WorldWideScience

Sample records for stretched exponential functions

  1. Graphical analysis for gel morphology II. New mathematical approach for stretched exponential function with β>1

    International Nuclear Information System (INIS)

    Hashimoto, Chihiro; Panizza, Pascal; Rouch, Jacques; Ushiki, Hideharu

    2005-01-01

    A new analytical concept is applied to the kinetics of the shrinking process of poly(N-isopropylacrylamide) (PNIPA) gels. When PNIPA gels are put into hot water above the critical temperature, two-step shrinking is observed and the secondary shrinking of gels is fitted well by a stretched exponential function. The exponent β characterizing the stretched exponential is always higher than one, although there are few analytical concepts for the stretched exponential function with β>1. As a new interpretation for this function, we propose a superposition of step (Heaviside) function and a new distribution function of characteristic time is deduced

  2. Stretched-exponential decay functions from a self-consistent model of dielectric relaxation

    International Nuclear Information System (INIS)

    Milovanov, A.V.; Rasmussen, J.J.; Rypdal, K.

    2008-01-01

    There are many materials whose dielectric properties are described by a stretched exponential, the so-called Kohlrausch-Williams-Watts (KWW) relaxation function. Its physical origin and statistical-mechanical foundation have been a matter of debate in the literature. In this Letter we suggest a model of dielectric relaxation, which naturally leads to a stretched exponential decay function. Some essential characteristics of the underlying charge conduction mechanisms are considered. A kinetic description of the relaxation and charge transport processes is proposed in terms of equations with time-fractional derivatives

  3. The dynamics of photoinduced defect creation in amorphous chalcogenides: The origin of the stretched exponential function

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, R. J. [Department of Electrical and Electronic Engineering, National University of Timor Lorosa' e, Av. Cidade de Lisboa, Dili, East Timor (Portugal); Shimakawa, K. [Department of General and Inorganic Chemistry, University of Pardubice, Pardubice 53002 (Czech Republic); Department of Electrical and Electronic Engineering, Gifu University, Gifu 501-1193 (Japan); Wagner, T. [Department of General and Inorganic Chemistry, University of Pardubice, Pardubice 53002 (Czech Republic)

    2014-01-07

    The article discusses the dynamics of photoinduced defect creations (PDC) in amorphous chalcogenides, which is described by the stretched exponential function (SEF), while the well known photodarkening (PD) and photoinduced volume expansion (PVE) are governed only by the exponential function. It is shown that the exponential distribution of the thermal activation barrier produces the SEF in PDC, suggesting that thermal energy, as well as photon energy, is incorporated in PDC mechanisms. The differences in dynamics among three major photoinduced effects (PD, PVE, and PDC) in amorphous chalcogenides are now well understood.

  4. Time-resolved infrared stimulated luminescence signals in feldspars: Analysis based on exponential and stretched exponential functions

    International Nuclear Information System (INIS)

    Pagonis, V.; Morthekai, P.; Singhvi, A.K.; Thomas, J.; Balaram, V.; Kitis, G.; Chen, R.

    2012-01-01

    Time-resolved infrared-stimulated luminescence (TR-IRSL) signals from feldspar samples have been the subject of several recent experimental studies. These signals are of importance in the field of luminescence dating, since they exhibit smaller fading effects than the commonly employed continuous-wave infrared signals (CW-IRSL). This paper presents a semi-empirical analysis of TR-IRSL data from feldspar samples, by using a linear combination of exponential and stretched exponential (SE) functions. The best possible estimates of the five parameters in this semi-empirical approach are obtained using five popular commercially available software packages, and by employing a variety of global optimization techniques. The results from all types of software and from the different fitting algorithms were found to be in close agreement with each other, indicating that a global optimum solution has likely been reached during the fitting process. Four complete sets of TR-IRSL data on well-characterized natural feldspars were fitted by using such a linear combination of exponential and SE functions. The dependence of the extracted fitting parameters on the stimulation temperature is discussed within the context of a recently proposed model of luminescence processes in feldspar. Three of the four feldspar samples studied in this paper are K-rich, and these exhibited different behavior at higher stimulation temperatures, than the fourth sample which was a Na-rich feldspar. The new method of analysis proposed in this paper can help isolate mathematically the more thermally stable components, and hence could lead to better dating applications in these materials. - Highlights: ► TR-IRSL from four feldspars were analyzed using exponential and stretched exponential functions. ► A variety of global optimization techniques give good agreement. ► Na-rich sample behavior is different from the three K-rich samples. ► Experimental data are fitted for stimulation temperatures

  5. Stretched exponential relaxation and ac universality in disordered dielectrics

    DEFF Research Database (Denmark)

    Milovanov, Alexander V.; Rypdal, Kristoffer; Juul Rasmussen, Jens

    2007-01-01

    are stretched exponential character of dielectric relaxation, power-law power spectral density, and anomalous dependence of ac conduction coefficient on frequency. We propose a self-consistent model of dielectric relaxation in which the relaxations are described by a stretched exponential decay function...

  6. Investigation on the Charge Loss Mechanisms of Nanoscale Charge Trap Non-Volatile Memory by Using Stretched Exponential Function.

    Science.gov (United States)

    Lee, Meng Chuan; Wong, Hin Yong

    2016-01-01

    Charge loss mechanisms of nanoscale charge trap non-volatile memory devices are carefully examined and studied. Fowler-Nordheim tunnelling mechanism is used to perform rapid program/erase cycling. Based on the good fit of post cycled and baked threshold voltage data to Stretched Exponential function, the lowest point and the peak of Vt distribution were found to evolve in a similar manner that resulted to similar derived Ea. The saturation behaviour of the threshold voltage decay can be predicted and validated through cells' threshold voltage measurements that fit well to Stretched Exponential function. The power law relationship of program/erase cycle count and the saturation behaviour was found to be similar on the device under study and NROM devices that utilizes significant different charge injection mechanisms for program/erase operation. The experimental results also demonstrated that charge injection mechanism is one of the dominant factors in determining the underlying charge loss mechanism. Moreover, the determination of charge loss mechanism depends on the total charges injected through the tunnel oxide layer of ONO stack in NB-CTNVM cell. Physical interpretation of the experimental findings of the dominant charge loss mechanism is deliberated in detail.

  7. Realistic searches on stretched exponential networks

    Indian Academy of Sciences (India)

    Vol. 71, No. 2. — journal of. August 2008 physics pp. 313–317. Realistic searches on stretched exponential networks. PARONGAMA SEN. Department of Physics, University of Calcutta, 92 Acharya Prafulla Chandra Road,. Kolkata 700 009, India .... [4] S Milgram, Psychology Today 1, 60 (1967). J Travers and S Milgram, ...

  8. Stretched versus compressed exponential kinetics in α-helix folding

    International Nuclear Information System (INIS)

    Hamm, Peter; Helbing, Jan; Bredenbeck, Jens

    2006-01-01

    In a recent paper (J. Bredenbeck, J. Helbing, J.R. Kumita, G.A. Woolley, P. Hamm, α-helix formation in a photoswitchable peptide tracked from picoseconds to microseconds by time resolved IR spectroscopy, Proc. Natl. Acad. Sci USA 102 (2005) 2379), we have investigated the folding of a photo-switchable α-helix with a kinetics that could be fit by a stretched exponential function exp(-(t/τ) β ). The stretching factor β became smaller as the temperature was lowered, a result which has been interpreted in terms of activated diffusion on a rugged energy surface. In the present paper, we discuss under which conditions diffusion problems occur with stretched exponential kinetics (β 1). We show that diffusion problems do have a strong tendency to yield stretched exponential kinetics, yet, that there are conditions (strong perturbation from equilibrium, performing the experiment in the folding direction) under which compressed exponential kinetics would be expected instead. We discuss the kinetics on free energy surfaces predicted by simple initiation-propagation models (zipper models) of α-helix folding, as well as by folding funnel models. We show that our recent experiment has been performed under condition for which models with strong downhill driving force, such as the zipper model, would predict compressed, rather than stretched exponential kinetics, in disagreement with the experimental observation. We therefore propose that the free energy surface along a reaction coordinate that governs the folding kinetics must be relatively flat and has a shape similar to a 1D golf course. We discuss how this conclusion can be unified with the thermodynamically well established zipper model by introducing an additional kinetic reaction coordinate

  9. Exponential and Logarithmic Functions

    OpenAIRE

    Todorova, Tamara

    2010-01-01

    Exponential functions find applications in economics in relation to growth and economic dynamics. In these fields, quite often the choice variable is time and economists are trying to determine the best timing for certain economic activities to take place. An exponential function is one in which the independent variable appears in the exponent. Very often that exponent is time. In highly mathematical courses, it is a truism that students learn by doing, not by reading. Tamara Todorova’s Pr...

  10. Stretched exponential relaxation processes in hydrogenated amorphous and polymorphous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Morigaki, Kazuo [Department of Electrical and Digital-System Engineering, Hiroshima Institute of Technology, Miyake, Saeki-ku, Hiroshima 731-5193 (Japan); Hikita, Harumi [Physics Laboratory, Meikai University, Urayasu, Chiba 279-8550 (Japan)

    2011-09-15

    Stretched exponential relaxation has been observed in various phenomena of hydrogenated amorphous silicon (a-Si:H) and hydrogenated polymorphous silicon (pm-Si:H). As an example, we take light-induced defect creation in a-Si:H and pm-Si:H, in which defect-creation process and defect-annihilation process via hydrogen movement play important roles. We have performed the Monte Carlo simulation for hydrogen movement. Hydrogen movement exhibits anomalous diffusion. In our model of light-induced defect creation in a-Si:H, a pair of two types of dangling bonds, i.e., a normal dangling bond and a hydrogen-related dangling bond, that is a dangling bond having hydrogen in the nearby site, are created under illumination, and hydrogen dissociated from the hydrogen-related dangling bond terminates a normal dangling bond via hydrogen movement. The amorphous network reflects on the dispersive parameter of the stretched exponential function in the light-induced defect creation. We discuss this issue, taking into account the difference in the amorphous network between a-Si:H and pm-Si:H (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Stretched exponential relaxation in molecular and electronic glasses

    International Nuclear Information System (INIS)

    Phillips, J.C.

    1996-01-01

    Stretched exponential relaxation, exp[-(t/τ) β ], fits many relaxation processes in disordered and quenched electronic and molecular systems, but it is widely believed that this function has no microscopic basis, especially in the case of molecular relaxation. For electronic relaxation the appearance of the stretched exponential is often described in the context of dispersive transport, where β is treated as an adjustable parameter, but in almost all cases it is generally assumed that no microscopic meaning can be assigned to 0 g , a glass transition temperature. We show that for molecular relaxation β(T g ) can be understood, providing that one separates extrinsic and intrinsic effects, and that the intrinsic effects are dominated by two magic numbers, β SR =3/5 for short-range forces, and β K =3/7 for long-range Coulomb forces, as originally observed by Kohlrausch for the decay of residual charge on a Leyden jar. Our mathematical model treats relaxation kinetics using the Lifshitz-Kac-Luttinger diffusion to traps depletion model in a configuration space of effective dimensionality, the latter being determined using axiomatic set theory and Phillips-Thorpe constraint theory. The experiments discussed include ns neutron scattering experiments, particularly those based on neutron spin echoes which measure S(Q, t) directly, and the traditional linear response measurements which span the range from μs to s, as collected and analysed phenomenologically by Angell, Ngai, Boehmer and others. The electronic materials discussed include a-Si:H, granular C 60 , semiconductor nanocrystallites, charge density waves in TaS 3 , spin glasses, and vortex glasses in high-temperature semiconductors. The molecular materials discussed include polymers, network glasses, electrolytes and alcohols, Van der Waals supercooled liquids and glasses, orientational glasses, water, fused salts, and heme proteins. In the intrinsic cases the theory of β(T g ) is often accurate to 2%, which

  12. Flow of viscous fluid along an exponentially stretching curved surface

    Directory of Open Access Journals (Sweden)

    N.F. Okechi

    Full Text Available In this paper, we present the boundary layer analysis of flow induced by rapidly stretching curved surface with exponential velocity. The governing boundary value problem is reduced into self-similar form using a new similarity transformation. The resulting equations are solved numerically using shooting and Runge-Kutta methods. The numerical results depicts that the fluid velocity as well as the skin friction coefficient increases with the surface curvature, similar trend is also observed for the pressure. The dimensionless wall shear stress defined for this problem is greater than that of a linearly stretching curved surface, but becomes comparably less for a surface stretching with a power-law velocity. In addition, the result for the plane surface is a special case of this study when the radius of curvature of the surface is sufficiently large. The numerical investigations presented in terms of the graphs are interpreted with the help of underlying physics of the fluid flow and the consequences arising from the curved geometry. Keywords: Boundary layer flow, Curved surface, Exponential stretching, Curvature

  13. Boundary layer flow of nanofluid over an exponentially stretching surface

    Science.gov (United States)

    Nadeem, Sohail; Lee, Changhoon

    2012-01-01

    The steady boundary layer flow of nanofluid over an exponential stretching surface is investigated analytically. The transport equations include the effects of Brownian motion parameter and thermophoresis parameter. The highly nonlinear coupled partial differential equations are simplified with the help of suitable similarity transformations. The reduced equations are then solved analytically with the help of homotopy analysis method (HAM). The convergence of HAM solutions are obtained by plotting h-curve. The expressions for velocity, temperature and nanoparticle volume fraction are computed for some values of the parameters namely, suction injection parameter α, Lewis number Le, the Brownian motion parameter Nb and thermophoresis parameter Nt.

  14. Boundary layer flow of nanofluid over an exponentially stretching surface.

    Science.gov (United States)

    Nadeem, Sohail; Lee, Changhoon

    2012-01-30

    The steady boundary layer flow of nanofluid over an exponential stretching surface is investigated analytically. The transport equations include the effects of Brownian motion parameter and thermophoresis parameter. The highly nonlinear coupled partial differential equations are simplified with the help of suitable similarity transformations. The reduced equations are then solved analytically with the help of homotopy analysis method (HAM). The convergence of HAM solutions are obtained by plotting h-curve. The expressions for velocity, temperature and nanoparticle volume fraction are computed for some values of the parameters namely, suction injection parameter α, Lewis number Le, the Brownian motion parameter Nb and thermophoresis parameter Nt.

  15. On the generalised stretch function

    Czech Academy of Sciences Publication Activity Database

    Kharlamov, Alexander A.; Filip, Petr

    2012-01-01

    Roč. 21, č. 4 (2012), s. 272-278 ISSN 1022-1344 R&D Projects: GA ČR GA103/09/2066 Institutional research plan: CEZ:AV0Z20600510 Keywords : molecular length * recurrence equations * rubber * strain * stretch functions Subject RIV: BK - Fluid Dynamics Impact factor: 1.606, year: 2012

  16. Numerical study of MHD nanofluid flow and heat transfer past a bidirectional exponentially stretching sheet

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Rida [School of Natural Sciences (SNS), National University of Sciences and Technology (NUST), Islamabad 44000 (Pakistan); Mustafa, M., E-mail: meraj_mm@hotmail.com [School of Natural Sciences (SNS), National University of Sciences and Technology (NUST), Islamabad 44000 (Pakistan); Hayat, T. [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80257, Jeddah 21589 (Saudi Arabia); Alsaedi, A. [Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80257, Jeddah 21589 (Saudi Arabia)

    2016-06-01

    Recent advancements in nanotechnology have led to the discovery of new generation coolants known as nanofluids. Nanofluids possess novel and unique characteristics which are fruitful in numerous cooling applications. Current work is undertaken to address the heat transfer in MHD three-dimensional flow of magnetic nanofluid (ferrofluid) over a bidirectional exponentially stretching sheet. The base fluid is considered as water which consists of magnetite–Fe{sub 3}O{sub 4} nanoparticles. Exponentially varying surface temperature distribution is accounted. Problem formulation is presented through the Maxwell models for effective electrical conductivity and effective thermal conductivity of nanofluid. Similarity transformations give rise to a coupled non-linear differential system which is solved numerically. Appreciable growth in the convective heat transfer coefficient is observed when nanoparticle volume fraction is augmented. Temperature exponent parameter serves to enhance the heat transfer from the surface. Moreover the skin friction coefficient is directly proportional to both magnetic field strength and nanoparticle volume fraction. - Highlights: • Nanofluid flow due to exponentially stretching sheet. • Exponentially varying surface temperature distribution is accounted. • Sparrow–Gregg type Hills (SGH) for temperature distribution exist. • Numerical values of local Nusselt number are presented. • Cooling performance of ferrofluid is superior to pure water.

  17. Numerical study of MHD nanofluid flow and heat transfer past a bidirectional exponentially stretching sheet

    International Nuclear Information System (INIS)

    Ahmad, Rida; Mustafa, M.; Hayat, T.; Alsaedi, A.

    2016-01-01

    Recent advancements in nanotechnology have led to the discovery of new generation coolants known as nanofluids. Nanofluids possess novel and unique characteristics which are fruitful in numerous cooling applications. Current work is undertaken to address the heat transfer in MHD three-dimensional flow of magnetic nanofluid (ferrofluid) over a bidirectional exponentially stretching sheet. The base fluid is considered as water which consists of magnetite–Fe 3 O 4 nanoparticles. Exponentially varying surface temperature distribution is accounted. Problem formulation is presented through the Maxwell models for effective electrical conductivity and effective thermal conductivity of nanofluid. Similarity transformations give rise to a coupled non-linear differential system which is solved numerically. Appreciable growth in the convective heat transfer coefficient is observed when nanoparticle volume fraction is augmented. Temperature exponent parameter serves to enhance the heat transfer from the surface. Moreover the skin friction coefficient is directly proportional to both magnetic field strength and nanoparticle volume fraction. - Highlights: • Nanofluid flow due to exponentially stretching sheet. • Exponentially varying surface temperature distribution is accounted. • Sparrow–Gregg type Hills (SGH) for temperature distribution exist. • Numerical values of local Nusselt number are presented. • Cooling performance of ferrofluid is superior to pure water.

  18. Contribution of mono-exponential, bi-exponential and stretched exponential model-based diffusion-weighted MR imaging in the diagnosis and differentiation of uterine cervical carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Meng; Yu, Xiaoduo; Chen, Yan; Ouyang, Han; Zhou, Chunwu [Chinese Academy of Medical Sciences, Department of Diagnostic Radiology, Cancer Institute and Hospital, Peking Union Medical College, Beijing (China); Wu, Bing; Zheng, Dandan [GE MR Research China, Beijing (China)

    2017-06-15

    To investigate the potential of various metrics derived from mono-exponential model (MEM), bi-exponential model (BEM) and stretched exponential model (SEM)-based diffusion-weighted imaging (DWI) in diagnosing and differentiating the pathological subtypes and grades of uterine cervical carcinoma. 71 newly diagnosed patients with cervical carcinoma (50 cases of squamous cell carcinoma [SCC] and 21 cases of adenocarcinoma [AC]) and 32 healthy volunteers received DWI with multiple b values. The apparent diffusion coefficient (ADC), pure molecular diffusion (D), pseudo-diffusion coefficient (D*), perfusion fraction (f), water molecular diffusion heterogeneity index (alpha), and distributed diffusion coefficient (DDC) were calculated and compared between tumour and normal cervix, among different pathological subtypes and grades. All of the parameters were significantly lower in cervical carcinoma than normal cervical stroma except alpha. SCC showed lower ADC, D, f and DDC values and higher D* value than AC; D and DDC values of SCC and ADC and D values of AC were lower in the poorly differentiated group than those in the well-moderately differentiated group. Compared with MEM, diffusion parameters from BEM and SEM may offer additional information in cervical carcinoma diagnosis, predicting pathological tumour subtypes and grades, while f and D showed promising significance. (orig.)

  19. Numerical study for Darcy-Forchheimer flow of nanofluid due to an exponentially stretching curved surface

    Science.gov (United States)

    Hayat, Tasawar; Haider, Farwa; Muhammad, Taseer; Alsaedi, Ahmed

    2018-03-01

    Here Darcy-Forchheimer flow of viscous nanofluid with Brownian motion and thermophoresis is addressed. An incompressible viscous liquid saturates the porous space through Darcy-Forchheimer relation. Flow is generated by an exponentially stretching curved surface. System of partial differential equations is converted into ordinary differential system. Nonlinear systems are solved numerically by NDSolve technique. Graphs are plotted for the outcomes of various pertinent variables. Skin friction coefficient and local Nusselt and Sherwood numbers have been physically interpreted. Our results indicate that the local Nusselt and Sherwood numbers are reduced for larger values of local porosity parameter and Forchheimer number.

  20. Reducing scanning electron microscope charging by using exponential contrast stretching technique on post-processing images.

    Science.gov (United States)

    Sim, K S; Tan, Y Y; Lai, M A; Tso, C P; Lim, W K

    2010-04-01

    An exponential contrast stretching (ECS) technique is developed to reduce the charging effects on scanning electron microscope images. Compared to some of the conventional histogram equalization methods, such as bi-histogram equalization and recursive mean-separate histogram equalization, the proposed ECS method yields better image compensation. Diode sample chips with insulating and conductive surfaces are used as test samples to evaluate the efficiency of the developed algorithm. The algorithm is implemented in software with a frame grabber card, forming the front-end video capture element.

  1. Exponential function method for solving nonlinear ordinary ...

    Indian Academy of Sciences (India)

    Corresponding author. E-mail: E.A.Chadwick@Salford.ac.uk; alihatam@aut.ac.ir; SaeedKazem@aut.ac.ir. MS received 29 July 2013; revised 14 June 2015. Abstract. A new approach, named the exponential function method (EFM) is used to.

  2. Flow over Exponentially Stretching Sheet through Porous Medium with Heat Source/Sink

    Directory of Open Access Journals (Sweden)

    I. Swain

    2015-01-01

    Full Text Available An attempt has been made to study the heat and mass transfer effect in a boundary layer MHD flow of an electrically conducting viscous fluid subject to transverse magnetic field on an exponentially stretching sheet through porous medium. The effect of thermal radiation and heat source/sink has also been discussed in this paper. The governing nonlinear partial differential equations are transformed into a system of coupled nonlinear ordinary differential equations and then solved numerically using a fourth-order Runge-Kutta method with a shooting technique. Graphical results are displayed for nondimensional velocity, temperature, and concentration profiles while numerical values of the skin friction local Nusselt number and Sherwood number are presented in tabular form for various values of parameters controlling the flow system.

  3. Heat and mass transfer in magnetohydrodynamic Casson fluid over an exponentially permeable stretching surface

    Directory of Open Access Journals (Sweden)

    C.S.K. Raju

    2016-03-01

    Full Text Available In this study we analyzed the flow, heat and mass transfer behavior of Casson fluid past an exponentially permeable stretching surface in presence of thermal radiation, magneticfield, viscous dissipation, heat source and chemical reaction. We presented dual solutions by comparing the results of the Casson fluid with the Newtonian fluid. The governing partial nonlinear differential equations of the flow, heat and mass transfer are transformed into ordinary differential equations by using similarity transformation and solved numerically by using Matlab bvp4c package. The effects of various non-dimensional governing parameters on velocity, temperature and concentration profiles are discussed and presented graphically. Also, the friction factor, Nusselt and Sherwood numbers are analyzed and presented in tabular form for both Casson and Newtonian fluids separately. Under some special conditions the results of the present study have an excellent agreement with existing studies for both Casson and Newtonian fluid cases.

  4. Numerical and series solutions for stagnation-point flow of nanofluid over an exponentially stretching sheet.

    Science.gov (United States)

    Mustafa, Meraj; Farooq, Muhammad A; Hayat, Tasawar; Alsaedi, Ahmed

    2013-01-01

    This investigation is concerned with the stagnation-point flow of nanofluid past an exponentially stretching sheet. The presence of Brownian motion and thermophoretic effects yields a coupled nonlinear boundary-value problem (BVP). Similarity transformations are invoked to reduce the partial differential equations into ordinary ones. Local similarity solutions are obtained by homotopy analysis method (HAM), which enables us to investigate the effects of parameters at a fixed location above the sheet. The numerical solutions are also derived using the built-in solver bvp4c of the software MATLAB. The results indicate that temperature and the thermal boundary layer thickness appreciably increase when the Brownian motion and thermophoresis effects are strengthened. Moreover the nanoparticles volume fraction is found to increase when the thermophoretic effect intensifies.

  5. Intravoxel water diffusion heterogeneity MR imaging of nasopharyngeal carcinoma using stretched exponential diffusion model

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Vincent; Khong, Pek Lan [University of Hong Kong, Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, Pok Fu Lam (China); Lee, Victor Ho Fun; Lam, Ka On; Sze, Henry Chun Kin [University of Hong Kong, Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, Pok Fu Lam (China); Chan, Queenie [Philips Healthcare, Hong Kong, Shatin, New Territories (China)

    2015-06-01

    To determine the utility of stretched exponential diffusion model in characterisation of the water diffusion heterogeneity in different tumour stages of nasopharyngeal carcinoma (NPC). Fifty patients with newly diagnosed NPC were prospectively recruited. Diffusion-weighted MR imaging was performed using five b values (0-2,500 s/mm{sup 2}). Respective stretched exponential parameters (DDC, distributed diffusion coefficient; and alpha (α), water heterogeneity) were calculated. Patients were stratified into low and high tumour stage groups based on the American Joint Committee on Cancer (AJCC) staging for determination of the predictive powers of DDC and α using t test and ROC curve analyses. The mean ± standard deviation values were DDC = 0.692 ± 0.199 (x 10{sup -3} mm{sup 2}/s) for low stage group vs 0.794 ± 0.253 (x 10{sup -3} mm{sup 2}/s) for high stage group; α = 0.792 ± 0.145 for low stage group vs 0.698 ± 0.155 for high stage group. α was significantly lower in the high stage group while DDC was negatively correlated. DDC and α were both reliable independent predictors (p < 0.001), with α being more powerful. Optimal cut-off values were (sensitivity, specificity, positive likelihood ratio, negative likelihood ratio) DDC = 0.692 x 10{sup -3} mm{sup 2}/s (94.4 %, 64.3 %, 2.64, 0.09), α = 0.720 (72.2 %, 100 %, -, 0.28). The heterogeneity index α is robust and can potentially help in staging and grading prediction in NPC. (orig.)

  6. Unsteady MHD radiative flow and heat transfer of a dusty nanofluid over an exponentially stretching surface

    Directory of Open Access Journals (Sweden)

    N. Sandeep

    2016-03-01

    Full Text Available We analyzed the unsteady magnetohydrodynamic radiative flow and heat transfer characteristics of a dusty nanofluid over an exponentially permeable stretching surface in presence of volume fraction of dust and nano particles. We considered two types of nanofluids namely Cu-water and CuO-water embedded with conducting dust particles. The governing equations are transformed into nonlinear ordinary differential equations by using similarity transformation and solved numerically using Runge–Kutta based shooting technique. The effects of non-dimensional governing parameters namely magneticfield parameter, mass concentration of dust particles, fluid particle interaction parameter, volume fraction of dust particles, volume fraction of nano particles, unsteadiness parameter, exponential parameter, radiation parameter and suction/injection parameter on velocity profiles for fluid phase, dust phase and temperature profiles are discussed and presented through graphs. Also, friction factor and Nusselt numbers are discussed and presented for two dusty nanofluids separately. Comparisons of the present study were made with existing studies under some special assumptions. The present results have an excellent agreement with existing studies. Results indicated that the enhancement in fluid particle interaction increases the heat transfer rate and depreciates the wall friction. Also, radiation parameter has the tendency to increase the temperature profiles of the dusty nanofluid.

  7. Stretched exponential dynamics of coupled logistic maps on a small-world network

    Science.gov (United States)

    Mahajan, Ashwini V.; Gade, Prashant M.

    2018-02-01

    We investigate the dynamic phase transition from partially or fully arrested state to spatiotemporal chaos in coupled logistic maps on a small-world network. Persistence of local variables in a coarse grained sense acts as an excellent order parameter to study this transition. We investigate the phase diagram by varying coupling strength and small-world rewiring probability p of nonlocal connections. The persistent region is a compact region bounded by two critical lines where band-merging crisis occurs. On one critical line, the persistent sites shows a nonexponential (stretched exponential) decay for all p while for another one, it shows crossover from nonexponential to exponential behavior as p → 1 . With an effectively antiferromagnetic coupling, coupling to two neighbors on either side leads to exchange frustration. Apart from exchange frustration, non-bipartite topology and nonlocal couplings in a small-world network could be a reason for anomalous relaxation. The distribution of trap times in asymptotic regime has a long tail as well. The dependence of temporal evolution of persistence on initial conditions is studied and a scaling form for persistence after waiting time is proposed. We present a simple possible model for this behavior.

  8. Chemical reaction and radiation effects on MHD flow past an exponentially stretching sheet with heat sink

    Science.gov (United States)

    Nur Wahida Khalili, Noran; Aziz Samson, Abdul; Aziz, Ahmad Sukri Abdul; Ali, Zaileha Md

    2017-09-01

    In this study, the problem of MHD boundary layer flow past an exponentially stretching sheet with chemical reaction and radiation effects with heat sink is studied. The governing system of PDEs is transformed into a system of ODEs. Then, the system is solved numerically by using Runge-Kutta-Fehlberg fourth fifth order (RKF45) method available in MAPLE 15 software. The numerical results obtained are presented graphically for the velocity, temperature and concentration. The effects of various parameters are studied and analyzed. The numerical values for local Nusselt number, skin friction coefficient and local Sherwood number are tabulated and discussed. The study shows that various parameters give significant effect on the profiles of the fluid flow. It is observed that the reaction rate parameter affected the concentration profiles significantly and the concentration thickness of boundary layer decreases when reaction rate parameter increases. The analysis found is validated by comparing with the results previous work done and it is found to be in good agreement.

  9. Magnetohydrodynamic flow of a Casson fluid over an exponentially inclined permeable stretching surface with thermal radiation and chemical reaction

    Directory of Open Access Journals (Sweden)

    P. Bala Anki Reddy

    2016-06-01

    Full Text Available This article investigates the theoretical study of the steady two-dimensional MHD convective boundary layer flow of a Casson fluid over an exponentially inclined permeable stretching surface in the presence of thermal radiation and chemical reaction. The stretching velocity, wall temperature and wall concentration are assumed to vary according to specific exponential form. Velocity slip, thermal slip, solutal slip, thermal radiation, chemical reaction and suction/blowing are taken into account. The proposed model considers both assisting and opposing buoyant flows. The non-linear partial differential equations of the governing flow are converted into a system of coupled non-linear ordinary differential equations by using the similarity transformations, which are then solved numerically by shooting method with fourth order Runge–Kutta scheme. The numerical solutions for pertinent parameters on the dimensionless velocity, temperature, concentration, skin friction coefficient, the heat transfer coefficient and the Sherwood number are illustrated in tabular form and are discussed graphically.

  10. (Anti)symmetric multivariate exponential functions and corresponding Fourier transforms

    International Nuclear Information System (INIS)

    Klimyk, A U; Patera, J

    2007-01-01

    We define and study symmetrized and antisymmetrized multivariate exponential functions. They are defined as determinants and antideterminants of matrices whose entries are exponential functions of one variable. These functions are eigenfunctions of the Laplace operator on the corresponding fundamental domains satisfying certain boundary conditions. To symmetric and antisymmetric multivariate exponential functions there correspond Fourier transforms. There are three types of such Fourier transforms: expansions into the corresponding Fourier series, integral Fourier transforms and multivariate finite Fourier transforms. Eigenfunctions of the integral Fourier transforms are found

  11. Wealth distribution, Pareto law, and stretched exponential decay of money: Computer simulations analysis of agent-based models

    Science.gov (United States)

    Aydiner, Ekrem; Cherstvy, Andrey G.; Metzler, Ralf

    2018-01-01

    We study by Monte Carlo simulations a kinetic exchange trading model for both fixed and distributed saving propensities of the agents and rationalize the person and wealth distributions. We show that the newly introduced wealth distribution - that may be more amenable in certain situations - features a different power-law exponent, particularly for distributed saving propensities of the agents. For open agent-based systems, we analyze the person and wealth distributions and find that the presence of trap agents alters their amplitude, leaving however the scaling exponents nearly unaffected. For an open system, we show that the total wealth - for different trap agent densities and saving propensities of the agents - decreases in time according to the classical Kohlrausch-Williams-Watts stretched exponential law. Interestingly, this decay does not depend on the trap agent density, but rather on saving propensities. The system relaxation for fixed and distributed saving schemes are found to be different.

  12. MHD mixed convective boundary layer flow of a nanofluid through a porous medium due to an exponentially stretching sheet

    KAUST Repository

    Ferdows, M.

    2012-01-01

    Magnetohydrodynamic (MHD) boundary layer flow of a nanofluid over an exponentially stretching sheet was studied. The governing boundary layer equations are reduced into ordinary differential equations by a similarity transformation. The transformed equations are solved numerically using the Nactsheim-Swigert shooting technique together with Runge-Kutta six-order iteration schemes. The effects of the governing parameters on the flow field and heat transfer characteristics were obtained and discussed. The numerical solutions for the wall skin friction coefficient, the heat and mass transfer coefficient, and the velocity, temperature, and concentration profiles are computed, analyzed, and discussed graphically. Comparison with previously published work is performed and excellent agreement is observed. 2012 M. Ferdows et al.

  13. MHD Mixed Convective Boundary Layer Flow of a Nanofluid through a Porous Medium due to an Exponentially Stretching Sheet

    Directory of Open Access Journals (Sweden)

    M. Ferdows

    2012-01-01

    Full Text Available Magnetohydrodynamic (MHD boundary layer flow of a nanofluid over an exponentially stretching sheet was studied. The governing boundary layer equations are reduced into ordinary differential equations by a similarity transformation. The transformed equations are solved numerically using the Nactsheim-Swigert shooting technique together with Runge-Kutta six-order iteration schemes. The effects of the governing parameters on the flow field and heat transfer characteristics were obtained and discussed. The numerical solutions for the wall skin friction coefficient, the heat and mass transfer coefficient, and the velocity, temperature, and concentration profiles are computed, analyzed, and discussed graphically. Comparison with previously published work is performed and excellent agreement is observed.

  14. Slip effects on MHD boundary layer flow over an exponentially stretching sheet with suction/blowing and thermal radiation

    Directory of Open Access Journals (Sweden)

    Swati Mukhopadhyay

    2013-09-01

    Full Text Available The boundary layer flow and heat transfer towards a porous exponential stretching sheet in presence of a magnetic field is presented in this analysis. Velocity slip and thermal slip are considered instead of no-slip conditions at the boundary. Thermal radiation term is incorporated in the temperature equation. Similarity transformations are used to convert the partial differential equations corresponding to the momentum and energy equations into non-linear ordinary differential equations. Numerical solutions of these equations are obtained by shooting method. It is found that the horizontal velocity decreases with increasing slip parameter as well as with the increasing magnetic parameter. Temperature increases with the increasing values of magnetic parameter. Temperature is found to decrease with an increase of thermal slip parameter. Thermal radiation enhances the effective thermal diffusivity and the temperature rises.

  15. Exponential function and its derivative revisited

    Science.gov (United States)

    Ho, Weng Kin; Him Ho, Foo; Lee, Tuo Yeong

    2013-04-01

    Most of the available proofs for ? rely on results involving either power series, uniform convergence or a round-about definition of the natural logarithm function ln(x) by the definite integral ? , and are thus not readily accessible by high school teachers and students. Even instructors of calculus courses avoid showing the complete proof to their undergraduate students because a direct and elementary approach is missing. This short article fills in this gap by supplying a simple proof of the aforementioned basic calculus fact.

  16. The generalized exponential function and fractional trigonometric identities

    KAUST Repository

    Radwan, Ahmed G.

    2011-08-01

    In this work, we recall the generalized exponential function in the fractional-order domain which enables defining generalized cosine and sine functions. We then re-visit some important trigonometric identities and generalize them from the narrow integer-order subset to the more general fractional-order domain. Generalized hyperbolic function relations are also given. © 2011 IEEE.

  17. Generator of an exponential function with respect to time

    International Nuclear Information System (INIS)

    Janin, Paul; Puyal, Claude.

    1981-01-01

    This invention deals with an exponential function generator, and an application of this generator to simulating the criticality of a nuclear reactor for reactimeter calibration purposes. This generator, which is particularly suitable for simulating the criticality of a nuclear reactor to calibrate a reactimeter, can also be used in any field of application necessitating the generation of an exponential function in real time. In certain fields of thermodynamics, it is necessary to represent temperature gradients as a function of time. The generator might find applications here. Another application is nuclear physics where it is necessary to represent the attenuation of a neutron flux density with respect to time [fr

  18. Stability of the Exponential Functional Equation in Riesz Algebras

    Directory of Open Access Journals (Sweden)

    Bogdan Batko

    2014-01-01

    Full Text Available We deal with the stability of the exponential Cauchy functional equation F(x+y=F(xF(y in the class of functions F:G→L mapping a group (G, + into a Riesz algebra L. The main aim of this paper is to prove that the exponential Cauchy functional equation is stable in the sense of Hyers-Ulam and is not superstable in the sense of Baker. To prove the stability we use the Yosida Spectral Representation Theorem.

  19. Approximating Exponential and Logarithmic Functions Using Polynomial Interpolation

    Science.gov (United States)

    Gordon, Sheldon P.; Yang, Yajun

    2017-01-01

    This article takes a closer look at the problem of approximating the exponential and logarithmic functions using polynomials. Either as an alternative to or a precursor to Taylor polynomial approximations at the precalculus level, interpolating polynomials are considered. A measure of error is given and the behaviour of the error function is…

  20. Statistical exponential distribution function as distance indicator to stellar groups

    Science.gov (United States)

    Abdel Rahman, H.; Sabry, M. A.; Issa, I. A.

    2012-12-01

    In this paper, statistical distribution functions are developed for distance determination of stellar groups. This method depends on the assumption that, absolute magnitudes and apparent magnitudes follow an exponential distribution function. The developed approaches have been implemented to determine distances of some clusters and stellar associations. The comparison with the distances derived by different authors revealed good agreement.

  1. On root mean square approximation by exponential functions

    OpenAIRE

    Sharipov, Ruslan

    2014-01-01

    The problem of root mean square approximation of a square integrable function by finite linear combinations of exponential functions is considered. It is subdivided into linear and nonlinear parts. The linear approximation problem is solved. Then the nonlinear problem is studied in some particular example.

  2. DNA stretching on functionalized gold surfaces.

    OpenAIRE

    Zimmermann, R M; Cox, E C

    1994-01-01

    We describe a method for anchoring bacteriophage lambda DNA by one end to gold by Au-biotin-streptavidin-biotin-DNA bonds. DNA anchored to a microfabricated Au line could be aligned and stretched in flow and electric fields. The anchor was shown to resist a force of at least 11 pN, a linkage strong enough to allow DNA molecules of chromosome size to be stretched and aligned.

  3. Applications exponential approximation by integer shifts of Gaussian functions

    Directory of Open Access Journals (Sweden)

    S. M. Sitnik

    2013-01-01

    Full Text Available In this paper we consider approximations of functions using integer shifts of Gaussians – quadratic exponentials. A method is proposed to find coefficients of node functions by solving linear systems of equations. The explicit formula for the determinant of the system is found, based on it solvability of linear system under consideration is proved and uniqueness of its solution. We compare results with known ones and briefly indicate applications to signal theory.

  4. Numerical analysis of 3D micropolar nanofluid flow induced by an exponentially stretching surface embedded in a porous medium

    Science.gov (United States)

    Subhani, M.; Nadeem, S.

    2017-10-01

    The present article is devoted to probe the behavior of a three-dimensional micropolar nanofluid over an exponentially stretching surface in a porous medium. The mathematical model is constructed in the form of partial differential equations using the boundary layer approach. Then by employing similarity transformations, the modelled partial differential equations are transformed to ordinary differential equations. The solution of subsequent ODEs is derived by utilizing the BVP-4C technique alongside the shooting scheme. The graphical illustrations are presented to interpret the salient features of pertinent physical parameters on the concerned profiles for different kinds of nanoparticles, namely copper, titania and alumina with water as the base fluid. For a better understanding of the fluid flow, the numerical variation in the local skin friction coefficients, Cfx and Cfy , and local Nusselt number is analyzed through tables. We can see, from the present study, that the omission of porous matrix enhances the flow of the fluid. Microrotation has a decreasing impact on the skin friction whereas it increases the rate of the heat transfer of the nanofluid.

  5. Multinomial-exponential reliability function: a software reliability model

    International Nuclear Information System (INIS)

    Saiz de Bustamante, Amalio; Saiz de Bustamante, Barbara

    2003-01-01

    The multinomial-exponential reliability function (MERF) was developed during a detailed study of the software failure/correction processes. Later on MERF was approximated by a much simpler exponential reliability function (EARF), which keeps most of MERF mathematical properties, so the two functions together makes up a single reliability model. The reliability model MERF/EARF considers the software failure process as a non-homogeneous Poisson process (NHPP), and the repair (correction) process, a multinomial distribution. The model supposes that both processes are statistically independent. The paper discusses the model's theoretical basis, its mathematical properties and its application to software reliability. Nevertheless it is foreseen model applications to inspection and maintenance of physical systems. The paper includes a complete numerical example of the model application to a software reliability analysis

  6. The Use of Modeling Approach for Teaching Exponential Functions

    Science.gov (United States)

    Nunes, L. F.; Prates, D. B.; da Silva, J. M.

    2017-12-01

    This work presents a discussion related to the teaching and learning of mathematical contents related to the study of exponential functions in a freshman students group enrolled in the first semester of the Science and Technology Bachelor’s (STB of the Federal University of Jequitinhonha and Mucuri Valleys (UFVJM). As a contextualization tool strongly mentioned in the literature, the modelling approach was used as an educational teaching tool to produce contextualization in the teaching-learning process of exponential functions to these students. In this sense, were used some simple models elaborated with the GeoGebra software and, to have a qualitative evaluation of the investigation and the results, was used Didactic Engineering as a methodology research. As a consequence of this detailed research, some interesting details about the teaching and learning process were observed, discussed and described.

  7. Stretched-to-compressed-exponential crossover observed in the electrical degradation kinetics of some spinel-metallic screen-printed structures

    Science.gov (United States)

    Balitska, V.; Shpotyuk, O.; Brunner, M.; Hadzaman, I.

    2018-02-01

    Thermally-induced (170 °C) degradation-relaxation kinetics is examined in screen-printed structures composed of spinel Cu0.1Ni0.1Co1.6Mn1.2O4 ceramics with conductive Ag or Ag-Pd layered electrodes. Structural inhomogeneities due to Ag and Ag-Pd diffusants in spinel phase environment play a decisive role in non-exponential kinetics of negative relative resistance drift. If Ag migration in spinel is inhibited by Pd addition due to Ag-Pd alloy, the kinetics attains stretched exponential behavior with ∼0.58 exponent, typical for one-stage diffusion in structurally-dispersive media. Under deep Ag penetration into spinel ceramics, as for thick films with Ag-layered electrodes, the degradation kinetics drastically changes, attaining features of two-step diffusing process governed by compressed-exponential dependence with power index of ∼1.68. Crossover from stretched- to compressed-exponential kinetics in spinel-metallic structures is mapped on free energy landscape of non-barrier multi-well system under strong perturbation from equilibrium, showing transition with a character downhill scenario resulting in faster than exponential decaying.

  8. Flow of 3D Eyring-Powell fluid by utilizing Cattaneo-Christov heat flux model and chemical processes over an exponentially stretching surface

    Science.gov (United States)

    Hayat, Tanzila; Nadeem, S.

    2018-03-01

    This paper examines the three dimensional Eyring-Powell fluid flow over an exponentially stretching surface with heterogeneous-homogeneous chemical reactions. A new model of heat flux suggested by Cattaneo and Christov is employed to study the properties of relaxation time. From the present analysis we observe that there is an inverse relationship between temperature and thermal relaxation time. The temperature in Cattaneo-Christov heat flux model is lesser than the classical Fourier's model. In this paper the three dimensional Cattaneo-Christov heat flux model over an exponentially stretching surface is calculated first time in the literature. For negative values of temperature exponent, temperature profile firstly intensifies to its most extreme esteem and after that gradually declines to zero, which shows the occurrence of phenomenon (SGH) "Sparrow-Gregg hill". Also, for higher values of strength of reaction parameters, the concentration profile decreases.

  9. Autoregressive processes with exponentially decaying probability distribution functions: applications to daily variations of a stock market index.

    Science.gov (United States)

    Porto, Markus; Roman, H Eduardo

    2002-04-01

    We consider autoregressive conditional heteroskedasticity (ARCH) processes in which the variance sigma(2)(y) depends linearly on the absolute value of the random variable y as sigma(2)(y) = a+b absolute value of y. While for the standard model, where sigma(2)(y) = a + b y(2), the corresponding probability distribution function (PDF) P(y) decays as a power law for absolute value of y-->infinity, in the linear case it decays exponentially as P(y) approximately exp(-alpha absolute value of y), with alpha = 2/b. We extend these results to the more general case sigma(2)(y) = a+b absolute value of y(q), with 0 process is taken into account, the resulting PDF becomes a stretched exponential even for q = 1, with a stretched exponent beta = 2/3, in a much better agreement with the empirical data.

  10. Functional finishes of stretch cotton fabrics.

    Science.gov (United States)

    Ibrahim, N A; Amr, A; Eid, B M; Almetwally, A A; Mourad, M M

    2013-11-06

    Functionalized cotton cellulose/spandex woven fabrics with different structures namely plain (1/1), twill (2/2) and satin were produced. Factors affecting the imparted functional properties such as weave structure and constituents of the finishing formulations including ether or ester cross-linker and catalyst type, silicone-micro-emulsion, water/oil repellent, Ag-NP(,)s and TiO2-NP(,)s were studied. The treated fabrics were found to have easy care property together with one or more of the imparted functional properties such as soft-handle, water/oil repellence, antibacterial, UV-protection and self cleaning. The effectiveness of the imparted properties is not seriously affected even after 10 washing cycles. Surface modifications as well as the composition of certain samples were confirmed by SEM images and EDX spectra. Mode of interactions was also suggested. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Differentiating metastatic from nonmetastatic lymph nodes in cervical cancer patients using monoexponential, biexponential, and stretched exponential diffusion-weighted MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qingxia; Wang, Meiyun; Shi, Dapeng [Radiological Department of Henan Provincial People' s Hospital, Zhengzhou, Henan (China); Zheng, Dandan [GE Healthcare, MR Research China, Beijing (China); Shi, Ligang [Pathological Department of Henan Provincial People' s Hospital, Zhengzhou, Henan (China); Liu, Mingbo [Radiotherapeutical Department of Henan Provincial People' s Hospital, Zhengzhou, Henan (China)

    2017-12-15

    To determine the diagnostic value of monoexponential, biexponential and stretched exponential models for identifying lymph nodes (LNs) in patients with cervical cancer. Fifty female patients with cervical cancer underwent preoperative magnetic resonance imaging. The diffusion parameters of the LNs were calculated by fitting the values to monoexponential, biexponential and stretched exponential models and were compared between the metastatic and non-metastatic LN groups. A total of 157 LNs with high signal intensity on multi-b-value DWI were detected, 41 of which were pathologically shown to be metastatic. Metastatic LNs presented with higher pure water diffusion (D) values, lower perfusion fraction (f) values, higher diffusion heterogeneity (α) values, higher short diameter (Size-S), long diameter (Size-L) and short long diameter ratio (S/L Ratio) than non-metastatic LNs (P<0.05). The Size-S of LNs exhibited the highest diagnostic value, with an area under the curve of 0.844. Compared with the size parameters, the diffusion parameters derived from multi-b-value diffusion-weighted imaging cannot reliably discriminate metastatic from non-metastatic LNs in daily clinical routine due to limited sensitivity and specificity. (orig.)

  12. Calculation of the exponential function of linear idempotent operators

    International Nuclear Information System (INIS)

    Chavoya-Aceves, O.; Luna, H.M.

    1989-01-01

    We give a method to calculate the exponential EXP[A r ] where A is a linear operator which satisfies the reaction A n =I, n is an integer and I is the identity operator. The method is generalised to operators such that A n +1=A and is applied to obtain some Lorentz transformations which generalise the notion of 'boost'. (Author)

  13. Two-stage unified stretched-exponential model for time-dependence of threshold voltage shift under positive-bias-stresses in amorphous indium-gallium-zinc oxide thin-film transistors

    Science.gov (United States)

    Jeong, Chan-Yong; Kim, Hee-Joong; Hong, Sae-Young; Song, Sang-Hun; Kwon, Hyuck-In

    2017-08-01

    In this study, we show that the two-stage unified stretched-exponential model can more exactly describe the time-dependence of threshold voltage shift (ΔV TH) under long-term positive-bias-stresses compared to the traditional stretched-exponential model in amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs). ΔV TH is mainly dominated by electron trapping at short stress times, and the contribution of trap state generation becomes significant with an increase in the stress time. The two-stage unified stretched-exponential model can provide useful information not only for evaluating the long-term electrical stability and lifetime of the a-IGZO TFT but also for understanding the stress-induced degradation mechanism in a-IGZO TFTs.

  14. Waveform inversion with exponential damping using a deconvolution-based objective function

    KAUST Repository

    Choi, Yun Seok

    2016-09-06

    The lack of low frequency components in seismic data usually leads full waveform inversion into the local minima of its objective function. An exponential damping of the data, on the other hand, generates artificial low frequencies, which can be used to admit long wavelength updates for waveform inversion. Another feature of exponential damping is that the energy of each trace also exponentially decreases with source-receiver offset, where the leastsquare misfit function does not work well. Thus, we propose a deconvolution-based objective function for waveform inversion with an exponential damping. Since the deconvolution filter includes a division process, it can properly address the unbalanced energy levels of the individual traces of the damped wavefield. Numerical examples demonstrate that our proposed FWI based on the deconvolution filter can generate a convergent long wavelength structure from the artificial low frequency components coming from an exponential damping.

  15. Predicting jet radius in electrospinning by superpositioning exponential functions

    International Nuclear Information System (INIS)

    Widartiningsih, P M; Viridi, S; Iskandar, F; Munir, M M

    2016-01-01

    This paper presents an analytical study of the correlation between viscosity and fiber diameter in electrospinning. Control over fiber diameter in electrospinning process was important since it will determine the performance of resulting nanofiber. Theoretically, fiber diameter was determined by surface tension, solution concentration, flow rate, and electric current. But experimentally it had been proven that significantly viscosity had an influence to fiber diameter. Jet radius equation in electrospinning process was divided into three areas: near the nozzle, far from the nozzle, and at jet terminal. There was no correlation between these equations. Superposition of exponential series model provides the equations combined into one, thus the entire of working parameters on electrospinning take a contribution to fiber diameter. This method yields the value of solution viscosity has a linear relation to jet radius. However, this method works only for low viscosity. (paper)

  16. Kinetically modified non-minimal inflation with exponential frame function

    Energy Technology Data Exchange (ETDEWEB)

    Pallis, C. [University of Cyprus, Department of Physics, Nicosia (Cyprus)

    2017-09-15

    We consider supersymmetric (SUSY) and non-SUSY models of chaotic inflation based on the φ{sup n} potential with n = 2 or 4. We show that the coexistence of an exponential non-minimal coupling to gravity f{sub R} = e{sup c{sub R}φ{sup p}} with a kinetic mixing of the form f{sub K} = c{sub K}f{sub R}{sup m} can accommodate inflationary observables favored by the Planck and Bicep2/Keck Array results for p = 1 and 2, 1 ≤ m ≤ 15 and 2.6 x 10{sup -3} ≤ r{sub RK} = c{sub R}/c{sub K}{sup p/2} ≤ 1, where the upper limit is not imposed for p = 1. Inflation is of hilltop type and it can be attained for subplanckian inflaton values with the corresponding effective theories retaining the perturbative unitarity up to the Planck scale. The supergravity embedding of these models is achieved employing two chiral gauge singlet supefields, a monomial superpotential and several (semi)logarithmic or semi-polynomial Kaehler potentials. (orig.)

  17. Exponential functionals of Brownian motion, I: Probability laws at fixed time

    OpenAIRE

    Matsumoto, Hiroyuki; Yor, Marc

    2005-01-01

    This paper is the first part of our survey on various results about the distribution of exponential type Brownian functionals defined as an integral over time of geometric Brownian motion. Several related topics are also mentioned.

  18. Thermophysical analysis for three-dimensional MHD stagnation-point flow of nano-material influenced by an exponential stretching surface

    Directory of Open Access Journals (Sweden)

    Fiaz Ur Rehman

    2018-03-01

    Full Text Available In the present paper a theoretical investigation is performed to analyze heat and mass transport enhancement of water-based nanofluid for three dimensional (3D MHD stagnation-point flow caused by an exponentially stretched surface. Water is considered as a base fluid. There are three (3 types of nanoparticles considered in this study namely, CuO (Copper oxide, Fe3O4 (Magnetite, and Al2O3 (Alumina are considered along with water. In this problem we invoked the boundary layer phenomena and suitable similarity transformation, as a result our three dimensional non-linear equations of describing current problem are transmuted into nonlinear and non-homogeneous differential equations involving ordinary derivatives. We solved the final equations by applying homotopy analysis technique. Influential outcomes of aggressing parameters involved in this study, effecting profiles of temperature field and velocity are explained in detail. Graphical results of involved parameters appearing in considered nanofluid are presented separately. It is worth mentioning that Skin-friction along x and y-direction is maximum for Copper oxide-water nanofluid and minimum for Alumina-water nanofluid. Result for local Nusselt number is maximum for Copper oxide-water nanofluid and is minimum for magnetite-water nanofluid. Keywords: Heat transfer, Nanofluids, Stagnation-point flow, Three-dimensional flow, Nano particles, Boundary layer

  19. Numerical study of magnetohydrodynamics (MHD boundary layer slip flow of a Maxwell nanofluid over an exponentially stretching surface with convective boundary condition

    Directory of Open Access Journals (Sweden)

    P.BalaAnki Reddy

    2017-12-01

    Full Text Available This paper focuses on a theoretical analysis of a steady two-dimensional magnetohydrodynamic boundary layer flow of a Maxwell fluid over an exponentially stretching surface in the presence of velocity slip and convective boundary condition. This model is used for a nanofluid, which incorporates the effects of Brownian motion and thermophoresis. The resulting non-linear partial differential equations of the governing flow field are converted into a system of coupled non-linear ordinary differential equations by using suitable similarity transformations, and the resultant equations are then solved numerically by using Runge-Kutta fourth order method along with shooting technique. A parametric study is conducted to illustrate the behavior of the velocity, temperature and concentration. The influence of significant parameters on velocity, temperature, concentration, skin friction coefficient and Nusselt number has been studied and numerical results are presented graphically and in tabular form. The reported numerical results are compared with previously published works on various special cases and are found to be an in excellent agreement. It is found that momentum boundary layer thickness decreases with the increase of magnetic parameter. It can also be found that the thermal boundary layer thickness increases with Brownian motion and thermophoresis parameters.

  20. Thermophysical analysis for three-dimensional MHD stagnation-point flow of nano-material influenced by an exponential stretching surface

    Science.gov (United States)

    Ur Rehman, Fiaz; Nadeem, Sohail; Ur Rehman, Hafeez; Ul Haq, Rizwan

    2018-03-01

    In the present paper a theoretical investigation is performed to analyze heat and mass transport enhancement of water-based nanofluid for three dimensional (3D) MHD stagnation-point flow caused by an exponentially stretched surface. Water is considered as a base fluid. There are three (3) types of nanoparticles considered in this study namely, CuO (Copper oxide), Fe3O4 (Magnetite), and Al2O3 (Alumina) are considered along with water. In this problem we invoked the boundary layer phenomena and suitable similarity transformation, as a result our three dimensional non-linear equations of describing current problem are transmuted into nonlinear and non-homogeneous differential equations involving ordinary derivatives. We solved the final equations by applying homotopy analysis technique. Influential outcomes of aggressing parameters involved in this study, effecting profiles of temperature field and velocity are explained in detail. Graphical results of involved parameters appearing in considered nanofluid are presented separately. It is worth mentioning that Skin-friction along x and y-direction is maximum for Copper oxide-water nanofluid and minimum for Alumina-water nanofluid. Result for local Nusselt number is maximum for Copper oxide-water nanofluid and is minimum for magnetite-water nanofluid.

  1. Effects of Heat Source/Sink and Chemical Reaction on MHD Maxwell Nanofluid Flow Over a Convectively Heated Exponentially Stretching Sheet Using Homotopy Analysis Method

    Science.gov (United States)

    Sravanthi, C. S.; Gorla, R. S. R.

    2018-02-01

    The aim of this paper is to study the effects of chemical reaction and heat source/sink on a steady MHD (magnetohydrodynamic) two-dimensional mixed convective boundary layer flow of a Maxwell nanofluid over a porous exponentially stretching sheet in the presence of suction/blowing. Convective boundary conditions of temperature and nanoparticle concentration are employed in the formulation. Similarity transformations are used to convert the governing partial differential equations into non-linear ordinary differential equations. The resulting non-linear system has been solved analytically using an efficient technique, namely: the homotopy analysis method (HAM). Expressions for velocity, temperature and nanoparticle concentration fields are developed in series form. Convergence of the constructed solution is verified. A comparison is made with the available results in the literature and our results are in very good agreement with the known results. The obtained results are presented through graphs for several sets of values of the parameters and salient features of the solutions are analyzed. Numerical values of the local skin-friction, Nusselt number and nanoparticle Sherwood number are computed and analyzed.

  2. Absolute exponential stability of recurrent neural networks with Lipschitz-continuous activation functions and time delays.

    Science.gov (United States)

    Cao, Jinde; Wang, Jun

    2004-04-01

    This paper investigates the absolute exponential stability of a general class of delayed neural networks, which require the activation functions to be partially Lipschitz continuous and monotone nondecreasing only, but not necessarily differentiable or bounded. Three new sufficient conditions are derived to ascertain whether or not the equilibrium points of the delayed neural networks with additively diagonally stable interconnection matrices are absolutely exponentially stable by using delay Halanay-type inequality and Lyapunov function. The stability criteria are also suitable for delayed optimization neural networks and delayed cellular neural networks whose activation functions are often nondifferentiable or unbounded. The results herein answer a question: if a neural network without any delay is absolutely exponentially stable, then under what additional conditions, the neural networks with delay is also absolutely exponentially stable.

  3. Fitting of alpha-efficiency versus quenching parameter by exponential functions in liquid scintillation counting

    International Nuclear Information System (INIS)

    Sosa, M.; Manjón, G.; Mantero, J.; García-Tenorio, R.

