabrication time and costs, Wire Electrical Discharge Machine (Wire EDM) method was investigated as tool for fabricating matched blade roots and disk slots. Eight high-strength nickel-base superalloys were used. Computer-controlled Wire EDM technique provided high quality surfaces with excellent dimensional tolerances. Wire EDM method offers potential for substantial reductions in fabrication costs for "hard to machine" alloys and electrically conductive materials in specific high-precision applications.

  12. Stiffness and frictional resistance of a superelastic nickel-titanium orthodontic wire with low-stress hysteresis.

    Science.gov (United States)

    Liaw, Yu-Cheng; Su, Yu-Yu M; Lai, Yu-Lin; Lee, Shyh-Yuan

    2007-05-01

    Stress-induced martensite formation with stress hysteresis that changes the elasticity and stiffness of nickel-titanium (Ni-Ti) wire influences the sliding mechanics of archwire-guided tooth movement. This in-vitro study investigated the frictional behavior of an improved superelastic Ni-Ti wire with low-stress hysteresis. Improved superelastic Ni-Ti alloy wires (L & H Titan, Tomy International, Tokyo, Japan) with low-stress hysteresis were examined by using 3-point bending and frictional resistance tests with a universal test machine at a constant temperature of 35 degrees C, and compared with the former conventional austenitic-active superelastic Ni-Ti wires (Sentalloy, Tomy International). Wire stiffness levels were derived from differentiation of the polynomial regression of the unloading curves, and values for kinetic friction were measured at constant bending deflection distances of 0, 2, 3, and 4 mm, respectively. Compared with conventional Sentalloy wires, the L & H Titan wire had a narrower stress hysteresis including a lower loading plateau and a higher unloading plateau. In addition, L & H Titan wires were less stiff than the Sentalloy wires during most unloading stages. Values of friction measured at deflections of 0, 2, and 3 mm were significantly (P Sentalloy wires at all bending deflections (P <.05). Stress-induced martensite formation significantly reduced the stiffness and thus could be beneficial to decrease the binding friction of superelastic Ni-Ti wires during sliding with large bending deflections. Austenitic-active alloy wires with low-stress hysteresis and lower stiffness and friction offer significant potential for further investigation.

  13. Audio wiring guide how to wire the most popular audio and video connectors

    CERN Document Server

    Hechtman, John

    2012-01-01

    Whether you're a pro or an amateur, a musician or into multimedia, you can't afford to guess about audio wiring. The Audio Wiring Guide is a comprehensive, easy-to-use guide that explains exactly what you need to know. No matter the size of your wiring project or installation, this handy tool provides you with the essential information you need and the techniques to use it. Using The Audio Wiring Guide is like having an expert at your side. By following the clear, step-by-step directions, you can do professional-level work at a fraction of the cost.

  14. Operational experience and evaluation of a dual-element stretched-membrane heliostat

    Energy Technology Data Exchange (ETDEWEB)

    Strachan, J.W.; Van Der Geest, J.

    1994-01-01

    A dual-element, stretched-membrane central receiver heliostat was designed and manufactured in 1989, by a private US company engaged in the development of commercial central receiver solar technology. The two-module collector, with a collection area of 97.5 m{sup 2}, extends stretched-membrane mirror technology on several fronts with face-down stow capability and a digital controller that integrates tracking and focusing control on a single programmable control board. The solar collector was installed at Sandia`s National Solar Thermal Test Facility in Albuquerque, New Mexico and evaluated over a three-and-a-half year period which ended in September 1993. The measured performance and the operational and maintenance characteristics of this commercial prototype are the subject of this report. The results of beam quality measurements, tracking repeatability tests, measurements of beam movement in elevated winds, performance tests of the focusing system, and all-day beam quality and tracking tests are presented, and the authors offer a detailed discussion of the knowledge gained through operation and maintenance and of the improvements made or suggested to the heliostat`s design.

  15. Post-injury stretch promotes recovery in a rat model of muscle damage induced by lengthening contractions.

    Science.gov (United States)

    Mori, Tomohiro; Agata, Nobuhide; Itoh, Yuta; Inoue-Miyazu, Masumi; Mizumura, Kazue; Sokabe, Masahiro; Taguchi, Toru; Kawakami, Keisuke

    2017-06-30

    We investigated the cellular mechanisms and therapeutic effect of post-injury stretch on the recovery process from muscle injury induced by lengthening contractions (LC). One day after LC, a single 15-min bout of muscle stretch was applied at an intensity of 3 mNm. The maximal isometric torque was measured before and at 2-21 days after LC. The myofiber size was analyzed at 21 days after LC. Developmental myosin heavy chain-immunoreactive (dMHC-ir) cells, a marker of regenerating myofibers, were observed in the early recovery stage (2-5 days after LC). We observed that LC-induced injury markedly decreased isometric torque and myofiber size, which recovered faster in rats that underwent stretch than in rats that did not. Regenerating myofiber with dMHC-ir cells was observed earlier in rats that underwent stretch. These results indicate that post-injury stretch may facilitate the regeneration and early formation of new myofibers, thereby promoting structural and functional recovery from LC-induced muscle injury.

  16. Scintillation counter and wire chamber front end modules for high energy physics experiments

    International Nuclear Information System (INIS)

    Baldin, Boris; DalMonte, Lou

    2011-01-01

    This document describes two front-end modules developed for the proposed MIPP upgrade (P-960) experiment at Fermilab. The scintillation counter module was developed for the Plastic Ball detector time and charge measurements. The module has eight LEMO 00 input connectors terminated with 50 ohms and accepts negative photomultiplier signals in the range 0.25...1000 pC with the maximum input voltage of 4.0 V. Each input has a passive splitter with integration and differentiation times of ∼20 ns. The integrated portion of the signal is digitized at 26.55 MHz by Analog Devices AD9229 12-bit pipelined 4-channel ADC. The differentiated signal is discriminated for time measurement and sent to one of the four TMC304 inputs. The 4-channel TMC304 chip allows high precision time measurement of rising and falling edges with ∼100 ps resolution and has internal digital pipeline. The ADC data is also pipelined which allows deadtime-less operation with trigger decision times of ∼4 (micro)s. The wire chamber module was developed for MIPP EMCal detector charge measurements. The 32-channel digitizer accepts differential analog signals from four 8-channel integrating wire amplifiers. The connection between wire amplifier and digitizer is provided via 26-wire twist-n-flat cable. The wire amplifier integrates input wire current and has sensitivity of 275 mV/pC and the noise level of ∼0.013 pC. The digitizer uses the same 12-bit AD9229 ADC chip as the scintillator counter module. The wire amplifier has a built-in test pulser with a mask register to provide testing of the individual channels. Both modules are implemented as a 6Ux220 mm VME size board with 48-pin power connector. A custom europack (VME) 21-slot crate is developed for housing these front-end modules.

  17. Time-stretch microscopy based on time-wavelength sequence reconstruction from wideband incoherent source

    International Nuclear Information System (INIS)

    Zhang, Chi; Xu, Yiqing; Wei, Xiaoming; Tsia, Kevin K.; Wong, Kenneth K. Y.

    2014-01-01

    Time-stretch microscopy has emerged as an ultrafast optical imaging concept offering the unprecedented combination of the imaging speed and sensitivity. However, dedicated wideband and coherence optical pulse source with high shot-to-shot stability has been mandated for time-wavelength mapping—the enabling process for ultrahigh speed wavelength-encoded image retrieval. From the practical point of view, exploiting methods to relax the stringent requirements (e.g., temporal stability and coherence) for the source of time-stretch microscopy is thus of great value. In this paper, we demonstrated time-stretch microscopy by reconstructing the time-wavelength mapping sequence from a wideband incoherent source. Utilizing the time-lens focusing mechanism mediated by a narrow-band pulse source, this approach allows generation of a wideband incoherent source, with the spectral efficiency enhanced by a factor of 18. As a proof-of-principle demonstration, time-stretch imaging with the scan rate as high as MHz and diffraction-limited resolution is achieved based on the wideband incoherent source. We note that the concept of time-wavelength sequence reconstruction from wideband incoherent source can also be generalized to any high-speed optical real-time measurements, where wavelength is acted as the information carrier

  18. K-wire and tension band wire fixation in treating sternoclavicular joint dislocation

    Directory of Open Access Journals (Sweden)

    CHEN Qing-yu

    2011-02-01

    Full Text Available 【Abstract】Objective: To evaluate the feasibility and therapeutic effect of treating sternoclavicular joint dislocation by K-wire and tension band wire fixation, and to improve the safety and stability of this technique. Methods: This study consisted of 9 cases, 6 males and 3 females with the mean age of 25 years (range, 9-62 years. The causes were traffic accident in 7 cases, falling in 1 case and fight in 1 case. The duration from injury to operation was 2 hours to 7 days. There were 5 left dislocations and 4 right dislocations; 8 anterior dislocations and 1 posterior dislocation, including one combined with left scapular fracture and one with left olecranon fracture. Open reduction and internal fixation using K-wires and tension band wires were performed to treat dislocations. Results: All patients were followed up for 6 to 24 months, 10 months on average. According to Rockwood’s rating scale on postoperative sternoclavicular joint, 8 cases achieved excellent outcomes with an average score of 13.88, and the rest case achieved a good outcome with the score of 12. Anatomical reduction was obtained in all cases. There were no such postoperative complications as severe infection, injury to blood vessel and nerve, failure of fixation, etc. Patients were all satisfied with the anatomical reduction and functional recovery. Conclusions: The technique of K-wire and tension band wire fixation is safe, simple, effective, less invasive and has been successfully used in orthopedic surgery. It is effective in treating sternoclavicular joint dislocation though it has some disadvantages. Key words: Sternoclavicular joint; Dislocations; Bone wires; Fracture fixation, internal

  19. A comparison of a 'J' wire and a straight wire in successful antegrade cannulation of the superficial femoral artery

    International Nuclear Information System (INIS)

    Gay, D.A.T.; Edwards, A.J.; Puckett, M.A.; Roobottom, C.A.

    2005-01-01

    AIMS: To evaluate the success of two different types of wire in common use in their ability to successfully cannulate the superficial femoral artery (SFA) using antegrade puncture. METHODS: 50 consecutive patients in whom antegrade infra-inguinal intervention was planned, underwent common femoral arterial puncture and then cannulation with either a standard 3 mm 'J' wire or a floppy tipped straight wire (William Cook--Europe). The frequency with which each type of wire entered the SFA or profunda femoris artery without image guidance was recorded. Further analysis was also made of the success of manipulation of the wire into the SFA following profunda cannulation and the use of alternative guide wires. RESULTS: In 19 out of 25 (76%) patients the 'J' wire correctly entered the SFA without image guidance. Only 5 out of 25 (25%) of straight wires entered the SFA with the initial pass (p<0.0001). Following further manipulation with the same wire all except 1 'J' wire was successfully negotiated into the SFA. The same was true for only 9 of the remaining straight wires with 11 patients requiring an alternative guide wire. CONCLUSIONS: When performing antegrade cannulation of the SFA a 'J' wire is more likely to be successful than a straight guide wire

  20. Tip opening of premixed bunsen flames: Extinction with negative stretch and local Karlovitz number

    KAUST Repository

    Vu, Tranmanh

    2015-04-01

    The characteristics of tip openings in premixed bunsen flames have been studied experimentally by measuring OH radicals from laser-induced fluorescence and tip curvatures from chemiluminescent images. Results showed that the tip opening occurred at a constant equivalence ratio and was independent of the jet velocity in propane/air mixtures. The observation of a local extinction phenomenon of the negatively stretched flame due to the flame curvature could not be consistently explained based on flame stretch or the Karlovitz number, since they varied appreciably with the jet velocity. The concept of the local Karlovitz number (KaL) was introduced, which is defined as the ratio of the characteristic reaction time in the normal direction for a stretched flame to the characteristic flow time in the tangential direction for the stretched flame. The local Karlovitz number maintained a constant value under tip opening conditions, irrespective of the jet velocity. Tip opening occurred at a reasonably constant local Karlovitz number of about ~1.72 when the nitrogen dilution level in propane and n-butane fuels was varied.

  1. The influence of stretching on tensile strength and solubility of poly(vinyl alcohol) fibres

    NARCIS (Netherlands)

    Heikens, D.; Bleijenberg, A.C.A.M.; Hoppenbrouwers, J.J.M.; Barentsen, W.M.

