WorldWideScience

Sample records for stressed aged rats

  1. Various cellular stress components change as the rat ages: An insight into the putative overall age-related cellular stress network.

    Science.gov (United States)

    Cueno, Marni E; Imai, Kenichi

    2018-02-01

    Cellular stress is mainly comprised of oxidative, nitrosative, and endoplasmic reticulum stresses and has long been correlated to the ageing process. Surprisingly, the age-related difference among the various components in each independent stress pathway and the possible significance of these components in relation to the overall cellular stress network remain to be clearly elucidated. In this study, we obtained blood from ageing rats upon reaching 20-, 40-, and 72-wk.-old. Subsequently, we measured representative cellular stress-linked biomolecules (H 2 O 2 , glutathione reductase, heme, NADPH, NADP, nitric oxide, GADD153) and cell signals [substance P (SP), free fatty acid, calcium, NF-κB] in either or both blood serum and cytosol. Subsequently, network analysis of the overall cellular stress network was performed. Our results show that there are changes affecting stress-linked biomolecules and cell signals as the rat ages. Additionally, based on our network analysis data, we postulate that NADPH, H 2 O 2 , GADD153, and SP are the key components and the interactions between these components are central to the overall age-related cellular stress network in the rat blood. Thus, we propose that the main pathway affecting the overall age-related cellular stress network in the rat blood would entail NADPH-related oxidative stress (involving H 2 O 2 ) triggering GADD153 activation leading to SP induction which in-turn affects other cell signals. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Tualang Honey Attenuates Noise Stress-Induced Memory Deficits in Aged Rats.

    Science.gov (United States)

    Azman, Khairunnuur Fairuz; Zakaria, Rahimah; Abdul Aziz, Che Badariah; Othman, Zahiruddin

    2016-01-01

    Ageing and stress exposure may lead to memory impairment while oxidative stress is thought to be one of the underlying mechanisms involved. This study aimed to investigate the potential protective effects of Tualang honey supplementation on memory performance in aged rats exposed to noise stress. Tualang honey supplementation was given orally, 200 mg/kg body weight for 28 days. Rats in the stress group were subjected to loud noise, 100 dB(A), 4 hours daily for 14 days. All rats were subjected to novel object recognition test for evaluation of memory performance. It was observed that the rats subjected to noise stress exhibited significantly lower memory performance and higher oxidative stress as evident by elevated malondialdehyde and protein carbonyl levels and reduction of antioxidant enzymes activities compared to the nonstressed rats. Tualang honey supplementation was able to improve memory performance, decrease oxidative stress levels, increase brain-derived neurotrophic factor (BDNF) concentration, decrease acetylcholinesterase activity, and enhance neuronal proliferation in the medial prefrontal cortex (mPFC) and hippocampus. In conclusion, Tualang honey protects against memory decline due to stress exposure and/or ageing via enhancement of mPFC and hippocampal morphology possibly secondary to reduction in brain oxidative stress and/or upregulation of BDNF concentration and cholinergic system.

  3. Aged rats are hypo-responsive to acute restraint: implications for psychosocial stress in aging

    Directory of Open Access Journals (Sweden)

    Heather M Buechel

    2014-02-01

    Full Text Available Cognitive processes associated with prefrontal cortex and hippocampus decline with age and are vulnerable to disruption by stress. The stress/ stress hormone/ allostatic load hypotheses of brain aging posit that brain aging, at least in part, is the manifestation of life-long stress exposure. In addition, as humans age, there is a profound increase in the incidence of new onset stressors, many of which are psychosocial (e.g., loss of job, death of spouse, social isolation, and aged humans are well-understood to be more vulnerable to the negative consequences of such new-onset chronic psychosocial stress events. However, the mechanistic underpinnings of this age-related shift in chronic psychosocial stress response, or the initial acute phase of that chronic response, have been less well-studied. Here, we separated young (3 mo. and aged (21 mo. male F344 rats into control and acute restraint (an animal model of psychosocial stress groups (n = 9-12/ group. We then assessed hippocampus-associated behavioral, electrophysiological, and transcriptional outcomes, as well as blood glucocorticoid and sleep architecture changes. Aged rats showed characteristic water maze, deep sleep, transcriptome, and synaptic sensitivity changes compared to young. Young and aged rats showed similar levels of distress during the three hour restraint, as well as highly significant increases in blood glucocorticoid levels 21 hours after restraint. However, young, but not aged, animals responded to stress exposure with water maze deficits, loss of deep sleep and hyperthermia. These results demonstrate that aged subjects are hypo-responsive to new-onset acute psychosocial stress, which may have negative consequences for long-term stress adaptation and suggest that age itself may act as a stressor occluding the influence of new onset stressors.

  4. Aged rats are hypo-responsive to acute restraint: implications for psychosocial stress in aging

    Science.gov (United States)

    Buechel, Heather M.; Popovic, Jelena; Staggs, Kendra; Anderson, Katie L.; Thibault, Olivier; Blalock, Eric M.

    2013-01-01

    Cognitive processes associated with prefrontal cortex and hippocampus decline with age and are vulnerable to disruption by stress. The stress/stress hormone/allostatic load hypotheses of brain aging posit that brain aging, at least in part, is the manifestation of life-long stress exposure. In addition, as humans age, there is a profound increase in the incidence of new onset stressors, many of which are psychosocial (e.g., loss of job, death of spouse, social isolation), and aged humans are well-understood to be more vulnerable to the negative consequences of such new-onset chronic psychosocial stress events. However, the mechanistic underpinnings of this age-related shift in chronic psychosocial stress response, or the initial acute phase of that chronic response, have been less well-studied. Here, we separated young (3 month) and aged (21 month) male F344 rats into control and acute restraint (an animal model of psychosocial stress) groups (n = 9–12/group). We then assessed hippocampus-associated behavioral, electrophysiological, and transcriptional outcomes, as well as blood glucocorticoid and sleep architecture changes. Aged rats showed characteristic water maze, deep sleep, transcriptome, and synaptic sensitivity changes compared to young. Young and aged rats showed similar levels of distress during the 3 h restraint, as well as highly significant increases in blood glucocorticoid levels 21 h after restraint. However, young, but not aged, animals responded to stress exposure with water maze deficits, loss of deep sleep and hyperthermia. These results demonstrate that aged subjects are hypo-responsive to new-onset acute psychosocial stress, which may have negative consequences for long-term stress adaptation and suggest that age itself may act as a stressor occluding the influence of new onset stressors. PMID:24575039

  5. Synergistic Effect of Rapamycin and Metformin Against Age-Dependent Oxidative Stress in Rat Erythrocytes.

    Science.gov (United States)

    Singh, Abhishek Kumar; Garg, Geetika; Singh, Sandeep; Rizvi, Syed Ibrahim

    2017-10-01

    Erythrocytes are particularly vulnerable toward age-dependent oxidative stress-mediated damage. Caloric restriction mimetics (CRMs) may provide a novel strategy for the maintenance of redox balance as well as effective treatment of age-associated diseases. Herein, we have investigated the beneficial effect of cotreatment with CRM-candidate drugs, rapamycin (an immunosuppressant drug and inhibitor of mammalian target of rapamycin) and metformin (an antidiabetic biguanide and activator of adenosine monophosphate kinase), against aging-induced oxidative stress in erythrocytes and plasma of aging rats. Male Wistar rats of age 4 (young) and 24 months (old) were coexposed to rapamycin (0.5 mg/kg body weight [b.w.]) and metformin (300 mg/kg b.w.), and data were compared with the response of rats receiving an independent exposure to these chemicals at similar doses. The exposure of individual candidate drugs significantly reversed the age-dependent alterations in the endpoints associated with oxidative stress such as reactive oxygen species, ferric reducing ability of plasma, malondialdehyde, reduced glutathione, plasma membrane redox system, plasma protein carbonyl, and acetyl cholinesterase in erythrocytes and plasma of aging rats. However, the cotreatment with rapamycin and metformin showed a significant augmented effect compared with individual drug interventions on reversal of these age-dependent biomarkers of oxidative stress, suggesting a synergistic response. Thus, the findings open up further possibilities for the design of new combinatorial therapies to prevent oxidative stress- and age-associated health problems.

  6. Oxidative stress participates in age-related changes in rat lumbar intervertebral discs.

    Science.gov (United States)

    Hou, Gang; Lu, Huading; Chen, Mingjuan; Yao, Hui; Zhao, Huiqing

    2014-01-01

    Aging is a major factor associated with lumber intervertebral disc degeneration, and oxidative stress is known to play an essential role in the pathogenesis of many age-related diseases. In this study, we investigated oxidative stress in intervertebral discs of Wistar rats in three different age groups: youth, adult, and geriatric. Age-related intervertebral disc changes were examined by histological analysis. In addition, oxidative stress was evaluated by assessing nitric oxide (NO), superoxide dismutase (SOD), malondialdehyde (MDA), and advanced oxidation protein products (AOPPs). Intervertebral disc, but not serum, NO concentrations significantly differed between the three groups. Serum and intervertebral disc SOD activity gradually decreased with age. Furthermore, both serum and intervertebral disc MDA and AOPP levels gradually increased with age. Our studies suggest that oxidative stress is associated with age-related intervertebral disc changes. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. Desipramine rescues age-related phenotypes in depression-like rats induced by chronic mild stress.

    Science.gov (United States)

    Xie, Xiaoxian; Chen, Yangyang; Wang, Qi; Shen, Qichen; Ma, Lingyan; Huang, Liangfeng; Wu, Tao; Fu, Zhengwei

    2017-11-01

    Our previous finding demonstrates that major depressive disorder can mediate accelerated aging in rats. Desipramine is a typical tricyclic antidepressant, and can provide neuroprotection and counteract depression-like behaviors. However, whether desipramine can rescue age-related phenotypes in depressed individuals is not understood. In the present study, we investigated the physiological function of desipramine on rescuing the age-related phenotypes in these animals. The rats were induced by chronic mild stress paradigm, and the depression-like behaviors of rats were detected by sucrose intake test, open field test (OFT) and forced swimming test (FST). Then the depressed rats were treated by desipramine. Desipramine administration was effective in counteracting depression-like behaviors by increasing the sucrose solution intake, reducing the immobility time in the FST, and increasing total distance travelled and numbers of grid line crossed in the OFT. Moreover, desipramine treatment was able to reduce the oxidative damage to rat liver, and to increase the expression of telomerase reverse transcriptase (TERT), leading to correspondingly restored telomerase activity. Our findings identify that one function of desipramine may partly be to rescue age-related phenotypes in depressed individuals induced by chronic stress. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Effect of Low Amphetamine Doses on Cardiac Responses to Emotional Stress in Aged Rats

    NARCIS (Netherlands)

    Nyakas, Csaba; Buwalda, Bauke; Luiten, Paul G.M.; Bohus, Bela

    1992-01-01

    In young Wistar rats conditioned emotional stress can be characterized by a learned bradycardiac response to an inescapable footshock. In aged rats this bradycardiac response is attenuated and accompanied by suppressed behavioral arousal in response to novelty. In the present study, cardiac

  9. Major depressive disorder mediates accelerated aging in rats subjected to chronic mild stress.

    Science.gov (United States)

    Xie, Xiaoxian; Chen, Yangyang; Ma, Lingyan; Shen, Qichen; Huang, Liangfeng; Zhao, Binggong; Wu, Tao; Fu, Zhengwei

    2017-06-30

    Major depressive disorder (MDD) has a complex etiology and is characterized by a change in mood and psychophysiological state. MDD has been shown to mediate accelerated biological aging in patients, although the underlying mechanism is not well understood. In the present study, we used a chronic mild stress (CMS) paradigm to induce anhedonia, one of the main symptoms of MDD. CMS induced depression-like symptoms in rats, including reduced sucrose preference and increased immobility time in the forced swim test. Moreover, stressed rats travelled a shorter total distance, had fewer grid line crossings, and spent less time in the outer zone in the open field test than controls. CMS altered the levels of 5-hydroxytryptophan, dopamine, and corticosterone in the serum and hippocampus (P<0.05); these rats also exhibited impaired liver function, decreased telomerase activity, and telomere shortening, which was associated with increased oxidative damage along with decreased superoxide dismutase and glutathione reductase activities. Mitochondria in CMS-treated rats showed ultrastructural damage as well as reduced DNA content and integrity. These findings provide physiological and cellular evidence that the MDD can mediate accelerated aging in rats. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Oxidative stress induces the decline of brain EPO expression in aging rats.

    Science.gov (United States)

    Li, Xu; Chen, Yubao; Shao, Siying; Tang, Qing; Chen, Weihai; Chen, Yi; Xu, Xiaoyu

    2016-10-01

    Brain Erythropoietin (EPO), an important neurotrophic factor and neuroprotective factor, was found to be associated with aging. Studies found EPO expression was significantly decreased in the hippocampus of aging rat compared with that of the youth. But mechanisms of the decline of the brain EPO during aging remain unclear. The present study utilized a d-galactose (d-gal)-induced aging model in which the inducement of aging was mainly oxidative injury, to explore underlying mechanisms for the decline of brain EPO in aging rats. d-gal-induced aging rats (2months) were simulated by subcutaneously injecting with d-gal at doses of 50mg·kg(-1), 150mg·kg(-1) and 250mg·kg(-1) daily for 8weeks while the control group received vehicle only. These groups were all compared with the aging rats (24months) which had received no other treatment. The cognitive impairment was assessed using Morris water maze (MWM) in the prepared models, and the amount of β-galactosidase, the lipid peroxidation product malondialdehyde (MDA) level and the superoxide dismutase (SOD) activity in the hippocampus was examined by assay kits. The levels of EPO, EPOR, p-JAK2 and hypoxia-inducible factor-2α (HIF-2α) in the hippocampus were detected by western blot. Additionally, the correlation coefficient between EPO/EPOR expression and MDA level was analyzed. The MWM test showed that compared to control group, the escape latency was significantly extended and the times of crossing the platform was decreased at the doses of 150mg·kg(-1) and 250mg·kg(-1) (paging rats, the expressions of EPO, EPOR, p-JAK2, and HIF-2αin the brain of d-gal-treated rats were significantly decreased (paging could result in the decline of EPO in the hippocampus and oxidative stress might be the main reason for the decline of brain EPO in aging rats, involved with the decrease of HIF-2α stability. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Xanthine Oxidase Inhibitor, Allopurinol, Prevented Oxidative Stress, Fibrosis, and Myocardial Damage in Isoproterenol Induced Aged Rats.

    Science.gov (United States)

    Sagor, Md Abu Taher; Tabassum, Nabila; Potol, Md Abdullah; Alam, Md Ashraful

    2015-01-01

    We evaluated the preventive effect of allopurinol on isoproterenol (ISO) induced myocardial infarction in aged rats. Twelve- to fourteen-month-old male Long Evans rats were divided into three groups: control, ISO, and ISO + allopurinol. At the end of the study, all rats were sacrificed for blood and organ sample collection to evaluate biochemical parameters and oxidative stress markers analyses. Histopathological examinations were also conducted to assess inflammatory cell infiltration and fibrosis in heart and kidneys. Our investigation revealed that the levels of oxidative stress markers were significantly increased while the level of cellular antioxidants, catalase activity, and glutathione concentration in ISO induced rats decreased. Treatment with allopurinol to ISO induced rats prevented the elevated activities of AST, ALT, and ALP enzymes, and the levels of lipid peroxidation products and increased reduced glutathione concentration. ISO induced rats also showed massive inflammatory cells infiltration and fibrosis in heart and kidneys. Furthermore, allopurinol treatment prevented the inflammatory cells infiltration and fibrosis in ISO induced rats. In conclusion, the results of our study suggest that allopurinol treatment is capable of protecting heart of ISO induced myocardial infarction in rats probably by preventing oxidative stress, inflammation, and fibrosis.

  12. Renal aging in WKY rats: changes in Na+,K+ -ATPase function and oxidative stress.

    Science.gov (United States)

    Silva, E; Pinto, V; Simão, S; Serrão, M P; Afonso, J; Amaral, J; Pinho, M J; Gomes, P; Soares-da-Silva, P

    2010-12-01

    It has been suggested that alterations in Na(+),K(+)-ATPase mediate the development of several aging-related pathologies, such as hypertension and diabetes. Thus, we evaluated Na(+),K(+)-ATPase function and H(2)O(2) production in the renal cortex and medulla of Wistar Kyoto (WKY) rats at 13, 52 and 91 weeks of age. Creatinine clearance, proteinuria, urinary excretion of Na(+) and K(+) and fractional excretion of Na(+) were also determined. The results show that at 91 weeks old WKY rats had increased creatinine clearance and did not have proteinuria. Despite aging having had no effect on urinary Na(+) excretion, urinary K(+) excretion was increased and fractional Na(+) excretion was decreased with age. In renal proximal tubules and isolated renal cortical cells, 91 week old rats had decreased Na(+),K(+)-ATPase activity when compared to 13 and 52 week old rats. In renal medulla, 91 week old rats had increased Na(+),K(+)-ATPase activity, paralleled by an increase in protein expression of α(1)-subunit of Na(+),K(+)-ATPase. In addition, renal H(2)O(2) production increased with age and at 91 weeks of age renal medulla H(2)O(2) production was significantly higher than renal cortex production. The present work demonstrates that although at 91 weeks of age WKY rats were able to maintain Na(+) homeostasis, aging was accompanied by alterations in renal Na(+),K(+)-ATPase function. The observed increase in oxidative stress may account, in part, for the observed changes. Possibly, altered Na(+),K(+)-ATPase renal function may precede the development of age-related pathologies and loss of renal function. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. Effects of unpredictable chronic stress on behavior and brain-derived neurotrophic factor expression in CA3 subfield and dentate gyrus of the hippocampus in different aged rats.

    Science.gov (United States)

    Li, Ying; Ji, Yong-juan; Jiang, Hong; Liu, De-xiang; Zhang, Qian; Fan, Shu-jian; Pan, Fang

    2009-07-05

    Brain-derived neurotrophic factor (BDNF) is a stress-responsive intercellular messenger modifying hypothalamic-pituitary-adrenal (HPA) axis activity. The interaction between stress and age in BDNF expression is currently not fully understood. This study was conducted to observe unpredictable stress effect on behavior and BDNF expression in CA3 subfield (CA3) and dentate gyrus of hippocampus in different aged rats. Forty-eight Wistar rats of two different ages (2 months and 15 months) were randomly assigned to six groups: two control groups and four stress groups. The rats in the stress group received three weeks of unpredictable mild stress. The depression state and the stress level of the animals were determined by sucrose preference test and observation of exploratory behavior in an open field (OF) test. The expressions of BDNF in CA3 and dentate gyrus of the hippocampus were measured using immunohistochemistry. Age and stress had different effects on the behavior of different aged animals (age: F = 6.173, P BDNF expression in the CA3 and dentate gyrus regions of the hippocampus following stress in both age groups (P BDNF (F = 9.408, P BDNF expression compared to the young stressed group at every testing time point. Stress has age-dependent effects on behavioral responses and hippocampal BDNF expression in rats.

  14. Protective effect of caffeine and a selective A2A receptor antagonist on impairment of memory and oxidative stress of aged rats.

    Science.gov (United States)

    Leite, Marlon Régis; Wilhelm, Ethel A; Jesse, Cristiano R; Brandão, Ricardo; Nogueira, Cristina Wayne

    2011-04-01

    In this study, the effects of caffeine (CAF) and SCH58261, a selective A(2A) receptor antagonist, on memory impairment and oxidative stress generated by aging in rats were investigated. Young and aged rats were treated daily per 10 days with CAF (30 mg/kg p.o.) or SCH58261 (0.5mg/kg, p.o.) or vehicle (1 ml/kg p.o.). Rats were trained and tested in a novel object recognition task. After the behavioral test, ascorbic acid and oxygen and nitrogen reactive species levels as well as Na(+)K(+) ATPase activity were determined in rat brain. The results demonstrated that the age-related memory deficit was reversed by treatment with CAF or SCH58261. Treatment with CAF or SCH58261 significantly normalized oxygen and nitrogen reactive species levels increased in brains of aged rats. Na(+)K(+) ATPase activity inhibited in brains of aged rats was also normalized by CAF or SCH58261 treatment. A decrease in basal ascorbic acid levels in brains of aged rats was not changed by CAF or SCH58261. These results demonstrated that CAF and SCH58261, modulators of adenosinergic receptors, were able to reverse age-associated memory impairment and to partially reduce oxidative stress. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. Age- and Sex-Dependent Impact of Repeated Social Stress on Intrinsic and Synaptic Excitability of the Rat Prefrontal Cortex.

    Science.gov (United States)

    Urban, Kimberly R; Valentino, Rita J

    2017-01-01

    Stress is implicated in psychiatric illnesses that are characterized by impairments in cognitive functions that are mediated by the medial prefrontal cortex (mPFC). Because sex and age determine stress vulnerability, the effects of repeated social stress occurring during early adolescence, mid-adolescence, or adulthood on the cellular properties of male and female rat mPFC Layer V neurons in vitro were examined. Repeated resident-intruder stress produced age- and sex-specific effects on mPFC intrinsic and synaptic excitability. Mid-adolescents were particularly vulnerable to effects on intrinsic excitability. The maximum number of action potentials (APs) evoked by increasing current intensity was robustly decreased in stressed male and female mid-adolescent rats compared with age-matched controls. These effects were associated with stress-induced changes in AP half-width, amplitude, threshold, and input resistance. Social stress at all ages generally decreased synaptic excitability by decreasing the amplitude of spontaneous excitatory postsynaptic potentials. The results suggest that whereas social stress throughout life can diminish the influence of afferents driving the mPFC, social stress during mid-adolescence additionally affects intrinsic characteristics of mPFC neurons that determine excitability. The depressant effects of social stress on intrinsic and synaptic mPFC neurons may underlie its ability to affect executive functions and emotional responses, particularly during adolescence. © The Author 2016. Published by Oxford University Press.

  16. Age-related differences in anxiety-like behavior and amygdalar CCL2 responsiveness to stress following alcohol withdrawal in male Wistar rats.

    Science.gov (United States)

    Harper, Kathryn M; Knapp, Darin J; Park, Meredith A; Breese, George R

    2017-01-01

    Behavioral and neuroimmune vulnerability to withdrawal from chronic alcohol varies with age. The relation of anxiety-like behavior to amygdalar CCL2 responses following stress after withdrawal from chronic intermittent alcohol (CIA) was investigated in adolescent and adult rats. Adolescent and adult Wistar rats were exposed to CIA (three 5-day blocks of dietary alcohol separated by 2 days of withdrawal) at concentrations that created similar blood alcohol levels across age. Twenty-four hours into the final withdrawal, half of the rats were exposed to 1 h of restraint stress. Four hours post-stress, rats were used for behavior or tissue assays. Anxiety-like behavior was increased versus controls by CIA in adolescents and by CIA + stress in adults. CCL2 mRNA was increased versus controls by CIA in adolescents and by CIA and CIA + stress in adults. CCL2 co-localization with neuronal marker NeuN was decreased versus controls by CIA in adolescents and by CIA + stress in adults. CCL2 co-localization with astrocytic marker GFAP was decreased versus controls by CIA and CIA + stress in adolescents, but experimental groups did not differ from controls in adults. CCL2 co-localization with microglial marker Iba1 was decreased versus controls by stress alone in adolescents and by CIA + stress in adults. Changes in CCL2 protein might control behavior at either age but are particularly associated with CIA alone in adolescents and with CIA + stress in adults. That the number of CeA neurons expressing CCL2 was altered after CIA and stress is consistent with CCL2 involvement in neural function.

  17. Taurine Pretreatment Prevents Isoflurane-Induced Cognitive Impairment by Inhibiting ER Stress-Mediated Activation of Apoptosis Pathways in the Hippocampus in Aged Rats.

    Science.gov (United States)

    Zhang, Yanan; Li, Dongliang; Li, Haiou; Hou, Dailiang; Hou, Jingdong

    2016-10-01

    Isoflurane, a commonly used inhalation anesthetic, may induce neurocognitive deficits, especially in elderly patients after surgery. Recent study demonstrated that isoflurane caused endoplasmic reticulum (ER) stress and subsequent neuronal apoptosis in the brain, contributing to cognitive deficits. Taurine, a major intracellular free amino acid, has been shown to inhibit ER stress and neuronal apoptosis in several neurological disorders. Here, we examined whether taurine can prevent isoflurane-induced ER stress and cognitive impairment in aged rats. Thirty minutes prior to a 4-h 1.3 % isoflurane exposure, aged rats were treated with vehicle or taurine at low, middle and high doses. Aged rats without any treatment served as control. The brains were harvested 6 h after isoflurane exposure for molecular measurements, and behavioral study was performed 2 weeks later. Compared with control, isoflurane increased expression of hippocampal ER stress biomarkers including glucose-regulated protein 78, phosphorylated (P-) inositol-requiring enzyme 1, P-eukaryotic initiation factor 2-α (EIF2α), activating transcription factor 4 (ATF-4), cleaved ATF-6 and C/EBP homologous protein, along with activation of apoptosis pathways as indicated by decreased B cell lymphoma 2 (BCL-2)/BCL2-associated X protein, increased expressions of cytochrome-c and cleaved caspase-3. Taurine pretreatment dose-dependently inhibited isoflurane-induced increase in expression of ER stress biomarkers except for P-EIF2α and ATF-4, and reversed isoflurane-induced changes in apoptosis-related proteins. Moreover, isoflurane caused spatial working memory deficits in aged rats, which were prevented by taurine pretreatment. The results indicate that taurine pretreatment prevents anesthetic isoflurane-induced cognitive impairment by inhibiting ER stress-mediated activation of apoptosis pathways in the hippocampus in aged rats.

  18. Dehydroepiandrosterone increases the number and dendrite maturation of doublecortin cells in the dentate gyrus of middle age male Wistar rats exposed to chronic mild stress.

    Science.gov (United States)

    Herrera-Pérez, J J; Martínez-Mota, L; Jiménez-Rubio, G; Ortiz-López, L; Cabrera-Muñoz, E A; Galindo-Sevilla, N; Zambrano, E; Hernández-Luis, F; Ramírez-Rodríguez, G B; Flores-Ramos, M

    2017-03-15

    Aging increases the vulnerability to stress and risk of developing depression. These changes have been related to a reduction of dehydroepiandrosterone (DHEA) levels, an adrenal steroid with anti-stress effects. Also, adult hippocampal neurogenesis decreases during aging and its alteration or impaired is related to the development of depression. Besides, it has been hypothesized that DHEA increases the formation of new neurons. However, it is unknown whether treatment with DHEA in aging may stimulate the dendrite maturation of newborn neurons and reversing depressive-like signs evoked by chronic stress exposure. Here aged male rats (14 months old) were subjected to a scheme of chronic mild stress (CMS) during six weeks, received a treatment with DHEA from the third week of CMS. Changes in body weight and sucrose preference (SP) were measured once a week. DHEA levels were measured in serum, identification of doublecortin-(DCX)-, BrdU- and BrdU/NeuN-labeled cells was done in the dentate gyrus of the hippocampus. CMS produced a gradual reduction in the body weight, but no changes in the SP were observed. Treatment enhanced levels of DHEA, but lack of recovery on body weight of stressed rats. Aging reduced the number of DCX-, BrdU- and BrdU/NeuN- cells but DHEA just significantly increased the number of DCX-cells in rats under CMS and controls, reaching levels of young non-stressed rats (used here as a reference of an optimal status of health). In rats under CMS, DHEA facilitated dendritic maturation of immature new neurons. Our results reveal that DHEA improves neural plasticity even in conditions of CMS in middle age rats. Thus, this hormone reverted the decrement of DCX-cells caused during normal aging. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Whey protein concentrate supplementation protects rat brain against aging-induced oxidative stress and neurodegeneration.

    Science.gov (United States)

    Garg, Geetika; Singh, Sandeep; Singh, Abhishek Kumar; Rizvi, Syed Ibrahim

    2018-05-01

    Whey protein concentrate (WPC) is a rich source of sulfur-containing amino acids and is consumed as a functional food, incorporating a wide range of nutritional attributes. The purpose of this study is to evaluate the neuroprotective effect of WPC on rat brain during aging. Young (4 months) and old (24 months) male Wistar rats were supplemented with WPC (300 mg/kg body weight) for 28 days. Biomarkers of oxidative stress and antioxidant capacity in terms of ferric reducing antioxidant potential (FRAP), lipid hydroperoxide (LHP), total thiol (T-SH), protein carbonyl (PC), reactive oxygen species (ROS), nitric oxide (NO), and acetylcholinesterase (AChE) activity were measured in brain of control and experimental (WPC supplemented) groups. In addition, gene expression and histopathological studies were also performed. The results indicate that WPC augmented the level of FRAP, T-SH, and AChE in old rats as compared with the old control. Furthermore, WPC-treated groups exhibited significant reduction in LHP, PC, ROS, and NO levels in aged rats. WPC supplementation also downregulated the expression of inflammatory markers (tumor necrosis factor alpha, interleukin (IL)-1β, IL-6), and upregulated the expression of marker genes associated with autophagy (Atg3, Beclin-1, LC3B) and neurodegeneration (neuron specific enolase, Synapsin-I, MBP-2). The findings suggested WPC to be a potential functional nutritional food supplement that prevents the progression of age-related oxidative damage in Wistar rats.

  20. Toluene effects on oxidative stress in brain regions of young-adult, middle-age, and senescent Brown Norway rats

    International Nuclear Information System (INIS)

    Kodavanti, Prasada Rao S.; Royland, Joyce E.; Richards, Judy E.; Besas, Jonathan; MacPhail, Robert C.

    2011-01-01

    The influence of aging on susceptibility to environmental contaminants is not well understood. To extend knowledge in this area, we examined effects in rat brain of the volatile organic compound, toluene. The objective was to test whether oxidative stress (OS) plays a role in the adverse effects caused by toluene exposure, and if so, if effects are age-dependent. OS parameters were selected to measure the production of reactive oxygen species (NADPH Quinone oxidoreductase 1 (NQO1), NADH Ubiquinone reductase (UBIQ-RD)), antioxidant homeostasis (total antioxidant substances (TAS), superoxide dismutase (SOD), γ-glutamylcysteine synthetase (γ-GCS), glutathione transferase (GST), glutathione peroxidase (GPX), glutathione reductase (GRD)), and oxidative damage (total aconitase and protein carbonyls). In this study, Brown Norway rats (4, 12, and 24 months) were dosed orally with toluene (0, 0.65 or 1 g/kg) in corn oil. Four hours later, frontal cortex, cerebellum, striatum, and hippocampus were dissected, quick frozen on dry ice, and stored at − 80 °C until analysis. Some parameters of OS were found to increase with age in select brain regions. Toluene exposure also resulted in increased OS in select brain regions. For example, an increase in NQO1 activity was seen in frontal cortex and cerebellum of 4 and 12 month old rats following toluene exposure, but only in the hippocampus of 24 month old rats. Similarly, age and toluene effects on glutathione enzymes were varied and brain-region specific. Markers of oxidative damage reflected changes in oxidative stress. Total aconitase activity was increased by toluene in frontal cortex and cerebellum at 12 and 24 months, respectively. Protein carbonyls in both brain regions and in all age groups were increased by toluene, but step-down analyses indicated toluene effects were statistically significant only in 12 month old rats. These results indicate changes in OS parameters with age and toluene exposure resulted in oxidative

  1. Age Dependent Hypothalamic and Pituitary Responses to Novel Environment Stress or Lipopolysaccharide in Rats

    Directory of Open Access Journals (Sweden)

    Sandy Koenig

    2018-03-01

    Full Text Available Previously, we have shown that the transcription factor nuclear factor interleukin (NF-IL6 can be used as an activation marker for inflammatory lipopolysaccharide (LPS-induced and psychological novel environment stress (NES in the rat brain. Here, we aimed to investigate age dependent changes of hypothalamic and pituitary responses to NES (cage switch or LPS (100 μg/kg in 2 and 24 months old rats. Animals were sacrificed at specific time points, blood and brains withdrawn and analyzed using immunohistochemistry, RT-PCR and bioassays. In the old rats, telemetric recording revealed that NES-induced hyperthermia was enhanced and prolonged compared to the young group. Plasma IL-6 levels remained unchanged and hypothalamic IL-6 mRNA expression was increased in the old rats. Interestingly, this response was accompanied by a significant upregulation of corticotropin-releasing hormone mRNA expression only in young rats after NES and overall higher plasma corticosterone levels in all aged animals. Immunohistochemical analysis revealed a significant upregulation of NF-IL6-positive cells in the pituitary after NES or LPS-injection. In another important brain structure implicated in immune-to-brain communication, namely, in the median eminence (ME, NF-IL6-immunoreactivity was increased in aged animals, while the young group showed just minor activation after LPS-stimulation. Interestingly, we found a higher amount of NF-IL6-CD68-positive cells in the posterior pituitary of old rats compared to the young counterparts. Moreover, aging affected the regulation of cytokine interaction in the anterior pituitary lobe. LPS-treatment significantly enhanced the secretion of the cytokines IL-6 and TNFα into supernatants of primary cell cultures of the anterior pituitary. Furthermore, in the young rats, incubation with IL-6 and IL-10 antibodies before LPS-stimulation led to a robust decrease of IL-6 production and an increase of TNFα production by the pituitary

  2. Early developmental and temporal characteristics of stress-induced secretion of pituitary-adrenal hormones in prenatally stressed rat pups.

    Science.gov (United States)

    Takahashi, L K; Kalin, N H

    1991-08-30

    Previous experiments revealed that 14-day-old prenatally stressed rats have significantly elevated concentrations of plasma adrenocorticotrophic hormone (ACTH) and corticosterone suggesting these animals have an overactive hypothalamic-pituitary-adrenal (HPA) system. In these studies, however, stress-induced hormone levels were determined only immediately after exposure to an acute stressor. Therefore, in the current study, we examined in postnatal days 7, 14 and 21 prenatally stressed rats the stress-induced time course of this pituitary-adrenal hormone elevation. Plasma ACTH and corticosterone were measured in the basal state and at 0.0, 0.5, 1.0, 2.0 and 4.0 h after a 10-min exposure period to foot shocks administered in the context of social isolation. Results indicated that at all 3 ages, plasma ACTH in prenatally stressed rats was significantly elevated. Corticosterone concentrations were also significantly higher in prenatally stressed than in control rats, especially in day 14 rats. Analysis of stress-induced hormone fluctuations over time indicated that by 14 days of age, both prenatally stressed than in control and control rats had significant increases in plasma ACTH and corticosterone after exposure to stress. Furthermore, although prenatally stressed rats had significantly higher pituitary-adrenal hormone concentrations than control animals, the post-stress temporal patterns of decline in ACTH and corticosterone levels were similar between groups. Results suggest that throughout the preweaning period, prenatal stress produces an HPA system that functions in a manner similar to that of controls but at an increased level.

  3. Lifelong Aerobic Exercise Reduces the Stress Response in Rats.

    Science.gov (United States)

    Pietrelli, A; Di Nardo, M; Masucci, A; Brusco, A; Basso, N; Matkovic, L

    2018-04-15

    The aim of this study was to analyze the effects of lifelong aerobic exercise (AE) on the adaptive response of the stress system in rats. It is well known that hypothalamic-pituitary-adrenal axis (HPA) activity differs when triggered by voluntary or forced exercise models. Male Wistar rats belonging to exercise (E) or control (C) groups were subjected to chronic AE, and two cutoff points were established at 8 (middle age) and 18 months (old age). Behavioral, biochemical and histopathological studies were performed on the main components/targets of the stress system. AE increased adrenal sensitivity (AS), brain corticosterone (CORT) and corticotropin-releasing factor (CRF), but had no effect on the thymus, adrenal glands (AGs) weight or plasma CORT. In addition, AE exerted no effect on the sympathetic tone, but significantly reduced anxiety-related behavior and emotionality. Aging decreased AS and deregulated neuroendocrine feedback, leading to an anxiogenic state which was mitigated by AE. Histopathological and morphometric analysis of AGs showed no alterations in middle-aged rats but adrenal vacuolization in approximately 20% old rats. In conclusion, lifelong AE did not produce adverse effects related to a chronic stress state. On the contrary, while AE upregulated some components of the HPA axis, it generated an adaptive response to cumulative changes, possibly through different compensatory and/or super compensatory mechanisms, modulated by age. The long-term practice of AE had a strong positive impact on stress resilience so that it could be recommended as a complementary therapy in stress and depression disease. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Aging aggravates long-term renal ischemia-reperfusion injury in a rat model.

    Science.gov (United States)

    Xu, Xianlin; Fan, Min; He, Xiaozhou; Liu, Jipu; Qin, Jiandi; Ye, Jianan

    2014-03-01

    Ischemia-reperfusion injury (IRI) has been considered as the major cause of acute kidney injury and can result in poor long-term graft function. Functional recovery after IRI is impaired in the elderly. In the present study, we aimed to compare kidney morphology, function, oxidative stress, inflammation, and development of renal fibrosis in young and aged rats after renal IRI. Rat models of warm renal IRI were established by clamping left pedicles for 45 min after right nephrectomy, then the clamp was removed, and kidneys were reperfused for up to 12 wk. Biochemical and histologic renal damage were assessed at 12 wk after reperfusion. The immunohistochemical staining of monocyte macrophage antigen-1 (ED-1) and transforming growth factor beta 1 (TGF-β1) and messenger RNA level of TGF-β1 in the kidney were analyzed. Renal IRI caused significant increases of malondialdehyde and 8-hydroxydeoxyguanosine levels and a decrease of superoxide dismutase activity in young and aged IRI rats; however, these changes were more obvious in the aged rats. IRI resulted in severe inflammation and tubulointerstitial fibrosis with decreased creatinine (Cr) clearance and increased histologic damage in aged rats compared with young rats. Moreover, we measured the ratio of Cr clearance between young and aged IRI rats. It demonstrated that aged IRI rats did have poor Cr clearance compared with the young IRI rats. ED-1 and TGF-β1 expression levels in the kidney were significantly higher in aged rats than in young rats after IRI. Aged rats are more susceptible to IRI-induced renal failure, which may associate with the increased oxidative stress, increased histologic damage, and increased inflammation and tubulointerstitial fibrosis. Targeting oxidative stress and inflammatory response should improve the kidney recovery after IRI. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Developmental differences in stress responding after repeated underwater trauma exposures in rats.

    Science.gov (United States)

    Altman, Daniel E; Simmons, Laurence P; Vuong, Chau T; Taylor, Rachel M; Sousa, Jason C; Marcsisin, Sean R; Zottig, Victor E; Moore, Nicole L T

    2018-05-01

    Adolescence is a distinct developmental period characterized by behavioral and physiological maturation. Rapid ongoing changes during neurodevelopment in particular present potential opportunities for stress to have lasting effects on longitudinal outcomes of behavioral and neuroendocrine function. While adult stress effects on outcomes during adulthood have been characterized, little is known about the lasting effects of adolescent repeated stressor exposure on outcomes during adolescence. We have previously reported different stress responses in adolescent rats relative to adult rats, including a blunted fear response outcome in adulthood in rats stressed during adolescence. The present study characterized the ontogeny of behavioral and neuroendocrine responses to eight underwater trauma (UWT) exposures in rats over a two week poststress time period during adolescence (P34) or adulthood (P83) relative to age-matched control groups that underwent eight swimming episodes without UWT. Repeated UWT exposures starting in adolescence, but not adulthood, resulted in adverse behavioral responses on the elevated plus maze 1 day post-stress. Corticosterone responses did not differ between UWT-exposed and controls for either age group at 1 day or at 7 days poststress, although there was an effect of age on corticosterone levels. We conclude that repeated UWT stress events have a lasting, negative behavioral effect on adolescent rats that is not observed in adult rats after the two-week exposure window. These results suggest that neurophysiological mechanisms underlying recovery from a repeated stressor are immature in adolescence relative to adulthood in rats.

  6. The naked mole-rat response to oxidative stress: just deal with it.

    Science.gov (United States)

    Lewis, Kaitlyn N; Andziak, Blazej; Yang, Ting; Buffenstein, Rochelle

    2013-10-20

    The oxidative stress theory of aging has been the most widely accepted theory of aging providing insights into why we age and die for over 50 years, despite mounting evidence from a multitude of species indicating that there is no direct relationship between reactive oxygen species (ROS) and longevity. Here we explore how different species, including the longest lived rodent, the naked mole-rat, have defied the most predominant aging theory. In the case of extremely long-lived naked mole-rat, levels of ROS production are found to be similar to mice, antioxidant defenses unexceptional, and even under constitutive conditions, naked mole-rats combine a pro-oxidant intracellular milieu with high, steady state levels of oxidative damage. Clearly, naked mole-rats can tolerate this level of oxidative stress and must have mechanisms in place to prevent its translation into potentially lethal diseases. In addition to the naked mole-rat, other species from across the phylogenetic spectrum and even certain mouse strains do not support this theory. Moreover, overexpressing or knocking down antioxidant levels alters levels of oxidative damage and even cancer incidence, but does not modulate lifespan. Perhaps, it is not oxidative stress that modulates healthspan and longevity, but other cytoprotective mechanisms that allow animals to deal with high levels of oxidative damage and stress, and nevertheless live long, relatively healthy lifespans. Studying these mechanisms in uniquely long-lived species, like the naked mole-rat, may help us tease out the key contributors to aging and longevity.

  7. Fisetin as a caloric restriction mimetic protects rat brain against aging induced oxidative stress, apoptosis and neurodegeneration.

    Science.gov (United States)

    Singh, Sandeep; Singh, Abhishek Kumar; Garg, Geetika; Rizvi, Syed Ibrahim

    2018-01-15

    In the present study, attempts have been made to evaluate the potential role of fisetin, a caloric restriction mimetic (CRM), for neuroprotection in D-galactose (D-gal) induced accelerated and natural aging models of rat. Fisetin was supplemented (15mg/kg b.w., orally) to young, D-gal induced aged (D-gal 500mg/kg b.w subcutaneously) and naturally aged rats for 6weeks. Standard protocols were employed to measure pro-oxidants, antioxidants and mitochondrial membrane potential in brain tissues. Gene expression analysis with reverse transcriptase-polymerase chain reaction (RT-PCR) was performed to assess the expression of autophagy, neuronal, aging as well as inflammatory marker genes. We have also evaluated apoptotic cell death and synaptosomal membrane-bound ion transporter activities in brain tissues. Our data demonstrated that fisetin significantly decreased the level of pro-oxidants and increased the level of antioxidants. Furthermore, fisetin also ameliorated mitochondrial membrane depolarization, apoptotic cell death and impairments in the activities of synaptosomal membrane-bound ion transporters in aging rat brain. RT-PCR data revealed that fisetin up-regulated the expression of autophagy genes (Atg-3 and Beclin-1), sirtuin-1 and neuronal markers (NSE and Ngb), and down-regulated the expression of inflammatory (IL-1β and TNF-α) and Sirt-2 genes respectively in aging brain. The present study suggests that fisetin supplementation may provide neuroprotection against aging-induced oxidative stress, apoptotic cell death, neuro-inflammation, and neurodegeneration in rat brain. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Aging influences multiple indices of oxidative stress in the heart of the Fischer 344/NNia x Brown Norway/BiNia rat.

    Science.gov (United States)

    Asano, Shinichi; Rice, Kevin M; Kakarla, Sunil; Katta, Anjaiah; Desai, Devashish H; Walker, Ernest M; Wehner, Paulette; Blough, Eric R

    2007-01-01

    We report the influence of aging on multiple markers of oxidative-nitrosative stress in the heart of adult (6-month), aged (30-month) and very aged (36-month) Fischer 344/NNiaHSd x Brown Norway/BiNia (F344/NXBN) rats. Compared to adult (6-month) hearts, indices of oxidative (superoxide anion [O2*-], 4-hydroxy-2-nonenal [4-HNE]) and nitrosative (protein nitrotyrosylation) stress were 34.1 +/- 28.1%, 186 +/- 28.1% and 94 +/- 5.8% higher, respectively, in 36-month hearts and these findings were highly correlated with increases in left ventricular wall thickness (r > 0.669; r > 0.710 and P lead to age-associated alterations in cardiac oxidative stress.

  9. Hepatic oxidative stress, genotoxicity and vascular dysfunction in lean or obese zucker rats

    DEFF Research Database (Denmark)

    Løhr, Mille; Folkmann, Janne Kjærsgaard; Sheykhzade, Majid

    2015-01-01

    Metabolic syndrome is associated with increased risk of cardiovascular disease, which could be related to oxidative stress. Here, we investigated the associations between hepatic oxidative stress and vascular function in pressurized mesenteric arteries from lean and obese Zucker rats at 14, 24 an......-generated DNA damage despite substantial hepatic steatosis.......Metabolic syndrome is associated with increased risk of cardiovascular disease, which could be related to oxidative stress. Here, we investigated the associations between hepatic oxidative stress and vascular function in pressurized mesenteric arteries from lean and obese Zucker rats at 14, 24...... and 37 weeks of age. Obese Zucker rats had more hepatic fat accumulation than their lean counterparts. Nevertheless, the obese rats had unaltered age-related level of hepatic oxidatively damaged DNA in terms of formamidopyrimidine DNA glycosylase (FPG) or human oxoguanine DNA glycosylase (hOGG1...

  10. Applications of bioactive material from snakehead fish (Channa striata) for repairing of learning-memory capability and motoric activity: a case study of physiological aging and aging-caused oxidative stress in rats

    Science.gov (United States)

    Sunarno, Sunarno; Muflichatun Mardiati, Siti; Rahadian, Rully

    2018-05-01

    Physiological aging and aging due to oxidative stress are a major factor cause accelerated brain aging. Aging is characterized by a decrease of brain function of the hippocampus which is linked to the decline in the capability of learning-memory and motoric activity. The objective of this research is to obtain the important information about the mechanisms of brain antiaging associated with the improvement of hippocampus function, which includes aspects of learning-memory capability and motoric activity as well as mitochondrial ultrastructure profile of hippocampus cornu ammonis cells after treated by fish snakehead fish extract. Snakehead fish in Rawa Pening Semarang District allegedly holds the potential of endemic, which contains bioactive antiaging material that can prevent aging or improve the function of the hippocampus. This research has been conducted using a completely randomized design consisting of four treatments with five replications. The treatments were including rats with physiological aging or aging due to oxidative stress which was treated and without treated with meat extract of snakehead fish. The research was divided into two stages, i.e., determining of learning-memory capability, and determining motoric activity. The measured-parameters are time response to find feed, distance travel, time stereotypes, ambulatory time, and resting time. The result showed that the snakehead fish meat extract might improve function hippocampus, both in physiological aging or aging due to oxidative stress. The capability of learning and memory showed that the rats in both conditions of aging after getting treatment of meat extract of snakehead fish could get a feed in the fourth arm maze faster than rats untreated snakehead fish meat extract. Similarly, the measurement of the distance traveled, time stereotypes, ambulatory time, and resting time showed that rats which received treatment of meat extract of snakehead fish were better than the untreated rats. To

  11. Erythropoietin Attenuates the Memory Deficits in Aging Rats by Rescuing the Oxidative Stress and Inflammation and Promoting BDNF Releasing.

    Science.gov (United States)

    Jia, Zhankui; Xue, Rui; Ma, Shengli; Xu, Jingjing; Guo, Si; Li, Songchao; Zhang, Erwei; Wang, Jun; Yang, Jinjian

    2016-10-01

    Aging is a natural process accompanied with many disorders, including the memory decline. The underlying mechanisms for the age-related memory decline are complicated. Previous work suggested that oxidative stress, inflammatory disturbance, and the neurotropic absence play important roles in the age-related disorders. Thus, to seek a drug to target those abnormalities might be a possible protective approach for aging. Here, we reported that supplements with exogenous erythropoietin (EPO) for 4 weeks could partially rescue the spatial and fear memory impairments in aged rats. The EPO treatment also suppresses the oxidative stress and inflammatory response. Most importantly, EPO supplement restores the mRNA and protein levels of brain-derived neurotrophic factor (BDNF), the critical neurotropic factor for synaptic plasticity and memory. Our study strongly suggests the potential usage of EPO in an anti-aging agent clinically.

  12. The effect of low-level laser therapy on oxidative stress and functional fitness in aged rats subjected to swimming: an aerobic exercise.

    Science.gov (United States)

    Guaraldo, Simone A; Serra, Andrey Jorge; Amadio, Eliane Martins; Antônio, Ednei Luis; Silva, Flávio; Portes, Leslie Andrews; Tucci, Paulo José Ferreira; Leal-Junior, Ernesto Cesar Pinto; de Carvalho, Paulo de Tarso Camillo

    2016-07-01

    The aim of the present study was to determine whether low-level laser therapy (LLLT) in conjunction with aerobic training interferes with oxidative stress, thereby influencing the performance of old rats participating in swimming. Thirty Wistar rats (Norvegicus albinus) (24 aged and six young) were tested. The older animals were randomly divided into aged-control, aged-exercise, aged-LLLT, aged-LLLT/exercise, and young-control. Aerobic capacity (VO2max(0.75)) was analyzed before and after the training period. The exercise groups were trained for 6 weeks, and the LLLT was applied at 808 nm and 4 J energy. The rats were euthanized, and muscle tissue was collected to analyze the index of lipid peroxidation thiobarbituric acid reactive substances (TBARS), glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT) activities. VO2 (0.75)max values in the aged-LLLT/exercise group were significantly higher from those in the baseline older group (p exercise group (p exercise group than those in the LLLT and exercise groups. Young animals presented lesser and statistically significant activities of antioxidant enzymes compared to the aged group. The LLLT/exercise group and the LLLT and exercise group could also mitigate the concentration of TBARS (p > 0.05). Laser therapy in conjunction with aerobic training may reduce oxidative stress, as well as increase VO2 (0.75)max, indicating that an aerobic exercise such as swimming increases speed and improves performance in aged animals treated with LLLT.

  13. Esophageal morphometric and biomechanical changes during aging in rats

    DEFF Research Database (Denmark)

    Zhao, Jingbo; Gregersen, Hans

    of the present study is to investigate the esophageal geometry and biomechanical changes during aging in rats. Materials and methods Twenty-four male Wistar rats, aged from 6 to 22 months, were used in the study. The body weight and the wet weight per length of esophageal segment were measured at the termination...... was found among 12, 18 and 22 months groups (p>0.05). The longitudinal stress-strain curves shifted from right to the left during aging (pstiffness has no obvious...... change after 12 months in the circumferential direction. Furthermore, we confirm that the esophagus was stiffer in the longitudinal direction than in the circumferential direction. Conclusions A pronounced morphometric and biomechanical remodeling was occurred in the rat esophagus during aging...

  14. Functional β2-adrenoceptors in rat left atria: effect of foot-shock stress.

    Science.gov (United States)

    Moura, André Luiz de; Hyslop, Stephen; Grassi-Kassisse, Dora M; Spadari, Regina C

    2017-09-01

    Altered sensitivity to the chronotropic effect of catecholamines and a reduction in the β 1 /β 2 -adrenoceptor ratio have previously been reported in right atria of stressed rats, human failing heart, and aging. In this report, we investigated whether left atrial inotropism was affected by foot-shock stress. Male rats were submitted to 3 foot-shock sessions and the left atrial inotropic response, adenylyl cyclase activity, and β-adrenoceptor expression were investigated. Left atria of stressed rats were supersensitive to isoprenaline when compared with control rats and this effect was abolished by ICI118,551, a selective β 2 -receptor antagonist. Schild plot slopes for the antagonism between CGP20712A (a selective β 1 -receptor antagonist) and isoprenaline differed from unity in atria of stressed but not control rats. Atrial sensitivity to norepinephrine, as well as basal and forskolin- or isoprenaline-stimulated adenylyl cyclase activities were not altered by stress. The effect of isoprenaline on adenylyl cyclase stimulation was partially blocked by ICI118,551 in atrial membranes of stressed rats. These findings indicate that foot-shock stress equally affects inotropism and chronotropism and that β 2 -adrenoceptor upregulation contributes to the enhanced inotropic response to isoprenaline.