    2014-01-01

    The objective of this work is to propose an exponential fit for the low alpha-counting efficiency as a function of a sample quenching parameter using a Quantulus liquid scintillation counter. The sample quenching parameter in a Quantulus is the Spectral Quench Parameter of the External Standard (SQP(E)), which is defined as the number of channel under which lies the 99% of Compton spectrum generated by a gamma emitter ( 152 Eu). Although in the literature one usually finds a polynomial fitting of the alpha counting efficiency, it is shown here that an exponential function is a better description. - Highlights: • We have studied the quenching in alpha measurement by liquid scintillation counting. • We have reviewed typical fitting of alpha counting efficiency versus quenching parameter. • Exponential fitting of data is proposed as better fitting. • We consider exponential fitting has a physical basis

  4. Fitting of alpha-efficiency versus quenching parameter by exponential functions in liquid scintillation counting

    Energy Technology Data Exchange (ETDEWEB)

    Sosa, M. [Departamento de Ingeniería Física, Campus León, Universidad de Guanajuato, 37150 León, Guanajuato (Mexico); Universidad de Sevilla, Departamento de Física Aplicada II, E.T.S. Arquitectura, Av. Reina Mercedes, 2, 41012 Sevilla (Spain); Manjón, G., E-mail: manjon@us.es [Universidad de Sevilla, Departamento de Física Aplicada II, E.T.S. Arquitectura, Av. Reina Mercedes, 2, 41012 Sevilla (Spain); Mantero, J.; García-Tenorio, R. [Universidad de Sevilla, Departamento de Física Aplicada II, E.T.S. Arquitectura, Av. Reina Mercedes, 2, 41012 Sevilla (Spain)

    2014-05-01

    The objective of this work is to propose an exponential fit for the low alpha-counting efficiency as a function of a sample quenching parameter using a Quantulus liquid scintillation counter. The sample quenching parameter in a Quantulus is the Spectral Quench Parameter of the External Standard (SQP(E)), which is defined as the number of channel under which lies the 99% of Compton spectrum generated by a gamma emitter ({sup 152}Eu). Although in the literature one usually finds a polynomial fitting of the alpha counting efficiency, it is shown here that an exponential function is a better description. - Highlights: • We have studied the quenching in alpha measurement by liquid scintillation counting. • We have reviewed typical fitting of alpha counting efficiency versus quenching parameter. • Exponential fitting of data is proposed as better fitting. • We consider exponential fitting has a physical basis.

  5. Iteration of certain exponential-like meromorphic functions

    Indian Academy of Sciences (India)

    68

    . J(f), is the complement of F (f) in ̂C. Complex dynamics studies the Fatou sets and the. Julia sets of meromorphic functions. The Fatou set is open by definition and each of its maximally connected subset is known as a Fatou component.

  6. Iteration of certain exponential-like meromorphic functions

    Indian Academy of Sciences (India)

    68

    Complex dynamics studies the Fatou sets and the. Julia sets of meromorphic functions. The Fatou set is open by definition and each of its maximally connected subset is known as a Fatou component. A Fatou component U is called p-periodic if p is the smallest natural number satisfying f p(U) ⊆ U. If for all the points z in U, ...

  7. Special deformed exponential functions leading to more consistent Klauder's coherent states

    International Nuclear Information System (INIS)

    El Baz, M.; Hassouni, Y.

    2001-08-01

    We give a general approach for the construction of deformed oscillators. These ones could be seen as describing deformed bosons. Basing on new definitions of certain quantum series, we demonstrate that they are nothing but the ordinary exponential functions in the limit when the deformation parameters goes to one. We also prove that these series converge to a complex function, in a given convergence radius that we calculate. Klauder's Coherent States are explicitly found through these functions that we design by deformed exponential functions. (author)

  8. Rank-shaping regularization of exponential spectral analysis for application to functional parametric mapping

    International Nuclear Information System (INIS)

    Turkheimer, Federico E; Hinz, Rainer; Gunn, Roger N; Aston, John A D; Gunn, Steve R; Cunningham, Vincent J

    2003-01-01

    Compartmental models are widely used for the mathematical modelling of dynamic studies acquired with positron emission tomography (PET). The numerical problem involves the estimation of a sum of decaying real exponentials convolved with an input function. In exponential spectral analysis (SA), the nonlinear estimation of the exponential functions is replaced by the linear estimation of the coefficients of a predefined set of exponential basis functions. This set-up guarantees fast estimation and attainment of the global optimum. SA, however, is hampered by high sensitivity to noise and, because of the positivity constraints implemented in the algorithm, cannot be extended to reference region modelling. In this paper, SA limitations are addressed by a new rank-shaping (RS) estimator that defines an appropriate regularization over an unconstrained least-squares solution obtained through singular value decomposition of the exponential base. Shrinkage parameters are conditioned on the expected signal-to-noise ratio. Through application to simulated and real datasets, it is shown that RS ameliorates and extends SA properties in the case of the production of functional parametric maps from PET studies

  9. Spherical Bessel transform via exponential sum approximation of spherical Bessel function

    Science.gov (United States)

    Ikeno, Hidekazu

    2018-02-01

    A new algorithm for numerical evaluation of spherical Bessel transform is proposed in this paper. In this method, the spherical Bessel function is approximately represented as an exponential sum with complex parameters. This is obtained by expressing an integral representation of spherical Bessel function in complex plane, and discretizing contour integrals along steepest descent paths and a contour path parallel to real axis using numerical quadrature rule with the double-exponential transformation. The number of terms in the expression is reduced using the modified balanced truncation method. The residual part of integrand is also expanded by exponential functions using Prony-like method. The spherical Bessel transform can be evaluated analytically on arbitrary points in half-open interval.

  10. Exponential stability of delayed and impulsive cellular neural networks with partially Lipschitz continuous activation functions.

    Science.gov (United States)

    Song, Xueli; Xin, Xing; Huang, Wenpo

    2012-05-01

    The paper discusses exponential stability of distributed delayed and impulsive cellular neural networks with partially Lipschitz continuous activation functions. By relative nonlinear measure method, some novel criteria are obtained for the uniqueness and exponential stability of the equilibrium point. Our method abandons usual assumptions on global Lipschitz continuity, boundedness and monotonicity of activation functions. Our results are generalization and improvement of some existing ones. Finally, two examples and their simulations are presented to illustrate the correctness of our analysis. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Exact series expansions, recurrence relations, properties and integrals of the generalized exponential integral functions

    International Nuclear Information System (INIS)

    Altac, Zekeriya

    2007-01-01

    Generalized exponential integral functions (GEIF) are encountered in multi-dimensional thermal radiative transfer problems in the integral equation kernels. Several series expansions for the first-order generalized exponential integral function, along with a series expansion for the general nth order GEIF, are derived. The convergence issues of these series expansions are investigated numerically as well as theoretically, and a recurrence relation which does not require derivatives of the GEIF is developed. The exact series expansions of the two dimensional cylindrical and/or two-dimensional planar integral kernels as well as their spatial moments have been explicitly derived and compared with numerical values

  12. Exponential stability of Cohen-Grossberg neural networks with a general class of activation functions

    International Nuclear Information System (INIS)

    Wan Anhua; Wang Miansen; Peng Jigen; Qiao Hong

    2006-01-01

    In this Letter, the dynamics of Cohen-Grossberg neural networks model are investigated. The activation functions are only assumed to be Lipschitz continuous, which provide a much wider application domain for neural networks than the previous results. By means of the extended nonlinear measure approach, new and relaxed sufficient conditions for the existence, uniqueness and global exponential stability of equilibrium of the neural networks are obtained. Moreover, an estimate for the exponential convergence rate of the neural networks is precisely characterized. Our results improve those existing ones

  13. Arithmetical and geometrical means of generalized logarithmic and exponential functions: Generalized sum and product operators

    International Nuclear Information System (INIS)

    Arruda, Tiago Jose; Silva Gonzalez, Rodrigo; Sangaletti Tercariol, Cesar Augusto; Souto Martinez, Alexandre

    2008-01-01

    One-parameter generalizations of the logarithmic and exponential functions have been obtained as well as algebraic operators to retrieve extensivity. Analytical expressions for the successive applications of the sum or product operators on several values of a variable are obtained here. Applications of the above formalism are considered

  14. Bias in exponential and power function fits due to noise: comment on Myung, Kim, and Pitt.

    Science.gov (United States)

    Brown, Scott; Heathcote, Andrew

    2003-06-01

    Myung, Kim, and Pitt (2000) demonstrated that simple power functions almost always provide a better fit to purely random data than do simple exponential functions. This result has important implications, because it suggests that high noise levels, which are common in psychological experiments, may cause a bias favoring power functions. We replicate their result and extend it by showing strong bias for more realistic sample sizes. We also show that biases occur for data that contain both random and systematic components, as may be expected in real data. We then demonstrate that these biases disappear for two- or three-parameter functions that include linear parameters (in at least one parameterization). Our results suggest that one should exercise caution when proposing simple power and exponential functions as models of learning. More generally, our results suggest that linear parameters should be estimated rather than fixed when one is comparing the fit of nonlinear models to noisy data.

  15. An improved parameter estimation and comparison for soft tissue constitutive models containing an exponential function.

    Science.gov (United States)

    Aggarwal, Ankush

    2017-08-01

    Motivated by the well-known result that stiffness of soft tissue is proportional to the stress, many of the constitutive laws for soft tissues contain an exponential function. In this work, we analyze properties of the exponential function and how it affects the estimation and comparison of elastic parameters for soft tissues. In particular, we find that as a consequence of the exponential function there are lines of high covariance in the elastic parameter space. As a result, one can have widely varying mechanical parameters defining the tissue stiffness but similar effective stress-strain responses. Drawing from elementary algebra, we propose simple changes in the norm and the parameter space, which significantly improve the convergence of parameter estimation and robustness in the presence of noise. More importantly, we demonstrate that these changes improve the conditioning of the problem and provide a more robust solution in the case of heterogeneous material by reducing the chances of getting trapped in a local minima. Based upon the new insight, we also propose a transformed parameter space which will allow for rational parameter comparison and avoid misleading conclusions regarding soft tissue mechanics.

  16. Measurement of Material Functions in Extensional Flow Using the Filament Stretch Rheometer

    DEFF Research Database (Denmark)

    Rasmussen, Henrik K.; Nielsen, Jens Kromann; Laille, Philippe

    2007-01-01

    The measurement of material functions other than startup and steady viscosity is demonstrated using the Filament Stretching Rheometer. This includes startup of uniaxial elongational flow (potentially until steady state) followed by stress relaxation, large amplitude oscillatory elongational flow ...... imposed upon a constant strain rate uni axial elongation and startup of uniaxial elongational flow followed by biaxial squeezing. The used Filament Stretching Rheometer allows measurements on polymeric fluids (including polymeric melts) from room temperatures until 200°C....

  17. Methods for the analysis of complex fluorescence decays: sum of Becquerel functions versus sum of exponentials

    International Nuclear Information System (INIS)

    Menezes, Filipe; Fedorov, Alexander; Baleizão, Carlos; Berberan-Santos, Mário N; Valeur, Bernard

    2013-01-01

    Ensemble fluorescence decays are usually analyzed with a sum of exponentials. However, broad continuous distributions of lifetimes, either unimodal or multimodal, occur in many situations. A simple and flexible fitting function for these cases that encompasses the exponential is the Becquerel function. In this work, the applicability of the Becquerel function for the analysis of complex decays of several kinds is tested. For this purpose, decays of mixtures of four different fluorescence standards (binary, ternary and quaternary mixtures) are measured and analyzed. For binary and ternary mixtures, the expected sum of narrow distributions is well recovered from the Becquerel functions analysis, if the correct number of components is used. For ternary mixtures, however, satisfactory fits are also obtained with a number of Becquerel functions smaller than the true number of fluorophores in the mixture, at the expense of broadening the lifetime distributions of the fictitious components. The quaternary mixture studied is well fitted with both a sum of three exponentials and a sum of two Becquerel functions, showing the inevitable loss of information when the number of components is large. Decays of a fluorophore in a heterogeneous environment, known to be represented by unimodal and broad continuous distributions (as previously obtained by the maximum entropy method), are also measured and analyzed. It is concluded that these distributions can be recovered by the Becquerel function method with an accuracy similar to that of the much more complex maximum entropy method. It is also shown that the polar (or phasor) plot is not always helpful for ascertaining the degree (and kind) of complexity of a fluorescence decay. (paper)

  18. Rational quadratic trigonometric Bézier curve based on new basis with exponential functions

    Directory of Open Access Journals (Sweden)

    Wu Beibei

    2017-06-01

    Full Text Available We construct a rational quadratic trigonometric Bézier curve with four shape parameters by introducing two exponential functions into the trigonometric basis functions in this paper. It has the similar properties as the rational quadratic Bézier curve. For given control points, the shape of the curve can be flexibly adjusted by changing the shape parameters and the weight. Some conics can be exactly represented when the control points, the shape parameters and the weight are chosen appropriately. The C0, C1 and C2 continuous conditions for joining two constructed curves are discussed. Some examples are given.

  19. BAYESIAN ESTIMATION OF THE SHAPE PARAMETER OF THE GENERALISED EXPONENTIAL DISTRIBUTION UNDER DIFFERENT LOSS FUNCTIONS

    Directory of Open Access Journals (Sweden)

    SANKU DEY

    2010-11-01

    Full Text Available The generalized exponential (GE distribution proposed by Gupta and Kundu (1999 is an important lifetime distribution in survival analysis. In this article, we propose to obtain Bayes estimators and its associated risk based on a class of  non-informative prior under the assumption of three loss functions, namely, quadratic loss function (QLF, squared log-error loss function (SLELF and general entropy loss function (GELF. The motivation is to explore the most appropriate loss function among these three loss functions. The performances of the estimators are, therefore, compared on the basis of their risks obtained under QLF, SLELF and GELF separately. The relative efficiency of the estimators is also obtained. Finally, Monte Carlo simulations are performed to compare the performances of the Bayes estimates under different situations.

  20. Complete Monotonicity of a Difference Between the Exponential and Trigamma Functions and Properties Related to a Modified Bessel Function

    DEFF Research Database (Denmark)

    Qi, Feng; Berg, Christian

    2013-01-01

    In the paper, the authors find necessary and sufficient conditions for a difference between the exponential function αeβ/t, α, β > 0, and the trigamma function ψ (t) to be completely monotonic on (0,∞). While proving the complete onotonicity, the authors discover some properties related to the fi...... to the first order modified Bessel function of the first kind I1, including inequalities, monotonicity, unimodality, and convexity.......In the paper, the authors find necessary and sufficient conditions for a difference between the exponential function αeβ/t, α, β > 0, and the trigamma function ψ (t) to be completely monotonic on (0,∞). While proving the complete onotonicity, the authors discover some properties related...

  1. Integration of large chemical kinetic mechanisms via exponential methods with Krylov approximations to Jacobian matrix functions

    Science.gov (United States)

    Bisetti, Fabrizio

    2012-06-01

    Recent trends in hydrocarbon fuel research indicate that the number of species and reactions in chemical kinetic mechanisms is rapidly increasing in an effort to provide predictive capabilities for fuels of practical interest. In order to cope with the computational cost associated with the time integration of stiff, large chemical systems, a novel approach is proposed. The approach combines an exponential integrator and Krylov subspace approximations to the exponential function of the Jacobian matrix. The components of the approach are described in detail and applied to the ignition of stoichiometric methane-air and iso-octane-air mixtures, here described by two widely adopted chemical kinetic mechanisms. The approach is found to be robust even at relatively large time steps and the global error displays a nominal third-order convergence. The performance of the approach is improved by utilising an adaptive algorithm for the selection of the Krylov subspace size, which guarantees an approximation to the matrix exponential within user-defined error tolerance. The Krylov projection of the Jacobian matrix onto a low-dimensional space is interpreted as a local model reduction with a well-defined error control strategy. Finally, the performance of the approach is discussed with regard to the optimal selection of the parameters governing the accuracy of its individual components.

  2. Integration of large chemical kinetic mechanisms via exponential methods with Krylov approximations to Jacobian matrix functions

    KAUST Repository

    Bisetti, Fabrizio

    2012-06-01

    Recent trends in hydrocarbon fuel research indicate that the number of species and reactions in chemical kinetic mechanisms is rapidly increasing in an effort to provide predictive capabilities for fuels of practical interest. In order to cope with the computational cost associated with the time integration of stiff, large chemical systems, a novel approach is proposed. The approach combines an exponential integrator and Krylov subspace approximations to the exponential function of the Jacobian matrix. The components of the approach are described in detail and applied to the ignition of stoichiometric methane-air and iso-octane-air mixtures, here described by two widely adopted chemical kinetic mechanisms. The approach is found to be robust even at relatively large time steps and the global error displays a nominal third-order convergence. The performance of the approach is improved by utilising an adaptive algorithm for the selection of the Krylov subspace size, which guarantees an approximation to the matrix exponential within user-defined error tolerance. The Krylov projection of the Jacobian matrix onto a low-dimensional space is interpreted as a local model reduction with a well-defined error control strategy. Finally, the performance of the approach is discussed with regard to the optimal selection of the parameters governing the accuracy of its individual components. © 2012 Copyright Taylor and Francis Group, LLC.

  3. Stretching exercises enhance vascular endothelial function and improve peripheral circulation in patients with acute myocardial infarction.

    Science.gov (United States)

    Hotta, Kazuki; Kamiya, Kentaro; Shimizu, Ryosuke; Yokoyama, Misako; Nakamura-Ogura, Misao; Tabata, Minoru; Kamekawa, Daisuke; Akiyama, Ayako; Kato, Michitaka; Noda, Chiharu; Matsunaga, Atsuhiko; Masuda, Takashi

    2013-01-01

    The purpose of this study was to clarify the acute effects of a single session of stretching exercises on vascular endothelial function and peripheral circulation in patients with acute myocardial infarction. This study evaluated 32 patients (mean age, 66 ± 9 years) who received phase I cardiac rehabilitation after acute myocardial infarction. Five types of stretching exercises were performed on the floor: wrist dorsiflexion, close-legged trunk flexion, open-legged trunk flexion, open-legged lateral trunk bending, and cross-legged trunk flexion. Each exercise entailed a 30-second stretching followed by a 30-second relaxation, and was repeated twice. Low- and high-frequency components (LF and HF) of heart rate variability (LF, 0.04-0.15 Hz; HF, 0.15-0.40 Hz) were analyzed, and HF and LF/HF were used as indices of parasympathetic and sympathetic nervous activities, respectively. Reactive hyperemia peripheral arterial tonometry (RH-PAT) index was measured and used as a parameter for vascular endothelial function. Transcutaneous oxygen pressure (tcPO2) on the right foot and chest was also measured, and the Foot-tcPO2/Chest-tcPO2 ratio was used as a parameter for peripheral circulation. The HF, RH-PAT index, and Foot-tcPO2/Chest-tcPO2 ratio were significantly higher after the exercises than before (P after stretching exercises. These findings demonstrate that stretching exercises improve vascular endothelial function and peripheral circulation in patients with acute myocardial infarction.

  4. Three-Dimensional Dynamic Topology Optimization with Frequency Constraints Using Composite Exponential Function and ICM Method

    Directory of Open Access Journals (Sweden)

    Hongling Ye

    2015-01-01

    Full Text Available The dynamic topology optimization of three-dimensional continuum structures subject to frequency constraints is investigated using Independent Continuous Mapping (ICM design variable fields. The composite exponential function (CEF is selected to be a filter function which recognizes the design variables and to implement the changing process of design variables from “discrete” to “continuous” and back to “discrete.” Explicit formulations of frequency constraints are given based on filter functions, first-order Taylor series expansion. And an improved optimal model is formulated using CEF and the explicit frequency constraints. Dual sequential quadratic programming (DSQP algorithm is used to solve the optimal model. The program is developed on the platform of MSC Patran & Nastran. Finally, numerical examples are given to demonstrate the validity and applicability of the proposed method.

  5. Prolonged static stretching does not influence running economy despite changes in neuromuscular function.

    Science.gov (United States)

    Allison, Sarah J; Bailey, David M; Folland, Jonathan P

    2008-12-01

    The aim of this study was to examine the acute effects of prolonged static stretching (SS) on running economy. Ten male runners (VO2(peak) 60.1 +/- 7.3 ml x kg(-1) x min(-1)) performed 10 min of treadmill running at 70% VO2(peak) before and after SS and no stretching interventions. For the stretching intervention, each leg was stretched unilaterally for 40 s with each of eight different exercises and this was repeated three times. Respiratory gas exchange was measured throughout the running exercise with an automated gas analysis system. On a separate day, participants were tested for sit and reach range of motion, isometric strength and countermovement jump height before and after SS. The oxygen uptake, minute ventilation, energy expenditure, respiratory exchange ratio and heart rate responses to running were unaffected by the stretching intervention. This was despite a significant effect of SS on neuromuscular function (sit and reach range of motion, +2.7 +/- 0.6 cm; isometric strength, -5.6% +/- 3.4%; countermovement jump height -5.5% +/- 3.4%; all P economy despite changes in neuromuscular function.

  6. Thermal analysis of laser interstitial thermotherapy in ex vivo fibro-fatty tissue using exponential functions

    Energy Technology Data Exchange (ETDEWEB)

    Salas, Nelson Jr. [Biomedical Optics and Laser Laboratory, Department of Biomedical Engineering, University of Miami College of Engineering, PO Box 248294, Coral Gables, FL 33124 (United States); Manns, Fabrice [Biomedical Optics and Laser Laboratory, Department of Biomedical Engineering, University of Miami College of Engineering, PO Box 248294, Coral Gables, FL 33124 (United States); Milne, Peter J [Ophthalmic Biophysics Center, Bascom Palmer Eye Institute, University of Miami School of Medicine, 1638 NW 10th Ave, McKnight Bldg, Miami, FL 33136 (United States); Denham, David B [Ophthalmic Biophysics Center, Bascom Palmer Eye Institute, University of Miami School of Medicine, 1638 NW 10th Ave, McKnight Bldg, Miami, FL 33136 (United States); Minhaj, Ahmed M [Biomedical Optics and Laser Laboratory, Department of Biomedical Engineering, University of Miami College of Engineering, PO Box 248294, Coral Gables, FL 33124 (United States); Parel, Jean-Marie [Biomedical Optics and Laser Laboratory, Department of Biomedical Engineering, University of Miami College of Engineering, PO Box 248294, Coral Gables, FL 33124 (United States); Robinson, David S [Center for Breast Care, St Luke' s Hospital of Kansas City, 4400 Broadway, Suite 509, Kansas City, MO 64111 (United States)

    2004-05-07

    A therapeutic procedure to treat small, surface breast tumours up to 10 mm in radius plus a 5 mm margin of healthy, surrounding tissue using laser interstitial thermotherapy (LITT) is currently being investigated. The purpose of this study is to analyse and model the thermal and coagulative response of ex vivo fibro-fatty tissue, a model for breast tissue, during experimental laser interstitial thermotherapy at 980 nm. Laser radiation at 980 nm was delivered interstitially through a diffusing tip optical fibre inserted into a fibro-fatty tissue model to produce controlled heating at powers ranging from 3.2 to 8.0 W. Tissue temperature was measured with thermocouples placed at 15 positions around the fibre. The induced coagulation zone was measured on gross anatomical sections. Thermal analysis indicates that a finite sum of exponential functions is an approximate solution to the heat conduction equation that more accurately predicts the time-temperature dependence in tissue prior to carbonization (T < 100 deg. C) during LITT than the traditional model using a single exponential function. Analysis of the ellipsoid coagulation volume induced in tissue indicates that the 980 nm wavelength does not penetrate deep enough in fibro-fatty tissue to produce a desired 30 mm diameter (14.1 x 10{sup 3} mm{sup 3}) coagulation volume without unwanted tissue liquefaction and carbonization.

  7. The distance-decay function of geographical gravity model: Power law or exponential law?

    International Nuclear Information System (INIS)

    Chen, Yanguang

    2015-01-01

    Highlights: •The distance-decay exponent of the gravity model is a fractal dimension. •Entropy maximization accounts for the gravity model based on power law decay. •Allometric scaling relations relate gravity models with spatial interaction models. •The four-parameter gravity models have dual mathematical expressions. •The inverse power law is the most probable distance-decay function. -- Abstract: The distance-decay function of the geographical gravity model is originally an inverse power law, which suggests a scaling process in spatial interaction. However, the distance exponent of the model cannot be reasonably explained with the ideas from Euclidean geometry. This results in a dimension dilemma in geographical analysis. Consequently, a negative exponential function was used to replace the inverse power function to serve for a distance-decay function. But a new puzzle arose that the exponential-based gravity model goes against the first law of geography. This paper is devoted for solving these kinds of problems by mathematical reasoning and empirical analysis. New findings are as follows. First, the distance exponent of the gravity model is demonstrated to be a fractal dimension using the geometric measure relation. Second, the similarities and differences between the gravity models and spatial interaction models are revealed using allometric relations. Third, a four-parameter gravity model possesses a symmetrical expression, and we need dual gravity models to describe spatial flows. The observational data of China's cities and regions (29 elements indicative of 841 data points) in 2010 are employed to verify the theoretical inferences. A conclusion can be reached that the geographical gravity model based on power-law decay is more suitable for analyzing large, complex, and scale-free regional and urban systems. This study lends further support to the suggestion that the underlying rationale of fractal structure is entropy maximization. Moreover

  8. Action of the complex Monge-Ampère operator on piecewise-linear functions and exponential tropical varieties

    International Nuclear Information System (INIS)

    Kazarnovskii, B Ya

    2014-01-01

    We consider exponential tropical varieties, which appear as analogues of algebraic tropical varieties when we pass from algebraic varieties to varieties given by zero sets of systems of exponential sums. We describe a construction of exponential tropical varieties arising from the action of the complex Monge-Ampère operator on piecewise-linear functions and show that every such variety can be obtained in this way. As an application, we deduce a criterion for the vanishing of the value of the mixed Monge-Ampère operator. This is an analogue and generalization of the criterion for the vanishing of the mixed volume of convex bodies

  9. Functional Stretching Exercise Submitted for Spastic Diplegic Children: A Randomized Control Study

    Directory of Open Access Journals (Sweden)

    Mohamed Ali Elshafey

    2014-01-01

    Full Text Available Objective. Studying the effect of the functional stretching exercise in diplegic children. Design. Children were randomly assigned into two matched groups. Setting. Outpatient Clinic of the Faculty of Physical Therapy, Cairo University. Participants. Thirty ambulant spastic diplegic children, ranging in age from five to eight years, participated in this study. Interventions. The control group received physical therapy program with traditional passive stretching exercises. The study group received physical therapy program with functional stretching exercises. The treatment was performed for two hours per session, three times weekly for three successive months. Main Outcome Measure(s. H∖M ratio, popliteal angle, and gait parameters were evaluated for both groups before and after treatment. Results. There was significant improvement in all the measuring variables for both groups in favor of study group. H∖M ratio was reduced, popliteal angle was increased, and gait was improved. Conclusion(s. Functional stretching exercises were effectively used in rehabilitation of spastic diplegic children; it reduced H∖M ratio, increased popliteal angle, and improved gait.

  10. A new modification in the exponential rational function method for nonlinear fractional differential equations

    Science.gov (United States)

    Ahmed, Naveed; Bibi, Sadaf; Khan, Umar; Mohyud-Din, Syed Tauseef

    2018-02-01

    We have modified the traditional exponential rational function method (ERFM) and have used it to find the exact solutions of two different fractional partial differential equations, one is the time fractional Boussinesq equation and the other is the (2+1)-dimensional time fractional Zoomeron equation. In both the cases it is observed that the modified scheme provides more types of solutions than the traditional one. Moreover, a comparison of the recent solutions is made with some already existing solutions. We can confidently conclude that the modified scheme works better and provides more types of solutions with almost similar computational cost. Our generalized solutions include periodic, soliton-like, singular soliton and kink solutions. A graphical simulation of all types of solutions is provided and the correctness of the solution is verified by direct substitution. The extended version of the solutions is expected to provide more flexibility to scientists working in the relevant field to test their simulation data.

  11. Acute effects of static stretching on peak and end-range hamstring-to-quadriceps functional ratios.

    Science.gov (United States)

    Sekir, Ufuk; Arabaci, Ramiz; Akova, Bedrettin

    2015-10-18

    To evaluate if static stretching influences peak and end-range functional hamstring-to-quadriceps (H/Q) strength ratios in elite women athletes. Eleven healthy female athletes in an elite competitive level participated to the study. All the participants fulfilled the static stretching or non-stretching (control) intervention protocol in a randomized design on different days. Two static unassisted stretching exercises, one in standing and one in sitting position, were used to stretch both the hamstring and quadriceps muscles during these protocols. The total time for the static stretching was 6 ± 1 min. The isokinetic peak torque measurements for the hamstring and quadriceps muscles in eccentric and concentric modes and the calculations for the functional H/Q strength ratios at angular velocities of 60°/s and 180°/s were made before (pre) and after (post) the control or stretching intervention. The strength measurements and functional strength ratio calculations were based during the entire- and end-range of knee extension. The pre-test scores for quadriceps and hamstring peak torque and end range values were not significantly different between the groups (P > 0.05). Subsequently, although the control group did not exhibit significant changes in quadriceps and hamstring muscle strength (P > 0.05), static stretching decreased eccentric and concentric quadriceps muscle strength at both the 60°/s and 180°/s test speeds (P static stretching also decreased eccentric and concentric hamstring muscle strength at both the 60°/s and 180°/s test speeds (P 0.05). Furthermore, the functional H/Q strength ratios exhibited no significant alterations during the entire and end ranges of knee extension both in the static stretching or the control intervention (P > 0.05). According to our results, static stretching routine does not influence functional H/Q ratio. Athletes can confidently perform static stretching during their warm-up routines.

  12. Evaluation of a static stretching intervention on vascular endothelial function and arterial stiffness.

    Science.gov (United States)

    Shinno, Hiromi; Kurose, Satoshi; Yamanaka, Yutaka; Higurashi, Kyoko; Fukushima, Yaeko; Tsutsumi, Hiromi; Kimura, Yutaka

    2017-06-01

    Maintenance and enhancement of vascular endothelial function contribute to the prevention of cardiovascular disease and prolong a healthy life expectancy. Given the reversible nature of vascular endothelial function, interventions to improve this function might prevent arteriosclerosis. Accordingly, we studied the effects of a 6-month static stretching intervention on vascular endothelial function (reactive hyperaemia peripheral arterial tonometry index: RH-PAT index) and arterial stiffness (brachial-ankle pulse wave velocity: baPWV) and investigated the reversibility of these effects after a 6-month detraining period following intervention completion. The study evaluated 22 healthy, non-smoking, premenopausal women aged ≥40 years. Subjects were randomly assigned to the full-intervention (n = 11; mean age: 48.6 ± 2.8 years) or a half-intervention that included a control period (n = 11; mean age: 46.9 ± 3.6 years). Body flexibility and vascular endothelial function improved significantly after 3 months of static stretching. In addition to these improvements, arterial stiffness improved significantly after a 6-month intervention. However, after a 6-month detraining period, vascular endothelial function, flexibility, and arterial stiffness all returned to preintervention conditions, demonstrating the reversibility of the obtained effects. A 3-month static stretching intervention was found to improve vascular endothelial function, and an additional 3-month intervention also improved arterial stiffness. However, these effects were reversed by detraining.

  13. Code REX to fit experimental data to exponential functions and graphics plotting

    International Nuclear Information System (INIS)

    Romero, L.; Travesi, A.

    1983-01-01

    The REX code, written in Fortran IV, performs the fitting a set of experimental data to different kind of functions as: straight-line (Y = A + BX) , and various exponential type (Y-A B x , Y=A X B ; Y=A exp(BX) ) , using the Least Squares criterion. Such fitting could be done directly for one selected function of for the our simultaneously and allows to chose the function that best fitting to the data, since presents the statistics data of all the fitting. Further, it presents the graphics plotting, of the fitted function, in the appropriate coordinate axes system. An additional option allows also the Graphic plotting of experimental data used for the fitting. All the data necessary to execute this code are asked to the operator in the terminal screen, in the iterative way by screen-operator dialogue, and the values are introduced through the keyboard. This code could be executed with any computer provided with graphic screen and keyboard terminal, with a X-Y plotter serial connected to the graphics terminal. (Author) 5 refs

  14. A New Modified Artificial Bee Colony Algorithm with Exponential Function Adaptive Steps

    Science.gov (United States)

    Mao, Wei; Li, Hao-ru

    2016-01-01

    As one of the most recent popular swarm intelligence techniques, artificial bee colony algorithm is poor at exploitation and has some defects such as slow search speed, poor population diversity, the stagnation in the working process, and being trapped into the local optimal solution. The purpose of this paper is to develop a new modified artificial bee colony algorithm in view of the initial population structure, subpopulation groups, step updating, and population elimination. Further, depending on opposition-based learning theory and the new modified algorithms, an improved S-type grouping method is proposed and the original way of roulette wheel selection is substituted through sensitivity-pheromone way. Then, an adaptive step with exponential functions is designed for replacing the original random step. Finally, based on the new test function versions CEC13, six benchmark functions with the dimensions D = 20 and D = 40 are chosen and applied in the experiments for analyzing and comparing the iteration speed and accuracy of the new modified algorithms. The experimental results show that the new modified algorithm has faster and more stable searching and can quickly increase poor population diversity and bring out the global optimal solutions. PMID:27293426

  15. A New Modified Artificial Bee Colony Algorithm with Exponential Function Adaptive Steps.

    Science.gov (United States)

    Mao, Wei; Lan, Heng-You; Li, Hao-Ru

    2016-01-01

    As one of the most recent popular swarm intelligence techniques, artificial bee colony algorithm is poor at exploitation and has some defects such as slow search speed, poor population diversity, the stagnation in the working process, and being trapped into the local optimal solution. The purpose of this paper is to develop a new modified artificial bee colony algorithm in view of the initial population structure, subpopulation groups, step updating, and population elimination. Further, depending on opposition-based learning theory and the new modified algorithms, an improved S-type grouping method is proposed and the original way of roulette wheel selection is substituted through sensitivity-pheromone way. Then, an adaptive step with exponential functions is designed for replacing the original random step. Finally, based on the new test function versions CEC13, six benchmark functions with the dimensions D = 20 and D = 40 are chosen and applied in the experiments for analyzing and comparing the iteration speed and accuracy of the new modified algorithms. The experimental results show that the new modified algorithm has faster and more stable searching and can quickly increase poor population diversity and bring out the global optimal solutions.

  16. A New Modified Artificial Bee Colony Algorithm with Exponential Function Adaptive Steps

    Directory of Open Access Journals (Sweden)

    Wei Mao

    2016-01-01

    Full Text Available As one of the most recent popular swarm intelligence techniques, artificial bee colony algorithm is poor at exploitation and has some defects such as slow search speed, poor population diversity, the stagnation in the working process, and being trapped into the local optimal solution. The purpose of this paper is to develop a new modified artificial bee colony algorithm in view of the initial population structure, subpopulation groups, step updating, and population elimination. Further, depending on opposition-based learning theory and the new modified algorithms, an improved S-type grouping method is proposed and the original way of roulette wheel selection is substituted through sensitivity-pheromone way. Then, an adaptive step with exponential functions is designed for replacing the original random step. Finally, based on the new test function versions CEC13, six benchmark functions with the dimensions D=20 and D=40 are chosen and applied in the experiments for analyzing and comparing the iteration speed and accuracy of the new modified algorithms. The experimental results show that the new modified algorithm has faster and more stable searching and can quickly increase poor population diversity and bring out the global optimal solutions.

  17. Acute effects of static stretching on peak and end-range hamstring-to-quadriceps functional ratios

    Science.gov (United States)

    Sekir, Ufuk; Arabaci, Ramiz; Akova, Bedrettin

    2015-01-01

    AIM: To evaluate if static stretching influences peak and end-range functional hamstring-to-quadriceps (H/Q) strength ratios in elite women athletes. METHODS: Eleven healthy female athletes in an elite competitive level participated to the study. All the participants fulfilled the static stretching or non-stretching (control) intervention protocol in a randomized design on different days. Two static unassisted stretching exercises, one in standing and one in sitting position, were used to stretch both the hamstring and quadriceps muscles during these protocols. The total time for the static stretching was 6 ± 1 min. The isokinetic peak torque measurements for the hamstring and quadriceps muscles in eccentric and concentric modes and the calculations for the functional H/Q strength ratios at angular velocities of 60°/s and 180°/s were made before (pre) and after (post) the control or stretching intervention. The strength measurements and functional strength ratio calculations were based during the entire- and end-range of knee extension. RESULTS: The pre-test scores for quadriceps and hamstring peak torque and end range values were not significantly different between the groups (P > 0.05). Subsequently, although the control group did not exhibit significant changes in quadriceps and hamstring muscle strength (P > 0.05), static stretching decreased eccentric and concentric quadriceps muscle strength at both the 60°/s and 180°/s test speeds (P hamstring muscle strength at both the 60°/s and 180°/s test speeds (P 0.05). Furthermore, the functional H/Q strength ratios exhibited no significant alterations during the entire and end ranges of knee extension both in the static stretching or the control intervention (P > 0.05). CONCLUSION: According to our results, static stretching routine does not influence functional H/Q ratio. Athletes can confidently perform static stretching during their warm-up routines. PMID:26495249

  18. Exponential growth and Gaussian-like fluctuations of solutions of stochastic differential equations with maximum functionals

    International Nuclear Information System (INIS)

    Appleby, J A D; Wu, H

    2008-01-01

    In this paper we consider functional differential equations subjected to either instantaneous state-dependent noise, or to a white noise perturbation. The drift of the equations depend linearly on the current value and on the maximum of the solution. The functional term always provides positive feedback, while the instantaneous term can be mean-reverting or can exhibit positive feedback. We show in the white noise case that if the instantaneous term is mean reverting and dominates the history term, then solutions are recurrent, and upper bounds on the a.s. growth rate of the partial maxima of the solution can be found. When the instantaneous term is weaker, or is of positive feedback type, we determine necessary and sufficient conditions on the diffusion coefficient which ensure the exact exponential growth of solutions. An application of these results to an inefficient financial market populated by reference traders and speculators is given, in which the difference between the current instantaneous returns and maximum of the returns over the last few time units is used to determine trading strategies.

  19. On the absolute stability regions corresponding to partial sums of the exponential function

    KAUST Repository

    Ketcheson, David I.

    2013-12-03

    Certain numerical methods for initial value problems have as stability function the nth partial sum of the exponential function. We study the stability region, i.e., the set in the complex plane over which the nth partial sum has at most unit modulus. It is known that the asymptotic shape of the part of the stability region in the left half-plane is a semi-disk. We quantify this by providing disks that enclose or are enclosed by the stability region or its left half-plane part. The radius of the smallest disk centered at the origin that contains the stability region (or its portion in the left half-plane) is determined for 1 n 20. Bounds on such radii are proved for n 2; these bounds are shown to be optimal in the limit n ! +1. We prove that the stability region and its complement, restricted to the imaginary axis, consist of alternating intervals of length tending to , as n ! 1. Finally, we prove that a semi-disk in the left half-plane with vertical boundary being the imaginary axis and centered at the origin is included in the stability region if and only if n 0 mod 4 or n 3 mod 4. The maximal radii of such semi-disks are exactly determined for 1 n 20.

  20. Directing Spinal Cord Plasticity: The Impact of Stretch Therapy on Functional Recovery after Spinal Cord Injury

    Science.gov (United States)

    2015-10-01

    particular if we find that it is distinct from other kinds of activity like stepping or swimming . This data is currently being analyzed and there are no...amplitude. Thus study involved a group of 8 rats. Figure 3. Shown are Open Field Locomotor Scores for hindlimb function during overground locomotion ... locomotion for animals with 25g-cm (moderately-severe) injuries at the T10 level. These animals received our tonic stretch and hold pattern daily starting

  1. Stretched hydrogen molecule from a constrained-search density-functional perspective

    Energy Technology Data Exchange (ETDEWEB)

    Valone, Steven M [Los Alamos National Laboratory; Levy, Mel [DIKE UNIV.

    2009-01-01

    Constrained-search density functional theory gives valuable insights into the fundamentals of density functional theory. It provides exact results and bounds on the ground- and excited-state density functionals. An important advantage of the theory is that it gives guidance in the construction of functionals. Here they engage constrained search theory to explore issues associated with the functional behavior of 'stretched bonds' in molecular hydrogen. A constrained search is performed with familiar valence bond wavefunctions ordinarily used to describe molecular hydrogen. The effective, one-electron hamiltonian is computed and compared to the corresponding uncorrelated, Hartree-Fock effective hamiltonian. Analysis of the functional suggests the need to construct different functionals for the same density and to allow a competition among these functions. As a result the correlation energy functional is composed explicitly of energy gaps from the different functionals.

  2. Thermal analysis of laser interstitial thermotherapy in ex vivo fibro-fatty tissue using exponential functions

    International Nuclear Information System (INIS)

    Salas, Nelson Jr.; Manns, Fabrice; Milne, Peter J; Denham, David B; Minhaj, Ahmed M; Parel, Jean-Marie; Robinson, David S

    2004-01-01

    A therapeutic procedure to treat small, surface breast tumours up to 10 mm in radius plus a 5 mm margin of healthy, surrounding tissue using laser interstitial thermotherapy (LITT) is currently being investigated. The purpose of this study is to analyse and model the thermal and coagulative response of ex vivo fibro-fatty tissue, a model for breast tissue, during experimental laser interstitial thermotherapy at 980 nm. Laser radiation at 980 nm was delivered interstitially through a diffusing tip optical fibre inserted into a fibro-fatty tissue model to produce controlled heating at powers ranging from 3.2 to 8.0 W. Tissue temperature was measured with thermocouples placed at 15 positions around the fibre. The induced coagulation zone was measured on gross anatomical sections. Thermal analysis indicates that a finite sum of exponential functions is an approximate solution to the heat conduction equation that more accurately predicts the time-temperature dependence in tissue prior to carbonization (T 3 mm 3 ) coagulation volume without unwanted tissue liquefaction and carbonization

  3. The Logarithmic Potential and an Exponential Mass Function for Elementary Particles

    Directory of Open Access Journals (Sweden)

    Paasch K.

    2009-01-01

    Full Text Available The assumption that elementary particles with nonzero rest mass consist of relativistic constituents moving with constant energy, pc, results in a logarithmic potential and exponential expression for particle masses. This approach is put to a test by assigning each elementary particles mass a position on a logarithmic spiral. Particles then accumulate on straight lines. It is discussed if this might be an indication for exponential mass quantization.

  4. Effect of stretching and proprioceptive loading in hand function among patients with cerebellar tremor

    Directory of Open Access Journals (Sweden)

    Hariharasudhan Ravichandran

    2016-01-01

    Full Text Available Background and Objective: Tremor, the most common form of abnormal involuntary movement, affects the performance of activities of daily living. Evidence on effective form of physiotherapy techniques which can help manage intentional tremor and improve hand function among cerebellar dysfunction patients in inconclusive. Hence, this study aims to establish the effectiveness of stretching and proprioceptive loading among cerebellar patients with intentional tremors. The objective of this study is to compare the efficacy of stretching and proprioceptive loading among patients with cerebellar intention tremor. Materials and Methods: A total of thirty patients with intention tremor due to cerebellar lesion were recruited for this study. They were randomized into two groups, Group I received stretching exercise and Group II received proprioceptive loading exercise. Pre- and post-test outcome measures were taken at the end of duration of 3 weeks intervention. Outcome measures were Fahn's tremor rating scale and nine hole peg test. Results: Statistical analyses were done by McNemar test, Wilcoxon's signed rank test, and Mann–Whitney test. Post-test scores of both groups were compared and found that Group II treated with proprioceptive loading exercise had higher significant result than the group treated with strengthening exercise program. Conclusion: Proprioceptive loading exercise has demonstrated signifi cant effect on reducing cerebellar tremor and improving muscle coordination in reaching activities.

  5. Time-domain full waveform inversion of exponentially damped wavefield using the deconvolution-based objective function

    KAUST Repository

    Choi, Yun Seok

    2017-11-15

    Full waveform inversion (FWI) suffers from the cycle-skipping problem when the available frequency-band of data is not low enough. We apply an exponential damping to the data to generate artificial low frequencies, which helps FWI avoid cycle skipping. In this case, the least-square misfit function does not properly deal with the exponentially damped wavefield in FWI, because the amplitude of traces decays almost exponentially with increasing offset in a damped wavefield. Thus, we use a deconvolution-based objective function for FWI of the exponentially damped wavefield. The deconvolution filter includes inherently a normalization between the modeled and observed data, thus it can address the unbalanced amplitude of a damped wavefield. We, specifically, normalize the modeled data with the observed data in the frequency-domain to estimate the deconvolution filter and selectively choose a frequency-band for normalization that mainly includes the artificial low frequencies. We calculate the gradient of the objective function using the adjoint-state method. The synthetic and benchmark data examples show that our FWI algorithm generates a convergent long wavelength structure without low frequency information in the recorded data.

  6. Simultaneous determination of exponential background and Gaussian peak functions in gamma ray scintillation spectrometers by maximum likelihood technique

    International Nuclear Information System (INIS)

    Eisler, P.; Youl, S.; Lwin, T.; Nelson, G.

    1983-01-01

    Simultaneous fitting of peaks and background functions from gamma-ray spectrometry using multichannel pulse height analysis is considered. The specific case of Gaussian peak and exponential background is treated in detail with respect to simultaneous estimation of both functions by using a technique which incorporates maximum likelihood method as well as a graphical method. Theoretical expressions for the standard errors of the estimates are also obtained. The technique is demonstrated for two experimental data sets. (orig.)

  7. Realistic searches on stretched exponential networks

    Indian Academy of Sciences (India)

    www.ias.ac.in/article/fulltext/pram/071/02/0313-0317. Keywords. Small world effect; dynamic paths; social distances. Abstract. We consider navigation or search schemes on networks which have a degree distribution of the form () ∝ exp(−).

  8. Realistic searches on stretched exponential networks

    Indian Academy of Sciences (India)

    We consider navigation or search schemes on networks which have a degree distribution of the form () ∝ exp(−). In addition, the linking probability is taken to be dependent on social distances and is governed by a parameter . The searches are realistic in the sense that not all search chains can be completed.

  9. Realistic searches on stretched exponential networks

    Indian Academy of Sciences (India)

    simulations on real networks [7–9] have been made also. In these studies, one is interested in the length of the dynamic paths, i.e., the number of steps actually taken to transmit a message or signal to another node. In the real experiments, this is done by fixing a target node and randomly selecting source nodes. The.

  10. Effect of different stretching volumes on functional capacity in elderly women

    Directory of Open Access Journals (Sweden)

    Luiza Herminia Gallo

    2013-01-01

    Full Text Available DOI: http://dx.doi.org/10.5007/1980-0037.2013v15n1p103 The study aimed to analyze the effect of two different durations of stretching exercises, 90 or 180 seconds, on the functional capacity (FC of elderly women. Forty-three older women were assigned into three groups: inactive Control Group (CG, n. = 14, Training Group with three sets of 30 seconds (TG90, n. = 15 and Training Group with three sets of 60 seconds (TG180, n = 14. The TG90 and TG180 groups attended the university for 16 weeks, three times a week. The training protocol consisted of seven different static stretching exercises, performed in an active way. The CG attended the university only in periods of evaluations. Evaluations of the FC components and the Global Functional Fitness Index (GFFI, from the three groups, were both conducted before, and after 8 and 16 weeks of experiment, using a motor tests battery. The two-way ANOVA showed significant group x time interaction for the components flexibility, muscle strength and aerobic endurance, and for the GFFI values (p <0.05. The Scheffé post hoc test pointed difference between the two training groups and the CG, with no difference between TF90 and TG180. There was also improvement in the general classification of GFFI for the TG90 and TG180, which went from “fair” to “good”, while CG remained classified as “fair.” It was concluded that the two durations of stretching exercises were equally effective in improving flexibility, muscle strength, aerobic endurance and levels of FC in elderly women.

  11. Effects of a short proprioceptive neuromuscular facilitation stretching bout on quadriceps neuromuscular function, flexibility, and vertical jump performance.

    Science.gov (United States)

    Place, Nicolas; Blum, Yannick; Armand, Stéphane; Maffiuletti, Nicola A; Behm, David G

    2013-02-01

    The inclusion of relatively long bouts of stretching (repeated static stretches of ∼30 seconds) in the warm-up is usually associated with a drop in muscle performance. The purpose of this study was to assess the effect of a novel self-administered proprioceptive neuromuscular facilitation (PNF) paradigm with short periods of stretching and contraction on quadriceps neuromuscular function, vertical jump performance, and articular range of motion (ROM). Twelve healthy men (age: 27.7 ± 7.3 years, height: 178.4 ± 10.4 cm, weight: 73.8 ± 16.9 kg) volunteered to participate in a PNF session and a control session separated by 2-7 days. The PNF stretching lasted 2 minutes and consisted of 4 sets of 5-second isometric hamstring contraction immediately followed by 5 seconds of passive static stretch of the quadriceps immediately followed by 5 seconds isometric quadriceps contraction for each leg. For the control session, the participants were asked to walk at a comfortable speed for 2 minutes. Active ROM of knee flexion, vertical jump performance, and quadriceps neuromuscular function were tested before, immediately after, and 15 minutes after the intervention. The PNF stretching procedure did not affect ROM, squat jump, and countermovement jump performances. Accordingly, we did not observe any change in maximal voluntary contraction force, voluntary activation level, M-wave and twitch contractile properties that could be attributed to PNF stretching. The present self-administered PNF stretching of the quadriceps with short (5-second) stretches is not recommended before sports where flexibility is mandatory for performance.

  12. Acute effects of static stretching on peak torque and the hamstrings-to-quadriceps conventional and functional ratios.

    Science.gov (United States)

    Costa, P B; Ryan, E D; Herda, T J; Walter, A A; Defreitas, J M; Stout, J R; Cramer, J T

    2013-02-01

    Recent evidence has shown acute static stretching may decrease hamstring-to-quadriceps (H:Q) ratios. However, the effects of static stretching on the functional H:Q ratio, which uses eccentric hamstrings muscle actions, have not been investigated. This study examined the acute effects of hamstrings and quadriceps static stretching on leg extensor and flexor concentric peak torque (PT), leg flexor eccentric PT, and the conventional and functional H:Q ratios. Twenty-two women (mean ± SD age=20.6 ± 1.9 years; body mass=64.6 ± 9.1 kg; height=164.5 ± 6.4 cm) performed three maximal voluntary unilateral isokinetic leg extension, flexion, and eccentric hamstring muscle actions at the angular velocities of 60 and 180°/s before and after a bout of hamstrings, quadriceps, and combined hamstrings and quadriceps static stretching, and a control condition. Two-way repeated measures ANOVAs (time × condition) were used to analyze the leg extension, flexion, and eccentric PT as well as the conventional and functional H:Q ratios. Results indicated that when collapsed across velocity, hamstrings-only stretching decreased the conventional ratios (PQuadriceps-only and hamstrings and quadriceps stretching decreased the functional ratios (Pratios. © 2011 John Wiley & Sons A/S.

  13. Directing Spinal Cord Plasticity: The Impact of Stretch Therapy on Functional Recovery after Spinal Cord Injury

    Science.gov (United States)

    2013-10-01

    weight. 15. SUBJECT TERMS Spinal cord injury, stretching, physical therapy , rehabilitation, locomotor recovery 16. SECURITY CLASSIFICATION OF...David S. K. Magnuson, PhD. University of Louisville. Introduction: This research focuses on the impact of stretching ( physical therapy maneuvers...lesions. Physical therapists use stretching maneuvers to maintain extensibility of soft tissues and to manage spasticity . Previous studies in our lab

  14. The effects of stretching and stabilization exercise on the improvement of spastic shoulder function in hemiplegic patients.

    Science.gov (United States)

    You, Young Youl; Her, Jin Gang; Woo, Ji-Hea; Ko, Taesung; Chung, Sin Ho

    2014-04-01

    [Purpose] This study investigated the effects of stretching and joint stabilization exercises applied to spastic shoulder joints on improving shoulder dysfunction in hemiplegic patients. [Subjects and Methods] Hemiplegic patients were classified into three groups: one group received 30 min of traditional exercise therapy for the spastic shoulder joint; one group received 30 min stretching; and one group received 15 min of stretching and 15 min of joint stabilization exercises. The exercises were performed once a day, five times per week for eight weeks. Changes in the pathologic thickness of tendons and recovery of shoulder function were compared among the three groups. Differences among the three groups before the experiment, at four weeks, and at eight weeks were analyzed using repeated measures ANOVA. [Results] The stretching and joint stabilization exercise therapy group showed greater improvement in shoulder function than the traditional exercise therapy group and the stretching only group. This group also showed greater decreases in the pathologic thickness of tendons, than the other groups. [Conclusion] This study demonstrated that an exercise therapy program that combined stretching and joint stabilization exercise was more effective than other exercises for improvement of spastic shoulder joint dysfunction in hemiplegic patients.

  15. Mean Excess Function as a method of identifying sub-exponential tails: Application to extreme daily rainfall

    Science.gov (United States)

    Nerantzaki, Sofia; Papalexiou, Simon Michael

    2017-04-01

    Identifying precisely the distribution tail of a geophysical variable is tough, or, even impossible. First, the tail is the part of the distribution for which we have the less empirical information available; second, a universally accepted definition of tail does not and cannot exist; and third, a tail may change over time due to long-term changes. Unfortunately, the tail is the most important part of the distribution as it dictates the estimates of exceedance probabilities or return periods. Fortunately, based on their tail behavior, probability distributions can be generally categorized into two major families, i.e., sub-exponentials (heavy-tailed) and hyper-exponentials (light-tailed). This study aims to update the Mean Excess Function (MEF), providing a useful tool in order to asses which type of tail better describes empirical data. The MEF is based on the mean value of a variable over a threshold and results in a zero slope regression line when applied for the Exponential distribution. Here, we construct slope confidence intervals for the Exponential distribution as functions of sample size. The validation of the method using Monte Carlo techniques on four theoretical distributions covering major tail cases (Pareto type II, Log-normal, Weibull and Gamma) revealed that it performs well especially for large samples. Finally, the method is used to investigate the behavior of daily rainfall extremes; thousands of rainfall records were examined, from all over the world and with sample size over 100 years, revealing that heavy-tailed distributions can describe more accurately rainfall extremes.

  16. An Unusual Exponential Graph

    Science.gov (United States)

    Syed, M. Qasim; Lovatt, Ian

    2014-01-01

    This paper is an addition to the series of papers on the exponential function begun by Albert Bartlett. In particular, we ask how the graph of the exponential function y = e[superscript -t/t] would appear if y were plotted versus ln t rather than the normal practice of plotting ln y versus t. In answering this question, we find a new way to…

  17. Acute effects of passive stretching of the plantarflexor muscles on neuromuscular function: the influence of age.

    Science.gov (United States)

    Ryan, Eric D; Herda, Trent J; Costa, Pablo B; Herda, Ashley A; Cramer, Joel T

    2014-01-01

    The acute effects of stretching on peak force (Fpeak), percent voluntary activation (%VA), electromyographic (EMG) amplitude, maximum range of motion (MROM), peak passive torque, the passive resistance to stretch, and the percentage of ROM at EMG onset (%EMGonset) were examined in 18 young and 19 old men. Participants performed a MROM assessment and a maximal voluntary contraction of the plantarflexors before and immediately after 20 min of passive stretching. Fpeak (-11 %), %VA (-6 %), and MG EMG amplitude (-9 %) decreased after stretching in the young, but not the old (P > 0.05). Changes in Fpeak were related to reductions in all muscle activation variables (r = 0.56-0.75), but unrelated to changes in the passive resistance to stretch (P ≥ 0.24). Both groups experienced increases in MROM and peak passive torque and decreases in the passive resistance to stretch. However, the old men experienced greater changes in MROM (P stretching for both groups (P = 0.213), but occurred earlier in the old (P = 0.06). The stretching-induced impairments in strength and activation in the young but not the old men may suggest that the neural impairments following stretching are gamma-loop-mediated. In addition, the augmented changes in MROM and passive torque and the lack of change in %EMGonset for the old men may be a result of age-related changes in muscle-tendon behavior.

  18. Exponential Expansion in Evolutionary Economics

    DEFF Research Database (Denmark)

    Frederiksen, Peter; Jagtfelt, Tue

    2013-01-01

    to this problem is proposed in the form of a model of exponential expansion. The model outlines the overall structure and function of the economy as exponential expansion. The pictographic model describes four axiomatic concepts and their exponential nature. The interactive, directional, emerging and expanding...

  19. Genetic algorithm based hybrid approach to solve fuzzy multi-objective assignment problem using exponential membership function.

    Science.gov (United States)

    Dhodiya, Jayesh M; Tailor, Anita Ravi

    2016-01-01

    This paper presents a genetic algorithm based hybrid approach for solving a fuzzy multi-objective assignment problem (FMOAP) by using an exponential membership function in which the coefficient of the objective function is described by a triangular possibility distribution. Moreover, in this study, fuzzy judgment was classified using α -level sets for the decision maker (DM) to simultaneously optimize the optimistic, most likely, and pessimistic scenarios of fuzzy objective functions. To demonstrate the effectiveness of the proposed approach, a numerical example is provided with a data set from a realistic situation. This paper concludes that the developed hybrid approach can manage FMOAP efficiently and effectively with an effective output to enable the DM to take a decision.

  20. Reliability and consistency of plantarflexor stretch-shortening cycle function using an adapted force sledge apparatus

    International Nuclear Information System (INIS)

    Furlong, Laura-Anne M; Harrison, Andrew J

    2013-01-01

    There are various limitations to existing methods of studying plantarflexor stretch-shortening cycle (SSC) function and muscle-tendon unit (MTU) mechanics, predominantly related to measurement validity and reliability. This study utilizes an innovative adaptation to a force sledge which isolates the plantarflexors and ankle for analysis. The aim of this study was to determine the sledge loading protocol to be used, most appropriate method of data analysis and measurement reliability in a group of healthy, non-injured subjects. Twenty subjects (11 males, 9 females; age: 23.5 ±2.3 years; height: 1.73 ±0.08 m; mass: 74.2 ±11.3 kg) completed 11 impacts at five different loadings rated on a scale of perceived exertion from 1 to 5, where 5 is a loading that the subject could only complete the 11 impacts using the adapted sledge. Analysis of impacts 4–8 or 5–7 using loading 2 provided consistent results that were highly reliable (single intra-class correlation, ICC > 0.85, average ICC > 0.95) and replicated kinematics found in hopping and running. Results support use of an adapted force sledge apparatus as an ecologically valid, reliable method of investigating plantarflexor SSC function and MTU mechanics in a dynamic controlled environment. (paper)

  1. The Effect of Thoracic Joint Mobilization and Self-stretching Exercise on Pulmonary Functions of Patients with Chronic Neck Pain.

    Science.gov (United States)

    Hwangbo, Pil-Neo; Hwangbo, Gak; Park, Jungseo; Lee, Sangyong

    2014-11-01

    [Purpose] The objective of this study was to determine the effect of thoracic joint mobilization and self-stretching exercise on the pulmonary functions of patients with chronic neck pain. [Subjects] The present study was performed with 34 patients with chronic neck pain featuring thoracic kyphosis; we divided them into a thoracic joint mobilization group (TJMG, n = 11), self-stretching exercise group (SSEG, n = 11), and thoracic joint mobilization and self-stretching exercise group (TJMSSEG, n = 12). [Methods] Treatments and exercise were conducted three times a week for six weeks in TJMG, SSEG, and TJMSSEG; the subjects' pulmonary functions in terms of forced vital capacity (FVC), forced expiratory volume at one second (FEV1), and peak expiratory flow (PEF) were measured using CardioTouch equipment. [Results] Comparisons of the individuals within each of the TJMG, SSEG, and TJMSSEG showed that all of FVC, FEV1, and PEF increased significantly; Comparisons within each of the showed that FVC, FEV1, and PEF increased significantly. Among the study groups, FVC was significantly higher in TJMSSEG than in TJMG after six weeks; FEV1 was significantly higher in TJMSSEG than in TJMG and SSEG after four and six weeks; and PEF was significantly higher in TJMSSEG than in TJMG and SSEG after six weeks. [Conclusion] The study results indicate that thoracic joint mobilization and self-stretching exercise are effective interventions for increasing FVC, FEV1, and PEF among pulmonary functions.