    1971-01-01

    The strength of wet-spun poly(vinyl alcohol) (pva) fibres is given as function of bath-stretching, wet-stretching and hot-stretching. In the two equations derived for strength of wet-stretching and hot-stretching the complex influence of the bath-stretching and hot-stretching is demonstrated. The

  2. Mechanical stretching effect on the actuator performance of cellulose electroactive paper

    International Nuclear Information System (INIS)

    Kim, Jung-Hwan; Yun, Ki-Ju; Kim, Joo-Hyung; Kim, Jaehwan

    2009-01-01

    The mechanical stretching effect on the actuating performance of electroactive cellulose paper (EAPap) was studied. A lattice elongation of cellulose fibrils due to in-plane tensile stress along the stretching direction was observed by the x-ray diffraction method. The shrinkage of the fibril diameter as a function of stretching ratio was confirmed by surface and cross-sectional images. While the actuator performance in terms of bending displacement decreased as the stretching ratio increased, the resonance frequency linearly increased as the stretching ratio increased, which was compared with the theoretical frequency data found from a cantilever beam model. The actuator efficiency was evaluated from the electrical input power consumption and the mechanical output power of an EAPap actuator. It was revealed that the stretching process increased the electro-mechanical efficiency of the EAPap actuator. The mechanism of the influence of the stretching effect on the performance of an EAPap actuator is discussed

  3. Spontaneous bending of pre-stretched bilayers.

    Science.gov (United States)

    DeSimone, Antonio

    2018-01-01

    We discuss spontaneously bent configurations of pre-stretched bilayer sheets that can be obtained by tuning the pre-stretches in the two layers. The two-dimensional nonlinear plate model we use for this purpose is an adaptation of the one recently obtained for thin sheets of nematic elastomers, by means of a rigorous dimensional reduction argument based on the theory of Gamma-convergence (Agostiniani and DeSimone in Meccanica. doi:10.1007/s11012-017-0630-4, 2017, Math Mech Solids. doi:10.1177/1081286517699991, arXiv:1509.07003, 2017). We argue that pre-stretched bilayer sheets provide us with an interesting model system to study shape programming and morphing of surfaces in other, more complex systems, where spontaneous deformations are induced by swelling due to the absorption of a liquid, phase transformations, thermal or electro-magnetic stimuli. These include bio-mimetic structures inspired by biological systems from both the plant and the animal kingdoms.

  4. Optofluidic time-stretch quantitative phase microscopy.

    Science.gov (United States)

    Guo, Baoshan; Lei, Cheng; Wu, Yi; Kobayashi, Hirofumi; Ito, Takuro; Yalikun, Yaxiaer; Lee, Sangwook; Isozaki, Akihiro; Li, Ming; Jiang, Yiyue; Yasumoto, Atsushi; Di Carlo, Dino; Tanaka, Yo; Yatomi, Yutaka; Ozeki, Yasuyuki; Goda, Keisuke

    2018-03-01

    Innovations in optical microscopy have opened new windows onto scientific research, industrial quality control, and medical practice over the last few decades. One of such innovations is optofluidic time-stretch quantitative phase microscopy - an emerging method for high-throughput quantitative phase imaging that builds on the interference between temporally stretched signal and reference pulses by using dispersive properties of light in both spatial and temporal domains in an interferometric configuration on a microfluidic platform. It achieves the continuous acquisition of both intensity and phase images with a high throughput of more than 10,000 particles or cells per second by overcoming speed limitations that exist in conventional quantitative phase imaging methods. Applications enabled by such capabilities are versatile and include characterization of cancer cells and microalgal cultures. In this paper, we review the principles and applications of optofluidic time-stretch quantitative phase microscopy and discuss its future perspective. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Spectroscopic XPEEM of highly conductive SI-doped GaN wires

    Energy Technology Data Exchange (ETDEWEB)

    Renault, O., E-mail: olivier.renault@cea.fr [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Morin, J. [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Tchoulfian, P. [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); CNRS, Inst. NEEL, F-38042 Grenoble (France); Chevalier, N. [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Feyer, V. [Peter Grünberg Institute (PGI-6) and JARA-FIT, Research Center Jülich, D-52425 Jülich (Germany); Pernot, J. [Univ. Grenoble Alpes, F-38000 Grenoble (France); CNRS, Inst. NEEL, F-38042 Grenoble (France); Institut Universitaire de France, F-75005 Paris (France); Schneider, C.M. [Peter Grünberg Institute (PGI-6) and JARA-FIT, Research Center Jülich, D-52425 Jülich (Germany)

    2015-12-15

    Using soft X-ray photoelectron emission microscopy (XPEEM), complemented by scanning Auger microscopy (SAM) and scanning capacitance microscopy, we have quantitatively studied the incorporation of silicon and band bending at the surface (m-facet) of an individual, highly conductive Si-doped GaN micro-wires (Tchoulfian et al., Applied Physics Letters 102 (12), 2013). Electrically active n-dopants Si atoms in Ga interstitial sites are detected as nitride bonding states in the high-resolution Si2p core level spectra, and represent only a small fraction (<10%) of the overall Si surface concentration measured by SAM. The derived carrier concentration of 2×10{sup 21} at cm{sup −3} is in reasonable agreement with electrical measurements. A consistent surface band bending of ~1 eV is directly evidenced by surface photo-voltage measurements. Such an approach combining different surface-sensitive microscopies is of interest for studying other heavily doped semiconducting wires. - Highlights: • XPEEM analysis of state-of-the-art, heavily doped GaN wires with insights on the issue of the origin of the increased conductivity. • Combined microscopic approach with Scanning Auger microscopy and X-ray Photoeletron Emission Microscopy, to quantity the electrically active Si-dopants in GaN. • The determined concentration is found in reasonable agreement with the one derived from bulk electrical measurements. • The proposed method is of interest for studying the electronics and chemistry of doping in other heavily doped semiconducting wires.

  6. Airflow Measurement of the Car HVAC Unit Using Hot-wire Anemometry

    Directory of Open Access Journals (Sweden)

    Fojtlín Miloš

    2016-01-01

    Full Text Available Thermal environment in a vehicular cabin significantly influence drivers’ fatigue and passengers’ thermal comfort. This environment is traditionally managed by HVAC cabin system that distributes air and modifies its properties. In order to simulate cabin thermal behaviour, amount of the air led through car vents must be determined. The aim of this study was to develop methodology to measure airflow from the vents, and consequently calculate corresponding air distribution coefficients. Three climatic cases were selected to match European winter, summer, and spring / fall conditions. Experiments were conducted on a test vehicle in a climatic chamber. The car HVAC system was set to automatic control mode, and the measurements were executed after the system stabilisation—each case was independently measured three times. To be able to evaluate precision of the method, the airflow was determined at the system inlet (HVAC suction and outlet (each vent, and the total airflow values were compared. The airflow was calculated by determining a mean value of the air velocity multiplied by an area of inlet / outlet cross-section. Hot-wire anemometry was involved to measure the air velocity. Regarding the summer case, total airflow entering the cabin was around 57 l s-1 with 60 % of the air entering the cabin through dashboard vents; no air was supplied to the feet compartment. The remaining cases had the same total airflow of around 42 l s-1, and the air distribution was focused mainly on feet and windows. The inlet and outlet airflow values show a good match with a maximum mass differential of 8.3 %.

  7. The Analysis of the High Speed Wire Drawing Process of High Carbon Steel Wires Under Hydrodynamic Lubrication Conditions

    Directory of Open Access Journals (Sweden)

    Suliga M.

    2015-04-01

    Full Text Available In this work the analysis of the wire drawing process in hydrodynamic dies has been done. The drawing process of φ5.5 mm wire rod to the final wire of φ1.7 mm was conducted in 12 passes, in drawing speed range of 5-25 m/s. For final wires of φ1.7 mm the investigation of topography of wire surface, the amount of lubricant on the wire surface and the pressure of lubricant in hydrodynamic dies were determined. Additionally, in the work selected mechanical properties of the wires have been estimated.

  8. ACUTE EFFECTS OF THREE DIFFERENT STRETCHING PROTOCOLS ON THE WINGATE TEST PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Bruno L. Franco

    2012-03-01

    Full Text Available The purpose of this study was to examine the acute effects of different stretching exercises on the performance of the traditional Wingate test (WT. Fifteen male participants performed five WT; one for familiarization (FT, and the remaining four after no stretching (NS, static stretching (SS, dynamic stretching (DS, and proprioceptive neuromuscular facilitation (PNF. Stretches were targeted for the hamstrings, quadriceps, and calf muscles. Peak power (PP, mean power (MP, and the time to reach PP (TP were calculated. The MP was significantly lower when comparing the DS (7.7 ± 0.9 W/kg to the PNF (7.3 ± 0.9 W/kg condition (p < 0.05. For PP, significant differences were observed between more comparisons, with PNF stretching providing the lowest result. A consistent increase of TP was observed after all stretching exercises when compared to NS. The results suggest the type of stretching, or no stretching, should be considered by those who seek higher performance and practice sports that use maximal anaerobic power.

  9. Towards plant wires.

    Science.gov (United States)

    Adamatzky, Andrew

    2014-08-01

    In experimental laboratory studies we evaluate a possibility of making electrical wires from living plants. In scoping experiments we use lettuce seedlings as a prototype model of a plant wire. We approximate an electrical potential transfer function by applying direct current voltage to the lettuce seedlings and recording output voltage. We analyse oscillation frequencies of the output potential and assess noise immunity of the plant wires. Our findings will be used in future designs of self-growing wetware circuits and devices, and integration of plant-based electronic components into future and emergent bio-hybrid systems. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Curved Piezoelectric Actuators for Stretching Optical Fibers

    Science.gov (United States)

    Allison, Sidney G.; Shams, Qamar A.; Fox, Robert L.

    2008-01-01

    Assemblies containing curved piezoceramic fiber composite actuators have been invented as means of stretching optical fibers by amounts that depend on applied drive voltages. Piezoceramic fiber composite actuators are conventionally manufactured as sheets or ribbons that are flat and flexible, but can be made curved to obtain load-carrying ability and displacement greater than those obtainable from the flat versions. In the primary embodiment of this invention, piezoceramic fibers are oriented parallel to the direction of longitudinal displacement of the actuators so that application of drive voltage causes the actuator to flatten, producing maximum motion. Actuator motion can be transmitted to the optical fiber by use of hinges and clamp blocks. In the original application of this invention, the optical fiber contains a Bragg grating and the purpose of the controlled stretching of the fiber is to tune the grating as part of a small, lightweight, mode-hop-free, rapidly tunable laser for demodulating strain in Bragg-grating strain-measurement optical fibers attached to structures. The invention could also be used to apply controllable tensile force or displacement to an object other than an optical fiber.

  11. The Effect of Anabolic Steroid Administration on Passive Stretching-Induced Expression of Mechano-Growth Factor in Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Satoshi Ikeda

    2013-01-01

    Full Text Available Background. Stretching of skeletal muscle induces expression of the genes which encode myogenic transcription factors or muscle contractile proteins and results in muscle growth. Anabolic steroids are reported to strengthen muscles. We have previously studied the effects of muscle stretching on gene expression. Here, we studied the effect of a combination of passive stretching and the administration of an anabolic steroid on mRNA expression of a muscle growth factor, insulin-like growth factor-I autocrine variant, or mechano-growth factor (MGF. Methods. Twelve 8-week-old male Wistar rats were used. Metenolone was administered and passive repetitive dorsiflexion and plantar flexion of the ankle joint performed under deep anesthesia. After 24 h, the gastrocnemius muscles were removed and the mRNA expression of insulin-like growth factor-I autocrine variant was measured using quantitative real-time polymerase chain reaction. Results. Repetitive stretching in combination with metenolone, but not stretching alone, significantly increased MGF mRNA expression. Conclusion. Anabolic steroids enhance the effect of passive stretching on MGF expression in skeletal muscle.

  12. Eliminating electromechanical instability in dielectric elastomers by employing pre-stretch

    International Nuclear Information System (INIS)

    Jiang, Liang; Jerrams, Stephen; Betts, Anthony; Kennedy, David

    2016-01-01

    Electromechanical instability (EMI) is one of most common failure modes for dielectric elastomers (DEs). It has been reported that pre-stretching a DE sample can suppress EMI due to strain stiffening taking place for larger strains and a higher elastic modulus are achieved at high stretch ratios when a voltage is applied to the material. In this work, the influence of equi-biaxial stretch on DE secant modulus was studied using VHB 4910 and silicone rubber (SR) composites containing barium titanate (BaTiO 3 , BT) particles and also dopamine coated BT (DP-BT) particles. The investigation of equi-biaxial deformation and EMI failure for VHB 4910 was undertaken by introducing a voltage-stretch function. The results showed that EMI was suppressed by equi-biaxial pre-stretch for all the DEs fabricated and tested. The stiffening properties of the DE materials were also studied with respect to the secant modulus. Furthermore, a voltage-induced strain of above 200% was achieved for the polyacrylate film by applying a pre-stretch ratio of 2.0 without EMI occurring. However, a maximum voltage-induced strain in the polyacrylate film of 78% was obtained by the SR/20 wt% DP-BT composite for a lower applied pre-stretch ratio of 1.6 and again EMI was eliminated. (paper)

  13. Surface dose measurements under stretched, perforated thermoplast sheets and under protective wound dressings for high energy photon radiation

    International Nuclear Information System (INIS)

    Staudenraus, J.; Christ, G.

