WorldWideScience

Sample records for stretch activated ion

  1. Stretch induced endothelin-1 secretion by adult rat astrocytes involves calcium influx via stretch-activated ion channels (SACs)

    International Nuclear Information System (INIS)

    Ostrow, Lyle W.; Suchyna, Thomas M.; Sachs, Frederick

    2011-01-01

    Highlights: → Endothelin-1 expression by adult rat astrocytes correlates with cell proliferation. → Stretch-induced ET-1 is inhibited by GsMtx-4, a specific inhibitor of Ca 2+ permeant SACs. → The less specific SAC inhibitor streptomycin also inhibits ET-1 secretion. → Stretch-induced ET-1 production depends on a calcium influx. → SAC pharmacology may provide a new class of therapeutic agents for CNS pathology. -- Abstract: The expression of endothelins (ETs) and ET-receptors is often upregulated in brain pathology. ET-1, a potent vasoconstrictor, also inhibits the expression of astrocyte glutamate transporters and is mitogenic for astrocytes, glioma cells, neurons, and brain capillary endothelia. We have previously shown that mechanical stress stimulates ET-1 production by adult rat astrocytes. We now show in adult astrocytes that ET-1 production is driven by calcium influx through stretch-activated ion channels (SACs) and the ET-1 production correlates with cell proliferation. Mechanical stimulation using biaxial stretch ( 2+ threshold. This coupling of mechanical stress to the astrocyte endothelin system through SACs has treatment implications, since all pathology deforms the surrounding parenchyma.

  2. A discrete electromechanical model for human cardiac tissue: effects of stretch-activated currents and stretch conditions on restitution properties and spiral wave dynamics.

    Science.gov (United States)

    Weise, Louis D; Panfilov, Alexander V

    2013-01-01

    We introduce an electromechanical model for human cardiac tissue which couples a biophysical model of cardiac excitation (Tusscher, Noble, Noble, Panfilov, 2006) and tension development (adjusted Niederer, Hunter, Smith, 2006 model) with a discrete elastic mass-lattice model. The equations for the excitation processes are solved with a finite difference approach, and the equations of the mass-lattice model are solved using Verlet integration. This allows the coupled problem to be solved with high numerical resolution. Passive mechanical properties of the mass-lattice model are described by a generalized Hooke's law for finite deformations (Seth material). Active mechanical contraction is initiated by changes of the intracellular calcium concentration, which is a variable of the electrical model. Mechanical deformation feeds back on the electrophysiology via stretch-activated ion channels whose conductivity is controlled by the local stretch of the medium. We apply the model to study how stretch-activated currents affect the action potential shape, restitution properties, and dynamics of spiral waves, under constant stretch, and dynamic stretch caused by active mechanical contraction. We find that stretch conditions substantially affect these properties via stretch-activated currents. In constantly stretched medium, we observe a substantial decrease in conduction velocity, and an increase of action potential duration; whereas, with dynamic stretch, action potential duration is increased only slightly, and the conduction velocity restitution curve becomes biphasic. Moreover, in constantly stretched medium, we find an increase of the core size and period of a spiral wave, but no change in rotation dynamics; in contrast, in the dynamically stretching medium, we observe spiral drift. Our results may be important to understand how altered stretch conditions affect the heart's functioning.

  3. A discrete electromechanical model for human cardiac tissue: effects of stretch-activated currents and stretch conditions on restitution properties and spiral wave dynamics.

    Directory of Open Access Journals (Sweden)

    Louis D Weise

    Full Text Available We introduce an electromechanical model for human cardiac tissue which couples a biophysical model of cardiac excitation (Tusscher, Noble, Noble, Panfilov, 2006 and tension development (adjusted Niederer, Hunter, Smith, 2006 model with a discrete elastic mass-lattice model. The equations for the excitation processes are solved with a finite difference approach, and the equations of the mass-lattice model are solved using Verlet integration. This allows the coupled problem to be solved with high numerical resolution. Passive mechanical properties of the mass-lattice model are described by a generalized Hooke's law for finite deformations (Seth material. Active mechanical contraction is initiated by changes of the intracellular calcium concentration, which is a variable of the electrical model. Mechanical deformation feeds back on the electrophysiology via stretch-activated ion channels whose conductivity is controlled by the local stretch of the medium. We apply the model to study how stretch-activated currents affect the action potential shape, restitution properties, and dynamics of spiral waves, under constant stretch, and dynamic stretch caused by active mechanical contraction. We find that stretch conditions substantially affect these properties via stretch-activated currents. In constantly stretched medium, we observe a substantial decrease in conduction velocity, and an increase of action potential duration; whereas, with dynamic stretch, action potential duration is increased only slightly, and the conduction velocity restitution curve becomes biphasic. Moreover, in constantly stretched medium, we find an increase of the core size and period of a spiral wave, but no change in rotation dynamics; in contrast, in the dynamically stretching medium, we observe spiral drift. Our results may be important to understand how altered stretch conditions affect the heart's functioning.

  4. Activation of stretch-activated channels and maxi-K+ channels by membrane stress of human lamina cribrosa cells.

    LENUS (Irish Health Repository)

    Irnaten, Mustapha

    2009-01-01

    The lamina cribrosa (LC) region of the optic nerve head is considered the primary site of damage in glaucomatous optic neuropathy. Resident LC cells have a profibrotic potential when exposed to cyclical stretch. However, the mechanosensitive mechanisms of these cells remain unknown. Here the authors investigated the effects of membrane stretch on cell volume change and ion channel activity and examined the associated changes in intracellular calcium ([Ca(2+)](i)).

  5. Passive Stretch Versus Active Stretch on Intervertebral Movement in Non - Specific Neck Pain

    International Nuclear Information System (INIS)

    Abd El - Aziz, A.H.; Amin, D.I.; Moustafa, I.

    2016-01-01

    Neck pain is one of the most common and painful musculoskeletal conditions. Point prevalence ranges from 6% to 22% and up to 38% of the elderly population, while lifetime prevalence ranges from 14,2% to 71%. Up till now no randomized study showed the effect between controversy of active and passive stretch on intervertebral movement. The purpose: the current study was to investigate the effect of the passive and active stretch on intervertebral movement in non - specific neck pain. Material and methods: Forty five subjects from both sexes with age range between 18 and 30 years and assigned in three groups, group I (15) received active stretch, ultrasound and TENS. Group II (15) received passive stretch, ultrasound and TENS. Group III (15) received ultrasound and TENS. The radiological assessment was used to measure rotational and translational movement of intervertebral movement before and after treatment. Results: MANOVA test was used for radiological assessment before and after treatment there was significant increase in intervertebral movement in group I as p value =0.0001. Conclusion: active stretch had a effect in increasing the intervertebral movement compared to the passive stretch

  6. Static stretching does not alter pre and post-landing muscle activation

    Directory of Open Access Journals (Sweden)

    Moss Wesley R

    2011-05-01

    Full Text Available Abstract Background Static stretching may result in various strength and power deficiencies. Prior research has not determined, however, if static stretching causes a change in muscle activation during a functional task requiring dynamic stability. The purpose of this study was to determine if static stretching has an effect on mean pre and postlanding muscle (vastus medialis VM, vastus lateralis VL, medial hamstring MH, and biceps femoris BF activity. Methods 26 healthy, physically active subjects were recruited, from which 13 completed a 14-day static stretching regimen for the quadriceps and hamstrings. Using the data from the force plate and EMG readings, a mean of EMG amplitude was calculated for 150 msec before and after landing. Each trial was normalized to an isometric reference position. Means were calculated for the VM, VL, MH, and BF from 5 trials in each session. Measures were collected pre, immediately following the 1st stretching session, and following 2 weeks of stretching. Results A 14-day static stretching regimen resulted in no significant differences in pre or postlanding mean EMG amplitude during a drop landing either acutely or over a 14-day period. Conclusions Static stretching, done acutely or over a 14-day period does not result in measurable differences of mean EMG amplitude during a drop landing. Static stretching may not impede dynamic stability of joints about which stretched muscles cross.

  7. Stretching

    Science.gov (United States)

    ... after a workout. Stretching still can be a beneficial activity after you have sufficiently warmed up. The ... light aerobic activity and stretching. If you're running at a quick pace, you can slow down ...

  8. Stretch activates human myometrium via ERK, caldesmon and focal adhesion signaling.

    Directory of Open Access Journals (Sweden)

    Yunping Li

    2009-10-01

    Full Text Available An incomplete understanding of the molecular mechanisms responsible for myometrial activation from the quiescent pregnant state to the active contractile state during labor has hindered the development of effective therapies for preterm labor. Myometrial stretch has been implicated clinically in the initiation of labor and the etiology of preterm labor, but the molecular mechanisms involved in the human have not been determined. We investigated the mechanisms by which gestation-dependent stretch contributes to myometrial activation, by using human uterine samples from gynecologic hysterectomies and Cesarean sections. Here we demonstrate that the Ca requirement for activation of the contractile filaments in human myometrium increases with caldesmon protein content during gestation and that an increase in caldesmon phosphorylation can reverse this inhibitory effect during labor. By using phosphotyrosine screening and mass spectrometry of stretched human myometrial samples, we identify 3 stretch-activated focal adhesion proteins, FAK, p130Cas, and alpha actinin. FAK-Y397, which signals integrin engagement, is constitutively phosphorylated in term human myometrium whereas FAK-Y925, which signals downstream ERK activation, is phosphorylated during stretch. We have recently identified smooth muscle Archvillin (SmAV as an ERK regulator. A newly produced SmAV-specific antibody demonstrates gestation-specific increases in SmAV protein levels and stretch-specific increases in SmAV association with focal adhesion proteins. Thus, whereas increases in caldesmon levels suppress human myometrium contractility during pregnancy, stretch-dependent focal adhesion signaling, facilitated by the ERK activator SmAV, can contribute to myometrial activation. These results suggest that focal adhesion proteins may present new targets for drug discovery programs aimed at regulation of uterine contractility.

  9. Post-activation depression of soleus stretch reflexes in healthy and spastic humans

    DEFF Research Database (Denmark)

    Grey, Michael James; Klinge, Klaus; Crone, Clarissa

    2007-01-01

    Reduced depression of transmitter release from Ia afferents following previous activation (post-activation depression) has been suggested to be involved in the pathophysiology of spasticity. However, the effect of this mechanism on the myotatic reflex and its possible contribution to increased...... reflex excitability in spastic participants has not been tested. To investigate these effects, we examined post-activation depression in Soleus H-reflex responses and in mechanically evoked Soleus stretch reflex responses. Stretch reflex responses were evoked with consecutive dorsiflexion perturbations...... of the soleus stretch reflex and H-reflex decreased as the interval between the stimulus/perturbation was decreased. Similarly, the stretch-evoked torque decreased. In the spastic participants, the post-activation depression of both reflexes and the stretch-evoked torque was significantly smaller than...

  10. Cell volume and membrane stretch independently control K+ channel activity

    DEFF Research Database (Denmark)

    Bomholtz, Sofia Hammami; Willumsen, Niels J; Olsen, Hervør L

    2009-01-01

    A number of potassium channels including members of the KCNQ family and the Ca(2+) activated IK and SK, but not BK, are strongly and reversibly regulated by small changes in cell volume. It has been argued that this general regulation is mediated through sensitivity to changes in membrane stretch...... was not affected by membrane stretch. The results indicate that (1) activation of BK channels by local membrane stretch is not mimicked by membrane stress induced by cell swelling, and (2) activation of KCNQ1 channels by cell volume increase is not mediated by local tension in the cell membrane. We conclude....... To test this hypothesis we have studied the regulation of KCNQ1 and BK channels after expression in Xenopus oocytes. Results from cell-attached patch clamp studies (approximately 50 microm(2) macropatches) in oocytes expressing BK channels demonstrate that the macroscopic volume-insensitive BK current...

  11. Mechanical stretch induces MMP-2 release and activation in lung endothelium: role of EMMPRIN.

    Science.gov (United States)

    Haseneen, Nadia A; Vaday, Gayle G; Zucker, Stanley; Foda, Hussein D

    2003-03-01

    High-volume mechanical ventilation leads to ventilator-induced lung injury. This type of lung injury is accompanied by an increased release and activation of matrix metalloproteinases (MMPs). To investigate the mechanism leading to the increased MMP release, we systematically studied the effect of mechanical stretch on human microvascular endothelial cells isolated from the lung. We exposed cells grown on collagen 1 BioFlex plates to sinusoidal cyclic stretch at 0.5 Hz using the Flexercell system with 17-18% elongation of cells. After 4 days of cell stretching, conditioned media and cell lysate were collected and analyzed by gelatin, casein, and reverse zymograms as well as Western blotting. RT-PCR of mRNA extracted from stretched cells was performed. Our results show that 1) cyclic stretch led to increased release and activation of MMP-2 and MMP-1; 2) the activation of MMP-2 was accompanied by an increase in membrane type-1 MMP (MT1-MMP) and inhibited by a hydroxamic acid-derived inhibitor of MMPs (Prinomastat, AG3340); and 3) the MMP-2 release and activation were preceded by an increase in production of extracellular MMP inducer (EMMPRIN). These results suggest that cyclic mechanical stretch leads to MMP-2 activation through an MT1-MMP mechanism. EMMPRIN may play an important role in the release and activation of MMPs during lung injury.

  12. Effect of acute stretch injury on action potential and network activity of rat neocortical neurons in culture.

    Science.gov (United States)

    Magou, George C; Pfister, Bryan J; Berlin, Joshua R

    2015-10-22

    The basis for acute seizures following traumatic brain injury (TBI) remains unclear. Animal models of TBI have revealed acute hyperexcitablility in cortical neurons that could underlie seizure activity, but studying initiating events causing hyperexcitability is difficult in these models. In vitro models of stretch injury with cultured cortical neurons, a surrogate for TBI, allow facile investigation of cellular changes after injury but they have only demonstrated post-injury hypoexcitability. The goal of this study was to determine if neuronal hyperexcitability could be triggered by in vitro stretch injury. Controlled uniaxial stretch injury was delivered to a spatially delimited region of a spontaneously active network of cultured rat cortical neurons, yielding a region of stretch-injured neurons and adjacent regions of non-stretched neurons that did not directly experience stretch injury. Spontaneous electrical activity was measured in non-stretched and stretch-injured neurons, and in control neuronal networks not subjected to stretch injury. Non-stretched neurons in stretch-injured cultures displayed a three-fold increase in action potential firing rate and bursting activity 30-60 min post-injury. Stretch-injured neurons, however, displayed dramatically lower rates of action potential firing and bursting. These results demonstrate that acute hyperexcitability can be observed in non-stretched neurons located in regions adjacent to the site of stretch injury, consistent with reports that seizure activity can arise from regions surrounding the site of localized brain injury. Thus, this in vitro procedure for localized neuronal stretch injury may provide a model to study the earliest cellular changes in neuronal function associated with acute post-traumatic seizures. Copyright © 2015. Published by Elsevier B.V.

  13. Ca2+ influx and ATP release mediated by mechanical stretch in human lung fibroblasts

    International Nuclear Information System (INIS)

    Murata, Naohiko; Ito, Satoru; Furuya, Kishio; Takahara, Norihiro; Naruse, Keiji; Aso, Hiromichi; Kondo, Masashi; Sokabe, Masahiro; Hasegawa, Yoshinori

    2014-01-01

    Highlights: • Uniaxial stretching activates Ca 2+ signaling in human lung fibroblasts. • Stretch-induced intracellular Ca 2+ elevation is mainly via Ca 2+ influx. • Mechanical strain enhances ATP release from fibroblasts. • Stretch-induced Ca 2+ influx is not mediated by released ATP or actin cytoskeleton. - Abstract: One cause of progressive pulmonary fibrosis is dysregulated wound healing after lung inflammation or damage in patients with idiopathic pulmonary fibrosis and severe acute respiratory distress syndrome. The mechanical forces are considered to regulate pulmonary fibrosis via activation of lung fibroblasts. In this study, the effects of mechanical stretch on the intracellular Ca 2+ concentration ([Ca 2+ ] i ) and ATP release were investigated in primary human lung fibroblasts. Uniaxial stretch (10–30% in strain) was applied to fibroblasts cultured in a silicone chamber coated with type I collagen using a stretching apparatus. Following stretching and subsequent unloading, [Ca 2+ ] i transiently increased in a strain-dependent manner. Hypotonic stress, which causes plasma membrane stretching, also transiently increased the [Ca 2+ ] i . The stretch-induced [Ca 2+ ] i elevation was attenuated in Ca 2+ -free solution. In contrast, the increase of [Ca 2+ ] i by a 20% stretch was not inhibited by the inhibitor of stretch-activated channels GsMTx-4, Gd 3+ , ruthenium red, or cytochalasin D. Cyclic stretching induced significant ATP releases from fibroblasts. However, the stretch-induced [Ca 2+ ] i elevation was not inhibited by ATP diphosphohydrolase apyrase or a purinergic receptor antagonist suramin. Taken together, mechanical stretch induces Ca 2+ influx independently of conventional stretch-sensitive ion channels, the actin cytoskeleton, and released ATP

  14. EFFECTS OF DYNAMIC AND STATIC STRETCHING WITHIN GENERAL AND ACTIVITY SPECIFIC WARM-UP PROTOCOLS

    Directory of Open Access Journals (Sweden)

    Michael Samson

    2012-06-01

    Full Text Available The purpose of the study was to determine the effects of static and dynamic stretching protocols within general and activity specific warm-ups. Nine male and ten female subjects were tested under four warm-up conditions including a 1 general aerobic warm-up with static stretching, 2 general aerobic warm-up with dynamic stretching, 3 general and specific warm-up with static stretching and 4 general and specific warm-up with dynamic stretching. Following all conditions, subjects were tested for movement time (kicking movement of leg over 0.5 m distance, countermovement jump height, sit and reach flexibility and 6 repetitions of 20 metre sprints. Results indicated that when a sport specific warm-up was included, there was an 0.94% improvement (p = 0.0013 in 20 meter sprint time with both the dynamic and static stretch groups. No such difference in sprint performance between dynamic and static stretch groups existed in the absence of the sport specific warm-up. The static stretch condition increased sit and reach range of motion (ROM by 2.8% more (p = 0.0083 than the dynamic condition. These results would support the use of static stretching within an activity specific warm-up to ensure maximal ROM along with an enhancement in sprint performance

  15. Mechanical stretch endows mesenchymal stem cells stronger angiogenic and anti-apoptotic capacities via NFκB activation

    International Nuclear Information System (INIS)

    Zhu, Zhuoli; Gan, Xueqi; Fan, Hongyi; Yu, Haiyang

    2015-01-01

    Mesenchymal stem cells (MSCs) have been broadly used for tissue regeneration and repair due to their broad differentiation potential and potent paracrine properties such as angiogenic capacity. Strategies to increase their survival rate after transplantation and the angiogenic ability are of priority for the utility of MSCs. In this study, we found that mechanical stretch (10% extension, 30 cycles/min cyclic stretch) preconditioning increase the angiogenic capacity via VEGFA induction. In addition, mechanical stretch also increases the survival rate of mesenchymal stem cells under nutrients deprivation. Consistent with the increase VEGFA expression and resistance to apoptosis, nuclear localization of NFκB activity p65 increased upon mechanical stretch. Inhibition of NFκB activity by BAY 11-708 blocks the pro-angiogenesis and anti-apoptosis function of mechanical stretch. Taken together, our findings here raise the possibility that mechanical stretch preconditioning might enhance the therapeutic efficacy of mesenchymal stem cells. - Highlights: • Mechanical stretch increases the angiogenic capacity via VEGFA induction in MSCs. • Mechanical stretch increases the survival rate of MSCs under nutrients deprivation. • Mechanical stretch manipulates MSCs via the activation of NFκB.

  16. Mechanical stretch endows mesenchymal stem cells stronger angiogenic and anti-apoptotic capacities via NFκB activation

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zhuoli; Gan, Xueqi [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Fan, Hongyi [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Department of Applied Mechanics, College of Architecture and Environment, Sichuan University, Chengdu 610065 (China); Yu, Haiyang, E-mail: yhyang6812@foxmail.com [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China)

    2015-12-25

    Mesenchymal stem cells (MSCs) have been broadly used for tissue regeneration and repair due to their broad differentiation potential and potent paracrine properties such as angiogenic capacity. Strategies to increase their survival rate after transplantation and the angiogenic ability are of priority for the utility of MSCs. In this study, we found that mechanical stretch (10% extension, 30 cycles/min cyclic stretch) preconditioning increase the angiogenic capacity via VEGFA induction. In addition, mechanical stretch also increases the survival rate of mesenchymal stem cells under nutrients deprivation. Consistent with the increase VEGFA expression and resistance to apoptosis, nuclear localization of NFκB activity p65 increased upon mechanical stretch. Inhibition of NFκB activity by BAY 11-708 blocks the pro-angiogenesis and anti-apoptosis function of mechanical stretch. Taken together, our findings here raise the possibility that mechanical stretch preconditioning might enhance the therapeutic efficacy of mesenchymal stem cells. - Highlights: • Mechanical stretch increases the angiogenic capacity via VEGFA induction in MSCs. • Mechanical stretch increases the survival rate of MSCs under nutrients deprivation. • Mechanical stretch manipulates MSCs via the activation of NFκB.

  17. Acute effects of active isolated stretching on vertical jump ...

    African Journals Online (AJOL)

    The purpose of the study was to determine the acute effects of active isolated stretching on muscular peak power production. Sixty healthy, physically active volunteers (aged 18-28) participated as subjects in this study. Subjects were randomly assigned to two groups; the control group and the experimental group. Subjects ...

  18. Ca{sup 2+} influx and ATP release mediated by mechanical stretch in human lung fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Murata, Naohiko [Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Ito, Satoru, E-mail: itori@med.nagoya-u.ac.jp [Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Furuya, Kishio [Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Takahara, Norihiro [Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Naruse, Keiji [Department of Cardiovascular Physiology, Okayama University Graduate School of Medicine, Okayama 700-8558 (Japan); Aso, Hiromichi; Kondo, Masashi [Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Sokabe, Masahiro [Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Hasegawa, Yoshinori [Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan)

    2014-10-10

    Highlights: • Uniaxial stretching activates Ca{sup 2+} signaling in human lung fibroblasts. • Stretch-induced intracellular Ca{sup 2+} elevation is mainly via Ca{sup 2+} influx. • Mechanical strain enhances ATP release from fibroblasts. • Stretch-induced Ca{sup 2+} influx is not mediated by released ATP or actin cytoskeleton. - Abstract: One cause of progressive pulmonary fibrosis is dysregulated wound healing after lung inflammation or damage in patients with idiopathic pulmonary fibrosis and severe acute respiratory distress syndrome. The mechanical forces are considered to regulate pulmonary fibrosis via activation of lung fibroblasts. In this study, the effects of mechanical stretch on the intracellular Ca{sup 2+} concentration ([Ca{sup 2+}]{sub i}) and ATP release were investigated in primary human lung fibroblasts. Uniaxial stretch (10–30% in strain) was applied to fibroblasts cultured in a silicone chamber coated with type I collagen using a stretching apparatus. Following stretching and subsequent unloading, [Ca{sup 2+}]{sub i} transiently increased in a strain-dependent manner. Hypotonic stress, which causes plasma membrane stretching, also transiently increased the [Ca{sup 2+}]{sub i}. The stretch-induced [Ca{sup 2+}]{sub i} elevation was attenuated in Ca{sup 2+}-free solution. In contrast, the increase of [Ca{sup 2+}]{sub i} by a 20% stretch was not inhibited by the inhibitor of stretch-activated channels GsMTx-4, Gd{sup 3+}, ruthenium red, or cytochalasin D. Cyclic stretching induced significant ATP releases from fibroblasts. However, the stretch-induced [Ca{sup 2+}]{sub i} elevation was not inhibited by ATP diphosphohydrolase apyrase or a purinergic receptor antagonist suramin. Taken together, mechanical stretch induces Ca{sup 2+} influx independently of conventional stretch-sensitive ion channels, the actin cytoskeleton, and released ATP.

  19. Calcineurin /NFAT activation-dependence of leptin synthesis and vascular growth in response to mechanical stretch

    Directory of Open Access Journals (Sweden)

    Nadia Soudani

    2016-09-01

    Full Text Available Background and Aims- Hypertension and obesity are important risk factors of cardiovascular disease. They are both associated with high leptin levels and have been shown to promote vascular hypertrophy, through the RhoA/ROCK and ERK1/2 phosphorylation. Calcineurin/NFAT activation also induces vascular hypertrophy by upregulating various genes. This study aimed to decipher whether a crosstalk exists between the RhoA/ROCK pathway, Ca+2/calcineurin/NFAT pathway, and ERK1/2 phosphorylation in the process of mechanical stretch-induced vascular smooth muscle cell (VSMC hypertrophy and leptin synthesis. Methods and Results- Rat portal vein (RPV organ culture was used to investigate the effect of mechanical stretch and exogenous leptin (3.1 nM on VSMC hypertrophy and leptin synthesis. Results showed that stretching the RPV significantly upregulated leptin secretion, mRNA and protein expression, which were inhibited by the calcium channel blocker nifedipine (10 μM, the selective calcineurin inhibitor FK506 (1 nM and the ERK1/2 inhibitor PD98059 (1 μM. The transcription inhibitor actinomycin D (0.1M and the translation inhibitor cycloheximide (1 mM significantly decreased stretch-induced leptin protein expression. Mechanical stretch or leptin caused an increase in wet weight changes and protein synthesis, considered as hypertrophic markers, while they were inhibited by FK506 (0.1 nM; 1 nM. In addition, stretch or exogenous leptin significantly increased calcineurin activity and MCIP1 expression whereas leptin induced NFAT nuclear translocation in VSMCs. Moreover, in response to stretch or exogenous leptin, the Rho inhibitor C3 exoenzyme (30 ng/mL, the ROCK inhibitor Y-27632 (10 μM, and the actin depolymerization agents Latrunculin B (50 nM and cytochalasin D (1 μM reduced calcineurin activation and NFAT nuclear translocation. ERK1/2 phosphorylation was inhibited by FK506 and C3. Conclusions- Mechanical stretch-induced VSMC hypertrophy and leptin

  20. p38 mitogen-activated protein kinase up-regulates NF-κB transcriptional activation through RelA phosphorylation during stretch-induced myogenesis

    International Nuclear Information System (INIS)

    Ji, Guoping; Liu, Dongxu; Liu, Jing; Gao, Hui; Yuan, Xiao; Shen, Gang

    2010-01-01

    p38 MAPK and nuclear factor-B (NF-B) signaling pathways play an indispensable role in the control of skeletal myogenesis. The specific contribution of these signaling pathways to the response of myoblast to the mechanical stimulation and the molecular mechanisms underlying this response remain unresolved. Using an established in vitro model, we now show that p38 MAP kinase activity regulates the transcriptional activation of NF-κB in response to mechanical stimulation of myoblasts. Furthermore, SB203580 blocked stretch-induced NF-κB activation during myogenesis, not through down-regulation of degradation of IκB-α, and consequent translocation of the p65 subunit of NF-κB to the nucleus. It is likely that stretch-induced NF-κB activation by phosphorylation of p65 NF-κB. Moreover, depletion of p38α using siRNA significantly reduces stretch-induced phosphorylation of RelA and NF-κB activity. These results provides the first evidence of a cross-talk between p38 MAPK and NF-κB signaling pathways during stretch-induced myogenesis, with phosphorylation of RelA being one of the effectors of this promyogenic mechanism. The α isoform of p38MAP kinase regulates the transcriptional activation of NF-κB following stimulation with cyclic stretch.

  1. p38 mitogen-activated protein kinase up-regulates NF-{kappa}B transcriptional activation through RelA phosphorylation during stretch-induced myogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Guoping [Department of Orthodontics, College of Stomatology, Ninth People' s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Research Institute of Stomatology, Shanghai 200011 (China); Liu, Dongxu [Department of Orthodontics, College of Stomatology, Shandong University, Jinan, Shandong Province 250012 (China); Liu, Jing [Department of Orthodontics, The Affiliated Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong Province 266075 (China); Gao, Hui [Department of Orthodontics, Tianjin Stomatological Hospital, Tianjin 300041 (China); Yuan, Xiao, E-mail: yuanxiaoqd@163.com [Department of Orthodontics, The Affiliated Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong Province 266075 (China); Shen, Gang, E-mail: ganshen2007@163.com [Department of Orthodontics, College of Stomatology, Ninth People' s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Research Institute of Stomatology, Shanghai 200011 (China)

    2010-01-01

    p38 MAPK and nuclear factor-B (NF-B) signaling pathways play an indispensable role in the control of skeletal myogenesis. The specific contribution of these signaling pathways to the response of myoblast to the mechanical stimulation and the molecular mechanisms underlying this response remain unresolved. Using an established in vitro model, we now show that p38 MAP kinase activity regulates the transcriptional activation of NF-{kappa}B in response to mechanical stimulation of myoblasts. Furthermore, SB203580 blocked stretch-induced NF-{kappa}B activation during myogenesis, not through down-regulation of degradation of I{kappa}B-{alpha}, and consequent translocation of the p65 subunit of NF-{kappa}B to the nucleus. It is likely that stretch-induced NF-{kappa}B activation by phosphorylation of p65 NF-{kappa}B. Moreover, depletion of p38{alpha} using siRNA significantly reduces stretch-induced phosphorylation of RelA and NF-{kappa}B activity. These results provides the first evidence of a cross-talk between p38 MAPK and NF-{kappa}B signaling pathways during stretch-induced myogenesis, with phosphorylation of RelA being one of the effectors of this promyogenic mechanism. The {alpha} isoform of p38MAP kinase regulates the transcriptional activation of NF-{kappa}B following stimulation with cyclic stretch.

  2. Stretch-dependent slow force response in isolated rabbit myocardium is Na+ dependent.

    Science.gov (United States)

    von Lewinski, Dirk; Stumme, Burkhard; Maier, Lars S; Luers, Claus; Bers, Donald M; Pieske, Burkert

    2003-03-15

    Stretch induces functional and trophic effects in mammalian myocardium via various signal transduction pathways. We tested stretch signal transduction on immediate and slow force response (SFR) in rabbit myocardium. Experiments were performed in isolated right ventricular muscles from adult rabbit hearts (37 degrees C, 1 Hz stimulation rate, bicarbonate-buffer). Muscles were rapidly stretched from 88% of optimal length (L88) to near optimal length (L98) for functional analysis. The resulting immediate and slow increases in twitch force (first phase and SFR, respectively) were assessed at reduced [Na+]o or without and with blockade of stretch activated ion channels (SACs), angiotensin-II (AT1) receptors, endothelin-A (ET(A)) receptors, Na+/H+-exchange (NHE1), reverse mode Na+/Ca2+-exchange (NCX), or Na+/K+-ATPase. The effects of stretch on sarcoplasmic reticulum Ca2+-load were characterized using rapid cooling contractures (RCCs). Intracellular pH was measured in BCECF-AM loaded muscles, and action potential duration (APD) was assessed using floating electrodes. On average, force increased to 216+/-8% of the pre-stretch value during the immediate phase, followed by a further increase to 273+/-10% during the SFR (n=81). RCCs significantly increased during SFR, whereas pH and APD did not change. Neither inhibition of SACs, AT1, or ET(A) receptors affected the stretch-dependent immediate phase nor SFR. In contrast, SFR was reduced by NHE inhibition and almost completely abolished by reduced [Na+]o or inhibition of reverse-mode NCX, whereas increased SFR was seen after raising [Na+]i by Na+/K+-ATPase inhibition. The data demonstrate the existence of a delayed, Na+- and Ca2+-dependent but pH and APD independent SFR to stretch in rabbit myocardium. This inotropic response appears to be independent of autocrine/paracrine AT1 or ET(A) receptor activation, but mediated through stretch-induced activation of NHE and reverse mode NCX.

  3. Effect of Active-Assisted Stretching of 30 Seconds and 60 Seconds in Muscle Force

    Directory of Open Access Journals (Sweden)

    Mirian dos Santos Monteiro

    2018-01-01

    Full Text Available This study aims to analyze the interference of the active-assisted stretching technique in muscle strength. Participating in this study were 39 healthy and physically active individuals subdivided into three groups of active-assisted stretching G30 - 30 seconds, G60 - 60 seconds and CG - control. The muscular strength was evaluated using the isokinetic dynamometer, obtaining the analyzed conditions of torque peak, total work and agonist and antagonist relationship of the dorsiflexor and flexor muscles ankle. The values obtained were statistically analyzed by the SPSS from the “t-test for paired sample” (p ≤ 0.05. When analyzing the effect produced by the stretching, it was observed that the 30-second elongation showed a reduction of the average of the muscular torque in all conditions analyzed, with the exception of the relation between the agonist and the left antagonist and the total work of the right plantar flexors, the G60 - 60 seconds group had a reduction in average muscle torque in all conditions analyzed, except for the relation between agonist and left antagonist that obtained an increase in muscle torque and the CG - control group, there was a reduction in the average of the muscular torque in all the analyzed conditions, except for the torque and total work of the left plantar flexor muscles that presented increase. Thus, it can be concluded that there were differences between the groups of active-assisted stretching of 30 and 60 and that the effect produced by stretching did not present a significant reduction of muscle strength.

  4. Muscle activation patterns when passively stretching spastic lower limb muscles of children with cerebral palsy.

    Directory of Open Access Journals (Sweden)

    Lynn Bar-On

    Full Text Available The definition of spasticity as a velocity-dependent activation of the tonic stretch reflex during a stretch to a passive muscle is the most widely accepted. However, other mechanisms are also thought to contribute to pathological muscle activity and, in patients post-stroke and spinal cord injury can result in different activation patterns. In the lower-limbs of children with spastic cerebral palsy (CP these distinct activation patterns have not yet been thoroughly explored. The aim of the study was to apply an instrumented assessment to quantify different muscle activation patterns in four lower-limb muscles of children with CP. Fifty-four children with CP were included (males/females n = 35/19; 10.8 ± 3.8 yrs; bilateral/unilateral involvement n =  32/22; Gross Motor Functional Classification Score I-IV of whom ten were retested to evaluate intra-rater reliability. With the subject relaxed, single-joint, sagittal-plane movements of the hip, knee, and ankle were performed to stretch the lower-limb muscles at three increasing velocities. Muscle activity and joint motion were synchronously recorded using inertial sensors and electromyography (EMG from the adductors, medial hamstrings, rectus femoris, and gastrocnemius. Muscles were visually categorised into activation patterns using average, normalized root mean square EMG (RMS-EMG compared across increasing position zones and velocities. Based on the visual categorisation, quantitative parameters were defined using stretch-reflex thresholds and normalized RMS-EMG. These parameters were compared between muscles with different activation patterns. All patterns were dominated by high velocity-dependent muscle activation, but in more than half, low velocity-dependent activation was also observed. Muscle activation patterns were found to be both muscle- and subject-specific (p<0.01. The intra-rater reliability of all quantitative parameters was moderate to good. Comparing RMS-EMG between

  5. Stretching of Active Muscle Elicits Chronic Changes in Multiple Strain Risk Factors.

    Science.gov (United States)

    Kay, Anthony David; Richmond, Dominic; Talbot, Chris; Mina, Minas; Baross, Anthony William; Blazevich, Anthony John

    2016-07-01

    The muscle stretch intensity imposed during "flexibility" training influences the magnitude of joint range of motion (ROM) adaptation. Thus, stretching while the muscle is voluntarily activated was hypothesized to provide a greater stimulus than passive stretching. The effect of a 6-wk program of stretch imposed on an isometrically contracting muscle (i.e., qualitatively similar to isokinetic eccentric training) on muscle-tendon mechanics was therefore studied in 13 healthy human volunteers. Before and after the training program, dorsiflexion ROM, passive joint moment, and maximal isometric plantarflexor moment were recorded on an isokinetic dynamometer. Simultaneous real-time motion analysis and ultrasound imaging recorded gastrocnemius medialis muscle and Achilles tendon elongation. Training was performed twice weekly and consisted of five sets of 12 maximal isokinetic eccentric contractions at 10°·s. Significant increases (P tendon stiffness) was detected (-1.5%, P > 0.05), a significant increase in tendon stiffness (31.2%, P tendon stiffness simultaneous with significant increases in tendon stiffness and decreases in passive muscle stiffness indicates that tissue-specific effects were elicited.

  6. Piezo Is Essential for Amiloride-Sensitive Stretch-Activated Mechanotransduction in Larval Drosophila Dorsal Bipolar Dendritic Sensory Neurons.

    Science.gov (United States)

    Suslak, Thomas J; Watson, Sonia; Thompson, Karen J; Shenton, Fiona C; Bewick, Guy S; Armstrong, J Douglas; Jarman, Andrew P

    2015-01-01

    Stretch-activated afferent neurons, such as those of mammalian muscle spindles, are essential for proprioception and motor co-ordination, but the underlying mechanisms of mechanotransduction are poorly understood. The dorsal bipolar dendritic (dbd) sensory neurons are putative stretch receptors in the Drosophila larval body wall. We have developed an in vivo protocol to obtain receptor potential recordings from intact dbd neurons in response to stretch. Receptor potential changes in dbd neurons in response to stretch showed a complex, dynamic profile with similar characteristics to those previously observed for mammalian muscle spindles. These profiles were reproduced by a general in silico model of stretch-activated neurons. This in silico model predicts an essential role for a mechanosensory cation channel (MSC) in all aspects of receptor potential generation. Using pharmacological and genetic techniques, we identified the mechanosensory channel, DmPiezo, in this functional role in dbd neurons, with TRPA1 playing a subsidiary role. We also show that rat muscle spindles exhibit a ruthenium red-sensitive current, but found no expression evidence to suggest that this corresponds to Piezo activity. In summary, we show that the dbd neuron is a stretch receptor and demonstrate that this neuron is a tractable model for investigating mechanisms of mechanotransduction.

  7. EFFICACY OF MODIFIED PROPRIOCEPTIVE NEUROMUSCULAR FACILITATION STRETCHING WITH CRYOTHERAPY OVER MANUAL PASSIVE STRETCHING WITH CRYOTHERAPY ON HAMSTRING FLEXIBILITY

    Directory of Open Access Journals (Sweden)

    Shamik Bhattacharjee

    2016-04-01

    Full Text Available Background: Healthy individuals, to ease and accomplish their activities of daily living they need flexible body without any tightness in the muscles, particularly those used for a definite function. Cooling soft tissues in a lengthened position after stretching has been shown to promote more lasting increases in soft tissue length and minimize post stretch muscle soreness. There are less documented studies which compared modified proprioceptive neuromuscular facilitation (PNF stretch over passive manual stretch with cold application commonly after the interventions. Methods: Thirty high school going healthy students were divided into two groups- Group I received Passive Manual stretching (n=15 and Group II received modified PNF stretching (n=15 and both groups received cold application after the interventions for 10 minutes commonly for 5 days. ROM was taken on day 1, day 5 and day 7. Results: After day 7, Group II with Modified PNF stretching along with cold application showed a significant increase in range of motion tested with active knee extension test (AKET. Conclusion: Modified PNF stretching is considered to be the effective intervention in increasing and maintaining ROM in AKET over passive manual stretching with cold applications commonly after the interventions.

  8. Ballistic stretching increases flexibility and acute vertical jump height when combined with basketball activity.

    Science.gov (United States)

    Woolstenhulme, Mandy T; Griffiths, Christine M; Woolstenhulme, Emily M; Parcell, Allen C

    2006-11-01

    Stretching is often included as part of a warm-up procedure for basketball activity. However, the efficacy of stretching with respect to sport performance has come into question. We determined the effects of 4 different warm-up protocols followed by 20 minutes of basketball activity on flexibility and vertical jump height. Subjects participated in 6 weeks (2 times per week) of warm-up and basketball activity. The warm-up groups participated in ballistic stretching, static stretching, sprinting, or basketball shooting (control group). We asked 3 questions. First, what effect does 6 weeks of warm-up exercise and basketball play have on both flexibility and vertical jump height? We measured sit and reach and vertical jump height before (week -1) and after (week 7) the 6 weeks. Flexibility increased for the ballistic, static, and sprint groups compared to the control group (p vertical jump height did not change for any of the groups. Our second question was what is the acute effect of each warm-up on vertical jump height? We measured vertical jump immediately after the warm-up on 4 separate occasions during the 6 weeks (at weeks 0, 2, 4, and 6). Vertical jump height was not different for any group. Finally, our third question was what is the acute effect of each warm-up on vertical jump height following 20 minutes of basketball play? We measured vertical jump height immediately following 20 minutes of basketball play at weeks 0, 2, 4, and 6. Only the ballistic stretching group demonstrated an acute increase in vertical jump 20 minutes after basketball play (p basketball play, as it is beneficial to vertical jump performance.

  9. The effect of streptomycin on stretch-induced electrophysiological changes of isolated acute myocardial infarcted hearts in rats.

    Science.gov (United States)

    Fu, Lu; Cao, Jun-xian; Xie, Rong-sheng; Li, Jia; Han, Ying; Zhu, Li-qun; Dai, Ying-nan

    2007-08-01

    To explore whether the stretch of ischaemic myocardium could modulate the electrophysiological characteristics, especially repolarization via mechanoelectric feedback (MEF), as well as the effect of streptomycin (SM) on these changes. Methods Thirty-six wistar rats were randomly divided into four groups: control group (n = 9), SM group (n = 9), myocardial infarction (MI) group (n = 9), and MI + SM group (n = 9). After perfused on Langendorff, the isolated hearts were stretched for 5s by a ballon inflation of 0.2mL. After being stretched, the effect of the stretch was observed for 30s, including the 20, 20-70, 70, and 90% monophasic action potential duration (MAPD), i.e. MAPD(20), MAPD(20-70), MAPD(70), and MAPD(90), respectively, premature ventricular beats (PVB), and ventricular tachycardia (VT). Results The stretch caused a decrease in MAPD(20-70) (both P 0.05, except MAPD(20-70) between the control and SM groups, P maintenance of malignant arrhythmias. SM could significantly inhibit the occurrence of arrhythmias, which may correlate with the effect on blocking stretch-activated ion channels.

  10. Active stretching for lower extremity muscle tightness in pediatric patients with lumbar spondylolysis.

    Science.gov (United States)

    Sato, Masahiro; Mase, Yasuyoshi; Sairyo, Koichi

    2017-01-01

    It was reported that hamstring muscle tightness may increase mechanical loading on the lumbar spine. Therefore, we attempt to decrease tightness in the leg muscles in pediatric patients. Forty-six pediatric patients with spondylolysis underwent rehabilitation. We applied active stretching to the hamstrings, quadriceps, and triceps surae. Tightness in each muscle was graded as good, fair, or poor. We educated each patient on how to perform active stretching at home. They were re-evaluated for muscle tightness 2 months later. Tightness at baseline and after 2 months was as follows: for the hamstrings, good in 3 patients, fair in 9, and poor in 34 and significant improved after 2 months (p<0.05), with improvement by least 1 grade seen in 86% of patients with fair or poor at baseline; for the quadriceps, 7, 3, and 30 patients had good, fair and poor, with significant improvements in 72% (p<0.05). For the triceps surae, 6, 3 and 10 patients had good, fair and poor, which improved significantly (p<0.05). Home-based active stretching was effective for relieving muscle tightness in the leg in a pediatric population. Adolescent athletes should perform such exercise to maintain flexibility and prevent lumbar disorders. J. Med. Invest. 64: 136-139, February, 2017.

  11. Mechanical regulation of stem-cell differentiation by the stretch-activated Piezo channel.

    Science.gov (United States)

    He, Li; Si, Guangwei; Huang, Jiuhong; Samuel, Aravinthan D T; Perrimon, Norbert

    2018-03-01

    Somatic stem cells constantly adjust their self-renewal and lineage commitment by integrating various environmental cues to maintain tissue homeostasis. Although numerous chemical and biological signals have been identified that regulate stem-cell behaviour, whether stem cells can directly sense mechanical signals in vivo remains unclear. Here we show that mechanical stress regulates stem-cell differentiation in the adult Drosophila midgut through the stretch-activated ion channel Piezo. We find that Piezo is specifically expressed in previously unidentified enteroendocrine precursor cells, which have reduced proliferation ability and are destined to become enteroendocrine cells. Loss of Piezo activity reduces the generation of enteroendocrine cells in the adult midgut. In addition, ectopic expression of Piezo in all stem cells triggers both cell proliferation and enteroendocrine cell differentiation. Both the Piezo mutant and overexpression phenotypes can be rescued by manipulation of cytosolic Ca 2+ levels, and increases in cytosolic Ca 2+ resemble the Piezo overexpression phenotype, suggesting that Piezo functions through Ca 2+ signalling. Further studies suggest that Ca 2+ signalling promotes stem-cell proliferation and differentiation through separate pathways. Finally, Piezo is required for both mechanical activation of stem cells in a gut expansion assay and the increase of cytosolic Ca 2+ in response to direct mechanical stimulus in a gut compression assay. Thus, our study demonstrates the existence of a specific group of stem cells in the fly midgut that can directly sense mechanical signals through Piezo.

  12. Stretch activates myosin light chain kinase in arterial smooth muscle

    International Nuclear Information System (INIS)

    Barany, K.; Rokolya, A.; Barany, M.

    1990-01-01

    Stretching of porcine carotid arterial muscle increased the phosphorylation of the 20 kDa myosin light chain from 0.23 to 0.68 mol [32P]phosphate/mol light chain, whereas stretching of phorbol dibutyrate treated muscle increased the phosphorylation from 0.30 to 0.91 mol/mol. Two-dimensional gel electrophoresis followed by two-dimensional tryptic phosphopeptide mapping was used to identify the enzyme involved in the stretch-induced phosphorylation. Quantitation of the [32P]phosphate content of the peptides revealed considerable light chain phosphorylation by protein kinase C only in the phorbol dibutyrate treated arterial muscle, whereas most of the light chain phosphorylation was attributable to myosin light chain kinase. Upon stretch of either the untreated or treated muscle, the total increment in [32P]phosphate incorporation into the light chain could be accounted for by peptides characteristic for myosin light chain kinase catalyzed phosphorylation, demonstrating that the stretch-induced phosphorylation is caused by this enzyme exclusively

  13. Pre-Activity and Post-Activity Stretching Perceptions and Practices in NCAA Division I Volleyball Programs

    Science.gov (United States)

    Judge, Lawrence W.; Bodey, Kimberly J.; Bellar, David; Bottone, Adam; Wanless, Elizabeth

    2010-01-01

    The purpose of this study was to determine if NCAA Division I women's volleyball programs were in compliance with suggested current pre- and post-activity stretching protocols. Questionnaires were sent to NCAA division I women's volleyball programs in the United States. Fifty six coaches (23 males & 33 females) participated in the study. Some…

  14. Developmental axon stretch stimulates neuron growth while maintaining normal electrical activity, intracellular calcium flux, and somatic morphology.

    Science.gov (United States)

    Loverde, Joseph R; Pfister, Bryan J

    2015-01-01

    Elongation of nerve fibers intuitively occurs throughout mammalian development, and is synchronized with expansion of the growing body. While most tissue systems enlarge through mitosis and differentiation, elongation of nerve fibers is remarkably unique. The emerging paradigm suggests that axons undergo stretch as contiguous tissues enlarge between the proximal and distal segments of spanning nerve fibers. While stretch is distinct from growth, tension is a known stimulus which regulates the growth of axons. Here, we hypothesized that the axon stretch-growth process may be a natural form of injury, whereby regenerative processes fortify elongating axons in order to prevent disconnection. Harnessing the live imaging capability of our axon stretch-growth bioreactors, we assessed neurons both during and following stretch for biomarkers associated with injury. Utilizing whole-cell patch clamp recording, we found no evidence of changes in spontaneous action potential activity or degradation of elicited action potentials during real-time axon stretch at strains of up to 18% applied over 5 min. Unlike traumatic axonal injury, functional calcium imaging of the soma revealed no shifts in free intracellular calcium during axon stretch. Finally, the cross-sectional areas of nuclei and cytoplasms were normal, with no evidence of chromatolysis following week-long stretch-growth limited to the lower of 25% strain or 3 mm total daily stretch. The neuronal growth cascade coupled to stretch was concluded to be independent of the changes in membrane potential, action potential generation, or calcium flux associated with traumatic injury. While axon stretch-growth is likely to share overlap with regenerative processes, we conclude that developmental stretch is a distinct stimulus from traumatic axon injury.

  15. Developmental Axon Stretch Stimulates Neuron Growth While Maintaining Normal Electrical Activity, Intracellular Calcium Flux, and Somatic Morphology

    Directory of Open Access Journals (Sweden)

    Joseph R Loverde

    2015-08-01

    Full Text Available Elongation of nerve fibers intuitively occurs throughout mammalian development, and is synchronized with expansion of the growing body. While most tissue systems enlarge through mitosis and differentiation, elongation of nerve fibers is remarkably unique. The emerging paradigm suggests that axons undergo stretch as contiguous tissues enlarge between the proximal and distal segments of spanning nerve fibers. While stretch is distinct from growth, tension is a known stimulus which regulates the growth of axons. Here, we hypothesized that the axon stretch-growth process may be a natural form of injury, whereby regenerative processes fortify elongating axons in order to prevent disconnection. Harnessing the live imaging capability of our axon stretch-growth bioreactors, we assessed neurons both during and following stretch for biomarkers associated with injury. Utilizing whole-cell patch clamp recording, we found no evidence of changes in spontaneous action potential activity or degradation of elicited action potentials during real-time axon stretch at strains of up to 18 % applied over 5 minutes. Unlike traumatic axonal injury, functional calcium imaging of the soma revealed no shifts in free intracellular calcium during axon stretch. Finally, the cross-sectional areas of nuclei and cytoplasms were normal, with no evidence of chromatolysis following week-long stretch-growth limited to the lower of 25 % strain or 3 mm total daily stretch. The neuronal growth cascade coupled to stretch was concluded to be independent of the changes in membrane potential, action potential generation, or calcium flux associated with traumatic injury. While axon stretch-growth is likely to share overlap with regenerative processes, we conclude that developmental stretch is a distinct stimulus from traumatic axon injury.

  16. EFFECTIVENESS OF PNF STRETCHING VERSUS STATIC STRETCHING ON PAIN AND HAMSTRING FLEXIBILITY FOLLOWING MOIST HEAT IN INDIVIDUALS WITH KNEE OSTEOARTHRITIS

    Directory of Open Access Journals (Sweden)

    Meena .V

    2016-10-01

    Full Text Available Background: Osteoarthritis (OA is a degenerative joint disease and one of the major public health problem that causesfunctional impairment and reduced quality of life. To compare the effectiveness of PNF Hold relax stretching versus Static stretching on pain and flexibility of hamstring following moist heat in individuals with knee osteoarthritis. Hamstring tightness is the major problem in knee osteoarthritis individuals. Therefore the need of study is comparing the effectiveness of PNF Hold relax stretching versus static stretching on pain and flexibility of hamstrings following moist heat in knee osteoarthritis participants. Determining the effects of PNF Hold relax stretching versus Static stretching along with moist heat on pain and hamstring flexibility by VAS and Active knee extension range of motion in knee osteoarthritis individuals. Methods: 30 subjects with symptoms of knee osteoarthritis were randomly distributed into 2 groups 15 in each group. PNF Hold relax stretching along with moist heat is compared to Static stretching along with moist heat. Pain was measured by Visual Analogue Scale (VAS and hamstring flexibility by Active knee Extension Range of Motion (AKEROM by universal goniometer. Measurements are taken pre and post intervention. Results: The results indicated PNF Hold relax stretching along with moist heat showed a statistically significant improvement in pain (p<0.05 and improvement in hamstring flexibility (p<0.05 when compared to Static stretching along with moist heat. Conclusion: Subjects with PNF Hold relax stretching along with moist heat showed significant improvement in pain reduction and improving hamstring flexibility than Static stretching along with moist heat.

  17. Localization and stretch-dependence of lung elastase activity in development and compensatory growth.

    Science.gov (United States)

    Young, Sarah Marie; Liu, Sheng; Joshi, Rashika; Batie, Matthew R; Kofron, Matthew; Guo, Jinbang; Woods, Jason C; Varisco, Brian Michael

    2015-04-01

    Synthesis and remodeling of the lung matrix is necessary for primary and compensatory lung growth. Because cyclic negative force is applied to developing lung tissue during the respiratory cycle, we hypothesized that stretch is a critical regulator of lung matrix remodeling. By using quantitative image analysis of whole-lung and whole-lobe elastin in situ zymography images, we demonstrated that elastase activity increased twofold during the alveolar stage of postnatal lung morphogenesis in the mouse. Remodeling was restricted to alveolar walls and ducts and was nearly absent in dense elastin band structures. In the mouse pneumonectomy model of compensatory lung growth, elastase activity increased threefold, peaking at 14 days postpneumonectomy and was higher in the accessory lobe compared with other lobes. Remodeling during normal development and during compensatory lung growth was different with increased major airway and pulmonary arterial remodeling during development but not regeneration, and with homogenous remodeling throughout the parenchyma during development, but increased remodeling only in subpleural regions during compensatory lung growth. Left lung wax plombage prevented increased lung elastin during compensatory lung growth. To test whether the adult lung retains an innate capacity to remodel elastin, we developed a confocal microscope-compatible stretching device. In ex vivo adult mouse lung sections, lung elastase activity increased exponentially with strain and in peripheral regions of lung more than in central regions. Our study demonstrates that lung elastase activity is stretch-dependent and supports a model in which externally applied forces influence the composition, structure, and function of the matrix during periods of alveolar septation. Copyright © 2015 the American Physiological Society.

  18. Stretch Sensor Device

    DEFF Research Database (Denmark)

    2013-01-01

    The invention relates to a method for determining stretch values and movement of body parts, e.g. a foot, by analysing stretch data from a stretch sensor. By analysing data from the stretch sensor it is possible to determine stretch samples which are associated with particular motion phases...

  19. Reactive Landing of Dendrimer Ions onto Activated Self-assembled Monolayer Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Qichi; Laskin, Julia

    2014-02-06

    The reactivity of gaseous, amine-terminated polyamidoamine (PAMAM) dendrimer ions with activated self-assembled monolayer (SAM) surfaces terminated with N-hydroxysuccinimidyl ester groups (NHS-SAM) is examined using mass-selected ion deposition combined with in situ infrared reflection absorption spectroscopy (IRRAS). The reaction extent is determined from depletion of the infrared band at 1753 cm-1, corresponding to the stretching vibration of the NHS carbonyl groups following ion deposition. For reaction yields below 10%, NHS band depletion follows a linear dependence on the ion dose. By comparing the kinetics plots obtained for 1,12-dodecanediamine and different generations of dendrimer ions (G0–G3) containing 4, 8, 16, and 32 terminal amino group, we demonstrate that the relative reaction efficiency increases linearly with the number of NH2 groups in the molecule. This finding is rationalized assuming the formation of multiple amide bonds upon collision of higher-generation dendrimers with NHS-SAM. Furthermore, by comparing the NHS band depletion following deposition of [M+4H]4+ ions of the G2 dendrimer at 30, 80, and 120 eV, we demonstrate that the ion’s kinetic energy has no measurable effect on reaction efficiency. Similarly, the ion’s charge state only has a minor effect on the reactive landing efficiency of dendrimer ions. Our results indicate that reactive landing is an efficient approach for highly selective covalent immobilization of complex multifunctional molecules onto organic surfaces terminated with labile functional groups.

  20. METODE ACTIVE ISOLATED STRETCHING (AIS DAN METODE HOLD RELAX STRETCHING (HRS SAMA EFEKTIF DALAM MENINGKATKAN FLEKSIBILITAS OTOT HAMSTRING PADA MAHASISWA AKADEMI FISIOTERAPI WIDYA HUSADA SEMARANG YANG MENGALAMI HAMSTRING MUSCLE TIGHTNESS (HMTs

    Directory of Open Access Journals (Sweden)

    Akhmad alfajri

    2015-08-01

    Full Text Available Students with Hamstring Muscle Tightness (HMTs will be at risk of Anterior Crusiatum Ligament (ACL, Low Back Pain (LBP and also Plantar Faciitis. One of the efforts to reduce tightness and improve hamstring muscle flexibility is stretching. Active Isolated Stretching (AIS and Hold Relax Stretching (HRS are the methods of influential stretching to improve muscle flexibility. The goal of the research is to prove that AIS method is equally effective with the HRS method to improve hamstring muscle flexibility to the HMTs patients. The research method was true experimental with pre and post test group design. The research was conducted for 3 weeks and the samples are 23 students in range of 18-25 years old students of physical therapy in Physical Therapy Academy of Widya Husada Semarang which divided into 2 groups; AIS group (n= 12 and HRS group (n= 11. The research used Sit and Reach Test (SRT as the measurement instrument. The result of the research was the average result of AIS group used SRT before treatment was 1.75 cm, SB= 4.309 and after treatment was 10. 58 cm, SB = 8. 005 within p= 0.000 (p 0.05. Those explain that the improvement of hamstring muscle flexibility to the two groups does not show any significant difference. Conclusion from this study was active isolated stretching method and hold relax stretching method are equally effective to improving muscle flexibility of hamstring muscle tightness students of physical therapy in Physical Therapy Academy of Widya Husada Semarang.

  1. Bruxism: Is There an Indication for Muscle-Stretching Exercises?

    Science.gov (United States)

    Gouw, Simone; de Wijer, Anton; Creugers, Nico Hj; Kalaykova, Stanimira I

    Bruxism is a common phenomenon involving repetitive activation of the masticatory muscles. Muscle-stretching exercises are a recommended part of several international guidelines for musculoskeletal disorders and may be effective in management of the jaw muscle activity that gives rise to bruxism. However, most studies of muscle-stretching exercises have mainly focused on their influence on performance (eg, range of motion, coordination, and muscle strength) of the limb or trunk muscles of healthy individuals or individuals with sports-related injuries. Very few have investigated stretching of the human masticatory muscles and none muscle-stretching exercises in the management of (sleep) bruxism. This article reviews the literature on muscle-stretching exercises and their potential role in the management of sleep bruxism or its consequences in the musculoskeletal system.

  2. Stretching & Flexibility: An Interactive Encyclopedia of Stretching. [CD-ROM].

    Science.gov (United States)

    2002

    This CD-ROM offers 140 different stretches in full-motion video sequences. It focuses on the proper techniques for overall physical fitness, injury prevention and rehabilitation, and 23 different sports (e.g., golf, running, soccer, skiing, climbing, football, and baseball). Topics include stretching for sports; stretching awareness and education…

  3. The effects of ramp stretches on active contractions in intact mammalian fast and slow muscle fibres.

    Science.gov (United States)

    Mutungi, G; Ranatunga, K W

    2001-01-01

    The effects of a ramp stretch (amplitude muscle fibre length (L0), speed twitch tension and twitch tension re-development were examined in intact mammalian (rat) fast and slow muscle fibre bundles. The experiments were done in vitro at 20 degrees C and at an initial sarcomere length of 2.68 microm. In both fibre types, a stretch applied during the rising phase of the twitch response (including the time of stimulation) increased the re-developed twitch tension (15-35%). A stretch applied before the stimulus had little or no effect on the twitch myogram in fast muscle fibres, but it increased the twitch tension (approximately 5%) in slow muscle fibres. A similar stretch had little or no effect on tetanic tension in either muscle fibre type. In general, the results indicate that the contractile-activation mechanism may be stretch sensitive and this is particularly pronounced in slow muscle fibres. Recorded at a high sampling rate and examined at an appropriate time scale, the transitory tension response to a stretch rose in at least two phases; an initial rapid tension rise to a break (break point tension, P1a) followed by a slower tension rise (apparent P2a) to a peak reached at the end of the stretch. Plotted against stretch velocity, P1a tension increased in direct proportion to stretch velocity (viscous-like) whereas, P2a tension (calculated as peak tension minus P1a tension) increased with stretch velocity to a plateau (visco-elastic). Examined at the peak of a twitch, P1a tension had a slope (viscosity coefficient) of 1.8 kN m(-2) per L0 s(-1) in fast fibres and 4.7 kN m(-2) per L0 s(-1) in slow muscle fibres. In the same preparations, P2a tension had a relaxation time of 8 ms in the fast muscle fibres and 25 ms in the slow muscle fibres. The amplitudes of both tension components scaled with the instantaneous twitch tension in qualitatively the same way as the instantaneous fibre stiffness. These fast/slow fibre type differences probably reflect differences in

  4. Lewis lung carcinoma regulation of mechanical stretch-induced protein synthesis in cultured myotubes.

    Science.gov (United States)

    Gao, Song; Carson, James A

    2016-01-01

    Mechanical stretch can activate muscle and myotube protein synthesis through mammalian target of rapamycin complex 1 (mTORC1) signaling. While it has been established that tumor-derived cachectic factors can induce myotube wasting, the effect of this catabolic environment on myotube mechanical signaling has not been determined. We investigated whether media containing cachectic factors derived from Lewis lung carcinoma (LLC) can regulate the stretch induction of myotube protein synthesis. C2C12 myotubes preincubated in control or LLC-derived media were chronically stretched. Protein synthesis regulation by anabolic and catabolic signaling was then examined. In the control condition, stretch increased mTORC1 activity and protein synthesis. The LLC treatment decreased basal mTORC1 activity and protein synthesis and attenuated the stretch induction of protein synthesis. LLC media increased STAT3 and AMP-activated protein kinase phosphorylation in myotubes, independent of stretch. Both stretch and LLC independently increased ERK1/2, p38, and NF-κB phosphorylation. In LLC-treated myotubes, the inhibition of ERK1/2 and p38 rescued the stretch induction of protein synthesis. Interestingly, either leukemia inhibitory factor or glycoprotein 130 antibody administration caused further inhibition of mTORC1 signaling and protein synthesis in stretched myotubes. AMP-activated protein kinase inhibition increased basal mTORC1 signaling activity and protein synthesis in LLC-treated myotubes, but did not restore the stretch induction of protein synthesis. These results demonstrate that LLC-derived cachectic factors can dissociate stretch-induced signaling from protein synthesis through ERK1/2 and p38 signaling, and that glycoprotein 130 signaling is associated with the basal stretch response in myotubes. Copyright © 2016 the American Physiological Society.

  5. EFFECTIVENESS OF PNF STRETCHING AND CYCLIC STRETCHING OF CALF TIGHTNESS ON COLLEGE GOING GIRLS

    Directory of Open Access Journals (Sweden)

    Ashlesha Sirari

    2015-06-01

    Full Text Available Background: Flexibility helps with injury prevention, the reduction of soreness following a workout, and a general sense of well-being. There are different stretching techniques and protocols for improvements in calf extensibility and flexibility. The purpose of the study was to investigate the effectiveness of two techniques i.e. CYCLIC and PNF stretching which improves calf flexibility. This study was done to find the effectiveness of calf Cyclic and PNF stretching technique to improve calf flexibility. Methods: 30 subjects with age group 21-22 years were randomly allocated to 2 groups equally. Group 1(n=15 were given CYCLIC and group 2(n=15 were given PNF stretching technique. Plantar flexion was used to measure the calf tightness which was done before and after the treatment. Treatment was given for 7 days and on the 7th day the calf tightness was again measured. Results: The mean difference of the CYCLIC is 4.6 and mean difference of PNF is 4.7 which indicate that CYCLIC and PNF both are effective to improve calf flexibility but PNF is more effective than CYCLIC to improve calf flexibility. Conclusion: The neurophysiological basis of PNF, stating that the excitatory efficient of the neuromuscular spindle or the inhibitory afferent of the Golgi tendon organ (GTO or both are responsible for the effects. During PNF stretch and isometric contraction of stretched agonists for extended period may cause activation of its neuromuscular spindle. The increase in tension created during the isometric contraction of the pre – lengthened agonist contracts concentrically. Both the fascia & the spindle of the agonist adjust to the nearly lengthened position. These impulses travel via causing post synaptic inhibition of the motor neuron to agonist increasing the tension from the GTO. These impulses can override the impulses coming from the neuromuscular spindles arousing the muscle to reflexly resist to the change in length, thus helping in lengthening

  6. Reactive Landing of Gramicidin S and Ubiquitin Ions onto Activated Self-Assembled Monolayer Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Laskin, Julia; Hu, Qichi

    2017-03-13

    Using mass-selected ion deposition combined with in situ infrared reflection absorption spectroscopy (IRRAS), we examined the reactive landing of gramicidin S and ubiquitin ions onto activated self-assembled monolayer (SAM) surfaces terminated with N-hydroxysuccinimidyl ester (NHS-SAM) and acyl fluoride (COF-SAM) groups. Doubly protonated gramicidin S, [GS+2H]2+, and two charge states of ubiquitin, [U+5H]5+ and [U+13H]13+, were used as model systems, allowing us to explore the effect of the number of free amino groups and the secondary structure on the efficiency of covalent bond formation between the projectile ion and the surface. For all projectile ions, ion deposition resulted in the depletion of IRRAS bands corresponding to the terminal groups on the SAM and the appearance of several new bands not associated with the deposited species. These new bands were assigned to the C=O stretching vibrations of COOH and COO- groups formed on the surface as a result of ion deposition. The presence of these bands was attributed to an alternative reactive landing pathway that competes with covalent bond formation. This pathway with similar yields for both gramicidin S and ubiquitin ions is analogous to the hydrolysis of the NHS ester bond in solution. The covalent bond formation efficiency increased linearly with the number of free amino groups and was found to be lower for the more compact conformation of ubiquitin compared with the fully unfolded conformation. This observation was attributed to the limited availability of amino groups on the surface of the folded conformation. Our results have provided new insights on the efficiency and mechanism of reactive landing of peptides and proteins onto activated SAMs

  7. The carbon monoxide stretching modes in camphor-bound cytochrome P-450cam. The effect of solvent conditions, temperature, and pressure.

    Science.gov (United States)

    Schulze, H; Ristau, O; Jung, C

    1994-09-15

    The effect of pH, monovalent cations, glycerol, temperature, and pressure on the carbonmonoxy (CO) stretching mode of camphor-bound cytochrome P-450cam (CYP 101) was studied. Two effects, band overlap and frequency shift, have been observed. The CO stretch infrared band located at about 1940 cm-1 is asymmetric because of the overlap of three bands at about 1931 cm-1, 1939 cm-1, and 1942 cm-1 with strongly different populations. Reducing the temperature or increasing the pressure leads to splitting the band or switching the asymmetry from the lower energy side to the higher energy side of the infrared band. The overlap of several CO stretch bands indicates conformational substates within the heme pocket. A frequency shift of the predominantly populated band is observed by changing all the parameters mentioned. The pH-induced frequency shift follows an S-shape with the pK at 6.2, which matches the pK observed for the pH-induced high-spin/low-spin transition. Conformational changes on the proximal heme side are suggested to be the origin. Monovalent cations at saturating concentration induce a small frequency shift depending on the ion radius. The potassium ion is the one that induces a CO stretch frequency with the highest wave-number while sodium and lithium (smaller radii) and rubidium and caesium ion (larger radii) have diminished values, which is supporting evidence for the special function of the potassium ion within the structure. Glycerol and hydrostatic pressure induce a red shift of the CO stretching frequency. Forced contact of the polar hydroxyl group of Thr252 of the I helix induced by pressure and indirectly by glycerol is suggested to change the CO dipole moment, reflecting in the decreased CO stretching frequency.

  8. Stretch-minimising stream surfaces

    KAUST Repository

    Barton, Michael; Kosinka, Jin; Calo, Victor M.

    2015-01-01

    We study the problem of finding stretch-minimising stream surfaces in a divergence-free vector field. These surfaces are generated by motions of seed curves that propagate through the field in a stretch minimising manner, i.e., they move without stretching or shrinking, preserving the length of their arbitrary arc. In general fields, such curves may not exist. How-ever, the divergence-free constraint gives rise to these 'stretch-free' curves that are locally arc-length preserving when infinitesimally propagated. Several families of stretch-free curves are identified and used as initial guesses for stream surface generation. These surfaces are subsequently globally optimised to obtain the best stretch-minimising stream surfaces in a given divergence-free vector field. Our algorithm was tested on benchmark datasets, proving its applicability to incompressible fluid flow simulations, where our stretch-minimising stream surfaces realistically reflect the flow of a flexible univariate object. © 2015 Elsevier Inc. All rights reserved.

  9. Stretch-minimising stream surfaces

    KAUST Repository

    Barton, Michael

    2015-05-01

    We study the problem of finding stretch-minimising stream surfaces in a divergence-free vector field. These surfaces are generated by motions of seed curves that propagate through the field in a stretch minimising manner, i.e., they move without stretching or shrinking, preserving the length of their arbitrary arc. In general fields, such curves may not exist. How-ever, the divergence-free constraint gives rise to these \\'stretch-free\\' curves that are locally arc-length preserving when infinitesimally propagated. Several families of stretch-free curves are identified and used as initial guesses for stream surface generation. These surfaces are subsequently globally optimised to obtain the best stretch-minimising stream surfaces in a given divergence-free vector field. Our algorithm was tested on benchmark datasets, proving its applicability to incompressible fluid flow simulations, where our stretch-minimising stream surfaces realistically reflect the flow of a flexible univariate object. © 2015 Elsevier Inc. All rights reserved.

  10. Stretching Safely and Effectively

    Science.gov (United States)

    ... shown that stretching immediately before an event weakens hamstring strength. Instead of static stretching, try performing a " ... If you play soccer, for instance, stretch your hamstrings as you're more vulnerable to hamstring strains. ...

  11. The Relation Between Stretching Typology and Stretching Duration: The Effects on Range of Motion.

    Science.gov (United States)

    Thomas, Ewan; Bianco, Antonino; Paoli, Antonio; Palma, Antonio

    2018-04-01

    Different stretching strategies and protocols are widely used to improve flexibility or maintain health, acting on the muscle tendon-unit, in order to improve the range of motion (ROM) of the joints. This review aims to evaluate the current body of literature in order to understand the relation between stretching typology and ROM, and secondly to evaluate if a relation exists between stretching volume (either as a single training session, weekly training and weekly frequency) and ROM, after long-term stretching. Twenty-three articles were considered eligible and included in the quantitative synthesis. All stretching typologies showed ROM improvements over a long-term period, however the static protocols showed significant gains (p<0.05) when compared to the ballistic or PNF protocols. Time spent stretching per week seems fundamental to elicit range of movement improvements when stretches are applied for at least or more than 5 min, whereas the time spent stretching within a single session does not seem to have significant effects for ROM gains. Weekly frequency is positively associated to ROM. Evaluated data indicates that performing stretching at least 5 days a week for at least 5 min per week using static stretching may be beneficial to promote ROM improvements. © Georg Thieme Verlag KG Stuttgart · New York.

  12. Ion transport studies in lithium phospho-molybdate glasses containing Cl− ion

    International Nuclear Information System (INIS)

    Gowda, V.C. Veeranna; Chethana, B.K.; Reddy, C. Narayana

    2013-01-01

    Highlights: • Addition of LiCl creates more conducting channels for Li + ion movement. • The decrease in E dc with increasing LiCl concentration could be due to Li + ions present in the columbic wells surrounded by Cl − ions are expected to be shallow. • Examined the power law fits using both two term and three term equation with fixed and floated parameters. -- Abstract: Ion conducting glasses in xLiCl–20Li 2 O–(80−x) [0.80P 2 O 5 –0.20MoO 3 ] glass system have been prepared over a wide range of composition (X = 5, 10, 15, 20 and 25 mol%). The electrical conductivity and dielectric relaxation of these glasses were analyzed using impedance spectroscopy in the frequency range of 10 Hz–10 MHz and in the temperature range of 313–353 K. D.c. activation energies extracted from Arrhenius plots using regression analysis, decreases with increasing LiCl mol%. A.c. conductivity data has been fitted to both single and double power law equation with both fixed and variable parameters. The increased conductivity in the present glass system has been correlated with the volume increasing effect and the coordination changes that occur due to structural modification resulting in the creation of non-bridging oxygens (NBO's) of the type O-Mo-O − bonds in the glass network. Dielectric relaxation mechanism in these glasses is analyzed using Kohlrausch–Williams–Watts (KWW) stretched exponential function and stretched exponent (β) is found to be insensitive to temperature

  13. Influence of active dendritic currents on input-output processing in spinal motoneurons in vivo.

    Science.gov (United States)

    Lee, R H; Kuo, J J; Jiang, M C; Heckman, C J

    2003-01-01

    The extensive dendritic tree of the adult spinal motoneuron generates a powerful persistent inward current (PIC). We investigated how this dendritic PIC influenced conversion of synaptic input to rhythmic firing. A linearly increasing, predominantly excitatory synaptic input was generated in triceps ankle extensor motoneurons by slow stretch (duration: 2-10 s) of the Achilles tendon in the decerebrate cat preparation. The firing pattern evoked by stretch was measured by injecting a steady current to depolarize the cell to threshold for firing. The effective synaptic current (I(N), the net synaptic current reaching the soma of the cell) evoked by stretch was measured during voltage clamp. Hyperpolarized holding potentials were used to minimize the activation of the dendritic PIC and thus estimate stretch-evoked I(N) for a passive dendritic tree (I(N,PASS)). Depolarized holding potentials that approximated the average membrane potential during rhythmic firing allowed strong activation of the dendritic PIC and thus resulted in marked enhancement of the total stretch-evoked I(N) (I(N,TOT)). The net effect of the dendritic PIC on the generation of rhythmic firing was assessed by plotting stretch-evoked firing (strong PIC activation) versus stretch-evoked I(N,PASS) (minimal PIC activation). The gain of this input-output function for the neuron (I-O(N)) was found to be ~2.7 times as high as for the standard injected frequency current (F-I) function in low-input conductance neurons. However, about halfway through the stretch, firing rate tended to become constant, resulting in a sharp saturation in I-O(N) that was not present in F-I. In addition, the gain of I-O(N) decreased sharply with increasing input conductance, resulting in much lower stretch-evoked firing rates in high-input conductance cells. All three of these phenomena (high initial gain, saturation, and differences in low- and high-input conductance cells) were also readily apparent in the differences between

  14. Knotting in stretched polygons

    International Nuclear Information System (INIS)

    Rensburg, E J Janse van; Orlandini, E; Tesi, M C; Whittington, S G

    2008-01-01

    The knotting in a lattice polygon model of ring polymers is examined when a stretching force is applied to the polygon. By examining the incidence of cut-planes in the polygon, we prove a pattern theorem in the stretching regime for large applied forces. This theorem can be used to examine the incidence of entanglements such as knotting and writhing. In particular, we prove that for arbitrarily large positive, but finite, values of the stretching force, the probability that a stretched polygon is knotted approaches 1 as the length of the polygon increases. In the case of writhing, we prove that for stretched polygons of length n, and for every function f(n)=o(√n), the probability that the absolute value of the mean writhe is less than f(n) approaches 0 as n → ∞, for sufficiently large values of the applied stretching force

  15. ACUTE EFFECTS OF DIFFERENT STATIC STRETCHING PROTOCOLS ON PEAK TORQUE, CONVENTIONAL AND FUNCTIONAL HAMSTRINGS-TO-QUADRICEPS RATIOS IN ACTIVE WOMEN

    Directory of Open Access Journals (Sweden)

    Ghada M. ALQaslah

    2016-10-01

    Full Text Available Background: This study might have been directed to some degree because of clashing results in the past studies regarding the impacts for different SS protocols on muscle strength and possibility for injury. The objective of the study was to investigate the acute effects of different static stretching (SS durations (20, 30, and 60s on isokinetic concentric quadriceps (Q and hamstrings (H peak torque (PT, eccentric H PT and conventional and functional H:Q ratios under different stretching conditions and angular velocities (60°and180°/s in active women. Methods: Isokinetic tests were performed on 108 active women. A HUMAC system was used to measure unilateral concentric Q and H PT, and eccentric H PT at 60 and 180º/s at baseline and after a bout of H-only, Q-only, and combined H and Q muscles SS. The data were statistically treated using five separate three-way (time x conditions x velocity ANOVA. Results: There were no significant differences among groups at baseline (P > 0.05. Significant reductions of all outcome measures have been shown to occur after 30 and 60s of SS (P 0.05. Conclusion: Short-lasting stretching can be done before exercises that require strength. However, since 30s or 60s stretching protocols adversely affect the muscle strength, performance and lower H:Q ratios they are not recommended prior to activities demanding the production of high forces.

  16. Spectrum of OH-stretching vibrations of water in a "floating" water bridge

    Science.gov (United States)

    Oshurko, V. B.; Ropyanoi, A. A.; Fedorov, A. N.; Fedosov, M. V.; Shelaeva, N. A.

    2012-11-01

    The axial distribution (over the cross section) of the spectra of the OH-stretching band of water in a water bridge is investigated using the Raman scattering method. It is found that the axial structure of the bridge is inhomogeneous: the core at the center of the bridge contains a larger amount of water with an "icelike" structure and a presumably larger number of H+ ions, while the outer layer probably consists of water with a larger number of OH- ions.