  15. Age related changes in NAD+ metabolism oxidative stress and Sirt1 activity in wistar rats.

    Directory of Open Access Journals (Sweden)

    Nady Braidy

    2011-04-01

    Full Text Available The cofactor nicotinamide adenine dinucleotide (NAD+ has emerged as a key regulator of metabolism, stress resistance and longevity. Apart from its role as an important redox carrier, NAD+ also serves as the sole substrate for NAD-dependent enzymes, including poly(ADP-ribose polymerase (PARP, an important DNA nick sensor, and NAD-dependent histone deacetylases, Sirtuins which play an important role in a wide variety of processes, including senescence, apoptosis, differentiation, and aging. We examined the effect of aging on intracellular NAD+ metabolism in the whole heart, lung, liver and kidney of female wistar rats. Our results are the first to show a significant decline in intracellular NAD+ levels and NAD:NADH ratio in all organs by middle age (i.e.12 months compared to young (i.e. 3 month old rats. These changes in [NAD(H] occurred in parallel with an increase in lipid peroxidation and protein carbonyls (o- and m- tyrosine formation and decline in total antioxidant capacity in these organs. An age dependent increase in DNA damage (phosphorylated H2AX was also observed in these same organs. Decreased Sirt1 activity and increased acetylated p53 were observed in organ tissues in parallel with the drop in NAD+ and moderate over-expression of Sirt1 protein. Reduced mitochondrial activity of complex I-IV was also observed in aging animals, impacting both redox status and ATP production. The strong positive correlation observed between DNA damage associated NAD+ depletion and Sirt1 activity suggests that adequate NAD+ concentrations may be an important longevity assurance factor.

  16. Effects of RAGE-Specific Inhibitor FPS-ZM1 on Amyloid-β Metabolism and AGEs-Induced Inflammation and Oxidative Stress in Rat Hippocampus.

    Science.gov (United States)

    Hong, Yan; Shen, Chao; Yin, Qingqing; Sun, Menghan; Ma, Yingjuan; Liu, Xueping

    2016-05-01

    An increased level of advanced glycation end products (AGEs) is observed in brains of patients with Alzheimer's disease (AD). AGEs and receptor for AGEs (RAGE) play important roles in the pathogenesis of AD. FPS-ZM1 is a high-affinity RAGE-specific blocker that inhibits amyloid-β binding to RAGE, neurological damage and inflammation in the APP(sw/0) transgenic mouse model of AD. FPS-ZM1 is not toxic to mice and can easily cross the blood-brain barrier. In this study, an AGEs-RAGE-activated rat model were established by intrahippocampal injection of AGEs, then these rats were treated with intraperitoneal administration of FPS-ZM1 and the possible neuroprotective effects were investigated. We found that AGEs administration induced an-regulation of Abeta production, inflammation, and oxidative stress, and an increased escape latency of rats in the Morris water maze test, all of these are significantly reduced by FPS-ZM1 treatment. Our results suggest that the AGEs-RAGE pathway is responsible for cognitive deficits, and therefore may be a potential treatment target. FPS-ZM1 might be a novel therapeutic agent to treat AD patients.

  17. Buspirone before prenatal stress protects against adverse effects of stress on emotional and inflammatory pain-related behaviors in infant rats: age and sex differences.

    Science.gov (United States)

    Butkevich, Irina P; Mikhailenko, Viktor A; Vershinina, Elena A; Otellin, Vladimir A; Aloisi, Anna Maria

    2011-10-24

    Prenatal stress strengthens tonic pain and provokes depression. The serotoninergic system is involved in these processes. We recently showed that maternal buspirone, a 5-HT1A receptor agonist, protects against the adverse effects of in utero stress on depression and pain in adult rat offspring. Using a similar maternal treatment with buspirone, we focus here on the infant stage, which is important for the correction of prenatal abnormalities. Maternal buspirone before restraint stress during the last week of pregnancy decreased the time of immobility in the forced swim test in the infant offspring. Prenatal stress increased formalin-induced pain in the second part of the time-course of the response to formalin in males of middle infancy but in the first part of the response in males of late infancy. The effect was reversed by maternal buspirone. Pain dominated in males of both middle and late infancy but the time-course of formalin pain in infant females revealed a slower development of the processes. The results show that the time-course of formalin-induced pain in infant rats reacts to prenatal stress in an age-dependent and sexually dimorphic manner. Our finding of opposite influences of prenatal stress and buspirone before prenatal stress on formalin-induced pain during the interphase indicates that functional maturity of the descending serotonergic inhibitory system occurs in late infancy males (11-day-olds), and 5-HT1A receptors participate in this process. The data provide evidence that maternal treatment with buspirone prior to stress during pregnancy alleviates depression-like and tonic pain-related behaviors in the infant offspring. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Stress-sensitive arterial hypertension, haemodynamic changes and brain metabolites in hypertensive ISIAH rats: MRI investigation.

    Science.gov (United States)

    Seryapina, A A; Shevelev, O B; Moshkin, M P; Markel, A L; Akulov, A E

    2017-05-01

    What is the central question of this study? Stress-sensitive arterial hypertension is considered to be controlled by changes in central and peripheral sympathetic regulating mechanisms, which eventually result in haemodynamic alterations and blood pressure elevation. Therefore, study of the early stages of development of hypertension is of particular interest, because it helps in understanding the aetiology of the disease. What is the main finding and its importance? Non-invasive in vivo investigation in ISIAH rats demonstrated that establishment of sustainable stress-sensitive hypertension is accompanied by a decrease in prefrontal cortex activity and mobilization of hypothalamic processes, with considerable correlations between haemodynamic parameters and individual metabolite ratios. The study of early development of arterial hypertension in association with emotional stress is of great importance for better understanding of the aetiology and pathogenesis of the hypertensive disease. Magnetic resonance imaging (MRI) was applied to evaluate the changes in haemodynamics and brain metabolites in 1- and 3-month-old inherited stress-induced arterial hypertension (ISIAH) rats (10 male rats) with stress-sensitive arterial hypertension and in control normotensive Wistar Albino Glaxo (WAG) rats (eight male rats). In the 3-month-old ISIAH rats, the age-dependent increase in blood pressure was associated with increased blood flow through the renal arteries and decreased blood flow in the lower part of the abdominal aorta. The renal vascular resistance in the ISIAH rats decreased during ageing, although at both ages it remained higher than the renal vascular resistance in WAG rats. An integral metabolome portrait demonstrated that development of hypertension in the ISIAH rats was associated with an attenuation of the excitatory and energetic activity in the prefrontal cortex, whereas in the WAG rats the opposite age-dependent changes were observed. In contrast, in the

  19. Effect of Age and Exercise on the Viscoelastic Properties of Rat Tail Tendon

    Science.gov (United States)

    LaCroix, Andrew S.; Duenwald-Kuehl, Sarah E.; Brickson, Stacey; Akins, Tiffany L.; Diffee, Gary; Aiken, Judd; Vanderby, Ray; Lakes, Roderic S.

    2013-01-01

    Tendon mechanical properties are thought to degrade during aging but improve with exercise. A remaining question is whether exercise in aged animals provides sufficient regenerative, systemic stimulus to restore younger mechanical behaviors. Herein we address that question with tail tendons from aged and exercised rats, which would be subject to systemic effects but not direct loading from the exercise regimen. Twenty-four month old rats underwent one of three treadmill exercise training protocols for 12 months: sedentary (walking at 0° incline for 5 min/day), moderate (running at 0° incline for 30 min/day), or high (running at 4° incline for 30 min/day). A group of 9 month old rats were used to provide an adult control, while a group of 3 month old rats provided a young control. Tendons were harvested at sacrifice and mechanically tested. Results show significant age-dependent differences in modulus, ultimate stress, relaxation rate, and percent relaxation. Relaxation rate was strain-dependent, consistent with nonlinear superposition or Schapery models but not with quasilinear viscoelasticity (QLV). Trends in exercise data suggest that with exercise, tendons assume the elastic character of younger rats (lower elastic modulus and ultimate stress). PMID:23549897

  20. Acute Stress Affects the Expression of Hippocampal Mu Oscillations in an Age-Dependent Manner

    Directory of Open Access Journals (Sweden)

    Samir Takillah

    2017-09-01

    Full Text Available Anxiolytic drugs are widely used in the elderly, a population particularly sensitive to stress. Stress, aging and anxiolytics all affect low-frequency oscillations in the hippocampus and prefrontal cortex (PFC independently, but the interactions between these factors remain unclear. Here, we compared the effects of stress (elevated platform, EP and anxiolytics (diazepam, DZP on extracellular field potentials (EFP in the PFC, parietal cortex and hippocampus (dorsal and ventral parts of adult (8 months and aged (18 months Wistar rats. A potential source of confusion in the experimental studies in rodents comes from locomotion-related theta (6–12 Hz oscillations, which may overshadow the direct effects of anxiety on low-frequency and especially on the high-amplitude oscillations in the Mu range (7–12 Hz, related to arousal. Animals were restrained to avoid any confound and isolate the direct effects of stress from theta oscillations related to stress-induced locomotion. We identified transient, high-amplitude oscillations in the 7–12 Hz range (“Mu-bursts” in the PFC, parietal cortex and only in the dorsal part of hippocampus. At rest, aged rats displayed more Mu-bursts than adults. Stress acted differently on Mu-bursts depending on age: it increases vs. decreases burst, in adult and aged animals, respectively. In contrast DZP (1 mg/kg acted the same way in stressed adult and age animal: it decreased the occurrence of Mu-bursts, as well as their co-occurrence. This is consistent with DZP acting as a positive allosteric modulator of GABAA receptors, which globally potentiates inhibition and has anxiolytic effects. Overall, the effect of benzodiazepines on stressed animals was to restore Mu burst activity in adults but to strongly diminish them in aged rats. This work suggests Mu-bursts as a neural marker to study the impact of stress and DZP on age.

  1. Acute Stress Affects the Expression of Hippocampal Mu Oscillations in an Age-Dependent Manner.

    Science.gov (United States)

    Takillah, Samir; Naudé, Jérémie; Didienne, Steve; Sebban, Claude; Decros, Brigitte; Schenker, Esther; Spedding, Michael; Mourot, Alexandre; Mariani, Jean; Faure, Philippe

    2017-01-01

    Anxiolytic drugs are widely used in the elderly, a population particularly sensitive to stress. Stress, aging and anxiolytics all affect low-frequency oscillations in the hippocampus and prefrontal cortex (PFC) independently, but the interactions between these factors remain unclear. Here, we compared the effects of stress (elevated platform, EP) and anxiolytics (diazepam, DZP) on extracellular field potentials (EFP) in the PFC, parietal cortex and hippocampus (dorsal and ventral parts) of adult (8 months) and aged (18 months) Wistar rats. A potential source of confusion in the experimental studies in rodents comes from locomotion-related theta (6-12 Hz) oscillations, which may overshadow the direct effects of anxiety on low-frequency and especially on the high-amplitude oscillations in the Mu range (7-12 Hz), related to arousal. Animals were restrained to avoid any confound and isolate the direct effects of stress from theta oscillations related to stress-induced locomotion. We identified transient, high-amplitude oscillations in the 7-12 Hz range ("Mu-bursts") in the PFC, parietal cortex and only in the dorsal part of hippocampus. At rest, aged rats displayed more Mu-bursts than adults. Stress acted differently on Mu-bursts depending on age: it increases vs. decreases burst, in adult and aged animals, respectively. In contrast DZP (1 mg/kg) acted the same way in stressed adult and age animal: it decreased the occurrence of Mu-bursts, as well as their co-occurrence. This is consistent with DZP acting as a positive allosteric modulator of GABA A receptors, which globally potentiates inhibition and has anxiolytic effects. Overall, the effect of benzodiazepines on stressed animals was to restore Mu burst activity in adults but to strongly diminish them in aged rats. This work suggests Mu-bursts as a neural marker to study the impact of stress and DZP on age.

  2. Grape Powder Improves Age-Related Decline in Mitochondrial and Kidney Functions in Fischer 344 Rats

    Directory of Open Access Journals (Sweden)

    Indira Pokkunuri

    2016-01-01

    Full Text Available We examined the effects and mechanism of grape powder- (GP- mediated improvement, if any, on aging kidney function. Adult (3-month and aged (21-month Fischer 344 rats were treated without (controls and with GP (1.5% in drinking water and kidney parameters were measured. Control aged rats showed higher levels of proteinuria and urinary kidney injury molecule-1 (KIM-1, which decreased with GP treatment in these rats. Renal protein carbonyls (protein oxidation and gp91phox-NADPH oxidase levels were high in control aged rats, suggesting oxidative stress burden in these rats. GP treatment in aged rats restored these parameters to the levels of adult rats. Moreover, glomerular filtration rate and sodium excretion were low in control aged rats suggesting compromised kidney function, which improved with GP treatment in aged rats. Interestingly, low renal mitochondrial respiration and ATP levels in control aged rats were associated with reduced levels of mitochondrial biogenesis marker MtTFA. Also, Nrf2 proteins levels were reduced in control aged rats. GP treatment increased levels of MtTFA and Nrf2 in aged rats. These results suggest that GP by potentially regulating Nrf2 improves aging mitochondrial and kidney functions.

  3. The Effects of Early-Life Predator Stress on Anxiety- and Depression-Like Behaviors of Adult Rats

    Directory of Open Access Journals (Sweden)

    Lu-jing Chen

    2014-01-01

    Full Text Available Childhood emotional trauma contributes significantly to certain psychopathologies, such as post-traumatic stress disorder. In experimental animals, however, whether or not early-life stress results in behavioral abnormalities in adult animals still remains controversial. Here, we investigated both short-term and long-term changes of anxiety- and depression-like behaviors of Wistar rats after being exposed to chronic feral cat stress in juvenile ages. The 2-week predator stress decreased spontaneous activities immediately following stress but did not increase depression- or anxiety-like behaviors 4 weeks after the stimulation in adulthood. Instead, juvenile predator stress had some protective effects, though not very obvious, in adulthood. We also exposed genetic depression model rats, Wistar Kyoto (WKY rats, to the same predator stress. In WKY rats, the same early-life predator stress did not enhance anxiety- or depression-like behaviors in both the short-term and long-term. However, the stressed WKY rats showed slightly reduced depression-like behaviors in adulthood. These results indicate that in both normal Wistar rats and WKY rats, early-life predator stress led to protective, rather than negative, effects in adulthood.

  4. The Effects of Early-Life Predator Stress on Anxiety- and Depression-Like Behaviors of Adult Rats

    Science.gov (United States)

    Chen, Lu-jing; Shen, Bing-qing; Liu, Dan-dan; Li, Sheng-tian

    2014-01-01

    Childhood emotional trauma contributes significantly to certain psychopathologies, such as post-traumatic stress disorder. In experimental animals, however, whether or not early-life stress results in behavioral abnormalities in adult animals still remains controversial. Here, we investigated both short-term and long-term changes of anxiety- and depression-like behaviors of Wistar rats after being exposed to chronic feral cat stress in juvenile ages. The 2-week predator stress decreased spontaneous activities immediately following stress but did not increase depression- or anxiety-like behaviors 4 weeks after the stimulation in adulthood. Instead, juvenile predator stress had some protective effects, though not very obvious, in adulthood. We also exposed genetic depression model rats, Wistar Kyoto (WKY) rats, to the same predator stress. In WKY rats, the same early-life predator stress did not enhance anxiety- or depression-like behaviors in both the short-term and long-term. However, the stressed WKY rats showed slightly reduced depression-like behaviors in adulthood. These results indicate that in both normal Wistar rats and WKY rats, early-life predator stress led to protective, rather than negative, effects in adulthood. PMID:24839560

  5. Walnut supplementation reverses the scopolamine-induced memory impairment by restoration of cholinergic function via mitigating oxidative stress in rats: a potential therapeutic intervention for age related neurodegenerative disorders.

    Science.gov (United States)

    Haider, Saida; Batool, Zehra; Ahmad, Saara; Siddiqui, Rafat Ali; Haleem, Darakhshan Jabeen

    2018-02-01

    The brain is highly susceptible to the damaging effects of oxidative reactive species. The free radicals which are produced as a consequence of aerobic respiration can cause cumulative oxygen damage which may lead to age-related neurodegeneration. Scopolamine, the anti-muscarinic agent, induces amnesia and oxidative stress similar to that observed in the older age. Studies suggest that antioxidants derived from plant products may provide protection against oxidative stress. Therefore, the present study was designed to investigate the attenuation of scopolamine-induced memory impairment and oxidative stress by walnut supplementation in rats. Rats in test group were administrated with walnut suspension (400 mg/kg/day) for four weeks. Both control and walnut-treated rats were then divided into saline and scopolamine-treated groups. Rats in the scopolamine group were injected with scopolamine (0.5 mg/kg dissolved in saline) five minutes before the start of each memory test. Memory was assessed by elevated plus maze (EPM), Morris water maze (MWM), and novel object recognition task (NOR) followed by estimation of regional acetylcholine levels and acetylcholinesterase activity. In the next phase, brain oxidative status was determined by assaying lipid peroxidation, and measuring superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT) activities. Results showed that scopolamine-treatment impaired memory function, caused cholinergic dysfunction, and induced oxidative stress in rats compared to that saline-treated controls. These impairments were significantly restored by pre-administration of walnut. This study demonstrates that antioxidant properties of walnut may provide augmented effects on cholinergic function by reducing oxidative stress and thus improving memory performance.

  6. Prefrontal cortex, caloric restriction and stress during aging: studies on dopamine and acetylcholine release, BDNF and working memory.

    Science.gov (United States)

    Del Arco, Alberto; Segovia, Gregorio; de Blas, Marta; Garrido, Pedro; Acuña-Castroviejo, Dario; Pamplona, Reinald; Mora, Francisco

    2011-01-01

    This study was designed to investigate whether long-term caloric restriction during the life span of the rat changes the effects of an acute mild stress on the release of dopamine and acetylcholine in the prefrontal cortex (PFC) and on working memory performance. Spontaneous motor activity was also monitored and levels of BDNF measured in the prefrontal cortex, amygdala and hippocampus. Male Wistar rats (3 months of age) were housed during 3, 12, 21 and 27 months (6, 15, 24 and 30 months of age at the end of housing) in caloric restriction (CR; 40% food intake restriction) or control conditions. After behavioural testing, animals were further subdivided into two other groups. In one of the groups BDNF protein levels were determined. In the other group rats were implanted with guide cannulas into the PFC to perform microdialysis experiments. In CR rats the release of dopamine produced by handling stress did not differ from the response found in control rats of 6, 15 and 24 months of age. The release of acetylcholine was not changed at the ages of 6 and 15 months but reduced at the age of 24 months. Stress did not change dopamine or acetylcholine release in CR and control rats of 30 months of age. BDNF levels were increased in the hippocampus and amygdala, but not in the PFC, of 6 and 15 months CR rats. Spontaneous motor activity was increased in all groups of CR rats. Age, however, decreased motor activity in CR and control rats. Both experimental groups showed similar working memory performance in a delayed alternation task in basal conditions and after a situation of acute stress. These results suggest that CR does not modify the function of the PFC in response to an acute stress nor the changes found as a result of the normal process of aging. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Ozone induces glucose intolerance and systemic metabolic effects in young and aged brown Norway rats

    International Nuclear Information System (INIS)

    Bass, V.; Gordon, C.J.; Jarema, K.A.; MacPhail, R.C.; Cascio, W.E.; Phillips, P.M.; Ledbetter, A.D.; Schladweiler, M.C.; Andrews, D.; Miller, D.; Doerfler, D.L.; Kodavanti, U.P.

    2013-01-01

    Air pollutants have been associated with increased diabetes in humans. We hypothesized that ozone would impair glucose homeostasis by altering insulin signaling and/or endoplasmic reticular (ER) stress in young and aged rats. One, 4, 12, and 24 month old Brown Norway (BN) rats were exposed to air or ozone, 0.25 or 1.0 ppm, 6 h/day for 2 days (acute) or 2 d/week for 13 weeks (subchronic). Additionally, 4 month old rats were exposed to air or 1.0 ppm ozone, 6 h/day for 1 or 2 days (time-course). Glucose tolerance tests (GTT) were performed immediately after exposure. Serum and tissue biomarkers were analyzed 18 h after final ozone for acute and subchronic studies, and immediately after each day of exposure in the time-course study. Age-related glucose intolerance and increases in metabolic biomarkers were apparent at baseline. Acute ozone caused hyperglycemia and glucose intolerance in rats of all ages. Ozone-induced glucose intolerance was reduced in rats exposed for 13 weeks. Acute, but not subchronic ozone increased α 2 -macroglobulin, adiponectin and osteopontin. Time-course analysis indicated glucose intolerance at days 1 and 2 (2 > 1), and a recovery 18 h post ozone. Leptin increased day 1 and epinephrine at all times after ozone. Ozone tended to decrease phosphorylated insulin receptor substrate-1 in liver and adipose tissues. ER stress appeared to be the consequence of ozone induced acute metabolic impairment since transcriptional markers of ER stress increased only after 2 days of ozone. In conclusion, acute ozone exposure induces marked systemic metabolic impairments in BN rats of all ages, likely through sympathetic stimulation. - Highlights: • Air pollutants have been associated with increased diabetes in humans. • Acute ozone exposure produces profound metabolic alterations in rats. • Age influences metabolic risk factors in aging BN rats. • Acute metabolic effects are reversible and repeated exposure reduces these effects. • Ozone metabolic

  8. Ozone induces glucose intolerance and systemic metabolic effects in young and aged brown Norway rats

    Energy Technology Data Exchange (ETDEWEB)

    Bass, V. [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Gordon, C.J.; Jarema, K.A.; MacPhail, R.C. [Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Cascio, W.E. [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Phillips, P.M. [Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Ledbetter, A.D.; Schladweiler, M.C. [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Andrews, D. [Research Cores Unit, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Miller, D. [Curriculum in Toxicology, University of North Carolina, Chapel Hill, NC (United States); Doerfler, D.L. [Research Cores Unit, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Kodavanti, U.P., E-mail: kodavanti.urmila@epa.gov [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States)

    2013-12-15

    Air pollutants have been associated with increased diabetes in humans. We hypothesized that ozone would impair glucose homeostasis by altering insulin signaling and/or endoplasmic reticular (ER) stress in young and aged rats. One, 4, 12, and 24 month old Brown Norway (BN) rats were exposed to air or ozone, 0.25 or 1.0 ppm, 6 h/day for 2 days (acute) or 2 d/week for 13 weeks (subchronic). Additionally, 4 month old rats were exposed to air or 1.0 ppm ozone, 6 h/day for 1 or 2 days (time-course). Glucose tolerance tests (GTT) were performed immediately after exposure. Serum and tissue biomarkers were analyzed 18 h after final ozone for acute and subchronic studies, and immediately after each day of exposure in the time-course study. Age-related glucose intolerance and increases in metabolic biomarkers were apparent at baseline. Acute ozone caused hyperglycemia and glucose intolerance in rats of all ages. Ozone-induced glucose intolerance was reduced in rats exposed for 13 weeks. Acute, but not subchronic ozone increased α{sub 2}-macroglobulin, adiponectin and osteopontin. Time-course analysis indicated glucose intolerance at days 1 and 2 (2 > 1), and a recovery 18 h post ozone. Leptin increased day 1 and epinephrine at all times after ozone. Ozone tended to decrease phosphorylated insulin receptor substrate-1 in liver and adipose tissues. ER stress appeared to be the consequence of ozone induced acute metabolic impairment since transcriptional markers of ER stress increased only after 2 days of ozone. In conclusion, acute ozone exposure induces marked systemic metabolic impairments in BN rats of all ages, likely through sympathetic stimulation. - Highlights: • Air pollutants have been associated with increased diabetes in humans. • Acute ozone exposure produces profound metabolic alterations in rats. • Age influences metabolic risk factors in aging BN rats. • Acute metabolic effects are reversible and repeated exposure reduces these effects. • Ozone

  9. Age-related effects of chronic restraint stress on ethanol drinking, ethanol-induced sedation, and on basal and stress-induced anxiety response.

    Science.gov (United States)

    Fernández, Macarena Soledad; Fabio, María Carolina; Miranda-Morales, Roberto Sebastián; Virgolini, Miriam B; De Giovanni, Laura N; Hansen, Cristian; Wille-Bille, Aranza; Nizhnikov, Michael E; Spear, Linda P; Pautassi, Ricardo Marcos

    2016-03-01

    Adolescents are sensitive to the anxiolytic effect of ethanol, and evidence suggests that they may be more sensitive to stress than adults. Relatively little is known, however, about age-related differences in stress modulation of ethanol drinking or stress modulation of ethanol-induced sedation and hypnosis. We observed that chronic restraint stress transiently exacerbated free-choice ethanol drinking in adolescent, but not in adult, rats. Restraint stress altered exploration patterns of a light-dark box apparatus in adolescents and adults. Stressed animals spent significantly more time in the white area of the maze and made significantly more transfers between compartments than their non-stressed peers. Behavioral response to acute stress, on the other hand, was modulated by prior restraint stress only in adults. Adolescents, unlike adults, exhibited ethanol-induced motor stimulation in an open field. Stress increased the duration of loss of the righting reflex after a high ethanol dose, yet this effect was similar at both ages. Ethanol-induced sleep time was much higher in adult than in adolescent rats, yet stress diminished ethanol-induced sleep time only in adults. The study indicates age-related differences that may increase the risk for initiation and escalation in alcohol drinking. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Unprovoked atrial tachyarrhythmias in aging spontaneously hypertensive rats: the role of the autonomic nervous system.

    Science.gov (United States)

    Scridon, Alina; Gallet, Clément; Arisha, Moussa M; Oréa, Valérie; Chapuis, Bruno; Li, Na; Tabib, Alain; Christé, Georges; Barrès, Christian; Julien, Claude; Chevalier, Philippe

    2012-08-01

    Experimental models of unprovoked atrial tachyarrhythmias (AT) in conscious, ambulatory animals are lacking. We hypothesized that the aging, spontaneously hypertensive rat (SHR) may provide such a model. Baseline ECG recordings were acquired with radiotelemetry in eight young (14-wk-old) and eight aging (55-wk-old) SHRs and in two groups of four age-matched Wistar-Kyoto (WKY) rats. Quantification of AT and heart rate variability (HRV) analysis were performed based on 24-h ECG recordings in unrestrained rats. All animals were submitted to an emotional stress protocol (air-jet). In SHRs, carbamylcholine injections were also performed. Spontaneous AT episodes were observed in all eight aging SHRs (median, 91.5; range, 4-444 episodes/24 h), but not in young SHRs or WKY rats. HRV analysis demonstrated significantly decreased low frequency components in aging SHRs compared with age-matched WKY rats (P aging (P = 0.01) SHRs compared with normotensive controls. In aging SHRs, emotional stress significantly reduced the number of arrhythmic events, whereas carbamylcholine triggered AT and significantly increased atrial electrical instability. This study reports the occurrence of unprovoked episodes of atrial arrhythmia in hypertensive rats, and their increased incidence with aging. Our results suggest that autonomic imbalance with relative vagal hyperactivity may be responsible for the increased atrial arrhythmogenicity observed in this model. We also provide evidence that, in this model, the sympatho-vagal imbalance preceded the occurrence of arrhythmia. These results indicate that aging SHRs may provide valuable insight into the understanding of atrial arrhythmias.

  11. Glyoxalase I reduces glycative and oxidative stress and prevents age-related endothelial dysfunction through modulation of endothelial nitric oxide synthase phosphorylation.

    Science.gov (United States)

    Jo-Watanabe, Airi; Ohse, Takamoto; Nishimatsu, Hiroaki; Takahashi, Masao; Ikeda, Yoichiro; Wada, Takehiko; Shirakawa, Jun-ichi; Nagai, Ryoji; Miyata, Toshio; Nagano, Tetsuo; Hirata, Yasunobu; Inagi, Reiko; Nangaku, Masaomi

    2014-06-01

    Endothelial dysfunction is a major contributor to cardiovascular disease (CVD), particularly in elderly people. Studies have demonstrated the role of glycation in endothelial dysfunction in nonphysiological models, but the physiological role of glycation in age-related endothelial dysfunction has been poorly addressed. Here, to investigate how vascular glycation affects age-related endothelial function, we employed rats systemically overexpressing glyoxalase I (GLO1), which detoxifies methylglyoxal (MG), a representative precursor of glycation. Four groups of rats were examined, namely young (13 weeks old), mid-age (53 weeks old) wild-type, and GLO1 transgenic (WT/GLO1 Tg) rats. Age-related acceleration in glycation was attenuated in GLO1 Tg rats, together with lower aortic carboxymethyllysine (CML) and urinary 8-hydroxydeoxyguanosine (8-OHdG) levels. Age-related impairment of endothelium-dependent vasorelaxation was attenuated in GLO1 Tg rats, whereas endothelium-independent vasorelaxation was not different between WT and GLO1 Tg rats. Nitric oxide (NO) production was decreased in mid-age WT rats, but not in mid-age GLO1 Tg rats. Age-related inactivation of endothelial NO synthase (eNOS) due to phosphorylation of eNOS on Thr495 and dephosphorylation on Ser1177 was ameliorated in GLO1 Tg rats. In vitro, MG increased phosphorylation of eNOS (Thr495) in primary human aortic endothelial cells (HAECs), and overexpression of GLO1 decreased glycative stress and phosphorylation of eNOS (Thr495). Together, GLO1 reduced age-related endothelial glycative and oxidative stress, altered phohphorylation of eNOS, and attenuated endothelial dysfunction. As a molecular mechanism, GLO1 lessened inhibitory phosphorylation of eNOS (Thr495) by reducing glycative stress. Our study demonstrates that blunting glycative stress prevents the long-term impact of endothelial dysfunction on vascular aging. © 2014 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons

  12. Comparison of the influence of two models of mild stress on hippocampal brain-derived neurotrophin factor (BDNF) immunoreactivity in old age rats.

    Science.gov (United States)

    Badowska-Szalewska, Ewa; Ludkiewicz, Beata; Krawczyk, Rafał; Melka, Natalia; Moryś, Janusz

    2017-01-01

    The way hippocampal neurons function during stress in old age (critical times of life) is dependent on brain derived neurotrophin factor (BDNF). This study examined the influence of acute and chronic forced swim (FS) or high-light open field (HL‑OF) stimulation on the density of BDNF immunoreactive (ir) neurons in the hippocampal pyramidal layers of CA1, CA2, CA3 regions and the granular layer of dentate gyrus (DG) in old (postnatal day 720; P720) Wistar Han rats. Our data showed that in comparison with non-stressed rats, acute FS caused a significant increase in the density of BDNF-ir neurons in CA2 and CA3, while acute HL-OF led to an increase in this factor in all hippocampal subfields with the exception of DG. However, the density of BDNF-ir cells remained unchanged after exposure to chronic FS or HL‑OF in the hippocampal regions in relation to the control rats. These results indicate that acute FS or HL-OF proved to be a stressor that induces an increase in the density of BDNF-ir pyramidal neurons, which was probably connected with up-regulation of HPA axis activity and short‑time memory processing of the stressful situation. Moreover, as far as the influence on BDNF-ir cells in hippocampus is concerned, chronic FS or HL-OF was not an aggravating factor for rats in the ontogenetic periods studied.

  13. Iron accumulation with age, oxidative stress and functional decline.

    Directory of Open Access Journals (Sweden)

    Jinze Xu

    2008-08-01

    Full Text Available Identification of biological mediators in sarcopenia is pertinent to the development of targeted interventions to alleviate this condition. Iron is recognized as a potent pro-oxidant and a catalyst for the formation of reactive oxygen species in biological systems. It is well accepted that iron accumulates with senescence in several organs, but little is known about iron accumulation in muscle and how it may affect muscle function. In addition, it is unclear if interventions which reduced age-related loss of muscle quality, such as calorie restriction, impact iron accumulation. We investigated non-heme iron concentration, oxidative stress to nucleic acids in gastrocnemius muscle and key indices of sarcopenia (muscle mass and grip strength in male Fischer 344 X Brown Norway rats fed ad libitum (AL or a calorie restricted diet (60% of ad libitum food intake starting at 4 months of age at 8, 18, 29 and 37 months of age. Total non-heme iron levels in the gastrocnemius muscle of AL rats increased progressively with age. Between 29 and 37 months of age, the non-heme iron concentration increased by approximately 200% in AL-fed rats. Most importantly, the levels of oxidized RNA in gastrocnemius muscle of AL rats were significantly increased as well. The striking age-associated increase in non-heme iron and oxidized RNA levels and decrease in sarcopenia indices were all attenuated in the calorie restriction (CR rats. These findings strongly suggest that the age-related iron accumulation in muscle contributes to increased oxidative damage and sarcopenia, and that CR effectively attenuates these negative effects.

  14. Volumetric changes in the aging rat brain and its impact on cognitive and locomotor functions.

    Science.gov (United States)

    Hamezah, Hamizah Shahirah; Durani, Lina Wati; Ibrahim, Nor Faeizah; Yanagisawa, Daijiro; Kato, Tomoko; Shiino, Akihiko; Tanaka, Sachiko; Damanhuri, Hanafi Ahmad; Ngah, Wan Zurinah Wan; Tooyama, Ikuo

    2017-12-01

    Impairments in cognitive and locomotor functions usually occur with advanced age, as do changes in brain volume. This study was conducted to assess changes in brain volume, cognitive and locomotor functions, and oxidative stress levels in middle- to late-aged rats. Forty-four male Sprague-Dawley rats were divided into four groups: 14, 18, 23, and 27months of age. 1 H magnetic resonance imaging (MRI) was performed using a 7.0-Tesla MR scanner system. The volumes of the lateral ventricles, medial prefrontal cortex (mPFC), hippocampus, striatum, cerebellum, and whole brain were measured. Open field, object recognition, and Morris water maze tests were conducted to assess cognitive and locomotor functions. Blood was taken for measurements of malondialdehyde (MDA), protein carbonyl content, and antioxidant enzyme activity. The lateral ventricle volumes were larger, whereas the mPFC, hippocampus, and striatum volumes were smaller in 27-month-old rats than in 14-month-old rats. In behavioral tasks, the 27-month-old rats showed less exploratory activity and poorer spatial learning and memory than did the 14-month-old rats. Biochemical measurements likewise showed increased MDA and lower glutathione peroxidase (GPx) activity in the 27-month-old rats. In conclusion, age-related increases in oxidative stress, impairment in cognitive and locomotor functions, and changes in brain volume were observed, with the most marked impairments observed in later age. Copyright © 2017. Published by Elsevier Inc.

  15. Sex differences in the stress response in SD rats.

    Science.gov (United States)

    Lu, Jing; Wu, Xue-Yan; Zhu, Qiong-Bin; Li, Jia; Shi, Li-Gen; Wu, Juan-Li; Zhang, Qi-Jun; Huang, Man-Li; Bao, Ai-Min

    2015-05-01

    Sex differences play an important role in depression, the basis of which is an excessive stress response. We aimed at revealing the neurobiological sex differences in the same study in acute- and chronically-stressed rats. Female Sprague-Dawley (SD) rats were randomly divided into 6 groups: chronic unpredictable mild stress (CUMS), acute foot shock (FS) and controls, animals in all 3 groups were sacrificed in proestrus or diestrus. Male SD rats were randomly divided into 3 groups: CUMS, FS and controls. Comparisons were made of behavioral changes in CUMS and control rats, plasma levels of corticosterone (CORT), testosterone (T) and estradiol (E2), and of the hypothalamic mRNA-expression of stress-related molecules, i.e. estrogen receptor α and β, androgen receptor, aromatase, mineralocorticoid receptor, glucocorticoid receptor, corticotropin-releasing hormone, arginine vasopressin and oxytocin. CUMS resulted in disordered estrus cycles, more behavioral and hypothalamic stress-related molecules changes and a stronger CORT response in female rats compared with male rats. Female rats also showed decreased E2 and T levels after FS and CUMS, while male FS rats showed increased E2 and male CUMS rats showed decreased T levels. Stress affects the behavioral, endocrine and the molecular response of the stress systems in the hypothalamus of SD rats in a clear sexual dimorphic way, which has parallels in human data on stress and depression. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Protective effect of polyphenols on presbycusis via oxidative/nitrosative stress suppression in rats.

    Science.gov (United States)

    Sánchez-Rodríguez, Carolina; Martín-Sanz, Eduardo; Cuadrado, Esperanza; Granizo, Juan José; Sanz-Fernández, Ricardo

    2016-10-01

    Age-related hearing loss (AHL) -presbycusis- is the number one neurodegenerative disorder and top communication deficit of our aged population. Experimental evidence suggests that mitochondrial dysfunction associated with reactive oxygen species (ROS) plays a central role in the aging process of cochlear cells. Dietary antioxidants, in particular polyphenols, have been found to be beneficial in protecting against the generation of ROS in various diseases associated with oxidative stress, such as cancer, neurodegenerative diseases and aging. This study was designed to investigate the effects of polyphenols on AHL and to determine whether oxidative stress plays a role in the pathophysiology of AHL. Sprague-Dawley rats (n=100) were divided into five groups according to their age (3, 6, 12, 18 and 24months old) and treated with 100mg/kg/day body weight of polyphenols dissolved in tap water for half of the life of the animal. Auditory steady-state responses (ASSR) threshold shifts were measured before sacrificing the rats. Then, cochleae were harvested to measure total superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities, reactive oxidative and nitrogen species levels, superoxide anions and nitrotyrosine levels. Increased levels of ROS and RNS in cochlea observed with age decreases with polyphenol treatment. In addition, the activity of SOD and GPx enzymes in older rats recovered after the administration of polyphenols. The reduction in oxidative and nitrosative stress in the presence of polyphenols correlates with significant improvements in ASSR threshold shifts. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Impact of aging on cardiac function in a female rat model of menopause: role of autonomic control, inflammation, and oxidative stress

    Directory of Open Access Journals (Sweden)

    Machi JF

    2016-03-01

    Full Text Available Jacqueline Freire Machi,1,2 Danielle da Silva Dias,3 Sarah Cristina Freitas,3 Oscar Albuquerque de Moraes,1 Maikon Barbosa da Silva,1 Paula Lázara Cruz,1 Cristiano Mostarda,4 Vera M C Salemi,1 Mariana Morris,2 Kátia De Angelis,3 Maria-Cláudia Irigoyen1 1Hypertension Unit, Heart Institute (InCor, School of Medicine, University of Sao Paulo, São Paulo, Brazil; 2Institute of Neuro-Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA; 3Laboratory of Translational Physiology, Universidade Nove de Julho (UNINOVE, São Paulo, 4Health Adult and Child, Federal University of Maranhao (UFMA, São Luiz, Maranhão, Brazil Objective: The aim of this study was to evaluate the effects of aging on metabolic, cardiovascular, autonomic, inflammatory, and oxidative stress parameters after ovarian hormone deprivation (OVX. Methods: Female Wistar rats (3 or 22 months old were divided into: young controls, young ovariectomized, old controls, and old ovariectomized (bilateral ovaries removal. After a 9-week follow-up, physical capacity, metabolic parameters, and morphometric and cardiac functions were assessed. Subsequently, arterial pressure was recorded and cardiac autonomic control was evaluated. Oxidative stress was measured on the cardiac tissue, while inflammatory profile was assessed in the plasma. Results: Aging or OVX caused an increase in body and fat weight and triglyceride concentration and a decrease in both insulin sensitivity and aerobic exercise capacity. Left ventricular diastolic dysfunction and increased cardiac overload (myocardial performance index were reported in old groups when compared with young groups. Aging and OVX led to an increased sympathetic tonus, and vagal tonus was lower only for the old groups. Tumor necrosis factor-α and interleukin-6 were increased in old groups when compared with young groups. Glutathione redox balance (GSH/GSSG was reduced in young ovariectomized, old controls, and old ovariectomized

  18. Impact of aging on cardiac function in a female rat model of menopause: role of autonomic control, inflammation, and oxidative stress

    Science.gov (United States)

    Machi, Jacqueline Freire; Dias, Danielle da Silva; Freitas, Sarah Cristina; de Moraes, Oscar Albuquerque; da Silva, Maikon Barbosa; Cruz, Paula Lázara; Mostarda, Cristiano; Salemi, Vera M C; Morris, Mariana; De Angelis, Kátia; Irigoyen, Maria-Cláudia

    2016-01-01

    Objective The aim of this study was to evaluate the effects of aging on metabolic, cardiovascular, autonomic, inflammatory, and oxidative stress parameters after ovarian hormone deprivation (OVX). Methods Female Wistar rats (3 or 22 months old) were divided into: young controls, young ovariectomized, old controls, and old ovariectomized (bilateral ovaries removal). After a 9-week follow-up, physical capacity, metabolic parameters, and morphometric and cardiac functions were assessed. Subsequently, arterial pressure was recorded and cardiac autonomic control was evaluated. Oxidative stress was measured on the cardiac tissue, while inflammatory profile was assessed in the plasma. Results Aging or OVX caused an increase in body and fat weight and triglyceride concentration and a decrease in both insulin sensitivity and aerobic exercise capacity. Left ventricular diastolic dysfunction and increased cardiac overload (myocardial performance index) were reported in old groups when compared with young groups. Aging and OVX led to an increased sympathetic tonus, and vagal tonus was lower only for the old groups. Tumor necrosis factor-α and interleukin-6 were increased in old groups when compared with young groups. Glutathione redox balance (GSH/GSSG) was reduced in young ovariectomized, old controls, and old ovariectomized groups when compared with young controls, indicating an increased oxidative stress. A negative correlation was found between GSH/GSSG and tumor necrosis factor-α (r=−0.6, P<0.003). Correlations were found between interleukin-6 with adipose tissue (r=0.5, P<0.009) and vagal tonus (r=−0.7, P<0.0002); and among myocardial performance index with interleukin-6 (r=0.65, P<0.0002), sympathetic tonus (r=0.55, P<0.006), and physical capacity (r=−0.55, P<0.003). The findings in this trial showed that ovariectomy aggravated the impairment of cardiac and functional effects of aging in female rats, probably associated with exacerbated autonomic dysfunction

  19. Ethanol-induced conditioned taste aversion in male sprague-dawley rats: impact of age and stress.

    Science.gov (United States)

    Anderson, Rachel I; Varlinskaya, Elena I; Spear, Linda P

    2010-12-01

    Age-specific characteristics may contribute to the elevation in ethanol intake commonly reported among adolescents compared to adults. This study was designed to examine age-related differences in sensitivity to ethanol's aversive properties using a conditioned taste aversion (CTA) procedure with sucrose serving as the conditioned stimulus (CS). Given that ontogenetic differences in responsiveness to stressors have been previously reported, the role of stressor exposure on the development of CTA was also assessed. Experiment 1 examined the influence of 5 days of prior restraint stress exposure on the expression of CTA in a 2-bottle test following 1 pairing of a sucrose solution with ethanol. In Experiment 2, the effects of 7 days of social isolation on the development of CTA were observed using a 1-bottle test following multiple sucrose-ethanol pairings. This study revealed age-related differences in the development of ethanol-induced CTA. In Experiment 1, adolescents required a higher dose of ethanol than adults to demonstrate an aversion. In Experiment 2, adolescents required not only a higher ethanol dose but also more pairings of ethanol with the sucrose CS. No effects of prior stressor exposure were observed in either experiment. Together, these experiments demonstrate an adolescent-specific insensitivity to the aversive properties of ethanol that elicit CTA, a pattern not influenced by repeated restraint stress or housing in social isolation. This age-related insensitivity to the dysphoric effects of ethanol is consistent with other work from our laboratory, adding further to the evidence that adolescent rats are less susceptible to negative consequences of ethanol that may serve as cues to curb consumption. Copyright © 2010 by the Research Society on Alcoholism.

  20. Influence of rearing conditions on voluntary ethanol intake and response to stress in rats.

    Science.gov (United States)

    Rockman, G E; Hall, A M; Markert, L E; Glavin, G B

    1988-03-01

    The effects of exposure to four environmental rearing conditions on subsequent voluntary ethanol intake and response to immobilization stress were examined. Male weanling rats were reared in an enriched environment, with a female partner, with a male partner, or individually, for 90 days. At 111 days of age, voluntary consumption of ethanol in increasing concentrations (3 to 9%, v/v) was assessed. Following the ethanol-exposure period, rats were randomly divided into stressed and nonstressed groups and exposed to 3 h of immobilization. Results indicated that the enriched animals consumed greater amounts of ethanol as compared to all other groups, suggesting that the enriched environment and not handling, housing conditions, or the presence of another male or female is responsible for the observed increase in ethanol drinking behavior. Ulcer data indicated that among environmentally enriched rats, ethanol attenuated stress ulcer development relative to their non-ethanol-exposed but stressed controls. In nonstressed enriched rats, ethanol alone exacerbated stomach damage. We suggest that environmental rearing conditions markedly influence the complex interaction between ethanol intake and the response to stress.

  1. Disparate patterns of age-related changes in lipid peroxidation in long-lived naked mole-rats and shorter-lived mice.

    Science.gov (United States)

    Andziak, Blazej; Buffenstein, Rochelle

    2006-12-01

    A key tenet of the oxidative stress theory of aging is that levels of accrued oxidative damage increase with age. Differences in damage generation and accumulation therefore may underlie the natural variation in species longevity. We compared age-related profiles of whole-organism lipid peroxidation (urinary isoprostanes) and liver lipid damage (malondialdehyde) in long living naked mole-rats [maximum lifespan (MLS) > 28.3 years] and shorter-living CB6F1 hybrid mice (MLS approximately 3.5 years). In addition, we compared age-associated changes in liver non-heme iron to assess how intracellular conditions, which may modulate oxidative processes, are affected by aging. Surprisingly, even at a young age, concentrations of both markers of lipid peroxidation, as well as of iron, were at least twofold (P naked mole tats than in mice. This refutes the hypothesis that prolonged naked mole-rat longevity is due to superior protection against oxidative stress. The age-related profiles of all three parameters were distinctly species specific. Rates of lipid damage generation in mice were maintained throughout adulthood, while accrued damage in old animals was twice that of young mice. In naked mole-rats, urinary isoprostane excretion declined by half with age (P naked mole-rats is independent of oxidative stress parameters.

  2. Effect of Short-term Quercetin, Caloric Restriction and Combined Treatment on Age-related Oxidative Stress Markers in the Rat Cerebral Cortex

    Science.gov (United States)

    Alugoju, Phaniendra; Swamy, Vkd Krishan; Periyasamy, Latha

    2018-03-14

    Aging is characterized by gradual accumulation of macromolecular damage leading to progressive loss of physiological function and increased susceptibility to diverse diseases. Effective anti-aging strategies involving caloric restriction or antioxidant supplementation are receiving growing attention to attenuate macromolecular damage in age associated pathology. In the present study, we for the first time investigated the effect of quercetin, caloric restriction and combined treatment (caloric restriction with quercetin) on oxidative stress parameters, acetylcholinesterase and ATPases enzyme activities in the cerebral cortex of aged male Wistar rats. 21 months aged rats were divided into four groups (n=6-8) such as group 1-fed ad libitum (AL); group 2-quercetin supplementation of 50 mg/kg b.w/day for 45 days fed ad libitum (QUER); group 3: caloric restricted (CR) (fed 40% reduced AL for 45 days); group 4-fed 40% CR and 50 mg/kg b.w/day QUER for 45 days (CR + QUER). Group 5-three month age old rats served as young control (YOUNG). Our results demonstrate that combined treatment of caloric restriction and quercetin significantly improved the age associated decline in the activities of endogenous antioxidant enzymes [such as superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx)] and glutathione (GSH) content and attenuated elevated levels of protein carbonyl content (PCC), lipid peroxidation, lipofuscin, reactive oxygen species (ROS), and nitric oxide (NO). Furthermore, it is also observed that combined treatment ameliorated age associated alterations in acetylcholine esterase (AChE) and adenosine triphosphatases (ATPases) such as Na+/K+-ATPase and Ca+2-ATPase (but not Mg+2- ATPase) enzyme activities. Finally, we conclude that combined treatment of caloric restriction and quercetin (but not either treatment alone) in late life is an effective anti-aging therapy to counteract the age related accumulation of oxidative macromolecular damage

  3. Monoamine oxidase enzymes and oxidative stress in the rat optic nerve: age-related changes.

    Science.gov (United States)

    Nebbioso, Marcella; Pascarella, Antonia; Cavallotti, Carlo; Pescosolido, Nicola

    2012-12-01

    In this study, age-related changes in the monoamine oxidases (MAO) were studied in the optic nerve (ON) of both young and aged male rats. The aim of the study was to assess the role of MAO in age-related changes in the rat ON and explain the mechanisms of neuroprotection mediated by MAO-B-specific inhibitors. Fifteen three month old and fifteen 26 month old Sprague-Dawley rats were used. The animals were killed by terminal anaesthesia. Staining of MAO, quantitative analysis of images, biochemical assays and statistical analysis of data were carried out. Samples of the ON were washed in water, fixed in Bowen fluid, dehydrated and embedded in Entellan. Histological sections were stained for MAO-enzymatic activities. The specificity of the reaction was evaluated by incubating control sections in a medium either without substrate or without dye. The quantitative analysis of images was carried out at the same magnification and the same lighting using a Zeiss photomicroscope. The histochemical findings were compared with the biochemical results. After enzymatic staining, MAO could be demonstrated in the ON fibres of both young and aged animals; however, MAO were increased in the nerve fibres of the elderly rats. These morphological findings were confirmed biochemically. The possibility that age-related changes in MAO levels may be attributed to impaired energy production mechanisms and/or represent the consequence of reduced energy needs is discussed. © 2012 The Authors. International Journal of Experimental Pathology © 2012 International Journal of Experimental Pathology.

  4. Ozone Induces Glucose Intolerance and Systemic Metabolic Effects in Young and Aged Brown Norway Rats

    Science.gov (United States)

    Air pollutants have been associated with increased diabetes in humans. We hypothesized that ozone could impair glucose homeostasis by altering insulin signaling and/or endoplasmic reticular (ER) stress in very young and aged rats. Brown Norway (BN) rats, 1,4, 12, and 24 months ol...

  5. Effects of Repeated Stress on Age-Dependent GABAergic Regulation of the Lateral Nucleus of the Amygdala.

    Science.gov (United States)

    Zhang, Wei; Rosenkranz, J Amiel

    2016-08-01

    The adolescent age is associated with lability of mood and emotion. The onset of depression and anxiety disorders peaks during adolescence and there are differences in symptomology during adolescence. This points to differences in the adolescent neural circuitry that underlies mood and emotion, such as the amygdala. The human adolescent amygdala is more responsive to evocative stimuli, hinting to less local inhibitory regulation of the amygdala, but this has not been explored in adolescents. The amygdala, including the lateral nucleus (LAT) of the basolateral amygdala complex, is sensitive to stress. The amygdala undergoes maturational processes during adolescence, and therefore may be more vulnerable to harmful effects of stress during this time period. However, little is known about the effects of stress on the LAT during adolescence. GABAergic inhibition is a key regulator of LAT activity. Therefore, the purpose of this study was to test whether there are differences in the local GABAergic regulation of the rat adolescent LAT, and differences in its sensitivity to repeated stress. We found that LAT projection neurons are subjected to weaker GABAergic inhibition during adolescence. Repeated stress reduced in vivo endogenous and exogenous GABAergic inhibition of LAT projection neurons in adolescent rats. Furthermore, repeated stress decreased measures of presynaptic GABA function and interneuron activity in adolescent rats. In contrast, repeated stress enhanced glutamatergic drive of LAT projection neurons in adult rats. These results demonstrate age differences in GABAergic regulation of the LAT, and age differences in the mechanism for the effects of repeated stress on LAT neuron activity. These findings provide a substrate for increased mood lability in adolescents, and provide a substrate by which adolescent repeated stress can induce distinct behavioral outcomes and psychiatric symptoms.

  6. A-to-I RNA editing in the rat brain is age-dependent, region-specific and sensitive to environmental stress across generations.

    Science.gov (United States)

    Zaidan, Hiba; Ramaswami, Gokul; Golumbic, Yaela N; Sher, Noa; Malik, Assaf; Barak, Michal; Galiani, Dalia; Dekel, Nava; Li, Jin B; Gaisler-Salomon, Inna

    2018-01-08

    Adenosine-to-inosine (A-to-I) RNA editing is an epigenetic modification catalyzed by adenosine deaminases acting on RNA (ADARs), and is especially prevalent in the brain. We used the highly accurate microfluidics-based multiplex PCR sequencing (mmPCR-seq) technique to assess the effects of development and environmental stress on A-to-I editing at 146 pre-selected, conserved sites in the rat prefrontal cortex and amygdala. Furthermore, we asked whether changes in editing can be observed in offspring of stress-exposed rats. In parallel, we assessed changes in ADARs expression levels. In agreement with previous studies, we found editing to be generally higher in adult compared to neonatal rat brain. At birth, editing was generally lower in prefrontal cortex than in amygdala. Stress affected editing at the serotonin receptor 2c (Htr2c), and editing at this site was significantly altered in offspring of rats exposed to prereproductive stress across two generations. Stress-induced changes in Htr2c editing measured with mmPCR-seq were comparable to changes measured with Sanger and Illumina sequencing. Developmental and stress-induced changes in Adar and Adarb1 mRNA expression were observed but did not correlate with editing changes. Our findings indicate that mmPCR-seq can accurately detect A-to-I RNA editing in rat brain samples, and confirm previous accounts of a developmental increase in RNA editing rates. Our findings also point to stress in adolescence as an environmental factor that alters RNA editing patterns several generations forward, joining a growing body of literature describing the transgenerational effects of stress.