    2000-01-01

    Patient fixation masks made of perforated thermoplast sheets are widely used in radiotherapy. These masks in particular serve to immobilize the head and neck region during radiation treatment. We placed samples made of differently stretched, perforated mask material on the surface of a white polystyrene (RW3) phantom and measured for high energy photon beams from Co-60 radiation up to 25 MV bremsstrahlung the dose increase resulting from the build-up under the hole and bridge areas. Depending on the energy of the incident beam and the thickness of the stretched mask material we observed a dose increase under the bridges at the phantom surface of 55% up to 140% compared to the dose without a layer of mask material. Under a hole the dose increase is almost half the value found under a bridge. However, deeper than 1 mm under the phantom surface this difference in dose increase under holes and bridges decreases to less than 10%. The mean dose increase under a perforated thermoplast sheet is lower than the dose increase under a homogeneous sheet made of the same material with the same mean thickness. Radiation induced skin lesions or an ulcerating tumour, respectively, may require a protective wound dressing under a patient fixation mask during radiation therapy. Choosing a thin hydrocolloid wound dressing the additional dose increase of the skin, compared to the dose increase due to the fixation mask, can be kept low. (orig.) [de

  14. Effect of AC electric fields on flame spread over electrical wire

    KAUST Repository

    Kim, Minkuk

    2011-01-01

    The effect of electric fields on the characteristics of flame spread over insulated electrical wire has been investigated experimentally by varying AC voltage and frequency applied to the wire in the normal gravity condition. The polyethylene (PE) insulated electrical wire was placed horizontally on electrically non-conducting posts and one end of the wire was connected to the high voltage terminal. Thus, the electrical system is the single electrode configuration. The wire was ignited at one end and the flame spread rate along the wire has been measured from the images using a video camera. Two distinct regimes existed depending on the applied AC frequency. In the low frequency regime, the flame spread rate decreased with the frequency and voltage. While in the high frequency regime, it decreased initially with voltage and then increased. At high frequency, the spread rate was even over that without applying electric fields. This result implies that fire safety codes developed without considering the effect of electric fields may require modifications. © 2010 Published by Elsevier Inc. on behalf of The Combustion Institute. All rights reserved.

  15. Wire array z-pinch insights for high X-ray power generation

    International Nuclear Information System (INIS)

    Sanford, T.W.L.; Marder, B.M.; Desjarlais, M.P.

    1998-01-01

    The discovery that the use of very large numbers of wires enables high x-ray power to be generated from wire-array z-pinches represents a breakthrough in load design for large pulsed power generators, and has permitted high temperatures to be generated in radiation cavities on Saturn and Z. In this paper, changes in x-ray emission characteristics as a function of wire number, array mass, and load radius, for 20-mm-long aluminum arrays on Saturn that led to these breakthrough hohlraum results, are discussed and compared with a few related emission characteristics of high-wire-number aluminum and tungsten arrays on Z. X-ray measurement comparisons with analytic models and 2-D radiation-magnetohydrodynamic (RMHC) code simulations in the x-y and r-z planes provide confidence in the ability of the models and codes to predict future x-ray performance with very-large-number wire arrays

  16. Wire array z-pinch insights for high X-ray power generation

    Energy Technology Data Exchange (ETDEWEB)

    Sanford, T.W.L.; Marder, B.M.; Desjarlais, M.P. [and others

    1998-12-31

    The discovery that the use of very large numbers of wires enables high x-ray power to be generated from wire-array z-pinches represents a breakthrough in load design for large pulsed power generators, and has permitted high temperatures to be generated in radiation cavities on Saturn and Z. In this paper, changes in x-ray emission characteristics as a function of wire number, array mass, and load radius, for 20-mm-long aluminum arrays on Saturn that led to these breakthrough hohlraum results, are discussed and compared with a few related emission characteristics of high-wire-number aluminum and tungsten arrays on Z. X-ray measurement comparisons with analytic models and 2-D radiation-magnetohydrodynamic (RMHC) code simulations in the x-y and r-z planes provide confidence in the ability of the models and codes to predict future x-ray performance with very-large-number wire arrays.

  17. Wire array z-pinch insights for high x-ray power generation

    Energy Technology Data Exchange (ETDEWEB)

    Sanford, T.W.L.; Mock, R.C.; Marder, B.M. [and others

    1997-12-31

    The discovery that the use of very large numbers of wires enables high x-ray power to be generated from wire-array z-pinches represents a breakthrough in load design for large pulsed power generators, and has permitted high temperatures to be generated in radiation cavities on Saturn and Z. In this paper, changes in x-ray emission characteristics as a function of wire number, array mass, and load radius, for 20-mm-long aluminum arrays on Saturn that led to these breakthrough hohlraum results, are discussed and compared with a few related emission characteristics of high-wire-number aluminum and tungsten arrays on Z. X-ray measurement comparisons with analytic models and 2-D radiation-magnetohydrodynamic (RMHC) code simulations in the x-y and r-z planes provide confidence in the ability of the models and codes to predict future x-ray performance with very-large-number wire arrays.

  18. Wire array z-pinch insights for high x-ray power generation

    Energy Technology Data Exchange (ETDEWEB)

    Sanford, T.W.L.; Mock, R.C.; Nash, T.J. [and others

    1998-08-01

    The discovery that the use of very large numbers of wires enables high x-ray power to be generated from wire-array z-pinches represents a breakthrough in load design for large pulsed power generators, and has permitted high temperatures to be generated in radiation cavities on Saturn. In this paper, changes in x-ray emission characteristics as a function of wire number, array mass, and load radius, for 20-mm-long aluminum arrays on Saturn that led to these breakthrough hohlraum results, are discussed and compared with a few related emission characteristics of high-wire-number aluminum and tungsten arrays on Z. X=ray measurement comparisons with analytic models and 2-D radiation-magnetohydrodynamic (RMHC) code simulations in the x-y and r-z planes provide confidence in the ability of the models and codes to predict future x-ray performance with very-large-number wire arrays.

  19. Wire array z-pinch insights for high x-ray power generation

    International Nuclear Information System (INIS)

    Sanford, T.W.L.; Mock, R.C.; Marder, B.M.

    1998-08-01

    The discovery that the use of very large numbers of wires enables high x-ray power to be generated from wire-array z-pinches represents a breakthrough in load design for large pulsed power generators, and has permitted high temperatures to be generated in radiation cavities on Saturn and Z. In this paper, changes in x-ray emission characteristics as a function of wire number, array mass, and load radius, for 20-mm-long aluminum arrays on Saturn that led to these breakthrough hohlraum results, are discussed and compared with a few related emission characteristics of high-wire-number aluminum and tungsten arrays on Z. X=ray measurement comparisons with analytic models and 2-D radiation-magnetohydrodynamic (RMHC) code simulations in the x-y and r-z planes provide confidence in the ability of the models and codes to predict future x-ray performance with very-large-number wire arrays

  20. Cleanliness of disposable vs nondisposable electrocardiography lead wires in children.

    Science.gov (United States)

    Addison, Nancy; Quatrara, Beth; Letzkus, Lisa; Strider, David; Rovnyak, Virginia; Syptak, Virginia; Fuzy, Lisa

    2014-09-01

    Mediastinitis costs hospitals thousands of dollars a year and increases the incidence of patient morbidity and mortality. No studies have been done to evaluate adenosine triphosphate (ATP) counts on disposable and nondisposable electrocardiography (ECG) lead wires in pediatric patients. To compare the cleanliness of disposable and nondisposable ECG lead wires in postoperative pediatric cardiac surgery patients by measuring the quantity of ATP (in relative luminescence units [RLUs]). ATP levels correlate with microbial cell counts and are used by institutions to assess hospital equipment and cleanliness. A prospective, randomized trial was initiated with approval from the institutional review board. Verbal consent was obtained from the parents/guardians for each patient. Trained nurses performed ATP swabs on the right and left upper ECG cables on postoperative days 1, 2, and 3. This study enrolled 51 patients. The disposable ECG lead wire ATP count on postoperative day 1 (median, 157 RLUs) was significantly lower (P disposable ECG lead wires (median, 200 RLUs) was also lower (P = .06) than the count for the nondisposable ECG lead wires (median, 453 RLUs). Results of this study support the use of disposable ECG lead wires in postoperative pediatric cardiac surgery patients for at least the first 48 hours as a direct strategy to reduce the ATP counts on ECG lead wires. ©2014 American Association of Critical-Care Nurses.

  1. The influence of drawing speed on structure changes in high carbon steel wires

    Directory of Open Access Journals (Sweden)

    M. Suliga

    2015-01-01

    Full Text Available In the paper the influence of the drawing speed on structure changes has been assessed. The Scanning Electron Microscope investigation confirmed that for wires drawn with high total draft, exceeding 80 %, makes it impossible to clearly assess the impact of drawing technology on structural changes in the drawn wires. Thus, to assess the structural changes necessary to apply quantitative methods. On the basis of examination of the wire structure by measuring of electrical resistance, the structure changes in drawn wires has been determined. It has been shown that the increase of drawing speed, especially above 15 m/s, causes an increase in structure defect, with a decline in platelet orientation of cementite in drawn wires.

  2. Hot Wire Measurements in a Axisymmetric Shear Layer with Swirl

    Science.gov (United States)

    Ewing, D.; Pollard, A.

    1996-11-01

    It is well known that the introduction of swirl in an axisymmetric jet can influence the development of and mixing in the near field of the jet. Recent efforts to compute this flow have demonstrated that the development of the near field is dependent on parameters at the jet outlet other than distribution of the swirl component, such as the distribution the mean radial velocity (Xai, J.L., Smith, B.L., Benim, A. C., Schmidli, J., and Yadigaroglu, G. (1996) Influence of Boundary Conditions on Swirling Flow in Combustors, Proc. ASME Fluid. Eng. Div. Summer Meeting), San Diego, Ca., July 7-11.. An experimental rig has been designed to produce co-axial round and annular swirling jets with uniform outlet conditions in each flow. The flow rate and swirl component from each of these jets can be controlled independently and the rig can be configured to produce both co- and counter-swirling flows. Thus, the rig can be used to carry out an extensive investigation of the effect of swirl on the development of axisymmetric flows. The key design features of the rig and the first sets of hot-wire measurements in the shear layer will be reported here.

  3. Magnesium diboride(MgB{sub 2}) wires for applications

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Dipak; Kim, Jung Ho [Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, North Wollongong (Australia)

    2016-03-15

    Field and temperature dependence of the critical current density, Jc, were measured for both un-doped and carbon doped MgB{sub 2}/Nb/Monel wires manufactured by Hyper Tech Research, Inc. In particular, carbon incorporation into the MgB{sub 2} structure using malic acid additive and a chemical solution method can be advantageous because of the highly uniform mixing between the carbon and boron powders. At 4.2 K and 10 T, Jc was estimated to be 25,000 - 25,300 Acm{sup -2} for the wire sintered at 600 degrees C for 4 hours. The irreversibility field, Birr, of the malic acid doped wire was approximately 21.0 - 21.8 T, as obtained from a linear extrapolation of the J-B characteristic. Interestingly enough, the Jc of the malic acid doped sample exceeds 10{sup 5} Acm{sup -2} at 6 T and 4.2 K, which is comparable to that of commercial Nb-Ti wires.

  4. Low temperature annealing of cold-drawn pearlitic steel wire

    DEFF Research Database (Denmark)

    Zhang, Xiaodan; Bech, Jakob Ilsted; Hansen, Niels

    2015-01-01

    Cold-drawn pearlitic steel wires are nanostructured and the flow stress at room temperature can reach values above 6 GPa. A typical characteristic of the nanostructured metals, is the low ductility and thermal stability. In order to optimize both the processing and application of the wires......, the thermal behaviour is of interest. This has been studied by annealing the wires for 1h at temperatures from ambient temperature to 300 ℃ (573 K). It is expected that a raising temperature may lead to structural changes and a reduction in strength. The change in strength is however not expected to be large....... For this reason we have applied a very precise technique to measure the tensile properties of the wires from a strain of 10-4 to the maximum strain of about 1-2%. The structural changes have also been followed to estimate and relate strength changes to changes in structural parameters and morphology....

  5. Characterization and coating stability evaluation of nickel-titanium orthodontic esthetic wires: an in vivo study.

    Science.gov (United States)

    Argalji, Nina; Silva, Eduardo Moreira da; Cury-Saramago, Adriana; Mattos, Claudia Trindade

    2017-08-21

    The objective of this study was to compare coating dimensions and surface characteristics of two different esthetic covered nickel-titanium orthodontic rectangular archwires, as-received from the manufacturer and after oral exposure. The study was designed for comparative purposes. Both archwires, as-received from the manufacturer, were observed using a stereomicroscope to measure coating thickness and inner metallic dimensions. The wires were also exposed to oral environment in 11 orthodontic active patients for 21 days. After removing the samples, stereomicroscopy images were captured, coating loss was measured and its percentage was calculated. Three segments of each wire (one as-received and two after oral exposure) were observed using scanning electron microscopy for a qualitative analysis of the labial surface of the wires. The Lilliefors test and independent t-test were applied to verify normality of data and statistical differences between wires, respectively. The significance level adopted was 0.05. The results showed that the differences between the wires while comparing inner height and thickness were statistically significant (p wire presented a coating thickness twice that of the control wire, which was also a statistically significant difference. The coating loss percentage was also statistically different (p = 0.0346) when the latest launched wire (13.27%) was compared to the control (29.63%). In conclusion, the coating of the most recent wire was thicker and more uniform, whereas the control had a thinner coating on the edges. After oral exposure, both tested wires presented coating loss, but the most recently launched wire exhibited better results.