  17. Stretch-sensitive paresis and effort perception in hemiparesis.

    Science.gov (United States)

    Vinti, Maria; Bayle, Nicolas; Hutin, Emilie; Burke, David; Gracies, Jean-Michel

    2015-08-01

    In spastic paresis, stretch applied to the antagonist increases its inappropriate recruitment during agonist command (spastic co-contraction). It is unknown whether antagonist stretch: (1) also affects agonist recruitment; (2) alters effort perception. We quantified voluntary activation of ankle dorsiflexors, effort perception, and plantar flexor co-contraction during graded dorsiflexion efforts at two gastrocnemius lengths. Eighteen healthy (age 41 ± 13) and 18 hemiparetic (age 54 ± 12) subjects performed light, medium and maximal isometric dorsiflexion efforts with the knee flexed or extended. We determined dorsiflexor torque, Root Mean Square EMG and Agonist Recruitment/Co-contraction Indices (ARI/CCI) from the 500 ms peak voluntary agonist recruitment in a 5-s maximal isometric effort in tibialis anterior, soleus and medial gastrocnemius. Subjects retrospectively reported effort perception on a 10-point visual analog scale. During gastrocnemius stretch in hemiparetic subjects, we observed: (1) a 25 ± 7 % reduction of tibialis anterior voluntary activation (maximum reduction 98 %; knee extended vs knee flexed; p = 0.007, ANOVA); (2) an increase in dorsiflexion effort perception (p = 0.03, ANCOVA). Such changes did not occur in healthy subjects. Effort perception depended on tibialis anterior recruitment only (βARI(TA) = 0.61, p hemiparesis, voluntary ability to recruit agonist motoneurones is impaired--sometimes abolished--by antagonist stretch, a phenomenon defined here as stretch-sensitive paresis. In addition, spastic co-contraction increases effort perception, an additional incentive to evaluate and treat this phenomenon.

  18. Effects of Static Stretching and Playing Soccer on Knee Laxity.

    Science.gov (United States)

    Baumgart, Christian; Gokeler, Alli; Donath, Lars; Hoppe, Matthias W; Freiwald, Jürgen

    2015-11-01

    This study investigated exercise-induced effects of static stretching and playing soccer on anterior tibial translation (ATT) of the knee joint. Randomized controlled trial. University biomechanics laboratory. Thirty-one athletes were randomly assigned into a stretching (26.9 ± 6.2 years, 1.77 ± 0.09 m, 67.9 ± 10.7 kg) and a control group (27.9 ± 7.4 years, 1.75 ± 0.08 m, 72.0 ± 14.9 kg). Thirty-one amateur soccer players in an additional soccer group (25.1 ± 5.6 years, 1.74 ± 0.10 m, 71.8 ± 14.8 kg). All participants had no history of knee injury requiring surgery and any previous knee ligament or cartilage injury. The stretching group performed 4 different static stretching exercises with a duration of 2 × 20 seconds interspersed with breaks of 10 seconds. The soccer group completed a 90-minute soccer-specific training program. The control group did not perform any physical activity for approximately 30 minutes. Anterior tibial translation was measured with the KT-1000 knee arthrometer at forces of 67 N, 89 N, and maximal manual force (Max) before and after the intervention. There was a significant increase in ATT after static stretching and playing soccer at all applied forces. Maximal manual testing revealed a mean increase of ATT after static stretching of 2.1 ± 1.6 mm (P soccer of 1.0 ± 1.5 mm (P = 0.001). The ATT increase after static stretching at 67 and 89 N is significantly higher than in controls. At maximum manual testing, significant differences were evident between all groups. Static stretching and playing soccer increase ATT and may consequently influence mechanical factors of the anterior cruciate ligament. The ATT increase after static stretching was greater than after playing soccer. The observed increase in ATT after static stretching and playing soccer may be associated with changes in kinesthetic perception and sensorimotor control, activation of muscles, joint stability, overall performance, and higher injury risk.

  19. Immediate effects of hamstring stretching alone or combined with ischemic compression of the masseter muscle on hamstrings extensibility, active mouth opening and pain in athletes with temporomandibular dysfunction.

    Science.gov (United States)

    Espejo-Antúnez, Luis; Castro-Valenzuela, Elisa; Ribeiro, Fernando; Albornoz-Cabello, Manuel; Silva, Anabela; Rodríguez-Mansilla, Juan

    2016-07-01

    To assess the immediate effects of hamstrings stretching alone or combined with ischemic compression of the masseter muscle on hamstrings extensibility, active mouth opening and pain in athletes with temporomandibular dysfunction and hamstrings shortening. Forty-two participants were randomized to receive the stretching technique (n = 21) or the stretching plus the ischemic compression (n = 21). Outcome measures were: hamstrings extensibility, active mouth opening, pressure pain thresholds and pain intensity. Both interventions improved significantly active mouth opening (group 1: 35.7 ± 6.7 to 39.1 ± 7.6 mm, p Hamstrings stretching induced an acute improvement in hamstrings extensibility, active mouth opening and pain. Moreover, the addition of ischemic compression did not induce further improvements on the assessed parameters. Copyright © 2016. Published by Elsevier Ltd.

  20. Influence of the stretch wrapping process on the mechanical behavior of a stretch film

    Science.gov (United States)

    Klein, Daniel; Stommel, Markus; Zimmer, Johannes

    2018-05-01

    Lightweight construction is an ongoing task in packaging development. Consequently, the stability of packages during transport is gaining importance. This study contributes to the optimization of lightweight packaging concepts regarding their stability. A very widespread packaging concept is the distribution of goods on a pallet whereas a Polyethylene (PE) stretch film stabilizes the lightweight structure during the shipment. Usually, a stretch wrapping machine applies this stretch film to the pallet. The objective of this study is to support packaging development with a method that predicts the result of the wrapping process, based on the mechanical characterization of the stretch film. This result is not only defined by the amount of stretch film, its spatial distribution on the pallet and its internal stresses that result in a containment force. More accurate, this contribution also considers the influence of the deformation history of the stretch film during the wrapping process. By focusing on similarities of stretch wrappers rather than on differences, the influence of generalized process parameters on stretch film mechanics and thereby on pallet stability can be determined experimentally. For a practical use, the predictive method is accumulated in an analytic model of the wrapping process that can be verified experimentally. This paves the way for experimental and numerical approaches regarding the optimization of pallet stability.

  1. Short Durations of Static Stretching when Combined with Dynamic Stretching do not Impair Repeated Sprints and Agility.

    Science.gov (United States)

    Wong, Del P; Chaouachi, Anis; Lau, Patrick W C; Behm, David G

    2011-01-01

    This study aimed to compare the effect of different static stretching durations followed by dynamic stretching on repeated sprint ability (RSA) and change of direction (COD). Twenty-five participants performed the RSA and COD tests in a randomized order. After a 5 min aerobic warm up, participants performed one of the three static stretching protocols of 30 s, 60 s or 90 s total duration (3 stretches x 10 s, 20 s or 30 s). Three dynamic stretching exercises of 30 s duration were then performed (90 s total). Sit-and-reach flexibility tests were conducted before the aerobic warm up, after the combined static and dynamic stretching, and post- RSA/COD test. The duration of static stretching had a positive effect on flexibility with 36.3% and 85.6% greater sit-and-reach scores with the 60 s and 90 s static stretching conditions respectively than with the 30 s condition (p ≤ 0.001). However there were no significant differences in RSA and COD performance between the 3 stretching conditions. The lack of change in RSA and COD might be attributed to a counterbalancing of static and dynamic stretching effects. Furthermore, the short duration (≤ 90 s) static stretching may not have provided sufficient stimulus to elicit performance impairments. Key pointsThe duration of combined static and dynamic stretching had a positive effect on flexibility with 36.3% and 85.6% greater sit and reach scores with the 60 s and 90 s static stretching conditions respectively than with the 30 s condition (p ≤ 0.001).No significant differences in RSA and COD between the 3 stretching conditions.The lack of change in RSA and COD might be attributed to a counterbalancing of static and dynamic stretching effects.The short duration (≤ 90 s) static stretching may not have provided sufficient stimulus to elicit performance impairments.

  2. Short Durations of Static Stretching when Combined with Dynamic Stretching do not Impair Repeated Sprints and Agility

    Science.gov (United States)

    Wong, Del P.; Chaouachi, Anis; Lau, Patrick W.C.; Behm, David G.

    2011-01-01

    This study aimed to compare the effect of different static stretching durations followed by dynamic stretching on repeated sprint ability (RSA) and change of direction (COD). Twenty-five participants performed the RSA and COD tests in a randomized order. After a 5 min aerobic warm up, participants performed one of the three static stretching protocols of 30 s, 60 s or 90 s total duration (3 stretches x 10 s, 20 s or 30 s). Three dynamic stretching exercises of 30 s duration were then performed (90 s total). Sit-and-reach flexibility tests were conducted before the aerobic warm up, after the combined static and dynamic stretching, and post- RSA/COD test. The duration of static stretching had a positive effect on flexibility with 36.3% and 85.6% greater sit-and-reach scores with the 60 s and 90 s static stretching conditions respectively than with the 30 s condition (p ≤ 0.001). However there were no significant differences in RSA and COD performance between the 3 stretching conditions. The lack of change in RSA and COD might be attributed to a counterbalancing of static and dynamic stretching effects. Furthermore, the short duration (≤ 90 s) static stretching may not have provided sufficient stimulus to elicit performance impairments. Key points The duration of combined static and dynamic stretching had a positive effect on flexibility with 36.3% and 85.6% greater sit and reach scores with the 60 s and 90 s static stretching conditions respectively than with the 30 s condition (p ≤ 0.001). No significant differences in RSA and COD between the 3 stretching conditions. The lack of change in RSA and COD might be attributed to a counterbalancing of static and dynamic stretching effects. The short duration (≤ 90 s) static stretching may not have provided sufficient stimulus to elicit performance impairments. PMID:24149890

  3. SHORT DURATIONS OF STATIC STRETCHING WHEN COMBINED WITH DYNAMIC STRETCHING DO NOT IMPAIR REPEATED SPRINTS AND AGILITY

    Directory of Open Access Journals (Sweden)

    Del P. Wong

    2011-06-01

    Full Text Available This study aimed to compare the effect of different static stretching durations followed by dynamic stretching on repeated sprint ability (RSA and change of direction (COD. Twenty-five participants performed the RSA and COD tests in a randomized order. After a 5 min aerobic warm up, participants performed one of the three static stretching protocols of 30 s, 60 s or 90 s total duration (3 stretches x 10 s, 20 s or 30 s. Three dynamic stretching exercises of 30 s duration were then performed (90 s total. Sit-and-reach flexibility tests were conducted before the aerobic warm up, after the combined static and dynamic stretching, and post- RSA/COD test. The duration of static stretching had a positive effect on flexibility with 36.3% and 85.6% greater sit-and-reach scores with the 60 s and 90 s static stretching conditions respectively than with the 30 s condition (p < 0.001. However there were no significant differences in RSA and COD performance between the 3 stretching conditions. The lack of change in RSA and COD might be attributed to a counterbalancing of static and dynamic stretching effects. Furthermore, the short duration (< 90 s static stretching may not have provided sufficient stimulus to elicit performance impairments

  4. Neuroprotective effect of gadolinium: a stretch-activated calcium channel blocker in mouse model of ischemia-reperfusion injury.

    Science.gov (United States)

    Gulati, Puja; Muthuraman, Arunachalam; Jaggi, Amteshwar S; Singh, Nirmal

    2013-03-01

    The present study was designed to investigate the potential of gadolinium, a stretch-activated calcium channel blocker in ischemic reperfusion (I/R)-induced brain injury in mice. Bilateral carotid artery occlusion of 12 min followed by reperfusion for 24 h was given to induce cerebral injury in male Swiss mice. Cerebral infarct size was measured using triphenyltetrazolium chloride staining. Memory was assessed using Morris water maze test and motor incoordination was evaluated using rota-rod, lateral push, and inclined beam walking tests. In addition, total calcium, thiobarbituric acid reactive substance (TBARS), reduced glutathione (GSH), and acetylcholinesterase (AChE) activity were also estimated in brain tissue. I/R injury produced a significant increase in cerebral infarct size. A significant loss of memory along with impairment of motor performance was also noted. Furthermore, I/R injury also produced a significant increase in levels of TBARS, total calcium, AChE activity, and a decrease in GSH levels. Pretreatment of gadolinium significantly attenuated I/R-induced infarct size, behavioral and biochemical changes. On the basis of the present findings, we can suggest that opening of stretch-activated calcium channel may play a critical role in ischemic reperfusion-induced brain injury and that gadolinium has neuroprotective potential in I/R-induced injury.

  5. Caspase-12 is involved in stretch-induced apoptosis mediated endoplasmic reticulum stress.

    Science.gov (United States)

    Zhang, Qiang; Liu, Jianing; Chen, Shulan; Liu, Jing; Liu, Lijuan; Liu, Guirong; Wang, Fang; Jiang, Wenxin; Zhang, Caixia; Wang, Shuangyu; Yuan, Xiao

    2016-04-01

    It is well recognized that mandibular growth, which is caused by a variety of functional appliances, is considered to be the result of both neuromuscular and skeletal adaptations. Accumulating evidence has demonstrated that apoptosis plays an important role in the adaptation of skeletal muscle function. However, the underlying mechanism of apoptosis that is induced by stretch continues to be incompletely understood. Endoplasmic reticulum stress (ERS), a newly defined signaling pathway, initiates apoptosis. This study seeks to determine if caspase-12 is involved in stretch-induced apoptosis mediated endoplasmic reticulum stress in myoblast and its underlying mechanism. Apoptosis was assessed by Hochest staining, DAPI staining and annexin V binding and PI staining. ER chaperones, such as GRP78, CHOP and caspase-12, were determined by reverse transcription polymerase chain reaction (RT-PCR) and Western blot. Furthermore, caspase-12 inhibitor was used to value the mechanism of the caspase-12 pathway. Apoptosis of myoblast, which is subjected to cyclic stretch, was observed in a time-dependent manner. We found that GRP78 mRNA and protein were significantly increased and CHOP and caspase-12 were activated in myoblast that was exposed to cyclic stretch. Caspase-12 inhibition reduced stretch-induced apoptosis, and caspase-12 activated caspase-3 to induce apoptosis. We concluded that caspase-12 played an important role in stretch-induced apoptosis that is associated by endoplasmic reticulum stress by activating caspase-3.

  6. Ion transport studies in lithium phospho-molybdate glasses containing Cl{sup −} ion

    Energy Technology Data Exchange (ETDEWEB)

    Gowda, V.C. Veeranna [Department of Physics, Government College for Women, Chintamani (India); Chethana, B.K. [Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore (India); Reddy, C. Narayana, E-mail: nivetejareddy@gmail.com [Department of Physics, Maharani' s Science College for Women, Bangalore (India)

    2013-07-01

    Highlights: • Addition of LiCl creates more conducting channels for Li{sup +} ion movement. • The decrease in E{sub dc} with increasing LiCl concentration could be due to Li{sup +} ions present in the columbic wells surrounded by Cl{sup −} ions are expected to be shallow. • Examined the power law fits using both two term and three term equation with fixed and floated parameters. -- Abstract: Ion conducting glasses in xLiCl–20Li{sub 2}O–(80−x) [0.80P{sub 2}O{sub 5}–0.20MoO{sub 3}] glass system have been prepared over a wide range of composition (X = 5, 10, 15, 20 and 25 mol%). The electrical conductivity and dielectric relaxation of these glasses were analyzed using impedance spectroscopy in the frequency range of 10 Hz–10 MHz and in the temperature range of 313–353 K. D.c. activation energies extracted from Arrhenius plots using regression analysis, decreases with increasing LiCl mol%. A.c. conductivity data has been fitted to both single and double power law equation with both fixed and variable parameters. The increased conductivity in the present glass system has been correlated with the volume increasing effect and the coordination changes that occur due to structural modification resulting in the creation of non-bridging oxygens (NBO's) of the type O-Mo-O{sup −} bonds in the glass network. Dielectric relaxation mechanism in these glasses is analyzed using Kohlrausch–Williams–Watts (KWW) stretched exponential function and stretched exponent (β) is found to be insensitive to temperature.

  7. Stretch strength of Al-Li alloy sheet

    Energy Technology Data Exchange (ETDEWEB)

    Sato, K.; Sawa, Y.; Yokoyama, T.; Fujimoto, S. [Science Univ. of Tokyo (Japan). Dept. of Mech. Eng.; Sakamoto, T. [Kobe Steel Works, Tokyo (Japan)

    1998-07-01

    Stretch test on Al-Li alloy sheet was carried out in stretch rate of 0.01 to 0.2 mm/sec. The limiting stretch depth was measured in various conditions and the following results were obtained. (1) Stretch rate does not affect the limiting stretch depth of Al-Li alloy. (2) The limiting stretch depth is increased with increase of the profile radius. (3) Strain hardening exponent(n-value) and r-value of Lankford do not affect the limiting stretch depth. (4) Rapture pattern in stretch test of Al is {alpha} type rapture and that of Al-Li alloy is straight line type rapture. (orig.) 4 refs.

  8. Monitoring Ion Activities In and Around Cells Using Ion-Selective Liquid-Membrane Microelectrodes

    Directory of Open Access Journals (Sweden)

    Mark D. Parker

    2013-01-01

    Full Text Available Determining the effective concentration (i.e., activity of ions in and around living cells is important to our understanding of the contribution of those ions to cellular function. Moreover, monitoring changes in ion activities in and around cells is informative about the actions of the transporters and/or channels operating in the cell membrane. The activity of an ion can be measured using a glass microelectrode that includes in its tip a liquid-membrane doped with an ion-selective ionophore. Because these electrodes can be fabricated with tip diameters that are less than 1 μm, they can be used to impale single cells in order to monitor the activities of intracellular ions. This review summarizes the history, theory, and practice of ion-selective microelectrode use and brings together a number of classic and recent examples of their usefulness in the realm of physiological study.

  9. Atomic Stretch: Optimally bounded real-time stretching and beyond

    DEFF Research Database (Denmark)

    Jensen, Rasmus Ramsbøl; Nielsen, Jannik Boll

    2016-01-01

    Atomic Stretch is a plugin for your preferred Adobe video editing tool, allowing real-time smooth and optimally bounded retarget-ting from and to any aspect ratio. The plugin allows preserving of high interest pixels through a protected region, attention redirection through color-modification, co......Atomic Stretch is a plugin for your preferred Adobe video editing tool, allowing real-time smooth and optimally bounded retarget-ting from and to any aspect ratio. The plugin allows preserving of high interest pixels through a protected region, attention redirection through color...

  10. Determination of gas phase protein ion densities via ion mobility analysis with charge reduction.

    Science.gov (United States)

    Maisser, Anne; Premnath, Vinay; Ghosh, Abhimanyu; Nguyen, Tuan Anh; Attoui, Michel; Hogan, Christopher J

    2011-12-28

    We use a charge reduction electrospray (ESI) source and subsequent ion mobility analysis with a differential mobility analyzer (DMA, with detection via both a Faraday cage electrometer and a condensation particle counter) to infer the densities of single and multiprotein ions of cytochrome C, lysozyme, myoglobin, ovalbumin, and bovine serum albumin produced from non-denaturing (20 mM aqueous ammonium acetate) and denaturing (1 : 49.5 : 49.5, formic acid : methanol : water) ESI. Charge reduction is achieved through use of a Po-210 radioactive source, which generates roughly equal concentrations of positive and negative ions. Ions produced by the source collide with and reduce the charge on ESI generated drops, preventing Coulombic fissions, and unlike typical protein ESI, leading to gas-phase protein ions with +1 to +3 excess charges. Therefore, charge reduction serves to effectively mitigate any role that Coulombic stretching may play on the structure of the gas phase ions. Density inference is made via determination of the mobility diameter, and correspondingly the spherical equivalent protein volume. Through this approach it is found that for both non-denaturing and denaturing ESI-generated ions, gas-phase protein ions are relatively compact, with average densities of 0.97 g cm(-3) and 0.86 g cm(-3), respectively. Ions from non-denaturing ESI are found to be slightly more compact than predicted from the protein crystal structures, suggesting that low charge state protein ions in the gas phase are slightly denser than their solution conformations. While a slight difference is detected between the ions produced with non-denaturing and denaturing ESI, the denatured ions are found to be much more dense than those examined previously by drift tube mobility analysis, in which charge reduction was not employed. This indicates that Coulombic stretching is typically what leads to non-compact ions in the gas-phase, and suggests that for gas phase

  11. How to determine local stretching and tension in a flow-stretched DNA molecule

    DEFF Research Database (Denmark)

    Pedersen, Jonas Nyvold; Marie, Rodolphe; Kristensen, Anders

    2016-01-01

    We determine the nonuniform stretching of and tension in amega base pairs-long fragment of deoxyribonucleic acid (DNA) that is flow stretched in a nanofluidic chip. We use no markers, do not know the contour length of the DNA, and do not have the full DNA molecule inside our field of view. Instead......, we analyze the transverse thermal motion of the DNA. Tension at the center of the DNA adds up to 16 pN, giving almost fully stretched DNA. This method was devised for optical mapping of DNA, specifically, DNA denaturation patterns. It may be useful also for other studies, e.g., DNA......-protein interactions, specifically, their tension dependence. Generally, wherever long strands of DNA—e.g., native DNA extracted from human cells or bacteria—must be stretched with ease for inspection, this method applies....

  12. EFFECT OF DIFFERENT STRETCHING PROTOCOLS ON VERTICAL JUMP PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Emre Serin

    2018-04-01

    Full Text Available This study aimed to examine the effect of different stretching exercises on vertical jump performance. A total of 14 national male athletes sporting in the elite level took part in the study. The age average of the participants was 20.25±1.03 year, the average height was 1.80±.08 m, the average body weight was 77.14±18.91 kg, average of sporting age was 9.87±3.31 year and the average number of participation in international games was 10.0±3.31. As stretching protocol: Method 1 (5 minutes of jogging and 2 minutes of active rest followed by Method 2 (static stretching for 4 different muscle groups 3 repetitions for 15 seconds of static stretching, rest for 10 seconds between groups and then consecutively, Method 3 (Dynamic stretching exercises with 3 repetitions for 15 seconds and 10 seconds rest between different muscle groups were applied in the study. The vertical jump performance before and after different stretching exercises of the participants was determined by means of the vertical jump test using the smart speed lite system. Before and after the training of all athletes, HR was recorded with a heart rate monitor (RS 800, Polar Vantage NV, Polar Electro Oy, Finland with 5 seconds intervals. Before the study, the chest band of the heartbeat monitor was placed on the chest of the athlete and the HR was recorded from the monitor. SPSS 15.0 statistical package program was used for evaluation and calculation of the data. In this study in addition to descriptive statistics (mean and standard deviation paired samples t-test was used to determine the difference between the vertical jump performance of the participants before and after different stretching exercises. As a result, this study showed that; applying the dynamic and static stretching exercises consecutively affected the vertical jump performance 4.5 cm positively (p<.05. It is suggested that different dynamic and static stretching exercises should be included in the vertical jump.

  13. Analysis of a filament stretching rheometer

    DEFF Research Database (Denmark)

    Kolte, Mette Irene; Rasmussen, Henrik K.; Hassager, Ole

    1996-01-01

    A finite element analysis of the stretching filament rheometer of Tirtaadmadja and Sridhar (1993) is presenetd. Simulations of the stretching of a filament of the polymet test solution, fluid A, between two plates are shown.......A finite element analysis of the stretching filament rheometer of Tirtaadmadja and Sridhar (1993) is presenetd. Simulations of the stretching of a filament of the polymet test solution, fluid A, between two plates are shown....

  14. Upper Limb Static-Stretching Protocol Decreases Maximal Concentric Jump Performance

    Directory of Open Access Journals (Sweden)

    Paulo H. Marchetti

    2014-12-01

    Full Text Available The purpose of the present study was to evaluate the acute effects of an upper limb static-stretching (SS protocol on the maximal concentric jump performance. We recruited 25 young healthy, male, resistance trained individuals (stretched group, n = 15 and control group, n = 10 in this study. The randomized between group experimental protocol consisted of a three trials of maximal concentric jump task, before and after a SS of the upper limb. Vertical ground reaction forces (vGRF and surface electromyography (sEMG of both gastrocnemius lateralis (GL and vastus lateralis (VL were acquired. An extensive SS was employed consisting of ten stretches of 30 seconds, with 15 seconds of rest, and 70-90% of the point of discomfort (POD. ANOVA (2x2 (group x condition was used for shoulder joint range of motion (ROM, vGRF and sEMG. A significant interaction for passive ROM of the shoulder joint revealed significant increases between pre- and post-SS protocol (p < 0.001. A significant interaction demonstrated decreased peak force and an increased peak propulsion duration between pre- and post-stretching only for stretch group (p = 0.021, and p = 0.024, respectively. There was a significant main effect between groups (stretch and control for peak force for control group (p = 0.045. Regarding sEMG variables, there were no significant differences between groups (control versus stretched or condition (pre-stretching versus post-stretching for the peak amplitude of RMS and IEMG for both muscles (VL and GL. In conclusion, an acute extensive SS can increase the shoulder ROM, and negatively affect both the propulsion duration and peak force of the maximal concentric jump, without providing significant changes in muscle activation.

  15. Cyclic mechanical stretch enhances BMP9-induced osteogenic differentiation of mesenchymal stem cells.

    Science.gov (United States)

    Song, Yang; Tang, Yinhong; Song, Jinlin; Lei, Mingxing; Liang, Panpan; Fu, Tiwei; Su, Xudong; Zhou, Pengfei; Yang, Li; Huang, Enyi

    2018-04-01

    The purpose of this study was to investigate whether mechanical stretch can enhance the bone morphogenetic protein 9 (BMP9)-induced osteogenic differentiation in MSCs. Recombinant adenoviruses were used to overexpress the BMP9 in C3H10T1/2 MSCs. Cells were seeded onto six-well BioFlex collagen I-coated plates and subjected to cyclic mechanical stretch [6% elongation at 60 cycles/minute (1 Hz)] in a Flexercell FX-4000 strain unit for up to 12 hours. Immunostaining and confocal microscope were used to detect cytoskeleton organization. Cell cycle progression was checked by flow cytometry. Alkaline phosphatase activity was measured with a Chemiluminescence Assay Kit and was quantified with a histochemical staining assay. Matrix mineralization was examined by Alizarin Red S Staining. Mechanical stretch induces cytoskeleton reorganization and inhibits cell proliferation by preventing cells entry into S phase of the cell cycle. Although mechanical stretch alone does not induce the osteogenic differentiation of C3H10T1/2 MSCs, co-stimulation with mechanical stretch and BMP9 enhances alkaline phosphatase activity. The expression of key lineage-specific regulators (e.g., osteocalcin (OCN), SRY-related HMG-box 9, and runt-related transcription factor 2) is also increased after the co-stimulation, compared to the mechanical stretch stimulation along. Furthermore, mechanical stretch augments the BMP9-mediated bone matrix mineralization of C3H10T1/2 MSCs. Our results suggest that mechanical stretch enhances BMP9-induced osteoblastic lineage specification in C3H10T1/2 MSCs.

  16. Flexibility and stretching physiology : responses and adaptations to different stretching intensities.

    OpenAIRE

    Freitas, Sandro Remo Martins Neves Ramos

    2014-01-01

    Doutoramento em Motricidade Humana, especialidade de Biomecânica Research and reported literature regarding the conceptual, methodological, and training effects of stretching with different intensities are scarce. The purposes of this thesis were to: i) explore and develop methodological conditions to achieve the second purpose (studies: 1 to 3); ii) characterize the acute and chronic effects induced by different stretching intensities on skeletal muscle and joint mechanical properti...

  17. Infrared Spectroscopy of Gas-Phase M+(CO2)n (M = Co, Rh, Ir) Ion-Molecule Complexes.

    Science.gov (United States)

    Iskra, Andreas; Gentleman, Alexander S; Kartouzian, Aras; Kent, Michael J; Sharp, Alastair P; Mackenzie, Stuart R

    2017-01-12

    The structures of gas-phase M + (CO 2 ) n (M = Co, Rh, Ir; n = 2-15) ion-molecule complexes have been investigated using a combination of infrared resonance-enhanced photodissociation (IR-REPD) spectroscopy and density functional theory. The results provide insight into fundamental metal ion-CO 2 interactions, highlighting the trends with increasing ligand number and with different group 9 ions. Spectra have been recorded in the region of the CO 2 asymmetric stretch around 2350 cm -1 using the inert messenger technique and their interpretation has been aided by comparison with simulated infrared spectra of calculated low-energy isomeric structures. All vibrational bands in the smaller complexes are blue-shifted relative to the asymmetric stretch in free CO 2 , consistent with direct binding to the metal center dominated by charge-quadrupole interactions. For all three metal ions, a core [M + (CO 2 ) 2 ] structure is identified to which subsequent ligands are less strongly bound. No evidence is observed in this size regime for complete activation or insertion reactions.

  18. On nature of spontaneous elongation of polymers preliminarily stretched in adsorption-active media under irradiation

    International Nuclear Information System (INIS)

    Sinevich, E.A.; Prazdnichnyj, A.M.; Tikhomirov, V.S.; Bakeev, N.F.

    1989-01-01

    The nature of the spontaneous elongation under irradiation with fast electrons of polymers preliminary stretched in adsorption-active media has been studied. This effect is related with radiation-induced heating of microporous polymer samples. Its manifestation in amorphous PETP requires the presence of crazes having well developed microfibrillar structure. The spontaneous elongation effect is shown to be a result of crystallization of partially oriented material in transitional regions relating the oriented material of microfibrils inside crazes with nonstrained polymer between them

  19. The effect of warm-up, static stretching and dynamic stretching on hamstring flexibility in previously injured subjects.

    LENUS (Irish Health Repository)

    O'Sullivan, Kieran

    2009-01-01

    BACKGROUND: Warm-up and stretching are suggested to increase hamstring flexibility and reduce the risk of injury. This study examined the short-term effects of warm-up, static stretching and dynamic stretching on hamstring flexibility in individuals with previous hamstring injury and uninjured controls. METHODS: A randomised crossover study design, over 2 separate days. Hamstring flexibility was assessed using passive knee extension range of motion (PKE ROM). 18 previously injured individuals and 18 uninjured controls participated. On both days, four measurements of PKE ROM were recorded: (1) at baseline; (2) after warm-up; (3) after stretch (static or dynamic) and (4) after a 15-minute rest. Participants carried out both static and dynamic stretches, but on different days. Data were analysed using Anova. RESULTS: Across both groups, there was a significant main effect for time (p < 0.001). PKE ROM significantly increased with warm-up (p < 0.001). From warm-up, PKE ROM further increased with static stretching (p = 0.04) but significantly decreased after dynamic stretching (p = 0.013). The increased flexibility after warm-up and static stretching reduced significantly (p < 0.001) after 15 minutes of rest, but remained significantly greater than at baseline (p < 0.001). Between groups, there was no main effect for group (p = 0.462), with no difference in mean PKE ROM values at any individual stage of the protocol (p > 0.05). Using ANCOVA to adjust for the non-significant (p = 0.141) baseline difference between groups, the previously injured group demonstrated a greater response to warm-up and static stretching, however this was not statistically significant (p = 0.05). CONCLUSION: Warm-up significantly increased hamstring flexibility. Static stretching also increased hamstring flexibility, whereas dynamic did not, in agreement with previous findings on uninjured controls. The effect of warm-up and static stretching on flexibility was greater in those with reduced

  20. Transient photoresponse in amorphous In-Ga-Zn-O thin films under stretched exponential analysis

    Science.gov (United States)

    Luo, Jiajun; Adler, Alexander U.; Mason, Thomas O.; Bruce Buchholz, D.; Chang, R. P. H.; Grayson, M.

    2013-04-01

    We investigated transient photoresponse and Hall effect in amorphous In-Ga-Zn-O thin films and observed a stretched exponential response which allows characterization of the activation energy spectrum with only three fit parameters. Measurements of as-grown films and 350 K annealed films were conducted at room temperature by recording conductivity, carrier density, and mobility over day-long time scales, both under illumination and in the dark. Hall measurements verify approximately constant mobility, even as the photoinduced carrier density changes by orders of magnitude. The transient photoconductivity data fit well to a stretched exponential during both illumination and dark relaxation, but with slower response in the dark. The inverse Laplace transforms of these stretched exponentials yield the density of activation energies responsible for transient photoconductivity. An empirical equation is introduced, which determines the linewidth of the activation energy band from the stretched exponential parameter β. Dry annealing at 350 K is observed to slow the transient photoresponse.

  1. Activity computer program for calculating ion irradiation activation

    Science.gov (United States)

    Palmer, Ben; Connolly, Brian; Read, Mark

    2017-07-01

    A computer program, Activity, was developed to predict the activity and gamma lines of materials irradiated with an ion beam. It uses the TENDL (Koning and Rochman, 2012) [1] proton reaction cross section database, the Stopping and Range of Ions in Matter (SRIM) (Biersack et al., 2010) code, a Nuclear Data Services (NDS) radioactive decay database (Sonzogni, 2006) [2] and an ENDF gamma decay database (Herman and Chadwick, 2006) [3]. An extended version of Bateman's equation is used to calculate the activity at time t, and this equation is solved analytically, with the option to also solve by numeric inverse Laplace Transform as a failsafe. The program outputs the expected activity and gamma lines of the activated material.

  2. Coupling Langevin Dynamics With Continuum Mechanics: Exposing the Role of Sarcomere Stretch Activation Mechanisms to Cardiac Function

    Directory of Open Access Journals (Sweden)

    Takumi Washio

    2018-04-01

    Full Text Available High-performance computing approaches that combine molecular-scale and macroscale continuum mechanics have long been anticipated in various fields. Such approaches may enrich our understanding of the links between microscale molecular mechanisms and macroscopic properties in the continuum. However, there have been few successful examples to date owing to various difficulties associated with overcoming the large spatial (from 1 nm to 10 cm and temporal (from 1 ns to 1 ms gaps between the two scales. In this paper, we propose an efficient parallel scheme to couple a microscopic model using Langevin dynamics for a protein motor with a finite element continuum model of a beating heart. The proposed scheme allows us to use a macroscale time step that is an order of magnitude longer than the microscale time step of the Langevin model, without loss of stability or accuracy. This reduces the overhead required by the imbalanced loads of the microscale computations and the communication required when switching between scales. An example of the Langevin dynamics model that demonstrates the usefulness of the coupling approach is the molecular mechanism of the actomyosin system, in which the stretch-activation phenomenon can be successfully reproduced. This microscopic Langevin model is coupled with a macroscopic finite element ventricle model. In the numerical simulations, the Langevin dynamics model reveals that a single sarcomere can undergo spontaneous oscillation (15 Hz accompanied by quick lengthening due to cooperative movements of the myosin molecules pulling on the common Z-line. Also, the coupled simulations using the ventricle model show that the stretch-activation mechanism contributes to the synchronization of the quick lengthening of the sarcomeres at the end of the systolic phase. By comparing the simulation results given by the molecular model with and without the stretch-activation mechanism, we see that this synchronization contributes to

  3. Cyclic Stretch Alters Vascular Reactivity of Mouse Aortic Segments

    Directory of Open Access Journals (Sweden)

    Arthur Leloup

    2017-10-01

    Full Text Available Large, elastic arteries buffer the pressure wave originating in the left ventricle and are constantly exposed to higher amplitudes of cyclic stretch (10% than muscular arteries (2%. As a crucial factor for endothelial and smooth muscle cell function, cyclic stretch has, however, never been studied in ex vivo aortic segments of mice. To investigate the effects of cyclic stretch on vaso-reactivity of mouse aortic segments, we used the Rodent Oscillatory Tension Set-up to study Arterial Compliance (ROTSAC. The aortic segments were clamped at frequencies of 6–600 bpm between two variable preloads, thereby mimicking dilation as upon left ventricular systole and recoiling as during diastole. The preloads corresponding to different transmural pressures were chosen to correspond to a low, normal or high amplitude of cyclic stretch. At different time intervals, cyclic stretch was interrupted, the segments were afterloaded and isometric contractions by α1-adrenergic stimulation with 2 μM phenylephrine in the absence and presence of 300 μM L-NAME (eNOS inhibitor and/or 35 μM diltiazem (blocker of voltage-gated Ca2+ channels were measured. As compared with static or cyclic stretch at low amplitude (<10 mN or low frequency (0.1 Hz, cyclic stretch at physiological amplitude (>10 mN and frequency (1–10 Hz caused better ex vivo conservation of basal NO release with time after mounting. The relaxation of PE-precontracted segments by addition of ACh to stimulate NO release was unaffected by cyclic stretch. In the absence of basal NO release (hence, presence of L-NAME, physiological in comparison with aberrant cyclic stretch decreased the baseline tension, attenuated the phasic contraction by phenylephrine in the absence of extracellular Ca2+ and shifted the smaller tonic contraction more from a voltage-gated Ca2+ channel-mediated to a non-selective cation channel-mediated. Data highlight the need of sufficient mechanical activation of endothelial and

  4. All-passive pixel super-resolution of time-stretch imaging

    Science.gov (United States)

    Chan, Antony C. S.; Ng, Ho-Cheung; Bogaraju, Sharat C. V.; So, Hayden K. H.; Lam, Edmund Y.; Tsia, Kevin K.

    2017-03-01

    Based on image encoding in a serial-temporal format, optical time-stretch imaging entails a stringent requirement of state-of-the-art fast data acquisition unit in order to preserve high image resolution at an ultrahigh frame rate — hampering the widespread utilities of such technology. Here, we propose a pixel super-resolution (pixel-SR) technique tailored for time-stretch imaging that preserves pixel resolution at a relaxed sampling rate. It harnesses the subpixel shifts between image frames inherently introduced by asynchronous digital sampling of the continuous time-stretch imaging process. Precise pixel registration is thus accomplished without any active opto-mechanical subpixel-shift control or other additional hardware. Here, we present the experimental pixel-SR image reconstruction pipeline that restores high-resolution time-stretch images of microparticles and biological cells (phytoplankton) at a relaxed sampling rate (≈2-5 GSa/s)—more than four times lower than the originally required readout rate (20 GSa/s) — is thus effective for high-throughput label-free, morphology-based cellular classification down to single-cell precision. Upon integration with the high-throughput image processing technology, this pixel-SR time-stretch imaging technique represents a cost-effective and practical solution for large scale cell-based phenotypic screening in biomedical diagnosis and machine vision for quality control in manufacturing.

  5. ACUTE EFFECTS OF STATIC STRETCHING, DYNAMIC EXERCISES, AND HIGH VOLUME UPPER EXTREMITY PLYOMETRIC ACTIVITY ON TENNIS SERVE PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Ertugrul Gelen

    2012-12-01

    Full Text Available The purpose of this study was to compare the acute effects of static stretching; dynamic exercises and high volume upper extremity plyometric activity on tennis serve performance. Twenty-six elite young tennis players (15.1 ± 4.2 years, 167.9 ± 5.8 cm and 61.6 ± 8.1 kg performed 4 different warm-up (WU routines in a random order on non-consecutive days. The WU methods consisted of traditional WU (jogging, rally and serve practice (TRAD; traditional WU and static stretching (TRSS; traditional WU and dynamic exercise (TRDE; and traditional WU and high volume upper extremity plyometric activity (TRPLYP. Following each WU session, subjects were tested on a tennis serve ball speed test. TRAD, TRSS, TRDE and TRPLYO were compared by repeated measurement analyses of variance and post-hoc comparisons. In this study a 1 to 3 percent increase in tennis serve ball speed was recorded in TRDE and TRPLYO when compared to TRAD (p 0.05. ICCs for ball speed showed strong reliability (0.82 to 0.93 for the ball speed measurements.The results of this study indicate that dynamic and high volume upper extremity plyometric WU activities are likely beneficial to serve speed of elite junior tennis players.

  6. Endovascular rescue method for undesirably stretched coil.

    Science.gov (United States)

    Cho, Jae Hoon

    2014-10-01

    Undesirable detachment or stretching of coils within the parent artery during aneurysm embolization can be related with thrombus formation, which can be caused occlusion of parent artery or embolic event(s). To escape from this situation, several rescue methods have been reported. A case with undesirably stretched coil in which another rescue method was used, is presented. When the stretched coil is still located in the coil delivery microcatheter, the stretched coil can be removed safely using a snare and a handmade monorail microcatheter. After a snare is lodged in the handmade monorail microcatheter, the snare is introduced over the coil delivery micorcatheter and located in the distal part of the stretched coil. After then, the handmade monorail microcatheter captures the stretched coil and the snare as one unit. This technique using a handmade monorail microcatheter and a snare can be a good rescue modality for the undesirably stretched coil, still remained within the coil delivery microcatheter.

  7. Stretchable carbon nanotube/ion-gel supercapacitors with high durability realized through interfacial microroughness.

    Science.gov (United States)

    Lee, Jiho; Kim, Wonbin; Kim, Woong

    2014-08-27

    A critical problem with stretchable supercapacitors developed to date has been evaporation of a volatile component of their electrolyte, causing failure. In this work, we demonstrated successful use of an ionic-liquid-based nonvolatile gel (ion-gel) electrolyte in carbon nanotube (CNT)-based stretchable supercapacitors. The CNT/ion-gel supercapacitors showed high capacitance retention (96.6%) over 3000 stretch cycles at 20% strain. The high durability against stretch cycles was achieved by introducing microroughness at the interfaces between different materials. The microroughness was produced by the simple process of imprinting the surface microstructure of office paper onto a poly(dimethylsiloxane) substrate; the surface texture is reproduced in successive current collector and CNT layers. Adhesion between the different layers was strengthened by this roughness and prevented delamination over repeated stretch cycles. The addition of a CNT layer decreased the sensitivity of electrical characteristics to stretching. Moreover, the ion-gel increases the operating voltage window (3 V) and hence the energy density. We believe our demonstration will greatly contribute to the development of flexible and/or stretchable energy-storage devices with high durability.

  8. The acute effect of static and dynamic stretching during warm-ups on anaerobic performance in trained women

    Directory of Open Access Journals (Sweden)

    rouhollah haghshenas

    2014-09-01

    Full Text Available The purpose of this study was to investigate effects of static stretching, dynamic stretching and no stretching methods on power and speed in volleyball players. Therefore, Twenty-four volleyball players (height: 173.29 ± 7.81 m; mass: 62.12 ± 8.73 kg; age: 22.66 ± 4.02 years; experience: 3.27 ± 6.37 were tested for speed performance using the 20 meter sprint test and also for power using vertical jump test after static stretching, dynamic stretching and no stretching. The results analyzed using ANOVA showed that There was a significant increase in height jump after dynamic stretching against static stretching. But, there were no significant differences between no stretching and static stretching groups. In addition, there was a significant decrease in time 20 meter sprint after dynamic stretching against static stretching and no stretching groups. The results of this study suggest that it may be desirable for volleyball players to perform dynamic exercises before the performance of activities that require a high power output.

  9. STRETCHING EXERCISES - EFFECT ON PASSIVE EXTENSIBILITY AND STIFFNESS IN SHORT HAMSTRINGS OF HEALTHY-SUBJECTS

    NARCIS (Netherlands)

    HALBERTSMA, JPK; GOEKEN, LNH

    Passive muscle stretch tests are common practice in physical therapy and rehabilitation medicine. However, the effects of stretching exercises are not well known. With an instrumental straight-leg-raising set-up the extensibility, stiffness, and electromyographic activity of the hamstring muscles

  10. The effect of warm-up, static stretching and dynamic stretching on hamstring flexibility in previously injured subjects

    Directory of Open Access Journals (Sweden)

    Murray Elaine

    2009-04-01

    Full Text Available Abstract Background Warm-up and stretching are suggested to increase hamstring flexibility and reduce the risk of injury. This study examined the short-term effects of warm-up, static stretching and dynamic stretching on hamstring flexibility in individuals with previous hamstring injury and uninjured controls. Methods A randomised crossover study design, over 2 separate days. Hamstring flexibility was assessed using passive knee extension range of motion (PKE ROM. 18 previously injured individuals and 18 uninjured controls participated. On both days, four measurements of PKE ROM were recorded: (1 at baseline; (2 after warm-up; (3 after stretch (static or dynamic and (4 after a 15-minute rest. Participants carried out both static and dynamic stretches, but on different days. Data were analysed using Anova. Results Across both groups, there was a significant main effect for time (p 0.05. Using ANCOVA to adjust for the non-significant (p = 0.141 baseline difference between groups, the previously injured group demonstrated a greater response to warm-up and static stretching, however this was not statistically significant (p = 0.05. Conclusion Warm-up significantly increased hamstring flexibility. Static stretching also increased hamstring flexibility, whereas dynamic did not, in agreement with previous findings on uninjured controls. The effect of warm-up and static stretching on flexibility was greater in those with reduced flexibility post-injury, but this did not reach statistical significance. Further prospective research is required to validate the hypothesis that increased flexibility improves outcomes. Trial Registration ACTRN12608000638336

  11. Mechanical stretch modulates microRNA 21 expression, participating in proliferation and apoptosis in cultured human aortic smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Jian tao Song

    Full Text Available OBJECTIVES: Stretch affects vascular smooth muscle cell proliferation and apoptosis, and several responsible genes have been proposed. We tested whether the expression of microRNA 21 (miR-21 is modulated by stretch and is involved in stretch-induced proliferation and apoptosis of human aortic smooth muscle cells (HASMCs. METHODS AND RESULTS: RT-PCR revealed that elevated stretch (16% elongation, 1 Hz increased miR-21 expression in cultured HASMCs, and moderate stretch (10% elongation, 1 Hz decreased the expression. BrdU incorporation assay and cell counting showed miR-21 involved in the proliferation of HASMCs mediated by stretch, likely by regulating the expression of p27 and phosphorylated retinoblastoma protein (p-Rb. FACS analysis revealed that the complex of miR-21 and programmed cell death protein 4 (PDCD4 participated in regulating apoptosis with stretch. Stretch increased the expression of primary miR-21 and pre-miR-21 in HASMCs. Electrophoretic mobility shift assay (EMSA demonstrated that stretch increased NF-κB and AP-1 activities in HASMCs, and blockade of AP-1 activity by c-jun siRNA significantly suppressed stretch-induced miR-21 expression. CONCLUSIONS: Cyclic stretch modulates miR-21 expression in cultured HASMCs, and miR-21 plays important roles in regulating proliferation and apoptosis mediated by stretch. Stretch upregulates miR-21 expression at least in part at the transcription level and AP-1 is essential for stretch-induced miR-21 expression.

  12. Dynamic Contractility and Efficiency Impairments in Stretch-Shortening Cycle Are Stretch-Load-Dependent After Training-Induced Muscle Damage

    NARCIS (Netherlands)

    Vaczi, Mark; Racz, Levente; Hortobagyi, Tibor; Tihanyi, Jozsef

    Vaczi, M, Racz, L, Hortobagyi, T, and Tihanyi, J. Dynamic contractility and efficiency impairments in stretch-shortening cycle are stretch-load-dependent after training-induced muscle damage. J Strength Cond Res 27(8): 2171-2179, 2013To determine the acute task and stretch-load dependency of

  13. Adding dimension to cellular mechanotransduction: Advances in biomedical engineering of multiaxial cell-stretch systems and their application to cardiovascular biomechanics and mechano-signaling.

    Science.gov (United States)

    Friedrich, O; Schneidereit, D; Nikolaev, Y A; Nikolova-Krstevski, V; Schürmann, S; Wirth-Hücking, A; Merten, A L; Fatkin, D; Martinac, B

    2017-11-01

    Hollow organs (e.g. heart) experience pressure-induced mechanical wall stress sensed by molecular mechano-biosensors, including mechanosensitive ion channels, to translate into intracellular signaling. For direct mechanistic studies, stretch devices to apply defined extensions to cells adhered to elastomeric membranes have stimulated mechanotransduction research. However, most engineered systems only exploit unilateral cellular stretch. In addition, it is often taken for granted that stretch applied by hardware translates 1:1 to the cell membrane. However, the latter crucially depends on the tightness of the cell-substrate junction by focal adhesion complexes and is often not calibrated for. In the heart, (increased) hemodynamic volume/pressure load is associated with (increased) multiaxial wall tension, stretching individual cardiomyocytes in multiple directions. To adequately study cellular models of chronic organ distension on a cellular level, biomedical engineering faces challenges to implement multiaxial cell stretch systems that allow observing cell reactions to stretch during live-cell imaging, and to calibrate for hardware-to-cell membrane stretch translation. Here, we review mechanotransduction, cell stretch technologies from uni-to multiaxial designs in cardio-vascular research, and the importance of the stretch substrate-cell membrane junction. We also present new results using our IsoStretcher to demonstrate mechanosensitivity of Piezo1 in HEK293 cells and stretch-induced Ca 2+ entry in 3D-hydrogel-embedded cardiomyocytes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Biaxial stretching of film principles and applications

    CERN Document Server

    Demeuse, M T

    2011-01-01

    Biaxial (having two axes) stretching of film is used for a range of applications and is the primary manufacturing process by which products are produced for the food packaging industry. Biaxial stretching of film: principles and applications provides an overview of the manufacturing processes and range of applications for biaxially stretched films. Part one reviews the fundamental principles of biaxial stretching. After an introductory chapter which defines terms, chapters discuss equipment design and requirements, laboratory evaluations, biaxial film structures and typical industrial processes for the biaxial orientation of films. Additional topics include post production processing of biaxially stretched films, the stress-strain behaviour of poly(ethylene terephthalate) and academic investigations of biaxially stretched films. Part two investigates the applications of biaxial films including fresh cut produce, snack packaging and product labelling. A final chapter investigates potential future trends for bi...

  15. Effectiveness of passive stretching versus hold relax technique in flexibility of hamstring muscle

    Directory of Open Access Journals (Sweden)

    Gauri Shankar

    2010-10-01

    Full Text Available Aim: To compare the effectiveness of passive stretching and hold relax technique in the flexibility of hamstring muscle. Methods: A total of 80 normal healthy female subjects between age group 20-30 years referred to the department of physiotherapy, Sumandeep Vidyapeeth University, sampling method being convenient sampling. The subjects were randomly divided in two groups i.e. passive stretching group (n=40 and PNF group (n=40 and given passive stretching and proprioceptive neuromuscular facilitation technique respectively. Active knee extension range was measured before and after the intervention by goniometer. Results: t test showed a highly significant (p=0.000 increase in range of motion in PNF group. Conclusion: Proprioceptive neuromuscular facilitation technique is more effective in increasing hamstring flexibility than the passive stretching.

  16. Correlation between structure and conductivity in stretched Nafion

    Science.gov (United States)

    Allahyarov, Elshad; Taylor, Philip

    2008-03-01

    We have used coarse-grained simulation methods to investigate the effect of stretching-induced structure orientation on the proton conductivity of Nafion-like polyelectrolyte membranes. Recent experimental data on the morphology of ionomers describe Nafion as an aggregation of polymeric backbone chains forming elongated objects embedded in a continuous ionic medium. Uniaxial stretching of a recast Nafion film causes a preferential orientation of these objects in the direction of stretching. Our simulations of humid Nafion show that this has a strong effect on the proton conductivity, which is enhanced along the stretching direction, while the conductivity perpendicular to the stretched polymer backbone is strongly reduced. Stretching also causes the perfluorinated side chains to orient perpendicular to the stretching axis. The sulphonate multiplets shrink in diameter as the stretching is increased and show a spatially periodic ordering in their distribution. This in turn affects the distribution of contained water at low water contents. The water forms a continuous network with narrow bridges between small water clusters absorbed in head-group multiplets. We find the morphological changes in the stretched Nafion to be retained upon removal of the uniaxial stress.

  17. Characterization of mechanical behavior of a porcine pulmonary artery strip using a randomized uniaxial stretch and stretch-rate protocol

    Directory of Open Access Journals (Sweden)

    Criscione John C

    2008-01-01

    Full Text Available Abstract Background Much of the experimental work in soft tissue mechanics has been focused on fitting approximate relations for specific tissue types from aggregate data on multiple samples of the tissue. Such relations are needed for modeling applications and have reasonable predictability – especially given the natural variance in specimens. There is, however, much theoretical and experimental work to be done in determining constitutive behaviors for particular specimens and tissues. In so doing, it may be possible to exploit the natural variation in tissue ultrastructure – so to relate ultrastructure composition to tissue behavior. Thus, this study focuses on an experimental method for determining constitutive behaviors and illustrates the method with analysis of a porcine pulmonary artery strip. The method characterizes the elastic part of the response (implicitly in terms of stretch and the inelastic part in terms of short term stretch history (i.e., stretch-rate Ht2, longer term stretch history Ht1, and time since the start of testing T. Methods A uniaxial testing protocol with a random stretch and random stretch-rate was developed. The average stress at a particular stretch was chosen as the hyperelastic stress response, and deviation from the mean at this particular stretch is chosen as the inelastic deviation. Multivariable Linear Regression Analysis (MLRA was utilized to verify if Ht2, Ht1, and T are important factors for characterizing the inelastic deviation. For acquiring Ht2 and Ht1, an integral function type of stretch history was employed with time constants chosen from the relaxation spectrum of an identical size strip from the same tissue with the same orientation. Finally, statistical models that characterize the inelasticity were developed at various, nominal values of stretch, and their predictive capability was examined. Results Inelastic deviation from hyperelasticity was high (31% for low stretch and declined

  18. Sorption studies of nickel ions onto activated carbon

    Science.gov (United States)

    Joshi, Parth; Vyas, Meet; Patel, Chirag

    2018-05-01

    Activated porous carbons are made through pyrolysis and activation of carbonaceous natural as well as synthetic precursors. The use of low-cost activated carbon derived from azadirachta indica, an agricultural waste material, has been investigated as a replacement for the current expensive methods of removing nickel ions from wastewater. The temperature variation study showed that the nickel ions adsorption is endothermic and spontaneous with increased randomness at the solid solution interface. Significant effect on adsorption was observed on varying the pH of the nickel ion solutions. Therefore, this study revealed that azadirachta indica can serve as a good source of activated carbon with multiple and simultaneous metal ions removing potentials and may serve as a better replacement for commercial activated carbons in applications that warrant their use.

  19. Acute effects of 15min static or contract-relax stretching modalities on plantar flexors neuromuscular properties.

    Science.gov (United States)

    Babault, Nicolas; Kouassi, Blah Y L; Desbrosses, Kevin

    2010-03-01

    The present study aimed to investigate the immediate effects of 15 min static or sub-maximal contract-relax stretching modalities on the neuromuscular properties of plantar flexor muscles. Ten male volunteers were tested before and immediately after 15 min static or contract-relax stretching programs of plantar flexor muscles (20 stretches). Static stretching consisted in 30s stretches to the point of discomfort. For the contract-relax stretching modality, subjects performed 6s sub-maximal isometric plantar flexion before 24s static stretches. Measurements included maximal voluntary isometric torque (MVT) and the corresponding electromyographic activity of soleus (SOL) and medial gastrocnemius (MG) muscles (RMS values), as well as maximal peak torque (Pt) elicited at rest by single supramaximal electrical stimulation of the tibial nerve. After 15 min stretching, significant MVT and SOL RMS decreases were obtained (-6.9+/-11.6% and -6.5+/-15.4%, respectively). No difference was obtained between stretching modalities. Pt remained unchanged after stretching. MG RMS changes were significantly different between stretching modalities (-9.4+/-18.3% and +3.5+/-11.6% after static and contract-relax stretching modalities, respectively). These findings indicated that performing 15 min static or contract-relax stretching had detrimental effects on the torque production capacity of plantar flexor muscles and should be precluded before competition. Mechanisms explaining this alteration seemed to be stretch modality dependent. Copyright 2009 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  20. [Current trends in the effects of stretching: application to physical exercise in the workplace].

    Science.gov (United States)

    Eguchi, Yasumasa; Ohta, Masanori; Yamato, Hiroshi

    2011-09-01

    A review of the Survey on the State of Employees' Health by the Ministry of Health, Labour and Welfare (2008) shows that the most commonly implemented aspect as an activity of worksite health promotion is "Health counseling", and the second is "Workplace physical exercise." Physical exercise, "Taiso", is acceptable and sustainable for workers, as it is easy to do in a group or alone. Various modes of stretching are implemented for workplace physical exercise. However, articles suggesting negative or contradictory effects of stretching have increased in recent years. Several review articles have revealed that static stretching may induce impairments of muscle power performance and no stretching will prevent or reduce muscle soreness after exercise. There are various aims of workplace physical exercise, so we have to consider the situational method when we apply stretching to occupational health.

  1. Stretched polygons in a lattice tube

    Energy Technology Data Exchange (ETDEWEB)

    Atapour, M [Department of Mathematics and Statistics, York University, Toronto, ON M3J 1P3 (Canada); Soteros, C E [Department of Mathematics and Statistics, University of Saskatchewan, Saskatoon, SK S7N 5E6 (Canada); Whittington, S G [Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6 (Canada)], E-mail: atapour@mathstat.yorku.ca, E-mail: soteros@math.usask.ca, E-mail: swhittin@chem.utoronto.ca

    2009-08-14

    We examine the topological entanglements of polygons confined to a lattice tube and under the influence of an external tensile force f. The existence of the limiting free energy for these so-called stretched polygons is proved and then, using transfer matrix arguments, a pattern theorem for stretched polygons is proved. Note that the tube constraint allows us to prove a pattern theorem for any arbitrary value of f, while without the tube constraint it has so far only been proved for large values of f. The stretched polygon pattern theorem is used first to show that the average span per edge of a randomly chosen n-edge stretched polygon approaches a positive value, non-decreasing in f, as n {yields} {infinity}. We then show that the knotting probability of an n-edge stretched polygon confined to a tube goes to one exponentially as n {yields} {infinity}. Thus as n {yields} {infinity} when polygons are influenced by a force f, no matter its strength or direction, topological entanglements, as defined by knotting, occur with high probability. (fast track communication)

  2. Stretched polygons in a lattice tube

    International Nuclear Information System (INIS)

    Atapour, M; Soteros, C E; Whittington, S G

    2009-01-01

    We examine the topological entanglements of polygons confined to a lattice tube and under the influence of an external tensile force f. The existence of the limiting free energy for these so-called stretched polygons is proved and then, using transfer matrix arguments, a pattern theorem for stretched polygons is proved. Note that the tube constraint allows us to prove a pattern theorem for any arbitrary value of f, while without the tube constraint it has so far only been proved for large values of f. The stretched polygon pattern theorem is used first to show that the average span per edge of a randomly chosen n-edge stretched polygon approaches a positive value, non-decreasing in f, as n → ∞. We then show that the knotting probability of an n-edge stretched polygon confined to a tube goes to one exponentially as n → ∞. Thus as n → ∞ when polygons are influenced by a force f, no matter its strength or direction, topological entanglements, as defined by knotting, occur with high probability. (fast track communication)

  3. Bend, stretch, and touch: Locating a finger on an actively deformed transparent sensor array.

    Science.gov (United States)

    Sarwar, Mirza Saquib; Dobashi, Yuta; Preston, Claire; Wyss, Justin K M; Mirabbasi, Shahriar; Madden, John David Wyndham

    2017-03-01

    The development of bendable, stretchable, and transparent touch sensors is an emerging technological goal in a variety of fields, including electronic skin, wearables, and flexible handheld devices. Although transparent tactile sensors based on metal mesh, carbon nanotubes, and silver nanowires demonstrate operation in bent configurations, we present a technology that extends the operation modes to the sensing of finger proximity including light touch during active bending and even stretching. This is accomplished using stretchable and ionically conductive hydrogel electrodes, which project electric field above the sensor to couple with and sense a finger. The polyacrylamide electrodes are embedded in silicone. These two widely available, low-cost, transparent materials are combined in a three-step manufacturing technique that is amenable to large-area fabrication. The approach is demonstrated using a proof-of-concept 4 × 4 cross-grid sensor array with a 5-mm pitch. The approach of a finger hovering a few centimeters above the array is readily detectable. Light touch produces a localized decrease in capacitance of 15%. The movement of a finger can be followed across the array, and the location of multiple fingers can be detected. Touch is detectable during bending and stretch, an important feature of any wearable device. The capacitive sensor design can be made more or less sensitive to bending by shifting it relative to the neutral axis. Ultimately, the approach is adaptable to the detection of proximity, touch, pressure, and even the conformation of the sensor surface.

  4. Stretch Marks

    Science.gov (United States)

    ... completely without the help of a dermatologist or plastic surgeon. These doctors may use one of many types of treatments — from actual surgery to techniques like microdermabrasion and laser treatment — to reduce the appearance of stretch marks. These techniques are ...

  5. Zinc-ion-dependent acid phosphatase exhibits magnesium-ion-dependent myo-inositol-1-phosphatase activity.

    Science.gov (United States)

    Fujimoto, S; Okano, I; Tanaka, Y; Sumida, Y; Tsuda, J; Kawakami, N; Shimohama, S

    1996-06-01

    We have purified bovine brain Zn(2+)-dependent acid phosphatase (Zn(2+)-APase), which requires Zn2+ ions to hydrolyze the substrate p-nitrophenyl phosphate (pNPP) in an acidic environment. The substrate specificity and metal requirement of Zn(2+)-APase at a physiological pH was also studied. The enzyme exhibited hydrolytic activity on myo-inositol-1- and -2-monophosphates, 2'-adenosine monophosphate, 2'-guanosine monophosphate, and the alpha- and beta-glycerophosphates, glucose-1-phosphate, and fructose-6-phosphate in 50 mM Tris-HCl buffer (pH 7.4) in the presence of Mg2+ ions, but not on pNPP and phosphotyrosine. Zn2+, Mn2+ and Co2+ ions were less effective for activation. Among the above substrates, myo-inositol-1-phosphate was the most susceptible to hydrolysis by the enzyme in the presence of 3 mM Mg2+ ions. The enzyme exhibited an optimum pH at around 8 for myo-inositol-1-phosphate in the presence of 3 mM Mg2+ ions. The Mg(2+)-dependent myo-inositol-1-phosphatase activity of the enzyme was significantly inhibited by Li+ ions. The Zn(2+)-dependent p-nitrophenyl phosphatase activity and Mg(2+)-dependent myo-inositol-1-phosphatase activity of the purified enzyme fraction exhibited similar behavior on Sephadex G-100 and Mono Q colomns. These findings suggest that Zn(2+)-APase also exhibits Mg(2+)-dependent myo-inositol-1-phosphatase activity under physiological conditions.

  6. Mechanical stretch augments insulin-induced vascular smooth muscle cell proliferation by insulin-like growth factor-1 receptor

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gang [Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa (Japan); Department of Anesthesiology, First Affiliated Hospital of China Medical University, Shenyang (China); Hitomi, Hirofumi, E-mail: hitomi@kms.ac.jp [Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa (Japan); Hosomi, Naohisa [Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University, Kagawa (Japan); Lei, Bai; Nakano, Daisuke [Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa (Japan); Deguchi, Kazushi; Mori, Hirohito; Masaki, Tsutomu [Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa (Japan); Ma, Hong [Department of Anesthesiology, First Affiliated Hospital of China Medical University, Shenyang (China); Griendling, Kathy K. [Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA (United States); Nishiyama, Akira [Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa (Japan)

    2011-10-15

    Insulin resistance and hypertension have been implicated in the pathogenesis of cardiovascular disease; however, little is known about the roles of insulin and mechanical force in vascular smooth muscle cell (VSMC) remodeling. We investigated the contribution of mechanical stretch to insulin-induced VSMC proliferation. Thymidine incorporation was stimulated by insulin in stretched VSMCs, but not in un-stretched VSMCs. Insulin increased 2-deoxy-glucose incorporation in both stretched and un-stretched VSMCs. Mechanical stretch augmented insulin-induced extracellular signal-regulated kinase (ERK) and Akt phosphorylation. Inhibitors of epidermal growth factor (EGF) receptor tyrosine kinase and Src attenuated insulin-induced ERK and Akt phosphorylation, as well as thymidine incorporation, whereas 2-deoxy-glucose incorporation was not affected by these inhibitors. Moreover, stretch augmented insulin-like growth factor (IGF)-1 receptor expression, although it did not alter the expression of insulin receptor and insulin receptor substrate-1. Insulin-induced ERK and Akt activation, and thymidine incorporation were inhibited by siRNA for the IGF-1 receptor. Mechanical stretch augments insulin-induced VSMC proliferation via upregulation of IGF-1 receptor, and downstream Src/EGF receptor-mediated ERK and Akt activation. Similar to in vitro experiment, IGF-1 receptor expression was also augmented in hypertensive rats. These results provide a basis for clarifying the molecular mechanisms of vascular remodeling in hypertensive patients with hyperinsulinemia. -- Highlights: {yields} Mechanical stretch augments insulin-induced VSMC proliferation via IGF-1 receptor. {yields} Src/EGFR-mediated ERK and Akt phosphorylation are augmented in stretched VSMCs. {yields} Similar to in vitro experiment, IGF-1 receptor is increased in hypertensive rats. {yields} Results provide possible mechanisms of vascular remodeling in hypertension with DM.

  7. Intraplaque stretch in carotid atherosclerotic plaque--an effective biomechanical predictor for subsequent cerebrovascular ischemic events.

    Directory of Open Access Journals (Sweden)

    Zhongzhao Teng

    Full Text Available BACKGROUND: Stretch is a mechanical parameter, which has been proposed previously to affect the biological activities in different tissues. This study explored its utility in determining plaque vulnerability. METHODS: One hundred and six patients with mild to moderate carotid stenosis were recruited in this study (53 symptomatic and 53 asymptomatic. High resolution, multi-sequence magnetic resonance (MR imaging was performed to delineate various plaque components. Finite element method was used to predict high stretch concentration within the plaque. RESULTS: During a two-year follow-up, 11 patients in symptomatic group and 3 in asymptomatic group experienced recurrent cerebrovascular events. Plaque stretch at systole and stretch variation during one cardiac cycle was greater in symptomatic group than those in the asymptomatic. Within the symptomatic group, a similar trend was observed in patients with recurrent events compared to those without. CONCLUSION: Plaques with high stretch concentration and large stretch variation are associated with increased risk of future cerebrovascular events.

  8. Mechanical stretching stimulates collagen synthesis via down-regulating SO2/AAT1 pathway

    Science.gov (United States)

    Liu, Jia; Yu, Wen; Liu, Yan; Chen, Selena; Huang, Yaqian; Li, Xiaohui; Liu, Cuiping; Zhang, Yanqiu; Li, Zhenzhen; Du, Jie; Tang, Chaoshu; Du, Junbao; Jin, Hongfang

    2016-01-01

    The aim of the study was to investigate the role of endogenous sulfur dioxide (SO2)/ aspartate aminotransferase 1 (AAT1) pathway in stretch-induced excessive collagen expression and its mechanism. The mechanical stretch downregulated SO2/AAT1 pathway and increased collagen I and III protein expression. Importantly, AAT1 overexpression blocked the increase in collagen I and III expression, transforming growth factor-β1 (TGF- β1) expression and phosphorylation of Smad2/3 induced by stretch, but AAT1 knockdown mimicked the increase in collagen I and III expression, TGF- β1 expression and phosphorylation of Smad2/3 induced by stretch. Mechanistically, SB431542, a TGF-β1/Smad2/3 inhibitor, eliminated excessive collagen I and III accumulation induced by AAT1 knockdown, stretch or stretch plus AAT1 knockdown. In a rat model of high pulmonary blood flow-induced pulmonary vascular collagen accumulation, AAT1 expression and SO2 content in lung tissues of rat were reduced in shunt rats with high pulmonary blood flow. Supplement of SO2 derivatives inhibited activation of TGF- β1/Smad2/3 pathway and alleviated the excessive collagen accumulation in lung tissues of shunt rats. The results suggested that deficiency of endogenous SO2/AAT1 pathway mediated mechanical stretch-stimulated abnormal collagen accumulation via TGF-β1/Smad2/3 pathway. PMID:26880260

  9. Comparison of the effects of local cryotherapy and passive cross-body stretch on extensibility in subjects with posterior shoulder tightness.

    Science.gov (United States)

    Park, Kyue-Nam; Kwon, Oh-Yun; Weon, Jong-Hyuck; Choung, Sung-Dae; Kim, Si-Hyun

    2014-01-01

    The objective was to compare the immediate effects of local cryotherapy (LC) and passive cross-body stretch on the extensibility of the posterior shoulder muscle in individuals with posterior shoulder tightness. Eighty-seven healthy subjects with a between-shoulder difference in internal rotation (IR) range of motion (ROM) greater than 10° were randomly divided into three groups: LC group, stretching group, and control group (n = 29 in each group). Subjects in the LC group received LC on infraspinatus and posterior deltoid muscles and subjects in the stretching group performed passive cross-body stretch. Stretch sensation was measured at the end range of passive IR and horizontal adduction (HA) using numerical rating scale, and the pressure pain threshold (PPT) at the infraspinatus and posterior deltoid muscles was measured using pressure algometry. Passive and active ROM of IR and HA of the glenohumeral joint were measured using an inclinometer. All measurements were performed at pre-intervention, post- intervention, and 10-min follow-up. Stretch sensation was significantly decreased and PPT was significantly increased in the LC and stretching groups at post-intervention, and these effects were maintained at 10-min follow-up, compared to the control group. Both the LC group and stretching group had a significantly greater increase in passive and active ROM of IR and HA, compared to the control group at post-intervention and 10-min follow-up. However, there were no significant differences in stretch sensation, PPT, or ROM of IR and HA between the LC group and stretching group. LC can be used to decrease the stretch sensation and increase PPT and ROM of IR and HA as much as a stretching exercise. LC could be an alternative method for increasing the restricted ROM of glenohumeral IR and HA for individuals with posterior shoulder tightness, especially for patients and sports players who have severe stretching discomfort. Key PointsLocal cryotherapy (LC) decreased the

  10. The effect of warm-ups with stretching on the isokinetic moments of collegiate men.

    Science.gov (United States)

    Park, Hyoung-Kil; Jung, Min-Kyung; Park, Eunkyung; Lee, Chang-Young; Jee, Yong-Seok; Eun, Denny; Cha, Jun-Youl; Yoo, Jaehyun

    2018-02-01

    Performing warm-ups increases muscle temperature and blood flow, which contributes to improved exercise performance and reduced risk of injuries to muscles and tendons. Stretching increases the range of motion of the joints and is effective for the maintenance and enhancement of exercise performance and flexibility, as well as for injury prevention. However, stretching as a warm-up activity may temporarily decrease muscle strength, muscle power, and exercise performance. This study aimed to clarify the effect of stretching during warm-ups on muscle strength, muscle power, and muscle endurance in a nonathletic population. The subjects of this study consisted of 13 physically active male collegiate students with no medical conditions. A self-assessment questionnaire regarding how well the subjects felt about their physical abilities was administered to measure psychological readiness before and after the warm-up. Subjects performed a non-warm-up, warm-up, or warm-up regimen with stretching prior to the assessment of the isokinetic moments of knee joints. After the measurements, the respective variables were analyzed using nonparametric tests. First, no statistically significant intergroup differences were found in the flexor and extensor peak torques of the knee joints at 60°/sec, which were assessed to measure muscle strength. Second, no statistically significant intergroup differences were found in the flexor and extensor peak torques of the knee joints at 180°/sec, which were assessed to measure muscle power. Third, the total work of the knee joints at 240°/sec, intended to measure muscle endurance, was highest in the aerobic-stretch-warm-ups (ASW) group, but no statistically significant differences were found among the groups. Finally, the psychological readiness for physical activity according to the type of warm-up was significantly higher in ASW. Simple stretching during warm-ups appears to have no effect on variables of exercise physiology in nonathletes

  11. Local calcium signalling is mediated by mechanosensitive ion channels in mesenchymal stem cells

    International Nuclear Information System (INIS)

    Chubinskiy-Nadezhdin, Vladislav I.; Vasileva, Valeria Y.; Pugovkina, Natalia A.; Vassilieva, Irina O.; Morachevskaya, Elena A.; Nikolsky, Nikolay N.; Negulyaev, Yuri A.

    2017-01-01

    Mechanical forces are implicated in key physiological processes in stem cells, including proliferation, differentiation and lineage switching. To date, there is an evident lack of understanding of how external mechanical cues are coupled with calcium signalling in stem cells. Mechanical reactions are of particular interest in adult mesenchymal stem cells because of their promising potential for use in tissue remodelling and clinical therapy. Here, single channel patch-clamp technique was employed to search for cation channels involved in mechanosensitivity in mesenchymal endometrial-derived stem cells (hMESCs). Functional expression of native mechanosensitive stretch-activated channels (SACs) and calcium-sensitive potassium channels of different conductances in hMESCs was shown. Single current analysis of stretch-induced channel activity revealed functional coupling of SACs and BK channels in plasma membrane. The combination of cell-attached and inside-out experiments have indicated that highly localized Ca 2+ entry via SACs triggers BK channel activity. At the same time, SK channels are not coupled with SACs despite of high calcium sensitivity as compared to BK. Our data demonstrate novel mechanism controlling BK channel activity in native cells. We conclude that SACs and BK channels are clusterized in functional mechanosensitive domains in the plasma membrane of hMESCs. Co-clustering of ion channels may significantly contribute to mechano-dependent calcium signalling in stem cells. - Highlights: • Stretch-induced channel activity in human mesenchymal stem cells was analyzed. • Functional expression of SACs and Ca 2+ -sensitive BK and SK channels was shown. • Local Ca 2+ influx via stretch-activated channels triggers BK channel activity. • SK channels are not coupled with SACs despite higher sensitivity to [Ca 2+ ] i . • Functional clustering of SACs and BK channels in stem cell membrane is proposed.

  12. Stretched versus compressed exponential kinetics in α-helix folding

    International Nuclear Information System (INIS)

    Hamm, Peter; Helbing, Jan; Bredenbeck, Jens

    2006-01-01

    In a recent paper (J. Bredenbeck, J. Helbing, J.R. Kumita, G.A. Woolley, P. Hamm, α-helix formation in a photoswitchable peptide tracked from picoseconds to microseconds by time resolved IR spectroscopy, Proc. Natl. Acad. Sci USA 102 (2005) 2379), we have investigated the folding of a photo-switchable α-helix with a kinetics that could be fit by a stretched exponential function exp(-(t/τ) β ). The stretching factor β became smaller as the temperature was lowered, a result which has been interpreted in terms of activated diffusion on a rugged energy surface. In the present paper, we discuss under which conditions diffusion problems occur with stretched exponential kinetics (β 1). We show that diffusion problems do have a strong tendency to yield stretched exponential kinetics, yet, that there are conditions (strong perturbation from equilibrium, performing the experiment in the folding direction) under which compressed exponential kinetics would be expected instead. We discuss the kinetics on free energy surfaces predicted by simple initiation-propagation models (zipper models) of α-helix folding, as well as by folding funnel models. We show that our recent experiment has been performed under condition for which models with strong downhill driving force, such as the zipper model, would predict compressed, rather than stretched exponential kinetics, in disagreement with the experimental observation. We therefore propose that the free energy surface along a reaction coordinate that governs the folding kinetics must be relatively flat and has a shape similar to a 1D golf course. We discuss how this conclusion can be unified with the thermodynamically well established zipper model by introducing an additional kinetic reaction coordinate

  13. Hyperglycemia Augments the Adipogenic Transdifferentiation Potential of Tenocytes and Is Alleviated by Cyclic Mechanical Stretch.

    Science.gov (United States)

    Wu, Yu-Fu; Huang, Yu-Ting; Wang, Hsing-Kuo; Yao, Chung-Chen Jane; Sun, Jui-Sheng; Chao, Yuan-Hung

    2017-12-28

    Diabetes mellitus is associated with damage to tendons, which may result from cellular dysfunction in response to a hyperglycemic environment. Tenocytes express diminished levels of tendon-associated genes under hyperglycemic conditions. In contrast, mechanical stretch enhances tenogenic differentiation. However, whether hyperglycemia increases the non-tenogenic differentiation potential of tenocytes and whether this can be mitigated by mechanical stretch remains elusive. We explored the in vitro effects of high glucose and mechanical stretch on rat primary tenocytes. Specifically, non-tenogenic gene expression, adipogenic potential, cell migration rate, filamentous actin expression, and the activation of signaling pathways were analyzed in tenocytes treated with high glucose, followed by the presence or absence of mechanical stretch. We analyzed tenocyte phenotype in vivo by immunohistochemistry using an STZ (streptozotocin)-induced long-term diabetic mouse model. High glucose-treated tenocytes expressed higher levels of the adipogenic transcription factors PPAR γ and C/EBPs. PPARγ was also highly expressed in diabetic tendons. In addition, increased adipogenic differentiation and decreased cell migration induced by high glucose implicated a fibroblast-to-adipocyte phenotypic change. By applying mechanical stretch to tenocytes in high-glucose conditions, adipogenic differentiation was repressed, while cell motility was enhanced, and fibroblastic morphology and gene expression profiles were strengthened. In part, these effects resulted from a stretch-induced activation of ERK (extracellular signal-regulated kinases) and a concomitant inactivation of Akt. Our results show that mechanical stretch alleviates the augmented adipogenic transdifferentiation potential of high glucose-treated tenocytes and helps maintain their fibroblastic characteristics. The alterations induced by high glucose highlight possible pathological mechanisms for diabetic tendinopathy

  14. Effects of contract-relax vs static stretching on stretch-induced strength loss and length-tension relationship

    DEFF Research Database (Denmark)

    Balle, S S; Magnusson, S P; McHugh, M P

    2015-01-01

    The purpose of this study was to determine the acute effects of contract-relax stretching (CRS) vs static stretching (SS) on strength loss and the length-tension relationship. We hypothesized that there would be a greater muscle length-specific effect of CRS vs SS. Isometric hamstring strength wa...