  7. Calorie restriction: A new therapeutic intervention for age-related dry eye disease in rats

    International Nuclear Information System (INIS)

    Kawashima, Motoko; Kawakita, Tetsuya; Okada, Naoko; Ogawa, Yoko; Murat, Dogru; Nakamura, Shigeru; Nakashima, Hideo; Shimmura, Shigeto; Shinmura, Ken; Tsubota, Kazuo

    2010-01-01

    A decrease in lacrimal gland secretory function is closely related to aging and leads to an increased prevalence of dry eye syndrome. Since calorie restriction (CR) is considered to prevent functional decline of various organs due to aging, we hypothesized that CR could prevent age-related lacrimal dysfunction. Six-month-old male Fischer 344 rats were randomly divided into ad libitum (AL) and CR (-35%) groups. After 6 months of CR, tear function was examined under conscious state. After euthanasia, lacrimal glands were subjected to histological examination, tear protein secretion stimulation test with Carbachol, and assessment of oxidative stress with 8-hydroxy-2 deoxyguanosine (8-OHdG) and 4-hydroxynonenal (HNE) antibodies. CR significantly improved tear volume and tended to increase tear protein secretion volume after stimulation with Carbachol compared to AL. The acinar unit density was significantly higher in the CR rats compared to AL rats. Lacrimal glands in the CR rats showed a lesser degree of interstitial fibrosis. CR reduced the concentration of 8-OHdG and the extent of staining with HNE in the lacrimal gland, compared to AL. Furthermore, our electron microscopic observations showed that mitochondrial structure of the lacrimal gland obtained from the middle-aged CR rats was preserved in comparison to the AL rats. Collectively, these results demonstrate for the first time that CR may attenuate oxidative stress related damage in the lacrimal gland with preservation of lacrimal gland functions. Although molecular mechanism(s) by which CR maintains lacrimal gland function remains to be resolved, CR might provide a novel therapeutic strategy for treating dry eye syndrome.

  8. Calorie restriction: A new therapeutic intervention for age-related dry eye disease in rats

    Energy Technology Data Exchange (ETDEWEB)

    Kawashima, Motoko; Kawakita, Tetsuya; Okada, Naoko; Ogawa, Yoko [Department of Ophthalmology, Keio University School of Medicine, Tokyo (Japan); Murat, Dogru [Department of Ocular Surface and Visual Optics, Keio University School of Medicine, Tokyo (Japan); Nakamura, Shigeru; Nakashima, Hideo [Research Center, Ophtecs Corporation, Hyogo (Japan); Shimmura, Shigeto [Department of Ophthalmology, Keio University School of Medicine, Tokyo (Japan); Shinmura, Ken [Division of Geriatric Medicine, Department of Internal Medicine, Keio University School of Medicine, Tokyo (Japan); Tsubota, Kazuo, E-mail: tsubota@sc.itc.keio.ac.jp [Department of Ophthalmology, Keio University School of Medicine, Tokyo (Japan)

    2010-07-09

    A decrease in lacrimal gland secretory function is closely related to aging and leads to an increased prevalence of dry eye syndrome. Since calorie restriction (CR) is considered to prevent functional decline of various organs due to aging, we hypothesized that CR could prevent age-related lacrimal dysfunction. Six-month-old male Fischer 344 rats were randomly divided into ad libitum (AL) and CR (-35%) groups. After 6 months of CR, tear function was examined under conscious state. After euthanasia, lacrimal glands were subjected to histological examination, tear protein secretion stimulation test with Carbachol, and assessment of oxidative stress with 8-hydroxy-2 deoxyguanosine (8-OHdG) and 4-hydroxynonenal (HNE) antibodies. CR significantly improved tear volume and tended to increase tear protein secretion volume after stimulation with Carbachol compared to AL. The acinar unit density was significantly higher in the CR rats compared to AL rats. Lacrimal glands in the CR rats showed a lesser degree of interstitial fibrosis. CR reduced the concentration of 8-OHdG and the extent of staining with HNE in the lacrimal gland, compared to AL. Furthermore, our electron microscopic observations showed that mitochondrial structure of the lacrimal gland obtained from the middle-aged CR rats was preserved in comparison to the AL rats. Collectively, these results demonstrate for the first time that CR may attenuate oxidative stress related damage in the lacrimal gland with preservation of lacrimal gland functions. Although molecular mechanism(s) by which CR maintains lacrimal gland function remains to be resolved, CR might provide a novel therapeutic strategy for treating dry eye syndrome.

  9. Effects of prenatal stress on vulnerability to stress in prepubertal and adult rats.

    Science.gov (United States)

    Fride, E; Dan, Y; Feldon, J; Halevy, G; Weinstock, M

    1986-01-01

    This study investigated the hypotheses that unpredictable prenatal stress has effects on the offspring, similar to those induced by perinatal administration of glucocorticoids and increases the vulnerability to stressful situations at adulthood. Rats were exposed to random noise and light stress throughout pregnancy. Offspring were tested for the development of spontaneous alternation behavior (SA) and at adulthood, their response to novel or aversive situations, open field, extinction and punishment following acquisition of an appetitive response and two-way active avoidance, were assessed. In prenatally stressed rats, the development of SA was significantly delayed. On repeated exposure to an open field they were less active; control rats had elevated plasma corticosterone (CCS) on days 2 and 4 of open field exposure, while prenatally stressed rats had significantly raised plasma CCS after each exposure (days 1-8). Furthermore, punishment-induced suppression of an appetitive response was enhanced. Acquisition of active avoidance was faciliated in female but reduced in male prenatally stressed offspring. It is suggested that random prenatal noise and light stress may cause impairment of development of hippocampal function which lasts into adulthood. This impairment is manifested as an increase in vulnerability and a decrease in habituation to stressful stimuli.

  10. Effect of Mucuna pruriens on oxidative stress mediated damage in aged rat sperm.

    Science.gov (United States)

    Suresh, Sekar; Prithiviraj, Elumalai; Prakash, Seppan

    2010-02-01

    Mucuna pruriens Linn., a leguminous plant, has been recognized as an aphrodisiac and spermatogenic agent. Protective efficacy of M. pruriens on reactive oxygen species (ROS)-induced pathophysiological alterations in structural and functional integrity of epididymal sperm in aged Wister albino rat was analysed. Animals were grouped as groups I, II, III and IV, i.e. young (control), aged, aged treated with ethanolic extract (200 mg/kg b.w.) of M. pruriens and young rats treated with M. pruriens, respectively. At the end of the experimental period, i.e. after 60 days animals were sacrificed, epididymal sperm were collected and subjected to count, viability, motility, morphology and morphometric analysis. Enzymatic and non-enzymatic antioxidants, ROS, lipid peroxidation (LPO), DNA damage, chromosomal integrity and mitochondrial membrane potential were estimated. Results obtained from the aged animals showed significant reduction in sperm count, viability and motility, increased morphological damage and an increase in the number of sperm with cytoplasmic remnant, and these alterations were significantly reversed in M. pruriens treated group. Significant increase in LPO, HO and H(2)O(2) production and significant decline in the levels of the enzymatic and non-enzymatic antioxidants were observed in the aged animals. Supplementation of M. pruriens significantly reduced ROS and LPO production and significant increase in both enzymatic and non-enzymatic antioxidant levels. There were significant DNA damage, loss of chromosomal integrity and increase in mitochondrial membrane permeability in aged rat sperm. This was significantly reduced in group III. Present observation indicates the antioxidant enhancing property, free radical quenching ability and spermatogenic efficacy of the M. pruriens. Collectively, sperm damage in ageing was significantly reduced by quenching ROS, improving antioxidant defence system and mitochondrial function.

  11. Sexual dimorphism in development of kidney damage in aging Fischer-344 rats.

    Science.gov (United States)

    Sasser, Jennifer M; Akinsiku, Oladele; Moningka, Natasha C; Jerzewski, Katie; Baylis, Chris; LeBlanc, Amanda J; Kang, Lori S; Sindler, Amy L; Muller-Delp, Judy M

    2012-08-01

    Aging kidneys exhibit slowly developing injury and women are usually protected compared with men, in association with maintained renal nitric oxide. Our purpose was to test 2 hypotheses: (1) that aging intact Fischer-344 (F344) female rats exhibit less glomerular damage than similarly aged males, and (2) that loss of female ovarian hormones would lead to greater structural injury and dysregulation of the nitric oxide synthase (NOS) system in aging F344 rat kidneys. We compared renal injury in F344 rats in intact, ovariectomized, and ovariectomized with estrogen replaced young (6 month) and old (24 month) female rats with young and old intact male rats and measured renal protein abundance of NOS isoforms and oxidative stress. There was no difference in age-dependent glomerular damage between young or old intact male and female F344 rats, and neither ovariectomy nor estrogen replacement affected renal injury; however, tubulointerstitial injury was greater in old males than in old females. These data suggest that ovarian hormones do not influence these aspects of kidney aging in F344 rats and that the greater tubulointerstitial injury is caused by male sex. Old males had greater kidney cortex NOS3 abundance than females, and NOS1 abundance (alpha and beta isoforms) was increased in old males compared with both young males and old females. NOS abundance was preserved with age in intact females, ovariectomy did not reduce NOS1 or NOS3 protein abundance, and estrogen replacement did not uniformly elevate NOS proteins, suggesting that estrogens are not primary regulators of renal NOS abundance in this strain. Nicotinamide adenine dinucleotide phosphate oxidase-dependent superoxide production and nitrotyrosine immunoreactivity were increased in aging male rat kidneys compared with females, which could compromise renal nitric oxide production and/or bioavailability. The kidney damage expressed in aging F344 rats is fairly mild and is not related to loss of renal cortex NOS3

  12. Exposure to 16O-particle radiation causes aging-like decrements in rats through increased oxidative stress, inflammation and loss of autophagy.

    Science.gov (United States)

    Poulose, Shibu M; Bielinski, Donna F; Carrihill-Knoll, Kirsty; Rabin, Bernard M; Shukitt-Hale, Barbara

    2011-12-01

    Exposing young rats to particles of high energy and charge (HZE particles), a ground-based model for exposure to cosmic rays, enhances indices of oxidative stress and inflammation, disrupts the functioning of neuronal communication, and alters cognitive behaviors. Even though exposure to HZE particles occurs at low fluence rates, the cumulative effects of long-term exposure result in molecular changes similar to those seen in aged animals. In the present study, we assessed markers of autophagy, a dynamic process for intracellular degradation and recycling of toxic proteins and organelles, as well as stress and inflammatory responses, in the brains of Sprague-Dawley rats irradiated at 2 months of age with 5 and 50 cGy and 1 Gy of ionizing oxygen particles ((16)O) (1000 MeV/n). Compared to nonirradiated controls, exposure to (16)O particles significantly inhibited autophagy function in the hippocampus as measured by accumulation of ubiquitin inclusion bodies such as P62/SQSTM1, autophagosome marker microtubule-associated protein 1 beta light chain 3 (MAP1B-LC3), beclin1 and proteins such as mammalian target of rapamycin (mTOR). The molecular changes measured at short (36 h) and long (75 days) intervals after (16)O-particle exposure indicate that the loss of autophagy function occurred shortly after exposure but was recovered via inhibition of mTOR. However, HZE-particle radiation caused significant sustained loss of protein kinase C alpha (PKC-α), a key G protein modulator involved in neuronal survival and functions of neuronal trophic factors. Exposure to (16)O particles also caused substantial increases in the levels of nuclear factor kappa B (NF-κB) and glial fibrillary acidic protein (GFAP), indicating glial cell activation 75 days after exposure. This is the first report to show the molecular effects of (16)O-particle radiation on oxidative stress, inflammation and loss of autophagy in the brain of young rats.

  13. Low maternal care exacerbates adult stress susceptibility in the chronic mild stress rat model of depression

    DEFF Research Database (Denmark)

    Henningsen, Kim; Johannesen, Mads Dyrvig; Bouzinova, Elena

    2012-01-01

    In the present study we report the finding that the quality of maternal care, in early life, increased the susceptibility to stress exposure in adulthood, when rats were exposed to the chronic mild stress paradigm. Our results indicate that high, as opposed to low maternal care, predisposed rats...... to a differential stress-coping ability. Thus rats fostered by low maternal care dams became more prone to adopt a stress-susceptible phenotype developing an anhedonic-like condition. Moreover, low maternal care offspring had lower weight gain and lower locomotion, with no additive effect of stress. Subchronic...... exposure to chronic mild stress induced an increase in faecal corticosterone metabolites, which was only significant in rats from low maternal care dams. Examination of glucocorticoid receptor exon 17 promoter methylation in unchallenged adult, maternally characterized rats, showed an insignificant...

  14. Stress triggers anhedonia in rats bred for learned helplessness.

    Science.gov (United States)

    Enkel, Thomas; Spanagel, Rainer; Vollmayr, Barbara; Schneider, Miriam

    2010-05-01

    Congenitally helpless (cLH) rats, a well-accepted model for depression, show reduced consumption of sweet solutions only under single-housing conditions, indicating anhedonia under stress. We investigated if anhedonic-like behaviour, measured by a reduction of sweetened-condensed milk (SCM) intake and the pleasure-attenuated startle response (PAS), could be induced by an electric foot-shock stress challenge in group-housed rats. After foot-shock stress, reduced SCM intake was observed in cLH rats compared to non-helpless (cNLH) rats. Furthermore, cLH rats also showed a decreased PAS, indicating deficient reward perception. In summary, we demonstrate that a predisposition for learned helplessness interacts with stress to trigger anhedonic-like behaviour in cLH rats. These findings further add to the validity of congenitally learned helplessness as an animal model of depression, since gene-environment interactions are considered to play a role in the etiology of this disorder.

  15. Social instability stress differentially affects amygdalar neuron adaptations and memory performance in adolescent and adult rats

    Directory of Open Access Journals (Sweden)

    Sheng-Feng eTsai

    2014-02-01

    Full Text Available Adolescence is a time of developmental changes and reorganization in the brain. It has been hypothesized that stress has a greater neurological impact on adolescents than on adults. However, scientific evidence in support of this hypothesis is still limited. We treated adolescent (4-week-old and adult (8-week-old rats with social instability stress for five weeks and compared the subsequent structural and functional changes to amygdala neurons. In the stress-free control condition, the adolescent group showed higher fear-potentiated startle responses, larger dendritic arborization, more proximal dendritic spine distribution and lower levels of truncated TrkB than the adult rats. Social instability stress exerted opposite effects on fear-potentiated startle responses in these two groups, i.e., the stress period appeared to hamper the performance in adolescents but improved it in adult rats. Furthermore, whilst the chronic social stress applied to adolescent rats reduced their dendritic field and spine density in basal and lateral amygdala neurons, the opposite stress effects on neuron morphology were observed in the adult rats. Moreover, stress in adolescence suppressed the amygdala expression of synaptic proteins, i.e., full-length TrkB and SNAP-25, whereas, in the adult rats, chronic stress enhanced full-length and truncated TrkB expressions in the amygdala. In summary, chronic social instability stress hinders amygdala neuron development in the adolescent brain, while mature neurons in the amygdala are capable of adapting to the stress. The stress induced age-dependent effects on the fear-potentiated memory may occur by altering the BDNF-TrkB signaling and neuroplasticity in the amygdala.

  16. Amelioration of azoxymethane induced-carcinogenesis by reducing oxidative stress in rat colon by natural extracts.

    Science.gov (United States)

    Waly, Mostafa I; Al-Rawahi, Amani S; Al Riyami, Marwa; Al-Kindi, Mohamed A; Al-Issaei, Halima K; Farooq, Sardar A; Al-Alawi, Ahmed; Rahman, Mohammad S

    2014-02-18

    Azoxymethane (AOM) is a potent carcinogenic agent commonly used to induce colon cancer in rats; the cytotoxicity of AOM is considered to mediate oxidative stress. This study investigated the chemopreventive effect of three natural extracts [pomegranate peel extract (PomPE), papaya peel extract (PapPE) and seaweed extract (SE)] against AOM-induced oxidative stress and carcinogenesis in rat colon. Eighty Sprague-Dawley rats (aged 4 weeks) were randomly divided into 8 groups (10 rats/group). Control group was fed a basal diet; AOM-treated group was fed a basal diet and received AOM intraperitonial injections for two weeks at a dose of 15 mg/kg bodyweight, whereas the other six groups were received oral supplementation of PomPE, PapPE or SE, in the presence or absence of AOM injection. All animals were continuously fed ad-libitum until aged 16 weeks, then all rats were sacrificed and the colon tissues were examined microscopically for pathological changes and aberrant crypt foci (ACF) development, genotoxicity (induced micronuclei (MN) cells enumeration), and glutathione and lipid peroxidation. Our results showed that AOM-induced ACF development and pathological changes in the colonic mucosal tissues, increased bone marrow MN cells and oxidative stress (glutathione depletion, lipid peroxidation) in rat colonic cells. The concomitant treatment of AOM with PomPE, PapPE or SE significantly ameliorated the cytotoxic effects of AOM. The results of this study provide in-vivo evidence that PomPE, PapPE and SE reduced the AOM-induced colon cancer in rats, through their potent anti-oxidant activities.

  17. Calorie restriction: A new therapeutic intervention for age-related dry eye disease in rats.

    Science.gov (United States)

    Kawashima, Motoko; Kawakita, Tetsuya; Okada, Naoko; Ogawa, Yoko; Murat, Dogru; Nakamura, Shigeru; Nakashima, Hideo; Shimmura, Shigeto; Shinmura, Ken; Tsubota, Kazuo

    2010-07-09

    A decrease in lacrimal gland secretory function is closely related to aging and leads to an increased prevalence of dry eye syndrome. Since calorie restriction (CR) is considered to prevent functional decline of various organs due to aging, we hypothesized that CR could prevent age-related lacrimal dysfunction. Six-month-old male Fischer 344 rats were randomly divided into ad libitum (AL) and CR (-35%) groups. After 6months of CR, tear function was examined under conscious state. After euthanasia, lacrimal glands were subjected to histological examination, tear protein secretion stimulation test with Carbachol, and assessment of oxidative stress with 8-hydroxy-2 deoxyguanosine (8-OHdG) and 4-hydroxynonenal (HNE) antibodies. CR significantly improved tear volume and tended to increase tear protein secretion volume after stimulation with Carbachol compared to AL. The acinar unit density was significantly higher in the CR rats compared to AL rats. Lacrimal glands in the CR rats showed a lesser degree of interstitial fibrosis. CR reduced the concentration of 8-OHdG and the extent of staining with HNE in the lacrimal gland, compared to AL. Furthermore, our electron microscopic observations showed that mitochondrial structure of the lacrimal gland obtained from the middle-aged CR rats was preserved in comparison to the AL rats. Collectively, these results demonstrate for the first time that CR may attenuate oxidative stress related damage in the lacrimal gland with preservation of lacrimal gland functions. Although molecular mechanism(s) by which CR maintains lacrimal gland function remains to be resolved, CR might provide a novel therapeutic strategy for treating dry eye syndrome. Copyright 2010 Elsevier Inc. All rights reserved.

  18. Ginger and alpha lipoic acid ameliorate age-related ultrastructural changes in rat liver.

    Science.gov (United States)

    Mahmoud, Y I; Hegazy, H G

    2016-01-01

    Because of the important role that oxidative stress is thought to play in the aging process, antioxidants could be candidates for preventing its related pathologies. We investigated the ameliorative effects of two antioxidant supplements, ginger and alpha lipoic acid (ALA), on hepatic ultrastructural alterations in old rats. Livers of young (4 months) and old (24 months) Wistar rats were studied using transmission electron microscopy. Livers of old rats showed sinusoidal collapse and congestion, endothelial thickening and defenestration, and inconsistent perisinusoidal extracellular matrix deposition. Aged hepatocytes were characterized by hypertrophy, cytoplasmic vacuolization and a significant increase in the volume densities of the nuclei, mitochondria and dense bodies. Lipofuscin accumulation and decreased microvilli in bile canaliculi and space of Disse also were observed. The adverse alterations were ameliorated significantly by both ginger and ALA supplementation; ALA was more effective than ginger. Ginger and ALA appear to be promising anti-aging agents based on their amelioration of ultrastructural alterations in livers of old rats.

  19. Protective effects of carnosol against oxidative stress induced brain damage by chronic stress in rats.

    Science.gov (United States)

    Samarghandian, Saeed; Azimi-Nezhad, Mohsen; Borji, Abasalt; Samini, Mohammad; Farkhondeh, Tahereh

    2017-05-04

    Oxidative stress through chronic stress destroys the brain function. There are many documents have shown that carnosol may have a therapeutic effect versus free radical induced diseases. The current research focused the protective effect of carnosol against the brain injury induced by the restraint stress. The restraint stress induced by keeping animals in restrainers for 21 consecutive days. Thereafter, the rats were injected carnosol or vehicle for 21 consecutive days. At the end of experiment, all the rats were subjected to his open field test and forced swimming test. Afterwards, the rats were sacrificed for measuring their oxidative stress parameters. To measure the modifications in the biochemical aspects after the experiment, the activities of malondialdehyde (MDA), reduced glutathione (GSH), as well as superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR) and catalase (CAT) were evaluated in the whole brain. Our data showed that the animals received chronic stress had a raised immobility time versus the non-stressed animals (p < 0.01). Furthermore, chronic stress diminished the number of crossing in the animals that were subjected to the chronic stress versus the non-stressed rats (p < 0.01). Carnosol ameliorated this alteration versus the non-treated rats (p < 0.05). In the vehicle treated rats that submitted to the stress, the level of MDA levels was significantly increased (P < 0.001), and the levels of GSH and antioxidant enzymes were significantly decreased versus the non-stressed animals (P < 0.001). Carnosol treatment reduced the modifications in the stressed animals as compared with the control groups (P < 0.001). All of these carnosol effects were nearly similar to those observed with fluoxetine. The current research shows that the protective effects of carnosol may be accompanied with enhanced antioxidant defenses and decreased oxidative injury.

  20. 125I-iomazenil-benzodiazepine receptor binding during psychological stress in rats

    International Nuclear Information System (INIS)

    Fukumitsu, Nobuyoshi; Tsuchida, Daisuke; Ogi, Shigeyuki; Uchiyama, Mayuki; Mori, Yutaka

    2002-01-01

    We investigated the changes in 125 I-iomazenil ( 125 I-IMZ) benzodiazepine receptor (BZR) binding with psychological stress in a rat model. Six male Wistar rats were placed under psychological stress for 1 hour by using a communication box. No physical stress was not received. 1.85 MBq of 125 I-IMZ was injected into the lateral tail vein and the rat was killed 3 hours later. Twenty-micormeter-thick sections of the brain were collected and % injected dose per body weight (% ID/BW) of eleven regions (frontal, parietal, temporal, occipital cortices, caudate putamen, accumubens nuclei, globus pallidus, amygdala, thalamus, hippocampus and hypothalamus) were calculated by autoradiography. The %ID/BW of rats which were placed under psychological stress was compared with that of 6 control rats. The %ID/BW of rats which were placed under psychological stress diffusely tended to show a reduction in 125 I-IMZ-BZR binding. A significant decrease in BZR binding was observed in the hippocampus of the rats which were placed under psychological stress. 125 I-IMZ-BZR binding tended to decrease throughout the brain. (author)

  1. Lack of Social Support Raises Stress Vulnerability in Rats with a History of Ancestral Stress.

    Science.gov (United States)

    Faraji, Jamshid; Soltanpour, Nabiollah; Lotfi, Hamid; Moeeini, Reza; Moharreri, Ali-Reza; Roudaki, Shabnam; Hosseini, S Abedin; Olson, David M; Abdollahi, Ali-Akbar; Soltanpour, Nasrin; Mohajerani, Majid H; Metz, Gerlinde A S

    2017-07-13

    Stress is a primary risk factor for psychiatric disorders. However, it is not fully understood why some stressed individuals are more vulnerable to psychiatric disorders than others. Here, we investigated whether multigenerational ancestral stress produces phenotypes that are sensitive to depression-like symptoms in rats. We also examined whether social isolation reveals potentially latent sensitivity to depression-like behaviours. F4 female rats born to a lineage of stressed mothers (F0-F3) received stress in adulthood while housed in pairs or alone. Social isolation during stress induced cognitive and psychomotor retardation only in rats exposed to ancestral stress. Social isolation also hampered the resilience of the hypothalamic-pituitary-adrenal axis to chronic stress and reduced hippocampal volume and brain-derived neurotrophic factor (BDNF) expression. Thus, synergy between social isolation and stress may unmask a latent history of ancestral stress, and raises vulnerability to mental health conditions. The findings support the notion that social support critically promotes stress coping and resilience.

  2. The Protective Role of Selenium on Scopolamine-Induced Memory Impairment, Oxidative Stress, and Apoptosis in Aged Rats: The Involvement of TRPM2 and TRPV1 Channels.

    Science.gov (United States)

    Balaban, Hasan; Nazıroğlu, Mustafa; Demirci, Kadir; Övey, İshak Suat

    2017-05-01

    Inhibition of Ca 2+ entry into the hippocampus and dorsal root ganglion (DRG) through inhibition of N-methyl-D-aspartate (NMDA) receptor antagonist drugs is the current standard of care in neuronal diseases such as Alzheimer's disease, dementia, and peripheral pain. Oxidative stress activates Ca 2+ -permeable TRPM2 and TRPV1, and recent studies indicate that selenium (Se) is a potent TRPM2 and TRPV1 channel antagonist in the hippocampus and DRG. In this study, we investigated the neuroprotective properties of Se in primary hippocampal and DRG neuron cultures of aged rats when given alone or in combination with scopolamine (SCOP). Thirty-two aged (18-24 months old) rats were divided into four groups. The first and second groups received a placebo and SCOP (1 mg/kg/day), respectively. The third and fourth groups received intraperitoneal Se (1.5 mg/kg/ over day) and SCOP + Se, respectively. The hippocampal and DRG neurons also were stimulated in vitro with a TRPV1 channel agonist (capsaicin) and a TRPM2 channel agonist (cumene hydroperoxide). We found that Se was fully effective in reversing SCOP-induced TRPM2 and TRPV1 current densities as well as errors in working memory and reference memory. In addition, Se completely reduced SCOP-induced oxidative toxicity by modulating lipid peroxidation, reducing glutathione and glutathione peroxidase. The Se and SCOP + Se treatments also decreased poly (ADP-ribose) polymerase activity, intracellular free Ca 2+ concentrations, apoptosis, and caspase 3, caspase 9, and mitochondrial membrane depolarization values in the hippocampus. In conclusion, the current study reports on the cellular level for SCOP and Se on the different endocytotoxic cascades for the first time. Notably, the research indicates that Se can result in remarkable neuroprotective and memory impairment effects in the hippocampal neurons of rats. Graphical abstract Possible molecular pathways of involvement of selenium (Se) in scopolamine (SCOP) induced

  3. Chronic stress and neural function: accounting for sex and age.

    Science.gov (United States)

    Luine, V N; Beck, K D; Bowman, R E; Frankfurt, M; Maclusky, N J

    2007-10-01

    Cognitive responses to stress follow the temporally dependent pattern originally established by Selye (1) wherein short-term stressors elicit adaptive responses whereas continued stress (chronic) results in maladaptive changes--deleterious effects on physiological systems and impaired cognition. However, this pattern for cognitive effects appears to apply to only half the population (males) and, more specifically, to young, adult males. Females show different cognitive responses to stress. In contrast to impaired cognition in males after chronic stress, female rodents show enhanced performance on the same memory tasks after the same stress. Not only cognition, but anxiety, shows sex-dependent changes following chronic stress--stress is anxiolytic in males and anxiogenic in females. Moreover, behavioral responses to chronic stress are different in developing as well as aging subjects (both sexes) as compared to adults. In aged rats, chronic stress enhances recognition memory in both sexes, does not alter spatial memory, and anxiety effects are opposite to young adults. When pregnant dams are exposed to chronic stress, at adulthood the offspring display yet different consequences of stress on anxiety and cognition, and, in contrast to adulthood when the behavioral effects of stress are reversible, prenatal stress effects appear enduring. Changing levels of estradiol in the sexes over the lifespan appear to contribute to the differences in response to stress. Thus, theories of stress dependent modulations in CNS function--developed solely in male models, focused on peripheral physiological processes and tested in adults--may require revision when applied to a more diverse population (age- and sex-wise) at least in relation to the neural functions of cognition and anxiety. Moreover, these results suggest that other stressors and neural functions should be investigated to determine whether age, sex and gonadal hormones also have an impact.

  4. Enhanced post-ischemic neurogenesis in aging rats

    Directory of Open Access Journals (Sweden)

    Yao-Fang Tan

    2010-08-01

    Full Text Available Hippocampal neurogenesis persists in adult mammals, but its rate declines dramatically with age. Evidence indicates that experimentally-reduced levels of neurogenesis (e.g. by irradiation in young rats has profound influence on cognition as determined by learning and memory tests. In the present study we asked whether in middle-aged, 10-13 months old rats, cell production can be restored towards the level present in young rats. To manipulate neurogenesis we induced bilateral carotid occlusion with hypotension. This procedure is known to increase neurogenesis in young rats, presumably in a compensatory manner, but until now, has never been tested in aging rats. Cell production was measured at 10, 35 and 90 days after ischemia. The results indicate that neuronal proliferation and differentiation can be transiently restored in middle-aged rats. Furthermore, the effects are more pronounced in the dorsal as opposed to ventral hippocampus thus restoring the dorso-ventral gradient seen in younger rats. Our results support previous findings showing that some of the essential features of the age-dependent decline in neurogenesis are reversible. Thus, it may be possible to manipulate neurogenesis and improve learning and memory in old age.

  5. Oxidative Stress in Aging: Advances in Proteomic Approaches

    Directory of Open Access Journals (Sweden)

    Daniel Ortuño-Sahagún

    2014-01-01

    Full Text Available Aging is a gradual, complex process in which cells, tissues, organs, and the whole organism itself deteriorate in a progressive and irreversible manner that, in the majority of cases, implies pathological conditions that affect the individual’s Quality of Life (QOL. Although extensive research efforts in recent years have been made, the anticipation of aging and prophylactic or treatment strategies continue to experience major limitations. In this review, the focus is essentially on the compilation of the advances generated by cellular expression profile analysis through proteomics studies (two-dimensional [2D] electrophoresis and mass spectrometry [MS], which are currently used as an integral approach to study the aging process. Additionally, the relevance of the oxidative stress factors is discussed. Emphasis is placed on postmitotic tissues, such as neuronal, muscular, and red blood cells, which appear to be those most frequently studied with respect to aging. Additionally, models for the study of aging are discussed in a number of organisms, such as Caenorhabditis elegans, senescence-accelerated probe-8 mice (SAMP8, naked mole-rat (Heterocephalus glaber, and the beagle canine. Proteomic studies in specific tissues and organisms have revealed the extensive involvement of reactive oxygen species (ROS and oxidative stress in aging.

  6. Walking the oxidative stress tightrope: a perspective from the naked mole-rat, the longest-living rodent.

    Science.gov (United States)

    Rodriguez, Karl A; Wywial, Ewa; Perez, Viviana I; Lambert, Adriant J; Edrey, Yael H; Lewis, Kaitlyn N; Grimes, Kelly; Lindsey, Merry L; Brand, Martin D; Buffenstein, Rochelle

    2011-01-01

    Reactive oxygen species (ROS), by-products of aerobic metabolism, cause oxidative damage to cells and tissue and not surprisingly many theories have arisen to link ROS-induced oxidative stress to aging and health. While studies clearly link ROS to a plethora of divergent diseases, their role in aging is still debatable. Genetic knock-down manipulations of antioxidants alter the levels of accrued oxidative damage, however, the resultant effect of increased oxidative stress on lifespan are equivocal. Similarly the impact of elevating antioxidant levels through transgenic manipulations yield inconsistent effects on longevity. Furthermore, comparative data from a wide range of endotherms with disparate longevity remain inconclusive. Many long-living species such as birds, bats and mole-rats exhibit high-levels of oxidative damage, evident already at young ages. Clearly, neither the amount of ROS per se nor the sensitivity in neutralizing ROS are as important as whether or not the accrued oxidative stress leads to oxidative-damage-linked age-associated diseases. In this review we examine the literature on ROS, its relation to disease and the lessons gleaned from a comparative approach based upon species with widely divergent responses. We specifically focus on the longest lived rodent, the naked mole-rat, which maintains good health and provides novel insights into the paradox of maintaining both an extended healthspan and lifespan despite high oxidative stress from a young age.

  7. Distinct age and differentiation-state dependent metabolic profiles of oligodendrocytes under optimal and stress conditions.

    Directory of Open Access Journals (Sweden)

    Vijayaraghava T S Rao

    Full Text Available Within the microenvironment of multiple sclerosis lesions, oligodendrocytes are subject to metabolic stress reflecting effects of focal ischemia and inflammation. Previous studies have shown that under optimal conditions in vitro, the respiratory activity of human adult brain-derived oligodendrocytes is lower and more predominantly glycolytic compared to oligodendrocytes differentiated in vitro from post natal rat brain oligodendrocyte progenitor cells. In response to sub-lethal metabolic stress, adult human oligodendrocytes reduce overall energy production rate impacting the capacity to maintain myelination. Here, we directly compare the metabolic profiles of oligodendrocytes derived from adult rat brain with oligodendrocytes newly differentiated in vitro from oligodendrocyte progenitor cells obtained from the post natal rat brain, under both optimal culture and metabolic stress (low/no glucose conditions. Oxygen consumption and extracellular acidification rates were measured using a Seahorse extracellular flux analyzer. Our findings indicate that under optimal conditions, adult rat oligodendrocytes preferentially use glycolysis whereas newly differentiated post natal rat oligodendrocytes, and the oligodendrocyte progenitor cells from which they are derived, mainly utilize oxidative phosphorylation to produce ATP. Metabolic stress increases the rate of ATP production via oxidative phosphorylation and significantly reduces glycolysis in adult oligodendrocytes. The rate of ATP production was relatively unchanged in newly differentiated post natal oligodendrocytes under these stress conditions, while it was significantly reduced in oligodendrocyte progenitor cells. Our study indicates that both age and maturation influence the metabolic profile under optimal and stressed conditions, emphasizing the need to consider these variables for in vitro studies that aim to model adult human disease.

  8. Psychological stress, cocaine and natural reward each induce endoplasmic reticulum stress genes in rat brain.

    Science.gov (United States)

    Pavlovsky, A A; Boehning, D; Li, D; Zhang, Y; Fan, X; Green, T A

    2013-08-29

    Our prior research has shown that the transcription of endoplasmic reticulum (ER) stress transcription factors activating transcription factor 3 (ATF3) and ATF4 are induced by amphetamine and restraint stress in rat striatum. However, presently the full extent of ER stress responses to psychological stress or cocaine, and which of the three ER stress pathways is activated is unknown. The current study examines transcriptional responses of key ER stress target genes subsequent to psychological stress or cocaine. Rats were subjected to acute or repeated restraint stress or cocaine treatment and mRNA was isolated from dorsal striatum, medial prefrontal cortex and nucleus accumbens brain tissue. ER stress gene mRNA expression was measured using quantitative polymerase chain reaction (PCR) and RNA sequencing. Restraint stress and cocaine-induced transcription of the classic ER stress-induced genes (BIP, CHOP, ATF3 and GADD34) and of two other ER stress components x-box binding protein 1 (XBP1) and ATF6. In addition, rats living in an enriched environment (large group cage with novel toys changed daily) exhibited rapid induction of GADD34 and ATF3 after 30 min of exploring novel toys, suggesting these genes are also involved in normal non-pathological signaling. However, environmental enrichment, a paradigm that produces protective addiction and depression phenotypes in rats, attenuated the rapid induction of ATF3 and GADD34 after restraint stress. These experiments provide a sensitive measure of ER stress and, more importantly, these results offer good evidence of the activation of ER stress mechanisms from psychological stress, cocaine and natural reward. Thus, ER stress genes may be targets for novel therapeutic targets for depression and addiction. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. Caffeine prevents d-galactose-induced cognitive deficits, oxidative stress, neuroinflammation and neurodegeneration in the adult rat brain.

    Science.gov (United States)

    Ullah, Faheem; Ali, Tahir; Ullah, Najeeb; Kim, Myeong Ok

    2015-11-01

    d-galactose has been considered a senescent model for age-related neurodegenerative disease. It induces oxidative stress which triggers memory impairment, neuroinflammation and neurodegeneration. Caffeine act as anti-oxidant and has been used in various model of neurodegenerative disease. Nevertheless, the effect of caffeine against d-galactose aging murine model of age-related neurodegenerative disease elucidated. Here, we investigated the neuroprotective effect of caffeine against d-galactose. We observed that chronic treatment of caffeine (3 mg/kg/day intraperitoneally (i.p) for 60 days) improved memory impairment and synaptic markers (Synaptophysin and PSD95) in the d-galactose treated rats. Chronic caffeine treatment reduced the oxidative stress via the reduction of 8-oxoguanine through immunofluorescence in the d-galactose-treated rats. Consequently caffeine treatment suppressed stress kinases p-JNK. Additionally, caffeine treatment significantly reduced the d-galactose-induced neuroinflammation through alleviation of COX-2, NOS-2, TNFα and IL-1β. Furthermore we also analyzed that caffeine reduced cytochrome C, Bax/Bcl2 ratio, caspase-9, caspase-3 and PARP-1 level. Moreover by evaluating the immunohistochemical results of Nissl and Fluro-Jade B staining showed that caffeine prevented the neurodegeneration in the d-galactose-treated rats. Our results showed that caffeine prevents the d-galactose-induced oxidative stress and consequently alleviated neuroinflammation and neurodegeneration; and synaptic dysfunction and memory impairment. Therefore, we could suggest that caffeine might be a dietary anti-oxidant agent and a good candidate for the age-related neurodegenerative disorders. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Identification of new therapeutic targets by genome-wide analysis of gene expression in the ipsilateral cortex of aged rats after stroke.

    Directory of Open Access Journals (Sweden)

    Ana-Maria Buga

    Full Text Available Because most human stroke victims are elderly, studies of experimental stroke in the aged rather than the young rat model may be optimal for identifying clinically relevant cellular responses, as well for pinpointing beneficial interventions.We employed the Affymetrix platform to analyze the whole-gene transcriptome following temporary ligation of the middle cerebral artery in aged and young rats. The correspondence, heat map, and dendrogram analyses independently suggest a differential, age-group-specific behaviour of major gene clusters after stroke. Overall, the pattern of gene expression strongly suggests that the response of the aged rat brain is qualitatively rather than quantitatively different from the young, i.e. the total number of regulated genes is comparable in the two age groups, but the aged rats had great difficulty in mounting a timely response to stroke. Our study indicates that four genes related to neuropathic syndrome, stress, anxiety disorders and depression (Acvr1c, Cort, Htr2b and Pnoc may have impaired response to stroke in aged rats. New therapeutic options in aged rats may also include Calcrl, Cyp11b1, Prcp, Cebpa, Cfd, Gpnmb, Fcgr2b, Fcgr3a, Tnfrsf26, Adam 17 and Mmp14. An unexpected target is the enzyme 3-hydroxy-3-methylglutaryl-Coenzyme A synthase 1 in aged rats, a key enzyme in the cholesterol synthesis pathway. Post-stroke axonal growth was compromised in both age groups.We suggest that a multi-stage, multimodal treatment in aged animals may be more likely to produce positive results. Such a therapeutic approach should be focused on tissue restoration but should also address other aspects of patient post-stroke therapy such as neuropathic syndrome, stress, anxiety disorders, depression, neurotransmission and blood pressure.

  11. Stress-induced rise in serum anti-brain autoantibody levels in the rat.

    Science.gov (United States)

    Andrejević, S; Bukilica, M; Dimitrijević, M; Laban, O; Radulovic, J; Kovacevic-Jovanovic, V; Stanojevic, S; Vasiljevic, T; Marković, B M

    1997-02-01

    Sera from Wistar rats subjected to different stress procedures were tested by ELISA for the presence of autoantibodies with specificity for neuron-specific enolase (NSE) and S100 protein that are preferentially localized in neurons and glia, respectively. Autoantibodies were present in sera of animals before exposure to stress, and raised with age. Anti-NSE and anti-S100 autoantibody levels were increased one day after termination of restraint (2 hours daily, 10 days) and electric tail shock (80 shocks daily, 19 days), and in fifth and tenth week of overcrowding stress. Differences between stressed and control animals were not present one month following restraint and electric tail shock and in twentieth week of overcrowding.

  12. {sup 125}I-iomazenil-benzodiazepine receptor binding during psychological stress in rats

    Energy Technology Data Exchange (ETDEWEB)

    Fukumitsu, Nobuyoshi; Tsuchida, Daisuke; Ogi, Shigeyuki; Uchiyama, Mayuki; Mori, Yutaka [Jikei Univ., Tokyo (Japan). School of Medicine

    2002-05-01

    We investigated the changes in {sup 125}I-iomazenil ({sup 125}I-IMZ) benzodiazepine receptor (BZR) binding with psychological stress in a rat model. Six male Wistar rats were placed under psychological stress for 1 hour by using a communication box. No physical stress was not received. 1.85 MBq of {sup 125}I-IMZ was injected into the lateral tail vein and the rat was killed 3 hours later. Twenty-micormeter-thick sections of the brain were collected and % injected dose per body weight (% ID/BW) of eleven regions (frontal, parietal, temporal, occipital cortices, caudate putamen, accumubens nuclei, globus pallidus, amygdala, thalamus, hippocampus and hypothalamus) were calculated by autoradiography. The %ID/BW of rats which were placed under psychological stress was compared with that of 6 control rats. The %ID/BW of rats which were placed under psychological stress diffusely tended to show a reduction in {sup 125}I-IMZ-BZR binding. A significant decrease in BZR binding was observed in the hippocampus of the rats which were placed under psychological stress. {sup 125}I-IMZ-BZR binding tended to decrease throughout the brain. (author)

  13. Age-related decrease in the mitochondrial sirtuin deacetylase Sirt3 expression associated with ROS accumulation in the auditory cortex of the mimetic aging rat model.

    Science.gov (United States)

    Zeng, Lingling; Yang, Yang; Hu, Yujuan; Sun, Yu; Du, Zhengde; Xie, Zhen; Zhou, Tao; Kong, Weijia

    2014-01-01

    Age-related dysfunction of the central auditory system, also known as central presbycusis, can affect speech perception and sound localization. Understanding the pathogenesis of central presbycusis will help to develop novel approaches to prevent or treat this disease. In this study, the mechanisms of central presbycusis were investigated using a mimetic aging rat model induced by chronic injection of D-galactose (D-Gal). We showed that malondialdehyde (MDA) levels were increased and manganese superoxide dismutase (SOD2) activity was reduced in the auditory cortex in natural aging and D-Gal-induced mimetic aging rats. Furthermore, mitochondrial DNA (mtDNA) 4834 bp deletion, abnormal ultrastructure and cell apoptosis in the auditory cortex were also found in natural aging and D-Gal mimetic aging rats. Sirt3, a mitochondrial NAD+-dependent deacetylase, has been shown to play a crucial role in controlling cellular reactive oxygen species (ROS) homeostasis. However, the role of Sirt3 in the pathogenesis of age-related central auditory cortex deterioration is still unclear. Here, we showed that decreased Sirt3 expression might be associated with increased SOD2 acetylation, which negatively regulates SOD2 activity. Oxidative stress accumulation was likely the result of low SOD2 activity and a decline in ROS clearance. Our findings indicate that Sirt3 might play an essential role, via the mediation of SOD2, in central presbycusis and that manipulation of Sirt3 expression might provide a new approach to combat aging and oxidative stress-related diseases.

  14. Presynaptic plasticity as a hallmark of rat stress susceptibility and antidepressant response.

    Directory of Open Access Journals (Sweden)

    Jose Luis Nieto-Gonzalez

    Full Text Available Two main questions are important for understanding and treating affective disorders: why are certain individuals susceptible or resilient to stress, and what are the features of treatment response and resistance? To address these questions, we used a chronic mild stress (CMS rat model of depression. When exposed to stress, a fraction of rats develops anhedonic-like behavior, a core symptom of major depression, while another subgroup of rats is resilient to CMS. Furthermore, the anhedonic-like state is reversed in about half the animals in response to chronic escitalopram treatment (responders, while the remaining animals are resistant (non-responder animals. Electrophysiology in hippocampal brain slices was used to identify a synaptic hallmark characterizing these groups of animals. Presynaptic properties were investigated at GABAergic synapses onto single dentate gyrus granule cells. Stress-susceptible rats displayed a reduced probability of GABA release judged by an altered paired-pulse ratio of evoked inhibitory postsynaptic currents (IPSCs (1.48 ± 0.25 compared with control (0.81 ± 0.05 and stress-resilient rats (0.78 ± 0.03. Spontaneous IPSCs (sIPSCs occurred less frequently in stress-susceptible rats compared with control and resilient rats. Finally, a subset of stress-susceptible rats responding to selective serotonin reuptake inhibitor (SSRI treatment showed a normalization of the paired-pulse ratio (0.73 ± 0.06 whereas non-responder rats showed no normalization (1.2 ± 0.2. No changes in the number of parvalbumin-positive interneurons were observed. Thus, we provide evidence for a distinct GABAergic synaptopathy which associates closely with stress-susceptibility and treatment-resistance in an animal model of depression.

  15. Encoding changes in orbitofrontal cortex in reversal-impaired aged rats.

    Science.gov (United States)

    Schoenbaum, Geoffrey; Setlow, Barry; Saddoris, Michael P; Gallagher, Michela

    2006-03-01

    Previous work in rats and primates has shown that normal aging can be associated with a decline in cognitive flexibility mediated by prefrontal circuits. For example, aged rats are impaired in rapid reversal learning, which in young rats depends critically on the orbitofrontal cortex. To assess whether aging-related reversal impairments reflect orbitofrontal dysfunction, we identified aged rats with reversal learning deficits and then recorded single units as these rats, along with unimpaired aged cohorts and young control rats, learned and reversed a series of odor discrimination problems. We found that the flexibility of neural correlates in orbitofrontal cortex was markedly diminished in aged rats characterized as reversal-impaired in initial training. In particular, although many cue-selective neurons in young and aged-unimpaired rats reversed odor preference when the odor-outcome associations were reversed, cue-selective neurons in reversal-impaired aged rats did not. In addition, outcome-expectant neurons in aged-impaired rats failed to become active during cue sampling after learning. These altered features of neural encoding could provide a basis for cognitive inflexibility associated with normal aging.

  16. Social stress contagion in rats: Behavioural, autonomic and neuroendocrine correlates.

    Science.gov (United States)

    Carnevali, Luca; Montano, Nicola; Statello, Rosario; Coudé, Gino; Vacondio, Federica; Rivara, Silvia; Ferrari, Pier Francesco; Sgoifo, Andrea

    2017-08-01

    The negative emotional consequences associated with life stress exposure in an individual can affect the emotional state of social partners. In this study, we describe an experimental rat model of social stress contagion and its effects on social behaviour and cardiac autonomic and neuroendocrine functions. Adult male Wistar rats were pair-housed and one animal (designated as "demonstrator" (DEM)) was submitted to either social defeat stress (STR) by an aggressive male Wild-type rat in a separate room or just exposed to an unfamiliar empty cage (control condition, CTR), once a day for 4 consecutive days. We evaluated the influence of cohabitation with a STR DEM on behavioural, cardiac autonomic and neuroendocrine outcomes in the cagemate (defined "observer" (OBS)). After repeated social stress, STR DEM rats showed clear signs of social avoidance when tested in a new social context compared to CTR DEM rats. Interestingly, also their cagemate STR OBSs showed higher levels of social avoidance compared to CTR OBSs. Moreover, STR OBS rats exhibited a higher heart rate and a larger shift of cardiac autonomic balance toward sympathetic prevalence (as indexed by heart rate variability analysis) immediately after the first reunification with their STR DEMs, compared to the control condition. This heightened cardiac autonomic responsiveness habituated over time. Finally, STR OBSs showed elevated plasma corticosterone levels at the end of the experimental protocol compared to CTR OBSs. These findings demonstrate that cohabitation with a DEM rat, which has experienced repeated social defeat stress, substantially disrupts social behaviour and induces short-lasting cardiac autonomic activation and hypothalamic-pituitary-adrenal axis hyperactivity in the OBS rat, thus suggesting emotional state-matching between the OBS and the DEM rats. We conclude that this rodent model may be further exploited for investigating the neurobiological bases of negative affective sharing between

  17. Variety of immune responses to chronic stress in rats male

    Directory of Open Access Journals (Sweden)

    Іlona S Polovynko

    2016-12-01

    Full Text Available Background. Previously we have been carry out integrated quantitative estimation of neuroendocrine and immune responses to chronic restraint stress in male rats. Revealed that the value of canonical discriminant roots rats subjected to chronic stress different not only on the values of intact animals (by definition, but also among themselves. So we set a goal retrospectively divided stressed rats into three homogeneous groups. Material and methods. The experiment is at 50 white male rats. Of these 10 animals not subjected to any influences and 40 within 7 days subjected to moderate stress by daily 30-minute immobilization. The day after the completion of stressing in portion of the blood immunological parameters were determined by tests I and II levels of WHO. The spleen and thymus did smears for counting spleno- and thymocytograms. Results. The method of cluster analysis (k-means clustering formed three groups-clusters. For further analysis selected 18 parameters that members of each cluster differing minimum and maximum are different from members of other clusters (η2=0,73÷0,15; F=49,0÷3,26; p=10-6÷0,05. We stated that in 16 rats from cluster III the deviation 16 parameters in either side of the average norm almost identical and are in an acceptable range of ±0,5σ. Thus, the immune status of 40% of the rats subjected to moderate chronic stress was resistant to its factors. For the immune status of the 15 (37,5% rats cluster II typical moderate inhibition microphage, killer and T-cellular links in combination with a strong activation macrophage link. Poststressory changes in immunity in 9 rats (22,5% from cluster I differ from those in cluster II both qualitatively and quantitatively. In particular, the rats in this cluster were found no deviations from the norm or reaction blast transformation T-cells nor NK-lymphocytes levels. However, other parameters of T-link and microhage link suppressed more and settings macrophage link appeared

  18. Chronic stress does not impair liver regeneration in rats

    DEFF Research Database (Denmark)

    Andersen, Kasper J; Knudsen, Anders Riegels; Wiborg, Ove

    2015-01-01

    a 70 % partial hepatectomy (PHx). The animals were evaluated on postoperative day 2 or 4. Blood samples were collected to examine circulating markers of inflammation and liver cell damage. Additionally, liver tissues were sampled to evaluate liver weight and regeneration rate. RESULTS: None......BACKGROUND: Although wound healing is a simple regenerative process that is critical after surgery, it has been shown to be impaired under psychological stress. The liver has a unique capacity to regenerate through highly complex mechanisms. The aim of this study was to investigate the effects...... of chronic stress, which may induce a depression-like state, on the complex process of liver regeneration in rats. METHODS: Twenty rats were included in this study. The animals received either a standard housing protocol or were subjected to a Chronic Mild Stress (CMS) stress paradigm. All rats underwent...

  19. EFFECTS OF TOLUENE ON BRAIN OXIDATIVE STRESS PARAMETERS IN AGING BROWN NORWAY RATS

    Science.gov (United States)

    Aging-related susceptibility to environmental chemicals is poorly understood. Oxidative stress (OS) appears to play an important role in susceptibility and disease in old age. The objectives of this study, therefore, were to test whether OS is a potential toxicity pathway for tol...

