WorldWideScience

Sample records for stretch angle measurement

  1. Contact angles on stretched solids

    Science.gov (United States)

    Mensink, Liz; Snoeijer, Jacco

    2017-11-01

    The surface energy of solid interfaces plays a central role in wetting, as they dictate the liquid contact angle. Yet, it has been challenging to measure the solid surface energies independently, without making use of Young's law. Here we present Molecular Dynamics (MD) simulations by which we measure the surface properties for all interfaces, including the solids. We observe change in contact angles upon stretching the solid substrates, showing that the surface energy is actually strain dependent. This is clear evidence of the so-called Shuttleworth effect, making it necessary to distinguish surface energy from surface tension. We discuss how this effect gives rise to a new class of elasto-capillary phenomena. ERC Consolidator Grant No. 616918.

  2. Acute effects of constant torque and constant angle stretching on the muscle and tendon tissue properties.

    Science.gov (United States)

    Konrad, Andreas; Budini, Francesco; Tilp, Markus

    2017-08-01

    Static stretching induces acute structural changes of the muscle-tendon unit (MTU) that are related to the intensity or duration of stretching. It has been reported that stretching with a constant torque (CT) leads to greater joint range of motion changes than stretching with a constant angle (CA). Whether or not this difference is due to different structural changes of the MTUs of the lower leg and ankle plantar flexors is not known. Therefore, the purpose of this study was to compare the acute effects of single CA and CT stretching on various muscle and tendon mechanical properties. Seventeen young, healthy volunteers were tested on two separate days using either CT or CA stretching (4 × 30 s each). Before and after stretching, dorsiflexion range of motion (RoM), passive resistive torque (PRT), and maximum voluntary contraction (MVC) were measured with a dynamometer. Ultrasonography of the medial gastrocnemius (GM) muscle-tendon junction (MTJ) displacement allowed us to determine the length changes in the tendon and muscle, respectively, and hence to calculate their stiffness. Maximum dorsiflexion increased while PRT, muscle-tendon stiffness, and muscle stiffness decreased following both CA and CT stretching. There was a greater increase in RoM following CT stretching compared to CA stretching. Moreover, the decline in PRT was greater during CT stretching compared to CA stretching. As expected, several functional adaptations (RoM, PRT) were different between CT and CA stretching due to the higher intensity of CT stretching. However, no structural differences in the adaptations to the stretching modalities could be detected. We suggest that the different functional adaptations between CA and CT stretching are the consequence of different adaptations in the perception of stretch and pain.

  3. Acute effect of constant torque and angle stretching on range of motion, muscle passive properties, and stretch discomfort perception.

    Science.gov (United States)

    Cabido, Christian E T; Bergamini, Juliana C; Andrade, André G P; Lima, Fernando V; Menzel, Hans J; Chagas, Mauro H

    2014-04-01

    The aim of the present study was to compare the acute effects of constant torque (CT) and constant angle (CA) stretching exercises on the maximum range of motion (ROMmax), passive stiffness (PS), and ROM corresponding to the first sensation of tightness in the posterior thigh (FSTROM). Twenty-three sedentary men (age, 19-33 years) went through 1 familiarization session and afterward proceeded randomly to both CA and CT treatment stretching conditions, on separate days. An isokinetic dynamometer was used to analyze hamstring muscles during passive knee extension. The subjects performed 4 stretches of 30 seconds each with a 15-second interval between them. In the CA stretching, the subject reached a certain ROM (95% of ROMmax), and the angle was kept constant. However, in the CT stretching exercise, the volunteer reached a certain resistance torque (corresponding to 95% of ROMmax) and it was kept constant. The results showed an increase in ROMmax for both CA and CT (p stretch may be explained by greater changes in the biomechanical properties of the muscle-tendon unit and stretch tolerance, as indicated by the results of PS and FSTROM.

  4. The time course of the effects of constant-angle and constant-torque stretching on the muscle-tendon unit.

    Science.gov (United States)

    Herda, T J; Costa, P B; Walter, A A; Ryan, E D; Cramer, J T

    2014-02-01

    The purpose of the present study was to examine the time course of passive range of motion (PROM), passive torque (PASTQ), and musculo-tendinous stiffness (MTS) responses during constant-angle (CA) and constant-torque (CT) stretching of the leg flexors. Eleven healthy men [mean ± standard deviation (SD): age = 21.5 ± 2.3 years] performed 16 30-s bouts of CA and CT stretching of the leg flexors. PROM, PASTQ , and MTS were measured during stretches 1, 2, 4, 8, and 16. For PROM and PASTQ , there were no differences between CA and CT stretching treatments (P > 0.05); however, there were stretch-related differences (P stretching (collapsed across CA and CT stretching) with additional increases up to 8 min of stretching. PASTQ decreased following one 30-s bout of stretching (collapsed across CA and CT stretching) and continued to decrease up to 4 min of stretching. In contrast, only the CT stretching treatment resulted in changes to MTS (P stretching, with subsequent decreases in MTS up to 6 min of stretching. These results suggested that CT stretching may be more appropriate than a stretch held at a constant muscle length for decreasing MTS. © 2012 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. The effects of three types of piriform muscle stretching on muscle thickness and the medial rotation angle of the coxal articulation.

    Science.gov (United States)

    Park, Jun Chul; Shim, Jae Hun; Chung, Sin Ho

    2017-10-01

    [Purpose] The purpose of this study was three kinds of stretching methods and measured the change in the thickness of the piriform muscle in real time using ultrasound images and compared the medial rotation angle of the coxal articulation. [Subjects and Methods] Fourty-five subjects who attend B University in Cheonan, divided into three groups. The subjects in these three groups then underwent stretching with flexion of coxal articulation over 90°, stretching with flexion of coxal articulation under 90°, and muscle energy technique (MET) application. The main outcome measures were piriform muscle thickness and medial rotation angle of the coxal articulation. [Results] All groups showed decreased piriform muscle thickness and increased medial rotation angle of the coxal articulation. [Conclusion] Based on the above results, three kinds of piriform muscle stretching methods are effective of reduce muscle thickness and increase medial rotation angle of the coxal articulation.

  6. No evidence hip joint angle modulates intrinsically produced stretch reflex in human hopping.

    Science.gov (United States)

    Gibson, W; Campbell, A; Allison, G

    2013-09-01

    Motor output in activities such as walking and hopping is suggested to be mediated neurally by purported stretch reflex augmentation of muscle output. Reflex EMG activity during these tasks has been frequently investigated in the soleus muscle; with alterations in reflex amplitude being associated with changes in hip joint angle/phase of the gait cycle. Previous work has focussed on reflex activity induced by an artificial perturbation or by induction of H-reflexes. As such, it is currently unknown if stretch reflex activity induced intrinsically (as part of the task) is modulated by changes in hip joint angle. This study investigated whether hip joint angle modulated reflex EMG 'burst' activity during a hopping task performed on a custom-built partially reclined sleigh. Ten subjects participated; EMG and kinematic data (VICON motor capture system) was collected for each hop cycle. Participants completed 5 sets of 30s of self-paced hopping in (1) hip neutral and (2) hip 60° flexion conditions. There was no difference in EMG 'burst' activity or in sagittal plane kinematics (knee/ankle) in the hopping task between the two conditions. The results indicate that during a functional task such as hopping, changes in hip angle do not alter the stretch reflex-like activity associated with landing. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Equivalence of the final stretch and crack tip opening angle criteria for plane strain crack growth

    International Nuclear Information System (INIS)

    Smith, E.

    1981-01-01

    The equivalence of the final stretch and crack tip opening angle criteria, as applied to the Dugdale-Bilby-Cottrell-Swinden type model for Mode I plane strain crack growth, is demonstrated. This equivalence is independent of the plastic zone size, geometrical parameters, and the stress distribution within the fracture process zone, if the yield stress is sufficiently low and the crack growth resistance is sufficiently high. The results therefore provide further support for the viability of crack tip opening angle as a crack growth chracterizing parameter. 7 refs

  8. A Hitch Angle Measurement Device

    National Research Council Canada - National Science Library

    Von

    1998-01-01

    As part of a project to demonstrate that an unmanned ground vehicle (UGV) could remotely back up with a trailer, a simple proof-of-concept device was designed to measure the angle between a high-mobility multipurpose wheeled vehicle (HMMWV...

  9. Measurement of Reversed Extension Flow using the Filament Stretch Rheometer

    DEFF Research Database (Denmark)

    Rasmussen, Henrik K.; Skov, Anne Ladegaard; Nielsen, Jens Kromann

    2008-01-01

    ). The latter is applicable on highly extensible elastomers, whereas in LAOE measurements on liquids (including polymer melts) the LAOE flow needs to be imposed upon a constant strain rate uniaxial elongation. The used Filament Stretching Rheometer allows measurements on polymeric fluids (including polymeric...... melts) from room temperature until 200 degrees C....

  10. Measurement of skin stretch using digital image speckle correlation.

    Science.gov (United States)

    Staloff, Isabelle Afriat; Rafailovitch, Miriam

    2008-08-01

    The surface of the skin is covered by intersecting grooves and ridges which produce characteristic skin surface patterns. It has been suggested that these folds provide a reserve of tissue, allowing the skin to stretch during normal muscle movements. More so, skin is anisotropic and under constant tension. Therefore, to characterize skin displacement following stretch, a discrete, description of the in-plane skin displacement during stretch is of interest. We introduce the use of digital image speckle correlation (DISC), a non-contact technique, to map, in two dimensions, the surface deformation patterns resulting from skin stretching. We analyze skin stretch under the mechanical action of a film former applied on a defined square surface on the back of the hand. This is achieved by taking a series of images, during the drying process of the film former. The images are then analyzed with DISC to create vector diagram and projection maps, from which we can obtain spatially resolved information regarding the skin displacement. We first show that DISC can provide spatially resolved information at any time point during the drying process: areas of de-wetting, wetting were identified using projection maps; we then extracted the value of the drying time. Finally using a vector map, we show the orientation of the skin displacement during stretching and calculated the magnitude of the total stretch. We have shown previously that DISC can be used to determine skin mechanical properties and muscular activity. We show here that DISC, as a non-contact technique, can map, in two dimensions, the surface deformation patterns of a polymer solution on a substrate at any time point during the drying process. DISC analysis generates for each speckle of the sample analyzed, the orientation and magnitude of displacement of the polymer solution. DISC can map in two dimensions the deformation undergone by the substrate and skin stretch is measured in this particular case. We therefore

  11. Measurement of the angle gamma

    International Nuclear Information System (INIS)

    Aleksan, R.; Sphicas, P.; Massachusetts Inst. of Tech., Cambridge, MA

    1993-12-01

    The angle γ as defined in the Wolfenstein approximation is not completely out of reach of current or proposed dedicated B experiments. This work represents but a first step in the direction of extracting the third angle of the unitarity triangle by study the feasibility of using new decay modes in a hadronic machine. (A.B.). 11 refs., 1 fig., 7 tabs

  12. Contact Angle Measurement in Lattice Boltzmann Method

    OpenAIRE

    Wen, Binghai; Huang, Bingfang; Qin, Zhangrong; Wang, Chunlei; Zhang, Chaoying

    2017-01-01

    Contact angle is an essential characteristic in wetting, capillarity and moving contact line; however, although contact angle phenomena are effectively simulated, an accurate and real-time measurement for contact angle has not been well studied in computational fluid dynamics, especially in dynamic environments. Here, we design a geometry-based mesoscopic scheme to onthesport measure the contact angle in the lattice Boltzmann method. The computational results without gravity effect are in exc...

  13. Measurement of the angle gamma

    International Nuclear Information System (INIS)

    Aleksan, R.; Kayser, B.; Sphicas, P.

    1993-01-01

    The angle γ at least as defined in the Wolfenstein approximation is not completely out of reach of current or proposed dedicated B experiments. This conclusion certainly depends crucially on the assumed trigger and tagging efficiencies and also on the expected backgrounds. The work summarized here represents but a first step in the direction of extracting the third angle of the unitarity triangle. The theoretical developments during the workshop have resulted in a clearer understanding of the quantities studied. On the experimental side, new decay modes (i.e. in addition to the traditional ρK s decay) have resulted in expections for observing CP violation in B s decays which are not unreasonable. It is conceivable that a dedicated B experiment can probe a fundamental aspect of the Standard Model, the CKM matrix, in multiple ways. In the process, new physics can appear anywhere along the line

  14. A Novel Stretch Sensor to Measure Venous Hemodynamics

    Directory of Open Access Journals (Sweden)

    Syrpailyne Wankhar

    2018-07-01

    Full Text Available Chronic venous insufficiency is a debilitating condition causing varicose veins and venous ulcers. The pathophysiology includes reflux and venous obstruction. The diagnosis is often made by clinical examination and confirmed by Venous Doppler studies. Plethysmography helps to quantitatively examine the reflux and diagnose the burden of deep venous pathology to better understand venous hemodynamics, which is not elicited by venous duplex examination alone. However, most of these tests are qualitative, expensive, and not easily available. In this paper, we demonstrate the potential use of a novel stretch sensor in the assessment of venous hemodynamics during different maneuvers by measuring the change in calf circumference. We designed the stretch sensor by using semiconductor strain gauges pasted onto a small metal bar to form a load cell. The elastic and Velcro material attached to the load cell form a belt. It converts the change in limb circumference to a proportional tension (force of distension when placed around the calf muscle. We recorded the change in limb circumference from arrays of stretch sensors by using an in-house data acquisition system. We calculated the venous volume (VV, venous filling index (VFI, ejection fraction (EF and residual venous volume (RVV on two normal subjects and on two patients to assess venous hemodynamics. The values (VV > 60 ml, VFI 60%, RVV 2ml/s, EF 35% in patients were comparable to those reported in the literature.

  15. Velocities and joint angles during double backward stretched salto performed with stable landing and in combination with tempo salto

    Directory of Open Access Journals (Sweden)

    J Sadowski

    2009-07-01

    Full Text Available The aim of the study was to compare the values of velocity an joint angles obtained during performance of double salto backward stretched with a stable landing and its combination with salto tempo. Seven top level acrobats (track jumpers participated in study. Mean values of body height, mass and age had a value of: 170 cm ± 4.0 cm, 72.4 kg ± 3.6 kg, 20.4±1.7 years, respectively. The studies were conducted on a standard acrobatic path (type PTS 2000. Two digital video cameras (240 Hz and APAS 2000 (Ariel Dynamics Inc. were used during studies. Markers were placed in ankle, knee, hip, arm, elbow and wrist joints. All marker positions were tracked and reconstructed using the APAS system. Two sequences with the following elements were analysed: round-off - double salto backward stretched (A and round-off - double salto backward stretched - tempo salto (B. The highest differences between the key components describing performance of presented exercises exist for joint angles during launching and landing position, and resultant velocities during touchdown. In version A the athlete created prerequisites for “gliding” double salto backward stretched by means of the body segments motions, whereas in version B he executes faster motions of the body segments accentuating his actions upon backward rotation of the body. During the final phase of double salto backward stretched in combination with tempo salto the athlete performed courbette “under himself” (almost straight feet are placed in front of vertical line, pushes directly back and in 0,1 s executes stable arm swing upward-backward to tempo salto.

  16. Prompt angle measurements with large aperture scintillators

    International Nuclear Information System (INIS)

    Schneid, E.J.

    1976-01-01

    A technique is described for the measurement of particle trajectory angle through a pair of scintillator tiles. Signal processing provides an analog signal proportional to the tangent of the angle between the particle trajectory and the axis normal to the pair of tiles. This signal is readily available for use in fast decision logic if required: i.e., sorting energy loss signals from the tiles according to geometrical factors or restricting the events to be analyzed on the basis of incident direction

  17. Angles between Curves in Metric Measure Spaces

    Directory of Open Access Journals (Sweden)

    Han Bang-Xian

    2017-09-01

    Full Text Available The goal of the paper is to study the angle between two curves in the framework of metric (and metric measure spaces. More precisely, we give a new notion of angle between two curves in a metric space. Such a notion has a natural interplay with optimal transportation and is particularly well suited for metric measure spaces satisfying the curvature-dimension condition. Indeed one of the main results is the validity of the cosine formula on RCD*(K, N metric measure spaces. As a consequence, the new introduced notions are compatible with the corresponding classical ones for Riemannian manifolds, Ricci limit spaces and Alexandrov spaces.

  18. Spasticity Measurement Based on Tonic Stretch Reflex Threshold in Children with Cerebral Palsy Using the PediAnklebot

    Directory of Open Access Journals (Sweden)

    Marco Germanotta

    2017-05-01

    Full Text Available Nowadays, objective measures are becoming prominent in spasticity assessment, to overcome limitations of clinical scales. Among others, Tonic Stretch Reflex Threshold (TSRT showed promising results. Previous studies demonstrated the validity and reliability of TSRT in spasticity assessment at elbow and ankle joints in adults. Purposes of the present study were to assess: (i the feasibility of measuring TSRT to evaluate spasticity at the ankle joint in children with Cerebral Palsy (CP, and (ii the correlation between objective measures and clinical scores. A mechatronic device, the pediAnklebot, was used to impose 50 passive stretches to the ankle of 10 children with CP and 3 healthy children, to elicit muscles response at 5 different velocities. Surface electromyography, angles, and angular velocities were recorded to compute dynamic stretch reflex threshold; TSRT was computed with a linear regression through angles and angular velocities. TSRTs for the most affected side of children with CP resulted into the biomechanical range (95.7 ± 12.9° and 86.7 ± 17.4° for Medial and Lateral Gastrocnemius, and 75.9 ± 12.5° for Tibialis Anterior. In three patients, the stretch reflex was not elicited in the less affected side. TSRTs were outside the biomechanical range in healthy children. However, no correlation was found between clinical scores and TSRT values. Here, we demonstrated the capability of TSRT to discriminate between spastic and non-spastic muscles, while no significant outcomes were found for the dorsiflexor muscle.

  19. Precision measurements of the CKM angle gamma

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The level of CP-violation permitted within the Standard Model cannot account for the matter dominated universe in which we live. Within the Standard Model the CKM matrix, which describes the quark couplings, is expected to be unitary. By making precise measurements of the CKM matrix parameters new physics models can be constrained, or with sufficient precision the effects of physics beyond the standard model might become apparent. The CKM angle gamma is the least well known angle of the unitarity triangle. It is the only angle easily accessible at tree-level, and furthermore has almost no theoretical uncertainties. Therefore it provides an invaluable Standard Model benchmark against which other new physics sensitive tests of the CP-violation can be made. I will discuss recent measurements of gamma using the the Run 1 LHCb dataset, which improve our knowledge of this key parameter.

  20. Acute Effects of Constant-Angle and Constant-Torque Static Stretching on Passive Stiffness of the Posterior Hip and Thigh Muscles in Healthy, Young and Old Men.

    Science.gov (United States)

    Palmer, Ty B

    2017-07-24

    The purpose of this study was to examine the acute effects of constant-angle (CA) and constant-torque (CT) static stretching on passive stiffness of the posterior hip and thigh muscles in healthy, young and old men. Fifteen young (25±3 years) and 15 old (71±4 years) men underwent 2 passive straight-leg raise (SLR) assessments before and after 8 min of CA and CT stretching using an isokinetic dynamometer. Passive stiffness was calculated during each SLR as the slope of the final 10% of the angle-torque curve. The results indicated that passive stiffness decreased from pre- to post-stretching for both treatments (P≤0.001-0.002) and age groups (P≤0.001-0.046); however, greater decreases were observed for the CT than the CA stretching (P=0.045) and for the old than the young men (Pstretching. These findings suggest that holding stretches at a constant tension may be a more effective strategy for altering passive stiffness of the posterior hip and thigh muscles. The greater stretch-induced stiffness decreases observed for the older men provide support that acute static stretching may be particularly effective for reducing stiffness in the elderly. As a result, it may be advantageous to prescribe static stretching prior to exercise for older adults, as this may be used to elicit substantial declines in passive stiffness, which could help reduce the risk of subsequent injury events in this population.

  1. Contact angle measurement with a smartphone

    Science.gov (United States)

    Chen, H.; Muros-Cobos, Jesus L.; Amirfazli, A.

    2018-03-01

    In this study, a smartphone-based contact angle measurement instrument was developed. Compared with the traditional measurement instruments, this instrument has the advantage of simplicity, compact size, and portability. An automatic contact point detection algorithm was developed to allow the instrument to correctly detect the drop contact points. Two different contact angle calculation methods, Young-Laplace and polynomial fitting methods, were implemented in this instrument. The performance of this instrument was tested first with ideal synthetic drop profiles. It was shown that the accuracy of the new system with ideal synthetic drop profiles can reach 0.01% with both Young-Laplace and polynomial fitting methods. Conducting experiments to measure both static and dynamic (advancing and receding) contact angles with the developed instrument, we found that the smartphone-based instrument can provide accurate and practical measurement results as the traditional commercial instruments. The successful demonstration of use of a smartphone (mobile phone) to conduct contact angle measurement is a significant advancement in the field as it breaks the dominate mold of use of a computer and a bench bound setup for such systems since their appearance in 1980s.

  2. Contact angle measurement with a smartphone.

    Science.gov (United States)

    Chen, H; Muros-Cobos, Jesus L; Amirfazli, A

    2018-03-01

    In this study, a smartphone-based contact angle measurement instrument was developed. Compared with the traditional measurement instruments, this instrument has the advantage of simplicity, compact size, and portability. An automatic contact point detection algorithm was developed to allow the instrument to correctly detect the drop contact points. Two different contact angle calculation methods, Young-Laplace and polynomial fitting methods, were implemented in this instrument. The performance of this instrument was tested first with ideal synthetic drop profiles. It was shown that the accuracy of the new system with ideal synthetic drop profiles can reach 0.01% with both Young-Laplace and polynomial fitting methods. Conducting experiments to measure both static and dynamic (advancing and receding) contact angles with the developed instrument, we found that the smartphone-based instrument can provide accurate and practical measurement results as the traditional commercial instruments. The successful demonstration of use of a smartphone (mobile phone) to conduct contact angle measurement is a significant advancement in the field as it breaks the dominate mold of use of a computer and a bench bound setup for such systems since their appearance in 1980s.

  3. Measurement of the angle alpha at BABAR

    International Nuclear Information System (INIS)

    Perez, A.

    2009-01-01

    The authors present recent measurements of the CKM angle α using data collected by the BABAR detector at the PEP-II asymmetric-energy e + e - collider at the SLAC National Accelerator Laboratory, operating at the Υ(4S) resonance. They present constraints on α from B → ππ, B → ρρ and B → ρπ decays.

  4. Measurement of critical angle in SSTDs

    International Nuclear Information System (INIS)

    Marques, A.; Serra, D.A.B.

    1984-01-01

    A method of measurement of critical angles of etching is described, relying upon the distortion caused in the shape of the distribution in the number of etched tracks of ions emitted from a 'point-like' source. The method is applied to quartz and mica samples. (author)

  5. Measurement of the angle alpha at BABAR

    Energy Technology Data Exchange (ETDEWEB)

    Perez, A.; /Orsay, LAL

    2009-06-25

    The authors present recent measurements of the CKM angle {alpha} using data collected by the BABAR detector at the PEP-II asymmetric-energy e{sup +}e{sup -} collider at the SLAC National Accelerator Laboratory, operating at the {Upsilon}(4S) resonance. They present constraints on {alpha} from B {yields} {pi}{pi}, B {yields} {rho}{rho} and B {yields} {rho}{pi} decays.

  6. Contact angle measurement of natural materials.

    Science.gov (United States)

    Zhao, Tianyi; Jiang, Lei

    2018-01-01

    Contact angle (CA) is the most important parameter used to quantify the wettability of solid surfaces. In order to evaluate wettability performance, numerous methods have been developed to measure the CA of solid surfaces. Recent years have seen increased focus on the special wettability performance of various biological materials. Biomimetic wettability has become one of the most popular research fields, and novel CA measurements have been invented accordingly. In this protocol, we introduce several CA measurement techniques mainly based on the image capture method, which is commonly to investigate the wettability of natural materials. According to the solid/liquid/gas context, we classify CA measurements into three types: in air, under liquid, and air bubble measurements, and describe methods for each. The precise measurement of CA together with study of surface structure can reveal the mechanisms of special wettability, thus accelerating the investigation of biomaterials. Copyright © 2017. Published by Elsevier B.V.

  7. Measurement of Material Functions in Extensional Flow Using the Filament Stretch Rheometer

    DEFF Research Database (Denmark)

    Rasmussen, Henrik K.; Nielsen, Jens Kromann; Laille, Philippe

    2007-01-01

    The measurement of material functions other than startup and steady viscosity is demonstrated using the Filament Stretching Rheometer. This includes startup of uniaxial elongational flow (potentially until steady state) followed by stress relaxation, large amplitude oscillatory elongational flow ...... imposed upon a constant strain rate uni axial elongation and startup of uniaxial elongational flow followed by biaxial squeezing. The used Filament Stretching Rheometer allows measurements on polymeric fluids (including polymeric melts) from room temperatures until 200°C....

  8. Measurement of Angle Kappa Using Ultrasound Biomicroscopy and Corneal Topography.

    Science.gov (United States)

    Yeo, Joon Hyung; Moon, Nam Ju; Lee, Jeong Kyu

    2017-06-01

    To introduce a new convenient and accurate method to measure the angle kappa using ultrasound biomicroscopy (UBM) and corneal topography. Data from 42 eyes (13 males and 29 females) were analyzed in this study. The angle kappa was measured using Orbscan II and calculated with UBM and corneal topography. The angle kappa of the dominant eye was compared with measurements by Orbscan II. The mean patient age was 36.4 ± 13.8 years. The average angle kappa measured by Orbscan II was 3.98° ± 1.12°, while the average angle kappa calculated with UBM and corneal topography was 3.19° ± 1.15°. The difference in angle kappa measured by the two methods was statistically significant (p topography to calculate the angle kappa. This method is convenient to use and allows for measurement of the angle kappa without an expensive device. © 2017 The Korean Ophthalmological Society

  9. Regional stretch method to measure the elastic and hyperelastic properties of soft materials

    Science.gov (United States)

    Sheng, JunYuan; Guo, HaoYuan; Cao, YanPing; Feng, XiQiao

    2018-02-01

    Characterizing the mechanical properties of soft materials and biological tissues is of great significance for understanding their deformation behaviors. In this paper, a regional stretching method is proposed to measure the elastic and hyperelastic properties of a soft material with an adhesive surface or with the aid of glue. Theoretical and dimensional analyses are performed to investigate the regional stretch problem for soft materials that obey the neo-Hookean model, the Mooney-Rivlin model, or the Arruda-Boyce model. Finite element simulations are made to determine the expressions of the dimensionless functions that correlate the stretch response with the constitutive parameters. Thereby, an inverse approach is established to determine the elastic and hyperelastic properties of the tested materials. The regional stretch method is also compared to the indentation technique. Finally, experiments are performed to demonstrate the effectiveness of the proposed method.

  10. Effect of thoracic stretching, thoracic extension exercise and exercises for cervical and scapular posture on thoracic kyphosis angle and upper thoracic pain.

    Science.gov (United States)

    Yoo, Won-Gyu

    2013-11-01

    [Purpose] The purpose of this study was to investigate the effect of thoracic stretching, a thoracic extension exercise and exercises for cervical and scapular posture on thoracic kyphosis angle and upper thoracic pain. [Subject] A 36-year-old male, who complained of upper thoracic pain at the T1-4 level with forward head and round shoulders, was the subject. [Methods] He performed thoracic stretching (session 1), a thoracic extension exercise (session 2), and muscle exercises for cervical and scapular posture (session 3). [Results] The upper thoracic pressure pain threshold increased after session 1, session 2, and session 3. The thoracic kyphosis angle decreased after session 1, session 2, and session 3. [Conclusion] We suggest that intervention for thoracic pain or kyphotic thoracic correction should use not only an approach for extending the thoracic muscles, but also an approach treating muscles in the cervical and scapular region.

  11. Dilemma of gonial angle measurement: Panoramic radiograph or lateral cephalogram

    Energy Technology Data Exchange (ETDEWEB)

    Radhakrishnan, Pillai Devu; Varma, Nilambur Kovilakam Sapna; Ajith, Vallikat Velath [Dept. of Orthodontics, Amrita School of Dentistry, Kochi (India)

    2017-06-15

    The purpose of this study was to evaluate the accuracy of panoramic imaging in measuring the right and left gonial angles by comparing the measured angles with the angles determined using a lateral cephalogram of adult patients with class I malocclusion. The gonial angles of 50 class I malocclusion patients (25 males and 25 females; mean age: 23 years) were measured using both a lateral cephalogram and a panoramic radiograph. In the lateral cephalograms, the gonial angle was measured at the point of intersection of the ramus plane and the mandibular plane. In the panoramic radiographs, the gonial angle was measured by drawing a line tangent to the lower border of the mandible and another line tangent to the distal border of the ascending ramus and the condyle on both sides. The data obtained from both radiographs were statistically compared. No statistically significant difference was observed between the gonial angle measured using the lateral cephalograms and that determined using the panoramic radiographs. Further, there was no statistically significant difference in the measured gonial angle with respect to gender. The results also showed a statistically insignificant difference in the mean of the right and the left gonial angles measured using the panoramic radiographs. As the gonial angle measurements using panoramic radiographs and lateral cephalograms showed no statistically significant difference, panoramic radiography can be considered in orthodontics for measuring the gonial angle without any interference due to superimposed images.

  12. Controlled Terahertz Birefringence in Stretched Poly(lactic acid) Films Investigated by Terahertz Time-Domain Spectroscopy and Wide-Angle X-ray Scattering.

    Science.gov (United States)

    Iwasaki, Hotsumi; Nakamura, Madoka; Komatsubara, Nozomu; Okano, Makoto; Nakasako, Masayoshi; Sato, Harumi; Watanabe, Shinichi

    2017-07-20

    We report a correlation between the dielectric property and structure of stretched poly(lactic acid) (PLA) films, revealed by polarization-sensitive terahertz time-domain spectroscopy and two-dimensional (2D) wide-angle X-ray scattering (WAXS). The experiments evidence that the dielectric function of the PLA film becomes more anisotropic with increasing draw ratio (DR). This behavior is explained by a classical Lorentz oscillator model assuming polarization-dependent absorption. The birefringence can be systematically altered from 0 to 0.13 by controlling DR. The combination of terahertz spectroscopy and 2D WAXS measurement reveals a clear correlation between the birefringence in the terahertz frequency domain and the degree of orientation of the PLA molecular chains. These findings imply that the birefringence is a result of the orientation of the PLA chains with anisotropic macromolecular vibration modes. Because of a good controllability of the birefringence, polymer-based materials will provide an attractive materials system for phase retarders in the terahertz frequency range.

  13. Rotating Shaft Tilt Angle Measurement Using an Inclinometer

    OpenAIRE

    Luo Jun; Wang Zhiqian; Shen Chengwu; Wen Zhuoman; Liu Shaojin; Cai Sheng; Li Jianrong

    2015-01-01

    This paper describes a novel measurement method to accurately measure the rotating shaft tilt angle of rotating machine for alignment or compensation using a dual-axis inclinometer. A model of the rotating shaft tilt angle measurement is established using a dual-axis inclinometer based on the designed mechanical structure, and the calculation equation between the rotating shaft tilt angle and the inclinometer axes outputs is derived under the condition that the inclinometer axes are perpendic...

  14. Non-contact measurement of rotation angle with solo camera

    Science.gov (United States)

    Gan, Xiaochuan; Sun, Anbin; Ye, Xin; Ma, Liqun

    2015-02-01

    For the purpose to measure a rotation angle around the axis of an object, a non-contact rotation angle measurement method based on solo camera was promoted. The intrinsic parameters of camera were calibrated using chessboard on principle of plane calibration theory. The translation matrix and rotation matrix between the object coordinate and the camera coordinate were calculated according to the relationship between the corners' position on object and their coordinates on image. Then the rotation angle between the measured object and the camera could be resolved from the rotation matrix. A precise angle dividing table (PADT) was chosen as the reference to verify the angle measurement error of this method. Test results indicated that the rotation angle measurement error of this method did not exceed +/- 0.01 degree.

  15. The effect of stretch-and-flow voice therapy on measures of vocal function and handicap.

    Science.gov (United States)

    Watts, Christopher R; Diviney, Shelby S; Hamilton, Amy; Toles, Laura; Childs, Lesley; Mau, Ted

    2015-03-01

    To investigate the efficacy of stretch-and-flow voice therapy as a primary physiological treatment for patients with hyperfunctional voice disorders. Prospective case series. Participants with a diagnosis of primary muscle tension dysphonia or phonotraumatic lesions due to hyperfunctional vocal behaviors were included. Participants received stretch-and-flow voice therapy structured once weekly for 6 weeks. Outcome variables consisted of two physiologic measures (s/z ratio and maximum phonation time), an acoustic measure (cepstral peak prominence [CPP]), and a measure of vocal handicap (voice handicap index [VHI]). All measures were obtained at baseline before treatment and within 2 weeks posttreatment. The s/z ratio, maximum phonation time, sentence CPP, and VHI showed statistically significant (P < 0.05) improvement through therapy. Effect sizes reflecting the magnitude of change were large for s/z ratio and VHI (d = 1.25 and 1.96 respectively), and moderate for maximum phonation time and sentence CPP (d = 0.79 and 0.74, respectively). This study provides supporting evidence for preliminary efficacy of stretch-and-flow voice therapy in a small sample of patients. The treatment effect was large or moderate for multiple outcome measures. The data provide justification for larger, controlled clinical trials on the application of stretch-and-flow voice therapy in the treatment of hyperfunctional voice disorders. Copyright © 2015 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  16. Extensional viscosity for polymer melts measured in the filament stretching rheometer

    DEFF Research Database (Denmark)

    Bach, Anders; Rasmussen, Henrik K.; Hassager, Ole

    2003-01-01

    A new filament stretching rheometer has been constructed to measure the elongational viscosity of polymer melts at high temperatures. Two polymer melts, a LDPE and a LLDPE, were investigated with this rheometer. A constant elongational rate has been obtained by an iterative application of the Orr...

  17. Assessing muscle spasticity with Myotonometric and passive stretch measurements: validity of the Myotonometer

    Science.gov (United States)

    Li, Xiaoyan; Shin, Henry; Li, Sheng; Zhou, Ping

    2017-01-01

    Spasticity of the biceps brachii muscle was assessed using the modified Ashworth Scale (MAS), Myotonometry and repeated passive stretch techniques, respectively. Fourteen subjects with chronic hemiplegia participated in the study. Spasticity was quantified by muscle displacements and compliance from the Myotonometer measurements and resistive torques from the repeated passive stretch at velocities of 5 °/s and 100 °/s, respectively. Paired t-tests indicated a significant decrease of muscle displacement and compliance in the spastic muscles as compared to the contralateral side (muscle displacement: spastic: 4.84 ± 0.33 mm, contralateral: 6.02 ± 0.49 mm, p = 0.038; compliance: spastic: 1.79 ± 0.12 mm/N, contralateral: 2.21 ± 0.18 mm/kg, p = 0.048). In addition, passive stretch tests indicated a significant increase of total torque at the velocity of 100 °/s compared with that of 5 °/s (Tt5 = 2.82 ± 0.41 Nm, Tt100 = 6.28 ± 1.01 Nm, p stretch test and the Myotonometer measurements (r spasticity in stroke. PMID:28281581

  18. Contact angle and contact angle hysteresis measurements using the capillary bridge technique.

    Science.gov (United States)

    Restagno, Frédéric; Poulard, Christophe; Cohen, Céline; Vagharchakian, Laurianne; Léger, Liliane

    2009-09-15

    A new experimental technique is proposed to easily measure both advancing and receding contact angles of a liquid on a solid surface, with unprecedented accuracy. The technique is based on the analysis of the evolution of a capillary bridge formed between a liquid bath and a solid surface (which needs to be spherical) when the distance between the surface and the liquid bath is slowly varied. The feasibility of the technique is demonstrated using a low-energy perfluorinated surface with two different test liquids (water and hexadecane). A detailed description of both experimental procedures and computational modeling are given, allowing one to determine contact angle values. It is shown that the origin of the high accuracy of this technique relies on the fact that the contact angles are automatically averaged over the whole periphery of the contact. This method appears to be particularly adapted to the characterization of surfaces with very low contact angle hysteresis.

  19. Indoor Measurement of Angle Resolved Light Absorption by Black Silicon

    DEFF Research Database (Denmark)

    Amdemeskel, Mekbib Wubishet; Iandolo, Beniamino; Davidsen, Rasmus Schmidt

    2017-01-01

    Angle resolved optical spectroscopy of photovoltaic (PV) samples gives crucial information on PV panels under realistic working conditions. Here, we introduce measurements of angle resolved light absorption by PV cells, performed indoors using a collimated high radiance broadband light source. Our...... indoor method offers a significant simplification as compared to measurements by solar trackers. As a proof-of-concept demonstration, we show characterization of black silicon solar cells. The experimental results showed stable and reliable optical responses that makes our setup suitable for indoor......, angle resolved characterization of solar cells....

  20. Dynamical measurements of the Spin Hall angle

    OpenAIRE

    Talalaevskyy, Oleksandr

    2017-01-01

    Broad study of magnetic properties of YIG films is performed. This thesis covers the whole path from YIG sample growth to characterization of magnetization dynamics. In the sub-chapter 5.1, full magnetic characterization of the thin sputtered YIG films is given. A batch of YIG samples with thicknesses of 19, 29, 38 and 49 nanometer is grown by magnetron sputtering for the spin waves experiment. The thickness and the surface roughness are controlled by XRR and AFM measurements. The obtained sa...

  1. Measurement of the angle of superficial tension by images

    Science.gov (United States)

    Yanez M., Javier; Alonso R., Sergio

    2006-02-01

    When a liquid is deposited on a surface, this one form a certain angle with respect to the surface, where depending on its value, it will conclude that so hard it is his adhesion with the surface. By means of the analysis of images we looked for to measure this angle of superficial tension. In order to make this measurement, we propose a technique by means of projective transformations and one method of regression to estimation parameters to conic fitting.

  2. Analysis of ultra-relativistic charged particle beam and stretched wire measurement interactions with cylindrically symmetric structures

    International Nuclear Information System (INIS)

    Deibele, C.E.

    1996-01-01

    The beam impedance and wakefield are quantities which describe the stability of charged particles in their trajectory within an accelerator. The stretched wire measurement technique is a method which estimates the beam impedance and wakefield. Definitions for the beam impedance, the wakefield, and the stretched wire measurement are presented. A pillbox resonator with circular beampipes is studied for its relatively simple profile and mode structure. Theoretical predictions and measurement data are presented for the interaction of various charged particle beams and center conductor geometries between the cavity and beampipe. Time domain predictions for the stretched wire measurement and wakefield are presented and are shown to be a linear interaction

  3. Measurement of the CKM angle $\\gamma$ at LHCb

    CERN Multimedia

    Gersabeck, M

    2009-01-01

    The precise measurement of the CKM unitarity triangle angle $\\gamma$ is a key goal of the LHCb physics programme. The uncertainty on $\\gamma$, the currently least-well known of the three angles, will be reduced dramatically. Complementary measurements will be made in tree-level processes, and modes where loop diagrams play an important role. The tree-level measurements will cover time-integrated as well as time- dependent measurements in both the $B^0_d$ and the $B^0_s$ sectors. The ensemble of these measurements will provide a powerful test of whether new physics phases contribute to heavy-flavour transitions.

  4. An Intelligent Computerized Stretch Reflex Measurement System For Clinical And Investigative Neurology

    Science.gov (United States)

    Flanagan, P. M.; Chutkow, J. G.; Riggs, M. T.; Cristiano, V. D.

    1987-05-01

    We describe the design of a reliable, user-friendly preprototype system for quantifying the tendon stretch reflexes in humans and large mammals. A hand-held, instrumented reflex gun, the impactor of which contains a single force sensor, interfaces with a computer. The resulting test system can deliver sequences of reproducible stimuli at graded intensities and adjustable durations to a muscle's tendon ("tendon taps"), measure the impacting force of each tap, and record the subsequent reflex muscle contraction from the same tendon -- all automatically. The parameters of the reflex muscle contraction include latency; mechanical threshold; and peak time, peak magnitude, and settling time. The results of clinical tests presented in this paper illustrate the system's potential usefulness in detecting neurologic dysfunction affecting the tendon stretch reflexes, in documenting the course of neurologic illnesses and their response to therapy, and in clinical and laboratory neurologic research.

  5. Normal Foot and Ankle Radiographic Angles, Measurements, and Reference Points.

    Science.gov (United States)

    Lamm, Bradley M; Stasko, Paul A; Gesheff, Martin G; Bhave, Anil

    2016-01-01

    The limb deformity-based principles originate from a standard set of lower extremity radiographic angles and reference points. Objective radiographic measures are the building blocks for surgical planning. Critical preoperative planning and intraoperative and postoperative evaluation of radiographs are essential for proper deformity planning and correction of all foot and ankle cases. A total of 33 angles and reference points were measured on 24 healthy feet. The radiographic measurements were performed on standard weightbearing anteroposterior, lateral, and axial views of the right foot. A total of 4 measurements were made from the axial view, 12 from the lateral view, and 17 from the anteroposterior view. All angles were measured by both senior authors twice, independent of each other. The radiographic angles and measurements presented in the present study demonstrate a comprehensive and useful set of standard angles, measures, and reference points that can be used in clinical and perioperative evaluation of the foot and ankle. The standard radiographic measures presented in the present study provide the foundation for understanding the osseous foot and ankle position in a normal population. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  6. Effects on hamstring muscle extensibility, muscle activity, and balance of different stretching techniques.

    Science.gov (United States)

    Lim, Kyoung-Il; Nam, Hyung-Chun; Jung, Kyoung-Sim

    2014-02-01

    [Purpose] The purpose of this study was to investigate the effects of two different stretching techniques on range of motion (ROM), muscle activation, and balance. [Subjects] For the present study, 48 adults with hamstring muscle tightness were recruited and randomly divided into three groups: a static stretching group (n=16), a PNF stretching group (n=16), a control group (n=16). [Methods] Both of the stretching techniques were applied to the hamstring once. Active knee extension angle, muscle activation during maximum voluntary isometric contraction (MVC), and static balance were measured before and after the application of each stretching technique. [Results] Both the static stretching and the PNF stretching groups showed significant increases in knee extension angle compared to the control group. However, there were no significant differences in muscle activation or balance between the groups. [Conclusion] Static stretching and PNF stretching techniques improved ROM without decrease in muscle activation, but neither of them exerted statistically significant effects on balance.

  7. Rotating Shaft Tilt Angle Measurement Using an Inclinometer

    Science.gov (United States)

    Luo, Jun; Wang, Zhiqian; Shen, Chengwu; Wen, Zhuoman; Liu, Shaojin; Cai, Sheng; Li, Jianrong

    2015-10-01

    This paper describes a novel measurement method to accurately measure the rotating shaft tilt angle of rotating machine for alignment or compensation using a dual-axis inclinometer. A model of the rotating shaft tilt angle measurement is established using a dual-axis inclinometer based on the designed mechanical structure, and the calculation equation between the rotating shaft tilt angle and the inclinometer axes outputs is derived under the condition that the inclinometer axes are perpendicular to the rotating shaft. The reversal measurement method is applied to decrease the effect of inclinometer drifts caused by temperature, to eliminate inclinometer and rotating shaft mechanical error and inclinometer systematic error to attain high measurement accuracy. The uncertainty estimation shows that the accuracy of rotating shaft tilt angle measurement depends mainly on the inclinometer uncertainty and its uncertainty is almost the same as the inclinometer uncertainty in the simulation. The experimental results indicate that measurement time is 4 seconds; the range of rotating shaft tilt angle is 0.002° and its standard deviation is 0.0006° using NS-5/P2 inclinometer, whose precision and resolution are ±0.01° and 0.0005°, respectively.

  8. Rotating Shaft Tilt Angle Measurement Using an Inclinometer

    Directory of Open Access Journals (Sweden)

    Luo Jun

    2015-10-01

    Full Text Available This paper describes a novel measurement method to accurately measure the rotating shaft tilt angle of rotating machine for alignment or compensation using a dual-axis inclinometer. A model of the rotating shaft tilt angle measurement is established using a dual-axis inclinometer based on the designed mechanical structure, and the calculation equation between the rotating shaft tilt angle and the inclinometer axes outputs is derived under the condition that the inclinometer axes are perpendicular to the rotating shaft. The reversal measurement method is applied to decrease the effect of inclinometer drifts caused by temperature, to eliminate inclinometer and rotating shaft mechanical error and inclinometer systematic error to attain high measurement accuracy. The uncertainty estimation shows that the accuracy of rotating shaft tilt angle measurement depends mainly on the inclinometer uncertainty and its uncertainty is almost the same as the inclinometer uncertainty in the simulation. The experimental results indicate that measurement time is 4 seconds; the range of rotating shaft tilt angle is 0.002° and its standard deviation is 0.0006° using NS-5/P2 inclinometer, whose precision and resolution are ±0.01° and 0.0005°, respectively.

  9. Application of image analysis method for measurement of fabric stretch deformation

    Science.gov (United States)

    Jariyapunya, N.; Baheti, S.

    2017-10-01

    For design of comfortable knitted fabric garments, it is necessary to know their distribution of elastic properties under the deformation. The standard tensile testing methods are not sufficient to explain distribution of these stretch properties. However, digital image analysis technique adjusted to the standard tensile test method can perform detailed study on distribution of local elastic deformation properties. The aim of this research was to develop a new method for the measurement of the local deformations between dots of stretch knitted fabrics during tensile testing. The image analysis approach was selected to calculate the gradient deformation tensor under the extension ranging from 10 %, 20%, 30% and 40 % in respective course, wale and bias directions. Moreover, this method was applied to know the deformation distribution on cylindrical surface as well by stretching the fabric under different extension. Subsequently the analysis of the deformation distribution by image processing system in MATLAB was carried out to determine the compression between cylindrical model and specimens. The results of image analysis were compared with ASTM D4964-96 standard and the actual obtained experimental results.

  10. Alpha emitters activity measurement using the defined solid angle method

    International Nuclear Information System (INIS)

    Blanchis, P.

    1983-01-01

    The defined solid angle counting method can reach a very high accuracy, specially for heavy ions as alpha particles emitted by a radioactive source. The activity measurement of such sources with a relative uncertainty of the order of 0.01% is investigated. Such an accuracy is available only under suitable conditions: the radiation emitted by the source must be isotropic and all the particles emitted in the effective solid angle must be detected. The efficiency detection value must be equal to unity and phenomena such as absorption or scattering must be null. It is shown that corrections often become necessary. All parameters which can influence the measurements are studied [fr

  11. Stretch Reflex as a Simple Measure to Evaluate the Efficacy of Potential Flight Countermeasures Using the Bed Rest Environment

    Science.gov (United States)

    Cerisano, J. M.; Reschke, M. F.; Kofman, I. S.; Fisher, E. A.; Harm, D. L.

    2010-01-01

    INTRODUCTION: Spaceflight is acknowledged to have significant effects on the major postural muscles. However, it has been difficult to separate the effects of ascending somatosensory changes caused by the unloading of these muscles during flight from changes in sensorimotor function caused by a descending vestibulo-cerebellar response to microgravity. It is hypothesized that bed rest is an adequate model to investigate postural muscle unloading given that spaceflight and bed rest may produce similar results in both nerve axon and muscle tissue. METHODS: To investigate this hypothesis, stretch reflexes were measured on 18 subjects who spent 60 to 90 days in continuous 6 head-down bed rest. Using a motorized system capable of rotating the foot around the ankle joint (dorsiflexion) through an angle of 10 deg at a peak velocity of approximately 250 deg/sec, a stretch reflex was recorded from the subject's left triceps surae muscle group. Using surface electromyography, about 300 reflex responses were obtained and ensemble-averaged on 3 separate days before bed rest, 3 to 4 times in bed, and 3 times after bed rest. The averaged responses for each test day were examined for reflex latency and conduction velocity (CV) across gender and compared with spaceflight data. RESULTS: Although no gender differences were found, bed rest induced changes in reflex latency and CV similar to the ones observed during spaceflight. Also, a relationship between CV and loss of muscle strength in the lower leg was observed for most bed rest subjects. CONCLUSION: Even though bed rest (limb unloading) alone may not mimic all of the synaptic and muscle tissue loss that is observed as a result of spaceflight, it can serve as a working analog of flight for the evaluation of potential countermeasures that may be beneficial in mitigating unwanted changes in the major postural muscles that are observed post flight.

  12. Hamstring Stiffness Returns More Rapidly After Static Stretching Than Range of Motion, Stretch Tolerance, and Isometric Peak Torque.

    Science.gov (United States)

    Hatano, Genki; Suzuki, Shigeyuki; Matsuo, Shingo; Kataura, Satoshi; Yokoi, Kazuaki; Fukaya, Taizan; Fujiwara, Mitsuhiro; Asai, Yuji; Iwata, Masahiro

    2017-12-18

    Hamstring injuries are common, and lack of hamstring flexibility may predispose to injury. Static stretching increases range of motion (ROM) but also results in reduced muscle strength after stretching. The effects of stretching on the hamstring muscles and the duration of these effects remain unclear. To determine the effects of static stretching on the hamstrings and the duration of these effects. Randomized crossover study. University laboratory. Twenty-four healthy volunteers. We measured the torque-angle relationship (ROM, passive torque (PT) at the onset of pain, and passive stiffness) and isometric muscle force using an isokinetic dynamometer. After a 60-minute rest, the ROM of the dynamometer was set at maximum tolerable intensity; this position was maintained for 300 seconds while static passive torque (SPT) was measured continuously. We remeasured the torque-angle relationship and isometric muscle force after rest periods of 10, 20, and 30 minutes. Change in SPT during stretching; changes in ROM, PT at the onset of pain, passive stiffness, and isometric muscle force before stretching compared with 10, 20, and 30 minutes after stretching. SPT decreased significantly during stretching. Passive stiffness decreased significantly 10 and 20 minutes after stretching, but there was no significant pre- vs. post-stretching difference after 30 minutes. PT at the onset of pain and ROM increased significantly after stretching at all rest intervals, while isometric muscle force decreased significantly after all rest intervals. The effect of static stretching on passive stiffness of the hamstrings was not maintained as long as the changes in ROM, stretch tolerance, and isometric muscle force. Therefore, frequent stretching is necessary to improve the viscoelasticity of the muscle-tendon unit. Muscle force was decreased for 30 minutes after stretching; this should be considered prior to activities requiring maximal muscle strength.

  13. Measurement of the Position Angle and Separation of HJ 1924

    Science.gov (United States)

    Badami, Umar Ahmed; Tock, Kalée.; Carpenter, Steve; Kruger, Kurt; Freed, Rachel; Genet, Russell

    2018-01-01

    The position angle and separation of the binary HJ 1924 have been measured and noted in 10 publications since John Herschel's initial observation in 1828. Measurement techniques have improved in both precision and accuracy since that time. Although Herschel's initial measurement was slightly different, the position angle and separation of these stars have remained relatively constant for the past 122 years. The system was observed using the Skynet Robotic Telescope Network. AstroImageJ software was used to contribute a new data point. Our measurement of 8.12" ± 0.0127 (1 ± SEM), 225.1o ± 0.0298 (1 ± SEM),was in agreement with the 10 most recent published measurements, but not the initial one, implying that Herschel's measurement may have been inaccurate. While these stars appear to exhibit similar proper motion, and may therefore share a common origin, they are unlikely to be gravitationally bound.

  14. Comparison of isoplanatic angles derived from thermosonde and optical measurements

    Science.gov (United States)

    Murphy, Edmund A.; Roadcap, John R.

    1998-11-01

    A comparison of isoplanatic angles derived from balloon- borne in-situ measurements of the index of refraction structure constant profiles and remote optical measurements of stellar intensity fluctuations using an isoplanometer is shown. Concurrent data taken over a six day period in the spring of 1986 show reasonably good agreement between the methods considering normal atmospheric variability. Possible reasons for differences between individual measurements are discussed.

  15. Drop shape visualization and contact angle measurement on curved surfaces.

    Science.gov (United States)

    Guilizzoni, Manfredo

    2011-12-01

    The shape and contact angles of drops on curved surfaces is experimentally investigated. Image processing, spline fitting and numerical integration are used to extract the drop contour in a number of cross-sections. The three-dimensional surfaces which describe the surface-air and drop-air interfaces can be visualized and a simple procedure to determine the equilibrium contact angle starting from measurements on curved surfaces is proposed. Contact angles on flat surfaces serve as a reference term and a procedure to measure them is proposed. Such procedure is not as accurate as the axisymmetric drop shape analysis algorithms, but it has the advantage of requiring only a side view of the drop-surface couple and no further information. It can therefore be used also for fluids with unknown surface tension and there is no need to measure the drop volume. Examples of application of the proposed techniques for distilled water drops on gemstones confirm that they can be useful for drop shape analysis and contact angle measurement on three-dimensional sculptured surfaces. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Gel stretch method: a new method to measure constitutive properties of cardiac muscle cells

    Science.gov (United States)

    Zile, M. R.; Cowles, M. K.; Buckley, J. M.; Richardson, K.; Cowles, B. A.; Baicu, C. F.; Cooper G, I. V.; Gharpuray, V.

    1998-01-01

    Diastolic dysfunction is an important cause of congestive heart failure; however, the basic mechanisms causing diastolic congestive heart failure are not fully understood, especially the role of the cardiac muscle cell, or cardiocyte, in this process. Before the role of the cardiocyte in this pathophysiology can be defined, methods for measuring cardiocyte constitutive properties must be developed and validated. Thus this study was designed to evaluate a new method to characterize cardiocyte constitutive properties, the gel stretch method. Cardiocytes were isolated enzymatically from normal feline hearts and embedded in a 2% agarose gel containing HEPES-Krebs buffer and laminin. This gel was cast in a shape that allowed it to be placed in a stretching device. The ends of the gel were held between a movable roller and fixed plates that acted as mandibles. Distance between the right and left mandibles was increased using a stepper motor system. The force applied to the gel was measured by a force transducer. The resultant cardiocyte strain was determined by imaging the cells with a microscope, capturing the images with a CCD camera, and measuring cardiocyte and sarcomere length changes. Cardiocyte stress was characterized with a finite-element method. These measurements of cardiocyte stress and strain were used to determine cardiocyte stiffness. Two variables affecting cardiocyte stiffness were measured, the passive elastic spring and viscous damping. The passive spring was assessed by increasing the force on the gel at 1 g/min, modeling the resultant stress vs. strain relationship as an exponential [sigma = A/k(ekepsilon - 1)]. In normal cardiocytes, A = 23.0 kN/m2 and k = 16. Viscous damping was assessed by examining the loop area between the stress vs. strain relationship during 1 g/min increases and decreases in force. Normal cardiocytes had a finite loop area = 1.39 kN/m2, indicating the presence of viscous damping. Thus the gel stretch method provided accurate

  17. Time-Resolving Study of Stress-Induced Transformations of Isotactic Polypropylene through Wide Angle X-ray Scattering Measurements

    Directory of Open Access Journals (Sweden)

    Finizia Auriemma

    2018-02-01

    Full Text Available The development of a highly oriented fiber morphology by effect of tensile deformation of stereodefective isotactic polypropylene (iPP samples, starting from the unoriented γ form, is studied by following the transformation in real time during stretching through wide angle X-ray scattering (WAXS measurements. In the stretching process, after yielding, the initial γ form transforms into the mesomorphic form of iPP through mechanical melting and re-crystallization. The analysis of the scattering invariant measured in the WAXS region highlights that the size of the mesomorphic domains included in the well oriented fiber morphology obtained at high deformations increases through a process which involves the coalescence of the small fragments formed by effect of tensile stress during lamellar destruction with the domain of higher dimensions.

  18. IMU-Based Joint Angle Measurement for Gait Analysis

    Directory of Open Access Journals (Sweden)

    Thomas Seel

    2014-04-01

    Full Text Available This contribution is concerned with joint angle calculation based on inertial measurement data in the context of human motion analysis. Unlike most robotic devices, the human body lacks even surfaces and right angles. Therefore, we focus on methods that avoid assuming certain orientations in which the sensors are mounted with respect to the body segments. After a review of available methods that may cope with this challenge, we present a set of new methods for: (1 joint axis and position identification; and (2 flexion/extension joint angle measurement. In particular, we propose methods that use only gyroscopes and accelerometers and, therefore, do not rely on a homogeneous magnetic field. We provide results from gait trials of a transfemoral amputee in which we compare the inertial measurement unit (IMU-based methods to an optical 3D motion capture system. Unlike most authors, we place the optical markers on anatomical landmarks instead of attaching them to the IMUs. Root mean square errors of the knee flexion/extension angles are found to be less than 1° on the prosthesis and about 3° on the human leg. For the plantar/dorsiflexion of the ankle, both deviations are about 1°.

  19. IMU-based joint angle measurement for gait analysis.

    Science.gov (United States)

    Seel, Thomas; Raisch, Jörg; Schauer, Thomas

    2014-04-16

    This contribution is concerned with joint angle calculation based on inertial measurement data in the context of human motion analysis. Unlike most robotic devices, the human body lacks even surfaces and right angles. Therefore, we focus on methods that avoid assuming certain orientations in which the sensors are mounted with respect to the body segments. After a review of available methods that may cope with this challenge, we present a set of new methods for: (1) joint axis and position identification; and (2) flexion/extension joint angle measurement. In particular, we propose methods that use only gyroscopes and accelerometers and, therefore, do not rely on a homogeneous magnetic field. We provide results from gait trials of a transfemoral amputee in which we compare the inertial measurement unit (IMU)-based methods to an optical 3D motion capture system. Unlike most authors, we place the optical markers on anatomical landmarks instead of attaching them to the IMUs. Root mean square errors of the knee flexion/extension angles are found to be less than 1° on the prosthesis and about 3° on the human leg. For the plantar/dorsiflexion of the ankle, both deviations are about 1°.

  20. Carpal angles as measured on CT and MRI: can we simply translate radiographic measurements?

    International Nuclear Information System (INIS)

    Tan, Stephanie; Ghumman, Simranjit S.; Moser, Thomas P.; Ladouceur, Martin

    2014-01-01

    To determine the reliability of carpal angles measured on CT and MRI compared to radiography and assess if these measurements are interchangeable. Our institutional ethic research committee approved this study. For this retrospective study, two independent observers measured the scapholunate (SL), capitolunate (CL), radiolunate (RL), and radioscaphoid (RS) angles on 21 sets of exams, with each set including a radiograph, CT, and MRI of the same wrist. Inter- and intra-observer agreements were evaluated with the intraclass correlation coefficient (ICC). Linear mixed models and two-way contingency tables were used to determine if the angles measured on cross-sectional modalities were significantly different from those obtained on radiography. Inter-observer agreement was strong (ICC >0.8) for all angles, except for the RL angle measured on MRI (ICC 0.68). Intra-observer agreement was also strong for all angles, except for the CL angle measured on CT (ICC 0.66). SL angles measured on CT and MRI were not statistically different from those measured on radiographs (p = 0.37 and 0.36, respectively), unlike CL, RL, and RS angles (p < 0.05). Accuracy between modalities varied between 76 and 86 % for the SL angle and ranged between 43 and 76 % for the other angles. CL, RL, and RS angles showed large intermodality variability. Therefore, their measurements on CT or MRI could potentially lead to miscategorization. Conversely, our data showing no significant difference between modalities, SL angle could be measured on CT and MRI to assess wrist instability with a lower risk of error. (orig.)

  1. Automated measurement of diagnostic angles for hip dysplasia

    DEFF Research Database (Denmark)

    de Raedt, Sepp; Mechlenburg, Inger Buur; Stilling, Maiken

    2013-01-01

    automatically calculated. Previous work in automating the measuring of angles required the manual segmentation or delineation of the articular joint surface. In the current work automatic segmentation is established using graph-cuts with a cost function based on a sheetness score to detect the sheet......-like structure of the bone. Anatomical landmarks are subsequently detected using heuristics based on ray-tracing and the distance to the approximated acetabulur joint surface. Standard diagnositic angles are finally calculated and presented for interpretation. Experiments using 26 patients, showed a good....... These values correspond to values found in evaluating interobserver and intraobserver variation for manual measurements. The method can be used in clinical practice to replace the current manual measurements performed by radiologists. In the future, the method will be integrated into an intraoperative surgical...

  2. IR Optics Measurement with Linear Coupling's Action-Angle Parameterization

    CERN Document Server

    Luo, Yun; Pilat, Fulvia Caterina; Satogata, Todd; Trbojevic, Dejan

    2005-01-01

    The interaction region (IP) optics are measured with the two DX/BPMs close to the IPs at the Relativistic Heavy Ion Collider (RHIC). The beta functions at IP are measured with the two eigenmodes' phase advances between the two BPMs. And the beta waists are also determined through the beta functions at the two BPMs. The coupling parameters at the IPs are also given through the linear coupling's action-angle parameterization. All the experimental data are taken during the driving oscillations with the AC dipole. The methods to do these measurements are discussed. And the measurement results during the beta*

  3. Spirality: A Noval Way to Measure Spiral Arm Pitch Angle

    Science.gov (United States)

    Shields, Douglas W.; Boe, Benjamin; Henderson, Casey L.; Hartley, Matthew; Davis, Benjamin L.; Pour Imani, Hamed; Kennefick, Daniel; Kennefick, Julia D.

    2015-01-01

    We present the MATLAB code Spirality, a novel method for measuring spiral arm pitch angles by fitting galaxy images to spiral templates of known pitch. For a given pitch angle template, the mean pixel value is found along each of typically 1000 spiral axes. The fitting function, which shows a local maximum at the best-fit pitch angle, is the variance of these means. Error bars are found by varying the inner radius of the measurement annulus and finding the standard deviation of the best-fit pitches. Computation time is typically on the order of 2 minutes per galaxy, assuming at least 8 GB of working memory. We tested the code using 128 synthetic spiral images of known pitch. These spirals varied in the number of spiral arms, pitch angle, degree of logarithmicity, radius, SNR, inclination angle, bar length, and bulge radius. A correct result is defined as a result that matches the true pitch within the error bars, with error bars no greater than ±7°. For the non-logarithmic spiral sample, the correct answer is similarly defined, with the mean pitch as function of radius in place of the true pitch. For all synthetic spirals, correct results were obtained so long as SNR > 0.25, the bar length was no more than 60% of the spiral's diameter (when the bar was included in the measurement), the input center of the spiral was no more than 6% of the spiral radius away from the true center, and the inclination angle was no more than 30°. The synthetic spirals were not deprojected prior to measurement. The code produced the correct result for all barred spirals when the measurement annulus was placed outside the bar. Additionally, we compared the code's results against 2DFFT results for 203 visually selected spiral galaxies in GOODS North and South. Among the entire sample, Spirality's error bars overlapped 2DFFT's error bars 64% of the time. For those galaxies in which Source code is available by email request from the primary author.

  4. Computer Simulation of Angle-measuring System of Photoelectric Theodolite

    International Nuclear Information System (INIS)

    Zeng, L; Zhao, Z W; Song, S L; Wang, L T

    2006-01-01

    In this paper, a virtual test platform based on malfunction phenomena is designed, using the methods of computer simulation and numerical mask. It is used in the simulation training of angle-measuring system of photoelectric theodolite. Actual application proves that this platform supplies good condition for technicians making deep simulation training and presents a useful approach for the establishment of other large equipment simulation platforms

  5. Contact Angle Measurements Using a Simplified Experimental Setup

    Science.gov (United States)

    Lamour, Guillaume; Hamraoui, Ahmed; Buvailo, Andrii; Xing, Yangjun; Keuleyan, Sean; Prakash, Vivek; Eftekhari-Bafrooei, Ali; Borguet, Eric

    2010-01-01

    A basic and affordable experimental apparatus is described that measures the static contact angle of a liquid drop in contact with a solid. The image of the drop is made with a simple digital camera by taking a picture that is magnified by an optical lens. The profile of the drop is then processed with ImageJ free software. The ImageJ contact…

  6. Birefringent neutron prisms for spin echo scattering angle measurement

    Science.gov (United States)

    Pynn, Roger; Fitzsimmons, M. R.; Lee, W. T.; Stonaha, P.; Shah, V. R.; Washington, A. L.; Kirby, B. J.; Majkrzak, C. F.; Maranville, B. B.

    2009-09-01

    In the first decade of the 19th century, an English chemist, William Wollaston, invented an arrangement of birefringent prisms that splits a beam of light into two spatially separated beams with orthogonal polarizations. We have constructed similar devices for neutrons using triangular cross-section solenoids and employed them for Spin Echo Scattering Angle Measurement (SESAME). A key difference between birefringent neutron prisms and their optical analogues is that it is hard to embed the former in a medium which has absolutely no birefringence because this implies the removal of all magnetic fields. We have overcome this problem by using the symmetry properties of the Wollaston neutron prisms and of the overall spin echo arrangement. These symmetries cause a cancellation of Larmor phase aberrations and provide robust coding of neutron scattering angles with simple equipment.

  7. Comparison of Angle of Attack Measurements for Wind Tunnel Testing

    Science.gov (United States)

    Jones, Thomas, W.; Hoppe, John C.

    2001-01-01

    Two optical systems capable of measuring model attitude and deformation were compared to inertial devices employed to acquire wind tunnel model angle of attack measurements during the sting mounted full span 30% geometric scale flexible configuration of the Northrop Grumman Unmanned Combat Air Vehicle (UCAV) installed in the NASA Langley Transonic Dynamics Tunnel (TDT). The overall purpose of the test at TDT was to evaluate smart materials and structures adaptive wing technology. The optical techniques that were compared to inertial devices employed to measure angle of attack for this test were: (1) an Optotrak (registered) system, an optical system consisting of two sensors, each containing a pair of orthogonally oriented linear arrays to compute spatial positions of a set of active markers; and (2) Video Model Deformation (VMD) system, providing a single view of passive targets using a constrained photogrammetric solution whose primary function was to measure wing and control surface deformations. The Optotrak system was installed for this test for the first time at TDT in order to assess the usefulness of the system for future static and dynamic deformation measurements.

  8. Automatic measurement of contact angle in pore-space images

    Science.gov (United States)

    AlRatrout, Ahmed; Raeini, Ali Q.; Bijeljic, Branko; Blunt, Martin J.

    2017-11-01

    A new approach is presented to measure the in-situ contact angle (θ) between immiscible fluids, applied to segmented pore-scale X-ray images. We first identify and mesh the fluid/fluid and fluid/solid interfaces. A Gaussian smoothing is applied to this mesh to eliminate artifacts associated with the voxelized nature of the image, while preserving large-scale features of the rock surface. Then, for the fluid/fluid interface we apply an additional smoothing and adjustment of the mesh to impose a constant curvature. We then track the three-phase contact line, and the two vectors that have a direction perpendicular to both surfaces: the contact angle is found from the dot product of these vectors where they meet at the contact line. This calculation can be applied at every point on the mesh at the contact line. We automatically generate contact angle values representing each invaded pore-element in the image with high accuracy. To validate the approach, we first study synthetic three-dimensional images of a spherical droplet of oil residing on a tilted flat solid surface surrounded by brine and show that our results are accurate to within 3° if the sphere diameter is 2 or more voxels. We then apply this method to oil/brine systems imaged at ambient temperature and reservoir pressure (10MPa) using X-ray microtomography (Singh et al., 2016). We analyse an image volume of diameter approximately 4.6 mm and 10.7 mm long, obtaining hundreds of thousands of values from a dataset with around 700 million voxels. We show that in a system of altered wettability, contact angles both less than and greater than 90° can be observed. This work provides a rapid method to provide an accurate characterization of pore-scale wettability, which is important for the design and assessment of hydrocarbon recovery and carbon dioxide storage.

  9. Aerial wetting contact angle measurement using confocal microscopy

    OpenAIRE

    Chesna, Jacob W.; Wiedmaier, Bob F.; Wang, Jinlin; Samara, Ayman; Leach, Richard K.; Her, Tsing-Hua; Smith, Stuart T.

    2016-01-01

    A method is presented in which the wetting contact angle of a sessile drop is acquired aerially using confocal techniques to measure the radius and the height of a droplet deposited on a planar surface. The repeatability of this method is typically less than 0.25°, and often less than 0.1°, for droplet diameters less than 1 mm. To evaluate accuracy of this method, an instrument uncertainty budget is developed, which predicts a combined uncertainty of 0.91° for a 1 mm diameter water droplet wi...

  10. Measurements of normal joint angles by goniometry in calves.

    Science.gov (United States)

    Sengöz Şirin, O; Timuçin Celik, M; Ozmen, A; Avki, S

    2014-01-01

    The aim of this study was to establish normal reference values of the forelimb and hindlimb joint angles in normal Holstein calves. Thirty clinically normal Holstein calves that were free of any detectable musculoskeletal abnormalities were included in the study. A standard transparent plastic goniometer was used to measure maximum flexion, maximum extension, and range-of-motion of the shoulder, elbow, carpal, hip, stifle, and tarsal joints. The goniometric measurements were done on awake calves that were positioned in lateral recumbency. The goniometric values were measured and recorded by two independent investigators. As a result of the study it was concluded that goniometric values obtained from awake calves in lateral recumbency were found to be highly consistent and accurate between investigators (p <0.05). The data of this study acquired objective and useful information on the normal forelimb and hindlimb joint angles in normal Holstein calves. Further studies can be done to predict detailed goniometric values from different diseases and compare them.

  11. [Measurement of the lumbosacral angle and its clinical significance].

    Science.gov (United States)

    Bene, E

    1981-01-01

    The author reports about the result of a series of investigations and tests concerning the angle of the L-S vertebral column. Different factors influencing the values of L-S angle are analyzed. The clinical importance of the respective angles is small, the statics of the L-S transition is determined by all angles together. The reduced L-S angle cannot be considered as an aetiological factor of the spondylolysthesis. The pathological angle values as well as the positions play a role in the induction of the discopathy

  12. Internal magnetic pitch angle measurements at KSTAR tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Ko, J.; Chung, J. [National Fusion Research Institute, Daejeon (Korea, Republic of); Messmer, M. C. C. [Eindhoven University of Technology, Eindhoven (Netherlands)

    2015-05-15

    Specification of the hardware for photo-detecting and digitizing electronics has almost complete as well and many of them are ready for procurement. The main collaboration party is Eindhoven University of Technology in the Netherlands, whose main responsibilities include the development of filter module design and off-line and real-time analysis schemes along with overall consultations. The following sections describe some major parts of the design progress. 3D MSE stokes-vector simulations have been tuned to match the MSE spectra measured in KSTAR and used to design the band-pass filters. From these simulations, 0.4-nm 2-cavity interference filters have been chosen to minimize pitch angle errors. Figure 4 shows an example of the MSE spectrum calculated from the simulation that is compared with the measured spectrum. Also shown in Figure 4 are the possible passband (shaded in green) of the spectrum where the redmost shifted polarization component (+4π) is chosen, the pitch angles and their errors. Due to the overlap of the spectra among ion sources, the second ion source of NBI1 (NBI1-2) should operate at about 15% lower voltage than that of the first ion source (NBI1-1). An example of this overlap in the spectrum and the large error in pitch angle it causes is shown in Figure 5. Pass-band control by the filter-angle tuning is under development to fully cover most of the KSTAR plasmas which include Ip = 0.5 - 1 MA, Bt = 1.5 - 3.5 T, and the beam energy (for the ion source 1 from NBI1) = 70 - 100 keV. The accuracy obtained is in the order of 0.5 % and compatible with the MSE requirement. The software also allows sequences creation, which consists of executing a series of a predefined central wavelength and a corresponding time delay. One PC can control 5 controller hubs each of which can accommodate up to 6 rotational stage/controller sets, resulting in the maximum 30 sets.

  13. In Vivo Sarcomere Length Measurement in Whole Muscles during Passive Stretch and Twitch Contractions.

    Science.gov (United States)

    Young, Kevin W; Kuo, Bill P-P; O'Connor, Shawn M; Radic, Stojan; Lieber, Richard L

    2017-02-28

    Muscle force is dictated by micrometer-scale contractile machines called sarcomeres. Whole-muscle force drops from peak force production to zero with just a few micrometers of sarcomere length change. No current technology is able to capture adequate dynamic sarcomere data in vivo, and thus we lack fundamental data needed to understand human movement and movement disorders. Methods such as diffraction, endoscopy, and optical coherence tomography have been applied to muscle but are prohibitively invasive, sensitive to motion artifact, and/or imprecise. Here, we report dynamic sarcomere length measurement in vivo using a combination of our recently validated resonant reflection spectroscopy method combined with optical frequency domain interferometry. Using a 250-μm-wide fiber optic probe, we captured nanometer sarcomere length changes from thousands of sarcomeres on the sub-millisecond timescale during whole-muscle stretch and twitch contraction. We believe that this demonstrates the first large-scale sensing of sarcomere dynamics in vivo, which is a necessary first step to understand movement disorders and to create patient-specific surgical interventions and rehabilitation. Published by Elsevier Inc.

  14. Measurements of the CKM angle $\\gamma$ at the LHCb experiment

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00388653; Malde, Sneha

    Two measurements of the Cabibbo-Kobayashi-Maskawa angle $\\gamma$ using $B \\to D K$ and $B^{0} \\to D K^{\\ast 0}$ decays are presented in this thesis. The subsequent $D$ meson decays to the $K_{S}^{0} \\pi^{+} \\pi^{-}$ and $K_{S}^{0} K^{+} K^{-}$ final states are studied using a binned Dalitz plot analysis. The $D$ strong-phase variation over the Dalitz plot is taken from measurements performed at the CLEO-c experiment, making the analysis independent of a model to describe the $D$ decay amplitude. Both measurements are performed using proton-proton collision data collected by the Large Hadron Collider beauty (LHCb) experiment in 2011 and 2012, corresponding to an integrated luminosity of 3 fb$^{-1}$ at centre-of-mass energies $\\sqrt{s}=$ 7 TeV and 8 TeV. The value $\\gamma=(62\\,^{+15}_{-14})^{\\circ}$ is measured using $B \\to D K$ decays and $\\gamma=(71\\pm20)^{\\circ}$ is measured using $B^{0} \\to D K^{\\ast 0}$ decays, with a second solution for each value corresponding to $\\gamma+180^{\\circ}$. The measurement...