  15. Cross-bridge mechanism of residual force enhancement after stretching in a skeletal muscle.

    Science.gov (United States)

    Tamura, Youjiro

    2018-01-01

    A muscle model that uses a modified Langevin equation with actomyosin potentials was used to describe the residual force enhancement after active stretching. Considering that the new model uses cross-bridge theory to describe the residual force enhancement, it is different from other models that use passive stretching elements. Residual force enhancement was simulated using a half sarcomere comprising 100 myosin molecules. In this paper, impulse is defined as the integral of an excess force from the steady isometric force over the time interval for which a stretch is applied. The impulse was calculated from the force response due to fast and slow muscle stretches to demonstrate the viscoelastic property of the cross-bridges. A cross-bridge mechanism was proposed as a way to describe the residual force enhancement on the basis of the impulse results with reference to the compliance of the actin filament. It was assumed that the period of the actin potential increased by 0.5% and the amplitude of the potential decreased by 0.5% when the half sarcomere was stretched by 10%. The residual force enhancement after 21.0% sarcomere stretching was 6.9% of the maximum isometric force of the muscle; this value was due to the increase in the number of cross-bridges.

  16. No evidence hip joint angle modulates intrinsically produced stretch reflex in human hopping.

    Science.gov (United States)

    Gibson, W; Campbell, A; Allison, G

    2013-09-01

    Motor output in activities such as walking and hopping is suggested to be mediated neurally by purported stretch reflex augmentation of muscle output. Reflex EMG activity during these tasks has been frequently investigated in the soleus muscle; with alterations in reflex amplitude being associated with changes in hip joint angle/phase of the gait cycle. Previous work has focussed on reflex activity induced by an artificial perturbation or by induction of H-reflexes. As such, it is currently unknown if stretch reflex activity induced intrinsically (as part of the task) is modulated by changes in hip joint angle. This study investigated whether hip joint angle modulated reflex EMG 'burst' activity during a hopping task performed on a custom-built partially reclined sleigh. Ten subjects participated; EMG and kinematic data (VICON motor capture system) was collected for each hop cycle. Participants completed 5 sets of 30s of self-paced hopping in (1) hip neutral and (2) hip 60° flexion conditions. There was no difference in EMG 'burst' activity or in sagittal plane kinematics (knee/ankle) in the hopping task between the two conditions. The results indicate that during a functional task such as hopping, changes in hip angle do not alter the stretch reflex-like activity associated with landing. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Stretching and jamming of finite automata

    NARCIS (Netherlands)

    Beijer, de N.; Kourie, D.G.; Watson, B.W.; Cleophas, L.G.W.A.; Watson, B.W.

    2004-01-01

    In this paper we present two transformations on automata, called stretching and jamming. These transformations will, under certain conditions, reduce the size of the transition table, and under other conditions reduce the string processing time. Given a finite automaton, we can stretch it by

  18. Stretch-stimulated glucose transport in skeletal muscle is regulated by Rac1.

    Science.gov (United States)

    Sylow, Lykke; Møller, Lisbeth L V; Kleinert, Maximilian; Richter, Erik A; Jensen, Thomas E

    2015-02-01

    Rac1 regulates stretch-stimulated (i.e. mechanical stress) glucose transport in muscle. Actin depolymerization decreases stretch-induced glucose transport in skeletal muscle. Rac1 is a required part of the mechanical stress-component of the contraction-stimulus to glucose transport in skeletal muscle. An alternative to the canonical insulin signalling pathway for glucose transport is muscle contraction/exercise. Mechanical stress is an integrated part of the muscle contraction/relaxation cycle, and passive stretch stimulates muscle glucose transport. However, the signalling mechanism regulating stretch-stimulated glucose transport is not well understood. We recently reported that the actin cytoskeleton regulating GTPase, Rac1, was activated in mouse muscle in response to stretching. Rac1 is a regulator of contraction- and insulin-stimulated glucose transport, however, its role in stretch-stimulated glucose transport and signalling is unknown. We therefore investigated whether stretch-induced glucose transport in skeletal muscle required Rac1 and the actin cytoskeleton. We used muscle-specific inducible Rac1 knockout mice as well as pharmacological inhibitors of Rac1 and the actin cytoskeleton in isolated soleus and extensor digitorum longus muscles. In addition, the role of Rac1 in contraction-stimulated glucose transport during conditions without mechanical load on the muscles was evaluated in loosely hanging muscles and muscles in which cross-bridge formation was blocked by the myosin ATPase inhibitors BTS and Blebbistatin. Knockout as well as pharmacological inhibition of Rac1 reduced stretch-stimulated glucose transport by 30-50% in soleus and extensor digitorum longus muscle. The actin depolymerizing agent latrunculin B similarly decreased glucose transport in response to stretching by 40-50%. Rac1 inhibition reduced contraction-stimulated glucose transport by 30-40% in tension developing muscle but did not affect contraction-stimulated glucose transport in

  19. Magnitude and duration of stretch modulate fibroblast remodeling.

    Science.gov (United States)

    Balestrini, Jenna L; Billiar, Kristen L

    2009-05-01

    Mechanical cues modulate fibroblast tractional forces and remodeling of extracellular matrix in healthy tissue, healing wounds, and engineered matrices. The goal of the present study is to establish dose-response relationships between stretch parameters (magnitude and duration per day) and matrix remodeling metrics (compaction, strength, extensibility, collagen content, contraction, and cellularity). Cyclic equibiaxial stretch of 2-16% was applied to fibroblast-populated fibrin gels for either 6 h or 24 h/day for 8 days. Trends in matrix remodeling metrics as a function of stretch magnitude and duration were analyzed using regression analysis. The compaction and ultimate tensile strength of the tissues increased in a dose-dependent manner with increasing stretch magnitude, yet remained unaffected by the duration in which they were cycled (6 h/day versus 24 h/day). Collagen density increased exponentially as a function of both the magnitude and duration of stretch, with samples stretched for the reduced duration per day having the highest levels of collagen accumulation. Cell number and failure tension were also dependent on both the magnitude and duration of stretch, although stretch-induced increases in these metrics were only present in the samples loaded for 6 h/day. Our results indicate that both the magnitude and the duration per day of stretch are critical parameters in modulating fibroblast remodeling of the extracellular matrix, and that these two factors regulate different aspects of this remodeling. These findings move us one step closer to fully characterizing culture conditions for tissue equivalents, developing improved wound healing treatments and understanding tissue responses to changes in mechanical environments during growth, repair, and disease states.

  20. The effects of stretching on the flexibility, muscle performance and functionality of institutionalized older women

    Directory of Open Access Journals (Sweden)

    D. Gallon

    2011-03-01

    Full Text Available Stretching has been widely used to increase the range of motion. We assessed the effects of a stretching program on muscle-tendon length, flexibility, torque, and activities of daily living of institutionalized older women. Inclusion/exclusion criteria were according to Mini-Mental State Examination (MMSE (>13, Barthel Index (>13 and Lysholm Scoring Scale (>84. Seventeen 67 ± 9 year-old elderly women from a nursing home were divided into 2 groups at random: the control group (CG, N = 9 participated in enjoyable cultural activities; the stretching group (SG, N = 8 performed active stretching of hamstrings, 4 bouts of 1 min each. Both groups were supervised three times per week over a period of 8 weeks. Peak torque was assessed by an isokinetic method. Both groups were evaluated by a photogrammetric method to assess muscle-tendon length of uni- and biarticular hip flexors and hamstring flexibility. All measurements were analyzed before and after 8 weeks by two-way ANOVA with the level of significance set at 5%. Hamstring flexibility increased by 30% in the SG group compared to pre-training (76.5 ± 13.0° vs 59.5 ± 9.0°, P = 0.0002 and by 9.2% compared to the CG group (76.5 ± 13.0° vs 64.0 ± 12.0°, P = 0.0018. Muscle-tendon lengths of hip biarticular flexor muscles (124 ± 6.8° vs 118.3 ± 7.6°, 5.0 ± 7.0%, P = 0.031 and eccentric knee extensor peak torque were decreased in the CG group compared to pre-test values (-49.4 ± 16.8 vs -60.5 ± 18.9 Nm, -15.7 ± 20%, P = 0.048. The stretching program was sufficient to increase hamstring flexibility and a lack of stretching can cause reduction of muscle performance.

  1. Foam topology. Bending versus stretching dominated architectures

    International Nuclear Information System (INIS)

    Deshpande, V.; Ashby, M.; Fleck, N.

    2000-01-01

    Cellular solids can deform by either the bending or stretching of the cell walls. While most cellular solids are bending-dominated, those that are stretching-dominated are much more weight-efficient for structural applications. In this study we have investigated the topological criteria that dictate the deformation mechanism of a cellular solid by analysing the rigidity (or otherwise) of pin-jointed frameworks comprising inextensional struts. We show that the minimum node connectivity for a special class of lattice structured materials to be stretching-dominated is 6 for 2D foams and 12 for 3D foams. Similarly, sandwich plates comprising of truss cores faced with planar trusses require a minimum node connectivity of 9 to undergo stretching-dominated deformation for all loading states. (author)

  2. Cyclic mechanical stretch down-regulates cathelicidin antimicrobial peptide expression and activates a pro-inflammatory response in human bronchial epithelial cells

    Directory of Open Access Journals (Sweden)

    Harpa Karadottir

    2015-12-01

    Full Text Available Mechanical ventilation (MV of patients can cause damage to bronchoalveolar epithelium, leading to a sterile inflammatory response, infection and in severe cases sepsis. Limited knowledge is available on the effects of MV on the innate immune defense system in the human lung. In this study, we demonstrate that cyclic stretch of the human bronchial epithelial cell lines VA10 and BCi NS 1.1 leads to down-regulation of cathelicidin antimicrobial peptide (CAMP gene expression. We show that treatment of VA10 cells with vitamin D3 and/or 4-phenyl butyric acid counteracted cyclic stretch mediated down-regulation of CAMP mRNA and protein expression (LL-37. Further, we observed an increase in pro-inflammatory responses in the VA10 cell line subjected to cyclic stretch. The mRNA expression of the genes encoding pro-inflammatory cytokines IL-8 and IL-1β was increased after cyclic stretching, where as a decrease in gene expression of chemokines IP-10 and RANTES was observed. Cyclic stretch enhanced oxidative stress in the VA10 cells. The mRNA expression of toll-like receptor (TLR 3, TLR5 and TLR8 was reduced, while the gene expression of TLR2 was increased in VA10 cells after cyclic stretch. In conclusion, our in vitro results indicate that cyclic stretch may differentially modulate innate immunity by down-regulation of antimicrobial peptide expression and increase in pro-inflammatory responses.

  3. Sawtooth activity of the ion cloud in an electron-beam ion trap

    International Nuclear Information System (INIS)

    Radtke, R.; Biedermann, C.

    2003-01-01

    The dynamics of an ensemble of highly charged Ar and Ba ions in an electron-beam ion trap (EBIT) was studied by recording time-resolved x-ray spectra emitted from trapped ions. Sawtoothlike signatures manifest in the spectra for a variety of EBIT operating conditions indicating a sudden collapse of the ion inventory in the trap. The collapse occurs on a time scale of approximately 100 ms and the evolution of the sawteeth is very sensitive to parameters such as electron-beam current and axial trap depth. Analysis of the measurements is based on a time-dependent calculation of the trapping process showing that sawtooth activity is caused by the feedback between the low-Z argon and high-Z barium ions. This unexpected behavior demonstrates the importance of nonlinear effects in electron-beam traps containing more than a single ion species

  4. Acute anal stretch inhibits NMDA-dependent pelvic-urethra reflex potentiation via spinal GABAergic inhibition in anesthetized rats.

    Science.gov (United States)

    Chen, Sung-Lang; Huang, Yu-Hui; Kao, Yu-Lin; Chen, Gin-Den; Cheng, Chen-Li; Peng, Hsien-Yu; Liao, Jiuan-Miaw; Huang, Pei-Chen; Tsai, Shih-Jei; Lin, Tzer-Bin

    2008-10-01

    The impact of acute anal stretch on the pelvic-urethra reflex potentiation was examined in urethane-anesthetized rats by recording the external urethra sphincter electromyogram activity evoked by the pelvic afferent stimulation. Test stimulation (1 stimulation/30 s) evoked a baseline reflex activity with a single action potential that was abolished by gallamine (5 mg/kg iv). On the other hand, the repetitive stimulation (1 stimulation/1 s) induced spinal reflex potentiation (SRP) that was attenuated by intrathecal 6-cyano-7-nitroquinoxaline-2,4-dione (a glutamatergic alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionat receptor antagonist, 100 microM, 10 microl) and d-2-amino-5-phosphonovalerate [a glutamatergic N-methyl-D-aspartate (NMDA) antagonist, 100 microM, 10 microl]. Acute anal stretch using a mosquito clamp with a distance of 4 mm exhibited no effect, whereas distances of 8 mm attenuated and 12 mm abolished the repetitive stimulation-induced SRP. Intrathecal NMDA (100 microM, 10 microl) reversed the abolition on SRP caused by anal stretch. On the other hand, pretreated bicuculline [gamma-aminobutyric acid (GABA) A receptor antagonist, 100 microM, 10 microl] but not hydroxysaclofen (GABAB receptor antagonist) counteracted the abolition on the repetitive stimulation-induced SRP caused by the anal stretch. All of the results suggested that anal stretch may be used as an adjunct to assist voiding dysfunction in patients with overactive urethra sphincter and that GABAergic neurotransmission is important in the neural mechanisms underlying external urethra sphincter activity inhibited by anal stretch.

  5. Optofluidic time-stretch microscopy: recent advances

    Science.gov (United States)

    Lei, Cheng; Nitta, Nao; Ozeki, Yasuyuki; Goda, Keisuke

    2018-04-01

    Flow cytometry is an indispensable method for valuable applications in numerous fields such as immunology, pathology, pharmacology, molecular biology, and marine biology. Optofluidic time-stretch microscopy is superior to conventional flow cytometry methods for its capability to acquire high-quality images of single cells at a high-throughput exceeding 10,000 cells per second. This makes it possible to extract copious information from cellular images for accurate cell detection and analysis with the assistance of machine learning. Optofluidic time-stretch microscopy has proven its effectivity in various applications, including microalga-based biofuel production, evaluation of thrombotic disorders, as well as drug screening and discovery. In this review, we discuss the principles and recent advances of optofluidic time-stretch microscopy.

  6. Stretch due to Penile Prosthesis Reservoir Migration

    Directory of Open Access Journals (Sweden)

    E. Baten

    2016-03-01

    Full Text Available A 43-year old patient presented to the emergency department with stretch, due to impossible deflation of the penile prosthesis, 4 years after successful implant. A CT-scan showed migration of the reservoir to the left rectus abdominis muscle. Refilling of the reservoir was inhibited by muscular compression, causing stretch. Removal and replacement of the reservoir was performed, after which the prosthesis was well-functioning again. Migration of the penile prosthesis reservoir is extremely rare but can cause several complications, such as stretch.

  7. Modification of Spastic Stretch Reflexes at the Elbow by Flexion Synergy Expression in Individuals With Chronic Hemiparetic Stroke.

    Science.gov (United States)

    McPherson, Jacob G; Stienen, Arno H; Drogos, Justin M; Dewald, Julius P

    2018-03-01

    To systematically characterize the effect of flexion synergy expression on the manifestation of elbow flexor stretch reflexes poststroke, and to relate these findings to elbow flexor stretch reflexes in individuals without neurologic injury. Controlled cohort study. Academic medical center. Participants (N=20) included individuals with chronic hemiparetic stroke (n=10) and a convenience sample of individuals without neurologic or musculoskeletal injury (n=10). Participants with stroke were interfaced with a robotic device that precisely manipulated flexion synergy expression (by regulating shoulder abduction loading) while delivering controlled elbow extension perturbations over a wide range of velocities. This device was also used to elicit elbow flexor stretch reflexes during volitional elbow flexor activation, both in the cohort of individuals with stroke and in a control cohort. In both cases, the amplitude of volitional elbow flexor preactivation was matched to that generated involuntarily during flexion synergy expression. The amplitude of short- and long-latency stretch reflexes in the biceps brachii, assessed by electromyography, and expressed as a function of background muscle activation and stretch velocity. Increased shoulder abduction loading potentiated elbow flexor stretch reflexes via flexion synergy expression in the paretic arm. Compared with stretch reflexes in individuals without neurologic injury, paretic reflexes were larger at rest but were approximately equal to control muscles at matched levels of preactivation. Because flexion synergy expression modifies stretch reflexes in involved muscles, interventions that reduce flexion synergy expression may confer the added benefit of reducing spasticity during functional use of the arm. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  8. Activation of accelerator construction materials by heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Katrík, P., E-mail: p.katrik@gsi.de [GSI Darmstadt, Planckstrasse 1, D-64291 (Germany); Mustafin, E. [GSI Darmstadt, Planckstrasse 1, D-64291 (Germany); Hoffmann, D.H.H. [TU Darmstadt, Schlossgartenstraße 9, D-64289 (Germany); Pavlovič, M. [FEI STU Bratislava, Ilkovičova 3, SK-81219 (Slovakia); Strašík, I. [GSI Darmstadt, Planckstrasse 1, D-64291 (Germany)

    2015-12-15

    Activation data for an aluminum target irradiated by 200 MeV/u {sup 238}U ion beam are presented in the paper. The target was irradiated in the stacked-foil geometry and analyzed using gamma-ray spectroscopy. The purpose of the experiment was to study the role of primary particles, projectile fragments, and target fragments in the activation process using the depth profiling of residual activity. The study brought information on which particles contribute dominantly to the target activation. The experimental data were compared with the Monte Carlo simulations by the FLUKA 2011.2c.0 code. This study is a part of a research program devoted to activation of accelerator construction materials by high-energy (⩾200 MeV/u) heavy ions at GSI Darmstadt. The experimental data are needed to validate the computer codes used for simulation of interaction of swift heavy ions with matter.

  9. Collisional Activation of Peptide Ions in FT-ICR Mass Spectrometry

    International Nuclear Information System (INIS)

    Laskin, Julia; Futrell, Jean H.

    2003-01-01

    In the last decade characterization of complex molecules, particularly biomolecules became a focus of both fundamental and applied research in mass spectrometry. Most of these studies utilize tandem mass spectrometry (MS/MS) for obtaining structural information for complex molecules. . Tandem mass spectrometry (MS/MS) typically involves the mass selection of a primary ion, its activation by collision or photon excitation, unimolecular decay into fragment ions characteristic of the ion structure and its internal excitation, and mass analysis of the fragment ions. Although the fundamental principles of tandem mass spectrometry of relatively small molecules are fairly well understood, our understanding of the activation and fragmentation of large molecules is much more primitive. For small ions a single energetic collision is sufficient to dissociate the ion but this is not the case for complex molecules. For large ions two fundamental limits severely constrain fragmentation in tandem mass spectrometry. First the center-of-mass collision energy?the absolute upper limit of energy transfer in a collision process?decreases with increasing mass of the projectile ion for fixed ion kinetic energy and neutral mass. Secondly, the dramatic increase in density of states with increasing internal degrees of freedom of the ion decreases the rate of dissociation by many orders of magnitude at a given internal energy. Consequently most practical MS/MS experiments with complex ions involve multiple collision activation (MCA-CID), multi-photon activation or surface-induced dissociation (SID). This review is focused on what has been learned in recent research studies concerned with fundamental aspects of MCA-CID and SID of model peptides with emphasis on experiments carried out using Fourier transform ion cyclotron resonance mass spectrometers (FT-ICR MS). These studies provide the first quantitative comparison of gas-phase multiple-collision activation and SID of peptide ions

  10. 'Collisional Activation of Peptide Ions in FT-ICR Mass Spectrometry'

    International Nuclear Information System (INIS)

    Laskin, Julia; Futrell, Jean H.

    2003-01-01

    In the last decade characterization of complex molecules, particularly biomolecules became a focus of both fundamental and applied research in mass spectrometry. Most of these studies utilize tandem mass spectrometry (MS/MS) for obtaining structural information for complex molecules. . Tandem mass spectrometry (MS/MS) typically involves the mass selection of a primary ion, its activation by collision or photon excitation, unimolecular decay into fragment ions characteristic of the ion structure and its internal excitation, and mass analysis of the fragment ions. Although the fundamental principles of tandem mass spectrometry of relatively small molecules are fairly well understood, our understanding of the activation and fragmentation of large molecules is much more primitive. For small ions a single energetic collision is sufficient to dissociate the ion but this is not the case for complex molecules. For large ions two fundamental limits severely constrain fragmentation in tandem mass spectrometry. First the center-of-mass collision energy?the absolute upper limit of energy transfer in a collision process?decreases with increasing mass of the projectile ion for fixed ion kinetic energy and neutral mass. Secondly, the dramatic increase in density of states with increasing internal degrees of freedom of the ion decreases the rate of dissociation by many orders of magnitude at a given internal energy. Consequently most practical MS/MS experiments with complex ions involve multiple collision activation (MCA-CID), multi-photon activation or surface-induced dissociation (SID). This review is focused on what has been learned in recent research studies concerned with fundamental aspects of MCA-CID and SID of model peptides with emphasis on experiments carried out using Fourier transform ion cyclotron resonance mass spectrometers (FT-ICR MS). These studies provide the first quantitative comparison of gas-phase multiple-collision activation and SID of peptide ions

  11. Effectiveness of Manual Therapy and Stretching for Baseball Players With Shoulder Range of Motion Deficits.

    Science.gov (United States)

    Bailey, Lane B; Thigpen, Charles A; Hawkins, Richard J; Beattie, Paul F; Shanley, Ellen

    Baseball players displaying deficits in shoulder range of motion (ROM) are at increased risk of arm injury. Currently, there is a lack of consensus regarding the best available treatment options to restore shoulder ROM. Instrumented manual therapy with self-stretching will result in clinically significant deficit reductions when compared with self-stretching alone. Controlled laboratory study. Shoulder ROM and humeral torsion were assessed in 60 active baseball players (mean age, 19 ± 2 years) with ROM deficits (nondominant - dominant, ≥15°). Athletes were randomly assigned to receive a single treatment of instrumented manual therapy plus self-stretching (n = 30) or self-stretching only (n = 30). Deficits in internal rotation, horizontal adduction, and total arc of motion were compared between groups immediately before and after a single treatment session. Treatment effectiveness was determined by mean comparison data, and a number-needed-to-treat (NNT) analysis was used for assessing the presence of ROM risk factors. Prior to intervention, players displayed significant ( P < 0.001) dominant-sided deficits in internal rotation (-26°), total arc of motion (-18°), and horizontal adduction (-17°). After the intervention, both groups displayed significant improvements in ROM, with the instrumented manual therapy plus self-stretching group displaying greater increases in internal rotation (+5°, P = 0.010), total arc of motion (+6°, P = 0.010), and horizontal adduction (+7°, P = 0.004) compared with self-stretching alone. For horizontal adduction deficits, the added use of instrumented manual therapy with self-stretching decreased the NNT to 2.2 (95% CI, 2.1-2.4; P = 0.010). Instrumented manual therapy with self-stretching significantly reduces ROM risk factors in baseball players with motion deficits when compared with stretching alone. The added benefits of manual therapy may help to reduce ROM deficits in clinical scenarios where stretching alone is

  12. Effects of Combining Running and Practical Duration Stretching on Proprioceptive Skills of National Sprinters.

    Science.gov (United States)

    Romero-Franco, Natalia; Párraga-Montilla, Juan Antonio; Molina-Flores, Enrique M; Jiménez-Reyes, Pedro

    2018-06-01

    Romero-Franco, N, Párraga-Montilla, JA, Molina-Flores, EM, and Jiménez-Reyes, P. Effects of combining running and practical duration stretching on proprioceptive skills of national sprinters. J Strength Cond Res XX(X): 000-000, 2018-Practical duration stretching after aerobic activities is a recommended component of the first part of warm-up because of its effects on performance. However, its effects on proprioceptive skills are unknown. This study aimed to analyze the effects of running and practical duration static stretching (SS) and dynamic stretching (DS) on postural balance and the joint position sense (JPS) of national sprinters. Thirty-two national sprinters were randomly classified into a SS group (n = 11), DS group (n = 11), or control group (n = 10). Static stretching performed 5 minutes of running and short-duration (20 seconds) static stretches; DS performed 5 minutes of running and short-duration dynamic (20 seconds) stretches; and the control group performed 5 minutes of running. Before and after the intervention, unipedal static postural balance and knee JPS were evaluated. Static stretching exhibited a more centralized center of pressure in the medial-lateral plane for unipedal static postural balance in right-leg support after stretching (p = 0.005, d = 1.24), whereas DS showed values further from the center after stretching for the same unipedal support compared with baseline (p = 0.042, d = 0.49), and the control group remained stable (p > 0.05). Joint position sense did not show significant differences in any group (p > 0.05). In conclusion, combining running and practical duration SS may be beneficial for right-leg postural stabilization, whereas DS may be partly and slightly deleterious. Both SS and DS combined with running and running alone have neutral effects on knee JPS. Sports professionals should consider running and practical duration SS as part of the warm-up of sprinters to partly improve unipedal static postural balance.

  13. Mechanical stretching for tissue engineering: two-dimensional and three-dimensional constructs.

    Science.gov (United States)

    Riehl, Brandon D; Park, Jae-Hong; Kwon, Il Keun; Lim, Jung Yul

    2012-08-01

    Mechanical cell stretching may be an attractive strategy for the tissue engineering of mechanically functional tissues. It has been demonstrated that cell growth and differentiation can be guided by cell stretch with minimal help from soluble factors and engineered tissues that are mechanically stretched in bioreactors may have superior organization, functionality, and strength compared with unstretched counterparts. This review explores recent studies on cell stretching in both two-dimensional (2D) and three-dimensional (3D) setups focusing on the applications of stretch stimulation as a tool for controlling cell orientation, growth, gene expression, lineage commitment, and differentiation and for achieving successful tissue engineering of mechanically functional tissues, including cardiac, muscle, vasculature, ligament, tendon, bone, and so on. Custom stretching devices and lab-specific mechanical bioreactors are described with a discussion on capabilities and limitations. While stretch mechanotransduction pathways have been examined using 2D stretch, studying such pathways in physiologically relevant 3D environments may be required to understand how cells direct tissue development under stretch. Cell stretch study using 3D milieus may also help to develop tissue-specific stretch regimens optimized with biochemical feedback, which once developed will provide optimal tissue engineering protocols.

  14. Immediate effects of different types of stretching exercises on badminton jump smash.

    Science.gov (United States)

    Jang, Hwi S; Kim, Daeho; Park, Jihong

    2018-01-01

    Since different types of stretching exercises may alter athletic performance, we compared the effects of three types of stretching exercises on badminton jump smash. Sixteen male collegiate badminton players performed one of three different stretching exercises in a counterbalanced order on different days. Static stretching had seven typical stretches, while dynamic stretching involved nine dynamic movements, and resistance dynamic stretching was performed with weighted vests and dumbbells. Before and after each stretching exercise, subjects performed 20 trials of jump smashes. Dependent measurements were the jump heights during jump smashes, velocities of jump-smashed shuttlecocks, and drop point of jump-smashed shuttlecocks. To test the effects of each stretching exercise, we performed mixed model ANOVAs and calculated between-time effect sizes (ES). Each stretching exercise improved the jump heights during jump smashes (type main effect: F(2,75)=1.19, P=0.31; static stretching: 22.1%, Pjump-smashed shuttlecocks (type main effect: F(2,75)=2.18, P=0.12; static stretching: 5.7%, P=0.61, ES=0.39; dynamic stretching: 3.4%, P=0.94, ES=0.28; resistance dynamic stretching: 6%, P=0.50, ES=0.66). However, there were no differences among the stretching exercises for any measurement. The drop point of jump-smashed shuttlecocks did not change (interaction: F(2,75)=0.88, P=0.42). All stretching exercises improved badminton jump smash performance, but we could not determine the best protocol. Since badminton requires high-speed movement and explosive force, we suggest performing dynamic stretching or resistance dynamic stretching.

  15. Impact of the configuration of stretching and ocean-atmosphere coupling on tropical cyclone activity in the variable-resolution GCM ARPEGE

    Energy Technology Data Exchange (ETDEWEB)

    Daloz, Anne Sophie; Chauvin, Fabrice [CNRM-GAME, Groupe de Modelisation Grande Echelle et Climat, Toulouse Cedex 1 (France); Roux, Frank [Universite de Toulouse, Laboratoire d' Aerologie, Centre National de la Recherche Scientifique, Toulouse (France)

    2012-11-15

    This study starts by investigating the impact of the configuration of the variable-resolution atmospheric grid on tropical cyclone (TC) activity. The French atmospheric general circulation model ARPEGE, the grid of which is rotated and stretched over the North Atlantic basin, was used with prescribed sea surface temperatures. The study clearly shows that changing the position of the stretching pole strongly modifies the representation of TC activity over the North Atlantic basin. A pole in the centre of the North Atlantic basin provides the best representation of the TC activity for this region. In a second part, the variable-resolution climate model ARPEGE is coupled with the European oceanic global climate model NEMO in order to study the impact of ocean-atmosphere coupling on TC activity over the North Atlantic basin. Two pre-industrial runs, a coupled simulation and a simulation forced by the sea surface temperatures from the coupled one, are compared. The results show that the coupled simulation is more active in the Caribbean Sea and the Gulf of Mexico while the forced simulation is more active over eastern Florida and the eastern Atlantic. The difference in the distribution of TC activity is certainly linked with the location of TC genesis. In the forced simulation, tropical cyclogenesis is closer to the west African coast than in the coupled simulation. Moreover, the difference in TC activity over the eastern Atlantic seems to be related to two different mechanisms: the difference in African easterly wave activity over the west of Africa and the cooling produced, in the coupled simulation, by African easterly waves over the eastern Atlantic. Finally, the last part studies the impact of changing the frequency of ocean-atmosphere coupling on Atlantic TC activity. Increasing the frequency of coupling decreases the density of TC activity over the North Atlantic basin. However, it does not modify the spatial distribution of the TC activity. TC rainfalls are

  16. Retosiban Prevents Stretch-Induced Human Myometrial Contractility and Delays Labor in Cynomolgus Monkeys.

    Science.gov (United States)

    Aye, Irving L M H; Moraitis, Alexandros A; Stanislaus, Dinesh; Charnock-Jones, D Stephen; Smith, Gordon C S

    2018-03-01

    Stretch of the myometrium promotes its contractility and is believed to contribute to the control of parturition at term and to the increased risk of preterm birth in multiple pregnancies. To determine the effects of the putative oxytocin receptor (OTR) inverse agonist retosiban on (1) the contractility of human myometrial explants and (2) labor in nonhuman primates. Human myometrial biopsies were obtained at planned term cesarean, and explants were exposed to stretch in the presence and absence of a range of drugs, including retosiban. The in vivo effects of retosiban were determined in cynomolgus monkeys. Prolonged mechanical stretch promoted myometrial extracellular signal-regulated kinase (ERK)1/2 phosphorylation. Moreover, stretch-induced stimulation of myometrial contractility was prevented by ERK1/2 inhibitors. Retosiban (10 nM) prevented stretch-induced stimulation of myometrial contractility and phosphorylation of ERK1/2. Moreover, the inhibitory effect of retosiban on stretch-induced ERK1/2 phosphorylation was prevented by coincubation with a 100-fold excess of a peptide OTR antagonist, atosiban. Compared with vehicle-treated cynomolgus monkeys, treatment with oral retosiban (100 to 150 days of gestational age) reduced the risk of spontaneous delivery (hazard ratio = 0.07, 95% confidence interval 0.01 to 0.60, P = 0.015). The OTR acts as a uterine mechanosensor, whereby stretch increases myometrial contractility through agonist-free activation of the OTR. Retosiban prevents this through inverse agonism of the OTR and, in vivo, reduced the likelihood of spontaneous labor in nonhuman primates. We hypothesize that retosiban may be an effective preventative treatment of preterm birth in high-risk multiple pregnancies, an area of unmet clinical need.

  17. Synthesis and characterization of metal ion-imprinted polymers

    Indian Academy of Sciences (India)

    2018-03-29

    Mar 29, 2018 ... polymers (CPs) were synthesized through the same method without using metal ion. Characterization of the ... tizanidine obtained from MMIP-NPs showed that signifi- .... C=C vari- able alkene stretching band at 1636 cm. −1.

  18. The effects of an active-assisted stretching program on functional performance in elderly persons: A pilot study

    Directory of Open Access Journals (Sweden)

    Damian C Stanziano

    2009-03-01

    Full Text Available Damian C Stanziano1,2, Bernard A Roos1,2,3,4, Arlette C Perry1, Shenghan Lai5, Joseph F Signorile1,31Department of Exercise and Sport Sciences, University of Miami, Coral Gables, FL, USA; 2Stein Gerontological Institute, Miami Jewish Home and Hospital, Miami, FL, USA; 3Geriatric Research, Education, and Clinical Center, Miami VA Healthcare System, Miami, FL, USA; 4Departments of Medicine and Neurology, University of Miami Miller School of Medicine, Miami, FL, USA; 5Departments of Pathology and Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA Abstract: This study examined the impact of an eight-week active-assisted (AA stretching program on functionality, mobility, power, and range of motion (ROM in elderly residents of a residential retirement community. Seventeen volunteers (4 male, 13 female; 88.8 ± 5.36 years were randomly assigned to an AA or control group. The AA group performed 10 different AA stretches targeting the major joints of the body twice weekly for eight weeks. Controls attended classes requiring limited physical activity. All participants were assessed using four fl exibility and six functional tests, one week before and after the eight-week training period. A fully randomized repeated-measures ANCOVA with pretest scores as a covariate was used to detect differences between groups across time. The AA group demonstrated significant increases in ROM for most of the joints evaluated (p < 0.05 and significant increases in all performance measures (p < 0.05. Controls showed no improvements in functional or ROM measures (α = 0.05. Additionally, the AA group showed significantly better performance outcomes across the training period than controls. We conclude that our eight-week flexibility program effectively reduces age-related losses in ROM and improves functional performance in elderly persons with insufficient physical reserves to perform higher-intensity exercises.Keywords: proprioceptive neuromuscular

  19. Lattice stretching bistability and dynamic heterogeneity

    DEFF Research Database (Denmark)

    Christiansen, Peter Leth; Savin, A. V.; Zolotaryuk, A. V.

    2012-01-01

    A simple one-dimensional lattice model is suggested to describe the experimentally observed plateau in force-stretching diagrams for some macromolecules. This chain model involves the nearest-neighbor interaction of a Morse-like potential (required to have a saturation branch) and a harmonic second......-neighbor coupling. Under an external stretching applied to the chain ends, the intersite Morse-like potential results in the appearance of a double-well potential within each chain monomer, whereas the interaction between the second neighbors provides a homogeneous bistable (degenerate) ground state, at least...... stretched bonds with a double-well potential. This case allows us to explain the existence of a plateau in the force-extension diagram for DNA and α-helix protein. Finally, the soliton dynamics are studied in detail....

  20. Comparing the effects of 3 weeks of upper-body vibration training, vibration and stretching, and stretching alone on shoulder flexibility in college-aged men.

    Science.gov (United States)

    Ferguson, Steven L; Kim, Eonho; Seo, Dong-Il; Bemben, Michael G

    2013-12-01

    This study compared the effects of 3 weeks of upper-body vibration training, vibration and stretching, and stretching alone on shoulder flexibility in college-aged men. Twenty-one men were randomly assigned to vibration-stretching (VS; n = 8), vibration only (VO; n = 6), or stretching only (SO; n = 7) groups that trained 3 times per week for 3 weeks. All 3 groups performed 9 total sets of 30-second stretches. The VS group performed four 30-second upper-body vibration exercises and five 30-second upper-body stretching exercises. The VO group performed nine 30-second upper-body vibration exercises. The SO group performed nine 30-second upper-body stretching exercises. Shoulder flexion (SF), shoulder extension (SE), and shoulder transverse extension (STE) were assessed by a Leighton Flexometer and back scratch tests bilaterally (BSR, BSL) were measured via tape measure. A 1-way analysis of variance (ANOVA) evaluated groups at baseline and a 2-way repeated-measures ANOVA evaluated the interventions over time. At baseline, there were no group differences in age, height, or weight. There was a significant (p alone or combined with stretching, is a viable alternative to a standard stretching routine when attempting to increase shoulder flexibility. Adding vibration training to a flexibility regimen may improve the likelihood of regularly performing flexibility sessions because of increased variety.

  1. Comparison of the Effects of Local Cryotherapy and Passive Cross-Body Stretch on Extensibility in Subjects with Posterior Shoulder Tightness

    Directory of Open Access Journals (Sweden)

    Kyue-nam Park

    2014-03-01

    Full Text Available The objective was to compare the immediate effects of local cryotherapy (LC and passive cross-body stretch on the extensibility of the posterior shoulder muscle in individuals with posterior shoulder tightness. Eighty-seven healthy subjects with a between-shoulder difference in internal rotation (IR range of motion (ROM greater than 10° were randomly divided into three groups: LC group, stretching group, and control group (n = 29 in each group. Subjects in the LC group received LC on infraspinatus and posterior deltoid muscles and subjects in the stretching group performed passive cross-body stretch. Stretch sensation was measured at the end range of passive IR and horizontal adduction (HA using numerical rating scale, and the pressure pain threshold (PPT at the infraspinatus and posterior deltoid muscles was measured using pressure algometry. Passive and active ROM of IR and HA of the glenohumeral joint were measured using an inclinometer. All measurements were performed at pre-intervention, post- intervention, and 10-min follow-up. Stretch sensation was significantly decreased and PPT was significantly increased in the LC and stretching groups at post-intervention, and these effects were maintained at 10-min follow-up, compared to the control group. Both the LC group and stretching group had a significantly greater increase in passive and active ROM of IR and HA, compared to the control group at post-intervention and 10-min follow-up. However, there were no significant differences in stretch sensation, PPT, or ROM of IR and HA between the LC group and stretching group. LC can be used to decrease the stretch sensation and increase PPT and ROM of IR and HA as much as a stretching exercise. LC could be an alternative method for increasing the restricted ROM of glenohumeral IR and HA for individuals with posterior shoulder tightness, especially for patients and sports players who have severe stretching discomfort.

  2. Multiple refraction switches realized by stretching elastomeric scatterers in sonic crystals

    Directory of Open Access Journals (Sweden)

    Y. Huang

    2015-02-01

    Full Text Available The effect of out-of-plane pre-stretch on the 2D sonic crystal with stretchable elastomeric scatterers is explored. The hyperelastic scatterers are characterized by a compressible neo-Hookean model. The Dirichlet-to-Neumann (DtN map is adopted to obtain the band structure and equi-frequency contours. We focus on the first passband and find that a variety of switching functionalities for refraction behaviors can be realized in selected frequencies under a specific pre-stretch range. These refraction switches enable an active control of wave propagation and are applicable in advanced technologies where switchable and multifunctional sonic crystals are required.

  3. Passive Stretch Induces Structural and Functional Maturation of Engineered Heart Muscle as Predicted by Computational Modeling.

    Science.gov (United States)

    Abilez, Oscar J; Tzatzalos, Evangeline; Yang, Huaxiao; Zhao, Ming-Tao; Jung, Gwanghyun; Zöllner, Alexander M; Tiburcy, Malte; Riegler, Johannes; Matsa, Elena; Shukla, Praveen; Zhuge, Yan; Chour, Tony; Chen, Vincent C; Burridge, Paul W; Karakikes, Ioannis; Kuhl, Ellen; Bernstein, Daniel; Couture, Larry A; Gold, Joseph D; Zimmermann, Wolfram H; Wu, Joseph C

    2018-02-01

    The ability to differentiate human pluripotent stem cells (hPSCs) into cardiomyocytes (CMs) makes them an attractive source for repairing injured myocardium, disease modeling, and drug testing. Although current differentiation protocols yield hPSC-CMs to >90% efficiency, hPSC-CMs exhibit immature characteristics. With the goal of overcoming this limitation, we tested the effects of varying passive stretch on engineered heart muscle (EHM) structural and functional maturation, guided by computational modeling. Human embryonic stem cells (hESCs, H7 line) or human induced pluripotent stem cells (IMR-90 line) were differentiated to hPSC-derived cardiomyocytes (hPSC-CMs) in vitro using a small molecule based protocol. hPSC-CMs were characterized by troponin + flow cytometry as well as electrophysiological measurements. Afterwards, 1.2 × 10 6 hPSC-CMs were mixed with 0.4 × 10 6 human fibroblasts (IMR-90 line) (3:1 ratio) and type-I collagen. The blend was cast into custom-made 12-mm long polydimethylsiloxane reservoirs to vary nominal passive stretch of EHMs to 5, 7, or 9 mm. EHM characteristics were monitored for up to 50 days, with EHMs having a passive stretch of 7 mm giving the most consistent formation. Based on our initial macroscopic observations of EHM formation, we created a computational model that predicts the stress distribution throughout EHMs, which is a function of cellular composition, cellular ratio, and geometry. Based on this predictive modeling, we show cell alignment by immunohistochemistry and coordinated calcium waves by calcium imaging. Furthermore, coordinated calcium waves and mechanical contractions were apparent throughout entire EHMs. The stiffness and active forces of hPSC-derived EHMs are comparable with rat neonatal cardiomyocyte-derived EHMs. Three-dimensional EHMs display increased expression of mature cardiomyocyte genes including sarcomeric protein troponin-T, calcium and potassium ion channels, β-adrenergic receptors, and t

  4. Regulation of inward rectifier potassium current ionic channel remodeling by AT1 -Calcineurin-NFAT signaling pathway in stretch-induced hypertrophic atrial myocytes.

    Science.gov (United States)

    He, Jionghong; Xu, Yanan; Yang, Long; Xia, Guiling; Deng, Na; Yang, Yongyao; Tian, Ye; Fu, Zenan; Huang, Yongqi

    2018-05-02

    Previous studies have shown that the activation of angiotensin II receptor type I (AT 1 ) is attributed to cardiac remodeling stimulated by increased heart load, and that it is followed by the activation of the calcineurin-nuclear factor of activated T-cells (NFAT) signaling pathway. Additionally, AT 1 has been found to be a regulator of cardiocyte ionic channel remodeling, and calcineurin-NFAT signals participate in the regulation of cardiocyte ionic channel expression. A hypothesis therefore follows that stretch stimulation may regulate cardiocyte ionic channel remodeling by activating the AT 1 -calcineurin-NFAT pathway. Here, we investigated the role of the AT 1 -calcineurin-NFAT pathway in the remodeling of inward rectifier potassium (I k1 ) channel, in addition to its role in changing action potential, in stretch-induced hypertrophic atrial myocytes of neonatal rats. Our results showed that increased stretch significantly led to atrial myocytes hypertrophy; it also increased the activity of calcineurin enzymatic activity, which was subsequently attenuated by telmisartan or cyclosporine-A. The level of NFAT 3 protein in nuclear extracts, the mRNA and protein expression of Kir2.1 in whole cell extracts, and the density of I k1 were noticeably increased in stretched samples. Stretch stimulation significantly shortened the action potential duration (APD) of repolarization at the 50% and 90% level. Telmisartan, cyclosporine-A, and 11R-VIVIT attenuated stretch-induced alterations in the levels of NFAT 3 , mRNA and protein expression of Kir2.1, the density of I k1 , and the APD. Our findings suggest that the AT 1 -calcineurin-NFAT signaling pathway played an important role in regulating I k1 channel remodeling and APD change in stretch-induced hypertrophic atrial myocytes of neonatal rats. This article is protected by copyright. All rights reserved.

  5. Cell swelling activates K+ and Cl- channels as well as nonselective, stretch-activated cation channels in ehrlich ascites tumor cells

    DEFF Research Database (Denmark)

    Christensen, Ove; Hoffmann, Else Kay

    1992-01-01

    Cell-attached patch-clamp recordings from Ehrlich ascites tumor cells reveal nonselective cation channels which are activated by mechanical deformation of the membrane. These channels are seen when suction is applied to the patch pipette or after osmotic cell swelling. The channel activation does...... system. In isolated insideout patches a Ca2+-dependent, inwardly rectifying K+ channel is demonstrated. The single-channel conductance recorded with symmetrical 150 mm K+ solutions is for inward current estimated at 40 pS and for outward current at 15 pS. Activation of the K+ channel takes place after...... by membrane stretch (suction). The time-averaged number of open K+ channels during regulatory volume decrease (RVD) can be estimated at 40 per cell. The number of open K+ channels following addition of Ca2+ plus ionophore A23187 was estimated at 250 per cell. Concurrent activation in cell-attached patches...

  6. Acute effects of short and long duration dynamic stretching protocols on muscle strength

    Directory of Open Access Journals (Sweden)

    Christiano Francisco dos Santos

    Full Text Available Objective Compare the acute effects of dynamic stretching protocols on the isokinetic performance of the quadriceps and hamstring muscles at two velocities in adult males.Methodology Included the participation of 14 males (21 ± 2.6 years; 178 ± 0.4 cm; 73.2 ± 20.9 kg were assessed using an isokinetic dynamometer before and after following a short or long-duration dynamic stretching protocol or a control protocol. The results were assessed by a two-way ANOVA and a Scheffé’s post hoc test at a 5% significance level.Results No difference was found in the variables assessed at 180°/s after LDDS. At 60°/s, LDDS reduced the power of the knee flexors. The control protocol reduced the power of the knee flexors and increased the power of the extensors. At 60°/s, the work of the knee flexors exhibited a reduction after LDDS. The control protocol resulted in a reduction in the work of the flexors. The peak torque angle exhibited a reduction in the extensors and flexors after LDDS and SDDS.Conclusion Dynamic stretching did not cause any change in the peak torque, which points to its possible use in activities involving velocity and muscle strength. The executing dynamic stretching before physical activities such as running and high-intensity sports might be beneficial by promoting increases in heart rate and in body temperature.

  7. BSDB: the Biomolecule Stretching Database

    Science.gov (United States)

    Cieplak, Marek; Sikora, Mateusz; Sulkowska, Joanna I.; Witkowski, Bartlomiej

    2011-03-01

    Despite more than a decade of experiments on single biomolecule manipulation, mechanical properties of only several scores of proteins have been measured. A characteristic scale of the force of resistance to stretching, Fmax , has been found to range between ~ 10 and 480 pN. The Biomolecule Stretching Data Base (BSDB) described here provides information about expected values of Fmax for, currently, 17 134 proteins. The values and other characteristics of the unfolding proces, including the nature of identified mechanical clamps, are available at www://info.ifpan.edu.pl/BSDB/. They have been obtained through simulations within a structure-based model which correlates satisfactorily with the available experimental data on stretching. BSDB also lists experimental data and results of the existing all-atom simulations. The database offers a Protein-Data-Bank-wide guide to mechano-stability of proteins. Its description is provided by a forthcoming Nucleic Acids Research paper. Supported by EC FUNMOL project FP7-NMP-2007-SMALL-1, and European Regional Development Fund: Innovative Economy (POIG.01.01.02-00-008/08).

  8. Active stabilization of ion trap radiofrequency potentials

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, K. G.; Wong-Campos, J. D.; Restelli, A.; Landsman, K. A.; Neyenhuis, B.; Mizrahi, J.; Monroe, C. [Joint Quantum Institute and University of Maryland Department of Physics, College Park, Maryland 20742 (United States)

    2016-05-15

    We actively stabilize the harmonic oscillation frequency of a laser-cooled atomic ion confined in a radiofrequency (rf) Paul trap by sampling and rectifying the high voltage rf applied to the trap electrodes. We are able to stabilize the 1 MHz atomic oscillation frequency to be better than 10 Hz or 10 ppm. This represents a suppression of ambient noise on the rf circuit by 34 dB. This technique could impact the sensitivity of ion trap mass spectrometry and the fidelity of quantum operations in ion trap quantum information applications.

  9. The stretch reflex and the contributions of C David Marsden

    Directory of Open Access Journals (Sweden)

    Kalyan B Bhattacharyya

    2017-01-01

    Full Text Available The stretch reflex or myotatic reflex refers to the contraction of a muscle in response to its passive stretching by increasing its contractility as long as the stretch is within physiological limits. For ages, it was thought that the stretch reflex was of short latency and it was synonymous with the tendon reflex, subserving the same spinal reflex arc. However, disparities in the status of the two reflexes in certain clinical situations led Marsden and his collaborators to carry out a series of experiments that helped to establish that the two reflexes had different pathways. That the two reflexes are dissociated has been proved by the fact that the stretch reflex and the tendon reflex, elicited by stimulation of the same muscle, have different latencies, that of the stretch reflex being considerably longer. They hypothesized that the stretch reflex had a transcortical course before it reached the spinal motor neurons for final firing. Additionally, the phenomenon of stimulus-sensitive cortical myoclonus lent further evidence to the presence of the transcortical loop where the EEG correlate preceded the EMG discharge. This concept has been worked out by later neurologists in great detail , and the general consensus is that indeed, the stretch reflex is endowed with a conspicuous transcortical component.

  10. Randomized Trial of Modified Stretching Exercise Program for Menstrual Low Back Pain.

    Science.gov (United States)

    Chen, Huei-Mein; Hu, Hsou-Mei

    2018-03-01

    This study aimed to examine the effectiveness of a modified stretching exercise program on young women with menstrual low back pain. Overall, 127 young women were randomly assigned to the experimental ( n = 63) and control ( n = 64) groups. The experimental group followed the modified stretching exercise program, whereas the control group performed their usual activities. At 1, 4, 8, and 12 months, the experimental group had significantly lower scores on the visual analog scale for pain (95% confidence interval [CI] = [0.73, 1.96]; p < .05) and the Oswestry Low Back Pain Disability Questionnaire than the control group (95% CI = [0.68, 2.03]; p < .001). At 12 months, the experimental group showed significantly higher exercise self-efficacy than the control group (95% CI = [-6.87, 0.62]; p = .003). These findings can be used to enhance self-care capabilities by using the modified stretching exercise program for young women with menstrual low back pain.

  11. Summary of the stretching tectonics research

    International Nuclear Information System (INIS)

    Yu Dagan

    1994-01-01

    The rise of stretching tectonics is established on the basis of recent structural geology theory, the establishment of metamorphic nucleus complex structural model on one hand plays an important promoting art to the development of stretching structure, on the other hand, it needs constant supplement and perfection in practice. Metamorphic nucleus complex is the carrier of comparatively deep geological information in vertical section of the crust and has wide distribution in the era of south China. Evidently, it can be taken as the 'key' to understanding the deep and studying the basement, Strengthening the study will play the important promoting role to the deep prospecting. The study of stretching tectonics is not only limited within the range of structure and metamorphism, but combine with the studies of sedimentation, magmatism, metamorphism and mineralization, thus form a new field of tectonic geology of self-developing system

  12. A Japanese Stretching Intervention Can Modify Lumbar Lordosis Curvature.

    Science.gov (United States)

    Kadono, Norio; Tsuchiya, Kazushi; Uematsu, Azusa; Kamoshita, Hiroshi; Kiryu, Kazunori; Hortobágyi, Tibor; Suzuki, Shuji

    2017-08-01

    Eighteen healthy male adults were assigned to either an intervention or control group. Isogai dynamic therapy (IDT) is one of Japanese stretching interventions and has been practiced for over 70 years. However, its scientific quantitative evidence remains unestablished. The objective of this study was to determine whether IDT could modify lumbar curvature in healthy young adults compared with stretching exercises used currently in clinical practice. None of previous studies have provided data that conventional stretching interventions could modify spinal curvatures. However, this study provides the first evidence that a specific form of a Japanese stretching intervention can acutely modify the spinal curvatures. We compared the effects of IDT, a Japanese stretching intervention (n=9 males), with a conventional stretching routine (n=9 males) used widely in clinics to modify pelvic tilt and lumbar lordosis (LL) angle. We measured thoracic kyphosis (TK) and LL angles 3 times during erect standing using the Spinal Mouse before and after each intervention. IDT consisted of: (1) hip joint correction, (2) pelvic tilt correction, (3) lumbar alignment correction, and (4) squat exercise stretch. The control group performed hamstring stretches while (1) standing and (2) sitting. IDT increased LL angle to 25.1 degrees (±5.9) from 21.2 degrees (±6.9) (P=0.047) without changing TK angle (pretest: 36.8 degrees [±6.9]; posttest: 36.1 degrees [±6.5]) (P=0.572). The control group showed no changes in TK (P=0.819) and LL angles (P=0.744). IDT can thus be effective for increasing LL angle, hence anterior pelvic tilt. Such modifications could ameliorate low back pain and improve mobility in old adults with an unfavorable pelvic position.

  13. The influence of stretching on tensile strength and solubility of poly(vinyl alcohol) fibres

    NARCIS (Netherlands)

    Heikens, D.; Bleijenberg, A.C.A.M.; Hoppenbrouwers, J.J.M.; Barentsen, W.M.

    1971-01-01

    The strength of wet-spun poly(vinyl alcohol) (pva) fibres is given as function of bath-stretching, wet-stretching and hot-stretching. In the two equations derived for strength of wet-stretching and hot-stretching the complex influence of the bath-stretching and hot-stretching is demonstrated. The

  14. Mechanical stretching effect on the actuator performance of cellulose electroactive paper

    International Nuclear Information System (INIS)

    Kim, Jung-Hwan; Yun, Ki-Ju; Kim, Joo-Hyung; Kim, Jaehwan

    2009-01-01

    The mechanical stretching effect on the actuating performance of electroactive cellulose paper (EAPap) was studied. A lattice elongation of cellulose fibrils due to in-plane tensile stress along the stretching direction was observed by the x-ray diffraction method. The shrinkage of the fibril diameter as a function of stretching ratio was confirmed by surface and cross-sectional images. While the actuator performance in terms of bending displacement decreased as the stretching ratio increased, the resonance frequency linearly increased as the stretching ratio increased, which was compared with the theoretical frequency data found from a cantilever beam model. The actuator efficiency was evaluated from the electrical input power consumption and the mechanical output power of an EAPap actuator. It was revealed that the stretching process increased the electro-mechanical efficiency of the EAPap actuator. The mechanism of the influence of the stretching effect on the performance of an EAPap actuator is discussed

  15. Spontaneous bending of pre-stretched bilayers.

    Science.gov (United States)

    DeSimone, Antonio

    2018-01-01

    We discuss spontaneously bent configurations of pre-stretched bilayer sheets that can be obtained by tuning the pre-stretches in the two layers. The two-dimensional nonlinear plate model we use for this purpose is an adaptation of the one recently obtained for thin sheets of nematic elastomers, by means of a rigorous dimensional reduction argument based on the theory of Gamma-convergence (Agostiniani and DeSimone in Meccanica. doi:10.1007/s11012-017-0630-4, 2017, Math Mech Solids. doi:10.1177/1081286517699991, arXiv:1509.07003, 2017). We argue that pre-stretched bilayer sheets provide us with an interesting model system to study shape programming and morphing of surfaces in other, more complex systems, where spontaneous deformations are induced by swelling due to the absorption of a liquid, phase transformations, thermal or electro-magnetic stimuli. These include bio-mimetic structures inspired by biological systems from both the plant and the animal kingdoms.

  16. Optofluidic time-stretch quantitative phase microscopy.

    Science.gov (United States)

    Guo, Baoshan; Lei, Cheng; Wu, Yi; Kobayashi, Hirofumi; Ito, Takuro; Yalikun, Yaxiaer; Lee, Sangwook; Isozaki, Akihiro; Li, Ming; Jiang, Yiyue; Yasumoto, Atsushi; Di Carlo, Dino; Tanaka, Yo; Yatomi, Yutaka; Ozeki, Yasuyuki; Goda, Keisuke

    2018-03-01

    Innovations in optical microscopy have opened new windows onto scientific research, industrial quality control, and medical practice over the last few decades. One of such innovations is optofluidic time-stretch quantitative phase microscopy - an emerging method for high-throughput quantitative phase imaging that builds on the interference between temporally stretched signal and reference pulses by using dispersive properties of light in both spatial and temporal domains in an interferometric configuration on a microfluidic platform. It achieves the continuous acquisition of both intensity and phase images with a high throughput of more than 10,000 particles or cells per second by overcoming speed limitations that exist in conventional quantitative phase imaging methods. Applications enabled by such capabilities are versatile and include characterization of cancer cells and microalgal cultures. In this paper, we review the principles and applications of optofluidic time-stretch quantitative phase microscopy and discuss its future perspective. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Yeast enolase: mechanism of activation by metal ions.

    Science.gov (United States)

    Brewer, J M

    1981-01-01

    Yeast enolase as prepared by current procedures is inherently chemically homogeneous, though deamidation and partial denaturation can produce electrophoretically distinct forms. A true isozyme of the enzyme exists but does not survive the purification procedure. The chemical sequence for both has been established. The enzyme behaves in solution like a compact, nearly spherical molecule of moderate hydration. Strong intramolecular forces maintain the structure of the individual subunits. The enzyme as isolated is dimeric. If dissociated in the presence of magnesium ions and substrate, then the subunits are active, but if the dissociation occurs in the absence of metal ions, they are inactive until they have reassociated and undergone a first order "annealing" process. Magnesium (II) enhances association. The interaction between the subunits is hydrophobic in character. The enzyme can bind up to 2 mol of most metal ions in "conformational" sites which then allows up to 2 mol of substrate or some substrate analogue to bind. This is not sufficient for catalysis, but conformational metal ions do more than just allow substrate binding. A change in the environment of the metal ions occurs on substrate or substrate analogue binding. There is an absolute correlation between the occurrence of a structural change undergone by the 3-amino analogue of phosphoenolpyruvate and whether the metal ions produce any level of enzymatic activity. For catalysis, two more moles of metal ions, called "catalytic", must bind. There is evidence that the enzymatic reaction involves a carbanion mechanism. It is likely that two more moles of metal ion can bind which inhibit the reaction. The requirement for 2 mol of metal ion per subunit which contribute in different ways to catalysis is exhibited by a number of other enzymes.

  18. ACUTE EFFECTS OF THREE DIFFERENT STRETCHING PROTOCOLS ON THE WINGATE TEST PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Bruno L. Franco

    2012-03-01

    Full Text Available The purpose of this study was to examine the acute effects of different stretching exercises on the performance of the traditional Wingate test (WT. Fifteen male participants performed five WT; one for familiarization (FT, and the remaining four after no stretching (NS, static stretching (SS, dynamic stretching (DS, and proprioceptive neuromuscular facilitation (PNF. Stretches were targeted for the hamstrings, quadriceps, and calf muscles. Peak power (PP, mean power (MP, and the time to reach PP (TP were calculated. The MP was significantly lower when comparing the DS (7.7 ± 0.9 W/kg to the PNF (7.3 ± 0.9 W/kg condition (p < 0.05. For PP, significant differences were observed between more comparisons, with PNF stretching providing the lowest result. A consistent increase of TP was observed after all stretching exercises when compared to NS. The results suggest the type of stretching, or no stretching, should be considered by those who seek higher performance and practice sports that use maximal anaerobic power.

  19. Eliminating electromechanical instability in dielectric elastomers by employing pre-stretch

    International Nuclear Information System (INIS)

    Jiang, Liang; Jerrams, Stephen; Betts, Anthony; Kennedy, David

    2016-01-01

    Electromechanical instability (EMI) is one of most common failure modes for dielectric elastomers (DEs). It has been reported that pre-stretching a DE sample can suppress EMI due to strain stiffening taking place for larger strains and a higher elastic modulus are achieved at high stretch ratios when a voltage is applied to the material. In this work, the influence of equi-biaxial stretch on DE secant modulus was studied using VHB 4910 and silicone rubber (SR) composites containing barium titanate (BaTiO 3 , BT) particles and also dopamine coated BT (DP-BT) particles. The investigation of equi-biaxial deformation and EMI failure for VHB 4910 was undertaken by introducing a voltage-stretch function. The results showed that EMI was suppressed by equi-biaxial pre-stretch for all the DEs fabricated and tested. The stiffening properties of the DE materials were also studied with respect to the secant modulus. Furthermore, a voltage-induced strain of above 200% was achieved for the polyacrylate film by applying a pre-stretch ratio of 2.0 without EMI occurring. However, a maximum voltage-induced strain in the polyacrylate film of 78% was obtained by the SR/20 wt% DP-BT composite for a lower applied pre-stretch ratio of 1.6 and again EMI was eliminated. (paper)

  20. Epithelial cell stretching and luminal acidification lead to a retarded development of stria vascularis and deafness in mice lacking pendrin.

    Directory of Open Access Journals (Sweden)

    Hyoung-Mi Kim

    2011-03-01

    Full Text Available Loss-of-function mutations of SLC26A4/pendrin are among the most prevalent causes of deafness. Deafness and vestibular dysfunction in the corresponding mouse model, Slc26a4(-/-, are associated with an enlargement and acidification of the membranous labyrinth. Here we relate the onset of expression of the HCO(3 (- transporter pendrin to the luminal pH and to enlargement-associated epithelial cell stretching. We determined expression with immunocytochemistry, cell stretching by digital morphometry and pH with double-barreled ion-selective electrodes. Pendrin was first expressed in the endolymphatic sac at embryonic day (E 11.5, in the cochlear hook-region at E13.5, in the utricle and saccule at E14.5, in ampullae at E16.5, and in the upper turn of the cochlea at E17.5. Epithelial cell stretching in Slc26a4(-/- mice began at E14.5. pH changes occurred first in the cochlea at E15.5 and in the endolymphatic sac at E17.5. At postnatal day 2, stria vascularis, outer sulcus and Reissner's membrane epithelial cells, and utricular and saccular transitional cells were stretched, whereas sensory cells in the cochlea, utricle and saccule did not differ between Slc26a4(+/- and Slc26a4(-/- mice. Structural development of stria vascularis, including vascularization, was retarded in Slc26a4(-/- mice. In conclusion, the data demonstrate that the enlargement and stretching of non-sensory epithelial cells precedes luminal acidification in the cochlea and the endolymphatic sac. Stretching and luminal acidification may alter cell-to-cell communication and lead to the observed retarded development of stria vascularis, which may be an important step on the path to deafness in Slc26a4(-/- mice, and possibly in humans, lacking functional pendrin expression.

  1. Acute effect of different stretching methods on isometric muscle strength

    Directory of Open Access Journals (Sweden)

    Gabriel Vasconcellos de Lima Costa e Silva

    2014-03-01

    This study investigated the acute effect of static stretching methods (SS and proprioceptive neuromuscular facilitation (PNF on the static muscle strength (SMS. Eleven young male subjects with strength training experience, performed 3 tests with a 48h interval between them, randomly selected, where each one subject carried out all procedures: a hand grip without stretching; b hand grip preceded by static stretching of wrist flexors muscles; c hand grip preceded by PNF stretching of wrist flexors muscles. The Shapiro-Wilk test verified the normality of data, and a one-way ANOVA with repeated measures, followed by Tukey’s post hoc test, evaluated the differences between the groups. The significance was set at p 0.05. In conclusion, both stretching methods had caused negative effects on isometric strength, reducing its levels.

  2. Cyclic Mechanical Stretch Up-regulates Hepatoma-Derived Growth Factor Expression in Cultured Rat Aortic Smooth Muscle Cells.

    Science.gov (United States)

    Kao, Ying-Hsien; Chen, Po-Han; Sun, Cheuk-Kwan; Chang, Yo-Chen; Lin, Yu-Chun; Tsai, Ming-Shian; Lee, Po-Huang; Cheng, Cheng-I

    2018-02-21

    Hepatoma-derived growth factor (HDGF) is a potent mitogen for vascular smooth muscle cells (SMCs) during embryogenesis and injury repair of vessel walls. Whether mechanical stimuli modulate HDGF expression remains unknown. This study aimed at investigating whether cyclic mechanical stretch plays a regulatory role in HDGF expression and regenerative cytokine production in aortic SMCs. A SMC cell line was grown on a silicone-based elastomer chamber with extracellular matrix coatings (either type I collagen or fibronectin) and received cyclic and uni-axial mechanical stretches with 10% deformation at frequency 1 Hz. Morphological observation showed that fibronectin coating provided better cell adhesion and spreading and that consecutive 6 hours of cyclic mechanical stretch remarkably induced reorientation and realignment of SMCs. Western blotting detection demonstrated that continuous mechanical stimuli elicited up-regulation of HDGF and PCNA, a cell proliferative marker. Signal kinetic profiling study indicated that cyclic mechanical stretch induced signaling activity in RhoA/ROCK and PI3K/Akt cascades. Kinase inhibition study further showed that blockade of PI3K activity suppressed the stretch-induced TNF-a, whereas RhoA/ROCK inhibition significantly blunted the IL-6 production and HDGF over-expression. Moreover, siRNA-mediated HDGF gene silencing significantly suppressed constitutive expression of IL-6, but not TNF-α, in SMCs. These findings support the role of HDGF in maintaining vascular expression of IL-6, which has been regarded a crucial regenerative factor for acute vascular injury. In conclusion, cyclic mechanical stretch may maintain constitutive expression of HDGF in vascular walls and be regarded an important biophysical regulator in vascular regeneration. ©2018 The Author(s).

  3. Guidelines for Stretch Flanging Advanced High Strength Steels

    International Nuclear Information System (INIS)

    Sriram, S.; Chintamani, J.

    2005-01-01

    Advanced High Strength Steels (AHSS) are currently being considered for use in closure and structural panels in the automotive industry because of their high potential for affordable weight reduction and improved performance. AHSS such as dual phase steels are currently being used in some vehicle platforms. From a manufacturing perspective, stretch flanging during stamping is an important deformation mode requiring careful consideration of geometry and the die process. This paper presents some geometric and process guidelines for stretch flanging AHSS. Hole expansion experiments were conducted to determine the failure limit for a sheared edge condition. Effects of punching clearance, prestrain and prior strain path on hole expansion were explored in these experiments. In addition, dynamic explicit FE calculations using LS-DYNA were also conducted for a typical stretch flange by varying some key geometric parameters. The experimental and FEA results were then analyzed to yield process and geometric guidelines to enable successful stretch flanging of AHSS

  4. Adsorption efficiencies of calcium (II ion and iron (II ion on activated carbon obtained from pericarp of rubber fruit

    Directory of Open Access Journals (Sweden)

    Orawan Sirichote

    2008-03-01

    Full Text Available Determination of adsorption efficiencies of activated carbon from pericarp of rubber fruit for calcium (II ion and iron (II ion has been performed by flowing the solutions of these ions through a column of activated carbon. The weights of activated carbon in 500 mL buret column (diameter 3.2 cm for flowing calcium (II ion and iron (II ion solutions were 15 g and 10 g, respectively. The initial concentration of calcium ion was prepared to be about eight times more diluted than the true concentration found in the groundwater from the lower part of southern Thailand. Calcium (II ion concentrations were analysed by EDTA titration and its initial concentration was found to be 23.55 ppm. With a flow rate of 26 mL/min, the adsorption efficiency was 11.4 % with passed through volume 4.75 L. Iron (II ion concentrations were analysed by spectrophotometric method; its initial concentration was found to be 1.5565 ppm. At a flow rate of 22 mL/min, the adsorption efficiency was 0.42 % with passed through volume of 34.0 L.

  5. Stretching skeletal muscle: chronic muscle lengthening through sarcomerogenesis.

    Directory of Open Access Journals (Sweden)

    Alexander M Zöllner

    Full Text Available Skeletal muscle responds to passive overstretch through sarcomerogenesis, the creation and serial deposition of new sarcomere units. Sarcomerogenesis is critical to muscle function: It gradually re-positions the muscle back into its optimal operating regime. Animal models of immobilization, limb lengthening, and tendon transfer have provided significant insight into muscle adaptation in vivo. Yet, to date, there is no mathematical model that allows us to predict how skeletal muscle adapts to mechanical stretch in silico. Here we propose a novel mechanistic model for chronic longitudinal muscle growth in response to passive mechanical stretch. We characterize growth through a single scalar-valued internal variable, the serial sarcomere number. Sarcomerogenesis, the evolution of this variable, is driven by the elastic mechanical stretch. To analyze realistic three-dimensional muscle geometries, we embed our model into a nonlinear finite element framework. In a chronic limb lengthening study with a muscle stretch of 1.14, the model predicts an acute sarcomere lengthening from 3.09[Formula: see text]m to 3.51[Formula: see text]m, and a chronic gradual return to the initial sarcomere length within two weeks. Compared to the experiment, the acute model error was 0.00% by design of the model; the chronic model error was 2.13%, which lies within the rage of the experimental standard deviation. Our model explains, from a mechanistic point of view, why gradual multi-step muscle lengthening is less invasive than single-step lengthening. It also explains regional variations in sarcomere length, shorter close to and longer away from the muscle-tendon interface. Once calibrated with a richer data set, our model may help surgeons to prevent muscle overstretch and make informed decisions about optimal stretch increments, stretch timing, and stretch amplitudes. We anticipate our study to open new avenues in orthopedic and reconstructive surgery and enhance

  6. Static versus dynamic stretching: Chronic and acute effects on Agility performance in male athletes

    Directory of Open Access Journals (Sweden)

    Iman Taleb-Beydokhti

    2015-04-01

    Full Text Available The purpose of this study was to examine the acute and chronic effects of static & dynamic stretching protocols on agility performance in amateur handball players. Twelve male amateur handball players (age: 19.66 ± 4.02 years old, weight: 67.12 ± 8.73 kg, height: 178.29 ± 7.81 cm participated in this study. The athletes were randomly allocated into two groups: static stretching or dynamic stretching. All of them underwent an initial evaluation and were submitted to the first intervention. They were evaluated once again and at the end of 12 training sessions. The results analyzed using ANOVA showed that there was a significant decrease in agility time after dynamic stretching against no stretching in the acute phase; but, there were no significant differences between dynamic stretching and no stretching in the chronic phase. In addition, there was no a significant difference between no stretching and static stretching in the acute phase; while, There was a significant decrease in agility time after no stretching against static stretching in the chronic phase. It was concluded that acute dynamic stretching as part of a warm-up may decrease agility time performance, whereas static stretching seems to increase agility time performance. Consequently, the acute and chronic static stretching should not be performed prior to an explosive athletic performance. Keywords: Handball, Agility, Dynamic stretching, Static stretching

  7. Intrinsic ankle stiffness during standing increases with ankle torque and passive stretch of the Achilles tendon

    Science.gov (United States)

    Gill, Jaspret

    2018-01-01

    Individuals may stand with a range of ankle angles. Furthermore, shoes or floor surfaces may elevate or depress their heels. Here we ask how these situations impact ankle stiffness and balance. We performed two studies (each with 10 participants) in which the triceps surae, Achilles tendon and aponeurosis were stretched either passively, by rotating the support surface, or actively by leaning forward. Participants stood freely on footplates which could rotate around the ankle joint axis. Brief, small stiffness-measuring perturbations (torque or passive stretch. Sway was minimally affected by stretch or lean, suggesting that this did not underlie the alterations in stiffness. In quiet stance, maximum ankle stiffness is limited by the tendon. As tendon strain increases, it becomes stiffer, causing an increase in overall ankle stiffness, which would explain the effects of leaning. However, stiffness also increased considerably with passive stretch, despite a modest torque increase. We discuss possible explanations for this increase. PMID:29558469

  8. Filament stretching rheometer: inertia compensation revisited

    DEFF Research Database (Denmark)

    Szabo, Peter; McKinley, Gareth H.

    2003-01-01

    The necessary inertia compensation used in the force balance for the filament stretching rheometer is derived for an arbitrary frame of reference. This enables the force balance to be used to extract correctly the extensional viscosity from measurements of the tensile force at either end of the e......The necessary inertia compensation used in the force balance for the filament stretching rheometer is derived for an arbitrary frame of reference. This enables the force balance to be used to extract correctly the extensional viscosity from measurements of the tensile force at either end...

  9. Stretching single fibrin fibers hampers their lysis.

    Science.gov (United States)

    Li, Wei; Lucioni, Tomas; Li, Rongzhong; Bonin, Keith; Cho, Samuel S; Guthold, Martin

    2017-09-15

    Blood clots, whose main structural component is a mesh of microscopic fibrin fibers, experience mechanical strain from blood flow, clot retraction and interactions with platelets and other cells. We developed a transparent, striated and highly stretchable substrate made from fugitive glue (a styrenic block copolymer) to investigate how mechanical strain affects lysis of single, suspended fibrin fibers. In this suspended fiber assay, lysis manifested itself by fiber elongation, thickening (disassembly), fraying and collapse. Stretching single fibrin fibers significantly hampered their lysis. This effect was seen in uncrosslinked and crosslinked fibers. Crosslinking (without stretching) also hampered single fiber lysis. Our data suggest that strain is a novel mechanosensitive factor that regulates blood clot dissolution (fibrinolysis) at the single fiber level. At the molecular level of single fibrin molecules, strain may distort, or hinder access to, plasmin cleavage sites and thereby hamper lysis. Fibrin fibers are the major structural component of a blood clot. We developed a highly stretchable substrate made from fugitive glue and a suspended fibrin fiber lysis assay to investigate the effect of stretching on single fibrin fibers lysis. The key findings from our experiments are: 1) Fibers thicken and elongate upon lysis; 2) stretching strongly reduces lysis; 3) this effect is more pronounced for uncrosslinked fibers; and 4) stretching fibers has a similar effect on reducing lysis as crosslinking fibers. At the molecular level, strain may distort plasmin cleavage sites, or restrict access to those sites. Our results suggest that strain may be a novel mechanobiological factor that regulates fibrinolysis. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. A thermal extrapolation method for the effective temperatures and internal energies of activated ions

    Science.gov (United States)

    Meot-Ner (Mautner), Michael; Somogyi, Árpád

    2007-11-01

    The internal energies of dissociating ions, activated chemically or collisionally, can be estimated using the kinetics of thermal dissociation. The thermal Arrhenius parameters can be combined with the observed dissociation rate of the activated ions using kdiss = Athermalexp(-Ea,thermal/RTeff). This Arrhenius-type relation yields the effective temperature, Teff, at which the ions would dissociate thermally at the same rate, or yield the same product distributions, as the activated ions. In turn, Teff is used to calculate the internal energy of the ions and the energy deposited by the activation process. The method yields an energy deposition efficiency of 10% for a chemical ionization proton transfer reaction and 8-26% for the surface collisions of various peptide ions. Internal energies of ions activated by chemical ionization or by gas phase collisions, and of ions produced by desorption methods such as fast atom bombardment, can be also evaluated. Thermal extrapolation is especially useful for ion-molecule reaction products and for biological ions, where other methods to evaluate internal energies are laborious or unavailable.

  11. Characterizing the stretch-flangeability of hot rolled multiphase steels

    International Nuclear Information System (INIS)

    Pathak, N.; Butcher, C.; Worswick, M.; Gao, J.

    2013-01-01

    Hole expansion tests are commonly used to characterize the edge stretching limit of a material. Traditionally, a conical punch is used to expand a punched hole until a through-thickness crack appears. However, many automotive stretch flanging operations involve in-plane edge stretching that is best captured with a flat punch. In this paper, hole expansion tests were carried out on two different hot-rolled multiphase steels using both flat and conical punches. The fracture mechanisms for both punch types were investigated using scanning electron microscopy (SEM)

  12. Enhanced Age Strengthening of Mg-Nd-Zn-Zr Alloy via Pre-Stretching

    Directory of Open Access Journals (Sweden)

    Erjun Guo

    2016-08-01

    Full Text Available Pre-stretching was carried out to modify the microstructure of Mg-Nd-Zn-Zr alloy to enhance its age strengthening. The results indicated that more heterogeneous nucleation sites can be provided by the high density of dislocations caused by the plastic pre-stretching deformation, as well as speeding up the growth rate of precipitates. Comparison of microstructure in non-pre-stretched specimens after artificial aging showed that pre-stretched specimens exhibited a higher number density of precipitates. The fine and coarse plate-shaped precipitates were found in the matrix. Due to an increase in the number density of precipitates, the dislocation slipping during the deformation process is effectively hindered, and the matrix is strengthened. The yield strength stabilizes at 4% pre-stretching condition, and then the evolution is stable within the error bars. The 8% pre-stretched specimens can achieve an ultimate tensile strength of 297 MPa. However, further pre-stretching strains after 8% cannot supply any increase in strength. Tensile fracture surfaces of specimens subjected to pre-stretching strain mainly exhibit a trans-granular cleavage fracture. This work indicated that a small amount of pre-stretching strain can further increase strength of alloy and also effectively enhance the formation of precipitates, which can expand the application fields of this alloy.