  6. Upper Limb Static-Stretching Protocol Decreases Maximal Concentric Jump Performance

    Directory of Open Access Journals (Sweden)

    Paulo H. Marchetti

    2014-12-01

    Full Text Available The purpose of the present study was to evaluate the acute effects of an upper limb static-stretching (SS protocol on the maximal concentric jump performance. We recruited 25 young healthy, male, resistance trained individuals (stretched group, n = 15 and control group, n = 10 in this study. The randomized between group experimental protocol consisted of a three trials of maximal concentric jump task, before and after a SS of the upper limb. Vertical ground reaction forces (vGRF and surface electromyography (sEMG of both gastrocnemius lateralis (GL and vastus lateralis (VL were acquired. An extensive SS was employed consisting of ten stretches of 30 seconds, with 15 seconds of rest, and 70-90% of the point of discomfort (POD. ANOVA (2x2 (group x condition was used for shoulder joint range of motion (ROM, vGRF and sEMG. A significant interaction for passive ROM of the shoulder joint revealed significant increases between pre- and post-SS protocol (p < 0.001. A significant interaction demonstrated decreased peak force and an increased peak propulsion duration between pre- and post-stretching only for stretch group (p = 0.021, and p = 0.024, respectively. There was a significant main effect between groups (stretch and control for peak force for control group (p = 0.045. Regarding sEMG variables, there were no significant differences between groups (control versus stretched or condition (pre-stretching versus post-stretching for the peak amplitude of RMS and IEMG for both muscles (VL and GL. In conclusion, an acute extensive SS can increase the shoulder ROM, and negatively affect both the propulsion duration and peak force of the maximal concentric jump, without providing significant changes in muscle activation.

  7. Guidelines for Stretch Flanging Advanced High Strength Steels

    International Nuclear Information System (INIS)

    Sriram, S.; Chintamani, J.

    2005-01-01

    Advanced High Strength Steels (AHSS) are currently being considered for use in closure and structural panels in the automotive industry because of their high potential for affordable weight reduction and improved performance. AHSS such as dual phase steels are currently being used in some vehicle platforms. From a manufacturing perspective, stretch flanging during stamping is an important deformation mode requiring careful consideration of geometry and the die process. This paper presents some geometric and process guidelines for stretch flanging AHSS. Hole expansion experiments were conducted to determine the failure limit for a sheared edge condition. Effects of punching clearance, prestrain and prior strain path on hole expansion were explored in these experiments. In addition, dynamic explicit FE calculations using LS-DYNA were also conducted for a typical stretch flange by varying some key geometric parameters. The experimental and FEA results were then analyzed to yield process and geometric guidelines to enable successful stretch flanging of AHSS

  8. Investigation of method for Stainless Steel Welding Wire as a Replacement for Arc Wire Comsumables

    Directory of Open Access Journals (Sweden)

    Koiprasert, H.

    2005-01-01

    Full Text Available Arc spraying as a coating method is being employed in various industrial applications as a part of maintenance service, and also as a surface engineering technique for many machine parts and components. The major cost in producing the arc spray coating is, however, based on the cost of the arc wire comsumables. This project was carried out to investigate the use of the commercially-available gas metal arc welding wire (GMAW wire as a cheaper alternative to the special-purpose arc wire comsumables. The wire material chosen for this early study is the 316L stainless steel, due to its popularity in many applications as a built-up coating for worn parts. The physical properties of the coatings produced from the two sets of 316L stainless steel wire were determined to be different in the percentage of porosity and the oxide content. The mechanical properties, including the tensile bond strength and the wear rate of the coatings produced from the two types of sprayed wire, were also different. This will, in turn, result in a slight difference in the performance of thecoatings.

  9. Welding wire pressure sensor assembly

    Science.gov (United States)

    Morris, Timothy B. (Inventor); Milly, Peter F., Sr. (Inventor); White, J. Kevin (Inventor)

    1994-01-01

    The present invention relates to a device which is used to monitor the position of a filler wire relative to a base material being welded as the filler wire is added to a welding pool. The device is applicable to automated welding systems wherein nonconsumable electrode arc welding processes are utilized in conjunction with a filler wire which is added to a weld pool created by the electrode arc. The invention senses pressure deviations from a predetermined pressure between the filler wire and the base material, and provides electrical signals responsive to the deviations for actuating control mechanisms in an automatic welding apparatus so as to minimize the pressure deviation and to prevent disengagement of the contact between the filler wire and the base material.

  10. Stretching skeletal muscle: chronic muscle lengthening through sarcomerogenesis.

    Directory of Open Access Journals (Sweden)

    Alexander M Zöllner

    Full Text Available Skeletal muscle responds to passive overstretch through sarcomerogenesis, the creation and serial deposition of new sarcomere units. Sarcomerogenesis is critical to muscle function: It gradually re-positions the muscle back into its optimal operating regime. Animal models of immobilization, limb lengthening, and tendon transfer have provided significant insight into muscle adaptation in vivo. Yet, to date, there is no mathematical model that allows us to predict how skeletal muscle adapts to mechanical stretch in silico. Here we propose a novel mechanistic model for chronic longitudinal muscle growth in response to passive mechanical stretch. We characterize growth through a single scalar-valued internal variable, the serial sarcomere number. Sarcomerogenesis, the evolution of this variable, is driven by the elastic mechanical stretch. To analyze realistic three-dimensional muscle geometries, we embed our model into a nonlinear finite element framework. In a chronic limb lengthening study with a muscle stretch of 1.14, the model predicts an acute sarcomere lengthening from 3.09[Formula: see text]m to 3.51[Formula: see text]m, and a chronic gradual return to the initial sarcomere length within two weeks. Compared to the experiment, the acute model error was 0.00% by design of the model; the chronic model error was 2.13%, which lies within the rage of the experimental standard deviation. Our model explains, from a mechanistic point of view, why gradual multi-step muscle lengthening is less invasive than single-step lengthening. It also explains regional variations in sarcomere length, shorter close to and longer away from the muscle-tendon interface. Once calibrated with a richer data set, our model may help surgeons to prevent muscle overstretch and make informed decisions about optimal stretch increments, stretch timing, and stretch amplitudes. We anticipate our study to open new avenues in orthopedic and reconstructive surgery and enhance

  11. Development of CRID [Cerenkov Ring Imaging Detector] single electron wire detector

    International Nuclear Information System (INIS)

    Aston, D.; Bean, A.; Bienz, T.

    1989-02-01

    We describe the R and D effort to define the design parameters, method of construction and experimental results from the single electron wire detectors. These detectors will be used for particle identification using the Cerenkov Ring Imaging techniques in the SLD experiment at SLAC. We present measurements of pulse heights for several gases as a function of gas gain, charge division performance on a single electron signal using both 7 μm and 33 μm diameter carbon wires, photon feedback in TMAE laden gas, average pulse shape, and its comparison with the predicted shape and cross-talk. In addition, we present results of wire aging tests, and other tests associated with construction of this unusual type of wire chamber. 12 refs., 9 figs

  12. Static versus dynamic stretching: Chronic and acute effects on Agility performance in male athletes

    Directory of Open Access Journals (Sweden)

    Iman Taleb-Beydokhti

    2015-04-01

    Full Text Available The purpose of this study was to examine the acute and chronic effects of static & dynamic stretching protocols on agility performance in amateur handball players. Twelve male amateur handball players (age: 19.66 ± 4.02 years old, weight: 67.12 ± 8.73 kg, height: 178.29 ± 7.81 cm participated in this study. The athletes were randomly allocated into two groups: static stretching or dynamic stretching. All of them underwent an initial evaluation and were submitted to the first intervention. They were evaluated once again and at the end of 12 training sessions. The results analyzed using ANOVA showed that there was a significant decrease in agility time after dynamic stretching against no stretching in the acute phase; but, there were no significant differences between dynamic stretching and no stretching in the chronic phase. In addition, there was no a significant difference between no stretching and static stretching in the acute phase; while, There was a significant decrease in agility time after no stretching against static stretching in the chronic phase. It was concluded that acute dynamic stretching as part of a warm-up may decrease agility time performance, whereas static stretching seems to increase agility time performance. Consequently, the acute and chronic static stretching should not be performed prior to an explosive athletic performance. Keywords: Handball, Agility, Dynamic stretching, Static stretching

  13. Stress distribution and lattice distortions in Nb3Sn multifilament wires under uniaxial tensile loading at 4.2 K

    International Nuclear Information System (INIS)

    Scheuerlein, C; Flükiger, R; Kadar, J; Bordini, B; Ballarino, A; Bottura, L; Di Michiel, M; Buta, F; Seeber, B; Senatore, C; Siegrist, T; Besara, T

    2014-01-01

    The lattice parameter changes in three types of Nb 3 Sn superconducting wires during uniaxial stress–strain measurements at 4.2 K have been measured by high-energy synchrotron x-ray diffraction. The nearly-stress-free Nb 3 Sn lattice parameter has been determined using extracted filaments, and the elastic strain in the axial and transverse wire directions in the different wire phases has been calculated. The mechanical properties of the PIT and RRP wire are mainly determined by the properties of Nb 3 Sn and unreacted Nb. This is in contrast to the bronze route wire, where the matrix can carry substantial loads. In straight wires the axial Nb 3 Sn pre-strain is strongest in the bronze route wire, its value being smaller in the PIT and RRP wires. A strong reduction of the non-Cu elastic modulus of about 30% is observed during cool-down from ambient temperature to 4.2 K. The Nb 3 Sn Poisson ratio at 4.2 K measured in the untwisted bronze route wire is 0.35. The present study also shows that the process route has a strong influence on the Nb 3 Sn texture. (paper)

  14. Effects of acute static, ballistic, and PNF stretching exercise on the muscle and tendon tissue properties.

    Science.gov (United States)

    Konrad, A; Stafilidis, S; Tilp, M

    2017-10-01

    The purpose of this study was to investigate the influence of a single static, ballistic, or proprioceptive neuromuscular facilitation (PNF) stretching exercise on the various muscle-tendon parameters of the lower leg and to detect possible differences in the effects between the methods. Volunteers (n = 122) were randomly divided into static, ballistic, and PNF stretching groups and a control group. Before and after the 4 × 30 s stretching intervention, we determined the maximum dorsiflexion range of motion (RoM) with the corresponding fascicle length and pennation angle of the gastrocnemius medialis. Passive resistive torque (PRT) and maximum voluntary contraction (MVC) were measured with a dynamometer. Observation of muscle-tendon junction (MTJ) displacement with ultrasound allowed us to determine the length changes in the tendon and muscle, respectively, and hence to calculate stiffness. Although RoM increased (static: +4.3%, ballistic: +4.5%, PNF: +3.5%), PRT (static: -11.4%, ballistic: -11.5%, PNF: -13,7%), muscle stiffness (static: -13.1%, ballistic: -20.3%, PNF: -20.2%), and muscle-tendon stiffness (static: -11.3%, ballistic: -10.5%, PNF: -13.7%) decreased significantly in all the stretching groups. Only in the PNF stretching group, the pennation angle in the stretched position (-4.2%) and plantar flexor MVC (-4.6%) decreased significantly. Multivariate analysis showed no clinically relevant difference between the stretching groups. The increase in RoM and the decrease in PRT and muscle-tendon stiffness could be explained by more compliant muscle tissue following a single static, ballistic, or PNF stretching exercise. © 2017 The Authors Scandinavian Journal of Medicine & Science In Sports Published by John Wiley & Sons Ltd.

  15. Fabrication and characterization of a dual-joint smart inhaler nozzle actuated by embedded SMA wires

    International Nuclear Information System (INIS)

    Furst, Stephen J; Seelecke, Stefan

    2014-01-01

    Shape memory alloy (SMA) wires offer a novel solution for many embedded actuator and sensor applications. Small SMA wires in particular can be heated with a relatively low electric current, cool rapidly, and serve as a sensor thanks to a measurable resistance change. However, the challenges of fabrication with SMA actuator wires as well as their hysteretic nature have prevented them from finding mainstream application. This work focuses on the process used to control the fabrication of an SMA-actuated adaptive nozzle for the previously presented Smart Inhaler application. The elements of nozzle design that facilitate fabrication are summarized and an assembly setup and procedure is presented for controlling the stress and strain in the SMA wires while they are attached to the nozzle structure via temperature-resistant adhesives. Finally, the performance of the nozzle is characterized by measuring the changes in nozzle deflection and SMA wire strain and resistance in response to a controlled Joule heating power input. Results show controlling pre-stress in the wires during assembly can lead to reproducible behavior, an input heating power serves to control nozzle deflection, and a measured resistance can provide a useful sensor of SMA wire strain and nozzle joint deflection. (paper)

  16. Mesenteric artery contraction and relaxation studies using automated wire myography.

    Science.gov (United States)

    Bridges, Lakeesha E; Williams, Cicely L; Pointer, Mildred A; Awumey, Emmanuel M

    2011-09-22

    Proximal resistance vessels, such as the mesenteric arteries, contribute substantially to the peripheral resistance. These small vessels of between 100-400 μm in diameter function primarily in directing blood flow to various organs according to the overall requirements of the body. The rat mesenteric artery has a diameter greater than 100 μm. The myography technique, first described by Mulvay and Halpern(1), was based on the method proposed by Bevan and Osher(2). The technique provides information about small vessels under isometric conditions, where substantial shortening of the muscle preparation is prevented. Since force production and sensitivity of vessels to different agonists is dependent on the extent of stretch, according to active tension-length relation, it is essential to conduct contraction studies under isometric conditions to prevent compliance of the mounting wires. Stainless steel wires are preferred to tungsten wires because of oxidation of the latter, which affects recorded responses(3).The technique allows for the comparison of agonist-induced contractions of mounted vessels to obtain evidence for normal function of vascular smooth muscle cell receptors. We have shown in several studies that isolated mesenteric arteries that are contracted with phenylyephrine relax upon addition of cumulative concentrations of extracellular calcium (Ca(2+)(e;)). The findings led us to conclude that perivascular sensory nerves, which express the G protein-coupled Ca(2+)-sensing receptor (CaR), mediate this vasorelaxation response. Using an automated wire myography method, we show here that mesenteric arteries from Wistar, Dahl salt-sensitive(DS) and Dahl salt-resistant (DR) rats respond differently to Ca(2+)(e;). Tissues from Wistar rats showed higher Ca(2+)-sensitivity compared to those from DR and DS. Reduced CaR expression in mesenteric arteries from DS rats correlates with reduced Ca(2+)(e;)-induced relaxation of isolated, pre-contracted arteries. The data

  17. Torque resistance of different stainless steel wires commonly used for fixed retainers in orthodontics

    DEFF Research Database (Denmark)

    Arnold, Dario; Dalstra, Michel; Verna, Carlalberta

    2016-01-01

    Objective: Movements of teeth splinted by fixed retention wires after orthodontic treatment have been observed. The aetiological factors for these movements are unknown. The aim of this in vitro study was to compare the resistance to torque of different stainless steel wires commonly used for fixed...... retainers in orthodontics. Materials and Methods: Torquing moments acting on a retainer wire were measured in a mechanical force testing system by applying buccal crown torque to an upper lateral incisor in both a 3-teeth and in a 2-teeth setup. Seven stainless steel wires with different shape, type (plain...... or a braided 0.016 × 0.022-inch stainless steel wire. A tooth attached by a retainer wire to only one neighbouring tooth is less resistant to torque than a tooth connected to two neighbouring teeth. Annealing a retainer wire with a flame reduces the stiffness of the wire markedly and can lead to a non...