  20. Effects of neonatal pain, stress and their interrelation on pain sensitivity in later life in male rats.

    Science.gov (United States)

    Butkevich, Irina P; Mikhailenko, Viktor A; Vershinina, Elena A; Aloisi, Anna Maria

    2016-08-31

    Neonatal pain and stress induce long-term changes in pain sensitivity. Therefore their interrelation is a topical subject of clinical and basic research. The present study investigated the effects of inflammatory peripheral pain and stress of maternal deprivation (MD)-isolation in 1-2- and 7-8-day-old Wistar rats (P1,2 and P7,8 respectively, ages comparable to preterm and full-term human babies) on basal pain and pain sensitivity in conditions of inflammatory pain (formalin test) during adolescence. The neonatal impacts were: pain (formalin injection, FOR in the paw), stress (a short 60-min MD), or pain+stress combination (FOR+MD), and appropriate controls. We found that stress of short-term maternal deprivation-isolation and inflammatory pain on P1,2 and P7,8 significantly increased the vulnerability of the nociceptive system to inflammatory pain. Maternal deprivation-isolation on P1,2 as compared with a similar impact on P7,8 had a greater effect on pain sensitivity of the adolescent rats, but the influence of early pain was independent of the injury age. Only adolescent rats with an early combination of pain and maternal deprivation-isolation showed hypoalgesia in the hot plate (HP) test. However licking duration (reflecting pain sensitivity) in these rats did not exceed licking duration in animals exposed only to maternal deprivation-isolation or pain. This study adds new data to the growing body of work demonstrating that early noxious impacts have long-term consequences for the functional activity of the nociceptive system. Our new findings may help to understand the impact of pain and maternal separation in the neonatal intensive care unit.

  1. Neonatal Handling Produces Sex Hormone-Dependent Resilience to Stress-Induced Muscle Hyperalgesia in Rats.

    Science.gov (United States)

    Alvarez, Pedro; Green, Paul G; Levine, Jon D

    2018-06-01

    Neonatal handling (NH) of male rat pups strongly attenuates stress response and stress-induced persistent muscle hyperalgesia in adults. Because female sex is a well established risk factor for stress-induced chronic muscle pain, we explored whether NH provides resilience to stress-induced hyperalgesia in adult female rats. Rat pups underwent NH, or standard (control) care. Muscle mechanical nociceptive threshold was assessed before and after water avoidance (WA) stress, when they were adults. In contrast to male rats, NH produced only a modest protection against WA stress-induced muscle hyperalgesia in female rats. Gonadectomy completely abolished NH-induced resilience in male rats but produced only a small increase in this protective effect in female rats. The administration of the antiestrogen drug fulvestrant, in addition to gonadectomy, did not enhance the protective effect of NH in female rats. Finally, knockdown of the androgen receptor by intrathecal antisense treatment attenuated the protective effect of NH in intact male rats. Together, these data indicate that androgens play a key role in NH-induced resilience to WA stress-induced muscle hyperalgesia. NH induces androgen-dependent resilience to stress-induced muscle pain. Therefore, androgens may contribute to sex differences observed in chronic musculoskeletal pain and its enhancement by stress. Copyright © 2018 The American Pain Society. Published by Elsevier Inc. All rights reserved.

  2. Age-related decrease in the mitochondrial sirtuin deacetylase Sirt3 expression associated with ROS accumulation in the auditory cortex of the mimetic aging rat model.

    Directory of Open Access Journals (Sweden)

    Lingling Zeng

    Full Text Available Age-related dysfunction of the central auditory system, also known as central presbycusis, can affect speech perception and sound localization. Understanding the pathogenesis of central presbycusis will help to develop novel approaches to prevent or treat this disease. In this study, the mechanisms of central presbycusis were investigated using a mimetic aging rat model induced by chronic injection of D-galactose (D-Gal. We showed that malondialdehyde (MDA levels were increased and manganese superoxide dismutase (SOD2 activity was reduced in the auditory cortex in natural aging and D-Gal-induced mimetic aging rats. Furthermore, mitochondrial DNA (mtDNA 4834 bp deletion, abnormal ultrastructure and cell apoptosis in the auditory cortex were also found in natural aging and D-Gal mimetic aging rats. Sirt3, a mitochondrial NAD+-dependent deacetylase, has been shown to play a crucial role in controlling cellular reactive oxygen species (ROS homeostasis. However, the role of Sirt3 in the pathogenesis of age-related central auditory cortex deterioration is still unclear. Here, we showed that decreased Sirt3 expression might be associated with increased SOD2 acetylation, which negatively regulates SOD2 activity. Oxidative stress accumulation was likely the result of low SOD2 activity and a decline in ROS clearance. Our findings indicate that Sirt3 might play an essential role, via the mediation of SOD2, in central presbycusis and that manipulation of Sirt3 expression might provide a new approach to combat aging and oxidative stress-related diseases.

  3. Prenatal Stress Produces Sex Specific Changes in Depression-like Behavior in Rats: Implications for Increased Vulnerability in Females

    DEFF Research Database (Denmark)

    Sickmann, Helle Mark; Arentzen, Tine S; Dyrby, Tim

    2015-01-01

    Stress during rat gestation can elicit depression-like physiological and behavioral responses in the offspring. However, human clinical depression is more prevalent among females than males. Accordingly, we examined how repeated variable prenatal stress (PS) alters rat anxiety- and depression...... and measured anxiety- (elevated plus maze, EPM) and depression-like (forced swim test, FST) behaviors in the offspring at a young adult age. As a stressful event later in life (in addition to PS) may be needed to actually trigger an episode of clinical depression, half of the animals were exposed to an acute...... affected in control animals after acute stressor exposure, however, this response was blunted in PS offspring. Moreover, FST immobility, as an indicator of depressive-like behavior, was increased in female but not male PS rats. Altogether, our results identify both sex- and circadian phase-specific effects...

  4. The effects of propolis extract on ovarian tissue and oxidative stress in rats with maternal separation stress

    Directory of Open Access Journals (Sweden)

    Atefeh Arabameri

    2017-09-01

    Full Text Available Abstract Background: Stress in infancy has dramatic effects on different systems, including the nervous system, endocrine, immune, reproductive and etc. Objective: The purpose of this study was to investigate the effects of extract of Iranian propolis (EIP on ovarian tissue and oxidative stress in rats with maternal separation stress. Materials and Methods: 48 immature female rats were divided randomly into six groups. 1 Control group, 2 Control group+saline, 3 Stress group, includes infants that were separated from their mothers 6 hr/day, the 4th, 5th and 6th groups consisted of infants who in addition to daily stress received 50, 100 and 200 mg/kg of EIP, respectively. Then serum corticosterone, 17-beta-estradiol, malondialdehyde, total superoxide dismutase, glutathione peroxidase and ferric reducing antioxidant power levels were measured. The ovarian sections were stained by H&E, PAS, and TUNEL methods and were studied with optical microscopy. Results: Stress increased the blood serum corticosterone levels and 17-beta-estradiol reduced significantly (p<0.001 and EIP prevented from this changes (p<0.01. EIP significantly increased the number of ovarian follicles, oocytes and oocytes diameter in neonatal rat following stress (p<0.01. EIP also significantly decreased the number of atretic follicles, TUNEL+granulosa cells, malondialdehyde levels and increased ferric reducing antioxidant power, total superoxide dismutase and glutathione peroxidase serum levels in neonatal rats following stress. The dose of 200 mg/kg EIP was more effective. Conclusion: This Study showed that the Iranian Propolis significantly could prevent oxidative stress and histopathological changes in the ovary of the neonatal rat the following stress.

  5. Brain network reorganization differs in response to stress in rats genetically predisposed to depression and stress-resilient rats.

    Science.gov (United States)

    Gass, N; Becker, R; Schwarz, A J; Weber-Fahr, W; Clemm von Hohenberg, C; Vollmayr, B; Sartorius, A

    2016-12-06

    Treatment-resistant depression (TRD) remains a pressing clinical problem. Optimizing treatment requires better definition of the specificity of the involved brain circuits. The rat strain bred for negative cognitive state (NC) represents a genetic animal model of TRD with high face, construct and predictive validity. Vice versa, the positive cognitive state (PC) strain represents a stress-resilient phenotype. Although NC rats show depressive-like behavior, some symptoms such as anhedonia require an external trigger, i.e. a stressful event, which is similar to humans when stressful event induces a depressive episode in genetically predisposed individuals (gene-environment interaction). We aimed to distinguish neurobiological predisposition from the depressogenic pathology at the level of brain-network reorganization. For this purpose, resting-state functional magnetic resonance imaging time series were acquired at 9.4 Tesla scanner in NC (N=11) and PC (N=7) rats before and after stressful event. We used a graph theory analytical approach to calculate the brain-network global and local properties. There was no difference in the global characteristics between the strains. At the local level, the response in the risk strain was characterized with an increased internodal role and reduced local clustering and efficiency of the anterior cingulate cortex (ACC) and prelimbic cortex compared to the stress-resilient strain. We suggest that the increased internodal role of these prefrontal regions could be due to the enhancement of some of their long-range connections, given their connectivity with the amygdala and other default-mode-like network hubs, which could create a bias to attend to negative information characteristic for depression.

  6. A terrified-sound stress induced proteomic changes in adult male rat hippocampus.

    Science.gov (United States)

    Yang, Juan; Hu, Lili; Wu, Qiuhua; Liu, Liying; Zhao, Lingyu; Zhao, Xiaoge; Song, Tusheng; Huang, Chen

    2014-04-10

    In this study, we investigated the biochemical mechanisms in the adult rat hippocampus underlying the relationship between a terrified-sound induced psychological stress and spatial learning. Adult male rats were exposed to a terrified-sound stress, and the Morris water maze (MWM) has been used to evaluate changes in spatial learning and memory. The protein expression profile of the hippocampus was examined using two-dimensional gel electrophoresis (2DE), matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, and bioinformatics analysis. The data from the MWM tests suggested that a terrified-sound stress improved spatial learning. The proteomic analysis revealed that the expression of 52 proteins was down-regulated, while that of 35 proteins were up-regulated, in the hippocampus of the stressed rats. We identified and validated six of the most significant differentially expressed proteins that demonstrated the greatest stress-induced changes. Our study provides the first evidence that a terrified-sound stress improves spatial learning in rats, and that the enhanced spatial learning coincides with changes in protein expression in rat hippocampus. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Basis of aggravated hepatic lipid metabolism by chronic stress in high-fat diet-fed rat.

    Science.gov (United States)

    Han, Ying; Lin, Min; Wang, Xiaobin; Guo, Keke; Wang, Shanshan; Sun, Mengfei; Wang, Jiao; Han, Xiaoyu; Fu, Ting; Hu, Yang; Fu, Jihua

    2015-03-01

    Our previous study has demonstrated that long-term stress, known as chronic stress (CS), can aggravate nonalcoholic fatty liver disease in high-fat diet (HFD)-fed rat. In this study, we tried to figure out which lipid metabolic pathways were impacted by CS in the HFD-fed rat. Male Sprague-Dawley rats (6 weeks of age, n = 8 per group) were fed with either standard diet or HFD with or without CS exposure for 8 weeks. Hepatic lipidosis, biochemical, hormonal, and lipid profile markers in serum and liver, and enzymes involved in de novo lipogenesis (DNL) of fatty acids (FAs) and cholesterol, β-oxidation, FAs uptake, triglycerides synthesis, and very low-density lipoprotein (VLDL) assembly in the liver were detected. CS exposure reduced hepatic lipidosis but further elevated hepatic VLDL content with aggravated dyslipidemia in the HFD-fed rats. There was a synergism between CS and HFD on VLDL production and dyslipidemia. PCR and western blot assays showed that CS exposure significantly promoted hepatic VLDL assembly in rats, especially in the HFD-fed rats, while it had little impact on DNL, β-oxidation, FAs uptake, and triglycerides synthesis in the HFD-fed rats. This phenomenon was in accordance with elevated serum glucocorticoid level. The critical influence of CS exposure on hepatic lipid metabolism in the HFD-fed rats is VLDL assembly which might be regulated by glucocorticoid.

  8. Sex-specific effects of early life stress on social interaction and prefrontal cortex dendritic morphology in young rats.

    Science.gov (United States)

    Farrell, M R; Holland, F H; Shansky, R M; Brenhouse, H C

    2016-09-01

    Early life stress has been linked to depression, anxiety, and behavior disorders in adolescence and adulthood. The medial prefrontal cortex (mPFC) is implicated in stress-related psychopathology, is a target for stress hormones, and mediates social behavior. The present study investigated sex differences in early-life stress effects on juvenile social interaction and adolescent mPFC dendritic morphology in rats using a maternal separation (MS) paradigm. Half of the rat pups of each sex were separated from their mother for 4h a day between postnatal days 2 and 21, while the other half remained with their mother in the animal facilities and were exposed to minimal handling. At postnatal day 25 (P25; juvenility), rats underwent a social interaction test with an age and sex matched conspecific. Distance from conspecific, approach and avoidance behaviors, nose-to-nose contacts, and general locomotion were measured. Rats were euthanized at postnatal day 40 (P40; adolescence), and randomly selected infralimbic pyramidal neurons were filled with Lucifer yellow using iontophoretic microinjections, imaged in 3D, and then analyzed for dendritic arborization, spine density, and spine morphology. Early-life stress increased the latency to make nose-to-nose contact at P25 in females but not males. At P40, early-life stress increased infralimbic apical dendritic branch number and length and decreased thin spine density in stressed female rats. These results indicate that MS during the postnatal period influenced juvenile social behavior and mPFC dendritic arborization in a sex-specific manner. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Basolateral amygdala GABA-A receptors mediate stress-induced memory retrieval impairment in rats.

    Science.gov (United States)

    Sardari, Maryam; Rezayof, Ameneh; Khodagholi, Fariba; Zarrindast, Mohammad-Reza

    2014-04-01

    The present study was designed to investigate the involvement of GABA-A receptors of the basolateral amygdala (BLA) in the impairing effect of acute stress on memory retrieval. The BLAs of adult male Wistar rats were bilaterally cannulated and memory retrieval was measured in a step-through type passive avoidance apparatus. Acute stress was evoked by placing the animals on an elevated platform for 10, 20 and 30 min. The results indicated that exposure to 20 and 30 min stress, but not 10 min, before memory retrieval testing (pre-test exposure to stress) decreased the step-through latency, indicating stress-induced memory retrieval impairment. Intra-BLA microinjection of a GABA-A receptor agonist, muscimol (0.005-0.02 μg/rat), 5 min before exposure to an ineffective stress (10 min exposure to stress) induced memory retrieval impairment. It is important to note that pre-test intra-BLA microinjection of the same doses of muscimol had no effect on memory retrieval in the rats unexposed to 10 min stress. The blockade of GABA-A receptors of the BLA by injecting an antagonist, bicuculline (0.4-0.5 μg/rat), 5 min before 20 min exposure to stress, prevented stress-induced memory retrieval. Pre-test intra-BLA microinjection of the same doses of bicuculline (0.4-0.5 μg/rat) in rats unexposed to 20 min stress had no effect on memory retrieval. In addition, pre-treatment with bicuculline (0.1-0.4 μg/rat, intra-BLA) reversed muscimol (0.02 μg/rat, intra-BLA)-induced potentiation on the effect of stress in passive avoidance learning. It can be concluded that pre-test exposure to stress can induce memory retrieval impairment and the BLA GABA-A receptors may be involved in stress-induced memory retrieval impairment.

  10. Effect of a water-maze procedure on the redox mechanisms in brain parts of aged rats

    Directory of Open Access Journals (Sweden)

    Natalia Andreevna Krivova

    2015-03-01

    Full Text Available The Morris water maze (MWM is a tool for assessment of age-related cognitive deficits. In our work, MWM was used for appraisal of cognitive deficits in 11-month-old rats and investigation of the effect exerted by training in the Morris water maze on the redox mechanisms in rat brain parts. Young adult (3-month-old and aged (11-month-old male rats were trained in the water maze. Intact animals of the corresponding age were used as the reference groups. The level of pro- and antioxidant capacity in brain tissue homogenates was assessed using the chemiluminescence method.Cognitive deficits were found in 11-month-old rats: at the first day of training they showed only 30% of successful MWM trials. However, at the last training day the percentage of successful trials was equal for young adult and aged animals. This indicates that cognitive deficits in aged rats can be reversed by MWM training. Therewith, the MWM spatial learning procedure itself produces changes in different processes of redox homeostasis in 11-month-old and 3-month-old rats as compared to intact animals. Young adult rats showed a decrease in prooxidant capacity in all brain parts, while 11-month-old rats demonstrated an increase in antioxidant capacity in the olfactory bulb, pons + medulla oblongata and frontal lobe cortex. Hence, the MWM procedure activates the mechanisms that restrict the oxidative stress in brain parts. The obtained results may be an argument for further development of the animal training procedures aimed to activate the mechanisms responsible for age-related cognitive deficits. This may be useful not only for the development of training procedures applicable to human patients with age-related cognitive impairments, but also for their rehabilitation.

  11. Chronic aerobic exercise training attenuates aortic stiffening and endothelial dysfunction through preserving aortic mitochondrial function in aged rats.

    Science.gov (United States)

    Gu, Qi; Wang, Bing; Zhang, Xiao-Feng; Ma, Yan-Ping; Liu, Jian-Dong; Wang, Xiao-Ze

    2014-08-01

    Aging leads to large vessel arterial stiffening and endothelial dysfunction, which are important determinants of cardiovascular risk. The aim of present work was to assess the effects of chronic aerobic exercise training on aortic stiffening and endothelial dysfunction in aged rats and investigate the underlying mechanism about mitochondrial function. Chronic aerobic exercise training attenuated aortic stiffening with age marked by reduced collagen concentration, increased elastin concentration and reduced pulse wave velocity (PWV), and prevented aging-related endothelial dysfunction marked by improved endothelium-mediated vascular relaxation of aortas in response to acetylcholine. Chronic aerobic exercise training abated oxidative stress and nitrosative stress in aortas of aged rats. More importantly, we found that chronic aerobic exercise training in old rats preserved aortic mitochondrial function marked by reduced reactive oxygen species (ROS) formation and mitochondrial swelling, increased ATP formation and mitochondrial DNA content, and restored activities of complexes I and III and electron-coupling capacity between complexes I and III and between complexes II and III. In addition, it was found that chronic aerobic exercise training in old rats enhanced protein expression of uncoupling protein 2 (UCP-2), peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α), manganese superoxide dismutase (Mn-SOD), aldehyde dehydrogenase 2 (ALDH-2), prohibitin (PHB) and AMP-activated kinase (AMPK) phosphorylation in aortas. In conclusion, chronic aerobic exercise training preserved mitochondrial function in aortas, which, at least in part, explained the aorta-protecting effects of exercise training in aging. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. [Intervention of systolic pressure and left ventricular hypertrophy in rats under cold stress].

    Science.gov (United States)

    Sun, C F; Wang, S G; Peng, Y G; Shi, Y; Du, Y P; Shi, G X; Wen, T; Wang, Y K; Su, H

    2016-06-20

    To investigate the effects of different drugs on systolic blood pressure (SBP) and left ventricular hypertrophy (LVH) in spontaneously hypertensive rats under cold stress. A total of 40 male spontaneously hypertensive rats aged 10 weeks (160~200 g) were given adaptive feeding for 7 days at a temperature of 20±1°C and then randomly divided into control group, cold stress group, metoprolol group, amlodipine group, and benazepril group, with 8 rats in each group. SBP, body weight, and heart rate were measured once a week. After the rats were sacrificed by exsanguination, left ventricular weight (LVW) was measured, and left ventricular weight index (LVWI; mg/g) was calculated. Radioimmunoassay was used to measure the concentrations of endothelin-1 (ET-1) and angiotensin-II (Ang-II) in plasma and myocardium, and the chemical method was used to measure the concentrations of nitric oxide (NO) in plasma and myocardium. RT-PCR was used to measure the mRNA expression of endothelin-A receptor. Compared with the cold stress group, all medication groups showed significant reductions in SBP since week 5 (Pcold stress group showed a significant increase in LVWI compared with the control group (3.38±0.27 mg/g vs 2.89±0.19 mg/g, Pcold stress group (2.98±0.28 mg/g vs 3.38±0.27 mg/g, Pcold stress group showed a significant reduction in plasma NO concentration compared with the control group (104.9±19.5 μmol/L vs 129.3±17.8 μmol/L, Pcold stress group, all the medication groups showed significant increases in blood NO concentration (Pcold stress group showed a significant increase in myocardial ET-1 concentration compared with the control group (6.3±1.5 pg/100 mg vs 4.5±1.9 pg/100 mg, Pcold stress group, the amlodipine group showed a significant reduction in myocardial ET-1 concentration (4.4±1.0 pg/100 mg vs 6.3±1.5 pg/100 mg, Pcold stress group had significantly higher mRNA expression of endothelin-A receptor than the control group (0.86±0.23 vs 0.45±0.16, Pcold

  13. Dobutamine stress echocardiography in healthy adult male rats

    Directory of Open Access Journals (Sweden)

    Couet Jacques

    2005-10-01

    Full Text Available Abstract Background Dobutamine stress echocardiography is used to investigate a wide variety of heart diseases in humans. Dobutamine stress echocardiography has also been used in animal models of heart disease despite the facts that the normal response of healthy rat hearts to this type of pharmacological stress testing is unknown. This study was performed to assess this normal response. Methods 15 normal adult male Wistar rats were evaluated. Increasing doses of dobutamine were infused intravenously under continuous imaging of the heart by a 12 MHz ultrasound probe. Results Dobutamine stress echocardiography reduced gradually LV diastolic and systolic dimensions. Ejection fraction increased by a mean of +24% vs. baseline. Heart rate increased progressively without reaching a plateau. Changes in LV dimensions and ejection fraction reached a plateau after a mean of 4 minutes at a constant infusion rate. Conclusion DSE can be easily performed in rats. The normal response is an increase in heart rate and ejection fraction and a decrease in LV dimensions. A plateau in echocardiographic measurements is obtained after 4 minutes of a constant infusion rate in most animals.

  14. B-type natriuretic peptide (BNP serum levels in rats after forced repeated swimming stress

    Directory of Open Access Journals (Sweden)

    Almira Hadžovic-Džuvo

    2011-02-01

    Full Text Available Aim To estimate the effects of forced repeated swimming stress on BNP serum levels in rats. Methods Adult male Wistar rats weighting between 280-330 g were divided into two groups: control group (n =8 and stress group (n =8. Rats in the stress group were exposed to forced swimming stress daily, for 7 days. The rats were forced to swim in plastic tanks (90 cm wide, 120 cm deep containing tap water (temperature ca. 25°C. The depth of water was 40 cm. Duration of each swimming session progressively increased from 10 minutes on the irst day to 40 minutes on days 6 and 7. Rats were sacriiced and blood was drawn from abdominal aorta for BNP analysis immediately after the last swimming session. B-type natriuretic serum level was determined by ELISA method using RAT BNP-32 kit (Phoenix Pharmaceutical Inc.. Results There was no statistically signiicant difference between mean BNP serum level in the stress group after the swimming period (0.81±0.14 ng/ml as compared to the unstressed group of rats (0.8 ±0.08ng/ml. After the swimming period mean body weight slightly decreased in the stress group in comparison with values before stress period (296.3 g vs.272.8 g, but this difference was not statistically signiicant. The stress period had no inluence on food intake in the stress rat group. Conclusion The workload consisting of 40-minutes long swimming session is not suficient to provoke BNP release from myocardium in rats.

  15. B-type natriuretic peptide (BNP) serum levels in rats after forced repeated swimming stress.

    Science.gov (United States)

    Hadzovic-Dzuvo, Almira; Valjevac, Amina; Avdagić, Nesina; Lepara, Orhan; Zaćiragić, Asija; Jadrić, Radivoj; Alajbegović, Jasmin; Prnjavorac, Besim

    2011-02-01

    To estimate the effects of forced repeated swimming stress on BNP serum levels in rats. Adult male Wistar rats weighting between 280-330 g were divided into two groups: control group (n = 8) and stress group (n = 8). Rats in the stress group were exposed to forced swimming stress daily, for 7 days. The rats were forced to swim in plastic tanks (90 cm wide, 120 cm deep) containing tap water (temperature ca. 25 degrees C). The depth of water was 40 cm. Duration of each swimming session progressively increased from 10 minutes on the first day to 40 minutes on days 6 and 7. Rats were sacrificed and blood was drawn from abdominal aorta for BNP analysis immediately after the last swimming session. B-type natriuretic serum level was determined by ELISA method using RAT BNP-32 kit (Phoenix Pharmaceutical Inc.). There was no statistically significant difference between mean BNP serum level in the stress group after the swimming period (0.81 +/- 0.14 ng/ml) as compared to the unstressed group of rats (0.8 +/- 0.08 ng/ml). After the swimming period mean body weight slightly decreased in the stress group in comparison with values before stress period (296.3 g vs. 272.8 g), but this difference was not statistically significant. The stress period had no influence on food intake in the stress rat group. The workload consisting of 40-minutes long swimming session is not sufficient to provoke BNP release from myocardium in rats.

  16. AGE-INDEPENDENT, GREY-MATTER-LOCALIZED, BRAIN ENHANCED OXIDATIVE STRESS IN MALE FISCHER 344 RATS,1,2

    Science.gov (United States)

    While studies showed that aging is accompanied by increased exposure of the brain to oxidative stress, others have not detected any age-correlated differences in levels of markers of oxidative stress. Use of conventional markers of oxidative damage in vivo, which may be formed ex...

  17. Age-dependent changes of the antioxidant system in rat livers are accompanied by altered MAPK activation and a decline in motor signaling

    Science.gov (United States)

    Yang, Wei; Burkhardt, Britta; Fischer, Luise; Beirow, Maja; Bork, Nadja; Wönne, Eva C.; Wagner, Cornelia; Husen, Bettina; Zeilinger, Katrin; Liu, Liegang; Nussler, Andreas K.

    2015-01-01

    Aging is characterized by a progressive decrease of cellular functions, because cells gradually lose their capacity to respond to injury. Increased oxidative stress is considered to be one of the major contributors to age-related changes in all organs including the liver. Our study has focused on elucidating whether important antioxidative enzymes, the mTOR pathway, and MAPKs exhibit age-dependent changes in the liver of rats during aging. We found an age-dependent increase of GSH in the cytosol and mitochondria. The aged liver showed an increased SOD enzyme activity, while the CAT enzyme activity decreased. HO-1 and NOS-2 gene expression was lower in adult rats, but up-regulated in aged rats. Western blot analysis revealed that SOD1, SOD2, GPx, GR, γ-GCL, and GSS were age-dependent up-regulated, while CAT remained constant. We also demonstrated that the phosphorylation of Akt, JNK, p38, and TSC2Ser1254 decreased while ERK1/2 and TSC2Thr1462 increased age-dependently. Furthermore, our data show that the mTOR pathway seems to be activated in livers of aged rats, and hence stimulating cell proliferation/regeneration, as confirmed by an age-dependent increase of PCNA and p-eIF4ESer209 protein expression. Our data may help to explain the fact that liver cells only proliferate in cases of necessity, like injury and damage. In summary, we have demonstrated that, age-dependent changes of the antioxidant system and stress-related signaling pathways occur in the livers of rats, which may help to better understand organ aging. PMID:27004051

  18. Reduced incidence of stress ulcer in germ-free Sprague Dawley rats.

    Science.gov (United States)

    Paré, W P; Burken, M I; Allen, E D; Kluczynski, J M

    1993-01-01

    Recent findings with respect to the role of spiral gram-negative bacteria in peptic ulcer disease have stimulated interest in discerning the role of these agents in stress ulcer disease. We tested the hypothesis that a standard restraint-cold ulcerogenic procedure would fail to produce ulcers in axenic rats. Axenic, as well as normal Sprague Dawley rats, were exposed to a cold-restraint procedure. The germ-free condition was maintained throughout the study in the axenic rats. Axenic rats had significantly fewer ulcers as compared to normal rats exposed to the standard cold-restraint procedure, as well as handling control rats. The data represent the first report suggesting a microbiologic component in the development of stress ulcer using the rat model.

  19. Stress resistance in the naked mole-rat: the bare essentials - a mini-review.

    Science.gov (United States)

    Lewis, Kaitlyn N; Mele, James; Hornsby, Peter J; Buffenstein, Rochelle

    2012-01-01

    Studies comparing similar-sized species with disparate longevity may elucidate novel mechanisms that abrogate aging and prolong good health. We focus on the longest living rodent, the naked mole-rat. This mouse-sized mammal lives ~8 times longer than do mice and, despite high levels of oxidative damage evident at a young age, it is not only very resistant to spontaneous neoplasia but also shows minimal decline in age-associated physiological traits. We assess the current status of stress resistance and longevity, focusing in particular on the molecular and cellular responses to cytotoxins and other stressors between the short-lived laboratory mouse and the naked mole-rat. Like other experimental animal models of lifespan extension, naked mole-rat fibroblasts are extremely tolerant of a broad spectrum of cytotoxins including heat, heavy metals, DNA-damaging agents and xenobiotics, showing LD(50) values between 2- and 20-fold greater than those of fibroblasts of shorter-lived mice. Our new data reveal that naked mole-rat fibroblasts stop proliferating even at low doses of toxin whereas those mouse fibroblasts that survive treatment rapidly re-enter the cell cycle and may proliferate with DNA damage. Naked mole-rat fibroblasts also show significantly higher constitutive levels of both p53 and Nrf2 protein levels and activity, and this increases even further in response to toxins. Enhanced cell signaling via p53 and Nrf2 protects cells against proliferating with damage, augments clearance of damaged proteins and organelles and facilitates the maintenance of both genomic and protein integrity. These pathways collectively regulate a myriad of mechanisms which may contribute to the attenuated aging profile and sustained healthspan of the naked mole-rat. Understanding how these are regulated may be also integral to sustaining positive human healthspan well into old age and may elucidate novel therapeutics for delaying the onset and progression of physiological declines

  20. Oxidative stress of crystalline lens in rat menopausal model

    OpenAIRE

    Acer, Semra; Pekel, Gökhan; Küçükatay, Vural; Karabulut, Aysun; Yağcı, Ramazan; Çetin, Ebru Nevin; Akyer, Şahika Pınar; Şahin, Barbaros

    2016-01-01

    ABSTRACT Purpose: To evaluate lenticular oxidative stress in rat menopausal models. Methods: Forty Wistar female albino rats were included in this study. A total of thirty rats underwent oophorectomy to generate a menopausal model. Ten rats that did not undergo oophorectomy formed the control group (Group 1). From the rats that underwent oophorectomy, 10 formed the menopause control group (Group 2), 10 were administered a daily injection of methylprednisolone until the end of the study (Gro...

  1. Forced swimming stress does not affect monoamine levels and neurodegeneration in rats.

    Science.gov (United States)

    Abbas, Ghulam; Naqvi, Sabira; Mehmood, Shahab; Kabir, Nurul; Dar, Ahsana

    2011-10-01

    The current study was aimed to investigate the correlations between immobility time in the forced swimming test (FST, a behavioral indicator of stress level) and hippocampal monoamine levels (markers of depression), plasma adrenalin level (a peripheral marker of stress) as well as fluoro-jade C staining (a marker of neurodegeneration). Male Sprague-Dawley rats were subjected to acute, sub-chronic (7 d) or chronic (14 d) FSTs and immobility time was recorded. Levels of noradrenalin, serotonin and dopamine in the hippocampus, and adrenalin level in the plasma were quantified by high-performance liquid chromatography with electrochemical detection. Brain sections from rats after chronic forced swimming or rotenone treatment (3 mg/kg subcutaneously for 4 d) were stained with fluoro-jade C. The rats subjected to swimming stress (acute, sub-chronic and chronic) showed long immobility times [(214 +/- 5), (220 +/- 4) and (231 +/- 7) s, respectively], indicating that the animals were under stress. However, the rats did not exhibit significant declines in hippocampal monoamine levels, and the plasma adrenalin level was not significantly increased compared to that in unstressed rats. The rats that underwent chronic swimming stress did not manifest fluoro-jade C staining in brain sections, while degenerating neurons were evident after rotenone treatment. The immobility time in the FST does not correlate with markers of depression (monoamine levels) and internal stress (adrenalin levels and neurodegeneration), hence this parameter may not be a true indicator of stress level.

  2. Intermittent fasting combined with supplementation with Ayurvedic herbs reduces anxiety in middle aged female rats by anti-inflammatory pathways.

    Science.gov (United States)

    Singh, Harpal; Kaur, Taranjeet; Manchanda, Shaffi; Kaur, Gurcharan

    2017-08-01

    Intermittent fasting-dietary restriction (IF-DR) is an increasingly popular intervention to promote healthy aging and delay age associated decline in brain functions. Also, the use of herbal interventions is gaining attention due to their non-pharmacological approach to treat several abnormalities and promote general health with least side effects. The present study was aimed to investigate the synergistic effects of IF-DR regimen with herbal supplementation on anxiety-like behavior and neuroinflammation in middle aged female rats. We used dried leaf powder of Withania somnifera and dried stem powder of Tinospora cordifolia for our study. The rats were divided into three groups: (1) Control group fed ad libitum (AL); (2) rats deprived of food for full day and fed ad libitum on every alternate day (IF-DR); and (3) IF-DR and herbal extract (DRH) group in which rats were fed ad libitum with herbal extract supplemented diet, every alternate day. Post regimen, the rats were tested for anxiety-like behavior and further used for study of key inflammatory molecules (NFκB, Iba1, TNFα, IL-1β, IL-6) and glial marker (GFAP) in hippocampus and piriform cortex regions of brain. The study was further extended to explore the effect of DRH regimen on stress response protein (HSP70) and calcium dependent regulators of synaptic plasticity (CaMKIIα, Calcineurin). Our data demonstrated that DRH regimen reduced anxiety-like behavior in middle age female rats and associated neuroinflammation by ameliorating key inflammatory cytokines and modulated stress response. The present data may provide scientific validation for anxiolytic and anti-inflammatory potential of herbal intervention combined with short term IF-DR regimen.

  3. Oxidative stress of crystalline lens in rat menopausal model.

    Science.gov (United States)

    Acer, Semra; Pekel, Gökhan; Küçükatay, Vural; Karabulut, Aysun; Yağcı, Ramazan; Çetin, Ebru Nevin; Akyer, Şahika Pınar; Şahin, Barbaros

    2016-01-01

    To evaluate lenticular oxidative stress in rat menopausal models. Forty Wistar female albino rats were included in this study. A total of thirty rats underwent oophorectomy to generate a menopausal model. Ten rats that did not undergo oophorectomy formed the control group (Group 1). From the rats that underwent oophorectomy, 10 formed the menopause control group (Group 2), 10 were administered a daily injection of methylprednisolone until the end of the study (Group 3), and the remaining 10 rats were administered intraperitoneal streptozocin to induce diabetes mellitus (Group 4). Total oxidant status (TOS), total antioxidant capacity (TAC), and oxidative stress index (OSI) measurements of the crystalline lenses were analyzed. The mean OSI was the lowest in group 1 and highest in group 4. Nevertheless, the difference between the groups was not statistically significant in terms of OSI (p >0.05). The mean TOS values were similar between the groups (p >0.05), whereas the mean TAC of group 1 was significantly higher than that of the other groups (p <0.001). Our results indicate that menopause may not promote cataract formation.

  4. Active coping of prenatally stressed rats in the forced swimming test: involvement of the Nurr1 gene.

    Science.gov (United States)

    Montes, Pedro; Ruiz-Sánchez, Elizabeth; Calvillo, Minerva; Rojas, Patricia

    2016-09-01

    Depending on genetic predisposition, prenatal stress may result in vulnerability or resilience to develop psychiatric disorders in adulthood. Nurr1 is an immediate early gene, important in the brain for the stress response. We tested the hypothesis that prenatal stress and the decrease of hippocampal Nurr1 alter offspring behavioral responses in the forced swimming test (FST). Pregnant Wistar rats were exposed to restraint stress (45 min, thrice daily) from gestation day 14. Prenatally stressed (PS) and non-prenatally stressed (NPS) male offspring were treated bilaterally with a Nurr1 antisense oligodeoxynucleotide (ODN; or control) into the hippocampus at 97 d of age. After 1 h, the rats were exposed to the FST (acute stressor) to analyze their behavioral responses. Thirty minutes after the FST, we analyzed the gene expression of Nurr1, Bdnf and Nr3c1 (genes for Nurr1, brain-derived neurotrophic factor (BDNF) and glucocorticoid receptor (GR), respectively) in the hippocampus, prefrontal cortex (PFC) and hypothalamus. Results showed that the decrease of hippocampal Nurr1 after the antisense ODN in adult NPS rats induces immobility (indicating depressive-like behavior). The PS adult rats, including the group with decreased hippocampal Nurr1, presented low immobility in the FST. This low immobility was concordant with maintenance of Nurr1 and Bdnf expression levels in the three analyzed brain regions; Nr3c1 gene expression was also maintained in the PFC and hypothalamus. These findings suggest that Nurr1 and associated genes could participate in the brain modifications induced by prenatal stress, allowing active coping (resilience) with acute stress in adulthood.

  5. Curcumin exerts neuroprotective effects against homocysteine intracerebroventricular injection-induced cognitive impairment and oxidative stress in rat brain.

    Science.gov (United States)

    Ataie, Amin; Sabetkasaei, Masoumeh; Haghparast, Abbas; Moghaddam, Akbar Hajizadeh; Ataee, Ramin; Moghaddam, Shiva Nasiraei

    2010-08-01

    Aging is the major risk factor for neurodegenerative diseases and oxidative stress and is involved in their pathophysiology. Oxidative stress can induce neuronal damage and modulate intracellular signaling, ultimately leading to neuronal death by apoptosis or necrosis. In this study we investigated the neuroprotective properties of the natural polyphenolic antioxidant compound, curcumin, against homocysteine (Hcy) neurotoxicity. Curcumin (5, 15, or 45 mg/kg) was injected intraperitoneally once daily for a period of 10 days beginning 5 days prior to Hcy (0.2 micromol/microl) intracerebroventricular injection in rats. Biochemical and behavioral studies, including passive avoidance learning and locomotor activity tests, were evaluated 24 hours after the last injection of curcumin or vehicle. Results indicated that Hcy induces lipid peroxidation and increases malondialdehyde (MDA) and superoxide anion (SOA) levels in whole rat brain. In addition, Hcy impaired memory retention in the passive avoidance learning test. However, curcumin treatment significantly decreased MDA and SOA levels and improved learning and memory in rats. These results suggest that Hcy may induce lipid peroxidation in rat brain and that polyphenol treatment (curcumin) improves learning and memory deficits by protecting the nervous system against oxidative stress.

  6. Effect of housing rats within a pyramid on stress parameters.

    Science.gov (United States)

    Bhat, Surekha; Rao, Guruprasad; Murthy, K Dilip; Bhat, P Gopalakrishna

    2003-11-01

    The Giza pyramids of Egypt have been the subject of much research. Pyramid models with the same base to height ratio as of the Great Pyramid of Giza, when aligned on a true north-south axis, are believed to generate, transform and transmit energy. Research done with such pyramid models has shown that they induced greater relaxation in human subjects, promoted better wound healing in rats and afforded protection against stress-induced neurodegnerative changes in mice. The present study was done to assess the effects of housing Wistar rats within the pyramid on the status of oxidative damage and antioxidant defense in their erythrocytes and cortisol levels in their plasma. Rats were housed in cages under standard laboratory conditions. Cages were left in the open (normal control), under a wooden pyramid model (experimental rats) or in a cubical box of comparable dimensions (6 hr/day for 14 days). Erythrocyte malondialdehyde and plasma cortisol levels were significantly decreased in rats kept within the pyramid as compared to the normal control and those within the square box. Erythrocyte reduced glutathione levels, erythrocyte glutathione peroxidase and superoxide dismutase activities were significantly increased in the rats kept in the pyramid as compared to the other two groups. There was no significant difference in any of the parameters between the normal control and rats kept in the square box. The results showed that exposure of adult female Wistar rats to pyramid environment reduces stress oxidative stress and increases antioxidant defense in them.

  7. Stress-induced endocrine response and anxiety: the effects of comfort food in rats.

    Science.gov (United States)

    Ortolani, Daniela; Garcia, Márcia Carvalho; Melo-Thomas, Liana; Spadari-Bratfisch, Regina Celia

    2014-05-01

    The long-term effects of comfort food in an anxiogenic model of stress have yet to be analyzed. Here, we evaluated behavioral, endocrine and metabolic parameters in rats submitted or not to chronic unpredictable mild stress (CUMS), with access to commercial chow alone or to commercial chow and comfort food. Stress did not alter the preference for comfort food but decreased food intake. In the elevated plus-maze (EPM) test, stressed rats were less likely to enter/remain in the open arms, as well as being more likely to enter/remain in the closed arms, than were control rats, both conditions being more pronounced in the rats given access to comfort food. In the open field test, stress decreased the time spent in the centre, independent of diet; neither stress nor diet affected the number of crossing, rearing or grooming episodes. The stress-induced increase in serum corticosterone was attenuated in rats given access to comfort food. Serum concentration of triglycerides were unaffected by stress or diet, although access to comfort food increased total cholesterol and glucose. It is concluded that CUMS has an anorexigenic effect. Chronic stress and comfort food ingestion induced an anxiogenic profile although comfort food attenuated the endocrine stress response. The present data indicate that the combination of stress and access to comfort food, common aspects of modern life, may constitute a link among stress, feeding behavior and anxiety.

  8. [Variability of hemodynamic parameters and resistance to stress damage in rats of different strains].

    Science.gov (United States)

    Belkina, L M; Popkova, E V; Lakomkin, V L; Kirillina, T N; Zhukova, A G; Sazontova, T G; Usacheva, M A; Kapel'ko, V I

    2006-02-01

    Total power of heart rate variability and baroreflex sensitivity were significantly smaller in the August rats than in the Wistar rats, but adrenal and plasma catecholamine contents were considerably higher in the former ones. 1 hour after stress (30 min in cold water), plasma catecholamine was increased 2-fold in Wistar rats, while in August rats the adrenaline concentration increased only by 58% and the were no changes in noradrenaline content. At the same time, activation of catecholamine metabolism in the adrenal glands was similar in both groups. The oxidative stress induced by hydrogen peroxide depressed the contractile function of isolated heart in the August rats to a smaller extent as compared to Wistar rats, control ones and after the cold-water stress. This effect correlated with more pronounced stability ofantioxidant enzymes in the August rats. It seems that the greater resistance to stress damage in the August rats is mediated by enhanced power of defense mechanisms both at systemic and cellular levels.

  9. REPEATED ACUTE STRESS INDUCED ALTERATIONS IN CARBOHYDRATE METABOLISM IN RAT

    Directory of Open Access Journals (Sweden)

    Nirupama R.

    2010-09-01

    Full Text Available Acute stress induced alterations in the activity levels of rate limiting enzymes and concentration of intermediates of different pathways of carbohydrate metabolism have been studied. Adult male Wistar rats were restrained (RS for 1 h and after an interval of 4 h they were subjected to forced swimming (FS exercise and appropriate controls were maintained. Five rats were killed before the commencement of the experiment (initial controls, 5 control and equal number of stressed rats were killed 2 h after RS and remaining 5 rats in each group were killed 4 h after FS. There was a significant increase in the adrenal 3β- hydroxy steroid dehydrogenase activity following RS, which showed further increase after FS compared to controls and thereby indicated stress response of rats. There was a significant increase in the blood glucose levels following RS which showed further increase and reached hyperglycemic condition after FS. The hyperglycemic condition due to stress was accompanied by significant increases in the activities of glutamate- pyruvate transaminase, glutamate- oxaloacetate transaminase, glucose -6- phosphatase and lactate dehydrogenase and significant decrease in the glucose -6- phosphate dehydrogenase and pyruvate dehydrogenase activities, whereas pyruvate kinase activity did not show any alteration compared to controls. Further, the glycogen and total protein contents of the liver were decreased whereas those of pyruvate and lactate showed significant increase compared to controls after RS as well as FS.The results put together indicate that acute stress induced hyperglycemia results due to increased gluconeogenesis and glycogenolysis without alteration in glycolysis. The study first time reveals that after first acute stress exposure, the subsequent stressful experience augments metabolic stress response leading to hyperglycemia. The results have relevance to human health as human beings are exposed to several stressors in a day and

  10. Periodontal disease level-butyric acid putatively contributes to the ageing blood: A proposed link between periodontal diseases and the ageing process.

    Science.gov (United States)

    Cueno, Marni E; Seki, Keisuke; Ochiai, Kuniyasu; Imai, Kenichi

    2017-03-01

    Periodontal diseases are partly attributable to periodontopathic bacteria found in the host, whereas, butyric acid (BA) is a common secondary metabolite produced by periodontopathic bacterial pathogens. BA has been linked to oxidative stress induction while oxidative stress has long been associated with the ageing process. However, the possible link between BA-induced oxidative stress and the ageing process has never been elucidated. Here, we attempted to show the possible role of periodontal diseaselevel-BA (PDL-BA) in influencing the rat blood ageing process. We injected PDL-BA into the young rat gingiva and, after 24h, heart blood extraction was performed. Blood obtained from PDL-BA-treated young rats was compared to untreated young and middle-aged rats. We found that cytosolic, but not mitochondrial, heme was affected 24h post-injection. In addition, we observed that PDL-BA treatment altered blood NOX activation, NADPH-related oxidative stress components (H 2 O 2 and GR), calcium homeostasis, cell death signals (CASP3 and CASP1), and age-related markers (SIRT1 and mTOR) in young rats, with some components more closely mimicking levels found in middle-aged rats. In this regard, we propose that PDL-BA may play a role in contributing to the rat blood ageing process. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. [Study on the oxidative stress in the ovaries of a rat model of polycystic ovary].

    Science.gov (United States)

    Gong, Jin; Wu, Dong-bo; Zhang, Lan-lan; Li, Jia; Zhao, Xing; Zhang, Dan

    2015-03-01

    To establish a pathological animal model of polycystic ovary (PCO) by letrozole in rats. Investigate whether PCO were mediated by the effect of oxidative stress by measuring oxidative stress levels in this cohort of rats with PCO, and proceed a new way of treatment for polycystic ovary syndrom (PCOS). 90 SD female rats aged 6 weeks were randomly divided into two groups, including a control group of 45 rats that received vehicle only [19% aqueous solution of carboxmethlycellulose (CMC), 1 mL/d] once daily orally (p.o.), and an experimental group of 45 rats, which were administered letrozole at concentrations of 1 mg/kg p.o. dissolved in 1% CMC (1 mL/d) once daily. The treatment period was 28 d. During this period, vaginal smears were collected daily for estrus cycle determination and body masses were measured every 7 d. On the day subsequent to the last letrozole dose administration, rats were killed; Uteri and ovaries were then excised and weighed for the calculation of organ indexes. Serum hormone levels, SHBG and histologic changes in the ovaries were examined. Then testosterone free index (FAD) was calculated. Oxidant status was evaluated by determination of ovarian total oxidant status (TOS), malondialdehyde (MDA) concentration and intracellular reactive oxygen species (ROS) level, while antioxidant status was evaluated by determination of total antioxidant status (TAS) and superoxide dismutase (SOD) concentration. Vaginal smear test showed the estrus cycle began to disappear from day 12 to day 15. A statistically significant difference in growth curves, ovarian weights, uterine weights and organ indexes between the groups were also observed. In rats with PCO serum testosterone (T), follicle-stimulating hormone (FSH) concentrations and free androgen index (FADI) were significantly increased compared with the control group (rats without PCO). However, rats with PCO had decreased levels of estrogen (E2), luteinizing hormone (LH), and progesterone (P) compared

  12. The effect of L-Arginine on the brain tissue of stressed rats

    Directory of Open Access Journals (Sweden)

    Batoul Ebadi

    2010-01-01

    Full Text Available Introduction: This study was conducted to determine the possible beneficial results of L-arginine on prefrontal cortex of rats which impressed by immobilization stress to define the synchronous impression of stress and nitric oxide (NO on evolution of prefrontal cortex of rats after birth. Methods: Forty-eight one month, male Wistar rats were divided into two groups: stressed and non-stressed. L-Arginine (200 mg/kg as a NO synthase (NOS inducer and L-NAME (2O mg/kg were injected intraperitonealy (IP and 7- nitroindazde (25 mg/kg as non-specific was injected subcutaneously (S.C. for 4 weeks. The kind of stress was immobilization for 4 weeks, every other day. The brain was removed after this period and each brain divided into two parts in a coronal section manner. Anterior part used for histological studies with H&E staining and posterior part used for measurement of NO production using spectrophotometer at 540 nm wavelengh. Results: Statistical analysis of microscopic and light microscopic finding showed that thickness of prefrontal cortex and NO production were significantly decreased in stressed rats and especially in groups which received 7- nitroindazole and L-NAME and L-arginine could reverse these results. Discussion: According to this research, we could say that L-arginine decreases the cortical damages in stressed rats and 7-nitroindazole and L-NAME increase this damage in non-stressed group. Although in non stressed groups, L-arginine, L-NAME and 7- nitroindazole were all non-protective and damaging.

  13. The effect of L-Arginine on the brain tissue of stressed rats

    Directory of Open Access Journals (Sweden)

    Batoul Ebadi

    2010-01-01

    Full Text Available   Abstract  Introduction: This study was conducted to determine the possible beneficial results of L-arginine on prefrontal cortex of rats which impressed by immobilization stress to define the synchronous impression of stress and nitric oxide (NO on evolution of prefrontal cortex of rats after birth. Methods: Forty-eight one month, male Wistar rats were divided into two groups: stressed and non-stressed. L-Arginine (200 mg/kg as a NO synthase (NOS inducer and L-NAME (2O mg/kg were injected intraperitonealy (IP and 7- nitroindazde (25 mg/kg as non-specific was injected subcutaneously (S.C. for 4 weeks. The kind of stress was immobilization for 4 weeks, every other day. The brain was removed after this period and each brain divided into two parts in a coronal section manner. Anterior part used for histological studies with H&E staining and posterior part used for measurement of NO production using spectrophotometer at 540 nm wavelengh. Results: Statistical analysis of microscopic and light microscopic finding showed that thickness of prefrontal cortex and NO production were significantly decreased in stressed rats and especially in groups which received 7- nitroindazole and L-NAME and L-arginine could reverse these results. Discussion: According to this research, we could say that L-arginine decreases the cortical damages in stressed rats and 7-nitroindazole and L-NAME increase this damage in non-stressed group. Although in non stressed groups, L-arginine, L-NAME and 7- nitroindazole were all non-protective and damaging.

  14. Housing in Pyramid Counteracts Neuroendocrine and Oxidative Stress Caused by Chronic Restraint in Rats

    Directory of Open Access Journals (Sweden)

    M. Surekha Bhat

    2007-01-01

    Full Text Available The space within the great pyramid and its smaller replicas is believed to have an antistress effect. Research has shown that the energy field within the pyramid can protect the hippocampal neurons of mice from stress-induced atrophy and also reduce neuroendocrine stress, oxidative stress and increase antioxidant defence in rats. In this study, we have, for the first time, attempted to study the antistress effects of pyramid exposure on the status of cortisol level, oxidative damage and antioxidant status in rats during chronic restraint stress. Adult female Wistar rats were divided into four groups as follows: normal controls (NC housed in home cage and left in the laboratory; restrained rats (with three subgroups subject to chronic restraint stress by placing in a wire mesh restrainer for 6 h per day for 14 days, the restrained controls (RC having their restrainers kept in the laboratory; restrained pyramid rats (RP being kept in the pyramid; and restrained square box rats (RS in the square box during the period of restraint stress everyday. Erythrocyte malondialdehyde (MDA and plasma cortisol levels were significantly increased and erythrocyte-reduced glutathione (GSH levels, erythrocyte glutathione peroxidase (GSH-Px and superoxide dismutase (SOD activities were significantly decreased in RC and RS rats as compared to NC. However, these parameters were maintained to near normal levels in RP rats which showed significantly decreased erythrocyte MDA and plasma cortisol and significantly increased erythrocyte GSH levels, erythrocyte GSH-Px and SOD activities when compared with RS rats. The results showed that housing in pyramid counteracts neuroendocrine and oxidative stress caused by chronic restraint in rats.