  2. Mean-Variance portfolio optimization by using non constant mean and volatility based on the negative exponential utility function

    Science.gov (United States)

    Soeryana, Endang; Halim, Nurfadhlina Bt Abdul; Sukono, Rusyaman, Endang; Supian, Sudradjat

    2017-03-01

    Investments in stocks investors are also faced with the issue of risk, due to daily price of stock also fluctuate. For minimize the level of risk, investors usually forming an investment portfolio. Establishment of a portfolio consisting of several stocks are intended to get the optimal composition of the investment portfolio. This paper discussed about optimizing investment portfolio of Mean-Variance to stocks by using mean and volatility is not constant based on the Negative Exponential Utility Function. Non constant mean analyzed using models Autoregressive Moving Average (ARMA), while non constant volatility models are analyzed using the Generalized Autoregressive Conditional heteroscedastic (GARCH). Optimization process is performed by using the Lagrangian multiplier technique. As a numerical illustration, the method is used to analyze some stocks in Indonesia. The expected result is to get the proportion of investment in each stock analyzed

  3. Exponential lag function projective synchronization of memristor-based multidirectional associative memory neural networks via hybrid control

    Science.gov (United States)

    Yuan, Manman; Wang, Weiping; Luo, Xiong; Li, Lixiang; Kurths, Jürgen; Wang, Xiao

    2018-03-01

    This paper is concerned with the exponential lag function projective synchronization of memristive multidirectional associative memory neural networks (MMAMNNs). First, we propose a new model of MMAMNNs with mixed time-varying delays. In the proposed approach, the mixed delays include time-varying discrete delays and distributed time delays. Second, we design two kinds of hybrid controllers. Traditional control methods lack the capability of reflecting variable synaptic weights. In this paper, the controllers are carefully designed to confirm the process of different types of synchronization in the MMAMNNs. Third, sufficient criteria guaranteeing the synchronization of system are derived based on the derive-response concept. Finally, the effectiveness of the proposed mechanism is validated with numerical experiments.

  4. AI-2 does not function as a quorum sensing molecule in Campylobacter jejuni during exponential growth in vitro

    Directory of Open Access Journals (Sweden)

    Winzer Klaus

    2009-10-01

    Full Text Available Abstract Background Campylobacter jejuni contains a homologue of the luxS gene shown to be responsible for the production of the signalling molecule autoinducer-2 (AI-2 in Vibrio harveyi and Vibrio cholerae. The aim of this study was to determine whether AI-2 acted as a diffusible quorum sensing signal controlling C. jejuni gene expression when it is produced at high levels during mid exponential growth phase. Results AI-2 activity was produced by the parental strain NCTC 11168 when grown in rich Mueller-Hinton broth (MHB as expected, but interestingly was not present in defined Modified Eagles Medium (MEM-α. Consistent with previous studies, the luxS mutant showed comparable growth rates to the parental strain and exhibited decreased motility halos in both MEM-α and MHB. Microarray analysis of genes differentially expressed in wild type and luxS mutant strains showed that many effects on mRNA transcript abundance were dependent on the growth medium and linked to metabolic functions including methionine metabolism. Addition of exogenously produced AI-2 to the wild type and the luxS mutant, growing exponentially in either MHB or MEM-α did not induce any transcriptional changes as analysed by microarray. Conclusion Taken together these results led us to conclude that there is no evidence for the role of AI-2 in cell-to-cell communication in C. jejuni strain NCTC 11168 under the growth conditions used, and that the effects of the luxS mutation on the transcriptome are related to the consequential loss of function in the activated methyl cycle.

  5. Structure functions and particle production in the cumulative region: two different exponentials

    International Nuclear Information System (INIS)

    Braun, M.; Vechernin, V.

    1997-01-01

    In the framework of the recently proposed (QCD-based parton model for the cumulative phenomena in the interactions with nuclei two mechanisms for particle production, direct and spectator ones, are analyzed. It is shown that due to final-state interactions the leading terms of the direct mechanism contribution are cancelled and the spectator mechanism is the dominant one. It leads to a smaller slope of the cumulative particle production rates compared to the slope of the nuclear structure function in the cumulative region x ≥ 1, in agreement with the recent experimental data

  6. Stretching: Does It Help?

    Science.gov (United States)

    Vardiman, Phillip; Carrand, David; Gallagher, Philip M.

    2010-01-01

    Stretching prior to activity is universally accepted as an important way to improve performance and help prevent injury. Likewise, limited flexibility has been shown to decrease functional ability and predispose a person to injuries. Although this is commonly accepted, appropriate stretching for children and adolescents involved with sports and…

  7. A Stream Function Theory Based Calculation of Wave Kinematics for Very Steep Waves Using a Novel Non-linear Stretching Technique

    DEFF Research Database (Denmark)

    Stroescu, Ionut Emanuel; Sørensen, Lasse; Frigaard, Peter Bak

    2016-01-01

    A non-linear stretching method was implemented for stream function theory to solve wave kinematics for physical conditions close to breaking waves in shallow waters, with wave heights limited by the water depth. The non-linear stretching method proves itself robust, efficient and fast, showing good...

  8. Vascular surgical stretch injury leads to activation of P2X7 receptors and impaired endothelial function.

    Directory of Open Access Journals (Sweden)

    Padmini Komalavilas

    Full Text Available A viable vascular endothelial layer prevents vasomotor dysfunction, thrombosis, inflammation, and intimal hyperplasia. Injury to the endothelium occurs during harvest and "back table" preparation of human saphenous vein prior to implantation as an arterial bypass conduit. A subfailure overstretch model of rat aorta was used to show that subfailure stretch injury of vascular tissue leads to impaired endothelial-dependent relaxation. Stretch-induced impaired relaxation was mitigated by treatment with purinergic P2X7 receptor (P2X7R inhibitors, brilliant blue FCF (FCF and A740003, or apyrase, an enzyme that catalyzes the hydrolysis of ATP. Alternatively, treatment of rat aorta with exogenous ATP or 2'(3'-O-(4-Benzoyl benzoyl-ATP (BzATP also impaired endothelial-dependent relaxation. Treatment of human saphenous vein endothelial cells (HSVEC with exogenous ATP led to reduced nitric oxide production which was associated with increased phosphorylation of the stress activated protein kinase, p38 MAPK. ATP- stimulated p38 MAPK phosphorylation of HSVEC was inhibited by FCF and SB203580. Moreover, ATP inhibition of nitric oxide production in HSVEC was prevented by FCF, SB203580, L-arginine supplementation and arginase inhibition. Finally, L-arginine supplementation and arginase inhibition restored endothelial dependent relaxation after stretch injury of rat aorta. These results suggest that vascular stretch injury leads to ATP release, activation of P2X7R and p38 MAPK resulting in endothelial dysfunction due to arginase activation. Endothelial function can be restored in both ATP treated HSVEC and intact stretch injured rat aorta by P2X7 receptor inhibition with FCF or L-arginine supplementation, implicating straightforward therapeutic options for treatment of surgical vascular injury.

  9. The Effect of a Period Stretching Training on Functional Dynamic Balance Performance and Range of Motion Patients with Knee Osteoarthritis

    OpenAIRE

    Edris Bavardi Moghadam; Seyed Sadradin Shojaedin

    2017-01-01

    Objective: This study was done to investigate the effect of a period of stretch training on functional dynamic balance performance and range of motion in patients with knee osteoarthritis. Methods: the population from which the sample of the study was selected included active older men with knee osteoarthritis in West Azerbaijan. 20 active man who were paid to exercise at least twice a week, were randomly divided into two groups of 10 patients. Subjects for 8 weeks, three times a week. To ...

  10. The effect of stretch-and-flow voice therapy on measures of vocal function and handicap.

    Science.gov (United States)

    Watts, Christopher R; Diviney, Shelby S; Hamilton, Amy; Toles, Laura; Childs, Lesley; Mau, Ted

    2015-03-01

    To investigate the efficacy of stretch-and-flow voice therapy as a primary physiological treatment for patients with hyperfunctional voice disorders. Prospective case series. Participants with a diagnosis of primary muscle tension dysphonia or phonotraumatic lesions due to hyperfunctional vocal behaviors were included. Participants received stretch-and-flow voice therapy structured once weekly for 6 weeks. Outcome variables consisted of two physiologic measures (s/z ratio and maximum phonation time), an acoustic measure (cepstral peak prominence [CPP]), and a measure of vocal handicap (voice handicap index [VHI]). All measures were obtained at baseline before treatment and within 2 weeks posttreatment. The s/z ratio, maximum phonation time, sentence CPP, and VHI showed statistically significant (P < 0.05) improvement through therapy. Effect sizes reflecting the magnitude of change were large for s/z ratio and VHI (d = 1.25 and 1.96 respectively), and moderate for maximum phonation time and sentence CPP (d = 0.79 and 0.74, respectively). This study provides supporting evidence for preliminary efficacy of stretch-and-flow voice therapy in a small sample of patients. The treatment effect was large or moderate for multiple outcome measures. The data provide justification for larger, controlled clinical trials on the application of stretch-and-flow voice therapy in the treatment of hyperfunctional voice disorders. Copyright © 2015 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  11. COMBINED EFFECT OF PNF STRETCHING WITH CHEST MOBILITY EXERCISES ON CHEST EXPANSION AND PULMONARY FUNCTIONS FOR ELDERLY

    Directory of Open Access Journals (Sweden)

    Vinod Babu .K

    2015-06-01

    Full Text Available Background: PNF stretching and chest mobility exercises found to be effective in elder patients, however the combined effectiveness of these techniques were unknown. The purpose of this study is to find the effect of Hold-relax PNF stretching technique for pectoralis muscle combined with chest mobility exercises on improvement of chest expansion and pulmonary function for elderly subjects. Method: An Experimental study design, 30 subjects with age group above 60 years were randomized 15 subjects each into Study and Control group. Control group received Supervised Active Assisted Exercise Program while Study group received Hold-relax PNF Stretching for pectoralis muscle, Chest Mobility Exercises Program and supervised Active Assisted Exercise Program for a period of one week. Outcome measures such as chest expansion at axilla and xiphisternum and pulmonary function test such as FEV1, FVC and FEV1/FVC were measured before and after one week of treatment. Results: Analysis using paired ‘t’ test within the group found that there is no statistically significant difference within control group where as there is a statistical significant difference within study group. Comparative analysis of pre-intervention means shown that there is no statistically significant difference between the groups. Comparative analysis of post-intervention means shown that there is a statistically significant difference in means of Chest expansion, FEV1/FVC and there is no statistical significant difference in FEV1 and FVC between study and control groups. Conclusion: It is concluded that one week of combined Hold-relax PNF stretching for pectoralis muscle with chest mobility exercises shown significant improvement in chest expansion and pulmonary function test such as forced expiratory volume and forced vital capacity than only active assisted exercise program for elderly subjects.

  12. The First Derivative of an Exponential Function with the "White Box/Black Box" Didactical Principle and Observations with GeoGebra

    Science.gov (United States)

    Budinski, Natalija; Subramaniam, Stephanie

    2013-01-01

    This paper shows how GeoGebra--a dynamic mathematics software--can be used to experiment, visualize and connect various concepts such as function, first derivative, slope, and tangent line. Students were given an assignment to determine the first derivative of the exponential function that they solved while experimenting with GeoGebra. GeoGebra…

  13. The effects of stretching on the flexibility, muscle performance and functionality of institutionalized older women

    Directory of Open Access Journals (Sweden)

    D. Gallon

    2011-03-01

    Full Text Available Stretching has been widely used to increase the range of motion. We assessed the effects of a stretching program on muscle-tendon length, flexibility, torque, and activities of daily living of institutionalized older women. Inclusion/exclusion criteria were according to Mini-Mental State Examination (MMSE (>13, Barthel Index (>13 and Lysholm Scoring Scale (>84. Seventeen 67 ± 9 year-old elderly women from a nursing home were divided into 2 groups at random: the control group (CG, N = 9 participated in enjoyable cultural activities; the stretching group (SG, N = 8 performed active stretching of hamstrings, 4 bouts of 1 min each. Both groups were supervised three times per week over a period of 8 weeks. Peak torque was assessed by an isokinetic method. Both groups were evaluated by a photogrammetric method to assess muscle-tendon length of uni- and biarticular hip flexors and hamstring flexibility. All measurements were analyzed before and after 8 weeks by two-way ANOVA with the level of significance set at 5%. Hamstring flexibility increased by 30% in the SG group compared to pre-training (76.5 ± 13.0° vs 59.5 ± 9.0°, P = 0.0002 and by 9.2% compared to the CG group (76.5 ± 13.0° vs 64.0 ± 12.0°, P = 0.0018. Muscle-tendon lengths of hip biarticular flexor muscles (124 ± 6.8° vs 118.3 ± 7.6°, 5.0 ± 7.0%, P = 0.031 and eccentric knee extensor peak torque were decreased in the CG group compared to pre-test values (-49.4 ± 16.8 vs -60.5 ± 18.9 Nm, -15.7 ± 20%, P = 0.048. The stretching program was sufficient to increase hamstring flexibility and a lack of stretching can cause reduction of muscle performance.

  14. A property of logarithmically absolutely monotonic functions and the logarithmically complete monotonicity of a power-exponential function

    OpenAIRE

    Qi, Feng; Guo, Bai-Ni

    2009-01-01

    In the article, a notion "logarithmically absolutely monotonic function" is introduced, an inclusion that a logarithmically absolutely monotonic function is also absolutely monotonic is revealed, the logarithmically complete monotonicity and the logarithmically absolute monotonicity of the function $\\bigl(1+\\frac{\\alpha}x\\bigr) ^{x+\\beta}$ are proved, where $\\alpha$ and $\\beta$ are given real parameters, a new proof for the inclusion that a logarithmically completely monotonic function is als...

  15. Magnitude and duration of stretch modulate fibroblast remodeling.

    Science.gov (United States)

    Balestrini, Jenna L; Billiar, Kristen L

    2009-05-01

    Mechanical cues modulate fibroblast tractional forces and remodeling of extracellular matrix in healthy tissue, healing wounds, and engineered matrices. The goal of the present study is to establish dose-response relationships between stretch parameters (magnitude and duration per day) and matrix remodeling metrics (compaction, strength, extensibility, collagen content, contraction, and cellularity). Cyclic equibiaxial stretch of 2-16% was applied to fibroblast-populated fibrin gels for either 6 h or 24 h/day for 8 days. Trends in matrix remodeling metrics as a function of stretch magnitude and duration were analyzed using regression analysis. The compaction and ultimate tensile strength of the tissues increased in a dose-dependent manner with increasing stretch magnitude, yet remained unaffected by the duration in which they were cycled (6 h/day versus 24 h/day). Collagen density increased exponentially as a function of both the magnitude and duration of stretch, with samples stretched for the reduced duration per day having the highest levels of collagen accumulation. Cell number and failure tension were also dependent on both the magnitude and duration of stretch, although stretch-induced increases in these metrics were only present in the samples loaded for 6 h/day. Our results indicate that both the magnitude and the duration per day of stretch are critical parameters in modulating fibroblast remodeling of the extracellular matrix, and that these two factors regulate different aspects of this remodeling. These findings move us one step closer to fully characterizing culture conditions for tissue equivalents, developing improved wound healing treatments and understanding tissue responses to changes in mechanical environments during growth, repair, and disease states.

  16. Using Solution Strategies to Examine and Promote High-School Students' Understanding of Exponential Functions: One Teacher's Attempt

    Science.gov (United States)

    Brendefur, Jonathan

    2014-01-01

    Much research has been conducted on how elementary students develop mathematical understanding and subsequently how teachers might use this information. This article builds on this type of work by investigating how one high-school algebra teacher designs and conducts a lesson on exponential functions. Through a lesson study format she studies with…

  17. Development of Functional Recovery Training Device for Hemiplegic Fingers with Finger-expansion Facilitation Exercise by Stretch Reflex

    Science.gov (United States)

    Yu, Yong; Iwashita, Hisashi; Kawahira, Kazumi; Hayashi, Ryota

    This paper develops a functional recovery training device to perform repetition facilitating exercise for hemiplegic finger rehabilitation. On the facilitation exercise, automatic finger expansion can be realized and facilitated by stretch reflex, where a stimulation forces is applied instantaneously on flexion finger for making strech reflex and resistance forces are applied for maintaining the strech reflex. In this paper, novel parallel mechanisms, force sensing system with high sensitivity and resistance accompanying cooperation control method are proposed for sensing, controlling and realizing the stimulation force, resistance forces, strech reflex and repetition facilitating exercise. The effectivities and performances of the device are shown by some experiments.

  18. Effects of aerobic training combined with respiratory muscle stretching on the functional exercise capacity and thoracoabdominal kinematics in patients with COPD: a randomized and controlled trial.

    Science.gov (United States)

    Wada, Juliano T; Borges-Santos, Erickson; Porras, Desiderio Cano; Paisani, Denise M; Cukier, Alberto; Lunardi, Adriana C; Carvalho, Celso Rf

    2016-01-01

    Patients with COPD present a major recruitment of the inspiratory muscles, predisposing to chest incoordination, increasing the degree of dyspnea and impairing their exercise capacity. Stretching techniques could decrease the respiratory muscle activity and improve their contractile capacity; however, the systemic effects of stretching remain unknown. The aim of this study was to evaluate the effects of aerobic training combined with respiratory muscle stretching on functional exercise capacity and thoracoabdominal kinematics in patients with COPD. This study was a randomized and controlled trial. A total of 30 patients were allocated to a treatment group (TG) or a control group (CG; n=15, each group). The TG was engaged in respiratory muscle stretching and the CG in upper and lower limb muscle stretching. Both groups performed 24 sessions (twice a week, 12 weeks) of aerobic training. Functional exercise capacity (6-minute walk test), thoracoabdominal kinematics (optoelectronic plethysmography), and respiratory muscle activity (surface electromyography) were evaluated during exercise. Analysis of covariance was used to compare the groups at a significance level of 5%. After the intervention, the TG showed improved abdominal (ABD) contribution, compartmental volume, mobility, and functional exercise capacity with decreased dyspnea when compared with the CG ( P stretching increases the functional exercise capacity with decreased dyspnea in patients with COPD. These effects are associated with an increased efficacy of the respiratory muscles and participation of the ABD compartment.

  19. Generalized Probability Functions

    Directory of Open Access Journals (Sweden)

    Alexandre Souto Martinez

    2009-01-01

    Full Text Available From the integration of nonsymmetrical hyperboles, a one-parameter generalization of the logarithmic function is obtained. Inverting this function, one obtains the generalized exponential function. Motivated by the mathematical curiosity, we show that these generalized functions are suitable to generalize some probability density functions (pdfs. A very reliable rank distribution can be conveniently described by the generalized exponential function. Finally, we turn the attention to the generalization of one- and two-tail stretched exponential functions. We obtain, as particular cases, the generalized error function, the Zipf-Mandelbrot pdf, the generalized Gaussian and Laplace pdf. Their cumulative functions and moments were also obtained analytically.

  20. Static stretching alters neuromuscular function and pacing strategy, but not performance during a 3-km running time-trial.

    Directory of Open Access Journals (Sweden)

    Mayara V Damasceno

    Full Text Available Previous studies report that static stretching (SS impairs running economy. Assuming that pacing strategy relies on rate of energy use, this study aimed to determine whether SS would modify pacing strategy and performance in a 3-km running time-trial.Eleven recreational distance runners performed a a constant-speed running test without previous SS and a maximal incremental treadmill test; b an anthropometric assessment and a constant-speed running test with previous SS; c a 3-km time-trial familiarization on an outdoor 400-m track; d and e two 3-km time-trials, one with SS (experimental situation and another without (control situation previous static stretching. The order of the sessions d and e were randomized in a counterbalanced fashion. Sit-and-reach and drop jump tests were performed before the 3-km running time-trial in the control situation and before and after stretching exercises in the SS. Running economy, stride parameters, and electromyographic activity (EMG of vastus medialis (VM, biceps femoris (BF and gastrocnemius medialis (GA were measured during the constant-speed tests.The overall running time did not change with condition (SS 11:35±00:31 s; control 11:28±00:41 s, p = 0.304, but the first 100 m was completed at a significantly lower velocity after SS. Surprisingly, SS did not modify the running economy, but the iEMG for the BF (+22.6%, p = 0.031, stride duration (+2.1%, p = 0.053 and range of motion (+11.1%, p = 0.0001 were significantly modified. Drop jump height decreased following SS (-9.2%, p = 0.001.Static stretch impaired neuromuscular function, resulting in a slow start during a 3-km running time-trial, thus demonstrating the fundamental role of the neuromuscular system in the self-selected speed during the initial phase of the race.

  1. Bilateral matrix-exponential distributions

    DEFF Research Database (Denmark)

    Bladt, Mogens; Esparza, Luz Judith R; Nielsen, Bo Friis

    2012-01-01

    In this article we define the classes of bilateral and multivariate bilateral matrix-exponential distributions. These distributions have support on the entire real space and have rational moment-generating functions. These distributions extend the class of bilateral phasetype distributions of [1]....... As an application we demonstrate that certain multivariate disions, which are governed by the underlying Markov jump process generating a phasetype distribution, have a bilateral matrix-exponential distribution at the time of absorption, see also [4]....

  2. On Equalities Involving Integrals of the Logarithm of the Riemann ς-Function with Exponential Weight Which Are Equivalent to the Riemann Hypothesis

    Directory of Open Access Journals (Sweden)

    Sergey K. Sekatskii

    2015-01-01

    Full Text Available Integral equalities involving integrals of the logarithm of the Riemann ς-function with exponential weight functions are introduced, and it is shown that an infinite number of them are equivalent to the Riemann hypothesis. Some of these equalities are tested numerically. The possible contribution of the Riemann function zeroes nonlying on the critical line is rigorously estimated and shown to be extremely small, in particular, smaller than nine milliards of decimals for the maximal possible weight function exp(−2πt. We also show how certain Fourier transforms of the logarithm of the Riemann zeta-function taken along the real (demiaxis are expressible via elementary functions plus logarithm of the gamma-function and definite integrals thereof, as well as certain sums over trivial and nontrivial Riemann function zeroes.

  3. An exponential distribution

    International Nuclear Information System (INIS)

    Anon

    2009-01-01

    In this presentation author deals with the probabilistic evaluation of product life on the example of the exponential distribution. The exponential distribution is special one-parametric case of the weibull distribution.

  4. The effects of an active-assisted stretching program on functional performance in elderly persons: A pilot study

    Directory of Open Access Journals (Sweden)

    Damian C Stanziano

    2009-03-01

    Full Text Available Damian C Stanziano1,2, Bernard A Roos1,2,3,4, Arlette C Perry1, Shenghan Lai5, Joseph F Signorile1,31Department of Exercise and Sport Sciences, University of Miami, Coral Gables, FL, USA; 2Stein Gerontological Institute, Miami Jewish Home and Hospital, Miami, FL, USA; 3Geriatric Research, Education, and Clinical Center, Miami VA Healthcare System, Miami, FL, USA; 4Departments of Medicine and Neurology, University of Miami Miller School of Medicine, Miami, FL, USA; 5Departments of Pathology and Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA Abstract: This study examined the impact of an eight-week active-assisted (AA stretching program on functionality, mobility, power, and range of motion (ROM in elderly residents of a residential retirement community. Seventeen volunteers (4 male, 13 female; 88.8 ± 5.36 years were randomly assigned to an AA or control group. The AA group performed 10 different AA stretches targeting the major joints of the body twice weekly for eight weeks. Controls attended classes requiring limited physical activity. All participants were assessed using four fl exibility and six functional tests, one week before and after the eight-week training period. A fully randomized repeated-measures ANCOVA with pretest scores as a covariate was used to detect differences between groups across time. The AA group demonstrated significant increases in ROM for most of the joints evaluated (p < 0.05 and significant increases in all performance measures (p < 0.05. Controls showed no improvements in functional or ROM measures (α = 0.05. Additionally, the AA group showed significantly better performance outcomes across the training period than controls. We conclude that our eight-week flexibility program effectively reduces age-related losses in ROM and improves functional performance in elderly persons with insufficient physical reserves to perform higher-intensity exercises.Keywords: proprioceptive neuromuscular

  5. Gauss and Markov quadrature formulae with nodes at zeros of eigenfunctions of a Sturm-Liouville problem, which are exact for entire functions of exponential type

    International Nuclear Information System (INIS)

    Gorbachev, D V; Ivanov, V I

    2015-01-01

    Gauss and Markov quadrature formulae with nodes at zeros of eigenfunctions of a Sturm-Liouville problem, which are exact for entire functions of exponential type, are established. They generalize quadrature formulae involving zeros of Bessel functions, which were first designed by Frappier and Olivier. Bessel quadratures correspond to the Fourier-Hankel integral transform. Some other examples, connected with the Jacobi integral transform, Fourier series in Jacobi orthogonal polynomials and the general Sturm-Liouville problem with regular weight are also given. Bibliography: 39 titles

  6. Combined arm stretch positioning and neuromuscular electrical stimulation during rehabilitation does not improve range of motion, shoulder pain or function in patients after stroke: a randomised trial

    NARCIS (Netherlands)

    J. Gerritsen; K. Postema; L.D. de Jong; A.C. Geurts; P.U. Dijkstra

    2013-01-01

    doi: 10.1016/S1836-9553(13)70201-7 QUESTION: Does static stretch positioning combined with simultaneous neuromuscular electrical stimulation (NMES) in the subacute phase after stroke have beneficial effects on basic arm body functions and activities? DESIGN: Multicentre randomised trial with

  7. Effects of muscular stretching and segmental stabilization on functional disability and pain in patients with chronic low back pain: a randomized, controlled trial.

    Science.gov (United States)

    França, Fábio Renovato; Burke, Thomaz Nogueira; Caffaro, Renê Rogieri; Ramos, Luiz Armando; Marques, Amélia Pasqual

    2012-05-01

    The purpose of this study was to compare the effects of 2 exercise programs, segmental stabilization exercises (SSEs) and stretching of trunk and hamstrings muscles, on functional disability, pain, and activation of the transversus abdominis muscle (TrA), in individuals with chronic low back pain. A total of 30 participants were enrolled in this study and randomly assigned to 1 of 2 groups as a function of intervention. In the segmental stabilization group (SS), exercises focused on the TrA and lumbar multifidus muscles, whereas in the stretching group (ST), exercises focused on stretching the erector spinae, hamstrings, and triceps surae. Severity of pain (visual analog scale and McGill pain questionnaire) and functional disability (Oswestry disability questionnaire) and TrA muscle activation capacity (Pressure Biofeedback Unit, or PBU) were compared as a function of intervention. Interventions lasted 6 weeks, and sessions happened twice a week (30 minutes each). Analysis of variance was used for intergroup and intragroup comparisons. As compared with baseline, both treatments were effective in relieving pain and improving disability (P pain and reduced disability. In this study, SS was superior to muscular stretching for the measured variables associated with chronic low back pain. Copyright © 2012 National University of Health Sciences. Published by Mosby, Inc. All rights reserved.

  8. Effects of a stretching protocol for the pectoralis minor on muscle length, function, and scapular kinematics in individuals with and without shoulder pain.

    Science.gov (United States)

    Rosa, Dayana P; Borstad, John D; Pogetti, Lívia S; Camargo, Paula R

    Parallel-group intervention with repeated measures. Shortening of the pectoralis minor (PM) may contribute to alterations in scapular kinematics. To evaluate the effects of a stretching protocol on function, muscle length, and scapular kinematics in subjects with and without shoulder pain. A sample of 25 patients with shoulder pain and 25 healthy subjects with PM tightness performed a daily stretching protocol for 6 weeks. Outcome measures included Disabilities of the Arm, Shoulder, and Hand questionnaire, PM length, and scapular kinematics. Disabilities of the Arm, Shoulder, and Hand scores decreased (P .05) were found for PM length in both groups. Scapular anterior tilt increased (P stretching protocol significantly decreases pain and improves function in subjects with shoulder pain. The mechanism responsible for these improvements does not appear directly related to PM muscle length or scapula kinematics, suggesting that other neuromuscular mechanisms are involved. The PM stretching protocol did not change the PM length or scapular kinematics in subjects with or without shoulder pain. However, pain and function of the upper limbs improved in patients with shoulder pain. 2b. Copyright © 2016 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.

  9. Extended Poisson Exponential Distribution

    Directory of Open Access Journals (Sweden)

    Anum Fatima

    2015-09-01

    Full Text Available A new mixture of Modified Exponential (ME and Poisson distribution has been introduced in this paper. Taking the Maximum of Modified Exponential random variable when the sample size follows a zero truncated Poisson distribution we have derived the new distribution, named as Extended Poisson Exponential distribution. This distribution possesses increasing and decreasing failure rates. The Poisson-Exponential, Modified Exponential and Exponential distributions are special cases of this distribution. We have also investigated some mathematical properties of the distribution along with Information entropies and Order statistics of the distribution. The estimation of parameters has been obtained using the Maximum Likelihood Estimation procedure. Finally we have illustrated a real data application of our distribution.

  10. Effects of aerobic training combined with respiratory muscle stretching on the functional exercise capacity and thoracoabdominal kinematics in patients with COPD: a randomized and controlled trial

    Directory of Open Access Journals (Sweden)

    Wada JT

    2016-10-01

    Full Text Available Juliano T Wada,1 Erickson Borges-Santos,1 Desiderio Cano Porras,1 Denise M Paisani,1 Alberto Cukier,2 Adriana C Lunardi,1 Celso RF Carvalho1 1Department of Physical Therapy, 2Department of Cardiopneumology, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil Background: Patients with COPD present a major recruitment of the inspiratory muscles, predisposing to chest incoordination, increasing the degree of dyspnea and impairing their exercise capacity. Stretching techniques could decrease the respiratory muscle activity and improve their contractile capacity; however, the systemic effects of stretching remain unknown.Objective: The aim of this study was to evaluate the effects of aerobic training combined with respiratory muscle stretching on functional exercise capacity and thoracoabdominal kinematics in patients with COPD.Design: This study was a randomized and controlled trial.Participants: A total of 30 patients were allocated to a treatment group (TG or a control group (CG; n=15, each group.Intervention: The TG was engaged in respiratory muscle stretching and the CG in upper and lower limb muscle stretching. Both groups performed 24 sessions (twice a week, 12 weeks of aerobic training.Evaluations: Functional exercise capacity (6-minute walk test, thoracoabdominal kinematics (optoelectronic plethysmography, and respiratory muscle activity (surface electromyography were evaluated during exercise. Analysis of covariance was used to compare the groups at a significance level of 5%.Results: After the intervention, the TG showed improved abdominal (ABD contribution, compartmental volume, mobility, and functional exercise capacity with decreased dyspnea when compared with the CG (P<0.01. The TG also showed a decreased respiratory muscle effort required to obtain the same pulmonary volume compared to the CG (P<0.001.Conclusion: Our results suggest that aerobic training combined with respiratory muscle stretching increases the functional

  11. Limit laws for exponential families

    OpenAIRE

    Balkema, August A.; Klüppelberg, Claudia; Resnick, Sidney I.

    1999-01-01

    For a real random variable [math] with distribution function [math] , define ¶ [math] ¶ The distribution [math] generates a natural exponential family of distribution functions [math] , where ¶ [math] ¶ We study the asymptotic behaviour of the distribution functions [math] as [math] increases to [math] . If [math] then [math] pointwise on [math] . It may still be possible to obtain a non-degenerate weak limit law [math] by choosing suitable scaling and centring constants [math] an...

  12. Developing a Stretching Program.

    Science.gov (United States)

    Beaulieu, J E

    1981-11-01

    In brief: Although stretching exercises can prevent muscle injuries and enhance athletic performance, they can also cause injury. The author explains the four most common types of stretching exercises and explains why he considers static stretching the safest. He also sets up a stretching routine for runners. In setting up a safe stretching program, one should (1) precede stretching exercises with a mild warm-up; (2) use static stretching; (3) stretch before and after a workout; (4) begin with mild and proceed to moderate exercises; (5) alternate exercises for muscle groups; (6) stretch gently and slowly until tightness, not pain, is felt; and (7) hold the position for 30 to 60 seconds.

  13. Stretch Sensor Device

    DEFF Research Database (Denmark)

    2013-01-01

    The invention relates to a method for determining stretch values and movement of body parts, e.g. a foot, by analysing stretch data from a stretch sensor. By analysing data from the stretch sensor it is possible to determine stretch samples which are associated with particular motion phases...

  14. ACUTE EFFECTS OF DIFFERENT STATIC STRETCHING PROTOCOLS ON PEAK TORQUE, CONVENTIONAL AND FUNCTIONAL HAMSTRINGS-TO-QUADRICEPS RATIOS IN ACTIVE WOMEN

    Directory of Open Access Journals (Sweden)

    Ghada M. ALQaslah

    2016-10-01

    Full Text Available Background: This study might have been directed to some degree because of clashing results in the past studies regarding the impacts for different SS protocols on muscle strength and possibility for injury. The objective of the study was to investigate the acute effects of different static stretching (SS durations (20, 30, and 60s on isokinetic concentric quadriceps (Q and hamstrings (H peak torque (PT, eccentric H PT and conventional and functional H:Q ratios under different stretching conditions and angular velocities (60°and180°/s in active women. Methods: Isokinetic tests were performed on 108 active women. A HUMAC system was used to measure unilateral concentric Q and H PT, and eccentric H PT at 60 and 180º/s at baseline and after a bout of H-only, Q-only, and combined H and Q muscles SS. The data were statistically treated using five separate three-way (time x conditions x velocity ANOVA. Results: There were no significant differences among groups at baseline (P > 0.05. Significant reductions of all outcome measures have been shown to occur after 30 and 60s of SS (P 0.05. Conclusion: Short-lasting stretching can be done before exercises that require strength. However, since 30s or 60s stretching protocols adversely affect the muscle strength, performance and lower H:Q ratios they are not recommended prior to activities demanding the production of high forces.

  15. The Sigmoid Transfer Function and the Gain-threshold Exponential Dependence for Neurons from Statistical Mechanics Treatment

    Czech Academy of Sciences Publication Activity Database

    Andrey, Ladislav; Erzan, R.

    2002-01-01

    Roč. 52, č. 12 (2002), s. 1349-1356 ISSN 0011-4626 R&D Projects: GA ČR GA305/02/1487 Institutional research plan: AV0Z1030915 Keywords : nonlinear gain curve * gain-threshold dependence * non-monotone transfer function * statistical mechanics Subject RIV: BA - General Mathematics Impact factor: 0.311, year: 2002

  16. Code REX to fit experimental data to exponential functions and graphics plotting; Codigo REX para ajuste de datos experimentales a funciones exponenciales y su representacion grafica

    Energy Technology Data Exchange (ETDEWEB)

    Romero, L.; Travesi, A.

    1983-07-01

    The REX code, written in Fortran IV, performs the fitting a set of experimental data to different kind of functions as: straight-line (Y = A + BX) , and various exponential type (Y-A B{sup x}, Y=A X{sup B}; Y=A exp(BX) ) , using the Least Squares criterion. Such fitting could be done directly for one selected function of for the our simultaneously and allows to chose the function that best fitting to the data, since presents the statistics data of all the fitting. Further, it presents the graphics plotting, of the fitted function, in the appropriate coordinate axes system. An additional option allows also the Graphic plotting of experimental data used for the fitting. All the data necessary to execute this code are asked to the operator in the terminal screen, in the iterative way by screen-operator dialogue, and the values are introduced through the keyboard. This code could be executed with any computer provided with graphic screen and keyboard terminal, with a X-Y plotter serial connected to the graphics terminal. (Author) 5 refs.

  17. Effects of strengthening, stretching and functional training on foot function in patients with diabetic neuropathy: results of a randomized controlled trial.

    Science.gov (United States)

    Sartor, Cristina D; Hasue, Renata H; Cacciari, Lícia P; Butugan, Marco K; Watari, Ricky; Pássaro, Anice C; Giacomozzi, Claudia; Sacco, Isabel C N

    2014-04-27

    Foot musculoskeletal deficits are seldom addressed by preventive medicine despite their high prevalence in patients with diabetic polyneuropathy. To investigate the effects of strengthening, stretching, and functional training on foot rollover process during gait. A two-arm parallel-group randomized controlled trial with a blinded assessor was designed. Fifty-five patients diagnosed with diabetic polyneuropathy, 45 to 65 years-old were recruited. Exercises for foot-ankle and gait training were administered twice a week, for 12 weeks, to 26 patients assigned to the intervention group, while 29 patients assigned to control group received recommended standard medical care: pharmacological treatment for diabetes and foot care instructions. Both groups were assessed after 12 weeks, and the intervention group at follow-up (24 weeks). Primary outcomes involved foot rollover changes during gait, including peak pressure (PP). Secondary outcomes involved time-to-peak pressure (TPP) and pressure-time integral (PTI) in six foot-areas, mean center of pressure (COP) velocity, ankle kinematics and kinetics in the sagittal plane, intrinsic and extrinsic muscle function, and functional tests of foot and ankle. Even though the intervention group primary outcome (PP) showed a not statistically significant change under the six foot areas, intention-to-treat comparisons yielded softening of heel strike (delayed heel TPP, p=.03), better eccentric control of forefoot contact (decrease in ankle extensor moment, pfoot and ankle function (pfoot rollover towards a more physiological process, supported by improved plantar pressure distribution and better functional condition of the foot ankle complex. Continuous monitoring of the foot status and patient education are necessary, and can contribute to preserving the integrity of foot muscles and joints impaired by polyneuropathy. ClinicalTrials.gov Identifier: NCT01207284, registered in 20th September 2010.

  18. Exponential Shear Flow of Linear, Entangled Polymeric Liquids

    DEFF Research Database (Denmark)

    Neergaard, Jesper; Park, Kyungho; Venerus, David C.

    2000-01-01

    A previously proposed reptation model is used to interpret exponential shear flow data taken on an entangled polystyrenesolution. Both shear and normal stress measurements are made during exponential shear using mechanical means. The model iscapable of explaining all trends seen in the data......, and suggests a novel analysis of the data. This analysis demonstrates thatexponential shearing flow is no more capable of stretching polymer chains than is inception of steady shear at comparableinstantaneous shear rates. In fact, all exponential shear flow stresses measured are bounded quantitatively...

  19. Hydraulic fracture during epithelial stretching.

    Science.gov (United States)

    Casares, Laura; Vincent, Romaric; Zalvidea, Dobryna; Campillo, Noelia; Navajas, Daniel; Arroyo, Marino; Trepat, Xavier

    2015-03-01

    The origin of fracture in epithelial cell sheets subject to stretch is commonly attributed to excess tension in the cells' cytoskeleton, in the plasma membrane, or in cell-cell contacts. Here, we demonstrate that for a variety of synthetic and physiological hydrogel substrates the formation of epithelial cracks is caused by tissue stretching independently of epithelial tension. We show that the origin of the cracks is hydraulic; they result from a transient pressure build-up in the substrate during stretch and compression manoeuvres. After pressure equilibration, cracks heal readily through actomyosin-dependent mechanisms. The observed phenomenology is captured by the theory of poroelasticity, which predicts the size and healing dynamics of epithelial cracks as a function of the stiffness, geometry and composition of the hydrogel substrate. Our findings demonstrate that epithelial integrity is determined in a tension-independent manner by the coupling between tissue stretching and matrix hydraulics.

  20. Continuous multivariate exponential extension

    International Nuclear Information System (INIS)

    Block, H.W.

    1975-01-01

    The Freund-Weinman multivariate exponential extension is generalized to the case of nonidentically distributed marginal distributions. A fatal shock model is given for the resulting distribution. Results in the bivariate case and the concept of constant multivariate hazard rate lead to a continuous distribution related to the multivariate exponential distribution (MVE) of Marshall and Olkin. This distribution is shown to be a special case of the extended Freund-Weinman distribution. A generalization of the bivariate model of Proschan and Sullo leads to a distribution which contains both the extended Freund-Weinman distribution and the MVE

  1. Estimating exponential scheduling preferences

    DEFF Research Database (Denmark)

    Hjorth, Katrine; Börjesson, Maria; Engelson, Leonid

    2015-01-01

    distributed independent random variables: Assuming smooth preferences; this holds only for specifications with a constant marginal utility of time at the origin and an exponential or affine marginal utility of time at the destination. We apply a generalized version of this model to stated preference data...... utility of being at the origin. Another issue is that models with the exponential marginal utility formulation suffer from empirical identification problems. Though our results are not decisive, they partly support the constant-affine specification, in which the value of travel time variability...

  2. Deviations from exponential decay

    Science.gov (United States)

    Petridis, Athanasios; Staunton, Lawrence; Luban, Marshall; Vermedahl, Jon

    2003-10-01

    We study deviations from exponetial decay in cases when the initial wavefunction is set in a potential well and is not an eigenstate of this potential. We numerically solve the time-dependent Schroedinger equation and observe a decaying but oscillatory behavior of the survival probability. Analytical calculations have been performed proving that even in the case of a simple finite square-well potential deviations from exponential decay persist for large times. Possible explanations for the limiting exponential decay for many-particle systems are developed.

  3. EFFECTIVENESS OF EARLY STRETCHING EXERCISES FOR RANGE OF MOTION IN THE SHOULDER JOINT AND QUALITY OF FUNCTIONAL RECOVERY IN PATIENTS WITH BURNS - A RANDOMIZED CONTROL TRIAL

    Directory of Open Access Journals (Sweden)

    Amara D. Perer

    2017-10-01

    Full Text Available Background: This study evaluated the effects of an early stretching exercises programme on the range of motion of the shoulder joint and functional recovery in patients with burns. Methods: A randomized controlled study was conducted. Patients from 15 to 55 years of age with a total burn injury surface area (TBSA of 10% to 45% involving the shoulder joint including axilla were eligible. Participants were randomized into two groups; intervention and a usual care control group, with 110 patients in each group. A standardized protocol was used in the management of intervention group for 14 days. The control group was subjected to usual protocol currently used. The range of Motion (ROM was measured, and Functional recovery (FR was assessed with the Quick DASH questionnaire and the Abduction Ladder. Data were obtained before and after the intervention phase and at 3, 6 and 12 months of post-burn period. Results: The mean (SD age of intervention group and control group were 29.76 [9.81] and 30.31 [9.45] respectively. The mean (SD TBSA% of intervention group and control group was 26.15[9.45] and 24.60[9.56] respectively. There is a significant beneficial difference (p=<0.0001 in ROM and FR between the intervention group and the control group. Conclusion: This study demonstrated that an early sustained stretching exercise regime significantly improved the ROM and functional recovery of the shoulder joint after a severe burn involving the axilla.

  4. Effect of different stretching volumes on functional capacity in elderly women. http://dx.doi.org/10.5007/1980-0037.2013v15n1p103

    Directory of Open Access Journals (Sweden)

    Luiza Herminia Gallo

    2013-01-01

    Full Text Available The study aimed to analyze the effect of two different durations of stretching exercises, 90 or 180 seconds, on the functional capacity (FC of elderly women. Forty-three older women were assigned into three groups: inactive Control Group (CG, n. = 14, Training Group with three sets of 30 seconds (TG90, n. = 15 and Training Group with three sets of 60 seconds (TG180, n = 14. The TG90 and TG180 groups attended the university for 16 weeks, three times a week. The training protocol consisted of seven different static stretching exercises, performed in an active way. The CG attended the university only in periods of evaluations. Evaluations of the FC components and the Global Functional Fitness Index (GFFI, from the three groups, were both conducted before, and after 8 and 16 weeks of experiment, using a motor tests battery. The two-way ANOVA showed significant group x time interaction for the components flexibility, muscle strength and aerobic endurance, and for the GFFI values (p <0.05. The Scheffé post hoc test pointed difference between the two training groups and the CG, with no difference between TF90 and TG180. There was also improvement in the general classification of GFFI for the TG90 and TG180, which went from “fair” to “good”, while CG remained classified as “fair.” It was concluded that the two durations of stretching exercises were equally effective in improving flexibility, muscle strength, aerobic endurance and levels of FC in elderly women.

  5. Stretching Safely and Effectively

    Science.gov (United States)

    ... of stretching before or after hitting the trail, ballet floor or soccer field. Before you plunge into ... ballistic stretching on strength and muscular fatigue of ballet dancers and resistance-trained women. Journal of Strength ...

  6. Estimating exponential scheduling preferences

    DEFF Research Database (Denmark)

    Hjorth, Katrine; Börjesson, Maria; Engelson, Leonid

    behaviour, based on a theoretical model that has an exponential-exponential specification of H and W and so is more general than the models with the additivity property. We adapt the model to take into account that the marginal utilities of travelling by car and public transport may be different...... drivers commuting to work in the morning in central Stockholm. The survey contains observations of choices between car and public transport travel alternatives, which differ in terms of departure time, monetary cost, and the distribution of travel time. We develop a discrete choice model to describe......Extended abstract Choice of departure time is a travel choice dimension that transportation planners often need to forecast in appraisal. A traveller may shift departure time in response to changes in expected travel time or travel time variability (TTV) or in response to time...

  7. Interaction Graphs: Exponentials

    OpenAIRE

    Seiller, Thomas

    2013-01-01

    This paper is the fourth of a series exposing a systematic combinatorial approach to Girard's Geometry of Interaction program. This program aims at obtaining particular realizability models for linear logic that accounts for the dynamics of cut-elimination. This fourth paper tackles the complex issue of defining exponential connectives in this framework. In order to succeed in this, we use the notion of graphings, a generalization of graphs which was defined in earlier work. We explain how we...

  8. Functional effects of botulinum toxin type-A treatment and subsequent stretching of spastic calf muscles: a study in patients with hereditary spastic paraplegia.

    Science.gov (United States)

    de Niet, Mark; de Bot, Susanne T; van de Warrenburg, Bart P C; Weerdesteyn, Vivian; Geurts, Alexander C

    2015-02-01

    Although calf muscle spasticity is often treated with botulinum toxin type-A, the effects on balance and gait are ambiguous. Hereditary spastic paraplegia is characterized by progressive spasticity and relatively mild muscle weakness of the lower limbs. It is therefore a good model to evaluate the functional effects of botulinum toxin type-A. Explorative pre-post intervention study. Fifteen subjects with pure hereditary spastic paraplegia. Patients with symptomatic calf muscle spasticity and preserved calf muscle strength received botulinum toxin type-A injections in each triceps surae (Dysport®, 500-750 MU) followed by daily stretching exercises (18 weeks). Before intervention (T0), and 4 (T1) and 18 (T2) weeks thereafter, gait, balance, motor selectivity, calf muscle tone and strength were tested. Mean comfortable gait velocity increased from T0 (0.90 m/s (standard deviation (SD) 0.18)) to T1 (0.98 m/s (SD 0.20)), which effect persisted at T2, whereas balance and other functional measures remained unchanged. Calf muscle tone declined from T0 (median 2; range 1-2) to T1 (median 0; range 0-1), which effect partially persisted at T2 (median 1; range 0-2). Calf muscle strength did not change. Botulinum toxin type-A treatment and subsequent muscle stretching of the calves improved comfortable gait velocity and reduced muscle tone in patients with hereditary spastic paraplegia, while preserving muscle strength. Balance remained unaffected.

  9. Collagen organization regulates stretch-initiated pain-related neuronal signals in vitro: Implications for structure-function relationships in innervated ligaments.

    Science.gov (United States)

    Zhang, Sijia; Singh, Sagar; Winkelstein, Beth A

    2018-02-01

    Injury to the spinal facet capsule, an innervated ligament with heterogeneous collagen organization, produces pain. Although mechanical facet joint trauma activates embedded afferents, it is unclear if, and how, the varied extracellular microstructure of its ligament affects sensory transduction for pain from mechanical inputs. To investigate the effects of macroscopic deformations on afferents in collagen matrices with different organizations, an in vitro neuron-collagen construct (NCC) model was used. NCCs with either randomly organized or parallel aligned collagen fibers were used to mimic the varied microstructure in the facet capsular ligament. Embryonic rat dorsal root ganglia (DRG) were encapsulated in the NCCs; axonal outgrowth was uniform and in all directions in random NCCs, but parallel in aligned NCCs. NCCs underwent uniaxial stretch (0.25 ± 0.06 strain) corresponding to sub-failure facet capsule strains that induce pain. Macroscopic NCC mechanics were measured and axonal expression of phosphorylated extracellular signal-regulated kinase (pERK) and the neurotransmitter substance P (SP) was assayed at 1 day to assess neuronal activation and nociception. Stretch significantly upregulated pERK expression in both random and aligned gels (p organization. These findings suggest that collagen organization differentially modulates pain-related neuronal signaling and support structural heterogeneity of ligament tissue as mediating sensory function. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:770-777, 2018. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  10. Effects of Stretching and Strengthening Exercises, With and Without Manual Therapy, on Scapular Kinematics, Function, and Pain in Individuals With Shoulder Impingement: A Randomized Controlled Trial.

    Science.gov (United States)

    Camargo, Paula R; Alburquerque-Sendín, Francisco; Avila, Mariana A; Haik, Melina N; Vieira, Amilton; Salvini, Tania F

    2015-12-01

    Randomized controlled trial. To evaluate the effects of an exercise protocol, with and without manual therapy, on scapular kinematics, function, pain, and mechanical sensitivity in individuals with shoulder impingement syndrome. Stretching and strengthening exercises have been shown to effectively decrease pain and disability in individuals with shoulder impingement syndrome. There is still conflicting evidence regarding the efficacy of adding manual therapy to an exercise therapy regimen. Forty-six patients were assigned to 1 of 2 groups, one of which received a 4-week intervention of stretching and strengthening exercises (exercise alone) and the other the same intervention, supplemented by manual therapy targeting the shoulder and cervical spine (exercise plus manual therapy). All outcomes were measured preintervention and postintervention at 4 weeks. Outcome measures were scapular kinematics in the scapular and sagittal planes during arm elevation, function as determined through the Disabilities of the Arm, Shoulder and Hand (DASH) questionnaire, pain as assessed with a visual analog scale, and mechanical sensitivity as assessed with pressure pain threshold. Independent of the intervention group, small, clinically irrelevant changes in scapular kinematics were observed postintervention. A significant group-by-time interaction effect (P = .001) was found for scapular anterior tilt during elevation in the sagittal plane, with a 3.0° increase (95% confidence interval [CI]: -1.5°, 7.5°) relative to baseline in the exercise-plus-manual therapy group compared to a decrease of 0.3° (95% CI: -4.2°, 4.8°) in the exercise-alone group. Pain, mechanical sensitivity, and the DASH score improved similarly for both groups by the end of the intervention period. Adding manual therapy to an exercise protocol did not enhance improvements in scapular kinematics, function, and pain in individuals with shoulder impingement syndrome. The noted improvements in pain and function

  11. Separation of type and grade in cervical tumours using non-mono-exponential models of diffusion-weighted MRI

    International Nuclear Information System (INIS)

    Winfield, Jessica M.; Collins, David J.; Morgan, Veronica A.; DeSouza, Nandita M.; Orton, Matthew R.; Ind, Thomas E.J.; Attygalle, Ayoma; Hazell, Steve

    2017-01-01

    Assessment of empirical diffusion-weighted MRI (DW-MRI) models in cervical tumours to investigate whether fitted parameters distinguish between types and grades of tumours. Forty-two patients (24 squamous cell carcinomas, 14 well/moderately differentiated, 10 poorly differentiated; 15 adenocarcinomas, 13 well/moderately differentiated, two poorly differentiated; three rare types) were imaged at 3 T using nine b-values (0 to 800 s mm -2 ). Mono-exponential, stretched exponential, kurtosis, statistical, and bi-exponential models were fitted. Model preference was assessed using Bayesian Information Criterion analysis. Differences in fitted parameters between tumour types/grades and correlation between fitted parameters were assessed using two-way analysis of variance and Pearson's linear correlation coefficient, respectively. Non-mono-exponential models were preferred by 83 % of tumours with bi-exponential and stretched exponential models preferred by the largest numbers of tumours. Apparent diffusion coefficient (ADC) and diffusion coefficients from non-mono-exponential models were significantly lower in poorly differentiated tumours than well/moderately differentiated tumours. α (stretched exponential), K (kurtosis), f and D* (bi-exponential) were significantly different between tumour types. Strong correlation was observed between ADC and diffusion coefficients from other models. Non-mono-exponential models were preferred to the mono-exponential model in DW-MRI data from cervical tumours. Parameters of non-mono-exponential models showed significant differences between types and grades of tumours. (orig.)

  12. Separation of type and grade in cervical tumours using non-mono-exponential models of diffusion-weighted MRI

    Energy Technology Data Exchange (ETDEWEB)

    Winfield, Jessica M.; Collins, David J.; Morgan, Veronica A.; DeSouza, Nandita M. [The Royal Marsden NHS Foundation Trust, MRI Unit, Sutton, Surrey (United Kingdom); The Institute of Cancer Research, Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, London (United Kingdom); Orton, Matthew R. [The Institute of Cancer Research, Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, London (United Kingdom); Ind, Thomas E.J. [The Royal Marsden NHS Foundation Trust, Gynaecology Unit, London (United Kingdom); Attygalle, Ayoma; Hazell, Steve [The Royal Marsden NHS Foundation Trust, Department of Histopathology, London (United Kingdom)

    2017-02-15

    Assessment of empirical diffusion-weighted MRI (DW-MRI) models in cervical tumours to investigate whether fitted parameters distinguish between types and grades of tumours. Forty-two patients (24 squamous cell carcinomas, 14 well/moderately differentiated, 10 poorly differentiated; 15 adenocarcinomas, 13 well/moderately differentiated, two poorly differentiated; three rare types) were imaged at 3 T using nine b-values (0 to 800 s mm{sup -2}). Mono-exponential, stretched exponential, kurtosis, statistical, and bi-exponential models were fitted. Model preference was assessed using Bayesian Information Criterion analysis. Differences in fitted parameters between tumour types/grades and correlation between fitted parameters were assessed using two-way analysis of variance and Pearson's linear correlation coefficient, respectively. Non-mono-exponential models were preferred by 83 % of tumours with bi-exponential and stretched exponential models preferred by the largest numbers of tumours. Apparent diffusion coefficient (ADC) and diffusion coefficients from non-mono-exponential models were significantly lower in poorly differentiated tumours than well/moderately differentiated tumours. α (stretched exponential), K (kurtosis), f and D* (bi-exponential) were significantly different between tumour types. Strong correlation was observed between ADC and diffusion coefficients from other models. Non-mono-exponential models were preferred to the mono-exponential model in DW-MRI data from cervical tumours. Parameters of non-mono-exponential models showed significant differences between types and grades of tumours. (orig.)

  13. Stretched Wire Mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Bowden, Gordon; /SLAC

    2005-09-06

    Stretched wires are beginning to play an important role in the alignment of accelerators and synchrotron light sources. Stretched wires are proposed for the alignment of the 130 meter long LCLS undulator. Wire position technology has reached sub-micron resolution yet analyses of perturbations to wire straightness are hard to find. This paper considers possible deviations of stretched wire from the simple 2-dimensional catenary form.

  14. Comparison of the effects of knee and hip and single knee muscles strengthening/ stretching exercises on pain intensity and function in athletes with patellofemoral pain syndrome

    Directory of Open Access Journals (Sweden)

    Vahid Mazloum

    2016-08-01

    Full Text Available Background: Patellofemoral pain syndrome (PFPS is a common musculoskeletal condition among athletes. The evidence emphasizes on the importance of hip musculature strengthening exercises for such patients. Objective: To investigate the effects of strengthening-stretching knee muscles exercises and hip posterolateral musculature exercises in athletes with PFPS. Methods: In this clinical trial, 28 athletes with age average of 22.7±2.4 years with PFPS were allocated into conventional knee muscles exercises (CKME (n=14 and posterolateral hip muscles exercises (PHME (n=14. The subjects of both groups performed the supervised exercise protocols in 12 sessions. The Visual Analogue Scale and 6-minute walking tests were administrated respectively to evaluate pain intensity and function. The data were analyzed using Shapiro-wilk test, Independent-sample t test, and Repeated Measure ANOVA test. Findings: Demographic, pain intensity, and physical function data were similar between groups at baseline. Both groups significantly improved in pain intensity and function following a 4-week exercise program. Additionally, the athletes in PHME group had higher level of decreased pain intensity and improved function in follow-up assessment than the subjects in CKME group. Conclusion: Using hip posterolateral musculature exercises in addition to the knee conventional exercises is more effective for athletes with PFPS.

  15. Test Exponential Pile

    Science.gov (United States)

    Fermi, Enrico

    The Patent contains an extremely detailed description of an atomic pile employing natural uranium as fissile material and graphite as moderator. It starts with the discussion of the theory of the intervening phenomena, in particular the evaluation of the reproduction or multiplication factor, K, that is the ratio of the number of fast neutrons produced in one generation by the fissions to the original number of fast neutrons, in a system of infinite size. The possibility of having a self-maintaining chain reaction in a system of finite size depends both on the facts that K is greater than unity and the overall size of the system is sufficiently large to minimize the percentage of neutrons escaping from the system. After the description of a possible realization of such a pile (with many detailed drawings), the various kinds of neutron losses in a pile are depicted. Particularly relevant is the reported "invention" of the exponential experiment: since theoretical calculations can determine whether or not a chain reaction will occur in a give system, but can be invalidated by uncertainties in the parameters of the problem, an experimental test of the pile is proposed, aimed at ascertaining if the pile under construction would be divergent (i.e. with a neutron multiplication factor K greater than 1) by making measurements on a smaller pile. The idea is to measure, by a detector containing an indium foil, the exponential decrease of the neutron density along the length of a column of uranium-graphite lattice, where a neutron source is placed near its base. Such an exponential decrease is greater or less than that expected due to leakage, according to whether the K factor is less or greater than 1, so that this experiment is able to test the criticality of the pile, its accuracy increasing with the size of the column. In order to perform this measure a mathematical description of the effect of neutron production, diffusion, and absorption on the neutron density in the

  16. Acute effects of different stretching durations on passive torque, mobility, and isometric muscle force.

    Science.gov (United States)

    Matsuo, Shingo; Suzuki, Shigeyuki; Iwata, Masahiro; Banno, Yasuhiro; Asai, Yuji; Tsuchida, Wakako; Inoue, Takayuki

    2013-12-01

    Static stretching is widely applied in various disciplines. However, the acute effects of different durations of stretching are unclear. Therefore, this study was designed to investigate the acute effects of different stretching durations on muscle function and flexibility, and provide an insight into the optimal duration of static stretching. This randomized crossover trial included 24 healthy students (17 men and 7 women) who stretched their right hamstrings for durations of 20, 60, 180, and 300 seconds in a random order. The following outcomes were assessed using an isokinetic dynamometer as markers of lower-limb function and flexibility: static passive torque (SPT), dynamic passive torque (DPT), stiffness, straight leg raise (SLR), and isometric muscle force. Static passive torque was significantly decreased after all stretching durations (p stretching compared with that after 20-second stretching, and stiffness decreased significantly after 180- and 300-second stretching (p stretching (p stretching durations (p stretching than after 20-second stretching and higher after 300-second stretching than after 60-second stretching (p muscle force significantly decreased after all stretching durations (p stretching is associated with a decrease in SPT but an increase in SLR. Over 180 seconds of stretching was required to decrease DPT and stiffness, but isometric muscle force decreased regardless of the stretching duration. In conclusion, these results indicate that longer durations of stretching are needed to provide better flexibility.

  17. Coarse Grained Exponential Variational Autoencoders

    KAUST Repository

    Sun, Ke

    2017-02-25

    Variational autoencoders (VAE) often use Gaussian or category distribution to model the inference process. This puts a limit on variational learning because this simplified assumption does not match the true posterior distribution, which is usually much more sophisticated. To break this limitation and apply arbitrary parametric distribution during inference, this paper derives a \\\\emph{semi-continuous} latent representation, which approximates a continuous density up to a prescribed precision, and is much easier to analyze than its continuous counterpart because it is fundamentally discrete. We showcase the proposition by applying polynomial exponential family distributions as the posterior, which are universal probability density function generators. Our experimental results show consistent improvements over commonly used VAE models.