  15. Biaxial stretching of polyethylene, (2)

    International Nuclear Information System (INIS)

    Sakami, Hiroshi; Iida, Shozo

    1976-01-01

    The mechanism of oriented crystallization in mutually perpendicular direction to each other was investigated on the crosslinked linear polyethylene stretched successively and biaxially above melting point of raw material. To investigate the mechanism, the shrinkage stress, the degree of polarization and DSC of the film at the fixed length were measured on the crystallization process. The behavior observed on crystallization could be divided into that in the first period and that in the second period. The first period showed the domain of highly oriented crystallization of the crosslinked molecular chain, and in the second period the fold type crystals grew with highly oriented crystals in the first period as nuclear. Therefore, the formation of bi-component crystal structure is supposed for the crystallization. The biaxially oriented crystallization proceeded as follows: the uniaxial orientation to MD was observed in the first stretching in the initial stage, and then the further processing by the second stretching at a right angle caused the fold type crystallization of molecular chain oriented to TD. The film stretched fully and biaxially could be considered to have the oriented crystalline structure in which highly oriented fibril crystals and fold type crystals distribute at random. (auth.)

  16. IR OPTICS MEASUREMENT WITH LINEAR COUPLING'S ACTION-ANGLE PARAMETERIZATION

    International Nuclear Information System (INIS)

    LUO, Y.; BAI, M.; PILAT, R.; SATOGATA, T.; TRBOJEVIC, D.

    2005-01-01

    A parameterization of linear coupling in action-angle coordinates is convenient for analytical calculations and interpretation of turn-by-turn (TBT) beam position monitor (BPM) data. We demonstrate how to use this parameterization to extract the twiss and coupling parameters in interaction regions (IRs), using BPMs on each side of the long IR drift region. The example of TBT BPM analysis was acquired at the Relativistic Heavy Ion Collider (RHIC), using an AC dipole to excite a single eigenmode. Besides the full treatment, a fast estimate of beta*, the beta function at the interaction point (IP), is provided, along with the phase advance between these BPMs. We also calculate and measure the waist of the beta function and the local optics

  17. Estimating angle-dependent systematic error and measurement uncertainty for a conoscopic holography measurement system

    Science.gov (United States)

    Paviotti, Anna; Carmignato, Simone; Voltan, Alessandro; Laurenti, Nicola; Cortelazzo, Guido M.

    2009-01-01

    The aim of this study is to assess angle-dependent systematic errors and measurement uncertainties for a conoscopic holography laser sensor mounted on a Coordinate Measuring Machine (CMM). The main contribution of our work is the definition of a methodology for the derivation of point-sensitive systematic and random errors, which must be determined in order to evaluate the accuracy of the measuring system. An ad hoc three dimensional artefact has been built for the task. The experimental test has been designed so as to isolate the effects of angular variations from those of other influence quantities that might affect the measurement result. We have found the best measurand to assess angle-dependent errors, and found some preliminary results on the expression of the systematic error and measurement uncertainty as a function of the zenith angle for the chosen measurement system and sample material.

  18. Measurements of the CKM Angle Alpha at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Stracka, Simone; /Milan U. /INFN, Milan

    2012-04-04

    The authors present improved measurements of the branching fractions and CP-asymmetries fin the B{sup 0} {yields} {pi}{sup +}{pi}{sup -}, B{sup 0} {yields} {pi}{sup 0}{pi}{sup 0}, and B{sup +} {yields} {rho}{sup +}{rho}{sup 0} decays, which impact the determination of {alpha}. The combined branching fractions of B {yields} K{sub 1}(1270){pi} and B {yields} K{sub 1}(1400){pi} decays are measured for the first time and allow a novel determination of {alpha} in the B{sup 0} {yields} {alpha}{sub 1}(1260){sup {+-}}{pi}{sup {-+}} decay channel. These measurements are performed using the final dataset collected by the BaBar detector at the PEP-II B-factory. The primary goal of the experiments based at the B factories is to test the Cabibbo-Kobayashi-Maskawa (CKM) picture of CP violation in the standard model of electroweak interactions. This can be achieved by measuring the angles and sides of the Unitarity Triangle in a redundant way.

  19. Automatic ultrasound technique to measure angle of progression during labor.

    Science.gov (United States)

    Conversano, F; Peccarisi, M; Pisani, P; Di Paola, M; De Marco, T; Franchini, R; Greco, A; D'Ambrogio, G; Casciaro, S

    2017-12-01

    To evaluate the accuracy and reliability of an automatic ultrasound technique for assessment of the angle of progression (AoP) during labor. Thirty-nine pregnant women in the second stage of labor, with fetus in cephalic presentation, underwent conventional labor management with additional translabial sonographic examination. AoP was measured in a total of 95 acquisition sessions, both automatically by an innovative algorithm and manually by an experienced sonographer, who was blinded to the algorithm outcome. The results obtained from the manual measurement were used as the reference against which the performance of the algorithm was assessed. In order to overcome the common difficulties encountered when visualizing by sonography the pubic symphysis, the AoP was measured by considering as the symphysis landmark its centroid rather than its distal point, thereby assuring high measurement reliability and reproducibility, while maintaining objectivity and accuracy in the evaluation of progression of labor. There was a strong and statistically significant correlation between AoP values measured by the algorithm and the reference values (r = 0.99, P < 0.001). The high accuracy provided by the automatic method was also highlighted by the corresponding high values of the coefficient of determination (r 2  = 0.98) and the low residual errors (root mean square error = 2°27' (2.1%)). The global agreement between the two methods, assessed through Bland-Altman analysis, resulted in a negligible mean difference of 1°1' (limits of agreement, 4°29'). The proposed automatic algorithm is a reliable technique for measurement of the AoP. Its (relative) operator-independence has the potential to reduce human errors and speed up ultrasound acquisition time, which should facilitate management of women during labor. Copyright © 2017 ISUOG. Published by John Wiley & Sons Ltd. Copyright © 2017 ISUOG. Published by John Wiley & Sons Ltd.

  20. Stretching positions for the coracohumeral ligament: Strain measurement during passive motion using fresh/frozen cadaver shoulders

    Directory of Open Access Journals (Sweden)

    Izumi Tomoki

    2011-01-01

    Full Text Available Abstract Background Contracture of the coracohumeral ligament is reported to restrict external rotation of the shoulder with arm at the side and restrict posterior-inferior shift of the humeral head. The contracture is supposed to restrict range of motion of the glenohumeral joint. Methods To obtain stretching position of the coracohumeral ligament, strain on the ligament was measured at the superficial fibers of the ligament using 9 fresh/frozen cadaver shoulders. By sequential measurement using a strain gauge, the ligament strain was measured from reference length (L0. Shoulder positions were determined using a 3 Space Tracker System. Through a combination of previously reported coracohumeral stretching positions and those observed in preliminary measurement, ligament strain were measured by passive external rotation from 10° internal rotation, by adding each 10° external rotation, to maximal external rotation. Results Stretching positions in which significantly larger strain were obtained compared to the L0 values were 0° elevation in scapula plane with 40°, 50° and maximum external rotation (5.68%, 7.2%, 7.87%, 30° extension with 50°, maximum external rotation (4.20%, 4.79%, and 30° extension + adduction with 30°, 40°, 50° and maximum external rotation (4.09%, 4.67%, 4.78%, 5.05%(P Conclusions Significant strain of the coracohumeral ligament will be achieved by passive external rotation at lower shoulder elevations, extension, and extension with adduction.

  1. The wave vane - A device to measure the breaker angle

    Digital Repository Service at National Institute of Oceanography (India)

    Chandramohan, P.; Nayak, B.U.; Anand, N.M.

    with the shoreline at the wave vane is equal to the breaker angle as the wave vane is installed very close to breaker zone. Repeating the procedure, the breaker angles for a required duration can be estimated. FIELD TEST A 4 km long beach near Karwar on the west... in Table 1. Ob- servations on breaker angles were made for 20 minutes duration every day. The average breaker angle computed based on the 20 minute observation is presented in Table 1. A directional wave rider buoy was deployed at 16 m water depth...

  2. Small-angle neutron scattering measurement of silicon nanoparticle size

    International Nuclear Information System (INIS)

    Choi, Jonghoon; Tung, Shih-Huang; Wang, Nam Sun; Reipa, Vytas

    2008-01-01

    We have determined the particle size distribution profiles of octane-terminated silicon nanoparticle suspensions, produced using the sonication of electrochemically etched Si wafers. Small-angle neutron scattering data was analyzed separately in high (0.4 nm -1 -1 ) and low (q -1 ) scattering vector ranges. Data in the high q range is consistent with the log-normal distribution of isolated spherical particles with median diameter d = 3 ± 0.2 nm. Particle sizes were also indirectly assessed from photoluminescence and optical transmission spectroscopy using the size/bandgap relation: E g = 3.44d -0.5 , where E g is in eV and d in nm. Both measurements were consistent with the particle size distribution profiles, estimated from ANS data fitting and TEM image analysis. A subpopulation of larger, irregular shape structures in the size range 10-50 nm was also indicated by neutron scattering in the low q range and HRTEM images. However, further studies are warranted to explain a relationship between the slope of scattering intensity versus scattering vector dependence in the intermediate scattering vector range (0.4 nm -1 -1 ) and the role of non-geometrical Si nanoparticle characteristics (mutual interaction forces, surface termination, etc)

  3. Approach for measuring the angle of hallux valgus

    Directory of Open Access Journals (Sweden)

    Jin Zhou

    2013-01-01

    Materials and Methods: Fifteen age, body weight, and height matched male students were included and those with foot disorders, deformities, or injuries were excluded from the study. The dorsal protrusions of the first metatarsal and the hallux were marked by palpating from three experienced observers; then their barefoot model in standing was collected by a three dimensional laser scanning system. The AoH was defined in the X-Y plane by the angle between the line joining the marks of centre of head and centre of base of metatarsal shaft and the one connecting the marks of the centre of metatarsal head and the hallux. The same procedure was repeated a week later. Besides, other measures based on the footprint, outline, and the radiography were also available for comparisons. Paired t-test, linear regression, and reliability analysis were applied for statistical analysis with significant level of 0.05 and 95% confidence interval. Results: There were no significant differences recorded between the new method and the radiographic method ( P = 0.069. The AoH was superior to the methods of footprint and outline and it displayed a relative higher correlation with the radiographic method (r = 0.94, r2 = 0.89. Moreover both the inter and intraobserver reliabilities of this method were proved to be good. Conclusion: This new method can be used for hallux valgus inspection and evaluation.

  4. Methods for determining the effect of flatness deviations, eccentricity and pyramidal errors on angle measurements

    CSIR Research Space (South Africa)

    Kruger, OA

    2000-01-01

    Full Text Available . These methods were developed to calculate the related uncertainties associated with flatness deviations, eccentricity and pyramidal errors on face-to-face angle measurements. The results show that flatness and eccentricity deviations have less effect on angle...

  5. Comparison of acetabular version angle measurements between prone and reformatted supine computed tomography images

    International Nuclear Information System (INIS)

    Chong, Le Roy; Too, Chow Wei

    2014-01-01

    To compare acetabular version angle measurements of CT scans in the prone and reformatted supine positions. CT acetabular version angle measurements have previously been done in the prone position to correct for pelvic tilt. With the advent of multidetector CT, recent studies have evaluated acetabular version angles measured in the supine position. To our knowledge, a comparison between these two approaches has not been performed. Case series in which consecutive CT urography studies of 49 adult patients performed in both prone and supine positions were retrospectively reviewed, and acetabular version angles of both hips measured. Retrospective review of 49 consecutive CT urography studies performed in both prone and supine positions was done, and acetabular version angles of both hips were measured. Two radiologists measured the acetabular version angles independently. Multiplanar reformation of the supine CT images was performed to compensate for pelvic tilt and rotation prior to angle measurements. There was excellent interobserver agreement between the two readers (ICC = 0.90). Acetabular version angle measurements from the prone CT images were larger compared to reformatted supine images (24.0 and 21.3 , respectively, p < 0.0001), with greater angles found in women. There was strong correlation between supine and prone acetabular version angle measurements with a Pearson correlation coefficient of 0.743. Acetabular version angles measured from prone and reformatted supine CT images show strong correlation but are significantly different with larger angles obtained from the former and in women; clinical implications of these findings may require further study in other to determine the best method of version angle measurement. CT acetabular version angle measurement is also reliable with excellent interobserver correlation. (orig.)

  6. Effects of drop size and measuring condition on static contact angle measurement on a superhydrophobic surface with goniometric technique

    International Nuclear Information System (INIS)

    Seo, Kwangseok; Kim, Minyoung; Kim, Do Hyun; Ahn, Jeong Keun

    2015-01-01

    It is not a simple task to measure a contact angle of a water drop on a superhydrophobic surface with sessile drop method, because a roll-off angle is very low. Usually contact angle of a water drop on a superhydrophobic surface is measured by fixing a drop with intentional defects on the surface or a needle. We examined the effects of drop size and measuring condition such as the use of a needle or defects on the static contact angle measurement on superhydrophobic surface. Results showed that the contact angles on a superhydrophobic surface remain almost constant within intrinsic measurement errors unless there is a wetting transition during the measurement. We expect that this study will provide a deeper understanding on the nature of the contact angle and convenient measurement of the contact angle on the superhydrophobic surface.

  7. Vowel Formants and Angle Measurements in Diachronic Sociophonetic Studies

    DEFF Research Database (Denmark)

    Fabricius, Anne

    2007-01-01

    This paper examines vowel formant data from a corpus of recordings of male speakers of RP born during the course of the twentieth century. It compares average formant positions in the F1/F2 plane for the short vowel FOOT in juxtaposition with LOT (for this Keyword notation see Wells [12......]). The relative positions of the two vowels are represented by a single numerical value, which is the calculated angle from LOT to FOOT relative to the vertical. Changing angle values between the early and the later part of the twentieth century reflect a diachronic process of FOOT-fronting and unrounding which...

  8. Measurement of the Weak Mixing Angle in Moller Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Klejda, B.

    2005-01-28

    scattering. This value corresponds to a weak mixing angle at Q{sup 2} = 0.026 (GeV/c){sup 2} of sin{sup 2} {theta}{sub w{ovr MS}} = 0.2379 {+-} 0.0016 (stat.) {+-} 0.0013 (syst.), which is -0.3 standard deviations away from the Standard Model prediction: sin{sup 2} {theta}{sub w{ovr MS}}{sup predicted} = 0.2385 {+-} 0.0006 (theory). The E158 measurement of sin{sup 2} {theta}{sub w} at a precision of {delta}(sin{sup 2} {theta}{sub w}) = 0.0020 provides new physics sensitivity at the TeV scale.

  9. Contact angle hysteresis of liquid drops as means to measure ...

    Indian Academy of Sciences (India)

    A comparison of the two methods shows that the extent of contact angle hysteresis is indicative of both hydrophobicity of the surface as well as the force of adhesion. Mechanical properties and microstructure of zein films prepared by casting from solutions and using Langmuir-Blodgett film technique have been investigated.

  10. Vowel Formants and Angle Measurements in Diachronic Sociophonetic Studies

    DEFF Research Database (Denmark)

    Fabricius, Anne

    2007-01-01

    is well documented in varieties of British English, such as Torgersen and Kerswill [10], including RP, as in Hawkins and Midgley [6]. The paper also demonstrates the versatility of an angle calculation method (Fabricius [3]), used in combination with F1/F2 plots, in producing replicable quantified...

  11. Angle Resolved Performance Measurements on PV Glass and Modules

    DEFF Research Database (Denmark)

    Juutilainen, Line Tollund; Thorsteinsson, Sune; Poulsen, Peter Behrensdorff

    2016-01-01

    The angular response of PV-modules has significant impact on the energy production. This is especially pronounced in BIPV where installation angles often are far from optimal. Nevertheless, a gain in energy yield may be obtained by choosing a proper glass as superstrate. In this work we present t...

  12. Lower extremity angle measurement with accelerometers - error and sensitivity analysis

    NARCIS (Netherlands)

    Willemsen, A.T.M.; Willemsen, Antoon Th.M.; Frigo, Carlo; Boom, H.B.K.

    1991-01-01

    The use of accelerometers for angle assessment of the lower extremities is investigated. This method is evaluated by an error-and-sensitivity analysis using healthy subject data. Of three potential error sources (the reference system, the accelerometers, and the model assumptions) the last is found

  13. Measurement of the Euler Angles of Wurtzitic ZnO by Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Wu Liu

    2017-01-01

    Full Text Available A Raman spectroscopy-based step-by-step measuring method of Euler angles φ,θ,and  ψ was presented for the wurtzitic crystal orientation on a microscopic scale. Based on the polarization selection rule and coordinate transformation theory, a series of analytic expressions for the Euler angle measurement using Raman spectroscopy were derived. Specific experimental measurement processes were presented, and the measurement of Raman tensor elements and Euler angles of the ZnO crystal were implemented. It is deduced that there is a trigonometric functional relationship between the intensity of each Raman bands of wurtzite crystal and Euler angle ψ, the polarization direction of incident light under different polarization configurations, which can be used to measure the Euler angles. The experimental results show that the proposed method can realize the measurement of Euler angles for wurtzite crystal effectively.

  14. CONTACT ANGLE MEASUREMENT OF DENTAL RESTORATIVE MATERIALS BY DROP PROFILE IMAGE ANALYSIS

    OpenAIRE

    M. Rinastiti, H. D. K. Yulianto dan

    2014-01-01

    The capability of initial microbial adhesion to dental restorative composites surface is influenced by the surface wettability of the materials. The common method to evaluate surface wettability of materials is contact angle measurement. The existing conventional method to measure contact angle is by means of a contact angle (CA)-Goniometer device, which is less practically applicable in clinical circumstances. Therefore, a more practical and applicable method is needed to measure contact ang...

  15. A method to measure internal contact angle in opaque systems by magnetic resonance imaging.

    Science.gov (United States)

    Zhu, Weiqin; Tian, Ye; Gao, Xuefeng; Jiang, Lei

    2013-07-23

    Internal contact angle is an important parameter for internal wettability characterization. However, due to the limitation of optical imaging, methods available for contact angle measurement are only suitable for transparent or open systems. For most of the practical situations that require contact angle measurement in opaque or enclosed systems, the traditional methods are not effective. Based upon the requirement, a method suitable for contact angle measurement in nontransparent systems is developed by employing MRI technology. In the Article, the method is demonstrated by measuring internal contact angles in opaque cylindrical tubes. It proves that the method also shows great feasibility in transparent situations and opaque capillary systems. By using the method, contact angle in opaque systems could be measured successfully, which is significant in understanding the wetting behaviors in nontransparent systems and calculating interfacial parameters in enclosed systems.

  16. LHCb Measurement of the CKM angle $\\gamma$ at LHCb

    CERN Multimedia

    Ali, S

    2014-01-01

    In this poster we present the latest result by the LHCb collaboration in determining the CKM angle $\\gamma$ ($(67.1 \\pm 12)^{\\circ}$). The result is determined by combining several $B \\to Dh$ analyses. Latest results from the decay time dependent $B_{s} \\to D_{s}K$ analysis is also reported, along with a few other decay channels interesting for determination of $\\gamma$ in the future.

  17. A comparison of assisted and unassisted proprioceptive neuromuscular facilitation techniques and static stretching.

    Science.gov (United States)

    Maddigan, Meaghan E; Peach, Ashley A; Behm, David G

    2012-05-01

    A comparison of assisted and unassisted proprioceptive neuromuscular facilitation techniques and static stretching. J Strength Cond Res 26(5): 1238-1244, 2012-Proprioceptive neuromuscular facilitation (PNF) stretching often requires a partner. Straps are available allowing an individual to perform PNF stretching alone. It is not known if a strap provides similar improvements in the range of motion (ROM) as partner-assisted PNF or static stretching. The purpose of this study was to compare assisted and unassisted (with a strap) PNF stretching and static stretching. Hip joint ROM, reaction time (RT), and movement time (MT) were measured prestretching and poststretching. Thirteen recreationally active adults participated in this study. The participants were subjected to 5 different stretch interventions in a random order on separate days. Stretch conditions included unassisted PNF stretching using (a) isometric, (b) concentric, and (c) eccentric contractions with a stretch strap, (d) partner-assisted isometric PNF, and (e) static stretching. The RT, MT, dynamic, active, passive hip flexion angle, and angular velocity with dynamic hip flexion were measured before and after the intervention. The ROM improved (p < 0.05) 2.6, 2.7, and 5.4%, respectively, with dynamic, active static, and passive static ROM, but there was no significant difference between the stretching protocols. There was a main effect for time (p < 0.05) with all stretching conditions negatively impacting dynamic angular velocity (9.2%). Although there was no significant effect on RT, MT showed a negative main effect for time (p < 0.05) slowing 3.4%. In conclusion, it was found that all 3 forms of active stretching provided similar improvements in the ROM and poststretching performance decrements in MT and angular velocity. Thus, individuals can implement PNF stretching techniques with a partner or alone with a strap to improve ROM, but athletes should not use these techniques before important

  18. Contact angles and their hysteresis as a measure of liquid-solid adhesion.

    Science.gov (United States)

    Extrand, C W

    2004-05-11

    The wetting behavior of a series of aliphatic polyamides was examined. Polyamides and polyethylene were molded against glass to produce smooth surfaces. After cleaning, chemical composition of the surfaces was verified with X-ray photoelectron spectroscopy. Advancing and receding contact angles were measured from small sessile water drops. Contact angles decreased with amide content while contact angle hysteresis increased. Wetting free energies calculated from contact angles were equal to those from dewetting, suggesting that contact angle hysteresis did not arise from surface anomalies, but from hydrogen bonding between water and the amide groups in the polyamide surfaces.

  19. Reliability of Two Smartphone Applications for Radiographic Measurements of Hallux Valgus Angles.

    Science.gov (United States)

    Mattos E Dinato, Mauro Cesar; Freitas, Marcio de Faria; Milano, Cristiano; Valloto, Elcio; Ninomiya, André Felipe; Pagnano, Rodrigo Gonçalves

    The objective of the present study was to assess the reliability of 2 smartphone applications compared with the traditional goniometer technique for measurement of radiographic angles in hallux valgus and the time required for analysis with the different methods. The radiographs of 31 patients (52 feet) with a diagnosis of hallux valgus were analyzed. Four observers, 2 with >10 years' experience in foot and ankle surgery and 2 in-training surgeons, measured the hallux valgus angle and intermetatarsal angle using a manual goniometer technique and 2 smartphone applications (Hallux Angles and iPinPoint). The interobserver and intermethod reliability were estimated using intraclass correlation coefficients (ICCs), and the time required for measurement of the angles among the 3 methods was compared using the Friedman test. A very good or good interobserver reliability was found among the 4 observers measuring the hallux valgus angle and intermetatarsal angle using the goniometer (ICC 0.913 and 0.821, respectively) and iPinPoint (ICC 0.866 and 0.638, respectively). Using the Hallux Angles application, a very good interobserver reliability was found for measurements of the hallux valgus angle (ICC 0.962) and intermetatarsal angle (ICC 0.935) only among the more experienced observers. The time required for the measurements was significantly shorter for the measurements using both smartphone applications compared with the goniometer method. One smartphone application (iPinPoint) was reliable for measurements of the hallux valgus angles by either experienced or nonexperienced observers. The use of these tools might save time in the evaluation of radiographic angles in the hallux valgus. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  20. Effects of hamstring stretching on passive muscle stiffness vary between hip flexion and knee extension maneuvers.

    Science.gov (United States)

    Miyamoto, N; Hirata, K; Kanehisa, H

    2017-01-01

    The purpose of this study was to examine whether the effects of hamstring stretching on the passive stiffness of each of the long head of the biceps femoris (BFl), semitendinosus (ST), and semimembranosus (SM) vary between passive knee extension and hip flexion stretching maneuvers. In 12 male subjects, before and after five sets of 90 s static stretching, passive lengthening measurements where knee or hip joint was passively rotated to the maximal range of motion (ROM) were performed. During the passive lengthening, shear modulus of each muscle was measured by ultrasound shear wave elastography. Both stretching maneuvers significantly increased maximal ROM and decreased passive torque at a given joint angle. Passive knee extension stretching maneuver significantly reduced shear modulus at a given knee joint angle in all of BFl, ST, and SM. In contrast, the stretching effect by passive hip flexion maneuver was significant only in ST and SM. The present findings indicate that the effects of hamstring stretching on individual passive muscles' stiffness vary between passive knee extension and hip flexion stretching maneuvers. In terms of reducing the muscle stiffness of BFl, stretching of the hamstring should be performed by passive knee extension rather than hip flexion. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. New Light Source Setup for Angle Resolved Light Absorption measurement of PV samples

    DEFF Research Database (Denmark)

    Amdemeskel, Mekbib Wubishet; Poulsen, Peter Behrensdorff; Thorsteinsson, Sune

    Here, we introduce measurements of angle resolved light absorption by PV cells, using broadband laser driven white light source with a bright, stable, broad spectral range and well collimated light.......Here, we introduce measurements of angle resolved light absorption by PV cells, using broadband laser driven white light source with a bright, stable, broad spectral range and well collimated light....

  2. Simulation and Measurement of Angle Resolved Reflectance from Black Si Surfaces

    DEFF Research Database (Denmark)

    Davidsen, Rasmus Schmidt; Wu, Kaiyu; Schmidt, Michael Stenbæk

    2015-01-01

    In this work angle-resolved reflectance from nanostructured Si surfaces realized by maskless RIE texturing has been simulated and measured. The simulation and experimental measurement data show the same trend. Experimentally a total reflectance below 1% for incident angles below 30o and specular...

  3. New Light Source Setup for Angle Resolved Light Absorption measurement of PV sample

    DEFF Research Database (Denmark)

    Amdemeskel, Mekbib Wubishet; Poulsen, Peter Behrensdorff; Thorsteinsson, Sune

    Here, we introduce measurements of angle resolved light absorption by PV cells, using broadband laser driven white light source with a bright, stable, broad spectral range and well collimated light.......Here, we introduce measurements of angle resolved light absorption by PV cells, using broadband laser driven white light source with a bright, stable, broad spectral range and well collimated light....

  4. The efficacy of two modified proprioceptive neuromuscular facilitation stretching techniques in subjects with reduced hamstring muscle length.

    Science.gov (United States)

    Youdas, James W; Haeflinger, Kristin M; Kreun, Melissa K; Holloway, Andrew M; Kramer, Christine M; Hollman, John H

    2010-05-01

    Difference scores in knee extension angle and electromyographic (EMG) activity were quantified before and after modified proprioceptive neuromuscular facilitation (PNF) hold-relax (HR) and hold-relax-antagonist contraction (HR-AC) stretching procedures in 35 healthy individuals with reduced hamstring muscle length bilaterally (knee extension angle <160 degrees ). Participants were randomly assigned each PNF procedure to opposite lower extremities. Knee extension values were measured by using a goniometer. EMG data were collected for 10 seconds before and immediately after each PNF stretching technique and normalized to maximum voluntary isometric contraction (% MVIC). A significant time by stretch-type interaction was detected (F(1,34) = 21.1; p < 0.001). Angles of knee extension for HR and HR-AC were not different prior to stretching (p = 0.45). Poststretch knee extension angle was greater in the HR-AC condition than the HR condition (p < 0.007). The proportion of subjects who exceeded the minimal detectable change (MDC(95)) with the HR-AC stretch (97%) did not differ (p = 0.07) from the proportion who exceeded the MDC(95) with the HR stretch (80%). Because EMG activation increased (p < 0.013) after the HR-AC procedure, it is doubtful a relationship exists between range of motion improvement after stretching and inhibition of the hamstrings. On average the 10-second modified HR procedure produced an 11 degrees gain in knee extension angle within a single stretch session.

  5. Measurement of contact angles in a simulated microgravity environment generated by a large gradient magnetic field.

    Science.gov (United States)

    Liu, Yong-Ming; Chen, Rui-Qing; Wu, Zi-Qing; Zhu, Jing; Shi, Jian-Yu; Lu, Hui-Meng; Shang, Peng; Yin, Da-Chuan

    2016-09-01

    The contact angle is an important parameter that is essential for studying interfacial phenomena. The contact angle can be measured using commercially available instruments. However, these well-developed instruments may not function or may be unsuitable for use in some special environments. A simulated microgravity generated by a large gradient magnetic field is such an environment in which the current measurement instruments cannot be installed. To measure the contact angle in this environment, new tools must be designed and manufactured to be compatible with the size and physical environment. In this study, we report the development and construction of a new setup that was specifically designed for use in a strong magnetic field to measure the contact angle between a levitated droplet and a solid surface. The application of the setup in a large gradient magnetic field was tested, and the contact angles were readily measured.

  6. Development of a body joint angle measurement system using IMU sensors.

    Science.gov (United States)

    Bakhshi, Saba; Mahoor, Mohammad H; Davidson, Bradley S

    2011-01-01

    This paper presents an approach for measuring and monitoring human body joint angles using inertial measurement unit (IMU) sensors. This type of monitoring is beneficial for therapists and physicians because it facilitates remote assessment of patient activities. In our approach, two IMUs are mounted on the upper leg and the lower leg to measure the Euler angles of each segment. The Euler angles are sent via Bluetooth protocols to a pc for calculating the knee joint angle. In our experiments, we utilized a motion capture system to accurately measure the knee joint angle and used this as the ground truth to assess the accuracy of the IMU system. The range of average error of the system across a variety of motion trials was 0.08 to 3.06 degrees. In summary, the accuracy of the IMU measurement system currently outperforms existing wearable systems such as conductive fiber optic sensors and flex-sensors.

  7. Surface dose measurements under stretched, perforated thermoplast sheets and under protective wound dressings for high energy photon radiation

    International Nuclear Information System (INIS)

    Staudenraus, J.; Christ, G.

    2000-01-01

    Patient fixation masks made of perforated thermoplast sheets are widely used in radiotherapy. These masks in particular serve to immobilize the head and neck region during radiation treatment. We placed samples made of differently stretched, perforated mask material on the surface of a white polystyrene (RW3) phantom and measured for high energy photon beams from Co-60 radiation up to 25 MV bremsstrahlung the dose increase resulting from the build-up under the hole and bridge areas. Depending on the energy of the incident beam and the thickness of the stretched mask material we observed a dose increase under the bridges at the phantom surface of 55% up to 140% compared to the dose without a layer of mask material. Under a hole the dose increase is almost half the value found under a bridge. However, deeper than 1 mm under the phantom surface this difference in dose increase under holes and bridges decreases to less than 10%. The mean dose increase under a perforated thermoplast sheet is lower than the dose increase under a homogeneous sheet made of the same material with the same mean thickness. Radiation induced skin lesions or an ulcerating tumour, respectively, may require a protective wound dressing under a patient fixation mask during radiation therapy. Choosing a thin hydrocolloid wound dressing the additional dose increase of the skin, compared to the dose increase due to the fixation mask, can be kept low. (orig.) [de

  8. Research on Method of Photoelectric Measurement for Tilt Angle of Scanning Mirror of Infrared Earth Sensor

    International Nuclear Information System (INIS)

    Xu, X P; Zhang, G Y; Zhang, N; Wang, L Y

    2006-01-01

    Tilt angle of scanning mirror is one of the important qualifications of performance measurement on the earth surface for swing scanning mode infrared the earth sensor. In order to settle the problem of measuring the tilt angle of scanning mirror in dynamic, real-time and non-contact, based on laser inspecting technology and CCD probing technology, a method of laser dynamical measurement for tilt angle of scanning mirror of the infrared earth sensor is presented. The measurement system developed in this paper can accomplish the dynamic and static laser non-contact measurement for the parameters of scanning mirror such as tilt angle, swing frequency, etc. In this paper the composition and overall structure of system are introduced. Emphasis on analyzing and discussing the theory of dynamically measuring tilt angle of scanning mirror, the problems of data processing and error correction are settled by established mathematic model of system. The accuracy of measurement system is verified by experiment, the results indicated that measurement range of system for tilt angle is 0∼±12 0 , accuracy of dynamic and static measurement is less than ±0.05 0 , this method of dynamically measuring tilt angle is suitable

  9. Soleus stretch reflex during cycling

    DEFF Research Database (Denmark)

    Grey, Michael James; Pierce, C. W.; Milner, T. E.

    2001-01-01

    the crank cycle, producing ankle dorsiflexion perturbations of similar trajectory. The stretch reflex was greatest during the power phase of the crank cycle and was decreased to the level of background EMG during recovery. Matched perturbations were induced under static conditions at the same crank angle...... active cycling as has been shown with the H-reflex. This lack of depression may reflect a decreased susceptibility of the stretch reflex to inhibition, possibly originating from presynaptic mechanisms....

  10. Muscle-specific acute changes in passive stiffness of human triceps surae after stretching.

    Science.gov (United States)

    Hirata, Kosuke; Miyamoto-Mikami, Eri; Kanehisa, Hiroaki; Miyamoto, Naokazu

    2016-05-01

    It remains unclear whether the acute effect of stretching on passive muscle stiffness differs among the synergists. We examined the muscle stiffness responses of the medial (MG) and lateral gastrocnemii (LG), and soleus (Sol) during passive dorsiflexion before and after a static stretching by using ultrasound shear wave elastography. Before and after a 5-min static stretching by passive dorsiflexion, shear modulus of the triceps surae and the Achilles tendon (AT) during passive dorsiflexion in the knee extended position were measured in 12 healthy subjects. Before the static stretching, shear modulus was the greatest in MG and smallest in Sol. The stretching induced significant reductions in shear modulus of MG, but not in shear modulus of LG and Sol. The slack angle was observed at more plantar flexed position in the following order: AT, MG, LG, and Sol. After the stretching, the slack angles of each muscle and AT were significantly shifted to more dorsiflexed positions with a similar extent. When considering the shift in slack angle, the change in MG shear modulus became smaller. The present study indicates that passive muscle stiffness differs among the triceps surae, and that the acute effect of a static stretching is observed only in the stiff muscle. However, a large part of the reduction of passive muscle stiffness at a given joint angle could be due to an increase in the slack length.

  11. Measurement of contact angles of aqueous solutions on some rock forming minerals

    Science.gov (United States)

    Takakura, M.; Katsura, M.; Nakashima, S.

    2007-12-01

    Wetting properties of fluids on earth's materials are controlling fluid flows and dynamics of the geological systems. Although the wetting behavior of industrial materials have been widely examined often by contact angle measurements, contact angles of rock-forming materials have not been commonly measured. Therefore, we have been measuring contact angles of some representative rock-forming minerals. The surfaces of solid samples were polished successively by emery papers then by grinding powders (alumina: up to \\sharp3000: grain size about 5 micrometers). Water droplet from a micro-syringe needle are placed on solid surfaces by moving up the sample stage. Images of water drops on the solid surfaces are captured from the horizontal direction with a CCD camera. Contact angles can be determined from the height and the length of the images by assuming them to be parts of circles. Over 60 measurements of contact angles of pure water on (101) and (011) faces plates cut from a natural quartz single crystal were repeated. The average contact angles of pure water on (101) and (011) faces of quartz were 48 ± 5 degrees and 52 ± 3 degrees, respectively. Contact angles of pure water on a natural calcite single crystal was also measured in the same way to be 37 ± 8 degrees. Contact angles of various aqueous solutions such as NaCl and NaHCO3 on these minerals will also be measured in order to evaluate wetting properties of natural rock-water systems.

  12. Compensation method for the alignment angle error of a gear axis in profile deviation measurement

    International Nuclear Information System (INIS)

    Fang, Suping; Liu, Yongsheng; Wang, Huiyi; Taguchi, Tetsuya; Takeda, Ryuhei

    2013-01-01

    In the precision measurement of involute helical gears, the alignment angle error of a gear axis, which was caused by the assembly error of a gear measuring machine, will affect the measurement accuracy of profile deviation. A model of the involute helical gear is established under the condition that the alignment angle error of the gear axis exists. Based on the measurement theory of profile deviation, without changing the initial measurement method and data process of the gear measuring machine, a compensation method is proposed for the alignment angle error of the gear axis that is included in profile deviation measurement results. Using this method, the alignment angle error of the gear axis can be compensated for precisely. Some experiments that compare the residual alignment angle error of a gear axis after compensation for the initial alignment angle error were performed to verify the accuracy and feasibility of this method. Experimental results show that the residual alignment angle error of a gear axis included in the profile deviation measurement results is decreased by more than 85% after compensation, and this compensation method significantly improves the measurement accuracy of the profile deviation of involute helical gear. (paper)

  13. Measurement of Lumbosacral Angle in Normal Radiographs: A ...

    African Journals Online (AJOL)

    20] Of all these methods, radiography remains the gold standard and lordotic measurement can accurately be measured in a supine lateral lumbosacral spine radiograph.[21-23] ... the following reasons: (1) To avoid ethical issues like patient's.

  14. Agreement Between Panoramic and Lateral Cephalometric Radiographs for Measuring the Gonial Angle

    International Nuclear Information System (INIS)

    Zangouei-Booshehri, Maryam; Aghili, Hossein-Agha; Abasi, Mojtaba; Ezoddini-Ardakani, Fatemeh

    2012-01-01

    The gonial angle is one of the most important measurements required for orthodontic treatment and orthognathic surgery. It is difficult to determine the accurate measurement of each gonial angle on cephalometric radiographs because of superimposition of the left and right angles. The aim of the present study was to determine the right and left gonial angles on panoramic radiographs and to compare them with an evaluated cephalometric sample. A total of 80 panoramic and 80 cephalometric radiographs were obtained from 6 to 12-year-old children and the gonial angle was determined by the tangent of the inferior border of the mandible and the most distal aspect of the ascending ramus and the condyleon both panoramic and cephalometric radiographs. We used Pearson’s correlation coefficient and paired t-test for comparison. The mean gonial angle was 127.07 ± 6.10 and 127.5 ± 6.67 degrees on panoramic and cephalometric radiographs, respectively. There was no statistically significant difference between the measured gonial angles on panoramic and cephalometric radiographs and also no difference between the right and left (both Ps = 0.18) The value of the gonial angle measured on panoramic radiography was the same as that measured on the routinely used cephalometric radiography

  15. Radiographic measures of thoracic kyphosis in osteoporosis: Cobb and vertebral centroid angles

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, A.M.; Greig, A.M. [University of Melbourne, Centre for Health, Exercise and Sports Medicine, School of Physiotherapy, Victoria (Australia); University of Melbourne, Department of Medicine, Royal Melbourne Hospital, Victoria (Australia); Wrigley, T.V.; Tully, E.A.; Adams, P.E.; Bennell, K.L. [University of Melbourne, Centre for Health, Exercise and Sports Medicine, School of Physiotherapy, Victoria (Australia)

    2007-08-15

    Several measures can quantify thoracic kyphosis from radiographs, yet their suitability for people with osteoporosis remains uncertain. The aim of this study was to examine the validity and reliability of the vertebral centroid and Cobb angles in people with osteoporosis. Lateral radiographs of the thoracic spine were captured in 31 elderly women with osteoporosis. Thoracic kyphosis was measured globally (T1-T12) and regionally (T4-T9) using Cobb and vertebral centroid angles. Multisegmental curvature was also measured by fitting polynomial functions to the thoracic curvature profile. Canonical and Pearson correlations were used to examine correspondence; agreement between measures was examined with linear regression. Moderate to high intra- and inter-rater reliability was achieved (SEM = 0.9-4.0 ). Concurrent validity of the simple measures was established against multisegmental curvature (r = 0.88-0.98). Strong association was observed between the Cobb and centroid angles globally (r = 0.84) and regionally (r = 0.83). Correspondence between measures was moderate for the Cobb method (r = 0.72), yet stronger for the centroid method (r = 0.80). The Cobb angle was 20% greater for regional measures due to the influence of endplate tilt. Regional Cobb and centroid angles are valid and reliable measures of thoracic kyphosis in people with osteoporosis. However, the Cobb angle is biased by endplate tilt, suggesting that the centroid angle is more appropriate for this population. (orig.)

  16. Radiographic measures of thoracic kyphosis in osteoporosis: Cobb and vertebral centroid angles

    International Nuclear Information System (INIS)

    Briggs, A.M.; Greig, A.M.; Wrigley, T.V.; Tully, E.A.; Adams, P.E.; Bennell, K.L.

    2007-01-01

    Several measures can quantify thoracic kyphosis from radiographs, yet their suitability for people with osteoporosis remains uncertain. The aim of this study was to examine the validity and reliability of the vertebral centroid and Cobb angles in people with osteoporosis. Lateral radiographs of the thoracic spine were captured in 31 elderly women with osteoporosis. Thoracic kyphosis was measured globally (T1-T12) and regionally (T4-T9) using Cobb and vertebral centroid angles. Multisegmental curvature was also measured by fitting polynomial functions to the thoracic curvature profile. Canonical and Pearson correlations were used to examine correspondence; agreement between measures was examined with linear regression. Moderate to high intra- and inter-rater reliability was achieved (SEM = 0.9-4.0 ). Concurrent validity of the simple measures was established against multisegmental curvature (r = 0.88-0.98). Strong association was observed between the Cobb and centroid angles globally (r = 0.84) and regionally (r 0.83). Correspondence between measures was moderate for the Cobb method (r 0.72), yet stronger for the centroid method (r = 0.80). The Cobb angle was 20% greater for regional measures due to the influence of endplate tilt. Regional Cobb and centroid angles are valid and reliable measures of thoracic kyphosis in people with osteoporosis. However, the Cobb angle is biased by endplate tilt, suggesting that the centroid angle is more appropriate for this population. (orig.)

  17. Surface properties of dental polymers: measurements of contact angles, roughness and fluoride release

    Directory of Open Access Journals (Sweden)

    Fátima Namen

    2008-09-01

    Full Text Available OBJECTIVE: Earlier studies on some dental materials measured roughness and/or contact angles or fluoride release separately. In the present study, five dental polymers were investigated to ascertain their contact angles, wettability, roughness, and fluoride release in dry or wet conditions. METHODS: Samples for 5 materials were prepared and stored dry or wet in deionized water pH 6.8. Samples were submitted to finishing/polishing procedures, and the measurements in Goniometer, roughness (µm and fluoride analysis RESULTS AND CONCLUSIONS: Except for the Ariston pHc, all the materials displayed high contact angles when measured with water, showing hydrophobic characteristics. Roughness changed the contact angles, especially those of Ariston (α < 0.05. Fluoride did not modify the contact angles, but increased the roughness of the finished material.

  18. In situ beam angle measurement in a multi-wafer high current ion implanter

    International Nuclear Information System (INIS)

    Freer, B.S.; Reece, R.N.; Graf, M.A.; Parrill, T.; Polner, D.

    2005-01-01

    Direct, in situ measurement of the average angle and angular content of an ion beam in a multi-wafer ion implanter is reported for the first time. A new type of structure and method are described. The structures are located on the spinning disk, allowing precise angular alignment to the wafers. Current that passes through the structures is known to be within a range of angles and is detected behind the disk. By varying the angle of the disk around two axes, beam current versus angle is mapped and the average angle and angular spread are calculated. The average angle measured in this way is found to be consistent with that obtained by other techniques, including beam centroid offset and wafer channeling methods. Average angle of low energy beams, for which it is difficult to use other direct methods, is explored. A 'pencil beam' system is shown to give average angle repeatability of 0.13 deg. (1σ) or less, for two low energy beams under normal tuning variations, even though no effort was made to control the angle

  19. Effect of stifle angle on the magnitude of the tibial plateau angle measurement in dogs with intact and transected cranial cruciate ligament. A cadaveric study.

    Science.gov (United States)

    Aulakh, K S; Harper, T A M; Lanz, O I; Daniel, G B; Werre, S R

    2011-01-01

    To determine the effect of stifle angle on the magnitude of the radiographic tibial plateau angle (TPA) in normal and cranial cruciate ligament (CCL) -deficient stifles. Three pairs of canine cadaver hindlimbs from three skeletally mature dogs were positioned in a custom-made positioning device. A lateral radiograph of each specimen was obtained before and after transection of the CCL at four stifle angles (90°, 110°, 135° and 140-150° [i.e. maximum extension]), based on goniometric measurements. Four observers determined the radiographic TPA twice for each radiograph with a minimum of two days between each measurement. The radiographic TPA measurements in all specimens at different stifle angles with intact CCL and transected CCL were compared with mixed-model ANOVA. The effect of stifle angle, CCL transection, and interaction between the two on observer TPA measurement variability was also determined using the coefficient of variation. Tibial plateau angle was not statistically different in the stifle angles for either the intact or transected CCL. There was also no statistical difference for TPA between intact and transected CCL groups at each of the stifle angles. Stifle angle, CCL transection and interaction between the two did not have any significant effect for intra-observer and inter-observer variation. The angle of the stifle during radiography does not influence the magnitude of the TPA measurement as determined on true lateral radiographs of the stifle and tibia in cadaveric canine limbs.

  20. Effectiveness of variable-gain Kalman filter based on angle error calculated from acceleration signals in lower limb angle measurement with inertial sensors.

    Science.gov (United States)

    Teruyama, Yuta; Watanabe, Takashi

    2013-01-01

    The wearable sensor system developed by our group, which measured lower limb angles using Kalman-filtering-based method, was suggested to be useful in evaluation of gait function for rehabilitation support. However, it was expected to reduce variations of measurement errors. In this paper, a variable-Kalman-gain method based on angle error that was calculated from acceleration signals was proposed to improve measurement accuracy. The proposed method was tested comparing to fixed-gain Kalman filter and a variable-Kalman-gain method that was based on acceleration magnitude used in previous studies. First, in angle measurement in treadmill walking, the proposed method measured lower limb angles with the highest measurement accuracy and improved significantly foot inclination angle measurement, while it improved slightly shank and thigh inclination angles. The variable-gain method based on acceleration magnitude was not effective for our Kalman filter system. Then, in angle measurement of a rigid body model, it was shown that the proposed method had measurement accuracy similar to or higher than results seen in other studies that used markers of camera-based motion measurement system fixing on a rigid plate together with a sensor or on the sensor directly. The proposed method was found to be effective in angle measurement with inertial sensors.

  1. A novel method of measuring spatial rotation angle using MEMS tilt sensors

    International Nuclear Information System (INIS)

    Cao, Jian’an; Zhu, Xin; Zhang, Leping; Wu, Hao

    2017-01-01

    This paper presents a novel method of measuring spatial rotation angle with a dual-axis micro-electro-mechanical systems tilt sensor. When the sensor is randomly mounted on the surface of the rotating object, there are three unpredictable and unknown mounting position parameters: α , the sensor’s swing angle on the measuring plane; β , the angle between the rotation axis and the horizontal plane; and γ , the angle between the measuring plane and the rotation axis. Thus, the sensor’s spatial rotation model is established to describe the relationship between the measuring axis, rotation axis, and horizontal plane, and the corresponding analytical equations are derived. Furthermore, to eliminate the deviation caused by the uncertain direction of the rotation axis, an extra perpendicularly mounted, single-axis tilt sensor is combined with the dual-axis tilt sensor, forming a three-axis tilt sensor. Then, by measuring the sensors’ three tilts and solving the model’s equations, the object’s spatial rotation angle is obtained. Finally, experimental results show that the developed tilt sensor is capable of measuring spatial rotation angle in the range of  ±180° with an accuracy of 0.2° if the angle between the rotation axis and the horizontal plane is less than 75°. (paper)

  2. Ankle-Dorsiflexion Range of Motion After Ankle Self-Stretching Using a Strap

    Science.gov (United States)

    Jeon, In-cheol; Kwon, Oh-yun; Yi, Chung-Hwi; Cynn, Heon-Seock; Hwang, Ui-jae

    2015-01-01

    Context  A variety of ankle self-stretching exercises have been recommended to improve ankle-dorsiflexion range of motion (DFROM) in individuals with limited ankle dorsiflexion. A strap can be applied to stabilize the talus and facilitate anterior glide of the distal tibia at the talocrural joint during ankle self-stretching exercises. Novel ankle self-stretching using a strap (SSS) may be a useful method of improving ankle DFROM. Objective  To compare the effects of 2 ankle-stretching techniques (static stretching versus SSS) on ankle DFROM. Design  Randomized controlled clinical trial. Setting  University research laboratory. Patients or Other Participants  Thirty-two participants with limited active dorsiflexion (<20°) while sitting (14 women and 18 men) were recruited. Main Outcome Measure(s)  The participants performed 2 ankle self-stretching techniques (static stretching and SSS) for 3 weeks. Active DFROM (ADFROM), passive DFROM (PDFROM), and the lunge angle were measured. An independent t test was used to compare the improvements in these values before and after the 2 stretching interventions. The level of statistical significance was set at α = .05. Results  Active DFROM and PDFROM were greater in both stretching groups after the 3-week interventions. However, ADFROM, PDFROM, and the lunge angle were greater in the SSS group than in the static-stretching group (P < .05). Conclusions  Ankle SSS is recommended to improve ADFROM, PDFROM, and the lunge angle in individuals with limited DFROM. PMID:26633750

  3. Measuring the Quadriceps Angle by a New Method and Comparison with Goniometer and Radiography

    Directory of Open Access Journals (Sweden)

    Yahya Sokhangouei

    2012-07-01

    Full Text Available Objective: The purpose of this study is to decrease the amount of error when measuring Q–angles using a goniometer by the new method, a private system developed at the I.R's university of social welfare & rehabilitation sciences (USWR by Investigator. Materials & Methods: Fourty subjects with Eighty healthy knees participated in this methodologic study. One investigator participated in data collection who is a licensed physical therapist and has over 6 years of clinical experience in orthopedic physical therapy. He has designed and experienced with new method and computer program. Quadriceps angles measured bilaterally for 40 subjects were recorded. Reliability and validity with new method of the measurements were calculated with Intraclass Correlation Coefficient (ICC & Repeated Measurement for new method and compared it's result with goniometry in contrast with radiography. Results: The ICC for measuring Q-angle with a new method versus the radiography was 0.935, while the ICC for measuring Q-angle with the goniometry versus the radiography was 0.696. The ICC between measures three times obtained with a New Method was 0.974. Conclusion: There is a high association between measures of Q-angle obtained with a new method compared to those obtained with radiography while this association for goniometry is low. Intratester reliability for new method is good and this method can applied as a good measurement method of Q angle.

  4. Method of rotation angle measurement in machine vision based on calibration pattern with spot array

    International Nuclear Information System (INIS)

    Li Weimin; Jin Jing; Li Xiaofeng; Li Bin

    2010-01-01

    We propose a method of rotation angle measurement with high precision in machine vision. An area scan CCD camera, imaging lens, and calibration pattern with a spot array make up the measurement device for measuring the rotation angle. The calibration pattern with a spot array is installed at the rotation part, and the CCD camera is set at a certain distance from the rotation components. The coordinates of the spots on the calibration pattern is acquired through the vision image of the calibration pattern captured by the CCD camera. At the initial position of the calibration pattern, the camera is calibrated with the spot array; the mathematical model of distortion error of the CCD camera is built. With the equation of coordinate rotation measurement, the rotation angle of the spot array is detected. In the theoretic simulation, noise of different levels is added to the coordinates of the spot array. The experiment results show that the measurement device can measure the rotation angle precisely with a noncontact method. The standard deviation of rotation angle measurement is smaller than 3 arc sec. The measurement device can measure both microangles and large angles.

  5. Effects of Compound K-Distributed Sea Clutter on Angle Measurement of Wideband Monopulse Radar

    Directory of Open Access Journals (Sweden)

    Hong Zhu

    2017-01-01

    Full Text Available The effects of compound K-distributed sea clutter on angle measurement of wideband monopulse radar are investigated in this paper. We apply the conditional probability density function (pdf of monopulse ratio (MR error to analyze these effects. Based on the angle measurement procedure of the wideband monopulse radar, this conditional pdf is first deduced in detail for the case of compound K-distributed sea clutter plus noise. Herein, the spatial correlation of the texture components for each channel clutter and the correlation of the texture components between the sum and difference channel clutters are considered, and two extreme situations for each of them are tackled. Referring to the measured sea clutter data, angle measurement performances in various K-distributed sea clutter plus noise circumstances are simulated, and the effects of compound K-distributed sea clutter on angle measurement are discussed.

  6. A bioelectrical impedance phase angle measuring system for assessment of nutritional status.

    Science.gov (United States)

    Zhang, Guanghao; Huo, Xiaolin; Wu, Changzhe; Zhang, Cheng; Duan, Zhongping

    2014-01-01

    Bioelectrical impedance phase angle has been recommended as a tool to assess nutrition state, but there are no measuring devices have been specially designed for hospital residents. In this study, a system was established for the measurement of bioelectrical impedance phase angle. The electrical composition, calculation method and measuring method of this system are presented in this paper. Experiments showed excellent performance of this system in measuring impedance made of resistors and capacitors. The designed system was also used to measure the bioelectrical impedance phase angle of both healthy subjects and patients with malnutrition, and the results demonstrated that the phase angle of patients with malnutrition is lower than that of healthy subjects (P nutritional status.

  7. Measurement of two-dimensional small angle deviation with a prism interferometer

    International Nuclear Information System (INIS)

    Chatterjee, Sanjib; Kumar, Y. Pavan

    2008-01-01

    A new technique for the measurement of two-dimensional small angular deviation is presented. A compound prism, which effectively produces a combination of two right-angled prisms in orthogonal directions, and plane reference surfaces have been utilized for the measurement of the orthogonal components of the angular tilt of an incident plane wavefront. Each orthogonal component of the angular tilt is separately measured from the angular rotation of the resultant wedge fringes between two plane wavefronts generated due to splitting of the incident plane wavefront by the corresponding set of right-angled prism and plane reference surface. The technique is shown to have high sensitivity for the measurement of small angle deviation. A monolithic prism interferometer, which is practically insensitive to vibration, is also proposed. Results obtained for the measurement of a known tilt angle are presented

  8. Use of the iPhone for Cobb angle measurement in scoliosis.

    Science.gov (United States)

    Shaw, Matthew; Adam, Clayton J; Izatt, Maree T; Licina, Paul; Askin, Geoffrey N

    2012-06-01

    The Cobb technique is the universally accepted method for measuring the severity of spinal deformities. Traditionally, Cobb angles have been measured using protractor and pencil on hardcopy radiographic films. The new generation of mobile 'smartphones' make accurate angle measurement possible using an integrated accelerometer, providing a potentially useful clinical tool for assessing Cobb angles. The purpose of this study was to compare Cobb angle measurements performed using a smartphone and traditional protractor in a series of 20 adolescent idiopathic scoliosis patients. Seven observers measured major Cobb angles on 20 pre-operative postero-anterior radiographs of Adolescent Idiopathic Scoliosis patients with both a standard protractor and using an Apple iPhone. Five of the observers repeated the measurements at least a week after the original measurements. The mean absolute difference between pairs of smartphone/protractor measurements was 2.1°, with a small (1°) bias toward lower Cobb angles with the iPhone. 95% confidence intervals for intra-observer variability were ±3.3° for the protractor and ±3.9° for the iPhone. 95% confidence intervals for inter-observer variability were ±8.3° for the iPhone and ±7.1° for the protractor. Both of these confidence intervals were within the range of previously published Cobb measurement studies. We conclude that the iPhone is an equivalent Cobb measurement tool to the manual protractor, and measurement times are about 15% less. The widespread availability of inclinometer-equipped mobile phones and the ability to store measurements in later versions of the angle measurement software may make these new technologies attractive for clinical measurement applications.

  9. A visual template-matching method for articulation angle measurement

    CSIR Research Space (South Africa)

    De Saxe, C

    2015-09-01

    Full Text Available and proposed sensing methods are limited either in terms of commercial feasibility or measurement accuracy. This paper investigates a vision-based system consisting of a single tractor-mounted camera, a template-matching image processing algorithm...

  10. Measurement of Lumbosacral Angle in Normal Radiographs: A ...

    African Journals Online (AJOL)

    hyper.lordosis; most of the data in use in medical practice are based on studies on other races. Aim: To quantify the normal LSA in our population. Subjects and Methods: LSA was measured by the Fergusonfs technique and the data analyzed with SPSS Statistics version 17.0 (Chicago IL, USA). Results: LSA varied between ...

  11. The measurement of neutron scattering cross sections at small angles

    International Nuclear Information System (INIS)

    Qi, H.Q.; Liu, Y.C.; Chen, Z.P.; Wu, X.C.; Wang, W.H.; Zhang, J.

    1985-08-01

    A position sensitive neutron detector was used to measure the scattering cross sections of 14.7 MeV neutrons from Pb between 3 0 and 9 0 . The method to correct the effects of finite positional resolution by unfolding positional spectrum was studied. (author)

  12. Algorithm for automatic angles measurement and screening for Developmental Dysplasia of the Hip (DDH).

    Science.gov (United States)

    Al-Bashir, Areen K; Al-Abed, Mohammad; Abu Sharkh, Fayez M; Kordeya, Mohamed N; Rousan, Fadi M

    2015-01-01

    Developmental Dysplasia of the Hip (DDH) is a medical term represent the hip joint instability that appear mainly in infants. The examination for this condition can be done by ultrasound for children under 6 months old and by X-ray for children over 6 months old. Physician's assessment is based on certain angles derived from those images, namely the Acetabular Angle, and the Center Edge Angle. In this paper, we are presenting a novel, fully automatic algorithm for measuring the diagnostic angles of DDH from the X-ray images. Our algorithm consists of Automatic segmentation and extraction of anatomical landmarks from X-ray images. Both of Acetabular angle and Center edge angle are automatically calculated. The analysis included X-ray images for 16 children recruited for the purposed of this study. The automatically acquired angles accuracy for Acetabular Angle was around 85%, and an absolute deviation of 3.4°±3.3° compared to the physician's manually calculated angle. The results of this method are very promising for the future development of an automatic method for screening X-ray images DDH that complement and aid the physicians' manual methods.

  13. Control Method Stretches Suspensions by Measuring the Sag of Strands in Cable-Stayed Bridges

    Science.gov (United States)

    Bętkowski, Piotr

    2017-10-01

    In the article is described the method that allows on evaluation and validation of measurement correctness of dynamometers (strain gauges, tension meters) used in systems of suspensions. Control of monitoring devices such as dynamometers is recommended in inspections of suspension bridges. Control device (dynamometer) works with an anchor, and the degree of this cooperation could have a decisive impact on the correctness of the results. Method, which determines the stress in the strand (cable), depending on the sag of stayed cable, is described. This method can be used to control the accuracy of measuring devices directly on the bridge. By measuring the strand sag, it is possible to obtain information about the strength (force) which occurred in the suspension cable. Digital camera is used for the measurement of cable sag. Control measurement should be made independently from the controlled parameter but should verify this parameter directly (it is the best situation). In many cases in practice the controlled parameter is not designation by direct measurement, but the calculations, i.e. relation measured others parameters, as in the method described in the article. In such cases occurred the problem of overlapping error of measurement of intermediate parameters (data) and the evaluation of the reliability of the results. Method of control calculations made in relation to installed in the bridge measuring devices is doubtful without procedure of uncertainty estimation. Such an assessment of the accuracy can be performed using the interval numbers. With the interval numbers are possible the analysis of parametric relationship accuracy of the designation of individual parameters and uncertainty of results. Method of measurements, relations and analytical formulas, and numerical example can be found in the text of the article.

  14. Use of an amorphous silicon EPID for measuring MLC calibration at varying gantry angle

    International Nuclear Information System (INIS)

    Clarke, M F; Budgell, G J

    2008-01-01

    Amorphous silicon electronic portal imaging devices (EPIDs) are used to perform routine quality control (QC) checks on the multileaf collimators (MLCs) at this centre. Presently, these checks are performed at gantry angle 0 0 and are considered to be valid for all other angles. Since therapeutic procedures regularly require the delivery of MLC-defined fields to the patient at a wide range of gantry angles, the accuracy of the QC checks at other gantry angles has been investigated. When the gantry is rotated to angles other than 0 0 it was found that the apparent pixel size measured using the EPID varies up to a maximum value of 0.0015 mm per pixel due to a sag in the EPID of up to 9.2 mm. A correction factor was determined using two independent methods at a range of gantry angles between 0 deg. and 360 deg. The EPID was used to measure field sizes (defined by both x-jaws and MLC) at a range of gantry angles and, after this correction had been applied, any residual gravitational sag was studied. It was found that, when fields are defined by the x-jaws and y-back-up jaws, no errors of greater than 0.5 mm were measured and that these errors were no worse when the MLC was used. It was therefore concluded that, provided the correction is applied, measurements of the field size are, in practical terms, unaffected by gantry angle. Experiments were also performed to study how the reproducibility of individual leaves is affected by gantry angle. Measurements of the relative position of each individual leaf (minor offsets) were performed at a range of gantry angles and repeated three times. The position reproducibility was defined by the RMS error in the position of each leaf and this was found to be 0.24 mm and 0.21 mm for the two leaf banks at a gantry angle of 0 0 . When measurements were performed at a range of gantry angles, these reproducibility values remained within 0.09 mm and 0.11 mm. It was therefore concluded that the calibration of the Elekta MLC is stable at

  15. Cluster of CubeSats for Multi-Angle Measurements of Bidirectional Reflectance Distribution Function (BRDF)

    Data.gov (United States)

    National Aeronautics and Space Administration — Cluster of CubeSats for Multi-Angle Measurements of Bidirectional Reflectance Distribution Function (BRDF) The rapidly advancing capabilities of small satellite...

  16. A Comparison of Galaxy Spiral Arm Pitch Angle Measurements Using Manual and Automated Techniques

    Science.gov (United States)

    Hewitt, Ian; Treuthardt, Patrick

    2018-01-01

    Disk galaxy evolution is dominated by secular processes in the nearby universe. Revealing the morphological characteristics and underlying dynamics of these galaxies is key to understanding their evolution. The arm structure of disk galaxies can generally be described with logarithmic spirals, thereby giving measurements of pitch angle. These measurements are valuable for probing the dynamics and less apparent characteristics of these galaxies (i.e. supermassive black hole mass). Pitch angle measurements are powerful because they can be derived from a single, uncalibrated, broadband image with sufficient contrast, as opposed to more intensive observations. Accurate determination of these measurements can be challenging, however, since pitch angle can vary with radius.There are currently several semi-automated and manual techniques used to determine pitch angle. These are, or will be, used in at least two Zooniverse citizen science projects. The goal of this work is to determine if different, specific techniques return similar pitch angles for the same set of galaxies. We compare the results from a machine vision technique using SPARCFIRE, a non-Euclidean based hand selection of pitch angle, and two methods using 2D Fourier decomposition (i.e. selecting stable regions from the results of direct application to broadband images and application to traced versions of the observed spiral pattern). Each technique is applied to our sample of galaxies and the resulting pitch angles are compared to generated logarithmic spirals to evaluate the match quality.

  17. Measure Advancing, Receding and Dynamic Contact Angles of granular materials in a close column

    Science.gov (United States)

    Callegari, Gerardo; Li, Minglu; Moghtadernejad, Sara; Drazer, German

    2017-11-01

    Wetting properties of granular materials are usually obtained by the Washburn column technique. One problem is that the effective contact angle measured is dynamic and variable. The open column technique also allows to measure static advancing contact angle when the interface stops because the driving capillary pressure is balanced by the hydrostatic pressure. However, when particle diameters are in the range of tens of microns the static condition cannot be achieved at practical heights. Also, the open column device cannot be used to measure receding contact angles or contact angles of non-wetting liquids. Dynamics of a close column filled with granular material of different particle sizes where the liquid mass, the enclosed air pressure and the front position are monitored as a function of time is studied. Contact angle is calculated in dynamic and advancing static conditions. Then, a Syringe pump is used to increase the pressure inside the column so that the receding contact angle can also be studied. Supplementary experiments with a reference liquid that completely wets the powder are performed. Using a second liquid decouples the properties of the bed from the result and allows to measure the contact angles without making assumptions on the pore size or geometry.

  18. How to Measure Separations and Angles Between Intramolecular Fluorescent Markers

    DEFF Research Database (Denmark)

    Mortensen, Kim; Sung, J.; Spudich, J.A.

    2016-01-01

    firmly; (b) we established how to map with super-resolution between color-separated channels, which should be useful for all dual-color colocalization measurements with either fixed or freely rotating fluorescent molecules. Throughout, we use only simple means: from each color-separated microscope image......Structure and function of an individual biomolecule can be explored with minimum two fluorescent markers of different colors. Since the light of such markers can be spectrally separated and imaged simultaneously, the markers can be colocalized. Here, we describe the method used for such two-color...

  19. Wide angle Michelson Doppler imaging interferometer. [measuring atmospheric emissions

    Science.gov (United States)

    Shepherd, G. G.

    1980-01-01

    The optical system, stepping control, phase and modulation depth, array detector, and directions sensor are described for a specialized type of Michelson interferometer which works at sufficiently high resolution to measure the line widths and Doppler shifts of naturally occurring atmospheric emissions. With its imaging capability, the instrument can potentially supply this data independently for each element of the 100 x 100 detector array. The experiment seeks: (1) to obtain vertical profiles of atmospheric winds and temperatures as functions of latitude by observing near the limb; (2) to acquire exploratory wind and temperature data on smaller scale structures in airglow irregularities and in auroral forms; and (3) to collaborate with other Spacelab experiments, such as barium cloud releases, in providing wind and temperature data.

  20. A new method for measuring the contact angles from digital images of liquid drops.

    Science.gov (United States)

    Mirzaei, M

    2017-11-01

    The drop hitting a solid surface may be symmetric or asymmetric, which depends on the surface texture and external force orientations. The accurate measurement of the contact angle is of fundamental importance for the purpose of scientific research, while having a substantial role in a wide range of practical applications. This paper presents a new image processing based method, as a computational scheme to measure the inclination angle of apparent edge curves in digital images. The main concept of the scheme is the emulation of a moving goniometer mask coupled with a Gaussian weighted function, which does not require edge fitting with analytic curves for the angle calculation. The algorithm produces as follow: allocating the exact position of the contact points by Harris corner detector function, selecting a series of points on the drop boundary near the contact points, setting goniometric mask on each given point and calculating the angles, applying the Gaussian weighted average function on the calculated angles and measure the objective contact angle. The scheme is tested on several images from recent studies in the available literature. The comparison between analytical and calculated angles shows less than 1° difference. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. A stereological approach for measuring the groove angles of intergranular corrosion

    International Nuclear Information System (INIS)

    Gwinner, B.; Borgard, J.-M.; Dumonteil, E.; Zoia, A.

    2017-01-01

    Highlights: • The ICG morphology has been characterized in 3D by X-ray μ-tomography. • The measurement of the angles of the IGC groove on 2D cross sections induces a bias. • A methodology is proposed to estimate the true value of the IGC groove angles in 3D. - Abstract: Non-sensitized austenitic stainless steels can be prone to intergranular corrosion when they are in contact with an oxidizing medium like nitric acid. Intergranular corrosion is characterized by the formation of grooves along the grain boundaries. The angle of these grooves is a key parameter, which directly informs of the intergranular corrosion kinetics. Most of the time, the angles of the grooves are experimentally measured on 2-dimensional cross sections of the corroded samples. This study discusses the relationship between the groove angle measured on 2-dimensional sections and the true groove angle in 3-dimensional space. This approach could also be easily extended to the study of crack angle in the domains of corrosion-fatigue, stress corrosion cracking or mechanical fracture.

  2. Quantitative angle-insensitive flow measurement using relative standard deviation OCT.

    Science.gov (United States)

    Zhu, Jiang; Zhang, Buyun; Qi, Li; Wang, Ling; Yang, Qiang; Zhu, Zhuqing; Huo, Tiancheng; Chen, Zhongping

    2017-10-30

    Incorporating different data processing methods, optical coherence tomography (OCT) has the ability for high-resolution angiography and quantitative flow velocity measurements. However, OCT angiography cannot provide quantitative information of flow velocities, and the velocity measurement based on Doppler OCT requires the determination of Doppler angles, which is a challenge in a complex vascular network. In this study, we report on a relative standard deviation OCT (RSD-OCT) method which provides both vascular network mapping and quantitative information for flow velocities within a wide range of Doppler angles. The RSD values are angle-insensitive within a wide range of angles, and a nearly linear relationship was found between the RSD values and the flow velocities. The RSD-OCT measurement in a rat cortex shows that it can quantify the blood flow velocities as well as map the vascular network in vivo .

  3. Investigation of surface porosity measurements and compaction pressure as means to ensure consistent contact angle determinations

    DEFF Research Database (Denmark)

    Holm, René; Borkenfelt, Simon; Allesø, Morten

    2016-01-01

    for a compound is determined by its contact angle to a liquid, which in the present study was measured using the sessile drop method applied to a disc compact of the compound. Precise determination of the contact angle is important should it be used to either rank compounds or selected excipients to e.......g. increase the wetting from a solid dosage form. Since surface roughness of the compact has been suggested to influence the measurement this study investigated if the surface quality, in terms of surface porosity, had an influence on the measured contact angle. A correlation to surface porosity was observed......, however for six out of seven compounds similar results were obtained by applying a standard pressure (866MPa) to the discs in their preparation. The data presented in the present work therefore suggest that a constant high pressure should be sufficient for most compounds when determining the contact angle...

  4. Comparison of different methods to measure contact angles of soil colloids.

    Science.gov (United States)

    Shang, Jianying; Flury, Markus; Harsh, James B; Zollars, Richard L

    2008-12-15

    We compared five different methods, static sessile drop, dynamic sessile drop, Wilhelmy plate, thin-layer wicking, and column wicking, to determine the contact angle of colloids typical for soils and sediments. The colloids (smectite, kaolinite, illite, goethite, hematite) were chosen to represent 1:1 and 2:1 layered aluminosilicate clays and sesquioxides, and were either obtained in pure form or synthesized in our laboratory. Colloids were deposited as thin films on glass slides, and then used for contact angle measurements using three different test liquids (water, formamide, diiodomethane). The colloidal films could be categorized into three types: (1) films without pores and with polar-liquid interactions (smectite), (2) films with pores and with polar-liquid interactions (kaolinite, illite, goethite), and (3) films without pores and no polar-liquid interactions (hematite). The static and dynamic sessile drop methods yielded the most consistent contact angles. For porous films, the contact angles decreased with time, and we consider the initial contact angle to be the most accurate. The differences in contact angles among the different methods were large and varied considerably: the most consistent contact angles were obtained for kaolinite with water, and illite with diiodomethane (contact angles were within 3 degrees); but mostly the differences ranged from 10 degrees to 40 degrees among the different methods. The thin-layer and column wicking methods were the least consistent methods.

  5. Contact Angle Measurement of Small Capillary Length Liquid in Super-repelled State.

    Science.gov (United States)

    Liu, Tingyi Leo; Kim, Chang-Jin Cj

    2017-04-07

    The difficulty of measuring very large contact angles (>150 degrees) has become more relevant with the increased popularity of super-repellent surfaces. Measurement is more difficult for dynamic contact angles, for which theoretical profiles do not fit well, and small capillary length liquids, whose sessile droplets sag by gravity. Here, we expand the issue to the limit by investigating dynamic contact angles of liquids with an extremely small capillary length (contact angles can be measured with a consistent accuracy despite their vastly different capillary lengths if one keeps the lens magnification inversely proportional to the capillary length. Verifying the droplet equator height is a key parameter, we propose a new Bond number defined by the equator height and optical resolution to represent the measurement accuracy of large contact angles. Despite negligible improvement for most liquids today, the proposed approach teaches how to measure very large contact angles with consistent accuracy when any of the liquids in consideration has a capillary length below 1.0 mm.

  6. Wearable Stretch Sensors for Motion Measurement of the Wrist Joint Based on Dielectric Elastomers.

    Science.gov (United States)

    Huang, Bo; Li, Mingyu; Mei, Tao; McCoul, David; Qin, Shihao; Zhao, Zhanfeng; Zhao, Jianwen

    2017-11-23

    Motion capture of the human body potentially holds great significance for exoskeleton robots, human-computer interaction, sports analysis, rehabilitation research, and many other areas. Dielectric elastomer sensors (DESs) are excellent candidates for wearable human motion capture systems because of their intrinsic characteristics of softness, light weight, and compliance. In this paper, DESs were applied to measure all component motions of the wrist joints. Five sensors were mounted to different positions on the wrist, and each one is for one component motion. To find the best position to mount the sensors, the distribution of the muscles is analyzed. Even so, the component motions and the deformation of the sensors are coupled; therefore, a decoupling method was developed. By the decoupling algorithm, all component motions can be measured with a precision of 5°, which meets the requirements of general motion capture systems.

  7. Wearable Stretch Sensors for Motion Measurement of the Wrist Joint Based on Dielectric Elastomers

    Directory of Open Access Journals (Sweden)

    Bo Huang

    2017-11-01

    Full Text Available Motion capture of the human body potentially holds great significance for exoskeleton robots, human-computer interaction, sports analysis, rehabilitation research, and many other areas. Dielectric elastomer sensors (DESs are excellent candidates for wearable human motion capture systems because of their intrinsic characteristics of softness, light weight, and compliance. In this paper, DESs were applied to measure all component motions of the wrist joints. Five sensors were mounted to different positions on the wrist, and each one is for one component motion. To find the best position to mount the sensors, the distribution of the muscles is analyzed. Even so, the component motions and the deformation of the sensors are coupled; therefore, a decoupling method was developed. By the decoupling algorithm, all component motions can be measured with a precision of 5°, which meets the requirements of general motion capture systems.

  8. Stress and neutron scattering measurements on linear polymer melts undergoing steady elongational flow

    DEFF Research Database (Denmark)

    Hassager, Ole; Mortensen, Kell; Bach, Anders

    2012-01-01

    We use small-angle neutron scattering to measure the molecular stretching in polystyrene melts undergoing steady elongational flow at large stretch rates. The radius of gyration of the central segment of a partly deuterated polystyrene molecule is, in the stretching direction, increasing with the......We use small-angle neutron scattering to measure the molecular stretching in polystyrene melts undergoing steady elongational flow at large stretch rates. The radius of gyration of the central segment of a partly deuterated polystyrene molecule is, in the stretching direction, increasing...

  9. The hallux valgus angle of the margo medialis pedis as an alternative to the measurement of the metatarsophalangeal hallux valgus angle.