  15. Treadmill Exercise Attenuates Retinal Oxidative Stress in Naturally-Aged Mice: An Immunohistochemical Study

    Directory of Open Access Journals (Sweden)

    Chan-Sik Kim

    2015-09-01

    Full Text Available In the retina, a number of degenerative diseases, including glaucoma, diabetic retinopathy, and age-related macular degeneration, may occur as a result of aging. Oxidative damage is believed to contribute to the pathogenesis of aging as well as to age-related retinal disease. Although physiological exercise has been shown to reduce oxidative stress in rats and mice, it is not known whether it has a similar effect in retinal tissues. The aim of this study was to evaluate retinal oxidative stress in naturally-aged mice. In addition, we evaluated the effects of aerobic training on retinal oxidative stress by immunohistochemically evaluating oxidative stress markers. A group of twelve-week-old male mice were not exercised (young control. Two groups of twenty-two-month-old male mice were created: an old control group and a treadmill exercise group. The old control group mice were not exercised. The treadmill exercise group mice ran on a treadmill (5 to 12 m/min, 30 to 60 min/day, 3 days/week for 12 weeks. The retinal thickness and number of cells in the ganglion cell layer of the naturally-aged mice were reduced compared to those in the young control mice. However, treadmill exercise reversed these morphological changes in the retinas. We evaluated retinal expression of carboxymethyllysine (CML, 8-hydroxy-2′-deoxyguanosine (8-OHdG and nitrotyrosine. The retinas from the aged mice showed increased CML, 8-OHdG, and nitrotyrosine immunostaining intensities compared to young control mice. The exercise group exhibited significantly lower CML levels and nitro-oxidative stress than the old control group. These results suggest that regular exercise can reduce retinal oxidative stress and that physiological exercise may be distinctly advantageous in reducing retinal oxidative stress.

  16. Active coping with stress suppresses glucose metabolism in the rat hypothalamus.

    Science.gov (United States)

    Ono, Yumie; Lin, Hsiao-Chun; Tzen, Kai-Yuan; Chen, Hui-Hsing; Yang, Pai-Feng; Lai, Wen-Sung; Chen, Jyh-Horng; Onozuka, Minoru; Yen, Chen-Tung

    2012-03-01

    We used 18F-fluorodeoxyglucose small-animal positron-emission tomography to determine whether different styles of coping with stress are associated with different patterns of neuronal activity in the hypothalamus. Adult rats were subjected to immobilization (IMO)-stress or to a non-immobilized condition for 30 min, in random order on separate days, each of which was followed by brain-scanning. Some rats in the immobilized condition were allowed to actively cope with the stress by chewing a wooden stick during IMO, while the other immobilized rats were given nothing to chew on. Voxel-based statistical analysis of the brain imaging data shows that chewing counteracted the stress-induced increased glucose uptake in the hypothalamus to the level of the non-immobilized condition. Region-of-interest analysis of the glucose uptake values further showed that chewing significantly suppressed stress-induced increased glucose uptake in the paraventricular hypothalamic nucleus and the anterior hypothalamic area but not in the lateral hypothalamus. Together with the finding that the mean plasma corticosterone concentration at the termination of the IMO was also significantly suppressed when rats had an opportunity to chew a wooden stick, our results showed that active coping by chewing inhibited the activation of the hypothalamic-pituitary-adrenal axis to reduce the endocrine stress response.

  17. Interactive effects of chronic stress and a high-sucrose diet on nonalcoholic fatty liver in young adult male rats.

    Science.gov (United States)

    Corona-Pérez, Adriana; Díaz-Muñoz, Mauricio; Cuevas-Romero, Estela; Luna-Moreno, Dalia; Valente-Godínez, Héctor; Vázquez-Martínez, Olivia; Martínez-Gómez, Margarita; Rodríguez-Antolín, Jorge; Nicolás-Toledo, Leticia

    2017-11-01

    Glucocorticoids have been implicated in nonalcoholic fatty liver diseases (NAFLD). The influence of a palatable diet on the response to stress is controversial. This study explored whether a high-sucrose diet could protect from hepatic steatosis induced by chronic restraint stress in young adult rats. Male Wistar rats aged 21 days were allocated into four groups (n = 6-8 per group): control, chronic restraint stress, 30% sucrose diet, and 30% sucrose diet plus chronic restraint stress. After being exposed to either tap water or sucrose solution during eight weeks, half of the rats belonging to each group were subject or not to repeated restraint stress (1 h per day, 5 days per week) during four weeks. Triacylglycerol (TAG), oxidative stress, activity of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD-1), infiltration of immune cells, and glycogen amount in the liver were quantified. Serum concentrations of corticosterone and testosterone were also measured. The stressed group showed normal serum concentrations of corticosterone and did not have hepatic steatosis. However, this group showed increased glycogen, inflammation, mild fibrosis, oxidative stress, and a high activity of 11β-HSD-1 in the liver. The group exposed to the high-sucrose diet had lower concentrations of corticosterone, hepatic steatosis and moderate fibrosis. The group subject to high-sucrose diet plus chronic restraint stress showed low concentrations of corticosterone, hepatic steatosis, oxidative stress, and high concentrations of testosterone. Thus, restraint stress and a high-sucrose diet each generate different components of nonalcoholic fatty liver in young adult rats. The combination of both the factors could promote a faster development of NAFLD.

  18. Behavioral and Neurochemical Studies in Stressed and Unstressed Rats Fed on Protein, Carbohydrate and Fat Rich Diet

    Directory of Open Access Journals (Sweden)

    Samia Moin§, Saida Haider*, Saima Khaliq1, Saiqa Tabassum and Darakhshan J. Haleem

    2012-05-01

    Full Text Available Stress produces behavioral and neurochemical deficits. To study the relationship between adaptation to stress and macronutrient intake, the present study was designed to monitor the effects of different diets on feed intake, growth rate and serotonin (5-Hydroxytryptamine, 5-HT metabolism following exposure to restraint stress in rats. Rats were divided into four groups (n=12 as control, sugar, protein and fat rich diet fed rats. After 5 weeks of treatment animals of each group were divided into unrestrained and restrained animals (n=6. Rats of restrained group were given immobilization stress for 2 hours/day for 5 days. Food intake and growth rates of unrestrained and restrained rats were monitored daily. Rats were decapitated on 6th day to collect brain samples for neurochemical estimation. Results show that sugar diet fed rats produced adaptation to stress early as compared to normal diet fed rats. Food intake and growth rates of unrestrained and restrained rats were comparable on 3rd day in sugar diet fed rats and on 4th day in normal diet fed rats. Stress decreased food intake and growth rates of protein and fat treated rats. Repeated stress did not alter brain 5-HT and 5-HIAA levels of normal diet fed rats and sugar diet fed rats. Protein diet fed restrained rats showed elevated brain 5-HT levels. Fat diet fed restrained rats significantly decreased brain TRP and 5-HIAA levels. Finding suggested that carbohydrate diet might protect against stressful conditions. Study also showed that nutritional status could alter different behaviors in response to a stressful environment.

  19. Oxidative stress of crystalline lens in rat menopausal model

    Directory of Open Access Journals (Sweden)

    Semra Acer

    Full Text Available ABSTRACT Purpose: To evaluate lenticular oxidative stress in rat menopausal models. Methods: Forty Wistar female albino rats were included in this study. A total of thirty rats underwent oophorectomy to generate a menopausal model. Ten rats that did not undergo oophorectomy formed the control group (Group 1. From the rats that underwent oophorectomy, 10 formed the menopause control group (Group 2, 10 were administered a daily injection of methylprednisolone until the end of the study (Group 3, and the remaining 10 rats were administered intraperitoneal streptozocin to induce diabetes mellitus (Group 4. Total oxidant status (TOS, total antioxidant capacity (TAC, and oxidative stress index (OSI measurements of the crystalline lenses were analyzed. Results: The mean OSI was the lowest in group 1 and highest in group 4. Nevertheless, the difference between the groups was not statistically significant in terms of OSI (p >0.05. The mean TOS values were similar between the groups (p >0.05, whereas the mean TAC of group 1 was significantly higher than that of the other groups (p <0.001. Conclusions: Our results indicate that menopause may not promote cataract formation.

  20. Hippocampal Astrocyte Cultures from Adult and Aged Rats Reproduce Changes in Glial Functionality Observed in the Aging Brain.

    Science.gov (United States)

    Bellaver, Bruna; Souza, Débora Guerini; Souza, Diogo Onofre; Quincozes-Santos, André

    2017-05-01

    Astrocytes are dynamic cells that maintain brain homeostasis, regulate neurotransmitter systems, and process synaptic information, energy metabolism, antioxidant defenses, and inflammatory response. Aging is a biological process that is closely associated with hippocampal astrocyte dysfunction. In this sense, we demonstrated that hippocampal astrocytes from adult and aged Wistar rats reproduce the glial functionality alterations observed in aging by evaluating several senescence, glutamatergic, oxidative and inflammatory parameters commonly associated with the aging process. Here, we show that the p21 senescence-associated gene and classical astrocyte markers, such as glial fibrillary acidic protein (GFAP), vimentin, and actin, changed their expressions in adult and aged astrocytes. Age-dependent changes were also observed in glutamate transporters (glutamate aspartate transporter (GLAST) and glutamate transporter-1 (GLT-1)) and glutamine synthetase immunolabeling and activity. Additionally, according to in vivo aging, astrocytes from adult and aged rats showed an increase in oxidative/nitrosative stress with mitochondrial dysfunction, an increase in RNA oxidation, NADPH oxidase (NOX) activity, superoxide levels, and inducible nitric oxide synthase (iNOS) expression levels. Changes in antioxidant defenses were also observed. Hippocampal astrocytes also displayed age-dependent inflammatory response with augmentation of proinflammatory cytokine levels, such as TNF-α, IL-1β, IL-6, IL-18, and messenger RNA (mRNA) levels of cyclo-oxygenase 2 (COX-2). Furthermore, these cells secrete neurotrophic factors, including glia-derived neurotrophic factor (GDNF), brain-derived neurotrophic factor (BDNF), S100 calcium-binding protein B (S100B) protein, and transforming growth factor-β (TGF-β), which changed in an age-dependent manner. Classical signaling pathways associated with aging, such as nuclear factor erythroid-derived 2-like 2 (Nrf2), nuclear factor kappa B (NFκ

  1. Stress Resistance in the Naked Mole-Rat: The Bare Essentials – A Mini-Review

    Science.gov (United States)

    Lewis, Kaitlyn N.; Mele, James; Hornsby, Peter J.; Buffenstein, Rochelle

    2012-01-01

    Background Studies comparing similar-sized species with disparate longevity may elucidate novel mechanisms that abrogate aging and prolong good health. We focus on the longest living rodent, the naked mole-rat. This mouse-sized mammal lives ∼8 times longer than do mice and, despite high levels of oxidative damage evident at a young age, it is not only very resistant to spontaneous neoplasia but also shows minimal decline in age-associated physiological traits. Objectives We assess the current status of stress resistance and longevity, focusing in particular on the molecular and cellular responses to cytotoxins and other stressors between the short-lived laboratory mouse and the naked mole-rat. Results Like other experimental animal models of lifespan extension, naked mole-rat fibroblasts are extremely tolerant of a broad spectrum of cytotoxins including heat, heavy metals, DNA-damaging agents and xenobiotics, showing LD50 values between 2- and 20-fold greater than those of fibroblasts of shorter-lived mice. Our new data reveal that naked mole-rat fibroblasts stop proliferating even at low doses of toxin whereas those mouse fibroblasts that survive treatment rapidly re-enter the cell cycle and may proliferate with DNA damage. Naked mole-rat fibroblasts also show significantly higher constitutive levels of both p53 and Nrf2 protein levels and activity, and this increases even further in response to toxins. Conclusion Enhanced cell signaling via p53 and Nrf2 protects cells against proliferating with damage, augments clearance of damaged proteins and organelles and facilitates the maintenance of both genomic and protein integrity. These pathways collectively regulate a myriad of mechanisms which may contribute to the attenuated aging profile and sustained healthspan of the naked mole-rat. Understanding how these are regulated may be also integral to sustaining positive human healthspan well into old age and may elucidate novel therapeutics for delaying the onset and

  2. Contextual reminders fail to trigger memory reconsolidation in aged rats and aged humans.

    Science.gov (United States)

    Jones, Bethany J; Pest, Stacey M; Vargas, Iliana M; Glisky, Elizabeth L; Fellous, Jean-Marc

    2015-04-01

    There is strong evidence that hippocampal memory returns to a labile state upon reactivation, initiating a reconsolidation process that restabilizes it and allows for its updating. Normal aging is associated with deficits in episodic memory processes. However, the effects of aging on memory reconsolidation and its neural substrate remain largely unknown, and an animal model is lacking. In this study we investigated the effects of aging on context-dependent reconsolidation using an episodic set-learning task in humans and an analogous set-learning spatial task in rats. In both tasks, young and older subjects learned a set of objects (humans) or feeder locations (rats; Set 1) in Context A on Day 1. On Day 2, a different set (Set 2) was learned in either Context A (Reminder condition) or Context B (No Reminder condition). On Day 3, subjects were instructed (humans) or cued (rats) to recall Set 1. Young rats and humans in the Reminder condition falsely recalled significantly more items from Set 2 than those in the No Reminder condition, suggesting that the reminder context triggered a reactivation of Set 1 on Day 2 and allowed the integration of Set 2 items into Set 1. In both species, older subjects displayed a different pattern of results than young subjects. In aged rats, there was no difference between conditions in the level of falsely recalled Set 2 items (intrusions). Older humans in the No Reminder condition made significantly more intrusions than those in the Reminder condition. Follow-up control experiments in aged rats suggested that intrusions in older animals reflected general interference, independent of context manipulations. We conclude that contextual reminders are not sufficient to trigger memory updating in aged rats or aged humans, unlike in younger individuals. Future studies using this animal model should further our understanding of the role of the hippocampus in memory maintenance and updating during normal aging. Copyright © 2015 Elsevier Inc

  3. Oxidative stress in rats experimentally infected by Sporothrix schenckii.

    Science.gov (United States)

    Castro, Verônica S P; Da Silva, Aleksandro S; Thomé, Gustavo R; Wolkmer, Patrícia; Castro, Jorge L C; Costa, Márcio M; Graça, Dominguita L; Oliveira, Daniele C; Alves, Sydney H; Schetinger, Maria R C; Lopes, Sonia T A; Stefani, Lenita M; Azevedo, Maria I; Baldissera, Matheus D; Andrade, Cinthia M

    2017-06-01

    The aim of this study was to evaluate whether oxidative stress occurs in rats experimentally infected by Sporothrix schenckii, and its possible effect on disease pathogenesis. Thirty rats were divided into two groups: the group A (uninfected, n = 18) and the group B (infected by S. schenckii, n=21). Blood samples were collected on days 15, 30 and 40 post-infection (PI). At each sampling time, six rats of the group A, and seven of the group B were bled. TBARS (thiobarbituric acid reactive substances) levels in serum samples were measured to evaluate lipid peroxidation. In addition, catalase (CAT) and superoxide dismutase (SOD) activities, known as biomarkers of antioxidants levels, were verified in whole blood. Seric pro-inflammatory cytokine levels were measured (IFN-γ, TNF-α, and IL-6), which showed that these inflammatory mediators were at higher levels in the infected rats (P sporotrichosis showed significantly higher (p sporotrichosis is a likely mechanism for redox imbalance, and consequently cause the oxidative stress in experimentally infected rats. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Adolescent Social Stress Produces an Enduring Activation of the Rat Locus Coeruleus and Alters its Coherence with the Prefrontal Cortex

    Science.gov (United States)

    Zitnik, Gerard A; Curtis, Andrè L; Wood, Susan K; Arner, Jay; Valentino, Rita J

    2016-01-01

    Early life stress is associated with the development of psychiatric disorders. Because the locus coeruleus-norepinephrine (LC-NE) system is a major stress-response system that is implicated in psychopathology, developmental differences in the response of this system to stress may contribute to increased vulnerability. Here LC single unit and network activity were compared between adult and adolescent rats during resident-intruder stress. In some rats, LC and medial prefrontal cortex (mPFC) coherence was quantified. The initial stress tonically activated LC neurons and induced theta oscillations, while simultaneously decreasing LC auditory-evoked responses in both age groups. Stress increased LC-mPFC coherence within the theta range. With repeated exposures, adolescent LC neuronal and network activity remained elevated even in the absence of the stressor and were unresponsive to stressor presentation. In contrast, LC neurons of adult rats exposed to repeated social stress were relatively inhibited in the absence of the stressor and mounted robust responses upon stressor presentation. LC sensory-evoked responses were selectively blunted in adolescent rats exposed to repeated social stress. Finally, repeated stress decreased LC-mPFC coherence in the high frequency range (beta and gamma) while maintaining strong coherence in the theta range, selectively in adolescents. Together, these results suggest that adaptive mechanisms that promote stress recovery and maintain basal activity of the brain norepinephrine system in the absence of stress are not fully developed or are vulnerable stress-induced impairments in adolescence. The resulting sustained activation of the LC-NE system after repeated social stress may adversely impact cognition and future social behavior of adolescents. PMID:26361057

  5. Muscarinic receptors mediate cold stress-induced detrusor overactivity in type 2 diabetes mellitus rats.

    Science.gov (United States)

    Imamura, Tetsuya; Ishizuka, Osamu; Ogawa, Teruyuki; Yamagishi, Takahiro; Yokoyama, Hitoshi; Minagawa, Tomonori; Nakazawa, Masaki; Gautam, Sudha Silwal; Nishizawa, Osamu

    2014-10-01

    This study determined if muscarinic receptors could mediate the cold stress-induced detrusor overactivity induced in type 2 diabetes mellitus rats. Ten-week-old female Goto-Kakizaki diabetic rats (n = 12) and Wister Kyoto non-diabetic rats (n = 12) were maintained on a high-fat diet for 4 weeks. Cystometric investigations of the unanesthetized rats were carried out at room temperature (27 ± 2°C) for 20 min. They were intravenously administered imidafenacin (0.3 mg/kg, n = 6) or vehicle (n = 6). After 5 min, the rats were transferred to a low temperature (4 ± 2°C) for 40 min where the cystometry was continued. The rats were then returned to room temperature for the final cystometric measurements. Afterwards, expressions of bladder muscarinic receptor M3 and M2 messenger ribonucleic acids and proteins were assessed by reverse transcription polymerase chain reaction and immunohistochemistry. In non-diabetic Wister Kyoto rats, imidafenacin did not reduce cold stress-induced detrusor overactivity. In diabetic Goto-Kakizaki rats, just after transfer to a low temperature, the cold stress-induced detrusor overactivity in imidafenacin-treated rats was reduced compared with vehicle-treated rats. Within the urinary bladders, the ratio of M3 to M2 receptor messenger ribonucleic acid in the diabetic Goto-Kakizaki rats was significantly higher than that of the non-diabetic Wister Kyoto rats. The proportion of muscarinic M3 receptor-positive area within the detrusor in diabetic Goto-Kakizaki rats was also significantly higher than that in non-diabetic Wister Kyoto rats. Imidafenacin partially inhibits cold stress-induced detrusor overactivity in diabetic Goto-Kakizaki rats. In this animal model, muscarinic M3 receptors partially mediate cold stress-induced detrusor overactivity. © 2014 The Japanese Urological Association.

  6. Neuroinflammation and Behavior in HIV-1 Transgenic Rats Exposed to Chronic Adolescent Stress.

    Science.gov (United States)

    Rowson, Sydney A; Harrell, Constance S; Bekhbat, Mandakh; Gangavelli, Apoorva; Wu, Matthew J; Kelly, Sean D; Reddy, Renuka; Neigh, Gretchen N

    2016-01-01

    Highly active antiretroviral therapy (HAART) has improved prognosis for people living with HIV (PLWH) and dramatically reduced the incidence of AIDS. However, even when viral load is controlled, PLWH develop psychiatric and neurological disorders more frequently than those living without HIV. Adolescents with HIV are particularly susceptible to the development of psychiatric illnesses and neurocognitive impairments. While both psychiatric and neurocognitive disorders have been found to be exacerbated by stress, the extent to which chronic stress and HIV-1 viral proteins interact to impact behavior and relevant neuroinflammatory processes is unknown. Determination of the individual contributions of stress and HIV to neuropsychiatric disorders is heavily confounded in humans. In order to isolate the influence of HIV-1 proteins and chronic stress on behavior and neuroinflammation, we employed the HIV-1 transgenic (Tg) rat model, which expresses HIV-1 proteins with a gag and pol deletion, allowing for viral protein expression without viral replication. This Tg line has been characterized as a model of HAART-controlled HIV-1 infection due to the lack of viral replication but continued presence of HIV-1 proteins. We exposed male and female adolescent HIV-1 Tg rats to a mixed-modality chronic stress paradigm consisting of isolation, social defeat and restraint, and assessed behavior, cerebral vascularization, and neuroinflammatory endpoints. Stress, sex, and presence of the HIV-1 transgene impacted weight gain in adolescent rats. Female HIV-1 Tg rats showed decreases in central tendency during the light cycle in the open field regardless of stress exposure. Both male and female HIV-1 Tg rats exhibited decreased investigative behavior in the novel object recognition task, but no memory impairments. Adolescent stress had no effect on the tested behaviors. Microglia in female HIV-1 Tg rats exhibited a hyper-ramified structure, and gene expression of complement factor B was

  7. Irradiation effects on the adrenal gland of rats undergoing inanition stress

    International Nuclear Information System (INIS)

    Hasan, S.S.; Chaturvedi, P.K.

    1985-01-01

    The effect of total body x-irradiation was studied on rats under inanition stress. In response to irradiation an increase in the activity of cortex and medulla was noted in inanition stress administered rats rather than in the normally fed animals. Similarly, rising levels of urinary catecholamines and 5-hydroxytryptamine were observed in the starved animals after irradiation. (author)

  8. Adaptogenic potential of royal jelly in liver of rats exposed to chronic stress.

    Directory of Open Access Journals (Sweden)

    Douglas Carvalho Caixeta

    Full Text Available Restraint and cold stress increase both corticosterone and glycemia, which lead to oxidative damages in hepatic tissue. This study assessed the effect of royal jelly (RJ supplementation on the corticosterone level, glycemia, plasma enzymes and hepatic antioxidant system in restraint and cold stressed rats. Wistar rats were allocated into no-stress, stress, no-stress supplemented with RJ and stress supplemented with RJ groups. Initially, RJ (200mg/Kg was administered for fourteen days and stressed groups were submitted to chronic stress from the seventh day. The results showed that RJ supplementation decreases corticosterone levels and improves glycemia control after stress induction. RJ supplementation also decreased the body weight, AST, ALP and GGT. Moreover, RJ improved total antioxidant capacity, SOD activity and reduced GSH, GR and lipoperoxidation in the liver. Thus, RJ supplementation reestablished the corticosterone levels and the hepatic antioxidant system in stressed rats, indicating an adaptogenic and hepatoprotective potential of RJ.

  9. Is sub-chronic exercise in Combination with medicinal nanoparticles a protective strategy against Doxorubicin-induced Hepatic oxidative stress and apoptosis in aging model rats?

    Directory of Open Access Journals (Sweden)

    Saied Kamal Sadat-Hoseini

    2017-10-01

    Full Text Available Objective(s: Oxidative stress and apoptosis are the major side effects of doxorubicin (DOX and the advantages accruing fromexercise and some medicinal herbs in mitigation of these toxic side effects is well documented. But so far, the effects of exercise in combination with medicinal nanoparticles on oxidative stress and apoptosis signaling simultaneously, in liver tissue are unknown. Hence, we investigated whether Treadmill Runningin combination with Nanocurcumin protects the liver tissue against these toxic side effects (oxidative stress and apoptosis simultaneously of DOX treatment in aging rats induced by D-galactose. Materials and Methods: Fifty-six Wistar male rats received a daily injection of D-galactose (100 mg/kg/day, i.p. then randomly assigned to 7 sub-groups. The training protocol included treadmill running progressively between 25 to 54 min/day and 15 to 20m/min, 5 days/week for six weeks. DOX (1 mg⋅mL−1⋅kg−1⋅day−1 was administrated intraperitoneally for 15 days and Nanocurcumin was administrated orally for 2 weeks (100 mg/kg/day. Results: Nanocurcumin Consumptionled to insignificant increase in SOD, MDA and insignificant decrease in AIF levels. Treadmill runningled to insignificant increase in SOD and insignificant decrease in AIF and MDA levels. The combination of Treadmill runningand Nanocurcumin led to significant decrease in MDA and insignificant increase in SOD and insignificant decrease in AIF levels. Conclusion: In conclusion, Treadmill runningexerciseand Nanocurcumin partly mitigates the toxic side effects of DOX treatment. But this amount of treatment does not play a required role against DOX-induced hepatic damage.

  10. MORPHOLOGICAL CHANGES IN THE HIPPOCAMPUS OF RATS IN ACCELERATED AGING

    Directory of Open Access Journals (Sweden)

    K. Yu. Maksimova

    2014-01-01

    Full Text Available The aim of this work was the analysis of structural changes with age in the hippocampus of senescenceaccelerated OXYS rats when signs of accelerated brain aging are missing (age 14 days, developments (age 5 months, and active progresses (age 15 months. The study was performed on 15 OXYS rats and 15 Wistar rats (as a control. After dislocation, brains were dissected, fixed with 10% formalin, embedded in paraffin, and serially cut in coronal sections (5μm thickness. These sections were stained with Cresyl violet and examined with a photomicroscope (Carl Zeiss Axiostar plus, Germany. The total number of hippocampal pyramidal cells in the CA1, CA3 and the dentate gyrus regions were estimated in 14-dayold, 5and 15-month-old OXYS and Wistar rats (n = 5 on the 5 slices of each brain sections. The number of neurons with chromatolysis, hyperchromatic with darkly stained cytoplasm and shrunken neurons were calculated as degenerative neurons. The pictures obtained with the program Carl Zeiss Axio Vision 8.0 with increasing 10  100, determined the average area bodies and nuclei of neurons (mkm2. The significant structural changes of neurons in the CA1, CA3 and dentate gyrus regions of the hippocampus in OXYS rats at 5 month of age are revealed by light microscopy. This results indicates the early develop neurodegeneration in OXYS rats. The most pronounced morphological changes occur in the CA1 region of the hippocampus of OXYS rats and irreversible. The degenerative changes of neurons in the hippocampus increases by the age of 15 months. Morphometric analysis of the average area of bodies and the nuclei of hippocampal neurons in CA1, CA3 and the dentate gyrus regions of OXYS and Wistar rats at 14 days of age showed no significant interline differences. At 5 months of age in the CA1 region of the hippocampus of OXYS rats was determined a significantly lower average body size and nuclei of pyramidal neurons compared with Wistar rats. With age, these

  11. Depression, anxiety-like behavior and memory impairment are associated with increased oxidative stress and inflammation in a rat model of social stress.

    Science.gov (United States)

    Patki, Gaurav; Solanki, Naimesh; Atrooz, Fatin; Allam, Farida; Salim, Samina

    2013-11-20

    In the present study, we have examined the behavioral and biochemical effect of induction of psychological stress using a modified version of the resident-intruder model for social stress (social defeat). At the end of the social defeat protocol, body weights, food and water intake were recorded, depression and anxiety-like behaviors as well as memory function was examined. Biochemical analysis including oxidative stress measurement, inflammatory markers and other molecular parameters, critical to behavioral effects were examined. We observed a significant decrease in the body weight in the socially defeated rats as compared to the controls. Furthermore, social defeat increased anxiety-like behavior and caused memory impairment in rats (PSocially defeated rats made significantly more errors in long term memory tests (Psocially defeated rats, when compared to control rats. We suggest that social defeat stress alters ERK1/2, IL-6, GLO1, GSR1, CAMKIV, CREB, and BDNF levels in specific brain areas, leading to oxidative stress-induced anxiety-depression-like behaviors and as well as memory impairment in rats. © 2013 Published by Elsevier B.V.

  12. Effects of Gladiolus dalenii on the Stress-Induced Behavioral, Neurochemical, and Reproductive Changes in Rats

    Directory of Open Access Journals (Sweden)

    David Fotsing

    2017-09-01

    Full Text Available Gladiolus dalenii is a plant commonly used in many regions of Cameroon as a cure for various diseases like headaches, epilepsy, schizophrenia, and mood disorders. Recent studies have revealed that the aqueous extract of G. dalenii (AEGD exhibited antidepressant-like properties in rats. Therefore, we hypothesized that the AEGD could protect from the stress-induced behavioral, neurochemical, and reproductive changes in rats. The objective of the present study was to elucidate the effect of the AEGD on behavioral, neurochemical, and reproductive characteristics, using female rats subjected to chronic immobilization stress. The chronic immobilization stress (3 h per day for 28 days was applied to induce female reproductive and behavioral impairments in rats. The immobilization stress was provoked in rats by putting them separately inside cylindrical restrainers with ventilated doors at ambient temperature. The plant extract was given to rats orally everyday during 28 days, 5 min before induction of stress. On a daily basis, a vaginal smear was made to assess the duration of the different phases of the estrous cycle and at the end of the 28 days of chronic immobilization stress, the rat’s behavior was assessed in the elevated plus maze. They were sacrificed by cervical disruption. The organs were weighed, the ovary histology done, and the biochemical parameters assessed. The findings of this research revealed that G. dalenii increased the entries and the time of open arm exploration in the elevated plus maze. Evaluation of the biochemical parameters levels indicated that there was a significant reduction in the corticosterone, progesterone, and prolactin levels in the G. dalenii aqueous extract treated rats compared to stressed rats whereas the levels of serotonin, triglycerides, adrenaline, cholesterol, glucose estradiol, follicle stimulating hormone and luteinizing hormone were significantly increased in the stressed rats treated with, G. dalenii

  13. Intestinal morphometric and biomechanical changes during aging in rats

    DEFF Research Database (Denmark)

    Zhao, Jingbo; Gregersen, Hans

    2015-01-01

    Background and aim: Previously we demonstrated pronounced morphometric and biomechanical remodeling in the rat intestine during physiological growth up to 32 weeks of age. The aim of the present study is to study intestinal geometric and biomechanical changes in aging rats. Materials and methods...... in the circumferential direction. In conclusion pronounced morphometric and biomechanical remodeling occurred in the rat intestine during aging. The observed changes likely reflect the changes of the physiological function of the intestine during ageing, similar to other tissues where function, mechanical loading......: Twenty-four male Wistar rats, aged from 6 to 22 months, were used in the study. The body weight and the wet weight per length of duodenal and ileal segments were measured at the termination of experiment. Morphometric data were obtained by measuring the wall thickness and wall cross-sectional area...

  14. Cognitive deficits in the rat chronic mild stress model for depression: relation to anhedonic-like responses

    DEFF Research Database (Denmark)

    Henningsen, Kim; Andreasen T., Jesper; Bouzinova, Elena V.

    2009-01-01

    in the spontaneous alternation test, possibly reflecting a deficit in working memory. This effect was independent of whether the stressed rats were anhedonic-like or stress-resilient as measured by their sucrose intake. CMS did not influence performance in passive avoidance and auditory cued fear conditioning......The chronic mild stress (CMS) protocol is widely used to evoke depressive-like behaviours in laboratory rats. The aim of the present study was to examine the effects of chronic stress on cognitive performance. About 70% of rats exposed to 7 weeks of chronic mild stress showed a gradual reduction...... in consumption of a sucrose solution, indicating an anhedonic-like state. The remaining rats did not reduce their sucrose intake, but appeared resilient to the stress-induced effects on sucrose intake. Cognitive profiling of the CMS rats revealed that chronic stress had a negative effect on performance...

  15. Expression of Endoplasmic Reticulum Stress-Related Factors in the Retinas of Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Shu Yan

    2012-01-01

    Full Text Available Recent reports show that ER stress plays an important role in diabetic retinopathy (DR, but ER stress is a complicated process involving a network of signaling pathways and hundreds of factors, What factors involved in DR are not yet understood. We selected 89 ER stress factors from more than 200, A rat diabetes model was established by intraperitoneal injection of streptozotocin (STZ. The expression of 89 ER stress-related factors was found in the retinas of diabetic rats, at both 1- and 3-months after development of diabetes, by quantitative real-time polymerase chain reaction arrays. There were significant changes in expression levels of 13 and 12 ER stress-related factors in the diabetic rat retinas in the first and third month after the development of diabetes, Based on the array results, homocysteine- inducible, endoplasmic reticulum stress-inducible, ubiquitin-like domain member 1(HERP, and synoviolin(HRD1 were studied further by immunofluorescence and Western blot. Immunofluorescence and Western blot analyses showed that the expression of HERP was reduced in the retinas of diabetic rats in first and third month. The expression of Hrd1 did not change significantly in the retinas of diabetic rats in the first month but was reduced in the third month.

  16. Synergistic effect of estradiol and fluoxetine in young adult and middle-aged female rats in two models of experimental depression.

    Science.gov (United States)

    Récamier-Carballo, Soledad; Estrada-Camarena, Erika; Reyes, Rebeca; Fernández-Guasti, Alonso

    2012-08-01

    The antidepressant effect of estrogens combined with antidepressants is controversial: some preclinical data showed that estrogens facilitate the effect of antidepressants in the forced swimming test (FST) in young adult rats, while others failed to find such effect in middle-aged rats in the chronic mild stress (CMS) model. In clinics similar differences were reported and may be due to the compounds, the depression model or type of depression, the experimental design, and the age of the subjects or the women's menopause stage. The objective of this study was to analyze the antidepressant-like effect of the combination of 17β-estradiol (E(2)) and fluoxetine (FLX) in young adults (2-4 months) and middle-aged (12-14 months) ovariectomized (OVX) rats in two experimental models: FST and CMS. E(2) (5 and 10 μg/rat) and FLX (2.5 and 10 mg/kg) per se dose-dependently reduced immobility in both age groups and, in young adults both compounds increased swimming, whereas in middle-aged rats they increased swimming and climbing. Analysis of the antidepressant-like effect of the combination of suboptimal doses of FLX (1.25 mg/kg) and E(2) (2.5 μg/rat) showed a decrease in immobility and an increase in swimming in both age groups. In the CMS, chronic E(2) (2.5 μg/rat) with FLX (1.25 mg/kg) augmented relative sucrose intake, but middle-aged rats responded 2 weeks earlier than young adults. These results show that the antidepressant-like effect of the combination of E(2) and FLX in young adult and middle-aged female rats is evidenced in the two animal models of depression: FST and CMS. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Bromsulphalein (BSP) clearance in ageing rats

    NARCIS (Netherlands)

    Hollander, C.F.; Leeuw-Israel, F.R. de; Arp-Neefjes, J.M.

    1968-01-01

    Liver function in ageing rats was studied, using the bromsulphalein (BSP) clearance test. The test was done on ultramicro scale. This made it possible to repeat the test several times in the same animal and to start a longitudinal study. In 3-month-old rats the BSP retentions, measured 15, 30 and 45

  18. Psychological Stress Delays Periodontitis Healing in Rats: The Involvement of Basic Fibroblast Growth Factor

    Directory of Open Access Journals (Sweden)

    Ya-Juan Zhao

    2012-01-01

    Full Text Available Objective. To evaluate the effects of psychological stress on periodontitis healing in rats and the contribution of basic fibroblast growth factor (bFGF expression to the healing process. Methods. Ninety-six rats were randomly distributed into control group, periodontitis group, and periodontitis plus stress group. Then, the rats were sacrificed at baseline and week(s 1, 2, and 4. The periodontitis healing condition was assessed, and the expression of interleukin-1β (IL-1β, tumor necrosis factor-α (TNF-α, and bFGF were tested by immunohistochemistry. Results. The stressed rats showed reduced body weight gain, behavioral changes, and increased serum corticosterone and ACTH levels (. The surface of inflammatory infiltrate, alveolar bone loss, attachment loss, and expression of IL-1β and TNF-α in the stress group were higher than those in the periodontitis group at weeks 2 and 4 (. Rats with experimental periodontitis showed decreased bFGF expression (, and the recovery of bFGF expression in the stress group was slower than that in the periodontitis group (. Negative correlations between inflammatory cytokines and bFGF were detected. Conclusion. Psychological stress could delay periodontitis healing in rats, which may be partly mediated by downregulation of the expression of bFGF in the periodontal ligament.

  19. The effect of early-life stress and chronic high-sucrose diet on metabolic outcomes in female rats.

    Science.gov (United States)

    Maniam, Jayanthi; Antoniadis, Christopher P; Morris, Margaret J

    2015-01-01

    Early-life stress affects metabolic outcomes and choice of diet influences the development of metabolic disease. Here we tested the hypothesis that chronic sugar intake exacerbates metabolic deficits induced by early-life stress. Early-life stress was induced in Sprague-Dawley rats using limited nesting material in early lactation (LN, postnatal days 2-9), and siblings were given chow alone or with additional sucrose post weaning (n = 9-17 per group). Female control and LN siblings had unlimited access to either chow plus water, or chow and water plus 25% sucrose solution (Sucrose), from 3-15 weeks of age. Weekly body weight and food intake were measured. Glucose and insulin tolerance were tested at 13 and 14 weeks of age, respectively. Rats were killed at 15 weeks. Hepatic triglyceride and markers of lipid synthesis - fatty acid synthase, acetyl-CoA carboxylase alpha and oxidation - and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (Pgc-1α) were examined. Mediators of hepatic glucocorticoid metabolism, specifically 11-beta hydroxysteroid dehydrogenase-1 (11βHSD-1), 5-α reductase, and glucocorticoid and mineralocorticoid receptor mRNAs were also measured. Sucrose increased caloric intake in both groups, but overall energy intake was not altered by LN exposure. LN exposure had no further impact on sucrose-induced glucose intolerance and increased plasma and liver triglycerides. Hepatic markers of fat synthesis and oxidation were concomitantly activated and 11βHSD-1 mRNA expression was increased by 53% in LN-Sucrose versus Con-Sucrose rats. Adiposity was increased by 26% in LN-Sucrose versus Con-Sucrose rats. Thus, LN exposure had minimal adverse metabolic effects despite high-sugar diet postweaning.

  20. Treadmill running prevents age-related memory deficit and alters neurotrophic factors and oxidative damage in the hippocampus of Wistar rats.

    Science.gov (United States)

    Vanzella, Cláudia; Neves, Juliana Dalibor; Vizuete, Adriana Fernanda; Aristimunha, Dirceu; Kolling, Janaína; Longoni, Aline; Gonçalves, Carlos Alberto Saraiva; Wyse, Angela T S; Netto, Carlos Alexandre

    2017-09-15

    Clinical and pre-clinical studies indicate that exercise is beneficial to many aspects of brain function especially during aging. The present study investigated the effects of a treadmill running protocol in young (3month-old) and aged (22month-old) male Wistar rats, on: I) cognitive function, as assessed by spatial reference memory in the Morris water maze; II) oxidative stress parameters and the expression of neurotrophic factors BDNF, NT-3, IGF-1 and VEGF in the hippocampus. Animals of both ages were assigned to sedentary (non-exercised) and exercised (20min of daily running sessions, 3 times per week for 4weeks) groups. Cognition was assessed by a reference memory task run in the Morris water maze; twenty four hours after last session of behavioral testing hippocampi were collected for biochemical analysis. Results demonstrate that the moderate treadmill running exercise: I) prevented age-related deficits in reference memory in the Morris water maze; II) prevented the age-related increase of reactive oxygen species levels and lipid peroxidation in the hippocampus; III) caused an increase of BDNF, NT-3 and IGF-1 expression in the hippocampus of aged rats. Taken together, results suggest that both exercise molecular effects, namely the reduction of oxidative stress and the increase of neurotrophic factors expression in the hippocampus, might be related to its positive effect on memory performance in aged rats. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Age-Related Loss in Bone Mineral Density of Rats Fed Lifelong on a Fish Oil-Based Diet Is Avoided by Coenzyme Q10 Addition

    Directory of Open Access Journals (Sweden)

    Alfonso Varela-López

    2017-02-01

    Full Text Available During aging, bone mass declines increasing osteoporosis and fracture risks. Oxidative stress has been related to this bone loss, making dietary compounds with antioxidant properties a promising weapon. Male Wistar rats were maintained for 6 or 24 months on diets with fish oil as unique fat source, supplemented or not with coenzyme Q10 (CoQ10, to evaluate the potential of adding this molecule to the n-3 polyunsaturated fatty acid (n-3 PUFA-based diet for bone mineral density (BMD preservation. BMD was evaluated in the femur. Serum osteocalcin, osteopontin, receptor activator of nuclear factor-κB ligand, ostroprotegerin, parathyroid hormone, urinary F2-isoprostanes, and lymphocytes DNA strand breaks were also measured. BMD was lower in aged rats fed a diet without CoQ10 respect than their younger counterparts, whereas older animals receiving CoQ10 showed the highest BMD. F2-isoprostanes and DNA strand breaks showed that oxidative stress was higher during aging. Supplementation with CoQ10 prevented oxidative damage to lipid and DNA, in young and old animals, respectively. Reduced oxidative stress associated to CoQ10 supplementation of this n-3 PUFA-rich diet might explain the higher BMD found in aged rats in this group of animals.

  2. Chronic stress effects and their reversibility on the Fallopian tubes and uterus in rats.

    Science.gov (United States)

    Divyashree, S; Yajurvedi, H N

    2018-01-01

    The durational effects of chronic stress on the Fallopian tubes and uterus were studied by exposing rats to stressors in the form of restraint (1h) and forced swimming (15min) daily for 4, 8 or 12 weeks. One group of stressed rats from each time period was then maintained without exposure to stressors for a further 4 weeks to assess their ability to recover from stress. All time periods of stress exposure resulted in decreased weight of the body and Fallopian tubes; however, the relative weight of the uterus and serum concentrations of oestradiol and insulin increased significantly. The antioxidant potential was decreased with increased malondialdehyde concentrations in the Fallopian tubes following all durations of exposure and after 4 and 8 weeks of stress exposure in the uterus. Interestingly, rats stressed for 12 weeks showed an increase in serum testosterone concentration and antioxidant enzyme activities with a decrease in malondialdehyde concentration in the uterus. The antioxidant enzyme activities and malondialdehyde concentration in the Fallopian tubes of all recovery group rats were similar to stressed rats. However, in the uterus these parameters were similar to controls in recovery group rats after 4 weeks or 8 weeks of exposure, but after 12 weeks of stress exposure these parameters did not return to control levels following the recovery period. These results reveal, for the first time, that chronic stress elicits an irreversible decrease in antioxidant defence in the Fallopian tubes irrespective of exposure duration, whereas the uterus develops reversible oxidative stress under short-term exposure but increased antioxidant potential with endometrial proliferation following long-term exposure.

  3. Rapamycin suppresses brain aging in senescence-accelerated OXYS rats.

    Science.gov (United States)

    Kolosova, Nataliya G; Vitovtov, Anton O; Muraleva, Natalia A; Akulov, Andrey E; Stefanova, Natalia A; Blagosklonny, Mikhail V

    2013-06-01

    Cellular and organismal aging are driven in part by the MTOR (mechanistic target of rapamycin) pathway and rapamycin extends life span inC elegans, Drosophila and mice. Herein, we investigated effects of rapamycin on brain aging in OXYS rats. Previously we found, in OXYS rats, an early development of age-associated pathological phenotypes similar to several geriatric disorders in humans, including cerebral dysfunctions. Behavioral alterations as well as learning and memory deficits develop by 3 months. Here we show that rapamycin treatment (0.1 or 0.5 mg/kg as a food mixture daily from the age of 1.5 to 3.5 months) decreased anxiety and improved locomotor and exploratory behavior in OXYS rats. In untreated OXYS rats, MRI revealed an increase of the area of hippocampus, substantial hydrocephalus and 2-fold increased area of the lateral ventricles. Rapamycin treatment prevented these abnormalities, erasing the difference between OXYS and Wister rats (used as control). All untreated OXYS rats showed signs of neurodegeneration, manifested by loci of demyelination. Rapamycin decreased the percentage of animals with demyelination and the number of loci. Levels of Tau and phospho-Tau (T181) were increased in OXYS rats (compared with Wistar). Rapamycin significantly decreased Tau and inhibited its phosphorylation in the hippocampus of OXYS and Wistar rats. Importantly, rapamycin treatment caused a compensatory increase in levels of S6 and correspondingly levels of phospo-S6 in the frontal cortex, indicating that some downstream events were compensatory preserved, explaining the lack of toxicity. We conclude that rapamycin in low chronic doses can suppress brain aging.

  4. Pomegranate peel extract attenuates oxidative stress by decreasing coronary angiotensin-converting enzyme (ACE) activity in hypertensive female rats.

    Science.gov (United States)

    Dos Santos, Roger L; Dellacqua, Lais O; Delgado, Nathalie T B; Rouver, Wender N; Podratz, Priscila L; Lima, Leandro C F; Piccin, Mariela P C; Meyrelles, Silvana S; Mauad, Helder; Graceli, Jones B; Moyses, Margareth R

    2016-01-01

    Based on the antioxidant properties of pomegranate, this study was designed to investigate the effects of pomegranate peel extract on damage associated with hypertension and aging in a spontaneously hypertensive rat (SHR) model. The influence of pomegranate consumption was examined on systolic blood pressure (SBP), angiotensin-converting enzyme (ACE) coronary activity, oxidative stress, and vascular morphology. Four- or 28-wk-old SHR model rats were treated for 30 d, with terminal experimental animal age being 8 and 32 wk, respectively, with either pomegranate extract (SHR-PG) or filtered water (SHR). Data showed significant reduction in SBP and coronary ACE activity in both age groups. The levels of superoxide anion, a measure of oxidative stress, were significantly lower in animals in the SHR-PG group compared to SHR alone. Coronary morphology demonstrated total increases in vascular wall areas were in the SHR group, and pomegranate peel extract diminished this effect. Pomegranate peel extract consumption conferred protection against hypertension in the SHR model. This finding was demonstrated by marked reduction in coronary ACE activity, oxidative stress, and vascular remodelling. In addition, treatment was able to reduce SBP in both groups. Evidence indicates that the use of pomegranate peel extract may prove beneficial in alleviating coronary heart disease.

  5. Increased Oxidative Stress and Mitochondrial Dysfunction in Zucker Diabetic Rat Liver and Brain

    Directory of Open Access Journals (Sweden)

    Haider Raza

    2015-02-01

    Full Text Available Background/Aims: The Zucker diabetic fatty (ZDF, FA/FA rat is a genetic model of type 2 diabetes, characterized by insulin resistance with progressive metabolic syndrome. We have previously demonstrated mitochondrial dysfunction and oxidative stress in the heart, kidneys and pancreas of ZDF rats. However, the precise molecular mechanism of disease progression is not clear. Our aim in the present study was to investigate oxidative stress and mitochondrial dysfunction in the liver and brain of ZDF rats. Methods: In this study, we have measured mitochondrial oxidative stress, bioenergetics and redox homeostasis in the liver and brain of ZDF rats. Results: Our results showed increased reactive oxygen species (ROS production in the ZDF rat brain compared to the liver, while nitric oxide (NO production was markedly increased both in the brain and liver. High levels of lipid and protein peroxidation were also observed in these tissues. Glutathione metabolism and mitochondrial respiratory functions were adversely affected in ZDF rats when compared to Zucker lean (ZL, +/FA control rats. Reduced ATP synthesis was also observed in the liver and brain of ZDF rats. Western blot analysis confirmed altered expression of cytochrome P450 2E1, iNOS, p-JNK, and IκB-a confirming an increase in oxidative and metabolic stress in ZDF rat tissues. Conclusions: Our data shows that, like other tissues, ZDF rat liver and brain develop complications associated with redox homeostasis and mitochondrial dysfunction. These results, thus, might have implications in understanding the etiology and pathophysiology of diabesity which in turn, would help in managing the disease associated complications.

  6. Psychological Stress, Cocaine and Natural Reward Each Induce Endoplasmic Reticulum Stress Genes in Rat Brain

    OpenAIRE

    Pavlovsky, Ashly A.; Boehning, Darren; Li, Dingge; Zhang, Yafang; Fan, Xiuzhen; Green, Thomas A.

    2013-01-01

    Our prior research has shown that the transcription of endoplasmic reticulum (ER) stress transcription factors Activating Transcription Factor 3 (ATF3) and ATF4 are induced by amphetamine and restraint stress in rat striatum. However, presently it is unknown the full extent of ER stress responses to psychological stress or cocaine, and which of the three ER stress pathways is activated. The current study examines transcriptional responses of key ER stress target genes subsequent to psychologi...

  7. Age-related effect of aerobic exercise training on antioxidant and oxidative markers in the liver challenged by doxorubicin in rats.

    Science.gov (United States)

    Ahmadian, Mehdi; Dabidi Roshan, Valiollah; Leicht, Anthony S

    2018-05-16

    The aims of the current study were to investigate the oxidant and antioxidant status of liver tissue challenged by doxorubicin and to examine the possible protective effects of aerobic exercise on doxorubicin-induced oxidative stress. Seventy-two rats were divided into three age groups (Young, Adult, and Elderly) with three treatment subgroups consisting of eight rats per age group: doxorubicin, aerobic exercise + doxorubicin, and aerobic exercise + saline. The experimental groups performed regular treadmill running for 3 weeks. Doxorubicin was administered by i.p. injection at a dosage of 20 mg kg -1 while the aerobic exercise + saline group received saline of a comparable volume. Heat shock protein 70, malondialdehyde, glutathione peroxidase, and protein carbonyl were determined from the liver homogenates following the intervention period. Treatment with doxorubicin induced hepatotoxicity in all groups with lower values of oxidative stress in young compared with the older groups. The inclusion of aerobic exercise training significantly increased heat shock protein 70 and antioxidant enzyme levels (glutathione peroxidase) whereas it decreased oxidative stress biomarkers (malondialdehyde and protein carbonyl) for all age groups. These results suggest that aerobic exercise training may be a potential, non-drug strategy to modulate doxorubicin-induced hepatotoxicity through its positive impact on antioxidant levels and oxidative stress biomarkers.

  8. Age-related memory decline is associated with vascular and microglial degeneration in aged rats.

    Science.gov (United States)

    Zhang, Rong; Kadar, Tamar; Sirimanne, Ernest; MacGibbon, Alastair; Guan, Jian

    2012-12-01

    The hippocampus processes memory is an early target of aging-related biological and structural lesions, leading to memory decline. With absent neurodegeneration in the hippocampus, which identified in rodent model of normal aging the pathology underlying age-related memory impairment is not complete. The effective glial-vascular networks are the key for maintaining neuronal functions. The changes of glial cells and cerebral capillaries with age may contribute to memory decline. Thus we examined age associated changes in neurons, glial phenotypes and microvasculature in the hippocampus of aged rats with memory decline. Young adult (6 months) and aged (35 months) male rats (Fisher/Norway-Brown) were used. To evaluate memory, four days of acquisition phase of Morris water maze tasks were carried out in both age groups and followed by a probe trial 2 h after the acquisition. The brains were then collected for analysis using immunochemistry. The aged rats showed a delayed latency (pvascular and microglial degeneration with reduced vascular endothelial growth factor and elevated GFAP expression in the hippocampus. The data indicate the memory decline with age is associated with neuronal dysfunction, possibly due to impaired glial-vascular-neuronal networks, but not neuronal degeneration. Glial and vascular degeneration found in aged rats may represent early event of aging pathology prior to neuronal degeneration. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Growth hormone and IGF-1 deficiency exacerbate high-fat diet-induced endothelial impairment in obese Lewis dwarf rats: implications for vascular aging.

    Science.gov (United States)

    Bailey-Downs, Lora C; Sosnowska, Danuta; Toth, Peter; Mitschelen, Matthew; Gautam, Tripti; Henthorn, Jim C; Ballabh, Praveen; Koller, Akos; Farley, Julie A; Sonntag, William E; Csiszar, Anna; Ungvari, Zoltan

    2012-06-01

    Previous studies suggest that the age-related decline in circulating growth hormone (GH) and insulin-like growth factor-1 (IGF-1) levels significantly contribute to vascular dysfunction in aging by impairing cellular oxidative stress resistance pathways. Obesity in elderly individuals is increasing at alarming rates, and there is evidence suggesting that elderly individuals are more vulnerable to the deleterious cardiovascular effects of obesity than younger individuals. However, the specific mechanisms through which aging, GH/IGF-1 deficiency, and obesity interact to promote the development of cardiovascular disease remain unclear. To test the hypothesis that low circulating GH/IGF-1 levels exacerbate the pro-oxidant and proinflammatory vascular effects of obesity, GH/IGF-1-deficient Lewis dwarf rats and heterozygous control rats were fed either a standard diet or a high-fat diet (HFD) for 7 months. Feeding an HFD resulted in similar relative weight gains and increases in body fat content in Lewis dwarf rats and control rats. HFD-fed Lewis dwarf rats exhibited a relative increase in blood glucose levels, lower insulin, and impaired glucose tolerance as compared with HFD-fed control rats. Analysis of serum cytokine expression signatures indicated that chronic GH/IGF-1 deficiency exacerbates HFD-induced inflammation. GH/IGF-1 deficiency also exacerbated HFD-induced endothelial dysfunction, oxidative stress, and expression of inflammatory markers (tumor necrosis factor-α, ICAM-1) in aortas of Lewis dwarf rats. Overall, our results are consistent with the available clinical and experimental evidence suggesting that GH/IGF-1 deficiency renders the cardiovascular system more vulnerable to the deleterious effects of obesity.