  13. Duration Dependent Effect of Static Stretching on Quadriceps and Hamstring Muscle Force

    Directory of Open Access Journals (Sweden)

    Leyla Alizadeh Ebadi

    2018-03-01

    Full Text Available The aim of this study was to determine the acute effect of static stretching on hamstring and quadriceps muscles’ isokinetic strength when applied for various durations to elite athletes, to investigate the effect of different static stretching durations on isokinetic strength, and finally to determine the optimal stretching duration. Fifteen elite male athletes from two different sport branches (10 football and five basketball participated in this study. Experimental protocol was designed as 17 repetitive static stretching exercises for hamstring and quadriceps muscle groups according to the indicated experimental protocols; ((A 5 min jogging; (B 5 min jogging followed by 15 s static stretching; (C 5 min jogging followed by 30 s static stretching; (D 5 min jogging, followed by static stretching for 45 s. Immediately after each protocol, an isokinetic strength test consisting of five repetitions at 60°/s speed and 20 repetitions at 180°/s speed was recorded for the right leg by the Isomed 2000 device. Friedman variance analysis test was employed for data analysis. According to the analyzes, it was observed that 5 min jogging and 15 s stretching exercises increased the isokinetic strength, whereas 30 and 45 s stretching exercises caused a decrease.

  14. The influence of foot position on stretching of the plantar fascia.

    Science.gov (United States)

    Flanigan, Ryan M; Nawoczenski, Deborah A; Chen, Linlin; Wu, Hulin; DiGiovanni, Benedict F

    2007-07-01

    A recent study found nonweightbearing stretching exercises specific to the plantar fascia to be superior to the standard program of weightbearing Achilles tendon-stretching exercises in patients with chronic plantar fasciitis. The present study used a cadaver model to demonstrate the influence of foot and ankle position on stretching of the plantar fascia. Twelve fresh-frozen lower-leg specimens were tested in 15 different configurations representing various combinations of ankle and metatarsophalangeal (MTP) joint dorsiflexion, midtarsal transverse plane abduction and adduction, and forefoot varus and valgus. Measurements were recorded by a differential variable reluctance transducer (DVRT) implanted into the medial band of the plantar fascia, and primary measurement was a percent deformation of the plantar fascia (stretch) with respect to a reference position (90 degrees ankle dorsiflexion, 0 degrees midtarsal and forefoot orientation, and 0 degrees MTP dorsiflexion). Ankle and MTP joint dorsiflexion produced a significant increase (14.91%) in stretch compared to the position of either ankle dorsiflexion alone (9.31% increase, p plantar fascia tissue-specific stretching exercises and lends support to the use of ankle and MTP joint dorsiflexion when employing stretching protocols for nonoperative treatment in patients with chronic proximal plantar fasciitis.

  15. Respiratory muscle stretch gymnastics in patients with post coronary artery bypass grafting pain : Impact on respiratory muscle function, activity, mood and exercise capacity

    OpenAIRE

    會田, 信子; 渋谷, 優子; 吉野, 克樹; Komoda, Masaji; 井上, 智子

    2002-01-01

    A new rehabilitation (New-RH) program including respiratory muscle stretch gymnastics (RMSG) was developed to alleviate post-coronary artery bypass grafting pain (PCP). Effects on respiratory muscle function, pain, activities of daily living (ADL), mood and exercise capacity were investigated. Subjects were 16 consecutive patients undergoing median full sternotomy coronary artery bypass grafting (CABG), and were randomly divided into equal New-RH (S-group) and conventional therapy (C-group) g...

  16. Experimental Study of the Effects of EIPA, Losartan, and BQ-123 on Electrophysiological Changes Induced by Myocardial Stretch.

    Science.gov (United States)

    Chorro, Francisco J; Canto, Irene Del; Brines, Laia; Such-Miquel, Luis; Calvo, Conrado; Soler, Carlos; Zarzoso, Manuel; Trapero, Isabel; Tormos, Álvaro; Such, Luis

    2015-12-01

    Mechanical response to myocardial stretch has been explained by various mechanisms, which include Na(+)/H(+) exchanger activation by autocrine-paracrine system activity. Drug-induced changes were analyzed to investigate the role of these mechanisms in the electrophysiological responses to acute myocardial stretch. Multiple epicardial electrodes and mapping techniques were used to analyze changes in ventricular fibrillation induced by acute myocardial stretch in isolated perfused rabbit hearts. Four series were studied: control (n = 9); during perfusion with the angiotensin receptor blocker losartan (1 μM, n = 8); during perfusion with the endothelin A receptor blocker BQ-123 (0.1 μM, n = 9), and during perfusion with the Na(+)/H(+) exchanger inhibitor EIPA (5-[N-ethyl-N-isopropyl]-amiloride) (1 μM, n = 9). EIPA attenuated the increase in the dominant frequency of stretch-induced fibrillation (control=40.4%; losartan=36% [not significant]; BQ-123=46% [not significant]; and EIPA=22% [PII receptor antagonist losartan and the endothelin A receptor blocker BQ-123 did not modify these effects. Copyright © 2014 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  17. Statistical study of ion pitch-angle distributions

    International Nuclear Information System (INIS)

    Sibeck, D.G.; Mcentire, R.W.; Lui, A.T.Y.; Krimigis, S.M.

    1987-01-01

    Preliminary results of a statistical study of energetic (34-50 keV) ion pitch-angle distributions (PADs) within 9 Re of earth provide evidence for an orderly pattern consistent with both drift-shell splitting and magnetopause shadowing. Normal ion PADs dominate the dayside and inner magnetosphere. Butterfly PADs typically occur in a narrow belt stretching from dusk to dawn through midnight, where they approach within 6 Re of earth. While those ion butterfly PADs that typically occur on closed drift paths are mainly caused by drift-shell splitting, there is also evidence for magnetopause shadowing in observations of more frequent butterfly PAD occurrence in the outer magnetosphere near dawn than dusk. Isotropic and gradient boundary PADs terminate the tailward extent of the butterfly ion PAD belt. 9 references

  18. Interset stretching does not influence the kinematic profile of consecutive bench-press sets.

    Science.gov (United States)

    García-López, David; Izquierdo, Mikel; Rodríguez, Sergio; González-Calvo, Gustavo; Sainz, Nuria; Abadía, Olaia; Herrero, Azael J

    2010-05-01

    This study was undertaken to examine the role of interset stretching on the time course of acceleration portion AP and mean velocity profile during the concentric phase of 2 bench-press sets with a submaximal load (60% of the 1 repetition maximum). Twenty-five college students carried out, in 3 different days, 2 consecutive bench-press sets leading to failure, performing between sets static stretching, ballistic stretching, or no stretching. Acceleration portion and lifting velocity patterns of the concentric phase were not altered during the second set, regardless of the stretching treatment performed. However, when velocity was expressed in absolute terms, static stretching reduced significantly (p velocity during the second set compared to the first one. Therefore, if maintenance of a high absolute velocity over consecutive sets is important for training-related adaptations, static stretching should be avoided or replaced by ballistic stretching.

  19. Comparison of the effects of hamstring stretching using proprioceptive neuromuscular facilitation with prior application of cryotherapy or ultrasound therapy

    Science.gov (United States)

    Magalhães, Francisco Elezier Xavier; Junior, Arlindo Rodrigues de Mesquita; Meneses, Harnold’s Tyson de Sousa; Moreira dos Santos, Rayele Pricila; Rodrigues, Ezaine Costa; Gouveia, Samara Sousa Vasconcelos; Gouveia, Guilherme Pertinni de Morais; Orsini, Marco; Bastos, Victor Hugo do Vale; Machado, Dionis de Castro Dutra

    2015-01-01

    [Purpose] Stretching using proprioceptive neuromuscular facilitation involve physiological reflex mechanisms through submaximal contraction of agonists which activate Golgi organ, promoting the relaxation reflex. The aim of this study was to evaluate the effects of proprioceptive neuromuscular facilitation alone and with prior application of cryotherapy and thermotherapy on hamstring stretching. [Subjects and Methods] The sample comprised of 32 young subjects with hamstring retraction of the right limb. The subjects were randomly allocated to four groups: the control, flexibility PNF, flexibility PNF associated with cryotherapy, flexibility PNF in association with ultrasound therapy. [Results] After 12 stretching sessions, experimental groups showed significant improvements compared to the control group. Moreover, we did not find any significant differences among the experimental groups indicating PNF stretching alone elicits similar results to PNF stretching with prior administration of cryotherapy or thermotherapy. [Conclusion] PNF without other therapy may be a more practical and less expensive choice for clinical care. PMID:26157261

  20. Numerical and experimental investigation of stretch-flange forming

    International Nuclear Information System (INIS)

    Cinotti, N.; Shakeri, H.R.; Worswick, M.J.; Truttmann, S.; Finn, M.J.; Jain, M.; Lloyd, D.J.

    2000-01-01

    Simulations of stretch flange forming operations are undertaken using explicit dynamic finite element calculations incorporating anisotropic yield criteria. Simple circular stretch flanges utilizing a single circular punch to expand the cut-out were considered. Experiments were performed using 101mm diameter tooling on AA 5754 and AA 5182 aluminum alloy sheets, with varying cut-out and gauge size. Metallurgical aspects of the formability of these aluminum alloys and damage mechanisms were studied. Both optical and Scanning Electron Microscopy (SEM) were used to study ductile fracture behaviour in these materials during the forming operation. The limit strains obtained from the circular stretch flange formability experiments are compared to forming limit diagram (FLD) data from hemispherical dome specimens. (author)

  1. Effectiveness of Plantar Fascia-Specific Stretching Exercises in Plantar Fasciitis

    Directory of Open Access Journals (Sweden)

    Devrim Özer

    2015-12-01

    Full Text Available Aim: Plantar fasciitis (PF is a painful and disabling disease that affects the quality of life and daily activities of patients and it is the most common cause of heel pain in adults. In primary treatment, conservative treatment is suggested and different conservative options are described in the literature. In our study, we evaluated the efficacy of plantar fascia-specific stretching exercises in the treatment of PF. Methods: Twenty-nine feet - 21 patients with the mean age of 49.3 years were included in the study. The mean length of follow-up was 19.8 months and the mean length of exercise period was 4.94 months. Non-weight bearing plantar fascia-specific stretching exercise was done twice daily, for 10 times at each session. In addition to exercises, silicone heel pad and nonsteroidal anti-inflammatory drugs (NSAID were added. Visual analog scale (VAS was used for pain evaluation. Results: Full recovery detected in 15 feet in 10 patients (52% and a decrease in pain was seen in 10 feet in 8 patients (34%. There was no response in 4 feet in 3 patients (14%. There was statistically significant difference between pre-treatment and post-treatment visual analog scale scores (p=0.0001. Conclusion: Plantar fascia-specific stretching exercise is an effective treatment option in PF.

  2. Convective Heat Transfer Scaling of Ignition Delay and Burning Rate with Heat Flux and Stretch Rate in the Equivalent Low Stretch Apparatus

    Science.gov (United States)

    Olson, Sandra

    2011-01-01

    To better evaluate the buoyant contributions to the convective cooling (or heating) inherent in normal-gravity material flammability test methods, we derive a convective heat transfer correlation that can be used to account for the forced convective stretch effects on the net radiant heat flux for both ignition delay time and burning rate. The Equivalent Low Stretch Apparatus (ELSA) uses an inverted cone heater to minimize buoyant effects while at the same time providing a forced stagnation flow on the sample, which ignites and burns as a ceiling fire. Ignition delay and burning rate data is correlated with incident heat flux and convective heat transfer and compared to results from other test methods and fuel geometries using similarity to determine the equivalent stretch rates and thus convective cooling (or heating) rates for those geometries. With this correlation methodology, buoyant effects inherent in normal gravity material flammability test methods can be estimated, to better apply the test results to low stretch environments relevant to spacecraft material selection.

  3. Tuning Piezo ion channels to detect molecular-scale movements relevant for fine touch

    Science.gov (United States)

    Poole, Kate; Herget, Regina; Lapatsina, Liudmila; Ngo, Ha-Duong; Lewin, Gary R.

    2014-01-01

    In sensory neurons, mechanotransduction is sensitive, fast and requires mechanosensitive ion channels. Here we develop a new method to directly monitor mechanotransduction at defined regions of the cell-substrate interface. We show that molecular-scale (~13 nm) displacements are sufficient to gate mechanosensitive currents in mouse touch receptors. Using neurons from knockout mice, we show that displacement thresholds increase by one order of magnitude in the absence of stomatin-like protein 3 (STOML3). Piezo1 is the founding member of a class of mammalian stretch-activated ion channels, and we show that STOML3, but not other stomatin-domain proteins, brings the activation threshold for Piezo1 and Piezo2 currents down to ~10 nm. Structure–function experiments localize the Piezo modulatory activity of STOML3 to the stomatin domain, and higher-order scaffolds are a prerequisite for function. STOML3 is the first potent modulator of Piezo channels that tunes the sensitivity of mechanically gated channels to detect molecular-scale stimuli relevant for fine touch. PMID:24662763

  4. Effect of spinal manipulative therapy with stretching compared with stretching alone on full-swing performance of golf players: a randomized pilot trial☆

    Science.gov (United States)

    Costa, Soraya M.V.; Chibana, Yumi E.T.; Giavarotti, Leandro; Compagnoni, Débora S.; Shiono, Adriana H.; Satie, Janice; Bracher, Eduardo S.B.

    2009-01-01

    Abstract Objective There has been a steady growth of chiropractic treatment using spinal manipulative therapy (SMT) that aims to increase the performance of athletes in various sports. This study evaluates the effect of SMT by chiropractors on the performance of golf players. Methods Golfers of 2 golf clubs in São Paulo, Brazil, participated in this study. They were randomized to 1 of 2 groups: Group I received a stretch program, and group II received a stretch program in addition to SMT. Participants in both groups performed the same standardized stretching program. Spinal manipulative therapy to dysfunctional spinal segments was performed on group II only. All golfers performed 3 full-swing maneuvers. Ball range was considered as the average distance for the 3 shots. Treatment was performed after the initial measurement, and the same maneuvers were performed afterward. Each participant repeated these procedures for a 4-week period. Student t test, Mann-Whitney nonparametric test, and 1-way analysis of variance for repeated measures with significance level of 5% were used to analyze the study. Results Forty-three golfers completed the protocol. Twenty participants were allocated to group I and 23 to group II. Average age, handicap, and initial swing were comparable. No improvement of full-swing performance was observed during the 4 sessions on group I (stretch only). An improvement was observed at the fourth session of group II (P = .005); when comparing the posttreatment, group II had statistical significance at all phases (P = .003). Conclusions Chiropractic SMT in association with muscle stretching may be associated with an improvement of full-swing performance when compared with muscle stretching alone. PMID:19948307

  5. Investigating the role of musical genre in human perception of music stretching resistance

    OpenAIRE

    Chen, Jun; Wang, Chaokun

    2017-01-01

    To stretch a music piece to a given length is a common demand in people's daily lives, e.g., in audio-video synchronization and animation production. However, it is not always guaranteed that the stretched music piece is acceptable for general audience since music stretching suffers from people's perceptual artefacts. Over-stretching a music piece will make it uncomfortable for human psychoacoustic hearing. The research on music stretching resistance attempts to estimate the maximum stretchab...

  6. Equibiaxial cyclic stretch stimulates fibroblasts to rapidly remodel fibrin.

    Science.gov (United States)

    Balestrini, Jenna Leigh; Billiar, Kristen Lawrence

    2006-01-01

    Understanding the effects of the mechanical environment on wound healing is critical for developing more effective treatments to reduce scar formation and contracture. The aim of this study was to investigate the effects of dynamic mechanical stretch on cell-mediated early wound remodeling independent of matrix alignment which obscures more subtle remodeling mechanisms. Cyclic equibiaxial stretch (16% stretch at 0.2 Hz) was applied to fibroblast-populated fibrin gel in vitro wound models for eight days. Compaction, density, tensile strength, and collagen content were quantified as functional measures of remodeling. Stretched samples were approximately ten times stronger, eight-fold more dense, and eight times thinner than statically cultured samples. These changes were accompanied by a 15% increase in net collagen but no significant differences in cell number or viability. When collagen crosslinking was inhibited in stretched samples, the extensibility increased and the strength decreased. The apparent weakening was due to a reduction in compaction rather than a decrease in ability of the tissue to withstand tensile forces. Interestingly, inhibiting collagen crosslinking had no measurable effects on the statically cultured samples. These results indicate that amplified cell-mediated compaction and even a slight addition in collagen content play substantial roles in mechanically induced wound strengthening. These findings increase our understanding of how mechanical forces guide the healing response in skin, and the methods employed in this study may also prove valuable tools for investigating stretch-induced remodeling of other planar connective tissues and for creating mechanically robust engineered tissues.

  7. To Stretch and Search for Better Ways

    Science.gov (United States)

    Moore, John W.

    2000-06-01

    Ambassadors. The response has been wonderful. Many people are willing and eager to show others what JCE has to offer and encourage them to subscribe. The program began in the latter half of 1999, and there were 37 Journal Ambassadors by year's end. Some are located as far away as South America and Europe, and requests for information packets for meetings and workshops now arrive several times a week. We thank everyone who has been involved in this program for getting it off to a great start. Our authors and reviewers actively search for better ways to teach chemistry and for better ways to communicate to other teachers what they have learned. This enriches their own classes first and then a much wider audience. Others have volunteered to help make JCE articles easier to find and more accessible on the Web. The ACS student affiliates at one college have taken on the project of assigning keywords to articles published in some of the years before 1995. We will add these to the JCE Index online, making it an even more effective means for finding articles on specified topics. There are many possibilities for collaboration with JCE. If you would like to contribute to an ongoing project or would like to initiate a new one, please let us know. We welcome anyone who would like to help us make this Journal better. It is important that students learn how to stretch and search for better ways. This will not happen unless we challenge them within a humane and supportive learning environment. We should expect more than memorization or unthinking application of algorithmic solutions to exercises. We should provide means by which those who do not succeed at first can try again and again. And we should provide an intellectual scaffold for those whose climb toward understanding is difficult. These are not easy goals to achieve, but the more we try and the more we communicate with others who are attempting similar tasks, the more likely we are to be successful. Most important of all is that

  8. ADSORPTION OF STRONTIUM IONS FROM WATER ON MODIFIED ACTIVATED CARBONS

    Directory of Open Access Journals (Sweden)

    Mihai Ciobanu

    2016-12-01

    Full Text Available Adsorption of strontium ions from aqueous solutions on active carbons CAN-7 and oxidized CAN-8 has been studied. It has been found that allure of the adsorption isotherms for both studied active carbons are practically identical. Studies have shown that the adsorption isotherms for strontium ions from aqueous solutions are well described by the Langmuir and Dubinin-Radushkevich equations, respectively. The surface heterogeneity of activated carbons CAN-7 and oxidized CAN-8 has been assessed by using Freundlich equation.

  9. Impact of mechanical stretch on the cell behaviors of bone and surrounding tissues

    Directory of Open Access Journals (Sweden)

    Hye-Sun Yu

    2016-02-01

    Full Text Available Mechanical loading is recognized to play an important role in regulating the behaviors of cells in bone and surrounding tissues in vivo. Many in vitro studies have been conducted to determine the effects of mechanical loading on individual cell types of the tissues. In this review, we focus specifically on the use of the Flexercell system as a tool for studying cellular responses to mechanical stretch. We assess the literature describing the impact of mechanical stretch on different cell types from bone, muscle, tendon, ligament, and cartilage, describing individual cell phenotype responses. In addition, we review evidence regarding the mechanotransduction pathways that are activated to potentiate these phenotype responses in different cell populations.

  10. Impact of mechanical stretch on the cell behaviors of bone and surrounding tissues

    Science.gov (United States)

    Yu, Hye-Sun; Kim, Jung-Ju; Kim, Hae-Won; Lewis, Mark P; Wall, Ivan

    2016-01-01

    Mechanical loading is recognized to play an important role in regulating the behaviors of cells in bone and surrounding tissues in vivo. Many in vitro studies have been conducted to determine the effects of mechanical loading on individual cell types of the tissues. In this review, we focus specifically on the use of the Flexercell system as a tool for studying cellular responses to mechanical stretch. We assess the literature describing the impact of mechanical stretch on different cell types from bone, muscle, tendon, ligament, and cartilage, describing individual cell phenotype responses. In addition, we review evidence regarding the mechanotransduction pathways that are activated to potentiate these phenotype responses in different cell populations. PMID:26977284

  11. Effects of special composite stretching on the swing of amateur golf players.

    Science.gov (United States)

    Lee, Joong-Chul; Lee, Sung-Wan; Yeo, Yun-Ghi; Park, Gi Duck

    2015-04-01

    [Purpose] The study investigated stretching for safer a golf swing compared to present stretching methods for proper swings in order to examine the effects of stretching exercises on golf swings. [Subjects] The subjects were 20 amateur golf club members who were divided into two groups: an experimental group which performed stretching, and a control group which did not. The subjects had no bone deformity, muscle weakness, muscle soreness, or neurological problems. [Methods] A swing analyzer and a ROM measuring instrument were used as the measuring tools. The swing analyzer was a GS400-golf hit ball analyzer (Korea) and the ROM measuring instrument was a goniometer (Korea). [Results] The experimental group showed a statistically significant improvement in driving distance. After the special stretching training for golf, a statistically significant difference in hit-ball direction deviation after swings were found between the groups. The experimental group showed statistically significant decreases in hit ball direction deviation. After the special stretching training for golf, statistically significant differences in hit-ball speed were found between the groups. The experimental group showed significant increases in hit-ball speed. [Conclusion] To examine the effects of a special stretching program for golf on golf swing-related factors, 20 male amateur golf club members performed a 12-week stretching training program. After the golf stretching training, statistically significant differences were found between the groups in hit-ball driving distance, direction deviation, deflection distance, and speed.

  12. Effects of Proprioceptive Neuromuscular Facilitation Stretching and Kinesiology Taping on Pelvic Compensation During Double-Knee Extension

    Directory of Open Access Journals (Sweden)

    Lee Seung-Woong

    2015-12-01

    Full Text Available Shortened hamstrings are likely to restrict the anterior pelvic tilt and induce a slumped posture due to the posterior pelvic tilt. This study was conducted to compare the effects of proprioceptive neuromuscular facilitation (PNF stretching and modified anterior pelvic tilt taping (APTT on hamstring shortness-associated pelvic compensation while executing seated double-knee extension. Male college students (28 healthy young adults; mean age: 21.4 ± 2.1 years with hamstring shortness were recruited as study subjects and randomly assigned to either the PNF stretching group (control group or the APTT group (experimental group. In all the subjects, changes in the movement distance of the centre of gluteal pressure (COGP as well as rectus abdominis (RA and semitendinosus (SEM muscle activities were measured during seated double-knee extension while the respective intervention method was applied. Both groups showed significant decreases in COGP distance and RA muscle activity compared with their respective baseline values (p < 0.05, however, no significant changes were observed in SEM muscle activity. We can infer that not only a direct intervention on the hamstring, such as PNF stretching, but also a modified APTT-mediated pelvic intervention may be used as a method for reducing pelvic compensation induced by hamstring shortness.

  13. Stretching and folding mechanism in foams

    International Nuclear Information System (INIS)

    Tufaile, Alberto; Pedrosa Biscaia Tufaile, Adriana

    2008-01-01

    We have described the stretching and folding of foams in a vertical Hele-Shaw cell containing air and a surfactant solution, from a sequence of upside-down flips. Besides the fractal dimension of the foam, we have observed the logistic growth for the soap film length. The stretching and folding mechanism is present during the foam formation, and this mechanism is observed even after the foam has reached its respective maximum fractal dimension. Observing the motion of bubbles inside the foam, large bubbles present power spectrum associated with random walk motion in both directions, while the small bubbles are scattered like balls in a Galton board

  14. Stretching and folding mechanism in foams

    Energy Technology Data Exchange (ETDEWEB)

    Tufaile, Alberto [Escola de Artes, Ciencias e Humanidades, Soft Matter Laboratory, Universidade de Sao Paulo, 03828-000 Sao Paulo, SP (Brazil)], E-mail: tufaile@usp.br; Pedrosa Biscaia Tufaile, Adriana [Escola de Artes, Ciencias e Humanidades, Soft Matter Laboratory, Universidade de Sao Paulo, 03828-000 Sao Paulo, SP (Brazil)

    2008-10-13

    We have described the stretching and folding of foams in a vertical Hele-Shaw cell containing air and a surfactant solution, from a sequence of upside-down flips. Besides the fractal dimension of the foam, we have observed the logistic growth for the soap film length. The stretching and folding mechanism is present during the foam formation, and this mechanism is observed even after the foam has reached its respective maximum fractal dimension. Observing the motion of bubbles inside the foam, large bubbles present power spectrum associated with random walk motion in both directions, while the small bubbles are scattered like balls in a Galton board.

  15. Activation mechanism of ammonium ions on sulfidation of malachite (-201) surface by DFT study

    Science.gov (United States)

    Wu, Dandan; Mao, Yingbo; Deng, Jiushuai; Wen, Shuming

    2017-07-01

    The activation mechanism of ammonium ions on the sulfidation of malachite (-201) was determined by density functional theory (DFT) calculations. Results of DFT calculations indicated that interlayer sulfidation occurs during the sulfidation process of malachite (-201). The absorption of both the ammonium ion and sulfide ion on the malachite (-201) surface is stronger than that of sulfur ion. After sulfidation was activated with ammonium ion, the Cu 3d orbital peak is closer to the Fermi level and characterized by a stronger peak value. Therefore, the addition of ammonium ions activated the sulfidation of malachite (-201), thereby improving the flotation performance.

  16. Antimicrobial cerium ion-chitosan crosslinked alginate biopolymer films: A novel and potential wound dressing.

    Science.gov (United States)

    Kaygusuz, Hakan; Torlak, Emrah; Akın-Evingür, Gülşen; Özen, İlhan; von Klitzing, Regine; Erim, F Bedia

    2017-12-01

    Wound dressings require good antiseptic properties, mechanical strength and, more trustably, natural material ingredients. Antimicrobial properties of cerium ions and chitosan are known and alginate based wound dressings are commercially available. In this study, the advantages of these materials were combined and alginate films were crosslinked with cerium(III) solution and chitosan added cerium(III) solution. Films were characterized by Fourier transform infrared spectroscopy (FTIR), light transmittance, scanning electron microscopy (SEM), swelling experiments, water vapor transmittance tests, and mechanical stretching tests. The antibacterial and physical properties of the films were compared with those of conventional calcium alginate films. Both cerium ion crosslinked and cerium ion-chitosan crosslinked alginate films gained antibacterial activity against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria. Cerium alginate-chitosan films showed high resistance to being deformed elastically. Results show that cerium alginate-chitosan films can be flexible, ultraviolet-protecting, and antibacterial wound dressings. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Maintained inspiratory activity during proportional assist ventilation in surfactant-depleted cats early after surfactant instillation: phrenic nerve and pulmonary stretch receptor activity

    Directory of Open Access Journals (Sweden)

    Schaller Peter

    2006-03-01

    Full Text Available Abstract Background Inspiratory activity is a prerequisite for successful application of patient triggered ventilation such as proportional assist ventilation (PAV. It has recently been reported that surfactant instillation increases the activity of slowly adapting pulmonary stretch receptors (PSRs followed by a shorter inspiratory time (Sindelar et al, J Appl Physiol, 2005 [Epub ahead of print]. Changes in lung mechanics, as observed in preterm infants with respiratory distress syndrome and after surfactant treatment, might therefore influence the inspiratory activity when applying PAV early after surfactant treatment. Objective To investigate the regulation of breathing and ventilatory response in surfactant-depleted young cats during PAV and during continuous positive airway pressure (CPAP early after surfactant instillation in relation to phrenic nerve activity (PNA and the activity of PSRs. Methods Seven anesthetized, endotracheally intubated young cats were exposed to periods of CPAP and PAV with the same end-expiratory pressure (0.2–0.5 kPa before and after lung lavage and after surfactant instillation. PAV was set to compensate for 75% of the lung elastic recoil. Results Tidal volume and respiratory rate were higher with lower PaCO2 and higher PaO2 during PAV than during CPAP both before and after surfactant instillation (p Conclusion PSR activity and the control of breathing are maintained during PAV in surfactant-depleted cats early after surfactant instillation, with a higher ventilatory response and a lower breathing effort than during CPAP.

  18. Fatigue Crack Growth Characteristics of Cold Stretched STS 304 Welded Joint

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Won; Na, Seong Hyeon; Yoon, Dong Hyun; Kim, Jae Hoon [Chungnam Nat’l Univ., Daejeon (Korea, Republic of); Kim, Young Kyun; Kim, Ki Dong [Korea Gas Coporation R& D Division, Daejeon (Korea, Republic of)

    2017-09-15

    STS 304 steel is used as pressure vessel material, and although it exhibits excellent mechanical characteristics at a low temperature, it is heavier than other materials. To address this issue, a method using cold-stretching techniques for STS 304 can be applied. In this study, a cold-stretching part and welded joint specimen were directly obtained from a cold-stretching pressure vessel manufactured according to ASME code. Fatigue crack propagation tests were carried out at room temperature and -170℃ using the compliance method for stress ratios of 0.1 and 0.5. The results indicate that crack growth rate of the welded joint is higher than that of the cold-stretching part within the same stress intensity factor range. The outcome of this work is expected to serve as a basis for the development of a cold-stretched STS 304 pressure vessel.

  19. Measurements of fast ion spatial dynamics during magnetic activity in the RFP

    Science.gov (United States)

    Goetz, J. A.; Anderson, J. K.; Bonofiglo, P.; Kim, J.; McConnell, R.; Magee, R. M.

    2017-10-01

    Fast ions in the RFP are only weakly affected by a stochastic magnetic field and behave nearly classically in concentration too low to excite Alfvenic activity. At high fast ion concentration sourced by H-NBI in 300kA RFP discharges, a substantial drop in core-localized high pitch fast ions is observed during bursts of coupled EPM and IAE (magnetic island-induced Alfven eigenmode) activity (100-200kHz) through neutral particle analysis. Sourcing instead fast deuterium with NBI, the DD fusion products can measure the dynamics of the fast ion density profile. Both a collimated neutron detector and a new 3MeV fusion proton detector loaned by TriAlpha Energy measure the fast ion density profile with 5cm spatial resolution and 100 μs temporal resolution. In D-NBI, the bursting EPM is excited at slightly lower frequency and the IAE activity is nearly absent, likely due to an isotope effect and loss of wave-particle interaction. In these cases, neutral particle analysis shows little change in the core-localized high pitch fast ion content, and the fusion product profile indicates little change in the fast ion density profile, leaving unexplained the mechanism removing EPM drive. We measure a substantial redistribution of the fast ion profile due to strong lower-frequency ( 30kHz) MHD activity that accompanies the current profile relaxation in the RFP. Profile flattening is strongest in low bulk density discharges, which often occur with a total increase in global neutron flux from acceleration of the beam ions. Work supported by US DoE.

  20. Simulated physiological stretch increases expression of extracellular matrix proteins in human bladder smooth muscle cells via integrin α4/αv-FAK-ERK1/2 signaling pathway.

    Science.gov (United States)

    Chen, Shulian; Peng, Chuandu; Wei, Xin; Luo, Deyi; Lin, Yifei; Yang, Tongxin; Jin, Xi; Gong, Lina; Li, Hong; Wang, Kunjie

    2017-08-01

    To investigate the effect of simulated physiological stretch on the expression of extracellular matrix (ECM) proteins and the role of integrin α4/αv, focal adhesion kinase (FAK), extracellular regulated protein kinases 1/2 (ERK1/2) in the stretch-induced ECM protein expression of human bladder smooth muscle cells (HBSMCs). HBSMCs were seeded onto silicone membrane and subjected to simulated physiological stretch at the range of 5, 10, and 15% elongation. Expression of primary ECM proteins in HBSMCs was analyzed by real-time polymerase chain reaction and Western blot. Specificity of the FAK and ERK1/2 was determined by Western blot with FAK inhibitor and ERK1/2 inhibitor (PD98059). Specificity of integrin α4 and integrin αv was determined with small interfering ribonucleic acid (siRNA) transfection. The expression of collagen I (Col1), collagen III (Col3), and fibronectin (Fn) was increased significantly under the simulated physiological stretch of 10 and 15%. Integrin α4 and αv, FAK, ERK1/2 were activated by 10% simulated physiological stretch compared with the static condition. Pretreatment of ERK1/2 inhibitor, FAK inhibitor, integrin α4 siRNA, or integrin αv siRNA reduced the stretch-induced expression of ECM proteins. And FAK inhibitor decreased the stretch-induced ERK1/2 activity and ECM protein expression. Integrin α4 siRNA or integrin αv siRNA inhibited the stretch-induced activity of FAK. Simulated physiological stretch increases the expression of ECM proteins in HBSMCs, and integrin α4/αv-FAK-ERK1/2 signaling pathway partly modulates the mechano-transducing process.

  1. Induction of antioxidant enzyme activity and lipid peroxidation level in ion-beam-bombarded rice seeds

    Energy Technology Data Exchange (ETDEWEB)

    Semsang, Nuananong, E-mail: nsemsang@gmail.com [Molecular Biology Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Yu, LiangDeng [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand)

    2013-07-15

    Highlights: ► Ion beam bombarded rice seeds in vacuum. ► Studied seed survival from the ion bombardment. ► Determined various antioxidant enzyme activities and lipid peroxidation level. ► Discussed vacuum, ion species and ion energy effects. ► Attributed the changes to free radical formation due to ion bombardment. -- Abstract: Low-energy ion beam bombardment has been used to mutate a wide variety of plant species. To explore the indirect effects of low-energy ion beam on biological damage due to the free radical production in plant cells, the increase in antioxidant enzyme activities and lipid peroxidation level was investigated in ion-bombarded rice seeds. Local rice seeds were bombarded with nitrogen or argon ion beams at energies of 29–60 keV and ion fluences of 1 × 10{sup 16} ions cm{sup −2}. The activities of the antioxidant enzymes; superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), glutathione reductase (GR), glutathione S-transferase (GST) and lipid peroxidation level were assayed in the germinated rice seeds after ion bombardment. The results showed most of the enzyme activities and lipid peroxidation levels in both the argon and nitrogen bombarded samples were higher than those in the natural control. N-ion bombardment could induce higher levels of antioxidant enzyme activities in the rice samples than the Ar-ion bombardment. Additional effects due to the vacuum condition were found to affect activities of some antioxidant enzymes and lipid peroxidation level. This study demonstrates that ion beam bombardment and vacuum condition could induce the antioxidant enzyme activity and lipid peroxidation level which might be due to free radical production in the bombarded rice seeds.

  2. The effectiveness of manual stretching in the treatment of plantar heel pain: a systematic review

    Directory of Open Access Journals (Sweden)

    Parish Ben

    2011-06-01

    Full Text Available Abstract Background Plantar heel pain is a commonly occurring foot complaint. Stretching is frequently utilised as a treatment, yet a systematic review focusing only on its effectiveness has not been published. This review aimed to assess the effectiveness of stretching on pain and function in people with plantar heel pain. Methods Medline, EMBASE, CINAHL, AMED, and The Cochrane Library were searched from inception to July 2010. Studies fulfilling the inclusion criteria were independently assessed, and their quality evaluated using the modified PEDro scale. Results Six studies including 365 symptomatic participants were included. Two compared stretching with a control, one study compared stretching to an alternative intervention, one study compared stretching to both alternative and control interventions, and two compared different stretching techniques and durations. Quality rating on the modified Pedro scale varied from two to eight out of a maximum of ten points. The methodologies and interventions varied significantly between studies, making meta-analysis inappropriate. Most participants improved over the course of the studies, but when stretching was compared to alternative or control interventions, the changes only reached statistical significance in one study that used a combination of calf muscle stretches and plantar fascia stretches in their stretching programme. Another study comparing different stretching techniques, showed a statistically significant reduction in some aspects of pain in favour of plantar fascia stretching over calf stretches in the short term. Conclusions There were too few studies to assess whether stretching is effective compared to control or other interventions, for either pain or function. However, there is some evidence that plantar fascia stretching may be more effective than Achilles tendon stretching alone in the short-term. Appropriately powered randomised controlled trials, utilizing validated outcome

  3. Weak depth and along-strike variations in stretching from a multi-episodic finite stretching model: Evidence for uniform pure-shear extension in the opening of the South China Sea

    Science.gov (United States)

    Chen, Lin; Zhang, Zhongjie; Song, Haibin

    2013-12-01

    The South China Sea is widely believed to have been opened by seafloor spreading during the Cenozoic. The details of its lithospheric extension are still being debated, and it is unknown whether pure, simple, or conjunct shears are responsible for the opening of the South China Sea. The depth-dependent and along-strike extension derived from the single-stage finite stretching model or instantaneous stretching model is inconsistent with the observation that the South China Sea proto-margins have experienced multi-episodic extension since the Late Cretaceous. Based on the multi-episodic finite stretching model, we present the amount of lithosphere stretching at the northern continental margin of the South China Sea for different depth scales (upper crust, whole crust and lithosphere) and along several transects. The stretching factors are estimated by integrating seven deep-penetration seismic profiles, the Moho distribution derived from gravity modeling, and the tectonic subsidence data for 41 wells. The results demonstrate that the amount of stretching increases rapidly from 1.1 at the continent shelf to over 3.5 at the lower slope, but the stretching factors at the crust and lithosphere scales are consistent within error (from the uncertainty in paleobathymetry and sea-level change). Furthermore, the along-strike variation in stretching factor is within the range of 1.11-1.9 in west-east direction, accompanied by significant west-east differences in the thickness of high-velocity layers (HVLs) within the lowermost crust. This weak along-strike variation of the stretching factor is most likely produced by the preexisting contrasts in the composition and thermal structure of the lithosphere. The above observations suggest that the continental extension in the opening of the South China Sea mainly takes the form of a uniform pure shear rather than depth-dependent stretching.

  4. Immediate Effects of Neurodynamic Sliding versus Muscle Stretching on Hamstring Flexibility in Subjects with Short Hamstring Syndrome

    Science.gov (United States)

    Castellote-Caballero, Yolanda; Valenza, Maríe C.; Puentedura, Emilio J.; Fernández-de-las-Peñas, César; Alburquerque-Sendín, Francisco

    2014-01-01

    Background. Hamstring injuries continue to affect active individuals and although inadequate muscle extensibility remains a commonly accepted factor, little is known about the most effective method to improve flexibility. Purpose. To determine if an isolated neurodynamic sciatic sliding technique would improve hamstring flexibility to a greater degree than stretching or a placebo intervention in asymptomatic subjects with short hamstring syndrome (SHS). Study Design. Randomized double-blinded controlled trial. Methods. One hundred and twenty subjects with SHS were randomized to 1 of 3 groups: neurodynamic sliding, hamstring stretching, and placebo control. Each subject's dominant leg was measured for straight leg raise (SLR) range of motion (ROM) before and after interventions. Data were analyzed with a 3 × 2 mixed model ANOVA followed by simple main effects analyses. Results. At the end of the study, more ROM was observed in the Neurodynamic and Stretching groups compared to the Control group and more ROM in the Neurodynamic group compared to Stretching group. Conclusion. Findings suggest that a neurodynamic sliding technique will increase hamstring flexibility to a greater degree than static hamstring stretching in healthy subjects with SHS. Clinical Relevance. The use of neurodynamic sliding techniques to improve hamstring flexibility in sports may lead to a decreased incidence in injuries; however, this needs to be formally tested. PMID:26464889

  5. Stretching the Border

    DEFF Research Database (Denmark)

    Horstmann, Alexander

    2014-01-01

    In this paper, I hope to add a complementary perspective to James Scott’s recent work on avoidance strategies of subaltern mountain people by focusing on what I call the refugee public. The educated Karen elite uses the space of exile in the Thai borderland to reconstitute resources and to re-ent......-based organizations succeed to stretch the border by establishing a firm presence that is supported by the international humanitarian economy in the refugee camps in Northwestern Thailand....

  6. A Novel Non-Planar Transverse Stretching Process for Micro-Porous PTFE Membranes and Resulting Characteristics

    KAUST Repository

    Chang, Y.-H.

    2018-02-26

    Polytetrafluoroethylene (PTFE) micro-porous membranes were prepared from PTFE fine powder through extruding, rolling, and uniaxial longitudinally stretching. In contrast to conventional planar transverse stretching, a novel 3D mold design of non-planar transverse stretching process was employed in this study to produce micro-porous structure. The morphology, membrane thickness, mean pore size, and porosity of the PTFE membrane were investigated. The results show that the non-planar transverse stretched membranes exhibit more uniform average pore diameter with thinner membrane thickness. Morphological changes induced by planar and non-planar transverse stretching for pore characteristics were investigated. The stretching conditions, stretching temperature and rate, affect the stretched membrane. Increasing temperature facilitated the uniformity of pore size and uniformity of membrane thickness. Moreover, increase in stretching rate resulted in finer pore size and thinner membrane.

  7. Theory of high-force DNA stretching and overstretching.

    Science.gov (United States)

    Storm, C; Nelson, P C

    2003-05-01

    Single-molecule experiments on single- and double-stranded DNA have sparked a renewed interest in the force versus extension of polymers. The extensible freely jointed chain (FJC) model is frequently invoked to explain the observed behavior of single-stranded DNA, but this model does not satisfactorily describe recent high-force stretching data. We instead propose a model (the discrete persistent chain) that borrows features from both the FJC and the wormlike chain, and show that it resembles the data more closely. We find that most of the high-force behavior previously attributed to stretch elasticity is really a feature of the corrected entropic elasticity; the true stretch compliance of single-stranded DNA is several times smaller than that found by previous authors. Next we elaborate our model to allow coexistence of two conformational states of DNA, each with its own stretch and bend elastic constants. Our model is computationally simple and gives an excellent fit through the entire overstretching transition of nicked, double-stranded DNA. The fit gives the first value for the bend stiffness of the overstretched state. In particular, we find the effective bend stiffness for DNA in this state to be about 12 nm k(B)T, a value quite different from either the B-form or single-stranded DNA.

  8. The Acute Effects of Upper Extremity Stretching on Throwing Velocity in Baseball Throwers

    Directory of Open Access Journals (Sweden)

    Michael Williams

    2013-01-01

    Full Text Available Purpose. To examine the effects of static and proprioceptive neuromuscular facilitation (PNF stretching of the shoulder internal rotators on throwing velocity. Subjects. 27 male throwers (mean age = 25.1 years old, SD = 2.4 with adequate knowledge of demonstrable throwing mechanics. Study Design. Randomized crossover trial with repeated measures. Methods. Subjects warmed up, threw 10 pitches at their maximum velocity, were randomly assigned to 1 of 3 stretching protocols (static, PNF, or no stretch, and then repeated their 10 pitches. Velocities were recorded after each pitch and average and peak velocities were recorded after each session. Results. Data were analyzed using a repeated measures ANOVA. No significant interaction between stretching and throwing velocity was observed. Main effects for time were not statistically significant. Main effects for the stretching groups were statistically significant. Discussion. Results suggest that stretching of the shoulder internal rotators did not significantly affect throwing velocity immediately after stretching. This may be due to the complexity of the throwing task. Conclusions. Stretching may be included in a thrower's warm-up without any effects on throwing velocity. Further research should be performed using a population with more throwing experience and skill.

  9. Efficacy of hamstring stretching programs in schoolchildren. A systematic review

    Directory of Open Access Journals (Sweden)

    Carlos-Alberto BECERRA FERNANDEZ

    2017-03-01

    Full Text Available The main purpose of the present review was to examine the scientific literature on the effects of physical education-based stretching programs on hamstring extensibility in schoolchildren aged 6-11 years. For this purpose relevant studies were searched from ten electronic databases dated up through May 2015. Of the 25 potentially relevant articles identified and retrieved for more detailed evaluation, only eight studies were included in the present review because they met the inclusion criteria. The overall results showed that incorporating hamstring stretching as a part of physical education classes produces a significant improvement in the scores of the tests: straight leg raise and classic sit-and-reach, for the experimental groups, but not for control groups. Stretching programs can be included in Physical Education classes, specifically during the warm-up and the cool down periods in order to improve hamstring extensibility. Although it seems that the stretching exercises in the warm-up period could be less effective in gaining flexibility in school children. Studies that use a stretching volume between 4 and 7 minutes per session and 2-4 training classes per week, obtain statistically significant improvements on the levels of hamstring flexibility in the experimental groups. However, after a five-week detraining period, children revert back to their initial flexibility levels. Therefore, it seems appropriate that physical education teachers should implement stretching programs to improve the students´ flexibility during the Physical Education classes.

  10. Implementation of a controller for linear positioners applicable in optical fiber stretching

    International Nuclear Information System (INIS)

    Castrillo Piedra, Andres Rodolfo

    2014-01-01

    A low cost controller is implemented for linear positioners applicable in optic fiber stretching. The possibility of using a donated equipment is evaluated by the Escuela de Ingenieria Mecanica. The equipment is required by the non-linear photonic research laboratory (NLPR-LAB) for stretching of micro structured fiber. The process has required a slow and precise stretching, so the controllers must be precisely programmed to rotate the motors at different speeds. Donated equipment is evaluated to see if it is possible to use for fiber stretching [es

  11. Adsorption of heavy metal ions by activated charcoal

    International Nuclear Information System (INIS)

    Fujikawa, Mitsuo

    1978-01-01

    The adsorption effect was measured for several kinds of heavy metal ions, Pb 2+ , Cd 2+ , Cu 2+ and Zn 2+ by passing them through activated charcoal beds and changing the pH values of solutions. The test procedure is to keep the pH value of solution more than 10 at first, filter heavy metal hydroxide deposit, measure the remaining ion concentration in filtrate, and also test the influence of the addition of alkali to each kind of ions. The individual test procedure for each kind of ions is explained. As for the Cd ions, after the detailed experimental procedure is explained, the adsorption characteristic line is shown as the relation between the adsorption quantity and the equilibrium concentration of Cd 2+ . The similar test procedure and the adsorption characteristic lines are shown and evaluated about Pb 2+ , Cu 2+ and Zn 2+ . These lines are all linear, but have different adsorption quantity and inclination in relation to heavy metal ion concentration. Concerning the influence of pH to adsorption, the characteristics of pH increase are presented, when alkali is added by various quantities to Zn 2+ , Cu 2+ , Pb 2+ and Cd 2+ . The pH of Pb 2+ increased to about 10 by adding 0.4 cc alkali and saturates, but the pH of the other ions did not saturate by adding less than 1.5 cc alkali. When the water containing heavy metals are treated, Cd 2+ , Pb 2+ , Cu 2+ and Zn 2+ are removed almost satisfactorily by passing them through active charcoal filters and keeping pH at 10. The experimental concentrations are 0.05 ppm at pH 10 in Cd, 0.86 ppm at 10.3 in Pb, 0 ppm at pH 9.6 in Cu, 0.06 ppm at pH 8.8 and 12.4 ppm at pH 9.8 in Zn. (Nakai, Y.)

  12. Damage percolation during stretch flange forming of aluminum alloy sheet

    Science.gov (United States)

    Chen, Zengtao; Worswick, Michael J.; Keith Pilkey, A.; Lloyd, David J.

    2005-12-01

    A multi-scale finite element (FE)-damage percolation model was employed to simulate stretch flange forming of aluminum alloys AA5182 and AA5754. Material softening and strain gradients were captured using a Gurson-based FE model. FE results were then fed into the so-called damage percolation code, from which the damage development was modelled within measured microstructures. The formability of the stretch flange samples was predicted based upon the onset of catastrophic failure triggered by profuse void coalescence within the measured second-phase particle field. Damage development is quantified in terms of crack and void areal fractions, and compared to metallographic results obtained from interrupted stretch flange specimens. Parametric study is conducted on the effect of void nucleation strain in the prediction of formability of stretch flanges to "calibrate" proper nucleation strains for both alloys.

  13. Multiple-channel detection of cellular activities by ion-sensitive transistors

    Science.gov (United States)

    Machida, Satoru; Shimada, Hideto; Motoyama, Yumi

    2018-04-01

    An ion-sensitive field-effect transistor to record cellular activities was demonstrated. This field-effect transistor (bio transistor) includes cultured cells on the gate insulator instead of gate electrode. The bio transistor converts a change in potential underneath the cells into variation of the drain current when ion channels open. The bio transistor has high detection sensitivity to even minute variations in potential utilizing a subthreshold swing region. To open ion channels, a reagent solution (acetylcholine) was added to a human-originating cell cultured on the bio transistor. The drain current was successfully decreased with the addition of acetylcholine. Moreover, we attempted to detect the opening of ion channels using a multiple-channel measurement circuit containing several bio transistors. As a consequence, the drain current distinctly decreased only after the addition of acetylcholine. We confirmed that this measurement system including bio transistors enables to observation of cellular activities sensitively and simultaneously.

  14. Effect of stretching and proprioceptive loading in hand function among patients with cerebellar tremor

    Directory of Open Access Journals (Sweden)

    Hariharasudhan Ravichandran

    2016-01-01

    Full Text Available Background and Objective: Tremor, the most common form of abnormal involuntary movement, affects the performance of activities of daily living. Evidence on effective form of physiotherapy techniques which can help manage intentional tremor and improve hand function among cerebellar dysfunction patients in inconclusive. Hence, this study aims to establish the effectiveness of stretching and proprioceptive loading among cerebellar patients with intentional tremors. The objective of this study is to compare the efficacy of stretching and proprioceptive loading among patients with cerebellar intention tremor. Materials and Methods: A total of thirty patients with intention tremor due to cerebellar lesion were recruited for this study. They were randomized into two groups, Group I received stretching exercise and Group II received proprioceptive loading exercise. Pre- and post-test outcome measures were taken at the end of duration of 3 weeks intervention. Outcome measures were Fahn's tremor rating scale and nine hole peg test. Results: Statistical analyses were done by McNemar test, Wilcoxon's signed rank test, and Mann–Whitney test. Post-test scores of both groups were compared and found that Group II treated with proprioceptive loading exercise had higher significant result than the group treated with strengthening exercise program. Conclusion: Proprioceptive loading exercise has demonstrated signifi cant effect on reducing cerebellar tremor and improving muscle coordination in reaching activities.

  15. Role of androgen receptor on cyclic mechanical stretch-regulated proliferation of C2C12 myoblasts and its upstream signals: IGF-1-mediated PI3K/Akt and MAPKs pathways.

    Science.gov (United States)

    Ma, Yiming; Fu, Shaoting; Lu, Lin; Wang, Xiaohui

    2017-07-15

    To detect the effects of androgen receptor (AR) on cyclic mechanical stretch-modulated proliferation of C2C12 myoblasts and its pathways: roles of IGF-1, PI3K and MAPK. C2C12 were randomly divided into five groups: un-stretched control, six or 8 h of fifteen percent stretch, and six or 8 h of twenty percent stretch. Cyclic mechanical stretch of C2C12 were completed using a computer-controlled FlexCell Strain Unit. Cell proliferation and IGF-1 concentration in medium were detected by CCK8 and ELISA, respectively. Expressions of AR and IGF-1R, and expressions and activities of PI3K, p38 and ERK1/2 in stretched C2C12 cells were determined by Western blot. ①The proliferation of C2C12 cells, IGF-1 concentration in medium, expressions of AR and IGF-1R, and activities of PI3K, p38 and ERK1/2 were increased by 6 h of fifteen percent stretch, while decreased by twenty percent stretch for six or 8 h ②The fifteen percent stretch-increased proliferation of C2C12 cells was reversed by AR inhibitor, Flutamide. ③The increases of AR expression, activities of PI3K, p38 and ERK1/2 resulted from fifteen percent stretch were attenuated by IGF-1 neutralizing antibody, while twenty percent stretch-induced decreases of the above indicators were enhanced by recombinant IGF-1. ④Specific inhibitors of p38, ERK1/2 and PI3K all decreased the expression of AR in fifteen percent and twenty percent of stretched C2C12 cells. Cyclic mechanical stretch modulated the proliferation of C2C12 cells, which may be attributed to the alterations of AR via IGF-1-PI3K/Akt and IGF-1-MAPK (p38, ERK1/2) pathways in C2C12 cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. COMPARISON OF EFFECTS OF ABDOMINAL STRETCHING EXERCISE AND COLD COMPRESS THERAPY ON MENSTRUAL PAIN INTENSITY IN TEENAGE GIRLS

    Directory of Open Access Journals (Sweden)

    Desta Ayu Cahya Rosyida

    2017-07-01

    Full Text Available Background: Pain during menstruation is not uncommon, especially in young women, which has an impact on their life activities. Objective: To examine the effect of abdominal stretching exercise and cold compress therapy on decreasing intensity of menstrual pain in teenage girls at SMK Bakti Indonesia Medika. Design: A Quasy Experimental Study with two group comparison pretest-postest design. There were 46 respondents selected in this study by consecutive sampling that consisted of 23 samples in the abdominal stretching exercise group and 23 samples in the cold compress group. The menstrual pain was measured using VAS (visual analog scale. Data were analyzed using Mann-Whitney, Chi-Square, and Wilcoxon test. Results: Findings showed that the mean of menstrual pain before intervention in the abdominal stretching exercise was 7.04 and in the cold compress therapy was 6.74 with p-value 0.211 (<0.05, which indicated that there was no mean difference of pain between both groups. However, after intervention, the menstrual pain was reduced from 7.04 to 1.91 (5.09 difference in the abdominal stretching exercise group; and from 6.74 to 5.52 (1.22 difference in the cold compress group with p-value 0.000 (<0.05, which indicated that there was statistically significant difference of menstrual pain before and after intervention, both abdominal stretching exercise and cold compress therapy. Conclusion: There were statistically significant effects of abdominal stretching exercise and cold compress therapy on menstrual pain in teenage girls. The abdominal stretching exercise is more effective than cold compress therapy in reducing menstrual pain intensity. Thus, it is suggested that abdominal stretching exercise can be an alternative choice of management of dysmenorrhea in teenage girls, and can be a part of subject in the education as non-pharmacological medicine.

  17. Jack-knife stretching promotes flexibility of tight hamstrings after 4 weeks: a pilot study.

    Science.gov (United States)

    Sairyo, Koichi; Kawamura, Takeshi; Mase, Yasuyoshi; Hada, Yasushi; Sakai, Toshinori; Hasebe, Kiyotaka; Dezawa, Akira

    2013-08-01

    Tight hamstrings are reported to be one of the causes of low back pain. However, there have been few reports on effective stretching procedures for the tight hamstrings. The so-called jack-knife stretch, an active-static type of stretching, can efficiently increase the flexibility of tight hamstrings. To evaluate hamstring tightness before and after the 4-week stretching protocol in healthy volunteer adults and patients aged under 18 years with low back pain. For understanding the hamstrings tightness, we measured two parameters including (1) finger to floor distance (FFD) and (2) pelvis forward inclination angle (PFIA). Eight healthy adult volunteers who had no lumbar or hip problems participated in this study (mean age: 26.8 years). All lacked flexibility and their FFD were positive before the experiment. Subjects performed 2 sets of the jack-knife stretch every day for 4 weeks. One set consisted of 5 repetitions, each held for 5 s. Before and during the 4-week experiment, the FFD and PFIA of toe-touching tests were measured weekly. For 17 of the sports players aged under 18, only FFD was measured. In adult volunteers, FFD was 14.1 ± 6.1 cm before the experiment and decreased to -8.1 ± 3.7 cm by the end of week 4, indicating a gain in flexibility of 22.2 cm. PFIA was 50.6 ± 8.2 before the experiment and 83.8 ± 5.8 degrees after. Before and after the experiment, the differences were significant (p hamstrings.

  18. Coherent time-stretch transformation for real-time capture of wideband signals.

    Science.gov (United States)

    Buckley, Brandon W; Madni, Asad M; Jalali, Bahram

    2013-09-09

    Time stretch transformation of wideband waveforms boosts the performance of analog-to-digital converters and digital signal processors by slowing down analog electrical signals before digitization. The transform is based on dispersive Fourier transformation implemented in the optical domain. A coherent receiver would be ideal for capturing the time-stretched optical signal. Coherent receivers offer improved sensitivity, allow for digital cancellation of dispersion-induced impairments and optical nonlinearities, and enable decoding of phase-modulated optical data formats. Because time-stretch uses a chirped broadband (>1 THz) optical carrier, a new coherent detection technique is required. In this paper, we introduce and demonstrate coherent time stretch transformation; a technique that combines dispersive Fourier transform with optically broadband coherent detection.

  19. Induction of antioxidant enzyme activity and lipid peroxidation level in ion-beam-bombarded rice seeds

    Science.gov (United States)

    Semsang, Nuananong; Yu, LiangDeng

    2013-07-01

    Low-energy ion beam bombardment has been used to mutate a wide variety of plant species. To explore the indirect effects of low-energy ion beam on biological damage due to the free radical production in plant cells, the increase in antioxidant enzyme activities and lipid peroxidation level was investigated in ion-bombarded rice seeds. Local rice seeds were bombarded with nitrogen or argon ion beams at energies of 29-60 keV and ion fluences of 1 × 1016 ions cm-2. The activities of the antioxidant enzymes; superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), glutathione reductase (GR), glutathione S-transferase (GST) and lipid peroxidation level were assayed in the germinated rice seeds after ion bombardment. The results showed most of the enzyme activities and lipid peroxidation levels in both the argon and nitrogen bombarded samples were higher than those in the natural control. N-ion bombardment could induce higher levels of antioxidant enzyme activities in the rice samples than the Ar-ion bombardment. Additional effects due to the vacuum condition were found to affect activities of some antioxidant enzymes and lipid peroxidation level. This study demonstrates that ion beam bombardment and vacuum condition could induce the antioxidant enzyme activity and lipid peroxidation level which might be due to free radical production in the bombarded rice seeds.

  20. Low-cost mercury (II) ion sensor by biosynthesized gold nanoparticles (AuNPs)

    Science.gov (United States)

    Guerrero, Jet G.; Candano, Gabrielle Jackie; Mendoza, Aileen Nicole; Paderanga, Marciella; Cardino, Krenz John; Locsin, Alessandro; Bibon, Cherilou

    2017-11-01

    Biosynthesis of gold nanoparticles has attracted the curiosity of scientists over the past few decades. Nanoparticles have been proven to exhibit enhanced properties and offer a variety of applications in different fields of study. Utilizing nanoparticles instead of bulky equipment and noxious chemicals has become more convenient; reagents needed for synthesis have been proven to be benign (mostly aqueous solutions) and are cost-effective. In this study, gold nanoparticles were biosynthesized using guyabano (Annonamuricata) peel samples as the source of reducing agents. The optimum concentration ratio of gold chloride to guyabano extract was determined to be 1:7. Characterization studies were accomplished using UV Vis Spectroscopy, Fourier Transform Electron Microscopy (FTIR) and Scanning Electron Microscopy (SEM). Spectroscopic maximum absorbance was found to be at 532 nm thereby confirming the presence of gold nanoparticles. Hydroxyl (O-H stretching), carbonyl (C=O stretching), and amide (N-H stretching) functional groups shown in the FTIR spectra are present on possible reducing agents such as phenols, alkaloids, and saponins found in the plant extract. SEM images revealed spherical shaped nanoparticles with mean diameter of 23.18 nm. It was observed that the bio-synthesized AuNPs were selective to mercury ions through uniform color change from wine red to yellow. A novel smartphone-based mercury (II) ions assay was developed using the gold nanoparticles. A calibration curve correlated the analytical response (Red intensity) to the concentrations of Hg 2+ ions. Around 94% of the variations in the intensity is accounted for by the variations in the concentration of mercury (II) ions suggesting a good linear relationship between the two variables. A relative standard deviation (RSD) of less than 1% was achieved at all individual points. The metal sensor displayed a sensitivity of 0.039 R.I./ppm with an LOD of 93.79 ppm. Thus, the bio-fabricated gold nanoparticles

  1. Activated graphene as a cathode material for Li-ion hybrid supercapacitors.

    Science.gov (United States)

    Stoller, Meryl D; Murali, Shanthi; Quarles, Neil; Zhu, Yanwu; Potts, Jeffrey R; Zhu, Xianjun; Ha, Hyung-Wook; Ruoff, Rodney S

    2012-03-14

    Chemically activated graphene ('activated microwave expanded graphite oxide', a-MEGO) was used as a cathode material for Li-ion hybrid supercapacitors. The performance of a-MEGO was first verified with Li-ion electrolyte in a symmetrical supercapacitor cell. Hybrid supercapacitors were then constructed with a-MEGO as the cathode and with either graphite or Li(4)Ti(5)O(12) (LTO) for the anode materials. The results show that the activated graphene material works well in a symmetrical cell with the Li-ion electrolyte with specific capacitances as high as 182 F g(-1). In a full a-MEGO/graphite hybrid cell, specific capacitances as high as 266 F g(-1) for the active materials at operating potentials of 4 V yielded gravimetric energy densities for a packaged cell of 53.2 W h kg(-1).

  2. Application of ion chromatography to batchwise activated sludge process for simultaneous removal of thiosulfate, acetate and ammonium ions.

    OpenAIRE

    田中, 一彦; 黒川, 利一; 中島, 良三

    1988-01-01

    Ion chromatography (IC) with conductivity detection for determining anions and ion-exclusion chromatography (IEC) with conductivity detection for determining cations were investigated. Both techniques were applied to the establishment of the optimal conditions for the simultaneous removal of thiosulfate, acetate, and ammonium ions by a batchwise activated sludge process. The process consists of the combination of aerobic and anaerobic biological treatment processes by a sequential automatic p...

  3. Transient filament stretching rheometer II

    DEFF Research Database (Denmark)

    Kolte, Mette Irene; Rasmussen, Henrik K.; Hassager, Ole

    1997-01-01

    The Lagrangian sspecification is used to simulate the transient stretching filament rheometer. Simulations are performed for dilute PIB-solutions modeled as a four mode Oldroyd-B fluid and a semidilute PIB-solution modeled as a non-linear single integral equation. The simulations are compared...

  4. Investing in a Large Stretch Press

    Science.gov (United States)

    Choate, M.; Nealson, W.; Jay, G.; Buss, W.

    1986-01-01

    Press for forming large aluminum parts from plates provides substantial economies. Study assessed advantages and disadvantages of investing in large stretch-forming press, and also developed procurement specification for press.

  5. Recent activities at the ORNL multicharged ion research facility (MIRF)

    International Nuclear Information System (INIS)

    Meyer, F.W.; Bannister, M.E.; Hale, J.W.; Havener, C.C.; Krause, H.F.; Vane, C.R.; Deng, S.; Draganic, I.N.; Harris, P.R.

    2012-01-01

    Recent activities at the ORNL Multicharged Ion Research Facility (MIRF) are summarized. A brief summary of the MIRF high voltage (HV) platform and floating beam line upgrade is provided. An expansion of our research program to the use of molecular ion beams in heavy-particle and electron collisions, as well as in ion surface interactions is described, and a brief description is provided of the most recently added Ion Cooling and Characterization End-station (ICCE) trap. With the expansion to include molecular ion beams, the acronym MIRF for the facility, however, remains unchanged: 'M' can now refer to either 'Multicharged' or 'Molecular'. The paper is followed by the slides of the presentation. (authors)

  6. Optimal stretching in the reacting wake of a bluff body.

    Science.gov (United States)

    Wang, Jinge; Tithof, Jeffrey; Nevins, Thomas D; Colón, Rony O; Kelley, Douglas H

    2017-12-01

    We experimentally study spreading of the Belousov-Zhabotinsky reaction behind a bluff body in a laminar flow. Locations of reacted regions (i.e., regions with high product concentration) correlate with a moderate range of Lagrangian stretching and that range is close to the range of optimal stretching previously observed in topologically different flows [T. D. Nevins and D. H. Kelley, Phys. Rev. Lett. 117, 164502 (2016)]. The previous work found optimal stretching in a closed, vortex dominated flow, but this article uses an open flow and only a small area of appreciable vorticity. We hypothesize that optimal stretching is common in advection-reaction-diffusion systems with an excitation threshold, including excitable and bistable systems, and that the optimal range depends on reaction chemistry and not on flow shape or characteristic speed. Our results may also give insight into plankton blooms behind islands in ocean currents.

  7. Stretching of material lines in pseudo-turbulence induced by small rising bubbles

    International Nuclear Information System (INIS)

    Tanaka, M; Tsujimura, Y; Kanatani, H

    2011-01-01

    Direct numerical simulations have been conducted for the stretching of material lines in pseudo-turbulence induced by small rising bubbles in order to understand the mixing characteristics of bubbly flows. Contaminated bubbles are considered and are treated as light solid particles. An immersed boundary method has been used for evaluating the coupling force between the bubbles and the surrounding fluid flows. Numerical results show that the total length of material lines increases exponentially in time as a result of stretching and folding due to the rising bubbles. The material lines tend to accumulate in the wake regions of the bubbles, and they are strongly stretched in the vertical direction there. It is also found that the stretching rate of material lines increases with the mean void fraction when it is normalized by the magnitude of the rate-of-strain tensor of liquid flow in pseudo-turbulence. In the case of high void fractions, material lines tend to align with the direction of maximum stretching, and are effectively stretched.

  8. Stretching of material lines in pseudo-turbulence induced by small rising bubbles

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, M; Tsujimura, Y; Kanatani, H, E-mail: mtanaka@kit.ac.jp [Department of Mechanical and System Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585 (Japan)

    2011-12-22

    Direct numerical simulations have been conducted for the stretching of material lines in pseudo-turbulence induced by small rising bubbles in order to understand the mixing characteristics of bubbly flows. Contaminated bubbles are considered and are treated as light solid particles. An immersed boundary method has been used for evaluating the coupling force between the bubbles and the surrounding fluid flows. Numerical results show that the total length of material lines increases exponentially in time as a result of stretching and folding due to the rising bubbles. The material lines tend to accumulate in the wake regions of the bubbles, and they are strongly stretched in the vertical direction there. It is also found that the stretching rate of material lines increases with the mean void fraction when it is normalized by the magnitude of the rate-of-strain tensor of liquid flow in pseudo-turbulence. In the case of high void fractions, material lines tend to align with the direction of maximum stretching, and are effectively stretched.

  9. a First-Principles Model of Fermi Resonance in the Alkyl CH Stretch Region: Application to Hydronaphthalenes, Indanes, and Cyclohexane

    Science.gov (United States)

    Sibert, Edwin; Kidwell, Nathanael; Zwier, Timothy S.

    2014-06-01

    The infrared (IR) spectroscopy of the alkyl CH stretch region (2750-3000 cm-1) of a series of bicyclic hydrocarbons and free radicals has been studied under supersonic expansion cooling in the gas phase, and compared with a theoretical model that describes the local mode stretch-bend Fermi resonance interactions. The double resonance method of fluorescence-dip infrared (FDIR) spectroscopy was used on the stable molecules 1,2-dihydronaphthalene, 1,4-dihydronaphthalene, tetralin, indene, and indane using the S_0-S_1 origin transition as a monitor of transitions. Resonant ion-dip infrared (RIDIR) spectra were recorded for the trihydronaphthyl (THN) and inden-2-yl methyl (I2M) radicals. The previously developed model Hamiltonian [J. Chem. Phys. 138 064308 (2013)] incorporates cubic stretch-bend coupling with parameters obtained from density functional theory methods. Full dimensional calculations are compared to reduced dimensional Hamiltonian results in which anharmonic CH streches and CH_2 scissor modes are Fermi coupled. Excellent agreement between theoretical results is found. Scale factors of select terms in the reduced dimensional Hamiltonian, obtained by fitting the theoretical Hamiltonian predictions to the experimental spectra, are found to be similar to previous work. The resulting Hamiltonian predicts successfully all the major spectral features considered in this study. A simplified model is introduced in which the CH_2 groups are decoupled. This model enables the assignment of many of the spectral features. The model results are extended to describe the CH stretch spectrum of the chair and twist-boat conformers of cyclohexane. The chair conformer is used to illustrate the shortcomings of the CH_2 coupling model.

  10. Leakage Current Degradation Due to Ion Drift and Diffusion in Tantalum and Niobium Oxide Capacitors

    Directory of Open Access Journals (Sweden)

    Kuparowitz Martin

    2017-06-01

    Full Text Available High temperature and high electric field applications in tantalum and niobium capacitors are limited by the mechanism of ion migration and field crystallization in a tantalum or niobium pentoxide insulating layer. The study of leakage current (DCL variation in time as a result of increasing temperature and electric field might provide information about the physical mechanism of degradation. The experiments were performed on tantalum and niobium oxide capacitors at temperatures of about 125°C and applied voltages ranging up to rated voltages of 35 V and 16 V for tantalum and niobium oxide capacitors, respectively. Homogeneous distribution of oxygen vacancies acting as positive ions within the pentoxide layer was assumed before the experiments. DCL vs. time characteristics at a fixed temperature have several phases. At the beginning of ageing the DCL increases exponentially with time. In this period ions in the insulating layer are being moved in the electric field by drift only. Due to that the concentration of ions near the cathode increases producing a positively charged region near the cathode. The electric field near the cathode increases and the potential barrier between the cathode and insulating layer decreases which results in increasing DCL. However, redistribution of positive ions in the insulator layer leads to creation of a ion concentration gradient which results in a gradual increase of the ion diffusion current in the direction opposite to the ion drift current component. The equilibrium between the two for a given temperature and electric field results in saturation of the leakage current value. DCL vs. time characteristics are described by the exponential stretched law. We found that during the initial part of ageing an exponent n = 1 applies. That corresponds to the ion drift motion only. After long-time application of the electric field at a high temperature the DCL vs. time characteristics are described by the exponential

  11. Time stretch and its applications

    Science.gov (United States)

    Mahjoubfar, Ata; Churkin, Dmitry V.; Barland, Stéphane; Broderick, Neil; Turitsyn, Sergei K.; Jalali, Bahram

    2017-06-01

    Observing non-repetitive and statistically rare signals that occur on short timescales requires fast real-time measurements that exceed the speed, precision and record length of conventional digitizers. Photonic time stretch is a data acquisition method that overcomes the speed limitations of electronic digitizers and enables continuous ultrafast single-shot spectroscopy, imaging, reflectometry, terahertz and other measurements at refresh rates reaching billions of frames per second with non-stop recording spanning trillions of consecutive frames. The technology has opened a new frontier in measurement science unveiling transient phenomena in nonlinear dynamics such as optical rogue waves and soliton molecules, and in relativistic electron bunching. It has also created a new class of instruments that have been integrated with artificial intelligence for sensing and biomedical diagnostics. We review the fundamental principles and applications of this emerging field for continuous phase and amplitude characterization at extremely high repetition rates via time-stretch spectral interferometry.

  12. Immediate Effects of Neurodynamic Sliding versus Muscle Stretching on Hamstring Flexibility in Subjects with Short Hamstring Syndrome

    Directory of Open Access Journals (Sweden)

    Yolanda Castellote-Caballero

    2014-01-01

    Full Text Available Background. Hamstring injuries continue to affect active individuals and although inadequate muscle extensibility remains a commonly accepted factor, little is known about the most effective method to improve flexibility. Purpose. To determine if an isolated neurodynamic sciatic sliding technique would improve hamstring flexibility to a greater degree than stretching or a placebo intervention in asymptomatic subjects with short hamstring syndrome (SHS. Study Design. Randomized double-blinded controlled trial. Methods. One hundred and twenty subjects with SHS were randomized to 1 of 3 groups: neurodynamic sliding, hamstring stretching, and placebo control. Each subject’s dominant leg was measured for straight leg raise (SLR range of motion (ROM before and after interventions. Data were analyzed with a 3×2 mixed model ANOVA followed by simple main effects analyses. Results. At the end of the study, more ROM was observed in the Neurodynamic and Stretching groups compared to the Control group and more ROM in the Neurodynamic group compared to Stretching group. Conclusion. Findings suggest that a neurodynamic sliding technique will increase hamstring flexibility to a greater degree than static hamstring stretching in healthy subjects with SHS. Clinical Relevance. The use of neurodynamic sliding techniques to improve hamstring flexibility in sports may lead to a decreased incidence in injuries; however, this needs to be formally tested.

  13. Contact of a spherical probe with a stretched rubber substrate

    Science.gov (United States)

    Frétigny, Christian; Chateauminois, Antoine

    2017-07-01

    We report on a theoretical and experimental investigation of the normal contact of stretched neo-Hookean substrates with rigid spherical probes. Starting from a published formulation of surface Green's function for incremental displacements on a prestretched, neo-Hookean, substrate [J. Mech. Phys. Solids 56, 2957 (2008), 10.1016/j.jmps.2008.07.002], a model is derived for both adhesive and nonadhesive contacts. The shape of the elliptical contact area together with the contact load and the contact stiffness are predicted as a function of the in-plane stretch ratios λx and λy of the substrate. The validity of this model is assessed by contact experiments carried out using an uniaxally stretched silicone rubber. For stretch ratio below about 1.25, a good agreement is observed between theory and experiments. Above this threshold, some deviations from the theoretical predictions are induced as a result of the departure of the mechanical response of the silicone rubber from the neo-Hokeean description embedded in the model.

  14. Expression and proliferation profiles of PKC, JNK and p38MAPK in physiologically stretched human bladder smooth muscle cells

    International Nuclear Information System (INIS)

    Wazir, Romel; Luo, De-Yi; Dai, Yi; Yue, Xuan; Tian, Ye; Wang, Kun-Jie

    2013-01-01

    Highlights: •Stretch induces proliferation in human bladder smooth muscle cells (HBSMC). •5% Equibiaxial elongation produces maximum proliferation. •Physiologic stretch decreases apoptotic cell death. •PKC is involved in functional modulation of bladder. •JNK and p38 are not involved in proliferating HBSMC. -- Abstract: Objective: To determine protein kinase C (PKC), c-Jun NH2-Terminal Kinase (JNK) and P38 mitogen-activated protein kinases (p38MAPK) expression levels and effects of their respective inhibitors on proliferation of human bladder smooth muscle cells (HBSMCs) when physiologically stretched in vitro. Materials and methods: HBSMCs were grown on silicone membrane and stretch was applied under varying conditions; (equibiaxial elongation: 2.5%, 5%, 10%, 15%, 20%, 25%), (frequency: 0.05, 0.1, 0.2, 0.5, 1 Hz). Optimal physiological stretch was established by assessing proliferation with 5-Bromo-2-deoxyuridine (BrdU) assay and flow cytometry. PKC, JNK and p38 expression levels were analyzed by Western blot. Specificity was maintained by employing specific inhibitors; (GF109203X for PKC, SP600125 for JNK and SB203580 for p38MAPK), in some experiments. Results: Optimum proliferation was observed at 5% equibiaxial stretch (BrdU: 0.837 ± 0.026 (control) to 1.462 ± 0.023)%, (P 0.05 SP600125) and (1.461 ± 0.01, P > 0.05 SB203580). These findings show that mechanical stretch can promote magnitude-dependent proliferative modulation through PKC and possibly JNK but not via p38MAPK in hBSMCs

  15. Periostin inhibits mechanical stretch-induced apoptosis in osteoblast-like MG-63 cells.

    Science.gov (United States)

    Yu, Kai-Wen; Yao, Chung-Chen; Jeng, Jiiang-Huei; Shieh, Hao-Ying; Chen, Yi-Jane

    2018-04-01

    Appropriate mechanical stress plays an important role in regulating the proliferation and differentiation of osteoblasts, whereas high-level mechanical stress may be harmful and compromise cell survival. Periostin, a matricellular protein, is essential in maintaining functional integrity of bone and collagen-rich connective tissue in response to mechanical stress. This study investigated whether or not high-level mechanical stretch induces cell apoptosis and the regulatory role of periostin in mechanical stretch-induced apoptosis in osteoblastic cells. Osteoblast-like MG-63 cells were seeded onto Bio-Flex I culture plates and subjected to cyclic mechanical stretching (15% elongation, 0.1 Hz) in a Flexercell tension plus system-5000. The same process was applied to cells pre-treated with exogenous human recombinant periostin before mechanical stretching. We used a chromatin condensation and membrane permeability dead cell apoptosis kit to evaluate the stretch-induced cell responses. Expression of caspase-3 and cPARP was examined by immunofluorescent stain and flow cytometry. The expression of periostin in MG-63 cells is involved in the TGF-β signaling pathway. High-level cyclic mechanical stretch induced apoptotic responses in MG-63 osteoblastic cells. The percentages of apoptotic cells and cells expressing cPARP protein increased in the groups of cells subjected to mechanical stretch, but these responses were absent in the presence of exogenous periostin. Our study revealed that high-level mechanical stretch induces apoptotic cell death, and that periostin plays a protective role against mechanical stretch-induced apoptosis in osteoblastic cells. Copyright © 2017. Published by Elsevier B.V.