  18. Dynamic stretching is effective as static stretching at increasing flexibility

    OpenAIRE

    Coons, John M.; Gould, Colleen E.; Kim, Jwa K.; Farley, Richard S.; Caputo, Jennifer L.

    2017-01-01

    This study examined the effect of dynamic and static (standard) stretching on hamstring flexibility. Twenty-five female volleyball players were randomly assigned to dynamic (n = 12) and standard (n = 13) stretching groups. The experimental group trained with repetitive dynamic stretching exercises, while the standard modality group trained with static stretching exercises. The stretching interventions were equivalent in the time at stretch and were performed three days a week for four weeks. ...

  19. Multivariate Matrix-Exponential Distributions

    DEFF Research Database (Denmark)

    Bladt, Mogens; Nielsen, Bo Friis

    2010-01-01

    be written as linear combinations of the elements in the exponential of a matrix. For this reason we shall refer to multivariate distributions with rational Laplace transform as multivariate matrix-exponential distributions (MVME). The marginal distributions of an MVME are univariate matrix......-exponential distributions. We prove a characterization that states that a distribution is an MVME distribution if and only if all non-negative, non-null linear combinations of the coordinates have a univariate matrix-exponential distribution. This theorem is analog to a well-known characterization theorem...

  20. On zero variance Monte Carlo path-stretching schemes

    International Nuclear Information System (INIS)

    Lux, I.

    1983-01-01

    A zero variance path-stretching biasing scheme proposed for a special case by Dwivedi is derived in full generality. The procedure turns out to be the generalization of the exponential transform. It is shown that the biased game can be interpreted as an analog simulation procedure, thus saving some computational effort in comparison with the corresponding nonanalog game

  1. Intersection of the Exponential and Logarithmic Curves

    Science.gov (United States)

    Boukas, Andreas; Valahas, Theodoros

    2009-01-01

    The study of the number of intersection points of y = a[superscript x] and y = log[subscript a]x can be an interesting topic to present in a single-variable calculus class. In this article, the authors present a classroom presentation outline involving the basic algebra and the elementary calculus of the exponential and logarithmic functions. The…

  2. Residual, restarting and Richardson iteration for the matrix exponential

    NARCIS (Netherlands)

    Bochev, Mikhail A.

    2010-01-01

    A well-known problem in computing some matrix functions iteratively is a lack of a clear, commonly accepted residual notion. An important matrix function for which this is the case is the matrix exponential. Assume, the matrix exponential of a given matrix times a given vector has to be computed. We

  3. Residual, restarting and Richardson iteration for the matrix exponential

    NARCIS (Netherlands)

    Bochev, Mikhail A.; Grimm, Volker; Hochbruck, Marlis

    2013-01-01

    A well-known problem in computing some matrix functions iteratively is the lack of a clear, commonly accepted residual notion. An important matrix function for which this is the case is the matrix exponential. Suppose the matrix exponential of a given matrix times a given vector has to be computed.

  4. Transverse exponential stability and applications

    NARCIS (Netherlands)

    Andrieu, Vincent; Jayawardhana, Bayu; Praly, Laurent

    2016-01-01

    We investigate how the following properties are related to each other: i) A manifold is “transversally” exponentially stable; ii) The “transverse” linearization along any solution in the manifold is exponentially stable; iii) There exists a field of positive definite quadratic forms whose

  5. Biocatalysis: Unmasked by stretching

    Science.gov (United States)

    Kharlampieva, Eugenia; Tsukruk, Vladimir V.

    2009-09-01

    The biocatalytic activity of enzyme-loaded responsive layer-by-layer films can be switched on and off by simple mechanical stretching. Soft materials could thus be used to trigger biochemical reactions under mechanical action, with potential therapeutic applications.

  6. Stretch due to Penile Prosthesis Reservoir Migration

    Directory of Open Access Journals (Sweden)

    E. Baten

    2016-03-01

    Full Text Available A 43-year old patient presented to the emergency department with stretch, due to impossible deflation of the penile prosthesis, 4 years after successful implant. A CT-scan showed migration of the reservoir to the left rectus abdominis muscle. Refilling of the reservoir was inhibited by muscular compression, causing stretch. Removal and replacement of the reservoir was performed, after which the prosthesis was well-functioning again. Migration of the penile prosthesis reservoir is extremely rare but can cause several complications, such as stretch.

  7. Exponential Stability of Stochastic Systems with Delay and Poisson Jumps

    Directory of Open Access Journals (Sweden)

    Wenli Zhu

    2014-01-01

    Full Text Available This paper focuses on the model of a class of nonlinear stochastic delay systems with Poisson jumps based on Lyapunov stability theory, stochastic analysis, and inequality technique. The existence and uniqueness of the adapted solution to such systems are proved by applying the fixed point theorem. By constructing a Lyapunov function and using Doob’s martingale inequality and Borel-Cantelli lemma, sufficient conditions are given to establish the exponential stability in the mean square of such systems, and we prove that the exponentially stable in the mean square of such systems implies the almost surely exponentially stable. The obtained results show that if stochastic systems is exponentially stable and the time delay is sufficiently small, then the corresponding stochastic delay systems with Poisson jumps will remain exponentially stable, and time delay upper limit is solved by using the obtained results when the system is exponentially stable, and they are more easily verified and applied in practice.

  8. Exponential Stability of Stochastic Differential Equation with Mixed Delay

    Directory of Open Access Journals (Sweden)

    Wenli Zhu

    2014-01-01

    Full Text Available This paper focuses on a class of stochastic differential equations with mixed delay based on Lyapunov stability theory, Itô formula, stochastic analysis, and inequality technique. A sufficient condition for existence and uniqueness of the adapted solution to such systems is established by employing fixed point theorem. Some sufficient conditions of exponential stability and corollaries for such systems are obtained by using Lyapunov function. By utilizing Doob’s martingale inequality and Borel-Cantelli lemma, it is shown that the exponentially stable in the mean square of such systems implies the almost surely exponentially stable. In particular, our theoretical results show that if stochastic differential equation is exponentially stable and the time delay is sufficiently small, then the corresponding stochastic differential equation with mixed delay will remain exponentially stable. Moreover, time delay upper limit is solved by using our theoretical results when the system is exponentially stable, and they are more easily verified and applied in practice.

  9. Exponentiated Lomax Geometric Distribution: Properties and Applications

    Directory of Open Access Journals (Sweden)

    Amal Soliman Hassan

    2017-09-01

    Full Text Available In this paper, a new four-parameter lifetime distribution, called the exponentiated Lomax geometric (ELG is introduced. The new lifetime distribution contains the Lomax geometric and exponentiated Pareto geometric as new sub-models. Explicit algebraic formulas of probability density function, survival and hazard functions are derived. Various structural properties of the new model are derived including; quantile function, Re'nyi entropy, moments, probability weighted moments, order statistic, Lorenz and Bonferroni curves. The estimation of the model parameters is performed by maximum likelihood method and inference for a large sample is discussed. The flexibility and potentiality of the new model in comparison with some other distributions are shown via an application to a real data set. We hope that the new model will be an adequate model for applications in various studies.

  10. A large collapsed-state RNA can exhibit simple exponential single-molecule dynamics.

    Science.gov (United States)

    Smith, Glenna J; Lee, Kang Taek; Qu, Xiaohui; Xie, Zheng; Pesic, Jelena; Sosnick, Tobin R; Pan, Tao; Scherer, Norbert F

    2008-05-09

    The process of large RNA folding is believed to proceed from many collapsed structures to a unique functional structure requiring precise organization of nucleotides. The diversity of possible structures and stabilities of large RNAs could result in non-exponential folding kinetics (e.g. stretched exponential) under conditions where the molecules have not achieved their native state. We describe a single-molecule fluorescence resonance energy transfer (FRET) study of the collapsed-state region of the free energy landscape of the catalytic domain of RNase P RNA from Bacillus stearothermophilus (C(thermo)). Ensemble measurements have shown that this 260 residue RNA folds cooperatively to its native state at >or=1 mM Mg(2+), but little is known about the conformational dynamics at lower ionic strength. Our measurements of equilibrium conformational fluctuations reveal simple exponential kinetics that reflect a small number of discrete states instead of the expected inhomogeneous dynamics. The distribution of discrete dwell times, collected from an "ensemble" of 300 single molecules at each of a series of Mg(2+) concentrations, fit well to a double exponential, which indicates that the RNA conformational changes can be described as a four-state system. This finding is somewhat unexpected under [Mg(2+)] conditions in which this RNA does not achieve its native state. Observation of discrete well-defined conformations in this large RNA that are stable on the seconds timescale at low [Mg(2+)] (<0.1 mM) suggests that even at low ionic strength, with a tremendous number of possible (weak) interactions, a few critical interactions may produce deep energy wells that allow for rapid averaging of motions within each well, and yield kinetics that are relatively simple.

  11. Global exponential stability for nonautonomous cellular neural networks with delays

    International Nuclear Information System (INIS)

    Zhang Qiang; Wei Xiaopeng; Xu Jin

    2006-01-01

    In this Letter, by utilizing Lyapunov functional method and Halanay inequalities, we analyze global exponential stability of nonautonomous cellular neural networks with delay. Several new sufficient conditions ensuring global exponential stability of the network are obtained. The results given here extend and improve the earlier publications. An example is given to demonstrate the effectiveness of the obtained results

  12. Non-exponential decay of wavefunctions and scattering resonances

    Science.gov (United States)

    Petridis, Athanasios; Vermedahl, Jonathan; Staunton, Lawrence; Luban, Marshall

    2001-10-01

    We investigate the possibility for non-exponential decay of wavefunctions initially distributed inside finite-range potential wells. The time dependence of the survival probability follows a step-wise pattern, deviating from a simple exponential function. The corresponding Breit-Winger curve for scattering resonances is modified due to this effect.

  13. Exponential Boundary Observers for Pressurized Water Pipe

    Science.gov (United States)

    Hermine Som, Idellette Judith; Cocquempot, Vincent; Aitouche, Abdel

    2015-11-01

    This paper deals with state estimation on a pressurized water pipe modeled by nonlinear coupled distributed hyperbolic equations for non-conservative laws with three known boundary measures. Our objective is to estimate the fourth boundary variable, which will be useful for leakage detection. Two approaches are studied. Firstly, the distributed hyperbolic equations are discretized through a finite-difference scheme. By using the Lipschitz property of the nonlinear term and a Lyapunov function, the exponential stability of the estimation error is proven by solving Linear Matrix Inequalities (LMIs). Secondly, the distributed hyperbolic system is preserved for state estimation. After state transformations, a Luenberger-like PDE boundary observer based on backstepping mathematical tools is proposed. An exponential Lyapunov function is used to prove the stability of the resulted estimation error. The performance of the two observers are shown on a water pipe prototype simulated example.

  14. EFFECTIVENESS OF DRY NEEDLING, STRETCHING, AND STRENGTHENING TO REDUCE PAIN AND IMPROVE FUNCTION IN SUBJECTS WITH CHRONIC LATERAL HIP AND THIGH PAIN: A RETROSPECTIVE CASE SERIES.

    Science.gov (United States)

    Pavkovich, Ron

    2015-08-01

    Chronic lateral hip and thigh pain is regularly treated by the physical therapist. Many issues can cause pain in this region, and trigger points may contribute to pain. Dry Needling (DN) is an intervention used by physical therapists where a monofilament needle is inserted into soft tissue to reduce pain thereby facilitating return to prior level of function. The purpose of this case series is to report the outcomes of DN and conventional physical therapy as a treatment intervention for subjects with chronic lateral hip and thigh pain. Four subjects with chronic lateral hip and thigh pain attended between four and eight sixty-minute sessions of dry needling and stretching/ strengthening activities over a four to eight week intervention course. Outcomes were tested at baseline and upon completion of therapy. A long-term follow up averaging 12.25 months (range 3 to 20 months) was also performed. The outcome measures included the Visual Analog Scale (VAS) and the Lower Extremity Functional Scale (LEFS). The LEFS and VAS indicated clinically meaningful improvements in disability and pain in the short term and upon long term follow up for each subject. The LEFS(mean) for the four subjects improved from 50.75 at baseline to 66.75 at the completion of treatment. At long-term follow-up, the LEFS(mean) was 65.50. Each subject met the minimal clinically important difference (MCID) and minimal detectable change (MDC) for the LEFS and the VAS. The VAS was broken down into best (VAS(B)), current (VAS(C)), and worst (VAS(W)) rated pain levels and averaged between the four subjects. The VAS(B) improved from 20 mm at the initial assessment to 0 mm upon completion of the intervention duration. The VAS(C) improved from 25.75 mm to 11.75 mm, and the VAS(W) improved from 85 mm to 32.5 mm. At the long-term follow up (average 12.25 months), the VAS(B), VAS(C), and VAS(W) scores were 0 mm, 14.58 mm, and 43.75 mm respectively. Clinically meaningful improvements in pain and disability were

  15. The Relevance of Stretch Intensity and Position: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Nikos eApostolopoulos

    2015-08-01

    Full Text Available Stretching exercises to increase the range of motion (ROM of joints have been used by sports coaches and medical professionals for improving performance and rehabilitation. The ability of connective and muscular tissues to change their architecture in response to stretching is important for their proper function, repair and performance. Given the dearth of relevant data in the literature, this review examined two key elements of stretching: stretch intensity and stretch position; and their significance to ROM, delayed onset muscle soreness (DOMS, and inflammation in different populations. A search of three databases, Pub-Med, Google Scholar, and Cochrane Reviews, identified 152 articles, which were subsequently categorized into four groups; athletes (n = 24, clinical (n = 29, elderly (n = 12, and general population (n = 87. The use of different populations facilitated a wider examination of the stretching components and their effects. All 152 articles incorporated information regarding duration, frequency and stretch position, whereas only 79 referred to the intensity of stretching and 22 of these 79 studies were deemed high quality. It appears that the intensity of stretching is relatively under-researched, and the importance of body position and its influence on stretch intensity, is largely unknown. In conclusion, this review has highlighted areas for future research, including stretch intensity and position and their effect on musculo-tendinous tissue, in relation to the sensation of pain, delayed onset muscle soreness, inflammation, as well as muscle health and performance

  16. Universality in stochastic exponential growth.

    Science.gov (United States)

    Iyer-Biswas, Srividya; Crooks, Gavin E; Scherer, Norbert F; Dinner, Aaron R

    2014-07-11

    Recent imaging data for single bacterial cells reveal that their mean sizes grow exponentially in time and that their size distributions collapse to a single curve when rescaled by their means. An analogous result holds for the division-time distributions. A model is needed to delineate the minimal requirements for these scaling behaviors. We formulate a microscopic theory of stochastic exponential growth as a Master Equation that accounts for these observations, in contrast to existing quantitative models of stochastic exponential growth (e.g., the Black-Scholes equation or geometric Brownian motion). Our model, the stochastic Hinshelwood cycle (SHC), is an autocatalytic reaction cycle in which each molecular species catalyzes the production of the next. By finding exact analytical solutions to the SHC and the corresponding first passage time problem, we uncover universal signatures of fluctuations in exponential growth and division. The model makes minimal assumptions, and we describe how more complex reaction networks can reduce to such a cycle. We thus expect similar scalings to be discovered in stochastic processes resulting in exponential growth that appear in diverse contexts such as cosmology, finance, technology, and population growth.

  17. Possible implications of exponential decay

    International Nuclear Information System (INIS)

    Steyerl, A.; Malik, S.S.

    1992-01-01

    Semiclassical concepts are developed which could make the appearance of a logarithmic nonlinearity in a Schroedinger-type equation plausible. This approach is based on the introduction of a novel wave function describing the center of mass (CM) motion of unstable particles or composite systems subject to statistical changes of their internal quantum state. The element of statistical randomness associated with a purely exponential decay law suggests the use of thermodynamic concepts like entropy and free energy. These concepts are applied only to a domain open-quotes blurredclose quotes by the quantum uncertainty principle where the problematic definition of a time and entropy operator might be possible. The paper consists of three main parts. Section 1 develops an extended nonrelativistic equation of motion. The proposed equation contains yet reinterprets the BBM equation, and for stable systems is reduced to the Schroedinger equation. Definite predictions are made for observable quantities. In Section 2, the family of localized, nonspreading ground-state solutions to the BBM equation is extended, in two and three spatial dimensions, to states classified by finite quantized angular momenta and definite values of entropy. The statistical behavior of CM systems and their electromagnetic interaction are investigated. In Section 3, implications of these concepts are outlined with emphasis on possible experimental manifestations. Suggested laboratory tests include high-precision measurements of unstable particle diffraction on linear gratings as well as neutron interferometer experiments of the type previously attempted to test the BBM equation. A further testing possibility is the investigation of particle resonances. An important feature of the present model is a subtle combination of quantum and classical aspects, achieved without compromising fundamental principles, while reinterpreting microreversibility. 46 refs., 6 figs., 4 tabs

  18. Non-Mono-Exponential Analysis of Diffusion-Weighted Imaging for Treatment Monitoring in Prostate Cancer Bone Metastases.

    Science.gov (United States)

    Reischauer, Carolin; Patzwahl, René; Koh, Dow-Mu; Froehlich, Johannes M; Gutzeit, Andreas

    2017-07-19

    Diffusion-weighted imaging quantified using the mono-exponential model has shown great promise for monitoring treatment response in prostate cancer bone metastases. The aim of this prospective study is to evaluate whether non-mono-exponential diffusion models better describe the water diffusion properties and may improve treatment response assessment. Diffusion-weighted imaging data of 12 treatment-naïve patients with 34 metastases acquired before and at one, two, and three months after initiation of antiandrogen treatment are analysed using the mono-exponential, the intravoxel incoherent motion, the stretched exponential, and the statistical model. Repeatability of the fitted parameters and changes under therapy are quantified. Model preference is assessed and correlation coefficients across times are calculated to delineate the relationship between the prostate-specific antigen levels and the diffusion parameters as well as between the diffusion parameters within each model. There is a clear preference for non-mono-exponential diffusion models at all time points. Particularly the stretched exponential is favoured in approximately 60% of the lesions. Its parameters increase significantly in response to treatment and are highly repeatable. Thus, the stretched exponential may be utilized as a potential optimal model for monitoring treatment response. Compared with the mono-exponential model, it may provide complementary information on tissue properties and improve response assessment.

  19. Stretching & Flexibility: An Interactive Encyclopedia of Stretching. [CD-ROM].

    Science.gov (United States)

    2002

    This CD-ROM offers 140 different stretches in full-motion video sequences. It focuses on the proper techniques for overall physical fitness, injury prevention and rehabilitation, and 23 different sports (e.g., golf, running, soccer, skiing, climbing, football, and baseball). Topics include stretching for sports; stretching awareness and education…

  20. Effects of a combined strengthening, stretching and functional training program versus usual-care on gait biomechanics and foot function for diabetic neuropathy: a randomized controlled trial.

    Science.gov (United States)

    Sartor, Cristina Dallemole; Watari, Ricky; Pássaro, Anice Campos; Picon, Andreja Paley; Hasue, Renata Haydée; Sacco, Isabel C N

    2012-03-19

    Polyneuropathy is a complication of diabetes mellitus that has been very challenging for clinicians. It results in high public health costs and has a huge impact on patients' quality of life. Preventive interventions are still the most important approach to avoid plantar ulceration and amputation, which is the most devastating endpoint of the disease. Some therapeutic interventions improve gait quality, confidence, and quality of life; however, there is no evidence yet of an effective physical therapy treatment for recovering musculoskeletal function and foot rollover during gait that could potentially redistribute plantar pressure and reduce the risk of ulcer formation. A randomised, controlled trial, with blind assessment, was designed to study the effect of a physiotherapy intervention on foot rollover during gait, range of motion, muscle strength and function of the foot and ankle, and balance confidence. The main outcome is plantar pressure during foot rollover, and the secondary outcomes are kinetic and kinematic parameters of gait, neuropathy signs and symptoms, foot and ankle range of motion and function, muscle strength, and balance confidence. The intervention is carried out for 12 weeks, twice a week, for 40-60 min each session. The follow-up period is 24 weeks from the baseline condition. Herein, we present a more comprehensive and specific physiotherapy approach for foot and ankle function, by choosing simple tasks, focusing on recovering range of motion, strength, and functionality of the joints most impaired by diabetic polyneuropathy. In addition, this intervention aims to transfer these peripheral gains to the functional and more complex task of foot rollover during gait, in order to reduce risk of ulceration. If it shows any benefit, this protocol can be used in clinical practice and can be indicated as complementary treatment for this disease. ClinicalTrials.gov Identifier: NCT01207284.

  1. Effects of a combined strengthening, stretching and functional training program versus usual-care on gait biomechanics and foot function for diabetic neuropathy: a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Sartor Cristina

    2012-03-01

    Full Text Available Abstract Background Polyneuropathy is a complication of diabetes mellitus that has been very challenging for clinicians. It results in high public health costs and has a huge impact on patients' quality of life. Preventive interventions are still the most important approach to avoid plantar ulceration and amputation, which is the most devastating endpoint of the disease. Some therapeutic interventions improve gait quality, confidence, and quality of life; however, there is no evidence yet of an effective physical therapy treatment for recovering musculoskeletal function and foot rollover during gait that could potentially redistribute plantar pressure and reduce the risk of ulcer formation. Methods/Design A randomised, controlled trial, with blind assessment, was designed to study the effect of a physiotherapy intervention on foot rollover during gait, range of motion, muscle strength and function of the foot and ankle, and balance confidence. The main outcome is plantar pressure during foot rollover, and the secondary outcomes are kinetic and kinematic parameters of gait, neuropathy signs and symptoms, foot and ankle range of motion and function, muscle strength, and balance confidence. The intervention is carried out for 12 weeks, twice a week, for 40-60 min each session. The follow-up period is 24 weeks from the baseline condition. Discussion Herein, we present a more comprehensive and specific physiotherapy approach for foot and ankle function, by choosing simple tasks, focusing on recovering range of motion, strength, and functionality of the joints most impaired by diabetic polyneuropathy. In addition, this intervention aims to transfer these peripheral gains to the functional and more complex task of foot rollover during gait, in order to reduce risk of ulceration. If it shows any benefit, this protocol can be used in clinical practice and can be indicated as complementary treatment for this disease. Trial Registration Clinical

  2. Infrared spectroscopy and Density Functional Theory of crystalline β-2,4,6,8,10,12-hexanitrohexaaziosowurtzitane (β CL-20) in the region of its C-H stretching vibrations.

    Science.gov (United States)

    Behler, K D; Pesce-Rodriguez, R; Cabalo, J; Sausa, R

    2013-10-01

    Molecular vibrational spectroscopy provides a useful tool for material characterization and model verification. We examine the CH stretching fundamental and overtones of energetic material β-2,4,6,8,10,12-hexanitrohexaaziosowurtzitane (β-CL-20) by Raman spectroscopy, Fourier Transform Infrared Spectroscopy, and Laser Photoacoustic Overtone Spectroscopy, and utilize Density Functional Theory to calculate the C-H bond energy of β-CL-20 in a crystal. The spectra reveal four intense and distinct features, whose analysis yields C-H stretching fundamental frequencies and anharmonicity values that range from 3137 to 3170 cm(-1) and 53.8 to 58.8 cm(-1), respectively. From these data, we estimate an average value of 42,700 cm(-1) (5.29 eV) for the C-H bond energy, a value that agrees with our quantum mechanical calculations. Published by Elsevier B.V.

  3. On commuting operator exponentials, II

    Indian Academy of Sciences (India)

    Home; Journals; Proceedings – Mathematical Sciences; Volume 123; Issue 1. On Commuting Operator Exponentials, II. Fotios C Paliogiannis. Volume 123 Issue 1 February 2013 pp 27-31. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/pmsc/123/01/0027-0031. Keywords.

  4. Phenomenology of stochastic exponential growth

    Science.gov (United States)

    Pirjol, Dan; Jafarpour, Farshid; Iyer-Biswas, Srividya

    2017-06-01

    Stochastic exponential growth is observed in a variety of contexts, including molecular autocatalysis, nuclear fission, population growth, inflation of the universe, viral social media posts, and financial markets. Yet literature on modeling the phenomenology of these stochastic dynamics has predominantly focused on one model, geometric Brownian motion (GBM), which can be described as the solution of a Langevin equation with linear drift and linear multiplicative noise. Using recent experimental results on stochastic exponential growth of individual bacterial cell sizes, we motivate the need for a more general class of phenomenological models of stochastic exponential growth, which are consistent with the observation that the mean-rescaled distributions are approximately stationary at long times. We show that this behavior is not consistent with GBM, instead it is consistent with power-law multiplicative noise with positive fractional powers. Therefore, we consider this general class of phenomenological models for stochastic exponential growth, provide analytical solutions, and identify the important dimensionless combination of model parameters, which determines the shape of the mean-rescaled distribution. We also provide a prescription for robustly inferring model parameters from experimentally observed stochastic growth trajectories.

  5. Stretching the Border

    DEFF Research Database (Denmark)

    Horstmann, Alexander

    2014-01-01

    In this paper, I hope to add a complementary perspective to James Scott’s recent work on avoidance strategies of subaltern mountain people by focusing on what I call the refugee public. The educated Karen elite uses the space of exile in the Thai borderland to reconstitute resources and to re-ent......-based organizations succeed to stretch the border by establishing a firm presence that is supported by the international humanitarian economy in the refugee camps in Northwestern Thailand....

  6. The exponentiated generalized Pareto distribution | Adeyemi | Ife ...

    African Journals Online (AJOL)

    Recently Gupta et al. (1998) introduced the exponentiated exponential distribution as a generalization of the standard exponential distribution. In this paper, we introduce a three-parameter generalized Pareto distribution, the exponentiated generalized Pareto distribution (EGP). We present a comprehensive treatment of the ...

  7. Partial Generalized Probability Weighted Moments for Exponentiated Exponential Distribution

    Directory of Open Access Journals (Sweden)

    Neema Mohamed El Haroun

    2015-09-01

    Full Text Available The generalized probability weighted moments are widely used in hydrology for estimating parameters of flood distributions from complete sample. The method of partial generalized probability weighted moments was used to estimate the parameters of distributions from censored sample. This article offers new method called partial generalized probability weighted moments (PGPWMs for the analysis of censored data. The method of PGPWMs is an extended class from partial generalized probability weighted moments. To illustrate the new method, estimation of the unknown parameters from exponentiated exponential distribution based on doubly censored sample is considered. PGPWMs estimators for right and left censored samples are obtained as special cases.   Simulation study is conducted to investigate performance of estimates for exponentiated exponential distribution. Comparison between estimators is made through simulation via their biases and  mean square errors. An illustration with real data is provided. Normal 0 false false false EN-US X-NONE AR-SA /* Style Definitions */ table.MsoNormalTable {mso-style-name:"جدول عادي"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:Arial; mso-bidi-theme-font:minor-bidi;}

  8. Analytic results for asymmetric random walk with exponential transition probabilities

    International Nuclear Information System (INIS)

    Gutkowicz-Krusin, D.; Procaccia, I.; Ross, J.

    1978-01-01

    We present here exact analytic results for a random walk on a one-dimensional lattice with asymmetric, exponentially distributed jump probabilities. We derive the generating functions of such a walk for a perfect lattice and for a lattice with absorbing boundaries. We obtain solutions for some interesting moment properties, such as mean first passage time, drift velocity, dispersion, and branching ratio for absorption. The symmetric exponential walk is solved as a special case. The scaling of the mean first passage time with the size of the system for the exponentially distributed walk is determined by the symmetry and is independent of the range

  9. Periodic oscillation and exponential stability of delayed CNNs

    Science.gov (United States)

    Cao, Jinde

    2000-05-01

    Both the global exponential stability and the periodic oscillation of a class of delayed cellular neural networks (DCNNs) is further studied in this Letter. By applying some new analysis techniques and constructing suitable Lyapunov functionals, some simple and new sufficient conditions are given ensuring global exponential stability and the existence of periodic oscillatory solution of DCNNs. These conditions can be applied to design globally exponentially stable DCNNs and periodic oscillatory DCNNs and easily checked in practice by simple algebraic methods. These play an important role in the design and applications of DCNNs.

  10. Science in an Exponential World

    Science.gov (United States)

    Szalay, Alexander

    The amount of scientific information is doubling every year. This exponential growth is fundamentally changing every aspect of the scientific process - the collection, analysis and dissemination of scientific information. Our traditional paradigm for scientific publishing assumes a linear world, where the number of journals and articles remains approximately constant. The talk presents the challenges of this new paradigm and shows examples of how some disciplines are trying to cope with the data avalanche. In astronomy, the Virtual Observatory is emerging as a way to do astronomy in the 21st century. Other disciplines are also in the process of creating their own Virtual Observatories, on every imaginable scale of the physical world. We will discuss how long this exponential growth can continue.

  11. Exponentially Stabilizing Robot Control Laws

    Science.gov (United States)

    Wen, John T.; Bayard, David S.

    1990-01-01

    New class of exponentially stabilizing laws for joint-level control of robotic manipulators introduced. In case of set-point control, approach offers simplicity of proportion/derivative control architecture. In case of tracking control, approach provides several important alternatives to completed-torque method, as far as computational requirements and convergence. New control laws modified in simple fashion to obtain asymptotically stable adaptive control, when robot model and/or payload mass properties unknown.

  12. Exponential asymptotics of homoclinic snaking

    Science.gov (United States)

    Dean, A. D.; Matthews, P. C.; Cox, S. M.; King, J. R.

    2011-12-01

    We study homoclinic snaking in the cubic-quintic Swift-Hohenberg equation (SHE) close to the onset of a subcritical pattern-forming instability. Application of the usual multiple-scales method produces a leading-order stationary front solution, connecting the trivial solution to the patterned state. A localized pattern may therefore be constructed by matching between two distant fronts placed back-to-back. However, the asymptotic expansion of the front is divergent, and hence should be truncated. By truncating optimally, such that the resultant remainder is exponentially small, an exponentially small parameter range is derived within which stationary fronts exist. This is shown to be a direct result of the 'locking' between the phase of the underlying pattern and its slowly varying envelope. The locking mechanism remains unobservable at any algebraic order, and can only be derived by explicitly considering beyond-all-orders effects in the tail of the asymptotic expansion, following the method of Kozyreff and Chapman as applied to the quadratic-cubic SHE (Chapman and Kozyreff 2009 Physica D 238 319-54, Kozyreff and Chapman 2006 Phys. Rev. Lett. 97 44502). Exponentially small, but exponentially growing, contributions appear in the tail of the expansion, which must be included when constructing localized patterns in order to reproduce the full snaking diagram. Implicit within the bifurcation equations is an analytical formula for the width of the snaking region. Due to the linear nature of the beyond-all-orders calculation, the bifurcation equations contain an analytically indeterminable constant, estimated in the previous work by Chapman and Kozyreff using a best fit approximation. A more accurate estimate of the equivalent constant in the cubic-quintic case is calculated from the iteration of a recurrence relation, and the subsequent analytical bifurcation diagram compared with numerical simulations, with good agreement.

  13. Exponential asymptotics of homoclinic snaking

    International Nuclear Information System (INIS)

    Dean, A D; Matthews, P C; Cox, S M; King, J R

    2011-01-01

    We study homoclinic snaking in the cubic-quintic Swift–Hohenberg equation (SHE) close to the onset of a subcritical pattern-forming instability. Application of the usual multiple-scales method produces a leading-order stationary front solution, connecting the trivial solution to the patterned state. A localized pattern may therefore be constructed by matching between two distant fronts placed back-to-back. However, the asymptotic expansion of the front is divergent, and hence should be truncated. By truncating optimally, such that the resultant remainder is exponentially small, an exponentially small parameter range is derived within which stationary fronts exist. This is shown to be a direct result of the 'locking' between the phase of the underlying pattern and its slowly varying envelope. The locking mechanism remains unobservable at any algebraic order, and can only be derived by explicitly considering beyond-all-orders effects in the tail of the asymptotic expansion, following the method of Kozyreff and Chapman as applied to the quadratic-cubic SHE (Chapman and Kozyreff 2009 Physica D 238 319–54, Kozyreff and Chapman 2006 Phys. Rev. Lett. 97 44502). Exponentially small, but exponentially growing, contributions appear in the tail of the expansion, which must be included when constructing localized patterns in order to reproduce the full snaking diagram. Implicit within the bifurcation equations is an analytical formula for the width of the snaking region. Due to the linear nature of the beyond-all-orders calculation, the bifurcation equations contain an analytically indeterminable constant, estimated in the previous work by Chapman and Kozyreff using a best fit approximation. A more accurate estimate of the equivalent constant in the cubic-quintic case is calculated from the iteration of a recurrence relation, and the subsequent analytical bifurcation diagram compared with numerical simulations, with good agreement

  14. Kontrola kvalitete stretch folije

    OpenAIRE

    Gržanić, Nino

    2016-01-01

    U završnom radu opisan je postupak ekstrudiranja i kontrole kvalitete stretch folije koji se koristi u firmi Bomark-Pak radi osiguravanja najbolje kvalitete. Kontrola kreče kod uvoza repromaterijala, nastavlja se kod izrade folije na stroju, te se glavni dio odvija nakon izrade gotovg proizvoda. U radu ćemo detaljno objasniti svaki pojedini korak, zašto se on vrši, te uz pomoć kojih mjernih instrumenata se izvršava.

  15. Bivariate copulas on the exponentially weighted moving average control chart

    Directory of Open Access Journals (Sweden)

    Sasigarn Kuvattana

    2016-10-01

    Full Text Available This paper proposes four types of copulas on the Exponentially Weighted Moving Average (EWMA control chart when observations are from an exponential distribution using a Monte Carlo simulation approach. The performance of the control chart is based on the Average Run Length (ARL which is compared for each copula. Copula functions for specifying dependence between random variables are used and measured by Kendall’s tau. The results show that the Normal copula can be used for almost all shifts.

  16. Exponential operators, generalized polynomials and evolution problems

    International Nuclear Information System (INIS)

    Dattoli, G.; Mancho, A.M.; Quattromini, M.; Torre, A.

    2001-01-01

    The operator (d/dx) χ d/dx plays a central role in the theory of operational calculus. Its exponential form is crucial in problems relevant to solutions of Fokker-Planck and Schroedinger equations. We explore the formal properties of the evolution operators associated to (d/dx) χ d/dx, discuss its link to special forms of Laguerre polynomials and Laguerre-based functions. The obtained results are finally applied to specific problems concerning the solution of Fokker-Planck equations relevant to the beam lifetime in storage rings

  17. Exponential function method for solving nonlinear ordinary ...

    Indian Academy of Sciences (India)

    A particularly efficient method is called the homotopy analysis method (HAM), and has been presented in [1, 16], and other related methods are given in [3, 11, 17, 18, 22, 25]. However, spectral methods often produce systems of non-linear equations which increase the complexity, and also HAM can produce extra chaotic ...

  18. Exponential function method for solving nonlinear ordinary ...

    Indian Academy of Sciences (India)

    Edmund Chadwick1 Ali Hatam2 Saeed Kazem2. School of Computing Sciences and Engineering, The University of Salford, Salford M5 4WT, United Kingdom; Department of Applied Mathematics, Faculty of Mathematics and Computer Science, Amirkabir University of Technology, No. 424, Hafez Ave., 15914 Tehran, Iran ...

  19. EFFICACY OF MODIFIED PROPRIOCEPTIVE NEUROMUSCULAR FACILITATION STRETCHING WITH CRYOTHERAPY OVER MANUAL PASSIVE STRETCHING WITH CRYOTHERAPY ON HAMSTRING FLEXIBILITY

    Directory of Open Access Journals (Sweden)

    Shamik Bhattacharjee

    2016-04-01

    Full Text Available Background: Healthy individuals, to ease and accomplish their activities of daily living they need flexible body without any tightness in the muscles, particularly those used for a definite function. Cooling soft tissues in a lengthened position after stretching has been shown to promote more lasting increases in soft tissue length and minimize post stretch muscle soreness. There are less documented studies which compared modified proprioceptive neuromuscular facilitation (PNF stretch over passive manual stretch with cold application commonly after the interventions. Methods: Thirty high school going healthy students were divided into two groups- Group I received Passive Manual stretching (n=15 and Group II received modified PNF stretching (n=15 and both groups received cold application after the interventions for 10 minutes commonly for 5 days. ROM was taken on day 1, day 5 and day 7. Results: After day 7, Group II with Modified PNF stretching along with cold application showed a significant increase in range of motion tested with active knee extension test (AKET. Conclusion: Modified PNF stretching is considered to be the effective intervention in increasing and maintaining ROM in AKET over passive manual stretching with cold applications commonly after the interventions.

  20. Exponential Stability of Stochastic Nonlinear Dynamical Price System with Delay

    Directory of Open Access Journals (Sweden)

    Wenli Zhu

    2013-01-01

    Full Text Available Based on Lyapunov stability theory, Itô formula, stochastic analysis, and matrix theory, we study the exponential stability of the stochastic nonlinear dynamical price system. Using Taylor's theorem, the stochastic nonlinear system with delay is reduced to an n-dimensional semilinear stochastic differential equation with delay. Some sufficient conditions of exponential stability and corollaries for such price system are established by virtue of Lyapunov function. The time delay upper limit is solved by using our theoretical results when the system is exponentially stable. Our theoretical results show that if the classical price Rayleigh equation is exponentially stable, so is its perturbed system with delay provided that both the time delay and the intensity of perturbations are small enough. Two examples are presented to illustrate our results.

  1. Randomized Controlled Trial Comparing Orthosis Augmented by Either Stretching or Stretching and Strengthening for Stage II Tibialis Posterior Tendon Dysfunction.

    Science.gov (United States)

    Houck, Jeff; Neville, Christopher; Tome, Josh; Flemister, Adolph

    2015-09-01

    The value of strengthening and stretching exercises combined with orthosis treatment in a home-based program has not been evaluated. The purpose of this study was to compare the effects of augmenting orthosis treatment with either stretching or a combination of stretching and strengthening in participants with stage II tibialis posterior tendon dysfunction (TPTD). Participants included 39 patients with stage II TPTD who were recruited from a medical center and then randomly assigned to a strengthening or stretching treatment group. Excluding 3 dropouts, there were 19 participants in the strengthening group and 17 in the stretching group. The stretching treatment consisted of a prefabricated orthosis used in conjunction with stretching exercises. The strengthening treatment consisted of a prefabricated orthosis used in conjunction with the stretching and strengthening exercises. The main outcome measures were self-report (ie, Foot Function Index and Short Musculoskeletal Function Assessment) and isometric deep posterior compartment strength. Two-way analysis of variance was used to test for differences between groups at 6 and 12 weeks after starting the exercise programs. Both groups significantly improved in pain and function over the 12-week trial period. The self-report measures showed minimal differences between the treatment groups. There were no differences in isometric deep posterior compartment strength. A moderate-intensity, home-based exercise program was minimally effective in augmenting orthosis wear alone in participants with stage II TPTD. Level I, prospective randomized study. © The Author(s) 2015.

  2. Exponentiated exponential model (Gompertz kinetics) of Na+ and K+ conductance changes in squid giant axon.

    Science.gov (United States)

    Easton, D M

    1978-04-01

    The conductance changes, gK(t) and gNa(t), of squid giant axon under voltage clamp (Hodgkin and Huxley, 1952) may be modeled by exponentiated exponential functions (Gompertz kinetics) from any holding potential VO to any membrane clamp potential V. The equation constants are set by the membrane potential V, and include, for any voltage step in the case of gK, the initial conductance, gO, the asymptote conductance g, and rate constant k: gK = g exp(-be-kt) where b = 1n g/gO. Equations of similar form relate g and k to the voltage V, and govern the corresponding parameters of the gNa system. For the gNa, the fast phase y = y exp (-be-kt) is cut down in proportion to a slow process p = (1 - p)e-k't + p, and thus gNa = py. The expo-exponential functions involve fewer constants than the Hodgkin-Huxley model. In particular, the role of the n, m, h parameters appears to be filled largely by 1n (g/gO) in the case of gK and by 1n (y/yO) in the case of gNa. Membrane action potentials during current clamp may be computed from the conductances generated by use of the appropriate differential forms of the equations; diverse other membrane behaviors may be predicted.

  3. Statistics on exponential averaging of periodograms

    International Nuclear Information System (INIS)

    Peeters, T.T.J.M.; Ciftcioglu, Oe.

    1994-11-01

    The algorithm of exponential averaging applied to subsequent periodograms of a stochastic process is used to estimate the power spectral density (PSD). For an independent process, assuming the periodogram estimates to be distributed according to a χ 2 distribution with 2 degrees of freedom, the probability density function (PDF) of the PSD estimate is derived. A closed expression is obtained for the moments of the distribution. Surprisingly, the proof of this expression features some new insights into the partitions and Eulers infinite product. For large values of the time constant of the averaging process, examination of the cumulant generating function shows that the PDF approximates the Gaussian distribution. Although restrictions for the statistics are seemingly tight, simulation of a real process indicates a wider applicability of the theory. (orig.)

  4. Direction-dependent exponential biassing

    International Nuclear Information System (INIS)

    Bending, R.C.

    1974-01-01

    When Monte Carlo methods are applied to penetration problems, the use of variance reduction techniques is essential if realistic computing times are to be achieved. A technique known as direction-dependent exponential biassing is described which is simple to apply and therefore suitable for problems with difficult geometry. The material cross section in any region is multiplied by a factor which depends on the particle direction, so that particles travelling in a preferred direction ''see'' a smaller cross section than those travelling in the opposite direction. A theoretical study shows that substantial gains may be obtained, and that the choice of biassing parameter is not critical. The method has been implemented alongside other importance sampling techniques in the general Monte Carlo code SPARTAN, and results obtained for simple problems using this code are included. 4 references. (U.S.)

  5. Exponential stability of dynamic equations on time scales

    Directory of Open Access Journals (Sweden)

    Raffoul Youssef N

    2005-01-01

    Full Text Available We investigate the exponential stability of the zero solution to a system of dynamic equations on time scales. We do this by defining appropriate Lyapunov-type functions and then formulate certain inequalities on these functions. Several examples are given.

  6. The effectiveness of manual stretching in the treatment of plantar heel pain: a systematic review

    Directory of Open Access Journals (Sweden)

    Parish Ben

    2011-06-01

    Full Text Available Abstract Background Plantar heel pain is a commonly occurring foot complaint. Stretching is frequently utilised as a treatment, yet a systematic review focusing only on its effectiveness has not been published. This review aimed to assess the effectiveness of stretching on pain and function in people with plantar heel pain. Methods Medline, EMBASE, CINAHL, AMED, and The Cochrane Library were searched from inception to July 2010. Studies fulfilling the inclusion criteria were independently assessed, and their quality evaluated using the modified PEDro scale. Results Six studies including 365 symptomatic participants were included. Two compared stretching with a control, one study compared stretching to an alternative intervention, one study compared stretching to both alternative and control interventions, and two compared different stretching techniques and durations. Quality rating on the modified Pedro scale varied from two to eight out of a maximum of ten points. The methodologies and interventions varied significantly between studies, making meta-analysis inappropriate. Most participants improved over the course of the studies, but when stretching was compared to alternative or control interventions, the changes only reached statistical significance in one study that used a combination of calf muscle stretches and plantar fascia stretches in their stretching programme. Another study comparing different stretching techniques, showed a statistically significant reduction in some aspects of pain in favour of plantar fascia stretching over calf stretches in the short term. Conclusions There were too few studies to assess whether stretching is effective compared to control or other interventions, for either pain or function. However, there is some evidence that plantar fascia stretching may be more effective than Achilles tendon stretching alone in the short-term. Appropriately powered randomised controlled trials, utilizing validated outcome

  7. Acute effects of constant torque and constant angle stretching on the muscle and tendon tissue properties.

    Science.gov (United States)

    Konrad, Andreas; Budini, Francesco; Tilp, Markus

    2017-08-01

    Static stretching induces acute structural changes of the muscle-tendon unit (MTU) that are related to the intensity or duration of stretching. It has been reported that stretching with a constant torque (CT) leads to greater joint range of motion changes than stretching with a constant angle (CA). Whether or not this difference is due to different structural changes of the MTUs of the lower leg and ankle plantar flexors is not known. Therefore, the purpose of this study was to compare the acute effects of single CA and CT stretching on various muscle and tendon mechanical properties. Seventeen young, healthy volunteers were tested on two separate days using either CT or CA stretching (4 × 30 s each). Before and after stretching, dorsiflexion range of motion (RoM), passive resistive torque (PRT), and maximum voluntary contraction (MVC) were measured with a dynamometer. Ultrasonography of the medial gastrocnemius (GM) muscle-tendon junction (MTJ) displacement allowed us to determine the length changes in the tendon and muscle, respectively, and hence to calculate their stiffness. Maximum dorsiflexion increased while PRT, muscle-tendon stiffness, and muscle stiffness decreased following both CA and CT stretching. There was a greater increase in RoM following CT stretching compared to CA stretching. Moreover, the decline in PRT was greater during CT stretching compared to CA stretching. As expected, several functional adaptations (RoM, PRT) were different between CT and CA stretching due to the higher intensity of CT stretching. However, no structural differences in the adaptations to the stretching modalities could be detected. We suggest that the different functional adaptations between CA and CT stretching are the consequence of different adaptations in the perception of stretch and pain.

  8. A method for searching the possible deviations from exponential decay law

    International Nuclear Information System (INIS)

    Tran Dai Nghiep; Vu Hoang Lam; Tran Vien Ha

    1993-01-01

    A continuous kinetic function approach is proposed for analyzing the experimental decay curves. In the case of purely exponential behaviour, the values of kinetic function are the same at different ages of the investigated radionuclide. The deviation from main decay curve could be found by a comparison of experimental kinetic function values with those obtained in purely exponential case. (author). 12 refs

  9. Stretch-minimising stream surfaces

    KAUST Repository

    Barton, Michael

    2015-05-01

    We study the problem of finding stretch-minimising stream surfaces in a divergence-free vector field. These surfaces are generated by motions of seed curves that propagate through the field in a stretch minimising manner, i.e., they move without stretching or shrinking, preserving the length of their arbitrary arc. In general fields, such curves may not exist. How-ever, the divergence-free constraint gives rise to these \\'stretch-free\\' curves that are locally arc-length preserving when infinitesimally propagated. Several families of stretch-free curves are identified and used as initial guesses for stream surface generation. These surfaces are subsequently globally optimised to obtain the best stretch-minimising stream surfaces in a given divergence-free vector field. Our algorithm was tested on benchmark datasets, proving its applicability to incompressible fluid flow simulations, where our stretch-minimising stream surfaces realistically reflect the flow of a flexible univariate object. © 2015 Elsevier Inc. All rights reserved.

  10. Acute Muscle Stretching and Shoulder Position Sense

    OpenAIRE

    Björklund, Martin; Djupsjöbacka, Mats; Crenshaw, Albert G

    2006-01-01

    Context: Stretching is common among athletes as a potential method for injury prevention. Stretching-induced changes in the muscle spindle properties are a suggested mechanism, which may imply reduced proprioception after stretching; however, little is known of this association.

  11. Thermal Characterizations of Exponential Fin Systems

    Directory of Open Access Journals (Sweden)

    A.-R. A. Khaled

    2010-01-01

    Full Text Available Exponential fins are mathematically analyzed in this paper. Two types are considered: (i straight exponential fins and (ii pin exponential fins. The possibility of having increasing or decreasing cross-sectional areas is considered. Different thermal performance indicators are derived. The maximum ratio between the thermal efficiency of the exponential straight fin to that of the rectangular fin is found to be 1.58 at an effective thermal length of 2.0. This ratio is even larger when exponential fins are compared with triangular and parabolic straight fins. Moreover, the maximum ratio between the thermal efficiency of the exponential pin fin to that of the rectangular pin fin is found to be 1.17 at an effective thermal length of 1.5. However, exponential pin fins thermal efficiencies are found to be lower than those of triangular and parabolic pin fins. Moreover, exponential joint-fins may transfer more heat than rectangular joint-fins especially when differences between their senders and receivers portions dimensionless indices are very large. Finally, it is found that increasing the joint-fin exponential index may cause straight exponential joint-fins to transfer more heat than rectangular joint-fins.

  12. Modified stretched exponential model of computer system resources management limitations-The case of cache memory

    Science.gov (United States)

    Strzałka, Dominik; Dymora, Paweł; Mazurek, Mirosław

    2018-02-01

    In this paper we present some preliminary results in the field of computer systems management with relation to Tsallis thermostatistics and the ubiquitous problem of hardware limited resources. In the case of systems with non-deterministic behaviour, management of their resources is a key point that guarantees theirs acceptable performance and proper working. This is very wide problem that stands for many challenges in financial, transport, water and food, health, etc. areas. We focus on computer systems with attention paid to cache memory and propose to use an analytical model that is able to connect non-extensive entropy formalism, long-range dependencies, management of system resources and queuing theory. Obtained analytical results are related to the practical experiment showing interesting and valuable results.

  13. Quenched Sub-Exponential Tail Estimates for One-Dimensional Random Walk in Random Environment

    Science.gov (United States)

    Gantert, Nina; Zeitouni, Ofer

    Suppose that the integers are assigned i.i.d. random variables {ωx} (taking values in the unit interval), which serve as an environment. This environment defines a random walk {Xn} (called a RWRE) which, when at x, moves one step to the right with probability ωx, and one step to the left with probability 1- ωx. Solomon (1975) determined the almost-sure asymptotic speed vα (=rate of escape) of a RWRE. Greven and den Hollander (1994) have proved a large deviation principle for Xn /n, conditional upon the environment, with deterministic rate function. For certain environment distributions where the drifts 2 ωx-1 can take both positive and negative values, their rate function vanisheson an interval (0,vα). We find the rate of decay on this interval and prove it is a stretched exponential of appropriate exponent, that is the absolute value of the log of the probability that the empirical mean Xn /n is smaller than v, v∈ (0,vα), behaves roughly like a fractional power of n. The annealed estimates of Dembo, Peres and Zeitouni (1996) play a crucial role in the proof. We also deal with the case of positive and zero drifts, and prove there a quenched decay of the form .

  14. On exponential stabilizability of linear neutral systems

    Directory of Open Access Journals (Sweden)

    Dusser Xavier

    2001-01-01

    Full Text Available In this paper, we deal with linear neutral functional differential systems. Using an extended state space and an extended control operator, we transform the initial neutral system in an infinite dimensional linear system. We give a sufficient condition for admissibility of the control operator B , conditions under which operator B can be acceptable in order to work with controllability and stabilizability. Necessary and sufficient conditions for exact controllability are provided; in terms of a gramian of controllability N ( μ . Assuming admissibility and exact controllability, a feedback control law is defined from the inverse of the operator N ( μ in order to stabilize exponentially the closed loop system. In this case, the semigroup generated by the closed loop system has an arbitrary decay rate.

  15. An exponentiation method for XML element retrieval.

    Science.gov (United States)

    Wichaiwong, Tanakorn

    2014-01-01

    XML document is now widely used for modelling and storing structured documents. The structure is very rich and carries important information about contents and their relationships, for example, e-Commerce. XML data-centric collections require query terms allowing users to specify constraints on the document structure; mapping structure queries and assigning the weight are significant for the set of possibly relevant documents with respect to structural conditions. In this paper, we present an extension to the MEXIR search system that supports the combination of structural and content queries in the form of content-and-structure queries, which we call the Exponentiation function. It has been shown the structural information improve the effectiveness of the search system up to 52.60% over the baseline BM25 at MAP.

  16. Exponential Stabilization of Underactuated Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Pettersen, K.Y.

    1996-12-31

    Underactuated vehicles are vehicles with fewer independent control actuators than degrees of freedom to be controlled. Such vehicles may be used in inspection of sub-sea cables, inspection and maintenance of offshore oil drilling platforms, and similar. This doctoral thesis discusses feedback stabilization of underactuated vehicles. The main objective has been to further develop methods from stabilization of nonholonomic systems to arrive at methods that are applicable to underactuated vehicles. A nonlinear model including both dynamics and kinematics is used to describe the vehicles, which may be surface vessels, spacecraft or autonomous underwater vehicles (AUVs). It is shown that for a certain class of underactuated vehicles the stabilization problem is not solvable by linear control theory. A new stability result for a class of homogeneous time-varying systems is derived and shown to be an important tool for developing continuous periodic time-varying feedback laws that stabilize underactuated vehicles without involving cancellation of dynamics. For position and orientation control of a surface vessel without side thruster a new continuous periodic feedback law is proposed that does not cancel any dynamics, and that exponentially stabilizes the origin of the underactuated surface vessel. A further issue considered is the stabilization of the attitude of an AUV. Finally, the thesis discusses stabilization of both position and attitude of an underactuated AUV. 55 refs., 28 figs.

  17. Localization and stretch-dependence of lung elastase activity in development and compensatory growth.

    Science.gov (United States)

    Young, Sarah Marie; Liu, Sheng; Joshi, Rashika; Batie, Matthew R; Kofron, Matthew; Guo, Jinbang; Woods, Jason C; Varisco, Brian Michael

    2015-04-01

    Synthesis and remodeling of the lung matrix is necessary for primary and compensatory lung growth. Because cyclic negative force is applied to developing lung tissue during the respiratory cycle, we hypothesized that stretch is a critical regulator of lung matrix remodeling. By using quantitative image analysis of whole-lung and whole-lobe elastin in situ zymography images, we demonstrated that elastase activity increased twofold during the alveolar stage of postnatal lung morphogenesis in the mouse. Remodeling was restricted to alveolar walls and ducts and was nearly absent in dense elastin band structures. In the mouse pneumonectomy model of compensatory lung growth, elastase activity increased threefold, peaking at 14 days postpneumonectomy and was higher in the accessory lobe compared with other lobes. Remodeling during normal development and during compensatory lung growth was different with increased major airway and pulmonary arterial remodeling during development but not regeneration, and with homogenous remodeling throughout the parenchyma during development, but increased remodeling only in subpleural regions during compensatory lung growth. Left lung wax plombage prevented increased lung elastin during compensatory lung growth. To test whether the adult lung retains an innate capacity to remodel elastin, we developed a confocal microscope-compatible stretching device. In ex vivo adult mouse lung sections, lung elastase activity increased exponentially with strain and in peripheral regions of lung more than in central regions. Our study demonstrates that lung elastase activity is stretch-dependent and supports a model in which externally applied forces influence the composition, structure, and function of the matrix during periods of alveolar septation. Copyright © 2015 the American Physiological Society.

  18. Soleus stretch reflex during cycling

    DEFF Research Database (Denmark)

    Grey, Michael James; Pierce, C. W.; Milner, T. E.

    2001-01-01

    the crank cycle, producing ankle dorsiflexion perturbations of similar trajectory. The stretch reflex was greatest during the power phase of the crank cycle and was decreased to the level of background EMG during recovery. Matched perturbations were induced under static conditions at the same crank angle...... active cycling as has been shown with the H-reflex. This lack of depression may reflect a decreased susceptibility of the stretch reflex to inhibition, possibly originating from presynaptic mechanisms....

  19. An exponential decay model for mediation.

    Science.gov (United States)

    Fritz, Matthew S

    2014-10-01

    Mediation analysis is often used to investigate mechanisms of change in prevention research. Results finding mediation are strengthened when longitudinal data are used because of the need for temporal precedence. Current longitudinal mediation models have focused mainly on linear change, but many variables in prevention change nonlinearly across time. The most common solution to nonlinearity is to add a quadratic term to the linear model, but this can lead to the use of the quadratic function to explain all nonlinearity, regardless of theory and the characteristics of the variables in the model. The current study describes the problems that arise when quadratic functions are used to describe all nonlinearity and how the use of nonlinear functions, such as exponential decay, address many of these problems. In addition, nonlinear models provide several advantages over polynomial models including usefulness of parameters, parsimony, and generalizability. The effects of using nonlinear functions for mediation analysis are then discussed and a nonlinear growth curve model for mediation is presented. An empirical example using data from a randomized intervention study is then provided to illustrate the estimation and interpretation of the model. Implications, limitations, and future directions are also discussed.

  20. Exponential stability of neural networks with asymmetric connection weights

    International Nuclear Information System (INIS)

    Yang Jinxiang; Zhong Shouming

    2007-01-01

    This paper investigates the exponential stability of a class of neural networks with asymmetric connection weights. By dividing the network state variables into various parts according to the characters of the neural networks, some new sufficient conditions of exponential stability are derived via constructing a Lyapunov function and using the method of the variation of constant. The new conditions are associated with the initial values and are described by some blocks of the interconnection matrix, and do not depend on other blocks. Examples are given to further illustrate the theory

  1. Numerical Studies of Non-Exponential Decay of Wavefunctions

    Science.gov (United States)

    Vermedahl, Jon; Petridis, Athanasios; Luban, Marshall; Staunton, Lawrence

    2002-04-01

    We use the staggered-leap-frog algorithm to numerically solve the time-dependent Schrödinger equation. This algorithm is particularly accurate and stable as demonstrated in a number of cases whose solutions are analytically known. Deviations from exponential decay have been established for short times for a wavefunction initially set within finite depth potential wells. The survival probability has been fit with analytical functions that reproduce exponential decay at long times. Various time scales characterizing the decay are thus extracted.

  2. Exponential Synchronization of Uncertain Complex Dynamical Networks with Delay Coupling

    International Nuclear Information System (INIS)

    Wang Lifu; Kong Zhi; Jing Yuanwei

    2010-01-01

    This paper studies the global exponential synchronization of uncertain complex delayed dynamical networks. The network model considered is general dynamical delay networks with unknown network structure and unknown coupling functions but bounded. Novel delay-dependent linear controllers are designed via the Lyapunov stability theory. Especially, it is shown that the controlled networks are globally exponentially synchronized with a given convergence rate. An example of typical dynamical network of this class, having the Lorenz system at each node, has been used to demonstrate and verify the novel design proposed. And, the numerical simulation results show the effectiveness of proposed synchronization approaches. (general)

  3. On exponential stability and periodic solutions of CNNs with delays

    Science.gov (United States)

    Cao, Jinde

    2000-03-01

    In this Letter, the author analyses further problems of global exponential stability and the existence of periodic solutions of cellular neural networks with delays (DCNNs). Some simple and new sufficient conditions are given ensuring global exponential stability and the existence of periodic solutions of DCNNs by applying some new analysis techniques and constructing suitable Lyapunov functionals. These conditions have important leading significance in the design and applications of globally stable DCNNs and periodic oscillatory DCNNs and are weaker than those in the earlier works [Phys. Rev. E 60 (1999) 3244], [J. Comput. Syst. Sci. 59 (1999)].

  4. Exponential decay for solutions to semilinear damped wave equation

    KAUST Repository

    Gerbi, Stéphane

    2011-10-01

    This paper is concerned with decay estimate of solutions to the semilinear wave equation with strong damping in a bounded domain. Intro- ducing an appropriate Lyapunov function, we prove that when the damping is linear, we can find initial data, for which the solution decays exponentially. This result improves an early one in [4].

  5. Almost sure exponential stability of delayed cellular neural networks

    Directory of Open Access Journals (Sweden)

    Chuangxia Huang

    2007-03-01

    Full Text Available The stability of stochastic delayed Cellular Neural Networks (DCNN is investigated in this paper. Using suitable Lyapunov functional and the semimartingale convergence theorem, we obtain some sufficient conditions for checking the almost sure exponential stability of the DCNN.