  10. VASOPRESSIN PROLONGS BEHAVIORAL AND CARDIAC RESPONSES TO MILD STRESS IN YOUNG BUT NOT IN AGED RATS

    NARCIS (Netherlands)

    BUWALDA, B; NYAKAS, C; KOOLHAAS, JM; LUITEN, PGM; BOHUS, B

    1992-01-01

    In young male Wistar rats sudden silence superimposed on low intensity background noise evokes a relative decrease in heart rate. This bradycardia is accompanied by immobility behavior. In the present study, involving young (3 month), late-adult (14 month), aged (26 month), and senescent (25 month)

  11. Renal and endocrine changes in rats with inherited stress-induced arterial hypertension (ISIAH)

    DEFF Research Database (Denmark)

    Amstislavsky, Sergej; Welker, Pia; Frühauf, Jan-Henning

    2006-01-01

    Hypertensive inbred rats (ISIAH; inherited stress-induced arterial hypertension) present with baseline hypertension (>170 mmHg in adult rats), but attain substantially higher values upon mild emotional stress. We aimed to characterize key parameters related to hypertension in ISIAH. Kidneys, adre...

  12. Enhanced performance of aged rats in contingency degradation and instrumental extinction tasks.

    Science.gov (United States)

    Samson, Rachel D; Venkatesh, Anu; Patel, Dhara H; Lipa, Peter; Barnes, Carol A

    2014-04-01

    Normal aging in rats affects behavioral performance on a variety of associative learning tasks under Pavlovian conditions. There is little information, however, on whether aging also impacts performance of instrumental tasks. Young (9-12 months) and aged (24-27 months) Fisher 344 rats were trained to press distinct levers associated with either maltodextrin or sucrose. The rats in both age groups increased their lever press frequency at a similar rate, suggesting that the initial acquisition of this instrumental task is not affected by aging. Using a contingency degradation procedure, we then addressed whether aged rats could adapt their behavior to changes in action-outcome contingencies. We found that young and aged rats do adapt, but that a different schedule of reinforcement is necessary to optimize performance in each age group. Finally, we also addressed whether aged rats can extinguish a lever press action as well as young rats, using 2 40-min extinction sessions on consecutive days. While extinction profiles were similar in young and aged rats on the first day of training, aged rats were faster to extinguish their lever presses on the second day, in spite of their performance levels being similar at the beginning of the session. Together these data support the finding that acquisition of instrumental lever press behaviors is preserved in aged rats and suggest that they have a different threshold for switching strategies in response to changes in action-outcome associations. This pattern of result implies that age-related changes in the brain are heterogeneous and widespread across structures.

  13. Status epilepticus in immature rats is associated with oxidative stress and mitochondrial dysfunction

    Directory of Open Access Journals (Sweden)

    Jaroslava eFolbergrová

    2016-05-01

    Full Text Available Epilepsy is a neurologic disorder, particularly frequent in infants and children where it can lead to serious consequences later in life. Oxidative stress and mitochondrial dysfunction are implicated in the pathogenesis of many neurological disorders including epilepsy in adults. However, their role in immature epileptic brain is unclear since there have been two contrary opinions: oxidative stress is age-dependent and does not occur in immature brain during status epilepticus and, on the other hand, evidence of oxidative stress in immature brain during a specific model of status epilepticus. To solve this dilemma, we have decided to investigate oxidative stress following status epilepticus induced in immature 12-day-old rats by three substances with a different mechanism of action, namely 4-aminopyridine, LiCl-pilocarpine or kainic acid. FluoroJade-B staining revealed mild brain damage especially in hippocampus and thalamus in each of the tested models. Decrease of glucose and glycogen with parallel rises of lactate clearly indicate high rate of glycolysis, which was apparently not sufficient in 4-AP and Li-Pilo status, as evident from the decreases of PCr levels. Hydroethidium method revealed significantly higher levels of superoxide anion (by ~60 % in the hippocampus, cerebral cortex and thalamus of immature rats during status. Status epilepticus lead to mitochondrial dysfunction with a specific pronounced decrease of complex I activity that persisted for a long period of survival. Complex II and IV activities remained in the control range. Antioxidant treatment with SOD mimetic MnTMPYP or peroxynitrite scavenger FeTPPS significantly attenuated oxidative stress and inhibition of complex I activity. These findings bring evidence that oxidative stress and mitochondrial dysfunction are age and model independent, and may thus be considered a general phenomenon. They can have a clinical relevance for a novel approach to the treatment of epilepsy

  14. [Effects of psychological stress on performances in open-field test of rats and tyrosine's modulation].

    Science.gov (United States)

    Chen, Wei-Qiang; Cheng, Yi-Yong; Li, Shu-Tian; Hong, Yan; Wang, Dong-Lan; Hou, Yue

    2009-02-01

    To explore the effects of different doses of tyrosine modulation on behavioral performances in open field test of psychological stress rats. The animal model of psychological stress was developed by restraint stress for 21 days. Wistar rats were randomly assigned to five groups (n = 10) as follows: control group (CT), stress control group (SCT), low, medium and high-doses of tyrosine modulation stress groups (SLT, SMT and SIT). The changes of behavioral performances were examined by open-field test. Serum levels of cortisol, norepinephrine and dopamine were also detected. The levels of serum cortisol were all increased obviously in the four stress groups, and their bodyweight gainings were diminished. The behavioral performances of SCT rats in open-field test were changed significantly in contrast to that of CT rats. However, The behavioral performances of SMT and SHT rats were not different from that of CT rats. In addition, the serum levels of norepinephrine and dopamine were downregulated obviously in SCT and SLT groups, and no differences were observed in other groups. Psychological stress can impair body behavioral performances, and moderate tyrosine modulation may improve these abnormal changes. The related mechanisms may be involved with the changes of norepinephrine and dopamine.

  15. Role of sex steroids in progesterone and corticosterone response to acute restraint stress in rats: sex differences.

    Science.gov (United States)

    Kalil, B; Leite, C M; Carvalho-Lima, M; Anselmo-Franci, J A

    2013-07-01

    Adrenal progesterone secretion increases along with corticosterone in response to stress in male and female rats to modulate some stress responses. Here we investigated the role of sex steroids in sex differences in the progesterone response to 60 min of restraint stress in adult male and female rats. Comparisons between males and females in the progesterone response were evaluated in parallel with corticosterone responses. From day 5 to 7 after gonadectomy, female and male rats were treated with estradiol or testosterone, respectively (OVX-E and ORCH-T groups), or oil (OVX and ORCH groups). Female rats in proestrus, intact and 7 d adrenalectomized (ADX) male rats were also studied. At 10:00 h, blood samples were withdrawn via an implanted jugular cannula before (-5 min), during (15, 30, 45, 60 min) and after (90 and 120 min) restraint stress to measure plasma progesterone and corticosterone concentrations by radioimmunoassay. Intact male and proestrus female rats exhibited similar progesterone responses to stress. Gonadectomy did not alter the amount of progesterone secreted during stress in female rats but decreased secretion in male rats. Unlike corticosterone, the progesterone response to stress in females was not influenced by estradiol. In males, testosterone replacement attenuated the progesterone and corticosterone responses to stress. Basal secretion of progesterone among intact, ORCH and ADX males was similar, but ADX-stressed rats secreted little progesterone. Hence, the gonads differently modulate adrenal progesterone and corticosterone responses to stress in female and male rats. The ovaries enhance corticosterone but not progesterone secretion, while the testes stimulate progesterone but not corticosterone secretion.

  16. The antioxidant effects of dry apricot in the various tissues of rats with induced cold restraint stress.

    Science.gov (United States)

    Uguralp, S; Ozturk, F; Aktay, G; Cetin, A; Gursoy, S

    2012-01-01

    α-Tocopherol and β-carotene are the best known and most widely used natural antioxidant substances. Apricot contains β-carotene, tocopherols and flavonoids. This experimental study was designed to investigate the protective effect of Malatya kabashi apricot in stress-induced injury in various tissues of rats. In total, 32 male Wistar albino rats were divided into four groups: control, apricot, stress and apricot-stress groups. Apricot was administrated to rats by gavage for 10 days in the apricot and apricot-stress groups. Then rats were kept at 4°C for 4 h in stress and apricot-stress groups. The rats were killed at the end of the experiment for biochemical and histological examinations. This study shows apricot supplementation decreased oxidative stress injury in both the stomach and intestine.

  17. Failure to upregulate Agrp and Orexin in response to activity based anorexia in weight loss vulnerable rats characterized by passive stress coping and prenatal stress experience.

    Science.gov (United States)

    Boersma, Gretha J; Liang, Nu-Chu; Lee, Richard S; Albertz, Jennifer D; Kastelein, Anneke; Moody, Laura A; Aryal, Shivani; Moran, Timothy H; Tamashiro, Kellie L

    2016-05-01

    We hypothesize that anorexia nervosa (AN) poses a physiological stress. Therefore, the way an individual copes with stress may affect AN vulnerability. Since prenatal stress (PNS) exposure alters stress responsivity in offspring this may increase their risk of developing AN. We tested this hypothesis using the activity based anorexia (ABA) rat model in control and PNS rats that were characterized by either proactive or passive stress-coping behavior. We found that PNS passively coping rats ate less and lost more weight during the ABA paradigm. Exposure to ABA resulted in higher baseline corticosterone and lower insulin levels in all groups. However, leptin levels were only decreased in rats with a proactive stress-coping style. Similarly, ghrelin levels were increased only in proactively coping ABA rats. Neuropeptide Y (Npy) expression was increased and proopiomelanocortin (Pomc) expression was decreased in all rats exposed to ABA. In contrast, agouti-related peptide (Agrp) and orexin (Hctr) expression were increased in all but the PNS passively coping ABA rats. Furthermore, DNA methylation of the orexin gene was increased after ABA in proactive coping rats and not in passive coping rats. Overall our study suggests that passive PNS rats have innate impairments in leptin and ghrelin in responses to starvation combined with prenatal stress associated impairments in Agrp and orexin expression in response to starvation. These impairments may underlie decreased food intake and associated heightened body weight loss during ABA in the passively coping PNS rats. Published by Elsevier Ltd.

  18. Soft-food diet induces oxidative stress in the rat brain.

    Science.gov (United States)

    Yoshino, Fumihiko; Yoshida, Ayaka; Hori, Norio; Ono, Yumie; Kimoto, Katsuhiko; Onozuka, Minoru; Lee, Masaichi Chang-il

    2012-02-02

    Decreased dopamine (DA) release in the hippocampus may be caused by dysfunctional mastication, although the mechanisms involved remain unclear. The present study examined the effects of soft- and hard-food diets on oxidative stress in the brain, and the relationship between these effects and hippocampal DA levels. The present study showed that DA release in the hippocampus was decreased in rats fed a soft-food diet. Electron spin resonance studies using the nitroxyl spin probe 3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl directly demonstrated a high level of oxidative stress in the rat brain due to soft-food diet feeding. In addition, we confirmed that DA directly react with reactive oxygen species such as hydroxyl radical and superoxide. These observations suggest that soft-food diet feeding enhances oxidative stress, which leads to oxidation and a decrease in the release of DA in the hippocampus of rats. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  19. Effect of stress on variability of systemic hemodynamics in rats of various genetic strains.

    Science.gov (United States)

    Belkina, L M; Tarasova, O S; Kirillina, T N; Borovik, A S; Popkova, E V

    2003-09-01

    Power spectral density of heart rate fluctuations in the range of 0.02-5.00 Hz in August rats was lower than in Wistar rats. Changes in mean blood pressure and heart rate during stress (15-min immobilization) were similar in animals of both strains. As differentiated from Wistar rats, power spectral density of fluctuations in August rats considerably decreased after stress. August rats were characterized by low spectral power at rest and high resistance to the arrhythmogenic effect of 10-min acute myocardial ischemia.

  20. Effect of honey on the reproductive system of male rat offspring exposed to prenatal restraint stress.

    Science.gov (United States)

    Haron, M N; Mohamed, M

    2016-06-01

    Exposure to prenatal stress is associated with impaired reproductive function in male rat offspring. Honey is traditionally used by the Malays for enhancement of fertility. The aim of this study was to determine the effect of honey on reproductive system of male rat offspring exposed to prenatal restraint stress. Dams were divided into four groups (n = 10/group): control, honey, stress and honey + stress groups. Dams from honey and honey + stress groups received oral honey (1.2 g kg(-1) body weight) daily from day 1 of pregnancy, meanwhile dams from stress and honey + stress groups were subjected to restraint stress (three times per day) from day 11 of pregnancy until delivery. At 10 weeks old, each male rat offspring was mated with a regular oestrus cycle female. Male sexual behaviour and reproductive performance were evaluated. Then, male rats were euthanised for assessment on reproductive parameters. Honey supplementation during prenatal restraint stress significantly increased testis and epididymis weights as well as improved the percentages of abnormal spermatozoa and sperm motility in male rat offspring. In conclusion, this study might suggest that supplementation of honey during pregnancy seems to reduce the adverse effects of restraint stress on reproductive organs weight and sperm parameters in male rat offspring. © 2015 Blackwell Verlag GmbH.

  1. Effects of chronic administration of caffeine and stress on feeding behavior of rats.

    Science.gov (United States)

    Pettenuzzo, Leticia Ferreira; Noschang, Cristie; von Pozzer Toigo, Eduardo; Fachin, Andrelisa; Vendite, Deusa; Dalmaz, Carla

    2008-10-20

    Anorectic effects of caffeine are controversial in the literature, while stress and obesity are growing problems in our society. Since many stressed people are coffee drinkers, the objective of the present study was to evaluate the effect of stress and chronic administration of caffeine on feeding behavior and body weight in male and female rats. Wistar rats (both males and females) were divided into 3 groups: control (receiving water), caffeine 0.3 g/L and caffeine 1.0 g/L (in the drinking water). These groups were subdivided into non-stressed and stressed (repeated-restraint stress for 40 days). During the entire treatment, chow consumption was monitored and rats were weighed monthly. Afterwards, feeding behavior was evaluated during 3-min trials in food-deprived and ad libitum fed animals and also in repeated exposures, using palatable food (Froot Loops and Cheetos). Chronic administration of caffeine did not affect rat chow consumption or body weight gain, but diminished the consumption of both salty (Cheetos) and sweet (Froot Loops) palatable food. In the repeated trial tests, stress diminished savory snack consumption in the later exposures [I.S. Racotta, J. Leblanc, D. Richard The effect of caffeine on food intake in rats: involvement of corticotropin-releasing factor and the sympatho-adrenal system. Pharmacol Biochem Behav. 1994, 48:887-892; S.D. Comer, M. Haney, R.W. Foltin, M.W. Fischman Effects of caffeine withdrawal on humans living in a residential laboratory. Exp Clin Psychopharmacol. 1997, 5:399-403; A. Jessen, B. Buemann, S. Toubro, I.M. Skovgaard, A. Astrup The appetite-suppressant effect of nicotine is enhanced by caffeine. Diab Ob Metab. 2005, 7:327-333; J.M. Carney Effects of caffeine, theophylline and theobromine on scheduled controlled responding in rats. Br J Pharmacol. 1982, 75:451-454] and caffeine diminished consumption of both palatable foods (savory and sweet) during the early and later exposures. Most responses to caffeine were stronger

  2. Corticosterone mediates some but not other behavioural changes induced by prenatal stress in rats.

    Science.gov (United States)

    Salomon, S; Bejar, C; Schorer-Apelbaum, D; Weinstock, M

    2011-02-01

    The effect of daily varied stress from days 13-21 of gestation in Wistar rats was investigated by tests of learning and memory and anxiogenic behaviour in the 60-day-old offspring of both sexes. Prenatal stress decreased the anogenital distance in males at 1 day of age. Anxiogenic behaviour in the elevated plus maze was seen in prenatally-stressed rats of both genders. There was no significant gender difference in the rate of spatial learning in the Morris water maze but prenatal stress only slowed that of males. In the object recognition test with an inter-trial interval of 40 min, females but not males, discriminated between a familiar and novel object. Prenatal stress did not affect object discrimination in females but feminised that in males. Maternal adrenalectomy with replacement of basal corticosterone levels in the drinking fluid prevented all of the above effects of prenatal stress in the offspring. To mimic the peak corticosterone levels and time course of elevation in response to stress, corticosterone (3 mg/kg) was injected twice (0 and 30 min) on days 13-16 and once on days 17-20 of gestation to adrenalectomised mothers. This treatment re-instated anxiogenic behaviour similar to that induced by prenatal stress, indicating that it is mediated by exposure of the foetal brain to raised levels of corticosterone. However, steroid administration to adrenalectomised dams did not decrease anogenital distance, feminise object recognition memory or slow spatial learning in their male offspring. The findings indicate that other adrenal hormones are necessary to induce these effects of prenatal stress. © 2011 The Authors. Journal of Neuroendocrinology © 2011 Blackwell Publishing Ltd.

  3. The effect of rosemary extract on spatial memory, learning and antioxidant enzymes activities in the hippocampus of middle-aged rats.

    Science.gov (United States)

    Rasoolijazi, Homa; Mehdizadeh, Mehdi; Soleimani, Mansoureh; Nikbakhte, Farnaz; Eslami Farsani, Mohsen; Ababzadeh, Shima

    2015-01-01

    The Rosemary extract (RE) possesses various antioxidant, cytoprotective and cognition- improving bioactivities. In this study, we postulated which doses of RE have a more effect on the hippocampus of middle-aged rats. In this experimental study, thirty-two middle-aged male Wistar rats were fed by different doses (50,100 and 200 mg/kg/day) of RE (containing 40% carnosic acid) or distilled water for 12 weeks. The effects of different RE doses on learning and spatial memory scores, hippocampal neuronal survival, antioxidant enzymes and lipid peroxidation amount were evaluated by one and two way analysis of variance (ANOVA). It seemed that RE (100mg/kg) could recover the spatial memory retrieval score (prosemary extract (40% carnosic acid) may improve the memory score and oxidative stress activity in middle aged rats in a dose dependent manner, especially in 100mg/kg.

  4. Fasting ameliorates metabolism, immunity, and oxidative stress in carbon tetrachloride-intoxicated rats.

    Science.gov (United States)

    Sadek, Km; Saleh, Ea

    2014-12-01

    Fasting has been recently discovered to improve overall health, but its beneficial effects in the presence of hepatic insufficiency have not been proven. The influence of fasting on the metabolism, immunological aspects, and oxidative stress of 40 male carbon tetrachloride (CCl4)-intoxicated Wistar rats was investigated in the present study. The rats were divided into four groups, including a placebo group, CCl4-intoxicated rats, which were injected subcutaneously with 1.0 ml/kg of CCl4 solution, a fasting group, which was fasted 12 h/day for 30 days, and a fourth group, which was injected with CCl4 and fasted. The metabolism, immunity, and oxidative stress improved in CCl4-intoxicated rats fasted for 12 h/day for 30 days, as evidenced in significant increase (p fasting improved metabolism, immunity, and oxidative stress in CCl4-intoxicated rats. Thus, fasting during Ramadan is safe for patients with hepatic disorders, as the prophet Mohammed (S) said "Keep the fast, keep your health". © The Author(s) 2014.

  5. Prolactin prevents acute stress-induced hypocalcemia and ulcerogenesis by acting in the brain of rat.

    Science.gov (United States)

    Fujikawa, Takahiko; Soya, Hideaki; Tamashiro, Kellie L K; Sakai, Randall R; McEwen, Bruce S; Nakai, Naoya; Ogata, Masato; Suzuki, Ikukatsu; Nakashima, Kunio

    2004-04-01

    Stress causes hypocalcemia and ulcerogenesis in rats. In rats under stressful conditions, a rapid and transient increase in circulating prolactin (PRL) is observed, and this enhanced PRL induces PRL receptors (PRLR) in the choroid plexus of rat brain. In this study we used restraint stress in water to elucidate the mechanism by which PRLR in the rat brain mediate the protective effect of PRL against stress-induced hypocalcemia and ulcerogenesis. We show that rat PRL acts through the long form of PRLR in the hypothalamus. This is followed by an increase in the long form of PRLR mRNA expression in the choroid plexus of the brain, which provides protection against restraint stress in water-induced hypocalcemia and gastric erosions. We also show that PRL induces the expression of PRLR protein and corticotropin-releasing factor mRNA in the paraventricular nucleus. These results suggest that the PRL levels increase in response to stress, and it moves from the circulation to the cerebrospinal fluid to act on the central nervous system and thereby plays an important role in helping to protect against acute stress-induced hypocalcemia and gastric erosions.

  6. The central effect of biological Amines on immunosuppressive effect of restraint stress in rat

    Directory of Open Access Journals (Sweden)

    Zeraati F

    2000-10-01

    Full Text Available The effects of some histaminergic agents were evaluated on stress- induced immunosuppression in immunized nale rats. In rat immunized with sheep red blood cells ( SRBCs. Restraint stress (RS prevented the booster-induced rise in anti-SRBC antibody titre and cell immunity response. Intracerebroventicular (I.C>V injection of histamine (150 µg/rat induced a similar effect with RS. Pretreatment with chlorpheniramine (50 µg/rat reduced the inhibitory effect of Ras on immune function. Also histamine could inhibit the effect of RS on immune function. Also histamine could inhibitory the effect of chlorpheniramine when injected simultaneously. Pretreatment with ranidine (10 µg/rat had not a significant effect. Serotonin (3 µg/rat and dopamine (0.2 µg/rat could reverse the effects of chlorpheniromine when injected with chlorpheniramine (P<0.05. Epinephrine (0.2 µg/rat had not a significant effect. The results indicate that histamine mediates the immunosuppression of restraint stress by influencing the histamine H1 receptor in the brain and this effects of histamine may be modulated by serotoninergic and dopaminergic system.

  7. Influence of chronic stress and oclusal interference on masseter muscle pain in rat.

    Science.gov (United States)

    Simonić-Kocijan, Suncana; Uhac, Ivone; Braut, Vedrana; Kovac, Zoran; Pavicić, Daniela Kovacević; Fugosić, Vesna; Urek, Miranda Muhvić

    2009-09-01

    This study aimed to investigate the individual effects of chronic stress and occlusal interference, as well as their combined influence on masseter muscle pain. Experiments were performed on 28 male Wistar rats. Animals were submitted to chronic stress procedure, exposed to occlusal interference, or exposed to both mantioned procedures. At the end of the procedure animals were submitted to orofacial formalin test, and nociceptive behavioral response was evaluated. Statisticaly significant difference of nociceptive behavioral response in chronicaly stressed rats and in the animals with occlusal interference in comparation to the control group were not obtained (p > 0.05). In contrast, nociceptive behavioral response was significantly increased in rats submitted to both of experimental procedures (p occlusal interference and chronic stress influence masseter muscle pain.

  8. Neonatal stress tempers vulnerability of acute stress response in adult socially isolated rats

    Directory of Open Access Journals (Sweden)

    Mariangela Serra

    2014-06-01

    Full Text Available Adverse experiences occurred in early life and especially during childhood and adolescence can have negative impact on behavior later in life and the quality of maternal care is considered a critical moment that can considerably influence the development and the stress responsiveness in offspring. This review will assess how the association between neonatal and adolescence stressful experiences such as maternal separation and social isolation, at weaning, may influence the stress responsiveness and brain plasticity in adult rats. Three hours of separation from the pups (3-14 postnatal days significantly increased frequencies of maternal arched-back nursing and licking-grooming by dams across the first 14 days postpartum and induced a long-lasting increase in their blood levels of corticosterone. Maternal separation, which per sedid not modified brain and plasma allopregnanolone and corticosterone levels in adult rats, significantly reduced social isolation-induced decrease of the levels of these hormones. Moreover, the enhancement of corticosterone and allopregnanolone levels induced by foot shock stress in socially isolated animals that were exposed to maternal separation was markedly reduced respect to that observed in socially isolated animals. Our results suggest that in rats a daily brief separation from the mother during the first weeks of life, which per se did not substantially alter adult function and reactivity of hypothalamic-pituitary-adrenal (HPA axis, elicited a significant protection versus the subsequent long-term stressful experience such that induced by social isolation from weaning. Proceedings of the 10th International Workshop on Neonatology · Cagliari (Italy · October 22nd-25th, 2014 · The last ten years, the next ten years in NeonatologyGuest Editors: Vassilios Fanos, Michele Mussap, Gavino Faa, Apostolos Papageorgiou

  9. Oxidative stress in normal and diabetic rats.

    Science.gov (United States)

    Torres, M D; Canal, J R; Pérez, C

    1999-01-01

    Parameters related to oxidative stress were studied in a group of 10 Wistar diabetic rats and 10 control rats. The levels of total erythrocyte catalase activity in the diabetic animals were significantly (pC18:2) ratios. Greater vitaminE/triglyceride (TG) ratio, however, appeared in the control group. The corresponding vitamin A ratios (vitaminA/TG, vitaminA/PUFA, vitaminA/C 18:2) were higher in the control group. Our work corroborates the findings that fatty acid metabolism presents alterations in the diabetes syndrome and that the antioxidant status is affected.

  10. Sex-specific impairment of spatial memory in rats following a reminder of predator stress.

    Science.gov (United States)

    Burke, Hanna M; Robinson, Cristina M; Wentz, Bethany; McKay, Jerel; Dexter, Kyle W; Pisansky, Julia M; Talbot, Jeffery N; Zoladz, Phillip R

    2013-07-01

    It has been suggested that cognitive impairments exhibited by people with post-traumatic stress disorder (PTSD) result from intrusive, flashback memories transiently interfering with ongoing cognitive processing. Researchers have further speculated that females are more susceptible to developing PTSD because they form stronger traumatic memories than males, hence females may be more sensitive to the negative effects of intrusive memories on cognition. We have examined how the reminder of a naturalistic stress experience would affect rat spatial memory and if sex was a contributing factor to such effects. Male and female Sprague-Dawley rats were exposed, without contact, to an adult female cat for 30 min. Five weeks later, the rats were trained to locate a hidden platform in the radial-arm water maze and given a single long-term memory test trial 24 h later. Before long-term memory testing, the rats were given a 30-min reminder of the cat exposure experienced 5 weeks earlier. The results indicated that the stress reminder impaired spatial memory in the female rats only. Control manipulations revealed that this effect was not attributable to the original cat exposure adversely impacting learning that occurred 5 weeks later, or to merely exposing rats to a novel environment or predator-related cues immediately before testing. These findings provide evidence that the reminder of a naturalistic stressful experience can impair cognitive processing in rats; moreover, since female rats were more susceptible to the memory-impairing effects of the stress reminder, the findings could lend insight into the existing sex differences in susceptibility to PTSD.

  11. Effects of stress on gastrointestinal function: interactions of neural and endocrine systems in mediating stress-induced intestinal dysfunction in rats

    International Nuclear Information System (INIS)

    Williams, C.L.

    1987-01-01

    The etiology of stress-induced intestinal dysfunction is completely unresolved, and the lack of an appropriate animal model has hindered studies of causality. We compared a number of stressors and their resultant effects on intestinal transit, a measure of the propulsive motor activity of the gut, in the rat. We found that the response of the intestine to stress, and the neural systems activated by stress, were dependent on the type and duration of stress, as well as the animal strain, and gender. We developed a model, acute wrapping restraint stress, to fully characterize the effects of stress on intestinal transit. Wrap restraint stress is a nonulcerogenic model in which rats are subjected to acute restraint by wrapping them in a harness of paper tape to restrict, but not prevent movement of the upper body and forelimbs. Transit was evaluated by the geometric center method, in which a radiomarker ( 51 Cr) is instilled directly into the proximal duodenum and proximal colon via a surgically placed intestinal cannula, in fasted, adult female Sprague Dawley rats

  12. Aging and the Disposition and Toxicity of Mercury in Rats

    Science.gov (United States)

    Bridges, Christy C.; Joshee, Lucy; Zalups, Rudolfs K.

    2014-01-01

    Progressive loss of functioning nephrons, secondary to age-related glomerular disease, can impair the ability of the kidneys to effectively clear metabolic wastes and toxicants from blood. Additionally, as renal mass is diminished, cellular hypertrophy occurs in functional nephrons that remain. We hypothesize that these nephrons are exposed to greater levels of nephrotoxicants, such as inorganic mercury (Hg2+), and thus are at an increased risk of becoming intoxicated by these compounds. The purpose of the present study was to characterize the effects of aging on the disposition and renal toxicity of Hg2+ in young adult and aged Wistar rats. Paired groups of animals were injected (i.v.) with either a 0.5 μmol • kg−1 non-nephrotoxic or a 2.5 μmol • kg−1 nephrotoxic dose of mercuric chloride (HgCl2). Plasma creatinine and renal biomarkers of proximal tubular injury were greater in both groups of aged rats than in the corresponding groups of young adult rats. Histologically, evidence of glomerular sclerosis, tubular atrophy, interstitial inflammation and fibrosis were significant features of kidneys from aged animals. In addition, proximal tubular necrosis, especially along the straight segments in the inner cortex and outer stripe of the outer medulla was a prominent feature in the renal sections from both aged and young rats treated with the nephrotoxic dose of HgCl2. Our findings indicate 1) that overall renal function is significantly impaired in aged rats, resulting in chronic renal insufficiency and 2) the disposition of HgCl2 in aging rats is significantly altered compared to that of young rats. PMID:24548775

  13. Aging and the disposition and toxicity of mercury in rats.

    Science.gov (United States)

    Bridges, Christy C; Joshee, Lucy; Zalups, Rudolfs K

    2014-05-01

    Progressive loss of functioning nephrons, secondary to age-related glomerular disease, can impair the ability of the kidneys to effectively clear metabolic wastes and toxicants from blood. Additionally, as renal mass is diminished, cellular hypertrophy occurs in functional nephrons that remain. We hypothesize that these nephrons are exposed to greater levels of nephrotoxicants, such as inorganic mercury (Hg(2+)), and thus are at an increased risk of becoming intoxicated by these compounds. The purpose of the present study was to characterize the effects of aging on the disposition and renal toxicity of Hg(2+) in young adult and aged Wistar rats. Paired groups of animals were injected (i.v.) with either a 0.5μmol·kg(-1) non-nephrotoxic or a 2.5μmol·kg(-1) nephrotoxic dose of mercuric chloride (HgCl2). Plasma creatinine and renal biomarkers of proximal tubular injury were greater in both groups of aged rats than in the corresponding groups of young adult rats. Histologically, evidence of glomerular sclerosis, tubular atrophy, interstitial inflammation and fibrosis were significant features of kidneys from aged animals. In addition, proximal tubular necrosis, especially along the straight segments in the inner cortex and outer stripe of the outer medulla was a prominent feature in the renal sections from both aged and young rats treated with the nephrotoxic dose of HgCl2. Our findings indicate 1) that overall renal function is significantly impaired in aged rats, resulting in chronic renal insufficiency and 2) the disposition of HgCl2 in aging rats is significantly altered compared to that of young rats. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Aging increases oxidative stress and renal expression of oxidant and antioxidant enzymes that are associated with an increased trend in systolic blood pressure.

    Science.gov (United States)

    Gomes, Pedro; Simão, Sónia; Silva, Elisabete; Pinto, Vanda; Amaral, João S; Afonso, Joana; Serrão, Maria Paula; Pinho, Maria João; Soares-da-Silva, Patrício

    2009-01-01

    The aim of this study was to investigate whether the effects of aging on oxidative stress markers and expression of major oxidant and antioxidant enzymes associate with impairment of renal function and increases in blood pressure. To explore this, we determined age-associated changes in lipid peroxidation (urinary malondialdehyde), plasma and urinary hydrogen peroxide (H(2)O(2)) levels, as well as renal H(2)O(2) production, and the expression of oxidant and antioxidant enzymes in young (13 weeks) and old (52 weeks) male Wistar Kyoto (WKY) rats. Urinary lipid peroxidation levels and H(2)O(2) production by the renal cortex and medulla of old rats were higher than their young counterparts. This was accompanied by overexpression of NADPH oxidase components Nox4 and p22(phox) in the renal cortex of old rats. Similarly, expression of superoxide dismutase (SOD) isoforms 2 and 3 and catalase were increased in the renal cortex from old rats. Renal function parameters (creatinine clearance and fractional excretion of sodium), diastolic blood pressure and heart rate were not affected by aging, although slight increases in systolic blood pressure were observed during this 52-week period. It is concluded that overexpression of renal Nox4 and p22(phox) and the increases in renal H(2)O(2) levels in aged WKY does not associate with renal functional impairment or marked increases in blood pressure. It is hypothesized that lack of oxidative stress-associated effects in aged WKY rats may result from increases in antioxidant defenses that counteract the damaging effects of H(2)O(2).

  15. Effects of aging and resistance training in rat tendon remodeling.

    Science.gov (United States)

    Marqueti, Rita C; Durigan, João L Q; Oliveira, Anderson José S; Mekaro, Marcelo Shinyu; Guzzoni, Vinicius; Aro, Andrea A; Pimentel, Edson Rosa; Selistre-de-Araujo, Heloisa S

    2018-01-01

    In elderly persons, weak tendons contribute to functional limitations, injuries, and disability, but resistance training can attenuate this age-related decline. We evaluated the effects of resistance training on the extracellular matrix (ECM) of the calcaneal tendon (CT) in young and old rats and its effect on tendon remodeling. Wistar rats aged 3 mo (young, n = 30) and 20 mo (old, n = 30) were divided into 4 groups: young sedentary, young trained, old sedentary (OS), and old trained (OT). The training sessions were conducted over a 12-wk period. Aging in sedentary rats showed down-regulation in key genes that regulated ECM remodeling. Moreover, the OS group showed a calcification focus in the distal region of the CT, with reduced blood vessel volume density. In contrast, resistance training was effective in up-regulating connective tissue growth factor, VEGF, and decorin gene expression in old rats. Resistance training also increased proteoglycan content in young and old rats in special small leucine-rich proteoglycans and blood vessels and prevented calcification in OT rats. These findings confirm that resistance training is a potential mechanism in the prevention of aging-related loss in ECM and that it attenuates the detrimental effects of aging in tendons, such as ruptures and tendinopathies.-Marqueti, R. C., Durigan, J. L. Q., Oliveira, A. J. S., Mekaro, M. S., Guzzoni, V., Aro, A. A., Pimentel, E. R., Selistre-de-Araujo, H. S. Effects of aging and resistance training in rat tendon remodeling. © FASEB.

  16. Increased gluconeogenesis in rats exposed to hyper-G stress

    International Nuclear Information System (INIS)

    Daligcon, B.C.; Oyama, J.; Hannak, K.

    1985-01-01

    The role of gluconeogenesis on the increase in plasma glucose and liver glycogen of rats exposed to hyper-G (radial acceleration) stress was determined. Overnight-fasted, male Sprague-Dawley rats (250-300 g) were injected i.p. with uniformly labeled 14 C lactate, alanine, or glycerol (5 μCi/rat) and immediately exposed to 3.1 G for 0.25, 0.50, and 1.0 hr. 14 C incorporation of the labeled substrates into plasma glucose and liver glycogen was measured and compared to noncentrifuged control rats injected in a similar manner. Significant increases in 14 C incorporation of all three labeled substrates into plasma glucose were observed in centrifuged rats at all exposure periods; 14 C incorporation into liver glycogen was significantly increased only at 0.50 and 1.0 hr. The i.p. administration (5 mg/100-g body wt) of 5-methoxyindole-2-carboxylic acid, a potent gluconeogenesis inhibitor, prior to centrifugation blocked the increase in plasma glucose and liver glycogen during the first hour of centrifugation. The increase in plasma glucose and liver glycogen was also abolished in adrenodemedullated rats exposed to centrifugation for 1.0 hr. Propranolol, a beta-adrenergic blocker, suppressed the increase in plasma glucose of rats exposed to centrifugation for 0.25 hr. From the results of this study, it is concluded that the initial, rapid rise in plasma glucose as well as the increase in liver glycogen of rats exposed to hyper-G stress can be attributed to an increased rate of gluconeogenesis, and that epinephrine plays a dominant role during the early stages of exposure to centrifugation. 11 references, 3 tables

  17. Numeric and volumetric changes in Leydig cells during aging of rats.

    Science.gov (United States)

    Neves, Bruno Vinicius Duarte; Lorenzini, Fernando; Veronez, Djanira; Miranda, Eduardo Pereira de; Neves, Gabriela Duarte; Fraga, Rogério de

    2017-10-01

    To analyze the effects of aging in rats on the nuclear volume, cytoplasmic volume, and total volume of Leydig cells, as well as their number. Seventy-two Wistar rats were divided into six subgroups of 12 rats, which underwent right orchiectomy at 3, 6, 9, 12, 18, and 24 months of age. The weight and volume of the resected testicles were assessed. A stereological study of Leydig cells was conducted, which included measurements of cell number and nuclear, cytoplasmic, and total cell volumes. The weight and volume of the resected testicles showed reductions with age. Only the subgroup composed of 24-month old rats showed a decrease in the nuclear volume of Leydig cells. Significant reductions in the cytoplasmic volume and total volume of Leydig cells were observed in 18- and 24-month old rats. The number of Leydig cells did not vary significantly with age. Aging in rats resulted in reduction of the nuclear, cytoplasmic, and total cell volumes of Leydig cells. There was no change in the total number of these cells during aging.

  18. Attenuation of cold stress-induced exacerbation of cardiac and adipose tissue pathology and metabolic disorders in a rat model of metabolic syndrome by the glucocorticoid receptor antagonist RU486.

    Science.gov (United States)

    Nagasawa, K; Matsuura, N; Takeshita, Y; Ito, S; Sano, Y; Yamada, Y; Uchinaka, A; Murohara, T; Nagata, K

    2016-04-25

    Chronic stress affects the central nervous system as well as endocrine, metabolic and immune systems. However, the effects of cold stress on cardiovascular and metabolic disorders in metabolic syndrome (MetS) have remained unclear. We recently characterized DahlS.Z-Lepr(fa)/Lepr(fa) (DS/obese) rats, derived from a cross between Dahl salt-sensitive and Zucker rats, as a new animal model of MetS. We have now investigated the effects of chronic cold stress and glucocorticoid receptor (GR) blockade on cardiac and adipose tissue pathology as well as on metabolic parameters in this model. DS/obese rats were exposed to cold stress (immersion in ice-cold water to a depth of 1-2 cm for 2 h per day) with or without subcutaneous injection of the GR antagonist RU486 (2 mg kg(-1)day(-1)) for 4 weeks beginning at 9 weeks of age. Age-matched homozygous lean (DahlS.Z-Lepr(+)/Lepr(+)) littermates served as a control. Chronic cold stress exacerbated hypertension as well as left ventricular (LV) hypertrophy, fibrosis and diastolic dysfunction in DS/obese rats in a manner sensitive to RU486 treatment. Cold stress with or without RU486 did not affect body weight or fat mass. In contrast, cold stress further increased cardiac oxidative stress as well as macrophage infiltration and proinflammatory gene expression in LV and visceral fat tissue, with all of these effects being attenuated by RU486. Cold stress also further increased GR and 11β-hydroxysteroid dehydrogenase type 1 mRNA and protein abundance in LV and visceral adipose tissue, and these effects were again inhibited by RU486. In addition, RU486 ameliorated the stress-induced aggravation of dyslipidemia, glucose intolerance and insulin resistance in DS/obese rats. Our results implicate GR signaling in cold stress-induced exacerbation of cardiac and adipose tissue pathology as well as of abnormal glucose and lipid metabolism in a rat model of MetS.

  19. Enhancement of Skeletal Muscle in Aged Rats Following High-Intensity Stretch-Shortening Contraction Training.

    Science.gov (United States)

    Rader, Erik P; Naimo, Marshall A; Layner, Kayla N; Triscuit, Alyssa M; Chetlin, Robert D; Ensey, James; Baker, Brent A

    2017-04-01

    Exercise is the most accessible, efficacious, and multifactorial intervention to improve health and treat chronic disease. High-intensity resistance exercise, in particular, also maximizes skeletal muscle size and strength-outcomes crucial at advanced age. However, such training is capable of inducing muscle maladaptation when misapplied at old age. Therefore, characterization of parameters (e.g., mode and frequency) that foster adaptation is an active research area. To address this issue, we utilized a rodent model that allowed training at maximal intensity in terms of muscle activation and tested the hypothesis that muscles of old rats adapt to stretch-shortening contraction (SSC) training, provided the training frequency is sufficiently low. At termination of training, normalized muscle mass (i.e., muscle mass divided by tibia length) and muscle quality (isometric force divided by normalized muscle mass) were determined. For young rats, normalized muscle mass increased by ∼20% regardless of training frequency. No difference was observed for muscle quality values after 2 days versus 3 days per week training (0.65 ± 0.09 N/mg/mm vs. 0.59 ± 0.05 N/mg/mm, respectively). For old rats following 3 days per week training, normalized muscle mass was unaltered and muscle quality was 30% lower than young levels. Following 2 days per week training at old age, normalized muscle mass increased by 17% and muscle quality was restored to young levels. To investigate this enhanced response, oxidative stress was assessed by lipid peroxidation quantification. For young rats, lipid peroxidation levels were unaltered by training. With aging, baseline levels of lipid peroxidation increased by 1.5-fold. For old rats, only 2 days per week training decreased lipid peroxidation to levels indistinguishable from young values. These results imply that, appropriately scheduled high-intensity SSC training at old age is capable of restoring muscle to a younger phenotype in terms

  20. Effects of prolonged agmatine treatment in aged male Sprague-Dawley rats.

    Science.gov (United States)

    Rushaidhi, M; Zhang, H; Liu, P

    2013-03-27

    Increasing evidence suggests that altered arginine metabolism contributes to cognitive decline during ageing. Agmatine, decarboxylated arginine, has a variety of pharmacological effects, including the modulation of behavioural function. A recent study demonstrated the beneficial effects of short-term agmatine treatment in aged rats. The present study investigated how intraperitoneal administration of agmatine (40mg/kg, once daily) over 4-6weeks affected behavioural function and neurochemistry in aged Sprague-Dawley rats. Aged rats treated with saline displayed significantly reduced exploratory activity in the open field, impaired spatial learning and memory in the water maze and object recognition memory relative to young rats. Prolonged agmatine treatment improved animals' performance in the reversal test of the water maze and object recognition memory test, and significantly suppressed age-related elevation in nitric oxide synthase activity in the dentate gyrus of the hippocampus and prefrontal cortex. However, this prolonged supplementation was unable to improve exploratory activity and spatial reference learning and memory in aged rats. These findings further demonstrate that exogenous agmatine selectively improves behavioural function in aged rats. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. Diet-Induced Ketosis Improves Cognitive Performance in Aged Rats

    Science.gov (United States)

    Xu, Kui; Sun, Xiaoyan; Eroku, Bernadette O.; Tsipis, Constantinos P.; Puchowicz, Michelle A.; LaManna, Joseph C.

    2010-01-01

    Aging is associated with increased susceptibility to hypoxic/ischemic insult and declines in behavioral function which may be due to attenuated adaptive/defense responses. We investigated if diet-induced ketosis would improve behavioral performance in the aged rats. Fischer 344 rats (3- and 22-month-old) were fed standard (STD) or ketogenic (KG) diet for 3 weeks and then exposed to hypobaric hypoxia. Cognitive function was measured using the T-maze and object recognition tests. Motor function was measured using the inclined-screen test. Results showed that KG diet significantly increased blood ketone levels in both young and old rats. In the aged rats, the KG diet improved cognitive performance under normoxic and hypoxic conditions; while motor performance remained unchanged. Capillary density and HIF-1α levels were elevated in the aged ketotic group independent of hypoxic challenge. These data suggest that diet-induced ketosis may be beneficial in the treatment of neurodegenerative conditions. PMID:20204773

  2. Stress and Subjective Age: Those With Greater Financial Stress Look Older.

    Science.gov (United States)

    Agrigoroaei, Stefan; Lee-Attardo, Angela; Lachman, Margie E

    2017-12-01

    Subjective indicators of age add to our understanding of the aging process beyond the role of chronological age. We examined whether financial stress contributes to subjective age as rated by others and the self. The participants ( N = 228), aged 26-75, were from a Boston area satellite of the Midlife in the United States (MIDUS) longitudinal study. Participants reported how old they felt and how old they thought they looked, and observers assessed the participants' age based on photographs (other-look age), at two occasions, an average of 10 years apart. Financial stress was measured at Time 1. Controlling for income, general stress, health, and attractiveness, participants who reported higher levels of financial stress were perceived as older than their actual age to a greater extent and showed larger increases in other-look age over time. We consider the results on accelerated aging of appearance with regard to their implications for interpersonal interactions and in relation to health.

  3. Neuronal Function in Male Sprague Dawley Rats During Normal Ageing.

    Science.gov (United States)

    Idowu, A J; Olatunji-Bello, I I; Olagunju, J A

    2017-03-06

    During normal ageing, there are physiological changes especially in high energy demanding tissues including the brain and skeletal muscles. Ageing may disrupt homeostasis and allow tissue vulnerability to disease. To establish an appropriate animal model which is readily available and will be useful to test therapeutic strategies during normal ageing, we applied behavioral approaches to study age-related changes in memory and motor function as a basis for neuronal function in ageing in male Sprague Dawley rats. 3 months, n=5; 6 months, n=5 and 18 months, n=5 male Sprague Dawley Rats were tested using the Novel Object Recognition Task (NORT) and the Elevated plus Maze (EPM) Test. Data was analyzed by ANOVA and the Newman-Keuls post hoc test. The results showed an age-related gradual decline in exploratory behavior and locomotor activity with increasing age in 3 months, 6 months and 18 months old rats, although the values were not statistically significant, but grooming activity significantly increased with increasing age. Importantly, we established a novel finding that the minimum distance from the novel object was statistically significant between 3 months and 18 months old rats and this may be an index for age-related memory impairment in the NORT. Altogether, we conclude that the male Sprague Dawley rat show age-related changes in neuronal function and may be a useful model for carrying out investigations into the mechanisms involved in normal ageing.

  4. Isolation stress and chronic mild stress induced immobility in the defensive burying behavior and a transient increased ethanol intake in Wistar rats.

    Science.gov (United States)

    Vázquez-León, Priscila; Martínez-Mota, Lucía; Quevedo-Corona, Lucía; Miranda-Páez, Abraham

    2017-09-01

    Stress can be experienced with or without adverse effects, of which anxiety and depression are two of the most important due to the frequent comorbidity with alcohol abuse in humans. Historically, stress has been considered a cause of drug use, particularly alcohol abuse due to its anxiolytic effects. In the present work we exposed male Wistar rats to two different stress conditions: single housing (social isolation, SI), and chronic mild stress (CMS). We compared both stressed groups to group-housed rats and rats without CMS (GH) to allow the determination of a clear behavioral response profile related to their respective endocrine stress response and alcohol intake pattern. We found that SI and CMS, to a greater extent, induced short-lasting increased sucrose consumption, a transient increase in serum corticosterone level, high latency/immobility, and low burying behavior in the defensive burying behavior (DBB) test, and a transient increase in alcohol intake. Thus, the main conclusion was that stress caused by both SI and CMS induced immobility in the DBB test and, subsequently, induced a transient increased voluntary ethanol intake in Wistar rats with a free-choice home-cage drinking paradigm. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Effects of simultaneous exposure to stress and nicotine on nicotine-induced locomotor activation in adolescent and adult rats

    Energy Technology Data Exchange (ETDEWEB)

    Zago, A. [Laboratório de Farmacologia, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista, Araraquara, SP (Brazil); Leão, R.M.; Carneiro-de-Oliveira, P.E. [Laboratório de Farmacologia, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista, Araraquara, SP (Brazil); Programa Interinstitucional de Pós-Graduação em Ciências Fisiológicas, Universidade Federal de São Carlos/Universidade Estadual de São Paulo, Araraquara, SP (Brazil); Marin, M.T.; Cruz, F.C. [Laboratório de Farmacologia, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista, Araraquara, SP (Brazil); Planeta, C.S. [Laboratório de Farmacologia, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista, Araraquara, SP (Brazil); Programa Interinstitucional de Pós-Graduação em Ciências Fisiológicas, Universidade Federal de São Carlos/Universidade Estadual de São Paulo, Araraquara, SP (Brazil)

    2011-11-18

    Preclinical studies have shown that repeated stress experiences can result in an increase in the locomotor response to the subsequent administration of drugs of abuse, a phenomenon that has been termed behavioral cross-sensitization. Behavioral sensitization reflects neuroadaptive processes associated with drug addiction and drug-induced psychosis. Although crosssensitization between stress- and drug-induced locomotor activity has been clearly demonstrated in adult rats, few studies have evaluated this phenomenon in adolescent rats. In the present study, we determined if the simultaneous exposure to stress and nicotine was capable of inducing behavioral sensitization to nicotine in adolescent and adult rats. To this end, adolescent (postnatal day (P) 28-37) and adult (P60-67) rats received nicotine (0.4 mg/kg, sc) or saline (0.9% NaCl, sc) and were immediately subjected to restraint stress for 2 h once a day for 7 days. The control group for stress was undisturbed following nicotine or saline injections. Three days after the last exposure to stress and nicotine, rats were challenged with a single dose of nicotine (0.4 mg/kg, sc) or saline and nicotine-induced locomotion was then recorded for 30 min. In adolescent rats, nicotine caused behavioral sensitization only in animals that were simultaneously exposed to stress, while in adult rats nicotine promoted sensitization independently of stress exposure. These findings demonstrate that adolescent rats are more vulnerable to the effects of stress on behavioral sensitization to nicotine than adult rats.

  6. Effects of simultaneous exposure to stress and nicotine on nicotine-induced locomotor activation in adolescent and adult rats

    International Nuclear Information System (INIS)

    Zago, A.; Leão, R.M.; Carneiro-de-Oliveira, P.E.; Marin, M.T.; Cruz, F.C.; Planeta, C.S.

    2011-01-01

    Preclinical studies have shown that repeated stress experiences can result in an increase in the locomotor response to the subsequent administration of drugs of abuse, a phenomenon that has been termed behavioral cross-sensitization. Behavioral sensitization reflects neuroadaptive processes associated with drug addiction and drug-induced psychosis. Although crosssensitization between stress- and drug-induced locomotor activity has been clearly demonstrated in adult rats, few studies have evaluated this phenomenon in adolescent rats. In the present study, we determined if the simultaneous exposure to stress and nicotine was capable of inducing behavioral sensitization to nicotine in adolescent and adult rats. To this end, adolescent (postnatal day (P) 28-37) and adult (P60-67) rats received nicotine (0.4 mg/kg, sc) or saline (0.9% NaCl, sc) and were immediately subjected to restraint stress for 2 h once a day for 7 days. The control group for stress was undisturbed following nicotine or saline injections. Three days after the last exposure to stress and nicotine, rats were challenged with a single dose of nicotine (0.4 mg/kg, sc) or saline and nicotine-induced locomotion was then recorded for 30 min. In adolescent rats, nicotine caused behavioral sensitization only in animals that were simultaneously exposed to stress, while in adult rats nicotine promoted sensitization independently of stress exposure. These findings demonstrate that adolescent rats are more vulnerable to the effects of stress on behavioral sensitization to nicotine than adult rats

  7. Effects of simultaneous exposure to stress and nicotine on nicotine-induced locomotor activation in adolescent and adult rats

    Directory of Open Access Journals (Sweden)

    A. Zago

    2012-01-01

    Full Text Available Preclinical studies have shown that repeated stress experiences can result in an increase in the locomotor response to the subsequent administration of drugs of abuse, a phenomenon that has been termed behavioral cross-sensitization. Behavioral sensitization reflects neuroadaptive processes associated with drug addiction and drug-induced psychosis. Although cross-sensitization between stress- and drug-induced locomotor activity has been clearly demonstrated in adult rats, few studies have evaluated this phenomenon in adolescent rats. In the present study, we determined if the simultaneous exposure to stress and nicotine was capable of inducing behavioral sensitization to nicotine in adolescent and adult rats. To this end, adolescent (postnatal day (P 28-37 and adult (P60-67 rats received nicotine (0.4 mg/kg, sc or saline (0.9% NaCl, sc and were immediately subjected to restraint stress for 2 h once a day for 7 days. The control group for stress was undisturbed following nicotine or saline injections. Three days after the last exposure to stress and nicotine, rats were challenged with a single dose of nicotine (0.4 mg/kg, sc or saline and nicotine-induced locomotion was then recorded for 30 min. In adolescent rats, nicotine caused behavioral sensitization only in animals that were simultaneously exposed to stress, while in adult rats nicotine promoted sensitization independently of stress exposure. These findings demonstrate that adolescent rats are more vulnerable to the effects of stress on behavioral sensitization to nicotine than adult rats.