  16. Force encoding in muscle spindles during stretch of passive muscle.

    Directory of Open Access Journals (Sweden)

    Kyle P Blum

    2017-09-01

    Full Text Available Muscle spindle proprioceptive receptors play a primary role in encoding the effects of external mechanical perturbations to the body. During externally-imposed stretches of passive, i.e. electrically-quiescent, muscles, the instantaneous firing rates (IFRs of muscle spindles are associated with characteristics of stretch such as length and velocity. However, even in passive muscle, there are history-dependent transients of muscle spindle firing that are not uniquely related to muscle length and velocity, nor reproduced by current muscle spindle models. These include acceleration-dependent initial bursts, increased dynamic response to stretch velocity if a muscle has been isometric, and rate relaxation, i.e., a decrease in tonic IFR when a muscle is held at a constant length after being stretched. We collected muscle spindle spike trains across a variety of muscle stretch kinematic conditions, including systematic changes in peak length, velocity, and acceleration. We demonstrate that muscle spindle primary afferents in passive muscle fire in direct relationship to muscle force-related variables, rather than length-related variables. Linear combinations of whole muscle-tendon force and the first time derivative of force (dF/dt predict the entire time course of transient IFRs in muscle spindle Ia afferents during stretch (i.e., lengthening of passive muscle, including the initial burst, the dynamic response to lengthening, and rate relaxation following lengthening. Similar to acceleration scaling found previously in postural responses to perturbations, initial burst amplitude scaled equally well to initial stretch acceleration or dF/dt, though later transients were only described by dF/dt. The transient increase in dF/dt at the onset of lengthening reflects muscle short-range stiffness due to cross-bridge dynamics. Our work demonstrates a critical role of muscle cross-bridge dynamics in history-dependent muscle spindle IFRs in passive muscle

  17. Force encoding in muscle spindles during stretch of passive muscle.

    Science.gov (United States)

    Blum, Kyle P; Lamotte D'Incamps, Boris; Zytnicki, Daniel; Ting, Lena H

    2017-09-01

    Muscle spindle proprioceptive receptors play a primary role in encoding the effects of external mechanical perturbations to the body. During externally-imposed stretches of passive, i.e. electrically-quiescent, muscles, the instantaneous firing rates (IFRs) of muscle spindles are associated with characteristics of stretch such as length and velocity. However, even in passive muscle, there are history-dependent transients of muscle spindle firing that are not uniquely related to muscle length and velocity, nor reproduced by current muscle spindle models. These include acceleration-dependent initial bursts, increased dynamic response to stretch velocity if a muscle has been isometric, and rate relaxation, i.e., a decrease in tonic IFR when a muscle is held at a constant length after being stretched. We collected muscle spindle spike trains across a variety of muscle stretch kinematic conditions, including systematic changes in peak length, velocity, and acceleration. We demonstrate that muscle spindle primary afferents in passive muscle fire in direct relationship to muscle force-related variables, rather than length-related variables. Linear combinations of whole muscle-tendon force and the first time derivative of force (dF/dt) predict the entire time course of transient IFRs in muscle spindle Ia afferents during stretch (i.e., lengthening) of passive muscle, including the initial burst, the dynamic response to lengthening, and rate relaxation following lengthening. Similar to acceleration scaling found previously in postural responses to perturbations, initial burst amplitude scaled equally well to initial stretch acceleration or dF/dt, though later transients were only described by dF/dt. The transient increase in dF/dt at the onset of lengthening reflects muscle short-range stiffness due to cross-bridge dynamics. Our work demonstrates a critical role of muscle cross-bridge dynamics in history-dependent muscle spindle IFRs in passive muscle lengthening conditions

  18. Soleus stretch reflex during cycling

    DEFF Research Database (Denmark)

    Grey, Michael James; Pierce, C. W.; Milner, T. E.

    2001-01-01

    The modulation and strength of the human soleus short latency stretch reflex was investigated by mechanically perturbing the ankle during an unconstrained pedaling task. Eight subjects pedaled at 60 rpm against a preload of 10 Nm. A torque pulse was applied to the crank at various positions durin...

  19. Optical tweezers stretching of chromatin

    NARCIS (Netherlands)

    Pope, L.H.; Bennink, Martin L.; Greve, Jan

    2003-01-01

    Recently significant success has emerged from exciting research involving chromatin stretching using optical tweezers. These experiments, in which a single chromatin fibre is attached by one end to a micron-sized bead held in an optical trap and to a solid surface or second bead via the other end,

  20. A Variety of Activation Methods Employed in 'Activated-Ion' Electron Capture Dissociation Mass Spectrometry: A Test against Bovine Ubiquitin 7+ Ions

    International Nuclear Information System (INIS)

    Oh, Han Bin; McLafferty, Fred W.

    2006-01-01

    Fragmentation efficiencies of various 'activated-ion' electron capture dissociation (AI-ECD) methods are compared for a model system of bovine ubiquitin 7+ cations. In AI-ECD studies, sufficient internal energy was given to protein cations prior to ECD application using IR laser radiation, collisions, blackbody radiation, or in-beam collisions, in turn. The added energy was utilized in increasing the population of the precursor ions with less intra-molecular noncovalent bonds or enhancing thermal fluctuations of the protein cations. Removal of noncovalent bonds resulted in extended structures, which are ECD friendly. Under their best conditions, a variety of activation methods showed a similar effectiveness in ECD fragmentation. In terms of the number of fragmented inter-residue bonds, IR laser/blackbody infrared radiation and 'in-beam' activation were almost equally efficient with ∼70% sequence coverage, while collisions were less productive. In particular, 'in-beam' activation showed an excellent effectiveness in characterizing a pre-fractionated single kind of protein species. However, its inherent procedure did not allow for isolation of the protein cations of interest

  1. Stretching Diagnostics and Mixing Properties In The Stratosphere

    Science.gov (United States)

    Legras, B.; Shuckburgh, E.

    The "finite size Lyapunov exponent" and the "effective diffusivity" are two diagnos- tics of mixing which have been recently introduced to investigate atmospheric flows. Both have been used to successfully identify the barriers to transport, for instance at the edge of the stratospheric polar vortex. Here we compare the two diagnostics in detail. The equivalent length has the advantage of arising as a mixing quantification from a rigid theoretical framework, however it has the disadvantage of being an aver- age quantity (the average around a tracer contour). The finite size Lyapunov exponent may be defined at any point in the flow, and quantifies the stretching properties expe- rienced by a fluid parcel both in its past and future evolution. In particular, the lines of maximum stretching at any time delineate the building blocks of the chaotic stirring. However the interpretation of the finite size Lyapunov exponent as a mixing time is less direct and depends on the alignment of tracer contours with the stretching lines.

  2. Possible stretched exponential parametrization for humidity absorption in polymers.

    Science.gov (United States)

    Hacinliyan, A; Skarlatos, Y; Sahin, G; Atak, K; Aybar, O O

    2009-04-01

    Polymer thin films have irregular transient current characteristics under constant voltage. In hydrophilic and hydrophobic polymers, the irregularity is also known to depend on the humidity absorbed by the polymer sample. Different stretched exponential models are studied and it is shown that the absorption of humidity as a function of time can be adequately modelled by a class of these stretched exponential absorption models.

  3. Process Parameter Identification in Thin Film Flows Driven by a Stretching Surface

    Directory of Open Access Journals (Sweden)

    Satyananda Panda

    2014-01-01

    Full Text Available The flow of a thin liquid film over a heated stretching surface is considered in this study. Due to a potential nonuniform temperature distribution on the stretching sheet, a temperature gradient occurs in the fluid which produces surface tension gradient at the free surface of the thin film. As a result, the free surface deforms and these deformations are advected by the flow in the stretching direction. This work focuses on the inverse problem of reconstructing the sheet temperature distribution and the sheet stretch rate from observed free surface variations. This work builds on the analysis of Santra and Dandapat (2009 who, based on the long-wave expansion of the Navier-Stokes equations, formulate a partial differential equation which describes the evolution of the thickness of a film over a nonisothermal stretched surface. In this work, we show that after algebraic manipulation of a discrete form of the governing equations, it is possible to reconstruct either the unknown temperature field on the sheet and hence the resulting heat transfer or the stretching rate of the underlying surface. We illustrate the proposed methodology and test its applicability on a range of test problems.

  4. The Maths Arcade: A Tool for Supporting and Stretching Mathematics Undergraduates

    OpenAIRE

    Bradshaw, Noel-Ann

    2017-01-01

    The Maths Arcade is an activity which aims simultaneously to support those university mathematics learners who are having difficulties, stretch more confident learners, and encourage the development of a staff-student mathematical community. The first Maths Arcade was set up at the University of Greenwich in September 2010, funded initially by a University grant for innovative teaching and later by the Mathematical Sciences Curriculum Innovation Fund of the UK National Higher Education STEM P...

  5. Poultry litter-based activated carbon for removing heavy metal ions in water.

    Science.gov (United States)

    Guo, Mingxin; Qiu, Guannan; Song, Weiping

    2010-02-01

    Utilization of poultry litter as a precursor material to manufacture activated carbon for treating heavy metal-contaminated water is a value-added strategy for recycling the organic waste. Batch adsorption experiments were conducted to investigate kinetics, isotherms, and capacity of poultry litter-based activated carbon for removing heavy metal ions in water. It was revealed that poultry litter-based activated carbon possessed significantly higher adsorption affinity and capacity for heavy metals than commercial activated carbons derived from bituminous coal and coconut shell. Adsorption of metal ions onto poultry litter-based carbon was rapid and followed Sigmoidal Chapman patterns as a function of contact time. Adsorption isotherms could be described by different models such as Langmuir and Freundlich equations, depending on the metal species and the coexistence of other metal ions. Potentially 404 mmol of Cu2+, 945 mmol of Pb2+, 236 mmol of Zn2+, and 250-300 mmol of Cd2+ would be adsorbed per kg of poultry litter-derived activated carbon. Releases of nutrients and metal ions from litter-derived carbon did not pose secondary water contamination risks. The study suggests that poultry litter can be utilized as a precursor material for economically manufacturing granular activated carbon that is to be used in wastewater treatment for removing heavy metals.

  6. Studies in heavy ion activation analysis Pt. 4

    International Nuclear Information System (INIS)

    Lass, B.D.; Ojo, J.F.; Schweikert, E.A.

    1980-01-01

    The use of 7 MeV 6 Li + for heavy ion activation analysis was investigated. A survey of reactions, involving targets of lithium through oxygen inclusive, were studied for production of β + radioactivation products with half-lives of 10 1 -10 5 seconds. Specific activities for all reactions under the experimental conditions are reported and their use for analysis is assessed. (author)

  7. Anti-biofilm activity of Fe heavy ion irradiated polycarbonate

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, R.P. [Department of Physics, Savitribai Phule Pune University, Pune 411007 (India); Hareesh, K., E-mail: appi.2907@gmail.com [Department of Physics, Savitribai Phule Pune University, Pune 411007 (India); Bankar, A. [Department of Microbiology, Waghire College, Pune 412301 (India); Sanjeev, Ganesh [Microtron Centre, Department of Studies in Physics, Mangalore University, Mangalore 574166 (India); Asokan, K.; Kanjilal, D. [Inter University Accelerator Centre, Arun Asaf Ali Marg, New Delhi 110067 (India); Dahiwale, S.S.; Bhoraskar, V.N. [Department of Physics, Savitribai Phule Pune University, Pune 411007 (India); Dhole, S.D., E-mail: sanjay@physics.unipune.ac.in [Department of Physics, Savitribai Phule Pune University, Pune 411007 (India)

    2016-10-01

    Highlights: • PC films were irradiated by 60 and 120 MeV Fe ions. • Irradiated PC films showed changes in its physical and chemical properties. • Irradiated PC also showed more anti-biofilm activity compared to pristine PC. - Abstract: Polycarbonate (PC) polymers were investigated before and after high energy heavy ion irradiation for anti-bacterial properties. These PC films were irradiated by Fe heavy ions with two energies, viz, 60 and 120 MeV, at different fluences in the range from 1 × 10{sup 11} ions/cm{sup 2} to 1 × 10{sup 13} ions/cm{sup 2}. UV-Visible spectroscopic results showed optical band gap decreased with increase in ion fluences due to chain scission mainly at carbonyl group of PC which is also corroborated by Fourier transform infrared spectroscopic results. X-ray diffractogram results showed decrease in crystallinity of PC after irradiation which leads to decrease in molecular weight. This is confirmed by rheological studies and also by differential scanning calorimetric results. The irradiated PC samples showed modification in their surfaces prevents biofilm formation of human pathogen, Salmonella typhi.

  8. Dynamics and structure of stretched flames

    Energy Technology Data Exchange (ETDEWEB)

    Law, C.K. [Princeton Univ., NJ (United States)

    1993-12-01

    This program aims to gain fundamental understanding on the structure, geometry, and dynamics of laminar premixed flames, and relate these understanding to the practical issues of flame extinction and stabilization. The underlying fundamental interest here is the recent recognition that the response of premixed flames can be profoundly affected by flame stretch, as manifested by flow nonuniformity, flame curvature, and flame/flow unsteadiness. As such, many of the existing understanding on the behavior of premixed flames need to be qualitatively revised. The research program consists of three major thrusts: (1) detailed experimental and computational mapping of the structure of aerodynamically-strained planar flames, with emphasis on the effects of heat loss, nonequidiffusion, and finite residence time on the flame thickness, extent of incomplete reaction, and the state of extinction. (2) Analytical study of the geometry and dynamics of stretch-affected wrinkled flame sheets in simple configurations, as exemplified by the Bunsen flame and the spatially-periodic flame, with emphasis on the effects of nonlinear stretch, the phenomena of flame cusping, smoothing, and tip opening, and their implications on the structure and burning rate of turbulent flames. (3) Stabilization and blowoff of two-dimensional inverted premixed and stabilization and determining the criteria governing flame blowoff. The research is synergistically conducted through the use of laser-based diagnostics, computational simulation of the flame structure with detailed chemistry and transport, and mathematical analysis of the flame dynamics.

  9. Excluded Volume Effects in Gene Stretching

    OpenAIRE

    Lam, Pui-Man

    2002-01-01

    We investigate the effects excluded volume on the stretching of a single DNA in solution. We find that for small force F, the extension h is not linear in F but proportion to F^{\\chi}, with \\chi=(1-\

  10. Effect of Twisting and Stretching on Magneto Resistance and Spin Filtration in CNTs

    Directory of Open Access Journals (Sweden)

    Anil Kumar Singh

    2017-08-01

    Full Text Available Spin-dependent quantum transport properties in twisted carbon nanotube and stretched carbon nanotube are calculated using density functional theory (DFT and non-equilibrium green’s function (NEGF formulation. Twisting and stretching have no effect on spin transport in CNTs at low bias voltages. However, at high bias voltages the effects are significant. Stretching restricts any spin-up current in antiparallel configuration (APC, which results in higher magneto resistance (MR. Twisting allows spin-up current almost equivalent to the pristine CNT case, resulting in lower MR. High spin filtration is observed in PC and APC for pristine, stretched and twisted structures at all applied voltages. In APC, at low voltages spin filtration in stretched CNT is higher than in pristine and twisted ones, with pristine giving a higher spin filtration than twisted CNT.

  11. Effect of Ankle Positioning During Hamstring Stretches for Improving Straight Leg Hip Flexion Motion.

    Science.gov (United States)

    Laudner, Kevin G; Benjamin, Peter J; Selkow, Noelle M

    2016-03-01

    To compare the effects of stretching the hamstrings with the ankle in either a plantar-flexed (PF) or dorsiflexed (DF) position for improving straight leg hip flexion range of motion (ROM) over a 4-week period. Randomized, single-blinded, pretest, posttest design. Athletic training facility. Each limb of 34 asymptomatic individuals (15 males, 19 females) was randomly assigned to one of the 3 groups. Twenty-four limbs received hamstring stretches with the ankle in DF, 24 limbs received hamstring stretches with the ankle in PF, and 20 limbs received no stretch (control). Ankle position (PF, DF) during hamstring stretching. We measured pretest and posttest passive straight leg hip flexion ROM with the test ankle in a neutral position. For the intervention groups, the test limb was passively stretched with the ankle held in end range DF or PF for their respective group. Each stretch was held for 30 seconds for a total of 3 applications. Two treatment sessions were completed per week for a total of 4 weeks. The control limbs received no stretching during the 4-week period. We conducted 1-way analyses of covariance to determine significant changes in ROM between groups (P hamstrings in either PF or DF improve straight leg hip ROM compared with a control group. The results of this study should be considered by clinicians when determining the optimal stretching techniques aimed at increasing hamstring length.

  12. Acute Effect of Different Combined Stretching Methods on Acceleration and Speed in Soccer Players

    Directory of Open Access Journals (Sweden)

    Amiri-Khorasani Mohammadtaghi

    2016-04-01

    Full Text Available The purpose of this study was to investigate the acute effect of different stretching methods, during a warm-up, on the acceleration and speed of soccer players. The acceleration performance of 20 collegiate soccer players (body height: 177.25 ± 5.31 cm; body mass: 65.10 ± 5.62 kg; age: 16.85 ± 0.87 years; BMI: 20.70 ± 5.54; experience: 8.46 ± 1.49 years was evaluated after different warm-up procedures, using 10 and 20 m tests. Subjects performed five types of a warm-up: static, dynamic, combined static + dynamic, combined dynamic + static, and no-stretching. Subjects were divided into five groups. Each group performed five different warm-up protocols in five non-consecutive days. The warm-up protocol used for each group was randomly assigned. The protocols consisted of 4 min jogging, a 1 min stretching program (except for the no-stretching protocol, and 2 min rest periods, followed by the 10 and 20 m sprint test, on the same day. The current findings showed significant differences in the 10 and 20 m tests after dynamic stretching compared with static, combined, and no-stretching protocols. There were also significant differences between the combined stretching compared with static and no-stretching protocols. We concluded that soccer players performed better with respect to acceleration and speed, after dynamic and combined stretching, as they were able to produce more force for a faster execution.

  13. Flow of viscous fluid along an exponentially stretching curved surface

    Directory of Open Access Journals (Sweden)

    N.F. Okechi

    Full Text Available In this paper, we present the boundary layer analysis of flow induced by rapidly stretching curved surface with exponential velocity. The governing boundary value problem is reduced into self-similar form using a new similarity transformation. The resulting equations are solved numerically using shooting and Runge-Kutta methods. The numerical results depicts that the fluid velocity as well as the skin friction coefficient increases with the surface curvature, similar trend is also observed for the pressure. The dimensionless wall shear stress defined for this problem is greater than that of a linearly stretching curved surface, but becomes comparably less for a surface stretching with a power-law velocity. In addition, the result for the plane surface is a special case of this study when the radius of curvature of the surface is sufficiently large. The numerical investigations presented in terms of the graphs are interpreted with the help of underlying physics of the fluid flow and the consequences arising from the curved geometry. Keywords: Boundary layer flow, Curved surface, Exponential stretching, Curvature

  14. Directional Cell Migration in Response to Repeated Substratum Stretching

    Science.gov (United States)

    Okimura, Chika; Iwadate, Yoshiaki

    2017-10-01

    Crawling migration plays an essential role in a variety of biological phenomena, including development, wound healing, and immune system function. Migration properties such as anterior-posterior polarity, directionality, and velocity are regulated not only by the reception of a chemoattractant but also by sensing mechanical inputs from the external environment. In this review, we describe the mechanical response of migrating cells, particularly under repeated stretching of the elastic substratum, highlighting the fact that there appear to be two independent mechanosensing systems that generate the polarity needed for migration. Cells that have no stress fibers, such as Dictyostelium cells and neutrophil-like differentiated HL-60 cells, migrate perpendicular to the stretching direction via myosin II localization. Cells that do possess stress fibers, however, such as fish keratocytes, migrate parallel to the stretching via a stress-fiber-dependent process.

  15. Mechanical Stretching Promotes Skin Tissue Regeneration via Enhancing Mesenchymal Stem Cell Homing and Transdifferentiation.

    Science.gov (United States)

    Liang, Xiao; Huang, Xiaolu; Zhou, Yiwen; Jin, Rui; Li, Qingfeng

    2016-07-01

    Skin tissue expansion is a clinical procedure for skin regeneration to reconstruct cutaneous defects that can be accompanied by severe complications. The transplantation of mesenchymal stem cells (MSCs) has been proven effective in promoting skin expansion and helping to ameliorate complications; however, systematic understanding of its mechanism remains unclear. MSCs from luciferase-Tg Lewis rats were intravenously transplanted into a rat tissue expansion model to identify homing and transdifferentiation. To clarify underlying mechanisms, a systematic approach was used to identify the differentially expressed genes between mechanically stretched human MSCs and controls. The biological significance of these changes was analyzed through bioinformatic methods. We further investigated genes and pathways of interest to disclose their potential role in mechanical stretching-induced skin regeneration. Cross sections of skin samples from the expanded group showed significantly more luciferase(+) and stromal cell-derived factor 1α (SDF-1α)(+), luciferase(+)keratin 14(+), and luciferase(+)CD31(+) cells than the control group, indicating MSC transdifferentiation into epidermal basal cells and endothelial cells after SDF-1α-mediated homing. Microarray analysis suggested upregulation of genes related to hypoxia, vascularization, and cell proliferation in the stretched human MSCs. Further investigation showed that the homing of MSCs was blocked by short interfering RNA targeted against matrix metalloproteinase 2, and that mechanical stretching-induced vascular endothelial growth factor A upregulation was related to the Janus kinase/signal transducer and activator of transcription (Jak-STAT) and Wnt signaling pathways. This study determines that mechanical stretching might promote skin regeneration by upregulating MSC expression of genes related to hypoxia, vascularization, and cell proliferation; enhancing transplanted MSC homing to the expanded skin; and

  16. Electrochemical activation and inhibition of neuromuscular systems through modulation of ion concentrations with ion-selective membranes

    Science.gov (United States)

    Song, Yong-Ak; Melik, Rohat; Rabie, Amr N.; Ibrahim, Ahmed M. S.; Moses, David; Tan, Ara; Han, Jongyoon; Lin, Samuel J.

    2011-12-01

    Conventional functional electrical stimulation aims to restore functional motor activity of patients with disabilities resulting from spinal cord injury or neurological disorders. However, intervention with functional electrical stimulation in neurological diseases lacks an effective implantable method that suppresses unwanted nerve signals. We have developed an electrochemical method to activate and inhibit a nerve by electrically modulating ion concentrations in situ along the nerve. Using ion-selective membranes to achieve different excitability states of the nerve, we observe either a reduction of the electrical threshold for stimulation by up to approximately 40%, or voluntary, reversible inhibition of nerve signal propagation. This low-threshold electrochemical stimulation method is applicable in current implantable neuroprosthetic devices, whereas the on-demand nerve-blocking mechanism could offer effective clinical intervention in disease states caused by uncontrolled nerve activation, such as epilepsy and chronic pain syndromes.

  17. On prediction of OH stretching frequencies in intramolecularly hydrogen bonded systems

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Spanget-Larsen, Jens

    2012-01-01

    OH stretching frequencies are investigated for a series of non-tautomerizing systems with intramolecular hydrogen bonds. Effective OH stretching wavenumbers are predicted by the application of empirical correlation procedures based on the results of B3LYP/6-31G(d) theoretical calculations...

  18. Optimization of path length stretching in Monte Carlo calculations for non-leakage problems

    Energy Technology Data Exchange (ETDEWEB)

    Hoogenboom, J.E. [Delft Univ. of Technology (Netherlands)

    2005-07-01

    Path length stretching (or exponential biasing) is a well known variance reduction technique in Monte Carlo calculations. It can especially be useful in shielding problems where particles have to penetrate a lot of material before being tallied. Several authors sought for optimization of the path length stretching parameter for detection of the leakage of neutrons from a slab. Here the adjoint function behaves as a single exponential function and can well be used to determine the stretching parameter. In this paper optimization is sought for a detector embedded in the system, which changes the adjoint function in the detector drastically. From literature it is known that the combination of path length stretching and angular biasing can result in appreciable variance reduction. However, angular biasing is not generally available in general purpose Monte Carlo codes and therefore we want to restrict ourselves to the application of pure path length stretching and finding optimum parameters for that. Nonetheless, the starting point for our research is the zero-variance scheme. In order to study the solution in detail the simplified monoenergetic two-direction model is adopted, which allows analytical solutions and can still be used in a Monte Carlo simulation. Knowing the zero-variance solution analytically, it is shown how optimum path length stretching parameters can be derived from it. It results in path length shrinking in the detector. Results for the variance in the detector response are shown in comparison with other patterns for the stretching parameter. The effect of anisotropic scattering on the path length stretching parameter is taken into account. (author)

  19. Effects of metal ions on growth, β-oxidation system, and thioesterase activity of Lactococcus lactis.

    Science.gov (United States)

    Li, Liang; Ma, Ying

    2014-10-01

    The effects of divalent metal ions (Ca(2+), Mg(2+), Fe(2+), and Cu(2+)) on the growth, β-oxidation system, and thioesterase activity of Lactococcus lactis were investigated. Different metal ions significantly influenced the growth of L. lactis: Ca(2+) and Fe(2+) accelerated growth, whereas Cu(2+) inhibited growth. Furthermore, Mg(2+) inhibited growth of L. lactis at a low concentration but stimulated growth of L. lactis at a high concentration. The divalent metal ions had significant effects on activity of the 4 key enzymes of the β-oxidation system (acyl-CoA dehydrogenase, enoyl-CoA hydratase, L-3-hydroxyacyl-CoA dehydrogenase, and thiolase) and thioesterase of L. lactis. The activity of acyl-CoA dehydrogenases increased markedly in the presence of Ca(2+) and Mg(2+), whereas it decreased with 1 mmol/L Fe(2+) or 12 mmol/L Mg(2+). All the metal ions could induce activity of enoyl-CoA hydratase. In addition, 12 mmol/L Mg(2+) significantly stimulated activity of L-3-hydroxyacyl-CoA dehydrogenase, and all metal ions could induce activity of thiolase, although thiolase activity decreased significantly when 0.05 mmol/L Cu(2+) was added into M17 broth. Inhibition of thioesterase activity by all 4 metal ions could be reversed by 2 mmol/L Ca(2+). These results help us understand the effect of metal ions on the β-oxidation system and thioesterase activity of Lactococcus lactis. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. Ion from Aqueous Solution using Magnetite, Activated Carbon

    African Journals Online (AJOL)

    ADOWIE PERE

    Thermodynamic studies on Adsorption of lead (II) Ion from Aqueous Solution using. Magnetite ... process industries and agricultural activities, which tends to ... osmosis. These processes are however, not economically feasible for small scale industries .... Freundlich coefficient. ..... from binary component system, Beni-suef.

  1. Crustal Stretching Style and Lower Crust Flow of the South China Sea Northern Margin

    Science.gov (United States)

    Bai, Y.; Dong, D.; Runlin, D.

    2017-12-01

    There is a controversy about crustal stretching style of the South China Sea (SCS) northern margin mainly due to considerable uncertainty of stretching factor estimation, for example, as much as 40% of upper crust extension (Walsh et al., 1991) would be lost by seismic profiles due to poor resolution. To discover and understand crustal stretching style and lower crustal flow on the whole, we map the Moho and Conrad geometries based on gravity inversion constrained by deep seismic profiles, then according to the assumption of upper and lower crust initial thickness, upper and lower crust stretching factors are estimated. According to the comparison between upper and lower crust stretching factors, the SCS northern margin could be segmented into three parts, (1) sediment basins where upper crust is stretched more than lower crust, (2) COT regions where lower crust is stretched more than upper crust, (3) other regions where the two layers have similar stretching factors. Stretching factor map shows that lower crust flow happened in both of COT and sediment basin regions where upper crust decouples with lower crust due to high temperature. Pressure contrast by sediment loading in basins and erosion in sediment-source regions will lead to lower crust flow away from sediment sink to source. Decoupled and fractured upper crust is stretched further by sediment loading and the following compensation would result in relatively thick lower crust than upper crust. In COT regions with thin sediment coverage, low-viscosity lower crust is easier to thin in extensional environment, also the lower crust tends to flow away induced by magma upwelling. Therefore, continental crust on the margin is not stretching in a constant way but varies with the tectonic setting changes. This work is supported by National Natural Science Foundation of China (Grant No. 41506055, 41476042) and Fundamental Research Funds for the Central Universities China (No.17CX02003A).

  2. Sequence-length variation of mtDNA HVS-I C-stretch in Chinese ethnic groups.

    Science.gov (United States)

    Chen, Feng; Dang, Yong-hui; Yan, Chun-xia; Liu, Yan-ling; Deng, Ya-jun; Fulton, David J R; Chen, Teng

    2009-10-01

    The purpose of this study was to investigate mitochondrial DNA (mtDNA) hypervariable segment-I (HVS-I) C-stretch variations and explore the significance of these variations in forensic and population genetics studies. The C-stretch sequence variation was studied in 919 unrelated individuals from 8 Chinese ethnic groups using both direct and clone sequencing approaches. Thirty eight C-stretch haplotypes were identified, and some novel and population specific haplotypes were also detected. The C-stretch genetic diversity (GD) values were relatively high, and probability (P) values were low. Additionally, C-stretch length heteroplasmy was observed in approximately 9% of individuals studied. There was a significant correlation (r=-0.961, Ppopulations. The results from the Fst and dA genetic distance matrix, neighbor-joining tree, and principal component map also suggest that C-stretch could be used as a reliable genetic marker in population genetics.

  3. Role of Heat Shock Protein 70 in Induction of Stress Fiber Formation in Rat Arterial Endothelial Cells in Response to Stretch Stress

    International Nuclear Information System (INIS)

    Luo, Shan-Shun; Sugimoto, Keiji; Fujii, Sachiko; Takemasa, Tohru; Fu, Song-Bin; Yamashita, Kazuo

    2007-01-01

    We investigated the mechanism by which endothelial cells (ECs) resist various forms of physical stress using an experimental system consisting of rat arterial EC sheets. Formation of actin stress fibers (SFs) and expression of endothelial heat-shock stress proteins (HSPs) in response to mechanical stretch stress were assessed by immunofluorescence microscopy. Stretch stimulation increased expression of HSPs 25 and 70, but not that of HSP 90. Treatment with SB203580, a p38 MAP kinase inhibitor that acts upstream of the HSP 25 activation cascade, or with geldanamycin, an inhibitor of HSP 90, had no effect on the SF formation response to mechanical stretch stress. In contrast, treatment with quercetin, an HSP 70 inhibitor, inhibited both upregulation of endothelial HSP 70 and formation of SFs in response to tensile stress. In addition, treatment of stretched ECs with cytochalasin D, which disrupts SF formation, did not adversely affect stretch-induced upregulation of endothelial HSP 70. Our data suggest that endothelial HSP 70 plays an important role in inducing SF formation in response to tensile stress

  4. Mechanical stretch up-regulates the B-type natriuretic peptide system in human cardiac fibroblasts: a possible defense against transforming growth factor-ß mediated fibrosis

    LENUS (Irish Health Repository)

    Watson, Chris J

    2012-07-07

    AbstractBackgroundMechanical overload of the heart is associated with excessive deposition of extracellular matrix proteins and the development of cardiac fibrosis. This can result in reduced ventricular compliance, diastolic dysfunction, and heart failure. Extracellular matrix synthesis is regulated primarily by cardiac fibroblasts, more specifically, the active myofibroblast. The influence of mechanical stretch on human cardiac fibroblasts’ response to pro-fibrotic stimuli, such as transforming growth factor beta (TGFβ), is unknown as is the impact of stretch on B-type natriuretic peptide (BNP) and natriuretic peptide receptor A (NPRA) expression. BNP, acting via NPRA, has been shown to play a role in modulation of cardiac fibrosis.Methods and resultsThe effect of cyclical mechanical stretch on TGFβ induction of myofibroblast differentiation in primary human cardiac fibroblasts and whether differences in response to stretch were associated with changes in the natriuretic peptide system were investigated. Cyclical mechanical stretch attenuated the effectiveness of TGFβ in inducing myofibroblast differentiation. This finding was associated with a novel observation that mechanical stretch can increase BNP and NPRA expression in human cardiac fibroblasts, which could have important implications in modulating myocardial fibrosis. Exogenous BNP treatment further reduced the potency of TGFβ on mechanically stretched fibroblasts.ConclusionWe postulate that stretch induced up-regulation of the natriuretic peptide system may contribute to the observed reduction in myofibroblast differentiation.

  5. DNA analysis by single molecule stretching in nanofluidic biochips

    DEFF Research Database (Denmark)

    Abad, E.; Juarros, A.; Retolaza, A.

    2011-01-01

    Imprint Lithography (NIL) technology combined with a conventional anodic bonding of the silicon base and Pyrex cover. Using this chip, we have performed single molecule imaging on a bench-top fluorescent microscope system. Lambda phage DNA was used as a model sample to characterize the chip. Single molecules of λ-DNA......Stretching single DNA molecules by confinement in nanofluidic channels has attracted a great interest during the last few years as a DNA analysis tool. We have designed and fabricated a sealed micro/nanofluidic device for DNA stretching applications, based on the use of the high throughput Nano...... stained with the fluorescent dye YOYO-1 were stretched in the nanochannel array and the experimental results were analysed to determine the extension factor of the DNA in the chip and the geometrical average of the nanochannel inner diameter. The determination of the extension ratio of the chip provides...

  6. Effects of Functional Training and Calf Stretching on Risk of Falls in Older People: A Pilot Study.

    Science.gov (United States)

    do Rosario, Jailton Thulher; da Fonseca Martins, Natalia Santos; Peixinho, Carolina Carneiro; Oliveira, Liliam Fernandes

    2017-04-01

    This study aimed to determine the effects of a functional training and ankle stretching program in triceps surae torque, passive stiffness index, and in the risk for fall indicators in older adults. Twenty women (73.4 ± 7.3 years) were allocated into an intervention or control group. The 12-week intervention consisted of functional training and calf stretching exercises performed twice a week. Measurements of peak passive and active torque, passive stiffness, maximum dorsiflexion angle, and indexes of risk for falls (Timed Up and Go, functional reach test, QuickScreen-test) were collected. There were no significant differences for all variables, except the maximum dorsiflexion angle, which increased in the intervention group from 33.78 ± 8.57° to 38.89 ± 7.52°. The exercise program was not sufficient to enhance performance on functional tests and decrease the risk for falls in older adults. The significant increase in the maximum dorsiflexion indicates a positive impact of stretching exercises.

  7. Cytotoxicity Comparison of the Nanoparticles Deposited on Latex Rubber Bands between the Original and Stretched State

    Directory of Open Access Journals (Sweden)

    Jung-Hwan Lee

    2014-01-01

    Full Text Available Understanding the biocompatibility of nanoparticles in dental materials is essential for their safe usage in the oral cavity. In this study, we investigated whether nanoparticles deposited on orthodontic latex rubber bands are involved in the induction of cytotoxicity. A method of stretching to three times (“3L” the length of the latex rubber bands was employed to detach the particles using the original length (“L” for comparison. The cytotoxicity tests were performed on extracts with mouse fibroblasts (L929 and human gingival fibroblasts (HGFs. Fourier transform infrared spectroscopy, ion chromatography, elemental analysis, and inductively coupled plasma mass spectrometry (ICP-MS were performed to detect the harmful components in the extracts from rubber bands. There was a significant decrease in the cell viability in the “L” samples compared with the “3L” samples (P<0.05 in the L929 and HGF cells. This was due to the Ni single crystal nanoparticles (~50nm from the inner surface of “L” samples that were detached in the “3L” samples as well as the Zn ion (~9 ppm detected in the extract. This study revealed that the Ni nanoparticles, as well as Zn ions, were involved in the induction of cytotoxicity from the latex rubber bands.

  8. The static actuation of dielectric elastomer actuators: how does pre-stretch improve actuation?

    International Nuclear Information System (INIS)

    Kofod, Guggi

    2008-01-01

    It has previously been shown that providing dielectric elastomer actuators with a level of pre-stretch can improve properties such as breakdown strength, actuation strain and efficiency. The actuation in such actuators depends on an interplay between the highly nonlinear hyperelastic stress-strain behaviour with the electrostatic Maxwell's stress; however, the direct effects of pre-stretch on the electromechanical coupling have still not been investigated in detail. We compare several experimental results found in the literature on the hyperelastic parameters of the Ogden model for the commonly used material VHB 4910, and introduce a more detailed and thus more accurate fit to a previous uniaxial stress-strain experiment. Electrostatic actuation models for a pure shear cuboid dielectric elastomer actuator with pre-stretch are introduced, for both intensive and extensive variables. For both intensive and extensive variables the constant strain (blocked stress or force) as well as the actuation strain is presented. It is shown how in the particular case of isotropic amorphous elastomers the pre-stretch does not affect the electromechanical coupling directly, and that the enhancement in actuation strain due to pre-stretch occurs through the alteration of the geometrical dimensions of the actuator. Also, the presence of the optimum load is explained as being due to the plateau region in the force-stretch curve, and it is shown that pre-stretch is not able to affect its position. Finally, it is shown how the simplified Ogden fit leads to entirely different conclusions for actuation strain in terms of extensive variables as does the detailed fit, emphasizing the importance of employing accurate hyperelastic models for the stress-stretch behaviour of the elastomer.

  9. Acute effect of different stretching methods on flexibility and jumping performance in competitive artistic gymnasts.

    Science.gov (United States)

    Dallas, G; Smirniotou, A; Tsiganos, G; Tsopani, D; Di Cagno, A; Tsolakis, Ch

    2014-12-01

    The purpose of this study was to investigate the acute effects of 3 different warm up methods of stretching (static, proprioceptive neuromuscular facilitation, and stretching exercises on a Vibration platform) on flexibility and legs power-jumping performance in competitive artistic gymnasts. Eighteen competitive artistic gymnasts were recruited to participate in this study. Subjects were exposed to each of 3 experimental stretching conditions: static stretching (SS), proprioceptive neuromuscular facilitation stretching (PNF), and stretching exercises on a Vibration platform (S+V). Flexibility assessed with sit and reach test (S & R) and jumping performance with squat jump (SJ) and counter movement jump (CMJ) and were measured before, immediately after and 15 min after the interventions. Significant differences were observed for flexibility after all stretching conditions for S+V (+1.1%), SS (+5.7%) and PNF (+6.8%) (P=0.000), which remained higher 15 min after interventions (S+V (1.1%), SS (5.3%) and PNF (5.5%), respectively (P=0.000). PNF stretching increased flexibility in competitive gymnasts, while S+V maintained jumping performance when both methods were used as part of a warm-up procedure.

  10. How much do we know about the activity of individual ions?

    International Nuclear Information System (INIS)

    Wilczek-Vera, Grazyna; Vera, Juan H.

    2016-01-01

    Highlights: • Almost unknown experimental data on individual activities of ions are brought to light. • Details of different methods of measurements are provided and compared. • Agreement and disagreement of information is highlighted. • Paper encourages further research on activity of individual ions. - Abstract: Data of activity of individual ions reported in the literature by nine authors are compared in graphical form. Visual observation of the plots clearly shows that for some systems the data are in fair agreement and it can be used to test theories of electrolyte solutions. For systems that the data show discrepancy between different researchers, it is possible to judge which data are out of the trend showed by the majority of the other studies. Only a few systems appear to need further measurements. This compilation of results is the first of its class in modern times and not only helps in showing the consistency between data from different laboratories but it also indicates for what systems data are still needed.

  11. EFFECTIVENESS OF INSTUMENTAL ASSISTED SOFT TISSUE MOBILIZATION TECHNIQUE WITH STATIC STRETCHING IN SUBJECTS WITH PLANTAR FASCIITIS

    Directory of Open Access Journals (Sweden)

    Vinod Babu. K

    2014-08-01

    Full Text Available Background: Instrumental assisted soft tissue mobilization and static stretching found to be effective in plantar fasciitis, however the combined effectiveness of these techniques were unknown. The purpose of this study is to find the effect of Instrumental assisted soft tissue mobilization technique for plantar fascia combined with static stretching of triceps surae for subjects with chronic stage of Plantar Fasciitis on pain intensity, ankle dorsiflexion range of motion and functional disability. Methods: An experimental study design, selected subjects with chronic Plantar Fasciitis randomized subjects into each Study and Control group. Total of 40 subject’s data who completed study, 20 in each group, was used for analysis. Control group received conventional exercise while Study group received conventional exercises with Instrumental assisted soft tissue mobilization combined with static stretching of triceps surae muscle. Outcome measurements such as Intensity of pain using Numerical Pain Rating Scale-101 (NPRS-101, function disability using Foot Function Index Pain Subscale (FFI and ankle dorsiflexion active range of motion using Goniometer was measured before and after 2 weeks of intervention. Results: There is statistically significant improvement in means of NRS-101, ankle dorsiflexion active range of motion and Foot Function Index Pain Subscale after intervention in both groups. When the post-intervention means were compared between Study and Control group after 2 weeks of treatment there is statistically significant difference in means between the groups whereas study group showed greater percentage of improvement than control group. Conclusion: It is concluded that Instrumental assisted soft tissue mobilization technique combined with static stretching of triceps surae muscle is significantly effective than conventional exercises on reducing pain, improving ankle dorsiflexion range of motion and functional disability for subjects

  12. Dual mode antibacterial activity of ion substituted calcium phosphate nanocarriers for bone infections

    Directory of Open Access Journals (Sweden)

    Sampath Kumar eT.S.

    2015-05-01

    Full Text Available Nanotechnology has tremendous potential for the management of infectious diseases caused by multi-drug resistant (MDR bacteria, through the development of newer antibacterial materials and efficient modes of antibiotic delivery. Calcium phosphate (CaP bioceramics are commonly used as bone substitutes due to their similarity to bone mineral and are widely researched upon for the treatment of bone infections associated with bone loss. CaPs can be used as local antibiotic delivery agents for bone infections and can be substituted with antibacterial ions in their crystal structure to have a wide spectrum, sustained antibacterial activity even against drug resistant bacteria. In the present work, a dual mode antibiotic delivery system with antibacterial ion substituted calcium deficient hydroxyapatite (CDHA nanoparticles has been developed. Antibacterial ions such as zinc, silver and strontium have been incorporated into CDHA at concentrations of 6 at. %, 0.25-0.75 at. % and 2.5-7.5 at. % respectively. The samples were found to be phase pure, acicular nanoparticles of length 40-50 nm and width 5-6 nm approximately. The loading and release profile of doxycycline, a commonly used antibiotic, was studied from the nanocarriers. The drug release was studied for five days and the release profile was influenced by the ion concentrations. The release of antibacterial ions was studied over a period of 21 days. The ion substituted CDHA samples were tested for antibacterial efficacy on S.aureus and E.coli by MIC/MBC studies and time-kill assay. AgCDHA and ZnCDHA showed high antibacterial activity against both bacteria while SrCDHA was weakly active against S.aureus. Present study shows that the antibiotic release can provide the initial high antibacterial activity and the sustained ion release can provide a long-term antibacterial activity. Such dual mode antibiotic and antibacterial ion release offers an efficient and potent way to treat an incumbent drug

  13. Acute effects of static stretching on peak and end-range hamstring-to-quadriceps functional ratios

    Science.gov (United States)

    Sekir, Ufuk; Arabaci, Ramiz; Akova, Bedrettin

    2015-01-01

    AIM: To evaluate if static stretching influences peak and end-range functional hamstring-to-quadriceps (H/Q) strength ratios in elite women athletes. METHODS: Eleven healthy female athletes in an elite competitive level participated to the study. All the participants fulfilled the static stretching or non-stretching (control) intervention protocol in a randomized design on different days. Two static unassisted stretching exercises, one in standing and one in sitting position, were used to stretch both the hamstring and quadriceps muscles during these protocols. The total time for the static stretching was 6 ± 1 min. The isokinetic peak torque measurements for the hamstring and quadriceps muscles in eccentric and concentric modes and the calculations for the functional H/Q strength ratios at angular velocities of 60°/s and 180°/s were made before (pre) and after (post) the control or stretching intervention. The strength measurements and functional strength ratio calculations were based during the entire- and end-range of knee extension. RESULTS: The pre-test scores for quadriceps and hamstring peak torque and end range values were not significantly different between the groups (P > 0.05). Subsequently, although the control group did not exhibit significant changes in quadriceps and hamstring muscle strength (P > 0.05), static stretching decreased eccentric and concentric quadriceps muscle strength at both the 60°/s and 180°/s test speeds (P hamstring muscle strength at both the 60°/s and 180°/s test speeds (P 0.05). Furthermore, the functional H/Q strength ratios exhibited no significant alterations during the entire and end ranges of knee extension both in the static stretching or the control intervention (P > 0.05). CONCLUSION: According to our results, static stretching routine does not influence functional H/Q ratio. Athletes can confidently perform static stretching during their warm-up routines. PMID:26495249

  14. Binding of ferric ions is essential for the biological activity of glycine-extended gastrin

    International Nuclear Information System (INIS)

    Baldwin, G.S.; Pannequin, J.; Hollande, F.; Shulkes, A.

    2002-01-01

    Full text: Non-amidated gastrins, such as glycine-extended gastrin17 (Ggly), are now known to be biologically active. Ggly stimulates cell proliferation and migration, and was recently shown to bind two ferric ions with high affinity. The objective of the present work was to define the structure of Ggly for the first time, and to investigate the role of ferric ions in biological activity. Methods: The structure of Ggly, and the identity of the ammo acids that act as ferric ion ligands, were determined by NMR and fluorescence spectroscopy. The effect on the gastric epithelial cell line IMGE-5 of Ggly fragments, and of Ggy mutants with some or all of the five consecutive glutamate residues replaced by alanine, was measured in terms of cell proliferation, cell migration and phosphorylation of focal adhesion kinase. Results: Ggly adopts a well-defined loop stabilised by hydrophobic interactions between Leu5, Tyrl2, Trp 14 and Phe17. Studies with Ggly fragments indicated that ferric ions bind via the pentaglutamate sequence, which is necessary but not sufficient for full activity Selective replacement of some or all of the glutamates results in a reduction in ferric ion binding, and complete loss of biological activity. Conclusion: Our results are consistent with the hypothesis that ferric ion binding is necessary for biological activity

  15. The effects of static stretch duration on the flexibility of hamstring ...

    African Journals Online (AJOL)

    The effects of static stretch duration on the flexibility of hamstring muscles. NA Odunaiya, TK Hamzat, OF Ajayi. Abstract. The effects of duration of a static stretching protocol (Intervention) on hamstrings tightness were evaluated. Sixty purposively sampled subjects with unilateral hamstring tightness that had no history of low ...

  16. Immobilization and stretching of 5'-pyrene-terminated DNA on carbon film deposited on electron microscope grid.

    Science.gov (United States)

    Loukanov, Alexandre; Filipov, Chavdar; Lecheva, Marta; Emin, Saim

    2015-11-01

    The immobilization and stretching of randomly coiled DNA molecules on hydrophobic carbon film is a challenging microscopic technique, which possess various applications, especially for genome sequencing. In this report the pyrenyl nucleus is used as an anchor moiety to acquire higher affinity of double stranded DNA to the graphite surface. DNA and pyrene are joined through a linker composed of four aliphatic methylene groups. For the preparation of pyrene-terminated DNA a multifunctional phosphoramidite monomer compound was designed. It contains pyrenylbutoxy group as an anchor moiety for π-stacking attachment to the carbon film, 2-cyanoethyloxy, and diisopropylamino as coupling groups for conjugation to activated oligonucleotide chain or DNA molecule. This monomer derivative was suitable for incorporation into automated solid-phase DNA synthesis and was attached to the 5' terminus of the DNA chain through a phosphodiester linkage. The successful immobilization and stretching of pyrene-terminated DNA was demonstrated by conventional 100 kV transmission electron microscope. The microscopic analysis confirmed the stretched shape of the negatively charged nucleic acid pieces on the hydrophobic carbon film. © 2015 Wiley Periodicals, Inc.

  17. The acute effects of stretching with vibration on dynamic flexibility in young female gymnasts.

    Science.gov (United States)

    Johnson, Aaron W; Warcup, Caisa N; Seeley, Matthew K; Eggett, Dennis; Feland, Jeffery B

    2018-01-10

    While stretching with vibration has been shown to improve static flexibility; the effect of stretching with vibration on dynamic flexibility is not well known. The purpose of this study was to examine the effectiveness of stretching with vibration on acute dynamic flexibility and jump height in novice and advanced competitive female gymnasts during a split jump. Female gymnast (n=27, age: 11.5 ± 1.7 years, Junior Olympic levels 5-10) participated in this cross-over study. Dynamic flexibility during gymnastic split jumps were video recorded and analyzed with Dartfish software. All participants completed both randomized stretching protocols with either the vibration platform turned on (VIB) (frequency of 30 Hz and 2 mm amplitude) or off (NoVIB) separated by 48 h. Participants performed 4 sets of three stretches on the vibration platform. Each stretch was held for 30 s with 5 s rest for a total of 7 min of stretch. Split jump flexibility decreased significantly from pre to post measurement in both VIB (-5.8°±5.9°) (p<0.001) and NoVIB (-2.6°±6.1°) (p=0.041) conditions (adjusted for gymnast level). This effect was greatest in lower skill level gymnasts (p=0.003), while the highest skill level gymnasts showed no significant decrease in the split jump (p=0.105). Jump height was not significantly different between conditions (p=0.892) or within groups (p=0.880). An acute session of static stretching with or without vibration immediately before performance does not alter jump height. Stretching with vibration immediately prior to gymnastics competition decreases split jump flexibility in lower level gymnasts more than upper level gymnasts.

  18. Probabilistic model of ligaments and tendons: Quasistatic linear stretching

    Science.gov (United States)

    Bontempi, M.

    2009-03-01

    Ligaments and tendons have a significant role in the musculoskeletal system and are frequently subjected to injury. This study presents a model of collagen fibers, based on the study of a statistical distribution of fibers when they are subjected to quasistatic linear stretching. With respect to other methodologies, this model is able to describe the behavior of the bundle using less ad hoc hypotheses and is able to describe all the quasistatic stretch-load responses of the bundle, including the yield and failure regions described in the literature. It has two other important results: the first is that it is able to correlate the mechanical behavior of the bundle with its internal structure, and it suggests a methodology to deduce the fibers population distribution directly from the tensile-test data. The second is that it can follow fibers’ structure evolution during the stretching and it is possible to study the internal adaptation of fibers in physiological and pathological conditions.

  19. Stretching of red blood cells at high strain rates

    Science.gov (United States)

    Mancuso, J. E.; Ristenpart, W. D.

    2017-10-01

    Most work on the mechanical behavior of red blood cells (RBCs) in flow has focused on simple shear flows. Relatively little work has examined RBC deformations in the physiologically important extensional flow that occurs at the entrance to a constriction. In particular, previous work suggests that RBCs rapidly stretch out and then retract upon entering the constriction, but to date no model predicts this behavior for the extremely high strain rates typically experienced there. In this Rapid Communication, we use high speed video to perform systematic measurements of the dynamic stretching behavior of RBCs as they enter a microfluidic constriction. We demonstrate that both the Kelvin-Voigt and Skalak viscoelastic models capture the observed stretching dynamics, up to strain rates as high as 2000 s-1. The results indicate that the effective elastic modulus of the RBC membrane at these strain rates is an order of magnitude larger than moduli measured by micropipette aspiration or other low strain rate techniques.

  20. ANTIMICROBIAL ACTIVITY OF Ag+, Cu2+, Zn2+, Mg2+ IONS DOPED CHITOSAN NANOPARTICLES

    Directory of Open Access Journals (Sweden)

    Sukhodub LB

    2015-04-01

    Full Text Available Modification by polymers and inorganic ions of the bioactive materials for orthopedic implants with the purpose of initiating controlled reactions in tissues that surround the implant, is one of the modern approaches in medical materials. A key feature of functional polymers is their ability to form complexes with various metal ions in solution. Chitosan is natural biopolymer with pronounced affinity to transition metal ions. Some researches prove the higher antimicrobial activity of Chitosan-metal complexes compared with pure Chitosan. The purpose of this work was the study of antimicrobial activity of Chitosan nanoparticles modified by metal ions Ag+, Cu2+, Zn2+, Mg2+ against reference strains S. aureus 25923 ATSS, E. coli ATCC 25922, C. albicans ATCC 885653 for their further use as components of the composite biomaterials for medical purpose.Chitosan nanoparticles suspension was prepared by known method based on the ionotropic gelation between chitosan and sodium tripolyphosphate.To obtain Chitosan-metal nanoparticles to the Chitosan suspension were added the corresponding metal ions aqueous solutions in quantity to match the concentration of metal ions of 200 ppm . Antibacterial activities of Ag+, Cu2+, Zn2+, Mg2+ ions doped Chitosan nanoparticles, pure Chitosan nanoparticles, metal ions and 1% (v/v acetic acid solution (it was used as solvent for Chitosan against bacteria were evaluated by determination of minimum inhibitory concentration (MIC and minimum bactericidal concentration (MBC in vitro. Muller– Hinton (MH broth and MH agar (Russia were used as growth media. The bacteria suspension for further use was prepared with concentration that corresponded 0,5units by McFarland scale. The MIC was determined by a broth dilution method. The results were read after 24 hours of experimental tubes incubation at 37 oC as equivalent to the concentration of the tube without visible growth. To evaluate MBC, a sample of 0,1 ml was transferred from

  1. Synthesis, structure, antioxidant activity, and water solubility of trolox ion conjugates

    Directory of Open Access Journals (Sweden)

    Yuliya V. Yushkova

    2018-01-01

    Full Text Available The interaction of trolox with ammonia, alkylamines of different classes, and amino derivatives of heterocyclic compounds, including nitroxyl radicals and alkaloids, led to the production of ammonium salts called ion conjugates (ICs. Five ICs were characterised by X-ray diffraction. This is the first time a wide range of ICs were made from trolox with amines, and ESI-MS data demonstrated they have the potential to generate pseudomolecular [(A−B+ + H]+ ions. For all obtained trolox ICs, a significant increase (1–3 orders of magnitude in water solubility was achieved while retaining high antioxidant activity. ICs synthesised from two biologically active fragments may be used to create polyfunctional agents with varying solubility and bioavailability. Keywords: Trolox, Amines, Ion conjugates, Antioxidants, Mass-spectrometry

  2. Filament stretching rheometry of polymer melts

    DEFF Research Database (Denmark)

    Hassager, Ole; Nielsen, Jens Kromann; Rasmussen, Henrik Koblitz

    2005-01-01

    The Filament Stretching Rheometry (FSR) method developed by Sridhar, McKinley and coworkers for polymer solutions has been extended to be used also for polymer melts. The design of a melt-FSR will be described and differences to conventional melt elongational rheometers will be pointed out. Results...

  3. Heavy ion activation analysis

    International Nuclear Information System (INIS)

    Lass, B.D.; Roche, N.G.; Sanni, A.O.; Schweikert, E.A.; Ojo, J.F.

    1982-01-01

    A report on radioactivation with ion beams of 3 6 Li and 14 N is presented with some analytical applications: the determination of C via 12 C( 6 Li,αn) 13 N; the determination of Li and Be, using 14 N activation. Next, examples, with limitations in selectivity. The detection limits using a 1 μA h of activation irradiation are 5 ppm for C and 1 ppm for Li or Be. With 9 Be suitable for analytical applications are: sup(10,11)B( 9 Be,xn) 18 F and 14 N( 9 Be,αn) 18 F. Assuming a 1 μA h irradiation the detection limits for N and B are 1.5 ng and 0.5 ng, respectively, using a 7.8 MeV 9 Be beam. For activation with 12 C, experimental results with 12 MeV 12 C beam demonstrate that the beam is best suited for 7 Li analysis by the reaction 7 Li( 12 C,n) 18 F. The detection limit for a 1 μA h irradiation is 1 ng and the only other low Z elements activated are B and C. Finally, 12 C radioactivation was further combined with autoradiography for positional analysis. The spatial resolution of the technique was estimated to be 40 μm for an exposure corresponding to 6x10 5 disintegrations. As low as 10 -12 g of Li was readily detected by autoradiography. (author)

  4. Muscle oxygenation and fascicle length during passive muscle stretching in ballet-trained subjects.

    Science.gov (United States)

    Otsuki, A; Fujita, E; Ikegawa, S; Kuno-Mizumura, M

    2011-07-01

    Muscle stretching transiently decreases muscle-blood flow corresponding to a muscle extension. It may disturb a balance between muscular oxygen demand and oxygen supply to muscles and reduce muscle oxygenation. However, muscle-stretching training may improve blood circulatory condition, resulting in the maintained muscle oxygenation during muscle stretching. The aim of this study was to investigate changes in muscle-blood volume (tHb) and tissue oxygenation index (TOI) during muscle stretching determined by using near-infrared spectroscopy (NIRS) in ballet-trained (BT) and untrained (C) subjects. 11 BT women who regularly perform muscle stretching and 11 C women participated in this study. Fascicle lengths, tHb and TOI in the tibialis anterior muscle were measured during passive plantar flexion from ankle joint angles of 120° (baseline) to 140°, 160°, the maximal comfortable position without pain (CP), and the maximal position (MP). At 160°, the % fascicle-length change from baseline was significantly lower in the BT than the C group, however, for the changes in tHb and TOI the significant interaction effect between the 2 groups was not detected. On the other hand, although the increases in the fascicle length from baseline to CP and MP were greater in BT than C, the tHb and TOI reductions were comparable between groups. We concluded that it appears that BT can extend their muscles without excessive reduction in muscle-blood volume and muscle oxygenation at relatively same but absolutely greater muscle-stretching levels than C. The attenuation in these indices during high-level muscle stretching may be associated with the repetitive muscle stretching of long-term ballet training. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Spectroscopic properties of Yb3+ and Er3+ ions in heavy metal glasses

    International Nuclear Information System (INIS)

    Pisarski, Wojciech A.; Grobelny, Lukasz; Pisarska, Joanna; Lisiecki, Radoslaw; Ryba-Romanowski, Witold

    2011-01-01

    Highlights: → Heavy metal glasses doubly doped with Yb 3+ and Er 3+ were examined. → NIR luminescence at about 1530 nm and green and red up-conversion spectra were detected. → The unusual large spectral linewidth nearly close to 110 nm for 4 I 13/2 - 4 I 15/2 transition of Er 3+ ions in Yb-Er co-doped lead borate glass was obtained. → Long-lived NIR luminescence was detected in lead germanate glass. → The NIR luminescence and up-conversion phenomena strongly depend on stretching vibrations of glass host. - Abstract: Selected heavy metal glasses containing Yb 3+ and Er 3+ ions have been studied. Near-infrared luminescence spectra at 1.53 μm and up-conversion spectra of Er 3+ ions were registered under excitation of Yb 3+ ions by 975 nm diode laser line. The luminescence bands correspond to 4 I 13/2 - 4 I 15/2 (NIR), 4 S 3/2 - 4 I 15/2 (green) and 4 F 9/2 - 4 I 15/2 (red) transitions of Er 3+ , respectively. The optical transitions of rare earth ions have been examined as a function of glass host. The unusual large spectral linewidth nearly close to 110 nm for 4 I 13/2 - 4 I 15/2 transition of Er 3+ ions in Yb-Er co-doped lead borate glass was obtained, whereas long-lived NIR luminescence at 1.53 μm was detected in lead germanate glass. The NIR luminescence and up-conversion phenomena strongly depend on stretching vibrations of glass host, which was confirmed by FT-IR spectroscopy.

  6. Ion-molecular equilibria and activity determination in the RbF-ZrF4 system

    International Nuclear Information System (INIS)

    Skokan, E.V.; Nikitin, M.I.; Sorokin, I.D.; Korenev, Yu.M.; Sidorov, L.N.

    1983-01-01

    Activity of zirconium tetrofluoride in 100-33.3 mol % ZrF 4 concentration range was determined during isothermal evaporation of samples of different initial composition of RbF-ZrF 4 system, using ion-molecular equilibrium method. It became possible, using the exchange ion-molecular reactions to determine ZrF 4 activity approximately 10 -10 in the region of state diagram of RbF-ZrF 4 system, adjoining to rubidium fluoride. The comparative analysis of results, obtained by the methods of isothermal evaporation, ion-molecular equilibria is given; the advantages and restrictions of ion-molecular equilibrium method are presented

  7. Influence of acute static stretching on the behavior of maximum muscle strength

    Directory of Open Access Journals (Sweden)

    Carmen Lúcia Borges Bastos

    2014-06-01

    Full Text Available The aim of this study was to compare the influence of acute static stretching on maximal muscle strength (1RM. The non-probabilistic sample consisted of 30 subjects split into two groups: static stretching (SS= 15 and without stretching group (WS= 15. Muscle strength evaluation (1RM was conducted with a Dynamometer model 32527pp400 Pound push / pull devices coupled in knee extension (KE and bench press (BP. The Wilcoxon test for intragroup comparisons and the Kruskal-Wallis test for comparisons between groups (p< 0.05 were selected. There were no significant differences (p> 0.05 between the SS and WS in exercise KE and BP. Therefore, it can be concluded that there was no reduction in the performance of 1RM performing the exercises KE and BP when preceded by static stretching.

  8. Flow past a permeable stretching/shrinking sheet in a nanofluid using two-phase model.

    Directory of Open Access Journals (Sweden)

    Khairy Zaimi

    Full Text Available The steady two-dimensional flow and heat transfer over a stretching/shrinking sheet in a nanofluid is investigated using Buongiorno's nanofluid model. Different from the previously published papers, in the present study we consider the case when the nanofluid particle fraction on the boundary is passively rather than actively controlled, which make the model more physically realistic. The governing partial differential equations are transformed into nonlinear ordinary differential equations by a similarity transformation, before being solved numerically by a shooting method. The effects of some governing parameters on the fluid flow and heat transfer characteristics are graphically presented and discussed. Dual solutions are found to exist in a certain range of the suction and stretching/shrinking parameters. Results also indicate that both the skin friction coefficient and the local Nusselt number increase with increasing values of the suction parameter.

  9. Communication: A coil-stretch transition in planar elongational flow of an entangled polymeric melt

    Science.gov (United States)

    Nafar Sefiddashti, Mohammad H.; Edwards, Brian J.; Khomami, Bamin

    2018-04-01

    Virtual experimentation of atomistic entangled polyethylene melts undergoing planar elongational flow revealed an amazingly detailed depiction of individual macromolecular dynamics and the resulting effect on bistable configurational states. A clear coil-stretch transition was evident, in much the same form as first envisioned by de Gennes for dilute solutions of high polymers, resulting in an associated hysteresis in the configurational flow profile over the range of strain rates predicted by theory. Simulations conducted at steady state revealed bimodal distribution functions, in which equilibrium configurational states were simultaneously populated by relatively coiled and stretched molecules which could transition from one conformational mode to the other over a relatively long time scale at critical values of strain rates. The implication of such behavior points to a double-well conformational free energy potential with an activation barrier between the two configurational minima.

  10. From Static Stretching to Dynamic Exercises: Changing the Warm-Up Paradigm

    Science.gov (United States)

    Young, Shawna

    2010-01-01

    In the United States, pre-exercise static stretching seems to have become common practice and routine. However, research suggests that it is time for a paradigm shift--that pre-exercise static stretching be replaced with dynamic warm-up exercises. Research indicates that a dynamic warm-up elevates body temperature, decreases muscle and joint…

  11. Conjugate Heat Transfer of Mixed Convection for Viscoelastic Fluid Past a Stretching Sheet

    Directory of Open Access Journals (Sweden)

    Kai-Long Hsiao

    2007-01-01

    Full Text Available A conjugate heat transfer problem of a second-grade viscoelastic fluid past a stretching sheet has been studied. Governing equations include heat conduction equation of a stretching sheet, continuity equation, momentum equation, and energy equation of a second-grade fluid, analyzed by a combination of a series expansion method, the similarity transformation, and a second-order accurate finite-difference method. These solutions are used to iterate with the heat conduction equation of the stretching sheet to obtain distributions of the local convective heat transfer coefficient and the stretching sheet temperature. Ranges of dimensionless parameters, the Prandtl number Pr, the elastic number E and the conduction-convection coefficient Ncc are from 0.001 to 10, 0.0001 to 0.01, and 0.5 to 2.0, respectively. A parameter G, which is used to represent the dominance of the buoyant effect, is present in governing equations. Results indicated that elastic effect in the flow could increase the local heat transfer coefficient and enhance the heat transfer of a stretching sheet. In addition, same as the results from Newtonian fluid flow and conduction analysis of a stretching sheet, a better heat transfer is obtained with a larger Ncc, G, and E.

  12. Barriers to performing stretching exercises among Korean-Chinese female migrant workers in Korea.

    Science.gov (United States)

    Lee, Hyeonkyeong; Wilbur, JoEllen; Chae, Duckhee; Lee, Kyongeun; Lee, Meenhye

    2015-01-01

    The purpose of this study was to investigate the barriers to performing stretching exercise experienced by Korean-Chinese female migrant workers during a community-based 12-week stretching exercise intervention trial. Qualitative secondary data analysis was conducted using telephone counseling interview transcripts from 27 middle-aged, Korean-Chinese migrant women workers. A semistructured interview question asking barriers to performing stretching exercise was given to women who did not adhere to recommended stretching exercise. During the 12-week home-based stretching exercise intervention trial, six telephone calls were made to participants biweekly to elicit barriers to performing stretching exercise. Directed content analysis approach was utilized using three barrier categories: intrapersonal, interpersonal, and work-related environmental factors based on the ecological model. Participants experienced an average of 2.5 barriers during the study period. Intrapersonal barriers included lack of time and lack of motivation, and interpersonal barriers included no family to provide support and also a feeling resistance from coworkers. Work-related environmental barriers included frequent job changes, long working hours, lack of rest time, and unpredictable job demands. The findings highlight that migrant workers in Korea face unique work-related difficulties which present barriers to exercise. © 2014 Wiley Periodicals, Inc.

  13. A unifying mechanism for cancer cell death through ion channel activation by HAMLET.

    Science.gov (United States)

    Storm, Petter; Klausen, Thomas Kjaer; Trulsson, Maria; Ho C S, James; Dosnon, Marion; Westergren, Tomas; Chao, Yinxia; Rydström, Anna; Yang, Henry; Pedersen, Stine Falsig; Svanborg, Catharina

    2013-01-01

    Ion channels and ion fluxes control many aspects of tissue homeostasis. During oncogenic transformation, critical ion channel functions may be perturbed but conserved tumor specific ion fluxes remain to be defined. Here we used the tumoricidal protein-lipid complex HAMLET as a probe to identify ion fluxes involved in tumor cell death. We show that HAMLET activates a non-selective cation current, which reached a magnitude of 2.74±0.88 nA within 1.43±0.13 min from HAMLET application. Rapid ion fluxes were essential for HAMLET-induced carcinoma cell death as inhibitors (amiloride, BaCl2), preventing the changes in free cellular Na(+) and K(+) concentrations also prevented essential steps accompanying carcinoma cell death, including changes in morphology, uptake, global transcription, and MAP kinase activation. Through global transcriptional analysis and phosphorylation arrays, a strong ion flux dependent p38 MAPK response was detected and inhibition of p38 signaling delayed HAMLET-induced death. Healthy, differentiated cells were resistant to HAMLET challenge, which was accompanied by innate immunity rather than p38-activation. The results suggest, for the first time, a unifying mechanism for the initiation of HAMLET's broad and rapid lethal effect on tumor cells. These findings are particularly significant in view of HAMLET's documented therapeutic efficacy in human studies and animal models. The results also suggest that HAMLET offers a two-tiered therapeutic approach, killing cancer cells while stimulating an innate immune response in surrounding healthy tissues.

  14. The Activation Mechanism of Bi3+ Ions to Rutile Flotation in a Strong Acidic Environment

    Directory of Open Access Journals (Sweden)

    Wei Xiao

    2017-07-01

    Full Text Available Lead hydroxyl compounds are known as rutile flotation of the traditional activated component, but the optimum pH range for flotation is 2–3 using styryl phosphoric acid (SPA as collector, without lead hydroxyl compounds in slurry solution. In this study, Bi3+ ions as a novel activator was investigated. The results revealed that the presence of Bi3+ ions increased the surface potential, due to the specific adsorption of hydroxyl compounds, which greatly increases the adsorption capacity of SPA on the rutile surface. Bi3+ ions increased the activation sites through the form of hydroxyl species adsorbing on the rutile surface and occupying the steric position of the original Ca2+ ions. The proton substitution reaction occurred between the hydroxyl species of Bi3+ ions (Bi(OHn+(3−n and the hydroxylated rutile surface, producing the compounds of Ti-O-Bi2+. The micro-flotation tests results suggested that Bi3+ ions could improve the flotation recovery of rutile from 61% to 90%, and from 61% to 64% for Pb2+ ions.

  15. Individually programmable cell stretching microwell arrays actuated by a Braille display.

    Science.gov (United States)

    Kamotani, Yoko; Bersano-Begey, Tommaso; Kato, Nobuhiro; Tung, Yi-Chung; Huh, Dongeun; Song, Jonathan W; Takayama, Shuichi

    2008-06-01

    Cell culture systems are often static and are therefore nonphysiological. In vivo, many cells are exposed to dynamic surroundings that stimulate cellular responses in a process known as mechanotransduction. To recreate this environment, stretchable cell culture substrate systems have been developed, however, these systems are limited by being macroscopic and low throughput. We have developed a device consisting of 24 miniature cell stretching chambers with flexible bottom membranes that are deformed using the computer-controlled, piezoelectrically actuated pins of a Braille display. We have also developed efficient image capture and analysis protocols to quantify morphological responses of the cells to applied strain. Human dermal microvascular endothelial cells (HDMECs) were found to show increasing degrees of alignment and elongation perpendicular to the radial strain in response to cyclic stretch at increasing frequencies of 0.2, 1, and 5 Hz, after 2, 4, and 12h. Mouse myogenic C2C12 cells were also found to align in response to the stretch, while A549 human lung adenocarcinoma epithelial cells did not respond to stretch.

  16. Adsorption of heavy metal ions on activated carbon, (5)

    International Nuclear Information System (INIS)

    Yoshida, Hisayoshi; Kamegawa, Katsumi; Arita, Seiji

    1978-01-01

    The adsorption effect of heavy metal ions Cd 2+ , Zn 2+ and Hg 2+ on activated carbon by adding EDTA is reported, utilizing the experimental data. The activated carbons used for the experiment are mostly D, and B, C and F partly. As for the experimental procedure, the solutions of 100 ml which are composed of activated carbon, pH adjusting liquid, EDTA solution and solutions of heavy metals Cd, Zn and Hg, are shaken for 24 hours at 20 deg C, and after the activated carbon is centrifuged and separated for 15 minutes at 3000 rpm, the remaining heavy metal concentrations and pH in the supernatant are measured. The experimental results showed the useful effect on the adsorption of heavy metal ions of Cd, Zn and Hg by adding about 1 mol ratio of (EDTA/heavy metals). The individual experimental results are presented in detail. Concerning the adsorption quantity, 83% of Cd ions remained in the supernatant without addition of EDTA, but less than 1% with addition of about 1 to 5 mol ratio of (EDTA/Cd), and this adsorption effect was almost similar to Zn and Hg, i.e. 100% to 1% in Zn and 70% to 2 or 3% in Hg, under the condition written above. As for the influence of pH on Cd adsorption, the remaining Cd ratio is less than 10%, when pH is 7 to 10.5 at the mol ratio of 1 and 5.5 to 9 at the mol ratio of 10. The adsorption effect was different according to the kinds of activated carbon. The influencing factors for adsorption effect are the concentration of coexisting cations in the solution and the mixing time, etc. The effects of pH on Zn and Hg adsorption were almost similar to Cd. (Nakai, Y.)

  17. Heavy ion accelerator and associated development activities at IUAC

    International Nuclear Information System (INIS)

    Kanjilal, D.

    2011-01-01

    A vertical 15UD Pelletron electrostatic tandem accelerator having highest terminal voltage tested up to 16 MV has been in regular operation at Inter-University Accelerator Center (IUAC) for more than two decades. It has been providing consistently various ion beams in the energy range from a few tens of MeV to 270 MeV for scheduled experiments. A superconducting linear accelerator (LINAC) booster module having eight niobium quarter wave resonators has been designed, fabricated and installed successfully. It is fully operational for scheduled experiments. The LINAC module has been tested and used to accelerate energetic heavy ion beams from 15 UD Pelletron. A new type of high temperature superconducting electron cyclotron resonance ion source (HTS-ECRIS) has been designed, fabricated and installed successfully. It has been in regular operation as future source of highly charged ions having higher beam current for the alternate high current injector (HCI) system for the superconducting LINAC. A radio frequency quadrupole (RFQ) accelerator is being developed to accelerate highly charged particles (A/Q ∼ 6) from HTS-ECRIS to energy of 180 keV/u. The beam will then be accelerated further by drift tube linacs (DTL) to the required velocity for injection of the ion beams in to the existing superconducting LINAC booster. A low energy ion beam facility (LEIBF) having permanent magnet ECRIS on high voltage platform and a 1.7 MV Pelletron are being used for regular experiments. Details of various developmental activities related to the heavy ion accelerator and associated systems at Inter-University Accelerator Centre (IUAC) are presented. (author)

  18. Heavy ion accelerator and associated development activities at IUAC

    International Nuclear Information System (INIS)

    Kanjilal, D.

    2011-01-01

    A vertical 15UD Pelletron electrostatic tandem accelerator having highest terminal voltage tested up to 16 MV has been in regular operation at Inter-University Accelerator Center (IUAC) for more than two decades. It has been providing consistently various ion beams in the energy range from a few tens of MeV to 270MeV for scheduled experiments. A superconducting linear accelerator (LINAC) booster module having eight niobium quarter wave resonators has been designed, fabricated and installed successfully. It is fully operational for scheduled experiments. The LINAC module has been tested and used to accelerate energetic heavy ion beams from 15 UD Pelletron. A new type of high temperature superconducting electron cyclotron resonance ion source (HTS-ECRlS) has been designed, fabricated and installed successfully. lt has been in regular operation as future source of highly charged ions having higher beam current for the alternate high current injector (HCI) system for the superconducting LINAC. A radio frequency quadrupole (RFQ) accelerator is being developed to accelerate highly charged particles (A/Q ∼ 6) from HTS-ECRIS to energy of 180 keV/u. The beam will then be accelerated further by drift tube linacs (DTL) to the required velocity for injection of the ion beams in to the existing superconducting LINAC booster. A low energy ion beam facility (LEIBF) having permanent magnet ECRIS on high voltage platform and a 1.7 MV Pelletron are being used for regular experiments. Details of various developmental activities related to the heavy ion accelerator and associated systems at Inter-University Accelerator Centre (IUAC) are presented. (author)

  19. A novel active equalization method for lithium-ion batteries in electric vehicles

    International Nuclear Information System (INIS)

    Wang, Yujie; Zhang, Chenbin; Chen, Zonghai; Xie, Jing; Zhang, Xu

    2015-01-01

    Highlights: • Build an active equalization method for lithium-ion batteries. • A bidirectional transformer topology is introduced for active equalization. • The PF method is used for cell SOC estimation to eliminate drift noise of current. • The SOC based equalization algorithm is analyzed with different SOC bounds. - Abstract: Cell inconsistency is inevitable due to manufacturing constraint. Therefore, cell equalization is essentially required. In this paper, we propose a novel active equalization method based on the remaining capacity of cells which is feasible for lithium-ion battery packs in electric vehicles (EVs). The cell models are established based on a combined electrochemical model of lithium-ion batteries. The remaining capacity and state-of-charge (SOC) of cells are observed at the beginning of equalization. The particle filter (PF) method is employed to estimate the cell SOCs during equalization in order to eliminate the drift noise of the current sensor. The first high-SOC cell discharge (FHCD) and first low-SOC cell charge (FLCC) equalization algorithms are proposed and compared with 1% and 3% SOC bounds, respectively. The validation experiment results have shown that the proposed algorithm is suitable for equalization of lithium-ion batteries in EVs

  20. Removal of zinc (II) ion from aqueous solution by adsorption onto activated palm midrib bio-sorbent

    Science.gov (United States)

    Mulana, F.; Mariana; Muslim, A.; Mohibah, M.; Halim, K. H. Ku

    2018-03-01

    In this paper, palm midrib that was activated with mixed citric acid and tartaric acid as biosorbent was used to remove Zn (II) ion from aqueous solution. The aim of this research is to activate palm midrib by using a mixed citric acid and tartaric acid and to determine adsorption capacity of activated palm midrib biosorbent on Zn (II) ion uptake from aqueous solution. The effect of several parameters such as contact time, initial Zn (II) ion concentration and activator concentration on the degree of Zn (II) ion removal was examined. Atomic Absorption Spectroscopy method was performed to determine adsorbed amount of Zn (II) ion into activated biosorbent. The result showed that the adsorption process was relatively not so fast and equilibrium was reached after contact time of 120 min. The adsorption capacity of biosorbent reached a maximum when the concentration of mixed citric acid and tartaric acid was 1.6 M. The optimum adsorption capacity was 5.72 mg/g. The result was obtained on initial Zn (II) ion concentration of 80 ppm for 120-min contact time. Langmuir isotherm was found as the best fit for the equilibrium data indicating homogeneous adsorption of metal ions onto the biosorbent surface.