    Science.gov (United States)

    Klein, Christian; Kinz, Wieland; Zembsch, Alexander; Groll-Knapp, Elisabeth; Kundi, Michael

    2014-04-21

    Currently, the metatarsophalangeal angle (hallux valgus angle) is measured based on radiographic images. However, using X-ray examinations for epidemiological or screening purposes would be unethical, especially in children. For this reason it is discussed to measure the hallux valgus angle of the margo medialis pedis (medial border of the foot) documented on foot outline drawings or foot scans. As a first step on the way to prove the validity of those approaches this study assesses the hallux valgus angle measured on the margo medialis pedis based on the same x-ray pictures as the metatarsophalangeal hallux valgus. Radiographic images of the foot were obtained from patients with symptomatic hallux valgus malformation. Twelve sets of contact copies of the 63 originals were made, and were marked and measured according to three different methods, each one performed by two observers and with two repeated measurements. Thus, data sets from 756 individual assessments were entered into the multifactorial statistical analysis.Comparisons were made between the angle of the margo medialis pedis and the metatarsophalangeal angle, which was determined by two different methods. To determine the inter- and intraobserver reliability of the different methods, each assessment was conducted by two independent experts and repeated after a period of several weeks. The correlations between the hallux valgus angles determined by the three different methods were all above r=0.89 (pmeasuring the margo medialis pedis angle, however, were on average 4.8 degrees smaller than the metatarsophalangeal angles. No significant differences were found between the observers. No systematic deviations for any observer between repeated measurements were detected. Measurements of the radiographic hallux angle of the margo medialis pedis are reliable and show high correlation with the metatarsophalangeal angle. Because the hallux valgus angles based on margo medialis pedis measurements were slightly but

  10. Direct Measurement of Beam Angle in a High Current Ion Implanter

    Science.gov (United States)

    Freer, B. S.; Rubin, L. M.; Graf, M. A.; Hoglund, D. E.; Newman, D.; Ditzler, K.; Elshot, K.; Romig, T.

    2006-11-01

    We report the first device results from a new method of direct measurement and real-time control of the average angle of an ion beam in a high current ion implanter. The angle detector consists of an array of high aspect ratio slots that are mounted directly on the same process disk containing the wafers. Beam profiling is achieved by measuring the ion current through the slots versus angle as the disk is rotated perpendicular to the slots. From this profile we determine an angle offset relative to the nominal implant angle. This offset may be a result of beam steering, mechanical positioning uncertainty, or both. The disk is then reoriented if necessary to ensure that the desired beam angle with respect to the wafer is achieved. We implanted the NMOS and PMOS source/drain extension implants for several dozen lots of 90nm and 120nm NMOS and PMOS devices. We showed tightened distributions of both transistor drive currents and asymmetry of drive currents under reverse biasing for 90nm and 120nm devices manufactured on 300mm wafers after the installation of the angle detection hardware. We also observed a tightening of the yield distribution for the 120nm devices.

  11. Reliability and validity of measures of hammer toe deformity angle and tibial torsion.

    Science.gov (United States)

    Kwon, O Y; Tuttle, L J; Commean, P K; Mueller, M J

    2009-09-01

    Measures of second-fourth metatarsophalangeal joint (MTPJ) angle (indicator of hammer toe deformity) and clinical measures of tibial torsion have limited evidence for validity and reliability. The purposes of this study are to determine: (1) reliability of using a 3D digitizer (Metrecom) and computed tomography (CT) to measure MTPJ angle for toes 2-4; (2) reliability of goniometer, 3D digitizer, and CT to measure tibial torsion; (3) validity of MTPJ angle measures for toes 2-4 using goniometry and 3D digitizer compared to CT (gold standard) and (4) validity of tibial torsion measures using goniometry and 3D digitizer (Metrecom) compared to CT (gold standard). Twenty-nine subjects participated in this study. 27 feet with hammer toe deformity and 31 feet without hammer toe deformity were tested using standardized gonimetric, 3D digitizer and CT methods. ICCs (3,1), standard error of the measurement (SEM) values, and difference measures were used to characterize intrarater reliability. Pearson correlation coefficients and an analysis of variance were used to determine associations and differences between the measurement techniques. 3D digitizer and CT measures of MTPJ angle had high test-retest reliability (ICC = 0.95-0.96 and 0.98-0.99, respectively; SEM = 2.64-3.35 degrees and 1.42-1.47 degrees, respectively). Goniometry, 3D digitizer, and CT measures of tibial torsion had good test-retest reliability (ICC = 0.75, 0.85, and 0.98, respectively; SEM = 2.15 degrees, 1.74 degrees, and 0.72 degree, respectively). Both goniometric and 3D digitizer measures of MTPJ angle were highly correlated with CT measures of MTPJ angle (r = 0.84-0.90, r = 0.84-0.88, respectively) and tibial torsion (r = 0.72, r = 0.83). Goniometry, 3D digitizer, and CT measures were all different from each other for measures of hammer toe deformity (p Goniometry measures were different from CT measures and 3D digitizer measures of tibial torsion (p reliable. Goniometer and 3D digitizer measures of

  12. View angle effects in the radiometric measurement of plant canopy temperatures

    Science.gov (United States)

    Kimes, D. S.; Idso, S. B.; Pinter, P. J., Jr.; Reginato, R. J.; Jackson, R. D.

    1980-01-01

    The thermal infrared sensor response from a wheat canopy was extremely non-Lambertian because of spatial variations in energy flow processes; the effective radiant temperature of the sensor varied as much as 13 C with changing view angle. This variation of sensor response was accurately quantified (root-mean-square of deviations between theoretical and measured responses reduced to 1.1 C) as a function of vegetation canopy geometry, vertical temperature distribution of canopy components, and sensor view angle. The results have important implications for optimizing sensor view angles for remote sensing missions.

  13. Large-angle scattered light measurements for quantum-noise filter cavity design studies.

    Science.gov (United States)

    Magaña-Sandoval, Fabian; Adhikari, Rana X; Frolov, Valera; Harms, Jan; Lee, Jacqueline; Sankar, Shannon; Saulson, Peter R; Smith, Joshua R

    2012-08-01

    Optical loss from scattered light could limit the performance of quantum-noise filter cavities being considered for an upgrade to the Advanced Laser Interferometer Gravitational Wave Observatory (LIGO) gravitational-wave detectors. This paper describes imaging scatterometer measurements of the large-angle scattered light from two high-quality sample optics, a high reflector and a beamsplitter. These optics are each superpolished fused silica substrates with silica:tantala dielectric coatings. They represent the current state-of-the art optical technology for use in filter cavities. We present angle-resolved scatter values and integrate these to estimate the total scatter over the measured angles. We find that the total integrated light scattered into larger angles can be as small as 4 ppm.

  14. DCE-PWI 3D T1-measurement as function of time or flip angle

    DEFF Research Database (Denmark)

    Mikkelsen, Irene Klærke; Peters, David Alberg; Tietze, Anna

    Dynamic Contrast Enhanced Perfusion Weighted Imaging (DCE-PWI) and the preceding T1 measurement is usually performed with a FLASH sequence. For the sake of speed, the 3D T1 measurement is often performed by measuring the signal for a range of flip angles instead of as a function the inversion (or...... saturation) time [1,2]. This work investigates how off-set in flip angles in the presence of B1 inhomogeneities propagates into large errors in the T1 estimates. The errors are markedly reduced when the measurement is performed as a function of time, however this requires signal preparation....

  15. Calibration of a spinner anemometer for flow angle measurements by use of wind turbine yawing

    DEFF Research Database (Denmark)

    Demurtas, Giorgio; Friis Pedersen, Troels

    The present report describes a method to calibrate a spinner anemometer ow angle measurements. The turbine is yawed several times (5 times approximately 60 with respect to the wind direction) in steady wind (> 6 m/s) and measurements of yaw position (measured by a yaw position sensor) and yaw...... misalignment (measured by the spinner anemometer under calibration) are recorded. The tangent of the two angles is plotted in a scatter plot. A linear fitting is made, and the slope coefficient is the correction factor Fα. The method applied to a Nordtank 500kW wind turbine erected at the Risø test site...

  16. CT patellar cortex tilt angle: A radiological method to measure patellar tilt

    International Nuclear Information System (INIS)

    Mirza Toluei, F.; Afshar, A.; Salarilak, S.; Sina, A.

    2005-01-01

    Background/Objectives: the role of patellar tilt in the anterior knee pain is indisputable. Traditionally. the lateral patello-femoral angle of Laurin has been defined in both the axial view and CT images for measuring the tilt of patella. We present a new angle. which is independent of the morphology of patella and directly relates to clinical assessment of the tilt. which is appreciated from palpation of the edges of the patella. Patients and Methods: 38 patients with anterior knee pain and forty normal control subjects were examined using CT scan of patello-femoral joint in 15 degrees of knee flexion. The amount of lateral patellar tilt was quantitatively assessed using the lateral patello-femoral angle, as described by Laurin et al, and the newly defined patellar cortex tilt angle. This angle is subtended by the line drawn along the posterior femoral condyles and the one parallel to the subchondral bone of patellar cortex. The fifteen-degree tilt was taken as normal cut-off point for patellar cortex tilt angle in the control group. Results: in patients, the average tilt of patella. using the patellar cortex tilt angle was 15.26 versus 7.05 in the control group. Using Student's t test, the difference between the two means was significant (P<0.001). The sensitivity and specificity of patellar cortex tilt angle were 40 and 90 percent, respectively There was a moderate agreement between our presented test and the lateral tilt angle test (kappa=0.40. P<0.001). Conclusion: our results indicate that patellar tilt can also be detected using patellar cortex tilt angle. We need more specific studies ta determine the validity of the test

  17. Evaluation of clinical and radiographic measures and reliability of the quadriceps angle measurement in elderly women with knee osteoarthritis

    Directory of Open Access Journals (Sweden)

    Mateus Ramos Amorim

    Full Text Available Introduction Knees osteoarthritis (OA is a complex degenerative disease with intra-articular changes affecting the amplitude of the quadriceps angle (Q. To measure this variable, it is necessary to use reliable protocols aiming at methodological reproducibility. The objective was to evaluate the intra-examiner and inter-examiner reliability of clinical and radiographic measures of the Q angle and to investigate the relationship between the degree of OA and the magnitude of this angle in the elderly. Materials and methods 23 volunteers had the Q angle measured by two evaluators at 48-h interval. Clinical measurements were collected by using the universal goniometer in the same position adopted in the radiographic examination. Results The intra-examiner reliability was good (0.722 to 0.763 for radiographic measurements and low (0.518 to 0.574 for clinical assessment, while inter-examiner reliability was moderate (0.634 for radiographic measurements and low (0.499 to the clinics. The correlation analysis between the radiographic values with the OA classification showed no correlation between them (p = 0.824 and r = -0.024. Conclusion Clinically, it is suggested that the radiographic examination is preferable to evaluate the Q angle of elderly women with knee osteoarthritis. Moreover, the magnitude of this angle did not correlate with the degree of impairment of OA in this population.

  18. Measurement errors related to contact angle analysis of hydrogel and silicone hydrogel contact lenses.

    Science.gov (United States)

    Read, Michael L; Morgan, Philip B; Maldonado-Codina, Carole

    2009-11-01

    This work sought to undertake a comprehensive investigation of the measurement errors associated with contact angle assessment of curved hydrogel contact lens surfaces. The contact angle coefficient of repeatability (COR) associated with three measurement conditions (image analysis COR, intralens COR, and interlens COR) was determined by measuring the contact angles (using both sessile drop and captive bubble methods) for three silicone hydrogel lenses (senofilcon A, balafilcon A, lotrafilcon A) and one conventional hydrogel lens (etafilcon A). Image analysis COR values were about 2 degrees , whereas intralens COR values (95% confidence intervals) ranged from 4.0 degrees (3.3 degrees , 4.7 degrees ) (lotrafilcon A, captive bubble) to 10.2 degrees (8.4 degrees , 12.1 degrees ) (senofilcon A, sessile drop). Interlens COR values ranged from 4.5 degrees (3.7 degrees , 5.2 degrees ) (lotrafilcon A, captive bubble) to 16.5 degrees (13.6 degrees , 19.4 degrees ) (senofilcon A, sessile drop). Measurement error associated with image analysis was shown to be small as an absolute measure, although proportionally more significant for lenses with low contact angle. Sessile drop contact angles were typically less repeatable than captive bubble contact angles. For sessile drop measures, repeatability was poorer with the silicone hydrogel lenses when compared with the conventional hydrogel lens; this phenomenon was not observed for the captive bubble method, suggesting that methodological factors related to the sessile drop technique (such as surface dehydration and blotting) may play a role in the increased variability of contact angle measurements observed with silicone hydrogel contact lenses.

  19. Measurement of the convergence angle in teeth prepared for single crown

    Directory of Open Access Journals (Sweden)

    NokarS

    2002-07-01

    Full Text Available Retention, resistance and marginal integrity mostly depend on tooth preparation. An appropriate convergence angle fulfil this purpose, to high extent. In this study, a new method was used to measure the convergence angle of the teeth prepared for single crowns in Genera! practitioners" offices in Tehran. In order to do this. 325 dyes, prepared by General dentists in Tehran, were collected from 10 laboratories. All dyes wore trimmed at the area below the finishing line and then were scanned (Genius Color page- FIR 6 buccoiingualiy and mesiodistaily. Convergence angle of dyes were also measured with Adobe Photoshop (5.0 software. Data were analyzed by variance analysis test and 1- student bv the help of SPSS software. Results showed that the average convergence angle ranged from 16.18+8.34 to 35.1 8~10.38 which belonged to maxillary canine and mandibular molars, respectively, and the measured convergence angle is more than the ideal value of 10-16 degrees. Dyes of the madibular molars were ma"illar" convergent. These conclusions are helpful for professors, dentistry students and dentists, and arc an indicative of the practice quality of General practitioners in Tehran. Due to the fact that a convergence angle, more than the allowed limitation, endangers retention, resistance and marginal integrity of the restoration, paying attention to the principles of tooth preparation and proper application of instruments and dental cements, can progress fwed restorations quality.

  20. Measuring contact angle and meniscus shape with a reflected laser beam

    International Nuclear Information System (INIS)

    Eibach, T. F.; Nguyen, H.; Butt, H. J.; Auernhammer, G. K.; Fell, D.

    2014-01-01

    Side-view imaging of the contact angle between an extended planar solid surface and a liquid is problematic. Even when aligning the view perfectly parallel to the contact line, focusing one point of the contact line is not possible. We describe a new measurement technique for determining contact angles with the reflection of a widened laser sheet on a moving contact line. We verified this new technique measuring the contact angle on a cylinder, rotating partially immersed in a liquid. A laser sheet is inclined under an angle φ to the unperturbed liquid surface and is reflected off the meniscus. Collected on a screen, the reflection image contains information to determine the contact angle. When dividing the laser sheet into an array of laser rays by placing a mesh into the beam path, the shape of the meniscus can be reconstructed from the reflection image. We verified the method by measuring the receding contact angle versus speed for aqueous cetyltrimethyl ammonium bromide solutions on a smooth hydrophobized as well as on a rough polystyrene surface

  1. Skin movement errors in measurement of sagittal lumbar and hip angles in young and elderly subjects.

    Science.gov (United States)

    Kuo, Yi-Liang; Tully, Elizabeth A; Galea, Mary P

    2008-02-01

    Errors in measurement of sagittal lumbar and hip angles due to skin movement on the pelvis and/or lateral thigh were measured in young (n = 21, age = 18.6 +/- 2.1 years) and older (n = 23, age = 70.9 +/- 6.4 years) age groups. Skin reference markers were attached over specific landmarks of healthy young and elderly subjects, who were videotaped in three static positions of hip flexion using the 2D PEAK Motus video analysis system. Sagittal lumbar and hip angles were calculated from skin reference markers and manually palpated landmarks. The elderly subjects demonstrated greater errors in lumbar angle due to skin movement on the pelvis only in the maximal hip flexion position. The traditional model (ASIS-PSIS-GT-LFE) underestimated sagittal hip angle and the revised model (ASIS-PSIS-2/3Th-1/4Th) provided more accurate measurement of sagittal hip angle throughout the full available range of hip flexion. Skin movement on the pelvis had a small counterbalancing effect on the larger errors from lateral thigh markers (GT-LFE), thereby decreasing hip angle error.

  2. Measuring the Cobb angle with the iPhone in kyphoses: a reliability study.

    Science.gov (United States)

    Jacquot, Frederic; Charpentier, Axelle; Khelifi, Sofiane; Gastambide, Daniel; Rigal, Regis; Sautet, Alain

    2012-08-01

    Smartphones have gained widespread use in the healthcare field to fulfill a variety of tasks. We developed a small iPhone application to take advantage of the built-in position sensor to measure angles in a variety of spinal deformities. We present a reliability study of this tool in measuring kyphotic angles. Radiographs taken from 20 different patients' charts were presented to a panel of six operators at two different times. Radiographs were measured with the protractor and the iPhone application and statistical analysis was applied to measure intraclass correlation coefficients between both measurement methods, and to measure intra- and interobserver reliability The intraclass correlation coefficient calculated between methods (i.e. CobbMeter application on the iPhone versus standard method with the protractor) was 0.963 for all measures, indicating excellent correlation was obtained between the CobbMeter application and the standard method. The interobserver correlation coefficient was 0.965. The intraobserver ICC was 0.977, indicating excellent reproductibility of measurements at different times for all operators. The interobserver ICC between fellowship trained senior surgeons and general orthopaedic residents was 0.989. Consistently, the ICC for intraobserver and interobserver correlations was higher with the CobbMeter application than with the regular protractor method. This difference was not statistically significant. Measuring kyphotic angles with the iPhone application appears to be a valid procedure and is in no way inferior to the standard way of measuring the Cobb angle in kyphotic deformities.

  3. Evaluation of stretching position by measurement of strain on the ilio-femoral ligaments: an in vitro simulation using trans-lumbar cadaver specimens.

    Science.gov (United States)

    Hidaka, Egi; Aoki, Mitsuhiro; Muraki, Takayuki; Izumi, Tomoki; Fujii, Misaki; Miyamoto, Shigenori

    2009-08-01

    The ilio-femoral ligament is known to cause flexion contracture of the hip joint. Stretching positioning is intended to elongate the ilio-femoral ligaments, however, no quantitative analysis to measure the effect of stretching positions on the ligament has yet been performed. Strains on the superior and inferior ilio-femoral ligaments in 8 fresh/frozen trans-lumbar cadaveric hip joints were measured using a displacement sensor, and the range of movement of the hip joints was recorded using a 3Space Magnetic Sensor. Reference length (L(0)) for each ligament was determined to measure strain on the ligaments. Hip positions at 10 degrees adduction with maximal external rotation, 20 degrees adduction with maximal external rotation, and maximal external rotation showed larger strain for the superior ilio-femoral ligament than the value obtained from L(0), and hip positions at 20 degrees external rotation with maximal extension and maximal extension had larger strain for the inferior ilio-femoral ligament than the value obtained from L(0) (pligaments exhibited positive strain values with specific stretching positions. Selective stretching for the ilio-femoral ligaments may contribute to achieve lengthening of the ligaments to treat flexion contracture of the hip joint.

  4. Q-angle static or dynamic measurements, which is the best choice for patellofemoral pain?

    Science.gov (United States)

    Silva, Danilo de Oliveira; Briani, Ronaldo Valdir; Pazzinatto, Marcella Ferraz; Gonçalves, Ana Valéria; Ferrari, Deisi; Aragão, Fernando Amâncio; de Azevedo, Fábio Mícolis

    2015-12-01

    The elevated Q-angle seems to be one of the most suggested factors contributing to patellofemoral pain. Females with patellofemoral pain are often evaluated through static clinical tests in clinical practice. However, the adaptations seem to appear more frequently in dynamic conditions. Performing static vs. dynamic evaluations of widely used measures would add to the knowledge in this area. Therefore, the aim of this study was to determine the reliability and discriminatory capability of three Q-angle measurements: a static clinical test, peak dynamic knee valgus during stair ascent and a static measurement using a three-dimensional system. Twenty-nine females with patellofemoral pain and twenty-five pain-free females underwent clinical Q-angle measurement and static and dynamic knee valgus measurements during stair ascent, using a three-dimensional system. All measurements were obtained and comparisons between groups, reliability and discriminatory capability were calculated. Peak dynamic knee valgus was found to be greater in the patellofemoral pain group. On the other hand, no significant effects were found for static knee valgus or clinical Q-angle measurements between groups. The dynamic variable demonstrated the best discriminatory capability. Low values of reliability were found for clinical Q-angle, in contrast to the high values found for the three-dimensional system measurements. Based on our findings, avoiding or correcting dynamic knee valgus during stair ascent may be an important component of rehabilitation programs in females with patellofemoral pain who demonstrate excessive dynamic knee valgus. Q-angle static measurements were not different between groups and presented poor values of discriminatory capability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. APPLICABILITY OF THE COBB ANGLE MEASUREMENT IN IDIOPATHIC SCOLIOSIS USING SCANNED IMAGING

    Directory of Open Access Journals (Sweden)

    ERASMO DE ABREU ZARDO

    Full Text Available ABSTRACT Objectives: To compare the measurement of the Cobb angle on printed radiographs and on scanned radiographs viewed through the software "PixViewer". Methods: Preoperative radiographs of 23 patients were evaluated on printed films and through the software "PixViewer". The same evaluator, a spine surgeon, chose the proximal and distal limiting vertebrae of the main curve on printed radiographs, without identification of patients, and measured the Cobb angle based on these parameters. The same parameters and measurements were applied to scanned radiographs. The measurements were compared, as well as the choice of limiting vertebrae. Results: The average variation of the Cobb angle between methods was 1.48 ± 1.73°. The intraclass correlation coefficient (ICC was 0.99, demonstrating excellent reproducibility. Conclusion: The Cobb method can be used to evaluate scoliosis through the "PixViewer" tool with the same reliability as the classic method on printed radiographs.

  6. Study of a Modified AC Bridge Technique for Loss Angle Measurement of a Dielectric Material

    Directory of Open Access Journals (Sweden)

    S. C. BERA

    2008-09-01

    Full Text Available A Wheatstone’s bridge network like Schering Bridge, DeSauty Bridge etc measures the loss angle or tangent of loss angle (tanδ of a dielectric material. In high voltage application this loss angle is generally measured by high voltage Schering Bridge. But continuous measurement of tan δ is not possible by these techniques. In the present paper a modified operational amplifiers based Schering Bridge network has been proposed for continuous measurement of tanδ in the form of a bridge network output voltage. Mathematical analysis of the proposed bridge network has been discussed in the paper and experimental work has been performed assuming the lossy dielectric material as a series combination of loss less capacitor and a resistor. Experimental results are reported in the paper. From the mathematical analysis and experimental results it is found that the output of the proposed bridge network is almost linearly related with tanδ.

  7. Measurement of dynamic wedge angles and beam profiles by means of MRI ferrous sulphate gel dosimetry

    Science.gov (United States)

    Bengtsson, Magnus; Furre, Torbjørn; Rødal, Jan; Skretting, Arne; Olsen, Dag R.

    1996-02-01

    The purpose of this study is to examine the possible value of measuring the dose distribution in dynamic wedge photon beams using ferrous sulphate gel phantoms analysed by MRI. The wedge angles and dose profiles were measured for a field size of and for dynamic wedge angles of , , and using a 15 MV photon beam generated from a Clinac 2100 CD (Varian). The dose profiles obtained from MRI ferrous sulphate gel were in good agreement with the dose measurements performed with a diode detector array. Also, the wedge angles determined from the MRI ferrous sulphate gel agreed well with the values obtained by using film dosimetry and with calculations by use of TMS (treatment planning system) (Helax, Uppsala, Sweden). The study demonstrated that MRI ferrous sulphate gel dosimetry is an adequate tool for measurements of some beam characteristics of dynamic radiation fields.

  8. Measurement of contact angles of microscopic droplets by focal length method.

    Science.gov (United States)

    Geiger, Daniel; Geiger, Kirsten; Neckernuss, Tobias; Marti, Othmar; Amirkhani, Masoud

    2017-08-01

    We present a method to measure contact angles of microscopic droplets with a conventional microscope that possesses a precision focus adjustment stage. The droplets are modeled as spherical caps that act as lenses. Their focal length is determined by measuring the distance from the substrate surface to the level where a sharp image of the aperture stop is observed. The lens diameter is found by edge detection of a microscope image of the microdroplets. The spherical cap model relates the focal length and diameter of such lenses to the contact angle of the used liquid with known refractive index. The measurement procedure was applied to condensed water droplets on a silicon substrate covered by its native oxide layer. The results are found to be in good agreement with conventional, goniometric sessile drop measurements of the advancing contact angle.

  9. Three-dimensional measurement of femoral neck anteversion and neck shaft angle.

    Science.gov (United States)

    Sangeux, Morgan; Pascoe, Jessica; Graham, H Kerr; Ramanauskas, Fiona; Cain, Tim

    2015-01-01

    We present a three-dimensional measurement technique for femoral neck anteversion and neck shaft angles which do not require alignment of the femoral and scanner axes. Two assessors performed the measurements on 11 patients (22 femurs). Repeatability between assessors was 2.7 degrees for femoral neck anteversion and 4.8 degrees for neck shaft angle. Measurements compared with an alternative single slice method were different by 2 degrees (3 degrees) in average. The method was repeatable and appropriate for clinical practice.

  10. A new optical method for measuring surface temperature at large incident probe angles

    Science.gov (United States)

    Lee, A. S.; Norris, P. M.

    1997-02-01

    A novel thermoreflectance technique has been developed for noncontact temperature measurements using laser light incident at large angles on solid materials and devices. The method involves measuring the differential reflectance from a polarization modulated laser beam. The polarization differential reflectance technique is demonstrated on single-crystal Si wafers and on a polycrystalline carbon thin film over a temperature range of 20-60 °C. The method is shown to be an extremely sensitive temperature probe for near grazing angle measurements, which could be useful for monitoring the surface temperature of closely stacked silicon wafers used in batch processing in the microelectronics industry.

  11. Non-contact angle measurement based on parallel multiplex laser feedback interferometry

    International Nuclear Information System (INIS)

    Zhang Song; Tan Yi-Dong; Zhang Shu-Lian

    2014-01-01

    We present a novel precise angle measurement scheme based on parallel multiplex laser feedback interferometry (PLFI), which outputs two parallel laser beams and thus their displacement difference reflects the angle variation of the target. Due to its ultrahigh sensitivity to the feedback light, PLFI realizes the direct non-contact measurement of non-cooperative targets. Experimental results show that PLFI has an accuracy of 8″ within a range of 1400″. The yaw of a guide is also measured and the experimental results agree with those of the dual-frequency laser interferometer Agilent 5529A. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  12. New developments in the simultaneous measurement system of wide-angle and small-angle x-ray scatterings and vibrational spectra for the static and dynamic analyses of the hierarchical structures of polymer solids

    International Nuclear Information System (INIS)

    Tashiro, Kohji; Yamamoto, Hiroko; Yoshioka, Taiyo; Ninh, Tran Hai; Shimada, Shigeru; Nakatani, Takeshi; Iwamoto, Hiroyuki; Ohta, Noboru; Masunaga, Hiroyasu

    2012-01-01

    A simultaneous measurement system of wide-angle X-ray diffraction (WAXD), small-angle X-ray scattering (SAXS) and Raman or transmission-type infrared spectroscopy was developed by us. Its purposes is to clarify the static and dynamic structural changes of polymer materials subjected to the various external condition changes. Some examples described here include the study of the stretch-induced reorientation phenomenon of a-axially-oriented polyethylene, the study of structural change in photo-induced solid-state polymerization reaction of muconic acid ester monomer crystal, the study of the two-stage high-temperature phase transitions of aliphatic nylons, the study of stress-induced crystalline phase transition of an oriented poly(tetramethylene terephthalate) sample and its relation to the higher-order structural change, and the study of structural regularization process of poly(L-lactic acid) in the isothermal crystallization of the meso phase. These case studies in the clarification of hierarchical structural changes of polymer materials have proven that the simultaneous measurement systems can be useful to examine the structural changes in polymer systems. (author)

  13. Reproducibility of Scleral Spur Identification and Angle Measurements Using Fourier Domain Anterior Segment Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    Ricardo J. Cumba

    2012-01-01

    Full Text Available Purpose. To evaluate intraobserver and interobserver agreement in locating the scleral spur landmark (SSL and anterior chamber angle measurements obtained using Fourier Domain Anterior Segment Optical Coherence Tomography (ASOCT images. Methods. Two independent, masked observers (SR and AZC identified SSLs on ASOCT images from 31 eyes with open and nonopen angles. A third independent reader, NPB, adjudicated SSL placement if identifications differed by more than 80 μm. Nine months later, SR reidentified SSLs. Intraobserver and interobserver agreement in SSL placement, trabecular-iris space area (TISA750, and angle opening distance (AOD750 were calculated. Results. In 84% of quadrants, SR’s SSL placements during 2 sessions were within 80 μm in both the X- and Y-axes, and in 77% of quadrants, SR and AZC were within 80 μm in both axes. In adjudicated images, 90% of all quadrants were within 80 μm, 88% in nonopen-angle eyes, and 92% in open-angle eyes. The intraobserver and interobserver correlation coefficients (with and without adjudication were above 0.9 for TISA750 and AOD750 for all quadrants. Conclusions. Reproducible identification of the SSL from images obtained with FD-ASOCT is possible. The ability to identify the SSL allows reproducible measurement of the anterior chamber angle using TISA750 and AOD750.

  14. Developing a Stretching Program.

    Science.gov (United States)

    Beaulieu, J E

    1981-11-01

    In brief: Although stretching exercises can prevent muscle injuries and enhance athletic performance, they can also cause injury. The author explains the four most common types of stretching exercises and explains why he considers static stretching the safest. He also sets up a stretching routine for runners. In setting up a safe stretching program, one should (1) precede stretching exercises with a mild warm-up; (2) use static stretching; (3) stretch before and after a workout; (4) begin with mild and proceed to moderate exercises; (5) alternate exercises for muscle groups; (6) stretch gently and slowly until tightness, not pain, is felt; and (7) hold the position for 30 to 60 seconds.

  15. Scanning laser reflection tool for alignment and period measurement of critical-angle transmission gratings

    Science.gov (United States)

    Song, Jungki; Heilmann, Ralf K.; Bruccoleri, Alexander R.; Hertz, Edward; Schatternburg, Mark L.

    2017-08-01

    We report progress toward developing a scanning laser reflection (LR) tool for alignment and period measurement of critical-angle transmission (CAT) gratings. It operates on a similar measurement principle as a tool built in 1994 which characterized period variations of grating facets for the Chandra X-ray Observatory. A specularly reflected beam and a first-order diffracted beam were used to record local period variations, surface slope variations, and grating line orientation. In this work, a normal-incidence beam was added to measure slope variations (instead of the angled-incidence beam). Since normal incidence reflection is not coupled with surface height change, it enables measurement of slope variations more accurately and, along with the angled-incidence beam, helps to reconstruct the surface figure (or tilt) map. The measurement capability of in-grating period variations was demonstrated by measuring test reflection grating (RG) samples that show only intrinsic period variations of the interference lithography process. Experimental demonstration for angular alignment of CAT gratings is also presented along with a custom-designed grating alignment assembly (GAA) testbed. All three angles were aligned to satisfy requirements for the proposed Arcus mission. The final measurement of roll misalignment agrees with the roll measurements performed at the PANTER x-ray test facility.

  16. Flow structures in large-angle conical diffusers measured by PIV

    DEFF Research Database (Denmark)

    Meyer, Knud Erik; Nielsen, L.; Nielsen, N.F.

    2004-01-01

    Flow in two different conical diffusers with large opening angles (30° and 18°) have been measured with stereoscopic Particle Image Velocimetry (PIV). The measurements were done in a cross section just after the exit of the diffuser. The Reynolds number was 100000 based on upstream diameter...

  17. Comparison of two- and three-dimensional measurement of the Cobb angle in scoliosis.

    Science.gov (United States)

    Lechner, Ricarda; Putzer, David; Dammerer, Dietmar; Liebensteiner, Michael; Bach, Christian; Thaler, Martin

    2017-05-01

    The Cobb angle as an objective measure is used to determine the progression of deformity, and is the basis in the planning of conservative and surgical treatment. However, studies have shown that the Cobb angle has two limitations: an inter- and intraobserver variability of the measurement is approximately 3-5 degrees, and high variability regarding the definition of the end vertebra. Scoliosis is a three-dimensional (3D) pathology, and 3D pathologies cannot be completely assessed by two-dimensional (2D) methods, like 2D radiography. The objective of this study was to determine the intraobserver and interobserver reliability of end vertebra definition and Cobb angle measurement using X-rays and 3D computer tomography (CT) reconstructions in scoliotic spines. To assess interoberver variation the Cobb angle and the end vertebra were assessed by five observers in 55 patients using X-rays and 3D CT reconstructions. Definition of end vertebra and measurement of the Cobb angle was repeated two times with a three-week interval. Intraclass correlation coefficients (ICC) were used to determine the interobserver and intraobserver reliabilities. 95% prediction limits were provided for measurement errors. Intraclass correlation coefficient (ICC) showed excellent reliability for both methods. The measured Cobb angle was on average 9.2 degrees larger in the 3D CT group (72.8°, range 30-144) than on 2D radiography (63.6°, range 24-152). In scoliosis treatment it is very essential to determine the curve magnitude, which is larger in a 3D measurement compared to 2D radiography.

  18. [Reliability study in the measurement of the cusp inclination angle of a chairside digital model].

    Science.gov (United States)

    Xinggang, Liu; Xiaoxian, Chen

    2018-02-01

    This study aims to evaluate the reliability of the software Picpick in the measurement of the cusp inclination angle of a digital model. Twenty-one trimmed models were used as experimental objects. The chairside digital impression was then used for the acquisition of 3D digital models, and the software Picpick was employed for the measurement of the cusp inclination of these models. The measurements were repeated three times, and the results were compared with a gold standard, which was a manually measured experimental model cusp angle. The intraclass correlation coefficient (ICC) was calculated. The paired t test value of the two measurement methods was 0.91. The ICCs between the two measurement methods and three repeated measurements were greater than 0.9. The digital model achieved a smaller coefficient of variation (9.9%). The software Picpick is reliable in measuring the cusp inclination of a digital model.

  19. Stretch Sensor Device

    DEFF Research Database (Denmark)

    2013-01-01

    The invention relates to a method for determining stretch values and movement of body parts, e.g. a foot, by analysing stretch data from a stretch sensor. By analysing data from the stretch sensor it is possible to determine stretch samples which are associated with particular motion phases...

  20. The compangle: a new goniometer for joint angle measurements of the hand. A technical note.

    Science.gov (United States)

    Stam, H J; Ardon, M S; den Ouden, A C; Schreuders, T A R; Roebroeck, M E

    2006-03-01

    The accuracy of joint angle measurement of the hand may be negatively influenced by joint swelling, deformation and other obstacles. We developed an alternative goniometer with clear ergonomic advantages, especially for the measurement of small joints. This new concept of goniometry is described and preliminary results on the reliability of the measurements are presented. The intraclass correlation coefficients (ICCs) and the standard error of measurements (SEMs) of the alternative goniometer are greater respectively smaller than a conventional goniometer, indicating a better intratester reliability.

  1. Assessment of novel digital and smartphone goniometers for measurement of canine stifle joint angles.

    Science.gov (United States)

    Freund, Kristin A; Kieves, Nina R; Hart, Juliette L; Foster, Sasha A; Jeffery, Unity; Duerr, Felix M

    2016-07-01

    OBJECTIVE To evaluate accuracy and reliability of 3 novel goniometers for measurement of canine stifle joint angles and compare the results with those obtained with a universal goniometer (UG). SAMPLE 8 pelvic limbs from 4 canine cadavers. PROCEDURES Each limb was secured to a wooden platform at 3 arbitrarily selected fixed stifle joint angles. Goniometry was performed with 2 smartphone-based applications (novel goniometers A and B), a digital goniometer (novel goniometer C), and a UG; 3 evaluators performed measurements in triplicate for each angle with each device. Results were compared with stifle joint angle measurements on radiographs (used as a gold standard). Accuracy was determined by calculation of bias and total error, coefficients of variation were calculated to estimate reliability, and strength of linear association between radiographic and goniometer measurements was assessed by calculation of correlation coefficients. RESULTS Mean coefficient of variation was lowest for the UG (4.88%), followed by novel goniometers B (7.37%), A (7.57%), and C (12.71%). Correlation with radiographic measurements was highest for the UG (r = 0.97), followed by novel goniometers B (0.93), A (0.90), and C (0.78). Constant bias was present for all devices except novel goniometer B. The UG and novel goniometer A had positive constant bias; novel goniometer C had negative constant bias. Total error at 50° and 100° angles was > 5% for all devices. CONCLUSIONS AND CLINICAL RELEVANCE None of the devices accurately represented radiographically measured stifle joint angles. Additional veterinary studies are indicated prior to the use of novel goniometers in dogs.

  2. Radioactivity measurement of α-nuclides by small solid angle method

    International Nuclear Information System (INIS)

    Wang Jianqing; Li Xiaodi; Chen Xilin; Wang Guojun

    1998-06-01

    Counting under a precise small solid angle is one of the oldest methods developed for the radioactivities measurement of α-nuclides. The principle of solid angle counting is very simple and the accuracy is much better. The advantages of an equipment developed by the authors, in which a large area Au-Si surface barrier detector (450 mm 2 ) is used, are introduced. Some comparisons on measurement results have been obtained with the gridded ionization chamber, and a national comparison result of 241 Am which deviated from the average result is less than 0.2% are presented in detail

  3. Measurement of CO2 laser small angle Thomson scattering on a magnetically confined plasma

    Science.gov (United States)

    Richards, R. K.; Hutchinson, D. P.; Bennett, C. A.; Hunter, H. T.; Ma, C. H.

    1993-01-01

    We report the first successful small-angle (less than 1°) Thomson scattering measurement of 10 μm radiation from a magnetically confined toroidal plasma. This represents a proof-of-principle demonstration of a new diagnostic technique for confined deuterium-tritium fusion-product alpha particles in future fusion reactors. This result was achieved by detecting scattered CO2 laser light from the plasma of the ATF torsatron at an angle of 0.86° using a novel heterodyne receiver scheme. A predicted resonance in the scattered power as a function of plasma electron density is clearly resolved in the measurements.

  4. In-blade angle of attack measurement and comparison with models

    Science.gov (United States)

    Gallant, T. E.; Johnson, D. A.

    2016-09-01

    The torque generated by a wind turbine blade is dependent on several parameters, one of which is the angle of attack. Several models for predicting the angle of attack in yawed conditions have been proposed in the literature, but there is a lack of experimental data to use for direct validation. To address this problem, experiments were conducted at the University of Waterloo Wind Generation Research Facility using a 3.4 m diameter test turbine. A five-hole pressure probe was installed in a modular 3D printed blade and was used to measure the angle of attack, a, as a function of several parameters. Measurements were conducted at radial positions of r/R = 0.55 and 0.72 at tip speed ratios of λ = 5.0, 3.6, and 3.1. The yaw offset of the turbine was varied from -15° to +15°. Experimental results were compared directly to angle of attack values calculated using a model proposed by Morote in 2015. Modeled values were found to be in close agreement with the experimental results. The angle of attack was shown to vary cyclically in the yawed case while remaining mostly constant when aligned with the flow, as expected. The quality of results indicates the potential of the developed instrument for wind turbine measurements.

  5. CONTACT ANGLE MEASUREMENT OF DENTAL RESTORATIVE MATERIALS BY DROP PROFILE IMAGE ANALYSIS

    Directory of Open Access Journals (Sweden)

    H. D. K. Yulianto dan M. Rinastiti

    2014-06-01

    Full Text Available The capability of initial microbial adhesion to dental restorative composites surface is influenced by the surface wettability of the materials. The common method to evaluate surface wettability of materials is contact angle measurement. The existing conventional method to measure contact angle is by means of a contact angle (CA-Goniometer device, which is less practically applicable in clinical circumstances. Therefore, a more practical and applicable method is needed to measure contact angle in clinical circumstances. This research was performed to compare between contact angles measured by means of a CA-Goniometer device and a new practical method of drop profile image analysis. In addition, since there were two different formulas that can be used to calculate contact angle value from a drop profile image, then we also need to evaluate which formula is more reliable to be used. Tests were carried out using three composite discs (Clearfill-Kuraray Medical, Inc. sample and deionised water for different measurement procedures. One drop of 3µl liquid was dropped onto the surface of the composite discs, and the drop profile image was captured by means of a customized home-made device connected to a digital camera. Two different formulas were used to calculate the contact angle value from the drop profile image, namely the “linier gradient equation” and the “tangential line”. The contact angle values obtained from the two different formulas were compared with the value obtained from the conventional method descriptively. Tests were carried out using three composite discs (Clearfill-Kuraray Medical, Inc. sample and deionised water for different measurement procedures. One drop of 3µl liquid was dropped onto the surface of the composite discs, and the drop profile image was captured by means of a customized home-made device connected to a digital camera. Two different formulas were used to calculate the contact angle value from the drop

  6. The Acute Effects of Static and Cyclic Stretching on Muscle Stiffness and Hardness of Medial Gastrocnemius Muscle.

    Science.gov (United States)

    Maeda, Noriaki; Urabe, Yukio; Tsutsumi, Shogo; Sakai, Shogo; Fujishita, Hironori; Kobayashi, Toshiki; Asaeda, Makoto; Hirata, Kazuhiko; Mikami, Yukio; Kimura, Hiroaki

    2017-12-01

    This study aimed to clarify the acute effects of static stretching (SS) and cyclic stretching (CS) on muscle stiffness and hardness of the medial gastrocnemius muscle (MG) by using ultrasonography, range of motion (ROM) of the ankle joint and ankle plantar flexor. Twenty healthy men participated in this study. Participants were randomly assigned to SS, CS and control conditions. Each session consisted of a standard 5-minute cycle warm-up, accompanied by one of the subsequent conditions in another day: (a) 2 minutes static stretching, (b) 2 minutes cyclic stretching, (c) control. Maximum ankle dorsiflexion range of motion (ROM max) and normalized peak torque (NPT) of ankle plantar flexor were measured in the pre- and post-stretching. To assess muscle stiffness, muscle-tendon junction (MTJ) displacement (the length changes in tendon and muscle) and MTJ angle (the angle made by the tendon of insertion and muscle fascicle) of MG were measured using ultrasonography at an ankle dorsiflexion angle of -10°, 0°, 10° and 20° before and after SS and CS for 2 minutes in the pre- and post-stretching. MG hardness was measured using ultrasound real-time tissue elastography (RTE). The results of this study indicate a significant effect of SS for ROM maximum, MTJ angle (0°, 10°, 20°) and RTE (10°, 20°) compared with CS (p muscle stiffness and hardness compared with CS. In addition, CS may contribute to the elongation of muscle tissue and increased muscle strength.

  7. COMPARISON OF COBB ANGLE MEASUREMENT IN SCOLIOSIS BY RESIDENTS AND SPINE EXPERTS

    Directory of Open Access Journals (Sweden)

    Rafael Ritter

    2016-03-01

    Full Text Available ABSTRACT Objective: The adolescent idiopathic scoliosis (AIS is a spine deformity that occurs in both the coronal plane and the sagittal plane of patients between 10 and 17 years. The Cobb method is the most widely used to determine the angular value of scoliosis and it is defined as the "gold standard". The goal is to verify the reproducibility of the measured angles between orthopedic residents and spinal pathologies specialists, comparing the variability of the angles measured by professionals with greater and lesser experience. Method: A total of 10 radiographs of patients diagnosed with AIS were assessed. Radiographs were handed over to 7 orthopedists specialized in spine and 14 orthopedic residents. The measurement of the angles for each of the examiners was described using means and standard deviations and intraclass correlations were calculated, as well as the measure of repeatability, and Bland-Altman plots were designed with the results of the measurements of each group of examiners, according to experience, to assess the agreement/reproducibility of Cobb angle measurements. Results: Each examiner obtained a resulting average of 10 cases summation. In order to assess trends in variability of the measurements of the angles of each group graphs were plotted based on the arithmetic mean of each of the 10 cases by the total number of participants in the group versus the standard deviation in each case. Conclusion: There was a poor correlation (ICC=0.4 in the measurement of Cobb in both groups, demonstrating difficulties in the method, which cannot be overcome by the expertise.

  8. Videodefaecography combined with measurement of the anorectal angle and of perineal descent

    International Nuclear Information System (INIS)

    Skomorowska, E.; Henrichsen, S.; Christiansen, J.; Hegedues, V.; Glostrup Sygehus, Copenhagen

    1987-01-01

    Cineradiographic defaecography combined with measurement of the anorectal angle and descent of the pelvic floor is proposed. The method used in 73 women gave valuable information in 48 patients who complained of anal incompetence, rectal tenesmus, and chronic constipation. In these patients, high and low rectal intussusception, rectocele, and pathologic movement of the pelvic floor were detected. Some of these phenomena could only be diagnosed by the radiologic method here described. Quantitations of the anorectal angle and descent of the pelvic floor placed the group with constipation halfway between normal individuals and those with anal incompetence. The value of this finding is discussed. Recent improvements in anorectal surgery often make videodefaecography decisive for the choice of the optimal operative method. Therefore, videodefaecography together with measurement of the anorectal angle and pelvic floor descent is recommended whenever anorectal surgery for correction of functional disturbances is contemplated. (orig.)

  9. A comparison of two stretching programs for hamstring muscles: A randomized controlled assessor-blinded study.

    Science.gov (United States)

    Demoulin, Christophe; Wolfs, Sébastien; Chevalier, Madeline; Granado, Caroline; Grosdent, Stéphanie; Depas, Yannick; Roussel, Nathalie; Hage, Renaud; Vanderthommen, Marc

    2016-01-01

    Most parameters regarding hamstring flexibility training programs have been investigated; however, the joint (i.e. hip or knee) on which the stretching should preferentially be focused needs to be further explored. This randomized controlled assessor-blinded study aimed to investigate the influence of this parameter. We randomly assigned 111 asymptomatic participants with tight hamstring muscles in three groups: a control group and two groups following a different home-based 8-week (five 10-minute sessions per week) hamstring stretching program (i.e. stretching performed by flexing the hip while keeping the knee extended [SH] or by first flexing the hip with a flexed knee and then extending the knee [SK]). Range of motion (ROM) of hip flexion and knee extension were measured before and after the stretching program by means of the straight leg raising test and the passive knee extension angle test, respectively. Eighty-nine participants completed the study. A significant increase in ROM was observed at post-test. Analyses showed significant group-by-time interactions for changes regarding all outcomes. Whereas the increase in hip flexion and knee extension ROM was higher in the stretching groups than in the CG (especially for the SH group p 0.05). In conclusion, the fact that both stretching programs resulted in similar results suggests no influence of the joint at which the stretching is focused upon, as assessed by the straight leg raising and knee extension angle tests.

  10. Comparative research on the methods for measuring the mode deflection angle of cylindrical resonator gyroscope

    Science.gov (United States)

    Wang, Kai; Fan, Zhenfang; Wang, Dongya; Wang, Yanyan; Pan, Yao; Qu, Tianliang; Xu, Guangming

    2016-10-01

    The existence of mode deflection angle in the cylindrical resonator gyroscope (CRG) leads to the signal drift on the detecting nodes of the gyro vibration and significantly decreases the performance of the CRG. Measuring the mode deflection angle efficiently is the foundation of tuning for the imperfect cylindrical shell resonator. In this paper, an optical method based on the measuring gyroscopic resonator's vibration amplitude with the laser Doppler vibrometer and an electrical method based on measuring the output voltage of the electrodes on the resonator are both presented to measure the mode deflection angle. Comparative experiments were implemented to verify the methodology and the results show that both of the two methods could recognize the mode deflection angle efficiently. The precision of the optical method relies on the number and position of testing points distributed on the resonator. The electrical method with simple circuit shows high accuracy of measuring in a less time compared to the optical method and its error source arises from the influence of circuit noise as well as the inconsistent distribution of the piezoelectric electrodes.

  11. A laser speckle sensor to measure the distribution of static torsion angles of twisted targets

    DEFF Research Database (Denmark)

    Rose, B.; Imam, H.; Hanson, Steen Grüner

    1998-01-01

    . A cylindrical lens serves to image the closely spaced lateral positions of the target along the twist axis onto corresponding lines of the two dimensional image sensor. Thus, every single line of the image sensor measures the torsion angle of the corresponding surface position along the twist axis of the target...

  12. Measurement of z-axis deviation angle of electro-optic crystal by conoscopic interference

    Science.gov (United States)

    Li, Dong; Liu, Yong; Liu, Xu; Jiang, Hongzhen; Zheng, Fanglan

    2016-09-01

    Properties of plasma electrode pockels cell is directly affected by the Z-axis deviation angle of the electro-optic crystal. Therefore, high precision measurement of the Z-axis deviation angle is indispensable. By using conoscopic interference technique, a measurement system for Z-axis deviation angle of electro-optic crystal is introduced. The principle of conoscopic interference method is described in detail, and a series of techniques are implied in this measurement system to improve the accuracy. High-precision positioning method of the crystal based on Michelson interference is proposed to determine the normal consistency of crystal, which can ensure the high positioning repeatability of crystal in the measurement process. The positioning comparison experiment of the crystal shows that the standard deviation of our method is less than 1pixel, which is much better than the traditional method (nearly 4pixels). Moreover, melatope extraction algorithm of optical axis based on image matching technique is proposed to ensure the melatope can be extracted in high precision. Calibration method of the normal of transmission surface of crystal is also proposed. The experiment results show that the PV and rms of Z-axis deviation angle is less than 0.05mrad and 0.02mrad, respectively. The repeatability accuracy is less than 0.01mrad.

  13. Evaluating Radiometric Measurements Using a Fixed 45 Degrees Responsivity and Zenith Angle Dependent Responsivities (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    Dooraghi, M.; Habte, A.; Reda, I.; Sengupta, M.; Gotseff, P.; Andreas, A.; Anderberg, M.

    2014-03-01

    This poster seeks to demonstrate the importance and application of an existing but unused approach that ultimately reduces the uncertainty of radiometric measurements. Current radiometric data is based on a single responsivity value that introduces significant uncertainty to the data, however, through using responsivity as a function of solar zenith angle, the uncertainty could be decreased by 50%.

  14. A microwave method for measuring moisture content, density, and grain angle of wood

    Science.gov (United States)

    W. L. James; Y.-H. Yen; R. J. King

    1985-01-01

    The attenuation, phase shift and depolarization of a polarized 4.81-gigahertz wave as it is transmitted through a wood specimen can provide estimates of the moisture content (MC), density, and grain angle of the specimen. Calibrations are empirical, and computations are complicated, with considerable interaction between parameters. Measured dielectric parameters,...

  15. Pitch angle resolved measurements of escaping charged fusion products in TFTR

    Energy Technology Data Exchange (ETDEWEB)

    Zweben, S.J.

    1989-01-01

    Measurements of the flux of charged fusion products escaping from the TFTR plasma have been made with a new type of detector which can resolve the particle flux vs. pitch angle, energy, and time. The design of this detector is described, and results from the 1987 TFTR run are presented. These results are roughly consistent with predictions from a simple first-orbit particle loss model with respect to the pitch angle, energy, time, and plasma current dependence of the signals. 11 refs., 9 figs.

  16. Analysis of the conoscopic measurement for uniaxial liquid-crystal tilt angles.

    Science.gov (United States)

    Van Horn, B L; Winter, H H

    2001-05-01

    Conoscopy as an optical method for accurate measurement of crystal tilt angles from interference figures is analyzed for the special case of uniaxial crystals. The displacement of interference figures is related to the crystal tilt angle in an explicit, noniterative manner that is accurate to within ~2%. The analysis applies to uniaxial nematic liquid-crystal monodomains and homogeneous crystals when a symmetrical center of the conoscopic interference figure is visible. The equations developed are also used to derive other previously reported expressions that are approximations with a limited range of applicability.

  17. Dynamic Stretching does not Change the Stiffness of the Muscle-Tendon Unit.

    Science.gov (United States)

    Mizuno, T; Umemura, Y

    2016-12-01

    The purpose of this study was to identify changes in ankle range of motion and passive mechanical properties of the muscle-tendon unit after dynamic stretching. 12 healthy subjects participated in this study. Displacement of the muscle-tendon junction was measured using ultrasonography while the ankle was passively dorsiflexed at 1°/sec to its maximal dorsiflexion angle. Passive torque was also measured using an isokinetic dynamometer. Measurements were conducted pre-intervention, immediately after the intervention and 5, 10, 15 and 30 min post-intervention. The dynamic stretching consisted of four 30-s periods of ankle dorsiflexion and plantarflexion. Ankle range of motion was significantly increased immediately (from 18.3±1.8° to 21.4±1.7°) and 10 min (20.9±1.9°) after dynamic stretching, but this change disappeared within 15 min. However, stiffness of the muscle-tendon unit and displacement of the muscle-tendon junction at the submaximal dorsiflexion angle did not differ between the experimental conditions. These results demonstrate that dynamic stretching by contracting an antagonist muscle group increases ankle range of motion temporarily without changing the passive mechanical properties of the muscle-tendon unit. The increased range of motion of the ankle after dynamic stretching might be caused by enhanced stretch tolerance. © Georg Thieme Verlag KG Stuttgart · New York.

  18. Flow Visualization in Evaporating Liquid Drops and Measurement of Dynamic Contact Angles and Spreading Rate

    Science.gov (United States)

    Zhang, Neng-Li; Chao, David F.

    2001-01-01

    A new hybrid optical system, consisting of reflection-refracted shadowgraphy and top-view photography, is used to visualize flow phenomena and simultaneously measure the spreading and instant dynamic contact angle in a volatile-liquid drop on a nontransparent substrate. Thermocapillary convection in the drop, induced by evaporation, and the drop real-time profile data are synchronously recorded by video recording systems. Experimental results obtained from this unique technique clearly reveal that thermocapillary convection strongly affects the spreading process and the characteristics of dynamic contact angle of the drop. Comprehensive information of a sessile drop, including the local contact angle along the periphery, the instability of the three-phase contact line, and the deformation of the drop shape is obtained and analyzed.

  19. Evaluation of stress gradient by x-ray stress measurement based on change in angle phi

    International Nuclear Information System (INIS)

    Sasaki, Toshihiko; Kuramoto, Makoto; Yoshioka, Yasuo.

    1985-01-01

    A new principle of X-ray stress evaluation for a sample with steep stress gradient has been prosed. The feature of this method is that the stress is determined by using so-called phi-method based on the change of phi-angle and thus has no effect on the penetration depth of X-rays. The procedure is as follows; firstly, an average stress within the penetration depth of X-rays is determined by changing only phi-angle under a fixed psi-angle, and then a distribution of the average stress vs. the penetration depth of X-rays is detected by repeating the similar procedure at different psi-angles. The following conclusions were found out as the result of residual stress measurements on a carbon steel of type S 55 C polished by emery paper. This method is practical enough to use for a plane stress problem. And the assumption of a linear stress gradient adopted in the authors' previous investigations is valid. In case of a triaxial stress analysis, this method is effective for the solution of three shearing stresses. However, three normal stresses can not be solved perfectly except particular psi-angles. (author)

  20. Angles measuring on radiographic images as a tool for the diagnosis of Blount disease

    International Nuclear Information System (INIS)

    Mora Rojas, Raul

    2010-01-01

    The etiology of Blount disease has followed unknown at the present; although are described factors that could be related to the appearance of the same. Even, to make the diagnosis of this disease remains a challenge, due to it difficult to predict the behavior of the tibia varus in young children. Some measures were described in the radiographs of patients with tibia vara (the most currently used has been the Tibial Proximal Diaphyseal Goal Angle) to try to provide another tool in the diagnosis, but without be able to establish a free relationship between disruption of these measures with the pathological development of tibial varus. A new measurement (Tibial Proximal Fibular Mechanic Angle) established in the radiographs has been the purpose, taking into account the structures and concepts that are altered in patients with Blount diseases. The proximal tibial physis and the mechanical axis of the tibia are performed without to take into account in some of the measurements described above. (author) [es

  1. Critical-Dimension Measurement using Multi-Angle-Scanning Method in Atomic Force Microscope

    Science.gov (United States)

    Murayama, Ken; Gonda, Satoshi; Koyanagi, Hajime; Terasawa, Tsuneo; Hosaka, Sumio

    2006-07-01

    We have developed a new critical dimension (CD) measurement technique using atomic force microscope (AFM) which can measure width-dimensions and examine sidewall-shapes of fine patterns on a wafer. The technique employs a flared-type tip in combination with digital probing and multi-angle scanning mechanism that allows the tip to trace the sidewalls on both sides of a feature (or trench) by making physical contacts with the sidewall surface. First, by using finite element method (FEM) we analyzed deformation of the tip and cantilever to compensate errors caused by the deformation. To verify our compensation method we measured quartz reference patterns either with perpendicular sidewalls or undercuts. In this paper we will describe the applications and usefulness of this multi-angle operation and show some measurement results of ArF resist patterns with 200 nm width and 400 nm depth that were obtained with a flared tip of 120 nm diameter.

  2. Discharge Coefficient Measurements for Flow Through Compound-Angle Conical Holes with Cross-Flow

    Directory of Open Access Journals (Sweden)

    M. E. Taslim

    2004-01-01

    Full Text Available Diffusion-shaped film holes with compound angles are currently being investigated for high temperature gas turbine airfoil film cooling. An accurate prediction of the coolant blowing rate through these film holes is essential in determining the film effectiveness. Therefore, the discharge coefficients associated with these film holes for a range of hole pressure ratios is essential in designing airfoil cooling circuits. Most of the available discharge coefficient data in open literature has been for cylindrical holes. The main objective of this experimental investigation was to measure the discharge coefficients for subsonic as well as supersonic pressure ratios through a single conical-diffusion hole. The conical hole has an exit-to-inlet area ratio of 4, a nominal flow length-to-inlet diameter ratio of 4, and an angle with respect to the exit plane (inclination angle of 0°, 30°, 45°, and 60°. Measurements were performed with and without a cross-flow. For the cases with a cross-flow, discharge coefficients were measured for each of the hole geometries and 5 angles between the projected conical hole axis and the cross-flow direction of 0°, 45°, 90°, 135°, and 180°. Results are compared with available data in open literature for cylindrical film holes as well as limited data for conical film holes.

  3. Dynamic measurement of pennation angle of gastrocnemius muscles during contractions based on ultrasound imaging

    Directory of Open Access Journals (Sweden)

    Zhou Yongjin

    2012-09-01

    Full Text Available Abstract Background Muscle fascicle pennation angle (PA is an important parameter related to musculoskeletal functions, and ultrasound imaging has been widely used for measuring PA, but manually and frame by frame in most cases. We have earlier reported an automatic method to estimate aponeurosis orientation based on Gabor transform and Revoting Hough Transform (RVHT. Methods In this paper, we proposed a method to estimate the overall orientation of muscle fascicles in a region of interest, in order to complete computing the orientation of the other side of the pennation angle, but the side found by RVHT. The measurements for orientations of both fascicles and aponeurosis were conducted in each frame of ultrasound images, and then the dynamic change of pennation angle during muscle contraction was obtained automatically. The method for fascicle orientation estimation was evaluated using synthetic images with different noise levels and later on 500 ultrasound images of human gastrocnemius muscles during isometric plantarflexion. Results The muscle fascicle orientations were also estimated manually by two operators. From the results it’s found that the proposed automatic method demonstrated a comparable performance to the manual method. Conclusions With the proposed methods, ultrasound measurement for muscle pennation angles can be more widely used for functional assessment of muscles.

  4. Elevation angle alignment of quasi optical receiver mirrors of collective Thomson scattering diagnostic by sawtooth measurements

    DEFF Research Database (Denmark)

    Moseev, D.; Meo, Fernando; Korsholm, Søren Bang

    2012-01-01

    Localized measurements of the fast ion velocity distribution function and the plasma composition measurements are of significant interest for the fusion community. Collective Thomson scattering (CTS) diagnostics allow such measurements with spatial and temporal resolution. Localized measurements...... require a good alignment of the optical path in the transmission line. Monitoring the alignment during the experiment greatly benefits the confidence in the CTS measurements. An in situ technique for the assessment of the elevation angle alignment of the receiver is developed. Using the CTS diagnostic...

  5. Effect of image resolution manipulation in rearfoot angle measurements obtained with photogrammetry.

    Science.gov (United States)

    Sacco, I C N; Picon, A P; Ribeiro, A P; Sartor, C D; Camargo-Junior, F; Macedo, D O; Mori, E T T; Monte, F; Yamate, G Y; Neves, J G; Kondo, V E; Aliberti, S

    2012-09-01

    The aim of this study was to investigate the influence of image resolution manipulation on the photogrammetric measurement of the rearfoot static angle. The study design was that of a reliability study. We evaluated 19 healthy young adults (11 females and 8 males). The photographs were taken at 1536 pixels in the greatest dimension, resized into four different resolutions (1200, 768, 600, 384 pixels) and analyzed by three equally trained examiners on a 96-pixels per inch (ppi) screen. An experienced physiotherapist marked the anatomic landmarks of rearfoot static angles on two occasions within a 1-week interval. Three different examiners had marked angles on digital pictures. The systematic error and the smallest detectable difference were calculated from the angle values between the image resolutions and times of evaluation. Different resolutions were compared by analysis of variance. Inter- and intra-examiner reliability was calculated by intra-class correlation coefficients (ICC). The rearfoot static angles obtained by the examiners in each resolution were not different (P > 0.05); however, the higher the image resolution the better the inter-examiner reliability. The intra-examiner reliability (within a 1-week interval) was considered to be unacceptable for all image resolutions (ICC range: 0.08-0.52). The whole body image of an adult with a minimum size of 768 pixels analyzed on a 96-ppi screen can provide very good inter-examiner reliability for photogrammetric measurements of rearfoot static angles (ICC range: 0.85-0.92), although the intra-examiner reliability within each resolution was not acceptable. Therefore, this method is not a proper tool for follow-up evaluations of patients within a therapeutic protocol.

  6. Measurement of the Gamma Angle at the B Factories: Status and Prospects

    Energy Technology Data Exchange (ETDEWEB)

    Zito, m.

    2005-02-08

    The methods to measure the angle{gamma} of the CKM unitarity triangle at the B factories are presented. Special emphasis is given to the measurement of sin(2{beta} + {gamma}) using the B{sup 0} {yields} D*{sup {+-}} {pi}{sup {-+}} decays which has already produced results providing an interesting constraint in the {rho} - {eta} plane. Various methods using B {yields} DK decays are also presented.

  7. Jagiellonian University Selected Results on the CKM Angle $\\gamma $ Measurement at the LHCb

    CERN Document Server

    Krupa, Wojciech

    2017-01-01

    The LHCb is a single arm forward spectrometer designed to study heavy-flavour physics at the LHC. Its very precise tracking and excellent particle identification play currently a major role in providing the world-best measurements of the Unitary Triangle parameters. In this paper, selected results of the Cabibbo–Kobayashi–Maskawa (CKM) angle $\\gamma$ measurements, with special attention for $B \\rightarrow DK$ decays family, obtained at the LHCb, are presented.

  8. Influence and modelling of view angles and microrelief on surface temperature measurements of bare agricultural soils

    Science.gov (United States)

    Verbrugghe, Michel; Cierniewski, Jerzy

    The exploitation of remote sensing instruments with large fields of view necessarily implies the analysis of instruments acquired over a wide variety of viewing geometries. The purpose of this study is to underline the effects of view angles and microrelief on the directional surface temperature measurements of cultivated bare soils. A campaign of measurements was carried out at Poznan (Poland) in April 1995. The directional temperatures were measured on a furrowed sandy soil. The measurements were acquired at ground level with a radiothermometer in the 8-14 μm band. The radiothermometer was fixed on a special goniometric support 2.1 m above the soil surface and was directed at the soil with view zenith angles varying from -60° to +60° by steps of 10°. The data were collected for solar zenith angles ranging from 40.2° to 62.3°. In the experiment, for a given sun position, the difference between oblique and nadir measurements could reach 6°C. A model aimed at explaining the variations of the surface temperature measurements of furrowed soil in relation to its viewing conditions is presented. This model requires the precise soil microrelief geometry configuration, the illumination and viewing conditions of the surface and the radiative temperatures of the shaded and sunlit soil facets. The results show a good correlation between the predicted and the measured data. This type of modelling can be used to correct radiative temperature measurements of soils from view angles and soil microrelief geometry effects.

  9. The Reliability of the Symax Method of Measuring the Radiographic Femoral Varus Angle

    OpenAIRE

    Allpass, Maja; Miles, James Edward; Schmökel, Hugo

    2014-01-01

    Objective: To determine the practicability of curved osteotomy to correct femoral varus in small breed dogs, and to assess the reliability of the Symax method of measuring the radiographic femoral varus angle (FVA). Methods: Eleven cadaveric femora plus one clinical case were included in this study. The FVA was measured using the Symax method on craniocaudal femoral radiographs. CORA principles were used to plan the curved osteotomy. Following osteotomy and planned correction of the FVA to 0º...

  10. Complex Contact Angles Calculated from Capillary Rise Measurements on Rock Fracture Faces

    Science.gov (United States)

    Perfect, E.; Gates, C. H.; Brabazon, J. W.; Santodonato, L. J.; Dhiman, I.; Bilheux, H.; Bilheux, J. C.; Lokitz, B. S.

    2017-12-01

    Contact angles for fluids in unconventional reservoir rocks are needed for modeling hydraulic fracturing leakoff and subsequent oil and gas extraction. Contact angle measurements for wetting fluids on rocks are normally performed using polished flat surfaces. However, such prepared surfaces are not representative of natural rock fracture faces, which have been shown to be rough over multiple scales. We applied a variant of the Wilhelmy plate method for determining contact angle from the height of capillary rise on a vertical surface to the wetting of rock fracture faces by water in the presence of air. Cylindrical core samples (5.05 cm long x 2.54 cm diameter) of Mancos shale and 6 other rock types were investigated. Mode I fractures were created within the cores using the Brazilian method. Each fractured core was then separated into halves exposing the fracture faces. One fracture face from each rock type was oriented parallel to a collimated neutron beam in the CG-1D imaging instrument at ORNL's High Flux Isotope Reactor. Neutron radiography was performed using the multi-channel plate detector with a spatial resolution of 50 μm. Images were acquired every 60 s after a water reservoir contacted the base of the fracture face. The images were normalized to the initial dry condition so that the upward movement of water on the fracture face was clearly visible. The height of wetting at equilibrium was measured on the normalized images using ImageJ. Contact angles were also measured on polished flat surfaces using the conventional sessile drop method. Equilibrium capillary rise on the exposed fracture faces was up to 8.5 times greater than that predicted for polished flat surfaces from the sessile drop measurements. These results indicate that rock fracture faces are hyperhydrophilic (i.e., the height of capillary rise is greater than that predicted for a contact angle of zero degrees). The use of complex numbers permitted calculation of imaginary contact angles for

  11. Direct measurement of the beam deflection angle using the axial B-dot field

    Directory of Open Access Journals (Sweden)

    Xiaozhong He

    2011-05-01

    Full Text Available Beam position monitors are an important diagnostics tool for particle accelerator operation and related beam dynamics research. The measurement of the beam deflection angle, or moving direction of a charged particle beam with respect to the beam pipe axis, can provide useful additional information. Beam monitors sensitive to the beam’s azimuthal B-dot field (sometimes referred as B dots are used to measure the displacement (position of the beam centroid, as the beam generates a dipole term of the azimuthal magnetic field. Similarly, a dipole term of the axial magnetic field will be generated by the beam moving in a direction not parallel to the axis of the beam pipe. In this paper, a new method using the axial B-dot field is presented to measure the beam deflection angle directly, including the theoretical background. Simulations using the MAFIA numerical code have been performed, demonstrating a good agreement to the new established analytical model.

  12. Radiographic angles in hallux valgus: Comparison between protractor and iPhone measurements.

    Science.gov (United States)

    Meng, Hong-Zheng; Zhang, Wei-Lin; Li, Xiu-Cheng; Yang, Mao-Wei

    2015-08-01

    Radiographic angles are used to assess the severity of hallux valgus deformity, make preoperative plans, evaluate outcomes after surgery, and compare results between different methods. Traditionally, hallux valgus angle (HVA) has been measured by using a protractor and a marker pen with hardcopy radiographs. The main objective of this study is to compare HVA measurements performed using a smartphone and a traditional protractor. The secondary objective was to compare the time taken between those two methods. Six observers measured major HVA on 20 radiographs of hallux valgus deformity with both a standard protractor and an Apple iPhone. Four of the observers repeated the measurements at least a week after the original measurements. The mean absolute difference between pairs of protractor and smartphone measurements was 3.2°. The 95% confidence intervals for intra-observer variability were ±3.1° for the smartphone measurement and ±3.2° for the protractor method. The 95% confidence intervals for inter-observer variability were ±9.1° for the smartphone measurement and ±9.6° for the protractor measurement. We conclude that the smartphone is equivalent to the protractor for the accuracy of HVA measurement. But, the time taken in smartphone measurement was also reduced. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  13. Light scattering at small angles by atmospheric irregular particles: modelling and laboratory measurements

    Science.gov (United States)

    Lurton, T.; Renard, J.-B.; Vignelles, D.; Jeannot, M.; Akiki, R.; Mineau, J.-L.; Tonnelier, T.

    2014-04-01

    We have investigated the behaviour of light scattering by particulates of various sizes (0.1 μm to 100 μm) at a small scattering angle (below 20°). It has been previously shown that, for a small angle, the scattered intensities are weakly dependent upon the particulates' composition (Renard et al., 2010). Particles found in the atmosphere exhibit roughness that leads to large discrepancies with the classical Mie solution in terms of scattered intensities in the low angular set-up. This article focuses on building an effective theoretical tool to predict the behaviour of light scattering by real particulates at a small scattering angle. We present both the classical Mie theory and its adaptation to the case of rough particulates with a fairly simple roughness parameterisation. An experimental device was built, corresponding to the angular set-up of interest (low scattering angle and therefore low angular aperture). Measurements are presented that confirm the theoretical results with good agreement. It was found that differences between the classical Mie solution and actual measurements - especially for large particulates - can be attributed to the particulate roughness. It was also found that, in this low angular set-up, saturation of the scattered intensities occurs for relatively small values of the roughness parameter. This confirms the low variability in the scattered intensities observed for atmospheric particulates of different kinds. A direct interest of this study is a broadening of the dynamic range of optical counters: using a small angle of aperture for measurements allows greater dynamics in terms of particle size. Thus it allows a single device to observe a broad range of particle sizes whilst utilising the same electronics.

  14. Extraction of plate bending stiffness from coincidence angles of sound transmission measurements.

    Science.gov (United States)

    Anderson, Brian E; Shaw, Matthew D; Harker, Blaine M

    2015-01-01

    The bending stiffness in a homogeneous, isotropic, thin plate is experimentally derived from measurements of coincidence angles extracted from supercritical sound transmission versus frequency measurements. A computer controlled turn table rotates a plate sample and a receiver array, placed in the near field of the plate. The array is used to track the transmitted sound through the plate, generated by a far-field stationary source, using beam forming. The array technique enables measurement of plates measuring only one wavelength in width. Two examples are used for proof of concept, including an aluminum plate in air and an alumina plate under water.

  15. Influence nonstationary ionospheric signal of a signal on accuracy of measurements of angles of arrival.

    Science.gov (United States)

    Bochkarev, V.; Petrova, I.; Teplov, V.

    In the report we consider accuracy of angular measurements connected with nonstationary ionospheric signal. The estimation is made for the array antenna with small base. At measurements of angle of arrival in system with small base the mode separation is achieved due to Doppler shift. Therefore influence nonstationary ionospheric signal on the achievable spectral resolution, on mistakes of definition of frequencies and phases of close spectral components has the high profile. For numerical estimations the measurements of angles and phases executed in September - December 2001 on a measuring ionospheric complex of the Kazan State University are used. In the most part (92 %) received spectra are observed two and more components, frequently there are measurements with close spectral components. At definition of phases for close spectral lines with the help of window Fast Fourier Transformation there are distortions, which depend on differences of frequencies and phases of these spectral lines. The beams which have come from different directions, on different antennas will have a various phase difference. It will result in various extent of error in a phase definition, so and to a error in angle definition. The extent of error in angle definition is increased by reduction of a difference of frequencies of spectral components and increase of distinction in arrival directions of beams. We execute accounts for frequency 10 MHz and array antenna consisting of two independent perpendicular bases, crossed in a horizontal plane. Array antenna consists of 4 vertical dipole antennas (height of 10.7 m.), located on a circle by a diameter 15.6. Having compared the received dependence with results of processing of the experimentally received signals, it is possible to make a conclusion, that the accuracy of definition of corners about 1degree is for the system, described by the aerial, a limit at use of classical methods of spectral processing. For achievement of accuracy is

  16. Large field distributed aperture laser semiactive angle measurement system design with imaging fiber bundles.

    Science.gov (United States)

    Xu, Chunyun; Cheng, Haobo; Feng, Yunpeng; Jing, Xiaoli

    2016-09-01

    A type of laser semiactive angle measurement system is designed for target detecting and tracking. Only one detector is used to detect target location from four distributed aperture optical systems through a 4×1 imaging fiber bundle. A telecentric optical system in image space is designed to increase the efficiency of imaging fiber bundles. According to the working principle of a four-quadrant (4Q) detector, fiber diamond alignment is adopted between an optical system and a 4Q detector. The structure of the laser semiactive angle measurement system is, we believe, novel. Tolerance analysis is carried out to determine tolerance limits of manufacture and installation errors of the optical system. The performance of the proposed method is identified by computer simulations and experiments. It is demonstrated that the linear region of the system is ±12°, with measurement error of better than 0.2°. In general, this new system can be used with large field of view and high accuracy, providing an efficient, stable, and fast method for angle measurement in practical situations.

  17. Aspect angle dependency of the HF modification measured with MUIR at HAARP

    Science.gov (United States)

    Oyama, S.; Watkins, B. J.

    2007-12-01

    In this paper we present results of height-resolved observations of F-region Langmuir turbulence measured with MUIR (Modular UHF Ionospheric Radar; 446 MHz) at HAARP (High frequency Active Auroral Research Program) in Alaska, USA. The scientific objective of this paper is to study aspect angle dependency of the HF modification. The best way to achieve the objective is the simultaneous multi-position measurement with the incoherent- scatter (IS) radar. However, general IS radars take, at least, a few seconds to change the radar beam position. MUIR is the best diagnostic tool for this study because it can change the beam direction every IPP (interpulse period) with the phased array system. We conducted two experiments at HAARP; 26 March 2006 and 31 July 2007. For the March 2006 experiment, three MUIR beam positions were selected: geographical vertical, up B (elevation angle = 75 degree), and midway between the two (elevation angle = 82 degree). This experiment was arranged for studying the aspect angle dependency of Langmuir oscillations associated with low HF duty cycle (1%: on/off = 0.1s / 9.9s). The radar-backscatter spectra with 10-ms time resolution were deduced at individual radar-beam positions. For the July 2007 experiment, nine MUIR beam positions around the up B position were selected under relatively high HF duty cycle (50%: on/off = 3min/3min). The presentation will report aspect angle dependencies of (1) the Langmuir oscillation development in the first 100 ms after HF turn-on using data taken during the March 2006 experiment and (2) persistency of the Langmuir oscillation using data taken during the August 2007 experiment.