  6. Cosmological solutions in multidimensional model with multiple exponential potential

    International Nuclear Information System (INIS)

    Ivashchuk, Vladimir D.; Melnikov, Vitaly N.; Selivanov, Alexey B.

    2003-01-01

    A family of cosmological solutions with (n+1) Ricci-flat spaces in the theory with several scalar fields and multiple exponential potential is obtained when coupling vectors in exponents obey certain relations. Two subclasses of solutions with power-law and exponential behaviour of scale factors are singled out. It is proved that power-law solutions may take place only when coupling vectors are linearly independent and exponential dependence occurs for linearly dependent set of coupling vectors. A subfamily of solutions with accelerated expansion is singled out. A generalized isotropization behaviours of certain classes of general solutions are found. In quantum case exact solutions to Wheeler-DeWitt equation are obtained and special 'ground state' wave functions are considered. (author)

  7. The q-exponential family in statistical physics

    International Nuclear Information System (INIS)

    Naudts, Jan

    2010-01-01

    The Boltzmann-Gibbs probability distribution, seen as a statistical model, belongs to the exponential family. Recently, the latter concept has been generalized. The q-exponential family has been shown to be relevant for the statistical description of small isolated systems. Two main applications are reviewed: 1. The distribution of the momentum of a single particle is a q-Gaussian, the distribution of its velocity is a deformed Maxwellian; 2. The configurational density distribution belongs to the q-exponential family. The definition of the temperature of small isolated systems is discussed. It depends on defining the thermodynamic entropy of a microcanonical ensemble in a suitable manner. The simple example of non-interacting harmonic oscillators shows that Renyi's entropy functional leads to acceptable results.

  8. Mechanical stretching for tissue engineering: two-dimensional and three-dimensional constructs.

    Science.gov (United States)

    Riehl, Brandon D; Park, Jae-Hong; Kwon, Il Keun; Lim, Jung Yul

    2012-08-01

    Mechanical cell stretching may be an attractive strategy for the tissue engineering of mechanically functional tissues. It has been demonstrated that cell growth and differentiation can be guided by cell stretch with minimal help from soluble factors and engineered tissues that are mechanically stretched in bioreactors may have superior organization, functionality, and strength compared with unstretched counterparts. This review explores recent studies on cell stretching in both two-dimensional (2D) and three-dimensional (3D) setups focusing on the applications of stretch stimulation as a tool for controlling cell orientation, growth, gene expression, lineage commitment, and differentiation and for achieving successful tissue engineering of mechanically functional tissues, including cardiac, muscle, vasculature, ligament, tendon, bone, and so on. Custom stretching devices and lab-specific mechanical bioreactors are described with a discussion on capabilities and limitations. While stretch mechanotransduction pathways have been examined using 2D stretch, studying such pathways in physiologically relevant 3D environments may be required to understand how cells direct tissue development under stretch. Cell stretch study using 3D milieus may also help to develop tissue-specific stretch regimens optimized with biochemical feedback, which once developed will provide optimal tissue engineering protocols.

  9. Multivariate Marshall and Olkin Exponential Minification Process ...

    African Journals Online (AJOL)

    A stationary bivariate minification process with bivariate Marshall-Olkin exponential distribution that was earlier studied by Miroslav et al [15]is in this paper extended to multivariate minification process with multivariate Marshall and Olkin exponential distribution as its stationary marginal distribution. The innovation and the ...

  10. Maximum likelihood estimation of exponential distribution under ...

    African Journals Online (AJOL)

    Maximum likelihood estimation of exponential distribution under type-ii censoring from imprecise data. ... Journal of Fundamental and Applied Sciences ... This paper deals with the estimation of exponential mean parameter under Type-II censoring scheme when the lifetime observations are fuzzy and are assumed to be ...

  11. Multivariate Exponential Autoregressive and Autoregressive Moving ...

    African Journals Online (AJOL)

    Autoregressive (AR) and autoregressive moving average (ARMA) processes with multivariate exponential (ME) distribution are presented and discussed. The theory of positive dependence is used to show that in many cases, multivariate exponential autoregressive (MEAR) and multivariate autoregressive moving average ...

  12. Relationship Between Stretch Duration And Shoulder Musculature ...

    African Journals Online (AJOL)

    To date, studies focussing on the effect of stretching on flexibility have focused almost solely on the effect of chronic stretching rather than the effects of acute stretching performed immediately prior to physical activity. The effects of different static stretches were assessed on passive shoulder range of motion (ROM).

  13. Cardiovascular Responses to Skeletal Muscle Stretching: "Stretching" the Truth or a New Exercise Paradigm for Cardiovascular Medicine?

    Science.gov (United States)

    Kruse, Nicholas T; Scheuermann, Barry W

    2017-12-01

    Stretching is commonly prescribed with the intended purpose of increasing range of motion, enhancing muscular coordination, and preventing prolonged immobilization induced by aging or a sedentary lifestyle. Emerging evidence suggests that acute or long-term stretching exercise may modulate a variety of cardiovascular responses. Specifically, at the onset of stretch, the mechanical deformation of the vascular bed coupled with stimulation of group III muscle afferent fibers initiates a cascade of events resulting in both peripheral vasodilation and a heart rate-driven increase in cardiac output, blood pressure, and muscle blood flow. This potential to increase shear stress and blood flow without the use of excessive muscle energy expenditure may hold important implications for future therapeutic vascular medicine and cardiac health. However, the idea that a cardiovascular component may be involved in human skeletal muscle stretching is relatively new. Therefore, the primary intent of this review is to highlight topics related to skeletal muscle stretching and cardiovascular regulation and function. The current evidence suggests that acute stretching causes a significant macro- and microcirculatory event that alters blood flow and the relationship between oxygen availability and oxygen utilization. These acute vascular changes if performed chronically may result in improved endothelial function, improved arterial blood vessel stiffness, and/or reduced blood pressure. Although several mechanisms have been postulated, an increased nitric oxide bioavailability has been highlighted as one promising candidate for the improvement in vessel function with stretching. Collectively, the evidence provided in this review suggests that stretching acutely or long term may serve as a novel and alternative low intensity therapeutic intervention capable of improving several parameters of vascular function.

  14. Reducing charging effects in scanning electron microscope images by Rayleigh contrast stretching method (RCS).

    Science.gov (United States)

    Wan Ismail, W Z; Sim, K S; Tso, C P; Ting, H Y

    2011-01-01

    To reduce undesirable charging effects in scanning electron microscope images, Rayleigh contrast stretching is developed and employed. First, re-scaling is performed on the input image histograms with Rayleigh algorithm. Then, contrast stretching or contrast adjustment is implemented to improve the images while reducing the contrast charging artifacts. This technique has been compared to some existing histogram equalization (HE) extension techniques: recursive sub-image HE, contrast stretching dynamic HE, multipeak HE and recursive mean separate HE. Other post processing methods, such as wavelet approach, spatial filtering, and exponential contrast stretching, are compared as well. Overall, the proposed method produces better image compensation in reducing charging artifacts. Copyright © 2011 Wiley Periodicals, Inc.

  15. Atomic Stretch: Optimally bounded real-time stretching and beyond

    DEFF Research Database (Denmark)

    Jensen, Rasmus Ramsbøl; Nielsen, Jannik Boll

    2016-01-01

    Atomic Stretch is a plugin for your preferred Adobe video editing tool, allowing real-time smooth and optimally bounded retarget-ting from and to any aspect ratio. The plugin allows preserving of high interest pixels through a protected region, attention redirection through color-modification, co......Atomic Stretch is a plugin for your preferred Adobe video editing tool, allowing real-time smooth and optimally bounded retarget-ting from and to any aspect ratio. The plugin allows preserving of high interest pixels through a protected region, attention redirection through color...

  16. Stretch Moduli of Ribonucleotide Embedded Short DNAs

    Science.gov (United States)

    Chiu, Hsiang-Chih; Koh, Kyung Duk; Riedo, Elisa; Storici, Francesca

    2013-03-01

    Understanding the mechanical properties of DNA is essential to comprehending the dynamics of many cellular functions. DNA deformations are involved in many mechanisms when genetic information needs to be stored and used. In addition, recent studies have found that Ribonucleotides (rNMPs) are among the most common non-standard nucleotides present in DNA. The presences of rNMPs in DNA might cause mutation, fragility or genotoxicity of chromosome but how they influence the structure and mechanical properties of DNA remains unclear. By means of Atomic Force Microscopy (AFM) based single molecule spectroscopy, we measure the stretch moduli of double stranded DNAs (dsDNA) with 30 base pairs and 5 equally embedded rNMPs. The dsDNAs are anchored on gold substrate via thiol chemistry, while the AFM tip is used to pick up and stretch the dsDNA from its free end through biotin-streptavidin bonding. Our preliminary results indicate that the inclusion of rNMPs in dsDNA might significantly change its stretch modulus, which might be important in some biological processes.

  17. Survival analysis approach to account for non-exponential decay rate effects in lifetime experiments

    International Nuclear Information System (INIS)

    Coakley, K.J.; Dewey, M.S.; Huber, M.G.; Huffer, C.R.; Huffman, P.R.; Marley, D.E.; Mumm, H.P.; O'Shaughnessy, C.M.; Schelhammer, K.W.; Thompson, A.K.; Yue, A.T.

    2016-01-01

    In experiments that measure the lifetime of trapped particles, in addition to loss mechanisms with exponential survival probability functions, particles can be lost by mechanisms with non-exponential survival probability functions. Failure to account for such loss mechanisms produces systematic measurement error and associated systematic uncertainties in these measurements. In this work, we develop a general competing risks survival analysis method to account for the joint effect of loss mechanisms with either exponential or non-exponential survival probability functions, and a method to quantify the size of systematic effects and associated uncertainties for lifetime estimates. As a case study, we apply our survival analysis formalism and method to the Ultra Cold Neutron lifetime experiment at NIST. In this experiment, neutrons can escape a magnetic trap before they decay due to a wall loss mechanism with an associated non-exponential survival probability function.

  18. Survival analysis approach to account for non-exponential decay rate effects in lifetime experiments

    Science.gov (United States)

    Coakley, K. J.; Dewey, M. S.; Huber, M. G.; Huffer, C. R.; Huffman, P. R.; Marley, D. E.; Mumm, H. P.; O`Shaughnessy, C. M.; Schelhammer, K. W.; Thompson, A. K.; Yue, A. T.

    2016-03-01

    In experiments that measure the lifetime of trapped particles, in addition to loss mechanisms with exponential survival probability functions, particles can be lost by mechanisms with non-exponential survival probability functions. Failure to account for such loss mechanisms produces systematic measurement error and associated systematic uncertainties in these measurements. In this work, we develop a general competing risks survival analysis method to account for the joint effect of loss mechanisms with either exponential or non-exponential survival probability functions, and a method to quantify the size of systematic effects and associated uncertainties for lifetime estimates. As a case study, we apply our survival analysis formalism and method to the Ultra Cold Neutron lifetime experiment at NIST. In this experiment, neutrons can escape a magnetic trap before they decay due to a wall loss mechanism with an associated non-exponential survival probability function.

  19. Survival analysis approach to account for non-exponential decay rate effects in lifetime experiments

    Energy Technology Data Exchange (ETDEWEB)

    Coakley, K.J., E-mail: kevincoakley@nist.gov [National Institute of Standards and Technology, 325 Broadway, Boulder, CO 80305 (United States); Dewey, M.S.; Huber, M.G. [National Institute of Standards and Technology, 100 Bureau Drive, Stop 8461, Gaithersburg, MD 20899 (United States); Huffer, C.R.; Huffman, P.R. [North Carolina State University, 2401 Stinson Drive, Box 8202, Raleigh, NC 27695 (United States); Triangle Universities Nuclear Laboratory, 116 Science Drive, Box 90308, Durham, NC 27708 (United States); Marley, D.E. [National Institute of Standards and Technology, 100 Bureau Drive, Stop 8461, Gaithersburg, MD 20899 (United States); North Carolina State University, 2401 Stinson Drive, Box 8202, Raleigh, NC 27695 (United States); Mumm, H.P. [National Institute of Standards and Technology, 100 Bureau Drive, Stop 8461, Gaithersburg, MD 20899 (United States); O' Shaughnessy, C.M. [University of North Carolina at Chapel Hill, 120 E. Cameron Ave., CB #3255, Chapel Hill, NC 27599 (United States); Triangle Universities Nuclear Laboratory, 116 Science Drive, Box 90308, Durham, NC 27708 (United States); Schelhammer, K.W. [North Carolina State University, 2401 Stinson Drive, Box 8202, Raleigh, NC 27695 (United States); Triangle Universities Nuclear Laboratory, 116 Science Drive, Box 90308, Durham, NC 27708 (United States); Thompson, A.K.; Yue, A.T. [National Institute of Standards and Technology, 100 Bureau Drive, Stop 8461, Gaithersburg, MD 20899 (United States)

    2016-03-21

    In experiments that measure the lifetime of trapped particles, in addition to loss mechanisms with exponential survival probability functions, particles can be lost by mechanisms with non-exponential survival probability functions. Failure to account for such loss mechanisms produces systematic measurement error and associated systematic uncertainties in these measurements. In this work, we develop a general competing risks survival analysis method to account for the joint effect of loss mechanisms with either exponential or non-exponential survival probability functions, and a method to quantify the size of systematic effects and associated uncertainties for lifetime estimates. As a case study, we apply our survival analysis formalism and method to the Ultra Cold Neutron lifetime experiment at NIST. In this experiment, neutrons can escape a magnetic trap before they decay due to a wall loss mechanism with an associated non-exponential survival probability function.

  20. A double exponential model for biochemical oxygen demand.

    Science.gov (United States)

    Mason, Ian G; McLachlan, Robert I; Gérard, Daniel T

    2006-01-01

    Biochemical oxygen demand (BOD) exertion patterns in anaerobically treated farm dairy wastewater were investigated on a laboratory scale. Oxygen uptake was typically characterised by a period of rapid oxygen exertion, a transitional "shoulder" phase and a period of slower activity. A multi-species model, involving rapidly degradable and slowly degradable material, was developed, leading to a double exponential model of BOD exertion as follows:where t is time, BOD(u1)(') and BOD(u2)(') are apparent ultimate BOD (BOD(u)) values, and k(1) and k(2) are rate constants. The model provided an improved description of BOD exertion patterns in anaerobically treated farm dairy wastewater in comparison to a conventional single exponential model, with rapidly degradable rate constant values (k(1)) ranging from 2.74 to 17.36d(-1), whilst slowly degradable rate constant values (k(2)) averaged 0.25d(-1) (range 0.20-0.29). Rapidly and slowly degradable apparent BOD(u) estimates ranged from 20 to 140g/m(3) and 225 to 500g/m(3), respectively, giving total BOD(u) levels of 265-620g/m(3). The mean square error in the curve fitting procedure ranged between 20 and 60g(2)/m(6), with values on average 70% lower (range 31-91%) than those obtained for the single exponential model. When applied to existing data for a range of other wastewaters, the double exponential model demonstrated a superior fit to the conventional single exponential model and provided a marginally better fit than a mixed order model. It is proposed that the presence of rapidly degradable material may be indicated from the value of the first rate constant (k1) and the time to 95% saturation of the first exponential function. Further model development is required to describe observed transitional and lag phases.

  1. Geometry of q-Exponential Family of Probability Distributions

    Directory of Open Access Journals (Sweden)

    Shun-ichi Amari

    2011-06-01

    Full Text Available The Gibbs distribution of statistical physics is an exponential family of probability distributions, which has a mathematical basis of duality in the form of the Legendre transformation. Recent studies of complex systems have found lots of distributions obeying the power law rather than the standard Gibbs type distributions. The Tsallis q-entropy is a typical example capturing such phenomena. We treat the q-Gibbs distribution or the q-exponential family by generalizing the exponential function to the q-family of power functions, which is useful for studying various complex or non-standard physical phenomena. We give a new mathematical structure to the q-exponential family different from those previously given. It has a dually flat geometrical structure derived from the Legendre transformation and the conformal geometry is useful for understanding it. The q-version of the maximum entropy theorem is naturally induced from the q-Pythagorean theorem. We also show that the maximizer of the q-escort distribution is a Bayesian MAP (Maximum A posteriori Probability estimator.

  2. Exponential model normalization for electrical capacitance tomography with external electrodes under gap permittivity conditions

    International Nuclear Information System (INIS)

    Baidillah, Marlin R; Takei, Masahiro

    2017-01-01

    A nonlinear normalization model which is called exponential model for electrical capacitance tomography (ECT) with external electrodes under gap permittivity conditions has been developed. The exponential model normalization is proposed based on the inherently nonlinear relationship characteristic between the mixture permittivity and the measured capacitance due to the gap permittivity of inner wall. The parameters of exponential equation are derived by using an exponential fitting curve based on the simulation and a scaling function is added to adjust the experiment system condition. The exponential model normalization was applied to two dimensional low and high contrast dielectric distribution phantoms by using simulation and experimental studies. The proposed normalization model has been compared with other normalization models i.e. Parallel, Series, Maxwell and Böttcher models. Based on the comparison of image reconstruction results, the exponential model is reliable to predict the nonlinear normalization of measured capacitance in term of low and high contrast dielectric distribution. (paper)

  3. Convergence and stability of the exponential Euler method for semi-linear stochastic delay differential equations.

    Science.gov (United States)

    Zhang, Ling

    2017-01-01

    The main purpose of this paper is to investigate the strong convergence and exponential stability in mean square of the exponential Euler method to semi-linear stochastic delay differential equations (SLSDDEs). It is proved that the exponential Euler approximation solution converges to the analytic solution with the strong order [Formula: see text] to SLSDDEs. On the one hand, the classical stability theorem to SLSDDEs is given by the Lyapunov functions. However, in this paper we study the exponential stability in mean square of the exact solution to SLSDDEs by using the definition of logarithmic norm. On the other hand, the implicit Euler scheme to SLSDDEs is known to be exponentially stable in mean square for any step size. However, in this article we propose an explicit method to show that the exponential Euler method to SLSDDEs is proved to share the same stability for any step size by the property of logarithmic norm.

  4. Exponential Frequency Spectrum in Magnetized Plasmas

    International Nuclear Information System (INIS)

    Pace, D. C.; Shi, M.; Maggs, J. E.; Morales, G. J.; Carter, T. A.

    2008-01-01

    Measurements of a magnetized plasma with a controlled electron temperature gradient show the development of a broadband spectrum of density and temperature fluctuations having an exponential frequency dependence at frequencies below the ion cyclotron frequency. The origin of the exponential frequency behavior is traced to temporal pulses of Lorentzian shape. Similar exponential frequency spectra are also found in limiter-edge plasma turbulence associated with blob transport. This finding suggests a universal feature of magnetized plasma turbulence leading to nondiffusive, cross-field transport, namely, the presence of Lorentzian shaped pulses

  5. On commuting operator exponentials, II

    Indian Academy of Sciences (India)

    eS = ei BeS. Let {Eλ}λ∈R be the spectral family of B. Since σ(B) is generalized 2π-congruence free, there is a Borel subset of σ(B) such that E( ∩ ( + 2kπ)) = 0 for k = ±1, ±2,... and E(σ (B)\\ ) = 0. Then the bounded Borel function f (t) = eit is one-to-one on. = \\. ⋃ k=0( ∩ ( + 2kπ)) and E( ) = I. Using the Borel functional calculus ...

  6. Comparing exponential and exponentiated models of drug demand in cocaine users.

    Science.gov (United States)

    Strickland, Justin C; Lile, Joshua A; Rush, Craig R; Stoops, William W

    2016-12-01

    Drug purchase tasks provide rapid and efficient measurement of drug demand. Zero values (i.e., prices with zero consumption) present a quantitative challenge when using exponential demand models that exponentiated models may resolve. We aimed to replicate and advance the utility of using an exponentiated model by demonstrating construct validity (i.e., association with real-world drug use) and generalizability across drug commodities. Participants (N = 40 cocaine-using adults) completed Cocaine, Alcohol, and Cigarette Purchase Tasks evaluating hypothetical consumption across changes in price. Exponentiated and exponential models were fit to these data using different treatments of zero consumption values, including retaining zeros or replacing them with 0.1, 0.01, or 0.001. Excellent model fits were observed with the exponentiated model. Means and precision fluctuated with different replacement values when using the exponential model but were consistent for the exponentiated model. The exponentiated model provided the strongest correlation between derived demand intensity (Q0) and self-reported free consumption in all instances (Cocaine r = .88; Alcohol r = .97; Cigarette r = .91). Cocaine demand elasticity was positively correlated with alcohol and cigarette elasticity. Exponentiated parameters were associated with real-world drug use (e.g., weekly cocaine use) whereas these correlations were less consistent for exponential parameters. Our findings show that selection of zero replacement values affects demand parameters and their association with drug-use outcomes when using the exponential model but not the exponentiated model. This work supports the adoption of the exponentiated demand model by replicating improved fit and consistency and demonstrating construct validity and generalizability. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  7. On commuting operator exponentials, II

    Indian Academy of Sciences (India)

    where N is an unbounded normal operator and M is a bounded normal operator in the. Hilbert space. Keywords. Self-adjoint and normal operator; commuting normal operator exponent- ials; Borel functional calculus. 1. Introduction. Let E be a complex Hilbert space and let B(E) be the algebra of bounded linear operators.

  8. Acute effects of unilateral static stretching on handgrip strength of the stretched and non-stretched limb.

    Science.gov (United States)

    Jelmini, Jacob D; Cornwell, Andrew; Khodiguian, Nazareth; Thayer, Jennifer; Araujo, And John

    2018-02-16

    To determine the effects of an acute bout of unilateral static stretching on handgrip strength of both the stretched and non-stretched limb. It was reasoned that if the non-stretched limb experienced a decrease in force output, further evidence for a neural mechanism to explain a post-stretch force reduction would be obtained as no mechanical adaptation would have occurred. Thirty participants performed maximum voluntary unilateral handgrip contractions of both limbs before and after stretching the finger flexors of the strength-dominant side only. Each trial was assessed for peak force, muscle activity (iEMG), and rate of force generation. Following the stretching bout, peak force and iEMG decreased by 4.4% (p = 0.001) and 6.4% (p = 0.000) respectively in the stretched limb only. However, rate of force generation was significantly impaired in both the stretched (- 17.3%; p = 0.000) and non-stretched limbs (- 10.8%; p = 0.003) 1 min post-stretch, and remained similarly depressed for both limbs 15 min later. Acute stretching negatively impacts rate of force generation more than peak force. Moreover, a reduced rate of force generation from the non-stretched limb indicates the presence of a cross-over inhibitory effect through the nervous system, which provides additional evidence for a neural mechanism.

  9. Exponential stability of nonlinear time-varying differential equations and applications

    Directory of Open Access Journals (Sweden)

    N. M. Linh

    2001-05-01

    Full Text Available In this paper, we give sufficient conditions for the exponential stability of a class of nonlinear time-varying differential equations. We use the Lyapunov method with functions that are not necessarily differentiable; hence we extend previous results. We also provide an application to exponential stability for nonlinear time-varying control systems.

  10. Almost sure exponential stability of stochastic fuzzy cellular neural networks with delays

    International Nuclear Information System (INIS)

    Zhao Hongyong; Ding Nan; Chen Ling

    2009-01-01

    This paper is concerned with the problem of exponential stability analysis for fuzzy cellular neural network with delays. By constructing suitable Lyapunov functional and using stochastic analysis we present some sufficient conditions ensuring almost sure exponential stability for the network. Moreover, an example is given to demonstrate the advantages of our method.

  11. The Q-Exponential Decay of Subjective Probability for Future Reward: A Psychophysical Time Approach

    Directory of Open Access Journals (Sweden)

    Taiki Takahashi

    2014-10-01

    Full Text Available This study experimentally examined why subjective probability for delayed reward decays non-exponentially (“hyperbolically”, i.e., q ˂ 1 in the q-exponential discount function in humans. Our results indicate that nonlinear psychophysical time causes hyperbolic time-decay of subjective probability for delayed reward. Implications for econophysics and neuroeconomics are discussed.

  12. On the formation of exponential discs

    International Nuclear Information System (INIS)

    Yoshii, Yuzuru; Sommer-Larsen, Jesper

    1989-01-01

    Spiral galaxy discs are characterized by approximately exponential surface luminosity profiles. In this paper the evolutionary equations for a star-forming, viscous disc are solved analytically or semi-analytically. It is shown that approximately exponential stellar surface density profiles result if the viscous time-scale t ν is comparable to the star-formation time scale t * everywhere in the disc. The analytical solutions are used to illuminate further on the issue of why the above mechanism leads to resulting exponential stellar profiles under certain conditions. The sensitivity of the solution to variations of various parameters are investigated and show that the initial gas surface density distribution has to be fairly regular in order that final exponential stellar surface density profiles result. (author)

  13. Exponential attractors for a nonclassical diffusion equation

    Directory of Open Access Journals (Sweden)

    Qiaozhen Ma

    2009-01-01

    Full Text Available In this article, we prove the existence of exponential attractors for a nonclassical diffusion equation in ${H^{2}(Omega}cap{H}^{1}_{0}(Omega$ when the space dimension is less than 4.

  14. Soleus stretch reflex during cycling

    DEFF Research Database (Denmark)

    Grey, Michael James; Pierce, C. W.; Milner, T. E.

    2001-01-01

    The modulation and strength of the human soleus short latency stretch reflex was investigated by mechanically perturbing the ankle during an unconstrained pedaling task. Eight subjects pedaled at 60 rpm against a preload of 10 Nm. A torque pulse was applied to the crank at various positions durin...

  15. Optical tweezers stretching of chromatin

    NARCIS (Netherlands)

    Pope, L.H.; Bennink, Martin L.; Greve, Jan

    2003-01-01

    Recently significant success has emerged from exciting research involving chromatin stretching using optical tweezers. These experiments, in which a single chromatin fibre is attached by one end to a micron-sized bead held in an optical trap and to a solid surface or second bead via the other end,

  16. Transient filament stretching rheometer II

    DEFF Research Database (Denmark)

    Kolte, Mette Irene; Rasmussen, Henrik K.; Hassager, Ole

    1997-01-01

    The Lagrangian sspecification is used to simulate the transient stretching filament rheometer. Simulations are performed for dilute PIB-solutions modeled as a four mode Oldroyd-B fluid and a semidilute PIB-solution modeled as a non-linear single integral equation. The simulations are compared...

  17. Biaxial stretching of polyethylene, (2)

    International Nuclear Information System (INIS)

    Sakami, Hiroshi; Iida, Shozo

    1976-01-01

    The mechanism of oriented crystallization in mutually perpendicular direction to each other was investigated on the crosslinked linear polyethylene stretched successively and biaxially above melting point of raw material. To investigate the mechanism, the shrinkage stress, the degree of polarization and DSC of the film at the fixed length were measured on the crystallization process. The behavior observed on crystallization could be divided into that in the first period and that in the second period. The first period showed the domain of highly oriented crystallization of the crosslinked molecular chain, and in the second period the fold type crystals grew with highly oriented crystals in the first period as nuclear. Therefore, the formation of bi-component crystal structure is supposed for the crystallization. The biaxially oriented crystallization proceeded as follows: the uniaxial orientation to MD was observed in the first stretching in the initial stage, and then the further processing by the second stretching at a right angle caused the fold type crystallization of molecular chain oriented to TD. The film stretched fully and biaxially could be considered to have the oriented crystalline structure in which highly oriented fibril crystals and fold type crystals distribute at random. (auth.)

  18. Recognizing Exponential Growth. Classroom Notes

    Science.gov (United States)

    Dobbs, David E.

    2004-01-01

    Two heuristic and three rigorous arguments are given for the fact that functions of the form Ce[kx], with C an arbitrary constant, are the only solutions of the equation dy/dx=ky where k is constant. Various of the proofs in this self-contained note could find classroom use in a first-year calculus course, an introductory course on differential…

  19. Central limit theorem and deformed exponentials

    International Nuclear Information System (INIS)

    Vignat, C; Plastino, A

    2007-01-01

    The central limit theorem (CLT) can be ranked among the most important ones in probability theory and statistics and plays an essential role in several basic and applied disciplines, notably in statistical thermodynamics. We show that there exists a natural extension of the CLT from exponentials to so-called deformed exponentials (also denoted as q-Gaussians). Our proposal applies exactly in the usual conditions in which the classical CLT is used. (fast track communication)

  20. Equibiaxial cyclic stretch stimulates fibroblasts to rapidly remodel fibrin.

    Science.gov (United States)

    Balestrini, Jenna Leigh; Billiar, Kristen Lawrence

    2006-01-01

    Understanding the effects of the mechanical environment on wound healing is critical for developing more effective treatments to reduce scar formation and contracture. The aim of this study was to investigate the effects of dynamic mechanical stretch on cell-mediated early wound remodeling independent of matrix alignment which obscures more subtle remodeling mechanisms. Cyclic equibiaxial stretch (16% stretch at 0.2 Hz) was applied to fibroblast-populated fibrin gel in vitro wound models for eight days. Compaction, density, tensile strength, and collagen content were quantified as functional measures of remodeling. Stretched samples were approximately ten times stronger, eight-fold more dense, and eight times thinner than statically cultured samples. These changes were accompanied by a 15% increase in net collagen but no significant differences in cell number or viability. When collagen crosslinking was inhibited in stretched samples, the extensibility increased and the strength decreased. The apparent weakening was due to a reduction in compaction rather than a decrease in ability of the tissue to withstand tensile forces. Interestingly, inhibiting collagen crosslinking had no measurable effects on the statically cultured samples. These results indicate that amplified cell-mediated compaction and even a slight addition in collagen content play substantial roles in mechanically induced wound strengthening. These findings increase our understanding of how mechanical forces guide the healing response in skin, and the methods employed in this study may also prove valuable tools for investigating stretch-induced remodeling of other planar connective tissues and for creating mechanically robust engineered tissues.

  1. The need for interdisciplinary research on exponential technologies and sustainability

    OpenAIRE

    Alier Forment, Marc; Casany Guerrero, María José

    2017-01-01

    Technology has a clear influence on the way we live, our culture and how society functions, and last but not least our environment. At a moment when the transformational factor of technology is accelerating at an exponential pace, it is really important to reflect the direction that we want this acceleration to go. In this paper we present some of the factors relevant to this mater: 1) the influence of technology in the society and the environment. 2) The acceleration of some technologies ...

  2. Tunability response in exponentially graded ferroelectrics: A TIM model approach

    Energy Technology Data Exchange (ETDEWEB)

    Vivas C, H., E-mail: hvivasc@unal.edu.co [Grupo de Propiedades Opticas de los Materiales, Departamento de Fisica, Bloque Y, Universidad Nacional de Colombia, Manizales A.A. 127 (Colombia); Jurado, J.F.; Vargas-Hernandez, C. [Grupo de Propiedades Opticas de los Materiales, Departamento de Fisica, Bloque Y, Universidad Nacional de Colombia, Manizales A.A. 127 (Colombia)

    2012-02-01

    Relative dielectric function response associate to a non-homogeneous layered ferroelectric system is calculated in the framework of the Mean Field Approximation (MFA) for the Transverse Ising Model (TIM). Analytical self-consistent expressions for the average polarization, dielectric susceptibility, and tunability percentage are outlined and solved for different configurations and sizes. It is found that exponentially graded ferroelectrics magnify the tunability response for stronger interlayer coupling and it reaches its saturation value for smaller intensities of the applied electric field.

  3. On limiting towards the boundaries of exponential families

    Czech Academy of Sciences Publication Activity Database

    Matúš, František

    2015-01-01

    Roč. 51, č. 5 (2015), s. 725-738 ISSN 0023-5954 R&D Projects: GA ČR GA13-20012S Institutional support: RVO:67985556 Keywords : exponential family * variance function * Kullback--Leibler divergence * relative entropy * information divergence * mean parametrization * convex support Subject RIV: BD - Theory of Information Impact factor: 0.628, year: 2015 http://library.utia.cas.cz/separaty/2016/MTR/matus-0455604.pdf

  4. A discrete electromechanical model for human cardiac tissue: effects of stretch-activated currents and stretch conditions on restitution properties and spiral wave dynamics.

    Directory of Open Access Journals (Sweden)

    Louis D Weise

    Full Text Available We introduce an electromechanical model for human cardiac tissue which couples a biophysical model of cardiac excitation (Tusscher, Noble, Noble, Panfilov, 2006 and tension development (adjusted Niederer, Hunter, Smith, 2006 model with a discrete elastic mass-lattice model. The equations for the excitation processes are solved with a finite difference approach, and the equations of the mass-lattice model are solved using Verlet integration. This allows the coupled problem to be solved with high numerical resolution. Passive mechanical properties of the mass-lattice model are described by a generalized Hooke's law for finite deformations (Seth material. Active mechanical contraction is initiated by changes of the intracellular calcium concentration, which is a variable of the electrical model. Mechanical deformation feeds back on the electrophysiology via stretch-activated ion channels whose conductivity is controlled by the local stretch of the medium. We apply the model to study how stretch-activated currents affect the action potential shape, restitution properties, and dynamics of spiral waves, under constant stretch, and dynamic stretch caused by active mechanical contraction. We find that stretch conditions substantially affect these properties via stretch-activated currents. In constantly stretched medium, we observe a substantial decrease in conduction velocity, and an increase of action potential duration; whereas, with dynamic stretch, action potential duration is increased only slightly, and the conduction velocity restitution curve becomes biphasic. Moreover, in constantly stretched medium, we find an increase of the core size and period of a spiral wave, but no change in rotation dynamics; in contrast, in the dynamically stretching medium, we observe spiral drift. Our results may be important to understand how altered stretch conditions affect the heart's functioning.

  5. Time stretch and its applications

    Science.gov (United States)

    Mahjoubfar, Ata; Churkin, Dmitry V.; Barland, Stéphane; Broderick, Neil; Turitsyn, Sergei K.; Jalali, Bahram

    2017-06-01

    Observing non-repetitive and statistically rare signals that occur on short timescales requires fast real-time measurements that exceed the speed, precision and record length of conventional digitizers. Photonic time stretch is a data acquisition method that overcomes the speed limitations of electronic digitizers and enables continuous ultrafast single-shot spectroscopy, imaging, reflectometry, terahertz and other measurements at refresh rates reaching billions of frames per second with non-stop recording spanning trillions of consecutive frames. The technology has opened a new frontier in measurement science unveiling transient phenomena in nonlinear dynamics such as optical rogue waves and soliton molecules, and in relativistic electron bunching. It has also created a new class of instruments that have been integrated with artificial intelligence for sensing and biomedical diagnostics. We review the fundamental principles and applications of this emerging field for continuous phase and amplitude characterization at extremely high repetition rates via time-stretch spectral interferometry.

  6. Exponentiation and deformations of Lie-admissible algebras

    International Nuclear Information System (INIS)

    Myung, H.C.

    1982-01-01

    The exponential function is defined for a finite-dimensional real power-associative algebra with unit element. The application of the exponential function is focused on the power-associative (p,q)-mutation of a real or complex associative algebra. Explicit formulas are computed for the (p,q)-mutation of the real envelope of the spin 1 algebra and the Lie algebra so(3) of the rotation group, in light of earlier investigations of the spin 1/2. A slight variant of the mutated exponential is interpreted as a continuous function of the Lie algebra into some isotope of the corresponding linear Lie group. The second part of this paper is concerned with the representation and deformation of a Lie-admissible algebra. The second cohomology group of a Lie-admissible algebra is introduced as a generalization of those of associative and Lie algebras in the Hochschild and Chevalley-Eilenberg theory. Some elementary theory of algebraic deformation of Lie-admissible algebras is discussed in view of generalization of that of associative and Lie algebras. Lie-admissible deformations are also suggested by the representation of Lie-admissible algebras. Some explicit examples of Lie-admissible deformation are given in terms of the (p,q)-mutation of associative deformation of an associative algebra. Finally, we discuss Lie-admissible deformations of order one

  7. BSDB: the Biomolecule Stretching Database

    Science.gov (United States)

    Cieplak, Marek; Sikora, Mateusz; Sulkowska, Joanna I.; Witkowski, Bartlomiej

    2011-03-01

    Despite more than a decade of experiments on single biomolecule manipulation, mechanical properties of only several scores of proteins have been measured. A characteristic scale of the force of resistance to stretching, Fmax , has been found to range between ~ 10 and 480 pN. The Biomolecule Stretching Data Base (BSDB) described here provides information about expected values of Fmax for, currently, 17 134 proteins. The values and other characteristics of the unfolding proces, including the nature of identified mechanical clamps, are available at www://info.ifpan.edu.pl/BSDB/. They have been obtained through simulations within a structure-based model which correlates satisfactorily with the available experimental data on stretching. BSDB also lists experimental data and results of the existing all-atom simulations. The database offers a Protein-Data-Bank-wide guide to mechano-stability of proteins. Its description is provided by a forthcoming Nucleic Acids Research paper. Supported by EC FUNMOL project FP7-NMP-2007-SMALL-1, and European Regional Development Fund: Innovative Economy (POIG.01.01.02-00-008/08).

  8. Extracting local stretching from left ventricle angiography data

    Science.gov (United States)

    Mishra, Sanjoy K.; Goldgof, Dmitry B.

    1991-07-01

    This paper presents a new method for extracting local surface stretching from the left ventricle (LV) cineangiography data. The algorithm is based on Gaussian curvature for surface stretching recovery under more realistic conformal motion assumption. During conformal motion surface stretching can vary over the surface patch. In particular, surface stretching can be approximated using linear or quadratic (or higher order) functions. Then, coefficients of the approximating function can be calculated and surface stretching computed from changes in surface curvature at corresponding points. For example, linear approximation requires three point correspondences (between consecutive time frames) within small surface patch. The authors demonstrate the higher precision of the new approach (as compared to homothetic assumption in the authors' earlier work) on simulated and real data of the left ventricle of the human heart. The data set was provided by Dr. Alistair Young of the University of Auckland, New Zealand, and consists of the tracked locations of eleven bifurcation points of the left coronary artery and the tracked locations of 292 vessel points for one cardiac cycle (60 frames/cycle).

  9. Influence of chronic stretching on muscle performance: Systematic review.

    Science.gov (United States)

    Medeiros, D M; Lima, C S

    2017-08-01

    The aim of the current study was to investigate the influence of chronic stretching on muscle performance (MP) by a systematic review. The search strategy included MEDLINE, PEDro, Cochrane CENTRAL, LILACS, and manual search from inception to June 2016. Randomized and controlled clinical trials, non-randomized, and single group studies that have analyzed the influence of flexibility training (FT) (using any stretching technique) on MP were included. Differently, studies with special populations (children, elderly, and people with any dysfunction/disease), and articles that have used FT protocols shorter than three weeks or 12 sessions were excluded. The MP assessment could have been performed by functional tests (e.g. jump, sprint, stretch-shortening cycle tasks), isometric contractions, and/or isotonic contractions. Twenty-eight studies were included out of 513. Seven studies evaluated MP by stretch-shortening cycle tasks, Ten studies evaluated MP by isometric contractions, and 13 studies assessed MP by isotonic contractions. We were unable to perform a meta-analysis due to the high heterogeneity among the included studies. In an individual study level analysis, we identified that 14 studies found positive effects of chronic stretching on MP. The improvements were observed only in functional tests and isotonic contractions, isometric contractions were not affected by FT. Therefore, FT might have an influence on dynamic MP. However, more studies are necessary to confirm whether FT can positively affect MP. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Static stretching does not alter pre and post-landing muscle activation

    Directory of Open Access Journals (Sweden)

    Moss Wesley R

    2011-05-01

    Full Text Available Abstract Background Static stretching may result in various strength and power deficiencies. Prior research has not determined, however, if static stretching causes a change in muscle activation during a functional task requiring dynamic stability. The purpose of this study was to determine if static stretching has an effect on mean pre and postlanding muscle (vastus medialis VM, vastus lateralis VL, medial hamstring MH, and biceps femoris BF activity. Methods 26 healthy, physically active subjects were recruited, from which 13 completed a 14-day static stretching regimen for the quadriceps and hamstrings. Using the data from the force plate and EMG readings, a mean of EMG amplitude was calculated for 150 msec before and after landing. Each trial was normalized to an isometric reference position. Means were calculated for the VM, VL, MH, and BF from 5 trials in each session. Measures were collected pre, immediately following the 1st stretching session, and following 2 weeks of stretching. Results A 14-day static stretching regimen resulted in no significant differences in pre or postlanding mean EMG amplitude during a drop landing either acutely or over a 14-day period. Conclusions Static stretching, done acutely or over a 14-day period does not result in measurable differences of mean EMG amplitude during a drop landing. Static stretching may not impede dynamic stability of joints about which stretched muscles cross.

  11. ESTIMATION ACCURACY OF EXPONENTIAL DISTRIBUTION PARAMETERS

    Directory of Open Access Journals (Sweden)

    muhammad zahid rashid

    2011-04-01

    Full Text Available The exponential distribution is commonly used to model the behavior of units that have a constant failure rate. The two-parameter exponential distribution provides a simple but nevertheless useful model for the analysis of lifetimes, especially when investigating reliability of technical equipment.This paper is concerned with estimation of parameters of the two parameter (location and scale exponential distribution. We used the least squares method (LSM, relative least squares method (RELS, ridge regression method (RR,  moment estimators (ME, modified moment estimators (MME, maximum likelihood estimators (MLE and modified maximum likelihood estimators (MMLE. We used the mean square error MSE, and total deviation TD, as measurement for the comparison between these methods. We determined the best method for estimation using different values for the parameters and different sample sizes

  12. When Economic Growth is Less than Exponential

    DEFF Research Database (Denmark)

    Groth, Christian; Koch, Karl-Josef; Steger, Thomas M.

    This paper argues that growth theory needs a more general notion of "regularity" than that of exponential growth. We suggest that paths along which the rate of decline of the growth rate is proportional to the growth rate itself deserve attention. This opens up for considering a richer set...... of parameter combinations than in standard growth models. And it avoids the usual oversimplistic dichotomy of either exponential growth or stagnation. Allowing zero population growth in three different growth models (the Jones R&D-based model, a learning-by-doing model, and an embodied technical change model......) serve as illustrations that a continuum of "regular" growth processes fill the whole range between exponential growth and complete stagnation....

  13. When economic growth is less than exponential

    DEFF Research Database (Denmark)

    Groth, Christian; Koch, Karl-Josef; Steger, Thomas

    2010-01-01

    This paper argues that growth theory needs a more general notion of "regularity" than that of exponential growth. We suggest that paths along which the rate of decline of the growth rate is proportional to the growth rate itself deserve attention. This opens up for considering a richer set...... of parameter combinations than in standard growth models. And it avoids the usual oversimplistic dichotomy of either exponential growth or stagnation. Allowing zero population growth in three different growth models (the Jones R&D-based model, a learning-by-doing model, and an embodied technical change model......) serves as illustration that a continuum of "regular" growth processes fill the whole range between exponential growth and complete stagnation....

  14. The technological singularity and exponential medicine

    Directory of Open Access Journals (Sweden)

    Iraj Nabipour

    2016-01-01

    Full Text Available The "technological singularity" is forecasted to occur in 2045. It is a point when non-biological intelligence becomes more intelligent than humans and each generation of intelligent machines re-designs itself smarter. Beyond this point, there is a symbiosis between machines and humans. This co-existence will produce incredible impacts on medicine that its sparkles could be seen in healthcare industry and the future medicine since 2025. Ray Kurzweil, the great futurist, suggested that three revolutions in science and technology consisting genetic and molecular science, nanotechnology, and robotic (artificial intelligence provided an exponential growth rate for medicine. The "exponential medicine" is going to create more disruptive technologies in healthcare industry. The exponential medicine shifts the paradigm of medical philosophy and produces significant impacts on the healthcare system and patient-physician relationship.   

  15. Stretching

    Science.gov (United States)

    ... this topic for: Teens Dehydration Safety Tips: Running Knee Injuries Repetitive Stress Injuries Sports and Exercise Safety Dealing With Sports Injuries Sports Center Strains and Sprains View more Partner Message About Us Contact Us ...

  16. Quantum Zeno effect for exponentially decaying systems

    International Nuclear Information System (INIS)

    Koshino, Kazuki; Shimizu, Akira

    2004-01-01

    The quantum Zeno effect - suppression of decay by frequent measurements - was believed to occur only when the response of the detector is so quick that the initial tiny deviation from the exponential decay law is detectable. However, we show that it can occur even for exactly exponentially decaying systems, for which this condition is never satisfied, by considering a realistic case where the detector has a finite energy band of detection. The conventional theories correspond to the limit of an infinite bandwidth. This implies that the Zeno effect occurs more widely than expected thus far

  17. Calorimeter prediction based on multiple exponentials

    International Nuclear Information System (INIS)

    Smith, M.K.; Bracken, D.S.

    2002-01-01

    Calorimetry allows very precise measurements of nuclear material to be carried out, but it also requires relatively long measurement times to do so. The ability to accurately predict the equilibrium response of a calorimeter would significantly reduce the amount of time required for calorimetric assays. An algorithm has been developed that is effective at predicting the equilibrium response. This multi-exponential prediction algorithm is based on an iterative technique using commercial fitting routines that fit a constant plus a variable number of exponential terms to calorimeter data. Details of the implementation and the results of trials on a large number of calorimeter data sets will be presented

  18. Exponential Growth of Nonlinear Ballooning Instability

    International Nuclear Information System (INIS)

    Zhu, P.; Hegna, C. C.; Sovinec, C. R.

    2009-01-01

    Recent ideal magnetohydrodynamic (MHD) theory predicts that a perturbation evolving from a linear ballooning instability will continue to grow exponentially in the intermediate nonlinear phase at the same linear growth rate. This prediction is confirmed in ideal MHD simulations. When the Lagrangian compression, a measure of the ballooning nonlinearity, becomes of the order of unity, the intermediate nonlinear phase is entered, during which the maximum plasma displacement amplitude as well as the total kinetic energy continues to grow exponentially at the rate of the corresponding linear phase.

  19. Exponential Data Fitting and its Applications

    CERN Document Server

    Pereyra, Victor

    2010-01-01

    Real and complex exponential data fitting is an important activity in many different areas of science and engineering, ranging from Nuclear Magnetic Resonance Spectroscopy and Lattice Quantum Chromodynamics to Electrical and Chemical Engineering, Vision and Robotics. The most commonly used norm in the approximation by linear combinations of exponentials is the l2 norm (sum of squares of residuals), in which case one obtains a nonlinear separable least squares problem. A number of different methods have been proposed through the years to solve these types of problems and new applications appear

  20. An Exponential Growth Learning Trajectory: Students' Emerging Understanding of Exponential Growth through Covariation

    Science.gov (United States)

    Ellis, Amy B.; Ozgur, Zekiye; Kulow, Torrey; Dogan, Muhammed F.; Amidon, Joel

    2016-01-01

    This article presents an Exponential Growth Learning Trajectory (EGLT), a trajectory identifying and characterizing middle grade students' initial and developing understanding of exponential growth as a result of an instructional emphasis on covariation. The EGLT explicates students' thinking and learning over time in relation to a set of tasks…

  1. Globally exponential stability of neural network with constant and variable delays

    International Nuclear Information System (INIS)

    Zhao Weirui; Zhang Huanshui

    2006-01-01

    This Letter presents new sufficient conditions of globally exponential stability of neural networks with delays. We show that these results generalize recently published globally exponential stability results. In particular, several different globally exponential stability conditions in the literatures which were proved using different Lyapunov functionals are generalized and unified by using the same Lyapunov functional and the technique of inequality of integral. A comparison between our results and the previous results admits that our results establish a new set of stability criteria for delayed neural networks. Those conditions are less restrictive than those given in the earlier references

  2. Robust exponential stability and domains of attraction in a class of interval neural networks

    International Nuclear Information System (INIS)

    Yang Xiaofan; Liao Xiaofeng; Bai Sen; Evans, David J

    2005-01-01

    This paper addresses robust exponential stability as well as domains of attraction in a class of interval neural networks. A sufficient condition for an equilibrium point to be exponentially stable is established. And an estimate on the domains of attraction of exponentially stable equilibrium points is presented. Both the condition and the estimate are formulated in terms of the parameter intervals, the neurons' activation functions and the equilibrium point. Hence, they are easily checkable. In addition, our results neither depend on monotonicity of the activation functions nor on coupling conditions between the neurons. Consequently, these results are of practical importance in evaluating the performance of interval associative memory networks

  3. Flexure of thick orthotropic plates by exponential shear deformation theory

    Directory of Open Access Journals (Sweden)

    A. S. Sayyad

    Full Text Available In the present paper, a variationally consistent exponential shear deformation theory taking into account transverse shear deformation effect is presented for the flexural analysis of thick orthotropic plates. The inplane displacement field uses exponential function in terms of thickness coordinate to include the shear deformation effect. The transverse shear stress can be obtained directly from the constitutive relations satisfying the shear stress free surface conditions on the top and bottom surfaces of the plate, hence the theory does not require shear correction factor. Governing equations and boundary conditions of the theory are obtained using the principle of virtual work. Results obtained for static flexure of simply supported orthotropic plates are compared with those of other refined theories and elasticity solution wherever applicable. The results obtained by present theory are in excellent agreement with those of exact results and other higher order theories. Thus the efficacy of the present refined theory is established.

  4. Exponentials and Laplace transforms on nonuniform time scales

    Science.gov (United States)

    Ortigueira, Manuel D.; Torres, Delfim F. M.; Trujillo, Juan J.

    2016-10-01

    We formulate a coherent approach to signals and systems theory on time scales. The two derivatives from the time-scale calculus are used, i.e., nabla (forward) and delta (backward), and the corresponding eigenfunctions, the so-called nabla and delta exponentials, computed. With these exponentials, two generalised discrete-time Laplace transforms are deduced and their properties studied. These transforms are compatible with the standard Laplace and Z transforms. They are used to study discrete-time linear systems defined by difference equations. These equations mimic the usual continuous-time equations that are uniformly approximated when the sampling interval becomes small. Impulse response and transfer function notions are introduced. This implies a unified mathematical framework that allows us to approximate the classic continuous-time case when the sampling rate is high or to obtain the standard discrete-time case, based on difference equations, when the time grid becomes uniform.

  5. Predicting Escherichia coli's chemotactic drift under exponential gradient

    Science.gov (United States)

    Samanta, Sibendu; Layek, Ritwik; Kar, Shantimoy; Raj, M. Kiran; Mukhopadhyay, Sudipta; Chakraborty, Suman

    2017-09-01

    Bacterial species are known to show chemotaxis, i.e., the directed motions in the presence of certain chemicals, whereas the motion is random in the absence of those chemicals. The bacteria modulate their run time to induce chemotactic drift towards the attractant chemicals and away from the repellent chemicals. However, the existing theoretical knowledge does not exhibit a proper match with experimental validation, and hence there is a need for developing alternate models and validating experimentally. In this paper a more robust theoretical model is proposed to investigate chemotactic drift of peritrichous Escherichia coli under an exponential nutrient gradient. An exponential gradient is used to understand the steady state behavior of drift because of the logarithmic functionality of the chemosensory receptors. Our theoretical estimations are validated through the experimentation and simulation results. Thus, the developed model successfully delineates the run time, run trajectory, and drift velocity as measured from the experiments.

  6. Global exponential stability for reaction-diffusion recurrent neural networks with multiple time varying delays

    International Nuclear Information System (INIS)

    Lou, X.; Cui, B.

    2008-01-01

    In this paper we consider the problem of exponential stability for recurrent neural networks with multiple time varying delays and reaction-diffusion terms. The activation functions are supposed to be bounded and globally Lipschitz continuous. By means of Lyapunov functional, sufficient conditions are derived, which guarantee global exponential stability of the delayed neural network. Finally, a numerical example is given to show the correctness of our analysis. (author)

  7. Generalized approach to non-exponential relaxation

    Indian Academy of Sciences (India)

    Abstract. Non-exponential relaxation is a universal feature of systems as diverse as glasses, spin glasses, earthquakes, financial markets and the universe. Complex relaxation results from hierarchically constrained dynamics with the strength of the constraints being directly related to the form of the relaxation, which ...

  8. CKM matrix exponential parametrization and Euler angles

    International Nuclear Information System (INIS)

    Dattoli, G.; Sabia, E.; Torre, A.

    1997-01-01

    They show that the exponential parametrization of the CKM matrix allows to establish exact relations between the Euler weak rotation angles and the entries of the CKM generating matrix, which has already been shown to include the hierarchy features of the Wolfenstein parametrization. The analysis includes CP-violating effects and its usefulness to treat the experimental data is also proved

  9. Academic Sacred Cows and Exponential Growth.

    Science.gov (United States)

    Heterick, Robert C., Jr.

    1991-01-01

    The speech notes the linear growth of resources versus the exponential growth of costs in higher education. It identifies opportunities arising from information technology to transform teaching and learning through creation of a new scholarly information delivery system. An integrated triad of communications, computing, and library organizations…

  10. Exponential Lower Bounds For Policy Iteration

    OpenAIRE

    Fearnley, John

    2010-01-01

    We study policy iteration for infinite-horizon Markov decision processes. It has recently been shown policy iteration style algorithms have exponential lower bounds in a two player game setting. We extend these lower bounds to Markov decision processes with the total reward and average-reward optimality criteria.

  11. Gamma and Exponential Autoregressive Moving Average (ARMA ...

    African Journals Online (AJOL)

    Time series data encountered in practice depict properties that deviate from those of gaussian processes. The gamma and exponentially distributed processes which are used as basic models for positive time series fall in the class of non-gaussian processes. In this paper, we develop new and simpler representations of the ...

  12. On exponential growth [of gas breakdown

    DEFF Research Database (Denmark)

    McAllister, Iain Wilson

    1991-01-01

    The agreement obtained between measured breakdown voltages and predicted breakdown values is frequently used as a means of assessing the validity of the theory/model in question. However, owing to the mathematical nature of exponential growth, it is easy to formulate a criterion that provides acc...

  13. Effect of Mechanical Stretching of the Skin on Collagen Fibril ...

    African Journals Online (AJOL)

    Stabilization of collagen fibres during development and through growth to maturation has now become fairly documented. In vitro effect of mechanical stretching of ratsf skin on oxidative deamination of ε-NH2-groups of lysine and hydroxylysine, and functional properties of its type . collagen were studied. Experiments were ...

  14. Effect of stretching techniques on hamstring flexibility in female ...

    African Journals Online (AJOL)

    Flexibility can be achieved by a variety of stretching techniques and the benefits of stretching are known. However, controversy remains about the best type of stretching for achieving a particular goal or outcome. The four most basic stretches are static stretching, dynamic stretching, PNF hold-relax and PNF contract-relax ...

  15. Tail modeling in a stretched magnetosphere. I - Methods and transformations

    Science.gov (United States)

    Stern, David P.

    1987-01-01

    A new method is developed for representing the magnetospheric field B as a distorted dipole field. Because Delta-B = 0 must be maintained, such a distortion may be viewed as a transformation of the vector potential A. The simplest form is a one-dimensional 'stretch transformation' along the x axis, concisely represented by the 'stretch function' f(x), which is also a convenient tool for representing features of the substorm cycle. One-dimensional stretch transformations are extended to spherical, cylindrical, and parabolic coordinates and then to arbitrary coordinates. It is shown that distortion transformations can be viewed as mappings of field lines from one pattern to another; the final result only requires knowledge of the field and not of the potentials. General transformations in Cartesian and arbitrary coordinates are derived, and applications to field modeling, field line motion, MHD modeling, and incompressible fluid dynamics are considered.

  16. Directional Cell Migration in Response to Repeated Substratum Stretching

    Science.gov (United States)

    Okimura, Chika; Iwadate, Yoshiaki

    2017-10-01

    Crawling migration plays an essential role in a variety of biological phenomena, including development, wound healing, and immune system function. Migration properties such as anterior-posterior polarity, directionality, and velocity are regulated not only by the reception of a chemoattractant but also by sensing mechanical inputs from the external environment. In this review, we describe the mechanical response of migrating cells, particularly under repeated stretching of the elastic substratum, highlighting the fact that there appear to be two independent mechanosensing systems that generate the polarity needed for migration. Cells that have no stress fibers, such as Dictyostelium cells and neutrophil-like differentiated HL-60 cells, migrate perpendicular to the stretching direction via myosin II localization. Cells that do possess stress fibers, however, such as fish keratocytes, migrate parallel to the stretching via a stress-fiber-dependent process.