  1. Acute effect of static stretching on muscle force in older women

    Directory of Open Access Journals (Sweden)

    André Luiz Demantova Gurjão

    2010-04-01

    Full Text Available The objective of this study was to investigate the acute effect of static stretching on the peak rate of force development (PRFD and maximum voluntary contraction (MVC in older women. Ten women (68.5 ± 7.0 years; 70.9 ± 8.1 kg; 159.4 ± 6.0 cm; body mass index: 28.0 ± 3.8 kg/m2 were studied. MVC and PRFD were determined by leg press exercise before and after the control or stretching condition (three sets of 30 seconds of static stretching of the quadriceps on two different days (interval of 24 hours. PRFD was determined as the steepest slope of the curve, calculated within regular windows of 20 milliseconds (∆force/∆time for the first 200 milliseconds after the onset of contraction. MVC was determined as the highest value recorded in each set. Only one condition was tested on each day and the order of application of each condition was determined randomly. The stretching intensity was evaluated by the muscle pain threshold. Four post-condition assessments (post-treatment, 10, 20, and 30 minutes were performed to monitor muscle strength. ANCOVA 2x5, followed by the Scheffé post-hoc test, showed no significant interactions between conditions vs. times (P > 0.05 for PRFD or MVC. In conclusion, acute bouts of static stretching of the quadriceps femoris do not affect the ability of rapid and maximum muscle force production in older women.

  2. Prolonged passive static stretching-induced innervation zone shift in biceps brachii.

    Science.gov (United States)

    Ye, Xin; Beck, Travis W; Wages, Nathan P

    2015-05-01

    The purpose of this study was to examine the influence of a bout of repeated and prolonged passive static stretching on the innervation zone (IZ) location of the human biceps brachii muscle. Eleven men performed 12 sets of 100-s passive stretches on their biceps brachii. Before (Pre) and immediately after (Post) the stretching intervention, isometric strength was tested during the maximal voluntary contractions (MVCs) of the forearm flexors. The subjects also performed several separate isometric forearm flexion muscle actions at 30%, 50%, and 70% of their predetermined MVCs for examining the locations of the IZ at different contraction intensities. The IZ was identified through multi-channel surface electromyographic (EMG) recordings from a linear electrode array. The stretching intervention induced an average of 10% isometric strength loss for the forearm flexors (mean±SD: Pre-MVC vs. Post-MVC=332.12±59.40 N vs. 299.53±70.51 N; p<0.001). In addition, the average IZ shift was nearly 4.5 mm in average in the proximal direction. However, this shift was not specific to the contraction intensity. We believe that the IZ shift was caused by the elongation of the entire muscle-tendon unit in the proximal direction. Therefore, caution should be taken when using surface EMG technique to examine possible changes in the EMG variables after a stretching protocol, as these variables can be contaminated by the shift of the IZ.

  3. short communication binding of nickel and zinc ions with activated

    African Journals Online (AJOL)

    a

    Equilibrium sorption of nickel and zinc ions by the activated carbon was studied using a range of ... their toxicity, accumulative behaviour and effects on human health, heavy metal pollution has become ... The determination of the total surface charge was made .... These values suggest high efficiency of the activated carbon,.

  4. A radiochemical technique for the establishment of a solvent-independent scale of ion activities in amphiprotic solvents

    International Nuclear Information System (INIS)

    Kim, J.I.; Duschner, H.; Born, H.J.

    1975-01-01

    The radiochemical determination of solubilities of hardly soluble compounds of silver (Ph 4 BAg, AgCl), by means of Ag-110m in amphiprotic solutions is used for setting-up a solvent-independent scale of ion activities based on the concept of the media effect. The media effects of the salts are calculated from the solubility data of the Ag compounds in question. The splitting into the media effects of single ions takes place with the extrathermodynamic assumption of the same media effects for large ions, such as Ph 4 B - = Ph 4 As - . A standardized ion activity scale in connection with the activity coefficients for the solvent in question can be established with water as the basic state of the chemical potential. As the sum of the media effects of the single ions gives the media effect of the salt concerned, which is easily obtained from data which are experimentally accessible (solubility, vapour pressure, ion exchange ect.), this method leads to single ion activities of a large number of ions in a multitude of solvents. (orig./LH) [de

  5. Biochemical analysis of force-sensitive responses using a large-scale cell stretch device.

    Science.gov (United States)

    Renner, Derrick J; Ewald, Makena L; Kim, Timothy; Yamada, Soichiro

    2017-09-03

    Physical force has emerged as a key regulator of tissue homeostasis, and plays an important role in embryogenesis, tissue regeneration, and disease progression. Currently, the details of protein interactions under elevated physical stress are largely missing, therefore, preventing the fundamental, molecular understanding of mechano-transduction. This is in part due to the difficulty isolating large quantities of cell lysates exposed to force-bearing conditions for biochemical analysis. We designed a simple, easy-to-fabricate, large-scale cell stretch device for the analysis of force-sensitive cell responses. Using proximal biotinylation (BioID) analysis or phospho-specific antibodies, we detected force-sensitive biochemical changes in cells exposed to prolonged cyclic substrate stretch. For example, using promiscuous biotin ligase BirA* tagged α-catenin, the biotinylation of myosin IIA increased with stretch, suggesting the close proximity of myosin IIA to α-catenin under a force bearing condition. Furthermore, using phospho-specific antibodies, Akt phosphorylation was reduced upon stretch while Src phosphorylation was unchanged. Interestingly, phosphorylation of GSK3β, a downstream effector of Akt pathway, was also reduced with stretch, while the phosphorylation of other Akt effectors was unchanged. These data suggest that the Akt-GSK3β pathway is force-sensitive. This simple cell stretch device enables biochemical analysis of force-sensitive responses and has potential to uncover molecules underlying mechano-transduction.

  6. Mechanically Gated Ion Channels in Mammalian Hair Cells

    Directory of Open Access Journals (Sweden)

    Xufeng Qiu

    2018-04-01

    Full Text Available Hair cells in the inner ear convert mechanical stimuli provided by sound waves and head movements into electrical signal. Several mechanically evoked ionic currents with different properties have been recorded in hair cells. The search for the proteins that form the underlying ion channels is still in progress. The mechanoelectrical transduction (MET channel near the tips of stereociliary in hair cells, which is responsible for sensory transduction, has been studied most extensively. Several components of the sensory mechanotransduction machinery in stereocilia have been identified, including the multi-transmembrane proteins tetraspan membrane protein in hair cell stereocilia (TMHS/LHFPL5, transmembrane inner ear (TMIE and transmembrane channel-like proteins 1 and 2 (TMC1/2. However, there remains considerable uncertainty regarding the molecules that form the channel pore. In addition to the sensory MET channel, hair cells express the mechanically gated ion channel PIEZO2, which is localized near the base of stereocilia and not essential for sensory transduction. The function of PIEZO2 in hair cells is not entirely clear but it might have a role in damage sensing and repair processes. Additional stretch-activated channels of unknown molecular identity and function have been found to localize at the basolateral membrane of hair cells. Here, we review current knowledge regarding the different mechanically gated ion channels in hair cells and discuss open questions concerning their molecular composition and function.

  7. Laboratory Observation of a Plasma-Flow-State Transition from Diverging to Stretching a Magnetic Nozzle.

    Science.gov (United States)

    Takahashi, Kazunori; Ando, Akira

    2017-06-02

    An axial magnetic field induced by a plasma flow in a divergent magnetic nozzle is measured when injecting the plasma flow from a radio frequency (rf) plasma source located upstream of the nozzle. The source is operated with a pulsed rf power of 5 kW, and the high density plasma flow is sustained only for the initial ∼100  μsec of the discharge. The measurement shows a decrease in the axial magnetic field near the source exit, whereas an increase in the field is detected at the downstream side of the magnetic nozzle. These results demonstrate a spatial transition of the plasma-flow state from diverging to stretching the magnetic nozzle, where the importance of both the Alfvén and ion Mach numbers is shown.

  8. Toward a Concept of Stretch Coupling in Smooth Muscle: A Thesis by Lars Thuneberg on Contractile Activity in Neonatal Interstitial Cells of Cajal

    DEFF Research Database (Denmark)

    Huizinga, Jan D; Lammers, Wim J E P; Mikkelsen, Hanne B

    2010-01-01

    The hypothesis was put forward by Thuneberg that rhythmically contracting interstitial cells of Cajal (ICC) were sensing stretch of the musculature and that this information was transmitted to smooth muscle cells via peg and socket contacts. The present study provides the evidence for the contrac......The hypothesis was put forward by Thuneberg that rhythmically contracting interstitial cells of Cajal (ICC) were sensing stretch of the musculature and that this information was transmitted to smooth muscle cells via peg and socket contacts. The present study provides the evidence...

  9. Kink and kink-like waves in pre-stretched Mooney-Rivlin viscoelastic rods

    Directory of Open Access Journals (Sweden)

    Y. Z. Wang

    2015-08-01

    Full Text Available The present paper theoretically investigates kink and kink-like waves propagating in pre-stretched Mooney-Rivlin viscoelastic rods. In the constitutive modeling, the Cauchy stress tensor is assumed to consist of an elastic part and a dissipative part. The asymptotic method is adopted to simplify the nonlinear dynamic equations in the limit of finite-small amplitude and long wavelength. Using the reductive perturbation method, we further derive the well-known far-field equation (i.e. the KdV-Burgers equation, to which two kinds of explicit traveling wave solutions are presented. Examples are given to show the influences of pre-stretch and viscosity on the wave shape and wave velocity. It is shown that pre-stretch could be an effective method for modulating the two types of waves. In addition, such waves may be utilized to measure the viscosity coefficient of the material. The competition between the effects of pre-stretch and viscosity on the kink and kink-like waves is also revealed.

  10. Linear response of stretch-affected premixed flames to flow oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H.Y.; Law, C.K. [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States); Lieuwen, T. [School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States)

    2009-04-15

    The linear response of 2D wedge-shaped premixed flames to harmonic velocity disturbances was studied, allowing for the influence of flame stretch manifested as variations in the local flame speed along the wrinkled flame front. Results obtained from analyzing the G-equation show that the flame response is mainly characterized by a Markstein number {sigma}{sub C}, which measures the curvature effect of the wrinkles, and a Strouhal number, St{sub f}, defined as the angular frequency of the disturbance normalized by the time taken for the disturbance to propagate the flame length. Flame stretch is found to become important when the disturbance frequency satisfies {sigma}{sub C}St{sub f}{sup 2}{proportional_to} O(1), i.e. St{sub f}{proportional_to} O({sigma}{sub C}{sup -1/2}). Specifically, for disturbance frequencies below this order, stretch effects are small and the flame responds as an unstretched one. When the disturbance frequencies are of this order, the transfer function, defined as the ratio of the normalized fluctuation of the heat release rate to that of the velocity, is contributed mostly from fluctuations of the flame surface area, which is now affected by stretch. Finally, as the disturbance frequency increases to St{sub f}{proportional_to} O({sigma}{sub C}{sup -1}), i.e. {sigma}{sub C}St{sub f}{proportional_to} O(1), the direct contribution from the stretch-affected flame speed fluctuation to the transfer function becomes comparable to that of the flame surface area. The present study phenomenologically explains the experimentally observed filtering effect in which the flame wrinkles developed at the flame base decay along the flame surface for large frequency disturbances as well as for thermal-diffusively stable and weakly unstable mixtures. (author)

  11. The Effect of Static Stretch on Elastin Degradation in Arteries

    Science.gov (United States)

    Chow, Ming-Jay; Choi, Myunghwan; Yun, Seok Hyun; Zhang, Yanhang

    2013-01-01

    Previously we have shown that gradual changes in the structure of elastin during an elastase treatment can lead to important transition stages in the mechanical behavior of arteries [1]. However, in vivo arteries are constantly being loaded due to systolic and diastolic pressures and so understanding the effects of loading on the enzymatic degradation of elastin in arteries is important. With biaxial tensile testing, we measured the mechanical behavior of porcine thoracic aortas digested with a mild solution of purified elastase (5 U/mL) in the presence of a static stretch. Arterial mechanical properties and biochemical composition were analyzed to assess the effects of mechanical stretch on elastin degradation. As elastin is being removed, the dimensions of the artery increase by more than 20% in both the longitude and circumference directions. Elastin assays indicate a faster rate of degradation when stretch was present during the digestion. A simple exponential decay fitting confirms the time constant for digestion with stretch (0.11±0.04 h−1) is almost twice that of digestion without stretch (0.069±0.028 h−1). The transition from J-shaped to S-shaped stress vs. strain behavior in the longitudinal direction generally occurs when elastin content is reduced by about 60%. Multiphoton image analysis confirms the removal/fragmentation of elastin and also shows that the collagen fibers are closely intertwined with the elastin lamellae in the medial layer. After removal of elastin, the collagen fibers are no longer constrained and become disordered. Release of amorphous elastin during the fragmentation of the lamellae layers is observed and provides insights into the process of elastin degradation. Overall this study reveals several interesting microstructural changes in the extracellular matrix that could explain the resulting mechanical behavior of arteries with elastin degradation. PMID:24358135

  12. A laser activated ion source

    International Nuclear Information System (INIS)

    Hughes, J.; Luther-Davies, B.; Hora, H.; Kelly, J.

    1978-01-01

    Apparatus for generating energetic ions of a target material from a cold plasma of the material is described. A pulsed laser beam is directed onto the target to produce the cold plasma. Laser beam pulses are short in relation to the collision time in the plasma. Non-linear elctrodynamic forces within the plasma act to accelerate and eject ions from the plasma. The apparatus can be used to separate ions of isotopes of an element

  13. The effect of Ce ion substituted OMS-2 nanostructure in catalytic activity for benzene oxidation

    Science.gov (United States)

    Hou, Jingtao; Li, Yuanzhi; Mao, Mingyang; Zhao, Xiujian; Yue, Yuanzheng

    2014-11-01

    The nanostructure of Ce doped OMS-2 plays a very important role in its catalytic property. We demonstrate by density functional theory (DFT) calculations that the unique nanostructure of the Ce ion substituted OMS-2 with Mn vacancy in the framework is beneficial for the improvement of catalytic activity, while the nanostructure of the Ce ion substituted OMS-2 without defects are detrimental to the catalytic activity. We establish a novel and facile strategy of synthesizing these unique Ce ion substituted OMS-2 nanostructure with Mn vacancies in the framework by hydrothermal redox reaction between Ce(NO3)3 and KMnO4 with KMnO4/Ce(NO3)3 at a molar ratio of 3 : 1 at 120 °C. Compared to pure OMS-2, the produced catalyst of Ce ion substituted OMS-2 ultrathin nanorods exhibits an enormous enhancement in the catalytic activity for benzene oxidation, which is evidenced by a significant decrease (ΔT50 = 100 °C, ΔT90 = 129 °C) in the reaction temperature of T50 and T90 (corresponding to the benzene conversion = 50% and 90%), which is considerably more efficient than the expensive supported noble metal catalyst (Pt/Al2O3). We combine both theoretical and experimental evidence to provide a new physical insight into the significant effect due to the defects induced by the Ce ion substitution on the catalytic activity of OMS-2. The formation of unique Ce ion substituted OMS-2 nanostructure with Mn vacancies in the framework leads to a significant enhancement of the lattice oxygen activity, thus tremendously increasing the catalytic activity.The nanostructure of Ce doped OMS-2 plays a very important role in its catalytic property. We demonstrate by density functional theory (DFT) calculations that the unique nanostructure of the Ce ion substituted OMS-2 with Mn vacancy in the framework is beneficial for the improvement of catalytic activity, while the nanostructure of the Ce ion substituted OMS-2 without defects are detrimental to the catalytic activity. We establish a novel

  14. Effects of Stretching by P.N.F and Harmonic Techniques on Hamstring Flexibility

    Directory of Open Access Journals (Sweden)

    Hassan Shakeri

    2006-01-01

    Full Text Available Objective: Improving of muscle flexibility is an important issue in physiotherapy and sport sciences. There are many methods for increasing muscle length and decreasing muscle stiffness. In research findings, PNF method has been found to be better than static and ballistic methods. There is another method named Harmonic technique (introduced by E. Lederman 1997 that has been claimed to be more effective, but there is not enough documentation about this claim. Aim of this study was to compare effects of stretching by PNF and harmonic techniques on hamstring flexibility. Materials & Methods: This research is a RCT study in that 45 colledge students aged 18-35 years were arranged in three groups (Harmonic, P.N.F, and control. Subjects haven’t had any painful pathology in low-back and lower extremities for last six months. Subjects had limited hamstring length (20 degrees deficiency in Active-Knee-Extension test and hadn’t professional sport activities. Dependent variablies were muscle stiffness and hamstring length which popliteal angle in AKE test was its indirect index. In pilot study, reliability of measurement of these variables were approved. Then hamstring muscle of subjects in harmonic and PNF groups were stretched by harmonic and PNF methods for six weeks, 5 minute per day and 3d/wks, whereas control group hadn’t any exercise. Results: Findings of this study showed that in both used techniques, changes of hamstring length were significant (P=0.000, but in control group there wasn’t significant change. There wasn’t significant differences between changes of hamstring length in PNF and Harmonic groups. Only in harmonic group, muscle stiffness had significant changes (P<0.03. Conclusion: According to findings of this research, both harmonic and PNF methods equally increased length of hamstring, and harmonic technique can be used as an alternative stretching method for other techniques. Maybe harmonic technique is better than PNF

  15. Parameters Controlling Dimensional Accuracy of Aluminum Extrusions Formed in Stretch Bending

    International Nuclear Information System (INIS)

    Baringbing, Henry Ako; Welo, Torgeir

    2007-01-01

    For stretch formed components used in the automotive industry, such as bumper beams, it is of primary importance to control parameters affecting dimensional accuracy. The variations in geometry and mechanical properties induced in extrusion and stretch forming lead to subsequent dimensional inaccuracy of the final product. In this work, tensile and compression samples were taken at three different positions along AA7108W extruded profiles in order to determine material parameters for a constitutive model particularly suited for strong texture materials. In addition, geometry were measured and analyzed statistically in order to study its impact on local cross sectional distortions (sagging) and springback in stretch bending of a bumper beam. These full scale experiments were combined with analytical and numerical simulations to quantify the impact of each basic parameter on product quality. It is concluded that this methodology provides a means to systematically control the product quality by focusing on reducing the acceptance limits of the main parameters controlling basic mechanisms in stretch forming. Despite the assumptions and simplifications made in order to make the analytical expressions solvable, the approach has proven its capability in establishing accurate closed-form expressions including the main influential parameters

  16. The Function of the Novel Mechanical Activated Ion Channel Piezo1 in the Human Osteosarcoma Cells

    OpenAIRE

    Jiang, Long; Zhao, Yi-ding; Chen, Wei-xiang

    2017-01-01

    Background The Piezo1 protein ion channel is a novel mechanical activated ion channel which is related to mechanical signal transduction. However, the function of the mechanically activated ion channel Piezo1 had not been explored. In this study, we explored the function of the Piezo1 ion channel in human osteosarcoma (OS) cells related to apoptosis, invasion, and the cell proliferation. Material/Methods Reverse transcription polymerase chain reaction (RT-PCR) and western-blotting were used t...

  17. Mediators of Yoga and Stretching for Chronic Low Back Pain

    Directory of Open Access Journals (Sweden)

    Karen J. Sherman

    2013-01-01

    Full Text Available Although yoga is an effective treatment for chronic low back pain, little is known about the mechanisms responsible for its benefits. In a trial comparing yoga to intensive stretching and self-care, we explored whether physical (hours of back exercise/week, cognitive (fear avoidance, body awareness, and self-efficacy, affective (psychological distress, perceived stress, positive states of mind, and sleep, and physiological factors (cortisol, DHEA mediated the effects of yoga or stretching on back-related dysfunction (Roland-Morris Disability Scale (RDQ. For yoga, 36% of the effect on 12-week RDQ was mediated by increased self-efficacy, 18% by sleep disturbance, 9% by hours of back exercise, and 61% by the best combination of all possible mediators (6 mediators. For stretching, 23% of the effect was mediated by increased self-efficacy, 14% by days of back exercise, and 50% by the best combination of all possible mediators (7 mediators. In open-ended questions, ≥20% of participants noted the following treatment benefits: learning new exercises (both groups, relaxation, increased awareness, and the benefits of breathing (yoga, benefits of regular practice (stretching. Although both self-efficacy and hours of back exercise were the strongest mediators for each intervention, compared to self-care, qualitative data suggest that they may exert their benefits through partially distinct mechanisms.

  18. Comparison between static stretching and the Pilates method on the flexibility of older women.

    Science.gov (United States)

    Oliveira, Laís Campos de; Oliveira, Raphael Gonçalves de; Pires-Oliveira, Deise Aparecida de Almeida

    2016-10-01

    Flexibility decreases with advancing age and some forms of exercise, such as static stretching and Pilates, can contribute to the improvement of this physical ability. To compare the effects of static stretching and Pilates on the flexibility of healthy older women, over the age of 60 years. Thirty-two volunteers were randomized into two groups (Static stretching or Pilates) to perform exercises for 60 min, twice a week, for three months. Evaluations to analyze the movements of the trunk (flexion and extension), hip flexion and plantar and dorsiflexion of the ankle were performed before and after the intervention, using a fleximeter. The static stretching exercises improved the trunk flexion and hip flexion movements, while the Pilates improved all evaluated movements. However, over time, the groups presented differences only for the trunk extension movement. For some body segments, Pilates may be more effective for improving flexibility in older women compared to static stretching. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Optimizing an Intermittent Stretch Paradigm Using ERK1/2 Phosphorylation Results in Increased Collagen Synthesis in Engineered Ligaments

    Science.gov (United States)

    Paxton, Jennifer Z.; Hagerty, Paul; Andrick, Jonathan J.

    2012-01-01

    Dynamic mechanical input is believed to play a critical role in the development of functional musculoskeletal tissues. To study this phenomenon, cyclic uniaxial mechanical stretch was applied to engineered ligaments using a custom-built bioreactor and the effects of different stretch frequency, amplitude, and duration were determined. Stretch acutely increased the phosphorylation of p38 (3.5±0.74-fold), S6K1 (3.9±0.19-fold), and ERK1/2 (2.45±0.32-fold). The phosphorylation of ERK1/2 was dependent on time, rather than on frequency or amplitude, within these constructs. ERK1/2 phosphorylation was similar following stretch at frequencies from 0.1 to 1 Hz and amplitudes from 2.5% to 15%, whereas phosphorylation reached maximal levels at 10 min of stretch and returned toward basal within 60 min of stretch. Following a single 10-min bout of cyclic stretch, the cells remained refractory to a second stretch for up to 6 h. Using the phosphorylation of ERK1/2 as a guide, the optimum stretch paradigm was hypothesized to be 10 min of stretch at 2.5% of resting length repeated every 6 h. Consistent with this hypothesis, 7 days of stretch using this optimized intermittent stretch program increased the collagen content of the grafts more than a continuous stretch program (CTL=3.1%±0.44%; CONT=4.8%±0.30%; and INT=5.9%±0.56%). These results suggest that short infrequent bouts of loading are optimal for improving engineered tendon and ligament physiology. PMID:21902469

  20. Design considerations and challenges for mechanical stretch bioreactors in tissue engineering.

    Science.gov (United States)

    Lei, Ying; Ferdous, Zannatul

    2016-05-01

    With the increase in average life expectancy and growing aging population, lack of functional grafts for replacement surgeries has become a severe problem. Engineered tissues are a promising alternative to this problem because they can mimic the physiological function of the native tissues and be cultured on demand. Cyclic stretch is important for developing many engineered tissues such as hearts, heart valves, muscles, and bones. Thus a variety of stretch bioreactors and corresponding scaffolds have been designed and tested to study the underlying mechanism of tissue formation and to optimize the mechanical conditions applied to the engineered tissues. In this review, we look at various designs of stretch bioreactors and common scaffolds and offer insights for future improvements in tissue engineering applications. First, we summarize the requirements and common configuration of stretch bioreactors. Next, we present the features of different actuating and motion transforming systems and their applications. Since most bioreactors must measure detailed distributions of loads and deformations on engineered tissues, techniques with high accuracy, precision, and frequency have been developed. We also cover the key points in designing culture chambers, nutrition exchanging systems, and regimens used for specific tissues. Since scaffolds are essential for providing biophysical microenvironments for residing cells, we discuss materials and technologies used in fabricating scaffolds to mimic anisotropic native tissues, including decellularized tissues, hydrogels, biocompatible polymers, electrospinning, and 3D bioprinting techniques. Finally, we present the potential future directions for improving stretch bioreactors and scaffolds. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:543-553, 2016. © 2016 American Institute of Chemical Engineers.

  1. High throughput web inspection system using time-stretch real-time imaging

    Science.gov (United States)

    Kim, Chanju

    Photonic time-stretch is a novel technology that enables capturing of fast, rare and non-repetitive events. Therefore, it operates in real-time with ability to record over long period of time while having fine temporal resolution. The powerful property of photonic time-stretch has already been employed in various fields of application such as analog-to-digital conversion, spectroscopy, laser scanner and microscopy. Further expanding the scope, we fully exploit the time-stretch technology to demonstrate a high throughput web inspection system. Web inspection, namely surface inspection is a nondestructive evaluation method which is crucial for semiconductor wafer and thin film production. We successfully report a dark-field web inspection system with line scan speed of 90.9 MHz which is up to 1000 times faster than conventional inspection instruments. The manufacturing of high quality semiconductor wafer and thin film may directly benefit from this technology as it can easily locate defects with area of less than 10 microm x 10 microm where it allows maximum web flow speed of 1.8 km/s. The thesis provides an overview of our web inspection technique, followed by description of the photonic time-stretch technique which is the keystone in our system. A detailed explanation of each component is covered to provide quantitative understanding of the system. Finally, imaging results from a hard-disk sample and flexible films are presented along with performance analysis of the system. This project was the first application of time-stretch to industrial inspection, and was conducted under financial support and with close involvement by Hitachi, Ltd.

  2. Reducing charging effects in scanning electron microscope images by Rayleigh contrast stretching method (RCS).

    Science.gov (United States)

    Wan Ismail, W Z; Sim, K S; Tso, C P; Ting, H Y

    2011-01-01

    To reduce undesirable charging effects in scanning electron microscope images, Rayleigh contrast stretching is developed and employed. First, re-scaling is performed on the input image histograms with Rayleigh algorithm. Then, contrast stretching or contrast adjustment is implemented to improve the images while reducing the contrast charging artifacts. This technique has been compared to some existing histogram equalization (HE) extension techniques: recursive sub-image HE, contrast stretching dynamic HE, multipeak HE and recursive mean separate HE. Other post processing methods, such as wavelet approach, spatial filtering, and exponential contrast stretching, are compared as well. Overall, the proposed method produces better image compensation in reducing charging artifacts. Copyright © 2011 Wiley Periodicals, Inc.

  3. Mechanism of Metal Ion Activation of the Diphtheria Toxin Repressor DtxR

    Energy Technology Data Exchange (ETDEWEB)

    D' Aquino,J.; Tetenbaum-Novatt, J.; White, A.; Berkovitch, F.; Ringe, D.

    2005-01-01

    The diphtheria toxin repressor (DtxR) is a metal ion-activated transcriptional regulator that has been linked to the virulence of Corynebacterium diphtheriae. Structure determination has shown that there are two metal ion binding sites per repressor monomer, and site-directed mutagenesis has demonstrated that binding site 2 (primary) is essential for recognition of the target DNA repressor, leaving the role of binding site 1 (ancillary) unclear. Calorimetric techniques have demonstrated that although binding site 1 (ancillary) has high affinity for metal ion with a binding constant of 2 x 10{sup -7}, binding site 2 (primary) is a low-affinity binding site with a binding constant of 6.3 x 10{sup -4}. These two binding sites act in an independent fashion, and their contribution can be easily dissected by traditional mutational analysis. Our results clearly demonstrate that binding site 1 (ancillary) is the first one to be occupied during metal ion activation, playing a critical role in stabilization of the repressor. In addition, structural data obtained for the mutants Ni-DtxR(H79A, C102D), reported here, and the previously reported DtxR(H79A) have allowed us to propose a mechanism of metal activation for DtxR.

  4. Reduced Mechanical Stretch Induces Enhanced Endothelin B Receptor-mediated Contractility via Activation of Focal Adhesion Kinase and Extra Cellular-regulated Kinase 1/2 in Cerebral Arteries from Rat

    DEFF Research Database (Denmark)

    Spray, Stine; Rasmussen, Marianne N P; Skovsted, Gry F

    2016-01-01

    that rapid and sustained reduction in wall tension/stretch is a possible trigger mechanism for this vascular remodelling. Isolated rat middle cerebral artery (MCA) segments were incubated in a wire-myograph with or without mechanical stretch, prior to assessment of their contractile response to the selective...... expression to SMC expression and 2) an increased calcium sensitivity of the SMCs due to an increased expression of the calcium channel transient receptor potential canonical 1. Collectively, our results present a possible mechanism linking lack of vessel wall stretch/tension to changes in ETB receptor...

  5. Prolonged static stretching does not influence running economy despite changes in neuromuscular function.

    Science.gov (United States)

    Allison, Sarah J; Bailey, David M; Folland, Jonathan P

    2008-12-01

    The aim of this study was to examine the acute effects of prolonged static stretching (SS) on running economy. Ten male runners (VO2(peak) 60.1 +/- 7.3 ml x kg(-1) x min(-1)) performed 10 min of treadmill running at 70% VO2(peak) before and after SS and no stretching interventions. For the stretching intervention, each leg was stretched unilaterally for 40 s with each of eight different exercises and this was repeated three times. Respiratory gas exchange was measured throughout the running exercise with an automated gas analysis system. On a separate day, participants were tested for sit and reach range of motion, isometric strength and countermovement jump height before and after SS. The oxygen uptake, minute ventilation, energy expenditure, respiratory exchange ratio and heart rate responses to running were unaffected by the stretching intervention. This was despite a significant effect of SS on neuromuscular function (sit and reach range of motion, +2.7 +/- 0.6 cm; isometric strength, -5.6% +/- 3.4%; countermovement jump height -5.5% +/- 3.4%; all P influence running economy despite changes in neuromuscular function.

  6. Identification of the Process of Dynamic Stretching of Threads in Warp Knitting Technology Part II: Experimental Identification of the Process of Stretching Threads, with Verification of Rheological Models

    Directory of Open Access Journals (Sweden)

    Prążyńska Aleksandra

    2018-03-01

    Full Text Available The study is a continuation of the first part of the publication, concerning the theoretical analysis of sensitivity of rheological models of dynamically stretched thread. This part presents the experimental research on the characteristics of stretching forces as a function of time, in the context of comparing the obtained results with theoretical data.

  7. THUNDER Piezoelectric Actuators as a Method of Stretch-Tuning an Optical Fiber Grating

    Science.gov (United States)

    Allison, Sidney G.; Fox, Robert L.; Froggatt, Mark E.; Childers, Brooks A.

    2000-01-01

    A method of stretching optical fiber holds interest for measuring strain in smart structures where the physical displacement may be used to tune optical fiber lasers. A small, light weight, low power tunable fiber laser is ideal for demodulating strain in optical fiber Bragg gratings attached to smart structures such as the re-usable launch vehicle that is being developed by NASA. A method is presented for stretching optical fibers using the THUNDER piezoelectric actuators invented at NASA Langley Research Center. THUNDER actuators use a piezoelectric layer bonded to a metal backing to enable the actuators to produce displacements larger than the unbonded piezoelectric material. The shift in reflected optical wavelength resulting from stretching the fiber Bragg grating is presented. Means of adapting THUNDER actuators for stretching optical fibers is discussed, including ferrules, ferrule clamp blocks, and plastic hinges made with stereo lithography.

  8. FUZZY BASED CONTRAST STRETCHING FOR MEDICAL IMAGE ENHANCEMENT

    Directory of Open Access Journals (Sweden)

    T.C. Raja Kumar

    2011-07-01

    Full Text Available Contrast Stretching is an important part in medical image processing applications. Contrast is the difference between two adjacent pixels. Fuzzy statistical values are analyzed and better results are produced in the spatial domain of the input image. The histogram mapping produces the resultant image with less impulsive noise and smooth nature. The probabilities of gray values are generated and the fuzzy set is determined from the position of the input image pixel. The result indicates the good performance of the proposed fuzzy based stretching. The inverse transform of the real values are mapped with the input image to generate the fuzzy statistics. This approach gives a flexible image enhancement for medical images in the presence of noises.

  9. Cytoskeleton, L-type Ca2+ and stretch activated channels in injured skeletal muscle

    Directory of Open Access Journals (Sweden)

    Fabio Francini

    2013-07-01

    Full Text Available The extra-sarcomeric cytoskeleton (actin microfilaments and anchoring proteins is involved in maintaining the sarco-membrane stiffness and integrity and in turn the mechanical stability and function of the intra- and sub-sarcoplasmic proteins. Accordingly, it regulates Ca2+ entry through the L-type Ca2+ channels and the mechano-sensitivity of the stretch activated channels (SACs. Moreover, being intra-sarcomeric cytoskeleton bound to costameric proteins and other proteins of the sarcoplasma by intermediate filaments, as desmin, it integrates the properties of the sarcolemma with the skeletal muscle fibres contraction. The aim of this research was to compare the cytoskeleton, SACs and the ECC alterations in two different types of injured skeletal muscle fibres: by muscle denervation and mechanical overload (eccentric contraction. Experiments on denervation were made in isolated Soleus muscle of male Wistar rats; forced eccentric-contraction (EC injury was achieved in Extensor Digitorum Longus muscles of Swiss mice. The method employed conventional intracellular recording with microelectrodes inserted in a single fibre of an isolated skeletal muscle bundle. The state of cytoskeleton was evaluated by recording SAC currents and by evaluating the resting membrane potential (RMP value determined in current-clamp mode. The results demonstrated that in both injured skeletal muscle conditions the functionality of L-type Ca2+ current, ICa, was affected. In parallel, muscle fibres showed an increase of the resting membrane permeability and of the SAC current. These issues, together with a more depolarized RMP are an index of altered cytoskeleton. In conclusion, we found a symilar alteration of ICa, SAC and cytoskeleton in both injured skeletal muscle conditions.

  10. Bifurcation and extinction limit of stretched premixed flames with chain-branching intermediate kinetics and radiative loss

    Science.gov (United States)

    Zhang, Huangwei; Chen, Zheng

    2018-05-01

    Premixed counterflow flames with thermally sensitive intermediate kinetics and radiation heat loss are analysed within the framework of large activation energy. Unlike previous studies considering one-step global reaction, two-step chemistry consisting of a chain branching reaction and a recombination reaction is considered here. The correlation between the flame front location and stretch rate is derived. Based on this correlation, the extinction limit and bifurcation characteristics of the strained premixed flame are studied, and the effects of fuel and radical Lewis numbers as well as radiation heat loss are examined. Different flame regimes and their extinction characteristics can be predicted by the present theory. It is found that fuel Lewis number affects the flame bifurcation qualitatively and quantitatively, whereas radical Lewis number only has a quantitative influence. Stretch rates at the stretch and radiation extinction limits respectively decrease and increase with fuel Lewis number before the flammability limit is reached, while the radical Lewis number shows the opposite tendency. In addition, the relation between the standard flammability limit and the limit derived from the strained near stagnation flame is affected by the fuel Lewis number, but not by the radical Lewis number. Meanwhile, the flammability limit increases with decreased fuel Lewis number, but with increased radical Lewis number. Radical behaviours at flame front corresponding to flame bifurcation and extinction are also analysed in this work. It is shown that radical concentration at the flame front, under extinction stretch rate condition, increases with radical Lewis number but decreases with fuel Lewis number. It decreases with increased radiation loss.

  11. Binding of nickel and zinc ions with activated carbon prepared from ...

    African Journals Online (AJOL)

    Activated carbon was prepared from sugar cane fibre by carbonizing at 500 oC for 30 minutes. This was followed by activation with ammonium chloride. The activated carbon was characterised in terms of pH, bulk density, ash content, surface area and surface charge. Equilibrium sorption of nickel and zinc ions by the ...

  12. Micropatterning stretched and aligned DNA for sequence-specific nanolithography

    Science.gov (United States)

    Petit, Cecilia Anna Paulette

    Techniques for fabricating nanostructured materials can be categorized as either "top-down" or "bottom-up". Top-down techniques use lithography and contact printing to create patterned surfaces and microfluidic channels that can corral and organize nanoscale structures, such as molecules and nanorods in contrast; bottom-up techniques use self-assembly or molecular recognition to direct the organization of materials. A central goal in nanotechnology is the integration of bottom-up and top-down assembly strategies for materials development, device design; and process integration. With this goal in mind, we have developed strategies that will allow this integration by using DNA as a template for nanofabrication; two top-down approaches allow the placement of these templates, while the bottom-up technique uses the specific sequence of bases to pattern materials along each strand of DNA. Our first top-down approach, termed combing of molecules in microchannels (COMMIC), produces microscopic patterns of stretched and aligned molecules of DNA on surfaces. This process consists of passing an air-water interface over end adsorbed molecules inside microfabricated channels. The geometry of the microchannel directs the placement of the DNA molecules, while the geometry of the airwater interface directs the local orientation and curvature of the molecules. We developed another top-down strategy for creating micropatterns of stretched and aligned DNA using surface chemistry. Because DNA stretching occurs on hydrophobic surfaces, this technique uses photolithography to pattern vinyl-terminated silanes on glass When these surface-, are immersed in DNA solution, molecules adhere preferentially to the silanized areas. This approach has also proven useful in patterning protein for cell adhesion studies. Finally, we describe the use of these stretched and aligned molecules of DNA as templates for the subsequent bottom-up construction of hetero-structures through hybridization

  13. ′Sure closure′-skin stretching system, our clinical experience

    Directory of Open Access Journals (Sweden)

    Subramania K

    2005-01-01

    Full Text Available Objective: In clinical practice of reconstructive surgery one of the problems one routinely comes across is skin and soft tissue defects, which require coverage. Coverage of such wounds requires primary/secondary closure, skin grafting or flaps. The objective of our clinical series was to assess the efficacy of sure closure skin stretching system for closure of defects which otherwise would have required major flap cover or skin grafting. Methods: Our series included five patients with different causes and types of wound defects namely: 1. Post-traumatic soft tissue defect on dorsum of hand. 2. Post fasciotomy wound on leg (anterolateral aspect. 3. Abdominal wound dehiscence following surgery for enterocutaneous fistula. 4. Leg soft tissue defect following dehiscence of fasciocutaneous flap. 5. Secondary defect following harvesting a lateral arm/forearm free flap. The device was applied to skin edges after preparing the wound under local anesthesia and the skin edges were brought together by turning the skin-stretching knob. After adequate approximation of the edges of the wound it was sutured by conventional suturing techniques. Results: All the wounds could be successfully closed using the skin stretching system in our series. The time taken for the closure ranged from 2 to 48 h. Conclusions: Sure closure skin stretching system is an effective device for closing some of the skin defects which otherwise would have required skin flaps or grafts. In all the patients wound closure could be achieved by this method and was carried out under local anesthesia. Use of this technique is simple and helps to reduce the morbidity and cost of treatment by allowing the reconstructive surgeon to avoid using major flaps or grafts.

  14. Restorative Yoga and Metabolic Risk Factors: The Practicing Restorative Yoga vs. Stretching for the Metabolic Syndrome (PRYSMS) randomized trial

    Science.gov (United States)

    Kanaya, Alka M.; Araneta, Maria Rosario G.; Pawlowsky, Sarah B.; Barrett-Connor, Elizabeth; Grady, Deborah; Vittinghoff, Eric; Schembri, Michael; Chang, Ann; Carrion-Petersen, Mary Lou; Coggins, Traci; Tanori, Daniah; Armas, Jean M.; Cole, Roger J.

    2014-01-01

    Aims Intensive lifestyle change prevents type 2 diabetes but is difficult to sustain. Preliminary evidence suggests that yoga may improve metabolic factors. We tested a restorative yoga intervention vs. active stretching for metabolic outcomes. Methods In 2009–2012, we conducted a 48-week randomized trial comparing restorative yoga vs. stretching among underactive adults with the metabolic syndrome at the Universities of California, San Francisco and San Diego. We provided lifestyle counseling and a tapering series of 90-minute group classes in the 24-week intervention period and 24-week maintenance period. Fasting and 2-hour glucose, HbA1c, triglycerides, HDL-cholesterol, insulin, systolic blood pressure, visceral fat, and quality of life were assessed at baseline, 6- and 12-months. Results 180 participants were randomized and 135 (75%) completed the trial. At 12 months, fasting glucose decreased more in the yoga group than in the stretching group (−0.35 mmol/L vs. −0.03 mmol/L; p=0.002); there were no other significant differences between groups. At 6 months favorable changes within the yoga group included reductions in fasting glucose, insulin, and HbA1c and an increase in HDL-cholesterol that were not sustained at 1 year except changes in fasting glucose. The stretching group had a significant reduction in triglycerides at 6 months which was not sustained at 1 year but had improved quality of life at both time-points. Conclusions Restorative yoga was marginally better than stretching for improving fasting glucose but not other metabolic factors. PMID:24418351

  15. Acid and stretch, but not capsaicin, are effective stimuli for ATP release in the porcine bladder mucosa: Are ASIC and TRPV1 receptors involved?

    Science.gov (United States)

    Sadananda, Prajni; Kao, Felicity C L; Liu, Lu; Mansfield, Kylie J; Burcher, Elizabeth

    2012-05-15

    Stretch-evoked ATP release from the bladder mucosa is a key event in signaling bladder fullness. Our aim was to examine whether acid and capsaicin can also release ATP and to determine the receptors involved, using agonists and antagonists at TRPV1 and acid-sensing ion channels (ASICs). Strips of porcine bladder mucosa were exposed to acid, capsaicin or stretch. Strip tension was monitored. Bath fluid was collected for ATP measurement. Gene expression of ASICs and TRPV1 in porcine bladders was quantified using quantitative real-time PCR (qRT-PCR). Stretch stimulus (150% of original length) repeatedly and significantly increased ATP release to approximately 45 times basal release. Acid (pH 6.5, 6.0, 5.6) contracted mucosal strips and also increased ATP release up to 30-fold, without evidence of desensitization. Amiloride (0.3 μM) reduced the acid-evoked ATP release by approximately 70%, while capsazepine (10 μM) reduced acid-evoked ATP release at pH 6.0 and pH 5.6 (by 68% and 61%, respectively). Capsaicin (0.1-10 μM) was ineffective in causing ATP release, and also failed to contract porcine mucosal or detrusor strips. Gene expression for ASIC1, ASIC2, ASIC3 and TRPV1 was seen in the lateral wall, dome, trigone and neck of both detrusor and mucosa. In conclusion, stretch and acid induce ATP release in the porcine bladder mucosa, but capsaicin is ineffective. The pig bladder is a well-known model for the human bladder, however these data suggest that it should be used with caution, particularly for TRPV1 related studies. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Pre-Stretched Low Equivalent Weight PFSA Membranes with Improved Fuel Cell Performance

    DEFF Research Database (Denmark)

    Zhang, Wenjing (Angela); Wycisk, Ryszard; Kish, Daniel L.

    2014-01-01

    for the morphological changes to be permanent. For 825 EW PFSA, stretching increased the polymer crystallinity by 22.5%, with a reduction in methanol permeability and a small increase in proton conductivity. In direct methanol fuel cell tests at 60◦C with 1.0 M methanol, the power density at 0.4 V with a DR = 4...... stretched 825 EW membrane (72 mW/cm2) was considerably greater than that obtained with a solution-cast membrane (28 mW/cm2) or with a commercial Nafion 117 membrane (55 mW/cm2). For 733 EW PFSA, stretching promoted the formation of ordered ionic domains leading to an increase in proton conductivity...

  17. Ion-exchange resin separation applied to activation analysis (1963); Separation par resines echangeuses d'ions appliquees a l'analyse par activation (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Aubouin, G; Laverlochere, J [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1963-07-01

    The separation techniques based on ion-exchange resins have been used, in this study, for carrying out activation analyses on about thirty impurities. A separation process has been developed so as to standardise these analyses and to render them execution a matter of routine. The reparation yields obtained are excellent and make it possible to carry out analyses on samples having a large activation cross-section ween working inside a reinforced fume-cupboard. This technique has been applied to the analysis of impurities in tantalum, iron, gallium, germanium, terphenyl, and tungsten. The extension of this process to other impurities and to other matrices is now being studied. (authors) [French] Les techniques de separations sur resines echangeusee d'ions ont ete utilisees, dans cette etude, pour effectuer des analyses par activation sur une trentaine d'impuretes. Un schema de separation a ete mis au point de maniere a normaliser ces analyses et a pouvoir les faire en routine. Les rendements de separation obtenus sont excellents et permettent de proceder a des analyses d'echantillons a grande section efficace d'activation en travaillant dans une sorbonne blindee. Des applications de cette technique ont ete faites pour des analyses d'impuretes dans le tantale, le fer, le gallium, le germanium, le terphenyle, le tungstene. L'extension de ce schema a d'autres impuretes et a d'autres matrices est en cours d'etude. (auteurs)

  18. Barodiffusion phenomena at active transport of na+ and K+ ions through the cell membrane

    International Nuclear Information System (INIS)

    Khrapijchuk, G.V.; Chalyi, A.V.; Nurishchenko, N.Je.

    2010-01-01

    The influence of ultrasound as the significant motive force of barodiffusion phenomena at the processes of active transport of Na + and K + ions through the cell membrane is considered. The dependence of membrane potential is theoretically estimated at active transport of natrium and potassium ions on the ultrasound intensity and pressure overfall between external and internal medium of the cell.

  19. Radioprotector modifying influence upon the ion transport ATPase activities

    International Nuclear Information System (INIS)

    Dvoretsky, A.I.; Egorova, E.G.; Ananieva, T.V.; Kulikova, I.A.

    1993-01-01

    The effects of aminothiol and biogenic amine radioprotectors (β-mercaptoethylamine, AET, serotonin, dopamine, histamine) on the basic ion transport enzymes, such as Na, K-ATP ase and Mg, Ca-ATPase activities were investigated in the tissues of numerous organs, with different radiosensitivity in the wistar rats. Experimental results showed that intraperitoneal injection of the used radioprotectors caused preliminary inhibition of the Na, K-ATPase activity in tissues from organs with different radioresistance, but had no influence on the Mg, Ca-ATPase activity in membranes of erythrocytes and rat brain cells. (2 tabs.)

  20. Development of Aluminum-Lithium 2195 Gores by the Stretch Forming Process

    Science.gov (United States)

    Volz, M. P.; Chen, P. S.; Gorti, S.; Salvail, P.

    2014-01-01

    Aluminum-Lithium alloy 2195 exhibits higher mechanical properties and lower density than aluminum alloy 2219, which is the current baseline material for Space Launch System (SLS) cryogenic tank components. Replacement of Al 2219 with Al-Li 2195 would result in substantial weight savings, as was the case when this replacement was made on the shuttle external tank. A key component of cryogenic tanks are the gores, which are welded together to make the rounded ends of the tanks. The required thicknesses of these gores depend on the specific SLS configuration and may exceed the current experience base in the manufacture of such gores by the stretch forming process. Here we describe the steps taken to enhance the formability of Al-Li 2195 by optimizing the heat treatment and stretch forming processes for gore thicknesses up to 0.75", which envelopes the maximum expected gore thicknesses for SLS tanks. An annealing treatment, developed at Marshall Space Flight Center, increased the forming range and strain hardening exponent of Al-Li 2195 plates. Using this annealing treatment, one 0.525" thick and two 0.75" thick gores were manufactured by the stretch forming process. The annealing treatment enabled the stretch forming of the largest ever cross sectional area (thickness x width) of an Al-Li 2195 plate achieved by the manufacturer. Mechanical testing of the gores showed greater than expected ultimate tensile strength, yield strength, modulus, and elongation values. The gores also exhibited acceptable fracture toughness at room and LN2 temperatures. All of the measured data indicate that the stretch formed gores have sufficient material properties to be used in flight domes.

  1. FE-Analysis of Stretch-Blow Moulded Bottles Using an Integrative Process Simulation

    Science.gov (United States)

    Hopmann, C.; Michaeli, W.; Rasche, S.

    2011-05-01

    The two-stage stretch-blow moulding process has been established for the large scale production of high quality PET containers with excellent mechanical and optical properties. The total production costs of a bottle are significantly caused by the material costs. Due to this dominant share of the bottle material, the PET industry is interested in reducing the total production costs by an optimised material efficiency. However, a reduced material inventory means decreasing wall thicknesses and therewith a reduction of the bottle properties (e.g. mechanical properties, barrier properties). Therefore, there is often a trade-off between a minimal bottle weight and adequate properties of the bottle. In order to achieve the objectives Computer Aided Engineering (CAE) techniques can assist the designer of new stretch-blow moulded containers. Hence, tools such as the process simulation and the structural analysis have become important in the blow moulding sector. The Institute of Plastics Processing (IKV) at RWTH Aachen University, Germany, has developed an integrative three-dimensional process simulation which models the complete path of a preform through a stretch-blow moulding machine. At first, the reheating of the preform is calculated by a thermal simulation. Afterwards, the inflation of the preform to a bottle is calculated by finite element analysis (FEA). The results of this step are e.g. the local wall thickness distribution and the local biaxial stretch ratios. Not only the material distribution but also the material properties that result from the deformation history of the polymer have significant influence on the bottle properties. Therefore, a correlation between the material properties and stretch ratios is considered in an integrative simulation approach developed at IKV. The results of the process simulation (wall thickness, stretch ratios) are transferred to a further simulation program and mapped on the bottles FE mesh. This approach allows a local

  2. Optical stretching on chip with acoustophoretic prefocusing

    DEFF Research Database (Denmark)

    Khoury Arvelo, Maria; Laub Busk, L.; Bruus, Henrik

    2012-01-01

    in the microchannel. Trapping and manipulation is demonstrated for dielectric beads. In addition, we show trapping, manipulation and stretching of red blood cells and vesicles, whereby we extract the elastic properties of these objects. Our design points towards the construction of a low-cost, high-throughput lab...

  3. Active ion temperature measurement with heating neutral beam

    International Nuclear Information System (INIS)

    Miura, Yukitoshi; Matsuda, Toshiaki; Yamamoto, Shin

    1987-03-01

    When the heating neutral-beam (hydrogen beam) is injected into a deuterium plasma, the density of neutral particles is increased locally. By using this increased neutral particles, the local ion temperature is measured by the active charge-exchange method. The analyzer is the E//B type mass-separated neutral particle energy analyzer and the measured position is about one third outside of the plasma radius. The deuterium energy spectrum is Maxwellian, and the temperature is increased from 350 eV to 900 eV during heating. Since the local hydrogen to deuterium density concentration and the density of the heating neutral-beam as well as the ion temperature can be obtained good S/N ratio, the usefulness of this method during neutral-beam heating is confirmed by this experiment. (author)

  4. Report on the FY 1999 investigational survey on the activation of oxygen electrode by ion implantation; 1999 nendo ion chunyuho ni yoru sanso denkyoku no kasseika ni kansuru kenkyu chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The oxygen electrode is important as the base electrode for water electrolysis and fuel cell, but to move it, overvoltage (activated energy) in addition to equilibrium voltage is necessary, which leads to the lowering of energy efficiency. By forming the active spot by ion implantation, the lowering of overvoltage was studied. The implantation of Ru{sup +} ion in Ruthenium dioxide thin film electrode reduced the oxygen generating overvoltage by 15-20mV. Even in the oxygen reduction, activity was also increased. The chemical composition of thin film does not change by ion implantation. The increase in activity is based on a physical change which is called the surface defect formation. The layer of ion implantation is composed of microcrystals, which is thought to contribute to the formation of any active spot. Ions were implanted in Pt electrode as a practical use material, and even in the oxygen reduction of Pt, a possibility of heightening activity by ion implantation was admitted even in the oxygen reduction of Pt. The generation of high activity oxygen by ion plantation and development of oxygen reduction electrode were established as one method as a rule. (NEDO)

  5. Comparison electrical stimulation and passive stretching for blood glucose control type 2 diabetes mellitus patients

    Science.gov (United States)

    Arsianti, Rika Wahyuni; Parman, Dewy Haryanti; Lesmana, Hendy

    2018-04-01

    Physical exercise is one of the cornerstones for management and treatment type 2 diabetes mellitus. But not all people are able to perform physical exercise because of their physical limitation condition. The strategy for those people in this study is electrical stimulation and passive stretching. The aim of this study is to find out the effect of electrical stimulation and passive stretching to lowering blood glucose level. 20 subjects is divided into electrical stimulation and passive stretching group. The provision of electrical stimulation on lower extremities muscles for 30 minutes for electrical stimulation group (N=10). And other underwent passive stretching for 30 minutes (N=10). The result shows that blood glucose level is decrease from 192.9 ± 10.7087 mg/dL to 165.3 ± 10.527 mg/dL for electrical stimulation intervention group while for the passive stretching group the blood glucose decrease from 153 ± 12.468 mg/dL to 136.1 ± 12.346 mg/dL. Both electrical stimulation and passive stretching are effective to lowering blood glucose level and can be proposed for those people restricted to perform exercise.

  6. Self-induced stretch syncope of adolescence: a video-EEG documentation.

    Science.gov (United States)

    Mazzuca, Michel; Thomas, Pierre

    2007-12-01

    We present the first video-EEG documentation, with ECG and EMG features, of stretch syncope of adolescence in a young, healthy 16-year-old boy. Stretch syncope of adolescence is a rarely reported, benign cause of fainting in young patients, which can be confused with epileptic seizures. In our patient, syncopes were self-induced to avoid school. Dynamic transcranial Doppler showed evidence of blood flow decrease in both posterior cerebral arteries mimicking effects of a Valsalva manoeuvre. Dynamic angiogram of the vertebral arteries was normal. Hypotheses concerning the physiopathology are discussed. [Published with video sequences].

  7. Fragile X mental retardation protein controls ion channel expression and activity.

    Science.gov (United States)

    Ferron, Laurent

    2016-10-15

    Fragile X-associated disorders are a family of genetic conditions resulting from the partial or complete loss of fragile X mental retardation protein (FMRP). Among these disorders is fragile X syndrome, the most common cause of inherited intellectual disability and autism. FMRP is an RNA-binding protein involved in the control of local translation, which has pleiotropic effects, in particular on synaptic function. Analysis of the brain FMRP transcriptome has revealed hundreds of potential mRNA targets encoding postsynaptic and presynaptic proteins, including a number of ion channels. FMRP has been confirmed to bind voltage-gated potassium channels (K v 3.1 and K v 4.2) mRNAs and regulates their expression in somatodendritic compartments of neurons. Recent studies have uncovered a number of additional roles for FMRP besides RNA regulation. FMRP was shown to directly interact with, and modulate, a number of ion channel complexes. The sodium-activated potassium (Slack) channel was the first ion channel shown to directly interact with FMRP; this interaction alters the single-channel properties of the Slack channel. FMRP was also shown to interact with the auxiliary β4 subunit of the calcium-activated potassium (BK) channel; this interaction increases calcium-dependent activation of the BK channel. More recently, FMRP was shown to directly interact with the voltage-gated calcium channel, Ca v 2.2, and reduce its trafficking to the plasma membrane. Studies performed on animal models of fragile X syndrome have revealed links between modifications of ion channel activity and changes in neuronal excitability, suggesting that these modifications could contribute to the phenotypes observed in patients with fragile X-associated disorders. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  8. Sorption of Heavy Metal Ions from Mine Wastewater by Activated ...

    African Journals Online (AJOL)

    Michael

    2016-12-02

    Dec 2, 2016 ... assess their heavy metal ions adsorption potential. The results show that the .... De-ionised water obtained from the Mineral. Engineering Laboratory of ... Batch adsorption experiment for each of the derived activated carbons ...

  9. EFFECT OF FLUORINE AND CHLORINE IONS ON THE REACTION SINTERING OF MECHANICALLY ACTIVATED ZIRCON-ALUMINA MIXTURE

    Directory of Open Access Journals (Sweden)

    R. Zamani Foroshani

    2015-09-01

    Full Text Available The aim of this work was to study the effect of fluorine and chlorine ions on the formation of mullite during the reaction sintering of mechanically activated zircon-alumina powder mixture. The results showed that mechanical activation of zirconalumina powder mixture for 20 h led to grain refinement and partial amorphization. In the presence of fluorine and chlorine ions, complete formation of mullite in the mechanically activated sample occurred after 2 h of reaction sintering at 1300oC and 1400oC, respectively. In the sample lacking fluorine and chlorine ions, mullitization was not completed even after 2 h of reaction sintering at 1400oC. It was concluded that presence of fluorine and chlorine ions enhance the dissociation of zircon and formation of mullite during the reaction sintering of mechanically activated zircon-alumina mixture.

  10. Stretch sensors for human body motion

    Science.gov (United States)

    O'Brien, Ben; Gisby, Todd; Anderson, Iain A.

    2014-03-01

    Sensing motion of the human body is a difficult task. From an engineers' perspective people are soft highly mobile objects that move in and out of complex environments. As well as the technical challenge of sensing, concepts such as comfort, social intrusion, usability, and aesthetics are paramount in determining whether someone will adopt a sensing solution or not. At the same time the demands for human body motion sensing are growing fast. Athletes want feedback on posture and technique, consumers need new ways to interact with augmented reality devices, and healthcare providers wish to track recovery of a patient. Dielectric elastomer stretch sensors are ideal for bridging this gap. They are soft, flexible, and precise. They are low power, lightweight, and can be easily mounted on the body or embedded into clothing. From a commercialisation point of view stretch sensing is easier than actuation or generation - such sensors can be low voltage and integrated with conventional microelectronics. This paper takes a birds-eye view of the use of these sensors to measure human body motion. A holistic description of sensor operation and guidelines for sensor design will be presented to help technologists and developers in the space.

  11. Twist-stretch profiles of DNA chains

    Science.gov (United States)

    Zoli, Marco

    2017-06-01

    Helical molecules change their twist number under the effect of a mechanical load. We study the twist-stretch relation for a set of short DNA molecules modeled by a mesoscopic Hamiltonian. Finite temperature path integral techniques are applied to generate a large ensemble of possible configurations for the base pairs of the sequence. The model also accounts for the bending and twisting fluctuations between adjacent base pairs along the molecules stack. Simulating a broad range of twisting conformation, we compute the helix structural parameters by averaging over the ensemble of base pairs configurations. The method selects, for any applied force, the average twist angle which minimizes the molecule’s free energy. It is found that the chains generally over-twist under an applied stretching and the over-twisting is physically associated to the contraction of the average helix diameter, i.e. to the damping of the base pair fluctuations. Instead, assuming that the maximum amplitude of the bending fluctuations may decrease against the external load, the DNA molecule first over-twists for weak applied forces and then untwists above a characteristic force value. Our results are discussed in relation to available experimental information albeit for kilo-base long molecules.

  12. COMPARATIVE EFFECT OF STATIC AND DYNAMIC STRETCHING EXERCISE TO IMPROVE FLEXIBILITY OF HAMSTRING MUSCLES AMONG NON ATHLETES

    Directory of Open Access Journals (Sweden)

    Jibi Paul

    2014-10-01

    Full Text Available Background: Stretching exercises have been routinely used in persons with hamstring tightness and athletes to increase flexibility of muscle and to reduce joint injuries. Many studies have reported effect of static and dynamic stretching on flexibility of this muscle. Finding the best method to improve flexibility of hamstring muscle is important for athletes and individuals to reduce their injuries. Objective of the study was to find out the effect of static stretching exercise and dynamic stretching exercise on flexibility of hamstring muscle and also to compare the effect of static and dynamic stretching exercise on flexibility of hamstring muscle. Methods: This was a comparative experimental study with seventy four female healthy subjects from physiotherapy department of KPJ Healthcare University College, Malaysia. Convenient sampling method used to select the samples. The subjects were selected by inclusion criteria and randomly divided equally in to two with 37 subjects in each group. Static stretching exercise and dynamic stretching exercise were given as intervention program for four weeks respectively for experimental and control group. Pre and post data of restricted range of movement for knee extension was measured using goniometry and documented separately for both group. Result: In experimental and control group, pre-post statistical analysis found significant effect in increase of hamstring flexibility with P<0.0001, for right and left side. Comparative study between experimental and control group found that static stretching exercise have significant effect in increase of hamstring flexibility for right and left side with P<0.04. Conclusion: This study concluded that static stretching exercise is more effective to improve hamstring flexibility compared to dynamic stretching exercise.

  13. Bending and stretching of plates

    CERN Document Server

    Mansfield, E H; Hemp, W S

    1964-01-01

    The Bending and Stretching of Plates deals with elastic plate theory, particularly on small- and large-deflexion theory. Small-deflexion theory concerns derivation of basic equations, rectangular plates, plates of various shapes, plates whose boundaries are amenable to conformal transformation, plates with variable rigidity, and approximate methods. Large-deflexion theory includes general equations and some exact solutions, approximate methods in large-deflexion theory, asymptotic large-deflexion theories for very thin plates. Asymptotic theories covers membrane theory, tension field theory, a

  14. High-resolution sub-Doppler infrared spectroscopy of atmospherically relevant Criegee precursor CH2I radicals: CH2 stretch vibrations and "charge-sloshing" dynamics

    Science.gov (United States)

    Kortyna, A.; Lesko, D. M. B.; Nesbitt, D. J.

    2018-05-01

    The combination of a pulsed supersonic slit-discharge source and single-mode difference frequency direct absorption infrared spectroscopy permit first high resolution infrared study of the iodomethyl (CH2I) radical, with the CH2I radical species generated in a slit jet Ne/He discharge and cooled to 16 K in the supersonic expansion. Dual laser beam detection and collisional collimation in the slit expansion yield sub-Doppler linewidths (60 MHz), an absolute frequency calibration of 13 MHz, and absorbance sensitivities within a factor of two of the shot-noise limit. Fully rovibrationally resolved direct absorption spectra of the CH2 symmetric stretch mode (ν2) are obtained and fitted to a Watson asymmetric top Hamiltonian with electron spin-rotation coupling, providing precision rotational constants and spin-rotation tensor elements for the vibrationally excited state. Analysis of the asymmetric top rotational constants confirms a vibrationally averaged planar geometry in both the ground- and first-excited vibrational levels. Sub-Doppler resolution permits additional nuclear spin hyperfine structures to be observed, with splittings in excellent agreement with microwave measurements on the ground state. Spectroscopic data on CH2I facilitate systematic comparison with previous studies of halogen-substituted methyl radicals, with the periodic trends strongly correlated with the electronegativity of the halogen atom. Interestingly, we do not observe any asymmetric CH2 stretch transitions, despite S/N ≈ 25:1 on strongest lines in the corresponding symmetric CH2 stretch manifold. This dramatic reversal of the more typical 3:1 antisymmetric/symmetric CH2 stretch intensity ratio signals a vibrational transition moment poorly described by simple "bond-dipole" models. Instead, the data suggest that this anomalous intensity ratio arises from "charge sloshing" dynamics in the highly polar carbon-iodine bond, as supported by ab initio electron differential density plots and

  15. Modification of permeability of frog perineurium to [14C]-sucrose by stretch and hypertonicity

    International Nuclear Information System (INIS)

    Weerasuriya, A.; Rapoport, S.I.; Taylor, R.E.

    1979-01-01

    An in vitro method has been developed to determine quantitatively the permeability of the perineurium to radiotracers at room temperature. The permeability to [ 14 C]sucrose of the isolated perineurium of the sciatic nerve of the frog, Rana pipiens, was measured at rest length, when the perineurium was stretched and after the perineurium had been subjected to hypertonic treatment. Mean permeability at rest length was calculated to be 5.6 +- 0.27 (S.E.M., n=45)x10 -7 cm/sec, and both stretch and hypertonic treatment increased the permeability. A 10% stretch increased permeability reversibly, whereas a 20% stretch or immersion of the perineurium in a hypertonic bath increased permeability irreversibly. Altered permeability under these conditions might be related to changes in the ultrastructure of tight junctions in the perineurium. (Auth.)

  16. Binding of nickel and zinc ions with activated carbon prepared from sugar cane fibre (Saccharum officinarum L.

    Directory of Open Access Journals (Sweden)

    E.U. Ikhuoria

    2007-04-01

    Full Text Available Activated carbon was prepared from sugar cane fibre by carbonizing at 500 oC for 30 minutes. This was followed by activation with ammonium chloride. The activated carbon was characterised in terms of pH, bulk density, ash content, surface area and surface charge. Equilibrium sorption of nickel and zinc ions by the activated carbon was studied using a range of metal ion concentrations. The sorption data was observed to have an adequate fit for the Langmuir isotherm equation. The level of metal ion uptake was found to be of the order: Ni2+ > Zn2+. The difference in the removal efficiency could be explained in terms of the hydration energy of the metal ions. The distribution coefficient for a range of concentration of the metal ions at the sorbent water interface is found to be higher than the concentration in the continuous phase.

  17. A comparison of two stretching programs for hamstring muscles: A randomized controlled assessor-blinded study.

    Science.gov (United States)

    Demoulin, Christophe; Wolfs, Sébastien; Chevalier, Madeline; Granado, Caroline; Grosdent, Stéphanie; Depas, Yannick; Roussel, Nathalie; Hage, Renaud; Vanderthommen, Marc

    2016-01-01

    Most parameters regarding hamstring flexibility training programs have been investigated; however, the joint (i.e. hip or knee) on which the stretching should preferentially be focused needs to be further explored. This randomized controlled assessor-blinded study aimed to investigate the influence of this parameter. We randomly assigned 111 asymptomatic participants with tight hamstring muscles in three groups: a control group and two groups following a different home-based 8-week (five 10-minute sessions per week) hamstring stretching program (i.e. stretching performed by flexing the hip while keeping the knee extended [SH] or by first flexing the hip with a flexed knee and then extending the knee [SK]). Range of motion (ROM) of hip flexion and knee extension were measured before and after the stretching program by means of the straight leg raising test and the passive knee extension angle test, respectively. Eighty-nine participants completed the study. A significant increase in ROM was observed at post-test. Analyses showed significant group-by-time interactions for changes regarding all outcomes. Whereas the increase in hip flexion and knee extension ROM was higher in the stretching groups than in the CG (especially for the SH group p 0.05). In conclusion, the fact that both stretching programs resulted in similar results suggests no influence of the joint at which the stretching is focused upon, as assessed by the straight leg raising and knee extension angle tests.

  18. Simulation of stretch forming with intermediate heat treatments of aircraft skins - A physically based modeling approach

    NARCIS (Netherlands)

    Kurukuri, S.; Miroux, Alexis; Wisselink, H.H.; van den Boogaard, Antonius H.

    2011-01-01

    In the aerospace industry stretch forming is often used to produce skin parts. During stretch forming a sheet is clamped at two sides and stretched over a die, such that the sheet gets the shape of the die. However for complex shapes it is necessary to use expensive intermediate heat-treatments in

  19. Muscular and stato-kinetic functions rehabilitation by means of subaquatic stretching (hydrostretching

    Directory of Open Access Journals (Sweden)

    Zoltàn Pàsztay

    2008-12-01

    Full Text Available Stretching is a physical therapeutical way for maintaining the standard parameters of the body functions from a tender to anadvanced age. The most important parameter that is influenced by the different techniques of stretching, especially byhydrostretching, is flexibility. This article presents the technique and the effects of hydrostretching on human body (onmuscular balance, strength, muscular metabolism and circulation.

  20. Experimental study on the deformation of erythrocytes under optically trapping and stretching

    International Nuclear Information System (INIS)

    Liu, Y.P.; Li Chuan; Lai, A.C.K.

    2006-01-01

    The mechanical behavior of erythrocytes is studied experimentally and numerically. In the experiment, prepared silica microbeads are attached to the surface of spherically swollen erythrocytes (red blood cells, RBCs) at room temperature (25 deg. C). The cells are then stretched by single laser beam via the microbeads. The relation of deformation and stretching force is quantitatively assessed by the image processing of digital pictures. Meanwhile, a physical model for an axisymmetric cell is introduced to study its deformation by different level of stretching force. By comparing the experimental and numerical data, stiffness of the cell membrane can be determined and the optimal values are found to agree with other studies by different techniques such as micropipette aspiration or high frequency electric field

  1. Anomalies in the coil-stretch transition of flexible polymers

    Science.gov (United States)

    Ghosal, Aishani; Cherayil, Binny J.

    2018-03-01

    The flow-induced coil-stretch transition of high molecular weight polymers has generally been held to be of first order. But evidence of significant slowing down in the rate at which the polymers relax to equilibrium in the vicinity of the transition suggests that the thermodynamic character of the transition may be less clear-cut. The above slowing down effect is actually characteristic of a second-order transition, and it points to the existence of a broad spectrum of conformational states in the transition region, analogous to the existence of fluctuations of all length scales at a critical point. In this paper, using a path integral approach based on a free-draining finitely extensible chain model, we calculate various polymer properties as a function of elongational flow as a way of exploring different statistical mechanical details of the coil-stretch transition. These properties include the molecular weight dependence of the flow-extension curve of the polymer, the distribution of its steady-state end-to-end distances, and the characteristic relaxation time τR of these distances. Among other findings, our calculations indicate that the coil-stretch transition is discontinuous in the N → ∞ limit, that the effective free energy of the chain is unimodal at all values of the flow, becoming broad and flat in the immediate vicinity of the transition, and that the ratio of τR to the Rouse relaxation time increases abruptly at the transition before eventually reaching a plateau value at large flow strengths. These aspects of the coil-stretch transition place it among a larger class of unconventional nominally first-order single chain transitions that include the adsorption transition of surface-tethered polymers and the escape transition of compressed polymers.

  2. Influence of UV and Gamma radiations on the induced birefringence of stretched poly(vinyl) alcohol foils

    Science.gov (United States)

    Nechifor, Cristina-Delia; Zelinschi, Carmen Beatrice; Dorohoi, Dana-Ortansa

    2014-03-01

    The aim of our paper is to evidence the influence of Gamma and UV radiations on the induced birefringence of poly(vinyl alcohol) stretched foils. Thin foils of PVA were prepared and dried without modifying their surfaces. The polymeric foils were irradiated from 15 min to 6 h using UV and Gamma radiations. The induced by stretching under heating birefringence of PVA films was measured at λ = 589.3 nm with a Babinet Compensator. Physico-chemical processes (photo stabilization, photo degradation, oxidation) induced by irradiation of polymer matrix influence both the stretching degree and the anisotropy of etired foils. An increase of birefringence versus the stretching ratio of the PVA foils was evidenced for all studied samples. The dependence of the birefringence on the exposure time, stretching ratio and nature of radiation was also confirmed.

  3. Tail modeling in a stretched magnetosphere 1. Methods and transformations

    International Nuclear Information System (INIS)

    Stern, D.P.

    1987-01-01

    A new method is developed for representing the magnetospheric field B as a distorted dipole field. Because delxB = 0 must be maintained,such a distortion may be viewed as a transformation of the vector potential A. The simplest form is a one-dimensional ''stretch transformation'' along the x axis, a generalization of a method introduced by Voigt. The transformation is concisely represented by the ''stretch function'' f(x), which is also a convenient tool for representing features of the substorm cycle. Onedimensional stretch transformations are extended to spherical, cylindrical, and parabolic coordinates and then to arbitrary coordinates. It is next shown that distortion transformations can be viewed as mappings of field lines from one pattern to another: Euler potentials are used in the derivation, but the final result only requires knowledge of the field and not of the potentials. General transformations in Cartesian and arbitrary coordinates are then derived,and applications to field modeling, field line motion, MHD modeling, and incompressible fluid dynamics are considered. copyrightAmerican Geophysical Union 1987

  4. Study of radio-active ions in the atmosphere

    International Nuclear Information System (INIS)

    Renoux, A.

    1965-01-01

    A comparative study is made of active, deposits of radon and thoron in suspension in the atmosphere by means of α radiation counting, using ZELENY tubes, scattering equipment, filter papers or membranes. It has been possible to show the existence of small and large ions which are negative and positive, as well as of neutral radio-active nuclei; their properties are studied. A theoretical interpretation of the results is presented. The average content of radon (using the Ra A concentration) and of Th B in the air has been determined. The radioactive equilibrium between radon and its daughter products in atmospheric air are examined. The techniques developed for active radon and thoron deposits are applied to the study of artificial radio-activity, the analyses being carried out by means of γ spectrometry. (author) [fr

  5. The nature of single-ion activity coefficients calculated from potentiometric measurements on cells with liquid junctions

    Energy Technology Data Exchange (ETDEWEB)

    Zarubin, Dmitri P., E-mail: dmitri.zarubin@mtu-net.ru [Department of Physical and Collod Chemistry, Moscow State University of Technology and Management, 73 Zemlyanoi Val, Moscow 109803 (Russian Federation)

    2011-08-15

    Highlights: > Problem of ionic activity coefficients, determined by potentiometry, is reconsidered. > They are found to be functions of mean activity coefficients and transport numbers of ions. > The finding is verified by calculations and comparing the results with reported data. > Calculations are performed for systems with single electrolytes and binary mixtures. - Abstract: Potentiometric measurements on cells with liquid junctions are sometimes used for calculations of single-ion activity coefficients in electrolyte solutions, the incidence of this being increased recently. As surmised by Guggenheim in the 1930s, such coefficients (of ions i), {gamma}{sub i}, are actually complicated functions of mean ionic activity coefficients, {gamma}{sub {+-}}, and transport numbers of ions, t{sub i}. In the present paper specific functions {gamma}{sub i}({gamma}{sub {+-}}, t{sub i}) are derived for a number of cell types with an arbitrary mixture of strong electrolytes in a one-component solvent in the liquid-junction system. The cell types include cells with (i) identical electrodes, (ii) dissimilar electrodes reversible to the same ions, (iii) dissimilar electrodes reversible to ions of opposite charge signs, (iv) dissimilar electrodes reversible to different ions of the same charge sign, and (v) identical reference electrodes and an ion-selective membrane permeable to ions of only one type. Pairs of functions for oppositely charged ions are found to be consistent with the mean ionic activity coefficients as would be expected for pairs of the proper {gamma}{sub i} quantities by definition of {gamma}{sub {+-}}. The functions are tested numerically on some of the reported {gamma}{sub i} datasets that are the more tractable. A generally good agreement is found with data reported for cells with single electrolytes HCl and KCl in solutions, and with binary mixtures in the liquid-junction systems of KCl from the reference solutions and NaCl and HCl from the test solutions. It

  6. Prediction of Ductile Failure in the Stretch-Forming of AA2024 Sheets

    International Nuclear Information System (INIS)

    Vallellano, C.; Guzman, C.; Garcia-Lomas, F. J.