  18. Recent development of micro-triangulation for magnet fiducialisation

    CERN Document Server

    Vlachakis, Vasileios; Mainaud Durand, Helene; CERN. Geneva. ATS Department

    2016-01-01

    The micro-triangulation method is proposed as an alternative for magnet fiducialisation. The main objective is to measure horizontal and vertical angles to fiducial points and stretched wires, utilising theodolites equipped with cameras. This study aims to develop various methods, algorithms and software tools to enable the data acquisition and processing. In this paper, we present the first test measurement as an attempt to demonstrate the feasibility of the method and to evaluate the accuracy. The preliminary results are very promising, with accuracy always better than 20 μm for the wire position, and of about40 μm/m for the wire orientation, compared with a coordinate measuring machine.

  19. Double-sided coaxial circuit QED with out-of-plane wiring

    Science.gov (United States)

    Rahamim, J.; Behrle, T.; Peterer, M. J.; Patterson, A.; Spring, P. A.; Tsunoda, T.; Manenti, R.; Tancredi, G.; Leek, P. J.

    2017-05-01

    Superconducting circuits are well established as a strong candidate platform for the development of quantum computing. In order to advance to a practically useful level, architectures are needed which combine arrays of many qubits with selective qubit control and readout, without compromising on coherence. Here, we present a coaxial circuit quantum electrodynamics architecture in which qubit and resonator are fabricated on opposing sides of a single chip, and control and readout wiring are provided by coaxial wiring running perpendicular to the chip plane. We present characterization measurements of a fabricated device in good agreement with simulated parameters and demonstrating energy relaxation and dephasing times of T1 = 4.1 μs and T2 = 5.7 μs, respectively. The architecture allows for scaling to large arrays of selectively controlled and measured qubits with the advantage of all wiring being out of the plane.

  20. Multifilament Cable Wire versus Conventional Wire for Sternal Closure in Patients Undergoing Major Cardiac Surgery

    Directory of Open Access Journals (Sweden)

    You Na Oh

    2015-08-01

    Full Text Available Background: Stainless steel wiring remains the most popular technique for primary sternal closure. Recently, a multifilament cable wiring system (Pioneer Surgical Technology Inc., Marquette, MI, USA was introduced for sternal closure and has gained wide acceptance due to its superior resistance to tension. We aimed to compare conventional steel wiring to multifilament cable fixation for sternal closure in patients undergoing major cardiac surgery. Methods: Data were collected retrospectively on 1,354 patients who underwent sternal closure after major cardiac surgery, using either the multifilament cable wiring system or conventional steel wires between January 2009 and October 2010. The surgical outcomes of these two groups of patients were compared using propensity score matching based on 18 baseline patient characteristics. Results: Propensity score matching yielded 392 pairs of patients in the two groups whose baseline profiles showed no significant differences. No significant differences between the two groups were observed in the rates of early mortality (2.0% vs. 1.3%, p=0.578, major wound complications requiring reconstruction (1.3% vs. 1.3%, p>0.99, minor wound complications (3.6% vs. 2.0%, p=0.279, or mediastinitis (0.8% vs. 1.0%, p=1.00. Patients in the multifilament cable group had fewer sternal bleeding events than those in the conventional wire group, but this tendency was not statistically significant (4.3% vs. 7.4%, p=0.068. Conclusion: The surgical outcomes of sternal closure using multifilament cable wires were comparable to those observed when conventional steel wires were used. Therefore, the multifilament cable wiring system may be considered a viable option for sternal closure in patients undergoing major cardiac surgery.

  1. Multifilament Cable Wire versus Conventional Wire for Sternal Closure in Patients Undergoing Major Cardiac Surgery.

    Science.gov (United States)

    Oh, You Na; Ha, Keong Jun; Kim, Joon Bum; Jung, Sung-Ho; Choo, Suk Jung; Chung, Cheol Hyun; Lee, Jae Won

    2015-08-01

    Stainless steel wiring remains the most popular technique for primary sternal closure. Recently, a multifilament cable wiring system (Pioneer Surgical Technology Inc., Marquette, MI, USA) was introduced for sternal closure and has gained wide acceptance due to its superior resistance to tension. We aimed to compare conventional steel wiring to multifilament cable fixation for sternal closure in patients undergoing major cardiac surgery. Data were collected retrospectively on 1,354 patients who underwent sternal closure after major cardiac surgery, using either the multifilament cable wiring system or conventional steel wires between January 2009 and October 2010. The surgical outcomes of these two groups of patients were compared using propensity score matching based on 18 baseline patient characteristics. Propensity score matching yielded 392 pairs of patients in the two groups whose baseline profiles showed no significant differences. No significant differences between the two groups were observed in the rates of early mortality (2.0% vs. 1.3%, p=0.578), major wound complications requiring reconstruction (1.3% vs. 1.3%, p>0.99), minor wound complications (3.6% vs. 2.0%, p=0.279), or mediastinitis (0.8% vs. 1.0%, p=1.00). Patients in the multifilament cable group had fewer sternal bleeding events than those in the conventional wire group, but this tendency was not statistically significant (4.3% vs. 7.4%, p=0.068). The surgical outcomes of sternal closure using multifilament cable wires were comparable to those observed when conventional steel wires were used. Therefore, the multifilament cable wiring system may be considered a viable option for sternal closure in patients undergoing major cardiac surgery.

  2. Optically pumped ultraviolet and infrared lasers driven by exploding metal films and wires

    International Nuclear Information System (INIS)

    Jones, C.R.; Ware, K.D.

    1983-01-01

    The 342-nm molecular iodine and 1315-nm atomic iodine lasers have been optically pumped by intense light from exploding-metal-film and exploding-wire discharges. Brightness temperatures for the exploding-film discharges were approx. 25,000 K and for the wire discharges were approx. 30,000 K. For the I 2 laser the 3.5-cm-diameter by 40-cm-long pumped volume lies adjacent to the wire or film of the same length. Pressures of 1 to 6 torr I 2 and 1 to 3 atm SF, CF 4 , or Ar were used in the stainless-steel cell. Using 20-μF capacitance charged to 40 kV, a 0.25-mm tungsten wire, 3-torr I 2 , and a 2-atm SF 6 , an energy of 2 J was obtained from the laser in a pulse of 8-μs duration. The specific output energy was 7 J/l. Substitution of a cylindrical Al film for the wire, under otherwise similar conditions, led to a X10 output energies and efficiencies were obtained with similar input energy. An output pulse of 12 J and 12-μs duration was measured for a specific output energy of 18 J/l. A laser energy of 110 J in a 20-us-long pulse has been measured from atomic iodine using a wire discharge along the axis of a larger cell. The active volume available was 20 cm in diameter and 80 cm in length. Input energy was 32 kJ. In similar measurements using a cylindrical Al film for discharge initiation, the measured output energy was 40 J

  3. Clinical bending of nickel titanium wires

    Directory of Open Access Journals (Sweden)

    Stephen Chain

    2015-01-01

    Full Text Available Since the evolution and the involvement of Nickel Titanium wires in the field of Orthodontics. The treatment plan has evolved with the use of low force Nickel Titanium wires. Because of their high springback, low stiffness, they are the key initial wires in leveling and alignment but have poor formability. Since poor formability limits its ability to create variable arch forms thus; limits the form of treatment. We have devised a method to bend the Nickel Titanium wires to help in our inventory but also customized the wire according to the treatment.

  4. Laser Indirect Shock Welding of Fine Wire to Metal Sheet.

    Science.gov (United States)

    Wang, Xiao; Huang, Tao; Luo, Yapeng; Liu, Huixia

    2017-09-12

    The purpose of this paper is to present an advanced method for welding fine wire to metal sheet, namely laser indirect shock welding (LISW). This process uses silica gel as driver sheet to accelerate the metal sheet toward the wire to obtain metallurgical bonding. A series of experiments were implemented to validate the welding ability of Al sheet/Cu wire and Al sheet/Ag wire. It was found that the use of a driver sheet can maintain high surface quality of the metal sheet. With the increase of laser pulse energy, the bonding area of the sheet/wire increased and the welding interfaces were nearly flat. Energy dispersive spectroscopy (EDS) results show that the intermetallic phases were absent and a short element diffusion layer which would limit the formation of the intermetallic phases emerging at the welding interface. A tensile shear test was used to measure the mechanical strength of the welding joints. The influence of laser pulse energy on the tensile failure modes was investigated, and two failure modes, including interfacial failure and failure through the wire, were observed. The nanoindentation test results indicate that as the distance to the welding interface decreased, the microhardness increased due to the plastic deformation becoming more violent.

  5. Oriented Morphology and Anisotropic Transport in Uniaxially Stretched Perfluorosulfonate Ionomer Membranes

    Energy Technology Data Exchange (ETDEWEB)

    J Park; J Li; G Divoux; L Madsen; R Moore

    2011-12-31

    Relations between morphology and transport sensitively govern proton conductivity in perfluorsulfonate ionomers (PFSIs) and thus determine useful properties of these technologically important materials. In order to understand such relations, we have conducted a broad systematic study of H{sup +}-form PFSI membranes over a range of uniaxial extensions and water uptakes. On the basis of small-angle X-ray scattering (SAXS) and {sup 2}H NMR spectroscopy, uniaxial deformation induces a strong alignment of ionic domains along the stretching direction. We correlate ionic domain orientation to transport using pulsed-field-gradient {sup 1}H NMR measurements of water diffusion coefficients along the three orthogonal membrane directions. Intriguingly, we observe that uniaxial deformation enhances water transport in one direction (parallel-to-draw direction) while reducing it in the other two directions (two orthogonal directions relative to the stretching direction). We evaluate another important transport parameter, proton conductivity, along two orthogonal in-plane directions. In agreement with water diffusion experiments, orientation of ionic channels increases proton conduction along the stretching direction while decreasing it in the perpendicular direction. These findings provide valuable fodder for optimal application of PFSI membranes as well as for the design of next generation polymer electrolyte membranes.

  6. An interconnecting bus power optimization method combining interconnect wire spacing with wire ordering

    International Nuclear Information System (INIS)

    Zhu Zhang-Ming; Hao Bao-Tian; En Yun-Fei; Yang Yin-Tang; Li Yue-Jin

    2011-01-01

    On-chip interconnect buses consume tens of percents of dynamic power in a nanometer scale integrated circuit and they will consume more power with the rapid scaling down of technology size and continuously rising clock frequency, therefore it is meaningful to lower the interconnecting bus power in design. In this paper, a simple yet accurate interconnect parasitic capacitance model is presented first and then, based on this model, a novel interconnecting bus optimization method is proposed. Wire spacing is a process for spacing wires for minimum dynamic power, while wire ordering is a process that searches for wire orders that maximally enhance it. The method, i.e., combining wire spacing with wire ordering, focuses on bus dynamic power optimization with a consideration of bus performance requirements. The optimization method is verified based on various nanometer technology parameters, showing that with 50% slack of routing space, 25.71% and 32.65% of power can be saved on average by the proposed optimization method for a global bus and an intermediate bus, respectively, under a 65-nm technology node, compared with 21.78% and 27.68% of power saved on average by uniform spacing technology. The proposed method is especially suitable for computer-aided design of nanometer scale on-chip buses. (interdisciplinary physics and related areas of science and technology)

  7. The mechatronic design of a fast wire scanner in IHEP U-70 accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Baranov, V.T. [Institute for High Energy Physics in National Research Centre “Kurchatov Institute”, Protvino 142281 (Russian Federation); Makhov, S.S. [Microprivod Ltd., Moscow 111123 (Russian Federation); Savin, D.A.; Terekhov, V.I. [Institute for High Energy Physics in National Research Centre “Kurchatov Institute”, Protvino 142281 (Russian Federation)

    2016-10-11

    This paper presents the mechatronic design of a fast wire scanner based on a servomotor. The design of the wire scanner is motivated by the need to measure the transverse profile of the high power proton and carbon beams at the IHEP U-70 accelerator. This paper formulates the requirements to the fast wire scanner system for the high intensity proton beam at the U-70 accelerator. The results on the design of electro-mechanical device for the wire scanner with a wire traveling speed 10–20 m/s are presented. The solution consists in a brushless servomotor and standard motor control electronics. High radiation levels in the accelerator enclosure dictate the use of a resolver as the position feedback element.