  17. Bending and stretching of plates

    CERN Document Server

    Mansfield, E H; Hemp, W S

    1964-01-01

    The Bending and Stretching of Plates deals with elastic plate theory, particularly on small- and large-deflexion theory. Small-deflexion theory concerns derivation of basic equations, rectangular plates, plates of various shapes, plates whose boundaries are amenable to conformal transformation, plates with variable rigidity, and approximate methods. Large-deflexion theory includes general equations and some exact solutions, approximate methods in large-deflexion theory, asymptotic large-deflexion theories for very thin plates. Asymptotic theories covers membrane theory, tension field theory, a

  18. Stretching of macromolecules and proteins

    International Nuclear Information System (INIS)

    Strick, T R; Dessinges, M-N; Charvin, G; Dekker, N H; Allemand, J-F; Bensimon, D; Croquette, V

    2003-01-01

    In this paper we review the biophysics revealed by stretching single biopolymers. During the last decade various techniques have emerged allowing micromanipulation of single molecules and simultaneous measurements of their elasticity. Using such techniques, it has been possible to investigate some of the interactions playing a role in biology. We shall first review the simplest case of a non-interacting polymer and then present the structural transitions in DNA, RNA and proteins that have been studied by single-molecule techniques. We shall explain how these techniques permit a new approach to the protein folding/unfolding transition

  19. Can Treadmill Perturbations Evoke Stretch Reflexes in the Calf Muscles?

    Science.gov (United States)

    Sloot, Lizeth H; van den Noort, Josien C; van der Krogt, Marjolein M; Bruijn, Sjoerd M; Harlaar, Jaap

    2015-01-01

    Disinhibition of reflexes is a problem amongst spastic patients, for it limits a smooth and efficient execution of motor functions during gait. Treadmill belt accelerations may potentially be used to measure reflexes during walking, i.e. by dorsal flexing the ankle and stretching the calf muscles, while decelerations show the modulation of reflexes during a reduction of sensory feedback. The aim of the current study was to examine if belt accelerations and decelerations of different intensities applied during the stance phase of treadmill walking can evoke reflexes in the gastrocnemius, soleus and tibialis anterior in healthy subjects. Muscle electromyography and joint kinematics were measured in 10 subjects. To determine whether stretch reflexes occurred, we assessed modelled musculo-tendon length and stretch velocity, the amount of muscle activity, as well as the incidence of bursts or depressions in muscle activity with their time delays, and co-contraction between agonist and antagonist muscle. Although the effect on the ankle angle was small with 2.8±1.0°, the perturbations caused clear changes in muscle length and stretch velocity relative to unperturbed walking. Stretched muscles showed an increasing incidence of bursts in muscle activity, which occurred after a reasonable electrophysiological time delay (163-191 ms). Their amplitude was related to the muscle stretch velocity and not related to co-contraction of the antagonist muscle. These effects increased with perturbation intensity. Shortened muscles showed opposite effects, with a depression in muscle activity of the calf muscles. The perturbations only slightly affected the spatio-temporal parameters, indicating that normal walking was retained. Thus, our findings showed that treadmill perturbations can evoke reflexes in the calf muscles and tibialis anterior. This comprehensive study could form the basis for clinical implementation of treadmill perturbations to functionally measure reflexes during

  20. Can Treadmill Perturbations Evoke Stretch Reflexes in the Calf Muscles?

    Directory of Open Access Journals (Sweden)

    Lizeth H Sloot

    Full Text Available Disinhibition of reflexes is a problem amongst spastic patients, for it limits a smooth and efficient execution of motor functions during gait. Treadmill belt accelerations may potentially be used to measure reflexes during walking, i.e. by dorsal flexing the ankle and stretching the calf muscles, while decelerations show the modulation of reflexes during a reduction of sensory feedback. The aim of the current study was to examine if belt accelerations and decelerations of different intensities applied during the stance phase of treadmill walking can evoke reflexes in the gastrocnemius, soleus and tibialis anterior in healthy subjects. Muscle electromyography and joint kinematics were measured in 10 subjects. To determine whether stretch reflexes occurred, we assessed modelled musculo-tendon length and stretch velocity, the amount of muscle activity, as well as the incidence of bursts or depressions in muscle activity with their time delays, and co-contraction between agonist and antagonist muscle. Although the effect on the ankle angle was small with 2.8±1.0°, the perturbations caused clear changes in muscle length and stretch velocity relative to unperturbed walking. Stretched muscles showed an increasing incidence of bursts in muscle activity, which occurred after a reasonable electrophysiological time delay (163-191 ms. Their amplitude was related to the muscle stretch velocity and not related to co-contraction of the antagonist muscle. These effects increased with perturbation intensity. Shortened muscles showed opposite effects, with a depression in muscle activity of the calf muscles. The perturbations only slightly affected the spatio-temporal parameters, indicating that normal walking was retained. Thus, our findings showed that treadmill perturbations can evoke reflexes in the calf muscles and tibialis anterior. This comprehensive study could form the basis for clinical implementation of treadmill perturbations to functionally

  1. Cyclic Stretch Alters Vascular Reactivity of Mouse Aortic Segments

    Directory of Open Access Journals (Sweden)

    Arthur Leloup

    2017-10-01

    Full Text Available Large, elastic arteries buffer the pressure wave originating in the left ventricle and are constantly exposed to higher amplitudes of cyclic stretch (10% than muscular arteries (2%. As a crucial factor for endothelial and smooth muscle cell function, cyclic stretch has, however, never been studied in ex vivo aortic segments of mice. To investigate the effects of cyclic stretch on vaso-reactivity of mouse aortic segments, we used the Rodent Oscillatory Tension Set-up to study Arterial Compliance (ROTSAC. The aortic segments were clamped at frequencies of 6–600 bpm between two variable preloads, thereby mimicking dilation as upon left ventricular systole and recoiling as during diastole. The preloads corresponding to different transmural pressures were chosen to correspond to a low, normal or high amplitude of cyclic stretch. At different time intervals, cyclic stretch was interrupted, the segments were afterloaded and isometric contractions by α1-adrenergic stimulation with 2 μM phenylephrine in the absence and presence of 300 μM L-NAME (eNOS inhibitor and/or 35 μM diltiazem (blocker of voltage-gated Ca2+ channels were measured. As compared with static or cyclic stretch at low amplitude (<10 mN or low frequency (0.1 Hz, cyclic stretch at physiological amplitude (>10 mN and frequency (1–10 Hz caused better ex vivo conservation of basal NO release with time after mounting. The relaxation of PE-precontracted segments by addition of ACh to stimulate NO release was unaffected by cyclic stretch. In the absence of basal NO release (hence, presence of L-NAME, physiological in comparison with aberrant cyclic stretch decreased the baseline tension, attenuated the phasic contraction by phenylephrine in the absence of extracellular Ca2+ and shifted the smaller tonic contraction more from a voltage-gated Ca2+ channel-mediated to a non-selective cation channel-mediated. Data highlight the need of sufficient mechanical activation of endothelial and

  2. New connection formulae for the q-orthogonal polynomials via a series expansion of the q-exponential

    International Nuclear Information System (INIS)

    Chakrabarti, R; Jagannathan, R; Mohammed, S S Naina

    2006-01-01

    Using a realization of the q-exponential function as an infinite multiplicative series of the ordinary exponential functions we obtain new nonlinear connection formulae of the q-orthogonal polynomials such as q-Hermite, q-Laguerre and q-Gegenbauer polynomials in terms of their respective classical analogues

  3. Acute Effects of the Different Intensity of Static Stretching on Flexibility and Isometric Muscle Force.

    Science.gov (United States)

    Kataura, Satoshi; Suzuki, Shigeyuki; Matsuo, Shingo; Hatano, Genki; Iwata, Masahiro; Yokoi, Kazuaki; Tsuchida, Wakako; Banno, Yasuhiro; Asai, Yuji

    2017-12-01

    Kataura, S, Suzuki, S, Matsuo, S, Hatano, G, Iwata, M, Yokoi, K, Tsuchida, W, Banno, Y, and Asai, Y. Acute effects of the different intensity of static stretching on flexibility and isometric muscle force. J Strength Cond Res 31(12): 3403-3410, 2017-In various fields, static stretching is commonly performed to improve flexibility, whereas the acute effects of different stretch intensities are unclear. Therefore, we investigated the acute effects of different stretch intensities on flexibility and muscle force. Eighteen healthy participants (9 men and 9 women) performed 180-second static stretches of the right hamstrings at 80, 100, and 120% of maximum tolerable intensity without stretching pain, in random order. The following outcomes were assessed as markers of lower limb function and flexibility: static passive torque (SPT), range of motion (ROM), passive joint (muscle-tendon) stiffness, passive torque (PT) at onset of pain, and isometric muscle force. Static passive torque was significantly decreased after all stretching intensities (p ≤ 0.05). Compared with before stretching at 100 and 120% intensities, ROM and PT were significantly increased after stretching (p ≤ 0.05), and passive stiffness (p = 0.05) and isometric muscle force (p ≤ 0.05) were significantly decreased. In addition, ROM was significantly greater after stretching at 100 and 120% than at 80%, and passive stiffness was significantly lower after 120% than after 80% (p ≤ 0.05). However, all measurements except SPT were unchanged after 80% intensity. There was a weak positive correlation between the intensities of stretching and the relative change for SPT (p ≤ 0.05), a moderate positive correlation with ROM (p ≤ 0.05), and a moderate positive correlation with passive stiffness (p ≤ 0.05). These results indicate that static stretching at greater intensity is more effective for increasing ROM and decreasing passive muscle-tendon stiffness.

  4. Comparison of 2 Dosages of Stretching Treatment in Infants with Congenital Muscular Torticollis: A Randomized Trial.

    Science.gov (United States)

    He, Lu; Yan, Xiaohua; Li, Jinling; Guan, Buyun; Ma, Liying; Chen, Ying; Mai, Jianning; Xu, Kaishou

    2017-05-01

    To compare the short-term efficacy of 2 dosages of stretching treatment on the clinical outcomes in infants with congenital muscular torticollis. This was a prospective randomized controlled study. Fifty infants with congenital muscular torticollis who were randomly assigned to 100-times stretching group and 50-times stretching group received stretching treatment for the affected sternocleidomastoid muscle. The outcomes including the head tilt, the cervical passive range of motion, and the muscle function of cervical lateral flexors determined by the muscle function scale were assessed at baseline and at 4 and 8 weeks after treatment. The sternocleidomastoid muscle growth analyzed by the thickness ratio of sternocleidomastoid muscles was measured using ultrasonography at baseline and 8 weeks after treatment. Except the ratio of muscle function scale scores, the postintervention outcomes were all significantly improved in both groups compared with baseline (P stretching group showed greater improvement compared with 50-times stretching group in head tilt and cervical passive range of motion at 4 and 8 weeks after treatment (P Stretching treatment of 2 dosages may effectively improve head tilt, cervical passive range of motion, and sternocleidomastoid muscle growth in infants with congenital muscular torticollis. The stretching treatment of 100 times per day is likely to associate with greater improvement in head tilt and cervical passive range of motion.

  5. Global exponential stability of fuzzy cellular neural networks with delays and reaction-diffusion terms

    International Nuclear Information System (INIS)

    Wang Jian; Lu Junguo

    2008-01-01

    In this paper, we study the global exponential stability of fuzzy cellular neural networks with delays and reaction-diffusion terms. By constructing a suitable Lyapunov functional and utilizing some inequality techniques, we obtain a sufficient condition for the uniqueness and global exponential stability of the equilibrium solution for a class of fuzzy cellular neural networks with delays and reaction-diffusion terms. The result imposes constraint conditions on the network parameters independently of the delay parameter. The result is also easy to check and plays an important role in the design and application of globally exponentially stable fuzzy neural circuits

  6. Two Refreshing Views of Fluctuation Theorems Through Kinematics Elements and Exponential Martingale

    Science.gov (United States)

    Chetrite, Raphaël; Gupta, Shamik

    2011-05-01

    In the context of Markov evolution, we present two original approaches to obtain Generalized Fluctuation-Dissipation Theorems ( GFDT), by using the language of stochastic derivatives and by using a family of exponential martingales functionals. We show that GFDT are perturbative versions of relations verified by these exponential martingales. Along the way, we prove GFDT and Fluctuation Relations ( FR) for general Markov processes, beyond the usual proof for diffusion and pure jump processes. Finally, we relate the FR to a family of backward and forward exponential martingales.

  7. PROPRIOCEPTIVE NEUROMUSCULAR FACILITATION STRETCHING VERSUS STATIC STRETCHING ON SPRINTING PERFORMANCE AMONG COLLEGIATE SPRINTERS

    Directory of Open Access Journals (Sweden)

    Jayaram Maharjan

    2015-08-01

    Full Text Available Background: A warm-up is important part of preparation for sprinting. There is popularity of doing stretching as part of warm up before athletic activity. The static stretching and PNF stretching is performed by athletes but their effectiveness on sprinting performance is in state of debate. The objective is to determine the effect of static stretching and PNF stretching on sprinting performance in college sprinters and to compare the effects of PNF stretching over static stretching on sprinting performance in college sprinters. Method: A total of 100 subjects were taken for the study that fulfill the inclusion criteria and all were divided into group- A (static stretching and group- B (PNF stretching by simple random sampling method. Both the groups received 5 minutes of warm-up exercises. Pre-Post design was used, which consisted of running a 40-yard sprint immediately following 2 stretching conditions aimed at the lower limb muscles Results: In static stretching group sprint time changed from 6.55 with standard deviation of 0.93 to 6.12 with standard deviation of 1.02 (P.605. Conclusion: Hence both static stretching and PNF stretching can be performed before sprinting activity to improve the sprinting performance.

  8. Exponential growth combined with exponential decline explains lifetime performance evolution in individual and human species.

    Science.gov (United States)

    Berthelot, Geoffroy; Len, Stéphane; Hellard, Philippe; Tafflet, Muriel; Guillaume, Marion; Vollmer, Jean-Claude; Gager, Bruno; Quinquis, Laurent; Marc, Andy; Toussaint, Jean-François

    2012-08-01

    The physiological parameters characterizing human capacities (the ability to move, reproduce or perform tasks) evolve with ageing: performance is limited at birth, increases to a maximum and then decreases back to zero at the day of death. Physical and intellectual skills follow such a pattern. Here, we investigate the development of sport and chess performances during the lifetime at two different scales: the individual athletes' careers and the world record by age class in 25 Olympic sports events and in grandmaster chess players. For all data sets, a biphasic development of growth and decline is described by a simple model that accounts for 91.7% of the variance at the individual level and 98.5% of the variance at the species one. The age of performance peak is computed at 26.1 years old for the events studied (26.0 years old for track and field, 21.0 years old for swimming and 31.4 years old for chess). The two processes (growth and decline) are exponential and start at age zero. Both were previously demonstrated to happen in other human and non-human biological functions that evolve with age. They occur at the individual and species levels with a similar pattern, suggesting a scale invariance property.

  9. Matrix-exponential distributions in applied probability

    CERN Document Server

    Bladt, Mogens

    2017-01-01

    This book contains an in-depth treatment of matrix-exponential (ME) distributions and their sub-class of phase-type (PH) distributions. Loosely speaking, an ME distribution is obtained through replacing the intensity parameter in an exponential distribution by a matrix. The ME distributions can also be identified as the class of non-negative distributions with rational Laplace transforms. If the matrix has the structure of a sub-intensity matrix for a Markov jump process we obtain a PH distribution which allows for nice probabilistic interpretations facilitating the derivation of exact solutions and closed form formulas. The full potential of ME and PH unfolds in their use in stochastic modelling. Several chapters on generic applications, like renewal theory, random walks and regenerative processes, are included together with some specific examples from queueing theory and insurance risk. We emphasize our intention towards applications by including an extensive treatment on statistical methods for PH distribu...

  10. Statistical estimation for truncated exponential families

    CERN Document Server

    Akahira, Masafumi

    2017-01-01

    This book presents new findings on nonregular statistical estimation. Unlike other books on this topic, its major emphasis is on helping readers understand the meaning and implications of both regularity and irregularity through a certain family of distributions. In particular, it focuses on a truncated exponential family of distributions with a natural parameter and truncation parameter as a typical nonregular family. This focus includes the (truncated) Pareto distribution, which is widely used in various fields such as finance, physics, hydrology, geology, astronomy, and other disciplines. The family is essential in that it links both regular and nonregular distributions, as it becomes a regular exponential family if the truncation parameter is known. The emphasis is on presenting new results on the maximum likelihood estimation of a natural parameter or truncation parameter if one of them is a nuisance parameter. In order to obtain more information on the truncation, the Bayesian approach is also considere...

  11. Effect of Twisting and Stretching on Magneto Resistance and Spin Filtration in CNTs

    Directory of Open Access Journals (Sweden)

    Anil Kumar Singh

    2017-08-01

    Full Text Available Spin-dependent quantum transport properties in twisted carbon nanotube and stretched carbon nanotube are calculated using density functional theory (DFT and non-equilibrium green’s function (NEGF formulation. Twisting and stretching have no effect on spin transport in CNTs at low bias voltages. However, at high bias voltages the effects are significant. Stretching restricts any spin-up current in antiparallel configuration (APC, which results in higher magneto resistance (MR. Twisting allows spin-up current almost equivalent to the pristine CNT case, resulting in lower MR. High spin filtration is observed in PC and APC for pristine, stretched and twisted structures at all applied voltages. In APC, at low voltages spin filtration in stretched CNT is higher than in pristine and twisted ones, with pristine giving a higher spin filtration than twisted CNT.

  12. Exponential Stabilization of an Underactuated Surface Vessel

    Directory of Open Access Journals (Sweden)

    Kristin Y. Pettersen

    1997-07-01

    Full Text Available The paper shows that a large class of underactuated vehicles cannot be asymptotically stabilized by either continuous or discontinuous state feedback. Furthermore, stabilization of an underactuated surface vessel is considered. Controllability properties of the surface vessels is presented, and a continuous periodic time-varying feedback law is proposed. It is shown that this feedback law exponentially stabilizes the surface vessel to the origin, and this is illustrated by simulations.

  13. Exponentially Light Dark Matter from Coannihilation

    OpenAIRE

    D'Agnolo, Raffaele Tito; Mondino, Cristina; Ruderman, Joshua T.; Wang, Po-Jen

    2018-01-01

    Dark matter may be a thermal relic whose abundance is set by mutual annihilations among multiple species. Traditionally, this coannihilation scenario has been applied to weak scale dark matter that is highly degenerate with other states. We show that coannihilation among states with split masses points to dark matter that is exponentially lighter than the weak scale, down to the keV scale. We highlight the regime where dark matter does not participate in the annihilations that dilute its numb...

  14. Sharp error terms and neccesary conditions for exponential hitting times in mixing processes

    CERN Document Server

    Abadi, M G

    2001-01-01

    We prove an upper bound for the error in the exponential approximation of the hitting time law of a rare event in $\\alpha$-mixing processes with exponential decay, $\\phi$-mixing processes with a summable function $\\phi$ and for general $\\psi$-mixing processes with a finite alphabet. In the first case the bound is uniform as a function of the measure of the event. In the last two cases the bound depends also on the time scale $t$. This allow us to get further statistical properties as the ratio convergence of the expected hitting time and the expected return time. A uniform bound is a consequence. We present an example that shows that this bound is sharp. We also prove that second moments are not necessary for having the exponential law. Moreover, we prove a necessary condition for having the exponential limit law.

  15. Unwrapped phase inversion with an exponential damping

    KAUST Repository

    Choi, Yun Seok

    2015-07-28

    Full-waveform inversion (FWI) suffers from the phase wrapping (cycle skipping) problem when the frequency of data is not low enough. Unless we obtain a good initial velocity model, the phase wrapping problem in FWI causes a result corresponding to a local minimum, usually far away from the true solution, especially at depth. Thus, we have developed an inversion algorithm based on a space-domain unwrapped phase, and we also used exponential damping to mitigate the nonlinearity associated with the reflections. We construct the 2D phase residual map, which usually contains the wrapping discontinuities, especially if the model is complex and the frequency is high. We then unwrap the phase map and remove these cycle-based jumps. However, if the phase map has several residues, the unwrapping process becomes very complicated. We apply a strong exponential damping to the wavefield to eliminate much of the residues in the phase map, thus making the unwrapping process simple. We finally invert the unwrapped phases using the back-propagation algorithm to calculate the gradient. We progressively reduce the damping factor to obtain a high-resolution image. Numerical examples determined that the unwrapped phase inversion with a strong exponential damping generated convergent long-wavelength updates without low-frequency information. This model can be used as a good starting model for a subsequent inversion with a reduced damping, eventually leading to conventional waveform inversion.

  16. Method for exponentiating in cryptographic systems

    Energy Technology Data Exchange (ETDEWEB)

    Brickell, E.F.; Gordon, D.M.; McCurley, K.S.

    1992-12-31

    An improved cryptographic method utilizing exponentiation is provided which has the advantage of reducing the number of multiplications required to determine the legitimacy of a message or user. The basic method comprises the steps of selecting a key from a pre-approved group of integer keys g; exponentiating the key by an integer value e, where e represents a digital signature, to generate a value g{sup e}; transmitting the value g{sup e} to a remote facility by a communications network; receiving the value g{sup e} at the remote facility; and verifying the digital signature as originating from the legitimate user. The exponentiating step comprises the steps of initializing a plurality of memory locations with a plurality of values g{sup xi}, computing a{sub i} representations for a integer base b, where a{sub i} represents the weighing factor of the ith digit of the integer e; computing the individual values of c{sub d} according to the rule: c{sub d}={product}a{sub i}=d g{sup x {sub i}}; and computing the product of {product}{sup h}/{sub d=1} c{sub d}{sup d} from the stored values of from the plurality of memory locations so as to determine a value for g{sup e}.

  17. Contact of a spherical probe with a stretched rubber substrate

    Science.gov (United States)

    Frétigny, Christian; Chateauminois, Antoine

    2017-07-01

    We report on a theoretical and experimental investigation of the normal contact of stretched neo-Hookean substrates with rigid spherical probes. Starting from a published formulation of surface Green's function for incremental displacements on a prestretched, neo-Hookean, substrate [J. Mech. Phys. Solids 56, 2957 (2008), 10.1016/j.jmps.2008.07.002], a model is derived for both adhesive and nonadhesive contacts. The shape of the elliptical contact area together with the contact load and the contact stiffness are predicted as a function of the in-plane stretch ratios λx and λy of the substrate. The validity of this model is assessed by contact experiments carried out using an uniaxally stretched silicone rubber. For stretch ratio below about 1.25, a good agreement is observed between theory and experiments. Above this threshold, some deviations from the theoretical predictions are induced as a result of the departure of the mechanical response of the silicone rubber from the neo-Hokeean description embedded in the model.

  18. Contact angles on stretched solids

    Science.gov (United States)

    Mensink, Liz; Snoeijer, Jacco

    2017-11-01

    The surface energy of solid interfaces plays a central role in wetting, as they dictate the liquid contact angle. Yet, it has been challenging to measure the solid surface energies independently, without making use of Young's law. Here we present Molecular Dynamics (MD) simulations by which we measure the surface properties for all interfaces, including the solids. We observe change in contact angles upon stretching the solid substrates, showing that the surface energy is actually strain dependent. This is clear evidence of the so-called Shuttleworth effect, making it necessary to distinguish surface energy from surface tension. We discuss how this effect gives rise to a new class of elasto-capillary phenomena. ERC Consolidator Grant No. 616918.

  19. Effect of acute stretch injury on action potential and network activity of rat neocortical neurons in culture.

    Science.gov (United States)

    Magou, George C; Pfister, Bryan J; Berlin, Joshua R

    2015-10-22

    The basis for acute seizures following traumatic brain injury (TBI) remains unclear. Animal models of TBI have revealed acute hyperexcitablility in cortical neurons that could underlie seizure activity, but studying initiating events causing hyperexcitability is difficult in these models. In vitro models of stretch injury with cultured cortical neurons, a surrogate for TBI, allow facile investigation of cellular changes after injury but they have only demonstrated post-injury hypoexcitability. The goal of this study was to determine if neuronal hyperexcitability could be triggered by in vitro stretch injury. Controlled uniaxial stretch injury was delivered to a spatially delimited region of a spontaneously active network of cultured rat cortical neurons, yielding a region of stretch-injured neurons and adjacent regions of non-stretched neurons that did not directly experience stretch injury. Spontaneous electrical activity was measured in non-stretched and stretch-injured neurons, and in control neuronal networks not subjected to stretch injury. Non-stretched neurons in stretch-injured cultures displayed a three-fold increase in action potential firing rate and bursting activity 30-60 min post-injury. Stretch-injured neurons, however, displayed dramatically lower rates of action potential firing and bursting. These results demonstrate that acute hyperexcitability can be observed in non-stretched neurons located in regions adjacent to the site of stretch injury, consistent with reports that seizure activity can arise from regions surrounding the site of localized brain injury. Thus, this in vitro procedure for localized neuronal stretch injury may provide a model to study the earliest cellular changes in neuronal function associated with acute post-traumatic seizures. Copyright © 2015. Published by Elsevier B.V.

  20. Fast exponential calculation for the IBM 370-195 at the Oak Ridge Gaseous Diffusion Plant

    Energy Technology Data Exchange (ETDEWEB)

    Whitson, J. C.; Whealton, J. H.

    1977-01-01

    The time spent for computing an exponential for the IBM 370-195 at the Oak Ridge Gaseous Diffusion Plant is about 25 times slower than that spent by the CDC-7600 CTR computer at Livermore. We propose a scheme which does not involve a function call, is 15 times faster than the IBM 370-195 scheme, and is useful when the exponential is called many times.

  1. Global exponential stability of mixed discrete and distributively delayed cellular neural network

    International Nuclear Information System (INIS)

    Yao Hong-Xing; Zhou Jia-Yan

    2011-01-01

    This paper concernes analysis for the global exponential stability of a class of recurrent neural networks with mixed discrete and distributed delays. It first proves the existence and uniqueness of the balance point, then by employing the Lyapunov—Krasovskii functional and Young inequality, it gives the sufficient condition of global exponential stability of cellular neural network with mixed discrete and distributed delays, in addition, the example is provided to illustrate the applicability of the result. (general)

  2. Truncated exponential-rigid-rotor model for strong electron and ion rings

    International Nuclear Information System (INIS)

    Larrabee, D.A.; Lovelace, R.V.; Fleischmann, H.H.

    1979-01-01

    A comprehensive study of exponential-rigid-rotor equilibria for strong electron and ion rings indicates the presence of a sizeable percentage of untrapped particles in all equilibria with aspect-ratios R/a approximately <4. Such aspect-ratios are required in fusion-relevant rings. Significant changes in the equilibria are observed when untrapped particles are excluded by the use of a truncated exponential-rigid-rotor distribution function. (author)

  3. Globally exponential stability and periodic solutions of CNNS with variable coefficients and variable delays

    International Nuclear Information System (INIS)

    Liu Haifei; Wang Li

    2006-01-01

    In this Letter, by using the inequality method and the Lyapunov functional method, we analyze the globally exponential stability and the existence of periodic solutions of a class of cellular neutral networks with delays and variable coefficients. Some simple and new sufficient conditions ensuring the existence and uniqueness of globally exponential stability of periodic solutions for cellular neutral networks with variable coefficients and delays are obtained. In addition, one example is also worked out to illustrate our theory

  4. On the non-hyperbolicity of a class of exponential polynomials

    Directory of Open Access Journals (Sweden)

    Gaspar Mora

    2017-10-01

    Full Text Available In this paper we have constructed a class of non-hyperbolic exponential polynomials that contains all the partial sums of the Riemann zeta function. An exponential polynomial been also defined to illustrate the complexity of the structure of the set defined by the closure of the real projections of its zeros. The sensitivity of this set, when the vector of delays is perturbed, has been analysed. These results have immediate implications in the theory of the neutral differential equations.

  5. Globally exponential stability and periodic solutions of CNNS with variable coefficients and variable delays

    Energy Technology Data Exchange (ETDEWEB)

    Liu Haifei [School of Management and Engineering, Nanjing University, Nanjing 210093 (China)]. E-mail: hfliu80@126.com; Wang Li [School of Management and Engineering, Nanjing University, Nanjing 210093 (China)

    2006-09-15

    In this Letter, by using the inequality method and the Lyapunov functional method, we analyze the globally exponential stability and the existence of periodic solutions of a class of cellular neutral networks with delays and variable coefficients. Some simple and new sufficient conditions ensuring the existence and uniqueness of globally exponential stability of periodic solutions for cellular neutral networks with variable coefficients and delays are obtained. In addition, one example is also worked out to illustrate our theory.

  6. Exponential convergence and acceleration of Hartree-Fock calculations

    International Nuclear Information System (INIS)

    Bonaccorso, A.; Di Toro, M.; Lomnitz-Adler, J.

    1979-01-01

    It is shown that one can expect an exponential behaviour for the convergence of the Hartree-Fock solution during the HF iteration procedure. This property is used to extrapolate some collective degrees of freedom, in this case the shape, in order to speed up the self-consistent calculation. For axially deformed nuclei the method is applied to the quadrupole moment which corresponds to a simple scaling transformation on the single particle wave functions. Results are shown for the deformed nuclei 20 Ne and 28 Si with a Skyrme interaction. (Auth.)

  7. A COMPARISION BETWEEN CROSSBODY STRETCH VERSUS SLEEPER STRETCH IN PERIARTHRITIS OF SHOULDER

    Directory of Open Access Journals (Sweden)

    Shaik Raheem Saheb

    2015-12-01

    Full Text Available Background: Recently Cross body stretch and Sleeper stretch are used to improve internal rotation Range of motion in Shoulder Pathologies. It was proposed to study the effect of cross body stretch and sleeper stretch in subjects with periarthritis of shoulder. Methods: 60 subjects with a mean age of 53 years having clinical diagnosis of Periarthritis of shoulder and full filled the inclusive criteria are taken. After the initial measurements, the subjects are randomly assigned into 2 stretching groups. Group-A performed the Sleeper stretch. Group-B performed a Cross body stretch. Both Groups performed the Stretch in Duration of 6weeks – once daily for 5 repetitions holding each stretch for 30 seconds for 5 days a week. Along with this technique conventional physiotherapy like IFT, overhead pulleys, Pendula exercises, Wall climbing exercises, mariners wheel exercises are performed. After the treatment, subjects were evaluated for their pain profile using visual analogue scale, Goniometer for measuring Range of motion. Results: For within group comparison we used Paired t-test analysis, For Between group comparison we used Independent t-test for statistical analysis. At the end of 6 weeks It was found that subjects treated with cross-body stretch showed significant improvement in terms of VAS scores and Range of motion scores (P=0.000 and patients treated with Sleeper stretch showed significant improvement in terms of VAS scores and Range of motion scores (P=0.000. When compared between Groups the VAS and Range of motion scores showed a significant improvement in Cross body stretch Group than the Sleeper stretch Group (P=0.000. Conclusion: It was concluded that both stretching techniques were found improvement in Range of motion and VAS and Cross-body Stretch showed more Significant improvement than the sleeper Stretch after 6 weeks treatment.

  8. Anharmonic Bend-Stretch Coupling in Water

    NARCIS (Netherlands)

    Lindner, Jörg; Vöhringer, Peter; Pshenichnikov, Maxim S.; Cringus, Dan; Wiersma, Douwe A.; Corkum, Paul; Jonas, David M.; Miller, R.J. Dwayne.; Weiner, Andrew M.

    2006-01-01

    Following excitation of the H-O-H bending mode of water molecules in solution the stretching mode region is monitored over its entire width. The anharmonic coupling between the two modes results in a substantial change of the transient stretch absorption that decays with the bend depopulation time.

  9. Dynamic Transcriptional Regulation of Fis in Salmonella During the Exponential Phase.

    Science.gov (United States)

    Wang, Hui; Wang, Lei; Li, Ping; Hu, Yilang; Zhang, Wei; Tang, Bo

    2015-12-01

    Fis is one of the most important global regulators and has attracted extensive research attention. Many studies have focused on comparing the Fis global regulatory networks for exploring Fis function during different growth stages, such as the exponential and stationary stages. Although the Fis protein in bacteria is mainly expressed in the exponential phase, the dynamic transcriptional regulation of Fis during the exponential phase remains poorly understood. To address this question, we used RNA-seq technology to identify the Fis-regulated genes in the S. enterica serovar Typhimurium during the early exponential phase, and qRT-PCR was performed to validate the transcriptional data. A total of 1495 Fis-regulated genes were successfully identified, including 987 Fis-repressed genes and 508 Fis-activated genes. Comparing the results of this study with those of our previous study, we found that the transcriptional regulation of Fis was diverse during the early- and mid-exponential phases. The results also showed that the strong positive regulation of Fis on Salmonella pathogenicity island genes in the mid-exponential phase transitioned into insignificant effect in the early exponential phase. To validate these results, we performed a cell infection assay and found that Δfis only exhibited a 1.49-fold decreased capacity compared with the LT2 wild-type strain, indicating a large difference from the 6.31-fold decrease observed in the mid-exponential phase. Our results provide strong evidence for a need to thoroughly understand the dynamic transcriptional regulation of Fis in Salmonella during the exponential phase.

  10. Anisotropic instability of a stretching film

    Science.gov (United States)

    Xu, Bingrui; Li, Minhao; Deng, Daosheng

    2017-11-01

    Instability of a thin liquid film, such as dewetting arising from Van der Waals force, has been well studied, and is typically characterized by formation of many droplets. Interestingly, a thin liquid film subjected to an applied stretching during a process of thermal drawing is evolved into an array of filaments, i.e., continuity is preserved along the direction of stretching while breakup occurs exclusively in the plane of cross section. Here, to understand this anisotropic instability, we build a physical model by considering both Van der Waals force and the effect of stretching. By using the linear instability analysis method and then performing a numerical calculation, we find that the growth rate of perturbations at the cross section is larger than that along the direction of stretching, resulting in the anisotropic instability of the stretching film. These results may provide theoretical guidance to achieve more diverse structures for nanotechnology.

  11. Progressive Exponential Clustering-Based Steganography

    Directory of Open Access Journals (Sweden)

    Li Yue

    2010-01-01

    Full Text Available Cluster indexing-based steganography is an important branch of data-hiding techniques. Such schemes normally achieve good balance between high embedding capacity and low embedding distortion. However, most cluster indexing-based steganographic schemes utilise less efficient clustering algorithms for embedding data, which causes redundancy and leaves room for increasing the embedding capacity further. In this paper, a new clustering algorithm, called progressive exponential clustering (PEC, is applied to increase the embedding capacity by avoiding redundancy. Meanwhile, a cluster expansion algorithm is also developed in order to further increase the capacity without sacrificing imperceptibility.

  12. Finite difference computing with exponential decay models

    CERN Document Server

    Langtangen, Hans Petter

    2016-01-01

    This text provides a very simple, initial introduction to the complete scientific computing pipeline: models, discretization, algorithms, programming, verification, and visualization. The pedagogical strategy is to use one case study – an ordinary differential equation describing exponential decay processes – to illustrate fundamental concepts in mathematics and computer science. The book is easy to read and only requires a command of one-variable calculus and some very basic knowledge about computer programming. Contrary to similar texts on numerical methods and programming, this text has a much stronger focus on implementation and teaches testing and software engineering in particular. .

  13. Return probability: Exponential versus Gaussian decay

    Energy Technology Data Exchange (ETDEWEB)

    Izrailev, F.M. [Instituto de Fisica, BUAP, Apdo. Postal J-48, 72570 Puebla (Mexico)]. E-mail: izrailev@sirio.ifuap.buap.mx; Castaneda-Mendoza, A. [Instituto de Fisica, BUAP, Apdo. Postal J-48, 72570 Puebla (Mexico)

    2006-02-13

    We analyze, both analytically and numerically, the time-dependence of the return probability in closed systems of interacting particles. Main attention is paid to the interplay between two regimes, one of which is characterized by the Gaussian decay of the return probability, and another one is the well-known regime of the exponential decay. Our analytical estimates are confirmed by the numerical data obtained for two models with random interaction. In view of these results, we also briefly discuss the dynamical model which was recently proposed for the implementation of a quantum computation.

  14. Compact vs. Exponential-Size LP Relaxations

    Energy Technology Data Exchange (ETDEWEB)

    Carr, R.D.; Lancia, G.

    2000-09-01

    In this paper we introduce by means of examples a new technique for formulating compact (i.e. polynomial-size) LP relaxations in place of exponential-size models requiring separation algorithms. In the same vein as a celebrated theorem by Groetschel, Lovasz and Schrijver, we state the equivalence of compact separation and compact optimization. Among the examples used to illustrate our technique, we introduce a new formulation for the Traveling Salesman Problem, whose relaxation we show equivalent to the subtour elimination relaxation.

  15. Strategy as stretch and leverage.

    Science.gov (United States)

    Hamel, G; Prahalad, C K

    1993-01-01

    Global competition is not just product versus product or company versus company. It is mind-set versus mind-set. Driven to understand the dynamics of competition, we have learned a lot about what makes one company more successful than another. But to find the root of competitiveness--to understand why some companies create new forms of competitive advantage while others watch and follow--we must look at strategic mind-sets. For many managers, "being strategic" means pursuing opportunities that fit the company's resources. This approach is not wrong, Gary Hamel and C.K. Prahalad contend, but it obscures an approach in which "stretch" supplements fit and being strategic means creating a chasm between ambition and resources. Toyota, CNN, British Airways, Sony, and others all displaced competitors with stronger reputations and deeper pockets. Their secret? In each case, the winner had greater ambition than its well-endowed rivals. Winners also find less resource-intensive ways of achieving their ambitious goals. This is where leverage complements the strategic allocation of resources. Managers at competitive companies can get a bigger bang for their buck in five basic ways: by concentrating resources around strategic goals; by accumulating resources more efficiently; by complementing one kind of resource with another; by conserving resources whenever they can; and by recovering resources from the market-place as quickly as possible. As recent competitive battles have demonstrated, abundant resources can't guarantee continued industry leadership.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Exponential inflation with F (R ) gravity

    Science.gov (United States)

    Oikonomou, V. K.

    2018-03-01

    In this paper, we shall consider an exponential inflationary model in the context of vacuum F (R ) gravity. By using well-known reconstruction techniques, we shall investigate which F (R ) gravity can realize the exponential inflation scenario at leading order in terms of the scalar curvature, and we shall calculate the slow-roll indices and the corresponding observational indices, in the context of slow-roll inflation. We also provide some general formulas of the slow-roll and the corresponding observational indices in terms of the e -foldings number. In addition, for the calculation of the slow-roll and of the observational indices, we shall consider quite general formulas, for which it is not necessary for the assumption that all the slow-roll indices are much smaller than unity to hold true. Finally, we investigate the phenomenological viability of the model by comparing it with the latest Planck and BICEP2/Keck-Array observational data. As we demonstrate, the model is compatible with the current observational data for a wide range of the free parameters of the model.

  17. Assessment of early treatment response to neoadjuvant chemotherapy in breast cancer using non-mono-exponential diffusion models: a feasibility study comparing the baseline and mid-treatment MRI examinations

    Energy Technology Data Exchange (ETDEWEB)

    Bedair, Reem; Manavaki, Roido; Gill, Andrew B.; Abeyakoon, Oshaani; Gilbert, Fiona J. [University of Cambridge, Department of Radiology, School of Clinical Medicine, Cambridge (United Kingdom); Priest, Andrew N.; Patterson, Andrew J. [Cambridge University Hospitals NHS Foundation Trust, Department of Radiology, Addenbrookes Hospital, Cambridge (United Kingdom); McLean, Mary A. [Cambridge University Hospitals NHS Foundation Trust, Department of Radiology, Addenbrookes Hospital, Cambridge (United Kingdom); University of Cambridge, Li Ka Shing Centre, Cancer Research UK Cambridge Institute, Cambridge (United Kingdom); Graves, Martin J. [University of Cambridge, Department of Radiology, School of Clinical Medicine, Cambridge (United Kingdom); Cambridge University Hospitals NHS Foundation Trust, Department of Radiology, Addenbrookes Hospital, Cambridge (United Kingdom); Griffiths, John R. [University of Cambridge, Li Ka Shing Centre, Cancer Research UK Cambridge Institute, Cambridge (United Kingdom)

    2017-07-15

    To assess the feasibility of the mono-exponential, bi-exponential and stretched-exponential models in evaluating response of breast tumours to neoadjuvant chemotherapy (NACT) at 3 T. Thirty-six female patients (median age 53, range 32-75 years) with invasive breast cancer undergoing NACT were enrolled for diffusion-weighted MRI (DW-MRI) prior to the start of treatment. For assessment of early response, changes in parameters were evaluated on mid-treatment MRI in 22 patients. DW-MRI was performed using eight b values (0, 30, 60, 90, 120, 300, 600, 900 s/mm{sup 2}). Apparent diffusion coefficient (ADC), tissue diffusion coefficient (D{sub t}), vascular fraction (Florin), distributed diffusion coefficient (DDC) and alpha (α) parameters were derived. Then t tests compared the baseline and changes in parameters between response groups. Repeatability was assessed at inter- and intraobserver levels. All patients underwent baseline MRI whereas 22 lesions were available at mid-treatment. At pretreatment, mean diffusion coefficients demonstrated significant differences between groups (p < 0.05). At mid-treatment, percentage increase in ADC and DDC showed significant differences between responders (49 % and 43 %) and non-responders (21 % and 32 %) (p = 0.03, p = 0.04). Overall, stretched-exponential parameters showed excellent repeatability. DW-MRI is sensitive to baseline and early treatment changes in breast cancer using non-mono-exponential models, and the stretched-exponential model can potentially monitor such changes. (orig.)

  18. Wrinkling instability of an inhomogeneously stretched viscous sheet

    Science.gov (United States)

    Srinivasan, Siddarth; Wei, Zhiyan; Mahadevan, L.

    2017-07-01

    Motivated by the redrawing of hot glass into thin sheets, we investigate the shape and stability of a thin viscous sheet that is inhomogeneously stretched in an imposed nonuniform temperature field. We first determine the associated base flow by solving the long-time-scale stretching flow of a flat sheet as a function of two dimensionless parameters: the normalized stretching velocity α and a dimensionless width of the heating zone β . This allows us to determine the conditions for the onset of an out-of-plane wrinkling instability stated in terms of an eigenvalue problem for a linear partial differential equation governing the displacement of the midsurface of the sheet. We show that the sheet can become unstable in two regions that are upstream and downstream of the heating zone where the minimum in-plane stress is negative. This yields the shape and growth rates of the most unstable buckling mode in both regions for various values of the stretching velocity and heating zone width. A transition from stationary to oscillatory unstable modes is found in the upstream region with increasing β , while the downstream region is always stationary. We show that the wrinkling instability can be entirely suppressed when the surface tension is large enough relative to the magnitude of the in-plane stress. Finally, we present an operating diagram that indicates regions of the parameter space that result in a required outlet sheet thickness upon stretching while simultaneously minimizing or suppressing the out-of-plane buckling, a result that is relevant for the glass redraw method used to create ultrathin glass sheets.

  19. Stretching skeletal muscle: chronic muscle lengthening through sarcomerogenesis.

    Directory of Open Access Journals (Sweden)

    Alexander M Zöllner

    Full Text Available Skeletal muscle responds to passive overstretch through sarcomerogenesis, the creation and serial deposition of new sarcomere units. Sarcomerogenesis is critical to muscle function: It gradually re-positions the muscle back into its optimal operating regime. Animal models of immobilization, limb lengthening, and tendon transfer have provided significant insight into muscle adaptation in vivo. Yet, to date, there is no mathematical model that allows us to predict how skeletal muscle adapts to mechanical stretch in silico. Here we propose a novel mechanistic model for chronic longitudinal muscle growth in response to passive mechanical stretch. We characterize growth through a single scalar-valued internal variable, the serial sarcomere number. Sarcomerogenesis, the evolution of this variable, is driven by the elastic mechanical stretch. To analyze realistic three-dimensional muscle geometries, we embed our model into a nonlinear finite element framework. In a chronic limb lengthening study with a muscle stretch of 1.14, the model predicts an acute sarcomere lengthening from 3.09[Formula: see text]m to 3.51[Formula: see text]m, and a chronic gradual return to the initial sarcomere length within two weeks. Compared to the experiment, the acute model error was 0.00% by design of the model; the chronic model error was 2.13%, which lies within the rage of the experimental standard deviation. Our model explains, from a mechanistic point of view, why gradual multi-step muscle lengthening is less invasive than single-step lengthening. It also explains regional variations in sarcomere length, shorter close to and longer away from the muscle-tendon interface. Once calibrated with a richer data set, our model may help surgeons to prevent muscle overstretch and make informed decisions about optimal stretch increments, stretch timing, and stretch amplitudes. We anticipate our study to open new avenues in orthopedic and reconstructive surgery and enhance

  20. Exponential integrators for the incompressible Navier-Stokes equations.

    Energy Technology Data Exchange (ETDEWEB)

    Newman, Christopher K.

    2004-07-01

    We provide an algorithm and analysis of a high order projection scheme for time integration of the incompressible Navier-Stokes equations (NSE). The method is based on a projection onto the subspace of divergence-free (incompressible) functions interleaved with a Krylov-based exponential time integration (KBEI). These time integration methods provide a high order accurate, stable approach with many of the advantages of explicit methods, and can reduce the computational resources over conventional methods. The method is scalable in the sense that the computational costs grow linearly with problem size. Exponential integrators, used typically to solve systems of ODEs, utilize matrix vector products of the exponential of the Jacobian on a vector. For large systems, this product can be approximated efficiently by Krylov subspace methods. However, in contrast to explicit methods, KBEIs are not restricted by the time step. While implicit methods require a solution of a linear system with the Jacobian, KBEIs only require matrix vector products of the Jacobian. Furthermore, these methods are based on linearization, so there is no non-linear system solve at each time step. Differential-algebraic equations (DAEs) are ordinary differential equations (ODEs) subject to algebraic constraints. The discretized NSE constitute a system of DAEs, where the incompressibility condition is the algebraic constraint. Exponential integrators can be extended to DAEs with linear constraints imposed via a projection onto the constraint manifold. This results in a projected ODE that is integrated by a KBEI. In this approach, the Krylov subspace satisfies the constraint, hence the solution at the advanced time step automatically satisfies the constraint as well. For the NSE, the projection onto the constraint is typically achieved by a projection induced by the L{sup 2} inner product. We examine this L{sup 2} projection and an H{sup 1} projection induced by the H{sup 1} semi-inner product. The H

  1. Thermal dynamics on the lattice with exponentially improved accuracy

    Science.gov (United States)

    Pawlowski, Jan M.; Rothkopf, Alexander

    2018-03-01

    We present a novel simulation prescription for thermal quantum fields on a lattice that operates directly in imaginary frequency space. By distinguishing initial conditions from quantum dynamics it provides access to correlation functions also outside of the conventional Matsubara frequencies ωn = 2 πnT. In particular it resolves their frequency dependence between ω = 0 and ω1 = 2 πT, where the thermal physics ω ∼ T of e.g. transport phenomena is dominantly encoded. Real-time spectral functions are related to these correlators via an integral transform with rational kernel, so that their unfolding from the novel simulation data is exponentially improved compared to standard Euclidean simulations. We demonstrate this improvement within a non-trivial 0 + 1-dimensional quantum mechanical toy-model and show that spectral features inaccessible in standard Euclidean simulations are quantitatively captured.

  2. Effect of modified hold-relax stretching and static stretching on hamstring muscle flexibility.

    Science.gov (United States)

    Ahmed, Hashim; Iqbal, Amir; Anwer, Shahnawaz; Alghadir, Ahmad

    2015-02-01

    [Purpose] The aim of present study was to compare the effectiveness of modified hold-relax stretching and static stretching in improving the hamstring muscle flexibility. [Subjects and Methods] Forty-five male subjects with hamstring tightness were included in this study. The subjects were randomly placed into three groups: the modified hold-relax stretching, static stretching and control groups. The modified hold-relax stretching group performed 7 seconds of isometric contraction and then relaxed for 5 seconds, and this was repeated five times daily for five consecutive days. The static stretching group received 10 minutes of static stretching with the help of a pulley and weight system for five consecutive days. The control group received only moist heat for 20 minutes for five consecutive days. A baseline reading of passive knee extension (PKE) was taken prior to the intervention; rest measurements were taken immediate post intervention on day 1, day 3, day 5, and after a 1 week follow-up, i.e., at the 12th day. [Results] On comparing the baseline readings of passive knee extension (PKE), there was no difference noted between the three groups. On comparing the posttest readings on day 5 between the 3 groups, a significant difference was noted. However, post hoc analysis revealed an insignificant difference between the modified hold-relax stretching and static stretching groups. There was a significant difference between the static stretching and control groups and between the modified hold-relax stretching and control groups. [Conclusion] The results of this study indicate that both the modified hold-relax stretching technique and static stretching are equally effective, as there was no significant difference in improving the hamstring muscle flexibility between the two groups.

  3. Exponential decay and exponential recovery of modal gains in high count rate channel electron multipliers

    International Nuclear Information System (INIS)

    Hahn, S.F.; Burch, J.L.

    1980-01-01

    A series of data on high count rate channel electron multipliers revealed an initial drop and subsequent recovery of gains in exponential fashion. The FWHM of the pulse height distribution at the initial stage of testing can be used as a good criterion for the selection of operating bias voltage of the channel electron multiplier

  4. Discrete-time recurrent neural networks with time-varying delays: Exponential stability analysis

    Science.gov (United States)

    Liu, Yurong; Wang, Zidong; Serrano, Alan; Liu, Xiaohui

    2007-03-01

    This Letter is concerned with the analysis problem of exponential stability for a class of discrete-time recurrent neural networks (DRNNs) with time delays. The delay is of the time-varying nature, and the activation functions are assumed to be neither differentiable nor strict monotonic. Furthermore, the description of the activation functions is more general than the recently commonly used Lipschitz conditions. Under such mild conditions, we first prove the existence of the equilibrium point. Then, by employing a Lyapunov Krasovskii functional, a unified linear matrix inequality (LMI) approach is developed to establish sufficient conditions for the DRNNs to be globally exponentially stable. It is shown that the delayed DRNNs are globally exponentially stable if a certain LMI is solvable, where the feasibility of such an LMI can be easily checked by using the numerically efficient Matlab LMI Toolbox. A simulation example is presented to show the usefulness of the derived LMI-based stability condition.

  5. Discrete-time recurrent neural networks with time-varying delays: Exponential stability analysis

    International Nuclear Information System (INIS)

    Liu, Yurong; Wang, Zidong; Serrano, Alan; Liu, Xiaohui

    2007-01-01

    This Letter is concerned with the analysis problem of exponential stability for a class of discrete-time recurrent neural networks (DRNNs) with time delays. The delay is of the time-varying nature, and the activation functions are assumed to be neither differentiable nor strict monotonic. Furthermore, the description of the activation functions is more general than the recently commonly used Lipschitz conditions. Under such mild conditions, we first prove the existence of the equilibrium point. Then, by employing a Lyapunov-Krasovskii functional, a unified linear matrix inequality (LMI) approach is developed to establish sufficient conditions for the DRNNs to be globally exponentially stable. It is shown that the delayed DRNNs are globally exponentially stable if a certain LMI is solvable, where the feasibility of such an LMI can be easily checked by using the numerically efficient Matlab LMI Toolbox. A simulation example is presented to show the usefulness of the derived LMI-based stability condition

  6. Poissonian renormalizations, exponentials, and power laws.

    Science.gov (United States)

    Eliazar, Iddo

    2013-05-01

    This paper presents a comprehensive "renormalization study" of Poisson processes governed by exponential and power-law intensities. These Poisson processes are of fundamental importance, as they constitute the very bedrock of the universal extreme-value laws of Gumbel, Fréchet, and Weibull. Applying the method of Poissonian renormalization we analyze the emergence of these Poisson processes, unveil their intrinsic dynamical structures, determine their domains of attraction, and characterize their structural phase transitions. These structural phase transitions are shown to be governed by uniform and harmonic intensities, to have universal domains of attraction, to uniquely display intrinsic invariance, and to be intimately connected to "white noise" and to "1/f noise." Thus, we establish a Poissonian explanation to the omnipresence of white and 1/f noises.

  7. Multiple Exponential Recombination for Differential Evolution.

    Science.gov (United States)

    Xin Qiu; Kay Chen Tan; Jian-Xin Xu

    2017-04-01

    Differential evolution (DE) is a popular population-based metaheuristic approach for solving numerical optimization problems. In recent years, considerable research has been devoted to the development of new mutation strategies and parameter adaptation mechanisms. However, as one of the basic algorithmic components of DE, the crossover operation has not been sufficiently examined in existing works. Most of the main DE variants solely employ traditional binomial recombination, which has intrinsic limitations in handling dependent subsets of variables. To fill this research niche, we propose a multiple exponential recombination that inherits all the main advantages of existing crossover operators while possessing a stronger ability in managing dependent variables. Multiple segments of the involved solutions will be exchanged during the proposed operator. The properties of the new scheme are examined both theoretically and empirically. Experimental results demonstrate the robustness of the proposed operator in solving problems with unknown variable interrelations.

  8. Poissonian renormalizations, exponentials, and power laws

    Science.gov (United States)

    Eliazar, Iddo

    2013-05-01

    This paper presents a comprehensive “renormalization study” of Poisson processes governed by exponential and power-law intensities. These Poisson processes are of fundamental importance, as they constitute the very bedrock of the universal extreme-value laws of Gumbel, Fréchet, and Weibull. Applying the method of Poissonian renormalization we analyze the emergence of these Poisson processes, unveil their intrinsic dynamical structures, determine their domains of attraction, and characterize their structural phase transitions. These structural phase transitions are shown to be governed by uniform and harmonic intensities, to have universal domains of attraction, to uniquely display intrinsic invariance, and to be intimately connected to “white noise” and to “1/f noise.” Thus, we establish a Poissonian explanation to the omnipresence of white and 1/f noises.

  9. Investing in a Large Stretch Press

    Science.gov (United States)

    Choate, M.; Nealson, W.; Jay, G.; Buss, W.

    1986-01-01

    Press for forming large aluminum parts from plates provides substantial economies. Study assessed advantages and disadvantages of investing in large stretch-forming press, and also developed procurement specification for press.

  10. Excluded Volume Effects in Gene Stretching

    OpenAIRE

    Lam, Pui-Man

    2002-01-01

    We investigate the effects excluded volume on the stretching of a single DNA in solution. We find that for small force F, the extension h is not linear in F but proportion to F^{\\chi}, with \\chi=(1-\

  11. Post-activation depression of soleus stretch reflexes in healthy and spastic humans

    DEFF Research Database (Denmark)

    Grey, Michael James; Klinge, Klaus; Crone, Clarissa

    2007-01-01

    delivered at different intervals. The magnitude of the stretch reflex and ankle torque response was assessed as a function of the time between perturbations. Soleus stretch reflexes were evoked with constant velocity (175 degrees /s) and amplitude (6 degrees ) plantar flexion perturbations. Soleus H......-reflexes were evoked by electrical stimulation of the tibial nerve in the popliteal fossa. The stretch reflex and H-reflex responses of 30 spastic participants (with multiple sclerosis or spinal cord injury) were compared with those of 15 healthy participants. In the healthy participants, the magnitude...

  12. Comparison of two stretching methods and optimization of stretching protocol for the piriformis muscle.

    Science.gov (United States)

    Gulledge, Brett M; Marcellin-Little, Denis J; Levine, David; Tillman, Larry; Harrysson, Ola L A; Osborne, Jason A; Baxter, Blaise

    2014-02-01

    Piriformis syndrome is an uncommon diagnosis for a non-discogenic form of sciatica whose treatment has traditionally focused on stretching the piriformis muscle (PiM). Conventional stretches include hip flexion, adduction, and external rotation. Using three-dimensional modeling, we quantified the amount of (PiM) elongation resulting from two conventional stretches and we investigated by use of a computational model alternate stretching protocols that would optimize PiM stretching. Seven subjects underwent three CT scans: one supine, one with hip flexion, adduction, then external rotation (ADD stretch), and one with hip flexion, external rotation, then adduction (ExR stretch). Three-dimensional bone models were constructed from the CT scans. PiM elongation during these stretches, femoral neck inclination, femoral head anteversion, and trochanteric anteversion were measured. A computer program was developed to map PiM length over a range of hip joint positions and was validated against the measured scans. ExR and ADD stretches elongated the PiM similarly by approximately 12%. Femoral head and greater trochanter anteversion influenced PiM elongation. Placing the hip joints in 115° of hip flexion, 40° of external rotation and 25° of adduction or 120° of hip flexion, 50° of external rotation and 30° of adduction increased PiM elongation by 30-40% compared to conventional stretches (15.1 and 15.3% increases in PiM muscle length, respectively). ExR and ADD stretches elongate the PiM similarly and therefore may have similar clinical effectiveness. The optimized stretches led to larger increases in PiM length and may be more easily performed by some patients due to increased hip flexion. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

  13. Randomized OBDDs for the Most Significant Bit of Multiplication Need Exponential Size

    Science.gov (United States)

    Bollig, Beate; Gillé, Marc

    Integer multiplication as one of the basic arithmetic functions has been in the focus of several complexity theoretical investigations and ordered binary decision diagrams (OBDDs) are one of the most common dynamic data structures for Boolean functions. Only two years ago, the question whether the deterministic OBDD complexity of the most significant bit of integer multiplication is exponential has been answered affirmatively. Since probabilistic methods have turned out to be useful in almost all areas of computer science, one may ask whether randomization can help to represent the most significant bit of integer multiplication in smaller size. Here, it is proved that the randomized OBDD complexity is also exponential.

  14. Dynamic topography and gravity anomalies for fluid layers whose viscosity varies exponentially with depth

    Science.gov (United States)

    Revenaugh, Justin; Parsons, Barry

    1987-01-01

    Adopting the formalism of Parsons and Daly (1983), analytical integral equations (Green's function integrals) are derived which relate gravity anomalies and dynamic boundary topography with temperature as a function of wavenumber for a fluid layer whose viscosity varies exponentially with depth. In the earth, such a viscosity profile may be found in the asthenosphere, where the large thermal gradient leads to exponential decrease of viscosity with depth, the effects of a pressure increase being small in comparison. It is shown that, when viscosity varies rapidly, topography kernels for both the surface and bottom boundaries (and hence the gravity kernel) are strongly affected at all wavelengths.

  15. Delay-dependent exponential stability for neural networks with discrete and distributed time-varying delays

    International Nuclear Information System (INIS)

    Zhu Xunlin; Wang Youyi

    2009-01-01

    This Letter studies the exponential stability for a class of neural networks (NNs) with both discrete and distributed time-varying delays. Under weaker assumptions on the activation functions, by defining a more general type of Lyapunov functionals and developing a new convex combination technique, new less conservative and less complex stability criteria are established to guarantee the global exponential stability of the discussed NNs. The obtained conditions are dependent on both discrete and distributed delays, are expressed in terms of linear matrix inequalities (LMIs), and contain fewer decision variables. Numerical examples are given to illustrate the effectiveness and the less conservatism of the proposed conditions.

  16. Exponential approximation for daily average solar heating or photolysis. [of stratospheric ozone layer

    Science.gov (United States)

    Cogley, A. C.; Borucki, W. J.

    1976-01-01

    When incorporating formulations of instantaneous solar heating or photolytic rates as functions of altitude and sun angle into long range forecasting models, it may be desirable to replace the time integrals by daily average rates that are simple functions of latitude and season. This replacement is accomplished by approximating the integral over the solar day by a pure exponential. This gives a daily average rate as a multiplication factor times the instantaneous rate evaluated at an appropriate sun angle. The accuracy of the exponential approximation is investigated by a sample calculation using an instantaneous ozone heating formulation available in the literature.

  17. Effects of proprioceptive neuromuscular facilitation stretching and static stretching on maximal voluntary contraction.

    Science.gov (United States)

    Miyahara, Yutetsu; Naito, Hisashi; Ogura, Yuji; Katamoto, Shizuo; Aoki, Junichiro

    2013-01-01

    This study was undertaken to investigate and compare the effects of proprioceptive neuromuscular facilitation (PNF) stretching and static stretching on maximal voluntary contraction (MVC). Thirteen male university students (age, 20 ± 1 years; height, 172.2 ± 4.6 cm; weight, 68.4 ± 6.7 kg; mean ± SD) completed 3 different conditions on 3 nonconsecutive days in randomized order: static stretching (SS), PNF stretching (PNF), and no stretching (control, CON). Each condition consisted of a 5-minute rest accompanied by one of the following activities: (a) control, (b) SS, or (c) PNF stretching. The hip flexion range of motion (ROM) was evaluated immediately before and after the activity. The MVC of knee flexion was then measured. Surface electromyography was recorded from the biceps femoris and vastus lateralis muscles during MVC tests and stretching. Although increases in ROM were significantly greater after PNF than after SS (p < 0.01), the decreases in MVC were similar between the 2 treatments. These results suggest that, although PNF stretching increases ROM more than SS, PNF stretching and SS is detrimental to isometric maximal strength.

  18. Two sample Bayesian prediction intervals for order statistics based on the inverse exponential-type distributions using right censored sample

    Directory of Open Access Journals (Sweden)

    M.M. Mohie El-Din

    2011-10-01

    Full Text Available In this paper, two sample Bayesian prediction intervals for order statistics (OS are obtained. This prediction is based on a certain class of the inverse exponential-type distributions using a right censored sample. A general class of prior density functions is used and the predictive cumulative function is obtained in the two samples case. The class of the inverse exponential-type distributions includes several important distributions such the inverse Weibull distribution, the inverse Burr distribution, the loglogistic distribution, the inverse Pareto distribution and the inverse paralogistic distribution. Special cases of the inverse Weibull model such as the inverse exponential model and the inverse Rayleigh model are considered.