  8. Impaired Mitochondrial Respiratory Functions and Oxidative Stress in Streptozotocin-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Subbuswamy K. Prabu

    2011-05-01

    Full Text Available We have previously shown a tissue-specific increase in oxidative stress in the early stages of streptozotocin (STZ-induced diabetic rats. In this study, we investigated oxidative stress-related long-term complications and mitochondrial dysfunctions in the different tissues of STZ-induced diabetic rats (>15 mM blood glucose for 8 weeks. These animals showed a persistent increase in reactive oxygen and nitrogen species (ROS and RNS, respectively production. Oxidative protein carbonylation was also increased with the maximum effect observed in the pancreas of diabetic rats. The activities of mitochondrial respiratory enzymes ubiquinol: cytochrome c oxidoreductase (Complex III and cytochrome c oxidase (Complex IV were significantly decreased while that of NADH:ubiquinone oxidoreductase (Complex I and succinate:ubiquinone oxidoreductase (Complex II were moderately increased in diabetic rats, which was confirmed by the increased expression of the 70 kDa Complex II sub-unit. Mitochondrial matrix aconitase, a ROS sensitive enzyme, was markedly inhibited in the diabetic rat tissues. Increased expression of oxidative stress marker proteins Hsp-70 and HO-1 was also observed along with increased expression of nitric oxide synthase. These results suggest that mitochondrial respiratory complexes may play a critical role in ROS/RNS homeostasis and oxidative stress related changes in type 1 diabetes and may have implications in the etiology of diabetes and its complications.

  9. Wheel running improves REM sleep and attenuates stress-induced flattening of diurnal rhythms in F344 rats.

    Science.gov (United States)

    Thompson, Robert S; Roller, Rachel; Greenwood, Benjamin N; Fleshner, Monika

    2016-05-01

    Regular physical activity produces resistance to the negative health consequences of stressor exposure. One way that exercise may confer stress resistance is by reducing the impact of stress on diurnal rhythms and sleep; disruptions of which contribute to stress-related disease including mood disorders. Given the link between diurnal rhythm disruptions and stress-related disorders and that exercise both promotes stress resistance and is a powerful non-photic biological entrainment cue, we tested if wheel running could reduce stress-induced disruptions of sleep/wake behavior and diurnal rhythms. Adult, male F344 rats with or without access to running wheels were instrumented for biotelemetric recording of diurnal rhythms of locomotor activity, heart rate, core body temperature (CBT), and sleep (i.e. REM, NREM, and WAKE) in the presence of a 12 h light/dark cycle. Following 6 weeks of sedentary or exercise conditions, rats were exposed to an acute stressor known to disrupt diurnal rhythms and produce behaviors associated with mood disorders. Prior to stressor exposure, exercise rats had higher CBT, more locomotor activity during the dark cycle, and greater %REM during the light cycle relative to sedentary rats. NREM and REM sleep were consolidated immediately following peak running to a greater extent in exercise, compared to sedentary rats. In response to stressor exposure, exercise rats expressed higher stress-induced hyperthermia than sedentary rats. Stressor exposure disrupted diurnal rhythms in sedentary rats; and wheel running reduced these effects. Improvements in sleep and reduced diurnal rhythm disruptions following stress could contribute to the health promoting and stress protective effects of exercise.

  10. Water avoidance stress induces frequency through cyclooxygenase-2 expression: a bladder rat model.

    Science.gov (United States)

    Yamamoto, Keisuke; Takao, Tetsuya; Nakayama, Jiro; Kiuchi, Hiroshi; Okuda, Hidenobu; Fukuhara, Shinichiro; Yoshioka, Iwao; Matsuoka, Yasuhiro; Miyagawa, Yasushi; Tsujimura, Akira; Nonomura, Norio

    2012-02-01

    Water avoidance stress is a potent psychological stressor and it is associated with visceral hyperalgesia, which shows degeneration of the urothelial layer mimicking interstitial cystitis. Cyclooxygenase-2 inhibitors have been recognized to ameliorate frequency both in clinical and experimental settings. We investigated the voiding pattern and cyclooxygenase-2 expression in a rat bladder model of water avoidance stress. After being subjected to water avoidance stress or a sham procedure, rats underwent metabolic cage analysis and cystometrography. Real time reverse transcription polymerase chain reaction was carried out to examine cyclooxygenase-2 messenger ribonucleic acid in bladders of rats. Protein expression of cyclooxygenase-2 was analyzed with immunohistochemistry and western blotting. Furthermore, the effects of the cyclooxygenase-2 inhibitor, etodolac, were investigated by carrying out cystometrography, immunohistochemistry and western blotting. Metabolic cage analysis and cystometrography showed significantly shorter intervals and less volume of voiding in water avoidance stress rats. Significantly higher expression of cyclooxygenase-2 messenger ribonucleic acid was verified by reverse transcription polymerase chain reaction. Immunohistochemistry and western blotting showed significantly higher cyclooxygenase-2 protein levels in water avoidance stress bladders. Furthermore, immunohistochemistry showed high cyclooxygenase-2 expression exclusively in smooth muscle cells. All water avoidance stress-induced changes were reduced by cyclooxygenase-2 inhibitor pretreatment. Chronic stress might cause frequency through cyclooxygenase-2 gene upregulation in bladder smooth muscle cells. Further study of cyclooxygenase-2 in the water avoidance stress bladder might provide novel therapeutic modalities for interstitial cystitis. © 2011 The Japanese Urological Association.

  11. 125I-iomazenil - benzodiazepine receptor binding and serum corticosterone level during psychological stress in a rat model

    International Nuclear Information System (INIS)

    Fukumitsu, Nobuyoshi; Ogi, Shigeyuki; Uchiyama, Mayuki; Mori, Yutaka

    2004-01-01

    To test the hypothesis that benzodiazepine receptor density decreases in response to stress, we correlated 125 I-iomazenil ( 125 I-IMZ) binding with serum corticosterone levels in a rat model. Wistar male rats were divided into four groups; control group (CON, 10 rats), no physical or psychological stress; and one-, three-, and five-day stress groups of 12 rats each (1-DAY, 3-DAY, and 5-DAY, respectively), receiving psychological stress for the given number of days. Psychological stress were given to rats with a communication box. The standardized uptake value (SUV) of 125 I-iomazenil of the 3-DAY and 5-DAY showed that 125 I-iomazenil - benzodiazepine receptor binding was significantly reduced in the cortices, accumbens nuclei, amygdala and caudate putamen (p 125 I-IMZ is a useful radioligand to reflect received stress and its binding in the cortices, accumbens nuclei, amygdala and caudate putamen is strongly affected by psychological stress

  12. Hypercaloric diet modulates effects of chronic stress: a behavioral and biometric study on rats.

    Science.gov (United States)

    Oliveira, Carla de; Oliveira, Cleverson Moraes de; de Macedo, Isabel Cristina; Quevedo, Alexandre S; Filho, Paulo Ricardo Marques; Silva, Fernanda Ribeiro da; Vercelino, Rafael; de Souza, Izabel C Custodio; Caumo, Wolnei; Torres, Iraci L S

    2015-01-01

    Obesity is a chronic disease that has been associated with chronic stress and hypercaloric diet (HD) consumption. Increased ingestion of food containing sugar and fat ingredients (comfort food) is proposed to "compensate" chronic stress effects. However, this eating habit may increase body fat depositions leading to obesity. This study evaluated behavioral/physiological parameters seeking to establish whether there is an association between the effects of HD intake and stress, and to test the hypothesis that the development of anxious behavior and obesity during chronic stress periods depends on the type of diet. Sixty-day-old male Wistar rats (n = 100) were divided into four groups: standard chow, hypercaloric diet, chronic stress/standard chow and chronic stress/hypercaloric diet. Chronic stress was induced by restraint stress exposure for 1 h/day, for 80 d. At the end of this period, rat behavior was evaluated using open-field and plus-maze tests. The results showed that HD alone increased weight gain and adipose deposition in subcutaneous and mesenteric areas. However, stress reduced weight gain and adipose tissue in these areas. HD also increased naso-anal length and concurrent stress prevented this. Behavioral data indicated that stress increased anxiety-like behaviors and comfort food reduced these anxiogenic effects; locomotor activity increased in rats fed with HD. Furthermore, HD decreased corticosterone levels and stress increased adrenal weight. The data indicate that when rats are given HD and experience chronic stress this association reduces the pro-obesogenic effects of HD, and decreases adrenocortical activity.

  13. Prenatal noise and restraint stress interact to alter exploratory behavior and balance in juvenile rats, and mixed stress reverses these effects.

    Science.gov (United States)

    Badache, Soumeya; Bouslama, Slim; Brahmia, Oualid; Baïri, Abdel Madjid; Tahraoui, Abdel Krim; Ladjama, Ali

    2017-05-01

    We aimed to investigate in adolescent rats the individual and combined effects of prenatal noise and restraint stress on balance control, exploration, locomotion and anxiety behavior. Three groups of pregnant rats were exposed to daily repeated stress from day 11 to day 19 of pregnancy: 3 min noise (Noise Stress, NS); 10 min restraint (restraint stress, RS); or 3 min noise followed by 10 min restraint (mixed stress, MS). On postnatal days (PND) 44, 45 and 46, four groups of male rats (Control, NS, RS:, MS; 16 rats each), were tested as follows: (1) beam walking (BW), (2) open field (OF) and (3) elevated plus maze (EPM). Our results show that the NS group had significantly impaired balance control, locomotion and both horizontal and vertical exploration (p time in EPM open arms: p time to complete BW: p < .05). Hence, combined prenatal stressors exert non-additive effects on locomotion, exploration and balance control, but induce greater anxiety through additive effects. Terminal plasma ACTH concentration was increased by prenatal stress, especially noise, which group had the largest adrenal glands. Overall, contrary to expectation, combined prenatal stressors can interact to increase anxiety level, but diminish alteration of exploration, locomotion and impaired balance control, which were strongly induced by noise stress. Lay summary: Experience of stress in pregnancy can have negative effects on the offspring that are long-lasting. Here, we used laboratory rats to see whether repeated episodes of exposure to loud noise or preventing free movement, alone or together, during pregnancy had different effects on behaviors of the adolescent offspring. Using standard tests, we found the prenatal stresses caused the offspring to be anxious, and not to balance when moving around as well as normal offspring; the degree of impairment depended on the type of stress - loud noise exposure had the greatest effects, but if the stresses were combined the effects

  14. Effects of Sex and Stress on Trigeminal Neuropathic Pain-Like Behavior in Rats.

    Science.gov (United States)

    Korczeniewska, Olga Anna; Khan, Junad; Tao, Yuanxiang; Eliav, Eli; Benoliel, Rafael

    2017-01-01

    To investigate the effects and interactions of sex and stress (provoked by chronic restraint [RS]) on pain-like behavior in a rat model of trigeminal neuropathic pain. The effects of sex and RS (carried out for 14 days as a model for stress) on somatosensory measures (reaction to pinprick, von Frey threshold) in a rat model of trigeminal neuropathic pain were examined. The study design was 2 × 4, with surgery (pain) and sham surgery (no pain) interacting with male restrained (RS) and unrestrained (nRS) rats and female RS and nRS rats. A total of 64 Sprague Dawley rats (32 males and 32 females) were used. Half of the animals in each sex group underwent RS, and the remaining half were left unstressed. Following the RS period, trigeminal neuropathic pain was induced by unilateral infraorbital nerve chronic constriction injury (IOCCI). Half of the animals in the RS group and half in the nRS group (both males and females) were exposed to IOCCI, and the remaining halves to sham surgery. Elevated plus maze (EPM) assessment and plasma interferon gamma (IFN-γ) levels were used to measure the effects of RS. Analysis of variance (ANOVA) was used to assess the effects of stress, sex, and their interactions on plasma IFN-γ levels, changes in body weight, EPM parameters, tactile allodynia, and mechanohyperalgesia. Pairwise comparisons were performed by using Tukey post hoc test corrected for multiple comparisons. Both male and female RS rats showed significantly altered exploratory behavior (as measured by EPM) and had significantly lower plasma IFN-γ levels than nRS rats. Rats exposed to RS gained weight significantly slower than the nRS rats, irrespective of sex. Following RS but before surgery, RS rats showed significant bilateral reductions in von Frey thresholds and significantly increased pinprick response difference scores compared to nRS rats, irrespective of sex. From 17 days postsurgery, RSIOCCI rats showed significantly reduced von Frey thresholds and

  15. 4-Phenylbutyrate Benefits Traumatic Hemorrhagic Shock in Rats by Attenuating Oxidative Stress, Not by Attenuating Endoplasmic Reticulum Stress.

    Science.gov (United States)

    Yang, Guangming; Peng, Xiaoyong; Hu, Yi; Lan, Dan; Wu, Yue; Li, Tao; Liu, Liangming

    2016-07-01

    Vascular dysfunction such as vascular hyporeactivity following severe trauma and shock is a major cause of death in injured patients. Oxidative stress and endoplasmic reticulum stress play an important role in vascular dysfunction. The objective of the present study was to determine whether or not 4-phenylbutyrate can improve vascular dysfunction and elicit antishock effects by inhibiting oxidative and endoplasmic reticulum stress. Prospective, randomized, controlled laboratory experiment. State key laboratory of trauma, burns, and combined injury. Five hundred and fifty-two Sprague-Dawley rats. Rats were anesthetized, and a model of traumatic hemorrhagic shock was established by left femur fracture and hemorrhage. The effects of 4-phenylbutyrate (5, 20, 50, 100, 200, and 300 mg/kg) on vascular reactivity, animal survival, hemodynamics, and vital organ function in traumatic hemorrhagic shock rats and cultured vascular smooth muscle cells, and the relationship to oxidative stress and endoplasmic reticulum stress was observed. Lower doses of 4-phenylbutyrate significantly improved the vascular function, stabilized the hemodynamics, and increased the tissue blood flow and vital organ function in traumatic hemorrhagic shock rats, and markedly improved the survival outcomes. Among all dosages observed in the present study, 20 mg/kg of 4-phenylbutyrate had the best effect. Further results indicated that 4-phenylbutyrate significantly inhibited the oxidative stress, decreased shock-induced oxidative stress index such as the production of reactive oxygen species, increased the antioxidant enzyme levels such as superoxide dismutase, catalase, and glutathione, and improved the mitochondrial function by inhibiting the opening of the mitochondrial permeability transition pore in rat artery and vascular smooth muscle cells. In contrast, 4-phenylbutyrate did not affect the changes of endoplasmic reticulum stress markers following traumatic hemorrhagic shock. Furthermore, 4

  16. AGING AND LIFE-STAGE SUSCEPTIBILITY: TOLUENE EFFECTS ON BRAIN OXIDATIVE STRESS PARAMETERS IN BROWN NORWAY RATS.

    Science.gov (United States)

    The influence of aging on susceptibility to environmental contaminants is poorly understood. The objectives of this study were to test whether oxidative stress (OS) is a potential toxicity pathway following toluene exposure and to determine if these effects are age-dependent. We ...

  17. Experimental oral iron administration: Histological investigations and expressions of iron handling proteins in rat retina with aging.

    Science.gov (United States)

    Kumar, Pankaj; Nag, Tapas Chandra; Jha, Kumar Abhiram; Dey, Sanjay Kumar; Kathpalia, Poorti; Maurya, Meenakshi; Gupta, Chandan Lal; Bhatia, Jagriti; Roy, Tara Sankar; Wadhwa, Shashi

    2017-12-01

    Iron is implicated in age-related macular degeneration (AMD). The aim of this study was to see if long-term, experimental iron administration with aging modifies retinal and choroidal structures and expressions of iron handling proteins, to understand some aspects of iron homeostasis. Male Wistar rats were fed with ferrous sulphate heptahydrate (500mg/kg body weight/week, oral; elemental iron availability: 20%) from 2 months of age onward until they were 19.5 month-old. At 8, 14 and 20 months of age, they were sacrificed and serum and retinal iron levels were detected by HPLC. Oxidative stress was analyzed by TBARS method. The retinas were examined for cell death (TUNEL), histology (electron microscopy) and the expressions of transferrin, transferrin receptor-1 [TFR-1], H- and L-ferritin. In control animals, at any age, there was no difference in the serum and retinal iron levels, but the latter increased significantly in 14- and 20 month-old iron-fed rats, indicating that retinal iron accumulation proceeds with progression of aging (>14 months). The serum and retinal TBARS levels increased significantly with progression of aging in experimental but not in control rats. There was significant damage to choriocapillaris, accumulation of phagosomes in retinal pigment epithelium and increased incidence of TUNEL+ cells in outer nuclear layer and vacuolation in inner nuclear layer (INL) of 20 month-aged experimental rats, compared to those in age-matched controls. Vacuolations in INL could indicate a long-term effect of iron accumulation in the inner retina. These events paralleled the increased expression of ferritins and transferrin and a decrease in the expression of TFR-1 in iron-fed rats with aging, thereby maintaining iron homeostasis in the retina. As some of these changes mimic with those happening in eyes with AMD, this model can be utilized to understand iron-induced pathophysiological changes in AMD. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Oxidative stress and the ageing endocrine system.

    Science.gov (United States)

    Vitale, Giovanni; Salvioli, Stefano; Franceschi, Claudio

    2013-04-01

    Ageing is a process characterized by a progressive decline in cellular function, organismal fitness and increased risk of age-related diseases and death. Several hundred theories have attempted to explain this phenomenon. One of the most popular is the 'oxidative stress theory', originally termed the 'free radical theory'. The endocrine system seems to have a role in the modulation of oxidative stress; however, much less is known about the role that oxidative stress might have in the ageing of the endocrine system and the induction of age-related endocrine diseases. This Review outlines the interactions between hormones and oxidative metabolism and the potential effects of oxidative stress on ageing of endocrine organs. Many different mechanisms that link oxidative stress and ageing are discussed, all of which converge on the induction or regulation of inflammation. All these mechanisms, including cell senescence, mitochondrial dysfunction and microRNA dysregulation, as well as inflammation itself, could be targets of future studies aimed at clarifying the effects of oxidative stress on ageing of endocrine glands.

  19. Ochratoxin A induces rat renal carcinogenicity with limited induction of oxidative stress responses

    International Nuclear Information System (INIS)

    Qi, Xiaozhe; Yu, Tao; Zhu, Liye; Gao, Jing; He, Xiaoyun; Huang, Kunlun; Luo, Yunbo; Xu, Wentao

    2014-01-01

    Ochratoxin A (OTA) has displayed nephrotoxicity and renal carcinogenicity in mammals, however, no clear mechanisms have been identified detailing the relationship between oxidative stress and these toxicities. This study was performed to clarify the relationship between oxidative stress and the renal carcinogenicity induced by OTA. Rats were treated with 70 or 210 μg/kg b.w. OTA for 4 or 13 weeks. In the rats administrated with OTA for 13 weeks, the kidney was damaged seriously. Cytoplasmic vacuolization was observed in the outer stripe of the outer medulla. Karyomegaly was prominent in the tubular epithelium. Kidney injury molecule-1 (Kim-1) was detected in the outer stripe of the outer medulla in both low- and high-dose groups. OTA increased the mRNA levels of clusterin in rat kidneys. Interestingly, OTA did not significantly alter the oxidative stress level in rat liver and kidney. Yet, some indications related to proliferation and carcinogenicity were observed. A dose-related increase in proliferating cell nuclear antigen (PCNA) was observed at 4 weeks in both liver and kidney, but at 13 weeks, only in the kidney. OTA down-regulated reactive oxygen species (ROS) and up-regulated vimentin and lipocalin 2 in rat kidney at 13 weeks. The p53 gene was decreased in both liver and kidney at 13 weeks. These results suggest that OTA caused apparent kidney damage within 13 weeks but exerted limited effect on oxidative stress parameters. It implies that cell proliferation is the proposed mode of action for OTA-induced renal carcinogenicity. - Highlights: • We studied OTA toxicities in both the rat liver and kidney for 13 weeks. • OTA exerts limited effects on oxidative stress in the rat liver and kidney. • OTA induced renal carcinogenicity resulting from cell proliferation

  20. Ochratoxin A induces rat renal carcinogenicity with limited induction of oxidative stress responses

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Xiaozhe; Yu, Tao; Zhu, Liye; Gao, Jing [College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China); He, Xiaoyun; Huang, Kunlun; Luo, Yunbo [College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China); The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083 (China); Xu, Wentao, E-mail: xuwentao@cau.edu.cn [College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China); The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083 (China)

    2014-11-01

    Ochratoxin A (OTA) has displayed nephrotoxicity and renal carcinogenicity in mammals, however, no clear mechanisms have been identified detailing the relationship between oxidative stress and these toxicities. This study was performed to clarify the relationship between oxidative stress and the renal carcinogenicity induced by OTA. Rats were treated with 70 or 210 μg/kg b.w. OTA for 4 or 13 weeks. In the rats administrated with OTA for 13 weeks, the kidney was damaged seriously. Cytoplasmic vacuolization was observed in the outer stripe of the outer medulla. Karyomegaly was prominent in the tubular epithelium. Kidney injury molecule-1 (Kim-1) was detected in the outer stripe of the outer medulla in both low- and high-dose groups. OTA increased the mRNA levels of clusterin in rat kidneys. Interestingly, OTA did not significantly alter the oxidative stress level in rat liver and kidney. Yet, some indications related to proliferation and carcinogenicity were observed. A dose-related increase in proliferating cell nuclear antigen (PCNA) was observed at 4 weeks in both liver and kidney, but at 13 weeks, only in the kidney. OTA down-regulated reactive oxygen species (ROS) and up-regulated vimentin and lipocalin 2 in rat kidney at 13 weeks. The p53 gene was decreased in both liver and kidney at 13 weeks. These results suggest that OTA caused apparent kidney damage within 13 weeks but exerted limited effect on oxidative stress parameters. It implies that cell proliferation is the proposed mode of action for OTA-induced renal carcinogenicity. - Highlights: • We studied OTA toxicities in both the rat liver and kidney for 13 weeks. • OTA exerts limited effects on oxidative stress in the rat liver and kidney. • OTA induced renal carcinogenicity resulting from cell proliferation.

  1. Acute and chronic stress and the inflammatory response in hyperprolactinemic rats.

    Science.gov (United States)

    Ochoa-Amaya, J E; Malucelli, B E; Cruz-Casallas, P E; Nasello, A G; Felicio, L F; Carvalho-Freitas, M I R

    2010-01-01

    Prolactin (PRL), a hormone produced by the pituitary gland, has multiple physiological functions, including immunoregulation. PRL can also be secreted in response to stressful stimuli. During stress, PRL has been suggested to oppose the immunosuppressive effects of inflammatory mediators. Therefore, the aim of the present study was to analyze the effects of short- and long-term hyperprolactinemia on the inflammatory response in rats subjected to acute or chronic cold stress. Inflammatory edema was induced by carrageenan in male rats, and hyperprolactinemia was induced by injections of the dopamine receptor antagonist domperidone. The volume of inflammatory edema was measured by plethysmography after carrageenan injection. Additionally, the effects of hyperprolactinemia on body weight and serum corticosterone levels were evaluated. Five days of domperidone-induced hyperprolactinemia increased the volume of inflammatory edema. No differences in serum corticosterone levels were observed between groups. No significant differences were found among 30 days domperidone-induced hyperprolactinemic animals subjected to acute stress and the inflammatory response observed in chronic hyperprolactinemic animals subjected to chronic stress. The results suggest that short-term hyperprolactinemia has pro-inflammatory effects. Because such an effect was not observed in long-term hyperprolactinemic animals, PRL-induced tolerance seems likely. We suggest that short-term hyperprolactinemia may act as a protective factor in rats subjected to acute stress. These data suggest that hyperprolactinemia and stress interact differentially according to the time period. Copyright 2010 S. Karger AG, Basel.

  2. History of chronic stress modifies acute stress-evoked fear memory and acoustic startle in male rats.

    Science.gov (United States)

    Schmeltzer, Sarah N; Vollmer, Lauren L; Rush, Jennifer E; Weinert, Mychal; Dolgas, Charles M; Sah, Renu

    2015-01-01

    Chronicity of trauma exposure plays an important role in the pathophysiology of posttraumatic stress disorder (PTSD). Thus, exposure to multiple traumas on a chronic scale leads to worse outcomes than acute events. The rationale for the current study was to investigate the effects of a single adverse event versus the same event on a background of chronic stress. We hypothesized that a history of chronic stress would lead to worse behavioral outcomes than a single event alone. Male rats (n = 14/group) were exposed to either a single traumatic event in the form of electric foot shocks (acute shock, AS), or to footshocks on a background of chronic stress (chronic variable stress-shock, CVS-S). PTSD-relevant behaviors (fear memory and acoustic startle responses) were measured following 7 d recovery. In line with our hypothesis, CVS-S elicited significant increases in fear acquisition and conditioning versus the AS group. Unexpectedly, CVS-S elicited reduced startle reactivity to an acoustic stimulus in comparison with the AS group. Significant increase in FosB/ΔFosB-like immunostaining was observed in the dentate gyrus, basolateral amygdala and medial prefrontal cortex of CVS-S rats. Assessments of neuropeptide Y (NPY), a stress-regulatory transmitter associated with chronic PTSD, revealed selective reduction in the hippocampus of CVS-S rats. Collectively, our data show that cumulative stress potentiates delayed fear memory and impacts defensive responding. Altered neuronal activation in forebrain limbic regions and reduced NPY may contribute to these phenomena. Our preclinical studies support clinical findings reporting worse PTSD outcomes stemming from cumulative traumatization in contrast to acute trauma.

  3. Time series analysis of blood oxidative stress value in irradiated rats

    International Nuclear Information System (INIS)

    Kaneko, Takashi; Goto, Jun; Nomiya, Takuma; Nemoto, Kenji

    2011-01-01

    Indirect effect of ionizing-radiation causes free radicals and reactive oxgen species (ROS). These ROS interact with DNA or other organella, and cause oxidative damage to nucleic acids, membrane lipoprotein, mitchondria and others. The purpose of this study is to evaluate oxidative damage by irradiation using d-ROMs test. Electron beam was irradiated to the thigh of Wistar strain female rats, and reactive oxygen metabolites in the blood from these rats were measured and analysed. From the results, 2 Gy group shows significantly higher oxidative stress level than those of 0 Gy group especially in day 3 after irradiation. This oxidative stress definitely seemed to be caused by exposure to ionizing-radiation. In contrast, the group of 30 Gy-irradiation showed no significant increase of oxidative stress level. It was thought that oxidative stress caused by radiation was neutralized by expression of stress-induced antioxidant enzymes. These data resulted that d-ROMs test is useful for measuring oxidative stress levels of irradiated mammalian animals. (author)

  4. Selected spices and their combination modulate hypercholesterolemia-induced oxidative stress in experimental rats

    Directory of Open Access Journals (Sweden)

    Gloria A Otunola

    2014-01-01

    Full Text Available BACKGROUND: Effect of aqueous extracts of Allium sativum (garlic, Zingiber officinale (ginger, Capsicum fructensces (cayenne pepper and their mixture on oxidative stress in rats fed high Cholesterol/high fat diet was investigated. Rats were randomly distributed into six groups (n = 6 and given different dietary/spice treatments. Group 1 standard rat chow (control, group 2, hypercholesterolemic diet plus water, and groups 3, 4, 5, 6, hypercholesterolemic diet with 0.5 ml 200 mg · kg-1 aqueous extracts of garlic, ginger, cayenne pepper or their mixture respectively daily for 4 weeks. RESULTS: Pronounced oxidative stress in the hypercholesterolemic rats evidenced by significant (p < 0.05 increase in MDA levels, and suppression of the antioxidant enzymes system in rat's liver, kidney, heart and brain tissues was observed. Extracts of spices singly or combined administered at 200 mg.kg-1 body weight significantly (p < 0.05 reduced MDA levels and restored activities of antioxidant enzymes. CONCLUSIONS: It is concluded that consumption of garlic, ginger, pepper, or their mixture may help to modulate oxidative stress caused by hypercholesterolemia in rats.

  5. Anti-stress effects of human placenta extract: possible involvement of the oxidative stress system in rats.

    Science.gov (United States)

    Park, Hyun-Jung; Shim, Hyun Soo; Lee, Sunyoung; Hahm, Dae Hyun; Lee, Hyejung; Oh, Chang Taek; Han, Hae Jung; Ji, Hyi Jeong; Shim, Insop

    2018-05-08

    Human placenta hydrolysate (hPH) has been utilized to improve menopausal, fatigue, liver function. Its high concentration of bioactive substances is known to produce including antioxidant, anti-inflammatory and anti-nociceptive activities. However, its mechanisms of stress-induced depression remain unknown. The present study examined the effect of hPH on stress-induced depressive behaviors and biochemical parameters in rats. hPH (0.02 ml, 0.2 ml or 1 ml/rat) was injected intravenously 30 min before the daily stress session in male Sprague-Dawley rats exposed to repeated immobilization stress (4 h/day for 7 days). The depressive-like behaviors of all groups were measured by elevated plus maze (EPM) and forced swimming test (FST). After the behavior tests, brain samples of all groups were collected for the analysis of glutathione peroxidase (GPx) and nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) staining. Treatment with hPH produced a significant decrease of immobility time in the FST compared to the controls. Additionally, hPH treatment elicited a slightly decreasing trend in anxiety behavior on the EPM. Furthermore, hPH increased the level of GPx protein in the hippocampus, and decreased the expression of NADPH-d in the paraventricular nucleus (PVN). This study demonstrated that hPH has anti-stress effects via the regulation of nitric oxide (NO) synthase and antioxidant activity in the brain. These results suggest that hPH may be useful in the treatment of stress-related diseases such as chronic fatigue syndrome.

  6. Increases in anxiety-like behavior induced by acute stress are reversed by ethanol in adolescent but not adult rats.

    Science.gov (United States)

    Varlinskaya, Elena I; Spear, Linda P

    2012-01-01

    Repeated exposure to stressors has been found to increase anxiety-like behavior in laboratory rodents, with the social anxiety induced by repeated restraint being extremely sensitive to anxiolytic effects of ethanol in both adolescent and adult rats. No studies, however, have compared social anxiogenic effects of acute stress or the capacity of ethanol to reverse this anxiety in adolescent and adult animals. Therefore, the present study was designed to investigate whether adolescent [postnatal day (P35)] Sprague-Dawley rats differ from their adult counterparts (P70) in the impact of acute restraint stress on social anxiety and in their sensitivity to the social anxiolytic effects of ethanol. Animals were restrained for 90 min, followed by examination of stress- and ethanol-induced (0, 0.25, 0.5, 0.75, and 1 g/kg) alterations in social behavior using a modified social interaction test in a familiar environment. Acute restraint stress increased anxiety, as indexed by reduced levels of social investigation at both ages, and decreased social preference among adolescents. These increases in anxiety were dramatically reversed among adolescents by acute ethanol. No anxiolytic-like effects of ethanol emerged following restraint stress in adults. The social suppression seen in response to higher doses of ethanol was reversed by restraint stress in animals of both ages. To the extent that these data are applicable to humans, the results of the present study provide some experimental evidence that stressful life events may increase the attractiveness of alcohol as an anxiolytic agent for adolescents. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Preventive and therapeutic effect of treadmill running on chronic stress-induced memory deficit in rats.

    Science.gov (United States)

    Radahmadi, Maryam; Alaei, Hojjatallah; Sharifi, Mohammad Reza; Hosseini, Nasrin

    2015-04-01

    Previous results indicated that stress impairs learning and memory. In this research, the effects of preventive, therapeutic and regular continually running activity on chronic stress-induced memory deficit in rats were investigated. 70 male rats were randomly divided into seven groups as follows: Control, Sham, Stress-Rest, Rest-Stress, Stress-Exercise, Exercise-Stress and Exercise-Stress & Exercise groups. Chronic restraint stress was applied 6 h/day for 21days and treadmill running 1 h/day. Memory function was evaluated by the passive avoidance test. The results revealed that running activities had therapeutic effect on mid and long-term memory deficit and preventive effects on short and mid-term memory deficit in stressed rats. Regular continually running activity improved mid and long-term memory compared to Exercise-Stress group. The beneficial effects of exercise were time-dependent in stress conditions. Finally, data corresponded to the possibility that treadmill running had a more important role on treatment rather than on prevention on memory impairment induced by stress. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Neonatal Amygdala Lesions and Stress Responsivity in Rats : Relevance to schizophrenia

    NARCIS (Netherlands)

    Terpstra, Jeroen

    2004-01-01

    "Stress responsiveness in an animal model with relevance to schizophrenia” Rats bearing lesions of the amygdala made on postnatal day 7 (D7 AMX) model aspects of neurodevelopmental psychopathologies, such as schizophrenia. Adult D7 AMX rats display impaired pre-pulse inhibition, impaired

  9. Enhanced fear recall and emotional arousal in rats recovering from chronic variable stress.

    Science.gov (United States)

    McGuire, Jennifer; Herman, James P; Horn, Paul S; Sallee, Floyd R; Sah, Renu

    2010-11-02

    Emergence of posttraumatic-like behaviors following chronic trauma is of interest given the rising prevalence of combat-related posttraumatic stress disorder (PTSD). Stress associated with combat usually involves chronic traumatization, composed of multiple, single episode events occurring in an unpredictable fashion. In this study, we investigated whether rats recovering from repeated trauma in the form of chronic variable stress (CVS) express posttraumatic stress-like behaviors and dysregulated neuroendocrine responses. Cohorts of Long-Evans rats underwent a 7 day CVS paradigm followed by behavioral and neuroendocrine testing during early (16 h post CVS) and delayed (7 day) recovery time points. A fear conditioning-extinction-reminder shock paradigm revealed that CVS induces exaggerated fear recall to reminder shock, suggestive of potentiated fear memory. Rats with CVS experience also expressed a delayed expression of fearful arousal under aversive context, however, social anxiety was not affected during post-CVS recovery. Persistent sensitization of the hypothalamic-pituitary-adrenocorticotropic response to a novel acute stressor was observed in CVS exposed rats. Collectively, our data are consistent with the constellation of symptoms associated with posttraumatic stress syndrome, such as re-experiencing, and arousal to fearful contexts. The CVS-recovery paradigm may be useful to simulate trauma outcomes following chronic traumatization that is often associated with repeated combat stress. Copyright © 2010 Elsevier Inc. All rights reserved.

  10. Implication of altered ubiquitin-proteasome system and ER stress in the muscle atrophy of diabetic rats.

    Science.gov (United States)

    Reddy, S Sreenivasa; Shruthi, Karnam; Prabhakar, Y Konda; Sailaja, Gummadi; Reddy, G Bhanuprakash

    2018-02-01

    Skeletal muscle is adversely affected in type-1 diabetes, and excessively stimulated ubiquitin-proteasome system (UPS) was found to be a leading cause of muscle wasting or atrophy. The role of endoplasmic reticulum (ER) stress in muscle atrophy of type-1 diabetes is not known. Hence, we investigated the role of UPS and ER stress in the muscle atrophy of chronic diabetes rat model. Diabetes was induced with streptozotocin (STZ) in male Sprague-Dawley rats and were sacrificed 2- and 4-months thereafter to collect gastrocnemius muscle. In another experiment, 2-months post-STZ-injection diabetic rats were treated with MG132, a proteasome inhibitor, for the next 2-months and gastrocnemius muscle was collected. The muscle fiber cross-sectional area was diminished in diabetic rats. The expression of UPS components: E1, MURF1, TRIM72, UCHL1, UCHL5, ubiquitinated proteins, and proteasome activity were elevated in the diabetic rats indicating activated UPS. Altered expression of ER-associated degradation (ERAD) components and increased ER stress markers were detected in 4-months diabetic rats. Proteasome inhibition by MG132 alleviated alterations in the UPS and ER stress in diabetic rat muscle. Increased UPS activity and ER stress were implicated in the muscle atrophy of diabetic rats and proteasome inhibition exhibited beneficiary outcome. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Oxidative stress and damage in liver, but not in brain, of Fischer 344 rats subjected to dietary iron supplementation with lipid-soluble[(3,5,5-Trimethylhexanoyl)ferrocene

    DEFF Research Database (Denmark)

    Lykkesfeldt, Jens; Morgan, Evan; Christen, Stephan

    2007-01-01

    Accumulation of iron probably predisposes the aging brain to progressive neuronal loss. We examined various markers of oxidative stress and damage in the brain and liver of 3- and 24-month old rats following supplementationwith the lipophilic iron derivative [(3,5,5-trimethylhexanoyl)ferrocene] (......, they also demonstrated that the brain is well protected against dietary iron overload by using iron in a lipid-soluble formulation.......Accumulation of iron probably predisposes the aging brain to progressive neuronal loss. We examined various markers of oxidative stress and damage in the brain and liver of 3- and 24-month old rats following supplementationwith the lipophilic iron derivative [(3,5,5-trimethylhexanoyl......)ferrocene] (TMHF), which is capable of crossing the blood-brain barrier. At both ages, iron concentration increased markedly in the liver but failed to increase in the brain. In the liver of TMHF-treated young rats, levels of a- and ¿-tocopherols and glutathione (GSH) were also higher. In contrast, the brain...

  12. Effect of the Aged Garlic Extract on Cardiovascular Function in Metabolic Syndrome Rats

    Directory of Open Access Journals (Sweden)

    Israel Pérez-Torres

    2016-10-01

    Full Text Available The antioxidant properties of aged garlic extract (AGE on cardiovascular functioning (CF in metabolic syndrome (MS remains poorly studied. Here we study the AGE effects on CF in a rat model of MS. Control rats plus saline solution (C + SS, MS rats (30% sucrose in drinking water from weaning plus saline solution (MS + SS, control rats receiving AGE (C + AGE 125 mg/Kg/12 h and MS rats with AGE (MS + AGE were studied. MS + SS had increased triglycerides, systolic blood pressure, insulin, leptin, HOMA index, and advanced glycation end products. AGE returned their levels to control values (p < 0.01. Cholesterol was decreased by AGE (p = 0.05. Glutathion and GPx activity were reduced in MS + SS rats and increased with AGE (p = 0.05. Lipid peroxidation was increased in MS + SS and AGE reduced it (p = 0.001. Vascular functioning was deteriorated by MS (increased vasocontraction and reduced vasodilation and AGE improved it (p = 0.001. Coronary vascular resistance was increased in MS rats and AGE decreased it (p = 0.001. Cardiac performance was not modified by MS but AGE increased it. NO measured in the perfusate liquid from the heart and serum citrulline, nitrites/nitrates were decreased in MS and AGE increased them (p < 0.01. In conclusion, AGE reduces MS-induced cardiovascular risk, through its anti-oxidant properties.

  13. Is rosuvastatin protective against on noise-induced oxidative stress in rat serum?

    Directory of Open Access Journals (Sweden)

    Emine Rabia Koc

    2015-01-01

    Full Text Available Noise, one of the main components of modern society, has become an important environmental problem. Noise is not only an irritating sound, but also a stress factor leading to serious health problems. In this study, we have investigated possible effects of rosuvastatin, a 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitor, thought to have an antioxidant effect, on noise-induced oxidative stress in the serum of rat models. Thirty-two male Wistar albino rats were used. In order to ease their adaptation, 2 weeks before the experiment, the rats were divided into four groups (with eight rats per each group: Noise exposure plus rosuvastatin usage, only noise exposure, only rosuvastatin usage and control. After the data had been collected, oxidant (Malondialdehyde, nitric oxide [NO], protein carbonyl [PC] and antioxidant (superoxide dismutase [SOD], glutathione peroxidase [GSH-PX], catalase [CAT] parameters were analyzed in the serum. Results indicated that SOD values were found to be significantly lower, while PC values in serum were remarkably higher in the group that was exposed to only noise. GSH-Px values in serum dramatically increased in the group on which only rosuvastatin was used. During noise exposure, the use of rosuvastatin caused significantly increased CAT values, whereas it resulted in reduced PC and NO values in serum. In conclusion, our data show that noise exposure leads to oxidative stress in rat serum; however, rosuvastatin therapy decreases the oxidative stress caused by noise exposure.

  14. Methodological model of chronic stress associated with ligature-induced periodontitis in rats: a radiographic study

    Directory of Open Access Journals (Sweden)

    Alex Semenoff Segundo

    2010-12-01

    Full Text Available This study evaluated the time efficiency of stress associated with ligature-induced periodontitis in rats. Sixty adult Wistar rats, housed in temperature-controlled rooms and receiving water and food ad libitum, were randomly separated into stress (n = 30 or control groups (n = 30. All animals were anesthetized, and nylon ligatures were placed at the gingival margin level of the maxillary right second molars. After the induction of periodontitis, rats in the stress group were subjected to physical restraint for 12 hours daily. The animals were euthanized after 7, 15 and 30 days by anesthetic overdose (10 animals per group per period. The right hemimaxillae were stored in formalin solution for 48 hours. Parallel radiographic images of the hemimaxillae were taken and processed following standard procedures. Radiographic examination was performed by a blinded and previously calibrated investigator. Bone height level was measured, and data were submitted to analysis of variance and post hoc Bonferroni tests (p 0.05. Restraint stress modulates the short-term progression of periodontal disease in rats. Therefore, the 12-hour daily physical restraint stress model in rats applied for up to 15 days is suitable for the investigation of the combined effect of ligation and restraint stress on periodontal degradation.

  15. Oxidative stress and superoxide dismutase activity in brain of rats ...

    African Journals Online (AJOL)

    The present study was envisaged to investigate the possible role of oxidative stress in permethrin neurotoxicity and to evaluate the protective effect of superoxide dismutase (SOD) activity in brain homogenates of Wistar rats. Oxidative stress measured as thiobarbituric acid reacting substances (TBARS) was found to ...

  16. Influence of age and magnesium on calcium metabolism in rats

    International Nuclear Information System (INIS)

    McElroy, S.T.; Link, J.E.; Dowdy, R.P.; Zinn, K.R.; Ellersieck, M.R.

    1991-01-01

    This study evaluates the effect of dietary magnesium concentration on calcium metabolism in rats of differing ages. Young (3 wk) and old (18 mo) Fischer 344 rats were fed the AIN-76A diet modified to contain either low (218 mg/kg) or adequate (419 mg/kg) Mg for 4 wk. Some rats subsequently underwent a metabolic balance study (12 d duration). Other rats were gavaged with approximately 220 KBq (6 microCi) of 47 Ca; daily fecal and urine collections were made and periodic whole body radioactivity determined. Femurs were removed and analyzed. Calcium retention and balance were not affected by Mg in young rats. In old rats low Mg intake increased apparent Ca balance. Young rats retained about 3.25 times more of the original dose of 47 Ca than did old rats. Young rats retained more 47 Ca in the femur than did old rats; Mg intake had little effect. Aging accelerated Ca turnover rate, and whole body retention data suggest that adequate Mg does not significantly reduce Ca turnover

  17. Postnatal early overnutrition causes long-term renal decline in aging male rats.

    Science.gov (United States)

    Yim, Hyung Eun; Yoo, Kee Hwan; Bae, In Sun; Hong, Young Sook; Lee, Joo Won

    2014-02-01

    We evaluated the influence of postnatal early overnutrition on renal pathophysiological changes in aging rats. Three or 10 male pups per mother were assigned to either the small litter (SL) or normal litter (control) groups, respectively, during the first 21 d of life. The effects of early postnatal overnutrition were determined at 12 mo. SL rats weighed more than controls between 4 d and 6 mo of age (P renal cortex were higher in SL rats (P aging SL rats (P aging kidney and can lead to systolic hypertension with reduced intrarenal renin activity.

  18. Effect of forced swim stress on wistar albino rats in various behavioral parameters

    Directory of Open Access Journals (Sweden)

    Ambareesha Kondam, Nilesh N Kate, Gaja Lakshmi, Suresh M, Chandrashekar M.

    2012-09-01

    Full Text Available Introduction: Stress is an important factor of depression that causes the changes in various body systems. The forced swim test is a commonly used stressor test where rats are forced to swim in specially constructed tanks for a particular period where there is behavioral activation characterized by vigorous swimming and diving to search for alternate routes of escape. Animal health including human has been shown to be affected by the stressful events of life inducing situation which alters cognition, learning memory and emotional responses, causing mental disorders like depression and anxiety and stress in rats. Methods: The experiment was carried out with 12 healthy albino Wistar female rats weighing about 150-180gms. The animals were randomly divided into two groups of six animals each. Group – I (control, Group – II (Stressed Group. Group –II rats are placed in plastic tanks for 45minutes for15 days. Temperature of water was maintained at 20˚C. During stress phase, the animals will be trained for forced swim test, behavioral changes observed by open field apparatus for emotions, and eight arm maze for memory & leaning, elevated plus maze for anxiety. Results: Forced swim stress causes to a significant change (p<0.05 on cognitive functions: motivation, learning and memory. Forced swim stress is the factor damaging the hippocampus causes repeated immobilization and produce atrophy of dendrites of pyramidal neurons and neuroendocrinological disturbances, controlled by the hypothalamo-pituitary-adrenal axis (HPA. Repeated stress in the form of forced swimming activates the free radical processes leading to an increase in lipid peroxidation in many tissues. Conclusion: This study reveals the effect of repeated forced swim stress causes wide range of adaptive changes in the central nervous system including the elevation of serotonin (5-HT metabolism and an increased susceptibility to affective disorders. The earlier findings have reported

  19. Hypericum perforatum L. treatment restored bone mass changes in swimming stressed rats.

    Science.gov (United States)

    Seferos, Nikos; Petrokokkinos, Loukas; Kotsiou, Antonia; Rallis, George; Tesseromatis, Christine

    2016-01-01

    Stress, via corticosteroids release, influences bone mass density. Hypericum perforatum (Hp) a traditional remedy possess antidepressive activity (serotonin reuptake inhibitor) and wound healing properties. Hp preparation contains mainly hypericin, hyperforin, hyperoside and flavonoids exerting oestrogen-mimetic effect. Cold swimming represents an experimental model of stress associating mental strain and corporal exhaustion. This study investigates the Hp effect on femur and mandible bone mass changes in rats under cold forced swimming procedure. 30 male Wistar rats were randomized into three groups. Group A was treated with Methanolic extract of Hp (Jarsin®) via gastroesophageal catheter, and was submitted to cold swimming stress for 10 min/daily. Group B was submitted to cold stress, since group C served as control. Experiment duration was 10 days. Haematocrite and serum free fatty acids (FFA) were estimated. Furthermore volume and specific weight of each bone as well as bone mass density via dual energy X-Ray absorptiometry (DEXA) were measured. Statistic analysis by t-test. Hp treatment restores the stress injuries. Adrenals and bone mass density regain their normal values. Injuries occurring by forced swimming stress in the rats are significantly improved by Hp treatment. Estrogen-like effects of Hp flavonoids eventually may act favorable in bone remodeling.

  20. High novelty-seeking rats are resilient to negative physiological effects of the early life stress.

    Science.gov (United States)

    Clinton, Sarah M; Watson, Stanley J; Akil, Huda

    2014-01-01

    Exposure to early life stress dramatically impacts adult behavior, physiology, and neuroendocrine function. Using rats bred for novelty-seeking differences and known to display divergent anxiety, depression, and stress vulnerability, we examined the interaction between early life adversity and genetic predisposition for high- versus low-emotional reactivity. Thus, bred Low Novelty Responder (bLR) rats, which naturally exhibit high anxiety- and depression-like behavior, and bred High Novelty Responder (bHR) rats, which show low anxiety/depression together with elevated aggression, impulsivity, and addictive behavior, were subjected to daily 3 h maternal separation (MS) stress postnatal days 1-14. We hypothesized that MS stress would differentially impact adult bHR/bLR behavior, physiology (stress-induced defecation), and neuroendocrine reactivity. While MS stress did not impact bHR and bLR anxiety-like behavior in the open field test and elevated plus maze, it exacerbated bLRs' already high physiological response to stress - stress-induced defecation. In both tests, MS bLR adult offspring showed exaggerated stress-induced defecation compared to bLR controls while bHR offspring were unaffected. MS also selectively impacted bLRs' (but not bHRs') neuroendocrine stress reactivity, producing an exaggerated corticosterone acute stress response in MS bLR versus control bLR rats. These findings highlight how genetic predisposition shapes individuals' response to early life stress. Future work will explore neural mechanisms underlying the distinct behavioral and neuroendocrine consequences of MS in bHR/bLR animals.

  1. Effect of palladium α-lipoic acid complex on energy in the brain mitochondria of aged rats.

    Science.gov (United States)

    Ajith, Thekkuttuparambil Ananthanarayanan; Nima, Nalin; Veena, Ravindran Kalathil; Janardhanan, Kainoor Krishnankutty; Antonawich, Francis

    2014-01-01

    According to the mitochondrial mutation theory of aging, the impairment of mitochondrial functions and decline of cellular bioenergetics are induced by highly reactive oxygen species (ROS). Supplementation with antioxidants may protect mitochondria against respiration-linked oxidative stress and reduce decay by preserving genomic and structural integrity. Several clinical studies have reported beneficial effects of α-lipoic acid (LA) administration in individuals with Alzheimer's disease, particularly improving their spatial orientation; however, no studies have been reported on the effects of palladium α-lipoic acid (Pd-LA). The current study examined the effects of the Pd-LA complex on mitochondrial energy status in the brains of aged rats. The study used male Wistar rats, some that were older than 24 mo and weighed approximately 350 ± 50 g and some that were younger than 24 mo and weighed approximately 175 ± 25 g. The research team divided the rats into 5 groups of 6 rats. The study was conducted at the Amala Cancer Research Centre in Amala Nagar, Thrissur, Kerala, India. Three groups of rats were controls: (1) young controls administered no solution, (2) aged controls administered 1 mL/kg of a 0.25% solution (PO) of sodium hydroxide (NaOH), and (3) positive aged controls treated with LA (7.6 mg/kg, PO) dissolved in an alkaline saline (0.25% NaOH, w/v). Two groups were intervention groups: (1) aged rats treated with 1.2 mg/kg of Pd-LA (PO) and (2) aged rats treated with 23.5 mg/kg of Pd-LA (PO). The research team administered the solutions once daily for 30 d. After 30 d, all animals were sacrificed. The research team evaluated serum transaminases, lactate dehydrogenase (LDH), serum urea, and creatinine. The activities of superoxide dismutase (SOD), catalase (CAT), and the levels of reduced glutathione (GSH) were determined in the blood samples. Krebs cycle dehydrogenases were evaluated in the brain mitochondria. Furthermore, the activities of the

  2. Sweet food improves chronic stress-induced irritable bowel syndrome-like symptoms in rats.

    Science.gov (United States)

    Rho, Sang-Gyun; Kim, Yong Sung; Choi, Suck Chei; Lee, Moon Young

    2014-03-07

    To investigate whether palatable sweet foods have a beneficial effect on chronic stress-induced colonic motility and inflammatory cytokines. Adult male rats were divided into 3 groups: control (CON, n = 5), chronic variable stress with chow (CVS-A, n = 6), and chronic variable stress with chow and sweet food (CVS-B, n = 6). The rats were fed standard rodent chow as the chow food and/or AIN-76A as the sweet food. A food preference test for AIN-76A was performed in another group of normal rats (n = 10) for twelve days. Fecal pellet output (FPO) was measured for 6 wk during water bedding stress in the CVS groups. The weight of the adrenal glands, adrenocorticotropic hormone (ACTH) and corticosterone levels in plasma were measured. The expression levels of transforming growth factor-β, interleukin (IL)-2, and interferon-gamma (IFN-γ) were measured in the distal part of colonic tissues and plasma using Western blot analysis. In sweet preference test, all rats initially preferred sweet food to chow food. However, the consumption rate of sweet food gradually decreased and reduced to below 50% of total intake eight days after sweet food feeding. Accumulated FPO was higher in the CVS-A group compared with the CVS-B group over time. All stress groups showed significant increases in the adrenal to body weight ratio (CVS-A, 0.14 ± 0.01; CVS-B, 0.14 ± 0.01) compared with the control group (0.12 ± 0.01, P food ingestion during CVS might have an effect on the reduction of stress-induced colonic hyper-motility and pro-inflammatory cytokine production in rats.