  18. New Method Developed to Measure Contact Angles of a Sessile Drop

    Science.gov (United States)

    Chao, David F.; Zhang, Nengli

    2002-01-01

    The spreading of an evaporating liquid on a solid surface occurs in many practical processes and is of importance in a number of practical situations such as painting, textile dyeing, coating, gluing, and thermal engineering. Typical processes involving heat transfer where the contact angle plays an important role are film cooling, boiling, and the heat transfer through heat pipes. The biological phenomenon of cell spreading also is analogous to a drop spreading (ref. 1). In the study of spreading, the dynamic contact angle describes the interfacial properties on solid substrates and, therefore, has been studied by physicists and fluid mechanics investigators. The dynamic contact angle of a spreading nonvolatile liquid drop provides a simple tool in the study of the free-boundary problem, but the study of the spreading of a volatile liquid drop is of more practical interest because the evaporation of common liquids is inevitable in practical processes. The most common method to measure the contact angle, the contact radius, and the height of a sessile drop on a solid surface is to view the drop from its edge through an optical microscope. However, this method gives only local information in the view direction. Zhang and Yang (ref. 2) developed a laser shadowgraphy method to investigate the evaporation of sessile drop on a glass plate. As described here, Zhang and Chao (refs. 3 and 4) improved the method and suggested a new optical arrangement to measure the dynamic contact angle and the instant evaporation rate of a sessile drop with much higher accuracy (less than 1 percent). With this method, any fluid motion in the evaporating drop can be visualized through shadowgraphy without using a tracer, which often affects the field under investigation.

  19. Intermittent stretch training of rabbit plantarflexor muscles increases soleus mass and serial sarcomere number.

    Science.gov (United States)

    De Jaeger, Dominique; Joumaa, Venus; Herzog, Walter

    2015-06-15

    In humans, enhanced joint range of motion is observed after static stretch training and results either from an increased stretch tolerance or from a change in the biomechanical properties of the muscle-tendon unit. We investigated the effects of an intermittent stretch training on muscle biomechanical and structural variables. The left plantarflexors muscles of seven anesthetized New Zealand (NZ) White rabbits were passively and statically stretched three times a week for 4 wk, while the corresponding right muscles were used as nonstretched contralateral controls. Before and after the stretching protocol, passive torque produced by the left plantarflexor muscles as a function of the ankle angle was measured. The left and right plantarflexor muscles were harvested from dead rabbits and used to quantify possible changes in muscle structure. Significant mass and serial sarcomere number increases were observed in the stretched soleus but not in the plantaris or medial gastrocnemius. This difference in adaptation between the plantarflexors is thought to be the result of their different fiber type composition and pennation angles. Neither titin isoform nor collagen amount was modified in the stretched compared with the control soleus muscle. Passive torque developed during ankle dorsiflexion was not modified after the stretch training on average, but was decreased in five of the seven experimental rabbits. Thus, an intermittent stretching program similar to those used in humans can produce a change in the muscle structure of NZ White rabbits, which was associated in some rabbits with a change in the biomechanical properties of the muscle-tendon unit. Copyright © 2015 the American Physiological Society.

  20. Measurement of the analysing power in proton–proton elastic scattering at small angles

    Directory of Open Access Journals (Sweden)

    Z. Bagdasarian

    2014-12-01

    Full Text Available The proton analysing power in p→p elastic scattering has been measured at small angles at COSY-ANKE at 796 MeV and five other beam energies between 1.6 and 2.4 GeV using a polarised proton beam. The asymmetries obtained by detecting the fast proton in the ANKE forward detector or the slow recoil proton in a silicon tracking telescope are completely consistent. Although the analysing power results agree well with the many published data at 796 MeV, and also with the most recent partial wave solution at this energy, the ANKE data at the higher energies lie well above the predictions of this solution at small angles. An updated phase shift analysis that uses the ANKE results together with the World data leads to a much better description of these new measurements.

  1. Robust depth selectivity in mesoscopic scattering regimes using angle-resolved measurements.

    Science.gov (United States)

    González-Rodríguez, P; Kim, A D; Moscoso, M

    2013-03-01

    We study optical imaging of tissues in the mesoscopic scattering regime in which light multiply scatters in tissues but is not fully diffusive. We use the radiative transport equation to model light propagation and an ℓ1-optimization method to solve the inverse source problem. We show that recovering the location and strength of several point-like sources that are close to each other is not possible when using angle-averaged measurements. The image reliability is limited by a spatial scale that is on the order of the transport mean-free path, even under the most ideal conditions. However, by using just a few angle-resolved measurements, the proposed method is able to overcome this limitation.

  2. Review of RDC Soft Computing Techniques for Accurate Measurement of Resolver Rotor Angle

    Directory of Open Access Journals (Sweden)

    Chandra Mohan Reddy Sivappagari

    2013-03-01

    Full Text Available A resolver is a position sensor or transducer that measures the instantaneous angular position of the rotating shaft to which it is attached. Resolver produces two amplitude modulated signals; SIN and COS as output signals. These two signals need to be demodulated and converted to digital signals before they can be used for control. There are several techniques available in the literature to measure the rotor shaft angle. This paper focuses on the design of both hardware and software based resolver to digital converter (RDC techniques available in the literature. This literature review helps the researchers to know about all these methods and plan future work on RDCs to improve the angle tracking performance.

  3. Angle Kappa Measurements: Normal Values in Healthy Iranian Population Obtained With the Orbscan II.

    Science.gov (United States)

    Gharaee, Hamid; Shafiee, Masoud; Hoseini, Rafie; Abrishami, Mojtaba; Abrishami, Yalda; Abrishami, Mostafa

    2015-01-01

    The angle kappa is important in proper centration of corneal ablation in keratorefractive surgery. Orbscan II device is widely used preoperatively in photoablation surgeries and can be used to measure the angle kappa. This study aimed to determine the mean angle kappa and its intercepts in healthy young Iranian adults. In this cross-sectional study, orthotropic patients (age range, 18-35 years) who were referred to the Khatam Eye Hospital (Mashhad, Iran) were included. Exclusion criteria were as follows: history of any eye deviation or strabismus with or without orthoptic or surgical treatment; any intraocular, corneal, or keratorefractive surgery; contact lens use; any corneal anomaly; any ophthalmic or systemic drug consumption; and hyperopic spherical refraction > + 3.00 diopters (D), spherical refraction > -5.00 D, or cylindrical refraction > 2.00 D. All of the parameters were measured by the same operator through an Orbscan II device. A total of 977 healthy participants who aged 18 to 45 years were included consecutively. The study population consisted of 614 females and 363 males. The average angle kappa was 5.00º ± 1.36º at 240.21º ± 97.17º in males and 4.97º ± 1.30º at 244.22º ± 94.39º in females (P = 0.63). The average horizontal (x-axis) angle kappa was -0.02º ± 0.49º, with a mean of -0.02º ± 0.50º in males and -0.02º ± 0.49º in females (P = 0.93). The average vertical (y-axis) angle kappa was -0.09º ± 0.32º, with a mean of -0.09º ± 0.33º in males and -0.09º ± 0.32º in females (P = 0.74). By using the normal angle kappa determined in this study, pseudodeviations can be identified more precisely in those who might undergo keratorefractive surgery.

  4. Adsorption of natural surfactants present in sea waters at surfaces of minerals: contact angle measurements

    Directory of Open Access Journals (Sweden)

    Katarzyna Boniewicz-Szmyt

    2009-09-01

    Full Text Available The wetting properties of solid mineral samples (by contact angles in original surfactant-containing sea water (Gulf of Gdańsk, Baltic were characterised under laboratory conditions on a large set (31 samples of well-classified stones of diverse hydrophobicity using the sessile drop (ADSA-P approach, captive bubble and inclined plate methods. An experimental relation between the static contact angle θeq and stone density ρ was obtained in the form θeq = Bρ + C, where B = 12.23 ± 0.92, C = - (19.17 ± 0.77, and r2 = 0.92. The histogram of θeq distribution for polished stone plates exhibited a multimodal feature indicating that the most abundant solid materials (hydrophilic in nature have contact angles θeq = 7.2, 10.7, 15.7 and 19.2º, which appear to be applicable to unspecified field stones as well. The contact angle, a pH-dependent quantity, appears to be a sensitive measure of stone grain size, e.g. granite. The captive bubble method gives reproducible results in studies of porous and highly hydrophilic surfaces such as stones and wood. The authors consider the adsorption of natural sea water surfactants on stone surfaces to be the process responsible for contact angle hysteresis. In the model, an equation was derived for determining the solid surface free energy from the liquid's surface tension γLV it also enabled the advancing θA and receding θR contact angles of this liquid to be calculated. Measurements of contact angle hysteresis Δθ (=θA - θR with surfactant-containing sea water and distilled water (reference on the same stone surfaces allowed the film pressure ΔΠ (1.22 to 8.80 mJ m-2, solid surface free energy ΔγS (-17.03 to -23.61 mJ m-2 and work done by spreading ΔWS (-1.23 to -11.52 mJ m-2 to be determined. The variability in these parameters is attributed to autophobing, an effect operative on a solid surface covered with an adsorptive layer of surfactants. The wetting behaviour of solid particles is of great

  5. The Reliability of the Symax Method of Measuring the Radiographic Femoral Varus Angle

    DEFF Research Database (Denmark)

    Allpass, Maja; Miles, James Edward; Schmökel, Hugo

    2014-01-01

    Objective: To determine the practicability of curved osteotomy to correct femoral varus in small breed dogs, and to assess the reliability of the Symax method of measuring the radiographic femoral varus angle (FVA). Methods: Eleven cadaveric femora plus one clinical case were included in this study...... was reassessed from postoperative radiographs. All radiographs were blinded and randomized for statistical analysis. FVA measurement reliability was assessed using all radiographs (n=24), whereas surgical practicability was assessed from 8 femora with a preoperative FVA >6º. Results: Femoral varus measurements...

  6. LHCb: Measurement of the $\\gamma$ angle from tree decays at LHCb

    CERN Multimedia

    Martín Sánchez, Alexandra

    2011-01-01

    An overview of plans for the measurement of $\\gamma$ at the LHCb experiment will be shown. The $\\gamma$ angle is the parameter of the CKM unitary triangle that is known least well. The LHCb experiment at the CERN LHC aims to perform precision b-physics and CP violation measurements, including improving the knowledge of $\\gamma$. Focus will be put on methods where B mesons decay at the tree level, within the Standard Model framework. The early data recorded by the experiment, from $pp$ collisions at $\\sqrt{s}$ = 7 TeV, has allowed observations of the first signals of the B decay modes that will be used to perform this measurement.

  7. The influence of contractures and variation in measurement stretching velocity on the reliability of the Modified Ashworth Scale in patients with severe brain injury.

    Science.gov (United States)

    Mehrholz, Jan; Major, Yvonne; Meissner, Daniel; Sandi-Gahun, Sahr; Koch, Rainer; Pohl, Marcus

    2005-01-01

    To determine the influence of contractures and different stretching velocities on the reliability of the Modified Ashworth Scale (MAS) in patients with severe brain injury and impaired consciousness. Cross-section observational study. A rehabilitation centre for adult persons with neurological disorders. Fifty patients with impaired consciousness due to severe cerebral damage of various aetiologies. MEASUREMENT PROTOCOL: Three experienced and trained medical professionals rated each patient in a randomized order once daily for two consecutive days. Shoulder, elbow, wrist, knee and ankle spasticity were assessed by the use of the MAS with different stretching velocities. The presence of contractures was assessed by a goniometer. Retest and inter-rater reliability (k(w) = weighted kappa) of the MAS. The retest reliability of the MAS was good (shoulder joints (k(w) 0.74), elbow joints (k(w) 0.74), wrist joints (k(w) 0.72), knee joints (k(w) 0.72), ankle joints (k(w) 0.77)) and the inter-rater reliability was moderate (shoulder joints (k(w) 0.49), elbow joints (k(w) 0.52), wrist joints (k(w) 0.51), knee joints (k(w) 0.54) ankle joints (k(w) 0.49)). The presence of contractures significantly influenced the reliability of MAS in shoulder and wrist joints. No influence of stretching velocity on the reliability of the MAS was found. In patients with impaired consciousness due to severe brain injury the MAS has good retest, but only limited inter-rater, reliability. The presence of contractures may influence reliability of the MAS, but stretching velocity does not.

  8. Can Treadmill Perturbations Evoke Stretch Reflexes in the Calf Muscles?

    Science.gov (United States)

    Sloot, Lizeth H; van den Noort, Josien C; van der Krogt, Marjolein M; Bruijn, Sjoerd M; Harlaar, Jaap

    2015-01-01

    Disinhibition of reflexes is a problem amongst spastic patients, for it limits a smooth and efficient execution of motor functions during gait. Treadmill belt accelerations may potentially be used to measure reflexes during walking, i.e. by dorsal flexing the ankle and stretching the calf muscles, while decelerations show the modulation of reflexes during a reduction of sensory feedback. The aim of the current study was to examine if belt accelerations and decelerations of different intensities applied during the stance phase of treadmill walking can evoke reflexes in the gastrocnemius, soleus and tibialis anterior in healthy subjects. Muscle electromyography and joint kinematics were measured in 10 subjects. To determine whether stretch reflexes occurred, we assessed modelled musculo-tendon length and stretch velocity, the amount of muscle activity, as well as the incidence of bursts or depressions in muscle activity with their time delays, and co-contraction between agonist and antagonist muscle. Although the effect on the ankle angle was small with 2.8±1.0°, the perturbations caused clear changes in muscle length and stretch velocity relative to unperturbed walking. Stretched muscles showed an increasing incidence of bursts in muscle activity, which occurred after a reasonable electrophysiological time delay (163-191 ms). Their amplitude was related to the muscle stretch velocity and not related to co-contraction of the antagonist muscle. These effects increased with perturbation intensity. Shortened muscles showed opposite effects, with a depression in muscle activity of the calf muscles. The perturbations only slightly affected the spatio-temporal parameters, indicating that normal walking was retained. Thus, our findings showed that treadmill perturbations can evoke reflexes in the calf muscles and tibialis anterior. This comprehensive study could form the basis for clinical implementation of treadmill perturbations to functionally measure reflexes during

  9. Can Treadmill Perturbations Evoke Stretch Reflexes in the Calf Muscles?

    Directory of Open Access Journals (Sweden)

    Lizeth H Sloot

    Full Text Available Disinhibition of reflexes is a problem amongst spastic patients, for it limits a smooth and efficient execution of motor functions during gait. Treadmill belt accelerations may potentially be used to measure reflexes during walking, i.e. by dorsal flexing the ankle and stretching the calf muscles, while decelerations show the modulation of reflexes during a reduction of sensory feedback. The aim of the current study was to examine if belt accelerations and decelerations of different intensities applied during the stance phase of treadmill walking can evoke reflexes in the gastrocnemius, soleus and tibialis anterior in healthy subjects. Muscle electromyography and joint kinematics were measured in 10 subjects. To determine whether stretch reflexes occurred, we assessed modelled musculo-tendon length and stretch velocity, the amount of muscle activity, as well as the incidence of bursts or depressions in muscle activity with their time delays, and co-contraction between agonist and antagonist muscle. Although the effect on the ankle angle was small with 2.8±1.0°, the perturbations caused clear changes in muscle length and stretch velocity relative to unperturbed walking. Stretched muscles showed an increasing incidence of bursts in muscle activity, which occurred after a reasonable electrophysiological time delay (163-191 ms. Their amplitude was related to the muscle stretch velocity and not related to co-contraction of the antagonist muscle. These effects increased with perturbation intensity. Shortened muscles showed opposite effects, with a depression in muscle activity of the calf muscles. The perturbations only slightly affected the spatio-temporal parameters, indicating that normal walking was retained. Thus, our findings showed that treadmill perturbations can evoke reflexes in the calf muscles and tibialis anterior. This comprehensive study could form the basis for clinical implementation of treadmill perturbations to functionally

  10. Method to measure the position offset of multiple light spots in a distributed aperture laser angle measurement system.

    Science.gov (United States)

    Jing, Xiaoli; Cheng, Haobo; Xu, Chunyun; Feng, Yunpeng

    2017-02-20

    In this paper, an accurate measurement method of multiple spots' position offsets on a four-quadrant detector is proposed for a distributed aperture laser angle measurement system (DALAMS). The theoretical model is put forward, as well as the corresponding calculation method. This method includes two steps. First, as the initial estimation, integral approximation is applied to fit the distributed spots' offset function; second, the Boltzmann function is employed to compensate for the estimation error to improve detection accuracy. The simulation results attest to the correctness and effectiveness of the proposed method, and tolerance synthesis analysis of DALAMS is conducted to determine the maximum uncertainties of manufacturing and installation. The maximum angle error is less than 0.08° in the prototype distributed measurement system, which shows the stability and robustness for prospective applications.

  11. Proposed Methods for Real-Time Measurement of Posterior Condylar Angle during TKA.

    Science.gov (United States)

    Behera, Prateek; Chouhan, Devendra Kumar; Prakash, Mahesh; Dhillon, Mandeep

    2014-12-01

    Conventional instruments are known to result in high numbers of outliers in restoring femoral component rotation primarily due to fixed degree of external rotation resection relative to the posterior condylar line (PCL). Outliers can be reduced by determining the patient specific posterior condylar angle (PCA) preoperatively or intraoperatively. There is a paucity of methods that can be used during surgery for determining the PCA. We propose two simple, real-time methods to determine the PCA and hence to measure the axial anatomical variation during surgery. The study was conducted using axial computed tomography (CT) scans of the knees of 26 patients. The commercial software K-PACS and our proposed two methods (trigonometric and protractor) were used to measure the angle between the transepicondylar axis and PCL, i.e., PCA. Statistical comparison between the mean angles obtained by K-PACS and our methods were done. The three methods resulted in similar PCAs. The mean PCA measured by the three methods were similar. The mean PCA value measured by the K-PACS, trigonometric method and protractor method was 6.27° (range, 0° to 12°), 6.23° (range, 0° to 11.11°) and 6.31° (range, 0° to 12°), respectively. There were significant correlations between the K-PACS measured PCA and trigonometrically or protractor measured PCA. Our novel, simple, easily reproducible, real-time and radiation-free PCA measurement methods obviate the need for preoperative CT scan for identification of patient specific PCA.

  12. The Relation of Q Angle and Anthropometric Measures with Ankle Sprain; a Case-control study

    Directory of Open Access Journals (Sweden)

    Hamid Zamani Moghadam

    2017-01-01

    Full Text Available Introduction: Since most studies on ankle sprain are medical and sports-related and not much epidemiologic and etiologic data from the general population exist in this field, the present study evaluates the relationship between Q angle and anthropometric measures with ankle sprain in the general population.Methods: In the present case-control study, all of the patients over 18 years age presenting to emergency departments (ED of two educational Hospitals, complaining from ankle sprain, were evaluated during more than 1 year. A checklist consisting of demographic data, height, weight, body mass index (BMI, and history of ankle sprain, as well as degree of Q angle was filled for all participants. The correlation of mentioned variables with incidence of ankle sprain was calculated using SPSS 22.Results: 300 patients with ankle sprain were evaluated (53.5% male. Mean age of the patients was 37.03 ± 14.20 years. Mean weight, height, and BMI were 71.71 ± 11.26 (43 – 114, 168.74 ± 8.63 (143 – 190 and 25.14 ± 3.19 (18.41 – 38.95, respectively. Mean Q angle of the patients was 12.78 ± 3.19 degrees (5 – 23. There was a significant correlation between weight (p < 0.001, BMI (p = 0.001, history of sprain (r: 0.26, p < 0.001 and Q angle (p = 0.002 with incidence of ankle sprain. In addition, there was a significant statistical correlation between weight (p = 0.031, BMI (p = 0.020 and Q angle (p = 0.004 with history of ankle sprain. In patients with a history of ankle sprain, Q angle was wider by about 2 degrees.Conclusion: It seems that the prevalence of ankle sprain directly correlates with high weight, BMI, and Q angle and is more prevalent in those with a history of sprain. Although the findings of the present study show a statistically significant correlation between these factors and ankle sprain, the correlation is not clinically significant.

  13. Utilization of an ultrasound beam steering angle for measurements of tissue displacement vector and lateral displacement

    Directory of Open Access Journals (Sweden)

    Chikayoshi Sumi

    2010-09-01

    Full Text Available Chikayoshi SumiDepartment of Information and Communication Sciences, Faculty of Science and Technology, Sophia University, Tokyo, JapanAbstract: A number of ultrasonic displacement/velocity measurement methods have been extensively developed for measurements of blood flow, tissue motion, and strain. Lateral modulation (LM methods have also been reported using steered, crossed beams, and these methods permit measurements of displacement vectors. In this report, a new beam steering method for the transmission and reception of ultrasound is proposed, which can enable measurements of lateral displacements and of arbitrary displacement vectors with a very high degree of accuracy. Because this beam steering method uses only a steering angle, this method is referred to as ASTA. With ASTA, the number of available methods to obtain a displacement vector measurement is limited to previously developed block-matching methods, such as the multidimensional cross-spectrum phase gradient method, and the multidimensional autocorrelation method (MAM and the multidimensional Doppler method (MDM using a block-matching method (the methods using block matching are referred to as MAMb and MDMb, respectively. Being dependent on the measurement method, only a lateral displacement measurement can be made even if the methods are multidimensional, ie, previously developed MAM and MDM using a moving average and a mirror setting of the obtained steered beams, and one-dimensional (1D, such as an autocorrelation method. Considerations of beamforming schemes using LM and ASTA show that the simple ASTA beamforming method increases capabilities for real-time measurements and requires a small physical aperture when compared with LM. For lateral displacement measurements (eg, blood flow in a carotid artery, a lateral coordinate must correspond to the direction of the target’s lateral motion, and the steering angle used is as large as possible to increase the measurement accuracy

  14. Scoliosis angle

    International Nuclear Information System (INIS)

    Marklund, T.

    1978-01-01

    The most commonly used methods of assessing the scoliotic deviation measure angles that are not clearly defined in relation to the anatomy of the patient. In order to give an anatomic basis for such measurements it is proposed to define the scoliotic deviation as the deviation the vertebral column makes with the sagittal plane. Both the Cobb and the Ferguson angles may be based on this definition. The present methods of measurement are then attempts to measure these angles. If the plane of these angles is parallel to the film, the measurement will be correct. Errors in the measurements may be incurred by the projection. A hypothetical projection, called a 'rectified orthogonal projection', is presented, which correctly represents all scoliotic angles in accordance with these principles. It can be constructed in practice with the aid of a computer and by performing measurements on two projections of the vertebral column; a scoliotic curve can be represented independent of the kyphosis and lordosis. (Auth.)

  15. Quantitative evaluation of statistical errors in small-angle X-ray scattering measurements.

    Science.gov (United States)

    Sedlak, Steffen M; Bruetzel, Linda K; Lipfert, Jan

    2017-04-01

    A new model is proposed for the measurement errors incurred in typical small-angle X-ray scattering (SAXS) experiments, which takes into account the setup geometry and physics of the measurement process. The model accurately captures the experimentally determined errors from a large range of synchrotron and in-house anode-based measurements. Its most general formulation gives for the variance of the buffer-subtracted SAXS intensity σ 2 ( q ) = [ I ( q ) + const.]/( kq ), where I ( q ) is the scattering intensity as a function of the momentum transfer q ; k and const. are fitting parameters that are characteristic of the experimental setup. The model gives a concrete procedure for calculating realistic measurement errors for simulated SAXS profiles. In addition, the results provide guidelines for optimizing SAXS measurements, which are in line with established procedures for SAXS experiments, and enable a quantitative evaluation of measurement errors.

  16. Winter precipitation particle size distribution measurement by Multi-Angle Snowflake Camera

    Science.gov (United States)

    Huang, Gwo-Jong; Kleinkort, Cameron; Bringi, V. N.; Notaroš, Branislav M.

    2017-12-01

    From the radar meteorology viewpoint, the most important properties for quantitative precipitation estimation of winter events are 3D shape, size, and mass of precipitation particles, as well as the particle size distribution (PSD). In order to measure these properties precisely, optical instruments may be the best choice. The Multi-Angle Snowflake Camera (MASC) is a relatively new instrument equipped with three high-resolution cameras to capture the winter precipitation particle images from three non-parallel angles, in addition to measuring the particle fall speed using two pairs of infrared motion sensors. However, the results from the MASC so far are usually presented as monthly or seasonally, and particle sizes are given as histograms, no previous studies have used the MASC for a single storm study, and no researchers use MASC to measure the PSD. We propose the methodology for obtaining the winter precipitation PSD measured by the MASC, and present and discuss the development, implementation, and application of the new technique for PSD computation based on MASC images. Overall, this is the first study of the MASC-based PSD. We present PSD MASC experiments and results for segments of two snow events to demonstrate the performance of our PSD algorithm. The results show that the self-consistency of the MASC measured single-camera PSDs is good. To cross-validate PSD measurements, we compare MASC mean PSD (averaged over three cameras) with the collocated 2D Video Disdrometer, and observe good agreements of the two sets of results.

  17. Measurement of small-angle elastic scattering cross sections of fast neutron

    International Nuclear Information System (INIS)

    Wan Dairong; Dai Yunsheng; Liang Xuecai; Cao Jianhua

    1993-11-01

    A position-sensitive detector has been developed for studying small angle scattering of fast neutrons. The detector mainly consists of two photomultiplier tubes to monitor the liquid scintillator. The time difference between two signals from two photomultiplier tubes is used to determine the position of light emitted. The 14.7 MeV neutron elastic scattering differential cross section of Zr, Nb, Ti and Pb were measured by position-sensitive detector and associated particle time-of-flight method at the angles from 3 deg to 15 deg. The corrections for neutron fluence attenuation, multiple scattering and finite geometry are performed by using Monte-Carlo method. The experimental results provide data needed in nuclear engineering design

  18. Small-angle neutron scattering measurements for the characterization of lithographically prepared structures

    International Nuclear Information System (INIS)

    Wu Wenli; Lin, Eric K.; Lin Qinghuang; Angelopolous, Marie

    2001-01-01

    The continuing decrease in feature sizes in the semiconductor and other nanofabrication industries has placed increasingly stringent demands on current microscopy-based techniques to precisely measure both the critical dimensions and the quality (i.e. line-edge roughness) of these structures. Small-angle neutron scattering (SANS) experiments provide a quick, non-destructive, and quantitative measurement of the three-dimensional shape and quality of lithographically prepared structures as fabricated on a silicon substrate. We demonstrate the application of SANS for the characterization of nanoscale structures using periodic 150 nm parallel lines prepared using standard 248 nm photolithographic processes

  19. Stretching Safely and Effectively

    Science.gov (United States)

    ... of stretching before or after hitting the trail, ballet floor or soccer field. Before you plunge into ... ballistic stretching on strength and muscular fatigue of ballet dancers and resistance-trained women. Journal of Strength ...

  20. Inclination and anteversion angles of the femoral head and neck in the dog: evaluation of a standard method of measurement

    International Nuclear Information System (INIS)

    Montavon, P.M.; Hohn, R.B.; Olmstead, M.L.; Rudy, R.L.

    1985-01-01

    The inclination and anteversion angles of the femoral head and neck in 30 mongrel dogs were determined using a radiographic biplanar technique. The angle of anteversion of the 30 necropsy specimens was measured directly and compared with the in vivo radiographic measurements. The average value for the angles of anteversion, inclination, and corrected real angles of inclination were 31.3°, 148.8°, and 144.7°, respectively. Graphs were established using existing trigonometric relations to facilitate the analysis. The method used was found to be simple, reliable, and accurate. The mean difference between the indirect radiographic biplanar technique and direct measurements on isolated bones was ° 1.5°. The difference between the mean values of anteversion angles determined after radiographic biplanar technique and direct bone measurements was not significant (p > 0.05)

  1. Comparison of quadriceps angle measurements using short-arm and long-arm goniometers: correlation with MRI.

    Science.gov (United States)

    Draper, Christine E; Chew, Kelvin T L; Wang, Roberta; Jennings, Fabio; Gold, Garry E; Fredericson, Michael

    2011-02-01

    To compare the reliability of quadriceps-angle (Q-angle) measurements performed using a short-arm goniometer and a long-arm goniometer and to assess the accuracy of goniometer-based Q-angle measurements compared with anatomic Q angles derived from magnetic resonance imaging (MRI). An intra- and interobserver reliability study. University hospital. Eighteen healthy subjects with no history of knee pain, trauma, or prior surgery were examined. Two physicians, blinded to subject identity, measured Q angles on both knees of all subjects using 2 goniometers: (1) a short-arm goniometer and (2) a long-arm goniometer. Q angles were derived from axial MRIs of the subjects' hip and knees. The intra- and interobserver reliabilities of each goniometer were assessed using the intraclass correlation coefficient (ICC). The comparison between clinical and MRI-based Q angles was assessed by using the ICC and a paired t-test. Intra- and interobserver reliabilities of the long-arm goniometer (intraobserver ICC, 0.92; interobserver ICC, 0.88) were better than those of the short-arm goniometer (intraobserver ICC, 0.78; interobserver ICC, 0.56). Although both goniometers measured Q angles that were moderately correlated to the MRI-based measurements (ICC, 0.40), the clinical Q angles were underestimated compared with the MRI-based anatomic Q angles (P goniometer, methods to improve the accuracy of clinical Q-angle measurements are needed. Copyright © 2011 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  2. A COMPARISION BETWEEN CROSSBODY STRETCH VERSUS SLEEPER STRETCH IN PERIARTHRITIS OF SHOULDER

    Directory of Open Access Journals (Sweden)

    Shaik Raheem Saheb

    2015-12-01

    Full Text Available Background: Recently Cross body stretch and Sleeper stretch are used to improve internal rotation Range of motion in Shoulder Pathologies. It was proposed to study the effect of cross body stretch and sleeper stretch in subjects with periarthritis of shoulder. Methods: 60 subjects with a mean age of 53 years having clinical diagnosis of Periarthritis of shoulder and full filled the inclusive criteria are taken. After the initial measurements, the subjects are randomly assigned into 2 stretching groups. Group-A performed the Sleeper stretch. Group-B performed a Cross body stretch. Both Groups performed the Stretch in Duration of 6weeks – once daily for 5 repetitions holding each stretch for 30 seconds for 5 days a week. Along with this technique conventional physiotherapy like IFT, overhead pulleys, Pendula exercises, Wall climbing exercises, mariners wheel exercises are performed. After the treatment, subjects were evaluated for their pain profile using visual analogue scale, Goniometer for measuring Range of motion. Results: For within group comparison we used Paired t-test analysis, For Between group comparison we used Independent t-test for statistical analysis. At the end of 6 weeks It was found that subjects treated with cross-body stretch showed significant improvement in terms of VAS scores and Range of motion scores (P=0.000 and patients treated with Sleeper stretch showed significant improvement in terms of VAS scores and Range of motion scores (P=0.000. When compared between Groups the VAS and Range of motion scores showed a significant improvement in Cross body stretch Group than the Sleeper stretch Group (P=0.000. Conclusion: It was concluded that both stretching techniques were found improvement in Range of motion and VAS and Cross-body Stretch showed more Significant improvement than the sleeper Stretch after 6 weeks treatment.

  3. Progresses in the measurement and evaluation of small-angle x-ray scattering data

    International Nuclear Information System (INIS)

    Bergmann, A.

    2000-08-01

    Scattering methods are a widely used technique for determining size and shape of particles in the mesoscopic size range. This work deals on the one hand with the development of instruments in the field of Small Angle x-ray Scattering (SAXS) and on the other hand with methodical contributions concerning the interpretation of small angle scattering data. After a short introduction about Small Angle Scattering (SAS) and its application in chapter one, follows in chapter two a derivation of the theory of Small Angle x-ray scattering. Thereafter indirect transformations (Generalized Indirect Fourier Transformation [GIFT], Indirect Fourier Transformation [IFT]) are discussed and in this connection the optimization of multidimensional hyper surfaces is described. There are different possibilities for optimizing such multidimensional surfaces. The pros and contras of the different optimization methods with respect to the evaluation of small angle scattering data from interacting systems are discussed in detail. Global optimization methods are mainly used, if the hypersurface, which has to be optimized, shows many local minima. The goal of the optimization is it to find the global minimum. It is essential, that the parameters of the hyper surface are independent of each other, as it is the case in the GIFT. If someone deals with problems in only few dimensions or with many boundary conditions, mostly local optimization routines are sufficient. Therefore a number of starting parameters for the optimization is chosen, which can be obtained systematically or randomly. The best solution obtained represents the result of the optimization procedure. Chapter 3 deals with the description of instruments used in the field of Small Angle x-ray Scattering. After a description of the components (x-ray sources, monochromators, detectors) of these instruments, the different beam geometries are discussed. In chapter 4 improvements of SAXS measurements on Kratky slit systems by Goebel

  4. A STUDY ON THE EFFECTS OF VIEWING ANGLE VARIATION IN SUGARCANE RADIOMETRIC MEASURES

    Directory of Open Access Journals (Sweden)

    Érika Akemi Saito; Moriya

    Full Text Available Abstract: Remote Sensing techniques, such as field spectroscopy provide information with a large level of detail about spectral characteristics of plants enabling the monitoring of crops. The aim of this study is to analyze the influence of viewing angle in estimating the Bidirectional Reflectance Distribution Function (BRDF for the case of sugarcane. The study on the variation of the spectral reflectance profile can help the improvement of algorithms for correction of BRDF in remote sensing images. Therefore, spectral measurements acquired on nadir and different off-nadir view angle directions were considered in the experiments. Change both anisotropy factor and anisotropy index was determined in order to evaluate the BRDF variability in the spectral data of sugarcane. BRDF correction was applied using the Walthall model, thus reducing the BRDF effects. From the results obtained in the experiments, the spectral signatures showed a similar spectral pattern varying mainly in intensity. The anisotropy factor which showed a similar pattern in all wavelengths. The visual analysis of the spectral reflectance profile of sugarcane showed variation mainly in intensity at different angles. The use of Walthall model reduced the BRDF effects and brought the spectral reflectance profiles acquired on different viewing geometry close to nadir viewing. Therefore, BRDF effects on remote sensing data of vegetation cover can be minimized by applying this model. This conclusion contributes to developing suitable algorithms to produce radiometrically calibrated mosaics with remote sensing images taken by aerial platforms.

  5. Beam test measurements on GaAs pixel detectors at various angles of incidence

    Energy Technology Data Exchange (ETDEWEB)

    Braunschweig, W.; Breibach, J.; Graessel, D.; Koenig, St.; Kubicki, Th.; Luebelsmeyer, K.; Rente, C.; Roeper, Ch.; Siedling, R.; Syben, O.; Tenbusch, F.; Toporowski, M.; Xiao, W.J

    1999-08-01

    A GaAs pixel detector constructed in Aachen has been tested in a 4 GeV electron beam at DESY. The experimental setup allowed tilting the detector with respect to the beam line with angles of incidence from 0 deg. to 45 deg. . The sensor-array consisted of 8 x 16 pixels with a size of 125 x 125{mu}m{sup 2} each. The detector was made of a 250{mu}m thick Freiberger SI-GaAs wafer. An improved contact was formed on the backside, allowing safe operation of the detector in the soft breakdown regime. A double metal technique allowed bonding the single pixels linearly to the readout-chip. Using the the fast PreMux128 preamplifier multiplexer chip ({tau}{sub p} = 40ns) a signal to noise ratio of 29 was obtained for a beam angle of incidence of 0 deg. increasing up to 38 for 45 deg. The spatial resolution obtained with an angle of incidence of 45 deg. was (9.0 {+-} 6.0){mu}m while the resolution of the untilted detector is equal to the digital one (36.1{mu}m). For these testbeam-measurements the detector was connected to the electronics via wire-bonds. For future experiments bump-bonding connections are required. The results of a process for the formation of bump-bond connections on GaAs pixeldetectors are shown.

  6. Maxillomandibular plane angle bisector (MM) adjunctive to occlusal plane to evaluate anteroposterior measurement of dental base.

    Science.gov (United States)

    Ganiger, Chanamallappa R; Nayak, U S Krishna; Cariappa, K U; Ahammed, A R Yusuf

    2012-07-01

    This study was undertaken to analyze the clinical usefulness of the maxillomandibular bisector, its reproducibility, its validity and its relationship to the functional occlusal plane, the bisecting occlusal plane and the nature of its cant. Thirty pretreatment lateral cephalograms, each of adolescents (above 18 years of age) and children (10- 12 years), seeking orthodontic treatment were randomly selected and the Wits technique of anteroposterior measurement was used to compare A-B values measured to the new plane with those measured to the functional occlusal plane (FOP) and to the traditional or bisecting occlusal plane (BOP). Present study showed that MM bisector plane is more reproducible and valid reference plane, than the FOP and BOP. A new plane, geometrically derived from the dental base planes, has been tested as an occlusal plane substitute for the measurement of anteroposterior jaw relationships. It lies close to but at an angle and inferior to the traditional occlusal planes and is highly reproducible at all times. Maxillomandibular planes angle bisector may be a useful adjunct for the cephalometric assessment of sagittal relationship of the patient.

  7. Repeatability, reproducibility, agreement characteristics of 2 SD-OCT devices for anterior chamber angle measurements.

    Science.gov (United States)

    Akil, Handan; Dastiridou, Anna; Marion, Kenneth; Francis, Brian; Chopra, Vikas

    2017-04-01

    To evaluate the agreement, reproducibility, and repeatability of 2 spectral domain optical coherence tomography (SD-OCT) devices in Schwalbe's line (SL)-based anterior chamber angle parameters. The inferior anterior chamber angle of 65 eyes from 65 participants (33 right eyes and 32 left eyes) were scanned twice with the Nidek RS 3000 Advanced SD-OCT and Cirrus SD-OCT. SL angle opening distance (SL-AOD) and SL trabecular-iris-space area (SL-TISA) were graded by masked certified graders at the Doheny Image Reading Center. The mean SL-AOD/SL-TISA was 617.3 ± 237.9 µm/0.211 ± 0.086 mm 2 for the Cirrus and 633.7 ± 219.3 µm/0.218 ± 0.080 mm 2 for the Nidek RS 3000 Advanced SD-OCT. The repeatability (intraclass correlation coefficients [ICCs] >0.936) and intergrader reproducibility (ICCs >0.915) in SL-AOD and SL-TISA with Cirrus OCT were excellent. The repeatability (ICCs >0.948) and intergrader reproducibility (ICCs >0.709) in SL-AOD and SL-TISA with the Nidek RS 3000 Advanced SD-OCT were moderate to good. Moderate agreement between the 2 devices was also documented with a mean difference of -15.3 (limits of agreement [LoA] -246.5 to 277.1) mm for SL-AOD and 0.006 (LoA -0.096 to 0.108) mm in SL-TISA. Both devices were able to provide consistent angle measurements, but repeatability and reproducibility were better in Cirrus SD-OCT than in Nidek RS 3000 Advanced SD-OCT. Copyright © 2017 Canadian Ophthalmological Society. Published by Elsevier Inc. All rights reserved.

  8. Trimble M3 1” and South Nts-362R Total Station Angle Measurement Accuracy Analysis

    Directory of Open Access Journals (Sweden)

    Oleniacz Grzegorz

    2017-03-01

    Full Text Available The main purpose of this study was to obtain information about the actual precision of angle measurements with two instruments (Trimble M3 1 "and South NTS-362R, realizable in given measurement conditions. This object is achieved by using a simplified method of testing instruments contained in the PN-ISO 17123-3 standard [1]. This is a continuation of research described in [2], carried out on the same test base, but this time in a different, less favorable field conditions. The use of the same instrument has created an opportunity to compare and analyze the measurement results. The scope of work includes the measurement and results preparation along with statistical processing of the obtained results for both instruments.

  9. A proposal for the measurement of the weak mixing angle at the HL-LHC

    CERN Document Server

    CMS Collaboration

    2017-01-01

    A proposal is presented for measuring the weak mixing angle using the forward-backward asymmetry of Drell-Yan dimuon events in pp collisions at $\\sqrt{s} = 14~\\mathrm{TeV}$ with the CMS detector at the high luminosity LHC (HL-LHC). In addition to the increased luminosity, the upgraded part of the muon system extends the pseudorapidity coverage of the CMS experiment to $|\\eta| < 2.8$ for muons. Since the measurement has higher sensitivity in this pseudorapidity region, both the statistical and systematic uncertainties will be significantly reduced. To estimate the increased potential for this measurement we use a Monte Carlo data sample of pp events corresponding to a luminosity of $3000~\\mathrm{fb}^{-1}$ and compare to the recent CMS measurements at $\\sqrt{s} = 8~\\mathrm{TeV}$.

  10. The method of contact angle measurements and estimation of work of adhesion in bioleaching of metals

    Directory of Open Access Journals (Sweden)

    Matlakowska Renata

    1999-01-01

    Full Text Available In this paper, we present our method for the measurement of contact angles on the surface of minerals during the bioleaching process because the standard deviation obtained in our measurements achieved unexpectedly low error. Construction of a goniometer connected with a specially prepared computer program allowed us to repeat measurements several times over a short time course, yielding excellent results. After defining points on the outline of the image of a drop and its baseline as well of the first approximation of the outline of the drop, an iterative process is initiated that is aimed at fitting the model of the drop and baseline. In turn, after defining the medium for which measurements were made, the work of adhesion is determined according to Young-Dupré equation. Calculations were made with the use of two methods named the L-M and L-Q methods.

  11. Small angle neutron scattering measurements of magnetic cluster sizes in magnetic recorging disks

    CERN Document Server

    Toney, M

    2003-01-01

    We describe Small Angle Neutron Scattering measurements of the magnetic cluster size distributions for several longitudinal magnetic recording media. We find that the average magnetic cluster size is slightly larger than the average physical grain size, that there is a broad distribution of cluster sizes, and that the cluster size is inversely correlated to the media signal-to-noise ratio. These results show that intergranular magnetic coupling in these media is small and they provide empirical data for the cluster-size distribution that can be incorporated into models of magnetic recording.

  12. Capillary-scale interferometry at high angles of scattering for refractive index measurements of small volumes

    Science.gov (United States)

    Świrniak, Grzegorz

    2016-04-01

    This paper focuses on the problem of elastic scattering of a collimated beam of light on an unmodified glass capillary to perform a non-destructive small volume refractive index characterization. An interaction between the beam of light and the capillary causes that a series of dark and bright fringes is formed in the far field observed at high angles of scattering. By analyzing the spatial profile of the scattered light, the absolute value of the refractive index of a small volume may be measured unambiguously.

  13. Effects of acute static, ballistic, and PNF stretching exercise on the muscle and tendon tissue properties.

    Science.gov (United States)

    Konrad, A; Stafilidis, S; Tilp, M

    2017-10-01

    The purpose of this study was to investigate the influence of a single static, ballistic, or proprioceptive neuromuscular facilitation (PNF) stretching exercise on the various muscle-tendon parameters of the lower leg and to detect possible differences in the effects between the methods. Volunteers (n = 122) were randomly divided into static, ballistic, and PNF stretching groups and a control group. Before and after the 4 × 30 s stretching intervention, we determined the maximum dorsiflexion range of motion (RoM) with the corresponding fascicle length and pennation angle of the gastrocnemius medialis. Passive resistive torque (PRT) and maximum voluntary contraction (MVC) were measured with a dynamometer. Observation of muscle-tendon junction (MTJ) displacement with ultrasound allowed us to determine the length changes in the tendon and muscle, respectively, and hence to calculate stiffness. Although RoM increased (static: +4.3%, ballistic: +4.5%, PNF: +3.5%), PRT (static: -11.4%, ballistic: -11.5%, PNF: -13,7%), muscle stiffness (static: -13.1%, ballistic: -20.3%, PNF: -20.2%), and muscle-tendon stiffness (static: -11.3%, ballistic: -10.5%, PNF: -13.7%) decreased significantly in all the stretching groups. Only in the PNF stretching group, the pennation angle in the stretched position (-4.2%) and plantar flexor MVC (-4.6%) decreased significantly. Multivariate analysis showed no clinically relevant difference between the stretching groups. The increase in RoM and the decrease in PRT and muscle-tendon stiffness could be explained by more compliant muscle tissue following a single static, ballistic, or PNF stretching exercise. © 2017 The Authors Scandinavian Journal of Medicine & Science In Sports Published by John Wiley & Sons Ltd.

  14. Small angle-rotated detector emission tomography for measuring holdup in spherical container

    International Nuclear Information System (INIS)

    Deng Jingshan; Li Ze; Gan Lin; Lu Wenguang; Dong Mingli

    2007-01-01

    Some special nuclear material (SNM) is inevitably deposited in the facilities (mixer, reactor) of nuclear material process line. Exactly knowing the quantity of nuclear material holdup is very important for nuclear material accountability and critical safety. The small angle-rotated emission tomography method was presented for SNM holdup measurement of spherical container. Because of other equipments exist at the left, right and back side of the container, so that the detectors can be put only in front of container for measurement. The nuclear material deposited in the spherical container can be looked as spherical shell source, which is divided into many voxels. The detectors scanning spherical shell source are rotated around the container at small angle at each layer to obtain projection data, with which deposited material distribution can be reconstructed by using least square (LS) method or maximum likelihood (ML) method. Based on these methods accurate total holdup can be obtained by summing up all the voxel values reconstructed. The measurement method for holdup in the spherical container was verified with Monte-Carlo simulation calculation. (authors)

  15. Functional Stretching Exercise Submitted for Spastic Diplegic Children: A Randomized Control Study

    Directory of Open Access Journals (Sweden)

    Mohamed Ali Elshafey

    2014-01-01

    Full Text Available Objective. Studying the effect of the functional stretching exercise in diplegic children. Design. Children were randomly assigned into two matched groups. Setting. Outpatient Clinic of the Faculty of Physical Therapy, Cairo University. Participants. Thirty ambulant spastic diplegic children, ranging in age from five to eight years, participated in this study. Interventions. The control group received physical therapy program with traditional passive stretching exercises. The study group received physical therapy program with functional stretching exercises. The treatment was performed for two hours per session, three times weekly for three successive months. Main Outcome Measure(s. H∖M ratio, popliteal angle, and gait parameters were evaluated for both groups before and after treatment. Results. There was significant improvement in all the measuring variables for both groups in favor of study group. H∖M ratio was reduced, popliteal angle was increased, and gait was improved. Conclusion(s. Functional stretching exercises were effectively used in rehabilitation of spastic diplegic children; it reduced H∖M ratio, increased popliteal angle, and improved gait.

  16. Droplet characteristic measurement in Fourier interferometry imaging and behavior at the rainbow angle.

    Science.gov (United States)

    Briard, Paul; Saengkaew, Sawitree; Wu, Xuecheng; Meunier-Guttin-Cluzel, Siegfried; Chen, Linghong; Cen, Kefa; Gréhan, Gérard

    2013-01-01

    This paper presents the possibility of measuring the three-dimensional (3D) relative locations and diameters of a set of spherical particles and discusses the behavior of the light recorded around the rainbow angle, an essential step toward refractive index measurements. When a set of particles is illuminated by a pulsed incident wave, the particles act as spherical light wave sources. When the pulse duration is short enough to fix the particle location (typically about 10 ns), interference fringes between these different spherical waves can be recorded. The Fourier transform of the fringes divides the complex fringe systems into a series of spots, with each spot characterizing the interference between a pair of particles. The analyses of these spots (in position and shape) potentially allow the measurement of particle characteristics (3D relative position, particle diameter, and particle refractive index value).

  17. A Precise Measurement Of The Weak Mixing Angle In Neutrino-nucleon Scattering

    CERN Document Server

    Zeller, G P

    2002-01-01

    This dissertation reports a precise determination of the weak mixing angle, sin2 &thetas;W, from measurement of the ratios of neutral current to charged current neutrino deep inelastic cross sections. High statistics samples of separately collected neutrino and antineutrino events, resulting from exposure to the Fermilab neutrino beam during the period from 1996 to 1997, allowed the reduction of systematic errors associated with charm production and other sources. The final value, sin 2 &thetas;W(on shell) = 0.2277 ± 0.0013 (stat) ± 0.0009 (syst), lies three standard deviations above the standard model prediction. The measurement is currently the most precise determination of sin2 &thetas; W in neutrino- nucleon scattering, surpassing its predecessors by a factor of two in precision. A model independent analysis recasts the same data into a measurement of effective left and right handed neutral current quark couplings.

  18. Reliability of radiographic measurement of lateral capitellohumeral angle in healthy children.

    Science.gov (United States)

    Hasegawa, Masaki; Suzuki, Taku; Kuroiwa, Takashi; Oka, Yusuke; Maeda, Atsushi; Takeda, Hiroki; Shizu, Kanae; Tsuji, Takashi; Suzuki, Katsuji; Yamada, Harumoto

    2018-04-01

    This retrospective cohort study was designed to validate the reliability of measurement of the lateral capitellohumeral angle (LCHA), an index of sagittal angulation of the elbow, in healthy children. The results were compared to the Baumann angle (BA), which is a similar concept to LCHA.Sixty-two radiographs of the elbow in healthy children (range, 2-11 years) were reviewed by 6 examiners at 2 sessions. The mean value and reliability of the measurement of LCHA and BA were assessed. Intraobserver reliability and interobserver reliability were calculated using intraclass correlation coefficients (ICCs).The mean LCHA value was 45° (range, 22° to 70°) and the mean BA was 71° (range, 56° to 86°). The ICCs for intraobserver reliability of the LCHA measurements were almost perfect for 2 examiners, substantial for 3 examiners, and moderate for 1 examiner with a mean value of 0.77 (range, 0.57-0.95). For BA measurements, the ICCs were almost perfect for 1 examiner and substantial for 5 examiners with a mean value of 0.74 (range, 0.66-0.83). The ICCs for interobserver reliability between the first and second measurements were both moderate for LCHA (0.56 and 0.51) and for BA (0.52 and 0.50).LCHA showed almost the same reliability in measurement as BA, which is the gold standard assessment for coronal alignment of the elbow. LCHA showed moderate-to-good reliability in the evaluation of sagittal plane elbow alignment.

  19. Direct Measurement of Static and Dynamic Contact Angles Using a Random Micromodel Considering Geological CO2 Sequestration

    Directory of Open Access Journals (Sweden)

    Mohammad Jafari

    2017-12-01

    Full Text Available The pore-level two-phase fluids flow mechanism needs to be understood for geological CO2 sequestration as a solution to mitigate anthropogenic emission of carbon dioxide. Capillary pressure at the interface of water–CO2 influences CO2 injectability, capacity, and safety of the storage system. Wettability usually measured by contact angle is always a major uncertainty source among important parameters affecting capillary pressure. The contact angle is mostly determined on a flat surface as a representative of the rock surface. However, a simple and precise method for determining in situ contact angle at pore-scale is needed to simulate fluids flow in porous media. Recent progresses in X-ray tomography technique has provided a robust way to measure in situ contact angle of rocks. However, slow imaging and complicated image processing make it impossible to measure dynamic contact angle. In the present paper, a series of static and dynamic contact angles as well as contact angles on flat surface were measured inside a micromodel with random pattern of channels under high pressure condition. Our results showed a wide range of pore-scale contact angles, implying complexity of the pore-scale contact angle even in a highly smooth and chemically homogenous glass micromodel. Receding contact angle (RCA showed more reproducibility compared to advancing contact angle (ACA and static contact angle (SCA for repeating tests and during both drainage and imbibition. With decreasing pore size, RCA was increased. The hysteresis of the dynamic contact angle (ACA–RCA was higher at pressure of one megapascal in comparison with that at eight megapascals. The CO2 bubble had higher mobility at higher depths due to lower hysteresis which is unfavorable. CO2 bubbles resting on the flat surface of the micromodel channel showed a wide range of contact angles. They were much higher than reported contact angle values observed with sessile drop or captive bubble tests on a

  20. Automatic anatomical calibration for IMU-based elbow angle measurement in disturbed magnetic fields

    Directory of Open Access Journals (Sweden)

    Laidig Daniel

    2017-09-01

    Full Text Available Inertial Measurement Units (IMUs are increasingly used for human motion analysis. However, two major challenges remain: First, one must know precisely in which orientation the sensor is attached to the respective body segment. This is commonly achieved by accurate manual placement of the sensors or by letting the subject perform tedious calibration movements. Second, standard methods for inertial motion analysis rely on a homogeneous magnetic field, which is rarely found in indoor environments. To address both challenges, we introduce an automatic calibration method for joints with two degrees of freedom such as the combined radioulnar and elbow joint. While the user performs arbitrary movements, the method automatically identifies the sensor-to-segment orientations by exploiting the kinematic constraints of the joint. Simultaneously, the method identifies and compensates the influence of magnetic disturbances on the sensor orientation quaternions and the joint angles. In experimental trials, we obtain angles that agree well with reference values from optical motion capture. We conclude that the proposed method overcomes mounting and calibration restrictions and improves measurement accuracy in indoor environments. It therefore improves the practical usability of IMUs for many medical applications.

  1. A Precision Low-Energy Measurement of the Weak Mixing Angle in Moller Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Mastromarino, P.

    2005-01-26

    The E-158 experiment at the Stanford Linear Accelerator Center (SLAC) measures the parity-violating cross-section asymmetry in electron-electron (Moeller) scattering at low Q{sup 2}. This asymmetry, whose Standard Model prediction is roughly -150 parts per billion (ppb), is directly proportional to (1-4 sin{sup 2} {theta}{sub W}), where {theta}{sub W} is the weak mixing angle. Measuring this asymmetry to within 10% provides an important test of the Standard Model at the quantum loop level and probes for new physics at the TeV scale. The experiment employs the SLAC 50 GeV electron beam, scattering it off a liquid hydrogen target. A system of magnets and collimators is used to isolate and focus the Moeller scattering events into an integrating calorimeter. The electron beam is generated at the source using a strained, gradient-doped GaAs photocathode, which produces roughly 5 x 10{sup 11} electrons/pulse (at a beam rate of 120 Hz) with {approx} 80% longitudinal polarization. The helicity of the beam can be rapidly switched, eliminating problems associated with slow drifts. Helicity-correlations in the beam parameters (charge, position, angle and energy) are minimized at the source and corrected for using precision beam monitoring devices.

  2. Justification and implementation of the coordinate method among potentially possible precise methods for measuring angles between axes of small-angle beams

    Science.gov (United States)

    Kudryavtsev, M. D.

    2017-08-01

    A series of studies devoted to the theoretical justification and development of methods and tools for angular measurements based on the use of multiple sources of optical beams with a small angular aperture is continued. The source used in this study is a holographic prism: a fluorite single crystal with a system of superimposed holograms recorded in its bulk, which generates a series of diffracted small-angle beams in the form of a flat fan under illumination by a reference laser. This fan has a high spatial stability, including constancy of angles between any pair of fan beams in a wide range of external conditions. Based on the previously introduced notion of an effective beam axis, potential exact methods for measuring angles between fan beams are considered, and a coordinate method using a coordinate measuring machine and a CCD recorder is substantiated and implemented. The accuracy of the proposed method is analyzed. It is shown that its errors can potentially be reduced to a level of 1″ or even less.

  3. Consideration of generated beam angles increases the accuracy of ultrasonic displacement measurements

    Directory of Open Access Journals (Sweden)

    Sumi C

    2012-03-01

    Full Text Available Chikayoshi Sumi, Yuuki Takanashi, Kento IchimaruDepartment of Information and Communication Sciences, Faculty of Science and Technology, Sophia University, Tokyo, JapanAbstract: The development of practical ultrasonic (US tissue displacement measurement methods increases the number of available and useful applications of displacement/strain measurements that can be made (eg, various blood flow measurements and measurements of tissue motion in organs such as the heart, liver, and so forth. Previously developed lateral modulation (LM methods with a multidimensional autocorrelation method (MAM or multidimensional Doppler method (MDM and a steering angle method (ASTA with lateral Doppler method produced accurate displacement vector and lateral displacement measurements, respectively. Such measurements cannot be obtained using only a conventional Doppler technique. Another new method has also been reported, using multiple crossed beams (MCBs to obtain high-accuracy displacement vector measurements; that is, a displacement vector is synthesized using accurately measured axial displacements with previously developed multidimensional displacement measurement methods, including the one-dimensional autocorrelation method (1D AM with a multidimensional moving average (MA, together with conventional rotation processing of global echo data or a coordinate system (ie, a global echo rotation referred to as r method by the negative value of the steering angles used in beamforming. However, in real-world applications, directivities of transmission and reception apertures, scattering, reflection, and attenuation affect the direction and properties of US beams used for conventional axial displacement measurements employing beamforming methods such as a conventional nonsteered, steered, or secta beam, and they also affect ASTA and MCB methods. In this report, to improve accuracy in the measurements of an arbitrary directional displacement and a displacement vector

  4. Reliability of a computer software angle tool for measuring spine and pelvic flexibility during the sit-and-reach test.

    Science.gov (United States)

    Mier, Constance M; Shapiro, Belinda S

    2013-02-01

    The purpose of this study was to determine the reliability of a computer software angle tool that measures thoracic (T), lumbar (L), and pelvic (P) angles as a means of evaluating spine and pelvic flexibility during the sit-and-reach (SR) test. Thirty adults performed the SR twice on separate days. The SR test was captured on video and later analyzed for T, L, and P angles using the computer software angle tool. During the test, 3 markers were placed over T1, T12, and L5 vertebrae to identify T, L, and P angles. Intraclass correlation coefficient (ICC) indicated a very high internal consistency (between trials) for T, L, and P angles (0.95-0.99); thus, the average of trials was used for test-retest (between days) reliability. Mean (±SD) values did not differ between days for T (51.0 ± 14.3 vs. 52.3 ± 16.2°), L (23.9 ± 7.1 vs. 23.0 ± 6.9°), or P (98.4 ± 15.6 vs. 98.3 ± 14.7°) angles. Test-retest reliability (ICC) was high for T (0.96) and P (0.97) angles and moderate for L angle (0.84). Both intrarater and interrater reliabilities were high for T (0.95, 0.94) and P (0.97, 0.97) angles and moderate for L angle (0.87, 0.82). Thus, the computer software angle tool is a highly objective method for assessing spine and pelvic flexibility during a video-captured SR test.

  5. Measurement of the CKM angle $\\gamma$ from a combination of LHCb results

    CERN Document Server

    Aaij, Roel; Adinolfi, Marco; Ajaltouni, Ziad; Akar, Simon; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio Augusto; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Andreassi, Guido; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Archilli, Flavio; d'Argent, Philippe; Arnau Romeu, Joan; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Babuschkin, Igor; Bachmann, Sebastian; Back, John; Badalov, Alexey; Baesso, Clarissa; Baker, Sophie; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Baszczyk, Mateusz; Batozskaya, Varvara; Batsukh, Baasansuren; Battista, Vincenzo; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Bel, Lennaert; Bellee, Violaine; Belloli, Nicoletta; Belous, Konstantin; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bertolin, Alessandro; Betti, Federico; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bezshyiko, Iaroslava; Bifani, Simone; Billoir, Pierre; Bird, Thomas; Birnkraut, Alex; Bitadze, Alexander; Bizzeti, Andrea; Blake, Thomas; Blanc, Frederic; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Boettcher, Thomas; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borgheresi, Alessio; Borghi, Silvia; Borisyak, Maxim; Borsato, Martino; Bossu, Francesco; Boubdir, Meriem; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Braun, Svende; Britsch, Markward; Britton, Thomas; Brodzicka, Jolanta; Buchanan, Emma; Burr, Christopher; Bursche, Albert; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Calvi, Marta; Calvo Gomez, Miriam; Camboni, Alessandro; Campana, Pierluigi; Campora Perez, Daniel; Campora Perez, Daniel Hugo; Capriotti, Lorenzo; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carniti, Paolo; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cavallero, Giovanni; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Chatzikonstantinidis, Georgios; Chefdeville, Maximilien; Chen, Shanzhen; Cheung, Shu-Faye; Chobanova, Veronika; Chrzaszcz, Marcin; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coco, Victor; Cogan, Julien; Cogneras, Eric; Cogoni, Violetta; Cojocariu, Lucian; Collazuol, Gianmaria; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombs, George; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Costa Sobral, Cayo Mar; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Crocombe, Andrew; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Da Cunha Marinho, Franciole; Dall'Occo, Elena; Dalseno, Jeremy; David, Pieter; Davis, Adam; De Aguiar Francisco, Oscar; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Serio, Marilisa; De Simone, Patrizia; Dean, Cameron Thomas; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Demmer, Moritz; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Dey, Biplab; Di Canto, Angelo; Dijkstra, Hans; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Dovbnya, Anatoliy; Dreimanis, Karlis; Dufour, Laurent; Dujany, Giulio; Dungs, Kevin; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Déléage, Nicolas; Easo, Sajan; Ebert, Marcus; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; Elsasser, Christian; Ely, Scott; Esen, Sevda; Evans, Hannah Mary; Evans, Timothy; Falabella, Antonio; Farley, Nathanael; Farry, Stephen; Fay, Robert; Fazzini, Davide; Ferguson, Dianne; Fernandez Albor, Victor; Fernandez Prieto, Antonio; Ferrari, Fabio; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fini, Rosa Anna; Fiore, Marco; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fleuret, Frederic; Fohl, Klaus; Fontana, Marianna; Fontanelli, Flavio; Forshaw, Dean Charles; Forty, Roger; Franco Lima, Vinicius; Frank, Markus; Frei, Christoph; Fu, Jinlin; Furfaro, Emiliano; Färber, Christian; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; Garcia Martin, Luis Miguel; García Pardiñas, Julián; Garra Tico, Jordi; Garrido, Lluis; Garsed, Philip John; Gascon, David; Gaspar, Clara; Gavardi, Laura; Gazzoni, Giulio; Gerick, David; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianì, Sebastiana; Gibson, Valerie; Girard, Olivier Göran; Giubega, Lavinia-Helena; Gizdov, Konstantin; Gligorov, V.V.; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gorelov, Igor Vladimirovich; Gotti, Claudio; Grabalosa Gándara, Marc; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graverini, Elena; Graziani, Giacomo; Grecu, Alexandru; Griffith, Peter; Grillo, Lucia; Gruberg Cazon, Barak Raimond; Grünberg, Oliver; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Göbel, Carla; Hadavizadeh, Thomas; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Haines, Susan; Hall, Samuel; Hamilton, Brian; Han, Xiaoxue; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Harrison, Jonathan; Hatch, Mark; He, Jibo; Head, Timothy; Heister, Arno; Hennessy, Karol; Henrard, Pierre; Henry, Louis; Hernando Morata, Jose Angel; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hill, Donal; Hombach, Christoph; Hopchev, P H; Hulsbergen, Wouter; Humair, Thibaud; Hushchyn, Mikhail; Hussain, Nazim; Hutchcroft, David; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jaeger, Andreas; Jalocha, Pawel; Jans, Eddy; Jawahery, Abolhassan; Jiang, Feng; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kandybei, Sergii; Kanso, Walaa; Karacson, Matthias; Kariuki, James Mwangi; Karodia, Sarah; Kecke, Matthieu; Kelsey, Matthew; Kenyon, Ian; Kenzie, Matthew; Ketel, Tjeerd; Khairullin, Egor; Khanji, Basem; Khurewathanakul, Chitsanu; Kirn, Thomas; Klaver, Suzanne; Klimaszewski, Konrad; Koliiev, Serhii; Kolpin, Michael; Komarov, Ilya; Koopman, Rose; Koppenburg, Patrick; Kosmyntseva, Alena; Kozachuk, Anastasiia; Kozeiha, Mohamad; Kravchuk, Leonid; Kreplin, Katharina; Kreps, Michal; Krokovny, Pavel; Kruse, Florian; Krzemien, Wojciech; Kucewicz, Wojciech; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kuonen, Axel Kevin; Kurek, Krzysztof; Kvaratskheliya, Tengiz; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lambert, Dean; Lanfranchi, Gaia; Langenbruch, Christoph; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; van Leerdam, Jeroen; Lees, Jean-Pierre; Leflat, Alexander; Lefrançois, Jacques; Lefèvre, Regis; Lemaitre, Florian; Lemos Cid, Edgar; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Yiming; Likhomanenko, Tatiana; Lindner, Rolf; Linn, Christian; Lionetto, Federica; Liu, Bo; Liu, Xuesong; Loh, David; Longstaff, Iain; Lopes, Jose; Lucchesi, Donatella; Lucio Martinez, Miriam; Luo, Haofei; Lupato, Anna; Luppi, Eleonora; Lupton, Oliver; Lusiani, Alberto; Lyu, Xiao-Rui; Machefert, Frederic; Maciuc, Florin; Maev, Oleg; Maguire, Kevin; Malde, Sneha; Malinin, Alexander; Maltsev, Timofei; Manca, Giulia; Mancinelli, Giampiero; Manning, Peter Michael; Maratas, Jan; Marchand, Jean François; Marconi, Umberto; Marin Benito, Carla; Marino, Pietro; Marks, Jörg; Martellotti, Giuseppe; Martin, Morgan; Martinelli, Maurizio; Martinez Santos, Diego; Martinez Vidal, Fernando; Martins Tostes, Danielle; Massacrier, Laure Marie; Massafferri, André; Matev, Rosen; Mathad, Abhijit; Mathe, Zoltan; Matteuzzi, Clara; Mauri, Andrea; Maurin, Brice; Mazurov, Alexander; McCann, Michael; McCarthy, James; McNab, Andrew; McNulty, Ronan; Meadows, Brian; Meier, Frank; Meissner, Marco; Melnychuk, Dmytro; Merk, Marcel; Merli, Andrea; Michielin, Emanuele; Milanes, Diego Alejandro; Minard, Marie-Noelle; Mitzel, Dominik Stefan; Mogini, Andrea; Molina Rodriguez, Josue; Monroy, Ignacio Alberto; Monteil, Stephane; Morandin, Mauro; Morawski, Piotr; Mordà, Alessandro; Morello, Michael Joseph; Moron, Jakub; Morris, Adam Benjamin; Mountain, Raymond; Muheim, Franz; Mulder, Mick; Mussini, Manuel; Müller, Dominik; Müller, Janine; Müller, Katharina; Müller, Vanessa; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nandi, Anita; Nasteva, Irina; Needham, Matthew; Neri, Nicola; Neubert, Sebastian; Neufeld, Niko; Neuner, Max; Nguyen, Anh Duc; Nguyen-Mau, Chung; Nieswand, Simon; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Novoselov, Alexey; O'Hanlon, Daniel Patrick; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Ogilvy, Stephen; Oldeman, Rudolf; Onderwater, Gerco; Otalora Goicochea, Juan Martin; Otto, Adam; Owen, Patrick; Oyanguren, Maria Aranzazu; Pais, Preema Rennee; Palano, Antimo; Palombo, Fernando; Palutan, Matteo; Panman, Jacob; Papanestis, Antonios; Pappagallo, Marco; Pappalardo, Luciano; Parker, William; Parkes, Christopher; Passaleva, Giovanni; Pastore, Alessandra; Patel, Girish; Patel, Mitesh; Patrignani, Claudia; Pearce, Alex; Pellegrino, Antonio; Penso, Gianni; Pepe Altarelli, Monica; Perazzini, Stefano; Perret, Pascal; Pescatore, Luca; Petridis, Konstantinos; Petrolini, Alessandro; Petrov, Aleksandr; Petruzzo, Marco; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pikies, Malgorzata; Pinci, Davide; Pistone, Alessandro; Piucci, Alessio; Playfer, Stephen; Plo Casasus, Maximo; Poikela, Tuomas; Polci, Francesco; Poluektov, Anton; Polyakov, Ivan; Polycarpo, Erica; Pomery, Gabriela Johanna; Popov, Alexander; Popov, Dmitry; Popovici, Bogdan; Poslavskii, Stanislav; Potterat, Cédric; Price, Eugenia; Price, Joseph David; Prisciandaro, Jessica; Pritchard, Adrian; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Punzi, Giovanni; Qian, Wenbin; Quagliani, Renato; Rachwal, Bartolomiej; Rademacker, Jonas; Rama, Matteo; Ramos Pernas, Miguel; Rangel, Murilo; Raniuk, Iurii; Raven, Gerhard; Redi, Federico; Reichert, Stefanie; dos Reis, Alberto; Remon Alepuz, Clara; Renaudin, Victor; Ricciardi, Stefania; Richards, Sophie; Rihl, Mariana; Rinnert, Kurt; Rives Molina, Vicente; Robbe, Patrick; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Lopez, Jairo Alexis; Rodriguez Perez, Pablo; Rogozhnikov, Alexey; Roiser, Stefan; Rollings, Alexandra Paige; Romanovskiy, Vladimir; Romero Vidal, Antonio; Ronayne, John William; Rotondo, Marcello; Rudolph, Matthew Scott; Ruf, Thomas; Ruiz Valls, Pablo; Saborido Silva, Juan Jose; Sadykhov, Elnur; Sagidova, Naylya; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanchez Mayordomo, Carlos; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santimaria, Marco; Santovetti, Emanuele; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Saunders, Daniel Martin; Savrina, Darya; Schael, Stefan; Schellenberg, Margarete; Schiller, Manuel; Schindler, Heinrich; Schlupp, Maximilian; Schmelling, Michael; Schmelzer, Timon; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schubert, Konstantin; Schubiger, Maxime; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Semennikov, Alexander; Sergi, Antonino; Serra, Nicola; Serrano, Justine; Sestini, Lorenzo; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Vladimir; Shires, Alexander; Siddi, Benedetto Gianluca; Silva Coutinho, Rafael; Silva de Oliveira, Luiz Gustavo; Simi, Gabriele; Simone, Saverio; Sirendi, Marek; Skidmore, Nicola; Skwarnicki, Tomasz; Smith, Eluned; Smith, Iwan Thomas; Smith, Jackson; Smith, Mark; Snoek, Hella; Sokoloff, Michael; Soler, Paul; Souza De Paula, Bruno; Spaan, Bernhard; Spradlin, Patrick; Sridharan, Srikanth; Stagni, Federico; Stahl, Marian; Stahl, Sascha; Stefko, Pavol; Stefkova, Slavorima; Steinkamp, Olaf; Stemmle, Simon; Stenyakin, Oleg; Stevenson, Scott; Stoica, Sabin; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Straticiuc, Mihai; Straumann, Ulrich; Sun, Liang; Sutcliffe, William; Swientek, Krzysztof; Syropoulos, Vasileios; Szczekowski, Marek; Szumlak, Tomasz; T'Jampens, Stephane; Tayduganov, Andrey; Tekampe, Tobias; Tellarini, Giulia; Teubert, Frederic; Thomas, Eric; van Tilburg, Jeroen; Tilley, Matthew James; Tisserand, Vincent; Tobin, Mark; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Topp-Joergensen, Stig; Toriello, Francis; Tournefier, Edwige; Tourneur, Stephane; Trabelsi, Karim; Traill, Murdo; Tran, Minh Tâm; Tresch, Marco; Trisovic, Ana; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tully, Alison; Tuning, Niels; Ukleja, Artur; Ustyuzhanin, Andrey; Uwer, Ulrich; Vacca, Claudia; Vagnoni, Vincenzo; Valassi, Andrea; Valat, Sebastien; Valenti, Giovanni; Vallier, Alexis; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vecchi, Stefania; van Veghel, Maarten; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Venkateswaran, Aravindhan; Vernet, Maxime; Vesterinen, Mika; Viaud, Benoit; Vieira, Daniel; Vieites Diaz, Maria; Vilasis-Cardona, Xavier; Volkov, Vladimir; Vollhardt, Achim; Voneki, Balazs; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; de Vries, Jacco; Vázquez Sierra, Carlos; Waldi, Roland; Wallace, Charlotte; Wallace, Ronan; Walsh, John; Wang, Jianchun; Ward, David; Wark, Heather Mckenzie; Watson, Nigel; Websdale, David; Weiden, Andreas; Whitehead, Mark; Wicht, Jean; Wilkinson, Guy; Wilkinson, Michael; Williams, Mark Richard James; Williams, Matthew; Williams, Mike; Williams, Timothy; Wilson, Fergus; Wimberley, Jack; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wraight, Kenneth; Wright, Simon; Wyllie, Kenneth; Xie, Yuehong; Xing, Zhou; Xu, Zhirui; Yang, Zhenwei; Yin, Hang; Yu, Jiesheng; Yuan, Xuhao; Yushchenko, Oleg; Zarebski, Kristian Alexander; Zavertyaev, Mikhail; Zhang, Liming; Zhang, Yanxi; Zhang, Yu; Zhelezov, Alexey; Zheng, Yangheng; Zhokhov, Anatoly; Zhu, Xianglei; Zhukov, Valery; Zucchelli, Stefano

    2016-12-19

    A combination of measurements sensitive to the CKM angle $\\gamma$ from LHCb is performed. The inputs are from analyses of time-integrated $B^{+}\\rightarrow DK^+$, $B_{d}^{0} \\rightarrow D K^{*0}$, $B_{d} \\rightarrow D K^+ \\pi^-$ and $B^{+} \\rightarrow D K^+\\pi^+\\pi^-$ tree-level decays. In addition, results from a time-dependent analysis of $B_{s}^{0} \\rightarrow D_{s}^{\\mp}K^{\\pm}$ decays are included. The combination yields $\\gamma = (72.2^{+6.8}_{-7.3})^\\circ$, where the uncertainty includes systematic effects. The 95.5% confidence level interval is determined to be $\\gamma \\in [55.9,85.2]^\\circ$. A second combination is investigated, also including measurements from $B^{+} \\rightarrow D \\pi^+$ and $B^{+} \\rightarrow D \\pi^+\\pi^-\\pi^+$ decays, which yields compatible results.

  6. Femoral rotation unpredictably affects radiographic anatomical lateral distal femoral angle measurements

    DEFF Research Database (Denmark)

    Miles, James Edward

    2016-01-01

    Objective: To describe the effects of internal and external femoral rotation on radiographic measurements of the anatomical lateral distal femoral angle (a-LDFA) using two methods for defining the anatomical proximal femoral axis (a-PFA). Methods: Digital radiographs were obtained of 14 right...... femora at five degree intervals from 10° external rotation to 10° internal rotation. Using freely available software, a-LDFA measurements were made using two different a-PFA by a single observer on one occasion. Results: Mean a-LDFA was significantly greater at 10° external rotation than at any other...... rotation. The response of individual femora to rotation was unpredictable, although fairly stable within ±5° of zero rotation. Mean a-LDFA for the two a-PFA methods differed by 1.5°, but were otherwise similarly affected by femoral rotation. Clinical significance: If zero femoral elevation can be achieved...