  19. The purinergic component of human bladder smooth muscle cells’ proliferation and contraction under physiological stretch

    Energy Technology Data Exchange (ETDEWEB)

    Wazir, Romel; Luo, De-Yi; Tian, Ye; Yue, Xuan; Li, Hong; Wang, Kun-Jie, E-mail: kunjiewangatscu@163.com

    2013-07-26

    Highlights: •Stretch induces proliferation and contraction. •Optimum applied stretch in vitro is 5% and 10% equibiaxial stretching respectively. •Expression of P2X1 and P2X2 is upregulated after application of stretch. •P2X2 is possibly more susceptible to stretch related changes. •Purinoceptors functioning may explain conditions with atropine resistance. -- Abstract: Objective: To investigate whether cyclic stretch induces proliferation and contraction of human smooth muscle cells (HBSMCs), mediated by P2X purinoceptor 1 and 2 and the signal transduction mechanisms of this process. Methods: HBSMCs were seeded on silicone membrane and stretched under varying parameters; (equibiaxial elongation: 2.5%, 5%, 10%, 15%, 20%, 25%), (Frequency: 0.05 Hz, 0.1 Hz, 0.2 Hz, 0.5 Hz, 1 Hz). 5-Bromo-2-deoxyuridine assay was employed for proliferative studies. Contractility of the cells was determined using collagen gel contraction assay. After optimal physiological stretch was established; P2X1 and P2X2 were analyzed by real time polymerase chain reaction and Western Blot. Specificity of purinoceptors was maintained by employing specific inhibitors; (NF023 for P2X1, and A317491for P2X2), in some experiments. Results: Optimum proliferation and contractility were observed at 5% and 10% equibiaxial stretching respectively, applied at a frequency of 0.1 Hz; At 5% stretch, proliferation increased from 0.837 ± 0.026 (control) to 1.462 ± 0.023%, p < 0.05. Mean contraction at 10% stretching increased from 31.7 ± 2.3%, (control) to 78.28 ±1.45%, p < 0.05. Expression of P2X1 and P2X2 was upregulated after application of stretch. Inhibition had effects on proliferation (1.232 ± 0.051, p < 0.05 NF023) and (1.302 ± 0.021, p < 0.05 A314791) while contractility was markedly reduced (68.24 ± 2.31, p < 0.05 NF023) and (73.2 ± 2.87, p < 0.05 A314791). These findings shows that mechanical stretch can promote magnitude-dependent proliferative and contractile modulation of HBSMCs in

  20. Effective Kratzer and Coulomb potentials as limit cases of a multiparameter exponential-type potential

    Energy Technology Data Exchange (ETDEWEB)

    García-Ravelo, J., E-mail: g.ravelo@hotmail.com [Departamento de Física, Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Edificio 9, Unidad Profesional Adolfo López Mateos, México D.F., 07738 (Mexico); Menéndez, A.; García-Martínez, J. [Departamento de Física, Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Edificio 9, Unidad Profesional Adolfo López Mateos, México D.F., 07738 (Mexico); Schulze-Halberg, A. [Department of Mathematics and Actuarial Science and Department of Physics, Indiana University Northwest, 3400 Broadway, Gary, IN 46408 (United States)

    2014-06-13

    We show that the effective Kratzer and Coulomb potentials can be obtained by taking particular limits of a multiparameter exponential potential that was studied recently. Moreover, we demonstrate that the bound state solutions of the exponential potential reduce correctly to their well-known counterparts associated with the Kratzer and Coulomb potentials. As a byproduct, we obtain a new limit relation for the hypergeometric function. - Highlights: • Kratzer and Coulomb potentials are limit cases of an exponential-type potential. • From exact s-waves, approximate solutions for l-waves are obtained. • l-waves of the potential tend to the solutions of the Kratzer and Coulomb potentials. • A non-evident identity between hypergeometric functions is demonstrated.

  1. Effective Kratzer and Coulomb potentials as limit cases of a multiparameter exponential-type potential

    International Nuclear Information System (INIS)

    García-Ravelo, J.; Menéndez, A.; García-Martínez, J.; Schulze-Halberg, A.

    2014-01-01

    We show that the effective Kratzer and Coulomb potentials can be obtained by taking particular limits of a multiparameter exponential potential that was studied recently. Moreover, we demonstrate that the bound state solutions of the exponential potential reduce correctly to their well-known counterparts associated with the Kratzer and Coulomb potentials. As a byproduct, we obtain a new limit relation for the hypergeometric function. - Highlights: • Kratzer and Coulomb potentials are limit cases of an exponential-type potential. • From exact s-waves, approximate solutions for l-waves are obtained. • l-waves of the potential tend to the solutions of the Kratzer and Coulomb potentials. • A non-evident identity between hypergeometric functions is demonstrated

  2. A study of extracellular matrix remodeling in aortic heart valves using a novel biaxial stretch bioreactor.

    Science.gov (United States)

    Lei, Ying; Masjedi, Shirin; Ferdous, Zannatul

    2017-11-01

    In aortic valves, biaxial cyclic stretch is known to modulate cell differentiation, extracellular matrix (ECM) synthesis and organization. We designed a novel bioreactor that can apply independent and precise stretch along radial and circumferential directions in a tissue culture environment. While this bioreactor can be used for either native or engineered tissues, this study determined matrix remodeling and strain distribution of aortic cusps after culturing under biaxial stretch for 14 days. The contents of collagen and glycosaminoglycans were determined using standard biochemical assays and compared with fresh controls. Strain fields in static cusps were more uniform than those in stretched cusps, which indicated degradation of the ECM fibers. The glycosaminoglycan content was significantly elevated in the static control as compared to fresh or stretched cusps, but no difference was observed in collagen content among the groups. The strain profile of freshly isolated fibrosa vs. ventricularis and left, right, and noncoronary cusps were also determined by Digital Image Correlation technique. Distinct strain patterns were observed under stretch on fibrosa and ventricularis sides and among the three cusps. This work highlights the critical role of the anisotropic ECM structure for proper functions of native aortic valves and the beneficial effects of biaxial stretch for maintenance of the native ECM structure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Fast-crawling cell types migrate to avoid the direction of periodic substratum stretching.

    Science.gov (United States)

    Okimura, Chika; Ueda, Kazuki; Sakumura, Yuichi; Iwadate, Yoshiaki

    2016-07-03

    To investigate the relationship between mechanical stimuli from substrata and related cell functions, one of the most useful techniques is the application of mechanical stimuli via periodic stretching of elastic substrata. In response to this stimulus, Dictyostelium discoideum cells migrate in a direction perpendicular to the stretching direction. The origins of directional migration, higher migration velocity in the direction perpendicular to the stretching direction or the higher probability of a switch of migration direction to perpendicular to the stretching direction, however, remain unknown. In this study, we applied periodic stretching stimuli to neutrophil-like differentiated HL-60 cells, which migrate perpendicular to the direction of stretch. Detailed analysis of the trajectories of HL-60 cells and Dictyostelium cells obtained in a previous study revealed that the higher probability of a switch of migration direction to that perpendicular to the direction of stretching was the main cause of such directional migration. This directional migration appears to be a strategy adopted by fast-crawling cells in which they do not migrate faster in the direction they want to go, but migrate to avoid a direction they do not want to go.

  4. Effects of Static Stretching Exercise on Lumbar Flexibility and Central Arterial Stiffness.

    Science.gov (United States)

    Logan, Jeongok G; Kim, Suk-Sun; Lee, Mijung; Byon, Ha Do; Yeo, SeonAe

    2018-01-23

    Previous studies have demonstrated that arterial stiffness is associated with lumbar flexibility (LF). Stretching exercise targeted to improve LF may have a beneficial effect on reducing arterial stiffness. We examined the effects of a single bout of a structured, static stretching exercise on arterial stiffness, LF, peripheral and central blood pressure (BP), and heart rate (HR) and tested the association between LF and central arterial stiffness. The study had a pretest-posttest design without a control group. Thirty healthy women followed a video demonstration of a 30-minute whole-body stretching exercise. Carotid-femoral pulse wave velocity (cf-PWV), augmentation index, LF, peripheral and central BP, and HR were measured before and after the stretching exercise. One bout of a static stretching exercise significantly reduced cf-PWV (t29 = 2.708, P = .011) and HR (t29 = 7.160, P = .000) and increased LF (t29 = 12.248, P static stretching exercise on central arterial stiffness, an independent predictor of cardiovascular morbidity. Static stretching exercise conducted in the sitting position may be used as an effective intervention to reduce cardiovascular risk after a cardiac event or for patients whose sympathetic function should not be overly activated or whose gaits are not stable.

  5. A Generalization of Exponential Class and Its Applications

    Directory of Open Access Journals (Sweden)

    Hongya Gao

    2013-01-01

    Full Text Available A function space, Lθ,∞(Ω, 0≤θ<∞, is defined. It is proved that Lθ,∞(Ω is a Banach space which is a generalization of exponential class. An alternative definition of Lθ,∞(Ω space is given. As an application, we obtain weak monotonicity property for very weak solutions of -harmonic equation with variable coefficients under some suitable conditions related to Lθ,∞(Ω, which provides a generalization of a known result due to Moscariello. A weighted space Lwθ,∞(Ω is also defined, and the boundedness for the Hardy-Littlewood maximal operator Mw and a Calderón-Zygmund operator T with respect to Lwθ,∞(Ω is obtained.

  6. Academia-industry collaboration feeds exponential growth curve

    CERN Document Server

    Jones Bey Hassaun, A

    2004-01-01

    The use of silicon strip detectors in high-energy particle tracking is discussed. The functional strength of silicon for high-energy particle physics as well as astrophysics lies in the ability to detect passage of charged particles with micron-scale spatial resolution. In addition to vertex detection, silicon strip detectors also provide full tracking detection to include momentum determination of particles in the magnetic field. Even if silicon detectors for basic science applications do not continue to grow larger, exponential growth of the technology for terrestrial commercial applications is likely to follow a healthy growth curve, as researchers continue to adapt silicon detector technology for low- dose medical x-ray imaging. (Edited abstract)

  7. Hyponormal quantization of planar domains exponential transform in dimension two

    CERN Document Server

    Gustafsson, Björn

    2017-01-01

    This book exploits the classification of a class of linear bounded operators with rank-one self-commutators in terms of their spectral parameter, known as the principal function. The resulting dictionary between two dimensional planar shapes with a degree of shade and Hilbert space operators turns out to be illuminating and beneficial for both sides. An exponential transform, essentially a Riesz potential at critical exponent, is at the heart of this novel framework; its best rational approximants unveil a new class of complex orthogonal polynomials whose asymptotic distribution of zeros is thoroughly studied in the text. Connections with areas of potential theory, approximation theory in the complex domain and fluid mechanics are established. The text is addressed, with specific aims, at experts and beginners in a wide range of areas of current interest: potential theory, numerical linear algebra, operator theory, inverse problems, image and signal processing, approximation theory, mathematical physics.

  8. Closed-Form Expressions for the Matrix Exponential

    Directory of Open Access Journals (Sweden)

    F. De Zela

    2014-04-01

    Full Text Available We discuss a method to obtain closed-form expressions of f(A, where f is an analytic function and A a square, diagonalizable matrix. The method exploits the Cayley–Hamilton theorem and has been previously reported using tools that are perhaps not sufficiently appealing to physicists. Here, we derive the results on which the method is based by using tools most commonly employed by physicists. We show the advantages of the method in comparison with standard approaches, especially when dealing with the exponential of low-dimensional matrices. In contrast to other approaches that require, e.g., solving differential equations, the present method only requires the construction of the inverse of the Vandermonde matrix. We show the advantages of the method by applying it to different cases, mostly restricting the calculational effort to the handling of two-by-two matrices.

  9. Adaptações do sistema respiratório referentes à função pulmonar em resposta a um programa de alongamento muscular pelo método de Reeducação Postural Global Respiratory system adaptations relative to pulmonary function in response to a muscle stretching program using the Global Posture Reeducation method

    Directory of Open Access Journals (Sweden)

    Marlene Aparecida Moreno

    2009-03-01

    Full Text Available A proposta deste estudo foi analisar as adaptações do sistema respiratório referentes à função pulmonar em resposta ao alongamento da cadeia muscular respiratória pelo método de Reeducação Postural Global (RPG. Foram estudados 20 homens, sedentários, de antropometria semelhante, sem antecedentes de doenças musculoesqueléticas ou cardiorrespiratórias. Os voluntários foram divididos aleatoriamente em dois grupos de dez, sendo um grupo controle (GC, que não participou do protocolo de alongamento, e o outro submetido à intervenção pelo método de RPG, denominado grupo tratado (GT. O alongamento foi realizado duas vezes por semana, durante oito semanas, totalizando 16 sessões. Os dois grupos foram submetidos à prova de função pulmonar, medindo-se a capacidade vital lenta, capacidade vital forçada e ventilação voluntária máxima, antes e após o período de intervenção. Os valores obtidos em todas as variáveis dos voluntários do GC na avaliação inicial não apresentaram diferença estatisticamente significante quando comparados aos obtidos na avaliação final (p>0,05. No GT os valores finais apresentaram-se significativamente maiores que os iniciais (pThe aim of this study was to analyse the respiratory system adaptations concerning pulmonary function in response to stretching the respiratory muscle chain, by means of Global Posture Reeducation (GPR. Twenty sedentary young men with similar anthropometry and no history of musculoskeletal or cardiorespiratory disease were randomly divided into two groups of ten each: control group (CG, who did no stretching, and treated group (TG, submitted to GPR. Stretching was carried out twice a week for 8 weeks, in a total of 16 sessions. The two groups were submitted to pulmonary function tests to assess slow vital capacity, forced vital capacity and maximal voluntary ventilation, before and after the intervention period. The initial values of all spirometric variables measured in

  10. Comparison of active stretching technique and static stretching technique on hamstring flexibility.

    Science.gov (United States)

    Meroni, Roberto; Cerri, Cesare Giuseppe; Lanzarini, Carlo; Barindelli, Guido; Morte, Giancesare Della; Gessaga, Viviana; Cesana, Gian Carlo; De Vito, Giovanni

    2010-01-01

    To compare a passive and an active stretching technique to determine which one would produce and maintain the greatest gain in hamstring flexibility. To determine whether a passive or an active stretching technique results in a greater increase in hamstring flexibility and to compare whether the gains are maintained. Randomized controlled trial. Institutional. Sixty-five volunteer healthy subjects completed the enrollment questionnaire, 33 completed the required 75% of the treatment after 6 weeks, and 22 were assessed 4 weeks after the training interruption. A 6-week stretching program with subjects divided into 2 groups with group 1 performing active stretching exercises and group 2 performing passive stretching exercises. Range of motion (ROM) was measured after 3 and 6 weeks of training and again 4 weeks after the cessation of training and compared with the initial measurement. After 3 weeks of training, the mean gain in group 1 (active stretching) on performing the active knee extension range of motion (AKER) test was 5.7 degrees, whereas the mean gain in group 2 (passive stretching) was 3 degrees (P = .015). After 6 weeks of training, the mean gain in group 1 was 8.7 degrees , whereas the mean gain in group 2 was 5.3 degrees (P = .006). Twenty-two subjects were reassessed 4 weeks after the cessation of the training with the maintained gain of ROM in group 1 being 6.3 degrees , whereas the maintained gain in group 2 was 0.1 degrees (P = .003). Active stretching produced the greater gain in the AKER test, and the gain was almost completely maintained 4 weeks after the end of the training, which was not seen with the passive stretching group. Active stretching was more time efficient compared with the static stretching and needed a lower compliance to produce effects on flexibility.

  11. Exponential growth and atmospheric carbon dioxide

    International Nuclear Information System (INIS)

    Laurmann, J.A.; Rotty, R.M.

    1983-01-01

    The adequacy of assumptions required to project atmospheric CO 2 concentrations in time frames of practical importance is reviewed. Relevant issues concern the form assumed for future fossil fuel release, carbon cycle approximations, and the implications of revisions in fossil fuel patterns required to maintain atmospheric CO 2 levels below a chosen threshold. In general, we find that with a judiciously selected exponential fossil fuel release rate, and with a constant airborn fraction, we can estimate atmospheric CO 2 growth over the next 50 years based on essentially surprise free scenarios. Resource depletion effects must be included for projections beyond about 50 years, and on this time frame the constant airborne fraction approximation has to be questioned as well (especially in later years when the fossil fuel use begins to taper off). For projections for over 100 years, both energy demand scenarios and currently available carbon cycle models have sufficient uncertainties that atmospheric CO 2 levels derived from them are not much better than guesses

  12. Exponential stability of delayed fuzzy cellular neural networks with diffusion

    International Nuclear Information System (INIS)

    Huang Tingwen

    2007-01-01

    The exponential stability of delayed fuzzy cellular neural networks (FCNN) with diffusion is investigated. Exponential stability, significant for applications of neural networks, is obtained under conditions that are easily verified by a new approach. Earlier results on the exponential stability of FCNN with time-dependent delay, a special case of the model studied in this paper, are improved without using the time-varying term condition: dτ(t)/dt < μ

  13. Meet and join matrices in the poset of exponential divisors

    Indian Academy of Sciences (India)

    (n > 1), written as d |e n, if d(k) | n(k) for all prime divisors pk of n. It is easy to see that (Z+\\{1}, |e) is a poset under the exponential divisibility relation but not a lattice, since the greatest common exponential divisor (GCED) and the least common exponential multiple (LCEM) do not always exist. In this paper we embed this ...

  14. On global exponential stability of delayed cellular neural networks

    International Nuclear Information System (INIS)

    Singh, Vimal

    2007-01-01

    Senan and Arik [Senan S, Arik S. New results for exponential stability of delayed cellular neural networks. IEEE Trans Circ Syst II 2005;52(3):154-8] have presented criteria for the global exponential stability of delayed cellular neural networks. A less restrictive version of their approach is highlighted presently. A simplification of the results is discussed. A simplified form of an earlier exponential stability criterion due to Liao, Chen and Sanchez is presented

  15. An analytical approach to studying non-exponential decay

    Science.gov (United States)

    Petridis, Athanasios; Luban, Marshall; Vermedahl, Jon; Staunton, Lawrence

    2002-04-01

    Deviations from exponential decay have been numerically established for wavefunctions initially set inside potential wells of finite depth. The survival probability features oscillations about an initially non-exponential median curve. An analytical solution is developed for certain even-parity potentials to further understand this behavior. A connection between single-particle and multi-particle systems is investigated and shown to lead to the known exponential decay law for large systems.

  16. Periostin inhibits mechanical stretch-induced apoptosis in osteoblast-like MG-63 cells.

    Science.gov (United States)

    Yu, Kai-Wen; Yao, Chung-Chen; Jeng, Jiiang-Huei; Shieh, Hao-Ying; Chen, Yi-Jane

    2018-04-01

    Appropriate mechanical stress plays an important role in regulating the proliferation and differentiation of osteoblasts, whereas high-level mechanical stress may be harmful and compromise cell survival. Periostin, a matricellular protein, is essential in maintaining functional integrity of bone and collagen-rich connective tissue in response to mechanical stress. This study investigated whether or not high-level mechanical stretch induces cell apoptosis and the regulatory role of periostin in mechanical stretch-induced apoptosis in osteoblastic cells. Osteoblast-like MG-63 cells were seeded onto Bio-Flex I culture plates and subjected to cyclic mechanical stretching (15% elongation, 0.1 Hz) in a Flexercell tension plus system-5000. The same process was applied to cells pre-treated with exogenous human recombinant periostin before mechanical stretching. We used a chromatin condensation and membrane permeability dead cell apoptosis kit to evaluate the stretch-induced cell responses. Expression of caspase-3 and cPARP was examined by immunofluorescent stain and flow cytometry. The expression of periostin in MG-63 cells is involved in the TGF-β signaling pathway. High-level cyclic mechanical stretch induced apoptotic responses in MG-63 osteoblastic cells. The percentages of apoptotic cells and cells expressing cPARP protein increased in the groups of cells subjected to mechanical stretch, but these responses were absent in the presence of exogenous periostin. Our study revealed that high-level mechanical stretch induces apoptotic cell death, and that periostin plays a protective role against mechanical stretch-induced apoptosis in osteoblastic cells. Copyright © 2017. Published by Elsevier B.V.

  17. Intermittent stretch training of rabbit plantarflexor muscles increases soleus mass and serial sarcomere number.

    Science.gov (United States)

    De Jaeger, Dominique; Joumaa, Venus; Herzog, Walter

    2015-06-15

    In humans, enhanced joint range of motion is observed after static stretch training and results either from an increased stretch tolerance or from a change in the biomechanical properties of the muscle-tendon unit. We investigated the effects of an intermittent stretch training on muscle biomechanical and structural variables. The left plantarflexors muscles of seven anesthetized New Zealand (NZ) White rabbits were passively and statically stretched three times a week for 4 wk, while the corresponding right muscles were used as nonstretched contralateral controls. Before and after the stretching protocol, passive torque produced by the left plantarflexor muscles as a function of the ankle angle was measured. The left and right plantarflexor muscles were harvested from dead rabbits and used to quantify possible changes in muscle structure. Significant mass and serial sarcomere number increases were observed in the stretched soleus but not in the plantaris or medial gastrocnemius. This difference in adaptation between the plantarflexors is thought to be the result of their different fiber type composition and pennation angles. Neither titin isoform nor collagen amount was modified in the stretched compared with the control soleus muscle. Passive torque developed during ankle dorsiflexion was not modified after the stretch training on average, but was decreased in five of the seven experimental rabbits. Thus, an intermittent stretching program similar to those used in humans can produce a change in the muscle structure of NZ White rabbits, which was associated in some rabbits with a change in the biomechanical properties of the muscle-tendon unit. Copyright © 2015 the American Physiological Society.

  18. Outcome of Specific Piriformis Stretching Technique in Females with Piriformis Syndrome

    Directory of Open Access Journals (Sweden)

    Quratulain Saeed

    2017-10-01

    Full Text Available BACKGROUND: Pain and functional limitation affect the quality of life in piriformis syndrome. Stretching of piriformis is essential in the treatment protocols in physiotherapy, however, which sequence of stretching provides optimal improvement is only determined by trial and error. The purpose of this study was to compare the effects of specific stretching technique in terms of functional outcome in female with piriformis syndrome and to determine the normative length of piriformis at different reference points in females. METHODS: This study was a randomized controlled trial that was conducted in the Physiotherapy Department of the Armed Forces Institute of Rehabilitation Medicine, Rawalpindi, Pakistan between July to December, 2015. This study enrolled 30 patients with piriformis syndrome at outpatient department between the ages of 20 and 50 years. These patients were randomly assigned into two groups. In one group, external rotator sequence of self-stretching (ERS was practiced while in the second group, adductor sequence of passive stretching (APS was performed. Each group was treated for two weeks. Pre and post intervention, the assessment was made on Numerical Pain Rating Scale (NPRS, Functional Performance of Lower Extremity Scale (FPLES and by measured length at three reference positions. Independent T-test was used for statistical analysis. RESULTS: Both groups showed improvement in outcome in term of a decrease in pain score on NRPS, FPLES and measured reference lengths at all three positions (p-value 0.05 when results of pain score and measured reference length at three different positions were compared. However, on the FPLES, external rotator stretching technique was more effective than adductor stretching technique (p value < 0.05. CONCLUSION: The two studied sequence of piriformis stretching exercises have the same effect on outcomes in terms of clinically measured referenced length and decrease in pain score. Future studies will

  19. How to determine local stretching and tension in a flow-stretched DNA molecule

    DEFF Research Database (Denmark)

    Pedersen, Jonas Nyvold; Marie, Rodolphe; Kristensen, Anders

    2016-01-01

    We determine the nonuniform stretching of and tension in amega base pairs-long fragment of deoxyribonucleic acid (DNA) that is flow stretched in a nanofluidic chip. We use no markers, do not know the contour length of the DNA, and do not have the full DNA molecule inside our field of view. Instead...

  20. The Exponential Function, XI: The New Flat Earth Society.

    Science.gov (United States)

    Bartlett, Albert A.

    1996-01-01

    Discusses issues related to perpetual population growth. Argues that if we believe that there are no limits to growth, we will have to abandon the concept of a spherical Earth which puts limits to growth. (JRH)

  1. Developmental Axon Stretch Stimulates Neuron Growth While Maintaining Normal Electrical Activity, Intracellular Calcium Flux, and Somatic Morphology

    Directory of Open Access Journals (Sweden)

    Joseph R Loverde

    2015-08-01

    Full Text Available Elongation of nerve fibers intuitively occurs throughout mammalian development, and is synchronized with expansion of the growing body. While most tissue systems enlarge through mitosis and differentiation, elongation of nerve fibers is remarkably unique. The emerging paradigm suggests that axons undergo stretch as contiguous tissues enlarge between the proximal and distal segments of spanning nerve fibers. While stretch is distinct from growth, tension is a known stimulus which regulates the growth of axons. Here, we hypothesized that the axon stretch-growth process may be a natural form of injury, whereby regenerative processes fortify elongating axons in order to prevent disconnection. Harnessing the live imaging capability of our axon stretch-growth bioreactors, we assessed neurons both during and following stretch for biomarkers associated with injury. Utilizing whole-cell patch clamp recording, we found no evidence of changes in spontaneous action potential activity or degradation of elicited action potentials during real-time axon stretch at strains of up to 18 % applied over 5 minutes. Unlike traumatic axonal injury, functional calcium imaging of the soma revealed no shifts in free intracellular calcium during axon stretch. Finally, the cross-sectional areas of nuclei and cytoplasms were normal, with no evidence of chromatolysis following week-long stretch-growth limited to the lower of 25 % strain or 3 mm total daily stretch. The neuronal growth cascade coupled to stretch was concluded to be independent of the changes in membrane potential, action potential generation, or calcium flux associated with traumatic injury. While axon stretch-growth is likely to share overlap with regenerative processes, we conclude that developmental stretch is a distinct stimulus from traumatic axon injury.

  2. Developmental axon stretch stimulates neuron growth while maintaining normal electrical activity, intracellular calcium flux, and somatic morphology.

    Science.gov (United States)

    Loverde, Joseph R; Pfister, Bryan J

    2015-01-01

    Elongation of nerve fibers intuitively occurs throughout mammalian development, and is synchronized with expansion of the growing body. While most tissue systems enlarge through mitosis and differentiation, elongation of nerve fibers is remarkably unique. The emerging paradigm suggests that axons undergo stretch as contiguous tissues enlarge between the proximal and distal segments of spanning nerve fibers. While stretch is distinct from growth, tension is a known stimulus which regulates the growth of axons. Here, we hypothesized that the axon stretch-growth process may be a natural form of injury, whereby regenerative processes fortify elongating axons in order to prevent disconnection. Harnessing the live imaging capability of our axon stretch-growth bioreactors, we assessed neurons both during and following stretch for biomarkers associated with injury. Utilizing whole-cell patch clamp recording, we found no evidence of changes in spontaneous action potential activity or degradation of elicited action potentials during real-time axon stretch at strains of up to 18% applied over 5 min. Unlike traumatic axonal injury, functional calcium imaging of the soma revealed no shifts in free intracellular calcium during axon stretch. Finally, the cross-sectional areas of nuclei and cytoplasms were normal, with no evidence of chromatolysis following week-long stretch-growth limited to the lower of 25% strain or 3 mm total daily stretch. The neuronal growth cascade coupled to stretch was concluded to be independent of the changes in membrane potential, action potential generation, or calcium flux associated with traumatic injury. While axon stretch-growth is likely to share overlap with regenerative processes, we conclude that developmental stretch is a distinct stimulus from traumatic axon injury.

  3. Longitudinal Stretching for Maturation of Vascular Tissues Using Magnetic Forces

    Directory of Open Access Journals (Sweden)

    Timothy R. Olsen

    2016-11-01

    Full Text Available Cellular spheroids were studied to determine their use as “bioinks” in the biofabrication of tissue engineered constructs. Specifically, magnetic forces were used to mediate the cyclic longitudinal stretching of tissues composed of Janus magnetic cellular spheroids (JMCSs, as part of a post-processing method for enhancing the deposition and mechanical properties of an extracellular matrix (ECM. The purpose was to accelerate the conventional tissue maturation process via novel post-processing techniques that accelerate the functional, structural, and mechanical mimicking of native tissues. The results of a forty-day study of JMCSs indicated an expression of collagen I, collagen IV, elastin, and fibronectin, which are important vascular ECM proteins. Most notably, the subsequent exposure of fused tissue sheets composed of JMCSs to magnetic forces did not hinder the production of these key proteins. Quantitative results demonstrate that cyclic longitudinal stretching of the tissue sheets mediated by these magnetic forces increased the Young’s modulus and induced collagen fiber alignment over a seven day period, when compared to statically conditioned controls. Specifically, the elastin and collagen content of these dynamically-conditioned sheets were 35- and three-fold greater, respectively, at seven days compared to the statically-conditioned controls at three days. These findings indicate the potential of using magnetic forces in tissue maturation, specifically through the cyclic longitudinal stretching of tissues.

  4. Mechanical stretch endows mesenchymal stem cells stronger angiogenic and anti-apoptotic capacities via NFκB activation

    International Nuclear Information System (INIS)

    Zhu, Zhuoli; Gan, Xueqi; Fan, Hongyi; Yu, Haiyang

    2015-01-01

    Mesenchymal stem cells (MSCs) have been broadly used for tissue regeneration and repair due to their broad differentiation potential and potent paracrine properties such as angiogenic capacity. Strategies to increase their survival rate after transplantation and the angiogenic ability are of priority for the utility of MSCs. In this study, we found that mechanical stretch (10% extension, 30 cycles/min cyclic stretch) preconditioning increase the angiogenic capacity via VEGFA induction. In addition, mechanical stretch also increases the survival rate of mesenchymal stem cells under nutrients deprivation. Consistent with the increase VEGFA expression and resistance to apoptosis, nuclear localization of NFκB activity p65 increased upon mechanical stretch. Inhibition of NFκB activity by BAY 11-708 blocks the pro-angiogenesis and anti-apoptosis function of mechanical stretch. Taken together, our findings here raise the possibility that mechanical stretch preconditioning might enhance the therapeutic efficacy of mesenchymal stem cells. - Highlights: • Mechanical stretch increases the angiogenic capacity via VEGFA induction in MSCs. • Mechanical stretch increases the survival rate of MSCs under nutrients deprivation. • Mechanical stretch manipulates MSCs via the activation of NFκB.

  5. Mechanical stretch endows mesenchymal stem cells stronger angiogenic and anti-apoptotic capacities via NFκB activation

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zhuoli; Gan, Xueqi [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Fan, Hongyi [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Department of Applied Mechanics, College of Architecture and Environment, Sichuan University, Chengdu 610065 (China); Yu, Haiyang, E-mail: yhyang6812@foxmail.com [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China)

    2015-12-25

    Mesenchymal stem cells (MSCs) have been broadly used for tissue regeneration and repair due to their broad differentiation potential and potent paracrine properties such as angiogenic capacity. Strategies to increase their survival rate after transplantation and the angiogenic ability are of priority for the utility of MSCs. In this study, we found that mechanical stretch (10% extension, 30 cycles/min cyclic stretch) preconditioning increase the angiogenic capacity via VEGFA induction. In addition, mechanical stretch also increases the survival rate of mesenchymal stem cells under nutrients deprivation. Consistent with the increase VEGFA expression and resistance to apoptosis, nuclear localization of NFκB activity p65 increased upon mechanical stretch. Inhibition of NFκB activity by BAY 11-708 blocks the pro-angiogenesis and anti-apoptosis function of mechanical stretch. Taken together, our findings here raise the possibility that mechanical stretch preconditioning might enhance the therapeutic efficacy of mesenchymal stem cells. - Highlights: • Mechanical stretch increases the angiogenic capacity via VEGFA induction in MSCs. • Mechanical stretch increases the survival rate of MSCs under nutrients deprivation. • Mechanical stretch manipulates MSCs via the activation of NFκB.

  6. CURRENT CONCEPTS IN MUSCLE STRETCHING FOR EXERCISE AND REHABILITATION

    Science.gov (United States)

    2012-01-01

    Stretching is a common activity used by athletes, older adults, rehabilitation patients, and anyone participating in a fitness program. While the benefits of stretching are known, controversy remains about the best type of stretching for a particular goal or outcome. The purpose of this clinical commentary is to discuss the current concepts of muscle stretching interventions and summarize the evidence related to stretching as used in both exercise and rehabilitation. PMID:22319684

  7. CURRENT CONCEPTS IN MUSCLE STRETCHING FOR EXERCISE AND REHABILITATION

    OpenAIRE

    Page, Phil

    2012-01-01

    Stretching is a common activity used by athletes, older adults, rehabilitation patients, and anyone participating in a fitness program. While the benefits of stretching are known, controversy remains about the best type of stretching for a particular goal or outcome. The purpose of this clinical commentary is to discuss the current concepts of muscle stretching interventions and summarize the evidence related to stretching as used in both exercise and rehabilitation.

  8. Anomalies in the coil-stretch transition of flexible polymers

    Science.gov (United States)

    Ghosal, Aishani; Cherayil, Binny J.

    2018-03-01

    The flow-induced coil-stretch transition of high molecular weight polymers has generally been held to be of first order. But evidence of significant slowing down in the rate at which the polymers relax to equilibrium in the vicinity of the transition suggests that the thermodynamic character of the transition may be less clear-cut. The above slowing down effect is actually characteristic of a second-order transition, and it points to the existence of a broad spectrum of conformational states in the transition region, analogous to the existence of fluctuations of all length scales at a critical point. In this paper, using a path integral approach based on a free-draining finitely extensible chain model, we calculate various polymer properties as a function of elongational flow as a way of exploring different statistical mechanical details of the coil-stretch transition. These properties include the molecular weight dependence of the flow-extension curve of the polymer, the distribution of its steady-state end-to-end distances, and the characteristic relaxation time τR of these distances. Among other findings, our calculations indicate that the coil-stretch transition is discontinuous in the N → ∞ limit, that the effective free energy of the chain is unimodal at all values of the flow, becoming broad and flat in the immediate vicinity of the transition, and that the ratio of τR to the Rouse relaxation time increases abruptly at the transition before eventually reaching a plateau value at large flow strengths. These aspects of the coil-stretch transition place it among a larger class of unconventional nominally first-order single chain transitions that include the adsorption transition of surface-tethered polymers and the escape transition of compressed polymers.

  9. Regional stretch method to measure the elastic and hyperelastic properties of soft materials

    Science.gov (United States)

    Sheng, JunYuan; Guo, HaoYuan; Cao, YanPing; Feng, XiQiao

    2018-02-01

    Characterizing the mechanical properties of soft materials and biological tissues is of great significance for understanding their deformation behaviors. In this paper, a regional stretching method is proposed to measure the elastic and hyperelastic properties of a soft material with an adhesive surface or with the aid of glue. Theoretical and dimensional analyses are performed to investigate the regional stretch problem for soft materials that obey the neo-Hookean model, the Mooney-Rivlin model, or the Arruda-Boyce model. Finite element simulations are made to determine the expressions of the dimensionless functions that correlate the stretch response with the constitutive parameters. Thereby, an inverse approach is established to determine the elastic and hyperelastic properties of the tested materials. The regional stretch method is also compared to the indentation technique. Finally, experiments are performed to demonstrate the effectiveness of the proposed method.

  10. Summary of the stretching tectonics research

    International Nuclear Information System (INIS)

    Yu Dagan

    1994-01-01

    The rise of stretching tectonics is established on the basis of recent structural geology theory, the establishment of metamorphic nucleus complex structural model on one hand plays an important promoting art to the development of stretching structure, on the other hand, it needs constant supplement and perfection in practice. Metamorphic nucleus complex is the carrier of comparatively deep geological information in vertical section of the crust and has wide distribution in the era of south China. Evidently, it can be taken as the 'key' to understanding the deep and studying the basement, Strengthening the study will play the important promoting role to the deep prospecting. The study of stretching tectonics is not only limited within the range of structure and metamorphism, but combine with the studies of sedimentation, magmatism, metamorphism and mineralization, thus form a new field of tectonic geology of self-developing system

  11. Optofluidic time-stretch microscopy: recent advances

    Science.gov (United States)

    Lei, Cheng; Nitta, Nao; Ozeki, Yasuyuki; Goda, Keisuke

    2018-04-01

    Flow cytometry is an indispensable method for valuable applications in numerous fields such as immunology, pathology, pharmacology, molecular biology, and marine biology. Optofluidic time-stretch microscopy is superior to conventional flow cytometry methods for its capability to acquire high-quality images of single cells at a high-throughput exceeding 10,000 cells per second. This makes it possible to extract copious information from cellular images for accurate cell detection and analysis with the assistance of machine learning. Optofluidic time-stretch microscopy has proven its effectivity in various applications, including microalga-based biofuel production, evaluation of thrombotic disorders, as well as drug screening and discovery. In this review, we discuss the principles and recent advances of optofluidic time-stretch microscopy.

  12. Optofluidic time-stretch quantitative phase microscopy.

    Science.gov (United States)

    Guo, Baoshan; Lei, Cheng; Wu, Yi; Kobayashi, Hirofumi; Ito, Takuro; Yalikun, Yaxiaer; Lee, Sangwook; Isozaki, Akihiro; Li, Ming; Jiang, Yiyue; Yasumoto, Atsushi; Di Carlo, Dino; Tanaka, Yo; Yatomi, Yutaka; Ozeki, Yasuyuki; Goda, Keisuke

    2018-03-01

    Innovations in optical microscopy have opened new windows onto scientific research, industrial quality control, and medical practice over the last few decades. One of such innovations is optofluidic time-stretch quantitative phase microscopy - an emerging method for high-throughput quantitative phase imaging that builds on the interference between temporally stretched signal and reference pulses by using dispersive properties of light in both spatial and temporal domains in an interferometric configuration on a microfluidic platform. It achieves the continuous acquisition of both intensity and phase images with a high throughput of more than 10,000 particles or cells per second by overcoming speed limitations that exist in conventional quantitative phase imaging methods. Applications enabled by such capabilities are versatile and include characterization of cancer cells and microalgal cultures. In this paper, we review the principles and applications of optofluidic time-stretch quantitative phase microscopy and discuss its future perspective. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Bias of purine stretches in sequenced chromosomes

    DEFF Research Database (Denmark)

    Ussery, David; Soumpasis, Dikeos Mario; Brunak, Søren

    2002-01-01

    We examined more than 700 DNA sequences (full length chromosomes and plasmids) for stretches of purines (R) or pyrimidines (Y) and alternating YR stretches; such regions will likely adopt structures which are different from the canonical B-form. Since one turn of the DNA helix is roughly 10 bp, we...... measured the fraction of each genome which contains purine (or pyrimidine) tracts of lengths of 10 by or longer (hereafter referred to as 'purine tracts'), as well as stretches of alternating pyrimidines/purine ('pyr/pur tracts') of the same length. Using this criteria, a random sequence would be expected...... to contain 1.0% of purine tracts and also 1.0% of the alternating pyr/pur tracts. In the vast majority of cases, there are more purine tracts than would be expected from a random sequence, with an average of 3.5%, significantly larger than the expectation value. The fraction of the chromosomes containing pyr...

  14. Bias of purine stretches in sequenced chromosomes

    DEFF Research Database (Denmark)

    Ussery, David; Soumpasis, Dikeos Mario; Brunak, Søren

    2002-01-01

    We examined more than 700 DNA sequences (full length chromosomes and plasmids) for stretches of purines (R) or pyrimidines (Y) and alternating YR stretches; such regions will likely adopt structures which are different from the canonical B-form. Since one turn of the DNA helix is roughly 10 bp, we...... to contain 1.0% of purine tracts and also 1.0% of the alternating pyr/pur tracts. In the vast majority of cases, there are more purine tracts than would be expected from a random sequence, with an average of 3.5%, significantly larger than the expectation value. The fraction of the chromosomes containing pyr......, in eukaryotes there is an abundance of long stretches of purines or alternating purine/pyrimidine tracts, which cannot be explained in this way; these sequences are likely to play an important role in eukaryotic chromosome organisation....

  15. Anisotropic dewetting on stretched elastomeric substrates.

    Science.gov (United States)

    Qiao, L; He, L H

    2008-08-01

    We study the instability of a very thin liquid film resting on a uniformly stretched soft elastomeric substrate driven by van der Waals forces. A linear stability analysis shows that the critical fluctuation wavelength in the tensile direction is larger than those in the other directions. The magnitudes of the critical wavelengths are adjustable in the sense that they depend on the principal stretch of the substrate. For example, when the principal stretch of the substrate varies from 1.0 (unstretched) to 3.0, the range of the critical wavelength in the tensile direction increases by 7.0% while that normal to the tensile direction decreases by 8.7%. Therefore, the phenomenon may find potential applications in creating tunable topographically patterned surfaces with nano- to microscale features.

  16. Stochastic exponential stability of the delayed reaction-diffusion recurrent neural networks with Markovian jumping parameters

    International Nuclear Information System (INIS)

    Wang Linshan; Zhang Zhe; Wang Yangfan

    2008-01-01

    Some criteria for the global stochastic exponential stability of the delayed reaction-diffusion recurrent neural networks with Markovian jumping parameters are presented. The jumping parameters considered here are generated from a continuous-time discrete-state homogeneous Markov process, which are governed by a Markov process with discrete and finite state space. By employing a new Lyapunov-Krasovskii functional, a linear matrix inequality (LMI) approach is developed to establish some easy-to-test criteria of global exponential stability in the mean square for the stochastic neural networks. The criteria are computationally efficient, since they are in the forms of some linear matrix inequalities

  17. The non-exponential relaxation of the C60 crystal around glass transition temperature

    International Nuclear Information System (INIS)

    Yan, F; Wang, Y.N.

    1999-01-01

    A model of the energy barrier of a molecule between two orientational states in the C 60 crystal, which depends on the neighboring molecules, is first proposed. Based on this model, the orientational relaxation of C 60 molecules around 90 K was simulated with the Monte Carlo method. The simulation results show that the relaxation is slightly non-exponential and can fit the Kohlrausch-Williams-Watts function with the non-exponential factor β = 0.962 ± 0.002, which is equal to the experimental data that has not been explained before. (orig.)

  18. Exponential cluster synchronization in directed community networks via adaptive nonperiodically intermittent pinning control

    Science.gov (United States)

    Zhou, Peipei; Cai, Shuiming; Jiang, Shengqin; Liu, Zengrong

    2018-02-01

    In this paper, the problem of exponential cluster synchronization for a class of directed community networks is investigated via adaptive nonperiodically intermittent pinning control. By constructing a novel piecewise continuous Lyapunov function, some sufficient conditions to guarantee globally exponential cluster synchronization are derived. It is noted that the derived cluster synchronization criteria rely on the control rates, but not the control widths or the control periods, which facilitates the choice of the control periods in practical applications. A numerical example is finally presented to show the effectiveness of the obtained theoretical results.

  19. On the exponentiation of leading infrared divergences in massless Yang-Mills theories

    International Nuclear Information System (INIS)

    Frenkel, J.; Garcia, R.L.

    1977-01-01

    We derive, in the axial gauge, the effective U-matrix which governs the behaviour of leading infrared singularities in the self-energy functions of Yang-Mills particles. We then show in a very simple manner, that these divergences, which determine the leading singularities in massless Yang-Mills theories, exponentiate [pt

  20. Caspase-12 is involved in stretch-induced apoptosis mediated endoplasmic reticulum stress.

    Science.gov (United States)

    Zhang, Qiang; Liu, Jianing; Chen, Shulan; Liu, Jing; Liu, Lijuan; Liu, Guirong; Wang, Fang; Jiang, Wenxin; Zhang, Caixia; Wang, Shuangyu; Yuan, Xiao

    2016-04-01

    It is well recognized that mandibular growth, which is caused by a variety of functional appliances, is considered to be the result of both neuromuscular and skeletal adaptations. Accumulating evidence has demonstrated that apoptosis plays an important role in the adaptation of skeletal muscle function. However, the underlying mechanism of apoptosis that is induced by stretch continues to be incompletely understood. Endoplasmic reticulum stress (ERS), a newly defined signaling pathway, initiates apoptosis. This study seeks to determine if caspase-12 is involved in stretch-induced apoptosis mediated endoplasmic reticulum stress in myoblast and its underlying mechanism. Apoptosis was assessed by Hochest staining, DAPI staining and annexin V binding and PI staining. ER chaperones, such as GRP78, CHOP and caspase-12, were determined by reverse transcription polymerase chain reaction (RT-PCR) and Western blot. Furthermore, caspase-12 inhibitor was used to value the mechanism of the caspase-12 pathway. Apoptosis of myoblast, which is subjected to cyclic stretch, was observed in a time-dependent manner. We found that GRP78 mRNA and protein were significantly increased and CHOP and caspase-12 were activated in myoblast that was exposed to cyclic stretch. Caspase-12 inhibition reduced stretch-induced apoptosis, and caspase-12 activated caspase-3 to induce apoptosis. We concluded that caspase-12 played an important role in stretch-induced apoptosis that is associated by endoplasmic reticulum stress by activating caspase-3.

  1. Reduced heme levels underlie the exponential growth defect of the Shewanella oneidensis hfq mutant.

    Directory of Open Access Journals (Sweden)

    Christopher M Brennan

    Full Text Available The RNA chaperone Hfq fulfills important roles in small regulatory RNA (sRNA function in many bacteria. Loss of Hfq in the dissimilatory metal reducing bacterium Shewanella oneidensis strain MR-1 results in slow exponential phase growth and a reduced terminal cell density at stationary phase. We have found that the exponential phase growth defect of the hfq mutant in LB is the result of reduced heme levels. Both heme levels and exponential phase growth of the hfq mutant can be completely restored by supplementing LB medium with 5-aminolevulinic acid (5-ALA, the first committed intermediate synthesized during heme synthesis. Increasing expression of gtrA, which encodes the enzyme that catalyzes the first step in heme biosynthesis, also restores heme levels and exponential phase growth of the hfq mutant. Taken together, our data indicate that reduced heme levels are responsible for the exponential growth defect of the S. oneidensis hfq mutant in LB medium and suggest that the S. oneidensis hfq mutant is deficient in heme production at the 5-ALA synthesis step.

  2. Micropatterning stretched and aligned DNA for sequence-specific nanolithography

    Science.gov (United States)

    Petit, Cecilia Anna Paulette

    -mediated sequence-specific nanolithography. In this process, particles are assembled via molecular recognition with functionalized probes previously hybridized to the stretched DNA template. We have used this approach to pattern proteins, metal colloids, and semiconductor quantum dots. We also demonstrate the co-assembly of two types of particles---metals and semiconductors---on single strands of DNA via the sequence-specific hybridization of two types of functional probes.

  3. Resolution characteristics for reflection-mode exponential-doping GaN photocathode.

    Science.gov (United States)

    Wang, Honggang; Qian, Yunsheng; Du, Yujie; Xu, Yuan; Lu, Liubing; Chang, Benkang

    2014-01-20

    According to the expression for modulation transfer function obtained by solving the established 2D continuity equation, the resolution characteristics for reflection-mode exponential-doping and uniform-doping GaN photocathodes have been calculated and comparatively analyzed. These calculated results show that the exponential-doping structure can upgrade not only the resolution capability but also the quantum efficiency for a GaN photocathode. The improvement mechanism is different from the approach for high resolution applied by reducing Te and L(D) or increasing S(V), which leads to low quantum efficiency. The main contribution factor of this improvement is that the mechanism that transports electrons toward the NEA surface is facilitated by the built-in electric field formed by this exponential-doping structure, and the corresponding lateral diffusion is reduced.

  4. Exponential Stability of Time-Switched Two-Subsystem Nonlinear Systems with Application to Intermittent Control

    Directory of Open Access Journals (Sweden)

    Huang Tingwen

    2009-01-01

    Full Text Available This paper studies the exponential stability of a class of periodically time-switched nonlinear systems. Three cases of such systems which are composed, respectively, of a pair of unstable subsystems, of both stable and unstable subsystems, and of a pair of stable systems, are considered. For the first case, the proposed result shows that there exists periodically switching rule guaranteeing the exponential stability of the whole system with (sufficient small switching period if there is a Hurwitz linear convex combination of two uncertain linear systems derived from two subsystems by certain linearization. For the second case, we present two general switching criteria by means of multiple and single Lyapunov function, respectively. We also investigate the stability issue of the third case, and the switching criteria of exponential stability are proposed. The present results for the second case are further applied to the periodically intermittent control. Several numerical examples are also given to show the effectiveness of theoretical results.

  5. Few-parameter exponentially correlated wavefunctions for the ground state of lithium

    Science.gov (United States)

    Albert, Victor V.; Guevara, Nicolais L.; Sabin, John R.; Harris, Frank E.

    Compact, but relatively accurate wavefunctions for the ground state of the Li atom were obtained through the use of a limited basis of exponentially correlated functions with optimized nonlinear parameters. In contrast to our earlier work, the basis contains pre-exponential factors that improve the rate of convergence of the basis-set expansion. The matrix elements needed in the present work were evaluated analytically using recursive methods reported recently by one of us; a check on the programming was provided by comparison with numerical evaluations carried out by Turbiner and Guevara. The rate of convergence of the expansion is compared with those of Hylleraas-basis computations, and a comparison is also made with exponentially correlated studies of He-like systems.

  6. Discrete-ordinate method with matrix exponential for a pseudo-spherical atmosphere: Vector case

    International Nuclear Information System (INIS)

    Doicu, A.; Trautmann, T.

    2009-01-01

    The paper is devoted to the extension of the matrix-exponential formalism for the scalar radiative transfer to the vector case. Using basic results of the theory of matrix-exponential functions we provide a compact and versatile formulation of the vector radiative transfer. As in the scalar case, we operate with the concept of the layer equation incorporating the level values of the Stokes vector. The matrix exponentials which enter in the expression of the layer equation are computed by using the matrix eigenvalue method and the Pade approximation. A discussion of the computational efficiency of the proposed method for both an aerosol-loaded atmosphere as well as a cloudy atmosphere is also provided

  7. Growth potential of exponential- and stationary-phase Salmonella Typhimurium during sausage fermentation

    DEFF Research Database (Denmark)

    Birk, Tina; Henriksen, Sidsel; Müller, K.

    2016-01-01

    Raw meat for sausage production can be contaminated with Salmonella. For technical reasons, meat is often frozen prior to mincing but it is unknown how growth of Salmonella in meat prior to freezing affects its growth potential during sausage fermentation. We investigated survival of exponential-...... fermentation, sporadic growth of exponential-phase cells of S. Typhimurium was observed drawing attention to the handling and storage of sausage meat.......Raw meat for sausage production can be contaminated with Salmonella. For technical reasons, meat is often frozen prior to mincing but it is unknown how growth of Salmonella in meat prior to freezing affects its growth potential during sausage fermentation. We investigated survival of exponential...... starter culture. With no starter culture, both strains grew in both growth phases. In general, a functional starter culture abolished S. Typhimurium growth independent of growth phase and we concluded that ensuring correct fermentation is important for sausage safety. However, despite efficient...

  8. Flow of nanofluid by nonlinear stretching velocity

    Science.gov (United States)

    Hayat, Tasawar; Rashid, Madiha; Alsaedi, Ahmed; Ahmad, Bashir

    2018-03-01

    Main objective in this article is to model and analyze the nanofluid flow induced by curved surface with nonlinear stretching velocity. Nanofluid comprises water and silver. Governing problem is solved by using homotopy analysis method (HAM). Induced magnetic field for low magnetic Reynolds number is not entertained. Development of convergent series solutions for velocity and skin friction coefficient is successfully made. Pressure in the boundary layer flow by curved stretching surface cannot be ignored. It is found that magnitude of power-law index parameter increases for pressure distibutions. Magnitude of radius of curvature reduces for pressure field while opposite trend can be observed for velocity.

  9. Lattice stretching bistability and dynamic heterogeneity

    DEFF Research Database (Denmark)

    Christiansen, Peter Leth; Savin, A. V.; Zolotaryuk, A. V.

    2012-01-01

    A simple one-dimensional lattice model is suggested to describe the experimentally observed plateau in force-stretching diagrams for some macromolecules. This chain model involves the nearest-neighbor interaction of a Morse-like potential (required to have a saturation branch) and a harmonic second......-neighbor coupling. Under an external stretching applied to the chain ends, the intersite Morse-like potential results in the appearance of a double-well potential within each chain monomer, whereas the interaction between the second neighbors provides a homogeneous bistable (degenerate) ground state, at least...

  10. Stretching and folding mechanism in foams

    Energy Technology Data Exchange (ETDEWEB)

    Tufaile, Alberto [Escola de Artes, Ciencias e Humanidades, Soft Matter Laboratory, Universidade de Sao Paulo, 03828-000 Sao Paulo, SP (Brazil)], E-mail: tufaile@usp.br; Pedrosa Biscaia Tufaile, Adriana [Escola de Artes, Ciencias e Humanidades, Soft Matter Laboratory, Universidade de Sao Paulo, 03828-000 Sao Paulo, SP (Brazil)

    2008-10-13

    We have described the stretching and folding of foams in a vertical Hele-Shaw cell containing air and a surfactant solution, from a sequence of upside-down flips. Besides the fractal dimension of the foam, we have observed the logistic growth for the soap film length. The stretching and folding mechanism is present during the foam formation, and this mechanism is observed even after the foam has reached its respective maximum fractal dimension. Observing the motion of bubbles inside the foam, large bubbles present power spectrum associated with random walk motion in both directions, while the small bubbles are scattered like balls in a Galton board.

  11. Predictors of the peak width for networks with exponential links

    Science.gov (United States)

    Troutman, B.M.; Karlinger, M.R.

    1989-01-01

    We investigate optimal predictors of the peak (S) and distance to peak (T) of the width function of drainage networks under the assumption that the networks are topologically random with independent and exponentially distributed link lengths. Analytical results are derived using the fact that, under these assumptions, the width function is a homogeneous Markov birth-death process. In particular, exact expressions are derived for the asymptotic conditional expectations of S and T given network magnitude N and given mainstream length H. In addition, a simulation study is performed to examine various predictors of S and T, including N, H, and basin morphometric properties; non-asymptotic conditional expectations and variances are estimated. The best single predictor of S is N, of T is H, and of the scaled peak (S divided by the area under the width function) is H. Finally, expressions tested on a set of drainage basins from the state of Wyoming perform reasonably well in predicting S and T despite probable violations of the original assumptions. ?? 1989 Springer-Verlag.

  12. Global exponential stability and existence of periodic solutions in BAM networks with delays and reaction-diffusion terms

    International Nuclear Information System (INIS)

    Song Qiankun; Cao Jinde

    2005-01-01

    Both exponential stability and periodic solutions are considered for a class of bi-directional associative memory (BAM) neural networks with delays and reaction-diffusion terms by constructing suitable Lyapunov functional and some analysis techniques. The general sufficient conditions are given ensuring the global exponential stability and existence of periodic solutions of BAM neural networks with delays and reaction-diffusion terms. These presented conditions are in terms of system parameters and have important leading significance in the design and applications of globally exponentially stable and periodic oscillatory neural circuits for BAM with delays and reaction-diffusion terms

  13. shortened lag phase with seeds from early exponential phase

    African Journals Online (AJOL)

    AJL

    2012-01-12

    Jan 12, 2012 ... exponential or early stationary phase was selected as optimal. In the current study, the authors optimised inoculum conditions using a strategy that combined inoculum age and size as inoculum cell number to shorten the lag phase in yeast cultivation. Inoculum from the middle exponential phase (7th h).

  14. Ranking Exponential Trapezoidal Fuzzy Numbers by Median Value

    Directory of Open Access Journals (Sweden)

    S. Rezvani

    2013-12-01

    Full Text Available In this paper, we want represented a method for ranking of two exponential trapezoidal fuzzy numbers. A median value is proposed for the ranking of exponential trapezoidal fuzzy numbers. For the validation the results of the proposed approach are compared with different existing approaches.

  15. Exponential convergence on a continuous Monte Carlo transport problem

    International Nuclear Information System (INIS)

    Booth, T.E.

    1997-01-01

    For more than a decade, it has been known that exponential convergence on discrete transport problems was possible using adaptive Monte Carlo techniques. An adaptive Monte Carlo method that empirically produces exponential convergence on a simple continuous transport problem is described

  16. Stochastic B-series and order conditions for exponential integrators

    DEFF Research Database (Denmark)

    Arara, Alemayehu Adugna; Debrabant, Kristian; Kværnø, Anne

    2018-01-01

    We discuss stochastic differential equations with a stiff linear part and their approximation by stochastic exponential integrators. Representing the exact and approximate solutions using B-series and rooted trees, we derive the order conditions for stochastic exponential integrators. The resulting...

  17. Review of "Going Exponential: Growing the Charter School Sector's Best"

    Science.gov (United States)

    Garcia, David

    2011-01-01

    This Progressive Policy Institute report argues that charter schools should be expanded rapidly and exponentially. Citing exponential growth organizations, such as Starbucks and Apple, as well as the rapid growth of molds, viruses and cancers, the report advocates for similar growth models for charter schools. However, there is no explanation of…

  18. On weak exponential expansiveness of evolution families in Banach spaces.

    Science.gov (United States)

    Yue, Tian; Song, Xiao-qiu; Li, Dong-qing

    2013-01-01

    The aim of this paper is to give several characterizations for the property of weak exponential expansiveness for evolution families in Banach spaces. Variants for weak exponential expansiveness of some well-known results in stability theory (Datko (1973), Rolewicz (1986), Ichikawa (1984), and Megan et al. (2003)) are obtained.

  19. Stochastic B-series and order conditions for exponential integrators

    DEFF Research Database (Denmark)

    Arara, Alemayehu Adugna; Debrabant, Kristian; Kværnø, Anne

    2018-01-01

    We discuss stochastic differential equations with a stiff linear part and their approximation by stochastic exponential integrators. Representing the exact and approximate solutions using B-series and rooted trees, we derive the order conditions for stochastic exponential integrators. The resulti...... general order theory covers both It\\^{o} and Stratonovich integration....

  20. Blowing-up semilinear wave equation with exponential nonlinearity ...

    Indian Academy of Sciences (India)

    H1-norm. Hence, it is legitimate to consider an exponential nonlinearity. Moreover, the choice of an exponential nonlinearity emerges from a possible control of solutions via a. Moser–Trudinger type inequality [1, 16, 19]. In fact, Nakamura and Ozawa [17] proved global well-posedness and scattering for small Cauchy data in ...

  1. New Results of Global Exponential Stabilization for BLDCMs System

    Directory of Open Access Journals (Sweden)

    Fengxia Tian

    2015-01-01

    Full Text Available The global exponential stabilization for brushless direct current motor (BLDCM system is studied. Four linear and simple feedback controllers are proposed to realize the global stabilization of BLDCM with exponential convergence rate; the control law used in each theorem is less conservative and more concise. Finally, an example is given to demonstrate the correctness of the proposed results.

  2. Immediate effects of quantified hamstring stretching: hold-relax proprioceptive neuromuscular facilitation versus static stretching.