  8. K-wire and tension band wire fixation in treating sternoclavicular joint dislocation.

    Science.gov (United States)

    Chen, Qing-yu; Cheng, Shao-wen; Wang, Wei; Lin, Zhong-qin; Zhang, Wei; Kou, Dong-quan; Shen, Yue; Ying, Xiao-zhou; Cheng, Xiao-jie; Lv, Chuan-zhu; Peng, Lei

    2011-02-01

    To evaluate the feasibility and therapeutic effect of treating sternoclavicular joint dislocation by K-wire and tension band wire fixation, and to improve the safety and stability of this technique. This study consisted of 9 cases, 6 males and 3 females with the mean age of 25 years (range, 9-62 years). The causes were traffic accident in 7 cases, falling in 1 case and fight in 1 case. The duration from injury to operation was 2 hours to 7 days. There were 5 left dislocations and 4 right dislocations; 8 anterior dislocations and 1 posterior dislocation, including one combined with left scapular fracture and one with left olecranon fracture. Open reduction and internal fixation using K-wires and tension band wires were performed to treat dislocations. All patients were followed up for 6 to 24 months, 10 months on average. According to Rockwood's rating scale on postoperative sternoclavicular joint, 8 cases achieved excellent outcomes with an average score of 13.88, and the rest case achieved a good outcome with the score of 12. Anatomical reduction was obtained in all cases. There were no such postoperative complications as severe infection, injury to blood vessel and nerve, failure of fixation, etc. Patients were all satisfied with the anatomical reduction and functional recovery. The technique of K-wire and tension band wire fixation is safe, simple, effective, less invasive and has been successfully used in orthopedic surgery. It is effective in treating sternoclavicular joint dislocation though it has some disadvantages.

  9. Stretching single fibrin fibers hampers their lysis.

    Science.gov (United States)

    Li, Wei; Lucioni, Tomas; Li, Rongzhong; Bonin, Keith; Cho, Samuel S; Guthold, Martin

    2017-09-15

    Blood clots, whose main structural component is a mesh of microscopic fibrin fibers, experience mechanical strain from blood flow, clot retraction and interactions with platelets and other cells. We developed a transparent, striated and highly stretchable substrate made from fugitive glue (a styrenic block copolymer) to investigate how mechanical strain affects lysis of single, suspended fibrin fibers. In this suspended fiber assay, lysis manifested itself by fiber elongation, thickening (disassembly), fraying and collapse. Stretching single fibrin fibers significantly hampered their lysis. This effect was seen in uncrosslinked and crosslinked fibers. Crosslinking (without stretching) also hampered single fiber lysis. Our data suggest that strain is a novel mechanosensitive factor that regulates blood clot dissolution (fibrinolysis) at the single fiber level. At the molecular level of single fibrin molecules, strain may distort, or hinder access to, plasmin cleavage sites and thereby hamper lysis. Fibrin fibers are the major structural component of a blood clot. We developed a highly stretchable substrate made from fugitive glue and a suspended fibrin fiber lysis assay to investigate the effect of stretching on single fibrin fibers lysis. The key findings from our experiments are: 1) Fibers thicken and elongate upon lysis; 2) stretching strongly reduces lysis; 3) this effect is more pronounced for uncrosslinked fibers; and 4) stretching fibers has a similar effect on reducing lysis as crosslinking fibers. At the molecular level, strain may distort plasmin cleavage sites, or restrict access to those sites. Our results suggest that strain may be a novel mechanobiological factor that regulates fibrinolysis. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Characterization and coating stability evaluation of nickel-titanium orthodontic esthetic wires: an in vivo study

    Directory of Open Access Journals (Sweden)

    Nina ARGALJI

    2017-08-01

    Full Text Available Abstract The objective of this study was to compare coating dimensions and surface characteristics of two different esthetic covered nickel-titanium orthodontic rectangular archwires, as-received from the manufacturer and after oral exposure. The study was designed for comparative purposes. Both archwires, as-received from the manufacturer, were observed using a stereomicroscope to measure coating thickness and inner metallic dimensions. The wires were also exposed to oral environment in 11 orthodontic active patients for 21 days. After removing the samples, stereomicroscopy images were captured, coating loss was measured and its percentage was calculated. Three segments of each wire (one as-received and two after oral exposure were observed using scanning electron microscopy for a qualitative analysis of the labial surface of the wires. The Lilliefors test and independent t-test were applied to verify normality of data and statistical differences between wires, respectively. The significance level adopted was 0.05. The results showed that the differences between the wires while comparing inner height and thickness were statistically significant (p < 0.0001. In average, the most recently launched wire presented a coating thickness twice that of the control wire, which was also a statistically significant difference. The coating loss percentage was also statistically different (p = 0.0346 when the latest launched wire (13.27% was compared to the control (29.63%. In conclusion, the coating of the most recent wire was thicker and more uniform, whereas the control had a thinner coating on the edges. After oral exposure, both tested wires presented coating loss, but the most recently launched wire exhibited better results.

  11. Dynamics of Dangling Od-Stretch at the Air/water Interface by Heterodyne-Detected Sfg Spectroscopy

    Science.gov (United States)

    Stiopkin, I. V.; Weeraman, C.; Shalhout, F.; Benderskii, A. V.

    2009-06-01

    SFG spectra of dangling OD-stretch at the air/water interface contain information on vibrational dephasing dynamics, ultrafast reorientational molecular motion, and vibrational energy transfer. To better separate these processes we conducted heterodyne-detected SFG experiments to measure real and imaginary contributions of the SFG spectrum of the dangling OD-stretch at the air/D_2O interface for SSP, PPP, and SPS polarizations. Variations in the temporal profiles of the SFG signals for these three polarizations will be also discussed.

  12. Intrinsic ankle stiffness during standing increases with ankle torque and passive stretch of the Achilles tendon

    Science.gov (United States)

    Gill, Jaspret

    2018-01-01

    Individuals may stand with a range of ankle angles. Furthermore, shoes or floor surfaces may elevate or depress their heels. Here we ask how these situations impact ankle stiffness and balance. We performed two studies (each with 10 participants) in which the triceps surae, Achilles tendon and aponeurosis were stretched either passively, by rotating the support surface, or actively by leaning forward. Participants stood freely on footplates which could rotate around the ankle joint axis. Brief, small stiffness-measuring perturbations (torque or passive stretch. Sway was minimally affected by stretch or lean, suggesting that this did not underlie the alterations in stiffness. In quiet stance, maximum ankle stiffness is limited by the tendon. As tendon strain increases, it becomes stiffer, causing an increase in overall ankle stiffness, which would explain the effects of leaning. However, stiffness also increased considerably with passive stretch, despite a modest torque increase. We discuss possible explanations for this increase. PMID:29558469

  13. Characterizing the stretch-flangeability of hot rolled multiphase steels

    International Nuclear Information System (INIS)

    Pathak, N.; Butcher, C.; Worswick, M.; Gao, J.

    2013-01-01

    Hole expansion tests are commonly used to characterize the edge stretching limit of a material. Traditionally, a conical punch is used to expand a punched hole until a through-thickness crack appears. However, many automotive stretch flanging operations involve in-plane edge stretching that is best captured with a flat punch. In this paper, hole expansion tests were carried out on two different hot-rolled multiphase steels using both flat and conical punches. The fracture mechanisms for both punch types were investigated using scanning electron microscopy (SEM)

  14. Enhanced Age Strengthening of Mg-Nd-Zn-Zr Alloy via Pre-Stretching

    Directory of Open Access Journals (Sweden)

    Erjun Guo

    2016-08-01

    Full Text Available Pre-stretching was carried out to modify the microstructure of Mg-Nd-Zn-Zr alloy to enhance its age strengthening. The results indicated that more heterogeneous nucleation sites can be provided by the high density of dislocations caused by the plastic pre-stretching deformation, as well as speeding up the growth rate of precipitates. Comparison of microstructure in non-pre-stretched specimens after artificial aging showed that pre-stretched specimens exhibited a higher number density of precipitates. The fine and coarse plate-shaped precipitates were found in the matrix. Due to an increase in the number density of precipitates, the dislocation slipping during the deformation process is effectively hindered, and the matrix is strengthened. The yield strength stabilizes at 4% pre-stretching condition, and then the evolution is stable within the error bars. The 8% pre-stretched specimens can achieve an ultimate tensile strength of 297 MPa. However, further pre-stretching strains after 8% cannot supply any increase in strength. Tensile fracture surfaces of specimens subjected to pre-stretching strain mainly exhibit a trans-granular cleavage fracture. This work indicated that a small amount of pre-stretching strain can further increase strength of alloy and also effectively enhance the formation of precipitates, which can expand the application fields of this alloy.

  15. Duration Dependent Effect of Static Stretching on Quadriceps and Hamstring Muscle Force

    Directory of Open Access Journals (Sweden)

    Leyla Alizadeh Ebadi

    2018-03-01

    Full Text Available The aim of this study was to determine the acute effect of static stretching on hamstring and quadriceps muscles’ isokinetic strength when applied for various durations to elite athletes, to investigate the effect of different static stretching durations on isokinetic strength, and finally to determine the optimal stretching duration. Fifteen elite male athletes from two different sport branches (10 football and five basketball participated in this study. Experimental protocol was designed as 17 repetitive static stretching exercises for hamstring and quadriceps muscle groups according to the indicated experimental protocols; ((A 5 min jogging; (B 5 min jogging followed by 15 s static stretching; (C 5 min jogging followed by 30 s static stretching; (D 5 min jogging, followed by static stretching for 45 s. Immediately after each protocol, an isokinetic strength test consisting of five repetitions at 60°/s speed and 20 repetitions at 180°/s speed was recorded for the right leg by the Isomed 2000 device. Friedman variance analysis test was employed for data analysis. According to the analyzes, it was observed that 5 min jogging and 15 s stretching exercises increased the isokinetic strength, whereas 30 and 45 s stretching exercises caused a decrease.

  16. Evaluation of a countermeasure against wake galloping using wire connection method; Wake galloping ni taisuru seishin wire no yukosei ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, T.; Mukai, H.; Sano, N. [Kajima Corp., Tokyo (Japan)

    1994-10-31

    A plurality of parallel cables have been recently employed for long-span cable-stayed bridges. Use of such parallel cables thereupon leads to a special type of wind-induced vibration called wake galloping (simply referred to as WG.) owing to air turbulence caused by upstream cables. This paper attempts to evaluate measures against the WG using a wire connecting method, and identifies the most important influencing factor and the validity of the measures through wind tunnel tests. The following results are hereby clarified. Even if the deformation rigidity of the cables is increased, it is impossible to raise the wind velocity of the WG. The wind velocity of the WG can not be reduced from a wind tunnel wind velocity using non-dimensional wind velocity. The wire connecting method proves to be more effective for reducing the amplitude of the vibration. Provided cables are coupled into a multi-stage using the wire connection method, overall vibration with a greater amplitude can be restricted. To the factor of the restriction additional deformation rigidity of the cables more contributes compared with additional weight of the cables. 9 refs., 13 figs., 2 tabs.

  17. 75 FR 60480 - In the Matter of Certain Bulk Welding Wire Containers and Components Thereof and Welding Wire...

    Science.gov (United States)

    2010-09-30

    ... Welding Wire Containers and Components Thereof and Welding Wire; Notice of Commission Determination To... within the United States after importation of certain bulk welding wire containers, components thereof, and welding wire by reason of infringement of certain claims of United States Patent Nos. 6,260,781; 6...

  18. Variation of high-power aluminum-wire array Z-pinch dynamics with wire number, array radius, and load mass

    Energy Technology Data Exchange (ETDEWEB)

    Sanford, T.W.L.; Mock, R.C.; Marder, B.M. [and others

    1997-06-01

    A systematic study of annular aluminum-wire z-pinches on the Saturn accelerator shows that the quality of the implosion, including the radiated power, increases with wire number. Radiation magnetohydrodynamic (RMEC) xy simulations suggest that the implosion transitions from that of individual wire plasmas to that of a continuous plasma shell when the interwire spacing is reduced below {approximately} 1.4 mm. In the plasma-shell regime, the experimental implosions exhibit 1D- and 2D-code characteristics as evidenced by the presence of a strong first and a weak second radiation pulse that correlates with a strong and weak radial convergence. In this regime, many of the radiation and plasma characteristics are in agreement with those simulated by 2D-RMHC rz simulations. Moreover, measured changes in the radiation pulse width with variations in array mass and radius are consistent with the simulations and are explained by the development of 2D fluid motion in the rz plane. Associated variations in the K-shell yield are qualitatively explained by simple K-shell radiation scaling models.

  19. Joint tests at INL and CEA of a transient hot wire needle probe for in-pile thermal conductivity measurement

    International Nuclear Information System (INIS)

    Daw, J.E.; Knudson, D.L.; Villard, J.F.; Liothin, J.; Destouches, C.; Rempe, J.L.; Matheron, P.; Lambert, T.