  7. Measurement of the neutrino mixing angle θ13 with the Double Chooz experiment

    Science.gov (United States)

    Ostrovskiy, Igor

    2009-10-01

    The neutrino mixing angle θ13 is last one which value is still unknown. Measuring the θ13 is important for completing our understanding of three flavor neutrino oscillations. Moreover, leptonic CP violation could only be measured in case the value of θ13 is not zero. The current best limit (^2(2θ13)Ardennes. Described in this talk, is another experiment, Double Chooz, that is being prepared at the same site. The Double Chooz experiment offers several fundamental improvements and is aiming to surpass the current limit by an order of magnitude (^2(2θ13) < 0.03). Details of the detector design, overview of systematic errors and expected sensitivity, as well as current status of the experiment are presented.

  8. Measurement of contact angles at room temperature in high magnetic field

    Science.gov (United States)

    Li, Chuanjun; Cao, Yang; Guo, Rui; He, Shengya; Xuan, Weidong; Li, Xi; Zhong, Yunbo; Ren, Zhongming

    2017-11-01

    The contact angle (CA) goniometer adaptable to a superconducting magnet was developed based on the sessile drop method. The goniometer mainly consisted of the sampling system, the supporting system, and the image acquisition system. Some improvements were taken to avoid the effects of the magnetic field (MF) on the CA measurement. As an example, the CAs of water on two substrates of silica and polymethyl methacrylate (PMMA) were measured using the goniometer. The results with and without a MF showed a good repeatability and reliability. Additionally, the MF was found to reduce the CA of water, which probably stemmed from the change of the surface tension in the MF. The CA goniometer will become an important tool which is used to study the wettability of liquids on a solid in the MF.

  9. The measurements of angle γ of the unitarity triangle with the BaBar detector

    International Nuclear Information System (INIS)

    Derkach, D.

    2010-06-01

    In this thesis, we present studies of the B mesons system performed using the full dataset collected by the BABAR experiment at the PEP-II collider at SLAC. The first analysis presented here is the search of the rare V ub mediated decays B + → D + K *0 . The experimental analysis is performed looking at several D + decay modes. No signals have been found and upper limits have been set to be: Br(B + → D + K 0 ) -6 at 90% prob.; Br(B + → D + K *0 ) -6 at 90% prob. In the second part we present the CP violation studies in the B-meson system, and in particular the measurements of the γ angle of the unitarity triangle. The γ angle is the relative weak phase between the V ub and V cb elements of the CKM matrix. We present and describe the analysis using the charged B meson decays: B + → D 0 K + . These decays are studied through the ADS method, where the neutral D mesons are reconstructed into Kππ 0 final states. Combining this analysis with a similar one that used Kπ as a D 0 final state, we have obtained the following values: ratio r(DK) 0.083+0.028-0.043; γ angle = (86+51-45) degrees. If the results of this thesis are used in the full system of the B → DK and B → DK * decay amplitudes, other interesting results can be obtained. The error on the ratio r(DK * ) for the charged B decays is improved by a factor 3 resulting in r(DK * ) = (0.08 ± 0.03). The ration between the V ub mediated annihilation (A) and the color suppressed (C) amplitudes is obtained to be A/C 0 ) for neutral B decays is found to be (0.27 ± 0.09)

  10. Prevalence of increased alpha angles as a measure of cam-type femoroacetabular impingement in youth ice hockey players.

    Science.gov (United States)

    Philippon, Marc J; Ho, Charles P; Briggs, Karen K; Stull, Justin; LaPrade, Robert F

    2013-06-01

    It has been reported that relative to other sports participants, ice hockey players suffer from cam-type femoroacetabular impingement (FAI) in higher numbers. α angles have been reported to increase with the likelihood of symptomatic FAI. It is unclear how prevalent increased α angles, commonly associated with cam FAI, are in asymptomatic young ice hockey players. There would be a higher prevalence of α angles associated with cam FAI in youth ice hockey players than in a non-hockey-playing (skier) youth control group. Cohort study; Level of evidence, 3. A total of 61 asymptomatic youth ice hockey players (aged 10-18 years) and 27 youth skiers (controls) (aged 10-18 years) underwent a clinical hip examination consisting of the flexion/abduction/external rotation (FABER) distance test, impingement testing, and measurement of hip internal rotation. The hip α angle was measured by magnetic resonance imaging, and labral tears and articular cartilage lesions were documented. Hockey players were grouped according to their USA Hockey classification as peewees (ages 10-12 years), bantams (ages 13-15 years), and midgets (ages 16-19 years). Overall, ice hockey players had significantly higher α angles than did the control group, and hockey players had a significant correlation between increased age and increased α angles, while the control group did not. In the ice hockey group, 75% had an α angle of ≥55°, while in the skier group, 42% had an α angle of ≥55° (P Hockey players were 4.5 times more likely to have an α angle commonly associated with cam impingement than skiers. Midget players had the highest risk of increased α angles. Even at young ages, ice hockey players have a greater prevalence of α angles associated with cam FAI than do skier-matched controls. Properties inherent to ice hockey likely enhance the development of a bony overgrowth on the femoral neck, leading to cam FAI.

  11. A Precision Measurement of the Weak Mixing Angle in Moller Scattering at Low Q^2

    Energy Technology Data Exchange (ETDEWEB)

    Jones, G.

    2005-01-28

    The electroweak theory has been probed to a high level of precision at the mass scale of the Z{sup 0} through the joint contributions of LEP at CERN and the SLC at SLAC. The E158 experiment at SLAC complements these results by measuring the weak mixing angle at a Q{sup 2} of 0.026 (GeV/c){sup 2}, far below the weak scale. The experiment utilizes a 48 GeV longitudinally polarized electron beam on unpolarized atomic electrons in a target of liquid hydrogen to measure the parity-violating asymmetry A{sup PV} in Moeller scattering. The tree-level prediction for A{sup PV} is proportional to 1-4 sin{sup 2} {theta}{sub W}. Since sin{sup 2} {theta}{sub W} {approx} 0.25, the effect of radiative corrections is enhanced, allowing the E158 experiment to probe for physics effects beyond the Standard Model at the TeV scale. This work presents the results from the first two physics runs of the experiment, covering data collected in the year 2002. The parity-violating asymmetry A{sup PV} was measured to be A{sup PV} = -158 ppb {+-} 21 ppb (stat) {+-} 17 ppb (sys). The result represents the first demonstration of parity violation in Moeller scattering. The observed value of A{sup PV} corresponds to a measurement of the weak mixing angle of sin{sup 2} {theta}{sub W}{sup eff} = 0.2380 {+-} 0.0016(stat) {+-} 0.0013(sys), which is in good agreement with the theoretical prediction of sin{sup 2} {theta}{sub W}{sup eff} = 0.2385 {+-} 0.0006 (theory).

  12. Wearable Conductive Fiber Sensors for Multi-Axis Human Joint Angle Measurements

    Directory of Open Access Journals (Sweden)

    Asada H Harry

    2005-03-01

    Full Text Available Abstract Background The practice of continuous, long-term monitoring of human joint motion is one that finds many applications, especially in the medical and rehabilitation fields. There is a lack of acceptable devices available to perform such measurements in the field in a reliable and non-intrusive way over a long period of time. The purpose of this study was therefore to develop such a wearable joint monitoring sensor capable of continuous, day-to-day monitoring. Methods A novel technique of incorporating conductive fibers into flexible, skin-tight fabrics surrounding a joint is developed. Resistance changes across these conductive fibers are measured, and directly related to specific single or multi-axis joint angles through the use of a non-linear predictor after an initial, one-time calibration. Because these sensors are intended for multiple uses, an automated registration algorithm has been devised using a sensitivity template matched to an array of sensors spanning the joints of interest. In this way, a sensor array can be taken off and put back on an individual for multiple uses, with the sensors automatically calibrating themselves each time. Results The wearable sensors designed are comfortable, and acceptable for long-term wear in everyday settings. Results have shown the feasibility of this type of sensor, with accurate measurements of joint motion for both a single-axis knee joint and a double axis hip joint when compared to a standard goniometer used to measure joint angles. Self-registration of the sensors was found to be possible with only a few simple motions by the patient. Conclusion After preliminary experiments involving a pants sensing garment for lower body monitoring, it has been seen that this methodology is effective for monitoring joint motion of the hip and knee. This design therefore produces a robust, comfortable, truly wearable joint monitoring device.

  13. Quantitative evaluation of statistical errors in small-angle X-ray scattering measurements

    Energy Technology Data Exchange (ETDEWEB)

    Sedlak, Steffen M.; Bruetzel, Linda K.; Lipfert, Jan (LMU)

    2017-03-29

    A new model is proposed for the measurement errors incurred in typical small-angle X-ray scattering (SAXS) experiments, which takes into account the setup geometry and physics of the measurement process. The model accurately captures the experimentally determined errors from a large range of synchrotron and in-house anode-based measurements. Its most general formulation gives for the variance of the buffer-subtracted SAXS intensity σ2(q) = [I(q) + const.]/(kq), whereI(q) is the scattering intensity as a function of the momentum transferq;kand const. are fitting parameters that are characteristic of the experimental setup. The model gives a concrete procedure for calculating realistic measurement errors for simulated SAXS profiles. In addition, the results provide guidelines for optimizing SAXS measurements, which are in line with established procedures for SAXS experiments, and enable a quantitative evaluation of measurement errors.

  14. Precision measurements of the Cabibbo-Kobayashi-Maskawa angle $\\gamma$ at LHCb

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    The Cabibbo-Kobayashi-Maskawa (CKM) angle $\\gamma$ is still the least known angle of the Unitarity Triangle, and is the only one that can be accessed exclusively through tree-level $B$-meson decays. Its precise determination is of crucial importance to identify possible effects beyond the Standard Model in global CKM fits. Powerful constraints on $\\gamma$ are obtained from the analysis of $B^{\\pm} \\to D^{0} K^{\\pm}$ decays, where the $D^{0}$ meson is reconstructed in the $K^+K^-$ and $\\pi^+\\pi^-$ final states; the latest results using the Run-1 (2011 and 2012) and Run-2 (2015 and 2016) LHCb datasets are presented. The measurement of $B^{\\pm} \\to D^{*0}K^{\\pm}$ decays using a novel partial reconstruction method is also presented, where both $D^{*0} \\to D^0\\pi^0$ and $D^{*0} \\to D^0\\gamma$ decays are considered. These world’s best results contribute to the ultimate goal of reaching degree-level precision on $\\gamma$, via the exploitation of all possible decay modes and techniques.&a...

  15. A novel jig arm to measure tibial plateau angle during tibial plateau leveling osteotomy.

    Science.gov (United States)

    Restle, Kyle N; Biskup, Jeffery J

    2017-10-01

    To determine the ability of a novel device attached to the proximal tibial plateau leveling osteotomy (TPLO) jig pin to accurately predict intraoperative change in tibial plateau angle (TPA). In vitro cadaveric study. Left hindlimbs of adult dogs (n = 9). A modified Slocum tibial plateau leveling (TPL) jig with the Rotational Osteotomy Measuring Arm (ROMA) was placed on the tibia and a radial TPLO osteotomy was performed. Based on preoperative radiographic TPA measurements, the proximal segment was rotated using the traditional method of marking points on the osteotomy a specified distance apart. After rotation, the predicted TPA was recorded based on the ROMA. Postoperative TPA was measured on radiographs. The ability of the ROMA to predict postoperative TPA was compared to that of the traditional method. The average final TPA achieved with the traditional method was 6.4° (range, 3.0-10.0°). The ROMA predicted a final TPA of 5.8° (range, 3.8-10.1°). No significant difference was found between the TPA predicted based on the traditional method and ROMA method. The ROMA may be an alternative to the traditional method of measuring proximal segment rotation during TPLO procedure. Performing a TPLO with the ROMA may accurately predict the postoperative TPA while eliminating the need for measuring chord length, making reference marks, or referencing TPA charts for various osteotomy blade sizes. © 2017 The American College of Veterinary Surgeons.

  16. Measurement of angles of abduction for diagnosis of shoulder instability in dogs using goniometry and digital image analysis.

    Science.gov (United States)

    Cook, James L; Renfro, Daniel C; Tomlinson, James L; Sorensen, Jill E

    2005-01-01

    To compare abduction angles of shoulders with medial instability and unaffected shoulders in the same dogs and in age- and breed-matched dogs. Case-control study. Dogs with medial instability of the shoulder (n=33) and 26 control dogs. Dogs were sedated and positioned in lateral recumbency with both scapulas parallel to the table. With the elbow and shoulder in extension, the non-recumbent limb was maximally abducted and the angle between the scapular spine and lateral aspect of the brachium measured with a goniometer; a digital image was taken from the cranial aspect. Both techniques were performed in triplicate by 2 examiners. Mean abduction angles for each shoulder were determined from goniometric measurements and image analysis. Data were analyzed for significant differences between affected and unaffected shoulders, measurement techniques, and examiners. Strength of correlation between measurement techniques was determined. Mean abduction angles for shoulders with instability (53.7+/-4.7 degrees goniometric, 51.2+/-4.9 degrees image) were significantly (P<.001) larger than for all unaffected shoulders (32.6+/-2.0 degrees goniometric, 30.9+/-2.3 degrees image). In dogs diagnosed with instability, affected shoulders had significantly (P<.001) larger abduction angles than the contralateral (unaffected) shoulders. No significant differences were identified between right and left shoulders for control dogs, measurement techniques, or examiners. A strong (r=0.90) significant (P<.001) positive correlation between measurement techniques was noted. Shoulder abduction angles measured under sedation provide objective data for diagnosis of shoulder instability in dogs. Shoulders with clinical and arthroscopic evidence of medial instability have significantly higher abduction angles than shoulders that are considered normal. Determination of shoulder abduction angles should be included in the diagnostic protocol for forelimb lameness assessment in dogs.

  17. Stretched Wire Mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Bowden, Gordon; /SLAC

    2005-09-06

    Stretched wires are beginning to play an important role in the alignment of accelerators and synchrotron light sources. Stretched wires are proposed for the alignment of the 130 meter long LCLS undulator. Wire position technology has reached sub-micron resolution yet analyses of perturbations to wire straightness are hard to find. This paper considers possible deviations of stretched wire from the simple 2-dimensional catenary form.

  18. On measurement of acoustic pulse arrival angles using a vertical array

    Science.gov (United States)

    Makarov, D. V.

    2017-11-01

    We consider a recently developed method to analyze the angular structure of pulsed acoustic fields in an underwater sound channel. The method is based on the Husimi transform that allows us to approximately link a wave field with the corresponding ray arrivals. The advantage of the method lies in the possibility of its practical realization by a vertical hydrophone array crossing only a small part of the oceanic depth. The main aim of the present work is to find the optimal parameter values of the array that ensure good angular accuracy and sufficient reliability of the algorithm to calculate the arrival angles. Broadband pulses with central frequencies of 80 and 240 Hz are considered. It is shown that an array with a length of several hundred meters allows measuring the angular spectrum with an accuracy of up to 1 degree. The angular resolution is lowered with an increase of the sound wavelength due to the fundamental limitations imposed by the uncertainty relation.

  19. Comparing the physics reach of detectors in measuring CP violating angle β

    International Nuclear Information System (INIS)

    Toki, W.; Hassard, J.F.

    1993-01-01

    There have been attempts in the past to make quantitative comparison among present and proposed experiments seeking to measure the internal angles of the CKM unitarity triangle. The best known, which the authors shall call the Harrison Plot, puts the attainable error in sin (2β) against the year that error might be reached. Since there is huge uncertainty in the luminosity profiles of the proposed accelerators, the slope of these curves is recognized to be suspect. Furthermore, this representation makes no statement about the relative sizes of efficiency, dilution and number of events which determine the error. Here the authors present a complementary representation which allows a simple comparisons to be made, and which can be later extended to accommodate systematic errors and contributions to, say, the efficiencies, to be compared

  20. A measurement of the CKM angle $\\gamma$ from studies of $DK\\pi$ Dalitz plots

    CERN Document Server

    Craik, Daniel; Kreps, Michal

    Various measurements of quantities relating to $B^0_{(s)} \\to D K^\\pm\\pi^\\mp$ decays are reported from analyses building towards a measurement of the CKM angle $\\gamma$. The first observation of the decay $B^0_s \\to \\bar{D}^0 K^-\\pi^+$ is reported. Based on a data sample corresponding to an integrated luminosity of $1.0 \\,{\\rm fb}^{-1}$ of $pp$ collision data recorded by the LHCb detector, the branching fraction relative to that of the topologically similar decay $B^0 \\to \\bar{D}^0 \\pi^+\\pi^-$ is measured to be $$ \\frac{ {\\cal B}\\left(B^0_s \\to \\bar{D}^0 K^-\\pi^+\\right)}{ {\\cal B}\\left(B^0 \\to \\bar{D}^0 \\pi^+\\pi^-\\right)} = 1.18 \\pm 0.05\\,\\text{(stat.)} \\pm 0.12\\,\\text{(syst.)} \\, . $$ In addition, the relative branching fraction of the decay $B^0 \\to \\bar{D}^0 K^+\\pi^-$ is measured to be $$ \\frac{ {\\cal B}\\left(B^0 \\to \\bar{D}^0 K^+\\pi^-\\right)}{ {\\cal B}\\left(B^0 \\to \\bar{D}^0 \\pi^+\\pi^-\\right)} = 0.106 \\pm 0.007\\,\\text{(stat.)} \\pm 0.008\\,\\text{(syst.)} \\, . $$ The resonant substructures of $B^0_s \\to \\...

  1. Measurement of the CKM angle gamma and B meson lifetimes at the LHCb detector

    CERN Document Server

    Gligorov, Vladimir V; Rademacker, J

    2008-01-01

    LHCb is the dedicated B physics experiment at the Large Hadron Collider (LHC) at CERN. It will make precision measurements of CP violating effects in the Bd and Bs systems, as well as making precision measurements of the lifetimes of all flavours of B hadrons. In this thesis, two possible measurements of the CKM angle gamma are evaluated:from the decay mode B0d -> D- pi+, and from the combined analysis of the decay modes B0d -> D- pi+ and B0s -> D-s K+ under the conditions of U-spin symmetry. Also, a Monte Carlo independent method of measuring the lifetimes of B hadrons is described. The reconstruction of the decay mode B0d -> D- pi+ is studied using the LHCb simulation software, and a general method for categorising background at LHCb is developed. The decay mode B0d -> D- pi+ is found to have a yearly yield of 1340k events, and a signal to background ratio of ~5. It is shown that the analysis of time dependent decay rate asymmetries in B0d -> D- pi+ can result in a ...

  2. Mobile Phone-Based Joint Angle Measurement for Functional Assessment and Rehabilitation of Proprioception

    Science.gov (United States)

    Mourcou, Quentin; Fleury, Anthony; Diot, Bruno; Franco, Céline; Vuillerme, Nicolas

    2015-01-01

    Assessment of joint functional and proprioceptive abilities is essential for balance, posture, and motor control rehabilitation. Joint functional ability refers to the capacity of movement of the joint. It may be evaluated thereby measuring the joint range of motion (ROM). Proprioception can be defined as the perception of the position and of the movement of various body parts in space. Its role is essential in sensorimotor control for movement acuity, joint stability, coordination, and balance. Its clinical evaluation is commonly based on the assessment of the joint position sense (JPS). Both ROM and JPS measurements require estimating angles through goniometer, scoliometer, laser-pointer, and bubble or digital inclinometer. With the arrival of Smartphones, these costly clinical tools tend to be replaced. Beyond evaluation, maintaining and/or improving joint functional and proprioceptive abilities by training with physical therapy is important for long-term management. This review aims to report Smartphone applications used for measuring and improving functional and proprioceptive abilities. It identifies that Smartphone applications are reliable for clinical measurements and are mainly used to assess ROM and JPS. However, there is lack of studies on Smartphone applications which can be used in an autonomous way to provide physical therapy exercises at home. PMID:26583101

  3. Mobile Phone-Based Joint Angle Measurement for Functional Assessment and Rehabilitation of Proprioception

    Directory of Open Access Journals (Sweden)

    Quentin Mourcou

    2015-01-01

    Full Text Available Assessment of joint functional and proprioceptive abilities is essential for balance, posture, and motor control rehabilitation. Joint functional ability refers to the capacity of movement of the joint. It may be evaluated thereby measuring the joint range of motion (ROM. Proprioception can be defined as the perception of the position and of the movement of various body parts in space. Its role is essential in sensorimotor control for movement acuity, joint stability, coordination, and balance. Its clinical evaluation is commonly based on the assessment of the joint position sense (JPS. Both ROM and JPS measurements require estimating angles through goniometer, scoliometer, laser-pointer, and bubble or digital inclinometer. With the arrival of Smartphones, these costly clinical tools tend to be replaced. Beyond evaluation, maintaining and/or improving joint functional and proprioceptive abilities by training with physical therapy is important for long-term management. This review aims to report Smartphone applications used for measuring and improving functional and proprioceptive abilities. It identifies that Smartphone applications are reliable for clinical measurements and are mainly used to assess ROM and JPS. However, there is lack of studies on Smartphone applications which can be used in an autonomous way to provide physical therapy exercises at home.

  4. Wearable Goniometer and Accelerometer Sensory Fusion for Knee Joint Angle Measurement in Daily Life

    Directory of Open Access Journals (Sweden)

    Alessandro Tognetti

    2015-11-01

    Full Text Available Human motion analysis is crucial for a wide range of applications and disciplines. The development and validation of low cost and unobtrusive sensing systems for ambulatory motion detection is still an open issue. Inertial measurement systems and e-textile sensors are emerging as potential technologies for daily life situations. We developed and conducted a preliminary evaluation of an innovative sensing concept that combines e-textiles and tri-axial accelerometers for ambulatory human motion analysis. Our sensory fusion method is based on a Kalman filter technique and combines the outputs of textile electrogoniometers and accelerometers without making any assumptions regarding the initial accelerometer position and orientation. We used our technique to measure the flexion-extension angle of the knee in different motion tasks (monopodalic flexions and walking at different velocities. The estimation technique was benchmarked against a commercial measurement system based on inertial measurement units and performed reliably for all of the various tasks (mean and standard deviation of the root mean square error of 1:96 and 0:96, respectively. In addition, the method showed a notable improvement in angular estimation compared to the estimation derived by the textile goniometer and accelerometer considered separately. In future work, we will extend this method to more complex and multi-degree of freedom joints.

  5. Wearable Goniometer and Accelerometer Sensory Fusion for Knee Joint Angle Measurement in Daily Life.

    Science.gov (United States)

    Tognetti, Alessandro; Lorussi, Federico; Carbonaro, Nicola; de Rossi, Danilo

    2015-11-11

    Human motion analysis is crucial for a wide range of applications and disciplines. The development and validation of low cost and unobtrusive sensing systems for ambulatory motion detection is still an open issue. Inertial measurement systems and e-textile sensors are emerging as potential technologies for daily life situations. We developed and conducted a preliminary evaluation of an innovative sensing concept that combines e-textiles and tri-axial accelerometers for ambulatory human motion analysis. Our sensory fusion method is based on a Kalman filter technique and combines the outputs of textile electrogoniometers and accelerometers without making any assumptions regarding the initial accelerometer position and orientation. We used our technique to measure the flexion-extension angle of the knee in different motion tasks (monopodalic flexions and walking at different velocities). The estimation technique was benchmarked against a commercial measurement system based on inertial measurement units and performed reliably for all of the various tasks (mean and standard deviation of the root mean square error of 1:96 and 0:96, respectively). In addition, the method showed a notable improvement in angular estimation compared to the estimation derived by the textile goniometer and accelerometer considered separately. In future work, we will extend this method to more complex and multi-degree of freedom joints.

  6. Shoulder horizontal abduction stretching effectively increases shear elastic modulus of pectoralis minor muscle.

    Science.gov (United States)

    Umehara, Jun; Nakamura, Masatoshi; Fujita, Kosuke; Kusano, Ken; Nishishita, Satoru; Araki, Kojiro; Tanaka, Hiroki; Yanase, Ko; Ichihashi, Noriaki

    2017-07-01

    Stretching maneuvers for the pectoralis minor muscle, which involve shoulder horizontal abduction or scapular retraction, are performed in clinical and sports settings because the tightness of this muscle may contribute to scapular dyskinesis. The effectiveness of stretching maneuvers for the pectoralis minor muscle is unclear in vivo. The purpose of this study was to verify the effectiveness of stretching maneuvers for the pectoralis minor muscle in vivo using ultrasonic shear wave elastography. Eighteen healthy men participated in this study. Elongation of the pectoralis minor muscle was measured for 3 stretching maneuvers (shoulder flexion, shoulder horizontal abduction, and scapular retraction) at 3 shoulder elevation angles (30°, 90°, and 150°). The shear elastic modulus, used as the index of muscle elongation, was computed using ultrasonic shear wave elastography for the 9 aforementioned stretching maneuver-angle combinations. The shear elastic modulus was highest in horizontal abduction at 150°, followed by horizontal abduction at 90°, horizontal abduction at 30°, scapular retraction at 30°, scapular retraction at 90°, scapular retraction at 150°, flexion at 150°, flexion at 90°, and flexion at 30°. The shear elastic moduli of horizontal abduction at 90° and horizontal abduction at 150° were significantly higher than those of other stretching maneuvers. There was no significant difference between horizontal abduction at 90° and horizontal abduction at 150°. This study determined that shoulder horizontal abduction at an elevation of 90° and horizontal abduction at an elevation of 150° were the most effective stretching maneuvers for the pectoralis minor muscle in vivo. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  7. Precision Beam Parameter Monitoring in a Measurement of the Weak Mixing Angle in Moeller Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Cooke, M.S.

    2005-04-11

    A precision measurement of the parity nonconserving left-right asymmetry, A{sub LR}, in Moeller scattering (e{sup -}e{sup -} {yields} e{sup -}e{sup -}) is currently in progress at the Stanford Linear Accelerator Center (SLAC). This experiment, labeled SLAC-E158, scatters longitudinally polarized electrons off atomic electrons in an unpolarized hydrogen target at a Q{sup 2} of 0.03 (GeV/c){sup 2}. The asymmetry, which is the fractional difference in the scattering cross-sections, measures the effective pseudo-scalar weak neutral current coupling, g{sub ee}, governing Moeller scattering. This quantity is in turn proportional to (1/4 - sin{sup 2} {theta}{sub w}), where {theta}{sub w} is the electroweak mixing angle. The goal is to measure the asymmetry to a precision of 1 x 10{sup -8} which corresponds to {delta}(sin{sup 2} {theta}{sub w}) {approx} 0.0007. Since A{sub LR} is a function of the cross-sections, and the cross-sections depend on the beam parameters, the desired precision of A{sub LR} places stringent requirements on the beam parameters. This paper investigates the requirements on the beam parameters and discusses the means by which they are monitored and accounted for.

  8. Expanding Model Independent Approaches for Measuring the CKM angle $\\gamma$ at LHCb

    CERN Multimedia

    Prouve, Claire

    2017-01-01

    Model independent approaches to measuring the CKM angle $\\gamma$ in $B\\rightarrow DK$ decays at LHCb are explored. In particular, we consider the case where the $D$ meson decays into a final state with four hadrons. Using four-body final states such as $\\pi^+ \\pi^- \\pi^+ \\pi^-$, $K^+ \\pi^- \\pi^+ \\pi^-$ and $K^+ K^- \\pi^+ \\pi^-$ in addition to traditional 2 and 3 body states and has the potential to significantly improve to the overall constraint on $\\gamma$. There is a significant systematic uncertainty associated with modelling the complex phase of the $D$ decay amplitude across the five-dimensional phase space of the four body decay. It is therefore important to replace these model-dependent quantities with model-independent parameters as input for the $\\gamma$ measurement. These model independent parameters have been measured using quantum-correlated $\\psi(3770) \\rightarrow D^0 \\overline{D^0}$ decays collected by the CLEO-c experiment, and, for $D\\rightarrow K^+ \\pi^- \\pi^+ \\pi^-$, with $D^0-\\overline{D^0...

  9. The effects of stabilization exercises using a sling and stretching on the range of motion and cervical alignment of straight neck patients.

    Science.gov (United States)

    Oh, Seung-Hyean; Yoo, Kyung-Tae

    2016-01-01

    [Purpose] The purpose of this study was to assess how stretching exercise training and sling exercise training for stabilization influences the cervical spine angles and cervical range of motion of straight neck patients. [Subjects and Methods] Twenty straight neck patients were selected as subjects and they were randomly divided into two groups, the stretching and sling stabilization exercise groups which 60 minutes of exercise three times a week for 6weeks. All the subjects in each of the two respective study groups received an X-ray and had their cervical range of motion measured, both before and after the exercise. [Results] When differences in the cervical spine angle between the pre- and the post-test were checked, it was found that only the stretching exercise group showed statistically significant decreases in the craniovertebral angle and the cranial rotation angle. When differences in the range of motion between pre- and post-test were checked, the sling stabilization exercise group showed a significant change in flexion, right rotation, left lateral bending, right lateral bending, and the stretching exercise group showed a significant change in left rotation, left lateral bending, and right lateral bending. [Conclusion] These results indicate that both types of exercises are effective at improving the cervical range of motion of straight neck patients, and that the stretching exercise was more effective than the sling stabilization exercise at improving cervical spine angles.

  10. Direct Measurement of Static and Dynamic Contact Angles Using a Random Micromodel Considering Geological CO2 Sequestration

    OpenAIRE

    Mohammad Jafari; Jongwon Jung

    2017-01-01

    The pore-level two-phase fluids flow mechanism needs to be understood for geological CO2 sequestration as a solution to mitigate anthropogenic emission of carbon dioxide. Capillary pressure at the interface of water–CO2 influences CO2 injectability, capacity, and safety of the storage system. Wettability usually measured by contact angle is always a major uncertainty source among important parameters affecting capillary pressure. The contact angle is mostly determined on a flat surface as a r...

  11. In Situ Local Contact Angle Measurement in a CO2-Brine-Sand System Using Microfocused X-ray CT.

    Science.gov (United States)

    Lv, Pengfei; Liu, Yu; Wang, Zhe; Liu, Shuyang; Jiang, Lanlan; Chen, Junlin; Song, Yongchen

    2017-04-11

    The wettability of porous media is of major interest in a broad range of natural and engineering applications. The wettability of a fluid on a solid surface is usually evaluated by the contact angle between them. While in situ local contact angle measurements are complicated by the topology of porous media, which can make it difficult to use traditional methods, recent advances in microfocused X-ray computed tomography (micro-CT) and image processing techniques have made it possible to measure contact angles on the scale of the pore sizes in such media. However, the effects of ionic strength, CO 2 phase, and flow pattern (drainage or imbibition) on pore-scale contact angle distribution are still not clear and have not been reported in detail in previous studies. In this study, we employed a micro-CT scanner for in situ investigation of local contact angles in a CO 2 -brine-sand system under various conditions. The effects of ionic strength, CO 2 phase, and flow pattern on the local contact-angle distribution were examined in detail. The results showed that the local contact angles vary over a wide range as a result of the interaction of surface contaminants, roughness, pore topology, and capillarity. The wettability of a porous surface could thus slowly weaken with increasing ionic strength, and the average contact angle could significantly increase when gaseous CO 2 (gCO 2 ) turns into supercritical CO 2 (scCO 2 ). Contact angle hysteresis also occurred between drainage and imbibition procedures, and the hysteresis was more significant under gCO 2 condition.

  12. Stretching: Does It Help?

    Science.gov (United States)

    Vardiman, Phillip; Carrand, David; Gallagher, Philip M.

    2010-01-01

    Stretching prior to activity is universally accepted as an important way to improve performance and help prevent injury. Likewise, limited flexibility has been shown to decrease functional ability and predispose a person to injuries. Although this is commonly accepted, appropriate stretching for children and adolescents involved with sports and…

  13. 1.5 μm lidar anemometer for true air speed, angle of sideslip, and angle of attack measurements on-board Piaggio P180 aircraft

    International Nuclear Information System (INIS)

    Augere, B; Besson, B; Fleury, D; Goular, D; Planchat, C; Valla, M

    2016-01-01

    Lidar (light detection and ranging) is a well-established measurement method for the prediction of atmospheric motions through velocity measurements. Recent advances in 1.5 μm Lidars show that the technology is mature, offers great ease of use, and is reliable and compact. A 1.5 μm airborne Lidar appears to be a good candidate for airborne in-flight measurement systems. It allows measurements remotely, outside aircraft aerodynamic disturbance, and absolute air speed (no need for calibration) with great precision in all aircraft flight domains. In the framework of the EU AIM2 project, the ONERA task has consisted of developing and testing a 1.5 μm anemometer sensor for in-flight airspeed measurements. The objective of this work is to demonstrate that the 1.5 μm Lidar sensor can increase the quality of the data acquisition procedure for aircraft flight test certification. This article presents the 1.5 μm anemometer sensor dedicated to in-flight airspeed measurements and describes the flight tests performed successfully on-board the Piaggio P180 aircraft. Lidar air data have been graphically compared to the air data provided by the aircraft flight test instrumentation (FTI) in the reference frame of the Lidar sensor head. Very good agreement of true air speed (TAS) by a fraction of ms −1 , angle of sideslip (AOS), and angle of attack (AOA) by a fraction of degree were observed. (special issue article)

  14. Dispersion measurement on chirped mirrors at arbitrary incidence angle and polarization state (Conference Presentation)

    Science.gov (United States)

    Kovacs, Mate; Somoskoi, Tamas; Seres, Imre; Borzsonyi, Adam; Sipos, Aron; Osvay, Károly

    2017-05-01

    The optical elements of femtosecond high peak power lasers have to fulfill more and more strict requirements in order to support pulses with high intensity and broad spectrum. In most cases chirped pulse amplification scheme is used to generate high peak power ultrashort laser pulses, where a very precise control of spectral intensity and spectral phase is required in reaching transform-limited temporal shape at the output. In the case of few cycle regime, the conventional bulk glass, prism-, grating- and their combination based compressors are not sufficient anymore, due to undesirable nonlinear effects in their material and proneness to optical damages. The chirped mirrors are also commonly used to complete the compression after a beam transport system just before the target. Moreover, the manufacturing technology requires quality checks right after production and over the lifetime of the mirror as well, since undesired deposition on the surface can lead alteration from the designed value over a large part of the aperture. For the high harmonic generation, polarization gating technology is used to generate single attosecond pulses [1]. In this case the pulse to be compressed has various polarization state falling to the chirped mirrors. For this reason, it is crucial to measure the dispersion of the mirrors for the different polarization states. In this presentation we demonstrate a simple technique to measure the dispersion of arbitrary mirror at angles of incidence from 0 to 55 degree, even for a 12" optics. A large aperture 4" mirror has been scanned over with micrometer accuracy and the dispersion property through the surface has been investigated with a stable interference fringes in that robust geometry. We used Spectrally Resolved Interferometry, which is based on a Michaelson interferometer and a combined visible and infrared spectrometer. Tungsten halogen lamp with 10 mW coupled optical power was used as a white-light source so with the selected

  15. An angle-dependent estimation of CT x-ray spectrum from rotational transmission measurements

    International Nuclear Information System (INIS)

    Lin, Yuan; Samei, Ehsan; Ramirez-Giraldo, Juan Carlos; Gauthier, Daniel J.; Stierstorfer, Karl

    2014-01-01

    Purpose: Computed tomography (CT) performance as well as dose and image quality is directly affected by the x-ray spectrum. However, the current assessment approaches of the CT x-ray spectrum require costly measurement equipment and complicated operational procedures, and are often limited to the spectrum corresponding to the center of rotation. In order to address these limitations, the authors propose an angle-dependent estimation technique, where the incident spectra across a wide range of angular trajectories can be estimated accurately with only a single phantom and a single axial scan in the absence of the knowledge of the bowtie filter. Methods: The proposed technique uses a uniform cylindrical phantom, made of ultra-high-molecular-weight polyethylene and positioned in an off-centered geometry. The projection data acquired with an axial scan have a twofold purpose. First, they serve as a reflection of the transmission measurements across different angular trajectories. Second, they are used to reconstruct the cross sectional image of the phantom, which is then utilized to compute the intersection length of each transmission measurement. With each CT detector element recording a range of transmission measurements for a single angular trajectory, the spectrum is estimated for that trajectory. A data conditioning procedure is used to combine information from hundreds of collected transmission measurements to accelerate the estimation speed, to reduce noise, and to improve estimation stability. The proposed spectral estimation technique was validated experimentally using a clinical scanner (Somatom Definition Flash, Siemens Healthcare, Germany) with spectra provided by the manufacturer serving as the comparison standard. Results obtained with the proposed technique were compared against those obtained from a second conventional transmission measurement technique with two materials (i.e., Cu and Al). After validation, the proposed technique was applied to measure

  16. Measurement of the CKM angle $\\gamma$ from a combination of $B\\to DK$ analyses

    CERN Document Server

    The LHCb Collaboration

    2016-01-01

    A combination is made of tree-level measurements of the CKM angle $\\gamma$ from $B \\to DK$ decays at LHCb. The results are obtained from time-integrated analyses of $B^{+}\\to D K^+$, $B^0\\to D K^{*0}$ and $B^+ \\to D K^+\\pi^+\\pi^-$ decays, where the $D$ meson decays into $K^+K^-$, $\\pi^+\\pi^-$, $K^+K^-\\pi^0$, $K^\\pm\\pi^\\mp\\pi^0$, $\\pi^+\\pi^-\\pi^0$, $K^\\pm \\pi^\\mp$, $K^0_S K^\\pm\\pi^\\mp$, $K^0_S\\pi^+\\pi^-$, $K^0_S K^+K^-$, $K^\\pm\\pi^\\mp \\pi^+\\pi^-$ and $\\pi^+\\pi^-\\pi^+\\pi^-$ final states. In addition, results obtained from a time-dependent analysis of $B_s^0 \\to D_s^\\mp K^\\pm$ decays are included. The combination gives a best fit value of $\\gamma = 70.9^\\circ$ and confidence intervals are set using a frequentist procedure: $\\gamma \\in [62.4,78.0]^\\circ$ at 68$\\%$ CL and $\\gamma \\in [51.0,85.0]^\\circ$ at 95$\\%$ CL, where all values are modulo $180^\\circ$. Using the best fit value and the 68$\\%$ CL interval, $\\gamma$ is measured to be \\begin{align*} \\gamma = (70.9\\,^{+7.1}_{-8.5})^\\circ\\,, \\end{align*} where the q...

  17. Study of biological measurement parameters of anterior segment in primary acute angle-closure glaucoma

    Directory of Open Access Journals (Sweden)

    Jun-Jie Bian

    2015-02-01

    Full Text Available AIM:To investigate biological measurement parameters of anterior segment in acute angle-closure glaucoma(AACG.METHODS: Forty-six eyes of 46 patients with AACG and 52 eyes of 52 patients with shallow anterior chamber and 50 eyes of 50 normal individuals were examined. The parameters of anterior segment including chamber crowd rate(CCR, lens thickness(LT, lens position(LPand anterior chamber depth(ACDwere measured by A-ultrasound according to different ages in each group. The data were performed statistical analysis in three groups.RESULTS: In each age range group(≥50~59 years old, ≥60~69 years old, ≥70 years old, statistically significant differences in three groups(AACG, shallow anterior chamber group and the controlswere found in CCR, LT, LP, ACD(PPP>0.05between AACG and shallow anterior chamber group in each age range group.CONCLUSION: CCR can be used as the index of evaluating crowding state of anterior segment in AACG patients and the sensitivity is better than LT and LP.

  18. Some remarks on the solid surface tension determination from contact angle measurements

    Science.gov (United States)

    Zdziennicka, Anna; Szymczyk, Katarzyna; Krawczyk, Joanna; Jańczuk, Bronisław

    2017-05-01

    The measurements of water, formamide and diiodomethane contact angle (θ) on polytetrafluoroethylene (PTFE), polyethylene (PE), polymethyl methacrylate (PMMA), nylon 6, quartz and silica were performed. Based on the θ values of these liquids obtained on PTFE, the Lifshitz-van der Waals and acid-base and/or dispersion and polar components of their surface tension (ST) were determined. In turn, the θ values for water, formamide and diiodomethane on PMMA were applied to calculate the electron-acceptor and electron-donor parameters of the Lewis acid-base component of the formamide ST. For this calculation the same values of the electron-acceptor and electron-donor parameters for water ST were used. Taking into account the values of components and parameters of water, formamide and diiodomethane ST obtained by us, van Oss et al. and from the water(formamide)-n-alkane and water-diiodomethane interface tension, the components and parameters of studied solids ST were calculated. To this end different approaches to the interface tension were considered. The obtained values were compared with those in the literature. It was concluded that for determination of solid ST components and parameters, those of water, formamide and diiodomethane ST obtained from the θ measurements on the model solids should be used.

  19. Measuring material microstructure under flow using 1-2 plane flow-small angle neutron scattering.

    Science.gov (United States)

    Gurnon, A Kate; Godfrin, P Douglas; Wagner, Norman J; Eberle, Aaron P R; Butler, Paul; Porcar, Lionel

    2014-02-06

    A new small-angle neutron scattering (SANS) sample environment optimized for studying the microstructure of complex fluids under simple shear flow is presented. The SANS shear cell consists of a concentric cylinder Couette geometry that is sealed and rotating about a horizontal axis so that the vorticity direction of the flow field is aligned with the neutron beam enabling scattering from the 1-2 plane of shear (velocity-velocity gradient, respectively). This approach is an advance over previous shear cell sample environments as there is a strong coupling between the bulk rheology and microstructural features in the 1-2 plane of shear. Flow-instabilities, such as shear banding, can also be studied by spatially resolved measurements. This is accomplished in this sample environment by using a narrow aperture for the neutron beam and scanning along the velocity gradient direction. Time resolved experiments, such as flow start-ups and large amplitude oscillatory shear flow are also possible by synchronization of the shear motion and time-resolved detection of scattered neutrons. Representative results using the methods outlined here demonstrate the useful nature of spatial resolution for measuring the microstructure of a wormlike micelle solution that exhibits shear banding, a phenomenon that can only be investigated by resolving the structure along the velocity gradient direction. Finally, potential improvements to the current design are discussed along with suggestions for supplementary experiments as motivation for future experiments on a broad range of complex fluids in a variety of shear motions.

  20. Magnetic field amplitude and pitch angle measurements using Spectral MSE on EAST

    Science.gov (United States)

    Liao, Ken; Rowan, William; Fu, Jia; Li, Ying-Ying; Lyu, Bo; Marchuk, Oleksandr; Ralchenko, Yuri

    2017-10-01

    We have developed the Spectral Motional Stark Effect technique for measuring magnetic field amplitude and pitch angle on EAST. The experiments were conducted using the tangential co-injection heating beam at A port and Beam Emission Spectroscopy array at D port. A spatial calibration of the observation channels was conducted before the campaign. As a first check, the measured magnetic field amplitude was compared to prediction. Since the toroidal field is dominant, we recovered the expected 1/R shape over the spatial range 1.75account the effect of the Lorentz field was used to predict the beam populations. The initial comparison is to an EFIT reconstruction. We are investigating sources of errors using a combination of simulations and calibrations arising from hardware non-idealities and approximations in the analysis. We are also investigating improvements in the EAST spectral MSE diagnostic. Supported by the U.S. DOE, Office of Fusion Energy Sciences under Award DE-SC0010500, National Magnetic Confinement Fusion Science Program of China under Grant No. 2015GB103003 and National Natural Science Foundation of China (No. 11605242).

  1. New procedure to measure simultaneously the surface tension and contact angle.

    Science.gov (United States)

    Champmartin, S; Ambari, A; Le Pommelec, J Y

    2016-05-01

    This paper proposes a new procedure to simultaneously measure the static contact angle and the surface tension of a liquid using a spherical geometry. Unlike the other existing methods, the knowledge of one of both previous parameters and the displacement of the sphere are not mandatory. The technique is based on the measurement of two simple physical quantities: the height of the meniscus formed on a sphere at the very contact with a liquid bath and the resulting vertical force exerted on this object at equilibrium. The meniscus height, whose exact value requires the numerical resolution of the Laplace equation, is often estimated with an approximate 2D model, valid only for very large spheres compared to the capillary length. We develop instead another simplified solution of the Young-Laplace equation based on the work of Ferguson for the meniscus on a cylinder and adapted for the spherical shape. This alternative model, which is less restrictive in terms of the sphere size, is successfully compared to numerical solutions of the complete Young-Laplace equation. It appears to be accurate for sphere radii larger than only two capillary lengths. Finally the feasibility of the method is experimentally tested and validated for three common liquids and two "small" steel spheres.

  2. VALIDITY AND RELIABILITY OF 'ON PROTRACTOR' SMARTPHONE APPLICATION FOR MEASUREMENT OF CRANIOVERTEBRAL AND CRANIO-HORIZONTAL ANGLE

    Directory of Open Access Journals (Sweden)

    Jinal A. Mamania

    2017-08-01

    Full Text Available Background: Measuring angles and movement is an important aspect of clinical assessment. Over the years, various methods have been used to measure the angles. Image based smartphone goniometer offers an easy and non-invasive method for measuring craniovertebral and cranial horizontal angle. However, the validity of this approach has not been established yet. The purpose of this study was to investigate the validity and reliability of a smartphone based application, by comparing the results of the application and ‘AutoCAD®’ software. Methods: Convenient sampling of asymptomatic participants (Males=4 and females =16 who met the inclusion criteria were examined by two researchers for craniovertebral (CVA and cranial horizontal angle (CHA using ON Protractor smartphone application and ‘AutoCAD®’ software. The third examiner analyzed the anthropometric and descriptive data. Validity and reliability were measured using intraclass correlation coefficients (ICC and p-value. Result: Good to excellent Intra-rater and inter-rater reliability was demonstrated for CVA and CHA when ON Protractor mobile application and AutoCAD® were compared, with ICC values 0.879 and 0.991 respectively. Conclusion: Smartphone mobile application-ON Protractor is a reliable tool to measure craniovertebral and cranial horizontal angle.

  3. Measurements of the electron energy spectrum by using small-angle Thomson scattering

    International Nuclear Information System (INIS)

    Popov, S. S.; Burdakov, A. V.; Vyacheslavov, L. N.; Ivantsivskii, M. V.; Ovchar, V. K.; Polosatkin, S. V.; Rovenskikh, A. F.; Fedotov, M. G.

    2008-01-01

    A novel diagnostic method is developed for studying the high-energy plasma electron component in the GOL-3 facility by using small-angle Thomson scattering. The method is based on the enhancement of the spectral density of scattered radiation as compared to the conventional large-angle scattering technique.

  4. Measurements of the electron energy spectrum by using small-angle Thomson scattering

    Science.gov (United States)

    Popov, S. S.; Burdakov, A. V.; Vyacheslavov, L. N.; Ivantsivskii, M. V.; Ovchar, V. K.; Polosatkin, S. V.; Rovenskikh, A. F.; Fedotov, M. G.

    2008-03-01

    A novel diagnostic method is developed for studying the high-energy plasma electron component in the GOL-3 facility by using small-angle Thomson scattering. The method is based on the enhancement of the spectral density of scattered radiation as compared to the conventional large-angle scattering technique.

  5. Muscle oxygenation and fascicle length during passive muscle stretching in ballet-trained subjects.

    Science.gov (United States)

    Otsuki, A; Fujita, E; Ikegawa, S; Kuno-Mizumura, M

    2011-07-01

    Muscle stretching transiently decreases muscle-blood flow corresponding to a muscle extension. It may disturb a balance between muscular oxygen demand and oxygen supply to muscles and reduce muscle oxygenation. However, muscle-stretching training may improve blood circulatory condition, resulting in the maintained muscle oxygenation during muscle stretching. The aim of this study was to investigate changes in muscle-blood volume (tHb) and tissue oxygenation index (TOI) during muscle stretching determined by using near-infrared spectroscopy (NIRS) in ballet-trained (BT) and untrained (C) subjects. 11 BT women who regularly perform muscle stretching and 11 C women participated in this study. Fascicle lengths, tHb and TOI in the tibialis anterior muscle were measured during passive plantar flexion from ankle joint angles of 120° (baseline) to 140°, 160°, the maximal comfortable position without pain (CP), and the maximal position (MP). At 160°, the % fascicle-length change from baseline was significantly lower in the BT than the C group, however, for the changes in tHb and TOI the significant interaction effect between the 2 groups was not detected. On the other hand, although the increases in the fascicle length from baseline to CP and MP were greater in BT than C, the tHb and TOI reductions were comparable between groups. We concluded that it appears that BT can extend their muscles without excessive reduction in muscle-blood volume and muscle oxygenation at relatively same but absolutely greater muscle-stretching levels than C. The attenuation in these indices during high-level muscle stretching may be associated with the repetitive muscle stretching of long-term ballet training. © Georg Thieme Verlag KG Stuttgart · New York.

  6. Post-trial anatomical frame alignment procedure for comparison of 3D joint angle measurement from magnetic/inertial measurement units and camera-based systems

    International Nuclear Information System (INIS)

    Li, Qingguo; Zhang, Jun-Tian

    2014-01-01

    Magnetic and inertial measurement units (MIMUs) have been widely used as an alternative to traditional camera-based motion capture systems for 3D joint kinematics measurement. Since these sensors do not directly measure position, a pre-trial anatomical calibration, either with the assistance of a special protocol/apparatus or with another motion capture system is required to establish the transformation matrices between the local sensor frame and the anatomical frame (AF) of each body segment on which the sensors are attached. Because the axes of AFs are often used as the rotational axes in the joint angle calculation, any difference in the AF determination will cause discrepancies in the calculated joint angles. Therefore, a direct comparison of joint angles between MIMU systems and camera-based systems is less meaningful because the calculated joint angles contain a systemic error due to the differences in the AF determination. To solve this problem a new post-trial AF alignment procedure is proposed. By correcting the AF misalignments, the joint angle differences caused by the difference in AF determination are eliminated and the remaining discrepancies are mainly from the measurement accuracy of the systems themselves. Lower limb joint angles from 30 walking trials were used to validate the effectiveness of the proposed AF alignment procedure. This technique could serve as a new means for calibrating magnetic/inertial sensor-based motion capture systems and correcting for AF misalignment in scenarios where joint angles are compared directly. (paper)

  7. Dynamic stretching is effective as static stretching at increasing flexibility

    OpenAIRE

    Coons, John M.; Gould, Colleen E.; Kim, Jwa K.; Farley, Richard S.; Caputo, Jennifer L.

    2017-01-01

    This study examined the effect of dynamic and static (standard) stretching on hamstring flexibility. Twenty-five female volleyball players were randomly assigned to dynamic (n = 12) and standard (n = 13) stretching groups. The experimental group trained with repetitive dynamic stretching exercises, while the standard modality group trained with static stretching exercises. The stretching interventions were equivalent in the time at stretch and were performed three days a week for four weeks. ...

  8. The effect of internal fixation lamp on anterior chamber angle width measured by anterior segment optical coherence tomography.

    Science.gov (United States)

    Nakamine, Sakari; Sakai, Hiroshi; Arakaki, Yoshikuni; Yonahara, Michiko; Kaiya, Tadayoshi

    2018-01-01

    To study the effect of the internal fixation lamp on anterior chamber width measured by anterior segment optical coherence tomography. In a prospective cross sectional observational study, consecutive 22 right eyes of 22 patients (4 men and 18 women) with suspected primary angle closure underwent swept source domain anterior segment optical coherence tomography (AS-OCT), (CASIA SS-1000, Tomey, Nagoya, Japan). Anterior chamber parameters of angle opening distance (AOD), trabecular-iris angle (TIA), angle recess area (ARA) at 500 or 750 µm from scleral spur and pupil diameter were measured by AS-OCT in a three-dimensional mode in 4 quadrants (superior, inferior, temporal and nasal) in dark room setting both with and without internal fixation lamp. Anterior segment parameters of AOD 500 in superior, inferior and temporal quadrants, AOD 750 at superior and nasal, TIA 500 at superior, and inferior and TIA 750 at superior and nasal, and ARA 500 or 750 at superior and inferior with internal fixation lamp were greater and the pupil diameter was significantly (all P chamber angle is narrow but open, it is recommended that the internal fixation lamp be turned off to ensure a clear indication as to whether the angle is open or closed in the dark.

  9. Elastography Study of Hamstring Behaviors during Passive Stretching

    Science.gov (United States)

    Le Sant, Guillaume; Ates, Filiz; Brasseur, Jean-Louis; Nordez, Antoine

    2015-01-01

    Introduction The mechanical properties of hamstring muscles are usually inferred from global passive torque/angle relationships, in combination with adjoining tissues crossing the joint investigated. Shear modulus measurement provides an estimate of changes in muscle-tendon stiffness and passive tension. This study aimed to assess the passive individual behavior of each hamstring muscle in different stretching positions using shear wave elastography. Methods/Results The muscle shear modulus of each hamstring muscle was measured during a standardized slow passive knee extension (PKE, 80% of maximal range of motion) on eighteen healthy male volunteers. Firstly, we assessed the reliability of the measurements. Results were good for semitendinosus (ST, CV: 8.9%-13.4%), semimembranosus (SM, CV: 10.3%-11.2%) and biceps femoris long-head (BF-lh, CV: 8.6%-13.3%), but not for biceps femoris short-head (BF-sh, CV: 20.3%-44.9%). Secondly, we investigated each reliable muscle in three stretch positions: 70°, 90° and 110° of hip flexion. The results showed different values of shear modulus for the same amount of perceived stretch, with the highest measurements in the high-flexed hip situation. Moreover, individual muscles displayed different values, with values increasing or BF-lh, SM and ST, respectively. The inter-subject variability was 35.3% for ST, 27.4% for SM and 30.2% for BF-lh. Conclusion This study showed that the hip needs to be high-flexed to efficiently tension the hamstrings, and reports a higher muscle-tendon stress tolerance at 110° of hip angle. In addition muscles have different passive behaviors, and future works will clarify if it can be linked with rate of injury. PMID:26418862

  10. Elastography Study of Hamstring Behaviors during Passive Stretching.

    Directory of Open Access Journals (Sweden)

    Guillaume Le Sant

    Full Text Available The mechanical properties of hamstring muscles are usually inferred from global passive torque/angle relationships, in combination with adjoining tissues crossing the joint investigated. Shear modulus measurement provides an estimate of changes in muscle-tendon stiffness and passive tension. This study aimed to assess the passive individual behavior of each hamstring muscle in different stretching positions using shear wave elastography.The muscle shear modulus of each hamstring muscle was measured during a standardized slow passive knee extension (PKE, 80% of maximal range of motion on eighteen healthy male volunteers. Firstly, we assessed the reliability of the measurements. Results were good for semitendinosus (ST, CV: 8.9%-13.4%, semimembranosus (SM, CV: 10.3%-11.2% and biceps femoris long-head (BF-lh, CV: 8.6%-13.3%, but not for biceps femoris short-head (BF-sh, CV: 20.3%-44.9%. Secondly, we investigated each reliable muscle in three stretch positions: 70°, 90° and 110° of hip flexion. The results showed different values of shear modulus for the same amount of perceived stretch, with the highest measurements in the high-flexed hip situation. Moreover, individual muscles displayed different values, with values increasing or BF-lh, SM and ST, respectively. The inter-subject variability was 35.3% for ST, 27.4% for SM and 30.2% for BF-lh.This study showed that the hip needs to be high-flexed to efficiently tension the hamstrings, and reports a higher muscle-tendon stress tolerance at 110° of hip angle. In addition muscles have different passive behaviors, and future works will clarify if it can be linked with rate of injury.

  11. Measurement of small-angle antiproton-proton and proton-proton elastic scattering at the CERN intersecting storage rings

    NARCIS (Netherlands)

    Amos, N.; Block, M.M.; Bobbink, G.J.; Botje, M.A.J.; Favart, D.; Leroy, C.; Linde, F.; Lipnik, P.; Matheys, J-P.; Miller, D.

    1985-01-01

    Antiproton-proton and proton-proton small-angle elastic scattering was measured for centre-of-mass energies at the CERN Intersectung Storage Rings. In addition, proton-proton elastic scattering was measured at . Using the optical theorem, total cross sections are obtained with an accuracy of about

  12. Finding the Speed of a Bicycle in Circular Motion by Measuring the Lean Angle of the Bicycle

    Science.gov (United States)

    Ben-Abu, Yuval; Wolfson, Ira; Yizhaq, Hezi

    2018-01-01

    We suggest an activity for measuring the speed of a bicycle going in circular motion by measuring the bicycle's lean angle. In this activity students will be able to feel the strength that is being activated on their bodies while they are moving in circular motion. They will also understand that it is impossible to ride in a circle without the…

  13. Quantifying the passive stretching response of human tibialis anterior muscle using shear wave elastography.

    Science.gov (United States)

    Koo, Terry K; Guo, Jing-Yi; Cohen, Jeffrey H; Parker, Kevin J

    2014-01-01

    Quantifying passive stretching responses of individual muscles helps the diagnosis of muscle disorders and aids the evaluation of surgical/rehabilitation treatments. Utilizing an animal model, we demonstrated that shear elastic modulus measured by supersonic shear wave elastography increases linearly with passive muscle force. This study aimed to use this state-of-the-art technology to study the relationship between shear elastic modulus and ankle dorsi-plantarflexion angle of resting tibialis anterior muscles and extract physiologically meaningful parameters from the elasticity-angle curve to better quantify passive stretching responses. Elasticity measurements were made at resting tibialis anterior of 20 healthy subjects with the ankle positioned from 50° plantarflexion to up to 15° dorsiflexion at every 5° for two cycles. Elasticity-angle data was curve-fitted by optimizing slack angle, slack elasticity, and rate of increase in elasticity within a piecewise exponential model. Elasticity-angle data of all subjects were well fitted by the piecewise exponential model with coefficients of determination ranging between 0.973 and 0.995. Mean (SD) of slack angle, slack elasticity, and rate of increase in elasticity were 10.9° (6.3°), 5.8 (1.9) kPa, and 0.0347 (0.0082) respectively. Intraclass correlation coefficients of each parameter were 0.852, 0.942, and 0.936 respectively, indicating excellent test-retest reliability. This study demonstrated the feasibility of using supersonic shear wave elastography to quantify passive stretching characteristics of individual muscle and provided preliminary normative values of slack angle, slack elasticity, and rate of increase in elasticity for human tibialis anterior muscles. Future studies will investigate diagnostic values of these parameters in clinical applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Effect of modified hold-relax stretching and static stretching on hamstring muscle flexibility.

    Science.gov (United States)

    Ahmed, Hashim; Iqbal, Amir; Anwer, Shahnawaz; Alghadir, Ahmad

    2015-02-01

    [Purpose] The aim of present study was to compare the effectiveness of modified hold-relax stretching and static stretching in improving the hamstring muscle flexibility. [Subjects and Methods] Forty-five male subjects with hamstring tightness were included in this study. The subjects were randomly placed into three groups: the modified hold-relax stretching, static stretching and control groups. The modified hold-relax stretching group performed 7 seconds of isometric contraction and then relaxed for 5 seconds, and this was repeated five times daily for five consecutive days. The static stretching group received 10 minutes of static stretching with the help of a pulley and weight system for five consecutive days. The control group received only moist heat for 20 minutes for five consecutive days. A baseline reading of passive knee extension (PKE) was taken prior to the intervention; rest measurements were taken immediate post intervention on day 1, day 3, day 5, and after a 1 week follow-up, i.e., at the 12th day. [Results] On comparing the baseline readings of passive knee extension (PKE), there was no difference noted between the three groups. On comparing the posttest readings on day 5 between the 3 groups, a significant difference was noted. However, post hoc analysis revealed an insignificant difference between the modified hold-relax stretching and static stretching groups. There was a significant difference between the static stretching and control groups and between the modified hold-relax stretching and control groups. [Conclusion] The results of this study indicate that both the modified hold-relax stretching technique and static stretching are equally effective, as there was no significant difference in improving the hamstring muscle flexibility between the two groups.

  15. Time stretch and its applications

    Science.gov (United States)

    Mahjoubfar, Ata; Churkin, Dmitry V.; Barland, Stéphane; Broderick, Neil; Turitsyn, Sergei K.; Jalali, Bahram

    2017-06-01

    Observing non-repetitive and statistically rare signals that occur on short timescales requires fast real-time measurements that exceed the speed, precision and record length of conventional digitizers. Photonic time stretch is a data acquisition method that overcomes the speed limitations of electronic digitizers and enables continuous ultrafast single-shot spectroscopy, imaging, reflectometry, terahertz and other measurements at refresh rates reaching billions of frames per second with non-stop recording spanning trillions of consecutive frames. The technology has opened a new frontier in measurement science unveiling transient phenomena in nonlinear dynamics such as optical rogue waves and soliton molecules, and in relativistic electron bunching. It has also created a new class of instruments that have been integrated with artificial intelligence for sensing and biomedical diagnostics. We review the fundamental principles and applications of this emerging field for continuous phase and amplitude characterization at extremely high repetition rates via time-stretch spectral interferometry.

  16. Characterization of polymer adsorption onto drug nanoparticles using depletion measurements and small-angle neutron scattering.

    Science.gov (United States)

    Goodwin, Daniel J; Sepassi, Shadi; King, Stephen M; Holland, Simon J; Martini, Luigi G; Lawrence, M Jayne

    2013-11-04

    Production of polymer and/or surfactant-coated crystalline nanoparticles of water-insoluble drugs (nanosuspensions) using wet bead milling is an important formulation approach to improve the bioavailability of said compounds. Despite the fact that there are a number of nanosuspensions on the market, there is still a deficiency in the characterization of these nanoparticles where further understanding may lead to the rational selection of polymer/surfactant. To this end small-angle neutron scattering (SANS) measurements were performed on drug nanoparticles milled in the presence of a range of polymers of varying molecular weight. Isotopic substitution of the aqueous solvent to match the scattering length density of the drug nanoparticles (i.e., the technique of contrast matching) meant that neutron scattering resulted only from the adsorbed polymer layer. The layer thickness and amount of hydroxypropylcellulose adsorbed on nabumetone nanoparticles derived from fitting the SANS data to both model-independent and model dependent volume fraction profiles were insensitive to polymer molecular weight over the range Mv = 47-112 kg/mol, indicating that the adsorbed layer is relatively flat but with tails extending up to approximately 23 nm. The constancy of the absorbed amount is in agreement with the adsorption isotherm determined by measuring polymer depletion from solution in the presence of the nanoparticles. Insensitivity to polymer molecular weight was similarly determined using SANS measurements of nabumetone or halofantrine nanoparticles stabilized with hydroxypropylmethylcellulose or poly(vinylpyrrolidone). Additionally SANS studies revealed the amount adsorbed, and the thickness of the polymer layer was dependent on both the nature of the polymer and drug particle surface. The insensitivity of the adsorbed polymer layer to polymer molecular weight has important implications for the production of nanoparticles, suggesting that lower molecular weight polymers

  17. Measurements of polarization-dependent angle-resolved light scattering from individual microscopic samples using Fourier transform light scattering

    Science.gov (United States)

    Jung, JaeHwang; Kim, Jinhyung; Seo, Min-Kyo; Park, YongKeun

    2018-03-01

    We present a method to measure the vector-field light scattering of individual microscopic objects. The polarization-dependent optical field images are measured with quantitative phase imaging at the sample plane, and then numerically propagated to the far-field plane. This approach allows the two-dimensional polarization-dependent angle-resolved light scattered patterns from individual object to be obtained with high precision and sensitivity. Using this method, we present the measurements of the polarization-dependent light scattering of a liquid crystal droplet and individual silver nanowires over scattering angles of 50{\\deg}. In addition, the spectroscopic extension of the polarization-dependent angle-resolved light scattering is demonstrated using wavelength-scanning illumination.

  18. Measurement of the running of the QED coupling in small-angle Bhabha scattering at LEP

    CERN Document Server

    Abbiendi, G.; Akesson, P.F.; Alexander, G.; Anagnostou, G.; Anderson, K.J.; Asai, S.; Axen, D.; Bailey, I.; Barberio, E.; Barillari, T.; Barlow, R.J.; Batley, R.J.; Bechtle, P.; Behnke, T.; Bell, Kenneth Watson; Bell, P.J.; Bella, G.; Bellerive, A.; Benelli, G.; Bethke, S.; Biebel, O.; Boeriu, O.; Bock, P.; Boutemeur, M.; Braibant, S.; Brown, Robert M.; Burckhart, H.J.; Campana, S.; Capiluppi, P.; Carnegie, R.K.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, D.G.; Ciocca, C.; Csilling, A.; Cuffiani, M.; Dado, S.; Dallavalle, G.M.; De Roeck, A.; De Wolf, E.A.; Desch, K.; Dienes, B.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Etzion, E.; Fabbri, F.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Gagnon, P.; Gary, John William; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Giacomelli, R.; Giunta, Marina; Goldberg, J.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gunther, P.O.; Gupta, A.; Hajdu, C.; Hamann, M.; Hanson, G.G.; Harel, A.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Herten, G.; Heuer, R.D.; Hill, J.C.; Horvath, D.; Igo-Kemenes, P.; Ishii, K.; Jeremie, H.; Jovanovic, P.; Junk, T.R.; Kanzaki, J.; Karlen, D.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kluth, S.; Kobayashi, T.; Kobel, M.; Komamiya, S.; Kramer, T.; Krieger, P.; von Krogh, J.; Kuhl, T.; Kupper, M.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Lellouch, D.; Lettso, J.; Levinson, L.; Lillich, J.; Lloyd, S.L.; Loebinger, F.K.; Lu, J.; Ludwig, A.; Ludwig, J.; Mader, W.; Marcellini, S.; Martin, A.J.; Mashimo, T.; Mattig, Peter; McKenna, J.; McPherson, R.A.; Meijers, F.; Menges, W.; Merritt, F.S.; Mes, H.; Meyer, Niels T.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Mohr, W.; Mori, T.; Mutter, A.; Nagai, K.; Nakamura, I.; Nanjo, H.; Neal, H.A.; Nisius, R.; ONeale, S.W.; Oh, A.; Oreglia, M.J.; Orito, S.; Pahl, C.; Pasztor, G.; Pater, J.R.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Pooth, O.; Przybycien, M.; Quadt, A.; Rabbertz, K.; Rembser, C.; Renkel, P.; Roney, J.M.; Runge, K.; Sachs, K.; Saeki, T.; Sarkisyan, E.K.G.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schorner-Sadenius, T.; Schroder, Matthias; Schumacher, M.; Seuster, R.; Shears, T.G.; Shen, B.C.; Sherwood, P.; Skuja, A.; Smith, A.M.; Sobie, R.; Soldner-Rembold, S.; Spano, F.; Stahl, A.; Strom, David M.; Strohmer, R.; Tarem, S.; Tasevsky, M.; Teuscher, R.; Thomson, M.A.; Torrence, E.; Toya, D.; Tran, P.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Ujvari, B.; Vollmer, C.F.; Vannerem, P.; Vertesi, R.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wilson, G.W.; Wilson, J.A.; Wolf, G.; Wyatt, T.R.; Yamashita, S.; Zer-Zion, D.; Zivkovic, Lidija

    2006-01-01

    Using the OPAL detector at LEP, the running of the effective QED coupling alpha(t) is measured for space-like momentum transfer through its effect on the angular spectrum of small-angle Bhabha scattering. In an almost ideal QED framework, with very favourable experimental conditions, we obtain: Delta alpha(-6.07GeV^2) - Delta alpha(-1.81GeV^2) = (440 pm 58 pm 43 pm 30) X 10^-5, where the first error is statistical, the second is the experimental systematic and the third is the theoretical uncertainty. This is the strongest direct evidence ever presented that the running of alpha is consistent with Standard Model expectations. The null hypothesis that alpha remains constant within the above interval of -t is excluded with a significance above 5sigma. Similarly, our results are inconsistent at the level of 3sigma with the hypothesis that only leptonic loops contribute to the running, and therefore provide the first clear experimental evidence that hadronic loops also contribute.

  19. Quantitative diffusion and swelling kinetic measurements using large-angle interferometric refractometry.

    Science.gov (United States)

    Saunders, John E; Chen, Hao; Brauer, Chris; Clayton, McGregor; Chen, Weijian; Barnes, Jack A; Loock, Hans-Peter

    2015-12-07

    The uptake and release of sorbates into films and coatings is typically accompanied by changes of the films' refractive index and thickness. We provide a comprehensive model to calculate the concentration of the sorbate from the average refractive index and the film thickness, and validate the model experimentally. The mass fraction of the analyte partitioned into a film is described quantitatively by the Lorentz-Lorenz equation and the Clausius-Mosotti equation. To validate the model, the uptake kinetics of water and other solvents into SU-8 films (d = 40-45 μm) were explored. Large-angle interferometric refractometry measurements can be used to characterize films that are between 15 μm to 150 μm thick and, Fourier analysis, is used to determine independently the thickness, the average refractive index and the refractive index at the film-substrate interface at one-second time intervals. From these values the mass fraction of water in SU-8 was calculated. The kinetics were best described by two independent uptake processes having different rates. Each process followed one-dimensional Fickian diffusion kinetics with diffusion coefficients for water into SU-8 photoresist film of 5.67 × 10(-9) cm(2) s(-1) and 61.2 × 10(-9) cm(2) s(-1).

  20. Does flexible tunnel drilling affect the femoral tunnel angle measurement after anterior cruciate ligament reconstruction?

    Science.gov (United States)

    Muller, Bart; Hofbauer, Marcus; Atte, Akere; van Dijk, C Niek; Fu, Freddie H

    2015-12-01

    To quantify the mean difference in femoral tunnel angle (FTA) as measured on knee radiographs between rigid and flexible tunnel drilling after anatomic anterior cruciate ligament (ACL) reconstruction. Fifty consecutive patients that underwent primary anatomic ACL reconstruction with a single femoral tunnel drilled with a flexible reamer were included in this study. The control group was comprised of 50 patients all of who underwent primary anatomic ACL reconstruction with a single femoral tunnel drilled with a rigid reamer. All femoral tunnels were drilled through a medial portal to ensure anatomic tunnel placement. The FTA was determined from post-operative anterior-to-posterior (AP) radiographs by two independent observers. A 5° difference between the two mean FTA was considered clinically significant. The average FTA, when drilled with a rigid reamer, was 42.0° ± 7.2°. Drilling with a flexible reamer resulted in a mean FTA of 44.7° ± 7.0°. The mean difference of 2.7° was not statistically significant. The intraclass correlation coefficient for inter-tester reliability was 0.895. The FTA can be reliably determined from post-operative AP radiographs and provides a useful and reproducible metric for characterizing femoral tunnel position after both rigid and flexible femoral tunnel drilling. This has implications for post-operative evaluation and preoperative treatment planning for ACL revision surgery. IV.

  1. Updated Measurement of the CKM Angle alpha Using B0->rho+rho- Decays

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, B

    2006-09-26

    The authors present results from an analysis of B{sup 0} {yields} {rho}{sup +}{rho}{sup -} using 316 fb{sup -1} of {Upsilon}(4S) {yields} B{bar B} decays observed with the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC. They measure the B{sup 0} {yields} {rho}{sup +}{rho}{sup -} branching fraction, longitudinal polarization fraction f{sub L}, and the CP-violating parameters S{sub long} and C{sub long}: {Beta}(B{sup 0} {yields} {rho}{sup +}{rho}{sup -}) = (23.5 {+-} 2.2(stat) {+-} 4.1(syst)) x 10{sup -6}, f{sub L} = 0.977 {+-} 0.024(stat){sub -0.013}{sup +0.015}(syst), S{sub long} = -0.19 {+-} 0.21(stat){sub -0.07}{sup +0.05}(syst), C{sub long} = -0.07 {+-} 0.15(stat) {+-} 0.06(syst). Using an isospin analysis of B {yields} {rho}{rho} decays they determine the angle {alpha} of the unitarity triangle. One of the two solutions, {alpha} [74,117]{sup o} at 68% CL, is compatible with the standard model. All results presented here are preliminary.

  2. Structural adaptations of rat lateral gastrocnemius muscle-tendon complex to a chronic stretching program and their quantification based on ultrasound biomicroscopy and optical microscopic images.

    Science.gov (United States)

    Peixinho, Carolina Carneiro; Martins, Natália Santos Fonseca; de Oliveira, Liliam Fernandes; Machado, João Carlos

    2014-01-01

    A chronic regimen of flexibility training can increase range of motion, with the increase mechanisms believed to be a change in the muscle material properties or in the neural components associated with this type of training. This study followed chronic structural adaptations of lateral gastrocnemius muscle of rats submitted to stretching training (3 times a week during 8weeks), based on muscle architecture measurements including pennation angle, muscle thickness and tendon length obtained from ultrasound biomicroscopic images, in vivo. Fiber length and sarcomere number per 100μm were determined in 3 fibers of each muscle (ex vivo and in vitro, respectively), using conventional optical microscopy. Stretching training resulted in a significant pennation angle reduction of the stretched leg after 12 sessions (25%, P=0.002 to 0.024). Muscle thickness and tendon length presented no significant changes. Fiber length presented a significant increase for the stretched leg (8.5%, P=0.00006), with the simultaneous increase in sarcomere length (5%, P=0.041) since the stretched muscles presented less sarcomeres per 100μm. A stretching protocol with characteristics similar to those applied in humans was sufficient to modify muscle architecture of rats with absence of a sarcomerogenesis process. The results indicate that structural adaptations take place in skeletal muscle tissue submitted to moderate-intensity stretching training. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Influence of Experimental Variables on the Measure of Contact Angle in Metals Using the Sessile Drop Method

    OpenAIRE

    Schuster, Jonathan M.; Schvezov, Carlos E.; Rosenberger, Mario R.

    2015-01-01

    The sessile drop method is an easy and fast method used to measure the contact angle between solids and liquids. The value of the contact angle is used in surface characterization, in particular the wettability of solid surfaces by the liquid and to calculate the surface free energy. In this work, we study the effects of the volume of the drop placed on the surface, the elapsed time between drop placing and measurement and the cleaning of the substrate (not cleaning, washed with ethanol or...