    Science.gov (United States)

    Puentedura, Emilio J; Huijbregts, Peter A; Celeste, Shelley; Edwards, Dale; In, Alastair; Landers, Merrill R; Fernandez-de-Las-Penas, Cesar

    2011-08-01

    To compare the immediate effects of a hold-relax proprioceptive neuromuscular facilitation stretching (HR-PNF) versus static stretch (SS) on hamstring flexibility in healthy, asymptomatic subjects. Thirty subjects (13 female; mean age 25.7 ± 3.0, range 22-37) without excessive hamstring muscle flexibility were randomly assigned to one of two stretch groups: HR-PNF or SS. The left leg was treated as a control and did not receive any intervention. The right leg was measured for ROM pre- and post-stretch interventions, with subjects receiving randomly assigned interventions one week apart. Data were analyzed with a 3 (intervention: HR-PNF, SS, control) × 2 (time: pre and post) factorial ANOVA with repeated measures and appropriate post-hoc analyses. A significant interaction was observed between intervention and time for hamstring extensibility, F(2,58) = 25.229, p < .0005. Main effect of intervention for the tested leg was not significant, p = .782 indicating that there was no difference between the two stretch conditions. However, main effect for time was significant (p < .0005), suggesting that hamstring extensibility (for both stretching conditions) after intervention was greater than before. No significant differences were found when comparing the effectiveness of HR-PNF and SS techniques. Both stretching methods resulted in significant immediate increases in hamstring length. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Disruption of Locomotion in Response to Hindlimb Muscle Stretch at Acute and Chronic Time Points after a Spinal Cord Injury in Rats

    Science.gov (United States)

    Keller, Anastasia V.P.; Wainwright, Grace; Shum-Siu, Alice; Prince, Daniella; Hoeper, Alyssa; Martin, Emily

    2017-01-01

    Abstract After spinal cord injury (SCI) muscle contractures develop in the plegic limbs of many patients. Physical therapists commonly use stretching as an approach to avoid contractures and to maintain the extensibility of soft tissues. We found previously that a daily stretching protocol has a negative effect on locomotor recovery in rats with mild thoracic SCI. The purpose of the current study was to determine the effects of stretching on locomotor function at acute and chronic time points after moderately severe contusive SCI. Female Sprague-Dawley rats with 25 g-cm T10 contusion injuries received our standard 24-min stretching protocol starting 4 days (acutely) or 10 weeks (chronically) post-injury (5 days/week for 5 or 4 weeks, respectively). Locomotor function was assessed using the BBB (Basso, Beattie, and Bresnahan) Open Field Locomotor Scale, video-based kinematics, and gait analysis. Locomotor deficits were evident in the acute animals after only 5 days of stretching and increasing the perceived intensity of stretching at week 4 resulted in greater impairment. Stretching initiated chronically resulted in dramatic decrements in locomotor function because most animals had BBB scores of 0–3 for weeks 2, 3, and 4 of stretching. Locomotor function recovered to control levels for both groups within 2 weeks once daily stretching ceased. Histological analysis revealed no apparent signs of overt and persistent damage to muscles undergoing stretching. The current study extends our observations of the stretching phenomenon to a more clinically relevant moderately severe SCI animal model. The results are in agreement with our previous findings and further demonstrate that spinal cord locomotor circuitry is especially vulnerable to the negative effects of stretching at chronic time points. While the clinical relevance of this phenomenon remains unknown, we speculate that stretching may contribute to the lack of locomotor recovery in some patients. PMID:27196003

  4. Filament stretching rheometry of polymer melts

    DEFF Research Database (Denmark)

    Hassager, Ole; Nielsen, Jens Kromann; Rasmussen, Henrik Koblitz

    2005-01-01

    The Filament Stretching Rheometry (FSR) method developed by Sridhar, McKinley and coworkers for polymer solutions has been extended to be used also for polymer melts. The design of a melt-FSR will be described and differences to conventional melt elongational rheometers will be pointed out. Results...

  5. Cloud Network Helps Stretch IT Dollars

    Science.gov (United States)

    Collins, Hilton

    2012-01-01

    No matter how many car washes or bake sales schools host to raise money, adding funds to their coffers is a recurring problem. This perpetual financial difficulty makes expansive technology purchases or changes seem like a pipe dream for school CIOs and has education technologists searching for ways to stretch money. In 2005, state K-12 school…

  6. The stretch zone of automotive steel sheets

    Indian Academy of Sciences (India)

    on steel grade, on the rolling direction as well as on the loading rate. Stretch zones ... This interaction is demonstrated at a fracture surface as a bounded transition between initiatory crack (e.g., fatigue) and either ... The materials examined in this study are three grades of thin automotive steel sheets: XSG,. HR 45 and DP.

  7. Fractional behaviour at cyclic stretch-bending

    NARCIS (Netherlands)

    Emmens, W.C.; van den Boogaard, Antonius H.; Kazantzis, A.V.; de Hosson, J.Th.M.; Kolleck, R

    2010-01-01

    The fractional behaviour at cyclic stretch-bending has been studied by performing tensile tests at long specimens that are cyclically bent at the same time, on mild steel, dual-phase steel, stainless steel, aluminium and brass. Several types of fracture are observed, these are discussed, as are the

  8. Assessment of early treatment response to neoadjuvant chemotherapy in breast cancer using non-mono-exponential diffusion models: a feasibility study comparing the baseline and mid-treatment MRI examinations.

    Science.gov (United States)

    Bedair, Reem; Priest, Andrew N; Patterson, Andrew J; McLean, Mary A; Graves, Martin J; Manavaki, Roido; Gill, Andrew B; Abeyakoon, Oshaani; Griffiths, John R; Gilbert, Fiona J

    2017-07-01

    To assess the feasibility of the mono-exponential, bi-exponential and stretched-exponential models in evaluating response of breast tumours to neoadjuvant chemotherapy (NACT) at 3 T. Thirty-six female patients (median age 53, range 32-75 years) with invasive breast cancer undergoing NACT were enrolled for diffusion-weighted MRI (DW-MRI) prior to the start of treatment. For assessment of early response, changes in parameters were evaluated on mid-treatment MRI in 22 patients. DW-MRI was performed using eight b values (0, 30, 60, 90, 120, 300, 600, 900 s/mm 2 ). Apparent diffusion coefficient (ADC), tissue diffusion coefficient (D t ), vascular fraction (ƒ), distributed diffusion coefficient (DDC) and alpha (α) parameters were derived. Then t tests compared the baseline and changes in parameters between response groups. Repeatability was assessed at inter- and intraobserver levels. All patients underwent baseline MRI whereas 22 lesions were available at mid-treatment. At pretreatment, mean diffusion coefficients demonstrated significant differences between groups (p mono-exponential models, and the stretched-exponential model can potentially monitor such changes. • Baseline diffusion coefficients demonstrated significant differences between complete pathological responders and non-responders. • Increase in ADC and DDC at mid-treatment can discriminate responders and non-responders. • The ƒ fraction at mid-treatment decreased in responders whereas increased in non-responders. • The mono- and stretched-exponential models showed excellent inter- and intrarater repeatability. • Treatment effects can potentially be assessed by non-mono-exponential diffusion models.

  9. Effects of quadriceps and hamstrings proprioceptive neuromuscular facilitation stretching on knee movement sensation.

    Science.gov (United States)

    Streepey, Jefferson W; Mock, Marla J; Riskowski, Jody L; Vanwye, William R; Vitvitskiy, Boris M; Mikesky, Alan E

    2010-04-01

    Stretching before competition has traditionally been thought to benefit performance; however, recent evidence demonstrating reduced muscle force and power immediately after stretching suggests otherwise. We hypothesized that knee joint position sense would be diminished immediately after proprioceptive neuromuscular facilitation (PNF) stretching to the hamstrings and quadriceps. Eighteen subjects (aged 18-30 years) were seated with their dominant foot attached to a motorized arm with the knee flexed at 135 degrees . To block external cues, the subjects wore a blindfold, earplugs, and headphones providing white noise. The knee was displaced in either the flexion or the extension direction at a velocity of 0.4 degrees .s, and subjects pressed a button when they sensed motion. The knee was returned to 135 degrees , and the test was repeated for a total of 10 trials. The PNF group received PNF stretching to the hamstrings and quadriceps of the dominant leg. The SHAM group had the dominant leg passively moved within each subject's functional range of motion. The ability to detect knee movement was retested in the PNF and SHAM groups. Pre- and posttest latencies between movement onset and subject response were analyzed. Results indicated that the PNF group had significantly increased latencies after stretching (from 2.56 +/- 0.83 to 3.46 +/- 1.90 seconds) compared with the SHAM group (3.93 +/- 2.40 to 3.72 +/- 2.15 seconds). It is concluded that PNF stretching of the hamstrings and quadriceps may acutely diminish sensitivity to knee movement. For coaches and trainers, these findings are consistent with previous reports of loss in muscle force and power immediately after stretching, suggesting that stretching just before competition may diminish performance.

  10. Quantifying the passive stretching response of human tibialis anterior muscle using shear wave elastography.

    Science.gov (United States)

    Koo, Terry K; Guo, Jing-Yi; Cohen, Jeffrey H; Parker, Kevin J

    2014-01-01

    Quantifying passive stretching responses of individual muscles helps the diagnosis of muscle disorders and aids the evaluation of surgical/rehabilitation treatments. Utilizing an animal model, we demonstrated that shear elastic modulus measured by supersonic shear wave elastography increases linearly with passive muscle force. This study aimed to use this state-of-the-art technology to study the relationship between shear elastic modulus and ankle dorsi-plantarflexion angle of resting tibialis anterior muscles and extract physiologically meaningful parameters from the elasticity-angle curve to better quantify passive stretching responses. Elasticity measurements were made at resting tibialis anterior of 20 healthy subjects with the ankle positioned from 50° plantarflexion to up to 15° dorsiflexion at every 5° for two cycles. Elasticity-angle data was curve-fitted by optimizing slack angle, slack elasticity, and rate of increase in elasticity within a piecewise exponential model. Elasticity-angle data of all subjects were well fitted by the piecewise exponential model with coefficients of determination ranging between 0.973 and 0.995. Mean (SD) of slack angle, slack elasticity, and rate of increase in elasticity were 10.9° (6.3°), 5.8 (1.9) kPa, and 0.0347 (0.0082) respectively. Intraclass correlation coefficients of each parameter were 0.852, 0.942, and 0.936 respectively, indicating excellent test-retest reliability. This study demonstrated the feasibility of using supersonic shear wave elastography to quantify passive stretching characteristics of individual muscle and provided preliminary normative values of slack angle, slack elasticity, and rate of increase in elasticity for human tibialis anterior muscles. Future studies will investigate diagnostic values of these parameters in clinical applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Exponential fading to white of black holes in quantum gravity

    International Nuclear Information System (INIS)

    Barceló, Carlos; Carballo-Rubio, Raúl; Garay, Luis J

    2017-01-01

    Quantization of the gravitational field may allow the existence of a decay channel of black holes into white holes with an explicit time-reversal symmetry. The definition of a meaningful decay probability for this channel is studied in spherically symmetric situations. As a first nontrivial calculation, we present the functional integration over a set of geometries using a single-variable function to interpolate between black-hole and white-hole geometries in a bounded region of spacetime. This computation gives a finite result which depends only on the Schwarzschild mass and a parameter measuring the width of the interpolating region. The associated probability distribution displays an exponential decay law on the latter parameter, with a mean lifetime inversely proportional to the Schwarzschild mass. In physical terms this would imply that matter collapsing to a black hole from a finite radius bounces back elastically and instantaneously, with negligible time delay as measured by external observers. These results invite to reconsider the ultimate nature of astrophysical black holes, providing a possible mechanism for the formation of black stars instead of proper general relativistic black holes. The existence of both this decay channel and black stars can be tested in future observations of gravitational waves. (paper)

  12. Optimality conditions for maximizers of the information divergence from an exponential family

    Czech Academy of Sciences Publication Activity Database

    Matúš, František

    2007-01-01

    Roč. 43, č. 5 (2007), s. 731-746 ISSN 0023-5954 R&D Projects: GA AV ČR IAA100750603 Institutional research plan: CEZ:AV0Z10750506 Keywords : Kullback-Leibler divergence * relative entropy * exponential family * information projection * log-Laplace transform * cumulant generating function * directional derivatives * convex function s * first order optimality conditions * polytopes Subject RIV: BA - General Mathematics Impact factor: 0.552, year: 2007

  13. Potential axillary nerve stretching during RSA implantation: an anatomical study.

    Science.gov (United States)

    Marion, Blandine; Leclère, Franck Marie; Casoli, Vincent; Paganini, Federico; Unglaub, Frank; Spies, Christian; Valenti, Philippe

    2014-09-01

    Clinical and subclinical neurological injury after reverse shoulder arthroplasty (RSA) may jeopardize functional outcomes due to the risk of irreversible damage to the axillary nerve. We proposed a simple anatomical study in order to assess the macroscopic effects on the axillary nerve when lowering the humerus as performed during RSA implantation. We also measured the effect on the axillary nerve of a lateralization of the humerus. Between 2011 and 2012, cadaveric dissections of 16 shoulder specimens from nine fresh human cadavers were performed in order to assess the effects on the axillary nerve after the lowering and lateralization of the humerus. We assessed the extent of stretching of the axillary nerve in four positions in the sagittal plane [lowering of the humerus: great tuberosity in contact with the acromion (position 1), in contact with the upper (position 2), middle (position 3) and lower rim of the glenoid (position 4)] and three positions in the frontal plane [lateralization of the humerus: humerus in contact with the glenoid (position 1), humerus lateralized 1 cm (position 2) and 2 cm (position 3)]. When the humerus was lowered, clear macroscopical changes appeared below the middle of the glenoid (the highest level of tension). As regards the lateralization of the humerus, macroscopic study and measurements confirm the absence of stretching of the nerve in those positions. Lowering of the humerus below the equator of the glenoid changes the course and tension of the axillary nerve and may lead to stretching and irreversible damage, compromising the function of the deltoid. Improvements in the design of the implants and modification of the positioning of the glenosphere to avoid notching and to increase mobility must take into account the anatomical changes induced by the prosthesis and its impact on the brachial plexus. Level of Evidence and study type Level IV.

  14. EFFECTIVENESS OF PNF STRETCHING AND CYCLIC STRETCHING OF CALF TIGHTNESS ON COLLEGE GOING GIRLS

    Directory of Open Access Journals (Sweden)

    Ashlesha Sirari

    2015-06-01

    Full Text Available Background: Flexibility helps with injury prevention, the reduction of soreness following a workout, and a general sense of well-being. There are different stretching techniques and protocols for improvements in calf extensibility and flexibility. The purpose of the study was to investigate the effectiveness of two techniques i.e. CYCLIC and PNF stretching which improves calf flexibility. This study was done to find the effectiveness of calf Cyclic and PNF stretching technique to improve calf flexibility. Methods: 30 subjects with age group 21-22 years were randomly allocated to 2 groups equally. Group 1(n=15 were given CYCLIC and group 2(n=15 were given PNF stretching technique. Plantar flexion was used to measure the calf tightness which was done before and after the treatment. Treatment was given for 7 days and on the 7th day the calf tightness was again measured. Results: The mean difference of the CYCLIC is 4.6 and mean difference of PNF is 4.7 which indicate that CYCLIC and PNF both are effective to improve calf flexibility but PNF is more effective than CYCLIC to improve calf flexibility. Conclusion: The neurophysiological basis of PNF, stating that the excitatory efficient of the neuromuscular spindle or the inhibitory afferent of the Golgi tendon organ (GTO or both are responsible for the effects. During PNF stretch and isometric contraction of stretched agonists for extended period may cause activation of its neuromuscular spindle. The increase in tension created during the isometric contraction of the pre – lengthened agonist contracts concentrically. Both the fascia & the spindle of the agonist adjust to the nearly lengthened position. These impulses travel via causing post synaptic inhibition of the motor neuron to agonist increasing the tension from the GTO. These impulses can override the impulses coming from the neuromuscular spindles arousing the muscle to reflexly resist to the change in length, thus helping in lengthening

  15. Passive Stretch Versus Active Stretch on Intervertebral Movement in Non - Specific Neck Pain

    International Nuclear Information System (INIS)

    Abd El - Aziz, A.H.; Amin, D.I.; Moustafa, I.

    2016-01-01

    Neck pain is one of the most common and painful musculoskeletal conditions. Point prevalence ranges from 6% to 22% and up to 38% of the elderly population, while lifetime prevalence ranges from 14,2% to 71%. Up till now no randomized study showed the effect between controversy of active and passive stretch on intervertebral movement. The purpose: the current study was to investigate the effect of the passive and active stretch on intervertebral movement in non - specific neck pain. Material and methods: Forty five subjects from both sexes with age range between 18 and 30 years and assigned in three groups, group I (15) received active stretch, ultrasound and TENS. Group II (15) received passive stretch, ultrasound and TENS. Group III (15) received ultrasound and TENS. The radiological assessment was used to measure rotational and translational movement of intervertebral movement before and after treatment. Results: MANOVA test was used for radiological assessment before and after treatment there was significant increase in intervertebral movement in group I as p value =0.0001. Conclusion: active stretch had a effect in increasing the intervertebral movement compared to the passive stretch

  16. LMI Approach to Exponential Stability and Almost Sure Exponential Stability for Stochastic Fuzzy Markovian-Jumping Cohen-Grossberg Neural Networks with Nonlinear p-Laplace Diffusion

    Directory of Open Access Journals (Sweden)

    Ruofeng Rao

    2013-01-01

    Full Text Available The robust exponential stability of delayed fuzzy Markovian-jumping Cohen-Grossberg neural networks (CGNNs with nonlinear p-Laplace diffusion is studied. Fuzzy mathematical model brings a great difficulty in setting up LMI criteria for the stability, and stochastic functional differential equations model with nonlinear diffusion makes it harder. To study the stability of fuzzy CGNNs with diffusion, we have to construct a Lyapunov-Krasovskii functional in non-matrix form. But stochastic mathematical formulae are always described in matrix forms. By way of some variational methods in W1,p(Ω, Itô formula, Dynkin formula, the semi-martingale convergence theorem, Schur Complement Theorem, and LMI technique, the LMI-based criteria on the robust exponential stability and almost sure exponential robust stability are finally obtained, the feasibility of which can efficiently be computed and confirmed by computer MatLab LMI toolbox. It is worth mentioning that even corollaries of the main results of this paper improve some recent related existing results. Moreover, some numerical examples are presented to illustrate the effectiveness and less conservatism of the proposed method due to the significant improvement in the allowable upper bounds of time delays.

  17. How to Stretch Your Ankle After a Sprain

    Science.gov (United States)

    ... Ankle After A Sprain How to Stretch Your Ankle After A Sprain Page Content You should perform the following stretches ... Consider these home exercises when recuperating from an ankle sprain. Perform them twice per day. While seated, bring ...

  18. Alongamento muscular segmentar melhora função e alinhamento do joelho de indivíduos com síndrome femoropatelar: estudo preliminar Segmental muscular stretching improves knee function and alignment in subjects with patellofemoral syndrome: preliminary study

    Directory of Open Access Journals (Sweden)

    Gisela Cristiane Miyamoto

    2010-08-01

    Full Text Available INTRODUÇÃO: A síndrome femoropatelar (SFP é uma desordem dolorosa comum do joelho e para seu tratamento normalmente são utilizados exercícios de fortalecimento do músculo quadríceps femoral, sendo que poucos trabalhos encontrados na literatura investigaram os efeitos diretos do alongamento muscular. OBJETIVO: O objetivo deste estudo foi avaliar os efeitos do alongamento muscular segmentar no tratamento de pacientes com SFP. MÉTODOS: Participaram do estudo 12 voluntários com SFP, dominância de membro inferior direito e idade média de 20 anos. As variáveis funcionais avaliadas antes e depois do tratamento foram: ângulo Q, intensidade da dor, capacidade funcional pela escala de contagem de Lysholm, sensação de posição articular (SPA a 40 e 50 graus de flexão do joelho, trabalho total e momento de força concêntrico dos músculos quadríceps femoral e isquiotibiais a 60 e 180º/s. Após a avaliação inicial, foi realizado o tratamento que consistiu em alongamento muscular segmentar bilateral dos músculos isquiotibiais, tríceps sural e quadríceps femoral, com duração de 30 segundos e 10 repetições para cada músculo. As variáveis avaliadas antes e após o tratamento foram analisadas pelo teste t para amostras dependentes (α INTRODUCTION: Patellofemoral syndrome (PFS is a common painful knee disorder and for its treatment, quadriceps femoris strengthening exercises are normally used; however, few studies in the literature investigate the direct effects of stretching exercises. OBJECTIVE: In order to fill this gap, the objective of this study was to evaluate the effects of segmental stretching exercises on the treatment of patients with PFS. METHODS: Twelve PFS patients with right foot dominance and mean age of 20 years were evaluated. The following functional variables were assessed, before and after treatment: Q angle, pain intensity, knee functional injury level (Lysholm scale, joint position sense (JPS at 40 and 50

  19. Global robust exponential stability analysis for interval recurrent neural networks

    International Nuclear Information System (INIS)

    Xu Shengyuan; Lam, James; Ho, Daniel W.C.; Zou Yun

    2004-01-01

    This Letter investigates the problem of robust global exponential stability analysis for interval recurrent neural networks (RNNs) via the linear matrix inequality (LMI) approach. The values of the time-invariant uncertain parameters are assumed to be bounded within given compact sets. An improved condition for the existence of a unique equilibrium point and its global exponential stability of RNNs with known parameters is proposed. Based on this, a sufficient condition for the global robust exponential stability for interval RNNs is obtained. Both of the conditions are expressed in terms of LMIs, which can be checked easily by various recently developed convex optimization algorithms. Examples are provided to demonstrate the reduced conservatism of the proposed exponential stability condition

  20. Re-analysis of exponential rigid-rotor astron equilibria

    International Nuclear Information System (INIS)

    Lovelace, R.V.; Larrabee, D.A.; Fleischmann, H.H.

    1978-01-01

    Previous studies of exponential rigid-rotor astron equilibria include particles which are not trapped in the self-field of the configuration. The modification of these studies required to exclude untrapped particles is derived

  1. Studying the method of linearization of exponential calibration curves

    International Nuclear Information System (INIS)

    Bunzh, Z.A.

    1989-01-01

    The results of study of the method for linearization of exponential calibration curves are given. The calibration technique and comparison of the proposed method with piecewise-linear approximation and power series expansion, are given

  2. The Multivariate Order Statistics for Exponential and Weibull Distributions

    Directory of Open Access Journals (Sweden)

    Mariyam Hafeez

    2014-09-01

    Full Text Available In this paper we have derived the distribution of multivariate order statistics for multivariate exponential & multivariate weibull distribution. The moment expression for multivariate order statistics has also been derived.

  3. Transparent conducting film: Effect of mechanical stretching to ...

    Indian Academy of Sciences (India)

    Administrator

    posite was fixed to a tabletop clamp and unidirectionally stretched after cutting the paper support at two opposite sides. To hold the film under the stretched condition, both edges of stretched CNT-mat/transparent-film composite was then adhered to a PMMA substrate by epoxy glue and both the sheet resistance and the ...

  4. Effects of dynamic stretches on Isokinetic hamstring and Quadriceps ...

    African Journals Online (AJOL)

    In conclusion, dynamic stretches have positive effects on muscle strength, H/Q ratios and ROM. Therefore, dynamic stretches may increase performance and reduce the risk of injury to athletes. Keywords: Quadriceps; Hamstrings; Muscles Isokinetic; Dynamic stretches. South African Journal for Research in Sport, Physical ...

  5. Stretched cell cycle model for proliferating lymphocytes

    Science.gov (United States)

    Dowling, Mark R.; Kan, Andrey; Heinzel, Susanne; Zhou, Jie H. S.; Marchingo, Julia M.; Wellard, Cameron J.; Markham, John F.; Hodgkin, Philip D.

    2014-01-01

    Stochastic variation in cell cycle time is a consistent feature of otherwise similar cells within a growing population. Classic studies concluded that the bulk of the variation occurs in the G1 phase, and many mathematical models assume a constant time for traversing the S/G2/M phases. By direct observation of transgenic fluorescent fusion proteins that report the onset of S phase, we establish that dividing B and T lymphocytes spend a near-fixed proportion of total division time in S/G2/M phases, and this proportion is correlated between sibling cells. This result is inconsistent with models that assume independent times for consecutive phases. Instead, we propose a stretching model for dividing lymphocytes where all parts of the cell cycle are proportional to total division time. Data fitting based on a stretched cell cycle model can significantly improve estimates of cell cycle parameters drawn from DNA labeling data used to monitor immune cell dynamics. PMID:24733943

  6. A Study on The Mixture of Exponentiated-Weibull Distribution

    Directory of Open Access Journals (Sweden)

    Adel Tawfik Elshahat

    2016-12-01

    Full Text Available Mixtures of measures or distributions occur frequently in the theory and applications of probability and statistics. In the simplest case it may, for example, be reasonable to assume that one is dealing with the mixture in given proportions of a finite number of normal populations with different means or variances. The mixture parameter may also be denumerable infinite, as in the theory of sums of a random number of random variables, or continuous, as in the compound Poisson distribution. The use of finite mixture distributions, to control for unobserved heterogeneity, has become increasingly popular among those estimating dynamic discrete choice models. One of the barriers to using mixture models is that parameters that could previously be estimated in stages must now be estimated jointly: using mixture distributions destroys any additive reparability of the log likelihood function. In this thesis, the maximum likelihood estimators have been obtained for the parameters of the mixture of exponentiated Weibull distribution when sample is available from censoring scheme. The maximum likelihood estimators of the parameters and the asymptotic variance covariance matrix have been also obtained. A numerical illustration for these new results is given.

  7. An Exponentially Weighted Moving Average Control Chart for Bernoulli Data

    DEFF Research Database (Denmark)

    Spliid, Henrik

    2010-01-01

    We consider a production process in which units are produced in a sequential manner. The units can, for example, be manufactured items or services, provided to clients. Each unit produced can be a failure with probability p or a success (non-failure) with probability (1-p). A novel exponentially ...... weighted moving average (EWMA) control chart intended for surveillance of the probability of failure, p, is described. The chart is based on counting the number of non-failures produced between failures in combination with a variance-stabilizing transformation. The distribution function...... of the transformation is given and its limit for small values of p is derived. Control of high yield processes is discussed and the chart is shown to perform very well in comparison with both the most common alternative EWMA chart and the CUSUM chart. The construction and the use of the proposed EWMA chart...... are described and a practical example is given. It is demonstrated how the method communicates the current failure probability in a direct and interpretable way, which makes it well suited for surveillance of a great variety of activities in industry or in the service sector such as in hospitals, for example...

  8. Exponential 6 parameterization for the JCZ3-EOS

    Energy Technology Data Exchange (ETDEWEB)

    McGee, B.C.; Hobbs, M.L.; Baer, M.R.

    1998-07-01

    A database has been created for use with the Jacobs-Cowperthwaite-Zwisler-3 equation-of-state (JCZ3-EOS) to determine thermochemical equilibrium for detonation and expansion states of energetic materials. The JCZ3-EOS uses the exponential 6 intermolecular potential function to describe interactions between molecules. All product species are characterized by r*, the radius of the minimum pair potential energy, and {var_epsilon}/k, the well depth energy normalized by Boltzmann`s constant. These parameters constitute the JCZS (S for Sandia) EOS database describing 750 gases (including all the gases in the JANNAF tables), and have been obtained by using Lennard-Jones potential parameters, a corresponding states theory, pure liquid shock Hugoniot data, and fit values using an empirical EOS. This database can be used with the CHEETAH 1.40 or CHEETAH 2.0 interface to the TIGER computer program that predicts the equilibrium state of gas- and condensed-phase product species. The large JCZS-EOS database permits intermolecular potential based equilibrium calculations of energetic materials with complex elemental composition.

  9. Fast Modular Exponentiation and Elliptic Curve Group Operation in Maple

    Science.gov (United States)

    Yan, S. Y.; James, G.

    2006-01-01

    The modular exponentiation, y[equivalent to]x[superscript k](mod n) with x,y,k,n integers and n [greater than] 1; is the most fundamental operation in RSA and ElGamal public-key cryptographic systems. Thus the efficiency of RSA and ElGamal depends entirely on the efficiency of the modular exponentiation. The same situation arises also in elliptic…

  10. Testable Implications of Quasi-Hyperbolic and Exponential Time Discounting

    OpenAIRE

    Echenique, Federico; Imai, Taisuke; Saito, Kota

    2014-01-01

    We present the first revealed-preference characterizations of the models of exponential time discounting, quasi-hyperbolic time discounting, and other time-separable models of consumers’ intertemporal decisions. The characterizations provide non-parametric revealed-preference tests, which we take to data using the results of a recent experiment conducted by Andreoni and Sprenger (2012). For such data, we find that less than half the subjects are consistent with exponential discounting, and on...

  11. Meet and join matrices in the poset of exponential divisors

    Indian Academy of Sciences (India)

    ... exponential divisor ( G C E D ) and the least common exponential multiple ( L C E M ) do not always exist. In this paper we embed this poset in a lattice. As an application we study the G C E D and L C E M matrices, analogues of G C D and L C M matrices, which are both special cases of meet and join matrices on lattices.

  12. Global robust exponential stability for interval neural networks with delay

    International Nuclear Information System (INIS)

    Cui Shihua; Zhao Tao; Guo Jie

    2009-01-01

    In this paper, new sufficient conditions for globally robust exponential stability of neural networks with either constant delays or time-varying delays are given. We show the sufficient conditions for the existence, uniqueness and global robust exponential stability of the equilibrium point by employing Lyapunov stability theory and linear matrix inequality (LMI) technique. Numerical examples are given to show the approval of our results.

  13. An exponential observer for the generalized Rossler chaotic system

    International Nuclear Information System (INIS)

    Sun, Y.-J.

    2009-01-01

    In this paper, the generalized Rossler chaotic system is considered and the state observation problem of such a system is investigated. Based on the time-domain approach, a state observer for the generalized Rossler chaotic system is developed to guarantee the global exponential stability of the resulting error system. Moreover, the guaranteed exponential convergence rate can be arbitrarily pre-specified. Finally, a numerical example is provided to illustrate the feasibility and effectiveness of the obtained result.

  14. String Stretching, Frequency Modulation, and Banjo Clang

    OpenAIRE

    Politzer, David

    2014-01-01

    The banjo’s floating bridge, string break angle, and flexible drumhead all contribute to substantial audio range frequency modulation. From the world of electronic music synthesis, it is known that modulating higher frequency sounds with lower acoustic frequencies leads to metallic and bell-like tone. The mechanics of the banjo does just that quite naturally, modulating fundamentals and harmonics with the motion of the bridge. In technical terms, with a floating bridge, string stretching is f...

  15. The stretch zone of automotive steel sheets

    Indian Academy of Sciences (India)

    The stretch zone of automotive steel sheets. L' AMBRIŠKO1,∗ and L PEŠEK2. 1Institute of Structural Engineering, Faculty of Civil Engineering,. Technical University of Košice, Vysokoškolská 4, 042 00 Košice, Slovak Republic. 2Department of Materials Science, Faculty of Metallurgy,. Technical University of Košice, Letná 9, ...

  16. Transport, mixing and stretching in a chaotic Stokes flow: The two-roll mill

    International Nuclear Information System (INIS)

    Kaper, T.J.; Wiggins, S.

    1989-01-01

    We present the outline and preliminary results of an analytical and numerical study of transport, mixing, and stretching in a chaotic Stokes' flow in a two-roll mill apparatus. We use the theory of dynamical systems to describe the rich behavior and structure exhibited by these flows. The main features are the homoclinic tangle which functions as the backbone of the chaotic mixing region, the Smale horseshoe, and the island chains. We then use our detailed knowledge of these structures to develop a theory of transport and stretching of fluid in the chaotic regime. In particular, we show how a specific set of tools for adiabatic chaos- the adiabatic Melnikov function lobe area and flux computations and the adiabatic switching method is ideally suited to develop this theory of transport, mixing and stretching in time-dependent two-dimensional Stokes' flows. 19 refs., 8 figs

  17. Spontaneous bending of pre-stretched bilayers.

    Science.gov (United States)

    DeSimone, Antonio

    2018-01-01

    We discuss spontaneously bent configurations of pre-stretched bilayer sheets that can be obtained by tuning the pre-stretches in the two layers. The two-dimensional nonlinear plate model we use for this purpose is an adaptation of the one recently obtained for thin sheets of nematic elastomers, by means of a rigorous dimensional reduction argument based on the theory of Gamma-convergence (Agostiniani and DeSimone in Meccanica. doi:10.1007/s11012-017-0630-4, 2017, Math Mech Solids. doi:10.1177/1081286517699991, arXiv:1509.07003, 2017). We argue that pre-stretched bilayer sheets provide us with an interesting model system to study shape programming and morphing of surfaces in other, more complex systems, where spontaneous deformations are induced by swelling due to the absorption of a liquid, phase transformations, thermal or electro-magnetic stimuli. These include bio-mimetic structures inspired by biological systems from both the plant and the animal kingdoms.

  18. Dynamics and structure of stretched flames

    Energy Technology Data Exchange (ETDEWEB)

    Law, C.K. [Princeton Univ., NJ (United States)

    1993-12-01

    This program aims to gain fundamental understanding on the structure, geometry, and dynamics of laminar premixed flames, and relate these understanding to the practical issues of flame extinction and stabilization. The underlying fundamental interest here is the recent recognition that the response of premixed flames can be profoundly affected by flame stretch, as manifested by flow nonuniformity, flame curvature, and flame/flow unsteadiness. As such, many of the existing understanding on the behavior of premixed flames need to be qualitatively revised. The research program consists of three major thrusts: (1) detailed experimental and computational mapping of the structure of aerodynamically-strained planar flames, with emphasis on the effects of heat loss, nonequidiffusion, and finite residence time on the flame thickness, extent of incomplete reaction, and the state of extinction. (2) Analytical study of the geometry and dynamics of stretch-affected wrinkled flame sheets in simple configurations, as exemplified by the Bunsen flame and the spatially-periodic flame, with emphasis on the effects of nonlinear stretch, the phenomena of flame cusping, smoothing, and tip opening, and their implications on the structure and burning rate of turbulent flames. (3) Stabilization and blowoff of two-dimensional inverted premixed and stabilization and determining the criteria governing flame blowoff. The research is synergistically conducted through the use of laser-based diagnostics, computational simulation of the flame structure with detailed chemistry and transport, and mathematical analysis of the flame dynamics.

  19. Generate networks with power-law and exponential-law distributed degrees: with applications in link prediction of tumor pathways

    Directory of Open Access Journals (Sweden)

    WenJun Zhang

    2016-03-01

    Full Text Available In present study I proposed a method for generating biological networks based on power-law (p(x=x^(-a and exponential-law (p(x=e^(-ax distribution functions. Given the parameter of power-law or exponential-law distribution function, a, the algorithm generates an expected frequency distribution according to the given parameter, thereafter creates an adjacency matrix in which (practical frequency distribution of node degrees matches the expected frequency distribution. The results showed that power-law distribution function performs much better than exponential-law distribution function in generating networks. Using the revised algorithm, tumor related networks (pathways are simulated and predicted. The results prove that the algorithm is overall effective in predicting network links (14.6%-21.2%of correctly predicted links against 0.1%-3.4% of that for random assignments. Matlab codes of the algorithms are given also.

  20. Short Durations of Static Stretching when Combined with Dynamic Stretching do not Impair Repeated Sprints and Agility

    Science.gov (United States)

    Wong, Del P.; Chaouachi, Anis; Lau, Patrick W.C.; Behm, David G.

    2011-01-01

    This study aimed to compare the effect of different static stretching durations followed by dynamic stretching on repeated sprint ability (RSA) and change of direction (COD). Twenty-five participants performed the RSA and COD tests in a randomized order. After a 5 min aerobic warm up, participants performed one of the three static stretching protocols of 30 s, 60 s or 90 s total duration (3 stretches x 10 s, 20 s or 30 s). Three dynamic stretching exercises of 30 s duration were then performed (90 s total). Sit-and-reach flexibility tests were conducted before the aerobic warm up, after the combined static and dynamic stretching, and post- RSA/COD test. The duration of static stretching had a positive effect on flexibility with 36.3% and 85.6% greater sit-and-reach scores with the 60 s and 90 s static stretching conditions respectively than with the 30 s condition (p ≤ 0.001). However there were no significant differences in RSA and COD performance between the 3 stretching conditions. The lack of change in RSA and COD might be attributed to a counterbalancing of static and dynamic stretching effects. Furthermore, the short duration (≤ 90 s) static stretching may not have provided sufficient stimulus to elicit performance impairments. Key points The duration of combined static and dynamic stretching had a positive effect on flexibility with 36.3% and 85.6% greater sit and reach scores with the 60 s and 90 s static stretching conditions respectively than with the 30 s condition (p ≤ 0.001). No significant differences in RSA and COD between the 3 stretching conditions. The lack of change in RSA and COD might be attributed to a counterbalancing of static and dynamic stretching effects. The short duration (≤ 90 s) static stretching may not have provided sufficient stimulus to elicit performance impairments. PMID:24149890

  1. Acute Effects of Foam Rolling, Static Stretching, and Dynamic Stretching During Warm-ups on Muscular Flexibility and Strength in Young Adults.

    Science.gov (United States)

    Su, Hsuan; Chang, Nai-Jen; Wu, Wen-Lan; Guo, Lan-Yuen; Chu, I-Hua

    2017-11-01

    Foam rolling has been proposed to improve muscle function, performance, and joint range of motion (ROM). However, whether a foam rolling protocol can be adopted as a warm-up to improve flexibility and muscle strength is unclear. To examine and compare the acute effects of foam rolling, static stretching, and dynamic stretching used as part of a warm-up on flexibility and muscle strength of knee flexion and extension. Crossover study. University research laboratory. 15 male and 15 female college students (age 21.43 ± 1.48 y, weight 65.13 ± 12.29 kg, height 166.90 ± 6.99 cm). Isokinetic peak torque was measured during knee extension and flexion at an angular velocity of 60°/second. Flexibility of the quadriceps was assessed by the modified Thomas test, while flexibility of the hamstrings was assessed using the sit-and-reach test. The 3 interventions were performed by all participants in random order on 3 days separated by 48-72 hours. The flexibility test scores improved significantly more after foam rolling as compared with static and dynamic stretching. With regard to muscle strength, only knee extension peak torque (pre vs. postintervention) improved significantly after the dynamic stretching and foam rolling, but not after static stretching. Knee flexion peak torque remained unchanged. Foam rolling is more effective than static and dynamic stretching in acutely increasing flexibility of the quadriceps and hamstrings without hampering muscle strength, and may be recommended as part of a warm-up in healthy young adults.

  2. Essential value of cocaine and food in rats: tests of the exponential model of demand.

    Science.gov (United States)

    Christensen, Chesley J; Silberberg, Alan; Hursh, Steven R; Huntsberry, Mary E; Riley, Anthony L

    2008-06-01

    To provide a prospective test of the predictive adequacy of the exponential model of demand (Hursh and Silberberg, Psych Rev 115(1):186-198, 2008). In Experiment 1, to measure the 'essential value' (the propensity to defend consumption with changes in price) of cocaine and food in a demand analysis (functional relation between price and consumption) by means of the exponential model; in Experiment 2, to test whether the model's systematic underestimation of cocaine consumption in Experiment 1 was due to weight loss; and in Experiment 3, to evaluate the effects of cocaine on the essential value of food. In Experiment 1, demand curves for food and cocaine were determined by measuring consumption of these goods in a multiple schedule over a range of fixed ratios; in Experiment 2, a demand curve for only cocaine was determined; and in Experiment 3, demand for food was determined in the absence of cocaine. In Experiment 1, the exponential equation accommodated high portions of variance for both curves, but systematically underestimated cocaine demand; in Experiment 2, this predictive underestimation of the equation was eliminated; and in Experiment 3, the essential value of food was greater than in Experiment 1. The exponential model of demand accommodated the data variance for all cocaine and food demand curves. Compared to food, cocaine is a good of lower essential value.

  3. An Exponential Regulator for Rapidity Divergences

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ye [Fermilab; Neill, Duff [MIT, Cambridge, CTP; Zhu, Hua Xing [MIT, Cambridge, CTP

    2016-04-01

    Finding an efficient and compelling regularization of soft and collinear degrees of freedom at the same invariant mass scale, but separated in rapidity is a persistent problem in high-energy factorization. In the course of a calculation, one encounters divergences unregulated by dimensional regularization, often called rapidity divergences. Once regulated, a general framework exists for their renormalization, the rapidity renormalization group (RRG), leading to fully resummed calculations of transverse momentum (to the jet axis) sensitive quantities. We examine how this regularization can be implemented via a multi-differential factorization of the soft-collinear phase-space, leading to an (in principle) alternative non-perturbative regularization of rapidity divergences. As an example, we examine the fully-differential factorization of a color singlet's momentum spectrum in a hadron-hadron collision at threshold. We show how this factorization acts as a mother theory to both traditional threshold and transverse momentum resummation, recovering the classical results for both resummations. Examining the refactorization of the transverse momentum beam functions in the threshold region, we show that one can directly calculate the rapidity renormalized function, while shedding light on the structure of joint resummation. Finally, we show how using modern bootstrap techniques, the transverse momentum spectrum is determined by an expansion about the threshold factorization, leading to a viable higher loop scheme for calculating the relevant anomalous dimensions for the transverse momentum spectrum.

  4. Exponential and Critical Experiments. Vol. III. Proceedings of the Symposium on Exponential and Critical Experiments

    International Nuclear Information System (INIS)

    1964-01-01

    In September 1963 the International Atomic Energy Agency organized the Symposium on Exponential and Critical Experiments in Amsterdam, Netherlands, at the invitation of the Government of the Netherlands. The Symposium enabled scientists from Member States to discuss the results of such experiments which provide the physics data necessary for the design of power reactors. Great advances made in recent years in this field have provided scientists with highly sophisticated and reliable experimental and theoretical methods. This trend is reflected in the presentation, at the Symposium, of many new experimental techniques resulting in more detailed and accurate information and a reduction of costs. Both the number of experimental parameters and their range of variation have been extended, and a closer degree of simulation of the actual power reactor has been achieved, for example, by means of high temperature critical assemblies. Basic types of lattices have continued to be the objective of many investigations, and extensive theoretical analyses have been carried out to provide a more thorough understanding of the neutron physics involved. Twenty nine countries and 3 international organizations were represented by 198 participants. Seventy one papers were presented. These numbers alone show the wide interest which the topic commands in the field of reactor design. We hope that this publication, which includes the papers presented at the Symposium and a record of the discussions, will prove useful as a work of reference to scientists working in this field

  5. An overview of multivariate gamma distributions as seen from a (multivariate) matrix exponential perspective

    DEFF Research Database (Denmark)

    Bladt, Mogens; Nielsen, Bo Friis

    2012-01-01

    Numerous definitions of multivariate exponential and gamma distributions can be retrieved from the literature [4]. These distribtuions belong to the class of Multivariate Matrix-- Exponetial Distributions (MVME) whenever their joint Laplace transform is a rational function. The majority of these ......Numerous definitions of multivariate exponential and gamma distributions can be retrieved from the literature [4]. These distribtuions belong to the class of Multivariate Matrix-- Exponetial Distributions (MVME) whenever their joint Laplace transform is a rational function. The majority...... Laplace transform. In a longer perspective stochastic and statistical analysis for MVME will in particular apply to any of the previously defined distributions. Multivariate gamma distributions have been used in a variety of fields like hydrology, [11], [10], [6], space (wind modeling) [9] reliability [3...

  6. Hamstring Stiffness Returns More Rapidly After Static Stretching Than Range of Motion, Stretch Tolerance, and Isometric Peak Torque.

    Science.gov (United States)

    Hatano, Genki; Suzuki, Shigeyuki; Matsuo, Shingo; Kataura, Satoshi; Yokoi, Kazuaki; Fukaya, Taizan; Fujiwara, Mitsuhiro; Asai, Yuji; Iwata, Masahiro

    2017-12-18

    Hamstring injuries are common, and lack of hamstring flexibility may predispose to injury. Static stretching increases range of motion (ROM) but also results in reduced muscle strength after stretching. The effects of stretching on the hamstring muscles and the duration of these effects remain unclear. To determine the effects of static stretching on the hamstrings and the duration of these effects. Randomized crossover study. University laboratory. Twenty-four healthy volunteers. We measured the torque-angle relationship (ROM, passive torque (PT) at the onset of pain, and passive stiffness) and isometric muscle force using an isokinetic dynamometer. After a 60-minute rest, the ROM of the dynamometer was set at maximum tolerable intensity; this position was maintained for 300 seconds while static passive torque (SPT) was measured continuously. We remeasured the torque-angle relationship and isometric muscle force after rest periods of 10, 20, and 30 minutes. Change in SPT during stretching; changes in ROM, PT at the onset of pain, passive stiffness, and isometric muscle force before stretching compared with 10, 20, and 30 minutes after stretching. SPT decreased significantly during stretching. Passive stiffness decreased significantly 10 and 20 minutes after stretching, but there was no significant pre- vs. post-stretching difference after 30 minutes. PT at the onset of pain and ROM increased significantly after stretching at all rest intervals, while isometric muscle force decreased significantly after all rest intervals. The effect of static stretching on passive stiffness of the hamstrings was not maintained as long as the changes in ROM, stretch tolerance, and isometric muscle force. Therefore, frequent stretching is necessary to improve the viscoelasticity of the muscle-tendon unit. Muscle force was decreased for 30 minutes after stretching; this should be considered prior to activities requiring maximal muscle strength.

  7. Design and testing of a cyclic stretch and flexure bioreactor for evaluating engineered heart valve tissues based on poly(glycerol sebacate) scaffolds.

    Science.gov (United States)

    Masoumi, Nafiseh; Howell, M Christian; Johnson, Katherine L; Niesslein, Matthew J; Gerber, Gene; Engelmayr, George C

    2014-06-01

    Cyclic flexure and stretch are essential to the function of semilunar heart valves and have demonstrated utility in mechanically conditioning tissue-engineered heart valves. In this study, a cyclic stretch and flexure bioreactor was designed and tested in the context of the bioresorbable elastomer poly(glycerol sebacate). Solid poly(glycerol sebacate) membranes were subjected to cyclic stretch, and micromolded poly(glycerol sebacate) scaffolds seeded with porcine aortic valvular interstitial cells were subjected to cyclic stretch and flexure. The results demonstrated significant effects of cyclic stretch on poly(glycerol sebacate) mechanical properties, including significant decreases in effective stiffness versus controls. In valvular interstitial cell-seeded scaffolds, cyclic stretch elicited significant increases in DNA and collagen content that paralleled maintenance of effective stiffness. This work provides a basis for investigating the roles of mechanical loading in the formation of tissue-engineered heart valves based on elastomeric scaffolds. © IMechE 2014.

  8. Modified exponential based differential quadrature scheme to solve convection diffusion equation

    Science.gov (United States)

    Arora, Geeta; Kataria, Pooja

    2017-07-01

    This paper proffers differential quadrature scheme to obtain approximate solution of one dimensional advection diffusion equation with Dirichlet's boundary conditions. The scheme uses modified exponential cubic spline basis functions to obtain the numerical results. The method uses less computational effort and produces more accurate results. In the numerical problems, L∞ and L2 errors show the relative performance of the method for different time levels. The results shown by the method are in good approximation with the exact solution.

  9. SHORT DURATIONS OF STATIC STRETCHING WHEN COMBINED WITH DYNAMIC STRETCHING DO NOT IMPAIR REPEATED SPRINTS AND AGILITY

    OpenAIRE

    Del P. Wong; Anis Chaouachi; Patrick W.C. Lau; David G. Behm

    2011-01-01

    This study aimed to compare the effect of different static stretching durations followed by dynamic stretching on repeated sprint ability (RSA) and change of direction (COD). Twenty-five participants performed the RSA and COD tests in a randomized order. After a 5 min aerobic warm up, participants performed one of the three static stretching protocols of 30 s, 60 s or 90 s total duration (3 stretches x 10 s, 20 s or 30 s). Three dynamic stretching exercises of 30 s duration were then performe...

  10. Pion scattering to 8- stretched states in 60Ni

    International Nuclear Information System (INIS)

    Clausen, B.L.

    1988-03-01

    Using the Energetic Pion Channel and Spectrometer at the Los Alamos Meson Physics Facility, differential cross sections for pion scattering were measured for ten previously known J/sup π/ = 8/sup /minus// stretched states in 60 Ni. A possible new pure isoscalar stretched state was also found. The data were taken near the /DELTA//sub 3,3/-resonance using 162 MeV incident pions and scattering angles of 65/degree/, 80/degree/, and 90/degree/ for π + and 65/degree/ and 80/degree/ for π/sup /minus//. The analysis of the 60 Ni data found that the use of Woods-Saxon wave functions in the theoretical calculations gave much better agreement with data than the use of the usual harmonic oscillator wave functions. The WS theory gave better predictions of: the angle at which the π/sup /minus// and π + angular distributions are maximum, the ratios of π/sup /minus// to π + cross sections for pure isovector states (which were much larger than unity), and the absolute size of the cross sections for all states (so that the normalization factor necessary to arrive at agreement of theory with data was closer to unity). The theoretical calculations used the distorted wave impulse approximation, including new methods for unbound states. The sensitivities of the calculations to input parameters were investigated. This analysis using WS wave functions was extended to five other nuclei ( 12 C, 14 C, 16 O, 28 Si, and 54 Fe) on which both pion scattering and electron scattering have been done. A significant improvement in arriving at a normalization factor close to unity was found when WS wave functions were consistently used for analyzing both pion and electron inelastic scattering data. 101 refs., 26 figs., 13 tabs

  11. Comparison of resolution characteristics between exponential-doping and uniform-doping GaN photocathodes

    Science.gov (United States)

    Wang, Hong-gang; Qian, Yun-sheng; Lu, Liu-bing; Cheng, Hong-chang; Chang, Ben-kang

    2013-08-01

    The studies of quantum efficiency, electronic energy distribution and stability are highly concerned in the application of Negative electron affinity (NEA) gallium nitride (GaN) photocathodes while the resolution of photocathodes are concerned rarely. The resolutions of some image intensifiers are smaller than computational value partly because of ignoring the resolution of photocathodes. To a certain extent, the resolutions of image intensifiers are influenced by photocathodes. Electronic transverse diffusion is the main cause of decreasing the resolution of photocathodes whereas the exponential-doping structure can reduce its influence. In this paper, the resolution characteristics of photocathodes have been studied by using the modulation transfer function (MTF) method. The MTF expressions of transmission-mode exponential-doping photocathodes have been obtained by solving the two-dimensional continuity equations. According to the MTF expressions, the resolution characteristics between exponential-doping and uniform-doping GaN photocathodes are calculated theoretically and analyzed comparatively. At the same time, the relationships between resolution and thickness of the emission layer Te, electron diffusion length LD are researched in detail. The calculated results show that, compared with the uniform-doping photocathode, the exponential-doping structure can increase the resolution of photocathode evidently. The resolution of exponential-doping GaN photocathode is improved distinctly when the spatial frequency varies from 400 to 800 lp/mm. The MTF characteristics approach gradually when f increases or decreases. Let f =600 lp/mm, the resolution increases by 20%-48% approximately. The constant built-in electric field for exponential-doping GaN photocathode can increase the resolution of photocathode. The improvement of resolution is different from decreasing Te, LD or increasing the recombination velocity of back-interface which are at the cost of reducing the

  12. Efficacy of static stretching and proprioceptive neuromuscular facilitation stretch on hamstrings length after a single session.

    Science.gov (United States)

    O'Hora, John; Cartwright, Abigail; Wade, Clive D; Hough, Alan D; Shum, Gary L K

    2011-06-01

    A number of studies have investigated the efficacy of several repetitions of proprioceptive neuromuscular facilitation stretching (PNF) and static stretching (SS). However, there is limited research comparing the effects of a single bout of these stretching maneuvers. The aim of this study was to compare the effectiveness of a single bout of a therapist-applied 30-second SS vs. a single bout of therapist-applied 6-second hamstring (agonist) contract PNF. Forty-five healthy subjects between the ages of 21 and 35 were randomly allocated to 1 of the 2 stretching groups or a control group, in which no stretching was received. The flexibility of the hamstring was determined by a range of passive knee extension, measured using a universal goniometer, with the subject in the supine position and the hip at 90° flexion, before and after intervention. A significant increase in knee extension was found for both intervention groups after a single stretch (SS group = 7.53°, p < 0.01 and PNF group = 11.80°, p < 0.01). Both interventions resulted in a significantly greater increase in knee extension when compared to the control group (p < 0.01). The PNF group demonstrated significantly greater gains in knee extension compared to the SS group (mean difference 4.27°, p < 0.01). It can be concluded that a therapist applied SS or PNF results in a significant increase in hamstring flexibility. A hamstring (agonist) contract PNF is more effective than an SS in a single stretching session. These findings are important to physiotherapists or trainers working in clinical and sporting environments. Where in the past therapists may have spent time conducting multiple repetitions of a PNF and an SS, a single bout of either technique may be considered just as effective. A key component of the study methodology was the exclusion of a warm-up period before stretching. Therefore, the findings of efficacy of a single PNF are of particular relevance in sporting environments and busy clinical

  13. Effects of Different Stretching Techniques on the Outcomes of Isokinetic Exercise in Patients with Knee Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Ming-Cheng Weng

    2009-06-01

    Full Text Available We recruited 132 subjects with bilateral knee osteoarthritis (Altman Grade II to compare the effects of different stretching techniques on the outcomes of isokinetic muscle strengthening exercises. Patients were randomly divided into four groups (I–IV. The patients in Group I received isokinetic muscular strengthening exercises, Group II received bilateral knee static stretching and isokinetic exercises, Group III received proprioceptive neuromuscular facilitation (PNF stretching and isokinetic exercises, and Group IV acted as controls. Outcomes were measured by changes in Lequesne's index, range of knee motion, visual analog pain scale, and peak muscle torques during knee flexion and extension. Patients in all the treated groups experienced significant reductions in knee pain and disability, and increased peak muscle torques after treatment and at follow-up. However, only patients in Groups II and III had significant improvements in range of motion and muscle strength gain during 60°/second angular velocity peak torques. Group III demonstrated the greatest increase in muscle strength gain during 180°/second angular velocity peak torques. In conclusion, stretching therapy could increase the effectiveness of isokinetic exercise in terms of functional improvement in patients with knee osteoarthritis. PNF techniques were more effective than static stretching.

  14. SHORT DURATIONS OF STATIC STRETCHING WHEN COMBINED WITH DYNAMIC STRETCHING DO NOT IMPAIR REPEATED SPRINTS AND AGILITY

    Directory of Open Access Journals (Sweden)

    Del P. Wong

    2011-06-01

    Full Text Available This study aimed to compare the effect of different static stretching durations followed by dynamic stretching on repeated sprint ability (RSA and change of direction (COD. Twenty-five participants performed the RSA and COD tests in a randomized order. After a 5 min aerobic warm up, participants performed one of the three static stretching protocols of 30 s, 60 s or 90 s total duration (3 stretches x 10 s, 20 s or 30 s. Three dynamic stretching exercises of 30 s duration were then performed (90 s total. Sit-and-reach flexibility tests were conducted before the aerobic warm up, after the combined static and dynamic stretching, and post- RSA/COD test. The duration of static stretching had a positive effect on flexibility with 36.3% and 85.6% greater sit-and-reach scores with the 60 s and 90 s static stretching conditions respectively than with the 30 s condition (p < 0.001. However there were no significant differences in RSA and COD performance between the 3 stretching conditions. The lack of change in RSA and COD might be attributed to a counterbalancing of static and dynamic stretching effects. Furthermore, the short duration (< 90 s static stretching may not have provided sufficient stimulus to elicit performance impairments

  15. Dispersion Relation of an OH-Stretching Vibration from Inelastic X-Ray Scattering

    Science.gov (United States)

    Winkler, Björn; Friedrich, Alexandra; Wilson, Dan J.; Haussühl, Eiken; Krisch, Michael; Bosak, Alexei; Refson, Keith; Milman, Victor

    2008-08-01

    We show that recent advances now allow us to measure the wave vector dependence of OH-stretching frequencies at energies around 400 meV by inelastic x-ray scattering using ID28@ESRF. We found a large, unexpected dispersion when we measured the dispersion relations of the hydrogen stretching frequencies of diaspore, α-AlOOH, where the hydrogen atoms participate in a hydrogen bond of intermediate strength. We can account for this behavior with density functional perturbation theory calculations and a simple model based on H-H interactions.

  16. Multiple refraction switches realized by stretching elastomeric scatterers in sonic crystals

    Directory of Open Access Journals (Sweden)

    Y. Huang

    2015-02-01

    Full Text Available The effect of out-of-plane pre-stretch on the 2D sonic crystal with stretchable elastomeric scatterers is explored. The hyperelastic scatterers are characterized by a compressible neo-Hookean model. The Dirichlet-to-Neumann (DtN map is adopted to obtain the band structure and equi-frequency contours. We focus on the first passband and find that a variety of switching functionalities for refraction behaviors can be realized in selected frequencies under a specific pre-stretch range. These refraction switches enable an active control of wave propagation and are applicable in advanced technologies where switchable and multifunctional sonic crystals are required.

  17. Molecular orientation behavior of isotactic polypropylene under uniaxial stretching by rheo-Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    T. Kida

    2016-08-01

    Full Text Available The molecular orientation behavior of isotactic polypropylene (iPP is investigated by using in situ Raman spectroscopy under tensile tests. A versatile method of the tilt-angle correction for the orientation parameters is newly developed, where the molecular orientation in highly oriented specimens is assumed to be entropically favorable. The real-time changes of orientation parameters and orientation distribution functions are determined for the molecular chain axis of iPP during uniaxial stretching. The molecular orientation remains random in the elastic region, and increases after the first yield point. In the yielding region, a broad distribution of orientation toward an intermediate angle of 30–70° from the stretching direction is observed. This is interpreted as reorientation of the crystalline chains being hindered by rigid, bulky lamellar cluster units. After the yielding region, orientation toward the stretching direction proceeds rapidly, approaching highly oriented states.

  18. To Stretch and Search for Better Ways

    Science.gov (United States)

    Moore, John W.

    2000-06-01

    There's a lot to do to get each issue of this Journal ready for publication, and there's a lot that can go awry during that process. We the editorial staff do our utmost to make certain that each issue is the best it can possibly be, but, of necessity, a lot of our effort is focused on solving problems, correcting errors, and avoiding pitfalls. It is not surprising that we sometimes lose sight of the bigger picture--all of the things that came out as well as or better than we hoped they would. Therefore it gives us great pleasure when a reader applauds (and thereby rewards) our efforts. One such communication inspired this editorial. I have appreciated the extra effort put forward by the staff to make the Journal really come alive. The high quality of the Journal serves as an incentive to chemical educators to stretch and search for better ways to inspire our students. I fervently hope that we do encourage you "to stretch and search for better ways", not only to inspire students but in everything you do. Stretching and searching for better ways is what life, science, chemistry, and teaching are all about, and it is a wonderfully stimulating and exciting way to approach anything and everything. Sometimes, though, one's ability to stretch is akin to that of a rubber band exposed too long to sunlight. Change becomes a threat or a burden instead of an opportunity. This often happens in one area but not others, as in the case of someone doing original research but whose lecture notes are yellow with age, or someone who experiments with new teaching approaches but neglects the latest chemical discoveries. Whatever its manifestation, failure to stretch and search for better ways is a great loss, both for the individual directly involved and for others. Fortunately there are many who continually stretch and search, often in conjunction with JCE. For example, some time ago the Chair of the Board of Publication, Jerry Bell, challenged Journal readers to become Journal

  19. Optical stretching on chip with acoustophoretic prefocusing

    DEFF Research Database (Denmark)

    Khoury Arvelo, Maria; Laub Busk, L.; Bruus, Henrik

    2012-01-01

    prefocusing. This focusing mechanism aims for target particles to always ow in the correct height relative to the optical stretcher, and is induced by a piezo-electric ultrasound transducer attached underneath the chip and driven at a frequency leading to a vertical standing ultrasound wave...... in the microchannel. Trapping and manipulation is demonstrated for dielectric beads. In addition, we show trapping, manipulation and stretching of red blood cells and vesicles, whereby we extract the elastic properties of these objects. Our design points towards the construction of a low-cost, high-throughput lab-on-a-chip...

  20. Viscous flows stretching and shrinking of surfaces

    CERN Document Server

    Mehmood, Ahmer

    2017-01-01

    This authored monograph provides a detailed discussion of the boundary layer flow due to a moving plate. The topical focus lies on the 2- and 3-dimensional case, considering axially symmetric and unsteady flows. The author derives a criterion for the self-similar and non-similar flow, and the turbulent flow due to a stretching or shrinking sheet is also discussed. The target audience primarily comprises research experts in the field of boundary layer flow, but the book will also be beneficial for graduate students.