    2015-01-01

    Thermal conductivity is a key property that must be known for proper design, testing, and deployment of new fuels and structural materials in nuclear reactors. Thermal conductivity is highly dependent on the physical structure, chemical composition, and the state of the material. Typically, thermal conductivity changes that occur during irradiation are currently measured out-of-pile using a 'cook and look' approach. But repeatedly removing samples from a test reactor to make measurements is expensive, has the potential to disturb phenomena of interest, and only provides understanding of the sample's end state when each measurement is made. There are also limited thermo-physical property data available for advanced fuels; and such data are needed for simulation codes, the development of next generation reactors, and advanced fuels for existing nuclear plants. Being able to quickly characterize fuel thermal conductivity during irradiation can improve the fidelity of data, reduce costs of post-irradiation examinations, increase understanding of how fuels behave under irradiation, and confirm or improve existing thermal conductivity measurement techniques. This paper discusses efforts to develop and evaluate an innovative in-pile thermal conductivity sensor based on the transient hot wire thermal conductivity method (THWM), using a single needle probe (NP) containing a line heat source and thermocouple embedded in the fuel. The sensor that has been designed and manufactured by the Idaho National Laboratory (INL) includes a unique combination of materials, geometry, and fabrication techniques that make the hot wire method suitable for in-pile applications. In particular, efforts were made to minimize the influence of the sensor and maximize fuel hot-wire heating. The probe has a thermocouple-like construction with high temperature resistant materials that remain ductile while resisting transmutation and materials interactions. THWM-NP prototypes were

  20. Joint tests at INL and CEA of a transient hot wire needle probe for in-pile thermal conductivity measurement

    Energy Technology Data Exchange (ETDEWEB)

    Daw, J.E.; Knudson, D.L. [Idaho National Laboratory, Idaho Falls, ID 83415, (United States); Villard, J.F.; Liothin, J.; Destouches, C. [CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St Paul-Lez-Durance, (France); Rempe, J.L. [Rempe and Associates, LLC, Idaho Falls, ID, 83404 (United States); Matheron, P. [CEA, DEN, DEC, Uranium Fuels Laboratory, Cadarache, F-13108 St Paul-Lez-Durance, (France); Lambert, T. [CEA, DEN, DEC, Innovative Fuel Design and Irradiation Laboratory, Cadarache, F-13108 St Paul-Lez-Durance, (France)

    2015-07-01

    Thermal conductivity is a key property that must be known for proper design, testing, and deployment of new fuels and structural materials in nuclear reactors. Thermal conductivity is highly dependent on the physical structure, chemical composition, and the state of the material. Typically, thermal conductivity changes that occur during irradiation are currently measured out-of-pile using a 'cook and look' approach. But repeatedly removing samples from a test reactor to make measurements is expensive, has the potential to disturb phenomena of interest, and only provides understanding of the sample's end state when each measurement is made. There are also limited thermo-physical property data available for advanced fuels; and such data are needed for simulation codes, the development of next generation reactors, and advanced fuels for existing nuclear plants. Being able to quickly characterize fuel thermal conductivity during irradiation can improve the fidelity of data, reduce costs of post-irradiation examinations, increase understanding of how fuels behave under irradiation, and confirm or improve existing thermal conductivity measurement techniques. This paper discusses efforts to develop and evaluate an innovative in-pile thermal conductivity sensor based on the transient hot wire thermal conductivity method (THWM), using a single needle probe (NP) containing a line heat source and thermocouple embedded in the fuel. The sensor that has been designed and manufactured by the Idaho National Laboratory (INL) includes a unique combination of materials, geometry, and fabrication techniques that make the hot wire method suitable for in-pile applications. In particular, efforts were made to minimize the influence of the sensor and maximize fuel hot-wire heating. The probe has a thermocouple-like construction with high temperature resistant materials that remain ductile while resisting transmutation and materials interactions. THWM-NP prototypes were

  1. Plasma chemistry in wire chambers

    International Nuclear Information System (INIS)

    Wise, J.

    1990-05-01

    The phenomenology of wire chamber aging is discussed and fundamentals of proportional counters are presented. Free-radical polymerization and plasma polymerization are discussed. The chemistry of wire aging is reviewed. Similarities between wire chamber plasma (>1 atm dc-discharge) and low-pressure rf-discharge plasmas, which have been more widely studied, are suggested. Construction and use of a system to allow study of the plasma reactions occurring in wire chambers is reported. A proportional tube irradiated by an 55 Fe source is used as a model wire chamber. Condensable species in the proportional tube effluent are concentrated in a cryotrap and analyzed by gas chromatography/mass spectrometry. Several different wire chamber gases (methane, argon/methane, ethane, argon/ethane, propane, argon/isobutane) are tested and their reaction products qualitatively identified. For all gases tested except those containing methane, use of hygroscopic filters to remove trace water and oxygen contaminants from the gas resulted in an increase in the average molecular weight of the products, consistent with results from low-pressure rf-discharge plasmas. It is suggested that because water and oxygen inhibit polymer growth in the gas phase that they may also reduce polymer deposition in proportional tubes and therefore retard wire aging processes. Mechanistic implications of the plasma reactions of hydrocarbons with oxygen are suggested. Unresolved issues in this work and proposals for further study are discussed

  2. Direct measurement of elastic modulus of Nb 3Sn using extracted filaments from superconducting composite wire and resin impregnation method

    Science.gov (United States)

    Hojo, M.; Matsuoka, T.; Hashimoto, M.; Tanaka, M.; Sugano, M.; Ochiai, S.; Miyashita, K.

    2006-10-01

    Young's modulus of Nb3Sn filaments in Nb3Sn/Cu superconducting composite wire was investigated in detail. Nb3Sn filaments were first extracted from composite wire. Nitric acid and hydrofluoric acid were used to remove copper stabilizer, Nb3Sn/Nb barrier and bronze. Then, Nb3Sn filaments were impregnated with epoxy resin to form simple filament bundle composite rods. A large difference in Young's moduli of filaments and epoxy resin enhance the accuracy of the measurement of Nb3Sn filament modulus. The ratio of Nb3Sn to Nb in filaments and the number of filaments in the fiber bundle composite rods were used in the final calculation of the Young's modulus of Nb3Sn. The obtained modulus of 127 GPa was the lower bound of the already reported values.

  3. Direct measurement of elastic modulus of Nb3Sn using extracted filaments from superconducting composite wire and resin impregnation method

    International Nuclear Information System (INIS)

    Hojo, M.; Matsuoka, T.; Hashimoto, M.; Tanaka, M.; Sugano, M.; Ochiai, S.; Miyashita, K.

    2006-01-01

    Young's modulus of Nb 3 Sn filaments in Nb 3 Sn/Cu superconducting composite wire was investigated in detail. Nb 3 Sn filaments were first extracted from composite wire. Nitric acid and hydrofluoric acid were used to remove copper stabilizer, Nb 3 Sn/Nb barrier and bronze. Then, Nb 3 Sn filaments were impregnated with epoxy resin to form simple filament bundle composite rods. A large difference in Young's moduli of filaments and epoxy resin enhance the accuracy of the measurement of Nb 3 Sn filament modulus. The ratio of Nb 3 Sn to Nb in filaments and the number of filaments in the fiber bundle composite rods were used in the final calculation of the Young's modulus of Nb 3 Sn. The obtained modulus of 127 GPa was the lower bound of the already reported values

  4. Optimization of electron beam crosslinking of wire and cable insulation

    International Nuclear Information System (INIS)

    Zimek, Zbigniew; Przybytniak, Grażyna; Nowicki, Andrzej

    2012-01-01

    The computer simulations based on Monte Carlo (MC) method and the ModeCEB software were carried out in connection with electron beam (EB) radiation set-up for crosslinking of electric wire and cable insulation. The theoretical predictions for absorbed dose distribution in irradiated electric insulation induced by scanned EB were compared to the experimental results of irradiation that was carried out in the experimental set-up based on ILU 6 electron accelerator with electron energy 0.5–2.0 MeV. The computer simulation of the dose distributions in two-sided irradiation system by a scanned electron beam in multilayer circular objects was performed for various process parameters, namely electric wire and cable geometry (thickness of insulation layers and copper wire diameter), type of polymer insulation, electron energy, energy spread and geometry of electron beam, electric wire and cable layout in irradiation zone. The geometry of electron beam distribution in the irradiation zone was measured using CTA and PVC foil dosimeters for available electron energy range. The temperature rise of the irradiated electric wire and irradiation homogeneity were evaluated for different experimental conditions to optimize technological process parameters. The results of computer simulation are consistent with the experimental data of dose distribution evaluated by gel-fraction measurements. Such conformity indicates that ModeCEB computer simulation is reliable and sufficient for optimization absorbed dose distribution in the multi-layer circular objects irradiated with scanned electron beams. - Highlights: ► We model wire and cables irradiation process by Monte Carlo simulations. ► We optimize irradiation configuration for various process parameters. ► Temperature rise and irradiation homogeneity were evaluated. ► Calculation (dose) and experimental (gel-fraction) results were compared. ► Computer simulation was found reliable and sufficient for process optimization.

  5. Interset stretching does not influence the kinematic profile of consecutive bench-press sets.

    Science.gov (United States)

    García-López, David; Izquierdo, Mikel; Rodríguez, Sergio; González-Calvo, Gustavo; Sainz, Nuria; Abadía, Olaia; Herrero, Azael J

    2010-05-01

    This study was undertaken to examine the role of interset stretching on the time course of acceleration portion AP and mean velocity profile during the concentric phase of 2 bench-press sets with a submaximal load (60% of the 1 repetition maximum). Twenty-five college students carried out, in 3 different days, 2 consecutive bench-press sets leading to failure, performing between sets static stretching, ballistic stretching, or no stretching. Acceleration portion and lifting velocity patterns of the concentric phase were not altered during the second set, regardless of the stretching treatment performed. However, when velocity was expressed in absolute terms, static stretching reduced significantly (p velocity during the second set compared to the first one. Therefore, if maintenance of a high absolute velocity over consecutive sets is important for training-related adaptations, static stretching should be avoided or replaced by ballistic stretching.

  6. Spin-charge separation in quantum wires

    International Nuclear Information System (INIS)

    Yacoby, A.

    2004-01-01

    Full Text:Using momentum resolved tunneling between two clean parallel quantum wires in a AlGaAs/GaAs heterostructure we directly measure the dispersion of the quantum many-body modes in ballistic wires and follow their dependence on Coulomb interactions by varying the electron density. We find clear signatures of three excitation modes in the data: The anti-symmetric charge mode of the coupled wire system and two spin modes. The density dependence of the anti-symmetric charge mode agrees well with Luttinger-liquid theory. As the density of electrons is lowered, the Coulomb interaction is seen to become increasingly dominant leading to excitation velocities that are up to 2.5 times faster than the bare Fermi velocity, determined experimentally from the carrier density. The symmetric charge excitation, also expected from theory, is, however, not visible in the data. The observed spin velocities are found to be 25% slower than the bare Fermi velocities and depend linearly on carrier density. The dispersions are mapped down to a critical density at which spontaneous localization is observed. Some of the experimental findings concerning this phase will be discussed

  7. Numerical and experimental investigation of stretch-flange forming

    International Nuclear Information System (INIS)

    Cinotti, N.; Shakeri, H.R.; Worswick, M.J.; Truttmann, S.; Finn, M.J.; Jain, M.; Lloyd, D.J.

    2000-01-01

    Simulations of stretch flange forming operations are undertaken using explicit dynamic finite element calculations incorporating anisotropic yield criteria. Simple circular stretch flanges utilizing a single circular punch to expand the cut-out were considered. Experiments were performed using 101mm diameter tooling on AA 5754 and AA 5182 aluminum alloy sheets, with varying cut-out and gauge size. Metallurgical aspects of the formability of these aluminum alloys and damage mechanisms were studied. Both optical and Scanning Electron Microscopy (SEM) were used to study ductile fracture behaviour in these materials during the forming operation. The limit strains obtained from the circular stretch flange formability experiments are compared to forming limit diagram (FLD) data from hemispherical dome specimens. (author)

  8. Modeling and simulation of the fluid flow in wire electrochemical machining with rotating tool (wire ECM)

    Science.gov (United States)

    Klocke, F.; Herrig, T.; Zeis, M.; Klink, A.

    2017-10-01

    Combining the working principle of electrochemical machining (ECM) with a universal rotating tool, like a wire, could manage lots of challenges of the classical ECM sinking process. Such a wire-ECM process could be able to machine flexible and efficient 2.5-dimensional geometries like fir tree slots in turbine discs. Nowadays, established manufacturing technologies for slotting turbine discs are broaching and wire electrical discharge machining (wire EDM). Nevertheless, high requirements on surface integrity of turbine parts need cost intensive process development and - in case of wire-EDM - trim cuts to reduce the heat affected rim zone. Due to the process specific advantages, ECM is an attractive alternative manufacturing technology and is getting more and more relevant for sinking applications within the last few years. But ECM is also opposed with high costs for process development and complex electrolyte flow devices. In the past, few studies dealt with the development of a wire ECM process to meet these challenges. However, previous concepts of wire ECM were only suitable for micro machining applications. Due to insufficient flushing concepts the application of the process for machining macro geometries failed. Therefore, this paper presents the modeling and simulation of a new flushing approach for process assessment. The suitability of a rotating structured wire electrode in combination with an axial flushing for electrodes with high aspect ratios is investigated and discussed.