  4. Comparison of two stretching methods and optimization of stretching protocol for the piriformis muscle.

    Science.gov (United States)

    Gulledge, Brett M; Marcellin-Little, Denis J; Levine, David; Tillman, Larry; Harrysson, Ola L A; Osborne, Jason A; Baxter, Blaise

    2014-02-01

    Piriformis syndrome is an uncommon diagnosis for a non-discogenic form of sciatica whose treatment has traditionally focused on stretching the piriformis muscle (PiM). Conventional stretches include hip flexion, adduction, and external rotation. Using three-dimensional modeling, we quantified the amount of (PiM) elongation resulting from two conventional stretches and we investigated by use of a computational model alternate stretching protocols that would optimize PiM stretching. Seven subjects underwent three CT scans: one supine, one with hip flexion, adduction, then external rotation (ADD stretch), and one with hip flexion, external rotation, then adduction (ExR stretch). Three-dimensional bone models were constructed from the CT scans. PiM elongation during these stretches, femoral neck inclination, femoral head anteversion, and trochanteric anteversion were measured. A computer program was developed to map PiM length over a range of hip joint positions and was validated against the measured scans. ExR and ADD stretches elongated the PiM similarly by approximately 12%. Femoral head and greater trochanter anteversion influenced PiM elongation. Placing the hip joints in 115° of hip flexion, 40° of external rotation and 25° of adduction or 120° of hip flexion, 50° of external rotation and 30° of adduction increased PiM elongation by 30-40% compared to conventional stretches (15.1 and 15.3% increases in PiM muscle length, respectively). ExR and ADD stretches elongate the PiM similarly and therefore may have similar clinical effectiveness. The optimized stretches led to larger increases in PiM length and may be more easily performed by some patients due to increased hip flexion. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

  5. Some remarks on the solid surface tension determination from contact angle measurements

    Energy Technology Data Exchange (ETDEWEB)

    Zdziennicka, Anna; Szymczyk, Katarzyna; Krawczyk, Joanna; Jańczuk, Bronisław, E-mail: bronislaw.janczuk@poczta.umcs.lublin.pl

    2017-05-31

    Graphical abstract: Surface tension of PE, nylon 6 and quartz from different approaches to the interface tension. - Highlights: • New values of water and formamide surface tension components were established. • Quartz surface tension depends on its crystal face. • Usefulness of different approaches for solid surface tension determination was tested. - Abstract: The measurements of water, formamide and diiodomethane contact angle (θ) on polytetrafluoroethylene (PTFE), polyethylene (PE), polymethyl methacrylate (PMMA), nylon 6, quartz and silica were performed. Based on the θ values of these liquids obtained on PTFE, the Lifshitz-van der Waals and acid-base and/or dispersion and polar components of their surface tension (ST) were determined. In turn, the θ values for water, formamide and diiodomethane on PMMA were applied to calculate the electron-acceptor and electron-donor parameters of the Lewis acid-base component of the formamide ST. For this calculation the same values of the electron-acceptor and electron-donor parameters for water ST were used. Taking into account the values of components and parameters of water, formamide and diiodomethane ST obtained by us, van Oss et al. and from the water(formamide)-n-alkane and water-diiodomethane interface tension, the components and parameters of studied solids ST were calculated. To this end different approaches to the interface tension were considered. The obtained values were compared with those in the literature. It was concluded that for determination of solid ST components and parameters, those of water, formamide and diiodomethane ST obtained from the θ measurements on the model solids should be used.

  6. Measurement of the CKM angle γ from a combination of B±→Dh± analyses

    International Nuclear Information System (INIS)

    Aaij, R.; Abellan Beteta, C.; Adeva, B.; Adinolfi, M.; Adrover, C.; Affolder, A.; Ajaltouni, Z.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A.A.; Amato, S.; Amerio, S.; Amhis, Y.; Anderlini, L.; Anderson, J.; Andreassen, R.

    2013-01-01

    A combination of three LHCb measurements of the CKM angle γ is presented. The decays B ± →DK ± and B ± →Dπ ± are used, where D denotes an admixture of D 0 and D ¯0 mesons, decaying into K + K − , π + π − , K ± π ∓ , K ± π ∓ π ± π ∓ , K S 0 π + π − , or K S 0 K + K − final states. All measurements use a dataset corresponding to 1.0 fb −1 of integrated luminosity. Combining results from B ± →DK ± decays alone a best-fit value of γ=72.0° is found, and confidence intervals are set γ∈[56.4,86.7]°at 68% CL, γ∈[42.6,99.6]°at 95% CL. The best-fit value of γ found from a combination of results from B ± →Dπ ± decays alone, is γ=18.9°, and the confidence intervals γ∈[7.4,99.2]°∪[167.9,176.4]°at 68% CL are set, without constraint at 95% CL. The combination of results from B ± →DK ± and B ± →Dπ ± decays gives a best-fit value of γ=72.6° and the confidence intervals γ∈[55.4,82.3]°at 68% CL, γ∈[40.2,92.7]°at 95% CL are set. All values are expressed modulo 180°, and are obtained taking into account the effect of D 0 –D ¯0 mixing

  7. Some remarks on the solid surface tension determination from contact angle measurements

    International Nuclear Information System (INIS)

    Zdziennicka, Anna; Szymczyk, Katarzyna; Krawczyk, Joanna; Jańczuk, Bronisław

    2017-01-01

    Graphical abstract: Surface tension of PE, nylon 6 and quartz from different approaches to the interface tension. - Highlights: • New values of water and formamide surface tension components were established. • Quartz surface tension depends on its crystal face. • Usefulness of different approaches for solid surface tension determination was tested. - Abstract: The measurements of water, formamide and diiodomethane contact angle (θ) on polytetrafluoroethylene (PTFE), polyethylene (PE), polymethyl methacrylate (PMMA), nylon 6, quartz and silica were performed. Based on the θ values of these liquids obtained on PTFE, the Lifshitz-van der Waals and acid-base and/or dispersion and polar components of their surface tension (ST) were determined. In turn, the θ values for water, formamide and diiodomethane on PMMA were applied to calculate the electron-acceptor and electron-donor parameters of the Lewis acid-base component of the formamide ST. For this calculation the same values of the electron-acceptor and electron-donor parameters for water ST were used. Taking into account the values of components and parameters of water, formamide and diiodomethane ST obtained by us, van Oss et al. and from the water(formamide)-n-alkane and water-diiodomethane interface tension, the components and parameters of studied solids ST were calculated. To this end different approaches to the interface tension were considered. The obtained values were compared with those in the literature. It was concluded that for determination of solid ST components and parameters, those of water, formamide and diiodomethane ST obtained from the θ measurements on the model solids should be used.

  8. Biocatalysis: Unmasked by stretching

    Science.gov (United States)

    Kharlampieva, Eugenia; Tsukruk, Vladimir V.

    2009-09-01

    The biocatalytic activity of enzyme-loaded responsive layer-by-layer films can be switched on and off by simple mechanical stretching. Soft materials could thus be used to trigger biochemical reactions under mechanical action, with potential therapeutic applications.

  9. Results of stretched wire field integral measurements on the mini-undulator magnet - comparison of results obtained from circular and translational motion of the integrating wire

    International Nuclear Information System (INIS)

    Solomon, L.

    1998-05-01

    Measurements of the multipole content of the Mini-Undulator magnet have been made with two different integrating wire techniques. Both measurements used 43 strand Litz wire stretched along the length of the magnet within the magnet gap. In the first technique, the wire motion was purely translational, while in the second technique the wire was moved along a circular path. The induced voltage in the Litz wire was input into a Walker integrator, and the integrator output was analyzed as a function of wire position for determination of the multipole content of the magnetic field. The mini-undulator magnet is a 10 period, 80 mm per period hybrid insertion device. For all the data contained herein the magnet gap was set at 49 mm. In the mini-undulator magnet, the iron poles are 18mm x 32mm x 86 mm, and the Samarium Cobalt permanent magnet blocks are 22mm x 21mm x 110mm. For this magnet, which is a shortened prototype for the NSLS Soft X-Ray Undulator Magnet, the undulator parameter K = 0.934 B (Tesla)λ(cm), and B(tesla) = 0.534/sinh(πGap/λ). At a gap of 49 mm, the magnetic field is 1590 Gauss

  10. Measurement of colour flow with the jet pull angle in $t\\bar{t}$ events using the ATLAS detector

    CERN Document Server

    Neep, Thomas James; The ATLAS collaboration

    2015-01-01

    The distribution and orientation of energy inside jets is predicted to be an experimental handle on colour connections between the hard--scatter quarks and gluons initiating the jets. This poster presents a measurement of the distribution of one such variable, the jet pull angle. The pull angle is measured for jets produced in ttbar events with one W boson decaying leptonically and the other decaying to jets using 20.3 inverse fb of data recorded with the ATLAS detector at a centre--of--mass energy of 8 TeV at the LHC. The jet pull angle distribution is corrected for detector resolution and acceptance effects and is compared to various models.

  11. Accurate human limb angle measurement: sensor fusion through Kalman, least mean squares and recursive least-squares adaptive filtering

    Science.gov (United States)

    Olivares, A.; Górriz, J. M.; Ramírez, J.; Olivares, G.

    2011-02-01

    Inertial sensors are widely used in human body motion monitoring systems since they permit us to determine the position of the subject's limbs. Limb angle measurement is carried out through the integration of the angular velocity measured by a rate sensor and the decomposition of the components of static gravity acceleration measured by an accelerometer. Different factors derived from the sensors' nature, such as the angle random walk and dynamic bias, lead to erroneous measurements. Dynamic bias effects can be reduced through the use of adaptive filtering based on sensor fusion concepts. Most existing published works use a Kalman filtering sensor fusion approach. Our aim is to perform a comparative study among different adaptive filters. Several least mean squares (LMS), recursive least squares (RLS) and Kalman filtering variations are tested for the purpose of finding the best method leading to a more accurate and robust limb angle measurement. A new angle wander compensation sensor fusion approach based on LMS and RLS filters has been developed.

  12. Accurate human limb angle measurement: sensor fusion through Kalman, least mean squares and recursive least-squares adaptive filtering

    International Nuclear Information System (INIS)

    Olivares, A; Olivares, G; Górriz, J M; Ramírez, J

    2011-01-01

    Inertial sensors are widely used in human body motion monitoring systems since they permit us to determine the position of the subject's limbs. Limb angle measurement is carried out through the integration of the angular velocity measured by a rate sensor and the decomposition of the components of static gravity acceleration measured by an accelerometer. Different factors derived from the sensors' nature, such as the angle random walk and dynamic bias, lead to erroneous measurements. Dynamic bias effects can be reduced through the use of adaptive filtering based on sensor fusion concepts. Most existing published works use a Kalman filtering sensor fusion approach. Our aim is to perform a comparative study among different adaptive filters. Several least mean squares (LMS), recursive least squares (RLS) and Kalman filtering variations are tested for the purpose of finding the best method leading to a more accurate and robust limb angle measurement. A new angle wander compensation sensor fusion approach based on LMS and RLS filters has been developed

  13. A Wireless Swing Angle Measurement Scheme Using Attitude Heading Reference System Sensing Units Based on Microelectromechanical Devices

    Directory of Open Access Journals (Sweden)

    Bingtuan Gao

    2014-11-01

    Full Text Available Feasible real-time swing angle measurement is significant to improve the efficiency and safety of industrial crane systems. This paper presents a wireless microelectromechanical system (MEMS-based swing angle measurement system. The system consists of two attitude heading reference system (AHRS sensing units with a wireless communication function, which are mounted on the hook (or payload and the jib (or base of the crane, respectively. With a combination of a three-axis accelerometer, a three-axis gyroscope and a three-axis magnetometer, the standard extended Kalman filter (EKF is used to estimate the desired orientation of the payload and the base. Wireless ZigBee communication is employed to transmit the orientation of the payload to the sensing unit mounted on the base, which measures the orientation of the base. Because several physical parameters from the payload to the base can be acquired from the original crane control system, the swing angles of the payload can be calculated based on the two measured orientation parameters together with the known physical parameters. Experiments were performed to show the feasibility and effectiveness of the proposed swing angle measurement system.

  14. Study of a additive device which measures the angled walls of injection mold components on a three axis CNC

    Directory of Open Access Journals (Sweden)

    Pralea Bogdan

    2017-01-01

    Full Text Available The paper attempts to demonstrate an efficient on machine measurement system. During this study the authors will develop a measurement device, in order to accurately analyze the dimensional precision of the angled vertical walls used to center active cavities inside an injection mold, on a three axis CNC. The designed device will work in strong connection with a touch trigger probe. The final results will show an improved accuracy of the measurement system.

  15. The effect of dynamic stretching on hamstrings flexibility with respect to the spino-pelvic rhythm.

    Science.gov (United States)

    Hasebe, Kiyotaka; Okubo, Yu; Kaneoka, Koji; Takada, Kohei; Suzuki, Daisuke; Sairyo, Koichi

    2016-01-01

    To ascertain the dynamic stretch effects of flexibility of the hamstrings on lumbar spine and pelvic kinematics. Tight hamstrings are positively correlated with low back pain. However, it is unclear how flexibility of the hamstrings affects spino-pelvic rhythm. Twelve healthy men participated in the study. The straight leg raising (SLR) angle, finger floor distance (FFD), and spino-pelvic rhythm was measured before and after the 6-week stretching protocol. The forward bending task was divided into 4 phases. The paired t-test was used to determine significant differences before and after the FFD, SLR angle, lumbar motion, and pelvic motion, and spino-pelvic rhythm in each phase (phamstrings are important for preventing low back pain.

  16. Measuring the θ13 mixing angle with the two Double Chooz detectors

    International Nuclear Information System (INIS)

    Sibille, Valerian

    2016-01-01

    The Double Chooz experiment aims at accurately measuring the value of the θ 13 leptonic mixing angle. To this intent, the experiment makes the most of two identical detectors - filled with gadolinium-loaded liquid scintillator - observing ν e -bar's released by the two 4.25 GWth nuclear reactors of the French Chooz power plant. The so-called 'far detector' - located at an average distance of 1050 m from the two nuclear cores - has been taking data since April 2011. The 'near detector' - at an average distance of 400 m from the cores - has monitored the reactor since December 2014. The θ 13 mixing parameter leads to an energy dependent disappearance of ν e -bar's as they propagate from the nuclear cores to the detection sites, which allows for a fit of the sin 2 2θ 13 value. By reason of correlations between the detectors and an iso-flux layout, the detection systematics and the ν e -bar flux uncertainty impairing the θ 13 measurement are dramatically suppressed. In consequence, the precision of the θ 13 measurement is dominated by the uncertainty on the backgrounds and the relative normalisation of the ν e -bar-rates. The main background originates from the decay of β n -emitters - generated by μ-spallation - within the detector itself. The energy spectra of these cosmogenic isotopes have been simulated and complemented by a diligent error treatment. These predictions have been successfully compared to the corresponding data spectra, extracted by means of an active veto, whose performance has been studied at both sites. The rate of cosmogenic background remaining within the ν e -bar candidates has also been assessed. Additionally, the normalisation of the ν e -bar rates, bound to the number of target protons within each detector, has been evaluated. All this work was part of the first Double Chooz multi-detector results, yielding sin 2 2θ 13 =0.111 ± 0.018. (author) [fr

  17. Effects of proprioceptive neuromuscular facilitation stretching and static stretching on maximal voluntary contraction.

    Science.gov (United States)

    Miyahara, Yutetsu; Naito, Hisashi; Ogura, Yuji; Katamoto, Shizuo; Aoki, Junichiro

    2013-01-01

    This study was undertaken to investigate and compare the effects of proprioceptive neuromuscular facilitation (PNF) stretching and static stretching on maximal voluntary contraction (MVC). Thirteen male university students (age, 20 ± 1 years; height, 172.2 ± 4.6 cm; weight, 68.4 ± 6.7 kg; mean ± SD) completed 3 different conditions on 3 nonconsecutive days in randomized order: static stretching (SS), PNF stretching (PNF), and no stretching (control, CON). Each condition consisted of a 5-minute rest accompanied by one of the following activities: (a) control, (b) SS, or (c) PNF stretching. The hip flexion range of motion (ROM) was evaluated immediately before and after the activity. The MVC of knee flexion was then measured. Surface electromyography was recorded from the biceps femoris and vastus lateralis muscles during MVC tests and stretching. Although increases in ROM were significantly greater after PNF than after SS (p < 0.01), the decreases in MVC were similar between the 2 treatments. These results suggest that, although PNF stretching increases ROM more than SS, PNF stretching and SS is detrimental to isometric maximal strength.

  18. Distribution of angle kappa measurements with Orbscan II in a population-based survey.

    Science.gov (United States)

    Hashemi, Hassan; KhabazKhoob, Mehdi; Yazdani, Kamran; Mehravaran, Shiva; Jafarzadehpur, Ebrahim; Fotouhi, Akbar

    2010-12-01

    To determine the mean angle kappa and its determinants in the population of Tehran, Iran. In a cross-sectional survey with random cluster sampling, a total of 442 participants aged >14 years were selected from 4 municipality districts of Tehran for Orbscan acquisitions. Exclusion criteria were history of eye surgery for refractive errors, cataract or glaucoma, and use of topical medication or any type of contact lens at the time of the study. Mean angle kappa in different age and gender groups and its association with other factors was assessed. Considering the high correlation between the right and left eyes, only results of the right eyes are presented. After applying exclusion criteria, 800 eyes (399 right eyes and 401 left eyes) were examined. Mean participant age was 40.6±16.8 years (range: 14 to 81 years), and 38.8% of eyes were from men. Mean angle kappa was 5.46±1.33° in total; 5.41±1.32° in men and 5.49±1.34° in women (P=.558). It decreased significantly with age; 0.015°/year (Pangle kappa reduces with age, and the inter-gender difference is not significant. Largest angle kappas were seen among individuals with emmetropia. Angle kappas were larger in the hypermetropic population compared to the myopic population. Copyright 2010, SLACK Incorporated.

  19. First approach to automatic measurement of frontal plane projection angle during single leg landing based on depth video

    NARCIS (Netherlands)

    Bailon, Carlos; Damas, Miguel; Pomares, Hector; Banos Legran, Oresti

    2016-01-01

    Knee alignment measurements are one of the most extended indicators of knee complex injuries such as anterior cruciate ligament injury and patellofemoral pain syndrome. The Frontal Plane Projection Angle (FPPA) is widely used as a 2D estimation of knee alignment. However, traditional procedures to

  20. A comparison of hallux valgus angles assessed with computerised plantar pressure measurements, clinical examination and radiography in patients with diabetes

    NARCIS (Netherlands)

    Janssen, D.M.; Sanders, A.P.; Guldemond, N.A.; Hermus, J.; Walenkamp, G.H.; Van Rhijn, L.W.

    2014-01-01

    Background Hallux valgus deformity is a common musculoskeletal foot disorder with a prevalence of 3.5% in adolescents to 35.7% in adults aged over 65 years. Radiographic measurements of hallux valgus angles (HVA) are considered to be the most reproducible and accurate assessment of HVA. However, in

  1. "Angle to Be Corrected" in Preoperative Evaluation for Hallux Valgus Surgery: Analysis of a New Angular Measurement.

    Science.gov (United States)

    Ortiz, Cristian; Wagner, Pablo; Vela, Omar; Fischman, Daniel; Cavada, Gabriel; Wagner, Emilio

    2016-02-01

    The most common methods for assessing severity of hallux valgus deformity and the effects of an operative procedure are the angular measurements in weightbearing radiographs, specifically the hallux valgus angle and intermetatarsal angle (IMA). Our objective was to analyze the interobserver variability in hallux valgus patients of a new angle called the "angle to be corrected" (ATC), and to compare its capacity to differentiate between different deformities against IMA. We included 28 symptomatic hallux valgus patients with 48 weightbearing foot x-rays. Three trained observers measured the 1 to 2 IMA and the ATC. We then identified retrospectively 45 hallux valgus patients, which were divided into 3 operative technique groups having used the ATC as reference, and analyzed the capacity of the IMA to differentiate between them. The IMA average value was 13.6 degrees, and there was a significant difference between observer 3 and observer 1 (P = .001). The average value for the ATC was 8.9 degrees, and there was no difference between observers. Both angles showed a high intraclass correlation. Regarding the capacity to differentiate between operative technique groups, the ATC was different between the 3 operative technique groups analyzed, but the IMA showed differences only between 2. The ATC was at least as reliable as the intermetatarsal angle for hallux valgus angular measurements, showing a high intraclass correlation with no interobserver difference. It can be suggested that the ATC was better than the IMA to stratify hallux valgus patients when deciding between different operative treatments. Level III, comparative study. © The Author(s) 2015.

  2. Swept source optical coherence tomography measurement of the iris-trabecular contact (ITC) index: a new parameter for angle closure.

    Science.gov (United States)

    Ho, Sue-Wei; Baskaran, Mani; Zheng, Ce; Tun, Tin A; Perera, Shamira A; Narayanaswamy, Arun K; Friedman, David S; Aung, Tin

    2013-04-01

    To evaluate the inter- and intra-observer agreement of measurement of the iris-trabecular contact (ITC) index, a measure of the degree of angle closure, using swept source optical coherence tomography (SSOCT, CASIA SS-1000, Tomey Corporation, Nagoya, Japan). One randomly selected eye of 60 subjects was imaged under dark room conditions. The SSOCT 3-dimensional angle scan simultaneously obtains 128 radial scans of the anterior chamber for the entire circumference of the angle. Post-imaging analysis estimated the ITC index using in-built software. For intra-observer agreement for image grading, one examiner performed the grading twice in a masked fashion and random order after a 1-week interval. A second examiner graded images to assess inter-observer agreement for image grading. For intra-observer agreement for image acquisition, a single operator imaged patients twice. For inter-observer agreement for image acquisition, a single observer graded two sets of images acquired by two different operators on the same patient. Bland-Altman plots and 95 % limits of agreement (LOA) were reported. Study subjects were predominantly Chinese (54/60, 90 %) and female (42/60, 70 %), with a mean age of 65.5 years. The median ITC index for eyes with open angles (31/60) and closed angles was 20 % (95 % confidence interval [CI] - 13.6, 27.8) and 49 % (95%CI - 35.5, 69.2) respectively. The mean difference (95 % LOA) for intra-observer agreement for image grading and image acquisition were -0.8 % (-8.2, 6.5) and 0.6 % (-10.9, 9.7); corresponding inter- observer agreement were 0.1 % (-10, 10.1) and -0.3 % (-11.1, 10.5) respectively. The inter- and intra-observer agreement of the ITC index, as a measure of extent of angle closure using SSOCT, was good.

  3. Mechanomyogram amplitude correlates with human gastrocnemius medialis muscle and tendon stiffness both before and after acute passive stretching.

    Science.gov (United States)

    Longo, Stefano; Cè, Emiliano; Rampichini, Susanna; Devoto, Michela; Limonta, Eloisa; Esposito, Fabio

    2014-10-01

    The study aimed to assess the level of correlation between muscle-tendon unit (MTU) stiffness and mechanomyogram (MMG) signal amplitude of the human gastrocnemius medialis muscle, both before and after acute passive stretching. The passive torque (Tpass), electrically evoked peak torque (pT) and myotendinous junction displacement were determined at different angles of dorsiflexion (0, 10 and 20 deg), while maximum voluntary isometric torque (Tmax) was assessed only at 0 deg. Measurements were repeated after a bout of passive stretching. From the MMG signal, the root mean square (RMS) and peak to peak (p-p) were calculated. The MTU, muscle and tendon stiffness were determined by ultrasound and Tpass measurements. Before stretching, correlations between MMG RMS and MTU, muscle and tendon stiffness were found (R(2) = 0.22-0.46). After stretching, Tpass, Tmax, pT and MTU, muscle and tendon stiffness decreased by 25 ± 7, 16 ± 2, 9 ± 2, 22 ± 7, 23 ± 8 and 28 ± 5%, respectively (P muscle and tendon stiffness were still present after stretching (R(2) = 0.44-0.60). In conclusion, correlations between MMG RMS and stiffness exist both before and after stretching, suggesting that a slacker MTU leads to larger muscle fibre oscillations. However, care must be taken in using MMG amplitude as an indirect index to estimate stiffness owing to the relatively small R(2) values of the investigated correlations. © 2014 The Authors. Experimental Physiology © 2014 The Physiological Society.

  4. Measured pressure distributions of large-angle cones in hypersonic flows of tetrafluoromethane, air, and helium

    Science.gov (United States)

    Jones, R. A.; Hunt, J. L.

    1973-01-01

    An experimental study of surface pressure distributions on a family of blunt and sharp large angle cones was made in hypersonic flows of helium, air, and tetrafluoromethane. The effective isentropic exponents of these flows were 1.67, 1.40, and 1.12. Thus, the effect of large shock density ratios such as might be encountered during planetary entry because of real-gas effects could be studied by comparing results in tetrafluoromethane with those in air and helium. It was found that shock density ratio had a large effect on both shock shape and pressure distribution. The differences in pressure distribution indicate that for atmospheric flight at high speed where real-gas effects produce large shock density ratios, large-angle cone vehicles can be expected to experience different trim angles of attack, drag coefficient, and lift-drag ratios than those for ground tests in air wind tunnels.

  5. A globally stable autopilot with wave filter using only yaw angle measurements

    Directory of Open Access Journals (Sweden)

    Trygve Lauvdal

    1996-04-01

    Full Text Available A stable minimum phase transfer function from rudder angle to yaw angle is used to design a globally stable adaptive ship autopilot. First-order wave disturbances in yaw are filtered by applying a notch filter. Integral action is introduced by using a reference model technique. Global stability is proven for the total system which include the yaw rate observer, the parameter update law, the feedback controller, the notch filter and the integral part of the controller. The simulation results showed that the performance is excellent, even with no a priori knowledge of the ship parameters.

  6. Radiological Assessment of the Sacrofemoral Angle: A Novel Method to Measure the Range of Hip Joint Flexion.

    Science.gov (United States)

    Wei, Xian-Zhao; Xu, Xi-Ming; Wang, Fei; Li, Ming; Wang, Zi-Min

    2015-09-05

    A quantitative and accurate measurement of the range of hip joint flexion (RHF) is necessarily required in the evaluation of disordered or artificial hip joint function. This study aimed to assess a novel method to measure RHF more accurately and objectively. Lateral radiographs were taken of 31 supine men with hip joints extended or flexed. Relevant angles were measured directly from the radiographs. The change in the sacrofemoral angle (SFA) (the angle formed between the axis of the femur and the line tangent to the upper endplate of S1) from hip joint extension to hip joint flexion, was proposed as the RHF. The validity of this method was assessed via concomitant measurements of changes in the femur-horizontal angle (between the axis of the femur and the horizontal line) and the sacrum-horizontal angle (SHA) (between the line tangent to the upper endplate of S1 and the horizontal line), the difference of which should equal the change in the SFA. The mean change in the SFA was 112.5 ± 7.4°, and was independent of participant age, height, weight, or body mass index. The mean changes in the femur-horizontal and SHAs were 123.0 ± 6.4° and 11.4 ± 3.0°, respectively. This confirmed that the change of SFA between hip joint extension and hip joint flexion was equal to the difference between the changes in the femur-horizontal and SHAs. Using the SFA, to evaluate RHF could prevent compromised measurements due to the movements of pelvis and lumbar spine during hip flexion, and is, therefore, a more accurate and objective method with reasonable reliability and validity.

  7. Comparison of active stretching technique and static stretching technique on hamstring flexibility.

    Science.gov (United States)

    Meroni, Roberto; Cerri, Cesare Giuseppe; Lanzarini, Carlo; Barindelli, Guido; Morte, Giancesare Della; Gessaga, Viviana; Cesana, Gian Carlo; De Vito, Giovanni

    2010-01-01

    To compare a passive and an active stretching technique to determine which one would produce and maintain the greatest gain in hamstring flexibility. To determine whether a passive or an active stretching technique results in a greater increase in hamstring flexibility and to compare whether the gains are maintained. Randomized controlled trial. Institutional. Sixty-five volunteer healthy subjects completed the enrollment questionnaire, 33 completed the required 75% of the treatment after 6 weeks, and 22 were assessed 4 weeks after the training interruption. A 6-week stretching program with subjects divided into 2 groups with group 1 performing active stretching exercises and group 2 performing passive stretching exercises. Range of motion (ROM) was measured after 3 and 6 weeks of training and again 4 weeks after the cessation of training and compared with the initial measurement. After 3 weeks of training, the mean gain in group 1 (active stretching) on performing the active knee extension range of motion (AKER) test was 5.7 degrees, whereas the mean gain in group 2 (passive stretching) was 3 degrees (P = .015). After 6 weeks of training, the mean gain in group 1 was 8.7 degrees , whereas the mean gain in group 2 was 5.3 degrees (P = .006). Twenty-two subjects were reassessed 4 weeks after the cessation of the training with the maintained gain of ROM in group 1 being 6.3 degrees , whereas the maintained gain in group 2 was 0.1 degrees (P = .003). Active stretching produced the greater gain in the AKER test, and the gain was almost completely maintained 4 weeks after the end of the training, which was not seen with the passive stretching group. Active stretching was more time efficient compared with the static stretching and needed a lower compliance to produce effects on flexibility.

  8. Influence of anterior segment biometric parameters on the anterior chamber angle width in eyes with angle closure.

    Science.gov (United States)

    Matsuki, Takaaki; Hirose, Fumitaka; Ito, Shin-Ichiro; Hata, Masayuki; Hirami, Yasuhiko; Kurimoto, Yasuo

    2015-02-01

    To predict angle narrowing in eyes with angle closure in a Japanese population using anterior segment optical coherence tomography (AS-OCT) quantitative parameters. AS-OCT was used to examine 118 eyes of 118 patients with angle closure and 40 eyes of 40 patients with open angle under dark conditions. After measuring the angle opening distance 500 (AOD500), anterior chamber depth, iris thickness (IT), iris convexity (IC), pupil diameter, anterior chamber width, and crystalline lens rise, multivariate regression analyses were performed for the AOD500 in each group. With the exception of IT, significant differences were observed between the AS-OCT parameters for the angle closure and open-angle groups. Anterior chamber depth, IT, and IC were the explanatory variables associated with AOD500 for each group (P≤0.001). A significant negative association was found between IT and IC only in the angle-closure group (Pchamber depth was a major mechanism of angle narrowing, and that both IT and IC had a strong impact on angle narrowing. Moreover, the negative association found between IT and IC in only the angle closure group indicated the existence of the stretch force placed on the iris by relative pupillary block.

  9. Genetic stretching factors in masseter muscle after orthognathic surgery.

    Science.gov (United States)

    Breuel, Wiebke; Krause, Micaela; Schneider, Matthias; Harzer, Winfried

    2013-09-01

    Up to 30% of patients relapse after orthognathic operations, and one reason might be incomplete neuromuscular adaptation of the masticatory muscles. Displacement of the mandible in sagittal or vertical directions, or both, leads to stretching or compression of these muscles. The aim of this study was to analyse stretching factors in 35 patients with retrognathism or prognathism of the mandible (Classes II and III). Tissue samples were taken from both sides of the masseter muscle (anterior and posterior) both before and 6 months after operation. Developmental myosin heavy chains MYH3 and MYH8, the fast and slow MYH 1, 2, and 7, and cyclo-oxygenase (COX) 2, forkhead transcription factor (FOX)O3a, calcineurin, and nuclear factor of activated T cells (NFAT)1c (stretching and regeneration-specific), were analysed by real time polymerase chain reaction (PCR). Correlations of Class II and III with sagittal and vertical cephalometric measurements ANB and ML-NL-angle were examined, and the results showed significant differences in amounts of MYH8 (pstretching indicators FOXO3a, calcineurin, and NFAT1c only in Class II patients. This means that stretching of the masseter muscle caused by lengthening of the mandible and raising of the bite in Class II patients was more likely to lead to relapse (similar to that in patients with open bite) than in Class III patients. In conclusion, deep bite should be reduced more by incisor intrusion than by skeletal opening. The focus in these patients should be directed towards physiotherapeutic strengthening of the muscles of mastication, and more consideration should be given to change in the vertical dimension. Copyright © 2012 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  10. Reliability and concurrent validity of knee angle measurement: smart phone app versus universal goniometer used by experienced and novice clinicians.

    Science.gov (United States)

    Milanese, Steven; Gordon, Susan; Buettner, Petra; Flavell, Carol; Ruston, Sally; Coe, Damien; O'Sullivan, William; McCormack, Steven

    2014-12-01

    The use of goniometers to measure joint angles is a key part of musculoskeletal practice. Recently smartphone goniometry applications have become available to clinicians. This study examined the intra- and inter-measurer reliability of novice and experienced clinicians and the concurrent validity of assessing knee range of motion using a smartphone application (the Knee Goniometer App (Ockendon(©))) (KGA) and a standard universal goniometer (UG). Three clinicians, each with over seven years' experience as musculoskeletal physiotherapists and three final year physiotherapy students, measured 18 different knee joint angles three times, using both the universal goniometer and the smartphone goniometric application. The universal goniometer and the smartphone goniometric application were reliable in repeated measures of knee flexion angles (average Concordance Correlation Coefficient (CCC) > 0.98) with both experienced clinicians and final year physiotherapy students (average CCCs > 0.96). There were no significant differences in reliability between the experienced and the novice practitioners for either device. Agreement between the universal goniometer and smartphone goniometric application measurements was also high for all examiners with average CCCs all above 0.96. The Standard Error of Measurement ranged between 1.56° (0.52-2.66) for the UG and 0.62° (0.29-1.27) for the KGA. The universal goniometer and the smartphone goniometric application were reliable in repeated measures of knee flexion angles. Smaller error of measurement values for the smartphone goniometric application might indicate superiority for assessment where clinical situations demand greater precision of knee range of motion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Reliability analysis of Cobb angle measurements of congenital scoliosis using X-ray and 3D-CT images.

    Science.gov (United States)

    Tauchi, Ryoji; Tsuji, Taichi; Cahill, Patrick J; Flynn, John M; Flynn, John M; Glotzbecker, Michael; El-Hawary, Ron; Heflin, John A; Imagama, Shiro; Joshi, Ajeya P; Nohara, Ayato; Ramirez, Norman; Roye, David P; Saito, Toshiki; Sawyer, Jeffrey R; Smith, John T; Kawakami, Noriaki

    2016-01-01

    Therapeutic decisions for congenital scoliosis rely on Cobb angle measurements on consecutive radiographs. There have been no studies documenting the variability of measuring the Cobb angle using 3D-CT images in children with congenital scoliosis. The purpose of this study was to compare the reliability and measurement errors using X-ray images and those utilizing 3D-CT images. The X-ray and 3D-CT images of 20 patients diagnosed with congenital scoliosis were used to assess the reliability of the digital 3D-CT images for the measurement of the Cobb angle. Thirteen observers performed the measurements, and each image was analyzed by each observer twice with a minimum interval of 1 week between measurements. The analysis of intraobserver variation was expressed as the mean absolute difference (MAD) and standard deviation (SD) between measurements and the intraclass correlation coefficient (IaCC) of the measurements. In addition, the interobserver variation was expressed as the MAD and interclass correlation coefficient (IeCC). The average MAD and SD was 4.5° and 3.2° by the X-ray method and 3.7° and 2.6° by the 3D-CT method. The intraobserver and interobserver intraclass ICCs were excellent in both methods (X-ray: IaCC 0.835-0.994 IeCC 0.847, 3D-CT: IaCC 0.819-0.996 IeCC 0.893). There was no significant MAD difference between X-ray and 3D-CT images in measuring each type of congenital scoliosis by each observer. Results of Cobb angle measurements in patients with congenital scoliosis using X-ray images in the frontal plane could be reproduced with almost the same measurement variance (3°-4° measurement error) using 3D-CT images. This suggests that X-ray images are clinically useful for assessing any type of congenital scoliosis about measuring the Cobb angle alone. However, since 3D-CT can provide more detailed images of the anterior and posterior components of malformed vertebrae, the volume of information that can be obtained by evaluating them has

  12. String Stretching, Frequency Modulation, and Banjo Clang

    OpenAIRE

    Politzer, David

    2014-01-01

    The banjo’s floating bridge, string break angle, and flexible drumhead all contribute to substantial audio range frequency modulation. From the world of electronic music synthesis, it is known that modulating higher frequency sounds with lower acoustic frequencies leads to metallic and bell-like tone. The mechanics of the banjo does just that quite naturally, modulating fundamentals and harmonics with the motion of the bridge. In technical terms, with a floating bridge, string stretching is f...

  13. Cluster Properties and Lorentz Angle Measurement in the 4-Layer Pixel Detector Using Cosmic Rays

    CERN Document Server

    The ATLAS collaboration

    2015-01-01

    The 4-layer Pixel Detector with the recently installed innermost layer called IBL saw its first data during the 2014 fall cosmic run. This note shows cluster properties and Lorentz angle fits for IBL sensors as well as old barrel layer sensors.

  14. Porosity determination in doped graphites using small-angle neutron scattering measurements

    Czech Academy of Sciences Publication Activity Database

    Mergia, K.; Stefanopoulos, K. L.; Martinez-Escandell, M.; Strunz, Pavel

    2012-01-01

    Roč. 340, č. 012102 (2012), s. 1-7 ISSN 1742-6588. [5th European Conference on Neutron Scattering . Praha, 17.07.2011-21.07.2011] Grant - others:European Commission(XE) 505925 Program:FP6 Institutional support: RVO:61389005 Keywords : doped graphites * porosity * small - angle neutron diffraction Subject RIV: BM - Solid Matter Physics ; Magnetism

  15. Effects of an Intervention on Children's Conceptions of Angle Measurement

    Science.gov (United States)

    Culllen, Amanda L.; Cullen, Craig J.; O'Hanlon, Wendy A.

    2018-01-01

    In this article, we report on the findings of a study investigating the effects of an intervention designed to provide students in Grades 3-5 with opportunities to work with dynamic and static models of angles in a dynamic geometry environment. We utilized the microgenetic method in this cross-sectional study to observe and document changes in…

  16. Contact Angle Goniometer

    Data.gov (United States)

    Federal Laboratory Consortium — Description:The FTA32 goniometer provides video-based contact angle and surface tension measurement. Contact angles are measured by fitting a mathematical expression...

  17. BSDB: the Biomolecule Stretching Database

    Science.gov (United States)

    Cieplak, Marek; Sikora, Mateusz; Sulkowska, Joanna I.; Witkowski, Bartlomiej

    2011-03-01

    Despite more than a decade of experiments on single biomolecule manipulation, mechanical properties of only several scores of proteins have been measured. A characteristic scale of the force of resistance to stretching, Fmax , has been found to range between ~ 10 and 480 pN. The Biomolecule Stretching Data Base (BSDB) described here provides information about expected values of Fmax for, currently, 17 134 proteins. The values and other characteristics of the unfolding proces, including the nature of identified mechanical clamps, are available at www://info.ifpan.edu.pl/BSDB/. They have been obtained through simulations within a structure-based model which correlates satisfactorily with the available experimental data on stretching. BSDB also lists experimental data and results of the existing all-atom simulations. The database offers a Protein-Data-Bank-wide guide to mechano-stability of proteins. Its description is provided by a forthcoming Nucleic Acids Research paper. Supported by EC FUNMOL project FP7-NMP-2007-SMALL-1, and European Regional Development Fund: Innovative Economy (POIG.01.01.02-00-008/08).

  18. Model Deformation and Optical Angle of Attack Measurement System in the NASA Ames Unitary Plan Wind Tunnel

    Science.gov (United States)

    Kushner, Laura K.; Drain, Bethany A.; Schairer, Edward T.; Heineck, James T.; Bell, James H.

    2017-01-01

    Both AoA and MDM measurements can be made using an optical system that relies on photogrammetry. Optical measurements are being requested by customers in wind tunnels with increasing frequency due to their non-intrusive nature and recent hardware and software advances that allow measurements to become near real time. The NASA Ames Research Center Unitary Plan Wind Tunnel is currently developing a system based on photogrammetry to measure model deformation and model angle of attack. This paper describes the new system, its development, its use on recent tests and plans to further develop the system.

  19. Omnidirectional angle constraint based dynamic six-degree-of-freedom measurement for spacecraft rendezvous and docking simulation

    Science.gov (United States)

    Shi, Shendong; Yang, Linghui; Lin, Jiarui; Ren, Yongjie; Guo, Siyang; Zhu, Jigui

    2018-04-01

    In this paper we present a novel omnidirectional angle constraint based method for dynamic 6-DOF (six-degree-of-freedom) measurement. A photoelectric scanning measurement network is employed whose photoelectric receivers are fixed on the measured target. They are in a loop distribution and receive signals from rotating transmitters. Each receiver indicates an angle constraint direction. Therefore, omnidirectional angle constraints can be constructed in each rotation cycle. By solving the constrained optimization problem, 6-DOF information can be obtained, which is independent of traditional rigid coordinate system transformation. For the dynamic error caused by the measurement principle, we present an interpolation method for error reduction. Accuracy testing is performed in an 8  ×  8 m measurement area with four transmitters. The experimental results show that the dynamic orientation RMSEs (root-mean-square errors) are reduced from 0.077° to 0.044°, 0.040° to 0.030° and 0.032° to 0.015° in the X, Y, and Z axes, respectively. The dynamic position RMSE is reduced from 0.65 mm to 0.24 mm. This method is applied during the final approach phase in the rendezvous and docking simulation. Experiments under different conditions are performed in a 40  ×  30 m area, and the method is verified to be effective.

  20. Angle of insertion and confirmation of angles measured after in vitro implantation during laminar vertebral stabilization in vertebral columns obtained from canine cadavers.

    Science.gov (United States)

    Knell, Sebastian C; Kircher, Patrick; Dennler, Matthias; Montavon, Pierre M; Voss, Katja; Hurter, Karin

    2011-12-01

    To determine angles of insertion for laminar vertebral fixation of L1 and L2 by use of a locking plate in dogs and to confirm screw placement by use of computed tomography (CT). Vertebral specimens harvested from 8 canine cadavers. The point of insertion and minimum and maximum insertion angles for laminar and facet screws for laminar vertebral stabilization were determined by use of CT. A precontoured locking plate was then placed by use of 1 locking screw in the lamina of each lumbar vertebra and 1 nonlocking screw in the facet joint. The position and angle of the screws were examined by use of CT, and penetration into the vertebral canal was recorded. Mean ± SD insertion angles for L1 and L2 were 18 ± 4° and 21 ± 5° toward the vertebral canal and 11 ± 4.4° and 10 ± 3° in a dorsal direction, respectively. Insertion angles for the facet joint were between 24 ± 4° ventrally and 12 ± 2° dorsally. Insertion of the screw did not penetrate the vertebral canal for 23 of 24 (96%) screws. For 23 of 24 inserted screws, the previously determined angle was maintained and purchase of bone and cortices was satisfactory. Placement of laminar and facet screws in canine vertebrae was possible and can be performed safely if angles of insertion determined pre-operatively via CT are maintained.

  1. DEVELOPMENT OF NEW HYPERSPECTRAL ANGLE INDEX FOR ESTIMATION OF SOIL MOISTURE USING IN SITU SPECTRAL MEASURMENTS

    Directory of Open Access Journals (Sweden)

    M. R. Mobasheri

    2013-10-01

    Full Text Available Near-surface soil moisture is one of the crucial variables in hydrological processes, which influences the exchange of water and energy fluxes at the land surface/atmosphere interface. Accurate estimate of the spatial and temporal variations of soil moisture is critical for numerous environmental studies. On the other hand, information of distributed soil moisture at large scale with reasonable spatial and temporal resolution is required for improving climatic and hydrologic modeling and prediction. The advent of hyperspectral imagery has allowed examination of continuous spectra not possible with isolated bands in multispectral imagery. In addition to high spectral resolution for individual band analyses, the contiguous narrow bands show characteristics of related absorption features, such as effects of strong absorptions on the band depths of adjacent absorptions. Our objective in this study was to develop a new spectral angle index to estimate soil moisture based on spectral region (350 and 2500 nm. In this paper, using spectral observations made by ASD Spectroradiometer for predicting soil moisture content, two soil indices were also investigated involving the Perpendicular Drought Index (PDI, NMDI (Normalized Multi-band Drought Index indices. Correlation and regression analysis showed a high relationship between PDI and the soil moisture percent (R2 = 0.9537 and NMDI (R2 = 0.9335. Furthermore, we also simulated these data according to the spectral range of some sensors such as MODIS, ASTER, ALI and ETM+. Indices relevant these sensors have high correlation with soil moisture data. Finally, we proposed a new angle index which shows significant relationship between new angle index and the soil moisture percentages (R2 = 0.9432.angle index relevant bands 3, 4, 5, 6, 7 MODIS also showing high accuracy in estimation of soil moisture (R2 = 0.719.

  2. A New Approach to Measure Contact Angle and Evaporation Rate with Flow Visualization in a Sessile Drop

    Science.gov (United States)

    Zhang, Nengli; Chao, David F.

    1999-01-01

    The contact angle and the spreading process of sessile droplet are very crucial in many technological processes, such as painting and coating, material processing, film-cooling applications, lubrication, and boiling. Additionally, as it is well known that the surface free energy of polymers cannot be directly, measured for their elastic and viscous restraints. The measurements of liquid contact angle on the polymer surfaces become extremely important to evaluate the surface free energy of polymers through indirect methods linked with the contact angle data. Due to the occurrence of liquid evaporation is inevitable, the effects of evaporation on the contact angle and the spreading become very important for more complete understanding of these processes. It is of interest to note that evaporation can induce Marangoni-Benard convection in sessile drops. However, the impacts of the inside convection on the wetting and spreading processes are not clear. The experimental methods used by previous investigators cannot simultaneously measure the spreading process and visualize the convection inside. Based on the laser shadowgraphic system used by the present author, a very simple optical procedure has been developed to measure the contact angle, the spreading speed, the evaporation rate, and to visualize inside convection of a sessile drop simultaneously. Two CCD cameras were used to synchronously record the real-time diameter of the sessile drop, which is essential for determination of both spreading speed and evaporation rate, and the shadowgraphic image magnified by the sessile drop acting as a thin plano-convex lens. From the shadowgraph, the inside convection of the drop can be observed if any and the image outer diameter, which linked to the drop profile, can be measured. Simple equations have been derived to calculate the drop profile, including the instantaneous contact angle, height, and volume of the sessile drop, as well as the evaporation rate. The influence of

  3. Equilibrium properties of the fluxoid lattice in single-crystal niobium. II. Small-angle neutron-diffraction measurements

    International Nuclear Information System (INIS)

    Christen, D.K.; Kerchner, H.R.; Sekula, S.T.; Thorel, P.

    1980-01-01

    A small-angle neutron-diffraction technique has been used to measure several properties of the flux-line lattice (FLL) in a single-crystal sphere of pure niobium. For applied fields parallel to several crystallographic directions in the (100) and (110) planes, the low-field mixed state and intermediate mixed state were investigated. From these results, the orientation dependence of the low-field critical parameters H/sub c/1 and B 0 are deduced. The consistency of these results is verified by comparison with direct measurements of the equilibrium misalignment angle between the applied-field direction and the fluxoid axes. In addition, results are reported which extend the available information concerning correlations between the FLL and crystal lattice (CL) symmetry properties

  4. Joint angle measurement: a comparative study of the reliability of goniometry and wire tracing for the hand.

    Science.gov (United States)

    Ellis, B; Bruton, A; Goddard, J R

    1997-11-01

    To compare the inter- and intra-rater reliability of goniometry and wire tracing in the assessment of finger joint angles: metacarpo-phalangeal (MCPJ), proximal (PIPJ) and distal interphalangeal joints (DIPJ). Twenty occupational therapists and 20 physiotherapists with a range of clinical experience were recruited from nine different centres. Using a masked goniometer and wire tracing they carried out repeated assessments of the MCPJ, PIPJ and DIPJ of a normal subject fixed in two different positions. The two assessment methods did not produce comparable angle measurements. Goniometry showed greater inter- and intra-rater reliability than wire tracing. Regardless of the assessment tool, the repeatability coefficient indicated that DIPJ measurement was less reliable than the other joints. Clinical and specialist experience did not affect reliability. Although both goniometry and wire tracing show limitations as reliable assessment tools, it is recommended that where possible goniometry should be used.

  5. A New Approach to Micro-arcsecond Astrometry with SIM Allowing Early Mission Narrow Angle Measurements of Compelling Astronomical Targets

    Science.gov (United States)

    Shaklan, Stuart; Pan, Xiaopei

    2004-01-01

    The Space Interferometry Mission (SIM) is capable of detecting and measuring the mass of terrestrial planets around stars other than our own. It can measure the mass of black holes and the visual orbits of radio and x-ray binary sources. SIM makes possible a new level of understanding of complex astrophysical processes. SIM achieves its high precision in the so-called narrow-angle regime. This is defined by a 1 degree diameter field in which the position of a target star is measured with respect to a set of reference stars. The observation is performed in two parts: first, SIM observes a grid of stars that spans the full sky. After a few years, repeated observations of the grid allow one to determine the orientation of the interferometer baseline. Second, throughout the mission, SIM periodically observes in the narrow-angle mode. Every narrow-angle observation is linked to the grid to determine the precise attitude and length of the baseline. The narrow angle process demands patience. It is not until five years after launch that SIM achieves its ultimate accuracy of 1 microarcsecond. The accuracy is degraded by a factor of approx. 2 at mid-mission. Our work proposes a technique for narrow angle astrometry that does not rely on the measurement of grid stars. This technique, called Gridless Narrow Angle Astrometry (GNAA) can obtain microarcsecond accuracy and can detect extra-solar planets and other exciting objects with a few days of observation. It can be applied as early as during the first six months of in-orbit calibration (IOC). The motivations for doing this are strong. First, and obviously, it is an insurance policy against a catastrophic mid-mission failure. Second, at the start of the mission, with several space-based interferometers in the planning or implementation phase, NASA will be eager to capture the public's imagination with interferometric science. Third, early results and a technique that can duplicate those results throughout the mission will

  6. A new beam emission polarimetry diagnostic for measuring the magnetic field line angle at the plasma edge of ASDEX Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Viezzer, E., E-mail: eleonora.viezzer@ipp.mpg.de, E-mail: eviezzer@us.es [Max-Planck-Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching (Germany); Department of Atomic, Molecular, and Nuclear Physics, University of Seville, Avda. Reina Mercedes, 41012 Seville (Spain); Dux, R.; Dunne, M. G. [Max-Planck-Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching (Germany)

    2016-11-15

    A new edge beam emission polarimetry diagnostic dedicated to the measurement of the magnetic field line angle has been installed on the ASDEX Upgrade tokamak. The new diagnostic relies on the motional Stark effect and is based on the simultaneous measurement of the polarization direction of the linearly polarized π (parallel to the electric field) and σ (perpendicular to the electric field) lines of the Balmer line D{sub α}. The technical properties of the system are described. The calibration procedures are discussed and first measurements are presented.

  7. A new beam emission polarimetry diagnostic for measuring the magnetic field line angle at the plasma edge of ASDEX Upgrade.

    Science.gov (United States)

    Viezzer, E; Dux, R; Dunne, M G

    2016-11-01

    A new edge beam emission polarimetry diagnostic dedicated to the measurement of the magnetic field line angle has been installed on the ASDEX Upgrade tokamak. The new diagnostic relies on the motional Stark effect and is based on the simultaneous measurement of the polarization direction of the linearly polarized π (parallel to the electric field) and σ (perpendicular to the electric field) lines of the Balmer line D α . The technical properties of the system are described. The calibration procedures are discussed and first measurements are presented.

  8. Comparison of different passive knee extension torque-angle assessments

    International Nuclear Information System (INIS)

    Freitas, Sandro R; Vaz, João R; Bruno, Paula M; Valamatos, Maria J; Mil-Homens, Pedro

    2013-01-01

    Previous studies have used isokinetic dynamometry to assess joint torques and angles during passive extension of the knee, often without reporting upon methodological errors and reliability outcomes. In addition, the reliability of the techniques used to measure passive knee extension torque-angle and the extent to which reliability may be affected by the position of the subjects is also unclear. Therefore, we conducted an analysis of the intra- and inter-session reliability of two methods of assessing passive knee extension: (A) a 2D kinematic analysis coupled to a custom-made device that enabled the direct measurement of resistance to stretch and (B) an isokinetic dynamometer used in two testing positions (with the non-tested thigh either flexed at 45° or in the neutral position). The intra-class correlation coefficients (ICCs) of torque, the slope of the torque-angle curve, and the parameters of the mathematical model that were fit to the torque-angle data for the above conditions were measured in sixteen healthy male subjects (age: 21.4 ± 2.1 yr; BMI: 22.6 ± 3.3 kg m −2 ; tibial length: 37.4 ± 3.4 cm). The results found were: (1) methods A and B led to distinctly different torque-angle responses; (2) passive torque-angle relationship and stretch tolerance were influenced by the position of the non-tested thigh; and (3) ICCs obtained for torque were higher than for the slope and for the mathematical parameters that were fit to the torque-angle curve. In conclusion, the measurement method that is used and the positioning of subjects can influence the passive knee extension torque-angle outcome. (paper)