    2007-01-01

    A number of ductile failure criteria are nowadays being used to predict the formability of aluminium alloy sheets. Generally speaking, integral criteria (e.g. those proposed by Cockcroft and Latham, Brozzo et al., Oyane et al Chaouadi et al., etc.) have been probed to work well when the principal strains are of opposite sign, i.e. in the left side of the Forming Limit Diagram (FLD). However, when tensile biaxial strains are present, as occurs in stretch-forming practice, their predictions are usually very poor and even non-conservatives. As an alternative, local criteria, such as the classical Tresca's and Bressan and Williams' criteria, have demonstrated a good capability to predict the failure in some automotive aluminum alloys under stretching. The present work analyses experimentally and numerically the failure in AA2024-T3 sheets subjected to biaxial stretching. A series of out-of-plane stretching tests have been simulated using ABAQUS. The experimental and the numerical FLD for different failure criteria are compared. The influence on the failure of the hydrostatic pressure and the normal stress to the fracture plane is also discussed

  7. A Novel Stretch Sensor to Measure Venous Hemodynamics

    Directory of Open Access Journals (Sweden)

    Syrpailyne Wankhar

    2018-07-01

    Full Text Available Chronic venous insufficiency is a debilitating condition causing varicose veins and venous ulcers. The pathophysiology includes reflux and venous obstruction. The diagnosis is often made by clinical examination and confirmed by Venous Doppler studies. Plethysmography helps to quantitatively examine the reflux and diagnose the burden of deep venous pathology to better understand venous hemodynamics, which is not elicited by venous duplex examination alone. However, most of these tests are qualitative, expensive, and not easily available. In this paper, we demonstrate the potential use of a novel stretch sensor in the assessment of venous hemodynamics during different maneuvers by measuring the change in calf circumference. We designed the stretch sensor by using semiconductor strain gauges pasted onto a small metal bar to form a load cell. The elastic and Velcro material attached to the load cell form a belt. It converts the change in limb circumference to a proportional tension (force of distension when placed around the calf muscle. We recorded the change in limb circumference from arrays of stretch sensors by using an in-house data acquisition system. We calculated the venous volume (VV, venous filling index (VFI, ejection fraction (EF and residual venous volume (RVV on two normal subjects and on two patients to assess venous hemodynamics. The values (VV > 60 ml, VFI 60%, RVV 2ml/s, EF 35% in patients were comparable to those reported in the literature.

  8. Acute effect of different time periods of passive static stretching on the hamstring flexibility.

    Science.gov (United States)

    Cini, Anelize; de Vasconcelos, Gabriela Souza; Lima, Claudia Silveira

    2017-01-01

    Several factors are associated with the presence of chronic low back pain; one of them is the flexibility of the hamstring muscles that influences the posture of the pelvic spine. Investigate the influence of two different time periods of passive static stretching on the flexibility of the hamstring. Forty-six physiotherapy students were divided into two groups performing stretching exercises: 30 s and 60 s duration. The collections consisted of: (1) pre-test: evaluation of the flexibility of the hip and knee, using a manual goniometer by means of the following tests: Straight Leg Raise Test (SLR), Passive Hip Flexion Test (PHFT) and Modified Knee Extension Test (MKET), (2) intervention: stretching with different runtimes, (3) post-test: reappraisal of flexibility, conducted immediately after the intervention. Significant difference was observed intra groups, group that did stretching exercises lasting 30 seconds (G30) (SLR p = 0.000. PHFT p = 0.003 and MKET p = 0.000) and group that did stretching exercises lasting 60 seconds (G60) (SLR p = 0.000. PHFT p = 0.001 and MKET p = 0.002). Comparing the groups, no significant difference was found (SLR p = 0.307; PHFT p = 0.904; MKET p = 0.132). Thus it can be inferred that 30 seconds are sufficient for increased flexibility of young women. Therefore the time-treatment sessions can be optimized. Only the acute effect of stretching was observed; further investigation of the long-term effect is required.

  9. Adsorption of manganese(II) ions by EDTA-treated activated carbons

    Energy Technology Data Exchange (ETDEWEB)

    Khan, A.Y.; Mazyck, D.W. [Jones Edmunds & Associates, Gainesville, FL (United States)

    2009-07-01

    The adsorption of manganese(II) ions from aqueous solution onto three different granular activated carbons treated with ethylenediamine tetraacetic acid (EDTA) and its sodium salt was investigated. Characterization of the chelate-treated carbons showed that EDTA altered the physical and chemical properties of the sorbents relative to their untreated counterparts. Furthermore, the modified sorbents exhibited a heightened capacity towards the adsorption of Mn(II) ions from aqueous media. Manganese(II) ion removal increased from 0 to 6.5 mg/g for the lignite coal-based sorbent, from 3.5 to 14.7 mg/g for the wood-based sorbent and from 1.3 to 7.9 mg/g for the bituminous coal-based sorbent. The increased removal is attributed, in part, to the creation of Lewis base sites that participate in covalent interactions and hydrolysis reactions.

  10. Influence of activated carbon surface acidity on adsorption of heavy metal ions and aromatics from aqueous solution

    International Nuclear Information System (INIS)

    Sato, Sanae; Yoshihara, Kazuya; Moriyama, Koji; Machida, Motoi; Tatsumoto, Hideki

    2007-01-01

    Adsorption of toxic heavy metal ions and aromatic compounds onto activated carbons of various amount of surface C-O complexes were examined to study the optimum surface conditions for adsorption in aqueous phase. Cadmium(II) and zinc(II) were used as heavy metal ions, and phenol and nitrobenzene as aromatic compounds, respectively. Activated carbon was de-ashed followed by oxidation with nitric acid, and then it was stepwise out-gassed in helium flow up to 1273 K to gradually remove C-O complexes introduced by the oxidation. The oxidized activated carbon exhibited superior adsorption for heavy metal ions but poor performance for aromatic compounds. Both heavy metal ions and aromatics can be removed to much extent by the out-gassed activated carbon at 1273 K. Removing C-O complexes, the adsorption mechanisms would be switched from ion exchange to Cπ-cation interaction for the heavy metals adsorption, and from some kind of oxygen-aromatics interaction to π-π dispersion for the aromatics

  11. Hemodynamic responses during and after multiple sets of stretching exercises performed with and without the Valsalva maneuver.

    Science.gov (United States)

    Lima, Tainah P; Farinatti, Paulo T V; Rubini, Ercole C; Silva, Elirez B; Monteiro, Walace D

    2015-05-01

    This study investigated the acute hemodynamic responses to multiple sets of passive stretching exercises performed with and without the Valsalva maneuver. Fifteen healthy men aged 21 to 29 years with poor flexibility performed stretching protocols comprising 10 sets of maximal passive unilateral hip flexion, sustained for 30 seconds with equal intervals between sets. Protocols without and with the Valsalva maneuver were applied in a random counterbalanced order, separated by 48-hour intervals. Hemodynamic responses were measured by photoplethysmography pre-exercise, during the stretching sets, and post-exercise. The effects of stretching sets on systolic and diastolic blood pressure were cumulative until the fourth set in protocols performed with and without the Valsalva maneuver. The heart rate and rate pressure product increased in both protocols, but no additive effect was observed due to the number of sets. Hemodynamic responses were always higher when stretching was performed with the Valsalva maneuver, causing an additional elevation in the rate pressure product. Multiple sets of unilateral hip flexion stretching significantly increased blood pressure, heart rate, and rate pressure product values. A cumulative effect of the number of sets occurred only for systolic and diastolic blood pressure, at least in the initial sets of the stretching protocols. The performance of the Valsalva maneuver intensified all hemodynamic responses, which resulted in significant increases in cardiac work during stretching exercises.

  12. Effects of aerobic training combined with respiratory muscle stretching on the functional exercise capacity and thoracoabdominal kinematics in patients with COPD: a randomized and controlled trial

    Directory of Open Access Journals (Sweden)

    Wada JT

    2016-10-01

    Full Text Available Juliano T Wada,1 Erickson Borges-Santos,1 Desiderio Cano Porras,1 Denise M Paisani,1 Alberto Cukier,2 Adriana C Lunardi,1 Celso RF Carvalho1 1Department of Physical Therapy, 2Department of Cardiopneumology, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil Background: Patients with COPD present a major recruitment of the inspiratory muscles, predisposing to chest incoordination, increasing the degree of dyspnea and impairing their exercise capacity. Stretching techniques could decrease the respiratory muscle activity and improve their contractile capacity; however, the systemic effects of stretching remain unknown.Objective: The aim of this study was to evaluate the effects of aerobic training combined with respiratory muscle stretching on functional exercise capacity and thoracoabdominal kinematics in patients with COPD.Design: This study was a randomized and controlled trial.Participants: A total of 30 patients were allocated to a treatment group (TG or a control group (CG; n=15, each group.Intervention: The TG was engaged in respiratory muscle stretching and the CG in upper and lower limb muscle stretching. Both groups performed 24 sessions (twice a week, 12 weeks of aerobic training.Evaluations: Functional exercise capacity (6-minute walk test, thoracoabdominal kinematics (optoelectronic plethysmography, and respiratory muscle activity (surface electromyography were evaluated during exercise. Analysis of covariance was used to compare the groups at a significance level of 5%.Results: After the intervention, the TG showed improved abdominal (ABD contribution, compartmental volume, mobility, and functional exercise capacity with decreased dyspnea when compared with the CG (P<0.01. The TG also showed a decreased respiratory muscle effort required to obtain the same pulmonary volume compared to the CG (P<0.001.Conclusion: Our results suggest that aerobic training combined with respiratory muscle stretching increases the functional

  13. Stretched flow of Carreau nanofluid with convective boundary ...

    Indian Academy of Sciences (India)

    journal of. January 2016 physics pp. 3–17. Stretched flow of Carreau nanofluid with ... fluid over a flat plate subjected to convective surface condition. ... the steady laminar boundary layer flow over a permeable plate with a convective boundary.

  14. The passive hamstring stretch test: clinical evaluation.

    Science.gov (United States)

    Fisk, J W

    1979-03-28

    The passive hamstring stretch test is described. Using a modified goniometer it is shown that independent measurements taken by trained examiners approximate very closely to each other. This establishes the test as a valid objective measurement. The possible value of this test as a research tool in low back pain problems is discussed.

  15. Alternative splicing and expression of the insulin-like growth factor (IGF-1) gene in osteoblasts under mechanical stretch

    Institute of Scientific and Technical Information of China (English)

    XIAN Chengyu; WANG Yuanliang; ZHANG Bingbing; TANG Liling; PAN Jun; LUO Yanfeng; JIANG Peng; LI Dajun

    2006-01-01

    Insulin-like growth factor 1 (IGF-1) promotes osteoblasts differentiation and bone formation,and its expression is induced by mechanical stretch,thus IGF-1 has been considered an effector molecule that links mechanical stimulation and local tissue responses. In this study, a mechanical stretching device was designed to apply physiological level static or cyclic stretching stimulation to osteoblasts.Different isoforms of IGF-1 mRNA were amplified by RT-PCR from the cells using respective primers and these amplified products were sequenced. An isoform of IGF-1 splicing product was found to be selectively produced by osteoblasts under stretching stimulation. This IGF-1 isoform had identical sequence with the mechano growth factor (MGF) which was originally identified in muscle cells. Regulations of the expression of the liver-type IGF (L.IGF-1) and MGF in osteoblasts under stretch stimulation were further studied using semi-quantitative RT-PCR.Stretch stimulation was found to promot the expression of IGF-1 (L.IGF-1 and MGF), and for both isoforms expression was more effectively stimulated by cyclic stretch than static stretch. MGF was detected only in osteoblasts subjected to mechanical stretch,suggesting MGF was a stretch sensitive growth factor.Expression of MGF peaked earlier than that of L.IGF-1, which was similar to their regulation in muscie and suggested similar roles of MGF and L.IGF-1in bone as in muscle cells. The functions of MGF and L.IGF-1 in osteoblasts shall be established by further experimental studies.

  16. Redox‐Active Separators for Lithium‐Ion Batteries

    Science.gov (United States)

    Pan, Ruijun; Ruan, Changqing; Edström, Kristina; Strømme, Maria

    2017-01-01

    Abstract A bilayered cellulose‐based separator design is presented that can enhance the electrochemical performance of lithium‐ion batteries (LIBs) via the inclusion of a porous redox‐active layer. The proposed flexible redox‐active separator consists of a mesoporous, insulating nanocellulose fiber layer that provides the necessary insulation between the electrodes and a porous, conductive, and redox‐active polypyrrole‐nanocellulose layer. The latter layer provides mechanical support to the nanocellulose layer and adds extra capacity to the LIBs. The redox‐active separator is mechanically flexible, and no internal short circuits are observed during the operation of the LIBs, even when the redox‐active layer is in direct contact with both electrodes in a symmetric lithium–lithium cell. By replacing a conventional polyethylene separator with a redox‐active separator, the capacity of the proof‐of‐concept LIB battery containing a LiFePO4 cathode and a Li metal anode can be increased from 0.16 to 0.276 mA h due to the capacity contribution from the redox‐active separator. As the presented redox‐active separator concept can be used to increase the capacities of electrochemical energy storage systems, this approach may pave the way for new types of functional separators. PMID:29593967

  17. A study of extracellular matrix remodeling in aortic heart valves using a novel biaxial stretch bioreactor.

    Science.gov (United States)

    Lei, Ying; Masjedi, Shirin; Ferdous, Zannatul

    2017-11-01

    In aortic valves, biaxial cyclic stretch is known to modulate cell differentiation, extracellular matrix (ECM) synthesis and organization. We designed a novel bioreactor that can apply independent and precise stretch along radial and circumferential directions in a tissue culture environment. While this bioreactor can be used for either native or engineered tissues, this study determined matrix remodeling and strain distribution of aortic cusps after culturing under biaxial stretch for 14 days. The contents of collagen and glycosaminoglycans were determined using standard biochemical assays and compared with fresh controls. Strain fields in static cusps were more uniform than those in stretched cusps, which indicated degradation of the ECM fibers. The glycosaminoglycan content was significantly elevated in the static control as compared to fresh or stretched cusps, but no difference was observed in collagen content among the groups. The strain profile of freshly isolated fibrosa vs. ventricularis and left, right, and noncoronary cusps were also determined by Digital Image Correlation technique. Distinct strain patterns were observed under stretch on fibrosa and ventricularis sides and among the three cusps. This work highlights the critical role of the anisotropic ECM structure for proper functions of native aortic valves and the beneficial effects of biaxial stretch for maintenance of the native ECM structure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Collagen and Stretch Modulate Autocrine Secretion of Insulin-like Growth Factor-1 and Insulin-like Growth Factor Binding Proteins from Differentiated Skeletal Muscle Cells

    Science.gov (United States)

    Perrone, Carmen E.; Fenwick-Smith, Daniela; Vandenburgh, Herman H.

    1995-01-01

    Stretch-induced skeletal muscle growth may involve increased autocrine secretion of insulin-like growth factor-1 (IGF-1) since IGF-1 is a potent growth factor for skeletal muscle hypertrophy, and stretch elevates IGF-1 mRNA levels in vivo. In tissue cultures of differentiated avian pectoralis skeletal muscle cells, nanomolar concentrations of exogenous IGF-1 stimulated growth in mechanically stretched but not static cultures. These cultures released up to 100 pg of endogenously produced IGF-1/micro-g of protein/day, as well as three major IGF binding proteins of 31, 36, and 43 kilodaltons (kDa). IGF-1 was secreted from both myofibers and fibroblasts coexisting in the muscle cultures. Repetitive stretch/relaxation of the differentiated skeletal muscle cells stimulated the acute release of IGF-1 during the first 4 h after initiating mechanical activity, but caused no increase in the long-term secretion over 24-72 h of IGF-1, or its binding proteins. Varying the intensity and frequency of stretch had no effect on the long-term efflux of IGF-1. In contrast to stretch, embedding the differentiated muscle cells in a three-dimensional collagen (Type I) matrix resulted in a 2-5-fold increase in long-term IGF-1 efflux over 24-72 h. Collagen also caused a 2-5-fold increase in the release of the IGF binding proteins. Thus, both the extracellular matrix protein type I collagen and stretch stimulate the autocrine secretion of IGF-1, but with different time kinetics. This endogenously produced growth factor may be important for the growth response of skeletal myofibers to both types of external stimuli.

  19. An analysis of plasma ion toroidal rotation during large amplitude MHD activity in JET

    International Nuclear Information System (INIS)

    Snipes, J.A.; Esch, H.P.L. de; Lazzaro, E.; Stork, D.; Hellermann, M. von; Galvao, R.; Hender, T.C.; Zasche, D.

    1989-01-01

    A detailed study of plasma ion toroidal rotation in JET during large amplitude MHD activity has revealed a strong viscous force that couples plasma ions to MHD modes. Depending on the MHD modes present, this force can couple across all of the plasma cross section, across only the central region, roughly within the q=1 surface, or across only the outer region outside the q=1.5 surface. The force acts to flatten the ion toroidal rotation frequency profile, measured by the JET active charge exchange spectroscopy diagnostic, across the coupled region of plasma. The frequency of rotation in this region agrees with the MHD oscillation frequency measured by magnetic pick-up coils at the wall. The strength of the force between the ions and modes becomes evident during high power NBI when the mode locks and drags the ion toroidal rotation frequency to zero, within the errors of the measurements. The present theories of plasma rotation either ignore MHD effects entirely, consider only moderate n toroidal field ripple, or low n ripple effects. (author) 7 refs., 3 figs

  20. Experiments on Ion-Ion Plasmas From Discharges

    Science.gov (United States)

    Leonhardt, Darrin; Walton, Scott; Blackwell, David; Murphy, Donald; Fernsler, Richard; Meger, Robert

    2001-10-01

    Use of both positive and negative ions in plasma processing of materials has been shown to be advantageous[1] in terms of better feature evolution and control. In this presentation, experimental results are given to complement recent theoretical work[2] at NRL on the formation and decay of pulsed ion-ion plasmas in electron beam generated discharges. Temporally resolved Langmuir probe and mass spectrometry are used to investigate electron beam generated discharges during the beam on (active) and off (afterglow) phases in a variety of gas mixtures. Because electron-beam generated discharges inherently[3] have low electron temperatures (<0.5eV in molecular gases), negative ion characteristics are seen in the active as well as afterglow phases since electron detachment increases with low electron temperatures. Analysis of temporally resolved plasma characteristics deduced from these measurements will be presented for pure O_2, N2 and Ar and their mixtures with SF_6. Oxygen discharges show no noticeable negative ion contribution during the active or afterglow phase, presumably due to the higher energy electron attachment threshold, which is well above any electron temperature. In contrast, SF6 discharges demonstrate ion-ion plasma characteristics in the active glow and are completely ion-ion in the afterglow. Comparison between these discharges with published cross sections and production mechanisms will also be presented. [1] T.H. Ahn, K. Nakamura & H. Sugai, Plasma Sources Sci. Technol., 5, 139 (1996); T. Shibyama, H. Shindo & Y. Horiike, Plasma Sources Sci. Technol., 5, 254 (1996). [2] See presentation by R. F. Fernsler, at this conference. [3] D. Leonhardt, et al., 53rd Annual GEC, Houston, TX.

  1. Poisson-Fermi modeling of ion activities in aqueous single and mixed electrolyte solutions at variable temperature

    Science.gov (United States)

    Liu, Jinn-Liang; Eisenberg, Bob

    2018-02-01

    The combinatorial explosion of empirical parameters in tens of thousands presents a tremendous challenge for extended Debye-Hückel models to calculate activity coefficients of aqueous mixtures of the most important salts in chemistry. The explosion of parameters originates from the phenomenological extension of the Debye-Hückel theory that does not take steric and correlation effects of ions and water into account. By contrast, the Poisson-Fermi theory developed in recent years treats ions and water molecules as nonuniform hard spheres of any size with interstitial voids and includes ion-water and ion-ion correlations. We present a Poisson-Fermi model and numerical methods for calculating the individual or mean activity coefficient of electrolyte solutions with any arbitrary number of ionic species in a large range of salt concentrations and temperatures. For each activity-concentration curve, we show that the Poisson-Fermi model requires only three unchanging parameters at most to well fit the corresponding experimental data. The three parameters are associated with the Born radius of the solvation energy of an ion in electrolyte solution that changes with salt concentrations in a highly nonlinear manner.

  2. FTIR studies of swift silicon and oxygen ion irradiated porous silicon

    International Nuclear Information System (INIS)

    Bhave, Tejashree M.; Hullavarad, S.S.; Bhoraskar, S.V.; Hegde, S.G.; Kanjilal, D.

    1999-01-01

    Fourier Transform Infrared Spectroscopy has been used to study the bond restructuring in silicon and oxygen irradiated porous silicon. Boron doped p-type (1 1 1) porous silicon was irradiated with 10 MeV silicon and a 14 MeV oxygen ions at different doses ranging between 10 12 and 10 14 ions cm -2 . The yield of PL in porous silicon irradiated samples was observed to increase considerably while in oxygen irradiated samples it was seen to improve only by a small extent for lower doses whereas it decreased for higher doses. The results were interpreted in view of the relative intensities of the absorption peaks associated with O-Si-H and Si-H stretch bonds

  3. Effects of acute static, ballistic, and PNF stretching exercise on the muscle and tendon tissue properties.

    Science.gov (United States)

    Konrad, A; Stafilidis, S; Tilp, M

    2017-10-01

    The purpose of this study was to investigate the influence of a single static, ballistic, or proprioceptive neuromuscular facilitation (PNF) stretching exercise on the various muscle-tendon parameters of the lower leg and to detect possible differences in the effects between the methods. Volunteers (n = 122) were randomly divided into static, ballistic, and PNF stretching groups and a control group. Before and after the 4 × 30 s stretching intervention, we determined the maximum dorsiflexion range of motion (RoM) with the corresponding fascicle length and pennation angle of the gastrocnemius medialis. Passive resistive torque (PRT) and maximum voluntary contraction (MVC) were measured with a dynamometer. Observation of muscle-tendon junction (MTJ) displacement with ultrasound allowed us to determine the length changes in the tendon and muscle, respectively, and hence to calculate stiffness. Although RoM increased (static: +4.3%, ballistic: +4.5%, PNF: +3.5%), PRT (static: -11.4%, ballistic: -11.5%, PNF: -13,7%), muscle stiffness (static: -13.1%, ballistic: -20.3%, PNF: -20.2%), and muscle-tendon stiffness (static: -11.3%, ballistic: -10.5%, PNF: -13.7%) decreased significantly in all the stretching groups. Only in the PNF stretching group, the pennation angle in the stretched position (-4.2%) and plantar flexor MVC (-4.6%) decreased significantly. Multivariate analysis showed no clinically relevant difference between the stretching groups. The increase in RoM and the decrease in PRT and muscle-tendon stiffness could be explained by more compliant muscle tissue following a single static, ballistic, or PNF stretching exercise. © 2017 The Authors Scandinavian Journal of Medicine & Science In Sports Published by John Wiley & Sons Ltd.

  4. On MHD nonlinear stretching flow of Powell–Eyring nanomaterial

    Directory of Open Access Journals (Sweden)

    Tasawar Hayat

    Full Text Available This communication addresses the magnetohydrodynamic (MHD flow of Powell–Eyring nanomaterial bounded by a nonlinear stretching sheet. Novel features regarding thermophoresis and Brownian motion are taken into consideration. Powell–Eyring fluid is electrically conducted subject to non-uniform applied magnetic field. Assumptions of small magnetic Reynolds number and boundary layer approximation are employed in the mathematical development. Zero nanoparticles mass flux condition at the sheet is selected. Adequate transformation yield nonlinear ordinary differential systems. The developed nonlinear systems have been computed through the homotopic approach. Effects of different pertinent parameters on velocity, temperature and concentration fields are studied and analyzed. Further numerical data of skin friction and heat transfer rate is also tabulated and interpreted. Keywords: Powell–Eyring fluid, Magnetohydrodynamics, Nanomaterial, Nonlinear stretching surface

  5. A Novel Non-Planar Transverse Stretching Process for Micro-Porous PTFE Membranes and Resulting Characteristics

    KAUST Repository

    Chang, Y.-H.; Chen, S.-C.; Wang, T.-J.; Guo, J.

    2018-01-01

    Polytetrafluoroethylene (PTFE) micro-porous membranes were prepared from PTFE fine powder through extruding, rolling, and uniaxial longitudinally stretching. In contrast to conventional planar transverse stretching, a novel 3D mold design of non

  6. Monorail snare technique for the recovery of stretched platinum coils: technical case report.

    Science.gov (United States)

    Fiorella, David; Albuquerque, Felipe C; Deshmukh, Vivek R; McDougall, Cameron G

    2005-07-01

    Coil stretching represents a potentially hazardous technical complication not infrequently encountered during the embolization of cerebral aneurysms. Often, the stretched coil cannot be advanced into the aneurysm or withdrawn intact. The operator is then forced to attempt to retract the damaged coil, which may result in coil breakage, leaving behind a significant length of potentially thrombogenic stretched coil material within the parent vessel. To overcome this problem, we devised a technique to snare the distal, unstretched, intact portion of the platinum coil by use of the indwelling microcatheter and stretched portion of the coil as a monorail guide. We have used this technique successfully in four patients to snare coils stretched during cerebral aneurysm embolization. Three of these patients were undergoing Neuroform (Boston Scientific/Target, Fremont, CA) stent-supported coil embolization of unruptured aneurysms. In all cases, the snare was advanced easily to the targeted site for coil engagement by use of the microcatheter as a monorail guide. Once the intact distal segment of the coil was ensnared, coil removal was uneventful, with no disturbance of the remainder of the indwelling coil pack or Neuroform stent. A 2-mm Amplatz Goose Neck microsnare (Microvena Corp., White Bear Lake, MN) was placed through a Prowler-14 microcatheter (Cordis Corp., Miami, FL). The hub of the indwelling SL-10 microcatheter (Boston Scientific, Natick, MA) was then cut away with a scalpel, leaving the coil pusher wire intact, and removed. The open 2-mm snare was then advanced over the outside of the coil pusher wire and microcatheter. The snare and Prowler-14 microcatheter were then advanced into the guiding catheter (6- or 7-French) as a unit over the indwelling SL-10 microcatheter. By use of the SL-10 microcatheter and coil as a "monorail" guide, the snare was advanced over and beyond the microcatheter and the stretched portion of the coil until the snare was in position to

  7. Cation-Size-Dependent Conformational Locking of Glutamic Acid by Alkali Ions: Infrared Photodissociation Spectroscopy of Cryogenic Ions.

    Science.gov (United States)

    Klyne, Johanna; Bouchet, Aude; Ishiuchi, Shun-Ichi; Fujii, Masaaki; Dopfer, Otto

    2018-03-01

    Consolidated knowledge of conformation and stability of amino acids and their clusters is required to understand their biochemical recognition. Often, alkali ions interact with amino acids and proteins. Herein, infrared photodissociation (IRPD) spectra of cryogenic metalated glutamic acid ions (GluM + , M = Li-Cs) are systematically analyzed in the isomer-specific fingerprint and XH stretch ranges (1100-1900, 2600-3600 cm -1 ) to provide a direct measure for cation-size-dependent conformational locking. GluM + ions are generated by electrospray ionization and cooled down to 15 K in a cryogenic quadrupole ion trap. The assignment of the IRPD spectra is supported by density functional theory calculations at the dispersion-corrected B3LYP-D3/aug-cc-pVTZ level. In the global minimum of GluM + , the flexibility of Glu is strongly reduced by the formation of rigid ionic CO···M + ···OC metal bridges, corresponding to charge solvation. The M + binding energy decreases monotonically with increasing cation size from D 0 = 314 to 119 kJ/mol for Li-Cs. Whereas for Li and Na only the global minimum of GluM + is observed, for K-Cs at least three isomers exist at cryogenic temperature. The IRPD spectra of cold GluM + ions are compared to IR multiple-photon dissociation spectra measured at room temperature. Furthermore, we elucidate the differences of the impact of protonation and metalation on the structure and conformational locking of Glu.

  8. Assessing the stretch-blow moulding FE simulation of PET over a large process window

    Science.gov (United States)

    Nixon, J.; Menary, G. H.; Yan, S.

    2017-10-01

    Injection stretch blow moulding has been extensively researched for numerous years and is a well-established method of forming thin-walled containers. This paper is concerned with validating the finite element analysis of the stretch-blow-moulding (SBM) process in an effort to progress the development of injection stretch blow moulding of poly(ethylene terephthalate). Extensive data was obtained experimentally over a wide process window accounting for material temperature, air flow rate and stretch-rod speed while capturing cavity pressure, stretch-rod reaction force, in-mould contact timing and material thickness distribution. This data was then used to assess the accuracy of the correlating FE simulation constructed using ABAQUS/Explicit solver and an appropriate user-defined viscoelastic material subroutine. Results reveal that the simulation was able to pick up the general trends of how the pressure, reaction force and in-mould contact timings vary with the variation in preform temperature and air flow rate. Trends in material thickness were also accurately predicted over the length of the bottle relative to the process conditions. The knowledge gained from these analyses provides insight into the mechanisms of bottle formation, subsequently improving the blow moulding simulation and potentially providing a reduction in production costs.

  9. Sequencing Larger Intact Proteins (30-70 kDa) with Activated Ion Electron Transfer Dissociation

    Science.gov (United States)

    Riley, Nicholas M.; Westphall, Michael S.; Coon, Joshua J.

    2018-01-01

    The analysis of intact proteins via mass spectrometry can offer several benefits to proteome characterization, although the majority of top-down experiments focus on proteoforms in a relatively low mass range (AI-ETD) to proteins in the 30-70 kDa range. AI-ETD leverages infrared photo-activation concurrent to ETD reactions to improve sequence-informative product ion generation. This method generates more product ions and greater sequence coverage than conventional ETD, higher-energy collisional dissociation (HCD), and ETD combined with supplemental HCD activation (EThcD). Importantly, AI-ETD provides the most thorough protein characterization for every precursor ion charge state investigated in this study, making it suitable as a universal fragmentation method in top-down experiments. Additionally, we highlight several acquisition strategies that can benefit characterization of larger proteins with AI-ETD, including combination of spectra from multiple ETD reaction times for a given precursor ion, multiple spectral acquisitions of the same precursor ion, and combination of spectra from two different dissociation methods (e.g., AI-ETD and HCD). In all, AI-ETD shows great promise as a method for dissociating larger intact protein ions as top-down proteomics continues to advance into larger mass ranges. [Figure not available: see fulltext.

  10. Role of hydrogen ions in standard and activation heap leaching of gold

    Science.gov (United States)

    Rubtsov, YuI

    2017-02-01

    The role of hydrogen ions in activation heap leaching of gold from rebellious ore has been studied, which has allowed enhancing gold recovery. The author puts forward a gold leaching circuit with the use of activated oxygen-saturated solutions acidified to pH = 6-9.

  11. A workplace stretching program. Physiologic and perception measurements before and after participation.

    Science.gov (United States)

    Moore, T M

    1998-12-01

    The purpose of this study was to implement a primary prevention program in the workplace targeted to prevent muscle strains. Physiologic and perception measurements were taken before and after participation in a stretching program developed to improve flexibility through conditioning. A one group pre-test post-test design was used with 60 employees enrolled in a 36 session stretching program in the workplace. Flexibility was measured by a flexibility profile including the sit and reach test, bilateral body rotation measurements, and shoulder rotation measurements. A statistically significant increase was found in all flexibility measurements at the conclusion of the study for the participants as a total group. Perception, as measured by the Fox Physical Self Perception Profile, was statistically significant in relation to participants' perceptions of their body attractiveness, physical conditioning, and overall self worth at the program's conclusion. In addition, participants who completed the program had zero occurrences of musculoskeletal injuries during the 2 month period. The results of this study suggest that continued development and implementation of stretching programs in the workplace may benefit employees by increasing flexibility and potentially preventing injuries due to muscle strains. Stretching programs in the workplace also may improve components of employees' perceptions of their physical bodies.

  12. Fibril orientation redistribution induced by stretching of cellulose nanofibril hydrogels

    International Nuclear Information System (INIS)

    Josefsson, Gabriella; Gamstedt, E. Kristofer; Ahvenainen, Patrik; Mushi, Ngesa Ezekiel

    2015-01-01

    The mechanical performance of materials reinforced by cellulose nanofibrils is highly affected by the orientation of these fibrils. This paper investigates the nanofibril orientation distribution of films of partly oriented cellulose nanofibrils. Stripes of hydrogel films were subjected to different amount of strain and, after drying, examined with X-ray diffraction to obtain the orientation of the nanofibrils in the films, caused by the stretching. The cellulose nanofibrils had initially a random in-plane orientation in the hydrogel films and the strain was applied to the films before the nanofibrils bond tightly together, which occurs during drying. The stretching resulted in a reorientation of the nanofibrils in the films, with monotonically increasing orientation towards the load direction with increasing strain. Estimation of nanofibril reorientation by X-ray diffraction enables quantitative comparison of the stretch-induced orientation ability of different cellulose nanofibril systems. The reorientation of nanofibrils as a consequence of an applied strain is also predicted by a geometrical model of deformation of nanofibril hydrogels. Conversely, in high-strain cold-drawing of wet cellulose nanofibril materials, the enhanced orientation is promoted by slipping of the effectively stiff fibrils

  13. Origin of the blue shift of the CH stretching band for 2-butoxyethanol in water.

    Science.gov (United States)

    Katsumoto, Yukiteru; Komatsu, Hiroyuki; Ohno, Keiichi

    2006-07-26

    The blue shift of the isolated CD stretching band of 2-butoxyethanol (C4E1), which is observed for the aqueous solution during the dilution process, has been investigated by infrared (IR) spectroscopy and quantum chemical calculations. Mono-deuterium-labeled C4E1's were employed to remove the severe overlapping among the CH stretching bands. The isolated CD stretching mode of the alpha-methylene in the butoxy group shows a large blue shift, while those of the beta-methylene and methyl groups are not largely shifted. The spectral simulation results for the C4E1/H2O complexes indicate that the large blue shift of the CD stretching band of the butoxy group arises mainly from the hydration of the ether oxygen atom.

  14. Ion beam analysis techniques applied to large scale pollution studies

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, D D; Bailey, G; Martin, J; Garton, D; Noorman, H; Stelcer, E; Johnson, P [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1994-12-31

    Ion Beam Analysis (IBA) techniques are ideally suited to analyse the thousands of filter papers a year that may originate from a large scale aerosol sampling network. They are fast multi-elemental and, for the most part, non-destructive so other analytical methods such as neutron activation and ion chromatography can be performed afterwards. ANSTO in collaboration with the NSW EPA, Pacific Power and the Universities of NSW and Macquarie has established a large area fine aerosol sampling network covering nearly 80,000 square kilometres of NSW with 25 fine particle samplers. This network known as ASP was funded by the Energy Research and Development Corporation (ERDC) and commenced sampling on 1 July 1991. The cyclone sampler at each site has a 2.5 {mu}m particle diameter cut off and runs for 24 hours every Sunday and Wednesday using one Gillman 25mm diameter stretched Teflon filter for each day. These filters are ideal targets for ion beam analysis work. Currently ANSTO receives 300 filters per month from this network for analysis using its accelerator based ion beam techniques on the 3 MV Van de Graaff accelerator. One week a month of accelerator time is dedicated to this analysis. Four simultaneous accelerator based IBA techniques are used at ANSTO, to analyse for the following 24 elements: H, C, N, O, F, Na, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Cu, Ni, Co, Zn, Br and Pb. The IBA techniques were proved invaluable in identifying sources of fine particles and their spatial and seasonal variations accross the large area sampled by the ASP network. 3 figs.

  15. Ion beam analysis techniques applied to large scale pollution studies

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, D.D.; Bailey, G.; Martin, J.; Garton, D.; Noorman, H.; Stelcer, E.; Johnson, P. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1993-12-31

    Ion Beam Analysis (IBA) techniques are ideally suited to analyse the thousands of filter papers a year that may originate from a large scale aerosol sampling network. They are fast multi-elemental and, for the most part, non-destructive so other analytical methods such as neutron activation and ion chromatography can be performed afterwards. ANSTO in collaboration with the NSW EPA, Pacific Power and the Universities of NSW and Macquarie has established a large area fine aerosol sampling network covering nearly 80,000 square kilometres of NSW with 25 fine particle samplers. This network known as ASP was funded by the Energy Research and Development Corporation (ERDC) and commenced sampling on 1 July 1991. The cyclone sampler at each site has a 2.5 {mu}m particle diameter cut off and runs for 24 hours every Sunday and Wednesday using one Gillman 25mm diameter stretched Teflon filter for each day. These filters are ideal targets for ion beam analysis work. Currently ANSTO receives 300 filters per month from this network for analysis using its accelerator based ion beam techniques on the 3 MV Van de Graaff accelerator. One week a month of accelerator time is dedicated to this analysis. Four simultaneous accelerator based IBA techniques are used at ANSTO, to analyse for the following 24 elements: H, C, N, O, F, Na, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Cu, Ni, Co, Zn, Br and Pb. The IBA techniques were proved invaluable in identifying sources of fine particles and their spatial and seasonal variations accross the large area sampled by the ASP network. 3 figs.

  16. An Analysis of Pathological Activities of CCN Proteins in Joint Disorders: Mechanical Stretch-Mediated CCN2 Expression in Cultured Meniscus Cells.

    Science.gov (United States)

    Furumatsu, Takayuki; Ozaki, Toshifumi

    2017-01-01

    The multifunctional growth factor CYR61/CTGF/NOV (CCN) 2, also known as connective tissue growth factor, regulates cellular proliferation, differentiation, and tissue regeneration. Recent literatures have described important roles of CCN2 in the meniscus metabolism. However, the mechanical stress-mediated transcriptional regulation of CCN2 in the meniscus remains unclear. The meniscus is a fibrocartilaginous tissue that controls complex biomechanics of the knee joint. Therefore, the injured unstable meniscus has a poor healing potential especially in the avascular inner region. In addition, dysfunction of the meniscus correlates with the progression of degenerative knee joint disorders and joint space narrowing. Here, we describe an experimental approach that investigates the distinct cellular behavior of inner and outer meniscus cells in response to mechanical stretch. Our experimental model can analyze the relationships between stretch-induced CCN2 expression and its functional role in the meniscus homeostasis.

  17. Ion Uptake Determination of Dendrochronologically-Dated Trees Using Neutron Activation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kenan Unlu; P.I. Kuniholm; D.K.H. Schwarz; N.O. Cetiner; J.J. Chiment

    2009-03-30

    Uptake of metal ions by plan roots is a function of the type and concentration of metal in the soil, the nutrient biochemistry of the plant, and the immediate environment of the root. Uptake of gold (Au) is known to be sensitive to soil pH for many species. Soil acidification due to acid precipitation following volcanic eruptions can dramatically increase Au uptake by trees. Identification of high Au content in tree rings in dendrochronologically-dated, overlapping sequences of trees allows the identification of temporally-conscribed, volcanically-influenced periods of environmental change. Ion uptake, specifically determination of trace amounts of gold, was performed for dendrochronologically-dated tree samples utilizing Neutron Activation Analysis (NAA) technique. The concentration of gold was correlated with known enviironmental changes, e.g. volcanic activities, during historic periods.

  18. Tibialis anterior stretch reflex in early stance is suppressed by repetitive transcranial magnetic stimulation

    DEFF Research Database (Denmark)

    Zuur, Abraham T; Christensen, Mark Schram; Sinkjær, Thomas

    2009-01-01

    Abstract A rapid plantar flexion perturbation in the early stance phase of walking elicits a large stretch reflex in tibialis anterior (TA). In this study we use repetitive Transcranial Magnetic Stimulation (rTMS) to test if this response is mediated through a transcortical pathway. TA stretch...

  19. Stretched exponential distributions in Nature and Economy: ``Fat tails'' with characteristic scales

    OpenAIRE

    Laherrère, Jean; Sornette, D.

    1998-01-01

    To account quantitatively for many reported ``natural'' fat tail distributions in Nature and Economy, we propose the stretched exponential family as a complement to the often used power law distributions. It has many advantages, among which to be economical with only two adjustable parameters with clear physical interpretation. Furthermore, it derives from a simple and generic mechanism in terms of multiplicative processes. We show that stretched exponentials describe very well the distributi...

  20. Average energetic ion flux variations associated with geomagnetic activity from EPIC/STICS on Geotail

    Science.gov (United States)

    Christon, S. P.; Gloeckler, G.; Eastman, T. E.; McEntire, R. W.; Roelef, E. C.; Lui, A. T. Y.; Williams, D. J.; Frank, L. A.; Paterson, W. R.; Kokubun, S.; hide

    1996-01-01

    The magnetotail ion flux measurements from the Geotail spacecraft are analyzed both with and without the application of selection criteria that identify the plasma regime in which an observation is obtained. The different results are compared with each other. The initial results on the changes of energetic ion flux and composition correlated to average substorm activity in different magnetotail plasma regimes are discussed. The energetic ions are measured using the energetic particles and ion composition (EPIC) experiment and the suprathermal ion composition spectrometer (STICS). The plasma, wave and field instruments of the Geotail satellite were used to identify the principle magnetotail plasma regimes of plasma sheet, lobe, and magnetospheric boundary layer, as well as the magnetosheath and solar wind. Energetic O and H ions were observed in all the plasma regimes.

  1. Immobilization and therapeutic passive stretching generate thickening and increase the expression of laminin and dystrophin in skeletal muscle

    International Nuclear Information System (INIS)

    Cação-Benedini, L.O.; Ribeiro, P.G.; Prado, C.M.; Chesca, D.L.; Mattiello-Sverzut, A.C.

    2014-01-01

    Extracellular matrix and costamere proteins transmit the concentric, isometric, and eccentric forces produced by active muscle contraction. The expression of these proteins after application of passive tension stimuli to muscle remains unknown. This study investigated the expression of laminin and dystrophin in the soleus muscle of rats immobilized with the right ankle in plantar flexion for 10 days and subsequent remobilization, either by isolated free movement in a cage or associated with passive stretching for up to 10 days. The intensity of the macrophage response was also evaluated. One hundred and twenty-eight female Wistar rats were divided into 8 groups: free for 10 days; immobilized for 10 days; immobilized/free for 1, 3, or 10 days; or immobilized/stretched/free for 1, 3, or 10 days. After the experimental procedures, muscle tissue was processed for immunofluorescence (dystrophin/laminin/CD68) and Western blot analysis (dystrophin/laminin). Immobilization increased the expression of dystrophin and laminin but did not alter the number of macrophages in the muscle. In the stretched muscle groups, there was an increase in dystrophin and the number of macrophages after 3 days compared with the other groups; dystrophin showed a discontinuous labeling pattern, and laminin was found in the intracellular space. The amount of laminin was increased in the muscles treated by immobilization followed by free movement for 10 days. In the initial stages of postimmobilization (1 and 3 days), an exacerbated macrophage response and an increase of dystrophin suggested that the therapeutic stretching technique induced additional stress in the muscle fibers and costameres

  2. Immobilization and therapeutic passive stretching generate thickening and increase the expression of laminin and dystrophin in skeletal muscle

    Energy Technology Data Exchange (ETDEWEB)

    Cação-Benedini, L.O.; Ribeiro, P.G. [Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Medicina e Reabilitação do Aparelho Locomotor, Departamento de Biomecânica, Ribeirão Preto, SP, Brasil, Departamento de Biomecânica, Medicina e Reabilitação do Aparelho Locomotor, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Prado, C.M.; Chesca, D.L. [Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Patologia, Ribeirão Preto, SP, Brasil, Departamento de Patologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Mattiello-Sverzut, A.C. [Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Medicina e Reabilitação do Aparelho Locomotor, Departamento de Biomecânica, Ribeirão Preto, SP, Brasil, Departamento de Biomecânica, Medicina e Reabilitação do Aparelho Locomotor, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil)

    2014-05-09

    Extracellular matrix and costamere proteins transmit the concentric, isometric, and eccentric forces produced by active muscle contraction. The expression of these proteins after application of passive tension stimuli to muscle remains unknown. This study investigated the expression of laminin and dystrophin in the soleus muscle of rats immobilized with the right ankle in plantar flexion for 10 days and subsequent remobilization, either by isolated free movement in a cage or associated with passive stretching for up to 10 days. The intensity of the macrophage response was also evaluated. One hundred and twenty-eight female Wistar rats were divided into 8 groups: free for 10 days; immobilized for 10 days; immobilized/free for 1, 3, or 10 days; or immobilized/stretched/free for 1, 3, or 10 days. After the experimental procedures, muscle tissue was processed for immunofluorescence (dystrophin/laminin/CD68) and Western blot analysis (dystrophin/laminin). Immobilization increased the expression of dystrophin and laminin but did not alter the number of macrophages in the muscle. In the stretched muscle groups, there was an increase in dystrophin and the number of macrophages after 3 days compared with the other groups; dystrophin showed a discontinuous labeling pattern, and laminin was found in the intracellular space. The amount of laminin was increased in the muscles treated by immobilization followed by free movement for 10 days. In the initial stages of postimmobilization (1 and 3 days), an exacerbated macrophage response and an increase of dystrophin suggested that the therapeutic stretching technique induced additional stress in the muscle fibers and costameres.

  3. An economical analysis of stretch-out for Angra 1

    International Nuclear Information System (INIS)

    Sakai, M.; Mascarenhas, H.A.

    1990-01-01

    An economical assessment of Angra 1 fuel cycle stretch-out is performed by means of NUCOST 1.0, a PWR power cost calculation code. International basic costs and an interest rate of 10%a were utilized. During the natural part of the fuel cycle an hypothetical capacity factor of 70% and in the stretch-out part a decrease in Plant's thermal efficiency have also been taken into account. The neutronic data were generated by FASER, MULTIMEDIUM, MEDIUM and PINPOW code system, simulating Angra 1 in the CAOC (constant Axial-Offset Control) operation. Assumming no proplems in the Plant's strecth-out phase, an optimum extension pont of 1 MWd/kg would be attained, what affords an US$700,000 savings by cycle when fuel and operation and maintenance costs are considered. (author) [pt

  4. Highly stretchable carbon nanotube transistors enabled by buckled ion gel gate dielectrics

    International Nuclear Information System (INIS)

    Wu, Meng-Yin; Chang, Tzu-Hsuan; Ma, Zhenqiang; Zhao, Juan; Xu, Feng; Jacobberger, Robert M.; Arnold, Michael S.

    2015-01-01

    Deformable field-effect transistors (FETs) are expected to facilitate new technologies like stretchable displays, conformal devices, and electronic skins. We previously demonstrated stretchable FETs based on buckled thin films of polyfluorene-wrapped semiconducting single-walled carbon nanotubes as the channel, buckled metal films as electrodes, and unbuckled flexible ion gel films as the dielectric. The FETs were stretchable up to 50% without appreciable degradation in performance before failure of the ion gel film. Here, we show that by buckling the ion gel, the integrity and performance of the nanotube FETs are extended to nearly 90% elongation, limited by the stretchability of the elastomer substrate. The FETs maintain an on/off ratio of >10 4 and a field-effect mobility of 5 cm 2 V −1 s −1 under elongation and demonstrate invariant performance over 1000 stretching cycles

  5. Automation of a single-DNA molecule stretching device

    DEFF Research Database (Denmark)

    Sørensen, Kristian Tølbøl; Lopacinska, Joanna M.; Tommerup, Niels

    2015-01-01

    We automate the manipulation of genomic-length DNA in a nanofluidic device based on real-time analysis of fluorescence images. In our protocol, individual molecules are picked from a microchannel and stretched with pN forces using pressure driven flows. The millimeter-long DNA fragments free...

  6. Transient filament stretching rheometer I: force balance analysis

    DEFF Research Database (Denmark)

    Szabo, Peter

    1997-01-01

    The filament stretching device which is used increasingly as an apparatus for measuring extensional properties of polymeric liquids isanalysed. A force balance that includes the effects of inertia and surface tension is derived.The force balance may be used to correct for the effects of inertia...

  7. The inhibitory effect of metals and other ions on acid phosphatase activity from Vigna aconitifolia seeds.

    Science.gov (United States)

    Srivastava, Pramod Kumar; Anand, Asha

    2015-01-01

    Sensitivity of acid phosphatase from Vigna aconitifolia seeds to metal ions, fluoride, and phosphate was examined. All the effectors had different degree of inhibitory effect on the enzyme. Among metal ions, molybdate and ferric ion were observed to be most potent inhibitors and both exhibited mixed type of inhibition. Acid phosphatase activity was inhibited by Cu2+ in a noncompetitive manner. Zn and Mn showed mild inhibition on the enzyme activity. Inhibition kinetics analysis explored molybdate as a potent inhibitor for acid phosphatase in comparison with other effectors used in this study. Fluoride was the next most strong inhibitor for the enzyme activity, and caused a mixed type of inhibition. Phosphate inhibited the enzyme competitively, which demonstrates that inhibition due to phosphate is one of the regulatory factors for enzyme activity.

  8. Acute Effects of Static vs. Ballistic Stretching on Strength and Muscular Fatigue Between Ballet Dancers and Resistance-Trained Women.

    Science.gov (United States)

    Lima, Camila D; Brown, Lee E; Wong, Megan A; Leyva, Whitney D; Pinto, Ronei S; Cadore, Eduardo L; Ruas, Cassio V

    2016-11-01

    Lima, CD, Brown, LE, Wong, MA, Leyva, WD, Pinto, RS, Cadore, EL, and Ruas, CV. Acute effects of static vs. ballistic stretching on strength and muscular fatigue between ballet dancers and resistance-trained women. J Strength Cond Res 30(11): 3220-3227, 2016-Stretching is used to increase joint range of motion, but the acute effects can decrease muscle strength. However, this may depend on the population or mode of stretching. The purpose of this study was to compare the acute effects of static vs. ballistic stretching on strength and muscular fatigue between ballet dancers and resistance-trained women. Fifteen resistance-trained women (age 23.8 ± 1.80 years, mass 67.47 ± 7.77 kg, height 168.30 ± 5.53 cm) and 12 ballet dancers (age 22.8 ± 3.04 years, mass 58.67 ± 5.65 kg, height 168.00 ± 7.69 cm) performed 5 days of testing. The first day was control (no stretching), whereas the other 4 days were static or ballistic stretching in a counterbalanced order. Range of motion, strength, and fatigue tests were also performed. Both groups demonstrated a significant decrease in hamstrings strength after static (102.71 ± 2.67 N·m) and ballistic stretching (99.49 ± 2.61 N·m) compared with control (113.059 ± 3.25 N·m), with no changes in quadriceps strength. For fatigue, only ballet dancers demonstrated a decrease from control (71.79 ± 4.88%) to ballistic (65.65 ± 8.19%), but no difference with static (65.01 ± 12.29%). These findings suggest that stretching decreases hamstrings strength similarly in ballet dancers and resistance-trained women, with no differences between modes of stretching. However, ballistic stretching only decreased muscular fatigue in ballet dancers, but not in resistance-trained women. Therefore, no stretching should be performed before strength performance. However, ballistic stretching may decrease acute muscular fatigue in ballet dancers.

  9. Photocontrol of Voltage-Gated Ion Channel Activity by Azobenzene Trimethylammonium Bromide in Neonatal Rat Cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Sheyda R Frolova

    Full Text Available The ability of azobenzene trimethylammonium bromide (azoTAB to sensitize cardiac tissue excitability to light was recently reported. The dark, thermally relaxed trans- isomer of azoTAB suppressed spontaneous activity and excitation propagation speed, whereas the cis- isomer had no detectable effect on the electrical properties of cardiomyocyte monolayers. As the membrane potential of cardiac cells is mainly controlled by activity of voltage-gated ion channels, this study examined whether the sensitization effect of azoTAB was exerted primarily via the modulation of voltage-gated ion channel activity. The effects of trans- and cis- isomers of azoTAB on voltage-dependent sodium (INav, calcium (ICav, and potassium (IKv currents in isolated neonatal rat cardiomyocytes were investigated using the whole-cell patch-clamp technique. The experiments showed that azoTAB modulated ion currents, causing suppression of sodium (Na+ and calcium (Ca2+ currents and potentiation of net potassium (K+ currents. This finding confirms that azoTAB-effect on cardiac tissue excitability do indeed result from modulation of voltage-gated ion channels responsible for action potential.

  10. Effects of hamstring stretch with pelvic control on pain and work ability in standing workers.

    Science.gov (United States)

    Han, Hyun-Il; Choi, Ho-Suk; Shin, Won-Seob

    2016-11-21

    Hamstring tightness induces posterior pelvic tilt and decreased lumbar lordosis, which can result in low back painOBJECTIVE: We investigated effects of hamstring stretch with pelvic control on pain and work ability in standing workers. One hundred adult volunteers from a standing workers were randomly assigned to pelvic control hamstring stretching (PCHS) (n = 34), general hamstring stretching (GHS) (n = 34), control (n = 32) groups. The control group was performed self-home exercise. All interventions were conducted 3 days per week for 6 weeks, and included in the hamstring stretching and lumbopelvic muscle strengthening. Outcomes were evaluated through the visual analog scale (VAS), straight leg raise test (SLR), sit and reach test (SRT), Oswestry disability index (ODI), and work ability index (WAI). Significant difference in VAS, SLR, SRT, ODI, and WAI were found in the PCHS and GHS groups. The control group was a significant difference only in ODI. The PCHS group showed a greater difference than the GHS group and control group in VAS, SLR, SRT, and ODI. The pelvic control hamstring stretch exercise would be more helpful in back pain reduction and improvement of work ability in an industrial setting.

  11. Studies in heavy ion activation analysis Pt. 5

    International Nuclear Information System (INIS)

    Ojo, J.F.; Lass, B.D.; Schweikert, E.A.

    1980-01-01

    Nondestructive heavy ion activation analysis has been used to determine the carbon content in various NBS SRM steel samples with a 7.0 MeV 6 Li + beam. The reaction 12 C( 6 Li,αn) 13 N allows for carbon analysis with the only possible interference being beryllium, 9 Be( 6 Li,2n) 13 N. Under interference-free conditions, and employing a post-irradiation etch, the detection limit for carbon analysis in steel was 5 ppm. (author)

  12. The stretch zone of automotive steel sheets

    Indian Academy of Sciences (India)

    The stretch zone of automotive steel sheets. L' AMBRIŠKO1,∗ and L PEŠEK2. 1Institute of Structural Engineering, Faculty of Civil Engineering,. Technical University of Košice, Vysokoškolská 4, 042 00 Košice, Slovak Republic. 2Department of Materials Science, Faculty of Metallurgy,. Technical University of Košice, Letná 9, ...

  13. The Considere condition and rapid stretching of linear and branched polymer melts

    DEFF Research Database (Denmark)

    McKinley, Gareth H; Hassager, Ole

    1999-01-01

    to larger Hencky strains as the number of branches is increased. Numerical computations at finite Deborah numbers also show that there is an optimal range of deformation rates over which homogeneous extensions can be maintained to large strain. We also consider other rapid homogeneous stretching...... deformations, such as biaxial and planar stretching, and show that the degree of stabilization afforded by inclusion of material with long-chain branching is a sensitive function of the imposed mode of deformation....

  14. Time-stretch microscopy based on time-wavelength sequence reconstruction from wideband incoherent source

    International Nuclear Information System (INIS)

    Zhang, Chi; Xu, Yiqing; Wei, Xiaoming; Tsia, Kevin K.; Wong, Kenneth K. Y.

    2014-01-01

    Time-stretch microscopy has emerged as an ultrafast optical imaging concept offering the unprecedented combination of the imaging speed and sensitivity. However, dedicated wideband and coherence optical pulse source with high shot-to-shot stability has been mandated for time-wavelength mapping—the enabling process for ultrahigh speed wavelength-encoded image retrieval. From the practical point of view, exploiting methods to relax the stringent requirements (e.g., temporal stability and coherence) for the source of time-stretch microscopy is thus of great value. In this paper, we demonstrated time-stretch microscopy by reconstructing the time-wavelength mapping sequence from a wideband incoherent source. Utilizing the time-lens focusing mechanism mediated by a narrow-band pulse source, this approach allows generation of a wideband incoherent source, with the spectral efficiency enhanced by a factor of 18. As a proof-of-principle demonstration, time-stretch imaging with the scan rate as high as MHz and diffraction-limited resolution is achieved based on the wideband incoherent source. We note that the concept of time-wavelength sequence reconstruction from wideband incoherent source can also be generalized to any high-speed optical real-time measurements, where wavelength is acted as the information carrier

  15. Activation of Reactive MALDI Adduct Ions Enables Differentiation of Dihydroxylated Vitamin D Isomers

    Science.gov (United States)

    Qi, Yulin; Müller, Miriam J.; Volmer, Dietrich A.

    2017-12-01

    Vitamin D compounds are secosteroids, which are best known for their role in bone health. More recent studies have shown that vitamin D metabolites and catabolites such as dihydroxylated species (e.g., 1,25- and 24,25-dihydroxyvitamin D3) play key roles in the pathologies of various diseases. Identification of these isomers by mass spectrometry is challenging and currently relies on liquid chromatography, as the isomers exhibit virtually identical product ion spectra under collision induced dissociation conditions. Here, we developed a simple MALDI-CID method that utilizes ion activation of reactive analyte/matrix adducts to distinguish isomeric dihydroxyvitamin D3 species, without the need for chromatography separation or chemical derivatization techniques. Specifically, reactive 1,5-diaminonaphthalene adducts of dihydroxyvitamin D3 compounds formed during MADI were activated and specific cleavages in the secosteroid's backbone structure were achieved that produced isomer-diagnostic fragment ions. [Figure not available: see fulltext.

  16. Stretching of macromolecules and proteins

    International Nuclear Information System (INIS)

    Strick, T R; Dessinges, M-N; Charvin, G; Dekker, N H; Allemand, J-F; Bensimon, D; Croquette, V

    2003-01-01

    In this paper we review the biophysics revealed by stretching single biopolymers. During the last decade various techniques have emerged allowing micromanipulation of single molecules and simultaneous measurements of their elasticity. Using such techniques, it has been possible to investigate some of the interactions playing a role in biology. We shall first review the simplest case of a non-interacting polymer and then present the structural transitions in DNA, RNA and proteins that have been studied by single-molecule techniques. We shall explain how these techniques permit a new approach to the protein folding/unfolding transition

  17. Mechanical sensitivity of Piezo1 ion channels can be tuned by cellular membrane tension

    Science.gov (United States)

    Lewis, Amanda H; Grandl, Jörg

    2015-01-01

    Piezo1 ion channels mediate the conversion of mechanical forces into electrical signals and are critical for responsiveness to touch in metazoans. The apparent mechanical sensitivity of Piezo1 varies substantially across cellular environments, stimulating methods and protocols, raising the fundamental questions of what precise physical stimulus activates the channel and how its stimulus sensitivity is regulated. Here, we measured Piezo1 currents evoked by membrane stretch in three patch configurations, while simultaneously visualizing and measuring membrane geometry. Building on this approach, we developed protocols to minimize resting membrane curvature and tension prior to probing Piezo1 activity. We find that Piezo1 responds to lateral membrane tension with exquisite sensitivity as compared to other mechanically activated channels and that resting tension can drive channel inactivation, thereby tuning overall mechanical sensitivity of Piezo1. Our results explain how Piezo1 can function efficiently and with adaptable sensitivity as a sensor of mechanical stimulation in diverse cellular contexts. DOI: http://dx.doi.org/10.7554/eLife.12088.001 PMID:26646186

  18. Lens ion transport: from basic concepts to regulation of Na,K-ATPase activity

    Science.gov (United States)

    Delamere, Nicholas A.; Tamiya, Shigeo

    2009-01-01

    In the late 1960s, studies by George Duncan explained many of the basic principles that underlie lens ion homeostasis. The experiments pointed to a permeability barrier close to the surface of the lens and illustrated the requirement for continuous Na,K-ATPase-mediated active sodium extrusion. Without active sodium extrusion, lens sodium and calcium content increases resulting in lens swelling and deterioration of transparency. Later, Duncan's laboratory discovered functional muscarinic and purinergic receptors at the surface of the lens. Recent studies using intact lens suggest purinergic receptors might be involved in short-term regulation of Na,K-ATPase in the epithelium. Purinergic receptor agonists ATP and UTP selectively activate certain Src family tyrosine kinases and stimulate Na,K-ATPase activity. This might represent part of a control mechanism capable of adjusting, perhaps fine tuning, lens ion transport machinery. PMID:18614168

  19. Elastography Study of Hamstring Behaviors during Passive Stretching.

    Directory of Open Access Journals (Sweden)

    Guillaume Le Sant

    Full Text Available The mechanical properties of hamstring muscles are usually inferred from global passive torque/angle relationships, in combination with adjoining tissues crossing the joint investigated. Shear modulus measurement provides an estimate of changes in muscle-tendon stiffness and passive tension. This study aimed to assess the passive individual behavior of each hamstring muscle in different stretching positions using shear wave elastography.The muscle shear modulus of each hamstring muscle was measured during a standardized slow passive knee extension (PKE, 80% of maximal range of motion on eighteen healthy male volunteers. Firstly, we assessed the reliability of the measurements. Results were good for semitendinosus (ST, CV: 8.9%-13.4%, semimembranosus (SM, CV: 10.3%-11.2% and biceps femoris long-head (BF-lh, CV: 8.6%-13.3%, but not for biceps femoris short-head (BF-sh, CV: 20.3%-44.9%. Secondly, we investigated each reliable muscle in three stretch positions: 70°, 90° and 110° of hip flexion. The results showed different values of shear modulus for the same amount of perceived stretch, with the highest measurements in the high-flexed hip situation. Moreover, individual muscles displayed different values, with values increasing or BF-lh, SM and ST, respectively. The inter-subject variability was 35.3% for ST, 27.4% for SM and 30.2% for BF-lh.This study showed that the hip needs to be high-flexed to efficiently tension the hamstrings, and reports a higher muscle-tendon stress tolerance at 110° of hip angle. In addition muscles have different passive behaviors, and future works will clarify if it can be linked with rate of injury.

  20. Elastography Study of Hamstring Behaviors during Passive Stretching

    Science.gov (United States)

    Le Sant, Guillaume; Ates, Filiz; Brasseur, Jean-Louis; Nordez, Antoine

    2015-01-01

    Introduction The mechanical properties of hamstring muscles are usually inferred from global passive torque/angle relationships, in combination with adjoining tissues crossing the joint investigated. Shear modulus measurement provides an estimate of changes in muscle-tendon stiffness and passive tension. This study aimed to assess the passive individual behavior of each hamstring muscle in different stretching positions using shear wave elastography. Methods/Results The muscle shear modulus of each hamstring muscle was measured during a standardized slow passive knee extension (PKE, 80% of maximal range of motion) on eighteen healthy male volunteers. Firstly, we assessed the reliability of the measurements. Results were good for semitendinosus (ST, CV: 8.9%-13.4%), semimembranosus (SM, CV: 10.3%-11.2%) and biceps femoris long-head (BF-lh, CV: 8.6%-13.3%), but not for biceps femoris short-head (BF-sh, CV: 20.3%-44.9%). Secondly, we investigated each reliable muscle in three stretch positions: 70°, 90° and 110° of hip flexion. The results showed different values of shear modulus for the same amount of perceived stretch, with the highest measurements in the high-flexed hip situation. Moreover, individual muscles displayed different values, with values increasing or BF-lh, SM and ST, respectively. The inter-subject variability was 35.3% for ST, 27.4% for SM and 30.2% for BF-lh. Conclusion This study showed that the hip needs to be high-flexed to efficiently tension the hamstrings, and reports a higher muscle-tendon stress tolerance at 110° of hip angle. In addition muscles have different passive behaviors, and future works will clarify if it can be linked with rate of injury. PMID:26418862

  1. Removal of Copper (II Ions in Aqueous Solutions by Sorption onto Alkali Activated Fly Ash

    Directory of Open Access Journals (Sweden)

    Darmayanti Lita

    2018-01-01

    Full Text Available Fly ash is a particulate material produced from coal combustion power plants with major components are silica, alumina, iron oxide, calcium oxide, magnesium oxide, and carbon which are ideal for metal adsorbents. The potential use of fly ash in the wastewater treatment process is obvious because it can be obtained cheaply in large quatities and it can be used as an adsorbent. However, fly ash still shows lower adsorption capacity unless it is activated. In this study, fly ash activated by NaOH 14 M and KOH 14 M solutions. The batch experiments were carried out to study the sorption of copper ions from aqueous on alkali activated fly ash. The influence of initial concentration and contact time were examined at constant pH and dose of adsorbent. The sorption capacity of copper ions increased with the initial concentration and contact time. The sorption capacities followed the order Na1>Ka1>FA. The adsorption isotherm model exhibited that the Langmuir model is very suitable with copper ions adsorption onto fly ash and alkali activated fly ash. Kinetic study shows that adsorption of copper ions onto FA, Na1, and Ka1 follows the pseudo second-order kinetics.

  2. Combined effects of water temperature and copper ion concentration on catalase activity in Crassostrea ariakensis

    Science.gov (United States)

    Wang, Hui; Yang, Hongshuai; Liu, Jiahui; Li, Yanhong; Liu, Zhigang

    2015-07-01

    A central composite experimental design and response surface method were used to investigate the combined effects of water temperature (18-34°C) and copper ion concentration (0.1-1.5 mg/L) on the catalase (CAT) activity in the digestive gland of Crassostrea ariakensis. The results showed that the linear effects of temperature were significant ( P0.05), and the quadratic effects of copper ion concentration were significant ( P0.05), and the effect of temperature was greater than that of copper ion concentration. A model equation of CAT enzyme activity in the digestive gland of C. ariakensis toward the two factors of interest was established, with R 2, Adj. R 2 and Pred. R 2 values as high as 0.943 7, 0.887 3 and 0.838 5, respectively. These findings suggested that the goodness of fit to experimental data and predictive capability of the model were satisfactory, and could be practically applied for prediction under the conditions of the study. Overall, the results suggest that the simultaneous variation of temperature and copper ion concentration alters the activity of the antioxidant enzyme CAT by modulating active oxygen species metabolism, which may be utilized as a biomarker to detect the effects of copper pollution.

  3. The effectiveness of combined prescription of ankle–foot orthosis and stretching program for the treatment of recalcitrant plantar fasciitis

    Directory of Open Access Journals (Sweden)

    Rehab A.E. Sallam

    2016-01-01

    Combined prescription of night-stretch ankle–foot orthosis and stretching exercises for plantar flexors and fascia had greater therapeutic effects compared with each treatment alone. Stretching exercises alone are not beneficial in the treatment of recalcitrant plantar fasciitis.

  4. Curved Piezoelectric Actuators for Stretching Optical Fibers

    Science.gov (United States)

    Allison, Sidney G.; Shams, Qamar A.; Fox, Robert L.

    2008-01-01

    Assemblies containing curved piezoceramic fiber composite actuators have been invented as means of stretching optical fibers by amounts that depend on applied drive voltages. Piezoceramic fiber composite actuators are conventionally manufactured as sheets or ribbons that are flat and flexible, but can be made curved to obtain load-carrying ability and displacement greater than those obtainable from the flat versions. In the primary embodiment of this invention, piezoceramic fibers are oriented parallel to the direction of longitudinal displacement of the actuators so that application of drive voltage causes the actuator to flatten, producing maximum motion. Actuator motion can be transmitted to the optical fiber by use of hinges and clamp blocks. In the original application of this invention, the optical fiber contains a Bragg grating and the purpose of the controlled stretching of the fiber is to tune the grating as part of a small, lightweight, mode-hop-free, rapidly tunable laser for demodulating strain in Bragg-grating strain-measurement optical fibers attached to structures. The invention could also be used to apply controllable tensile force or displacement to an object other than an optical fiber.

  5. Effects of Estrogen Fluctuation during the Menstrual Cycle on the Response to Stretch-Shortening Exercise in Females

    Directory of Open Access Journals (Sweden)

    Saulė Sipavičienė

    2013-01-01

    Full Text Available The aim of this study was to investigate whether variation in estrogen levels during the menstrual cycle influences susceptibility to exercise-induced muscle damage after stretch-shortening cycle exercise. Physically active women (n=18; age = 20.2 ± 1.7 yr participated in this research. The subjects performed one session of 100 maximal drop jumps on day 1 or 2 of the follicular phase and another identical session on day 1 or 2 of the ovulatory phase; the order of the sessions was randomized. Quadriceps femoris muscle peak torque evoked by electrical stimulation and maximal voluntary contraction, muscle pain, and CK activity were measured before and at various times up to 72 h after exercise. It was found that the high estrogen level during the ovulatory phase might be related to an earlier return to baseline muscle strength after strenuous stretch-shortening cycle exercise in that phase compared with the follicular phase. The estrogen effect appears to be highly specific to the damaged site because the differences in most EIMD markers (CK, soreness, and low-frequency fatigue between the two menstrual cycle phases were small.

  6. Local and Systemic Changes in Pain Sensitivity After 4 Weeks of Calf Muscle Stretching in a Nonpainful Population

    DEFF Research Database (Denmark)

    Bartholdy, Cecilie; Zangger, Graziella; Hansen, Lisbeth

    2016-01-01

    BACKGROUND: Stretching is often used in clinical practice for a variety of purposes, including pain therapy. The possible mechanism behind the effect of stretching remains to be clarified. AIM: To investigate whether 4 weeks of unilateral stretching of the calf muscles would affect local...... and central pain sensitivity. METHOD: This study was a randomized assessor-blinded clinical study. Healthy participants (age 18 to 40) were included and randomized. Participants in the intervention group were instructed to perform 2 stretching exercises targeting the calf muscles; 3 times 30 seconds, 7 days...... a week for 4 weeks on the dominant leg. Participants in the control group were instructed not to do any stretching for 4 weeks. Pressure pain threshold (PPT) and temporal summation (TS) of pressure pain were measured on the stretched calf, the contra-lateral calf, and contra-lateral lower arm using...

  7. Post-injury stretch promotes recovery in a rat model of muscle damage induced by lengthening contractions.

    Science.gov (United States)

    Mori, Tomohiro; Agata, Nobuhide; Itoh, Yuta; Inoue-Miyazu, Masumi; Mizumura, Kazue; Sokabe, Masahiro; Taguchi, Toru; Kawakami, Keisuke

    2017-06-30

    We investigated the cellular mechanisms and therapeutic effect of post-injury stretch on the recovery process from muscle injury induced by lengthening contractions (LC). One day after LC, a single 15-min bout of muscle stretch was applied at an intensity of 3 mNm. The maximal isometric torque was measured before and at 2-21 days after LC. The myofiber size was analyzed at 21 days after LC. Developmental myosin heavy chain-immunoreactive (dMHC-ir) cells, a marker of regenerating myofibers, were observed in the early recovery stage (2-5 days after LC). We observed that LC-induced injury markedly decreased isometric torque and myofiber size, which recovered faster in rats that underwent stretch than in rats that did not. Regenerating myofiber with dMHC-ir cells was observed earlier in rats that underwent stretch. These results indicate that post-injury stretch may facilitate the regeneration and early formation of new myofibers, thereby promoting structural and functional recovery from LC-induced muscle injury.

  8. Towards clinical application of RayStretch for heterogeneity corrections in LDR permanent 125I prostate brachytherapy.

    Science.gov (United States)

    Hueso-González, Fernando; Ballester, Facundo; Perez-Calatayud, Jose; Siebert, Frank-André; Vijande, Javier

    RayStretch is a simple algorithm proposed for heterogeneity corrections in low-dose-rate brachytherapy. It is built on top of TG-43 consensus data, and it has been validated with Monte Carlo (MC) simulations. In this study, we take a real clinical prostate implant with 71 125 I seeds as reference and we apply RayStretch to analyze its performance in worst-case scenarios. To do so, we design two cases where large calcifications are located in the prostate lobules. RayStretch resilience under various calcification density values is also explored. Comparisons against MC calculations are performed. Dose-volume histogram-related parameters like prostate D 90 , rectum D 2cc , or urethra D 10 obtained with RayStretch agree within a few percent with the detailed MC results for all cases considered. The robustness and compatibility of RayStretch with commercial treatment planning systems indicate its applicability in clinical practice for dosimetric corrections in prostate calcifications. Its use during intraoperative ultrasound planning is foreseen. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  9. Stretched inverse opal colloid crystal substrates-induced orientation of fibroblast

    International Nuclear Information System (INIS)

    Wang, Y C; Tang, Z M; Feng, Z Q; Xie, Z Y; Gu, Z Z

    2010-01-01

    Recently, there has been increasing interest in studying the interaction between mammalian cells and nanometer-sized structures. However, the effect of nanostructures on cell behavior, such as cell morphology and alignment, is still largely unknown. Inverse opal colloid crystal substrates, which can be stretched to produce nano-scale pore structures of different degrees of orientation, serve as a convenient model system to study the effect of nanotopography on cell morphology and cell alignment. In this work, we fabricated inverse opal colloidal crystal films that were either unstretched or stretched to three, four or six times their original length, producing pore structures of increasing degree of orientation. Human dermal fibroblast-fetal (HDF-f) cells were seeded and cultured on these four types of substrates. The results from fluorescence microscopy and scanning electron microscopy indicated that cells showed the highest degree of alignment when cultured on inverse opal colloid crystal films that were stretched the most (six times original length). The results also demonstrated that the orientation of nanostructures could affect both the morphology and growth direction of fibroblasts. The ability to control the direction of cell growth through the engineering of nanostructures could have important applications in tissue engineering, especially for tissues with anisotropic structures, such as cardiac muscle, blood vessel, tendon and ligament.

  10. Stretched inverse opal colloid crystal substrates-induced orientation of fibroblast

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y C; Tang, Z M; Feng, Z Q; Xie, Z Y; Gu, Z Z, E-mail: gu@seu.edu.c [State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096 (China)

    2010-06-01

    Recently, there has been increasing interest in studying the interaction between mammalian cells and nanometer-sized structures. However, the effect of nanostructures on cell behavior, such as cell morphology and alignment, is still largely unknown. Inverse opal colloid crystal substrates, which can be stretched to produce nano-scale pore structures of different degrees of orientation, serve as a convenient model system to study the effect of nanotopography on cell morphology and cell alignment. In this work, we fabricated inverse opal colloidal crystal films that were either unstretched or stretched to three, four or six times their original length, producing pore structures of increasing degree of orientation. Human dermal fibroblast-fetal (HDF-f) cells were seeded and cultured on these four types of substrates. The results from fluorescence microscopy and scanning electron microscopy indicated that cells showed the highest degree of alignment when cultured on inverse opal colloid crystal films that were stretched the most (six times original length). The results also demonstrated that the orientation of nanostructures could affect both the morphology and growth direction of fibroblasts. The ability to control the direction of cell growth through the engineering of nanostructures could have important applications in tissue engineering, especially for tissues with anisotropic structures, such as cardiac muscle, blood vessel, tendon and ligament.

  11. Efficient adsorption of Hg (II) ions in water by activated carbon modified with melamine

    Science.gov (United States)

    Qin, Hangdao; Meng, Jingling; Chen, Jing

    2018-04-01

    Removal of Hg (II) ions from industrial wastewater is important for the water treatment, and adsorption is an efficient treatment process. Activated carbon (AC) was modified with melamine, which introduced nitrogen-containing functional groups onto AC surface. Original AC and melamine modified activated carbon (ACM) were characterized by elemental analysis, N2 adsorption-desorption, determination of the pH of the point of zero charge (pHpzc) and X-ray photoelectron spectroscopy (XPS) and their performance in the adsorption of Hg(II) ions was investigated. Langmuir model fitted the experimental data of equilibrium isotherms well. ACM showed the higher Hg (II) ions adsorption capacity, increasing more than more than 1.8 times compared to the original one. Moreover, ACM showed a wider pH range for the maximum adsorption than the parent AC.

  12. Lamb's plane problem in a thermo-elastic micropolar medium with stretch

    Directory of Open Access Journals (Sweden)

    T. K. Chadha

    1987-01-01

    Full Text Available A study is made of the Lamb plane problem in a thermo-elastic micropolar medium with the effect of stretch. The problem is solved for an arbitrary, normal load distribution by using the double Fourier transform. The displacement components, force stress, couple stress, vector first moment and the temperature field are determined for a half space subjected to an arbitrary normal load. Two special cases of a horizontal force and a torque which are oscillating with a frequency ω have been investigated. It is shown that results of this analysis reduce to those without stretch.