  9. Three-dimensional quantification of pretorqued nickel-titanium wires in edgewise and prescription brackets.

    Science.gov (United States)

    Mittal, Nitika; Xia, Zeyang; Chen, Jie; Stewart, Kelton T; Liu, Sean Shih-Yao

    2013-05-01

    To quantify the three-dimensional moments and forces produced by pretorqued nickel-titanium (NiTi) rectangular archwires fully engaged in 0.018- and 0.022-inch slots of central incisor and molar edgewise and prescription brackets. Ten identical acrylic dental models with retroclined maxillary incisors were fabricated for bonding with various bracket-wire combinations. Edgewise, Roth, and MBT brackets with 0.018- and 0.022-inch slots were bonded in a simulated 2 × 4 clinical scenario. The left central incisor and molar were sectioned and attached to load cells. Correspondingly sized straight and pretorqued NiTi archwires were ligated to the brackets using 0.010-inch ligatures. Each load cell simultaneously measured three force (Fx, Fy, Fz) and three moment (Mx, My, Mz) components. The faciolingual, mesiodistal, and inciso-occluso/apical axes of the teeth corresponded to the x, y, and z axes of the load cells, respectively. Each wire was removed and retested seven times. Three-way analysis of variance (ANOVA) examined the effects of wire type, wire size, and bracket type on the measured orthodontic load systems. Interactions among the three effects were examined and pair-wise comparisons between significant combinations were performed. The force and moment components on each tooth were quantified according to their local coordinate axes. The three-way ANOVA interaction terms were significant for all force and moment measurements (P .05). The pretorqued wire generates a significantly larger incisor facial crown torquing moment in the MBT prescription compared to Roth, edgewise, and the straight NiTi wire.

  10. An extended parametrization of gas amplification in proportional wire chambers

    International Nuclear Information System (INIS)

    Beingessner, S.P.; Carnegie, R.K.; Hargrove, C.K.

    1987-01-01

    It is normally assumed that the gas amplification in proportional chambers is a function of Townsend's first ionization coefficient, α, and that α is a function of the anode surface electric field only. Experimental measurements are presented demonstrating the breakdown of the latter assumption for electric fields, X, greater than about 150 V/cm/Torr on the anode wire surface for a gas mixture of 80/20 argon/methane. For larger values of X, the parametrization of the proportional gas gain data requires an additional term related to the gradient of the electric field near the wire. This extended gain parametrization remains valid until the onset of nonproportional contributions such as positive ion space charge saturation effects. Furthermore, deviations of the data from this parametrization are used to measure the onset of these space charge effects. A simple scaling dependence of the gain data on the product of pressure and wire radius over the whole proportional range is also demonstrated. (orig.)

  11. Empolder and application of LiveWire program

    International Nuclear Information System (INIS)

    Zhang Bo; Li Jing; Wang Xiaoming

    2007-01-01

    LiveWire is a specific module of Netscape Web server to actualize CGI function; through LiveWire application program one can create dynamic web page on web site. This article introduces how to write LiveWire application code, have to compile, debug and manage LiveWire application programs, and how to apply LiveWire application program on Netscape Web server to create a dynamic web page. (authors)

  12. Hot wire radicals and reactions

    International Nuclear Information System (INIS)

    Zheng Wengang; Gallagher, Alan

    2006-01-01

    Threshold ionization mass spectroscopy is used to measure radical (and stable gas) densities at the substrate of a tungsten hot wire (HW) reactor. We report measurements of the silane reaction probability on the HW and the probability of Si and H release from the HW. We describe a model for the atomic H release, based on the H 2 dissociation model. We note major variations in silicon-release, with dependence on prior silane exposure. Measured radical densities versus silane pressure yield silicon-silane and H-silane reaction rate coefficients, and the dominant radical fluxes to the substrate

  13. Control of flow past a circular cylinder via a spanwise surface wire: effect of the wire scale

    Energy Technology Data Exchange (ETDEWEB)

    Ekmekci, Alis [University of Toronto Institute for Aerospace Studies, Toronto, ON (Canada); Rockwell, Donald [Lehigh University, Department of Mechanical Engineering, Bethlehem, PA (United States)

    2011-09-15

    Flow phenomena induced by a single spanwise wire on the surface of a circular cylinder are investigated via a cinema technique of particle image velocimetry (PIV). The primary aim of this investigation is to assess the effect of the wire scale. To this end, consideration is given to wires with different diameters that are 0.5, 1.2, and 2.9% of the cylinder diameter. The Reynolds number has a subcritical value of 10,000. Compared to the thickness of the unperturbed boundary layer developing around the cylinder between 5 and 75 from the forward stagnation point, the former two wires have smaller scales and the latter has a larger scale. Two angular locations of the wire, defined with respect to the forward stagnation point of the cylinder, are found to be critical. When the wire is located at these critical angles, either the most significant extension or the contraction of the time-mean separation bubble occurs in the near wake. These critical angles depend on the wire scale: the smaller the wire, the larger the critical angle. The small-scale and large-scale wires that have diameters of 1.2 and 2.9% of the cylinder diameter induce bistable shear-layer oscillations between different separation modes when placed at their respective critical angles corresponding to maximum extension of the near-wake bubble. These oscillations have irregular time intervals that are much longer than the time scale associated with the classical Karman instability. Moreover, the large-scale wire can either significantly attenuate or intensify the Karman mode of vortex shedding at the critical states; in contrast, the small-scale wires do not notably alter the strength of the Karman instability. (orig.)

  14. Quantum wire spectroscopy and epitaxial growth velocities in InGaAs-InP heterostructures

    International Nuclear Information System (INIS)

    Worlock, J.M.; Peeters, F.M.; Cox, H.M.; Morais, P.C.

    1990-06-01

    We study excitons bound to quantum wires of InGaAs embedded in an InP matrix, where the wires vary from 2.93A angstrom to a.1172A angstrom (one to four monolayers) thick and from 25A angstrom to 250A angstrom wide. We combine spectroscopic data from measurements of photoluminescence with variational calculations of the binding energies of excitons to the wires to deduce the wire widths and thickness. The widths are then related to the growth times to deduce lateral growth velocities in the vapor levitation epitaxial technique. Monolayer growth rates, at ∼ 80A angstrom/sec, are significantly faster than growth rates for the multilayer wires. (author)

  15. Hirarchical structures and strength in cold-drawn pearlitic steel wire

    DEFF Research Database (Denmark)

    Zhang, Xiaodan; Hansen, Niels; Godfrey, Andrew

    2014-01-01

    and the cementite decomposition, have been analyzed and quantified by scanning electron microscopy, transmission electron microscopy and high resolution electron microscopy for wires cold drawn up to a strain of 3.68. Three strengthening mechanisms, boundary strengthening, dislocation strengthening and solid...... solution hardening, have been analyzed based on the microstructural analysis. The individual and combined contributions, of these mechanisms to the wire strength have been estimated and good agreement has been found between the measured flow stress and values estimated based on an assumption of linear...... additivity of the three strengthening mechanisms. Mechanisms behind the higher strength of about 6.4 GPa in the wires drawn to higher strains and to a finer microstructural scale is also discussed....

  16. Stretch activates myosin light chain kinase in arterial smooth muscle

    International Nuclear Information System (INIS)

    Barany, K.; Rokolya, A.; Barany, M.

    1990-01-01

    Stretching of porcine carotid arterial muscle increased the phosphorylation of the 20 kDa myosin light chain from 0.23 to 0.68 mol [32P]phosphate/mol light chain, whereas stretching of phorbol dibutyrate treated muscle increased the phosphorylation from 0.30 to 0.91 mol/mol. Two-dimensional gel electrophoresis followed by two-dimensional tryptic phosphopeptide mapping was used to identify the enzyme involved in the stretch-induced phosphorylation. Quantitation of the [32P]phosphate content of the peptides revealed considerable light chain phosphorylation by protein kinase C only in the phorbol dibutyrate treated arterial muscle, whereas most of the light chain phosphorylation was attributable to myosin light chain kinase. Upon stretch of either the untreated or treated muscle, the total increment in [32P]phosphate incorporation into the light chain could be accounted for by peptides characteristic for myosin light chain kinase catalyzed phosphorylation, demonstrating that the stretch-induced phosphorylation is caused by this enzyme exclusively

  17. In situ longitudinal pre-stretch in the human femoropopliteal artery.

    Science.gov (United States)

    Kamenskiy, Alexey; Seas, Andreas; Bowen, Grant; Deegan, Paul; Desyatova, Anastasia; Bohlim, Nick; Poulson, William; MacTaggart, Jason

    2016-03-01

    In situ longitudinal (axial) pre-stretch (LPS) plays a fundamental role in the mechanics of the femoropopliteal artery (FPA). It conserves energy during pulsation and prevents buckling of the artery during limb movement. We investigated how LPS is affected by demographics and risk factors, and how these patient characteristics associate with the structural and physiologic features of the FPA. LPS was measured in n=148 fresh human FPAs (14-80 years old). Mechanical properties were characterized with biaxial extension and histopathological characteristics were quantified with Verhoeff-Van Gieson Staining. Constitutive modeling was used to calculate physiological stresses and stretches which were then analyzed in the context of demographics, risk factors and structural characteristics. Age had the strongest negative effect (r=-0.812, p<0.01) on LPS and could alone explain 66% of LPS variability. Male gender, higher body mass index, hypertension, diabetes, coronary artery disease, dyslipidemia and tobacco use had negative effects on LPS, but only the effect of tobacco was not associated with aging. FPAs with less pre-stretch had thicker medial layers, but thinner intramural elastic fibers with less dense and more fragmented external elastic laminae. Elastin degradation was associated with decreased physiological tethering force and longitudinal stress, while circumferential stress remained constant. FPA wall pathology was negatively associated with LPS (r=-0.553, p<0.01), but the effect was due primarily to aging. LPS in the FPA may serve as an energy reserve for adaptive remodeling. Reduction of LPS due to degradation and fragmentation of intramural longitudinal elastin during aging can be accelerated in tobacco users. This work studies in situ longitudinal pre-stretch (LPS) in the human femoropopliteal artery. LPS has a fundamental role in arterial mechanics, but is rather poorly studied due to lack of direct in vivo measurement method. We have investigated LPS in

  18. Confining jackets for concrete cylinders using NiTiNb and NiTi shape memory alloy wires

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Eunsoo; Yoon, Soon-Jong [Department of Civil Engineering, Hongik University, Seoul 121-791 (Korea, Republic of); Nam, Tae-Hyun [School of Materials Science and Engineering and ERI, Gyeongsang National University, Jinju, Gyeongnam 600-701 (Korea, Republic of); Cho, Sun-Kyu [School of Civil Engineering, Seoul National University of Technology, Seoul 139-743 (Korea, Republic of); Park, Joonam, E-mail: eunsoochoi@hongik.ac.k [Department of Railroad Structure Research, Korea Railroad Research Institute, Uiwang 437-050, Korea (Korea, Republic of)

    2010-05-01

    This study used prestrained NiTiNb and NiTi shape memory alloy (SMA) wires to confine concrete cylinders. The recovery stress of the wires was measured with respect to the maximal prestrain of the wires. SMA wires were preelongated during the manufacturing process and then wrapped around concrete cylinders of 150 mmx300 mm ({phi}xL). Unconfined concrete cylinders were tested for compressive strength and the results were compared to those of cylinders confined by SMA wires. NiTiNb SMA wires increased the compressive strength and ductility of the cylinders due to the confining effect. NiTiNb wires were found to be more effective in increasing the peak strength of the cylinders and dissipating energy than NiTi wires. This study showed the potential of the proposed method to retrofit reinforced concrete columns using SMA wires to protect them from earthquakes.

  19. The Quantum Socket: Wiring for Superconducting Qubits - Part 2

    Science.gov (United States)

    Bejanin, J. H.; McConkey, T. G.; Rinehart, J. R.; Bateman, J. D.; Earnest, C. T.; McRae, C. H.; Rohanizadegan, Y.; Shiri, D.; Mariantoni, M.; Penava, B.; Breul, P.; Royak, S.; Zapatka, M.; Fowler, A. G.

    Quantum computing research has reached a level of maturity where quantum error correction (QEC) codes can be executed on linear arrays of superconducting quantum bits (qubits). A truly scalable quantum computing architecture, however, based on practical QEC algorithms, requires nearest neighbor interaction between qubits on a two-dimensional array. Such an arrangement is not possible with techniques that rely on wire bonding. To address this issue, we have developed the quantum socket, a device based on three-dimensional wires that enables the control of superconducting qubits on a two-dimensional grid. In this talk, we present experimental results characterizing this type of wiring. We will show that the quantum socket performs exceptionally well for the transmission and reflection of microwave signals up to 10 GHz, while minimizing crosstalk between adjacent wires. Under realistic conditions, we measured an S21 of -5 dB at 6 GHz and an average crosstalk of -60 dB. We also describe time domain reflectometry results and arbitrary pulse transmission tests, showing that the quantum socket can be used to control superconducting qubits.

  20. Experimental measurements of static pressure and pressure drop in a duct enclosing a seven wire-wrapped rod bundle

    International Nuclear Information System (INIS)

    Graca, M.C.; Ballve, H.; Fernandez y Fernandez, E.; Carajilescov, P.

    1981-01-01

    The friction factor and the static pressure distributions, in the axial and transversal directions, in the wall of the hexagonal duct, enclosing a seven wire-wrapped rod bundle, were experimentally measured, using an air opened loop. The Reynolds numbers are the range 10 3 - 5x10 4 . The friction factors are compared to existing correlations. The static pressure distributions show that the static pressure is not hydrostatic in the cross section of the flow. (Author) [pt