  9. Measurement of the weak mixing angle with the Drell-Yan process in proton-proton collisions at the LHC

    CERN Document Server

    Chatrchyan, Serguei; Sirunyan, Albert M; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hammer, Josef; Haensel, Stephan; Hoch, Michael; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Krammer, Manfred; Liko, Dietrich; Mikulec, Ivan; Pernicka, Manfred; Rahbaran, Babak; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Taurok, Anton; Teischinger, Florian; Trauner, Christine; Wagner, Philipp; Waltenberger, Wolfgang; Walzel, Gerhard; Widl, Edmund; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Bansal, Sunil; Benucci, Leonardo; De Wolf, Eddi A; Janssen, Xavier; Luyckx, Sten; Maes, Thomas; Mucibello, Luca; Ochesanu, Silvia; Roland, Benoit; Rougny, Romain; Selvaggi, Michele; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Gonzalez Suarez, Rebeca; Kalogeropoulos, Alexis; Maes, Michael; Olbrechts, Annik; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Charaf, Otman; Clerbaux, Barbara; De Lentdecker, Gilles; Dero, Vincent; Gay, Arnaud; Hammad, Gregory Habib; Hreus, Tomas; Marage, Pierre Edouard; Raval, Amita; Thomas, Laurent; Vander Marcken, Gil; Vander Velde, Catherine; Vanlaer, Pascal; Adler, Volker; Cimmino, Anna; Costantini, Silvia; Grunewald, Martin; Klein, Benjamin; Lellouch, Jérémie; Marinov, Andrey; Mccartin, Joseph; Ryckbosch, Dirk; Thyssen, Filip; Tytgat, Michael; Vanelderen, Lukas; Verwilligen, Piet; Walsh, Sinead; Zaganidis, Nicolas; Basegmez, Suzan; Bruno, Giacomo; Caudron, Julien; Ceard, Ludivine; Cortina Gil, Eduardo; De Favereau De Jeneret, Jerome; Delaere, Christophe; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Grégoire, Ghislain; Hollar, Jonathan; Lemaitre, Vincent; Liao, Junhui; Militaru, Otilia; Nuttens, Claude; Ovyn, Severine; Pagano, Davide; Pin, Arnaud; Piotrzkowski, Krzysztof; Schul, Nicolas; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Alves, Gilvan; Brito, Lucas; De Jesus Damiao, Dilson; Pol, Maria Elena; Henrique Gomes E Souza, Moacyr; Aldá Júnior, Walter Luiz; Carvalho, Wagner; Da Costa, Eliza Melo; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Oguri, Vitor; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Silva Do Amaral, Sheila Mara; Sznajder, Andre; Souza Dos Anjos, Tiago; Bernardes, Cesar Augusto; De Almeida Dias, Flavia; Tomei, Thiago; De Moraes Gregores, Eduardo; Lagana, Caio; Da Cunha Marinho, Franciole; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Darmenov, Nikolay; Genchev, Vladimir; Iaydjiev, Plamen; Piperov, Stefan; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Tcholakov, Vanio; Trayanov, Rumen; Vutova, Mariana; Dimitrov, Anton; Hadjiiska, Roumyana; Karadzhinova, Aneliya; Kozhuharov, Venelin; Litov, Leander; Mateev, Matey; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Jiang, Chun-Hua; Liang, Dong; Liang, Song; Meng, Xiangwei; Tao, Junquan; Wang, Jian; Wang, Jian; Wang, Xianyou; Wang, Zheng; Xiao, Hong; Xu, Ming; Zang, Jingjing; Zhang, Zhen; Ban, Yong; Guo, Shuang; Guo, Yifei; Li, Wenbo; Mao, Yajun; Qian, Si-Jin; Teng, Haiyun; Zhu, Bo; Zou, Wei; Cabrera, Andrés; Gomez Moreno, Bernardo; Ocampo Rios, Alberto Andres; Osorio Oliveros, Andres Felipe; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Lelas, Karlo; Plestina, Roko; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Dzelalija, Mile; Kovac, Marko; Brigljevic, Vuko; Duric, Senka; Kadija, Kreso; Luetic, Jelena; Morovic, Srecko; Attikis, Alexandros; Galanti, Mario; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Ellithi Kamel, Ali; Khalil, Shaaban; Mahmoud, Mohammed; Radi, Amr; Hektor, Andi; Kadastik, Mario; Müntel, Mait; Raidal, Martti; Rebane, Liis; Tiko, Andres; Azzolini, Virginia; Eerola, Paula; Fedi, Giacomo; Voutilainen, Mikko; Czellar, Sandor; Härkönen, Jaakko; Heikkinen, Mika Aatos; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Ungaro, Donatella; Wendland, Lauri; Banzuzi, Kukka; Karjalainen, Ahti; Korpela, Arja; Tuuva, Tuure; Sillou, Daniel; Besancon, Marc; Choudhury, Somnath; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Malcles, Julie; Marionneau, Matthieu; Millischer, Laurent; Rander, John; Rosowsky, André; Shreyber, Irina; Titov, Maksym; Baffioni, Stephanie; Beaudette, Florian; Benhabib, Lamia; Bianchini, Lorenzo; Bluj, Michal; Broutin, Clementine; Busson, Philippe; Charlot, Claude; Dahms, Torsten; Dobrzynski, Ludwik; Elgammal, Sherif; Granier de Cassagnac, Raphael; Haguenauer, Maurice; Miné, Philippe; Mironov, Camelia; Ochando, Christophe; Paganini, Pascal; Sabes, David; Salerno, Roberto; Sirois, Yves; Thiebaux, Christophe; Veelken, Christian; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Bloch, Daniel; Bodin, David; Brom, Jean-Marie; Cardaci, Marco; Chabert, Eric Christian; Collard, Caroline; Conte, Eric; Drouhin, Frédéric; Ferro, Cristina; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Greder, Sebastien; Juillot, Pierre; Karim, Mehdi; Le Bihan, Anne-Catherine; Mikami, Yoshinari; Van Hove, Pierre; Fassi, Farida; Mercier, Damien; Baty, Clement; Beauceron, Stephanie; Beaupere, Nicolas; Bedjidian, Marc; Bondu, Olivier; Boudoul, Gaelle; Boumediene, Djamel; Brun, Hugues; Chasserat, Julien; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Fay, Jean; Gascon, Susan; Ille, Bernard; Kurca, Tibor; Le Grand, Thomas; Lethuillier, Morgan; Mirabito, Laurent; Perries, Stephane; Sordini, Viola; Tosi, Silvano; Tschudi, Yohann; Verdier, Patrice; Viret, Sébastien; Lomidze, David; Anagnostou, Georgios; Beranek, Sarah; Edelhoff, Matthias; Feld, Lutz; Heracleous, Natalie; Hindrichs, Otto; Jussen, Ruediger; Klein, Katja; Merz, Jennifer; Mohr, Niklas; Ostapchuk, Andrey; Perieanu, Adrian; Raupach, Frank; Sammet, Jan; Schael, Stefan; Sprenger, Daniel; Weber, Hendrik; Weber, Martin; Wittmer, Bruno; Zhukov, Valery; Ata, Metin; Dietz-Laursonn, Erik; Erdmann, Martin; Hebbeker, Thomas; Heidemann, Carsten; Hinzmann, Andreas; Hoepfner, Kerstin; Klimkovich, Tatsiana; Klingebiel, Dennis; Kreuzer, Peter; Lanske, Dankfried; Lingemann, Joschka; Magass, Carsten; Merschmeyer, Markus; Meyer, Arnd; Papacz, Paul; Pieta, Holger; Reithler, Hans; Schmitz, Stefan Antonius; Sonnenschein, Lars; Steggemann, Jan; Teyssier, Daniel; Bontenackels, Michael; Cherepanov, Vladimir; Davids, Martina; Flügge, Günter; Geenen, Heiko; Giffels, Manuel; Haj Ahmad, Wael; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Kuessel, Yvonne; Linn, Alexander; Nowack, Andreas; Perchalla, Lars; Pooth, Oliver; Rennefeld, Jörg; Sauerland, Philip; Stahl, Achim; Tornier, Daiske; Zoeller, Marc Henning; Aldaya Martin, Maria; Behrenhoff, Wolf; Behrens, Ulf; Bergholz, Matthias; Bethani, Agni; Borras, Kerstin; Cakir, Altan; Campbell, Alan; Castro, Elena; Dammann, Dirk; Eckerlin, Guenter; Eckstein, Doris; Flossdorf, Alexander; Flucke, Gero; Geiser, Achim; Hauk, Johannes; Jung, Hannes; Kasemann, Matthias; Katsas, Panagiotis; Kleinwort, Claus; Kluge, Hannelies; Knutsson, Albert; Krämer, Mira; Krücker, Dirk; Kuznetsova, Ekaterina; Lange, Wolfgang; Lohmann, Wolfgang; Lutz, Benjamin; Mankel, Rainer; Marienfeld, Markus; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mnich, Joachim; Mussgiller, Andreas; Olzem, Jan; Petrukhin, Alexey; Pitzl, Daniel; Raspereza, Alexei; Rosin, Michele; Schmidt, Ringo; Schoerner-Sadenius, Thomas; Sen, Niladri; Spiridonov, Alexander; Stein, Matthias; Tomaszewska, Justyna; Walsh, Roberval; Wissing, Christoph; Autermann, Christian; Blobel, Volker; Bobrovskyi, Sergei; Draeger, Jula; Enderle, Holger; Gebbert, Ulla; Görner, Martin; Hermanns, Thomas; Kaschube, Kolja; Kaussen, Gordon; Kirschenmann, Henning; Klanner, Robert; Lange, Jörn; Mura, Benedikt; Naumann-Emme, Sebastian; Nowak, Friederike; Pietsch, Niklas; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schlieckau, Eike; Schröder, Matthias; Schum, Torben; Stadie, Hartmut; Steinbrück, Georg; Thomsen, Jan; Barth, Christian; Bauer, Julia; Berger, Joram; Buege, Volker; Chwalek, Thorsten; De Boer, Wim; Dierlamm, Alexander; Dirkes, Guido; Feindt, Michael; Gruschke, Jasmin; Guthoff, Moritz; Hackstein, Christoph; Hartmann, Frank; Heinrich, Michael; Held, Hauke; Hoffmann, Karl-Heinz; Honc, Simon; Katkov, Igor; Komaragiri, Jyothsna Rani; Kuhr, Thomas; Martschei, Daniel; Mueller, Steffen; Müller, Thomas; Niegel, Martin; Oberst, Oliver; Oehler, Andreas; Ott, Jochen; Peiffer, Thomas; Quast, Gunter; Rabbertz, Klaus; Ratnikov, Fedor; Ratnikova, Natalia; Renz, Manuel; Röcker, Steffen; Saout, Christophe; Scheurer, Armin; Schieferdecker, Philipp; Schilling, Frank-Peter; Schmanau, Mike; Schott, Gregory; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Troendle, Daniel; Wagner-Kuhr, Jeannine; Weiler, Thomas; Zeise, Manuel; Ziebarth, Eva Barbara; Daskalakis, Georgios; Geralis, Theodoros; Kesisoglou, Stilianos; Kyriakis, Aristotelis; Loukas, Demetrios; Manolakos, Ioannis; Markou, Athanasios; Markou, Christos; Mavrommatis, Charalampos; Ntomari, Eleni; Petrakou, Eleni; Gouskos, Loukas; Mertzimekis, Theodoros; Panagiotou, Apostolos; Saoulidou, Niki; Stiliaris, Efstathios; Evangelou, Ioannis; Foudas, Costas; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Patras, Vaios; Triantis, Frixos A; Aranyi, Attila; Bencze, Gyorgy; Boldizsar, Laszlo; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Kapusi, Anita; Krajczar, Krisztian; Sikler, Ferenc; Veres, Gabor Istvan; Vesztergombi, Gyorgy; Beni, Noemi; Molnar, Jozsef; Palinkas, Jozsef; Szillasi, Zoltan; Veszpremi, Viktor; Karancsi, János; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Beri, Suman Bala; Bhatnagar, Vipin; Dhingra, Nitish; Gupta, Ruchi; Jindal, Monika; Kaur, Manjit; Kohli, Jatinder Mohan; Mehta, Manuk Zubin; Nishu, Nishu; Saini, Lovedeep Kaur; Sharma, Archana; Singh, Anil; Singh, Jasbir; Singh, Supreet Pal; Ahuja, Sudha; Choudhary, Brajesh C; Gupta, Pooja; Kumar, Ashok; Kumar, Arun; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Shivpuri, Ram Krishen; Banerjee, Sunanda; Bhattacharya, Satyaki; Dutta, Suchandra; Gomber, Bhawna; Jain, Sandhya; Jain, Shilpi; Khurana, Raman; Sarkar, Subir; Choudhury, Rajani Kant; Dutta, Dipanwita; Kailas, Swaminathan; Kumar, Vineet; Mehta, Pourus; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Aziz, Tariq; Guchait, Monoranjan; Gurtu, Atul; Maity, Manas; Majumder, Devdatta; Majumder, Gobinda; Mazumdar, Kajari; Mohanty, Gagan Bihari; Parida, Bibhuti; Saha, Anirban; Sudhakar, Katta; Wickramage, Nadeesha; Banerjee, Sudeshna; Dugad, Shashikant; Mondal, Naba Kumar; Arfaei, Hessamaddin; Bakhshiansohi, Hamed; Etesami, Seyed Mohsen; Fahim, Ali; Hashemi, Majid; Hesari, Hoda; Jafari, Abideh; Khakzad, Mohsen; Mohammadi, Abdollah; Mohammadi Najafabadi, Mojtaba; Paktinat Mehdiabadi, Saeid; Safarzadeh, Batool; Zeinali, Maryam; Abbrescia, Marcello; Barbone, Lucia; Calabria, Cesare; Colaleo, Anna; Creanza, Donato; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Lusito, Letizia; Maggi, Giorgio; Maggi, Marcello; Manna, Norman; Marangelli, Bartolomeo; My, Salvatore; Nuzzo, Salvatore; Pacifico, Nicola; Pierro, Giuseppe Antonio; Pompili, Alexis; Pugliese, Gabriella; Romano, Francesco; Roselli, Giuseppe; Selvaggi, Giovanna; Silvestris, Lucia; Trentadue, Raffaello; Tupputi, Salvatore; Zito, Giuseppe; Abbiendi, Giovanni; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Giunta, Marina; Grandi, Claudio; Marcellini, Stefano; Masetti, Gianni; Meneghelli, Marco; Montanari, Alessandro; Navarria, Francesco; Odorici, Fabrizio; Perrotta, Andrea; Primavera, Federica; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gianni; Travaglini, Riccardo; Albergo, Sebastiano; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Frosali, Simone; Gallo, Elisabetta; Gonzi, Sandro; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Benussi, Luigi; Bianco, Stefano; Colafranceschi, Stefano; Fabbri, Franco; Piccolo, Davide; Fabbricatore, Pasquale; Musenich, Riccardo; Benaglia, Andrea; De Guio, Federico; Di Matteo, Leonardo; Gennai, Simone; Ghezzi, Alessio; Malvezzi, Sandra; Martelli, Arabella; Massironi, Andrea; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Sala, Silvano; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Carrillo Montoya, Camilo Andres; Cavallo, Nicola; De Cosa, Annapaola; Dogangun, Oktay; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lista, Luca; Merola, Mario; Paolucci, Pierluigi; Azzi, Patrizia; Bacchetta, Nicola; Bellan, Paolo; Bisello, Dario; Branca, Antonio; Carlin, Roberto; Checchia, Paolo; Dorigo, Tommaso; Dosselli, Umberto; Fanzago, Federica; Gasparini, Fabrizio; Gasparini, Ugo; Gozzelino, Andrea; Lacaprara, Stefano; Lazzizzera, Ignazio; Margoni, Martino; Mazzucato, Mirco; Meneguzzo, Anna Teresa; Nespolo, Massimo; Perrozzi, Luca; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Vanini, Sara; Zotto, Pierluigi; Zumerle, Gianni; Baesso, Paolo; Berzano, Umberto; Ratti, Sergio P; Riccardi, Cristina; Torre, Paola; Vitulo, Paolo; Viviani, Claudio; Biasini, Maurizio; Bilei, Gian Mario; Caponeri, Benedetta; Fanò, Livio; Lariccia, Paolo; Lucaroni, Andrea; Mantovani, Giancarlo; Menichelli, Mauro; Nappi, Aniello; Romeo, Francesco; Santocchia, Attilio; Taroni, Silvia; Valdata, Marisa; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; D'Agnolo, Raffaele Tito; Dell'Orso, Roberto; Fiori, Francesco; Foà, Lorenzo; Giassi, Alessandro; Kraan, Aafke; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Palla, Fabrizio; Palmonari, Francesco; Segneri, Gabriele; Serban, Alin Titus; Spagnolo, Paolo; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; Del Re, Daniele; Di Marco, Emanuele; Diemoz, Marcella; Franci, Daniele; Grassi, Marco; Longo, Egidio; Meridiani, Paolo; Nourbakhsh, Shervin; Organtini, Giovanni; Pandolfi, Francesco; Paramatti, Riccardo; Rahatlou, Shahram; Sigamani, Michael; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Biino, Cristina; Botta, Cristina; Cartiglia, Nicolo; Castello, Roberto; Costa, Marco; Demaria, Natale; Graziano, Alberto; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Musich, Marco; Obertino, Maria Margherita; Pastrone, Nadia; Pelliccioni, Mario; Potenza, Alberto; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Sola, Valentina; Solano, Ada; Staiano, Amedeo; Vilela Pereira, Antonio; Belforte, Stefano; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; Marone, Matteo; Montanino, Damiana; Penzo, Aldo; Heo, Seong Gu; Nam, Soon-Kwon; Chang, Sunghyun; Chung, Jin Hyuk; Kim, Dong Hee; Kim, Gui Nyun; Kim, Ji Eun; Kong, Dae Jung; Park, Hyangkyu; Ro, Sang-Ryul; Son, Dong-Chul; Son, Taejin; Kim, Jae Yool; Kim, Zero Jaeho; Song, Sanghyeon; Jo, Hyun Yong; Choi, Suyong; Gyun, Dooyeon; Hong, Byung-Sik; Jo, Mihee; Kim, Hyunchul; Kim, Tae Jeong; Lee, Kyong Sei; Moon, Dong Ho; Park, Sung Keun; Seo, Eunsung; Sim, Kwang Souk; Choi, Minkyoo; Kang, Seokon; Kim, Hyunyong; Kim, Ji Hyun; Park, Chawon; Park, Inkyu; Park, Sangnam; Ryu, Geonmo; Cho, Yongjin; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Kim, Min Suk; Lee, Byounghoon; Lee, Jongseok; Lee, Sungeun; Seo, Hyunkwan; Yu, Intae; Bilinskas, Mykolas Jurgis; Grigelionis, Ignas; Janulis, Mindaugas; Martisiute, Dalia; Petrov, Pavel; Polujanskas, Mindaugas; Sabonis, Tomas; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-de La Cruz, Ivan; Lopez-Fernandez, Ricardo; Magaña Villalba, Ricardo; Martínez-Ortega, Jorge; Sánchez-Hernández, Alberto; Villasenor-Cendejas, Luis Manuel; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Salazar Ibarguen, Humberto Antonio; Casimiro Linares, Edgar; Morelos Pineda, Antonio; Reyes-Santos, Marco A; Krofcheck, David; Tam, Jason; Butler, Philip H; Doesburg, Robert; Silverwood, Hamish; Ahmad, Muhammad; Ahmed, Ijaz; Asghar, Muhammad Irfan; Hoorani, Hafeez R; Khalid, Shoaib; Khan, Wajid Ali; Khurshid, Taimoor; Qazi, Shamona; Shah, Mehar Ali; Shoaib, Muhammad; Brona, Grzegorz; Cwiok, Mikolaj; Dominik, Wojciech; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Frueboes, Tomasz; Gokieli, Ryszard; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Wrochna, Grzegorz; Zalewski, Piotr; Almeida, Nuno; Bargassa, Pedrame; David Tinoco Mendes, Andre; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Musella, Pasquale; Nayak, Aruna; Pela, Joao; Ribeiro, Pedro Quinaz; Seixas, Joao; Varela, Joao; Afanasiev, Serguei; Belotelov, Ivan; Bunin, Pavel; Gavrilenko, Mikhail; Golutvin, Igor; Kamenev, Alexey; Karjavin, Vladimir; Kozlov, Guennady; Lanev, Alexander; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Smirnov, Vitaly; Volodko, Anton; Zarubin, Anatoli; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Vorobyev, Andrey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Kirsanov, Mikhail; Krasnikov, Nikolai; Matveev, Viktor; Pashenkov, Anatoli; Toropin, Alexander; Troitsky, Sergey; Epshteyn, Vladimir; Erofeeva, Maria; Gavrilov, Vladimir; Kaftanov, Vitali; Kossov, Mikhail; Krokhotin, Andrey; Lychkovskaya, Natalia; Popov, Vladimir; Safronov, Grigory; Semenov, Sergey; Stolin, Viatcheslav; Vlasov, Evgueni; Zhokin, Alexander; Belyaev, Andrey; Boos, Edouard; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Kodolova, Olga; Lokhtin, Igor; Markina, Anastasia; Obraztsov, Stepan; Perfilov, Maxim; Petrushanko, Sergey; Sarycheva, Ludmila; Savrin, Viktor; Snigirev, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Vinogradov, Alexey; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Grishin, Viatcheslav; Kachanov, Vassili; Konstantinov, Dmitri; Korablev, Andrey; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Djordjevic, Milos; Ekmedzic, Marko; Krpic, Dragomir; Milosevic, Jovan; Aguilar-Benitez, Manuel; Alcaraz Maestre, Juan; Arce, Pedro; Battilana, Carlo; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Diez Pardos, Carmen; Domínguez Vázquez, Daniel; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Ferrando, Antonio; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Merino, Gonzalo; Puerta Pelayo, Jesus; Redondo, Ignacio; Romero, Luciano; Santaolalla, Javier; Soares, Mara Senghi; Willmott, Carlos; Albajar, Carmen; Codispoti, Giuseppe; de Trocóniz, Jorge F; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Lloret Iglesias, Lara; Vizan Garcia, Jesus Manuel; Brochero Cifuentes, Javier Andres; Cabrillo, Iban Jose; Calderon, Alicia; Chuang, Shan-Huei; Duarte Campderros, Jordi; Felcini, Marta; Fernandez, Marcos; Gomez, Gervasio; Gonzalez Sanchez, Javier; Jorda, Clara; Lobelle Pardo, Patricia; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Piedra Gomez, Jonatan; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Sobron Sanudo, Mar; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Baillon, Paul; Ball, Austin; Barney, David; Bell, Alan James; Benedetti, Daniele; Bernet, Colin; Bialas, Wojciech; Bloch, Philippe; Bocci, Andrea; Bolognesi, Sara; Bona, Marcella; Breuker, Horst; Bunkowski, Karol; Camporesi, Tiziano; Cerminara, Gianluca; Christiansen, Tim; Coarasa Perez, Jose Antonio; Curé, Benoît; D'Enterria, David; De Roeck, Albert; Di Guida, Salvatore; Dupont-Sagorin, Niels; Elliott-Peisert, Anna; Frisch, Benjamin; Funk, Wolfgang; Gaddi, Andrea; Georgiou, Georgios; Gerwig, Hubert; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Glege, Frank; Gomez-Reino Garrido, Robert; Gouzevitch, Maxime; Govoni, Pietro; Gowdy, Stephen; Guida, Roberto; Guiducci, Luigi; Hansen, Magnus; Hartl, Christian; Harvey, John; Hegeman, Jeroen; Hegner, Benedikt; Hoffmann, Hans Falk; Innocente, Vincenzo; Janot, Patrick; Kaadze, Ketino; Karavakis, Edward; Lecoq, Paul; Lenzi, Piergiulio; Lourenco, Carlos; Maki, Tuula; Malberti, Martina; Malgeri, Luca; Mannelli, Marcello; Masetti, Lorenzo; Maurisset, Aurelie; Mavromanolakis, Georgios; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moser, Roland; Mozer, Matthias Ulrich; Mulders, Martijn; Nesvold, Erik; Nguyen, Matthew; Orimoto, Toyoko; Orsini, Luciano; Palencia Cortezon, Enrique; Perez, Emmanuelle; Petrilli, Achille; Pfeiffer, Andreas; Pierini, Maurizio; Pimiä, Martti; Piparo, Danilo; Polese, Giovanni; Quertenmont, Loic; Racz, Attila; Reece, William; Rodrigues Antunes, Joao; Rolandi, Gigi; Rommerskirchen, Tanja; Rovelli, Chiara; Rovere, Marco; Sakulin, Hannes; Schäfer, Christoph; Schwick, Christoph; Segoni, Ilaria; Sharma, Archana; Siegrist, Patrice; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Spiga, Daniele; Spiropulu, Maria; Stoye, Markus; Tsirou, Andromachi; Vichoudis, Paschalis; Wöhri, Hermine Katharina; Worm, Steven; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Gabathuler, Kurt; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; König, Stefan; Kotlinski, Danek; Langenegger, Urs; Meier, Frank; Renker, Dieter; Rohe, Tilman; Sibille, Jennifer; Bäni, Lukas; Bortignon, Pierluigi; Caminada, Lea; Casal, Bruno; Chanon, Nicolas; Chen, Zhiling; Cittolin, Sergio; Dissertori, Günther; Dittmar, Michael; Eugster, Jürg; Freudenreich, Klaus; Grab, Christoph; Hintz, Wieland; Lecomte, Pierre; Lustermann, Werner; Marchica, Carmelo; Martinez Ruiz del Arbol, Pablo; Milenovic, Predrag; Moortgat, Filip; Nägeli, Christoph; Nef, Pascal; Nessi-Tedaldi, Francesca; Pape, Luc; Pauss, Felicitas; Punz, Thomas; Rizzi, Andrea; Ronga, Frederic Jean; Rossini, Marco; Sala, Leonardo; Sanchez, Ann - Karin; Sawley, Marie-Christine; Starodumov, Andrei; Stieger, Benjamin; Takahashi, Maiko; Tauscher, Ludwig; Thea, Alessandro; Theofilatos, Konstantinos; Treille, Daniel; Urscheler, Christina; Wallny, Rainer; Weber, Matthias; Wehrli, Lukas; Weng, Joanna; Aguilo, Ernest; Amsler, Claude; Chiochia, Vincenzo; De Visscher, Simon; Favaro, Carlotta; Ivova Rikova, Mirena; Jaeger, Andreas; Millan Mejias, Barbara; Otiougova, Polina; Robmann, Peter; Schmidt, Alexander; Snoek, Hella; Chang, Yuan-Hann; Chen, Kuan-Hsin; Kuo, Chia-Ming; Li, Syue-Wei; Lin, Willis; Liu, Zong-Kai; Lu, Yun-Ju; Mekterovic, Darko; Volpe, Roberta; Yu, Shin-Shan; Bartalini, Paolo; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Dietz, Charles; Grundler, Ulysses; Hou, George Wei-Shu; Hsiung, Yee; Kao, Kai-Yi; Lei, Yeong-Jyi; Lu, Rong-Shyang; Shiu, Jing-Ge; Tzeng, Yeng-Ming; Wan, Xia; Wang, Minzu; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Hos, Ilknur; Kangal, Evrim Ersin; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sogut, Kenan; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Uzun, Dilber; Vergili, Latife Nukhet; Vergili, Mehmet; Akin, Ilina Vasileva; Aliev, Takhmasib; Bilin, Bugra; Bilmis, Selcuk; Deniz, Muhammed; Gamsizkan, Halil; Guler, Ali Murat; Ocalan, Kadir; Ozpineci, Altug; Serin, Meltem; Sever, Ramazan; Surat, Ugur Emrah; Yalvac, Metin; Yildirim, Eda; Zeyrek, Mehmet; Deliomeroglu, Mehmet; Gülmez, Erhan; Isildak, Bora; Kaya, Mithat; Kaya, Ozlem; Özbek, Melih; Ozkorucuklu, Suat; Sonmez, Nasuf; Levchuk, Leonid; Bostock, Francis; Brooke, James John; Cheng, Teh Lee; Clement, Emyr; Cussans, David; Frazier, Robert; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Kreczko, Lukasz; Metson, Simon; Newbold, Dave M; Nirunpong, Kachanon; Poll, Anthony; Senkin, Sergey; Smith, Vincent J; Basso, Lorenzo; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Camanzi, Barbara; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Jackson, James; Kennedy, Bruce W; Olaiya, Emmanuel; Petyt, David; Radburn-Smith, Benjamin Charles; Shepherd-Themistocleous, Claire; Tomalin, Ian R; Womersley, William John; Bainbridge, Robert; Ball, Gordon; Ballin, Jamie; Beuselinck, Raymond; Buchmuller, Oliver; Colling, David; Cripps, Nicholas; Cutajar, Michael; Davies, Gavin; Della Negra, Michel; Ferguson, William; Fulcher, Jonathan; Futyan, David; Gilbert, Andrew; Guneratne Bryer, Arlo; Hall, Geoffrey; Hatherell, Zoe; Hays, Jonathan; Iles, Gregory; Jarvis, Martyn; Karapostoli, Georgia; Lyons, Louis; Magnan, Anne-Marie; Marrouche, Jad; Mathias, Bryn; Nandi, Robin; Nash, Jordan; Nikitenko, Alexander; Papageorgiou, Anastasios; Pesaresi, Mark; Petridis, Konstantinos; Pioppi, Michele; Raymond, David Mark; Rogerson, Samuel; Rompotis, Nikolaos; Rose, Andrew; Ryan, Matthew John; Seez, Christopher; Sharp, Peter; Sparrow, Alex; Tapper, Alexander; Tourneur, Stephane; Vazquez Acosta, Monica; Virdee, Tejinder; Wakefield, Stuart; Wardle, Nicholas; Wardrope, David; Whyntie, Tom; Barrett, Matthew; Chadwick, Matthew; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leslie, Dawn; Martin, William; Reid, Ivan; Teodorescu, Liliana; Hatakeyama, Kenichi; Liu, Hongxuan; Henderson, Conor; Bose, Tulika; Carrera Jarrin, Edgar; Fantasia, Cory; Heister, Arno; St John, Jason; Lawson, Philip; Lazic, Dragoslav; Rohlf, James; Sperka, David; Sulak, Lawrence; Avetisyan, Aram; Bhattacharya, Saptaparna; Chou, John Paul; Cutts, David; Ferapontov, Alexey; Heintz, Ulrich; Jabeen, Shabnam; Kukartsev, Gennadiy; Landsberg, Greg; Luk, Michael; Narain, Meenakshi; Nguyen, Duong; Segala, Michael; Sinthuprasith, Tutanon; Speer, Thomas; Tsang, Ka Vang; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Dolen, James; Erbacher, Robin; Houtz, Rachel; Ko, Winston; Kopecky, Alexandra; Lander, Richard; Liu, Haidong; Mall, Orpheus; Maruyama, Sho; Miceli, Tia; Nikolic, Milan; Pellett, Dave; Robles, Jorge; Rutherford, Britney; Salur, Sevil; Searle, Matthew; Smith, John; Squires, Michael; Tripathi, Mani; Vasquez Sierra, Ricardo; Andreev, Valeri; Arisaka, Katsushi; Cline, David; Cousins, Robert; Deisher, Amanda; Duris, Joseph; Erhan, Samim; Farrell, Chris; Hauser, Jay; Ignatenko, Mikhail; Jarvis, Chad; Plager, Charles; Rakness, Gregory; Schlein, Peter; Tucker, Jordan; Valuev, Vyacheslav; Babb, John; Clare, Robert; Ellison, John Anthony; Gary, J William; Giordano, Ferdinando; Hanson, Gail; Jeng, Geng-Yuan; Kao, Shih-Chuan; Liu, Hongliang; Long, Owen Rosser; Luthra, Arun; Nguyen, Harold; Paramesvaran, Sudarshan; Sturdy, Jared; Sumowidagdo, Suharyo; Wilken, Rachel; Wimpenny, Stephen; Andrews, Warren; Branson, James G; Cerati, Giuseppe Benedetto; Evans, David; Golf, Frank; Holzner, André; Kelley, Ryan; Lebourgeois, Matthew; Letts, James; Mangano, Boris; Padhi, Sanjay; Palmer, Christopher; Petrucciani, Giovanni; Pi, Haifeng; Pieri, Marco; Ranieri, Riccardo; Sani, Matteo; Sharma, Vivek; Simon, Sean; Sudano, Elizabeth; Tadel, Matevz; Tu, Yanjun; Vartak, Adish; Wasserbaech, Steven; Würthwein, Frank; Yagil, Avraham; Yoo, Jaehyeok; Barge, Derek; Bellan, Riccardo; Campagnari, Claudio; D'Alfonso, Mariarosaria; Danielson, Thomas; Flowers, Kristen; Geffert, Paul; Incandela, Joe; Justus, Christopher; Kalavase, Puneeth; Koay, Sue Ann; Kovalskyi, Dmytro; Krutelyov, Vyacheslav; Lowette, Steven; Mccoll, Nickolas; Mullin, Sam Daniel; Pavlunin, Viktor; Rebassoo, Finn; Ribnik, Jacob; Richman, Jeffrey; Rossin, Roberto; Stuart, David; To, Wing; Vlimant, Jean-Roch; West, Christopher; Apresyan, Artur; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Duarte, Javier; Gataullin, Marat; Ma, Yousi; Mott, Alexander; Newman, Harvey B; Rogan, Christopher; Shin, Kyoungha; Timciuc, Vladlen; Traczyk, Piotr; Veverka, Jan; Wilkinson, Richard; Yang, Yong; Zhu, Ren-Yuan; Akgun, Bora; Carroll, Ryan; Ferguson, Thomas; Iiyama, Yutaro; Jang, Dong Wook; Jun, Soon Yung; Liu, Yueh-Feng; Paulini, Manfred; Russ, James; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Dinardo, Mauro Emanuele; Drell, Brian Robert; Edelmaier, Christopher; Ford, William T; Gaz, Alessandro; Heyburn, Bernadette; Luiggi Lopez, Eduardo; Nauenberg, Uriel; Smith, James; Stenson, Kevin; Ulmer, Keith; Wagner, Stephen Robert; Zang, Shi-Lei; Agostino, Lorenzo; Alexander, James; Chatterjee, Avishek; Eggert, Nicholas; Gibbons, Lawrence Kent; Heltsley, Brian; Hopkins, Walter; Khukhunaishvili, Aleko; Kreis, Benjamin; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Puigh, Darren; Ryd, Anders; Salvati, Emmanuele; Shi, Xin; Sun, Werner; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Vaughan, Jennifer; Weng, Yao; Winstrom, Lucas; Wittich, Peter; Biselli, Angela; Cirino, Guy; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Apollinari, Giorgio; Atac, Muzaffer; Bakken, Jon Alan; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bloch, Ingo; Burkett, Kevin; Butler, Joel Nathan; Chetluru, Vasundhara; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Cooper, William; Eartly, David P; Elvira, Victor Daniel; Esen, Selda; Fisk, Ian; Freeman, Jim; Gao, Yanyan; Gottschalk, Erik; Green, Dan; Gutsche, Oliver; Hanlon, Jim; Harris, Robert M; Hirschauer, James; Hooberman, Benjamin; Jensen, Hans; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Klima, Boaz; Kousouris, Konstantinos; Kunori, Shuichi; Kwan, Simon; Leonidopoulos, Christos; Limon, Peter; Lincoln, Don; Lipton, Ron; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Mason, David; McBride, Patricia; Miao, Ting; Mishra, Kalanand; Mrenna, Stephen; Musienko, Yuri; Newman-Holmes, Catherine; O'Dell, Vivian; Pivarski, James; Pordes, Ruth; Prokofyev, Oleg; Schwarz, Thomas; Sexton-Kennedy, Elizabeth; Sharma, Seema; Spalding, William J; Spiegel, Leonard; Tan, Ping; Taylor, Lucas; Tkaczyk, Slawek; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vidal, Richard; Whitmore, Juliana; Wu, Weimin; Yang, Fan; Yumiceva, Francisco; Yun, Jae Chul; Acosta, Darin; Avery, Paul; Bourilkov, Dimitri; Chen, Mingshui; Das, Souvik; De Gruttola, Michele; Di Giovanni, Gian Piero; Dobur, Didar; Drozdetskiy, Alexey; Field, Richard D; Fisher, Matthew; Fu, Yu; Furic, Ivan-Kresimir; Gartner, Joseph; Goldberg, Sean; Hugon, Justin; Kim, Bockjoo; Konigsberg, Jacobo; Korytov, Andrey; Kropivnitskaya, Anna; Kypreos, Theodore; Low, Jia Fu; Matchev, Konstantin; Mitselmakher, Guenakh; Muniz, Lana; Myeonghun, Park; Remington, Ronald; Rinkevicius, Aurelijus; Schmitt, Michael; Scurlock, Bobby; Sellers, Paul; Skhirtladze, Nikoloz; Snowball, Matthew; Wang, Dayong; Yelton, John; Zakaria, Mohammed; Gaultney, Vanessa; Lebolo, Luis Miguel; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Adams, Todd; Askew, Andrew; Bochenek, Joseph; Chen, Jie; Diamond, Brendan; Gleyzer, Sergei V; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Jenkins, Merrill; Johnson, Kurtis F; Prosper, Harrison; Sekmen, Sezen; Veeraraghavan, Venkatesh; Baarmand, Marc M; Dorney, Brian; Hohlmann, Marcus; Kalakhety, Himali; Vodopiyanov, Igor; Adams, Mark Raymond; Anghel, Ioana Maria; Apanasevich, Leonard; Bai, Yuting; Bazterra, Victor Eduardo; Betts, Russell Richard; Callner, Jeremy; Cavanaugh, Richard; Dragoiu, Cosmin; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Khalatyan, Samvel; Kunde, Gerd J; Lacroix, Florent; Malek, Magdalena; O'Brien, Christine; Silkworth, Christopher; Silvestre, Catherine; Smoron, Agata; Strom, Derek; Varelas, Nikos; Akgun, Ugur; Albayrak, Elif Asli; Bilki, Burak; Clarida, Warren; Duru, Firdevs; Lae, Chung Khim; McCliment, Edward; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Newsom, Charles Ray; Norbeck, Edwin; Olson, Jonathan; Onel, Yasar; Ozok, Ferhat; Sen, Sercan; Wetzel, James; Yetkin, Taylan; Yi, Kai; Barnett, Bruce Arnold; Blumenfeld, Barry; Bonato, Alessio; Eskew, Christopher; Fehling, David; Giurgiu, Gavril; Gritsan, Andrei; Grizzard, Kevin; Guo, Zijin; Hu, Guofan; Maksimovic, Petar; Rappoccio, Salvatore; Swartz, Morris; Tran, Nhan Viet; Whitbeck, Andrew; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Grachov, Oleg; Kenny Iii, Raymond Patrick; Murray, Michael; Noonan, Daniel; Sanders, Stephen; Stringer, Robert; Wood, Jeffrey Scott; Zhukova, Victoria; Barfuss, Anne-Fleur; Bolton, Tim; Chakaberia, Irakli; Ivanov, Andrew; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Shrestha, Shruti; Svintradze, Irakli; Gronberg, Jeffrey; Lange, David; Wright, Douglas; Baden, Drew; Boutemeur, Madjid; Eno, Sarah Catherine; Ferencek, Dinko; Gomez, Jaime; Hadley, Nicholas John; Kellogg, Richard G; Kirn, Malina; Lu, Ying; Mignerey, Alice; Rossato, Kenneth; Rumerio, Paolo; Santanastasio, Francesco; Skuja, Andris; Temple, Jeffrey; Tonjes, Marguerite; Tonwar, Suresh C; Twedt, Elizabeth; Alver, Burak; Bauer, Gerry; Bendavid, Joshua; Busza, Wit; Butz, Erik; Cali, Ivan Amos; Chan, Matthew; Dutta, Valentina; Everaerts, Pieter; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Hahn, Kristan Allan; Harris, Philip; Kim, Yongsun; Klute, Markus; Lee, Yen-Jie; Li, Wei; Loizides, Constantinos; Luckey, Paul David; Ma, Teng; Nahn, Steve; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Rudolph, Matthew; Stephans, George; Stöckli, Fabian; Sumorok, Konstanty; Sung, Kevin; Velicanu, Dragos; Wenger, Edward Allen; Wolf, Roger; Wyslouch, Bolek; Xie, Si; Yang, Mingming; Yilmaz, Yetkin; Yoon, Sungho; Zanetti, Marco; Cooper, Seth; Cushman, Priscilla; Dahmes, Bryan; De Benedetti, Abraham; Franzoni, Giovanni; Gude, Alexander; Haupt, Jason; Klapoetke, Kevin; Kubota, Yuichi; Mans, Jeremy; Pastika, Nathaniel; Rekovic, Vladimir; Rusack, Roger; Sasseville, Michael; Singovsky, Alexander; Tambe, Norbert; Turkewitz, Jared; Cremaldi, Lucien Marcus; Godang, Romulus; Kroeger, Rob; Perera, Lalith; Rahmat, Rahmat; Sanders, David A; Summers, Don; Bloom, Kenneth; Bose, Suvadeep; Butt, Jamila; Claes, Daniel R; Dominguez, Aaron; Eads, Michael; Jindal, Pratima; Keller, Jason; Kelly, Tony; Kravchenko, Ilya; Lazo-Flores, Jose; Malbouisson, Helena; Malik, Sudhir; Snow, Gregory R; Baur, Ulrich; Godshalk, Andrew; Iashvili, Ia; Jain, Supriya; Kharchilava, Avto; Kumar, Ashish; Smith, Kenneth; Wan, Zongru; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Boeriu, Oana; Chasco, Matthew; Reucroft, Steve; Swain, John; Trocino, Daniele; Wood, Darien; Zhang, Jinzhong; Anastassov, Anton; Kubik, Andrew; Mucia, Nicholas; Odell, Nathaniel; Ofierzynski, Radoslaw Adrian; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael; Stoynev, Stoyan; Velasco, Mayda; Won, Steven; Antonelli, Louis; Berry, Douglas; Brinkerhoff, Andrew; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kolb, Jeff; Kolberg, Ted; Lannon, Kevin; Luo, Wuming; Lynch, Sean; Marinelli, Nancy; Morse, David Michael; Pearson, Tessa; Ruchti, Randy; Slaunwhite, Jason; Valls, Nil; Wayne, Mitchell; Ziegler, Jill; Bylsma, Ben; Durkin, Lloyd Stanley; Hill, Christopher; Killewald, Phillip; Kotov, Khristian; Ling, Ta-Yung; Rodenburg, Marissa; Vuosalo, Carl; Williams, Grayson; Adam, Nadia; Berry, Edmund; Elmer, Peter; Gerbaudo, Davide; Halyo, Valerie; Hebda, Philip; Hunt, Adam; Laird, Edward; Lopes Pegna, David; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Piroué, Pierre; Quan, Xiaohang; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zuranski, Andrzej; Acosta, Jhon Gabriel; Huang, Xing Tao; Lopez, Angel; Mendez, Hector; Oliveros, Sandra; Ramirez Vargas, Juan Eduardo; Zatserklyaniy, Andriy; Alagoz, Enver; Barnes, Virgil E; Bolla, Gino; Borrello, Laura; Bortoletto, Daniela; De Mattia, Marco; Everett, Adam; Gutay, Laszlo; Hu, Zhen; Jones, Matthew; Koybasi, Ozhan; Kress, Matthew; Laasanen, Alvin T; Leonardo, Nuno; Maroussov, Vassili; Merkel, Petra; Miller, David Harry; Neumeister, Norbert; Shipsey, Ian; Silvers, David; Svyatkovskiy, Alexey; Vidal Marono, Miguel; Yoo, Hwi Dong; Zablocki, Jakub; Zheng, Yu; Guragain, Samir; Parashar, Neeti; Adair, Antony; Boulahouache, Chaouki; Ecklund, Karl Matthew; Geurts, Frank JM; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Zabel, James; Betchart, Burton; Bodek, Arie; Chung, Yeon Sei; Covarelli, Roberto; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Flacher, Henning; Garcia-Bellido, Aran; Goldenzweig, Pablo; Gotra, Yury; Han, Jiyeon; Harel, Amnon; Miner, Daniel Carl; Petrillo, Gianluca; Sakumoto, Willis; Vishnevskiy, Dmitry; Zielinski, Marek; Bhatti, Anwar; Ciesielski, Robert; Demortier, Luc; Goulianos, Konstantin; Lungu, Gheorghe; Malik, Sarah; Mesropian, Christina; Arora, Sanjay; Atramentov, Oleksiy; Barker, Anthony; Contreras-Campana, Christian; Contreras-Campana, Emmanuel; Duggan, Daniel; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Hits, Dmitry; Lath, Amitabh; Panwalkar, Shruti; Park, Michael; Patel, Rishi; Richards, Alan; Rose, Keith; Schnetzer, Steve; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Cerizza, Giordano; Hollingsworth, Matthew; Spanier, Stefan; Yang, Zong-Chang; York, Andrew; Eusebi, Ricardo; Flanagan, Will; Gilmore, Jason; Gurrola, Alfredo; Kamon, Teruki; Khotilovich, Vadim; Montalvo, Roy; Osipenkov, Ilya; Pakhotin, Yuriy; Perloff, Alexx; Roe, Jeffrey; Safonov, Alexei; Sengupta, Sinjini; Suarez, Indara; Tatarinov, Aysen; Toback, David; Akchurin, Nural; Bardak, Cemile; Damgov, Jordan; Dudero, Phillip Russell; Jeong, Chiyoung; Kovitanggoon, Kittikul; Lee, Sung Won; Libeiro, Terence; Mane, Poonam; Roh, Youn; Sill, Alan; Volobouev, Igor; Wigmans, Richard; Yazgan, Efe; Appelt, Eric; Brownson, Eric; Engh, Daniel; Florez, Carlos; Gabella, William; Issah, Michael; Johns, Willard; Johnston, Cody; Kurt, Pelin; Maguire, Charles; Melo, Andrew; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Arenton, Michael Wayne; Balazs, Michael; Boutle, Sarah; Cox, Bradley; Francis, Brian; Goadhouse, Stephen; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Lin, Chuanzhe; Neu, Christopher; Wood, John; Yohay, Rachel; Gollapinni, Sowjanya; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Mattson, Mark; Milstène, Caroline; Sakharov, Alexandre; Anderson, Michael; Bachtis, Michail; Belknap, Donald; Bellinger, James Nugent; Carlsmith, Duncan; Cepeda, Maria; Dasu, Sridhara; Efron, Jonathan; Friis, Evan; Gray, Lindsey; Grogg, Kira Suzanne; Grothe, Monika; Hall-Wilton, Richard; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Klukas, Jeffrey; Lanaro, Armando; Lazaridis, Christos; Leonard, Jessica; Loveless, Richard; Mohapatra, Ajit; Ojalvo, Isabel; Parker, William; Ross, Ian; Savin, Alexander; Smith, Wesley H; Swanson, Joshua; Weinberg, Marc

    2011-01-01

    A multivariate likelihood method to measure electroweak couplings with the Drell-Yan process at the LHC is presented. The process is described by the dilepton rapidity, invariant mass, and decay angle distributions. The decay angle ambiguity due to the unknown assignment of the scattered constituent quark and antiquark to the two protons in a collision is resolved statistically using correlations between the observables. The method is applied to a sample of dimuon events from proton-proton collisions at sqrt(s) = 7 TeV collected by the CMS experiment at the LHC, corresponding to an integrated luminosity of 1.1 inverse femtobarns. From the dominant u-ubar, d-dbar to gamma*/Z to opposite sign dimuons process, the effective weak mixing angle parameter is measured to be sin^2(theta[eff]) = 0.2287 +/- 0.0020 (stat.) +/- 0.0025 (syst.). This result is consistent with measurements from other processes, as expected within the standard model.

  10. Measurement of the weak mixing angle with the Drell-Yan process in proton-proton collisions at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Chatrchyan, S. [Yerevan Physics Institute (Armenia); et al.,

    2011-12-01

    A multivariate likelihood method to measure electroweak couplings with the Drell-Yan process at the LHC is presented. The process is described by the dilepton rapidity, invariant mass, and decay angle distributions. The decay angle ambiguity due to the unknown assignment of the scattered constituent quark and antiquark to the two protons in a collision is resolved statistically using correlations between the observables. The method is applied to a sample of dimuon events from proton-proton collisions at sqrt(s) = 7 TeV collected by the CMS experiment at the LHC, corresponding to an integrated luminosity of 1.1 inverse femtobarns. From the dominant u-ubar, d-dbar to gamma*/Z to opposite sign dimuons process, the effective weak mixing angle parameter is measured to be sin^2(theta[eff]) = 0.2287 +/- 0.0020 (stat.) +/- 0.0025 (syst.). This result is consistent with measurements from other processes, as expected within the standard model.

  11. The effect of a four-week proprioceptive neuromuscular facilitation stretching program on isokinetic torque production.

    Science.gov (United States)

    Higgs, Fiona; Winter, Samantha L

    2009-08-01

    Flexibility is widely accepted as an important component of fitness, yet flexibility training can be detrimental to muscle performance particularly where a high number of stretch cycles are performed. The purpose of this study was to investigate whether chronic proprioceptive neuromuscular facilitation (PNF) stretch training could successfully improve the knee flexion range of motion without having a detrimental effect on the peak isokinetic torque of the quadriceps. The minimum knee angle in flexion and the peak isokinetic quadriceps torque were measured at 120 and 270 degrees xs. Subjects then participated in a 4-week quadriceps flexibility training program consisting of 3 cycles of PNF stretching performed 3 times a week. The range of motion was recorded before and after the first stretching session of each week. At the end of the 4-week period, the peak isokinetic quadriceps torque and flexibility were again measured. The mean (SE) improvement in the knee flexion range of motion over the whole program was 9.2 degrees (1.45 degrees ), and typical gains after a single stretching session were around 3 degrees . Post hoc analysis showed that the pretraining session range of motion was significantly improved in week 4 compared with the pretraining session range of motion in weeks 1 and 2 (p < 0.05). There was no change (p = 0.9635) in the peak isokinetic torque produced at 120 degrees xs (week 1: 121.9 (4.6) N x m; week 2: 121.9 (5.2) N x m) or at 270 degrees xs (week 1: 88.1 (3.4) N x m; week 2: 88.6 (4.9) N x m). These findings suggest that it is possible to improve flexibility using 3 PNF stretch cycles performed 3 times a week without altering muscle isokinetic strength characteristics.

  12. Wettability of supercritical carbon dioxide/water/quartz systems: simultaneous measurement of contact angle and interfacial tension at reservoir conditions.

    Science.gov (United States)

    Saraji, Soheil; Goual, Lamia; Piri, Mohammad; Plancher, Henry

    2013-06-11

    Injection of carbon dioxide in deep saline aquifers is considered as a method of carbon sequestration. The efficiency of this process is dependent on the fluid-fluid and rock-fluid interactions inside the porous media. For instance, the final storage capacity and total amount of capillary-trapped CO2 inside an aquifer are affected by the interfacial tension between the fluids and the contact angle between the fluids and the rock mineral surface. A thorough study of these parameters and their variations with temperature and pressure will provide a better understanding of the carbon sequestration process and thus improve predictions of the sequestration efficiency. In this study, the controversial concept of wettability alteration of quartz surfaces in the presence of supercritical carbon dioxide (sc-CO2) was investigated. A novel apparatus for measuring interfacial tension and contact angle at high temperatures and pressures based on Axisymmetric Drop Shape Analysis with no-Apex (ADSA-NA) method was developed and validated with a simple system. Densities, interfacial tensions, and dynamic contact angles of CO2/water/quartz systems were determined for a wide range of pressures and temperatures relevant to geological sequestration of CO2 in the subcritical and supercritical states. Image analysis was performed with ADSA-NA method that allows the determination of both interfacial tensions and contact angles with high accuracy. The results show that supercritical CO2 alters the wettability of quartz surface toward less water-wet conditions compared to subcritical CO2. Also we observed an increase in the water advancing contact angles with increasing temperature indicating less water-wet quartz surfaces at higher temperatures.

  13. Stretching & Flexibility: An Interactive Encyclopedia of Stretching. [CD-ROM].

    Science.gov (United States)

    2002

    This CD-ROM offers 140 different stretches in full-motion video sequences. It focuses on the proper techniques for overall physical fitness, injury prevention and rehabilitation, and 23 different sports (e.g., golf, running, soccer, skiing, climbing, football, and baseball). Topics include stretching for sports; stretching awareness and education…

  14. Assessment of difficult laryngoscopy by electronically measured maxillo-pharyngeal angle on lateral cervical radiograph: A prospective study

    Directory of Open Access Journals (Sweden)

    Gupta Kumkum

    2010-01-01

    Full Text Available Background: Difficult airway continued to be a major cause of anesthesia-related morbidity and mortality. Successful airway management depends on direct laryngoscopy and tracheal intubation. Difficult laryngoscopy is a resultant of incomplete structural arrangements during the process of head positioning. Through clinical history,examination of the patients along with craniofacial indices alerts the anesthetist for difficult laryngoscopy. But it does not predict all causes of difficult laryngoscopy during pre-anesthetic evaluation. The maxillo-pharyngeal angle, an upper airway anatomical balance, was proposed for better understanding the pathophysiology of difficult laryngoscopy. In our study we have assess difficult laryngoscopy by electronically measuring maxillo-pharyngeal angles on a lateral cervical radiograph. This angle is normally greater than 100 o . Less than 90 o angle suggests either impossible or difficult direct laryngoscopy when all known craniofacial indices were within the normal range. Cervical radiographic assessment is a simple, economical, and non-invasive predictive method for difficult laryngoscopy. It should be used routinely along with other indices as pre-anesthetic airway assessment criteria to predict the difficult laryngoscopy. Context: Difficulties with airway management continue to be a major cause of anesthesia-related morbidity, mortality, and litigation. Pre-operative assessment of difficult laryngoscopy by the simple and non-invasive radiological method can help to prevent them. Aims: To assess the difficult laryngoscopy pre operatively by a simple and non invasive radiological method by electronically measuring maxillo-pharyngeal angle on a lateral cervical radiograph and it′s correlation with Cormack and Lehane grading. Settings and Design: This is a controlled, nonrandomized, prospective, cohort observation study. Patients and Methods: The 157 adult consented patients of ASA grade I to III of either sex

  15. Assessment of difficult laryngoscopy by electronically measured maxillo-pharyngeal angle on lateral cervical radiograph: A prospective study.

    Science.gov (United States)

    Gupta, Kumkum; Gupta, Prashant K

    2010-09-01

    Difficult airway continued to be a major cause of anesthesia-related morbidity and mortality. Successful airway management depends on direct laryngoscopy and tracheal intubation. Difficult laryngoscopy is a resultant of incomplete structural arrangements during the process of head positioning. Through clinical history, examination of the patients along with craniofacial indices alerts the anesthetist for difficult laryngoscopy. But it does not predict all causes of difficult laryngoscopy during pre-anesthetic evaluation. The maxillo-pharyngeal angle, an upper airway anatomical balance, was proposed for better understanding the pathophysiology of difficult laryngoscopy. In our study we have assess difficult laryngoscopy by electronically measuring maxillo-pharyngeal angles on a lateral cervical radiograph. This angle is normally greater than 100°. Less than 90° angle suggests either impossible or difficult direct laryngoscopy when all known craniofacial indices were within the normal range. Cervical radiographic assessment is a simple, economical, and non-invasive predictive method for difficult laryngoscopy. It should be used routinely along with other indices as pre-anesthetic airway assessment criteria to predict the difficult laryngoscopy. Difficulties with airway management continue to be a major cause of anesthesia-related morbidity, mortality, and litigation. Pre-operative assessment of difficult laryngoscopy by the simple and non-invasive radiological method can help to prevent them. To assess the difficult laryngoscopy pre operatively by a simple and non invasive radiological method by electronically measuring maxillo-pharyngeal angle on a lateral cervical radiograph and it's correlation with Cormack and Lehane grading. This is a controlled, nonrandomized, prospective, cohort observation study. The 157 adult consented patients of ASA grade I to III of either sex, scheduled for elective surgery under general anesthesia with endo-tracheal intubation, were

  16. Stretching of macromolecules and proteins

    International Nuclear Information System (INIS)

    Strick, T R; Dessinges, M-N; Charvin, G; Dekker, N H; Allemand, J-F; Bensimon, D; Croquette, V

    2003-01-01

    In this paper we review the biophysics revealed by stretching single biopolymers. During the last decade various techniques have emerged allowing micromanipulation of single molecules and simultaneous measurements of their elasticity. Using such techniques, it has been possible to investigate some of the interactions playing a role in biology. We shall first review the simplest case of a non-interacting polymer and then present the structural transitions in DNA, RNA and proteins that have been studied by single-molecule techniques. We shall explain how these techniques permit a new approach to the protein folding/unfolding transition

  17. Immediate effects of quantified hamstring stretching: hold-relax proprioceptive neuromuscular facilitation versus static stretching.

    Science.gov (United States)

    Puentedura, Emilio J; Huijbregts, Peter A; Celeste, Shelley; Edwards, Dale; In, Alastair; Landers, Merrill R; Fernandez-de-Las-Penas, Cesar

    2011-08-01

    To compare the immediate effects of a hold-relax proprioceptive neuromuscular facilitation stretching (HR-PNF) versus static stretch (SS) on hamstring flexibility in healthy, asymptomatic subjects. Thirty subjects (13 female; mean age 25.7 ± 3.0, range 22-37) without excessive hamstring muscle flexibility were randomly assigned to one of two stretch groups: HR-PNF or SS. The left leg was treated as a control and did not receive any intervention. The right leg was measured for ROM pre- and post-stretch interventions, with subjects receiving randomly assigned interventions one week apart. Data were analyzed with a 3 (intervention: HR-PNF, SS, control) × 2 (time: pre and post) factorial ANOVA with repeated measures and appropriate post-hoc analyses. A significant interaction was observed between intervention and time for hamstring extensibility, F(2,58) = 25.229, p < .0005. Main effect of intervention for the tested leg was not significant, p = .782 indicating that there was no difference between the two stretch conditions. However, main effect for time was significant (p < .0005), suggesting that hamstring extensibility (for both stretching conditions) after intervention was greater than before. No significant differences were found when comparing the effectiveness of HR-PNF and SS techniques. Both stretching methods resulted in significant immediate increases in hamstring length. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Muscle and joint responses during and after static stretching performed at different intensities.

    Science.gov (United States)

    Freitas, Sandro R; Andrade, Ricardo J; Larcoupaille, Lilian; Mil-homens, Pedro; Nordez, Antoine

    2015-06-01

    We investigated the effects of plantarflexor static stretching of different intensities on the medial gastrocnemius (GAS) shear elastic modulus, GAS fascicle length and ankle passive torque-angle responses during and after stretching. Participants performed three stretching sessions of different intensities: 40 % (R40) of maximal dorsiflexion range of motion (ROM), 60 % (R60) of ROM, and 80 % (R80) of ROM. Each stretching lasted 10 min. The GAS architecture, GAS shear elastic modulus, ankle passive torque-angle, and muscle activity were assessed before, during, and after the stretching. The absolute and relative (i.e., normalized to the static stretching start value) GAS shear elastic modulus relaxation varied across stretching intensities. The absolute passive torque relaxation varied across intensities (p stretching start value. No significant changes were observed in GAS fascicle length during the stretching (p = 0.93). After stretching, passive torque at a given angle was significantly decreased for R60 [-0.99 ± 0.59 Nm (-6.5 ± 3.8 %), p stretching and post-stretching effect in the GAS shear elastic modulus or ankle passive torque variables. No significant relation was found between the shear elastic modulus and the ankle passive torque responses during and after stretching. The effects of stretching on joint passive torque do not reflect changes in the medial gastrocnemius shear elastic modulus, and these responses to stretching depend on its intensity.

  19. Contact Angles of Water-repellent Porous Media Inferred by Tensiometer- TDR Probe Measurement Under Controlled Wetting and Drying Cycles

    DEFF Research Database (Denmark)

    Subedi, Shaphal; Komatsu, Ken; Komatsu, Toshiko

    2013-01-01

    The time dependency of water repellency (WR) in hydrophobic porous media plays a crucial role for water infiltration processes after rainfall and for the long-term performance of capillary barrier systems. The contact angle (CA) of hydrophobic media normally decreases with continuous contact...... with water, eventually allowing water imbibition. However, the effect of the reduction in CA with soil-water contact time on the water retention function of hydrophobic media is not yet fully understood. In this study, water retention characteristics were measured using a hanging water column apparatus...... equipped with a mini-time domain reflectometry (TDR) coil probe under controlled wetting and drying in a water-repellent volcanic ash soil (VAS) and in sands coated with different hydrophobic agents. The contact angle (CA–SWRC) under imbibition was evaluated based on the inflection points on the water...

  20. A recoil detector for the measurement of antiproton-proton elastic scattering at angles close to 90°

    Science.gov (United States)

    Hu, Q.; Bechstedt, U.; Gillitzer, A.; Grzonka, D.; Khoukaz, A.; Klehr, F.; Lehrach, A.; Prasuhn, D.; Ritman, J.; Sefzick, T.; Stockmanns, T.; Täschner, A.; Wuestner, P.; Xu, H.

    2014-10-01

    The design and construction of a recoil detector for the measurement of recoil protons of antiproton-proton elastic scattering at scattering angles close to are described. The performance of the recoil detector has been tested in the laboratory with radioactive sources and at COSY with proton beams by measuring proton-proton elastic scattering. The results of laboratory tests and commissioning with beam are presented. Excellent energy resolution and proper working performance of the recoil detector validate the conceptual design of the KOALA experiment at HESR to provide the cross section data needed to achieve a precise luminosity determination at the PANDA experiment.

  1. Stretching the Border

    DEFF Research Database (Denmark)

    Horstmann, Alexander

    2014-01-01

    In this paper, I hope to add a complementary perspective to James Scott’s recent work on avoidance strategies of subaltern mountain people by focusing on what I call the refugee public. The educated Karen elite uses the space of exile in the Thai borderland to reconstitute resources and to re-ent......-based organizations succeed to stretch the border by establishing a firm presence that is supported by the international humanitarian economy in the refugee camps in Northwestern Thailand....

  2. Comparison of scapular posterior tilting exercise alone and scapular posterior tilting exercise after pectoralis minor stretching on scapular alignment and scapular upward rotators activity in subjects with short pectoralis minor.

    Science.gov (United States)

    Lee, Ji-Hyun; Cynn, Heon-Seock; Yoon, Tae-Lim; Choi, Sil-Ah; Choi, Woo-Jeong; Choi, Bong-Sam; Ko, Chang-Hee

    2015-08-01

    To compare scapular posterior tilting exercise alone and scapular posterior tilting exercise after pectoralis minor (PM) stretching on the PM index (PMI), scapular anterior tilting index, scapular upward rotation angle, and scapular upward rotators' activity in subjects with a short PM. Fifteen subjects with a short PM participated in this study. The PMI, scapular anterior tilting index, and scapular upward rotation angle were measured after scapular posterior tilting exercise alone and scapular posterior tilting exercise after PM stretches. Scapular upward rotators' activities were collected during scapular posterior tilting exercise alone and scapular posterior tilting exercise after PM stretches. The PMI and scapular upward rotation angle, as well as the activity of the upper trapezius, lower trapezius, and serratus anterior muscles, were significantly greater for scapular posterior tilting exercise after PM stretching and the scapular anterior tilting index was significantly lower for scapular posterior tilting exercise after PM stretching than the scapular posterior tilting exercise alone. Scapular posterior tilting exercise after PM stretching in subjects with a short PM could be an effective method of modifying scapular alignment and scapular upward rotator activity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Multidetector-row computed tomography allows accurate measurement of mechanical prosthetic heart valve leaflet closing angles compared with fluoroscopy.

    Science.gov (United States)

    Suchá, Dominika; Symersky, Petr; Vonken, Evert-Jan P A; Provoost, Esther; Chamuleau, Steven A J; Budde, Ricardo P J

    2014-01-01

    The purpose of this study was to compare multidetector-row computed tomography (MDCT) leaflet restriction measurements with fluoroscopy measurements in commonly used mechanical prosthetic heart valves (PHVs). Four mechanical PHVs (ON-X, Carbomedics, St. Jude, and Medtronic Hall) were imaged in a pulsatile model using fluoroscopy and 64-detector-row computed tomography. Five image acquisitions of each PHV without (1) and with (4) restricted leaflet closure were made. Three observers measured closure angles on fluoroscopy and MDCT. Data were analyzed using intraclass correlation coefficient (ICC) and Bland-Altman plots. Interobserver agreement was high in restricted and non-restricted leaflets on both modalities (ICCs >0.995). MDCT and fluoroscopy showed high agreements (ICCs >0.989). Median MDCT closure angle measurements differed at most -2 to +2 degrees from fluoroscopy in the restricted and -1 to +2 degrees in the non-restricted leaflets. MDCT allows measurement of leaflet motion with a maximal median discrepancy of 2 degrees. Both MDCT and fluoroscopy detect restricted leaflet closure with great accuracy.

  4. The Measurement of Palpebral Fissure Height Using the Intersection Angle (the Réal Angle) Between the Meeting Points of the Upper Eyelid and the Edge of the Cornea.

    Science.gov (United States)

    Lee, Hun Joo; Kim, Soo Shin

    2017-06-01

    We evaluated a new palpebral fissure height measurement to evaluate medial, lateral, and overall ptosis. We photographed 250 Koreans (44 males, 206 females) and evaluated their Réal 1 angle (angle between the meeting points of the upper eyelid and the corneal edge), Réal 2 angle (angle between the meeting point of the upper eyelid, medial corneal edge and a vertical line through the center of the pupil), Réal 3 angle (angle between the meeting point of the upper eyelid, lateral corneal edge and a vertical line through the center of the pupil), and Réal 4 angle (Réal 2-Réal 3). Angles were compared between sexes and age groups. We then evaluated the Réal angles of 13 Korean actresses. Mean age was 31.85 ± 14.60 years; Réal 1 was 129.01° ± 14.23°, Réal 2 was 68.20° ± 7.49°, Réal 3 was 60.80° ± 9.65°. There was no significant difference between the sexes in Réal 1, Réal 2, and Réal 3 angles. Réal 1 increased with age, and Réal 4 decreased with age. All Réal angles were significantly different between age groups. The actresses' mean age was 30.66 ± 8.01 years; Réal 1 was 102.84° ± 10.16°, Réal 2 was 57.87° ± 6.10°, and Réal 3 was 44.97° ± 8.74°. This simple measurement of palpebral fissure height using Réal angles consistently evaluated the amount of medial, lateral, and general ptosis. For average Korean eyes, the lateral portion of the upper eyelid is slightly higher than the medial portion; however, this lateral portion droops with age. Korean actresses have vertically higher eyes than average Korean women. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  5. Mechanical stretch influence on lifetime of dielectric elastomer films

    Science.gov (United States)

    Iannarelli, A.; Niasar, M. Ghaffarian

    2017-04-01

    Film pre-stretching is a widely adopted solution to improve dielectric strength of the DEA systems. However, to date, long term reliability of this solution has not been investigated. In this work it is explored how the dielectric elastomer lifetime is affected by film pre-stretching. The dielectric loss of soft polydimethylsiloxane (PDMS) films is studied for different stretch ratios by measuring tanδ. Additionally, time-to-breakdown was measured at DC electric stress for different stretch ratios. For this purpose, accelerated life test (ALT) were performed. The results obtained are compared with non-pre-stretched samples. This study suggests that no additional dielectric losses are caused by film stretching up to 80% of original dimensions.

  6. [Stretching the triceps surae muscle after 40 degrees C warming in patients with cerebral palsy].

    Science.gov (United States)

    Lespargot, A; Robert, M; Khouri, N

    2000-11-01

    Equinus in patients with cerebral palsy results from at least two factors: excessive contracture of the triceps surae and muscle retraction. Tendon surgery and progressive lengthening techniques using plaster walking boots can provide variable improvement in retraction. We compared the effect of this technique when applied with or without prior 40 degrees C warming in the same patients. We also assessed the efficacy of this treatment method in terms or degree of retraction, patient age, puberty maturity, and sex. This series included 70 muscles in 52 patients with cerebral palsy aged 2 years 11 months to 21 years (mean 8 years 3 months). Common features in these patients were: - equinus mainly explained by triceps retraction, - no history of prior surgery on the triceps tendon, - knee flexion less than 15 degrees in the upright position, - easily reduced lateral deformation of the foot, - absence of mediotarsal dislocation, - triceps stretching could be achieved without triggering unacceptably intense contracture. The retraction of the triceps surae was measured from the maximal passive dorsal flexion angle of the foot, before and after applying each stretching boot. The difference between these measurements gave the gain obtained with the plaster boot. Protocol R- (stretching with plaster boot) consisted in a series of slow stretchings for 10 minutes before making the boot which was worn 7 days. Recurrent retraction in these same patients warranted another treatment within a delay of 3 to 17 months (mean delay 8.7 months). The same treatment then followed protocol R+ where the stretching was preceded by immersion of the segment in a 40 degrees C water bath for 10 minutes. Mean gain obtained with protocol R+ (warming) was 6.8 degrees knee extended and 7.1 degrees knee flexed. These differences were highly significant in both cases (p knee extended and for 32 muscles, knee flexed. The gain was not related to age, sex or puberty maturity. It was not related to the

  7. The use of contact angle measurements to estimate the adhesion propensity of calcium carbonate to solid substrates in water

    International Nuclear Information System (INIS)

    Bargir, Sameer; Dunn, Steve; Jefferson, Bruce; Macadam, Jitka; Parsons, Simon

    2009-01-01

    We have studied a series of solids using contact angle measurements; stainless steel, gold, aluminium, titanium nitride and PTFE that are frequently used in domestic water environments. It was found the influence of electron-donor (γ - ) and electron-acceptor (γ + ) free energies on material scaling rate was dominated by water wetting angles, providing materials exhibit an average roughness below 100 nm. The γ - component had the greatest influence on theoretical adhesion, while γ LW , (Lifshitz-van der Waals) γ + and γ AB (acid-base) had little effect. From the materials analysed, amorphous carbon coatings were least adhesive, while 'kettle coating' and highly roughened steel the most adhesive. The size and distribution of asperities also influenced the polar free energies and subsequent adhesion due to fluctuations in the wetting angle. The results obtained indicate works of adhesion can be used as a complementary technique with Lewis acid-base theory to deliver useful information about the propensity of scale to deposit on solids.

  8. Application of the critical angle method to refractive index measurement of human skin in vivo under partial contact.

    Science.gov (United States)

    Yoshida, Kenichiro; Ohkubo, Kohji; Ojima, Nobutoshi; Iwata, Kayoko

    2013-03-01

    We adapted the critical angle method for measuring rough surfaces under partial contact to acquire an in vivo skin refractive index (RI). Assuming that the total reflection is the simple sum of reflection from areas that are in contact and reflection from those that are not in contact, the RI can be estimated even for partial contact with a rough surface. We found that cheek skin is sufficiently soft that a sufficiently large area can be in contact and that the critical angle was detectable. The RIs of the cheeks of adult females were measured. The RI range was about 1.51 to 1.53, at a wavelength of 550 nm, without considering systematic errors. The RIs of cheeks are significantly correlated with their conductance, which corresponds to their water content. We determined the relationship between the RI and conductance within the variation of skin under normal conditions; this relationship was theoretically obtained in previous studies. In the present study, a direct in vivo measurement method was developed that enabled us to measure the RI in daily life, although this method contains errors for several reasons, including disregarding absorption.

  9. Accuracy of CT image in measuring the mandible for implant : Effect of mandibular position and gantry angle

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Soon Chul; Choi, Hang Moon; Park, Rae Jeong; Lee, Sam Sun; Park, Tae Won; You, Dong Soo [Dept. of Oral and Maxillofacial Radiology and Dental Research Institute, College of Dentistry, Seoul National University, Seoul (Korea, Republic of)

    1998-02-15

    We used five adult dog mandibles embedded in resin block and six different cross-sectional planes for each mandible were chosen. According to the angle of mandibular occlusal plane to vertical plane (mandibular angle) and gantry angle of CT machine, we classified 4 experimental groups and 1 control group. The control group images were taken at the mandivylar angle 0 (group 1); 30 and 0 (group 2);15 and 15 (group 3); 30 and 30 (group 4), respectively. Using the reformatted cross-sectional images, the distance from the mandibular canal to the alveolar crest and the distance from the mandibular canal to the buccal cortex and to the lingual cortex was measured and compared. The obtained results were as follows: 1. The distance from the mandibular canal to the alveolar crest of group 1 and 2 was larger than control group, but the distance of group 3 and 4 was smaller. The distance from the mandibular canal to the buccal cortex and to the lingual cortex of all experimental groups was smaller than control group. 2. The distance from the mandibular canal to the alveolar crest showed the largest difference from control group in all experimental groups, especially in group 2 and 4 (p<0.05). 3. In the distance from the mandibular canal to the alveolar crest, the number of deviation value under 1 mm was 20 in group 3 and was 11 in group 2 and 4, respectively. 4. The deviation value of the distance from the mandibular canal to the buccal cortex and to the lingual cortex was under 1 mm in most cases.

  10. Electronic anisotropies revealed by detwinned angle-resolved photo-emission spectroscopy measurements of FeSe

    Science.gov (United States)

    Watson, Matthew D.; Haghighirad, Amir A.; Rhodes, Luke C.; Hoesch, Moritz; Kim, Timur K.

    2017-10-01

    We report high resolution angle-resolved photo-emission spectroscopy (ARPES) measurements of detwinned FeSe single crystals. The application of a mechanical strain is used to promote the volume fraction of one of the orthorhombic domains in the sample, which we estimate to be 80 % detwinned. While the full structure of the electron pockets consisting of two crossed ellipses may be observed in the tetragonal phase at temperatures above 90 K, we find that remarkably, only one peanut-shaped electron pocket oriented along the longer a axis contributes to the ARPES measurement at low temperatures in the nematic phase, with the expected pocket along b being not observed. Thus the low temperature Fermi surface of FeSe as experimentally determined by ARPES consists of one elliptical hole pocket and one orthogonally-oriented peanut-shaped electron pocket. Our measurements clarify the long-standing controversies over the interpretation of ARPES measurements of FeSe.

  11. A PRECISION MEASUREMENT OF THE NEUTRINO MIXING ANGLE THETA (SUB 13) USING REACTOR ANTINEUTRINOS AT DAYA BAY.

    Energy Technology Data Exchange (ETDEWEB)

    KETTELL, S.; ET AL.

    2006-10-16

    This document describes the design of the Daya Bay reactor neutrino experiment. Recent discoveries in neutrino physics have shown that the Standard Model of particle physics is incomplete. The observation of neutrino oscillations has unequivocally demonstrated that the masses of neutrinos are nonzero. The smallness of the neutrino masses (<2 eV) and the two surprisingly large mixing angles measured have thus far provided important clues and constraints to extensions of the Standard Model. The third mixing angle, {delta}{sub 13}, is small and has not yet been determined; the current experimental bound is sin{sup 2} 2{theta}{sub 13} < 0.17 at 90% confidence level (from Chooz) for {Delta}m{sub 31}{sup 2} = 2.5 x 10{sup -3} eV{sup 2}. It is important to measure this angle to provide further insight on how to extend the Standard Model. A precision measurement of sin{sup 2} 2{theta}{sub 13} using nuclear reactors has been recommended by the 2004 APS Multi-divisional Study on the Future of Neutrino Physics as well as a recent Neutrino Scientific Assessment Group (NUSAG) report. We propose to perform a precision measurement of this mixing angle by searching for the disappearance of electron antineutrinos from the nuclear reactor complex in Daya Bay, China. A reactor-based determination of sin{sup 2} 2{theta}{sub 13} will be vital in resolving the neutrino-mass hierarchy and future measurements of CP violation in the lepton sector because this technique cleanly separates {theta}{sub 13} from CP violation and effects of neutrino propagation in the earth. A reactor-based determination of sin{sup 2} 2{theta}{sub 13} will provide important, complementary information to that from long-baseline, accelerator-based experiments. The goal of the Daya Bay experiment is to reach a sensitivity of 0.01 or better in sin{sup 2} 2{theta}{sub 13} at 90% confidence level.

  12. Measurement of center-edge angle in developmental dysplasia of the hip: a comparison of two methods in patients under 20 years of age

    International Nuclear Information System (INIS)

    Oemeroglu, H.; Bicimoglu, A.; Agus, H.; Tuemer, Y.

    2002-01-01

    Objective: To analyse in detail the two methods for the measurement of the center-edge (CE) angle in developmental dysplasia of the hip (DDH) in children and adolescents. Design: Four observers independently interpreted the radiographs of 51 surgically treated and 15 unaffected hips on two occasions. CE angle was measured by using two methods: classic (Wiberg) and refined (Ogata et al.). Intraobserver and interobserver variations of both methods were calculated and the effect of age and treatment type on the two measurement methods were analysed. Results: Following 528 measurements in 66 hips, the mean classic CE angle was 28.2 and the mean refined CE angle, 19.9 . The classic CE angle had nearly 1 less intraobserver and interobserver variation than the refined CE angle. Classic angle measurements were obviously higher than refined ones in the hips of children under 9 years of age and in hips in which an innominate osteotomy had been performed. Conclusion: Although CE angle of Wiberg, which is an important radiographic indicator, has an adequate level of reliability and reproducibility it may not reflect the true lateral femoral head coverage in some cases. (orig.)

  13. Electron Pitch-Angle Distribution in Pressure Balance Structures Measured by Ulysses/SWOOPS

    Science.gov (United States)

    Yamauchi, Yohei; Suess, Steven T.; Sakurai, Takashi; Six, N. Frank (Technical Monitor)

    2002-01-01

    Pressure balance structures (PBSs) are a common feature in the high-latitude solar wind near solar minimum. From previous studies, PBSs are believed to be remnants of coronal plumes. Yamauchi et al [2002] investigated the magnetic structures of the PBSs, applying a minimum variance analysis to Ulysses/Magnetometer data. They found that PBSs contain structures like current sheets or plasmoids, and suggested that PBSs are associated with network activity such as magnetic reconnection in the photosphere at the base of polar plumes. We have investigated energetic electron data from Ulysses/SWOOPS to see whether bi-directional electron flow exists and we have found evidence supporting the earlier conclusions. We find that 45 ot of 53 PBSs show local bi-directional or isotopic electron flux or flux associated with current-sheet structure. Only five events show the pitch-angle distribution expected for Alfvenic fluctuations. We conclude that PBSs do contain magnetic structures such as current sheets or plasmoids that are expected as a result of network activity at the base of polar plumes.

  14. Estimation of the Surface Properties of Styrene-Acrylonitrile Random Copolymers from Contact Angle Measurements.

    Science.gov (United States)

    Adão; Saramago; Fernandes

    1999-09-01

    The surface free energy per unit area of a solid, gamma(S), is a fundamental property of materials and determines their surface and interfacial behavior in processes like wetting and adhesion. In this study the gamma(S) of a series of styrene-acrylonitrile random copolymers is evaluated. Three different approaches are used to determine the components in which the surface free energy can be decomposed. Using the geometric and the harmonic mean approach, the dispersive, gamma(d), and polar, gamma(p), components of the solid surface free energy were determined and compared to the Lifshitz-van der Waals, gamma(LW), and acid-base, gamma(AB), components using the approach developed by C. J. van Oss et al. (1987, Adv. Colloid Interface Sci. 28, 35). The acid-base approach was also used to evaluate the work of adhesion of the test liquids: water, glycerol, and thiodiglycol. It was found that the contact angles of these liquids follow closely the predictions of Cassie equation. The evaluation of the surface free energy components on one hand and the relative magnitude of the work of adhesion components on the other hand, suggest that below 50% of acrylonitrile the polystyrene repeating units are preferentially at the surface. Above 50% of acrylonitrile the segregation of the low-energy homopolymer at the surface decreases. Copyright 1999 Academic Press.

  15. A new fast scanning system for the measurement of large angle tracks in nuclear emulsions

    Science.gov (United States)

    Alexandrov, A.; Buonaura, A.; Consiglio, L.; D'Ambrosio, N.; De Lellis, G.; Di Crescenzo, A.; Di Marco, N.; Galati, G.; Lauria, A.; Montesi, M. C.; Pupilli, F.; Shchedrina, T.; Tioukov, V.; Vladymyrov, M.

    2015-11-01

    Nuclear emulsions have been widely used in particle physics to identify new particles through the observation of their decays thanks to their unique spatial resolution. Nevertheless, before the advent of automatic scanning systems, the emulsion analysis was very demanding in terms of well trained manpower. Due to this reason, they were gradually replaced by electronic detectors, until the '90s, when automatic microscopes started to be developed in Japan and in Europe. Automatic scanning was essential to conceive large scale emulsion-based neutrino experiments like CHORUS, DONUT and OPERA. Standard scanning systems have been initially designed to recognize tracks within a limited angular acceptance (θ lesssim 30°) where θ is the track angle with respect to a line perpendicular to the emulsion plane. In this paper we describe the implementation of a novel fast automatic scanning system aimed at extending the track recognition to the full angular range and improving the present scanning speed. Indeed, nuclear emulsions do not have any intrinsic limit to detect particle direction. Such improvement opens new perspectives to use nuclear emulsions in several fields in addition to large scale neutrino experiments, like muon radiography, medical applications and dark matter directional detection.

  16. Informing Aerosol Transport Models With Satellite Multi-Angle Aerosol Measurements

    Science.gov (United States)

    Limbacher, J.; Patadia, F.; Petrenko, M.; Martin, M. Val; Chin, M.; Gaitley, B.; Garay, M.; Kalashnikova, O.; Nelson, D.; Scollo, S.

    2011-01-01

    As the aerosol products from the NASA Earth Observing System's Multi-angle Imaging SpectroRadiometer (MISR) mature, we are placing greater focus on ways of using the aerosol amount and type data products, and aerosol plume heights, to constrain aerosol transport models. We have demonstrated the ability to map aerosol air-mass-types regionally, and have identified product upgrades required to apply them globally, including the need for a quality flag indicating the aerosol type information content, that varies depending upon retrieval conditions. We have shown that MISR aerosol type can distinguish smoke from dust, volcanic ash from sulfate and water particles, and can identify qualitative differences in mixtures of smoke, dust, and pollution aerosol components in urban settings. We demonstrated the use of stereo imaging to map smoke, dust, and volcanic effluent plume injection height, and the combination of MISR and MODIS aerosol optical depth maps to constrain wildfire smoke source strength. This talk will briefly highlight where we stand on these application, with emphasis on the steps we are taking toward applying the capabilities toward constraining aerosol transport models, planet-wide.

  17. Reliable measurement of 3D foot bone angles based on the frame-of-reference derived from a sole of the foot

    Science.gov (United States)

    Kim, Taeho; Lee, Dong Yeon; Park, Jinah

    2016-03-01

    Clinical management of foot pathology requires accurate and robust measurement of the anatomical angles. In order to measure a 3D angle, recent approaches have adopted a landmark-based local coordinate system to establish bone angles used in orthopedics. These measurement methods mainly assess the relative angle between bones using a representative axis derived from the morphological feature of the bone and therefore, the results can be affected by bone deformities. In this study, we propose a method of deriving a global frame-of-reference to acquire consistent direction of the foot by extracting the undersurface of the foot from the CT image data. The two lowest positions of the foot skin are identified from the surface to define the base plane, and the direction from the hallux to the fourth toe is defined together to construct the global coordinate system. We performed the experiment on 10 volumes of foot CT images of healthy subjects to verify that the proposed method provides reliable measurements. We measured 3D angles for talus-calcaneus and talus-navicular using facing articular surfaces of paired bones. The angle was reported in 3 projection angles based on both coordinate systems defined by proposed global frame-of-reference and by CT image planes (saggital, frontal, and transverse). The result shows that the quantified angle using the proposed method considerably reduced the standard deviation (SD) against the angle using the conventional projection planes, and it was also comparable with the measured angles obtained from local coordinate systems of the bones. Since our method is independent from any individual local shape of a bone, unlike the measurement method using the local coordinate system, it is suitable for inter-subject comparison studies.

  18. Selected CPV Results from LHCb Run 1 and Prospects for CKM $\\gamma $ Angle Measurements in Run 2

    CERN Document Server

    Oblakowska-Mucha, Agniezka

    2016-01-01

    The LHCb detector is a single-arm forward spectrometer that collects data at the LHC, designed for studies of flavour physics with high precision. In this review, a few selected results regarding CP violation are discussed with particular emphasis on the CKM angle measurements. This sum- mary covers results based on the data collected by the LHCb detector during 2011 and 2012 proton–proton LHC runs at the centre-of-mass ener- gies of 7 and 8 TeV, respectively. Some remarks on prospects for analyses foreseen in the ongoing LHC Run 2 are also presented

  19. O2 atmospheric band measurements with WINDII: Performance of a narrow band filter/wide angle Michelson combination in space

    International Nuclear Information System (INIS)

    Ward, W.E.; Hersom, C.H.; Tai, C.C.; Gault, W.A.; Shepherd, G.G.; Solheim, B.H.

    1994-01-01

    Among the emissions viewed by the Wind Imaging Interferometer (WINDII) on the Upper Atmosphere Research Satellite (UARS) are selected lines in the (0-0) transition of the O2 atmospheric band. These lines are viewed simultaneously using a narrow band filter/wide-angle Michelson interferometer combination. The narrow band filter is used to separate the lines on the CCD (spectral-spatial scanning) and the Michelson used to modulate the emissions so that winds and rotational temperatures may be measured from the Doppler shifts and relative intensities of the lines. In this report this technique will be outlined and the on-orbit behavior since launch summarized

  20. Simulation of a group of rangefinders adapted to alterations of measurement angle

    Science.gov (United States)

    Baikov, D. V.; Pastushkova, A. A.; Danshin, V. V.; Chepin, E. V.

    2017-01-01

    As part of the National Research Nuclear University of National Research Nuclear University MEPhI (MEPhI) at the Department of Computer Systems and Technologies working laboratory "Robotics." University teachers and laboratory staff implement a training program for master's program "Computer technology in robotics." Undergraduates and graduate students conduct laboratory research and development in several promising areas in robotics. One of the methodologies that are actively used in carrying out dissertation research is the modeling of advanced hardware and software systems, robotics. This article presents the results of such a study. The purpose of this article is to simulate a sensor comprised of a group of laser rangefinders. The rangefinders should be simulated according to the following principle. Beams will originate from one point though with a deviation from normal, providing thereby simultaneous scanning of different points. The data obtained in our virtual test room should be used to indicate an average distance from the device to obstacles for all the four sensors in real time. By leveling the divergence angle of the beams we can simulate different kinds of rangefinders (laser and ultrasonic ones). By adjusting noise parameters we can achieve results similar to those of real models (rangefinders), and obtain a surface map displaying irregularities. We should use a model of an aircraft (quadcopter) as a device to install the sensor. In the article we made an overview of works on rangefinder simulation undertaken at institutions around the world and performed tests. The article draws a conclusion about the relevance of the suggested approach, the methods used, necessity and feasibility of further research in this area.

  1. Frontomaxillary Facial Angle Measurement in Screening for Trisomy 18 at 11 + 0 to 13 + 6 Weeks of Pregnancy: A Double-Centre Study

    Directory of Open Access Journals (Sweden)

    Bartosz Czuba

    2013-01-01

    Full Text Available Objective. The aim of this study was to evaluate the effectiveness of prenatal screening for trisomy 18 with the use of the frontomaxillary facial angle (FMF angle measurement. Material and Methods. The study involved 1751 singleton pregnancies at 11–13 + 6 weeks, examined between 2007 and 2011. Serum PAPP-A and free beta-hCG levels were assessed, and crown-rump length, nuchal translucency, and FMF angle were measured in all patients. 1350 fetuses with known follow-up were included in the final analysis. Results. Highly significant (P<0.01 negative correlation between the CRL and the FMF angle was found. There were 30 fetuses with trisomy 18. FMF angle was highly significantly larger (P<0.0001 in fetuses with trisomy 18 as compared to chromosomally normal fetuses. Two models of first trimester screening were compared: Model 1 based on maternal age, NT, and first trimester biochemistry test (DR 80–85% and FPR 0.3–0.6%, and Model 2 = Model 1 + FMF angle measurement (DR 87.3–93.3% and FPR 0.8–1.3%. Conclusions. The use of FMF angle measurement increases the effectiveness of the screening for trisomy 18. Introduction of the FMF angle as an independent marker for fetal trisomy 18 risk requires further prospective research in large populations.

  2. A low phase angle measured with bioelectrical impedance analysis is associated with osteoporosis and is a risk factor for osteoporosis in community-dwelling people: the Yakumo study.

    Science.gov (United States)

    Tanaka, Satoshi; Ando, Kei; Kobayashi, Kazuyoshi; Hida, Tetsuro; Ito, Kenyu; Tsushima, Mikito; Morozumi, Masayoshi; Machino, Masaaki; Ota, Kyotaro; Seki, Taisuke; Ishiguro, Naoki; Hasegawa, Yukiharu; Imagama, Shiro

    2018-04-05

    Although the phase angle has been reported to be related to predictive factors and therapeutic effects in various diseases, its relation with osteoporosis is unclear. In our large prospective survey of community-dwelling people, a low phase angle was related with osteoporosis, and it could be a predictor of osteoporosis. The phase angle measured with bioelectrical impedance analysis (BIA) is one of the clinically important impedance parameters, and it is a predictor of prognosis and mortality for several diseases. The present cross-sectional study aimed to elucidate the association between osteoporosis and variables measured with BIA, including the phase angle. The study included 307 participants from an annual health checkup. All participants underwent measurement of bone status by quantitative ultrasound and body composition by BIA. Osteoporosis was diagnosed according to the WHO classification, and statistical comparisons were conducted between normal individuals and osteoporosis patients. Age, proteins, minerals, and the phase angle were significantly different between normal individuals and osteoporosis patients (p < 0.001). Furthermore, after controlling for age and sex, proteins, minerals, and the phase angle were significantly lower in osteoporosis patients than those in normal individuals (p < 0.001). In multivariate logistic regression analysis, older age and a low phase angle were risk factors for osteoporosis. Additionally, multiple regression analysis showed that age, sex, proteins, minerals, and the appendicular skeletal muscle index were significantly related to the phase angle. The phase angle is a predictor of osteoporosis, which is unaffected by age and sex, and a lower phase angle is associated with greater probability of osteoporosis. The phase angle can be easily measured, and osteoporosis can be confirmed even at home. This may facilitate early diagnosis and treatment, which may be useful for preventing diseases related to osteoporosis.

  3. A simple method to measure critical angles for high-sensitivity differential refractometry.

    Science.gov (United States)

    Zilio, S C

    2012-01-16

    A total internal reflection-based differencial refractometer, capable of measuring the real and imaginary parts of the complex refractive index in real time, is presented. The device takes advantage of the phase difference acquired by s- and p-polarized light to generate an easily detectable minimum at the reflected profile. The method allows to sensitively measuring transparent and turbid liquid samples.

  4. Indoor measurement of angle resolved light absorption by antireflective glass in solar panels

    DEFF Research Database (Denmark)

    Amdemeskel, Mekbib Wubishet; Benatto, Gisele Alves dos Reis; Riedel, Nicholas

    2017-01-01

    measurements with trackers. The experimental results showed optical responses that are stable and suitable for indoor characterization of solar cells. We find the characteristic optical response of six different antireflective glasses, and based on such measurements, we perform PVsyst simulations and present...

  5. New Measurements of the Beam Normal Spin Asymmetries at Large Backward Angles with Hydrogen and Deuterium Targets

    Science.gov (United States)

    Ríos, D. Balaguer; Aulenbacher, K.; Baunack, S.; Diefenbach, J.; Gläser, B.; von Harrach, D.; Imai, Y.; Kabuß, E.-M.; Kothe, R.; Lee, J. H.; Merkel, H.; Mora Espí, M. C.; Müller, U.; Schilling, E.; Weinrich, C.; Capozza, L.; Maas, F. E.; Arvieux, J.; El-Yakoubi, M. A.; Frascaria, R.; Kunne, R.; Morlet, M.; Ong, S.; van de Wiele, J.; Kowalski, S.; Prok, Y.

    2017-07-01

    New measurements of the beam normal single spin asymmetry in the electron elastic and quasielastic scattering on the proton and deuteron, respectively, at large backward angles and at ⟨Q2⟩ =0.22 (GeV /c )2 and ⟨Q2⟩ =0.35 ( GeV /c )2 are reported. The experimentally observed asymmetries are compared with the theoretical calculation of Pasquini and Vanderhaeghen [Phys. Rev. C 70, 045206 (2004)., 10.1103/PhysRevC.70.045206]. The agreement of the measurements with the theoretical calculations shows a dominance of the inelastic intermediate excited states of the nucleon, π N and the Δ resonance. The measurements explore a new, important parameter region of the exchanged virtual photon virtualities.

  6. Effects of stretching the scalene muscles on slow vital capacity.

    Science.gov (United States)

    Lee, Juncheol; Hwang, Sehee; Han, Seungim; Han, Dongwook

    2016-06-01

    [Purpose] The purpose of this study was to examine whether stretching of the scalene muscles would improve slow vital capacity (SVC). [Subjects and Methods] The subjects of this study were 20 healthy female students to whom the study's methods and purpose were explained and their agreement for participation was obtained. The SVC was measured using spirometry (Pony FX, COSMED Inc., Italy). The intervention used was stretching of the scalene muscles. Stretching was carried out for 15 min, 10 times at per each portion of scalene muscles: the anterior, middle, and posterior parts. [Results] Expiratory vital capacity (EVC) and tidal volume (Vt) noticeably increased after stretching. However, there were no changes in any of the SVC items in the control group. [Conclusion] This study demonstrated that stretching of the scalene muscles can effectively improve SVC. In particular, we confirmed that stretching of the scalene muscles was effective in increasing EVC and Vt, which are items of SVC.

  7. Kontrola kvalitete stretch folije

    OpenAIRE

    Gržanić, Nino

    2016-01-01

    U završnom radu opisan je postupak ekstrudiranja i kontrole kvalitete stretch folije koji se koristi u firmi Bomark-Pak radi osiguravanja najbolje kvalitete. Kontrola kreče kod uvoza repromaterijala, nastavlja se kod izrade folije na stroju, te se glavni dio odvija nakon izrade gotovg proizvoda. U radu ćemo detaljno objasniti svaki pojedini korak, zašto se on vrši, te uz pomoć kojih mjernih instrumenata se izvršava.

  8. The use of small angle neutron scattering to measure the colloidal stability of magnetic nanoparticles intended for biomedical applications

    International Nuclear Information System (INIS)

    Connolly, J.; St Pierre, T.G.; Rutnakornpituk, M.; Riffle, J.S.

    2003-01-01

    The size and shape of particles in suspension and the interactions between the particles can be determined from small angle neutron scattering (SANS) studies. Magnetic cobalt nanoparticles have been manufactured with a view to using their unique properties for biomedical applications such as drug delivery and targetting to specific sites in the body. The nanoparticles are designed to form stable suspension and to remain isolated from one another in order to prevent formation of clusters of particles. The colloidal stability of the suspension is related to the size of the particles with larger particles being less stable than small ones in general. Electron microscopy images indicate that the cobalt nanoparticles form clusters but it is unclear if the clustering is an artifact of the specimen preparation. Small angle scattering experiments can determine if the aggregation observed on drying is the true behaviour of the nanoparticles while suspended in the carrier fluid. Cobalt nanoparticles and silica-coated cobalt nanoparticles were studied using SANS at the Australian Small Angle Neutron Scattering Facility (AUSANS) at the Australian Nuclear Science and Technology Organisation. Both sets of nanoparticles were coated in a silicon-based polymer and suspended in a silicon-based carrier fluid to form a stable dispersion. The SANS study points to the nanoparticles being fully dispersed and isolated when in the fluid state. Interactions between the particles may cause clustering over time. To study this, the SANS measurements were repeated after a 7 month interval. No significant changes in the particle sizes as measured by the SANS technique are observed indicating the suspensions of the particles are colloidally stable over time. Together these results indicate the nanoparticles may be candidates for biomedical applications

  9. Contact angle measurement - a reliable supportive method for screening water-resistance of ultraviolet-protecting products in vivo.