  13. Stiffness of individual quadriceps muscle assessed using ultrasound shear wave elastography during passive stretching

    Directory of Open Access Journals (Sweden)

    Jingfei Xu

    2018-04-01

    Full Text Available Background: Until recently it has not been possible to isolate the mechanical behavior of individual muscles during passive stretching. Muscle shear modulus (an index of muscle stiffness measured using ultrasound shear wave elastography can be used to estimate changes in stiffness of an individual muscle. The aims of the present study were (1 to determine the shear modulus–knee angle relationship and the slack angle of the vastus medialis oblique (VMO, rectus femoris (RF, and vastus lateralis (VL muscles; (2 to determine whether this differs between the muscles. Methods: Nine male rowers took part in the study. The shear modulus of VMO, RF, and VL muscles was measured while the quadriceps was passively stretched at 3°/s. The relationship between the muscle shear modulus and knee angle was plotted as shear modulus–knee angle curve through which the slack angle of each muscle was determined. Results: The shear modulus of RF was higher than that of VMO and VL when the muscles were stretched over 54° (all p  0.05. The slack angle was similar among the muscles: 41.3° ± 10.6°, 44.3° ± 9.1°, and 44.3° ± 5.6° of knee flexion for VMO, RF, and VL, respectively (p = 0.626. Conclusion: This is the first study to experimentally determine the muscle mechanical behavior of individual heads of the quadriceps during passive stretching. Different pattern of passive tension was observed between mono- and bi-articular muscles. Further research is needed to determine whether changes in muscle stiffness are muscle-specific in pathological conditions or after interventions such as stretching protocols. Keywords: Muscle tension, Optimal length, Shear modulus, Slack angle, Stretch, Ultrasonography, Vastus lateralis, Vastus medialis

  14. Tip opening of premixed bunsen flames: Extinction with negative stretch and local Karlovitz number

    KAUST Repository

    Vu, Tranmanh

    2015-04-01

    The characteristics of tip openings in premixed bunsen flames have been studied experimentally by measuring OH radicals from laser-induced fluorescence and tip curvatures from chemiluminescent images. Results showed that the tip opening occurred at a constant equivalence ratio and was independent of the jet velocity in propane/air mixtures. The observation of a local extinction phenomenon of the negatively stretched flame due to the flame curvature could not be consistently explained based on flame stretch or the Karlovitz number, since they varied appreciably with the jet velocity. The concept of the local Karlovitz number (KaL) was introduced, which is defined as the ratio of the characteristic reaction time in the normal direction for a stretched flame to the characteristic flow time in the tangential direction for the stretched flame. The local Karlovitz number maintained a constant value under tip opening conditions, irrespective of the jet velocity. Tip opening occurred at a reasonably constant local Karlovitz number of about ~1.72 when the nitrogen dilution level in propane and n-butane fuels was varied.

  15. Effect of ions on the activity of brain acetylcholinesterase from tropical fish

    Directory of Open Access Journals (Sweden)

    Caio Rodrigo Dias Assis

    2015-07-01

    Full Text Available Objective: To investigate the effect of ions on brain acetylcholinesterase (AChE; EC 3.1.1.7 activities from economic important fish [pirarucu, Arapaima gigas; tambaqui, Colossoma macropomum; cobia, Rachycentron canadum (R. canadum and Nile tilapia, Oreochromis niloticus (O. niloticus] comparing with a commercial enzyme from electric eel [Electrophorus electricus (E. electricus]. Methods: The in vitro exposure was performed at concentrations ranging from 0.001 to 10 mmol/L (except for ethylene diamine tetraacetic acid; up to 150 mmol/L. Inhibition kinetics on R. canadum and O. niloticus were also observed through four methods (Michaelis-Menten, Lineweaver-Burk, Dixon and Cornish-Bowden plots in order to investigate the type of inhibition produced by some ions. Results: Hg 2+ , As 3+ , Cu 2+ , Zn 2+ , Cd 2+ caused inhibition in all the species under study. Ca 2+ , Mg 2+ and Mn 2+ induced slight activation in R. canadum enzyme while Pb 2+ , Ba 2+ , Fe 2+ , Li + inhibited the AChE from some of the analyzed species. The lowest IC 50 and Ki values were estimated for E. electricus AChE in presence of Hg 2+ , Pb 2+ , Zn 2+ . Under our experimental conditions, the results for R. canadum and O. niloticus, As 3+ , Cu 2+ , Cd 2+ , Pb 2+ and Zn 2+ showed a non- competitive/mixed-type inhibition, while Hg 2+ inhibited the enzyme in a mixed/competitive- like manner. Conclusions: E. electricus AChE activity was affected by ten of fifteen ions under study showing that this enzyme could undergo interference by these ions when used as pesticide biosensor in environmental analysis. This hindrance would be less relevant for the crude extracts.

  16. Melting heat transfer in boundary layer stagnation-point flow towards a stretching/shrinking sheet

    International Nuclear Information System (INIS)

    Bachok, Norfifah; Ishak, Anuar; Pop, Ioan

    2010-01-01

    An analysis is carried out to study the steady two-dimensional stagnation-point flow and heat transfer from a warm, laminar liquid flow to a melting stretching/shrinking sheet. The governing partial differential equations are converted into ordinary differential equations by similarity transformation, before being solved numerically using the Runge-Kutta-Fehlberg method. Results for the skin friction coefficient, local Nusselt number, velocity profiles as well as temperature profiles are presented for different values of the governing parameters. Effects of the melting parameter, stretching/shrinking parameter and Prandtl number on the flow and heat transfer characteristics are thoroughly examined. Different from a stretching sheet, it is found that the solutions for a shrinking sheet are non-unique.

  17. Ion-exchange resin separation applied to activation analysis (1963); Separation par resines echangeuses d'ions appliquees a l'analyse par activation (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Aubouin, G.; Laverlochere, J. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1963-07-01

    The separation techniques based on ion-exchange resins have been used, in this study, for carrying out activation analyses on about thirty impurities. A separation process has been developed so as to standardise these analyses and to render them execution a matter of routine. The reparation yields obtained are excellent and make it possible to carry out analyses on samples having a large activation cross-section ween working inside a reinforced fume-cupboard. This technique has been applied to the analysis of impurities in tantalum, iron, gallium, germanium, terphenyl, and tungsten. The extension of this process to other impurities and to other matrices is now being studied. (authors) [French] Les techniques de separations sur resines echangeusee d'ions ont ete utilisees, dans cette etude, pour effectuer des analyses par activation sur une trentaine d'impuretes. Un schema de separation a ete mis au point de maniere a normaliser ces analyses et a pouvoir les faire en routine. Les rendements de separation obtenus sont excellents et permettent de proceder a des analyses d'echantillons a grande section efficace d'activation en travaillant dans une sorbonne blindee. Des applications de cette technique ont ete faites pour des analyses d'impuretes dans le tantale, le fer, le gallium, le germanium, le terphenyle, le tungstene. L'extension de ce schema a d'autres impuretes et a d'autres matrices est en cours d'etude. (auteurs)

  18. Adaptation of the dermal collagen structure of human skin and scar tissue in response to stretch: An experimental study

    NARCIS (Netherlands)

    Verhaegen, Pauline D.; Schouten, Hennie J.; Tigchelaar-Gutter, Wikky; van Marle, Jan; van Noorden, Cornelis J.; Middelkoop, Esther; van Zuijlen, Paul P.

    2012-01-01

    Surgeons are often faced with large defects that are difficult to close. Stretching adjacent skin can facilitate wound closure. In clinical practice, intraoperative stretching is performed in a cyclical or continuous fashion. However, exact mechanisms of tissue adaptation to stretch remain unclear.

  19. Ion activity and distribution of heavy metals in acid mine drainage polluted subtropical soils

    International Nuclear Information System (INIS)

    Li Yongtao; Becquer, Thierry; Dai Jun; Quantin, Cecile; Benedetti, Marc F.

    2009-01-01

    The oxidative dissolution of mine wastes gives rise to acidic, metal-enriched mine drainage (AMD) and has typically posed an additional risk to the environment. The poly-metallic mine Dabaoshan in South China is an excellent test site to understand the processes affecting the surrounding polluted agricultural fields. Our objectives were firstly to investigate metal ion activity in soil solution, distribution in solid constituents, and spatial distribution in samples, secondly to determine dominant environment factors controlling metal activity in the long-term AMD-polluted subtropical soils. Soil Column Donnan Membrane Technology (SC-DMT) combined with sequential extraction shows that unusually large proportion of the metal ions are present as free ion in the soil solutions. The narrow range of low pH values prevents any pH effects during the binding onto oxides or organic matter. The differences in speciation of the soil solutions may explain the different soil degradation observed between paddy and non-paddy soils. - First evidence of the real free metal ion concentrations in acid mine drainage context in tropical systems

  20. Short pulse generation from a passively mode-locked fiber optical parametric oscillator with optical time-stretch.

    Science.gov (United States)

    Qiu, Yi; Wei, Xiaoming; Du, Shuxin; Wong, Kenneth K Y; Tsia, Kevin K; Xu, Yiqing

    2018-04-16

    We propose a passively mode-locked fiber optical parametric oscillator assisted with optical time-stretch. Thanks to the lately developed optical time-stretch technique, the onset oscillating spectral components can be temporally dispersed across the pump envelope and further compete for the parametric gain with the other parts of onset oscillating sidebands within the pump envelope. By matching the amount of dispersion in optical time-stretch with the pulse width of the quasi-CW pump and oscillating one of the parametric sidebands inside the fiber cavity, we numerically show that the fiber parametric oscillator can be operated in a single pulse regime. By varying the amount of the intracavity dispersion, we further verify that the origin of this single pulse mode-locking regime is due to the optical pulse stretching and compression.

  1. The Effect of Anabolic Steroid Administration on Passive Stretching-Induced Expression of Mechano-Growth Factor in Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Satoshi Ikeda

    2013-01-01

    Full Text Available Background. Stretching of skeletal muscle induces expression of the genes which encode myogenic transcription factors or muscle contractile proteins and results in muscle growth. Anabolic steroids are reported to strengthen muscles. We have previously studied the effects of muscle stretching on gene expression. Here, we studied the effect of a combination of passive stretching and the administration of an anabolic steroid on mRNA expression of a muscle growth factor, insulin-like growth factor-I autocrine variant, or mechano-growth factor (MGF. Methods. Twelve 8-week-old male Wistar rats were used. Metenolone was administered and passive repetitive dorsiflexion and plantar flexion of the ankle joint performed under deep anesthesia. After 24 h, the gastrocnemius muscles were removed and the mRNA expression of insulin-like growth factor-I autocrine variant was measured using quantitative real-time polymerase chain reaction. Results. Repetitive stretching in combination with metenolone, but not stretching alone, significantly increased MGF mRNA expression. Conclusion. Anabolic steroids enhance the effect of passive stretching on MGF expression in skeletal muscle.

  2. Flexible and stretchable lithium-ion batteries and supercapacitors based on electrically conducting carbon nanotube fiber springs.

    Science.gov (United States)

    Zhang, Ye; Bai, Wenyu; Cheng, Xunliang; Ren, Jing; Weng, Wei; Chen, Peining; Fang, Xin; Zhang, Zhitao; Peng, Huisheng

    2014-12-22

    The construction of lightweight, flexible and stretchable power systems for modern electronic devices without using elastic polymer substrates is critical but remains challenging. We have developed a new and general strategy to produce both freestanding, stretchable, and flexible supercapacitors and lithium-ion batteries with remarkable electrochemical properties by designing novel carbon nanotube fiber springs as electrodes. These springlike electrodes can be stretched by over 300 %. In addition, the supercapacitors and lithium-ion batteries have a flexible fiber shape that enables promising applications in electronic textiles. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. The Magnetohydrodynamic Boundary Layer Flow of a Nanofluid past a Stretching/Shrinking Sheet with Slip Boundary Conditions

    Directory of Open Access Journals (Sweden)

    Syahira Mansur

    2014-01-01

    Full Text Available The magnetohydrodynamic (MHD boundary layer flow of a nanofluid past a stretching/shrinking sheet with velocity, thermal, and solutal slip boundary conditions is studied. Numerical solutions to the governing equations were obtained using a shooting method. The skin friction coefficient and the local Sherwood number increase as the stretching/shrinking parameter increases. However, the local Nusselt number decreases with increasing the stretching/shrinking parameter. The range of the stretching/shrinking parameter for which the solution exists increases as the velocity slip parameter and the magnetic parameter increase. For the shrinking sheet, the skin friction coefficient increases as the velocity slip parameter and the magnetic parameter increase. For the stretching sheet, it decreases when the velocity slip parameter and the magnetic parameter increase. The local Nusselt number diminishes as the thermal slip parameter increases while the local Sherwood number decreases with increasing the solutal slip parameter. The local Nusselt number is lower for higher values of Lewis number, Brownian motion parameter, and thermophoresis parameter.

  4. Passive Repetitive Stretching for a Short Duration within a Week Increases Myogenic Regulatory Factors and Myosin Heavy Chain mRNA in Rats' Skeletal Muscles

    Directory of Open Access Journals (Sweden)

    Yurie Kamikawa

    2013-01-01

    Full Text Available Stretching is a stimulation of muscle growth. Stretching for hours or days has an effect on muscle hypertrophy. However, differences of continuous stretching and repetitive stretching to affect muscle growth are not well known. To clarify the difference of continuous and repetitive stretching within a short duration, we investigated the gene expression of muscle-related genes on stretched skeletal muscles. We used 8-week-old male Wistar rats ( for this study. Animals medial gastrocnemius muscle was stretched continuously or repetitively for 15 min daily and 4 times/week under anesthesia. After stretching, muscles were removed and total RNA was extracted. Then, reverse transcriptional quantitative real-time PCR was done to evaluate the mRNA expression of MyoD, myogenin, and embryonic myosin heavy chain (MyHC. Muscles, either stretched continuously or repetitively, increased mRNA expression of MyoD, myogenin, and embryonic MyHC more than unstretched muscles. Notably, repetitive stretching resulted in more substantial effects on embryonic MyHC gene expression than continuous stretching. In conclusion, passive stretching for a short duration within a week is effective in increasing myogenic factor expression, and repetitive stretching had more effects than continuous stretching for skeletal muscle on muscle growth. These findings are applicable in clinical muscle-strengthening therapy.

  5. Beta1 integrin inhibits apoptosis induced by cyclic stretch in annulus fibrosus cells via ERK1/2 MAPK pathway.

    Science.gov (United States)

    Zhang, Kai; Ding, Wei; Sun, Wei; Sun, Xiao-jiang; Xie, You-zhuan; Zhao, Chang-qing; Zhao, Jie

    2016-01-01

    Low back pain is associated with intervertebral disc degeneration (IVDD) due to cellular loss through apoptosis. Mechanical factors play an important role in maintaining the survival of the annulus fibrosus (AF) cells and the deposition of extracellular matrix. However, the mechanisms that excessive mechanical forces lead to AF cell apoptosis are not clear. The present study was to look for how AF cells sense mechanical changes. In vivo experiments, the involvement of mechanoreceptors in apoptosis was examined by RT-PCR and/or immunoblotting in the lumbar spine of rats subjected to unbalanced dynamic and static forces. In vitro experiments, we investigated apoptotic signaling pathways in untransfected and transfected AF cells with the lentivirus vector for rat β1 integrin overexpression after cyclic stretch. Apoptosis in AF cells was assessed using flow cytometry, Hoechst 33258 nuclear staining. Western blotting was used to analyze expression of β1 integrin and caspase-3 and ERK1/2 MAPK signaling molecules. In the rat IVDD model, unbalanced dynamic and static forces induced apoptosis of disc cells, which corresponded to decreased expression of β1 integrin. Cyclic stretch-induced apoptosis in rat AF cells correlated with the activation of caspase-3 and with decreased levels of β1 integrin and the phosphorylation levels of ERK1/2 activation level. However, the overexpression of β1 integrin in AF cells ameliorated cyclic stretch-induced apoptosis and decreased caspase-3 activation. Furthermore, ERK1/2-specific inhibitor promotes apoptosis in vector β1-infected AF cells. These results suggest that the disruption of β1 integrin signaling may underlie disc cell apoptosis induced by mechanical stress. Further work is necessary to fully elucidate the pathophysiological mechanisms that underlie IVDD caused by unbalanced dynamic and static forces.

  6. Ion beam modification of sputtered metal nitride thin films: A study of the induced microstructural changes

    International Nuclear Information System (INIS)

    Milosavljevic, M.; Perusko, D.; Popovic, M.; Novakovic, M.

    2008-01-01

    Single CrN and TiN and multilayered AlN/TiN and Al/Ti thin film structures (t = 240-280 nm) deposited on Si were irradiated with 120-200 keV Ar + ions to the fluences ranging from 1 x 10 11 5 to 4 x 10 16 ions/cm 2 . The metallic Al/Ti multilayered structure was also irradiated with high fluence (1- 2 x 10 17 /cm 2 ) nitrogen ions at 200 keV, in order to study interface mixing and formation of nitrides. Single component CrN and TiN thin films were found to grow in the form of a very fine polycrystalline columnar structures. Individual crystal grains were of the order of a few tens of nm in diameter, stretching from the substrate to the surface. After ion irradiation, the layers retain their polycrystalline structure, although the columns become disconnected, the resulting structures consisting of larger grains and nano-particles of the same phase. The implanted samples displayed higher electrical resistivity, presumably due to a higher concentration of point defects and the presence of nano-particles. In Al/Ti and AlN/TiN multilayers irradiated with Ar ions, the as-deposited structures exhibit well-defined, isolated polycrystalline Al and Ti, or AlN and TiN layers, with sharp interfaces. In the metallic system ion irradiation induced interface mixing which progressed with increasing the ion fluence. Mixing was most pronounced at the interfaces that are located around the projected ion range. The multilayered structure was essentially preserved, but the implanted samples exhibit much larger crystal grains. Also, the formation of lamellar columns stretching over a number of individual layers was observed. The AlN/TiN multilayered structures exhibited no measurable interface mixing on Ar irradiation, attributable to the nature of interatomic bonding and to mutual immiscibility of AlN and TiN. High fluence nitrogen ion irradiation of Al/Ti multilayers results in both the introduction of nitrogen into the structures as well as a high level of their intermixing. A

  7. Effect of Strain Rate on Microscopic Deformation Behavior of High-density Polyethylene under Uniaxial Stretching

    Directory of Open Access Journals (Sweden)

    Kida Takumitsu

    2017-01-01

    Full Text Available The microscopic deformation behaviors such as the load sharing and the molecular orientation of high-density polyethylene under uniaxial stretching at various strain rates were investigated by using in-situ Raman spectroscopy. The chains within crystalline phase began to orient toward the stretching direction beyond the yielding region and the orientation behavior was not affected by the strain rate. While the stretching stress along the crystalline chains was also not affected by the strain rate, the peak shifts of the Raman bands at 1130, 1418, 1440 and 1460 cm-1, which are sensitive to the interchain interactions obviously, depended on the strain rate; the higher strain rates lead to the stronger stretching stress or negative pressure on the crystalline and amorphous chains. These effects of the strain rate on the microscopic deformation was associated with the cavitation and the void formation leading to the release of the internal pressure.

  8. Polystyrene nanoparticles activate ion transport in human airway epithelial cells

    Directory of Open Access Journals (Sweden)

    McCarthy J

    2011-06-01

    Full Text Available J McCarthy1, X Gong2, D Nahirney2, M Duszyk2, MW Radomski11School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College Dublin, Dublin, Ireland; 2Department of Physiology, University of Alberta, Edmonton, Alberta, CanadaBackground: Over the last decade, nanotechnology has provided researchers with new nanometer materials, such as nanoparticles, which have the potential to provide new therapies for many lung diseases. In this study, we investigated the acute effects of polystyrene nanoparticles on epithelial ion channel function.Methods: Human submucosal Calu-3 cells that express cystic fibrosis transmembrane conductance regulator (CFTR and baby hamster kidney cells engineered to express the wild-type CFTR gene were used to investigate the actions of negatively charged 20 nm polystyrene nanoparticles on short-circuit current in Calu-3 cells by Ussing chamber and single CFTR Cl- channels alone and in the presence of known CFTR channel activators by using baby hamster kidney cell patches.Results: Polystyrene nanoparticles caused sustained, repeatable, and concentration-dependent increases in short-circuit current. In turn, these short-circuit current responses were found to be biphasic in nature, ie, an initial peak followed by a plateau. EC50 values for peak and plateau short-circuit current responses were 1457 and 315.5 ng/mL, respectively. Short-circuit current was inhibited by diphenylamine-2-carboxylate, a CFTR Cl- channel blocker. Polystyrene nanoparticles activated basolateral K+ channels and affected Cl- and HCO3- secretion. The mechanism of short-circuit current activation by polystyrene nanoparticles was found to be largely dependent on calcium-dependent and cyclic nucleotide-dependent phosphorylation of CFTR Cl- channels. Recordings from isolated inside-out patches using baby hamster kidney cells confirmed the direct activation of CFTR Cl- channels by the nanoparticles.Conclusion: This is the first study to identify

  9. Study of radio-active ions in the atmosphere; Etude des ions radioactifs de l'atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Renoux, A [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1965-01-01

    A comparative study is made of active, deposits of radon and thoron in suspension in the atmosphere by means of {alpha} radiation counting, using ZELENY tubes, scattering equipment, filter papers or membranes. It has been possible to show the existence of small and large ions which are negative and positive, as well as of neutral radio-active nuclei; their properties are studied. A theoretical interpretation of the results is presented. The average content of radon (using the Ra A concentration) and of Th B in the air has been determined. The radioactive equilibrium between radon and its daughter products in atmospheric air are examined. The techniques developed for active radon and thoron deposits are applied to the study of artificial radio-activity, the analyses being carried out by means of {gamma} spectrometry. (author) [French] On effectue une etude comparative entre les depots actifs du radon et du thoron en suspension dont l'atmosphere a l'aide de comptages de rayonnement {alpha}, en utilisant des tubes de ZELENY, une batterie de diffusion, des papiers filtres ou des membranes. On met ainsi en evidence la presence de petits et gros ions negatifs et positifs, ainsi que celle de noyaux neutres radioactifs, et on etudie leurs proprietes. Une Interpretation theorique des resultats obtenus est developpee. On determine la teneur moyenne de l'air en radon (a partir de la concentration en Ra A) et en Th B. L'equilibre radioactif entre le radon et ses descendants, dans l'air atmospherique, est examine. Les Techniques mises au point pour les depots actifs du radon et du thoron sont appliquees a l'etude de la radioactivite artificielle, les depouillements s'effectuant par spectrometrie {gamma}. (auteur)

  10. Stretched graphene tented by polycaprolactone and polypyrrole net–bracket for neurotransmitter detection

    International Nuclear Information System (INIS)

    Wang, Zhenzhen; Ying, Ye; Li, Li; Xu, Ting; Wu, Yiping; Guo, Xiaoyu; Wang, Feng; Shen, Haojie; Wen, Ying; Yang, Haifeng

    2017-01-01

    Highlights: • A new DA sensor is constructed with RGO and electrospun polymer fiber film. • RGO sheets can be mechanically stretched by the as-fabricated net-brackets. • The DA sensor shows highly catalytic activity toward the oxidation of dopamine. • The as-prepared sensor is used to detect DA in injection or urine. • The protocol to make sensors in large scale way has good reproducibility. - Abstract: A net-bracket built out from the core@shell structure of chemically oxidized polypyrrole (PPy) coated electrospun polycaprolactone (PCL) nanofibers, and the following surface modification of a thin layer of positively charged poly(dimethyl diallyl ammonium chloride) (PDDA) has been applied for stretching the reduced graphene oxide (RGO) sheets to some extent with the electrochemical deposition method. The as-formed RGO/PDDA/PCL@PPy nanocomposites were investigated by using scanning electron microscopy, transmission electron microscope, X-ray diffraction and Raman spectroscopy. The graphene tented by the net-bracket showed remarkable electrocatalytic properties in detecting the neurotransmitter dopamine (DA). Low detection limit of 0.34 μM (S/N = 3) with the wide linear detection range from 4 μM to 690 μM was obtained. The successful determination of DA in real urine samples and DA injection were achieved. Such attractive fabrication strategy can be extended to make other graphene sheet-based sensors.

  11. Stretched graphene tented by polycaprolactone and polypyrrole net–bracket for neurotransmitter detection

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhenzhen; Ying, Ye; Li, Li; Xu, Ting; Wu, Yiping; Guo, Xiaoyu; Wang, Feng; Shen, Haojie; Wen, Ying, E-mail: ying.wen@shnu.edu.cn; Yang, Haifeng, E-mail: Hfyang@shnu.edu.cn

    2017-02-28

    Highlights: • A new DA sensor is constructed with RGO and electrospun polymer fiber film. • RGO sheets can be mechanically stretched by the as-fabricated net-brackets. • The DA sensor shows highly catalytic activity toward the oxidation of dopamine. • The as-prepared sensor is used to detect DA in injection or urine. • The protocol to make sensors in large scale way has good reproducibility. - Abstract: A net-bracket built out from the core@shell structure of chemically oxidized polypyrrole (PPy) coated electrospun polycaprolactone (PCL) nanofibers, and the following surface modification of a thin layer of positively charged poly(dimethyl diallyl ammonium chloride) (PDDA) has been applied for stretching the reduced graphene oxide (RGO) sheets to some extent with the electrochemical deposition method. The as-formed RGO/PDDA/PCL@PPy nanocomposites were investigated by using scanning electron microscopy, transmission electron microscope, X-ray diffraction and Raman spectroscopy. The graphene tented by the net-bracket showed remarkable electrocatalytic properties in detecting the neurotransmitter dopamine (DA). Low detection limit of 0.34 μM (S/N = 3) with the wide linear detection range from 4 μM to 690 μM was obtained. The successful determination of DA in real urine samples and DA injection were achieved. Such attractive fabrication strategy can be extended to make other graphene sheet-based sensors.

  12. Highly stretchable carbon nanotube transistors enabled by buckled ion gel gate dielectrics

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Meng-Yin; Chang, Tzu-Hsuan; Ma, Zhenqiang [Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Zhao, Juan [School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054 (China); Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Xu, Feng; Jacobberger, Robert M.; Arnold, Michael S., E-mail: michael.arnold@wisc.edu [Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

    2015-08-03

    Deformable field-effect transistors (FETs) are expected to facilitate new technologies like stretchable displays, conformal devices, and electronic skins. We previously demonstrated stretchable FETs based on buckled thin films of polyfluorene-wrapped semiconducting single-walled carbon nanotubes as the channel, buckled metal films as electrodes, and unbuckled flexible ion gel films as the dielectric. The FETs were stretchable up to 50% without appreciable degradation in performance before failure of the ion gel film. Here, we show that by buckling the ion gel, the integrity and performance of the nanotube FETs are extended to nearly 90% elongation, limited by the stretchability of the elastomer substrate. The FETs maintain an on/off ratio of >10{sup 4} and a field-effect mobility of 5 cm{sup 2} V{sup −1} s{sup −1} under elongation and demonstrate invariant performance over 1000 stretching cycles.

  13. Casting granular ion exchange resins with medium-active waste in cement

    International Nuclear Information System (INIS)

    Beijer, O.

    1980-01-01

    Medium active waste from nuclear power stations in Sweden is trapped in granular ion exchange resins. The resin is mixed with cement paste and cast in a concrete shell which is cubic and has an edge dimension of 1.2 m. In some cases the ion exchange cement mortar has cracked. The report presents laboratory sutdies of the properties of the ion exchange resin and the mortar. Also the leaching of the moulds has been investigated. It was shown that a mixture with a water cement ratio higher than about 0.5 swells considerably during the first weeks after casting. The diffusion constant for cesium 137 has been determined at 3.10 -4 cm 2 /24-hour period in conjunction with exposure of the mould and mortar to sea water. The Swedish language report has 400 pages with 90 figures and 30 tables. (author)

  14. Generalized rate-equation analysis of excitation exchange between silicon nanoclusters and erbium ions

    International Nuclear Information System (INIS)

    Kenyon, A. J.; Wojdak, M.; Ahmad, I.; Loh, W. H.; Oton, C. J.

    2008-01-01

    We discuss the use of rate equations to analyze the sensitization of erbium luminescence by silicon nanoclusters. In applying the general form of second-order coupled rate-equations to the Si nanocluster-erbium system, we find that the photoluminescence dynamics cannot be described using a simple rate equation model. Both rise and fall times exhibit a stretched exponential behavior, which we propose arises from a combination of a strongly distance-dependent nanocluster-erbium interaction, along with the finite size distribution and indirect band gap of the silicon nanoclusters. Furthermore, the low fraction of erbium ions that can be excited nonresonantly is a result of the small number of ions coupled to nanoclusters

  15. FY 1998 annual report on the development of novel, high-activity oxygen electrode by ion-implantation; 1998 nendo ion chunyuho ni yoru shinkina kokassei sanso denkyoku no kaihatsu chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    An attempt has been made to develop an electrode material having high activity for oxygen generating reactions by ion-implantation, which is used to form the bulk defects (fine gaps at the atomic level) on the electrode surface, considered to serve as the active sites. It is found that implantation of the Co{sup +} or Zn{sup +} ion into a compound oxide electrode of Ti and Ru is accompanied by decreased overvoltage for oxygen generation by 50 to 100 mV. The Co{sup +} and Zn{sup +} ions, when implanted, cause damage of similar density in the thin film, decreasing its overvoltage to a similar extent, in spite of their different chemical properties, from which it is considered that the effect of ion implantation is not to change chemical properties of the film but to form a structural defect therein. A thin-film electrode of ruthenium dioxide, which is considered to be the oxygen generating electrode of the highest activity at present, is prepared and implanted with the Ru{sup +} ion, to observe the effect. The ion implantation also decreases the overvoltage by 50 to 70 mV, demonstrating its effect. The same principle is expected to be applicable to development of high-activity oxygen reducing electrode (electrode for fuel cell). (NEDO)

  16. On the origin of red and blue shifts of X-H and C-H stretching vibrations in formic acid (formate ion) and proton donor complexes.

    Science.gov (United States)

    Tâme Parreira, Renato Luis; Galembeck, Sérgio Emanuel; Hobza, Pavel

    2007-01-08

    Complexes between formic acid or formate anion and various proton donors (HF, H(2)O, NH(3), and CH(4)) are studied by the MP2 and B3LYP methods with the 6-311++G(3df,3pd) basis set. Formation of a complex is characterized by electron-density transfer from electron donor to ligands. This transfer is much larger with the formate anion, for which it exceeds 0.1 e. Electron-density transfer from electron lone pairs of the electron donor is directed into sigma* antibonding orbitals of X--H bonds of the electron acceptor and leads to elongation of the bond and a red shift of the X--H stretching frequency (standard H-bonding). However, pronounced electron-density transfer from electron lone pairs of the electron donor also leads to reorganization of the electron density in the electron donor, which results in changes in geometry and vibrational frequency. These changes are largest for the C--H bonds of formic acid and formate anion, which do not participate in H-bonding. The resulting blue shift of this stretching frequency is substantial and amounts to almost 35 and 170 cm(-1), respectively.

  17. Oriented Morphology and Anisotropic Transport in Uniaxially Stretched Perfluorosulfonate Ionomer Membranes

    Energy Technology Data Exchange (ETDEWEB)

    J Park; J Li; G Divoux; L Madsen; R Moore

    2011-12-31

    Relations between morphology and transport sensitively govern proton conductivity in perfluorsulfonate ionomers (PFSIs) and thus determine useful properties of these technologically important materials. In order to understand such relations, we have conducted a broad systematic study of H{sup +}-form PFSI membranes over a range of uniaxial extensions and water uptakes. On the basis of small-angle X-ray scattering (SAXS) and {sup 2}H NMR spectroscopy, uniaxial deformation induces a strong alignment of ionic domains along the stretching direction. We correlate ionic domain orientation to transport using pulsed-field-gradient {sup 1}H NMR measurements of water diffusion coefficients along the three orthogonal membrane directions. Intriguingly, we observe that uniaxial deformation enhances water transport in one direction (parallel-to-draw direction) while reducing it in the other two directions (two orthogonal directions relative to the stretching direction). We evaluate another important transport parameter, proton conductivity, along two orthogonal in-plane directions. In agreement with water diffusion experiments, orientation of ionic channels increases proton conduction along the stretching direction while decreasing it in the perpendicular direction. These findings provide valuable fodder for optimal application of PFSI membranes as well as for the design of next generation polymer electrolyte membranes.

  18. Protein Stabilization and Enzyme Activation in Ionic Liquids: Specific Ion Effects

    Science.gov (United States)

    Zhao, Hua

    2015-01-01

    There are still debates on whether the hydration of ions perturbs the water structure, and what is the degree of such disturbance; therefore, the origin of Hofmeister effect on protein stabilization continues being questioned. For this reason, it is suggested to use the ‘specific ion effect’ instead of other misleading terms such as Hofmeister effect, Hofmeister series, lyotropic effect, and lyotropic series. In this review, we firstly discuss the controversial aspect of inorganic ion effects on water structures, and several possible contributors to the specific ion effect of protein stability. Due to recent overwhelming attraction of ionic liquids (ILs) as benign solvents in many enzymatic reactions, we further evaluate the structural properties and molecular-level interactions in neat ILs and their aqueous solutions. Next, we systematically compare the specific ion effects of ILs on enzyme stability and activity, and conclude that (a) the specificity of many enzymatic systems in diluted aqueous IL solutions is roughly in line with the traditional Hofmeister series albeit some exceptions; (b) however, the specificity follows a different track in concentrated or neat ILs because other factors (such as hydrogen-bond basicity, nucelophilicity, and hydrophobicity, etc) are playing leading roles. In addition, we demonstrate some examples of biocatalytic reactions in IL systems that are guided by the empirical specificity rule. PMID:26949281

  19. Chemical modification of polypropylene induced by high energy carbon ions

    Energy Technology Data Exchange (ETDEWEB)

    Saha, A.; Chakraborty, V.; Chintalapudi, S.N. E-mail: snc@gamma.iuc.res.in

    2000-06-01

    Polypropylene was irradiated with {sup 12}C{sup +} ions of 3.6 and 5.4 MeV energy using 3 MV Pelletron. The spectral changes owing to ion bombardment were investigated by UV-VIS and Fourier-transform infrared (FTIR) spectroscopy. A gradual increase in absorbance was observed around visible and near visible region with increase in fluence of bombarding ions. The difference absorption spectra show formation of chromophoric groups with wavelength maximum near 380 nm at lower fluence, but at high fluence a shift in peak is observed. The chromophoric groups are likely to be the extended conjugated polyene system and the red shift in peak position at high fluence may be attributed to the greater degree of conjugation. The formation of unsaturated linkage is confirmed by the FTIR spectra with observed stretching band around 1650 cm{sup -1} and its intensity was found to increase with increase in ion fluence studied. The gases (in the range 2-80 amu) which were evolved due to interaction of polypropylene with {sup 12}C{sup +} ions were measured with Residual Gas Analyzer (RGA). A large number of gaseous components were detected. This shows that polymer chains break into some smaller fragments which concomitantly leads to extended conjugation.

  20. A Japanese Stretching Intervention Can Modify Lumbar Lordosis Curvature

    NARCIS (Netherlands)

    Kadono, Norio; Tsuchiya, Kazushi; Uematsu, Azusa; Kamoshita, Hiroshi; Kiryu, Kazunori; Hortobagyi, Tibor; Suzuki, Shuji

    Study Design: Eighteen healthy male adults were assigned to either an intervention or control group. Objectives: Isogai dynamic therapy (IDT) is one of Japanese stretching interventions and has been practiced for over 70 years. However, its scientific quantitative evidence remains unestablished. The

  1. Pattern zoology in biaxially pre-stretched elastic bilayers: from wrinkles and creases to fracture-like ridges

    Science.gov (United States)

    Al-Rashed, Rashed; Lopez JiméNez, Francisco; Reis, Pedro

    The wrinkling of elastic bilayers under compression has been explored as a method to produce reversible surface topography, with applications ranging from microfluidics to tunable optics. We introduce a new experimental system to study the effects of pre-stretching on the instability patterns that result from the biaxial compression of thin shells bound to an elastic substrate. A pre-stretched substrate is first prepared by pressurizing an initially flat elastomeric disk and bulging it into a nearly hemispherical thick shell. The substrate is then coated with a thin layer of a polymer suspension, which, upon curing, results in a thin shell of nearly constant thickness. Releasing the pre-stretch in the substrate by deflating the system places the outer film in a state of biaxial compression, resulting in a variety of buckling patterns. We explore the parameter space by systematically varying the pre-stretch, the substrate/film stiffness mismatch, and the thickness of the film. This results in a continuous transition between different buckling patterns, from the dimples and wrinkles that are traditionally associated with the buckling of elastic bilayers, to creases and high aspect ratio `fracture-like' ridges, where the pre-stretch plays an essential role.

  2. Methods for thermal inactivation of pathogens in mozzarella: a comparison between stretching and pasteurization

    Directory of Open Access Journals (Sweden)

    D.C. Raimundo

    2013-04-01

    Full Text Available This study aimed to evaluate the efficiency of stretching in the reduction of pathogens when compared to milk pasteurization, the official method to ensure safe cheese production. Whole buffalo milk was contaminated with Mycobacterium fortuitum, Listeria monocytogenes, Salmonella typhimurium, and Staphylococcus aureus. Part of the milk was used in mozzarella production and the other part was submitted to holder pasteurization. Pathogens were quantified before and after thermal processing (mozzarella stretching and milk pasteurization. Pasteurization and stretching led to the following reductions in log cycles, respectively: 4.0 and 6.3 for Mycobacterium sp.; 6.0 and 8.4 for Listeria sp.; >6.8 and 4.5 for Staphylococcus sp.; and >8.2 and 7.5 for Salmonella sp.

  3. IMPROVING VERTICAL AND LATERAL RESOLUTION BY STRETCH-FREE, HORIZON-ORIENTED IMAGING

    Directory of Open Access Journals (Sweden)

    Pérez Gabriel

    2006-12-01

    Full Text Available The pre-stack Kirchhoff migration is implemented for delivering wavelet stretch-free imaged data, if the migration is (ideally limited to the wavelet corresponding to a target horizon. Avoiding wavelet stretch provides long-offset imaged data, far beyond what is reached in conventional migration and results in images from the target with improved vertical and lateral resolution and angular illumination. Increasing the range of imaged offsets also increases the sensitivity to event-crossing, velocity errors and anisotropy. These issues must be addressed to fully achieve the greatest potential of this technique. These ideas are further illustrated with a land survey seismic data application in Texas, U.S.

  4. An activated microporous carbon prepared from phenol-melamine-formaldehyde resin for lithium ion battery anode

    International Nuclear Information System (INIS)

    Zhu, Yinhai; Xiang, Xiaoxia; Liu, Enhui; Wu, Yuhu; Xie, Hui; Wu, Zhilian; Tian, Yingying

    2012-01-01

    Highlights: ► Microporous carbon was prepared by chemical activation of phenol-melamine-formaldehyde resin. ► Activation leads to high surface area, well-developed micropores. ► Micropores lead to strong intercalation between carbon and lithium ion. ► Large surface area promotes to improve the lithium storage capacity. -- Abstract: Microporous carbon anode materials were prepared from phenol-melamine-formaldehyde resin by ZnCl 2 and KOH activation. The physicochemical properties of the obtained carbon materials were characterized by scanning electron microscope, X-ray diffraction, Brunauer–Emmett–Teller, and elemental analysis. The electrochemical properties of the microporous carbon as anode materials in lithium ion secondary batteries were evaluated. At a current density of 100 mA g −1 , the carbon without activation shows a first discharge capacity of 515 mAh g −1 . After activation, the capacity improved obviously. The first discharge capacity of the carbon prepared by ZnCl 2 and KOH activation was 1010 and 2085 mAh g −1 , respectively. The reversible capacity of the carbon prepared by KOH activation was still as high as 717 mAh g −1 after 20 cycles, which was much better than that activated by ZnCl 2 . These results demonstrated that it may be a promising candidate as an anode material for lithium ion secondary batteries.

  5. Study of the solvent effects on the molecular structure and Cdbnd O stretching vibrations of flurbiprofen

    Science.gov (United States)

    Tekin, Nalan; Pir, Hacer; Sagdinc, Seda

    2012-12-01

    The effects of 15 solvents on the C=O stretching vibrational frequency of flurbiprofen (FBF) were determined to investigate solvent-solute interactions. Solvent effects on the geometry and C=O stretching vibrational frequency, ν(C=O), of FBF were studied theoretically at the DFT/B3LYP and HF level in combination with the polarizable continuum model and experimentally using attenuated total reflection infrared spectroscopy (ATR-IR). The calculated C=O stretching frequencies in the liquid phase are in agreement with experimental values. Moreover, the wavenumbers of ν(C=O) of FBF in different solvents have been obtained and correlated with the Kirkwood-Bauer-Magat equation (KBM), the solvent acceptor numbers (ANs), and the linear solvation energy relationships (LSERs). The solvent-induced stretching vibrational frequency shifts displayed a better correlation with the LSERs than with the ANs and KBM.

  6. Stretched-exponential decay functions from a self-consistent model of dielectric relaxation

    International Nuclear Information System (INIS)

    Milovanov, A.V.; Rasmussen, J.J.; Rypdal, K.

    2008-01-01

    There are many materials whose dielectric properties are described by a stretched exponential, the so-called Kohlrausch-Williams-Watts (KWW) relaxation function. Its physical origin and statistical-mechanical foundation have been a matter of debate in the literature. In this Letter we suggest a model of dielectric relaxation, which naturally leads to a stretched exponential decay function. Some essential characteristics of the underlying charge conduction mechanisms are considered. A kinetic description of the relaxation and charge transport processes is proposed in terms of equations with time-fractional derivatives

  7. Colorimetric assay of copper ions based on the inhibition of peroxidase-like activity of MoS2 nanosheets

    Science.gov (United States)

    Chen, Huan; Li, Zhihong; Liu, Xueting; Zhong, Jianhai; Lin, Tianran; Guo, Liangqia; Fu, Fengfu

    2017-10-01

    The peroxidase-like catalytic activity of MoS2 nanomaterials has been utilized for colorimetric bioassays and medical diagnostics. However, the application of peroxidase-like catalytic activity of MoS2 nanomaterials in environmental analysis was seldom explored. Herein, copper ions were found to inhibit the peroxidase-like catalytic activity of MoS2 nanosheets, which can catalyze the oxidation of 3, 3‧, 5, 5‧-tetramethylbenzidine by H2O2 to produce a colorimetric product. Based on this finding, a simple sensitive colorimetric method for the detection of copper ions was developed. In the presence of copper ions, the absorbance and color of the solution decreased with the increasing concentration of copper ions. The color of the solution can be used to semi-quantitative on-site assay of copper ions by naked eyes. A linear relationship between the absorbance and the concentration of copper ions was observed in the range of 0.4-4.0 μmol L- 1 with a detection limit of 92 nmol L- 1, which was much lower than the maximum contaminant level of copper in drinking water legislated by the Environmental Protection Agency of USA and the World Health Organization. The method was applied to detect copper ions in environmental water samples with satisfactory results.

  8. Unique battery with an active membrane separator having uniform physico-chemically functionalized ion channels and a method making the same

    Science.gov (United States)

    Gerald, II, Rex E.; Ruscic, Katarina J [Chicago, IL; Sears, Devin N [Spruce Grove, CA; Smith, Luis J [Natick, MA; Klingler, Robert J [Glenview, IL; Rathke, Jerome W [Homer Glen, IL

    2012-02-21

    The invention relates to a unique battery having an active, porous membrane and method of making the same. More specifically the invention relates to a sealed battery system having a porous, metal oxide membrane with uniform, physicochemically functionalized ion channels capable of adjustable ionic interaction. The physicochemically-active porous membrane purports dual functions: an electronic insulator (separator) and a unidirectional ion-transporter (electrolyte). The electrochemical cell membrane is activated for the transport of ions by contiguous ion coordination sites on the interior two-dimensional surfaces of the trans-membrane unidirectional pores. The membrane material is designed to have physicochemical interaction with ions. Control of the extent of the interactions between the ions and the interior pore walls of the membrane and other materials, chemicals, or structures contained within the pores provides adjustability of the ionic conductivity of the membrane.

  9. Ion imprinted activated carbon solid-phase extraction coupled to flame atomic absorption spectrometry for selective determination of lead ions in environmental samples

    International Nuclear Information System (INIS)

    Naraghi, Kiyana; Panahi, Homayon Ahmad; Hassani, Amir Hesam; Moniri, Elham

    2014-01-01

    A simple lead ion imprinted sorbent was synthesized by coupling activated carbon with a known metal chelating compound, iminodiacetic acid. The ion imprinted sorbent has been characterized using Fourier transform infrared spectroscopy, elemental analysis and thermogravimetric analysis and subjected for the extraction and determination of trace Pb(II) in environmental water samples. The optimum pH value for sorption of the lead ion was 6.5. The sorption capacity of lead imprinted sorbent was 42.2 mg g"−"1. The chelating imprinted sorbent can be reused for five cycles of sorption-desorption without any significant change in sorption capacity. Compared with non-imprinted polymer particles, the lead ion imprinted sorbent showed high adsorption capacity, significant selectivity, good site accessibility for Pb(II). The equilibrium adsorption data of Pb(II) by modified resin were analyzed by Langmuir, Freundlich, Temkin and Redlich-Peterson models

  10. Revealing the Solvation Structure and Dynamics of Carbonate Electrolytes in Lithium-Ion Batteries by Two-Dimensional Infrared Spectrum Modeling.

    Science.gov (United States)

    Liang, Chungwen; Kwak, Kyungwon; Cho, Minhaeng

    2017-12-07

    Carbonate electrolytes in lithium-ion batteries play a crucial role in conducting lithium ions between two electrodes. Mixed solvent electrolytes consisting of linear and cyclic carbonates are commonly used in commercial lithium-ion batteries. To understand how the linear and cyclic carbonates introduce different solvation structures and dynamics, we performed molecular dynamics simulations of two representative electrolyte systems containing either linear or cyclic carbonate solvents. We then modeled their two-dimensional infrared (2DIR) spectra of the carbonyl stretching mode of these carbonate molecules. We found that the chemical exchange process involving formation and dissociation of lithium-ion/carbonate complexes is responsible for the growth of 2DIR cross peaks with increasing waiting time. In addition, we also found that cyclic carbonates introduce faster dynamics of dissociation and formation of lithium-ion/carbonate complexes than linear carbonates. These findings provide new insights into understanding the lithium-ion mobility and its interplay with solvation structure and ultrafast dynamics in carbonate electrolytes used in lithium-ion batteries.

  11. Longitudinal Stretching for Maturation of Vascular Tissues Using Magnetic Forces

    Directory of Open Access Journals (Sweden)

    Timothy R. Olsen

    2016-11-01

    Full Text Available Cellular spheroids were studied to determine their use as “bioinks” in the biofabrication of tissue engineered constructs. Specifically, magnetic forces were used to mediate the cyclic longitudinal stretching of tissues composed of Janus magnetic cellular spheroids (JMCSs, as part of a post-processing method for enhancing the deposition and mechanical properties of an extracellular matrix (ECM. The purpose was to accelerate the conventional tissue maturation process via novel post-processing techniques that accelerate the functional, structural, and mechanical mimicking of native tissues. The results of a forty-day study of JMCSs indicated an expression of collagen I, collagen IV, elastin, and fibronectin, which are important vascular ECM proteins. Most notably, the subsequent exposure of fused tissue sheets composed of JMCSs to magnetic forces did not hinder the production of these key proteins. Quantitative results demonstrate that cyclic longitudinal stretching of the tissue sheets mediated by these magnetic forces increased the Young’s modulus and induced collagen fiber alignment over a seven day period, when compared to statically conditioned controls. Specifically, the elastin and collagen content of these dynamically-conditioned sheets were 35- and three-fold greater, respectively, at seven days compared to the statically-conditioned controls at three days. These findings indicate the potential of using magnetic forces in tissue maturation, specifically through the cyclic longitudinal stretching of tissues.

  12. On zero variance Monte Carlo path-stretching schemes

    International Nuclear Information System (INIS)

    Lux, I.

    1983-01-01

    A zero variance path-stretching biasing scheme proposed for a special case by Dwivedi is derived in full generality. The procedure turns out to be the generalization of the exponential transform. It is shown that the biased game can be interpreted as an analog simulation procedure, thus saving some computational effort in comparison with the corresponding nonanalog game

  13. Stretched Exponential relaxation in pure Se glass

    Science.gov (United States)

    Dash, S.; Ravindren, S.; Boolchand, P.

    A universal feature of glasses is the stretched exponential relaxation, f (t) = exp[ - t / τ ] β . The model of diffusion of excitations to randomly distributed traps in a glass by Phillips1 yields the stretched exponent β = d[d +2] where d, the effective dimensionality. We have measured the enthalpy of relaxation ΔHnr (tw) at Tg of Se glass in modulated DSC experiments as glasses age at 300K and find β = 0.43(2) for tw in the 0

  14. Transport, mixing and stretching in a chaotic Stokes flow: The two-roll mill

    International Nuclear Information System (INIS)

    Kaper, T.J.; Wiggins, S.

    1989-01-01

    We present the outline and preliminary results of an analytical and numerical study of transport, mixing, and stretching in a chaotic Stokes' flow in a two-roll mill apparatus. We use the theory of dynamical systems to describe the rich behavior and structure exhibited by these flows. The main features are the homoclinic tangle which functions as the backbone of the chaotic mixing region, the Smale horseshoe, and the island chains. We then use our detailed knowledge of these structures to develop a theory of transport and stretching of fluid in the chaotic regime. In particular, we show how a specific set of tools for adiabatic chaos- the adiabatic Melnikov function lobe area and flux computations and the adiabatic switching method is ideally suited to develop this theory of transport, mixing and stretching in time-dependent two-dimensional Stokes' flows. 19 refs., 8 figs

  15. An Earth-Based Equivalent Low Stretch Apparatus to Assess Material Flammability for Microgravity & Extraterrestrial Fire-Safety Applications

    Science.gov (United States)

    Olson, S. L.; Beeson, H.; Haas, J.

    2001-01-01

    One of the performance goals for NASA's enterprise of Human Exploration and Development of Space (HEDS) is to develop methods, data bases, and validating tests for material flammability characterization, hazard reduction, and fire detection/suppression strategies for spacecraft and extraterrestrial habitats. This work addresses these needs by applying the fundamental knowledge gained from low stretch experiments to the development of a normal gravity low stretch material flammability test method. The concept of the apparatus being developed uses the low stretch geometry to simulate the conditions of the extraterrestrial environment through proper scaling of the sample dimensions to reduce the buoyant stretch in normal gravity. The apparatus uses controlled forced-air flow to augment the low stretch to levels which simulate Lunar or Martian gravity levels. In addition, the effect of imposed radiant heat flux on material flammability can be studied with the cone heater. After breadboard testing, the apparatus will be integrated into NASA's White Sands Test Facility's Atmosphere-Controlled Cone Calorimeter for evaluation as a new materials screening test method.

  16. Effectiveness of the Simultaneous Stretching of the Achilles Tendon and Plantar Fascia in Individuals With Plantar Fasciitis.

    Science.gov (United States)

    Engkananuwat, Phoomchai; Kanlayanaphotporn, Rotsalai; Purepong, Nithima

    2018-01-01

    Since the plantar fascia and the Achilles tendon are anatomically connected, it is plausible that stretching of both structures simultaneously will result in a better outcome for plantar fasciitis. Fifty participants aged 40 to 60 years with a history of plantar fasciitis greater than 1 month were recruited. They were prospectively randomized into 2 groups. Group 1 was instructed to stretch the Achilles tendon while group 2 simultaneously stretched the Achilles tendon and plantar fascia. After 4 weeks of both stretching protocols, participants in group 2 demonstrated a significantly greater pressure pain threshold than participants in group 1 ( P = .040) with post hoc analysis. No significant differences between groups were demonstrated in other variables ( P > .05). Concerning within-group comparisons, both interventions resulted in significant reductions in pain at first step in the morning and average pain at the medial plantar calcaneal region over the past 24 hours, while there were increases in the pressure pain threshold, visual analog scale-foot and ankle score, and range of motion in ankle dorsiflexion ( P plantar fascia for 4 weeks was a more effective intervention for plantar fasciitis. Patients who reported complete relief from symptoms at the end of the 4-week intervention in the simultaneous stretching group (n = 14; 56%) were double that of the stretching of the Achilles tendon-only group (n = 7; 28%). II, lesser quality RCT or prospective comparative study.

  17. A Fundamental Study of Stretch-Drawing Process of Sheet Metals : Single and Double Operations

    Science.gov (United States)

    Gotoh, Manabu; Kim, Young-soo; Yamashita, Minoru

    1998-05-01

    Fundamental and informative data of axisymmetric stretch-drawing of several sheet metals with thichness of 0.7 1.0 mm are presented especially for single and double operations. Very small radius is applied to the die-profile (or -shoulder) in all operations to induce wall-thinning by the effect of bending-under-tension, from which the name `stretch-drawing' comes. It is clearly demonstrated that deeper cups could be formed by the single and double stretch-drawings from smaller cirlcular blanks due to such wall-thinning action than in the usual deep-drawing of larger blanks. From this fact, it is emphasized that the deep-drawability of a sheet metal is not evaluated simply by the conventional LDR (=limiting drawing ratio), but the depth of the drawn cup should also be taken into account. Many experimental data about various metals and thicknesses given in this paper offer a valueable information on this process for more general use which recommends to replace the conventional deep-drawing process by the stretch-drawing process both for single and double operations. In the single stretch-drawing, it is also confirmed that a deeper cup can be produced by raising the blank-holding force at later stage of operation. Fracturing is found to occur at the middle section of the wall part or at the die-profile other than at the punch profile common in the usual deep-drawing process. Numerical simulation of the single stretch-drawing process is also performed by use of DYNA-3D code to confirm that a satisfactory prediction especially in the depth of the drawn-cup can be done at least in a practical sense, although this kind of numerical analysis is very difficult because of the severity or localization of deformation around the die profile. The drawn cup of SUS304 among others fractures in a couple of weeks after the operation due to the residual circumferential tensile stress, whereas that of SUS304L does not. In the double stretch-drawing, it is confirmed that very deeper

  18. First two operational years of the electron-beam ion trap charge breeder at the National Superconducting Cyclotron Laboratory

    Directory of Open Access Journals (Sweden)

    A. Lapierre

    2018-05-01

    Full Text Available The electron-beam ion trap (EBIT charge breeder of the ReA post-accelerator, located at the National Superconducting Cyclotron Laboratory (Michigan State University, started on-line operation in September 2015. Since then, the EBIT has delivered many pilot beams of stable isotopes and several rare-isotope beams. An operating aspect of the ReA EBIT is the breeding of high charge states to reach high reaccelerated beam energies. Efficiencies in single charge states of more than 20% were measured with ^{39}K^{15+}, ^{85}Rb^{27+}, ^{47}K^{17+}, and ^{34}Ar^{15+}. Producing high charge states demands long breeding times. This reduces the ejection frequency and, hence, increases the number of ions ejected per pulse. Another operating aspect is the ability to spread the distribution in time of the ejected ion pulses to lower the instantaneous rate delivered to experiments. Pulse widths were stretched from a natural 25  μs up to ∼70  ms. This publication reviews the progress of the ReA EBIT system over the years and presents the results of charge-breeding efficiency measurements and pulse-stretching tests obtained with stable- and rare-isotope beams. Studies performed with high sensitivity to identify and quantify stable-isotope contaminants from the EBIT are also presented, along with a novel method for purifying beams.

  19. Physicochemical characteristics and sorption capacities of heavy metal ions of activated carbons derived by activation with different alkyl phosphate triesters

    Science.gov (United States)

    Wang, Jing; Liu, Hai; Yang, Shaokun; Zhang, Jian; Zhang, Chenglu; Wu, Haiming

    2014-10-01

    Five alkyl phosphate triesters (APTEs), including trimethyl phosphate (TMP), triethyl phosphate (TEP), triisopropyl phosphate (TPP), tributyl phosphate (TBP) and trioctyl phosphate (TOP), were used as activating agents for preparing activated carbons (AC-APTEs) with high surface acidity and metal ion sorption capacity. N2 adsorption/desorption isotherms, surface morphologies, elemental compositions, results of Boehm's titration and sorption capacities of heavy metal ions of the carbons were investigated. AC-APTEs contained much more acidic groups and exhibited much less surface area (phosphoric acid activation. For the AC-APTEs, AC-TOP had the highest surface area (488 m2/g), AC-TMP showed the highest yield (41.1%), and AC-TBP possessed the highest acidic groups (2.695 mmol/g), oxygen content (47.0%) and metal ion sorption capacities (40.1 mg/g for Ni(II) and 53.5 mg/g for Cd(II)). For the carbons, AC-APTEs showed much larger Ni(II) and Cd(II) sorption capacities than AC-PPA, except AC-TPP. The differences of the carbons in the physicochemical and sorption properties suggested surface chemistry of the carbons was the main factor influencing their sorption capacities whereas the pore structure played a secondary role.

  20. Effect of one stretch a week applied to the immobilized soleus muscle on rat muscle fiber morphology

    Directory of Open Access Journals (Sweden)

    Gomes A.R.S.

    2004-01-01

    Full Text Available We determined the effect of stretching applied once a week to the soleus muscle immobilized in the shortened position on muscle fiber morphology. Twenty-six male Wistar rats weighing 269 ± 26 g were divided into three groups. Group I, the left soleus was immobilized in the shortened position for 3 weeks; group II, the soleus was immobilized in the shortened position and stretched once a week for 3 weeks; group III, the soleus was submitted only to stretching once a week for 3 weeks. The medial part of the soleus muscle was frozen for histology and muscle fiber area evaluation and the lateral part was used for the determination of number and length of serial sarcomeres. Soleus muscle submitted only to immobilization showed a reduction in weight (44 ± 6%, P = 0.002, in serial sarcomere number (23 ± 15% and in cross-sectional area of the fibers (37 ± 31%, P < 0.001 compared to the contralateral muscles. The muscle that was immobilized and stretched showed less muscle fiber atrophy than the muscles only immobilized (P < 0.05. Surprisingly, in the muscles submitted only to stretching, fiber area was decreased compared to the contralateral muscle (2548 ± 659 vs 2961 ± 806 µm², respectively, P < 0.05. In conclusion, stretching applied once a week for 40 min to the soleus muscle immobilized in the shortened position was not sufficient to prevent the reduction of muscle weight and of serial sarcomere number, but provided significant protection against muscle fiber atrophy. In contrast, stretching normal muscles once a week caused a reduction in muscle fiber area.

  1. An examination of the stretching practices of Division I and Division III college football programs in the midwestern United States.

    Science.gov (United States)

    Judge, Lawrence W; Craig, Bruce; Baudendistal, Steve; Bodey, Kimberly J

    2009-07-01

    Research supports the use of preactivity warm-up and stretching, and the purpose of this study was to determine whether college football programs follow these guidelines. Questionnaires designed to gather demographic, professional, and educational information, as well as specific pre- and postactivity practices, were distributed via e-mail to midwestern collegiate programs from NCAA Division I and III conferences. Twenty-three male coaches (12 from Division IA schools and 11 from Division III schools) participated in the study. Division I schools employed certified strength coaches (CSCS; 100%), whereas Division III schools used mainly strength coordinators (73%), with only 25% CSCS. All programs used preactivity warm-up, with the majority employing 2-5 minutes of sport-specific jogging/running drills. Pre stretching (5-10 minutes) was performed in 19 programs (91%), with 2 (9%) performing no pre stretching. Thirteen respondents used a combination of static/proprioceptive neuromuscular facilitation/ballistic and dynamic flexibility, 5 used only dynamic flexibility, and 1 used only static stretching. All 12 Division I coaches used stretching, whereas only 9 of the 11 Division III coaches did (p = 0.22). The results indicate that younger coaches did not use pre stretching (p = 0.30). The majority of the coaches indicated that they did use post stretching, with 11 of the 12 Division I coaches using stretching, whereas only 5 of the 11 Division III coaches used stretching postactivity (p = 0.027). Divisional results show that the majority of Division I coaches use static-style stretching (p = 0.049). The results of this study indicate that divisional status, age, and certification may influence how well research guidelines are followed. Further research is needed to delineate how these factors affect coaching decisions.

  2. Insights into the activation mechanism of calcium ions on the sericite surface: A combined experimental and computational study

    Science.gov (United States)

    Hu, Yuehua; He, Jianyong; Zhang, Chenhu; Zhang, Chenyang; Sun, Wei; Zhao, Dongbo; Chen, Pan; Han, Haisheng; Gao, Zhiyong; Liu, Runqing; Wang, Li

    2018-01-01

    The adsorption behaviors and the activation mechanism of calcium ions (Ca2+) on sericite surface have been investigated by Zeta potential measurements, Fourier transform infrared spectroscopy (FT-IR), Micro-flotation tests and First principle calculations. Zeta potential tests results show that the sericite surface potential increases due to the adsorption of calcium ions on the surface. Micro-flotation tests demonstrate that sericite recovery remarkably rise by 10% due to the calcium ions activation on sericite surface. However, the characteristic adsorption bands of calcium oleate do not appear in the FT-IR spectrum, suggesting that oleate ions just physically adsorb on the sericite surface. The first principle calculations based on the density functional theory (DFT) further reveals the microscopic adsorption mechanism of calcium ions on the sericite surface before and after hydration.

  3. Effect of Kinesiotaping and Stretching Exercise on Forward Shoulder Angle in Females with Rounded Shoulder Posture

    Directory of Open Access Journals (Sweden)

    Arghavan Hajibashi

    2014-12-01

    Full Text Available Background: Rounded shoulder posture is a common abnormal posture in upper quarter. Kinesiotape is a new intervention that recently used in rehabilitation. There are no studies have examined the effect of kinesiotape on rounded shoulder posture. Therefore the purpose of this study was to determine the effect of scapular kinesiotaping and pectoralis minor stretching exercise on forward shoulder angle in female subjects with rounded shoulder posture. Methods: Twenty female students aged between 18 to 25 years old with rounded shoulder posture participated in this study. Then, the subjects were randomly and equally assigned to two groups: the stretch group and the stretch plus kinesiotape group. Both groups were trained for doing home exercise to stretch Pectoralis minor bilaterally for two weeks. Kinesiotape group received kinesiotape on scapular area additionally. Forward shoulder angle was measured in four sessions including pre-intervention (first session, immediately after the first intervention (second session, fourth day (third session and at the end of two weeks (fourth session. Two-way repeated measures ANOVA (4×2 was used for data analysis. Results: kinesiotape group showed significant within-group decrease in forward shoulder angle between first session with three other sessions (P≤0.05.There was no significant within-group difference in stretch group and between groups (P=0.20 forward shoulder angle-by-group interaction in measurement sessions was significantly different (P=0.02 Conclusion: scapular kinesiotaping along with pectoralis minor stretching exercise improved rounded shoulder posture in subjects of the present study. kinesiotape is suggested as a complem

  4. [Effectiveness of a stretching program on anxiety levels of workers in a logistic platform: a randomized controlled study].

    Science.gov (United States)

    Montero-Marín, Jesús; Asún, Sonia; Estrada-Marcén, Nerea; Romero, Rosario; Asún, Roberto

    2013-01-01

    To study the influence of a short programme of stretching exercises on anxiety levels of workers in a Spanish logistic company. A controlled clinical trial was carried out by means of an inter-subject design of random homogeneous blocks. Participants were assigned to the experimental group (n=67), treated with a programme of stretching exercises of 10-minute duration after working hours for a period of 3 months, or to the untreated control group (n=67). The primary result variable was anxiety, and the secondary variables were burnout syndrome, quality of life and flexibility. An analysis of covariance (ANCOVA) by intention to treat was performed on each of the result variables by controlling the baseline scores, the age and the practice of introjective activities outside the program, with the size effect calculated by means of the partial eta-squared value (η(2)). The results of the ANCOVA showed a moderate effect of the stretching exercise programme on the levels of anxiety (η(2)=0,06; P=.004). Other effects found were substantial for flexibility (η(2)=0,13; P<.001); moderately high for bodily pain (η(2)=0,08; P=.001), and moderate for vitality (η(2)=0,05; P=.016); mental health (η(2)=0,05; P=.017); general health (η(2)=0,04; P=.028) and exhaustion (η(2)=0,04; P=.025). The implementation of a short programme of stretching exercises in the work place was effective for reducing levels of anxiety, bodily pain and exhaustion, and for raising levels of vitality, mental health, general health and flexibility. This type of intervention could be seen as a low-cost strategy for improving the well-being of workers. Copyright © 2013 Elsevier España, S.L. All rights reserved.

  5. OH stretching frequencies in systems with intramolecular hydrogen bonds

    DEFF Research Database (Denmark)

    Spanget-Larsen, Jens; Hansen, Bjarke Knud Vilster; Hansen, Poul Erik

    2011-01-01

    OH stretching wavenumbers were investigated for 30 species with intramolecularly hydrogen bonded hydroxyl groups, covering the range from 3600 to ca. 1900 cm-1. Theoretical wavenumbers were predicted with B3LYP/6-31G(d) density functional theory using the standard harmonic approximation, as well...

  6. A single molecule DNA flow stretching microscope for undergraduates

    NARCIS (Netherlands)

    Williams, Kelly; Grafe, Brendan; Burke, Kathryn M.; Tanner, Nathan; van Oijen, Antoine M.; Loparo, Joseph; Price, Allen C.

    2011-01-01

    The design of a simple, safe, and inexpensive single molecule flow stretching instrument is presented. The instrument uses a low cost upright microscope coupled to a webcam for imaging single DNA molecules that are tethered in an easy to construct microfluidic flow cell. The system requires no

  7. Torsion-inversion tunneling patterns in the CH-stretch vibrationally excited states of the G12 family of molecules including methylamine.

    Science.gov (United States)

    Dawadi, Mahesh B; Bhatta, Ram S; Perry, David S

    2013-12-19

    Two torsion-inversion tunneling models (models I and II) are reported for the CH-stretch vibrationally excited states in the G12 family of molecules. The torsion and inversion tunneling parameters, h(2v) and h(3v), respectively, are combined with low-order coupling terms involving the CH-stretch vibrations. Model I is a group theoretical treatment starting from the symmetric rotor methyl CH-stretch vibrations; model II is an internal coordinate model including the local-local CH-stretch coupling. Each model yields predicted torsion-inversion tunneling patterns of the four symmetry species, A, B, E1, and E2, in the CH-stretch excited states. Although the predicted tunneling patterns for the symmetric CH-stretch excited state are the same as for the ground state, inverted tunneling patterns are predicted for the asymmetric CH-stretches. The qualitative tunneling patterns predicted are independent of the model type and of the particular coupling terms considered. In model I, the magnitudes of the tunneling splittings in the two asymmetric CH-stretch excited states are equal to half of that in the ground state, but in model II, they differ when the tunneling rate is fast. The model predictions are compared across the series of molecules methanol, methylamine, 2-methylmalonaldehyde, and 5-methyltropolone and to the available experimental data.

  8. Ion imprinted activated carbon solid-phase extraction coupled to flame atomic absorption spectrometry for selective determination of lead ions in environmental samples

    Energy Technology Data Exchange (ETDEWEB)

    Naraghi, Kiyana; Panahi, Homayon Ahmad; Hassani, Amir Hesam [Islamic Azad University, Tehran (Korea, Republic of); Moniri, Elham [Islamic Azad University, Varamin (Iran, Islamic Republic of)

    2014-10-15

    A simple lead ion imprinted sorbent was synthesized by coupling activated carbon with a known metal chelating compound, iminodiacetic acid. The ion imprinted sorbent has been characterized using Fourier transform infrared spectroscopy, elemental analysis and thermogravimetric analysis and subjected for the extraction and determination of trace Pb(II) in environmental water samples. The optimum pH value for sorption of the lead ion was 6.5. The sorption capacity of lead imprinted sorbent was 42.2 mg g{sup −1}. The chelating imprinted sorbent can be reused for five cycles of sorption-desorption without any significant change in sorption capacity. Compared with non-imprinted polymer particles, the lead ion imprinted sorbent showed high adsorption capacity, significant selectivity, good site accessibility for Pb(II). The equilibrium adsorption data of Pb(II) by modified resin were analyzed by Langmuir, Freundlich, Temkin and Redlich-Peterson models.

  9. Contact angles on stretched solids

    Science.gov (United States)

    Mensink, Liz; Snoeijer, Jacco

    2017-11-01

    The surface energy of solid interfaces plays a central role in wetting, as they dictate the liquid contact angle. Yet, it has been challenging to measure the solid surface energies independently, without making use of Young's law. Here we present Molecular Dynamics (MD) simulations by which we measure the surface properties for all interfaces, including the solids. We observe change in contact angles upon stretching the solid substrates, showing that the surface energy is actually strain dependent. This is clear evidence of the so-called Shuttleworth effect, making it necessary to distinguish surface energy from surface tension. We discuss how this effect gives rise to a new class of elasto-capillary phenomena. ERC Consolidator Grant No. 616918.

  10. Graphical analysis for gel morphology II. New mathematical approach for stretched exponential function with β>1

    Science.gov (United States)

    Hashimoto, Chihiro; Panizza, Pascal; Rouch, Jacques; Ushiki, Hideharu

    2005-10-01

    A new analytical concept is applied to the kinetics of the shrinking process of poly(N-isopropylacrylamide) (PNIPA) gels. When PNIPA gels are put into hot water above the critical temperature, two-step shrinking is observed and the secondary shrinking of gels is fitted well by a stretched exponential function. The exponent β characterizing the stretched exponential is always higher than one, although there are few analytical concepts for the stretched exponential function with β>1. As a new interpretation for this function, we propose a superposition of step (Heaviside) function and a new distribution function of characteristic time is deduced.

  11. Graphical analysis for gel morphology II. New mathematical approach for stretched exponential function with β>1

    International Nuclear Information System (INIS)

    Hashimoto, Chihiro; Panizza, Pascal; Rouch, Jacques; Ushiki, Hideharu

    2005-01-01

    A new analytical concept is applied to the kinetics of the shrinking process of poly(N-isopropylacrylamide) (PNIPA) gels. When PNIPA gels are put into hot water above the critical temperature, two-step shrinking is observed and the secondary shrinking of gels is fitted well by a stretched exponential function. The exponent β characterizing the stretched exponential is always higher than one, although there are few analytical concepts for the stretched exponential function with β>1. As a new interpretation for this function, we propose a superposition of step (Heaviside) function and a new distribution function of characteristic time is deduced

  12. Graphical analysis for gel morphology II. New mathematical approach for stretched exponential function with {beta}>1

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Chihiro [Graduate School of Bio-Application and System Engineering (BASE), Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi Tokyo 185-0054 (Japan); Panizza, Pascal [Centre de Physique Moleculaire Optique et Hertzienne (CPMOH), Bordeaux I University, 351 Cours de la Liberation 33405 Talance (France); Rouch, Jacques [Centre de Physique Moleculaire Optique et Hertzienne (CPMOH), Bordeaux I University, 351 Cours de la Liberation 33405 Talance (France); Ushiki, Hideharu [Graduate School of Bio-Application and System Engineering (BASE), Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi Tokyo 185-0054 (Japan)

    2005-10-19

    A new analytical concept is applied to the kinetics of the shrinking process of poly(N-isopropylacrylamide) (PNIPA) gels. When PNIPA gels are put into hot water above the critical temperature, two-step shrinking is observed and the secondary shrinking of gels is fitted well by a stretched exponential function. The exponent {beta} characterizing the stretched exponential is always higher than one, although there are few analytical concepts for the stretched exponential function with {beta}>1. As a new interpretation for this function, we propose a superposition of step (Heaviside) function and a new distribution function of characteristic time is deduced.

  13. Electrostatic control by lipids upon the membrane-bound (Na+ + K+)-ATPase. II. The influence of surface potential upon the activating ion equilibria.

    Science.gov (United States)

    Ahrens, M L

    1983-07-13

    Electrostatic influences upon the enzymatic activity of the (Na+ + K+)-ATPase from ox brain (EC 3.6.1.3) have been studied. (1) The characteristics of the temperature dependence of the activity - the slopes and inflection temperature, Ti, of the Arrhenius plots - have been shown to depend on the total concentration, but not on the specific properties of added monovalent ions. (2) The enzymatic activity has been shown to be subject simultaneously to unspecific and specific influences of alkali-metal ions or NH+4. Ion-specific effects result from different binding constants of complexation between activating ions and enzyme. These stability constants are affected by the formation of an electrical double layer at the membrane surface. With increasing electrostatic screening, the complex formation is destabilized and, as a consequence, the enzymatic activity decreases. (3) This interaction between ion binding and surface electrostatics enables the enzyme to adapt its activity to the actual ionic conditions. This gives rise to a complex net dependence of the enzymatic activity upon the concentrations of activating ions. Such dependencies are analyzed, and an 'activity surface' has been constructed which represents the enzymatic activity as a function of simultaneously varying concentrations of sodium and potassium. The shape of this activity surface is determined by the relations between ion concentrations, surface potential and the resulting stability of the complexation between the activating ions and the enzyme. By means of three-dimensional representation it is demonstrated that the adaptability of the stability constants is of great importance with respect to the maintenance of the optimal ionic concentrations within the living cell. Therefore, by means of the surrounding membrane, the ATPase is provided with a quality, in addition to its substrate specificity and catalytic ability, which is necessary for its function as a transport enzyme.

  14. An economic analysis of stretch-out for Angra-1 reactor

    International Nuclear Information System (INIS)

    Sakai, M.

    1989-01-01

    An application of NUCOST code for calculating nuclear energy cost is presented. Ann optimization of stretch-out for Angra-1 reactor based on international costs of nuclear fuel, operation and maintenance is done. (M.C.K.)

  15. A control scheme for filament stretching rheometers with application to polymer melts

    DEFF Research Database (Denmark)

    Román Marín, José Manuel; Huusom, Jakob Kjøbsted; Javier Alvarez, Nicolas

    2013-01-01

    We propose a new control scheme to maintain a constant strain rate of the mid-filament diameter in a filament stretching rheometer for polymer melts. The scheme is cast as a velocity algorithm and consists of a feed-back and a feed-forward contribution. The performance of the controller is demons......We propose a new control scheme to maintain a constant strain rate of the mid-filament diameter in a filament stretching rheometer for polymer melts. The scheme is cast as a velocity algorithm and consists of a feed-back and a feed-forward contribution. The performance of the controller...

  16. Measuring the curvature of space with stretched strings

    International Nuclear Information System (INIS)

    Lyth, D.H.

    1983-01-01

    The equilibrium of a stretched string in curved space is studied. The problem is first formulated without detailed assumptions, then the force of gravity on the string is calculated from general relativity with a static metric. Apart from the latter calculation everything is done in ordinary space rather than in space-time. A number of simple cases are worked out explicitly. (author)

  17. Investigation on thermomechanical properties of poly (l-lactic acid) for the stretch blow moulding process of bioresorbable vascular scaffold

    Science.gov (United States)

    Wei, Huidong; Menary, Gary

    2017-10-01

    Stretch blow moulding process has been used for the manufacture of bioresorbable vascular scaffold (BVS) made by poly (l-lactic acid) (PLLA) to improve its mechanical performance. In order to better understand the process, thermomechanical properties of PLLA were investigated by experimental method. Extruded PLLA sheets were biaxial stretched under strain rate of 1s-1, 4s-1 and 16s-1 to simulate the deformation process applicable in the blow moulding process. Both the equal-biaxial stretch and constant-width stretch were conducted by an in-house developed equipment. By differential scanning calorimeter (DSC), thermal analysis for materials before and after stretch were compared to evaluate the microstructural change of PLLA materials in the deformation process. A constitutive model based on glass rubber model was presented to simulate the mechanical behaviour of PLLA above glass transition under biaxial deformation.

  18. Short-term pressure induced suppression of the short-latency response: a new methodology for investigating stretch reflexes

    DEFF Research Database (Denmark)

    Leukel, Christian; Lundbye-Jensen, Jesper; Gruber, Markus

    2009-01-01

    During experiments involving ischemic nerve block, we noticed that the short-latency response (SLR) of evoked stretches in m. soleus decreased immediately following inflation of a pneumatic cuff surrounding the lower leg. The present study aimed to investigate this short-term effect of pressure......) were recorded. Additionally, stretches were applied with different velocities and amplitudes. Finally, the SLR was investigated during hopping and in two protocols that modified the ability of the muscle-tendon complex distal to the cuff to stretch. All measurements were performed with deflated...

  19. Stretches of alternating pyrimidine/purines and purines are respectively linked with pathogenicity and growth temperature in prokaryotes

    DEFF Research Database (Denmark)

    Ussery, David; Bohlin, J; Hardy, SP

    2009-01-01

    BACKGROUND: The genomic fractions of purine (RR) and alternating pyrimidine/purine (YR) stretches of 10 base pairs or more, have been linked to genomic AT content, the formation of different DNA helices, strand-biased gene distribution, DNA structure, and more. Although some of these factors are ...... phyla. RR stretches are overrepresented in all phyla except for the Actinobacteria and beta-Proteobacteria. In contrast, YR tracts are underrepresented in all phyla except for the beta-Proteobacterial group. YR-stretches are associated with phylum, pathogenicity and habitat, whilst RR...

  20. Effect of hexane treatment and uniaxial stretching on bending ...

    African Journals Online (AJOL)

    PVDF) film was studied. The quantity, β31, defined as the bending piezoelectric stress constant, was calculated. After hexane treatment and uniaxial stretching of the PVDF film, the value of β31 was 5.75 mV/m and 8.00 mV/m for draw ratio of ...