    Science.gov (United States)

    Hagens, R; Mann, T; Schreiner, V; Barlag, H G; Wenck, H; Wittern, K-P; Mei, W

    2007-08-01

    Substantivity of sunscreen formulations is affected by the wash-out rate of ultraviolet-absorber and -reflector compounds in water. Water-resistance of sunscreen formulations is currently determined according to a standardized European Cosmetic Toiletry and Perfumery Association (COLIPA) protocol, encompassing the determination of a minimal erythemal dose before and after a defined immersion step in water. It can be supposed that the higher the wettability of a treated skin area, the higher is the wash-out rate of sunscreen compounds. This present report addresses the validity of determining the wettability of treated skin alone as a measure for the water-resistance of sunscreen products. The report addresses the robustness, accuracy and congruence of a recently developed wettability test, based on the measurement of the contact angle (CA) of a sessile water drop on treated skin areas. Contact angle data of 66 sunscreen formulations are compared with the corresponding results of 81 water-resistance tests, using the sun protection factor (SPF)/immersion/SPF method. Sunscreen products tested by the CA method were applied to the skin of the volar forearm of test subjects at a defined dose and drying-time, using a standardized application and recording device. Contact angles between a sessile water drop and skin were recorded by a Charge-Coupled Device (CCD) camera and subjected to automatic contour analysis. Taking the SPF/immersion/SPF method as gold standard, accuracy parameters of the CA method were determined. By using an appropriate cut-off level of CAs, the CA method has a specificity and positive-predictive value of 100%, and turns out to be a reliable screening method to identify water-resistant formulations. Based on our findings, those formulations that give CAs above 30 degrees may be categorized water-proof without further testing by the COLIPA water-resistance method.

  10. Assessment of muscle architecture of the biceps femoris and vastus lateralis by ultrasound after a chronic stretching program.

    Science.gov (United States)

    e Lima, Kelly M M; Carneiro, Simone P; Alves, Daniel de S; Peixinho, Carolina C; de Oliveira, Liliam F

    2015-01-01

    To evaluate the chronic effects of a static stretching program on the muscle architecture of biceps femoris (BF) and vastus lateralis (VL) muscles in ultrasound (US) images. Randomized controlled longitudinal trial. Biomechanics Laboratory of Physical Education School of the Army, Rio de Janeiro, Brazil. The study included 24 healthy and physically active male volunteers (19.05 ± 1.40 years, 1.73 ± 0.07 m, and 73.15 ± 8.33 kg), randomly allocated to 1 of 2 groups: stretching group (SG, n = 12) and control group (n = 12). The SG was submitted to 3 sets of 30 seconds of static stretching 3 times a week during 8 weeks. Ultrasound equipment (7.5 MHz) was used for the evaluation of BF and VL muscle architecture variables (pennation angle, fiber length, muscle thickness, and fascicle displacement) before and after training. Knee range of motion (ROM) and isometric flexion and extension torque (TQ) were also measured. There were no significant changes in muscle architecture, TQ, and maximum knee flexion angle (P > 0.05). However, maximum knee extension angle (MEA) increased significantly in the SG (pretraining: 159.37 ± 7.27 degrees and posttraining: 168.9 ± 3.7 degrees; P stretching protocol was insufficient to cause structural changes in the VL and BF muscles. The increase in MEA could not be explained by muscle architecture changes. To describe changes in the VL and BF muscle tendon unit using US after a long-term stretching program to identify which structures are responsible for ROM increase.

  11. The Surface Measurement of Fibre Orientation Anisotropy and Misalignment Angle by Laser Diffraction

    OpenAIRE

    Pereira, Mário José Teixeira; Fiadeiro, Paulo Torrão; Jesus, M. E. P.; Silvy, Jacques

    2010-01-01

    The dimensional stability in fibre webs mainly depends of the fibre anisotropy and its orientation on the surfaces. These parameters are influenced during the manufacturing process, where the length and type of the fibres is determinant. The web quality control, in general, is performed based on the measurement of these parameters in the bulk of the fibre webs. This paper presents an optical laser diffraction method to measure the fibre anisotropy and the fibre orientation distribution only a...

  12. EFFECTIVENESS OF PNF STRETCHING AND CYCLIC STRETCHING OF CALF TIGHTNESS ON COLLEGE GOING GIRLS

    Directory of Open Access Journals (Sweden)

    Ashlesha Sirari

    2015-06-01

    Full Text Available Background: Flexibility helps with injury prevention, the reduction of soreness following a workout, and a general sense of well-being. There are different stretching techniques and protocols for improvements in calf extensibility and flexibility. The purpose of the study was to investigate the effectiveness of two techniques i.e. CYCLIC and PNF stretching which improves calf flexibility. This study was done to find the effectiveness of calf Cyclic and PNF stretching technique to improve calf flexibility. Methods: 30 subjects with age group 21-22 years were randomly allocated to 2 groups equally. Group 1(n=15 were given CYCLIC and group 2(n=15 were given PNF stretching technique. Plantar flexion was used to measure the calf tightness which was done before and after the treatment. Treatment was given for 7 days and on the 7th day the calf tightness was again measured. Results: The mean difference of the CYCLIC is 4.6 and mean difference of PNF is 4.7 which indicate that CYCLIC and PNF both are effective to improve calf flexibility but PNF is more effective than CYCLIC to improve calf flexibility. Conclusion: The neurophysiological basis of PNF, stating that the excitatory efficient of the neuromuscular spindle or the inhibitory afferent of the Golgi tendon organ (GTO or both are responsible for the effects. During PNF stretch and isometric contraction of stretched agonists for extended period may cause activation of its neuromuscular spindle. The increase in tension created during the isometric contraction of the pre – lengthened agonist contracts concentrically. Both the fascia & the spindle of the agonist adjust to the nearly lengthened position. These impulses travel via causing post synaptic inhibition of the motor neuron to agonist increasing the tension from the GTO. These impulses can override the impulses coming from the neuromuscular spindles arousing the muscle to reflexly resist to the change in length, thus helping in lengthening

  13. X-ray diffraction study with small- and wide-angle simultaneous measurement of polymorphic crystallization of triacylglycerols

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, Satoru [Hiroshima Univ., Faculty of Applied Biological Science, Higashi-Hiroshima, Hiroshima (Japan)

    2002-01-01

    Polymorphism of triacylglycerols (TAGs) is an important phenomenon which influences the physical chemical properties of fats employed in foods, pharmaceuticals, cosmetics etc. In particular, precise analysis of kinetic properties of polymorphic crystallization is closely related to technical control of fat crystallization in confectionery and food industry. In the melt-mediated crystallization, which is one of the typical methods of crystallizing the more stable form for industrial use, the more stable form is induced by rapidly melting the less stable forms. Recently, X-ray diffraction spectroscopy using a synchrotron radiation source has been used in study of dynamic processes of polymorphic transformations of many TAGs. This approach has allowed us to gain a better understanding of the kinetics of processes occurring during the polymorphic crystallization and transformations of TAGs at the molecular level. In the present study, polymorphic crystallization of TAG has been examined with the time-resolved X-ray diffraction method with small- and wide-angle simultaneous measurement using synchrotron radiation. The main result is as follows: the melt mediation gave rise to the formation of a liquid crystalline structure having long spacing values of 5.1 nm and 4.6 nm in SOS (sn-1,3-distearoyl-2-oleoyl glycerol). Consequently, the use of the time-resolved X-ray diffraction method with small- and wide-angle simultaneous measurement using synchrotron radiation unveiled quite newer aspects of the polymorphic crystallization of the triacylglycerols from neat liquid, which were not detectable in conventional XRD techniques. (author)

  14. Study of the resistance of SAMs on aluminium to acidic and basic solutions using dynamic contact angle measurement.

    Science.gov (United States)

    Liakos, Ioannis L; Newman, Roger C; McAlpine, Eoghan; Alexander, Morgan R

    2007-01-30

    We report the development of a method to determine the aqueous stability of self-assembled monolayers (SAMs) using the Wilhelmy plate dynamic contact angle (DCA) experiment. The DCA is measured in solutions over a range of pH values for alkyl carboxylic and alkyl phosphonic acid SAMs formed on magnetron-sputtered aluminum. The change in DCA on repeated immersion is used as a measure of the degradation of the SAMs by hydrolytic attack. The short and intermediate chain length alkyl acids are not stable in water of neutral pH, whereas molecules with the longest alkyl chains show considerably greater stability in neutral and both high and low pH solutions. The packing density inferred from the DCA and the contact angle hysteresis suggests the C18CO2H monolayer to be slightly less well packed than that of the C18P(=O)(OH)2; this is consistent with related friction force microscopy and infrared reflection absorption spectroscopy findings published elsewhere (Foster, T. T.; Alexander, M. R.; Leggett, G. J.; McAlpine, E. Langmuir 2006, 22, 9254-9259). The resistance of the SAMs to acid and alkaline environments is discussed in the context of aluminum oxide solubility, SAM packing density, and the resistance of the interfacial phosphate and carboxylate functionalities to different aqueous conditions.

  15. Measuring the χ1 torsion angle in protein by CH-CH cross-correlated relaxation: A new resolution-optimised experiment

    International Nuclear Information System (INIS)

    Carlomagno, Teresa; Bermel, Wolfgang; Griesinger, Christian

    2003-01-01

    Here we introduce an experiment with high sensitivity and resolution for the measurement of CH-CH dipolar-dipolar cross-correlated relaxation rates (CCRR) in protein side-chains. The new methodology aims to the determination of structural and dynamical parameters around the torsion angle χ 1 by measuring C α H α -C β H β cross-correlated relaxation rates. The method is validated on the protein ubiquitin: the χ 1 angles determined from the CCRR data are compared with the χ 1 angles of a previously determined NMR structure. The agreement between the two data sets is excellent for most residues. The few discrepancies that were found between the CCR-derived χ 1 angles and the angles of the previously determined NMR structure could be explained by taking internal motion into account. The new methodology represents a very powerful tool to determine both structure and dynamics of protein side-chains in only one experiment

  16. Goniometer Measurements of Oral Labial Angle and Evaluation of Oral Motor Reflexes in Preterm Infants: Comparison to Findings in Term Infants.

    Science.gov (United States)

    Ince, Deniz Anuk; Tugcu, Ali Ulas; Ecevit, Ayşe; Ciyiltepe, Muzeyyen; Kurt, Abdullah; Abbasoğlu, Aslıhan; Tekindal, Mustafa Agah; Tarcan, Aylin

    2015-10-01

    To date, no study has evaluated changes in oral labial angle as preterm infants mature. The main purpose of this study was to document goniometer measurements of the labial angle of the mouth in preterm infants, to assess changes with development, to compare to findings in healthy term infants, and also evaluate oral motor reflexes in these groups. Seventy-eight preterm infants and 45 healthy term infants were recruited for the prospective study. Labial angle was assessed via goniometer, and oral motor reflexes and the volume of milk ingested were evaluated. There was significant difference between term and preterm infants' labial angles (P Goniometer measurements of the oral labial angle may reveal oral motor performance in preterm infants and may be relevant for feeding skills assessment in this group of infants. © The Author(s) 2015.

  17. Accuracy of linear measurement using cone-beam computed tomography at different reconstruction angles

    International Nuclear Information System (INIS)

    Nikneshan, Nikneshan; Aval, Shadi Hamidi; Bakhshalian, Neema; Shahab, Shahriyar; Mohammadpour, Mahdis; SarikhanI, Soodeh

    2014-01-01

    This study was performed to evaluate the effect of changing the orientation of a reconstructed image on the accuracy of linear measurements using cone-beam computed tomography (CBCT). Forty-two titanium pins were inserted in seven dry sheep mandibles. The length of these pins was measured using a digital caliper with readability of 0.01 mm. Mandibles were radiographed using a CBCT device. When the CBCT images were reconstructed, the orientation of slices was adjusted to parallel (i.e., 0 degrees), +10 degrees, +12 degrees, -12 degrees, and -10 degrees with respect to the occlusal plane. The length of the pins was measured by three radiologists, and the accuracy of these measurements was reported using descriptive statistics and one-way analysis of variance (ANOVA); p<0.05 was considered statistically significant. The differences in radiographic measurements ranged from -0.64 to +0.06 at the orientation of -12 degrees, -0.66 to -0.11 at -10 degrees, -0.51 to +0.19 at 0 degrees, -0.64 to +0.08 at +10 degrees, and -0.64 to +0.1 at +12 degrees. The mean absolute values of the errors were greater at negative orientations than at the parallel position or at positive orientations. The observers underestimated most of the variables by 0.5-0.1 mm (83.6%). In the second set of observations, the reproducibility at all orientations was greater than 0.9. Changing the slice orientation in the range of -12 degrees to +12 degrees reduced the accuracy of linear measurements obtained using CBCT. However, the error value was smaller than 0.5 mm and was, therefore, clinically acceptable.

  18. Bias of purine stretches in sequenced chromosomes

    DEFF Research Database (Denmark)

    Ussery, David; Soumpasis, Dikeos Mario; Brunak, Søren

    2002-01-01

    We examined more than 700 DNA sequences (full length chromosomes and plasmids) for stretches of purines (R) or pyrimidines (Y) and alternating YR stretches; such regions will likely adopt structures which are different from the canonical B-form. Since one turn of the DNA helix is roughly 10 bp, we...... measured the fraction of each genome which contains purine (or pyrimidine) tracts of lengths of 10 by or longer (hereafter referred to as 'purine tracts'), as well as stretches of alternating pyrimidines/purine ('pyr/pur tracts') of the same length. Using this criteria, a random sequence would be expected...... to contain 1.0% of purine tracts and also 1.0% of the alternating pyr/pur tracts. In the vast majority of cases, there are more purine tracts than would be expected from a random sequence, with an average of 3.5%, significantly larger than the expectation value. The fraction of the chromosomes containing pyr...

  19. The consistency between measurements of the femoral neck anteversion angle in DDH on three-dimensional CT and MRI.

    Science.gov (United States)

    Mao, Cunhua; Liang, Yanchen; Ding, Chengzong; Guo, Lingfei; Wang, Yanbing; Zeng, Qingjuan; Wang, Guangbin

    2016-06-01

    Three-dimensional computed tomography (3D CT) has been regarded by some investigators as the gold standard for measurements of the femoral neck anteversion angle (FNA) in developmental dysplasia of the hip (DDH), although a simple and reliable imaging method using a non-ionizing technique is needed. To determine the consistency between measurements of the FNA in DDH using 3D CT and magnetic resonance imaging (MRI) and to estimate the precision, reliability, and reproducibility of MRI for the measurement of the FNA and assess whether MRI could replace 3D CT. 3D CT and MRI were used to measure the FNA in 22 patients, including 18 girls and four boys, with a mean age of 3 years (age range, 1-7 years). All of the measurements were performed independently by two radiologists at different times. This exercise was repeated 2 weeks later by one of the radiologists. High consistency was found between the MRI and 3D CT measurements (intraclass correlation coefficient [ICC] of 0.906, P DDH. MRI is recommended as an appropriate technique for measurement of the FNA in DDH, and this approach could replace 3D CT because it delivers no ionizing radiation and offers a better display of soft tissue pathological changes. © The Foundation Acta Radiologica 2015.

  20. A new method to normalize plantar pressure measurements for foot size and foot progression angle.

    NARCIS (Netherlands)

    Keijsers, N.L.; Stolwijk, N.M.; Nienhuis, B.; Duysens, J.E.J.

    2009-01-01

    Plantar pressure measurement provides important information about the structure and function of the foot and is a helpful tool to evaluate patients with foot complaints. In general, average and maximum plantar pressure of 6-11 areas under the foot are used to compare groups of subjects. However,

  1. Pitch angle distribution of trapped energetic protons and helium isotope nuclei measured along the Resurs-01 No. 4 LEO satellite

    Directory of Open Access Journals (Sweden)

    A. Leonov

    2005-11-01

    Full Text Available The NINA detector on board the Resurs-01 No. 4 satellite (835 km, 98° inclination is equipped with particle trackers based on silicon strip detectors. From the energy deposited in each of its silicon layers the mass, the momentum direction and energy of incident particles have been determined. The resolutions in mass and energy allow identification of H and He isotopes over the 10-50 MeV/n energy range. The angular resolution is about 2.5°. We present the direct measurements of proton and helium isotopes pitch angle distributions derived from Resurs-01 No.4/NINA observations and their variations as functions of (B, L coordinates and energy. The measurements of trapped helium isotopes spectrum are also presented.

  2. Use of wide-angle X-ray diffraction to measure shape and size of dispersed colloidal particles.

    Science.gov (United States)

    Qazi, S Junaid S; Rennie, Adrian R; Cockcroft, Jeremy K; Vickers, Martin

    2009-10-01

    Laboratory X-ray diffraction is used to investigate the size and shape of dispersed plate-like and spherical colloidal particles. Analysis of the wide-angle diffraction data provides information about the size and shape of crystals from the width of the Bragg peaks according to the Debye-Scherrer formula. The measurements, data analysis, and evaluation are discussed. It is shown that X-ray diffraction with conventional laboratory equipment on dispersed particles is feasible as a tool to determine both particle size and shape. Data for two samples--gold colloids and nickel (II) hydroxide particles are presented. The advantages and limitations of the method are discussed. X-ray diffraction measurements that are made in combination with dynamic light scattering can be used to estimate the thickness of stabilizing layers of polymers.

  3. Heavy ions reactions at GANIL energies: the use of LISE telescopic mode for the small angle measurements

    International Nuclear Information System (INIS)

    Bacri, C.O.

    1989-01-01

    The use of heavy ions at GANIL energies leads to a concentration of the reaction products in the forward direction. Measurements have to be performed at and around 0 degree and with an accuracy around one milliradian. The angular selection (after the two dipoles) is performed after a magnetic rigidity one (between the two dipoles). The double sorting does allow measurements close to the beam in magnetic rigidity and in angle. TRANSPORT calculations show that the LISE spectrometer of GANIL can be used in telescopic mode. Experiments with a 44 MeV per nucleon Argon beam on C, Al, Ni and Au targets are performed. The identification of all the detected ions allowed the obtention of angular distributions at and around 0 degree with the required accuracy. This study is completed by a theoretical approach of the thermodynamical evolution based on an extended quantal mean field theory in which a collision-like term simulates residual interaction effects [fr

  4. Measurement of angle-correlated differential (n,2n) reaction cross section with pencil-beam DV neutron source

    International Nuclear Information System (INIS)

    Takaki, S.; Kondo, K.; Shido, S.; Miyamaru, H.; Murata, I.; Ochiai, Kentaro; Nishitani, Takeo

    2006-01-01

    Angle-correlated differential cross-section for 9 Be(n,2n) reaction has been measured with the coincidence detection technique and a pencil-beam DT neutron source at FNS, JAEA. Energy spectra of two emitted neutrons were obtained for azimuthal and polar direction independently. It was made clear from the experiment that there are noise signals caused by inter-detector scattering. The ratio of the inter-detector scattering components in the detected signals was estimated by MCNP calculation to correct the measured result. By considering the inter-detector scattering components, the total 9 Be(n,2n) reaction cross-section agreed with the evaluated nuclear data within the experimental error. (author)

  5. Pion scattering to 8- stretched states in 60Ni

    International Nuclear Information System (INIS)

    Clausen, B.L.

    1988-03-01

    Using the Energetic Pion Channel and Spectrometer at the Los Alamos Meson Physics Facility, differential cross sections for pion scattering were measured for ten previously known J/sup π/ = 8/sup /minus// stretched states in 60 Ni. A possible new pure isoscalar stretched state was also found. The data were taken near the /DELTA//sub 3,3/-resonance using 162 MeV incident pions and scattering angles of 65/degree/, 80/degree/, and 90/degree/ for π + and 65/degree/ and 80/degree/ for π/sup /minus//. The analysis of the 60 Ni data found that the use of Woods-Saxon wave functions in the theoretical calculations gave much better agreement with data than the use of the usual harmonic oscillator wave functions. The WS theory gave better predictions of: the angle at which the π/sup /minus// and π + angular distributions are maximum, the ratios of π/sup /minus// to π + cross sections for pure isovector states (which were much larger than unity), and the absolute size of the cross sections for all states (so that the normalization factor necessary to arrive at agreement of theory with data was closer to unity). The theoretical calculations used the distorted wave impulse approximation, including new methods for unbound states. The sensitivities of the calculations to input parameters were investigated. This analysis using WS wave functions was extended to five other nuclei ( 12 C, 14 C, 16 O, 28 Si, and 54 Fe) on which both pion scattering and electron scattering have been done. A significant improvement in arriving at a normalization factor close to unity was found when WS wave functions were consistently used for analyzing both pion and electron inelastic scattering data. 101 refs., 26 figs., 13 tabs

  6. EFFECTIVENESS OF PNF STRETCHING VERSUS STATIC STRETCHING ON PAIN AND HAMSTRING FLEXIBILITY FOLLOWING MOIST HEAT IN INDIVIDUALS WITH KNEE OSTEOARTHRITIS

    Directory of Open Access Journals (Sweden)

    Meena .V

    2016-10-01

    Full Text Available Background: Osteoarthritis (OA is a degenerative joint disease and one of the major public health problem that causesfunctional impairment and reduced quality of life. To compare the effectiveness of PNF Hold relax stretching versus Static stretching on pain and flexibility of hamstring following moist heat in individuals with knee osteoarthritis. Hamstring tightness is the major problem in knee osteoarthritis individuals. Therefore the need of study is comparing the effectiveness of PNF Hold relax stretching versus static stretching on pain and flexibility of hamstrings following moist heat in knee osteoarthritis participants. Determining the effects of PNF Hold relax stretching versus Static stretching along with moist heat on pain and hamstring flexibility by VAS and Active knee extension range of motion in knee osteoarthritis individuals. Methods: 30 subjects with symptoms of knee osteoarthritis were randomly distributed into 2 groups 15 in each group. PNF Hold relax stretching along with moist heat is compared to Static stretching along with moist heat. Pain was measured by Visual Analogue Scale (VAS and hamstring flexibility by Active knee Extension Range of Motion (AKEROM by universal goniometer. Measurements are taken pre and post intervention. Results: The results indicated PNF Hold relax stretching along with moist heat showed a statistically significant improvement in pain (p<0.05 and improvement in hamstring flexibility (p<0.05 when compared to Static stretching along with moist heat. Conclusion: Subjects with PNF Hold relax stretching along with moist heat showed significant improvement in pain reduction and improving hamstring flexibility than Static stretching along with moist heat.

  7. The effects of acute self myofascial release (MFR) and stretching ...

    African Journals Online (AJOL)

    Baseline measurements were taken initially and then participants were randomly divided into four groups (control [n=10, static stretching [n=10], dynamic stretching [n=10] and self MFR [n=10]). Each group performed a 60-minute intervention. During the intervention programme the various groups took part in prescribed ...

  8. Passive Stretch Versus Active Stretch on Intervertebral Movement in Non - Specific Neck Pain

    International Nuclear Information System (INIS)

    Abd El - Aziz, A.H.; Amin, D.I.; Moustafa, I.

    2016-01-01

    Neck pain is one of the most common and painful musculoskeletal conditions. Point prevalence ranges from 6% to 22% and up to 38% of the elderly population, while lifetime prevalence ranges from 14,2% to 71%. Up till now no randomized study showed the effect between controversy of active and passive stretch on intervertebral movement. The purpose: the current study was to investigate the effect of the passive and active stretch on intervertebral movement in non - specific neck pain. Material and methods: Forty five subjects from both sexes with age range between 18 and 30 years and assigned in three groups, group I (15) received active stretch, ultrasound and TENS. Group II (15) received passive stretch, ultrasound and TENS. Group III (15) received ultrasound and TENS. The radiological assessment was used to measure rotational and translational movement of intervertebral movement before and after treatment. Results: MANOVA test was used for radiological assessment before and after treatment there was significant increase in intervertebral movement in group I as p value =0.0001. Conclusion: active stretch had a effect in increasing the intervertebral movement compared to the passive stretch

  9. Structural study of polymers under stretch using a new X-ray TV detector

    International Nuclear Information System (INIS)

    Ohishi, Yasuo; Uemura, Akio; Amemiya, Yoshiyuki.

    1994-01-01

    Time-resolved synchrotron radiation small angle X-ray scattering experiment to investigate the structural change of polyethylene during stretching have been made by utilizing a new X-ray TV detector installed at the Photon Factory. This X-ray TV detector specially developed for real-time measurements of diffraction patterns employs an X-ray image intensifier with a Be-window of a 150 mm diameter. The TV detector has a sensitivity and a time resolution of 30 frames per second. This capability allows us to observe weak SAXS patterns in a time-resolved mode. (author)

  10. Lamellar thickness and stretching temperature dependency of cavitation in semicrystalline polymers.

    Directory of Open Access Journals (Sweden)

    Yaotao Wang

    Full Text Available Polybutene-1 (PB-1, a typical semicrystalline polymer, in its stable form I shows a peculiar temperature dependent strain-whitening behavior when being stretched at temperatures in between room temperature and melting temperature of the crystallites where the extent of strain-whitening weakens with the increasing of stretching temperature reaching a minima value followed by an increase at higher stretching temperatures. Correspondingly, a stronger strain-hardening phenomenon was observed at higher temperatures. The strain-whitening phenomenon in semicrystalline polymers has its origin of cavitation process during stretching. In this work, the effect of crystalline lamellar thickness and stretching temperature on the cavitation process in PB-1 has been investigated by means of combined synchrotron ultrasmall-angle and wide-angle X-ray scattering techniques. Three modes of cavitation during the stretching process can be identified, namely "no cavitation" for the quenched sample with the thinnest lamellae where only shear yielding occurred, "cavitation with reorientation" for the samples stretched at lower temperatures and samples with thicker lamellae, and "cavitation without reorientation" for samples with thinner lamellae stretched at higher temperatures. The mode "cavitation with reorientation" occurs before yield point where the plate-like cavities start to be generated within the lamellar stacks with normal perpendicular to the stretching direction due to the blocky substructure of the crystalline lamellae and reorient gradually to the stretching direction after strain-hardening. The mode of "cavitation without reorientation" appears after yield point where ellipsoidal shaped cavities are generated in those lamellae stacks with normal parallel to the stretching direction followed by an improvement of their orientation at larger strains. X-ray diffraction results reveal a much improved crystalline orientation for samples with thinner lamellae

  11. Lamellar thickness and stretching temperature dependency of cavitation in semicrystalline polymers.

    Science.gov (United States)

    Wang, Yaotao; Jiang, Zhiyong; Fu, Lianlian; Lu, Ying; Men, Yongfeng

    2014-01-01

    Polybutene-1 (PB-1), a typical semicrystalline polymer, in its stable form I shows a peculiar temperature dependent strain-whitening behavior when being stretched at temperatures in between room temperature and melting temperature of the crystallites where the extent of strain-whitening weakens with the increasing of stretching temperature reaching a minima value followed by an increase at higher stretching temperatures. Correspondingly, a stronger strain-hardening phenomenon was observed at higher temperatures. The strain-whitening phenomenon in semicrystalline polymers has its origin of cavitation process during stretching. In this work, the effect of crystalline lamellar thickness and stretching temperature on the cavitation process in PB-1 has been investigated by means of combined synchrotron ultrasmall-angle and wide-angle X-ray scattering techniques. Three modes of cavitation during the stretching process can be identified, namely "no cavitation" for the quenched sample with the thinnest lamellae where only shear yielding occurred, "cavitation with reorientation" for the samples stretched at lower temperatures and samples with thicker lamellae, and "cavitation without reorientation" for samples with thinner lamellae stretched at higher temperatures. The mode "cavitation with reorientation" occurs before yield point where the plate-like cavities start to be generated within the lamellar stacks with normal perpendicular to the stretching direction due to the blocky substructure of the crystalline lamellae and reorient gradually to the stretching direction after strain-hardening. The mode of "cavitation without reorientation" appears after yield point where ellipsoidal shaped cavities are generated in those lamellae stacks with normal parallel to the stretching direction followed by an improvement of their orientation at larger strains. X-ray diffraction results reveal a much improved crystalline orientation for samples with thinner lamellae stretched at higher

  12. Improved Measurement of the CKM Angle alpha Using B0 to rho+rho- Decays.

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, B.

    2005-03-29

    We present results from an analysis of B{sup 0} ({bar B}{sup 0}) {yields} {rho}{sup +}{rho}{sup -} using 232 million {Upsilon}(4S) {yields} B{bar B} decays collected with the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC. We measure the longitudinal polarization fraction f{sub L} = 0.978 {+-} 0.014(stat){sub -0.029}{sup +0.021}(syst) and the CP-violating parameters S{sub L} = -0.33 {+-} 0.24(stat){sub -0.14}{sup +0.08}(syst) and C{sub L} = -0.03 {+-} 0.18(stat) {+-} 0.09(syst). Using an isospin analysis of B {yields} {rho}{rho} decays we determine the unitarity triangle {alpha}. The solution compatible with the Standard Model is {alpha} = (100 {+-} 13){sup o}.

  13. Unbalance Identification of Speed-Variant Rotary Machinery without Phase Angle Measurement

    Directory of Open Access Journals (Sweden)

    Cong Yue

    2015-01-01

    Full Text Available As rotary mechanical structure becomes more complicated, difficulty arises in receiving prime correction mass and optimum balancing plane efficiently. An innovative modal balancing process for estimating the residual unbalance from different equilibrium plane of complex flexible rotor system is presented. The method is based on a numerical approach with modal ratio among measurement points (MRMP coefficient and triple phase method (TPM. The veracity of calculation result is verified by an academic rotor model. The latter study in this paper is subsequently put forward through a power turbine rotor modeled by finite element method. Simulation results show that proper equilibrium plane performs commendably in recognizing residual unbalance and reducing the vibration effect through the critical region. Moreover, the inherent unbalance recognized by experimental data from a turbine rotor with slender shaft is found to be in certain difference under different counterweight combination. Choosing suitable balancing planes will improve the accuracy of unbalance identification.

  14. OCT-measured plaque free wall angle is indicative for plaque burden: overcoming the main limitation of OCT?

    Science.gov (United States)

    Hoogendoorn, Ayla; Gnanadesigan, Muthukaruppan; Zahnd, Guillaume; van Ditzhuijzen, Nienke S; Schuurbiers, Johan C H; van Soest, Gijs; Regar, Evelyn; Wentzel, Jolanda J

    2016-10-01

    The aim of this study was to investigate the relationship between the plaque free wall (PFW) measured by optical coherence tomography (OCT) and the plaque burden (PB) measured by intravascular ultrasound (IVUS). We hypothesize that measurement of the PFW could help to estimate the PB, thereby overcoming the limited ability of OCT to visualize the external elastic membrane in the presence of plaque. This could enable selection of the optimal stent-landing zone by OCT, which is traditionally defined by IVUS as a region with a PB OCT and IVUS) were measured in 18 matched IVUS and OCT pullbacks acquired in the same coronary artery. We determined the relationship between OCT measured PFW (PFWOCT) and IVUS PB (PBIVUS) by non-linear regression analysis. An ROC-curve analysis was used to determine the optimal cut-off value of PFW angle for the detection of PB < 40 %. Sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) were calculated. There is a significant correlation between PFWOCT and PBIVUS (r(2) = 0.59). The optimal cut-off value of the PFWOCT for the prediction of a PBIVUS < 40 % is ≥220° with a PPV of 78 % and an NPV of 84 %. This study shows that PFWOCT can be considered as a surrogate marker for PBIVUS, which is currently a common criterion to select an optimal stent-landing zone.

  15. Effect of PNF stretching training on the properties of human muscle and tendon structures.

    Science.gov (United States)

    Konrad, A; Gad, M; Tilp, M

    2015-06-01

    The purpose of this study was to investigate the influence of a 6-week proprioceptive neuromuscular facilitation (PNF) stretching training program on the various parameters of the human gastrocnemius medialis muscle and the Achilles tendon. Therefore, 49 volunteers were randomly assigned into PNF stretching and control groups. Before and after the stretching intervention, we determined the maximum dorsiflexion range of motion (RoM) with the corresponding fascicle length and pennation angle. Passive resistive torque (PRT) and maximum voluntary contraction (MVC) of the musculo-articular complex were measured with a dynamometer. Muscle-tendon junction (MTJ) displacement allowed us to determine the length changes in tendon and muscle, and hence to calculate stiffness. Mean RoM increased from 31.1 ± 7.2° to 33.1 ± 7.2° (P = 0.02), stiffness of the tendon decreased significantly in both active (from 21.1 ± 8.0 to 18.1 ± 5.5 N/mm) and passive (from 12.1 ± 4.9 to 9.6 ± 3.2 N/mm) conditions, and the pennation angle increased from 18.5 ± 1.8° to 19.5 ± 2.1° (P = 0.01) at the neutral ankle position (90°), only in the intervention group, whereas MVC and PRT values remained unchanged. We conclude that a 6-week PNF stretching training program increases RoM and decreases tendon stiffness, despite no change in PRT. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Effects of spinal immobilization at a 20° angle on cerebral oxygen saturations measured by INVOS™.

    Science.gov (United States)

    Aksel, Gökhan

    2018-01-01

    In this study, we aimed to investigate whether performing the immobilization at 20° instead of 0° changes cerebral oxygenation. 33 volunteers were put in a hard cervical collar and backboard at 0° and immobilized for 30min. The cerebral oxygen saturations of the volunteers were measured at 1, 5, and 30min after the start of the procedure (Group 1). The volunteers were asked to return the day after the Group 1 procedure but at the same time. Serial cerebral oxygen saturations were obtained at the same time intervals as in Group 1, but for Group 2, the backboard was set to 20°. When the cerebral oxygen saturations of the two groups were compared, there was a slight decrease when the backboard position was changed from 0° to 20°, but it was not statistically significant (P=0.220 and P=0.768, respectively). The results revealed that immobilizing the patients with a spinal backboard at 20° instead of 0° did not alter the cerebral oxygen saturations. Our study results revealed that spinal immobilization at 20°, which was a new suggestion for spinal immobilization following a report that this position reduced the decrease in pulmonary function secondary to spinal immobilization, did not alter the cerebral oxygenation, so this suggestion is safe at least from the standpoint of cerebral oxygenation. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Method for determining the wedge angle from the daily measurements made with the measurement enabled devices DC6; Metodo para la determinacion del angulo de cuna a partir de las medidas diarias realizadas con el dispositio de medida QC6

    Energy Technology Data Exchange (ETDEWEB)

    Marques Fraguela, E.; Suero Rodrigo, M. A.

    2011-07-01

    The aim of this paper is to present a method for determining the angle of the wedges virtual electron linear accelerator (ALE) Siemens Primus, from the daily measurements made with the measurement system PTW-QC6Plus and found to be sufficiently sensitive to determine variations of {+-} 1 of this parameter. In addition, we study the behavior statistically CUFLE angle over a year.

  18. Evaluation of a bioluminescence method, contact angle measurements and topography for testing the cleanability of plastic surfaces under laboratory conditions

    Science.gov (United States)

    Redsven, I.; Kymäläinen, H.-R.; Pesonen-Leinonen, E.; Kuisma, R.; Ojala-Paloposki, T.; Hautala, M.; Sjöberg, A.-M.

    2007-04-01

    Detection of adenosine triphosphate (ATP) by bioluminescence is used, for instance, in the food industry and in hospitals to assess the hygiene status of surfaces. The aim of this laboratory study was to investigate the feasibility of the ATP method for estimating the cleanability of resilient floor coverings from biological soil. The surfaces were worn using a Soiling and Wearing Drum Tester, and soiled and cleaned with an Erichsen Washability and Scrubbing Resistance Tester. In the laboratory test carried out with the bioluminescence method, most of the new and worn floor coverings that were biologically soiled were cleaned efficiently. According to this study, the semiquantitative ATP screening method can be used for hygiene monitoring of flooring materials. No correlation was found between cleanability and contact angles or surface topography measured using a profilometer. However, by revealing local irregularities and damage on surfaces, scanning electron micrographs appeared useful in explaining differences in cleanability.

  19. A unified analysis of the reactor neutrino program towards the measurement of the θ13 mixing angle

    International Nuclear Information System (INIS)

    Mention, G.; Motta, D.; Lasserre, Th.

    2007-04-01

    We present in this article a detailed quantitative discussion of the measurement of the leptonic mixing angle θ 13 through currently scheduled reactor neutrino oscillation experiments. We thus focus on Double Chooz (Phase I and II), Daya Bay (Phase I and II) and RENO experiments. We perform a unified analysis, including systematics, backgrounds and accurate experimental setup in each case. Each identified systematic error and background impact has been assessed on experimental setups following published data when available and extrapolating from Double Chooz acquired knowledge otherwise. After reviewing the experiments, we present a new analysis of their sensitivities to sin 2 (2θ 13 ) and study the impact of the different systematics based on the pulls approach. Through this generic statistical analysis we discuss the advantages and drawbacks of each experimental setup. (authors)

  20. A unified analysis of the reactor neutrino program towards the measurement of the {theta}{sub 13} mixing angle

    Energy Technology Data Exchange (ETDEWEB)

    Mention, G [DAPNIA/SPP, CEA Saclay, 91191 Gif sur Yvette (France)

    2008-05-15

    We presented a detailed quantitative discussion of the measurement of the leptonic mixing angle {theta}{sub 13} through currently scheduled reactor neutrino oscillation experiments. We focussed on Double Chooz (Phase I and II), Daya Bay (Phase I and II) and RENO experiments. We performed a unified analysis, including systematics, backgrounds and accurate experimental setup in each case. Each identified systematical uncertainty and background impact has been assessed on experimental setups following published data when available and extrapolating from Double Chooz acquired knowledge otherwise. We sum up, here, a new common analysis of their sensitivities to sin{sup 2}(2{theta}{sub 13}) and study the impact of the different systematics based on the pulls approach. Through this generic statistical analysis we discuss the advantages and drawbacks of each experimental setup.

  1. The relationship between knee joint angle and knee flexor and extensor muscle strength.

    Science.gov (United States)

    Ha, Misook; Han, Dongwook

    2017-04-01

    [Purpose] The aim of this study was to determine a relationship between joint angle and muscular strength. In particular, this research investigated the differences in maximum muscular strength and average muscular strength at the knee-joint posture. [Subjects and Methods] The study subjects comprised eight female students in their 20s attending S University in Busan. None of the subjects had functional disabilities or had experienced damage to the lower extremities in terms of measurement of muscular strength. A BIODEX system III model (Biodex medical system, USA) was used to measure joint angles and muscular strength. The axis of the dynamometer was consistent with the axis of motion, and measurements were made at 25° and 67° to examine differences in maximum muscular strength according to joint angle. [Results] The maximum muscular strength both knee-joint extension value, at 67° and flexion value, at 25° the value was larger. The average muscular strength both knee-joint extension value, at 67° and flexion value, at 25° the value was larger. [Conclusion] The results of this study reveal that muscular strength does not reach maximum at particular range angles, such as the knee-joint resting posture angle or the knee-joint middle range angle. Rather, a stretched muscle is stronger than a contracted muscle. Therefore, it is considered that it will be necessary to study the effects of the joint change ratio on muscular strength on the basis of the maximum stretched muscle.

  2. Interpretation of deep directional resistivity measurements acquired in high-angle and horizontal wells using 3D inversion

    Science.gov (United States)

    Puzyrev, Vladimir; Torres-Verdín, Carlos; Calo, Victor

    2018-02-01

    The interpretation of resistivity measurements acquired in high-angle and horizontal wells is a critical technical problem in formation evaluation. We develop an efficient parallel 3D inversion method to estimate the spatial distribution of electrical resistivity in the neighborhood of a well from deep directional electromagnetic induction measurements. The methodology places no restriction on the spatial distribution of the electrical resistivity around arbitrary well trajectories. The fast forward modelling of triaxial induction measurements performed with multiple transmitter-receiver configurations employs a parallel direct solver. The inversion uses a preconditioned gradient-based method whose accuracy is improved using the Wolfe conditions to estimate optimal step lengths at each iteration. The large transmitter-receiver offsets, used in the latest generation of commercial directional resistivity tools, improve the depth of investigation to over thirty meters from the wellbore. Several challenging synthetic examples confirm the feasibility of the full 3D inversion-based interpretations for these distances, hence enabling the integration of resistivity measurements with seismic amplitude data to improve the forecast of the petrophysical and fluid properties. Employing parallel direct solvers for the triaxial induction problems allows for large reductions in computational effort, thereby opening the possibility to invert multiposition 3D data in practical CPU times.

  3. Does acute passive stretching increase muscle length in children with cerebral palsy?

    Science.gov (United States)

    Theis, Nicola; Korff, Thomas; Kairon, Harvey; Mohagheghi, Amir A

    2013-01-01

    Children with spastic cerebral palsy experience increased muscle stiffness and reduced muscle length, which may prevent elongation of the muscle during stretch. Stretching performed either by the clinician, or children themselves is used as a treatment modality to increase/maintain joint range of motion. It is not clear whether the associated increases in muscle-tendon unit length are due to increases in muscle or tendon length. The purpose was to determine whether alterations in ankle range of motion in response to acute stretching were accompanied by increases in muscle length, and whether any effects would be dependent upon stretch technique. Eight children (6-14 y) with cerebral palsy received a passive dorsiflexion stretch for 5 × 20 s to each leg, which was applied by a physiotherapist or the children themselves. Maximum dorsiflexion angle, medial gastrocnemius muscle and fascicle lengths, and Achilles tendon length were calculated at a reference angle of 10 ° plantarflexion, and at maximum dorsiflexion in the pre- and post-stretch trials. All variables were significantly greater during pre- and post-stretch trials compared to the resting angle, and were independent of stretch technique. There was an approximate 10 ° increase in maximum dorsiflexion post-stretch, and this was accounted for by elongation of both muscle (0.8 cm) and tendon (1.0 cm). Muscle fascicle length increased significantly (0.6 cm) from pre- to post-stretch. The results provide evidence that commonly used stretching techniques can increase overall muscle, and fascicle lengths immediately post-stretch in children with cerebral palsy. © 2013.

  4. Immediate effects of different types of stretching exercises on badminton jump smash.

    Science.gov (United States)

    Jang, Hwi S; Kim, Daeho; Park, Jihong

    2017-04-13

    Since different types of stretching exercises may alter athletic performance, we compared the effects of three types of stretching exercises on badminton jump smash. Sixteen male collegiate badminton players performed one of three different stretching exercises in a counterbalanced order on different days. Static stretching had seven typical stretches, while dynamic stretching involved nine dynamic movements, and resistance dynamic stretching was performed with weighted vests and dumbbells. Before and after each stretching exercise, subjects performed 20 trials of jump smashes. Dependent measurements were the jump heights during jump smashes, velocities of jump-smashed shuttlecocks, and drop points of jump-smashed shuttlecocks. To test the effects of each stretching exercise, we performed mixed model ANOVAs and calculated between-time effect sizes (ES). Each stretching exercise improved the jump heights during jump smashes (type main effect: F2,75= 1.19, p=0.31; static stretching: 22.1%, pstretching: 30.1%, pstretching: 17.7%, p=0.03, ES: 0.98) and velocities of jump-smashed shuttlecocks (type main effect: F2,75= 2.18, p=0.12; static stretching: 5.7%, p=0.61, ES: 0.39; dynamic stretching: 3.4%, p=0.94, ES: 0.28; resistance dynamic stretching: 6%, p=0.50, ES: 0.66). However, there were no differences among the stretching exercises for any measurement. The drop point of jump-smashed shuttlecocks did not change (interaction: F2,75= 0.88, p=0.42). All stretching exercises improved badminton jump smash performance, but we could not determine the best protocol. Since badminton requires high-speed movement and explosive force, we suggest performing dynamic stretching or resistance dynamic stretching.

  5. Alignment of bicelles studied with high-field magnetic birefringence and small-angle neutron scattering measurements.

    Science.gov (United States)

    Liebi, Marianne; van Rhee, Peter G; Christianen, Peter C M; Kohlbrecher, Joachim; Fischer, Peter; Walde, Peter; Windhab, Erich J

    2013-03-12

    Birefringence measurements at high magnetic field strength of up to 33 T were used to detect magnetically induced alignment of bicelles composed of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), cholesterol, and 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine-diethylenetriaminepentaacetate (DMPE-DTPA) with complexed lanthanide ions. These birefringence measurements together with a small-angle neutron scattering (SANS) analysis in a magnetic field showed parallel alignment of the bicelles if the lanthanide was thulium (Tm(3+)), and perpendicular alignment with dysprosium (Dy(3+)). With the birefringence measurements, the order parameter S can be determined as a function of the magnetic field strength, if the magnetic alignment reaches saturation. Additional structural information can be obtained if the maximum induced birefringence is considered. The degree of alignment of the studied bicelles increased with decreasing temperature from 40 to 5 °C and showed a new bicellar structure comprising a transient hole formation at intermediate temperatures (20 °C) during heating from 5 to 40 °C.

  6. Spontaneous Enhancement of Packing Regularity of Spherical Microdomains in the Body-Centered Cubic Lattice upon Uniaxial Stretching of Elastomeric Triblock Copolymers

    Directory of Open Access Journals (Sweden)

    Shinichi Sakurai

    2010-12-01

    Full Text Available Block copolymers forming glassy spheres in the matrix of rubbery chains can exhibit elastomeric properties. It is well known that the spherical microdomains are arranged in the body-center cubic (bcc lattice. However, recently, we have found packing in the face-centered cubic (fcc lattice, which is easily transformed into the bcc lattice upon uniaxial stretching. In the same time, the packing regularity of the spheres in the bcc lattice was found to be enhanced for samples completely recovered from the stretched state. This reminds us that a cycle of stretching-and-releasing plays an important role from analogy of densification of the packing in granules upon shaking. In the current paper, we quantify the enhancement of packing regularity of spherical microdomains in the bcc lattice upon uniaxial stretching of the same elastomeric triblock copolymer as used in our previous work by conducting small-angle X-ray scattering (SAXS measurements using high brilliant synchrotron radiation. Isotropically circular rings of the lattice peaks observed for the unstretched sample turned into deformed ellipsoidal rings upon the uniaxial stretching, with sharpening of the peaks in the direction parallel to the stretching direction and almost disappearing of the peaks in the perpendicular direction. By quantitatively analyzing the SAXS results, it was found that the packing regularity of the spherical microdomains was enhanced in the parallel direction while it was spoiled in the perpendicular direction under the stretched state. The enhanced regularity of packing was unchanged even if the stretching load was completely removed.

  7. Randomized Controlled Trial Comparing Orthosis Augmented by Either Stretching or Stretching and Strengthening for Stage II Tibialis Posterior Tendon Dysfunction.

    Science.gov (United States)

    Houck, Jeff; Neville, Christopher; Tome, Josh; Flemister, Adolph

    2015-09-01

    The value of strengthening and stretching exercises combined with orthosis treatment in a home-based program has not been evaluated. The purpose of this study was to compare the effects of augmenting orthosis treatment with either stretching or a combination of stretching and strengthening in participants with stage II tibialis posterior tendon dysfunction (TPTD). Participants included 39 patients with stage II TPTD who were recruited from a medical center and then randomly assigned to a strengthening or stretching treatment group. Excluding 3 dropouts, there were 19 participants in the strengthening group and 17 in the stretching group. The stretching treatment consisted of a prefabricated orthosis used in conjunction with stretching exercises. The strengthening treatment consisted of a prefabricated orthosis used in conjunction with the stretching and strengthening exercises. The main outcome measures were self-report (ie, Foot Function Index and Short Musculoskeletal Function Assessment) and isometric deep posterior compartment strength. Two-way analysis of variance was used to test for differences between groups at 6 and 12 weeks after starting the exercise programs. Both groups significantly improved in pain and function over the 12-week trial period. The self-report measures showed minimal differences between the treatment groups. There were no differences in isometric deep posterior compartment strength. A moderate-intensity, home-based exercise program was minimally effective in augmenting orthosis wear alone in participants with stage II TPTD. Level I, prospective randomized study. © The Author(s) 2015.

  8. Calculation of the surface potential and surface charge density by measurement of the three-phase contact angle.

    Science.gov (United States)

    Horiuchi, H; Nikolov, A; Wasan, D T

    2012-11-01

    The silica/silicon wafer is widely used in the semiconductor industry in the manufacture of electronic devices, so it is essential to understand its physical chemistry and determine the surface potential at the silica wafer/water interface. However, it is difficult to measure the surface potential of a silica/silicon wafer directly due to its high electric resistance. In the present study, the three-phase contact angle (TPCA) on silica is measured as a function of the pH. The surface potential and surface charge density at the silica/water surface are calculated by a model based on the Young-Lippmann equation in conjunction with the Gouy-Chapman model for the electric double layer. In measurements of the TPCA on silica, two distinct regions were identified with a boundary at pH 9.5-showing a dominance of the surface ionization of silanol groups below pH 9.5 and a dominance of the dissolution of silica into the aqueous solution above pH 9.5. Since the surface chemistry changes above pH 9.5, the model is applied to solutions below pH 9.5 (ionization dominant) for the calculation of the surface potential and surface charge density at the silica/aqueous interface. In order to evaluate the model, a galvanic mica cell was made of a mica sheet and the surface potential was measured directly at the mica/water interface. The model results are also validated by experimental data from the literature, as well as the results obtained by the potentiometric titration method and the electro-kinetic measurements. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Acute effect of different stretching methods on isometric muscle strength

    Directory of Open Access Journals (Sweden)

    Gabriel Vasconcellos de Lima Costa e Silva

    2014-03-01

    This study investigated the acute effect of static stretching methods (SS and proprioceptive neuromuscular facilitation (PNF on the static muscle strength (SMS. Eleven young male subjects with strength training experience, performed 3 tests with a 48h interval between them, randomly selected, where each one subject carried out all procedures: a hand grip without stretching; b hand grip preceded by static stretching of wrist flexors muscles; c hand grip preceded by PNF stretching of wrist flexors muscles. The Shapiro-Wilk test verified the normality of data, and a one-way ANOVA with repeated measures, followed by Tukey’s post hoc test, evaluated the differences between the groups. The significance was set at p 0.05. In conclusion, both stretching methods had caused negative effects on isometric strength, reducing its levels.

  10. Tests of the electroweak standard model and measurement of the weak mixing angle with the ATLAS detector

    International Nuclear Information System (INIS)

    Goebel, M.

    2011-09-01

    In this thesis the global Standard Model (SM) fit to the electroweak precision observables is revisted with respect to newest experimental results. Various consistency checks are performed showing no significant deviation from the SM. The Higgs boson mass is estimated by the electroweak fit to be M H =94 -24 +30 GeV without any information from direct Higgs searches at LEP, Tevatron, and the LHC and the result is M H =125 -10 +8 GeV when including the direct Higgs mass constraints. The strong coupling constant is extracted at fourth perturbative order as α s (M Z 2 )=0.1194±0.0028(exp)±0.0001 (theo). From the fit including the direct Higgs constraints the effective weak mixing angle is determined indirectly to be sin 2 θ l eff =0.23147 -0.00010 +0.00012 . For the W mass the value of M W =80.360 -0.011 +0.012 GeV is obtained indirectly from the fit including the direct Higgs constraints. The electroweak precision data is also exploited to constrain new physics models by using the concept of oblique parameters. In this thesis the following models are investigated: models with a sequential fourth fermion generation, the inert-Higgs doublet model, the littlest Higgs model with T-parity conservation, and models with large extra dimensions. In contrast to the SM, in these models heavy Higgs bosons are in agreement with the electroweak precision data. The forward-backward asymmetry as a function of the invariant mass is measured for pp→ Z/γ * →e + e - events collected with the ATLAS detector at the LHC. The data taken in 2010 at a center-of-mass energy of √(s)=7 TeV corresponding to an integrated luminosity of 37.4 pb -1 is analyzed. The measured forward-backward asymmetry is in agreement with the SM expectation. From the measured forward-backward asymmetry the effective weak mixing angle is extracted as sin 2 θ l eff =0.2204±.0071(stat) -0.0044 +0.0039 (syst). The impact of unparticles and large extra dimensions on the forward-backward asymmetry at large

  11. Tests of the electroweak standard model and measurement of the weak mixing angle with the ATLAS detector

    Energy Technology Data Exchange (ETDEWEB)

    Goebel, M.

    2011-09-15

    In this thesis the global Standard Model (SM) fit to the electroweak precision observables is revisted with respect to newest experimental results. Various consistency checks are performed showing no significant deviation from the SM. The Higgs boson mass is estimated by the electroweak fit to be M{sub H}=94{sub -24}{sup +30} GeV without any information from direct Higgs searches at LEP, Tevatron, and the LHC and the result is M{sub H}=125{sub -10}{sup +8} GeV when including the direct Higgs mass constraints. The strong coupling constant is extracted at fourth perturbative order as {alpha}{sub s}(M{sub Z}{sup 2})=0.1194{+-}0.0028(exp){+-}0.0001 (theo). From the fit including the direct Higgs constraints the effective weak mixing angle is determined indirectly to be sin{sup 2} {theta}{sup l}{sub eff}=0.23147{sub -0.00010}{sup +0.00012}. For the W mass the value of M{sub W}=80.360{sub -0.011}{sup +0.012} GeV is obtained indirectly from the fit including the direct Higgs constraints. The electroweak precision data is also exploited to constrain new physics models by using the concept of oblique parameters. In this thesis the following models are investigated: models with a sequential fourth fermion generation, the inert-Higgs doublet model, the littlest Higgs model with T-parity conservation, and models with large extra dimensions. In contrast to the SM, in these models heavy Higgs bosons are in agreement with the electroweak precision data. The forward-backward asymmetry as a function of the invariant mass is measured for pp{yields} Z/{gamma}{sup *}{yields}e{sup +}e{sup -} events collected with the ATLAS detector at the LHC. The data taken in 2010 at a center-of-mass energy of {radical}(s)=7 TeV corresponding to an integrated luminosity of 37.4 pb{sup -1} is analyzed. The measured forward-backward asymmetry is in agreement with the SM expectation. From the measured forward-backward asymmetry the effective weak mixing angle is extracted as sin{sup 2} {theta}{sup l

  12. The effect of warm-up, static stretching and dynamic stretching on hamstring flexibility in previously injured subjects.

    Science.gov (United States)

    O'Sullivan, Kieran; Murray, Elaine; Sainsbury, David

    2009-04-16

    Warm-up and stretching are suggested to increase hamstring flexibility and reduce the risk of injury. This study examined the short-term effects of warm-up, static stretching and dynamic stretching on hamstring flexibility in individuals with previous hamstring injury and uninjured controls. A randomised crossover study design, over 2 separate days. Hamstring flexibility was assessed using passive knee extension range of motion (PKE ROM). 18 previously injured individuals and 18 uninjured controls participated. On both days, four measurements of PKE ROM were recorded: (1) at baseline; (2) after warm-up; (3) after stretch (static or dynamic) and (4) after a 15-minute rest. Participants carried out both static and dynamic stretches, but on different days. Data were analysed using Anova. Across both groups, there was a significant main effect for time (p static stretching (p = 0.04) but significantly decreased after dynamic stretching (p = 0.013). The increased flexibility after warm-up and static stretching reduced significantly (p 0.05). Using ANCOVA to adjust for the non-significant (p = 0.141) baseline difference between groups, the previously injured group demonstrated a greater response to warm-up and static stretching, however this was not statistically significant (p = 0.05). Warm-up significantly increased hamstring flexibility. Static stretching also increased hamstring flexibility, whereas dynamic did not, in agreement with previous findings on uninjured controls. The effect of warm-up and static stretching on flexibility was greater in those with reduced flexibility post-injury, but this did not reach statistical significance. Further prospective research is required to validate the hypothesis that increased flexibility improves outcomes. ACTRN12608000638336.

  13. Stretch-minimising stream surfaces

    KAUST Repository

    Barton, Michael

    2015-05-01

    We study the problem of finding stretch-minimising stream surfaces in a divergence-free vector field. These surfaces are generated by motions of seed curves that propagate through the field in a stretch minimising manner, i.e., they move without stretching or shrinking, preserving the length of their arbitrary arc. In general fields, such curves may not exist. How-ever, the divergence-free constraint gives rise to these \\'stretch-free\\' curves that are locally arc-length preserving when infinitesimally propagated. Several families of stretch-free curves are identified and used as initial guesses for stream surface generation. These surfaces are subsequently globally optimised to obtain the best stretch-minimising stream surfaces in a given divergence-free vector field. Our algorithm was tested on benchmark datasets, proving its applicability to incompressible fluid flow simulations, where our stretch-minimising stream surfaces realistically reflect the flow of a flexible univariate object. © 2015 Elsevier Inc. All rights reserved.

  14. Acute Muscle Stretching and Shoulder Position Sense

    OpenAIRE

    Björklund, Martin; Djupsjöbacka, Mats; Crenshaw, Albert G

    2006-01-01

    Context: Stretching is common among athletes as a potential method for injury prevention. Stretching-induced changes in the muscle spindle properties are a suggested mechanism, which may imply reduced proprioception after stretching; however, little is known of this association.

  15. Magnetic scattering in the simultaneous measurement of small-angle neutron scattering and Bragg edge transmission from steel.

    Science.gov (United States)

    Oba, Yojiro; Morooka, Satoshi; Ohishi, Kazuki; Sato, Nobuhiro; Inoue, Rintaro; Adachi, Nozomu; Suzuki, Jun-Ichi; Tsuchiyama, Toshihiro; Gilbert, Elliot Paul; Sugiyama, Masaaki

    2016-10-01

    Pulsed neutron sources enable the simultaneous measurement of small-angle neutron scattering (SANS) and Bragg edge transmission. This simultaneous measurement is useful for microstructural characterization in steel. Since most steels are ferromagnetic, magnetic scattering contributions should be considered in both SANS and Bragg edge transmission analyses. An expression for the magnetic scattering contribution to Bragg edge transmission analysis has been derived. The analysis using this expression was applied to Cu steel. The ferrite crystallite size estimated from this Bragg edge transmission analysis with the magnetic scattering contribution was larger than that estimated using conventional expressions. This result indicates that magnetic scattering has to be taken into account for quantitative Bragg edge transmission analysis. In the SANS analysis, the ratio of magnetic to nuclear scattering contributions revealed that the precipitates consist of body-centered cubic Cu 0.7 Fe 0.3 and pure Cu, which probably has 9R structure including elastic strain and vacancies. These results show that effective use of the magnetic scattering contribution allows detailed analyses of steel microstructure.

  16. Measurement of the CKM angle $\\gamma$ from a combination of $B^{\\pm} \\to Dh^{\\pm}$ analyses

    CERN Document Server

    INSPIRE-00258707; Abellan Beteta, C; Adeva, B; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves Jr, A A; Amato, S; Amerio, S; Amhis, Y; Anderlini, L; Anderson, J; Andreassen, R; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Bachmann, S; Back, J J; Baesso, C; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bauer, Th; Bay, A; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M -O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Burducea, I; Bursche, A; Busetto, G; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carranza-Mejia, H; Carson, L; Carvalho Akiba, K; Casse, G; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Charles, M; Charpentier, Ph; Chen, P; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Couturier, B; Cowan, G A; Craik, D C; Cunliffe, S; Currie, R; D'Ambrosio, C; David, P; David, P N Y; Davis, A; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dijkstra, H; Dogaru, M; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Elsby, D; Falabella, A; Färber, C; Fardell, G; Farinelli, C; Farry, S; Fave, V; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furcas, S; Furfaro, E; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garofoli, J; Garosi, P; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hampson, T; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hartmann, T; He, J; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hicheur, A; Hicks, E; Hill, D; Hoballah, M; Hombach, C; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Hussain, N; Hutchcroft, D; Hynds, D; Iakovenko, V; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jans, E; Jaton, P; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Kaballo, M; Kandybei, S; Karacson, M; Karbach, T M; Kenyon, I R; Kerzel, U; Ketel, T; Keune, A; Khanji, B; Kochebina, O; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucharczyk, M; Kudryavtsev, V; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J -P; Lefèvre, R; Leflat, A; Lefrançois, J; Leo, S; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Li Gioi, L; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; Lohn, S; Longstaff, I; Lopes, J H; Lopez Asamar, E; Lopez-March, N; Lu, H; Lucchesi, D; Luisier, J; Luo, H; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Manca, G; Mancinelli, G; Marconi, U; Märki, R; Marks, J; Martellotti, G; Martens, A; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martins Tostes, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Maurice, E; Mazurov, A; Mc Skelly, B; McCarthy, J; McNab, A; McNulty, R; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M -N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Morello, M J; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neufeld, N; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Oyanguren, A; Pal, B K; Palano, A; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perego, D L; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pessina, G; Petridis, K; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Playfer, S; Plo Casasus, M; Polci, F; Polok, G; Poluektov, A; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rama, M; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redford, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Rives Molina, V; Roa Romero, D A; Robbe, P; Rodrigues, E; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Rouvinet, J; Ruf, T; Ruffini, F; Ruiz, H; Ruiz Valls, P; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salustino Guimaraes, V; Salzmann, C; Sanmartin Sedes, B; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M -H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Skwarnicki, T; Smith, N A; Smith, E; Smith, M; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Sun, L; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teklishyn, M; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Urner, D; Uwer, U; Vagnoni, V; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; Waldi, R; Wallace, R; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wicht, J; Wiechczynski, J; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wishahi, J; Witek, M; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, Z; Yang, Z; Young, R; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L; Zvyagin, A

    2013-01-01

    A combination of three LHCb measurements of the CKM angle $\\gamma$ is presented. The decays $B^\\pm\\to DK^\\pm$ and $B^\\pm\\to D\\pi^\\pm$ are used, where $D$ denotes an admixture of $D^0$ and $\\overline{D^0}$ mesons, decaying into $K^+K^-$, $\\pi^+\\pi^-$, $K^\\pm \\pi^\\mp$, $K^\\pm \\pi^\\mp \\pi^\\pm \\pi^\\mp$, $K_S\\pi^+\\pi^-$, or $K_S K^+K^-$ final states. All measurements use a dataset corresponding to 1.0 fb$^{-1}$ of data. Combining results from $B^\\pm\\to DK^\\pm$ decays alone a best-fit value of $\\gamma = 72.0^\\circ$ is found, and confidence intervals are set \\begin{align*} \\gamma \\in [56.4,86.7]^\\circ \\quad &{\\rm at\\ 68\\%\\,CL}\\,,\\\\ \\gamma \\in [42.6,99.6]^\\circ \\quad &{\\rm at\\ 95\\%\\,CL}\\,. \\end{align*} The best-fit value of $\\gamma$ found from a combination of results from $B^\\pm\\to D\\pi^\\pm$ decays alone, is $\\gamma = 18.9^\\circ$, and the confidence intervals \\begin{align*} \\gamma \\in [7.4,99.2]^\\circ \\quad \\cup \\quad [167.9,176.4]^\\circ \\quad &{\\rm at\\ 68\\%\\,CL}\\, \\end{align*} are set, without constrai...

  17. Pre-exercise stretching does not impact upon running economy.

    Science.gov (United States)

    Hayes, Philip R; Walker, Adrian

    2007-11-01

    Pre-exercise stretching has been widely reported to reduce performance in tasks requiring maximal or near-maximal force or torque. The purpose of this study was to compare the effects of 3 different pre-exercise stretching routines on running economy. Seven competitive male middle and long-distance runners (mean +/- SD) age: 32.5 +/- 7.7 years; height: 175.0 +/- 8.8 cm; mass: 67.8 +/- 8.6 kg; V(.-)O2max: 66.8 +/- 7.0 ml x kg(-1) x min(-1)) volunteered to participate in this study. Each participant completed 4 different pre-exercise conditions: (a) a control condition, (b) static stretching, (c) progressive static stretching, and (d) dynamic stretching. Each stretching routine consisted of 2 x 30-second stretches for each of 5 exercises. Dependent variables measured were sit and reach test before and after each pre-exercise routine, running economy (ml x kg(-1) x km(-1)), and steady-state oxygen uptake (ml x kg(-1) x min(-1)), which were measured during the final 3 minutes of a 10-minute run below lactate threshold. All 3 stretching routines resulted in an increase in the range of movement (p = 0.008). There was no change in either running economy (p = 0.915) or steady-state V(.-)O2 (p = 0.943). The lack of change in running economy was most likely because it was assessed after a period of submaximal running, which may have masked any effects from the stretching protocols. Previously reported reductions in performance have been attributed to reduced motor unit activation, presumably IIX. In this study, these motor units were likely not to have been recruited; this may explain the unimpaired performance. This study suggests that pre-exercise stretching has no impact upon running economy or submaximal exercise oxygen cost.

  18. Measurement of the CKM Angle Alpha at the BABAR Detector Using B Meson Decays to Rho Final States

    Energy Technology Data Exchange (ETDEWEB)

    Mihalyi, Attila; /Wisconsin U., Madison

    2006-10-16

    This thesis contains the results of an analysis of B{sup 0} {yields} {rho}{sup +}{rho}{sup -} using 232 million {Upsilon}(4S) {yields} B{bar B} decays collected with the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC. From a fitted signal yield of 617 {+-} 52 events, the longitudinal polarizations fraction, f{sub L}, of the decay is measured to be 0.978 {+-} 0.014(stat){sub -0.029}{sup +0.021}(syst). The nearly fully longitudinal dominance of the B{sup 0} {yields} {rho}{sup +}{rho}{sup -} decay allows for a measurement of the time dependent CP parameters S{sub L} and C{sub L}, where the first parameter is sensitive to mixing induced CP violation and the second one to direct CP violation. From the same signal yield, these values are found to be S{sub L} = -0.33 {+-} 0.24(stat){sub -0.14}{sup +0.08}(syst) and C{sub L} = - 0.03 {+-} 0.18(stat) {+-} 0.09(syst). The CKM angle {alpha} is then determined, using these results and the branching fractions and polarizations of the decays B{sup 0} {yields} {rho}{sup 0}{rho}{sup 0} and B{sup +} {yields} {rho}{sup +}{rho}{sup 0}. This measurement is done with an isospin analysis, in which a triangle is constructed from the isospin amplitudes of these three decay modes. A {chi}{sup 2} expression that includes the measured quantities expressed as the lengths of the sides of the isospin triangles is constructed and minimized to determine a confidence level on {alpha}. Selecting the solution compatible with the Standard Model, one obtains {alpha} = 100{sup o} {+-} 13{sup o}.

  19. Effect of elbow flexion angles on stress distribution of the proximal ulnar and radius bones under a vertical load: measurement using resistance strain gauges.

    Science.gov (United States)

    Rao, Zhi-Tao; Yuan, Feng; Li, Bing; Ma, Ning

    2014-07-31

    This study aimed to explore the surface stress at the proximal ends of the ulna and radius at different elbow flexion angles using the resistance strain method. Eight fresh adult cadaveric elbows were tested. The forearms were fixed in a neutral position. Axial load increment experiments were conducted at four different elbow flexion angles (0°, 15°, 30°, and 45°). Surface stain was measured at six sites (tip, middle, and base of the coronoid process; back ulnar notch; olecranon; and anterolateral margin of the radial head). With the exception of the ulnar olecranon, the load-stress curves at each measurement site showed an approximately linear relationship under the four working conditions studied. At a vertical load of 500 N, the greatest stress occurred at the middle of the coronoid process when the elbow flexion angles were 0° and 15°. When the flexion angles were 30° and 45°, the greatest stress occurred at the base of the coronoid process. The stress on the radial head was higher than those at the measurement sites of the proximal end of the ulna. The resistance strain method for measuring elbow joint surface stress benefits biomechanics research on the elbow joint. Elbow joint surface stress distributions vary according to different elbow flexion angles.

  20. Qualitative assessment of anorectal junction levels and anorectal angles to investigate functional differences between constipation and fecal incontinence

    International Nuclear Information System (INIS)

    Shannon, S.I.; Somers, S.; Anvari, M.; Stevenson, G.W.; Waterfall, W.E.; Huizinga, J.D.

    1989-01-01

    Female patients consecutively referred for defecography, with either chronic constipation or incontinence, were assessed for posterior anorectal angle and anorectal junction level as measured from the ischial tuberosities. The clinical groups did not differ in grades of rectoceles, enteroceles, or intussusception. Both constipated and incontinent patients had a low resting anorectal junction position compared with that of volunteers, indicating a stretched pelvic floor. Despite this, the constipated patients achieved a similar degree of lift of the pelvic floor on squeezing as controls, and they also showed significant angle changes on lifting and straining. Incontinent patients showed a significantly smaller amount of lift than controls, a significantly larger descent than constipated patients, and no angle changes on lifting and straining. These data are consistent with significantly weaker pelvic floor muscles in incontinent compared with constipated patients, despite a similar degree of stretching

  1. Hydraulic fracture during epithelial stretching.

    Science.gov (United States)

    Casares, Laura; Vincent, Romaric; Zalvidea, Dobryna; Campillo, Noelia; Navajas, Daniel; Arroyo, Marino; Trepat, Xavier

    2015-03-01

    The origin of fracture in epithelial cell sheets subject to stretch is commonly attributed to excess tension in the cells' cytoskeleton, in the plasma membrane, or in cell-cell contacts. Here, we demonstrate that for a variety of synthetic and physiological hydrogel substrates the formation of epithelial cracks is caused by tissue stretching independently of epithelial tension. We show that the origin of the cracks is hydraulic; they result from a transient pressure build-up in the substrate during stretch and compression manoeuvres. After pressure equilibration, cracks heal readily through actomyosin-dependent mechanisms. The observed phenomenology is captured by the theory of poroelasticity, which predicts the size and healing dynamics of epithelial cracks as a function of the stiffness, geometry and composition of the hydrogel substrate. Our findings demonstrate that epithelial integrity is determined in a tension-independent manner by the coupling between tissue stretching and matrix hydraulics.

  2. Oriented Morphology and Anisotropic Transport in Uniaxially Stretched Perfluorosulfonate Ionomer Membranes

    Energy Technology Data Exchange (ETDEWEB)

    J Park; J Li; G Divoux; L Madsen; R Moore

    2011-12-31

    Relations between morphology and transport sensitively govern proton conductivity in perfluorsulfonate ionomers (PFSIs) and thus determine useful properties of these technologically important materials. In order to understand such relations, we have conducted a broad systematic study of H{sup +}-form PFSI membranes over a range of uniaxial extensions and water uptakes. On the basis of small-angle X-ray scattering (SAXS) and {sup 2}H NMR spectroscopy, uniaxial deformation induces a strong alignment of ionic domains along the stretching direction. We correlate ionic domain orientation to transport using pulsed-field-gradient {sup 1}H NMR measurements of water diffusion coefficients along the three orthogonal membrane directions. Intriguingly, we observe that uniaxial deformation enhances water transport in one direction (parallel-to-draw direction) while reducing it in the other two directions (two orthogonal directions relative to the stretching direction). We evaluate another important transport parameter, proton conductivity, along two orthogonal in-plane directions. In agreement with water diffusion experiments, orientation of ionic channels increases proton conduction along the stretching direction while decreasing it in the perpendicular direction. These findings provide valuable fodder for optimal application of PFSI membranes as well as for the design of next generation polymer electrolyte membranes.

  3. Measurement of the running of the QED coupling in small angle Bhabha scattering with the OPAL detector

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, P.

    2005-06-01

    Using the high precision OPAL Silicon-Tungsten luminometer at LEP, the running of the effective QED coupling {alpha}(t) is measured for space-like momentum transfer 1.81 {<=} -t {<=} 6.07 GeV{sup 2} through its effect on the angular spectrum of small angle Bhabha scattering. In an almost ideal QED framework, with very favourable experimental conditions, we obtain a strong direct evidence that the running of {alpha}(t) is consistent with standard model expectations. The null hypothesis that {alpha} remains constant within the above interval of -t is excluded with a significance above 5{sigma}: {delta}{alpha}(-6.07 GeV{sup 2}) - {delta}{alpha}(-1.81 GeV{sup 2}) = 0.00450 {+-} 0.00079 The hadronic contribution to the running of the coupling has been estimated to be: {delta}{alpha}{sub had}(-6.07 GeV{sup 2}) - {delta}{alpha}{sub had}(-1.81 GeV{sup 2}) = 0.00248 {+-} 0.00079. This result is inconsistent at the level of more than 3{sigma} with the hypothesis that only leptonic loops contribute to the running, and therefore provide the first clear space-like experimental evidence that hadronic loops also contribute. (orig.)

  4. Time-resolved small angle neutron scattering measurements of asphaltene nanoparticle aggregation kinetics in incompatible crude oil mixtures

    International Nuclear Information System (INIS)

    Mason, Thomas G.; Lin, Min Y.

    2003-01-01

    We use time-resolved-small angle neutron scattering to study the kinetics of asphaltene nanoparticle aggregation in incompatible crude oil mixtures. We induce asphaltene aggregation by mixing asphaltene-rich Syrian crude oil (SACO) with a paraffinic British crude oil and observe the scattered neutron intensity, I, as a function of wave number, q, over times, t, ranging from twenty minutes to about a week. We observe a growth in I at low q as the nanoscale asphaltenes agglomerate into microscale aggregates and interpret this growth as an increase in surface scattering from the aggregates. We fit I(q,t) to an empirical model and measure the growth in the power-law exponent, α, associated with the low-q logarithmic slope of I(q). We define a time, τ α , associated with the first appearance of the aggregates when α>3; τ α increases as a function of the volume fraction, φ m , of SACO in the mixture. The surface scattering intensity initially increases and then saturates at long times when the aggregate structures no longer evolve at the length scales we probe. Based on this saturation, we define a time scale, τ I , which is larger than τ α but has essentially the same dependence on φ m . We interpret τ α (φ m ) and τ I (φ m ) in terms of a simple aggregation model based on diffusion-limited kinetics and a repulsive potential barrier that models the effective solvent quality

  5. Recent developments and ASAXS measurements at the ultra small angle X-ray scattering instrument of HASYLAB

    CERN Document Server

    Krosigk, G V; Gehrke, R; Kranold, R

    2001-01-01

    The wiggler beamline BW4 at the synchrotron radiation facility HASYLAB (DESY) is mainly designed for Ultra Small Angle X-ray Scattering (USAXS) and usually operated with detector-sample distances up to 13 m and at photon energies between 4 and 16 keV. With a new optical design the largest observable correlation distances have now been increased up to 9x10 sup 3 A. A grazing incidence set-up [P. Mueller-Buschbaum et al., Europhys. Lett. 42 (5) (1998) 517], vapor chamber, furnace, tensile testing machine and other instruments make the USAXS beamline attract