  3. Comparative antistress effect of Vitis vinifera and Withania somnifera using unpredictable chronic mild stress model in rats

    Directory of Open Access Journals (Sweden)

    Manish Pal Singh

    2016-07-01

    Full Text Available Introduction: The human society has become complex. However, our physiological responses designed to cope with the ever-increasing adverse situations have not evolved appreciably during the past thousand years. The failure of successful adaptation during stressful situations has resulted in stress-related illnesses. Methods: The objective of the present study was to carry out a comparative assessment of anti-stress effect of Vitis vinifera and Withania somnifera using unpredictable chronic mild stress model in rats. Long-term exposure to multiple stressors can cause depression. The unpredictable chronic administration of various mild stresses, a procedure known as “unpredictable chronic mild stress”, is one of the best-validated rodent models to study stress in animals, for its good etiological and predictive validity. Result: Diazepam, Withania somnifera, Vitis vinifera administration dose dependently reversed the increase in immobility period in stressed rats. In the study of locomotion activity of rats in elevated plus maze apparatus, Stress treated control group rats showed less no of entries in open arm and also less time spent in open arm. Vitis vinifera treated (p<0.0001, Withania somnifera treated (p<0.0001 and Diazepam treated group showed (p<0.0001 no. of entries in open arms which were more than control group and stressed groups. Stressed group produce less average time spent in open arm as compared to treatment groups as Withania somnifera (p<0.05, Vitis vinifera and diazepam. Withania somnifera group showed significant antistress locomotry behaviour in rats. Administration of Vitis vinifera, Withania somnifera and diazepam during stress period restored the ambulatory behaviour of the rats which can be correlated with restoration of plasma corticosterone level. Finally, the results of the present study justified that Withania somnifera, Vitis vinifera and diazepam exhibited significant antistress activity in rats.

  4. Hippocampal CA1 transcriptional profile of sleep deprivation: relation to aging and stress.

    Directory of Open Access Journals (Sweden)

    Nada M Porter

    Full Text Available Many aging changes seem similar to those elicited by sleep-deprivation and psychosocial stress. Further, sleep architecture changes with age suggest an age-related loss of sleep. Here, we hypothesized that sleep deprivation in young subjects would elicit both stress and aging-like transcriptional responses.F344 rats were divided into control and sleep deprivation groups. Body weight, adrenal weight, corticosterone level and hippocampal CA1 transcriptional profiles were measured. A second group of animals was exposed to novel environment stress (NES, and their hippocampal transcriptional profiles measured. A third cohort exposed to control or SD was used to validate transcriptional results with Western blots. Microarray results were statistically contrasted with prior transcriptional studies. Microarray results pointed to sleep pressure signaling and macromolecular synthesis disruptions in the hippocampal CA1 region. Animals exposed to NES recapitulated nearly one third of the SD transcriptional profile. However, the SD-aging relationship was more complex. Compared to aging, SD profiles influenced a significant subset of genes. mRNA associated with neurogenesis and energy pathways showed agreement between aging and SD, while immune, glial, and macromolecular synthesis pathways showed SD profiles that opposed those seen in aging.We conclude that although NES and SD exert similar transcriptional changes, selective presynaptic release machinery and Homer1 expression changes are seen in SD. Among other changes, the marked decrease in Homer1 expression with age may represent an important divergence between young and aged brain response to SD. Based on this, it seems reasonable to conclude that therapeutic strategies designed to promote sleep in young subjects may have off-target effects in the aged. Finally, this work identifies presynaptic vesicular release and intercellular adhesion molecular signatures as novel therapeutic targets to counter

  5. Pulpal responses to cavity preparation in aged rat molars

    OpenAIRE

    Kawagishi, Eriko; Nakakura-Ohshima, Kuniko; Nomura, Shuichi; Ohshima, Hayato; 大島, 勇人

    2006-01-01

    The dentin-pulp complex is capable of repair after tooth injuries including dental procedures. However, there are few available data concerning aged changes in pulpal reactions to such injuries. The present study aimed to clarify the capability of defense of aged pulp by investigating the responses of odontoblasts and class II major histocompatibility complex (MHC)-positive cells to cavity preparation in aged rat molars (300-360 d) and comparing the results with those in young adult rats (100...

  6. Neuropeptide Y and nestin expression in the hippocampal CA3 region following restrained and inverted stress in rats

    Institute of Scientific and Technical Information of China (English)

    Guogang Sun; Ailing Li; Bo Chen; Guangbi Fan; Hongwen Xiao; Yue Chen; Jie Xu; Ye Nie; Bing Zhang; Lin Gong

    2011-01-01

    Our preliminary study demonstrated that neuropeptide Y (NPY)/nestin-positive cells exhibit a consistent spatial distribution in the hippocampus of normal adult rats. However, following severe acute and chronic stress-induced impaired learning and memory, synchronous decreased expression of nestin and NPY takes place in the hippocampus, and the underlying mechanisms remain unclear. In the present study, acute and chronic stress rat models were established using combined restrained and inverted stress. Results showed that learning and memory significantly decreased in acute and chronic stress rats. In addition, hippocampal cells were damaged, in particular in the acute stress rats, and nestin and NPY expression, as well as the number of NPY/nestin-positive cells in the CA3 region, significantly decreased. Furthermore, mature neurofilament 200-positive neurons were absent in the chronic stress rats. The NPY and cytoskeletal protein system equally contributed to stress-induced early learning and memory deficits, as well as sustained cerebral injury in the adult hippocampus.

  7. [GLIATILIN CORRECTION OF WORKING AND REFERENCE SPATIAL MEMORY IMPAIRMENT IN AGED RATS].

    Science.gov (United States)

    Tyurenkov, I N; Volotova, E V; Kurkin, D V

    2015-01-01

    This work was aimed at evaluating the influence of gliatilin administration on the spatial memory in aged rats. Cognitive function and spatial memory in animals was evaluated using radial (8-beam) maze test. Errors of working spatial memory and reference memory were used as indicators of impaired cognitive function. It was found that aged (24-month) rats compared with younger (6-months) age group exhibited cognitive impairment, as manifested by deterioration of short- and long-term memory processes. Course administration of gliatilin in rats of the older age group at a dose of 100 mg/kg resulted in significant improvement of the working and reference spatial memory in aged rats.

  8. Quantitative analysis of the renal aging in rats. Stereological study.

    Science.gov (United States)

    Melchioretto, Eduardo Felippe; Zeni, Marcelo; Veronez, Djanira Aparecida da Luz; Martins, Eduardo Lopes; Fraga, Rogério de

    2016-05-01

    To evaluate the renal function and the renal histological alterations through the stereology and morphometrics in rats submitted to the natural process of aging. Seventy two Wistar rats, divided in six groups. Each group was sacrificed in a different age: 3, 6, 9, 12, 18 and 24 months. It was performed right nephrectomy, stereological and morphometric analysis of the renal tissue (renal volume and weight, density of volume (Vv[glom]) and numerical density (Nv[glom]) of the renal glomeruli and average glomerular volume (Vol[glom])) and also it was evaluated the renal function for the dosage of serum creatinine and urea. There was significant decrease of the renal function in the oldest rats. The renal volume presented gradual increase during the development of the rats with the biggest values registered in the group of animals at 12 months of age and significant progressive decrease in older animals. Vv[glom] presented statistically significant gradual reduction between the groups and the Nv[glom] also decreased significantly. The renal function proved to be inferior in senile rats when compared to the young rats. The morphometric and stereological analysis evidenced renal atrophy, gradual reduction of the volume density and numerical density of the renal glomeruli associated to the aging process.

  9. Acute predator stress impairs the consolidation and retrieval of hippocampus-dependent memory in male and female rats.

    Science.gov (United States)

    Park, Collin R; Zoladz, Phillip R; Conrad, Cheryl D; Fleshner, Monika; Diamond, David M

    2008-04-01

    We have studied the effects of an acute predator stress experience on spatial learning and memory in adult male and female Sprague-Dawley rats. All rats were trained to learn the location of a hidden escape platform in the radial-arm water maze (RAWM), a hippocampus-dependent spatial memory task. In the control (non-stress) condition, female rats were superior to the males in the accuracy and consistency of their spatial memory performance tested over multiple days of training. In the stress condition, rats were exposed to the cat for 30 min immediately before or after learning, or before the 24-h memory test. Predator stress dramatically increased corticosterone levels in males and females, with females exhibiting greater baseline and stress-evoked responses than males. Despite these sex differences in the overall magnitudes of corticosterone levels, there were significant sex-independent correlations involving basal and stress-evoked corticosterone levels, and memory performance. Most importantly, predator stress impaired short-term memory, as well as processes involved in memory consolidation and retrieval, in male and female rats. Overall, we have found that an intense, ethologically relevant stressor produced a largely equivalent impairment of memory in male and female rats, and sex-independent corticosterone-memory correlations. These findings may provide insight into commonalities in how traumatic stress affects the brain and memory in men and women.

  10. Resveratrol Prevents Cardiovascular Complications in the SHR/STZ Rat by Reductions in Oxidative Stress and Inflammation

    Directory of Open Access Journals (Sweden)

    Rebecca K. Vella

    2015-01-01

    Full Text Available The cardioprotective effects of resveratrol are well established in animal models of metabolic disease but are yet to be investigated in a combined model of hypertension and diabetes. This study investigated the ability of resveratrol’s antioxidant and anti-inflammatory effects to prevent cardiovascular complications in the spontaneously hypertensive streptozotocin-induced diabetic rat. Diabetes was induced in eight-week-old male spontaneously hypertensive rats via a single intravenous injection of streptozotocin. Following this, resveratrol was administered orally for an eight-week period until the animals were sixteen weeks of age. Upon completion of the treatment regime assessments of oxidative stress, lipid peroxidation, inflammation, and cardiovascular function were made. Resveratrol administration to hypertensive-diabetic animals did not impact upon blood glucose or haemodynamics but significantly reduced oxidative stress, lipid peroxidation, and inflammatory cytokines. Reductions in systemic levels of oxidative stress and inflammation conferred improvements in vascular reactivity and left ventricular pump function and electrophysiology. This study demonstrates that resveratrol administration to hypertensive diabetic animals can elicit cardioprotective properties via antioxidant and anti-inflammatory effects. The observed preservation of cardiovascular function was independent of changes in blood glucose concentration and haemodynamics, suggesting that oxidative stress and inflammation are key components within the pathological cascade associated with hypertension and diabetes.

  11. Long-term programing of psychopathology-like behaviors in male rats by peripubertal stress depends on individual's glucocorticoid responsiveness to stress.

    Science.gov (United States)

    Walker, Sophie E; Sandi, Carmen

    2018-02-07

    Experience of adversity early in life and dysregulation of hypothalamus-pituitary-adrenocortical (HPA) axis activity are risk factors often independently associated with the development of psychopathological disorders, including depression, PTSD and pathological aggression. Additional evidence suggests that in combination these factors may interact to shape the development and expression of psychopathology differentially, though little is known about underlying mechanisms. Here, we studied the long-term consequences of early life stress exposure on individuals with differential constitutive glucocorticoid responsiveness to repeated stressor exposure, assessing both socio-affective behaviors and brain activity in regions sensitive to pathological alterations following stress. Two rat lines, genetically selected for either low or high glucocorticoid responsiveness to repeated stress were exposed to a series of unpredictable, fear-inducing stressors on intermittent days during the peripuberty period. Results obtained at adulthood indicated that having high glucocorticoid responses to repeated stress and having experience of peripuberty stress independently enhanced levels of psychopathology-like behaviors, as well as increasing basal activity in several prefrontal and limbic brain regions in a manner associated with enhanced behavioral inhibition. Interestingly, peripuberty stress had a differential impact on aggression in the two rat lines, enhancing aggression in the low-responsive line but not in the already high-aggressive, high-responsive rats. Taken together, these findings indicate that aberrant HPA axis activity around puberty, a key period in the development of social repertoire in both rats and humans, may alter behavior such that it becomes anti-social in nature.

  12. Stress Alters the Discriminative Stimulus and Response Rate Effects of Cocaine Differentially in Lewis and Fischer Inbred Rats

    Directory of Open Access Journals (Sweden)

    Therese A. Kosten

    2012-03-01

    Full Text Available Stress enhances the behavioral effects of cocaine, perhaps via hypothalamic-pituitary-adrenal (HPA axis activity. Yet, compared to Fischer 344 (F344 rats, Lewis rats have hyporesponsive HPA axis function and more readily acquire cocaine self-administration. We hypothesized that stress would differentially affect cocaine behaviors in these strains. The effects of three stressors on the discriminative stimulus and response rate effects of cocaine were investigated. Rats of both strains were trained to discriminate cocaine (10 mg/kg from saline using a two-lever, food-reinforced (FR10 procedure. Immediately prior to cumulative dose (1, 3, 10 mg/kg cocaine test sessions, rats were restrained for 15-min, had 15-min of footshock in a distinct context, or were placed in the shock-paired context. Another set of F344 and Lewis rats were tested similarly except they received vehicle injections to test if stress substituted for cocaine. Most vehicle-tested rats failed to respond after stressor exposures. Among cocaine-tested rats, restraint stress enhanced cocaine’s discriminative stimulus effects in F344 rats. Shock and shock-context increased response rates in Lewis rats. Stress-induced increases in corticosterone levels showed strain differences but did not correlate with behavior. These data suggest that the behavioral effects of cocaine can be differentially affected by stress in a strain-selective manner.

  13. Pretreatment with curcumin attenuates anxiety while strengthens memory performance after one short stress experience in male rats.

    Science.gov (United States)

    Haider, Saida; Naqvi, Fizza; Batool, Zehra; Tabassum, Saiqa; Sadir, Sadia; Liaquat, Laraib; Naqvi, Faizan; Zuberi, Nudrat Anwer; Shakeel, Hina; Perveen, Tahira

    2015-06-01

    It is observed that memories are more strengthened in a stressful condition. Studies have also demonstrated an association between stressful events and the onset of depression and anxiety. Considering the nootropic, anxiolytic and antidepressant-like properties of curcumin in various experimental approaches, we appraised the beneficial effects of this herb on acute immobilization stress-induced behavioral and neurochemical alterations. Rats in test group were administrated with curcumin (200mg/kg/day), dissolved in neutral oil, for 1 week. Both control and curcumin-treated rats were divided into unstressed and stressed groups. Rats in the stressed group were subjected to immobilization stress for 2h. After stress, the animals were subjected to behavioral tests. Immobilization stress induced an anxiogenic behavior in rats subjected to elevated plus maze test (EPM). Locomotor activity was also significantly increased following the acute immobilization stress. Pre-administration of curcumin prevented the stress-induced behavioral deficits. Highest memory performance was observed in stressed rats that were pre-treated with curcumin in Morris water maze (MWM). Brain malondialdehyde (MDA) levels, catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD), and acetylcholinesterase (AChE) activities were also estimated. Present study suggests a role of antioxidant enzymes in the attenuation of acute stress induced anxiety by curcumin. The findings therefore suggest that supplementation of curcumin may be beneficial in the treatment of acute stress induced anxiety and enhancement of memory function. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Plasma hormones facilitated the hypermotility of the colon in a chronic stress rat model.

    Directory of Open Access Journals (Sweden)

    Chengbai Liang

    Full Text Available OBJECTIVE: To study the relationship between brain-gut peptides, gastrointestinal hormones and altered motility in a rat model of repetitive water avoidance stress (WAS, which mimics the irritable bowel syndrome (IBS. METHODS: Male Wistar rats were submitted daily to 1-h of water avoidance stress (WAS or sham WAS (SWAS for 10 consecutive days. Plasma hormones were determined using Enzyme Immunoassay Kits. Proximal colonic smooth muscle (PCSM contractions were studied in an organ bath system. PCSM cells were isolated by enzymatic digestion and IKv and IBKca were recorded by the patch-clamp technique. RESULTS: The number of fecal pellets during 1 h of acute restraint stress and the plasma hormones levels of substance P (SP, thyrotropin-releasing hormone (TRH, motilin (MTL, and cholecystokinin (CCK in WAS rats were significantly increased compared with SWAS rats, whereas vasoactive intestinal peptide (VIP, calcitonin gene-related peptide (CGRP and corticotropin releasing hormone (CRH in WAS rats were not significantly changed and peptide YY (PYY in WAS rats was significantly decreased. Likewise, the amplitudes of spontaneous contractions of PCSM in WAS rats were significantly increased comparing with SWAS rats. The plasma of WAS rats (100 µl decreased the amplitude of spontaneous contractions of controls. The IKv and IBKCa of PCSMs were significantly decreased in WAS rats compared with SWAS rats and the plasma of WAS rats (100 µl increased the amplitude of IKv and IBKCa in normal rats. CONCLUSION: These results suggest that WAS leads to changes of plasma hormones levels and to disordered myogenic colonic motility in the short term, but that the colon rapidly establishes a new equilibrium to maintain the normal baseline functioning.

  15. AB089. Impaired adenosine signaling influences erectile function in aging rats

    OpenAIRE

    Yang, Xingliang; Yuan, Jiuhong

    2017-01-01

    Background As one of the most common disorders in old adult, erectile dysfunction (ED) remains attracting andrological physicians? attention. The aim of this study is to investigate the alterations of adenosine signaling in the penis of aging rats, and the influence to erectile function. Methods According to apomorphine test, the aging rats (18 months) with ED were selected as age-related erectile dysfunction (A-ED) group, and the young rats (2 months) were selected as normal control (NC) gro...

  16. Fluoride-elicited developmental testicular toxicity in rats: Roles of endoplasmic reticulum stress and inflammatory response

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shun [Department of Environmental Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei (China); Jiang, Chunyang [Department of Environmental Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei (China); Department of Thoracic Surgery, Tianjin Union Medicine Centre, 190 Jieyuan Road, Hongqiao District, Tianjin 300121, Tianjin (China); Liu, Hongliang [Tianjin Center for Disease Control and Prevention, Huayue Road 6, Hedong Region, Tianjin 300011, Tianjin (China); Guan, Zhizhong [Department of Pathology, Guiyang Medical College, Guiyang 550004, Guizhou (China); Zeng, Qiang [Tianjin Center for Disease Control and Prevention, Huayue Road 6, Hedong Region, Tianjin 300011, Tianjin (China); Zhang, Cheng; Lei, Rongrong; Xia, Tao; Gao, Hui; Yang, Lu; Chen, Yihu; Wu, Xue; Zhang, Xiaofei [Department of Environmental Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei (China); Cui, Yushan; Yu, Linyu [Tianjin Center for Disease Control and Prevention, Huayue Road 6, Hedong Region, Tianjin 300011, Tianjin (China); Wang, Zhenglun [Department of Environmental Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei (China); Wang, Aiguo, E-mail: wangaiguo@mails.tjmu.edu.cn [Department of Environmental Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei (China)

    2013-09-01

    Long-term excessive fluoride intake is known to be toxic and can damage a variety of organs and tissues in the human body. However, the molecular mechanisms underlying fluoride-induced male reproductive toxicity are not well understood. In this study, we used a rat model to simulate the situations of human exposure and aimed to evaluate the roles of endoplasmic reticulum (ER) stress and inflammatory response in fluoride-induced testicular injury. Sprague–Dawley rats were administered with sodium fluoride (NaF) at 25, 50 and 100 mg/L via drinking water from pre-pregnancy to gestation, birth and finally to post-puberty. And then the testes of male offspring were studied at 8 weeks of age. Our results demonstrated that fluoride treatment increased MDA accumulation, decreased SOD activity, and enhanced germ cell apoptosis. In addition, fluoride elevated mRNA and protein levels of glucose-regulated protein 78 (GRP78), inositol requiring ER-to-nucleus signal kinase 1 (IRE1), and C/EBP homologous protein (CHOP), indicating activation of ER stress signaling. Furthermore, fluoride also induced testicular inflammation, as manifested by gene up-regulation of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), in a nuclear factor-κB (NF-κB)-dependent manner. These were associated with marked histopathological lesions including injury of spermatogonia, decrease of spermatocytes and absence of elongated spermatids, as well as severe ultrastructural abnormalities in testes. Taken together, our results provide compelling evidence that ER stress and inflammation would be novel and significant mechanisms responsible for fluoride-induced disturbance of spermatogenesis and germ cell loss in addition to oxidative stress. - Highlights: • We used a rat model to simulate the situations of human fluoride (F) exposure. • Developmental F exposure induces testicular damage related with oxidative stress.

  17. Fluoride-elicited developmental testicular toxicity in rats: Roles of endoplasmic reticulum stress and inflammatory response

    International Nuclear Information System (INIS)

    Zhang, Shun; Jiang, Chunyang; Liu, Hongliang; Guan, Zhizhong; Zeng, Qiang; Zhang, Cheng; Lei, Rongrong; Xia, Tao; Gao, Hui; Yang, Lu; Chen, Yihu; Wu, Xue; Zhang, Xiaofei; Cui, Yushan; Yu, Linyu; Wang, Zhenglun; Wang, Aiguo

    2013-01-01

    Long-term excessive fluoride intake is known to be toxic and can damage a variety of organs and tissues in the human body. However, the molecular mechanisms underlying fluoride-induced male reproductive toxicity are not well understood. In this study, we used a rat model to simulate the situations of human exposure and aimed to evaluate the roles of endoplasmic reticulum (ER) stress and inflammatory response in fluoride-induced testicular injury. Sprague–Dawley rats were administered with sodium fluoride (NaF) at 25, 50 and 100 mg/L via drinking water from pre-pregnancy to gestation, birth and finally to post-puberty. And then the testes of male offspring were studied at 8 weeks of age. Our results demonstrated that fluoride treatment increased MDA accumulation, decreased SOD activity, and enhanced germ cell apoptosis. In addition, fluoride elevated mRNA and protein levels of glucose-regulated protein 78 (GRP78), inositol requiring ER-to-nucleus signal kinase 1 (IRE1), and C/EBP homologous protein (CHOP), indicating activation of ER stress signaling. Furthermore, fluoride also induced testicular inflammation, as manifested by gene up-regulation of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), in a nuclear factor-κB (NF-κB)-dependent manner. These were associated with marked histopathological lesions including injury of spermatogonia, decrease of spermatocytes and absence of elongated spermatids, as well as severe ultrastructural abnormalities in testes. Taken together, our results provide compelling evidence that ER stress and inflammation would be novel and significant mechanisms responsible for fluoride-induced disturbance of spermatogenesis and germ cell loss in addition to oxidative stress. - Highlights: • We used a rat model to simulate the situations of human fluoride (F) exposure. • Developmental F exposure induces testicular damage related with oxidative stress.

  18. Beneficial effects of a Q-ter based nutritional mixture on functional performance, mitochondrial function, and oxidative stress in rats.

    Directory of Open Access Journals (Sweden)

    Jinze Xu

    2010-05-01

    Full Text Available Mitochondrial dysfunction and oxidative stress are central mechanisms underlying the aging process and the pathogenesis of many age-related diseases. Selected antioxidants and specific combinations of nutritional compounds could target many biochemical pathways that affect both oxidative stress and mitochondrial function and, thereby, preserve or enhance physical performance.In this study, we evaluated the potential anti-aging benefits of a Q-ter based nutritional mixture (commercially known as Eufortyn mainly containing the following compounds: terclatrated coenzyme Q(10 (Q-ter, creatine and a standardized ginseng extract. We found that Eufortyn supplementation significantly ameliorated the age-associated decreases in grip strength and gastrocnemius subsarcolemmal mitochondria Ca(2+ retention capacity when initiated in male Fischer344 x Brown Norway rats at 21 months, but not 29 months, of age. Moreover, the increases in muscle RNA oxidation and subsarcolemmal mitochondrial protein carbonyl levels, as well as the decline of total urine antioxidant power, which develop late in life, were mitigated by Eufortyn supplementation in rats at 29 months of age.These data imply that Eufortyn is efficacious in reducing oxidative damage, improving the age-related mitochondrial functional decline, and preserving physical performance when initiated in animals at early midlife (21 months. The efficacy varied, however, according to the age at which the supplementation was provided, as initiation in late middle age (29 months was incapable of restoring grip strength and mitochondrial function. Therefore, the Eufortyn supplementation may be particularly beneficial when initiated prior to major biological and functional declines that appear to occur with advancing age.

  19. Beneficial effects of a Q-ter based nutritional mixture on functional performance, mitochondrial function, and oxidative stress in rats.

    Science.gov (United States)

    Xu, Jinze; Seo, Arnold Y; Vorobyeva, Darya A; Carter, Christy S; Anton, Stephen D; Lezza, Angela M S; Leeuwenburgh, Christiaan

    2010-05-11

    Mitochondrial dysfunction and oxidative stress are central mechanisms underlying the aging process and the pathogenesis of many age-related diseases. Selected antioxidants and specific combinations of nutritional compounds could target many biochemical pathways that affect both oxidative stress and mitochondrial function and, thereby, preserve or enhance physical performance. In this study, we evaluated the potential anti-aging benefits of a Q-ter based nutritional mixture (commercially known as Eufortyn) mainly containing the following compounds: terclatrated coenzyme Q(10) (Q-ter), creatine and a standardized ginseng extract. We found that Eufortyn supplementation significantly ameliorated the age-associated decreases in grip strength and gastrocnemius subsarcolemmal mitochondria Ca(2+) retention capacity when initiated in male Fischer344 x Brown Norway rats at 21 months, but not 29 months, of age. Moreover, the increases in muscle RNA oxidation and subsarcolemmal mitochondrial protein carbonyl levels, as well as the decline of total urine antioxidant power, which develop late in life, were mitigated by Eufortyn supplementation in rats at 29 months of age. These data imply that Eufortyn is efficacious in reducing oxidative damage, improving the age-related mitochondrial functional decline, and preserving physical performance when initiated in animals at early midlife (21 months). The efficacy varied, however, according to the age at which the supplementation was provided, as initiation in late middle age (29 months) was incapable of restoring grip strength and mitochondrial function. Therefore, the Eufortyn supplementation may be particularly beneficial when initiated prior to major biological and functional declines that appear to occur with advancing age.

  20. Zinc prevents sickness behavior induced by lipopolysaccharides after a stress challenge in rats.

    Directory of Open Access Journals (Sweden)

    Thiago B Kirsten

    Full Text Available Sickness behavior is considered part of the specific beneficial adaptive behavioral and neuroimmune changes that occur in individuals in response to infectious/inflammatory processes. However, in dangerous and stressful situations, sickness behavior should be momentarily abrogated to prioritize survival behaviors, such as fight or flight. Taking this assumption into account, we experimentally induced sickness behavior in rats using lipopolysaccharides (LPS, an endotoxin that mimics infection by gram-negative bacteria, and then exposed these rats to a restraint stress challenge. Zinc has been shown to play a regulatory role in the immune and nervous systems. Therefore, the objective of this study was to examine the effects of zinc treatment on the sickness response of stress-challenged rats. We evaluated 22-kHz ultrasonic vocalizations, open-field behavior, tumor necrosis factor α (TNF-α, corticosterone, and brain-derived neurotrophic factor (BDNF plasma levels. LPS administration induced sickness behavior in rats compared to controls, i.e., decreases in the distance traveled, average velocity, rearing frequency, self-grooming, and number of vocalizations, as well as an increase in the plasma levels of TNF-α, compared with controls after a stressor challenge. LPS also decreased BDNF expression but did not influence anxiety parameters. Zinc treatment was able to prevent sickness behavior in LPS-exposed rats after the stress challenge, restoring exploratory/motor behaviors, communication, and TNF-α levels similar to those of the control group. Thus, zinc treatment appears to be beneficial for sick animals when they are facing risky/stressful situations.

  1. Adaptation of BAp crystal orientation to stress distribution in rat mandible during bone growth

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, T; Fujitani, W; Ishimoto, T [Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamada-oka, Suita, Osaka 565-0871 (Japan); Umakoshi, Y [National Institute for Materials Science, 1-2-1, Sengen, Tsukuba, Ibaragi, 305-0471 (Japan)], E-mail: nakano@mat.eng.osaka-u.ac.jp

    2009-05-01

    Biological apatite (BAp) c-axis orientation strongly depends on stress distribution in vivo and tends to align along the principal stress direction in bones. Dentulous mandible is subjected to a complicated stress condition in vivo during chewing but few studies have been carried out on the BAp c-axis orientation; so the adaptation of BAp crystal orientation to stress distribution was examined in rat dentulous mandible during bone growth and mastication. Female SD rats 4 to 14 weeks old were prepared, and the bone mineral density (BMD) and BAp crystal orientation were analyzed in a cross-section of mandible across the first molar focusing on two positions: separated from and just under the tooth root on the same cross-section perpendicular to the mesiodistal axis. The degree of BAp orientation was analyzed by a microbeam X-ray diffractometer using Cu-K{alpha} radiation equipped with a detector of curved one-dimensional PSPC and two-dimensional PSPC in the reflection and transmission optics, respectively. BMD quickly increased during bone growth up to 14 weeks, although it was independent of the position from the tooth root. In contrast, BAp crystal orientation strongly depended on the age and the position from the tooth root, even in the same cross-section and direction, especially along the mesiodistal and the biting axes. With increased biting stress during bone growth, the degree of BAp orientation increased along the mesiodistal axis in a position separated from the tooth root more than that near the tooth root. In contrast, BAp preferential alignment clearly appeared along the biting axis near the tooth root. We conclude that BAp orientation rather than BMD sensitively adapts to local stress distribution, especially from the chewing stress in vivo in the mandible.

  2. Effects of Stress and Social Enrichment on Alcohol Intake, Biological and Psychological Stress Responses in Rats

    Science.gov (United States)

    2010-06-28

    used were not sophisticated enough to elucidate the pattern. Using a more advanced statistical approach (e.g., Canonical discriminitive analysis...corticotrophin-releasing factor in stress-induced relapse to alcohol- seeking behavior in rats. Psychopharmacology (Berl) 150:317-324. Lex BW (1991) Some gender ...Prunell M, Dimitsantos V, Nadal R, Escorihuela RM (2006) Environmental enrichment effects in social investigation in rats are gender dependent

  3. Hyper-G stress-induced hyperglycemia in rats mediated by glucoregulatory hormones

    Science.gov (United States)

    Daligcon, B. C.; Oyama, J.

    1985-01-01

    The present investigation is concerned with possible relations of the hyperglycemic response of rats exposed to hyper-G stress to (1) alterations in blood levels of the glucoregulatory hormones and gluconeogenic substrates, and (2) changes in insulin response on muscle glucose uptake. Male Sprague-Dawley rats weighing 250-300 g were used in the study. The results of the experiments indicate that the initial rapid rise in blood glucose of rats exposed to hyper-G stress is mediated by increases in circulating catecholamines and glucagon, both potent stimulators of hepatic gluconeogenesis. Lactate, derived from epinephrine stimulation of muscle glycogenolysis, appears to be a major precursor for the initial rise in blood glucose. The inhibition of the insulin-stimulated glucose uptake by muscle tissues may be a factor in the observed sustained hyperglycemia.

  4. Effects of comfort food on food intake, anxiety-like behavior and the stress response in rats.

    Science.gov (United States)

    Ortolani, D; Oyama, L M; Ferrari, E M; Melo, L L; Spadari-Bratfisch, R C

    2011-07-06

    It has been suggested that access to high caloric food attenuates stress response. The present paper investigates whether access to commercial chow enriched with glucose and fat, here referred to as comfort food alters behavioral, metabolic, and hormonal parameters of rats submitted to three daily sessions of foot-shock stress. Food intake, anxiety-like behaviors, and serum levels of insulin, leptin, corticosterone, glucose and triglycerides were determined. The rats submitted to stress decreased the intake of commercial chow, but kept unaltered the intake of comfort food. During the elevated plus maze (EPM) test, stressed rats increased the number of head dipping, entries into the open arms, as well as the time spent there, and decreased the number of stretched-attend posture and risk assessment. These effects of stress were independent of the type of food consumed. Non-stressed rats ingesting comfort food decreased risk assessment as well. Stress and comfort food increased time spent in the center of the open field and delayed the first crossing to a new quadrant. Stress increased the plasma level of glucose and insulin, and reduced triglycerides, although consumption of comfort food increases glucose, triglyceride and leptin levels; no effect on leptin level was associated to stress. The stress induced increase in serum corticosterone was attenuated when rats had access to comfort food. It was concluded that foot-shock stress has an anorexigenic effect that is independent of leptin and prevented upon access to comfort food. Foot-shock stress also has an anxiolytic effect that is potentiated by the ingestion of comfort food and that is evidenced by both EPM and open field tests. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Intracerebroventricular tempol administration in older rats reduces oxidative stress in the hypothalamus but does not change STAT3 signalling or SIRT1/AMPK pathway.

    Science.gov (United States)

    Toklu, Hale Z; Scarpace, Philip J; Sakarya, Yasemin; Kirichenko, Nataliya; Matheny, Michael; Bruce, Erin B; Carter, Christy S; Morgan, Drake; Tümer, Nihal

    2017-01-01

    Hypothalamic inflammation and increased oxidative stress are believed to be mechanisms that contribute to obesity. 4-Hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl (tempol), a free radical scavenger, has been shown to reduce inflammation and oxidative stress. We hypothesized that brain infusion of tempol would reduce oxidative stress, and thus would reduce food intake and body weight and improve body composition in rats with age-related obesity and known elevated oxidative stress. Furthermore, we predicted an associated increase in markers of leptin signalling, including the silent mating type information regulator 2 homolog 1 (SIRT1)/5'AMP-activated protein kinase (AMPK) pathway and the signal transducer and activator of transcription 3 (STAT3) pathway. For this purpose, osmotic minipumps were placed in the intracerebroventricular region of young (3 months) and aged (23 months) male Fischer 344 x Brown Norway rats for the continuous infusion of tempol or vehicle for 2 weeks. Tempol significantly decreased (p < 0.01) nicotinamide adenine dinucleotide phosphate oxidase activity in the hypothalamus but failed to reduce food intake or weight gain and did not alter body composition. SIRT1 activity and Acetyl p53 were decreased and phosphorylation of AMPK was increased with age, but they were unchanged with tempol. Basal phosphorylation of STAT3 was unchanged with age or tempol. These results indicate that tempol decreases oxidative stress but fails to alter feeding behaviour, body weight, or body composition. Moreover, tempol does not modulate the SIRT1/AMPK/p53 pathway and does not change leptin signalling. Thus, a reduction in hypothalamic oxidative stress is not sufficient to reverse age-related obesity.

  6. Poor maternal nutrition and accelerated postnatal growth induces an accelerated aging phenotype and oxidative stress in skeletal muscle of male rats

    Directory of Open Access Journals (Sweden)

    Jane L. Tarry-Adkins

    2016-10-01

    Full Text Available ‘Developmental programming’, which occurs as a consequence of suboptimal in utero and early environments, can be associated with metabolic dysfunction in later life, including an increased incidence of cardiovascular disease and type 2 diabetes, and predisposition of older men to sarcopenia. However, the molecular mechanisms underpinning these associations are poorly understood. Many conditions associated with developmental programming are also known to be associated with the aging process. We therefore utilized our well-established rat model of low birth weight and accelerated postnatal catch-up growth (termed ‘recuperated’ in this study to establish the effects of suboptimal maternal nutrition on age-associated factors in skeletal muscle. We demonstrated accelerated telomere shortening (a robust marker of cellular aging as evidenced by a reduced frequency of long telomeres (48.5-8.6 kb and an increased frequency of short telomeres (4.2-1.3 kb in vastus lateralis muscle from aged recuperated offspring compared to controls. This was associated with increased protein expression of the DNA-damage-repair marker 8-oxoguanine-glycosylase (OGG1 in recuperated offspring. Recuperated animals also demonstrated an oxidative stress phenotype, with decreased citrate synthase activity, increased electron-transport-complex activities of complex I, complex II-III and complex IV (all markers of functional mitochondria, and increased xanthine oxidase (XO, p67phox and nuclear-factor kappa-light-chain-enhancer of activated B-cells (NF-κB. Recuperated offspring also demonstrated increased antioxidant defense capacity, with increased protein expression of manganese superoxide dismutase (MnSOD, copper-zinc superoxide dismutase (CuZnSOD, catalase and heme oxygenase-1 (HO1, all of which are known targets of NF-κB and can be upregulated as a consequence of oxidative stress. Recuperated offspring also had a pro-inflammatory phenotype, as evidenced by

  7. Brain Insulin Administration Triggers Distinct Cognitive and Neurotrophic Responses in Young and Aged Rats.

    Science.gov (United States)

    Haas, Clarissa B; Kalinine, Eduardo; Zimmer, Eduardo R; Hansel, Gisele; Brochier, Andressa W; Oses, Jean P; Portela, Luis V; Muller, Alexandre P

    2016-11-01

    Aging is a major risk factor for cognitive deficits and neurodegenerative disorders, and impaired brain insulin receptor (IR) signaling is mechanistically linked to these abnormalities. The main goal of this study was to investigate whether brain insulin infusions improve spatial memory in aged and young rats. Aged (24 months) and young (4 months) male Wistar rats were intracerebroventricularly injected with insulin (20 mU) or vehicle for five consecutive days. The animals were then assessed for spatial memory using a Morris water maze. Insulin increased memory performance in young rats, but not in aged rats. Thus, we searched for cellular and molecular mechanisms that might account for this distinct memory response. In contrast with our expectation, insulin treatment increased the proliferative activity in aged rats, but not in young rats, implying that neurogenesis-related effects do not explain the lack of insulin effects on memory in aged rats. Furthermore, the expression levels of the IR and downstream signaling proteins such as GSK3-β, mTOR, and presynaptic protein synaptophysin were increased in aged rats in response to insulin. Interestingly, insulin treatment increased the expression of the brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) receptors in the hippocampus of young rats, but not of aged rats. Our data therefore indicate that aged rats can have normal IR downstream protein expression but failed to mount a BDNF response after challenge in a spatial memory test. In contrast, young rats showed insulin-mediated TrkB/BDNF response, which paralleled with improved memory performance.

  8. Prolonged neuroinflammation after lipopolysaccharide exposure in aged rats.

    Directory of Open Access Journals (Sweden)

    Hui Qun Fu

    Full Text Available Inflammation is a hallmark of several disease states ranging from neurodegeneration to sepsis but is also implicated in physiological processes like ageing. Non-resolving inflammation and prolonged neuroinflammation are unclear processes implicated in several conditions, including ageing. In this study we studied the long-term effects of endotoxemia, as systemic lipopolysaccharide (LPS injection, focusing on the role of astrocyte activation and cytokine release in the brain of aged rats. A single dose of LPS (2 mg/kg or 0.9% saline was injected intraperitoneally in aged rats. Levels of pro-inflammatory cytokines (TNFα and IL-1β and NF-κB p65 activation were measured systemically and in hippocampal tissue. Astrocytes and cytokines release in the CNS were detected via double immunofluorescence staining at different time-points up to day 30. Serum levels of TNFα and IL-1β were significantly increased acutely after 30 minutes (p<0.001 and up to 6 hours (p<0.001 following LPS-injection. Centrally, LPS-treated rats showed up-regulated mRNA expression and protein levels of pro-inflammatory cytokines in the hippocampus. These changes associated with astrogliosis in the hippocampus dentate gyrus (DG, IL-1β immunoreactivity and elevated NF-κB p65 expression up to day 30 post LPS exposure. Overall, these data demonstrate that LPS induces prolonged neuroinflammation and astrocyte activation in the hippocampus of aged rats. Hippocampal NF-κB p65 and excessive astrocytes-derived IL-1β release may play a pivotal role in regulating long-lasting neuroinflammation.

  9. Effect Of Extensive Use Of Garlic In Feed On Normal And Irradiated Stressed Male Rats

    International Nuclear Information System (INIS)

    KASSAB, F.M.A.; ABDEL-KHALEK, L.G.; KAMAL, A.M.

    2009-01-01

    Fifty mature male albino rats were used in the present study to evaluate the effect of using crude garlic for one month on general heath condition and to compare between garlic intakes pre and post-irradiated stressed rats.Fresh minced cloves (8-10) of garlic were added to the rat diet twice per day for 30 days in garlic group and for 7 and 15 days prior to and after 4 Gy irradiation in pre and post-irradiated garlic groups, respectively. The results denoted that the extensive use of garlic in food improved the general condition in non-stressed rats while in irradiated stressed rats, the immediate intake of garlic after radiation was more efficient in ameliorating the undesirable radiation effects, where some biochemical and hematological parameters were examined in pre and post-garlic intake such as Hb, RBCs, platelets, T 3 , testosterone and insulin.

  10. Valproic acid improves the tolerance for the stress in learned helplessness rats.

    Science.gov (United States)

    Kobayashi, H; Iwata, M; Mitani, H; Yamada, T; Nakagome, K; Kaneko, K

    2012-04-01

    In this study, we investigated whether previously stressed rats with learned helplessness (LH) paradigm could recover from depressive-like behavior four weeks after the exposure, and also whether chronic treatment with valproic acid (VPA) could prevent behavioral despair due to the second stress on days 54 in these animals. Four weeks after induction of LH, we confirmed behavioral remission in the previously stressed rats. Two-way analysis of variance (ANOVA) performed with two factors, pretreatment (LH or Control) and drug (VPA or Saline), revealed a significant main effect of the drug on immobility time in forced swimming test. Post hoc test showed a shorter immobility time in the LH+VPA group than in the LH+Saline group. Immunohistochemical study of synapsin I showed a significant effect of drug by pretreatment interaction on immunoreactivity of synapsin I in the hippocampus: its expression levels in the regions were higher in the LH+VPA group than in the LH+Saline group. These results suggest that VPA could prevent the reappearance of stress-induced depressive-like behaviors in the rats recovering from prior stress, and that the drug-induced presynaptic changes in the expression of synapsin I in the hippocampus of LH animals might be related to improved tolerance toward the stress. Copyright © 2011 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  11. Transmission of stress between cagemates: a study in rats.

    Science.gov (United States)

    Akyazi, Ibrahim; Eraslan, Evren

    2014-01-17

    The neuroendocrine responses triggered by stressors cause significant behavioral changes in animals. Considering the continuous behavioral interaction between social animals, it would be reasonable to suggest that the aforementioned behavioral changes can lead to transmission of stress between individuals. In the present study the aim is to investigate the outcomes of the behavioral interaction between stressed and unstressed animals housed together. A total of 28 adult male Wistar rats were used in the study. The animals were randomly allocated to four groups. Two of the groups were exposed to white noise stress in a period of 15days, while the other two groups remained unstressed. One of the stress exposed groups served as the stress control (SC) group and one of the non-stressed groups served as the reference value (RV) group. The remaining two groups were transmission groups. Every two animals of the non-stressed transmission group (TC) have been housed with two other animals of the stress exposed transmission group (TS) during the experimental period. After the stress exposure period, six animals from each group were subjected to behavioral assessment in an elevated plus maze (EPM), and subsequently, their cortisol levels were determined. White noise exposure of animals in the SC group induced a stress response indicated by an 1.8 fold increase of plasma cortisol level compared to the RV group (2.11±0.43 and 1.16±0,02, respectively). The transmission groups (TS and TC) entered the open arms more frequently and spent more time in open arms compared to the RV group. White noise exposure caused a stress response characterized by an elevation of cortisol level in rats. The gradual decrease of cortisol level from the SC towards the RV group may be interpreted as an evidence supporting the hypothesis of stress-transmission between cagemates. The moderate stress levels of the transmission groups, but not low and high levels of the SC and RV groups, decreased the

  12. N-acetylcysteine prevents nitrosative stress-associated depression of blood pressure and heart rate in streptozotocin diabetic rats.

    Science.gov (United States)

    Nagareddy, Prabhakara Reddy; Xia, Zhengyuan; MacLeod, Kathleen M; McNeill, John H

    2006-04-01

    Previous studies have indicated that cardiovascular abnormalities such as depressed blood pressure and heart rate occur in streptozotocin (STZ) diabetic rats. Chronic diabetes, which is associated with increased expression of inducible nitric oxide synthase (iNOS) and oxidative stress, may produce peroxynitrite/nitrotyrosine and cause nitrosative stress. We hypothesized that nitrosative stress causes cardiovascular depression in STZ diabetic rats and therefore can be corrected by reducing its formation. Control and STZ diabetic rats were treated orally for 9 weeks with N-acetylcysteine (NAC), an antioxidant and inhibitor of iNOS. At termination, the mean arterial blood pressure (MABP) and heart rate (HR) were measured in conscious rats. Nitrotyrosine and endothelial nitric oxide synthase (eNOS) and iNOS expression were assessed in the heart and mesenteric arteries by immunohistochemistry and Western blot experiments. Untreated diabetic rats showed depressed MABP and HR that was prevented by treatment with NAC. In untreated diabetic rats, levels of 15-F(2t)-isoprostane, an indicator of lipid peroxidation increased, whereas plasma nitric oxide and antioxidant concentrations decreased. Furthermore, decreased eNOS and increased iNOS expression were associated with elevated nitrosative stress in blood vessel and heart tissue of untreated diabetic rats. N-acetylcysteine treatment of diabetic rats not only restored the antioxidant capacity but also reduced the expression of iNOS and nitrotyrosine and normalized the expression of eNOS to that of control rats in heart and superior mesenteric arteries. The results suggest that nitrosative stress depress MABP and HR following diabetes. Further studies are required to elucidate the mechanisms involved in nitrosative stress mediated depression of blood pressure and heart rate.

  13. [Hematologic indices in different age wistar rats, receiving a balanced semi-synthetic vivary diet].

    Science.gov (United States)

    Mustafina, O K; Trushina, É N; Shumakova, E A; Arianova, E A; Tyshko, N V; Pashorina, V A

    2013-01-01

    This paper presents the results of research of hematologic parameters of male Wistar rats 1, 2, 3, 4 and 6 months age, which received a balanced semisynthetic diet. Studies were carried out at the Hematology analyzer Coulter AC TTM 5 diff OV (Beckman Coulter, USA) with the program, specially developed for the study of rats' blood. According to the results of research, was found a statistically significant increased of the number of red blood cells; the concentration of hemoglobin and hematocrit in animals 2-6 months compared with rats, 1 month age. With age, there is a decrease of the mean corpuscular volume and the mean corpuscular hemoglobin. The number of white blood cells in rats of 2-4 months age are significantly higher than in rats of 1 and 6 months age. The number of neutrophils and eosinophils in rats of to the 2 month are of is lover than once in rats of 1 month age, and increases values in animals of 6 months age. The number of lymphocytes has the highest value in the rat of 2-3 months age and the minimum value is that in animals of 6 months age. With increasing of the age of the animals the reduction of contents of monocytes was noted. The content of platelets and the platelet crit in the blood of rats 6 months age is statistically greater than those in 1-month age animals. The average volume of platelet is the stable index, with age does not change.

  14. Cardiovascular and metabolic consequences of the association between chronic stress and high-fat diet in rats.

    Science.gov (United States)

    Simas, Bruna B; Nunes, Everson A; Crestani, Carlos C; Speretta, Guilherme F

    2018-05-01

    Obesity and chronic stress are considered independent risk factors for the development of cardiovascular diseases and changes in autonomic system activity. However, the cardiovascular consequences induced by the association between high-fat diet (HFD) and chronic stress are not fully understood. We hypothesized that the association between HFD and exposure to a chronic variable stress (CVS) protocol for four weeks might exacerbate the cardiovascular and metabolic disturbances in rats when compared to these factors singly. To test this hypothesis, male Wistar rats were divided into four groups: control-standard chow diet (SD; n = 8); control-HFD (n = 8); CVS-SD (n = 8); and CVS-HFD (n = 8). The CVS consisted of repeated exposure of the rats to different inescapable and unpredictable stressors (restraint tress; damp sawdust, cold, swim stress and light cycle inversion). We evaluated cardiovascular function, autonomic activity, dietary intake, adiposity and metabolism. The HFD increased body weight, adiposity and blood glucose concentration (∼15%) in both control and CVS rats. The CVS-HFD rats showed decreased insulin sensitivity (25%) compared to CVS-SD rats. The control-HFD and CVS-HFD rats presented increased intrinsic heart rate (HR) values (∼8%). CVS increased cardiac sympathetic activity (∼65%) in both SD- and HFD-fed rats. The HFD increased basal HR (∼10%). Blood pressure and baroreflex analyzes showed no differences among the experimental groups. In conclusion, the present data indicate absence of interaction on autonomic imbalance evoked by either CVS or HFD. Additionally, HFD increased HR and evoked metabolic disruptions which are independent of stress exposure.

  15. A Virtual Rat for Simulating Environmental and Exertional Heat Stress

    Science.gov (United States)

    2014-10-02

    unsuitable for accurately determin- ing the spatiotemporal temperature distribution in the animal due to heat stress and for performing mechanistic analysis ...possible in the original experiments. Finally, we performed additional simu- lations using the virtual rat to facilitate comparative analysis of the...capability of the virtual rat to account for the circadian rhythmicity in core temperatures during an in- crease in the external temperature from 22

  16. Role of some selected Bifidobacterium strains in modulating immunosenescence of aged albino rats

    Directory of Open Access Journals (Sweden)

    Hanan A. El-Bakry

    2013-10-01

    Full Text Available Probiotic administration has been associated with enhanced immune function in elderly subjects. However, approaches for selection of an “ideal” strain of bifidobacteria are still difficult. The aim of the present study is to investigate the possible modulatory effects of three strains of Bifidobacterium species (Bifidobacterium adolescentis ATCC 15704, Bifidobacterium breve ATCC 15700 and Bifidobacterium longum ATCC 15707 on haematological and immunological parameters of aged albino rats corresponding to normal adult ones. The animals were divided into six groups; three groups of aged rats were fed yoghurt inoculated with one of the Bifidobacterium strains; one group of aged rats was fed yoghurt alone (control aged; two groups of adult and aged rats were provided with normal diet and assigned as normal groups. The total leucocyte count was significantly increased in the three bifidobacteria-treated aged groups as compared with both normal and control aged rats. Serum IgA level was considerably increased in all treated rats. On the contrary, serum IgE level was significantly decreased in rats supplemented with yoghurt inoculated with B. adolescentis or B. breve. Both B. adolescentis and B. breve groups showed significant enhanced production of TNF-α. Furthermore, the production of cytokine IL-8 was significantly increased in the B. adolescentis group. Interestingly, it was apparent that only B. adolescentis had the most pronounced effect on aged rats to regain nearly normal values as measured in normal adult rats. Conclusively, the present work indicates that dietary consumption of selected bifidobacteria strains may have a particular application in the elderly especially in terms of immunomodulation.

  17. Specific alteration of rhythm in temperature-stressed rats possess features of abdominal pain in IBS patients

    Directory of Open Access Journals (Sweden)

    Yasuo Itomi

    2015-09-01

    Full Text Available It is known that specific alteration of rhythm in temperature (SART stress produces somatic pain. However, it remains to be investigated whether SART stress induces visceral pain. In this study, we investigated the visceral hypersensitivity in the SART stress model by pharmacological tools and heterotopical nociception. Four-week-old Sprague–Dawley rats were exposed to repeated cold stress. Visceral pain was measured by visceromotor response to colorectal distension, and the effects of alosetron and duloxetine on visceral pain were investigated in SART rats. Heterotopical nociception was given by capsaicin injection into the left forepaw to induce diffuse noxious inhibitory controls (DNIC. SART stress induced visceral hypersensitivity that was sustained at minimum for one week. In pharmacological analysis, alosetron and duloxetine improved SART stress-induced visceral hypersensitivity. Heterotopical nociception induced DNIC in normal conditions, but was disrupted in SART rats. On the other hand, RMCP-II mRNA in distal colon was not affected by SART stress. In conclusion, SART rats exhibit several features of visceral pain in IBS, and may be a useful model for investigating the central modification of pain control in IBS.

  18. Sleep in prenatally restraint stressed rats, a model of mixed anxiety-depressive disorder.

    Science.gov (United States)

    Mairesse, Jérôme; Van Camp, Gilles; Gatta, Eleonora; Marrocco, Jordan; Reynaert, Marie-Line; Consolazione, Michol; Morley-Fletcher, Sara; Nicoletti, Ferdinando; Maccari, Stefania

    2015-01-01

    Prenatal restraint stress (PRS) can induce persisting changes in individual's development. PRS increases anxiety and depression-like behaviors and induces changes in the hypothalamo-pituitary-adrenal (HPA) axis in adult PRS rats after exposure to stress. Since adaptive capabilities also depend on temporal organization and synchronization with the external environment, we studied the effects of PRS on circadian rhythms, including the sleep-wake cycle, that are parameters altered in depression. Using a restraint stress during gestation, we showed that PRS induced phase advances in hormonal/behavioral circadian rhythms in adult rats, and an increase in the amount of paradoxical sleep, positively correlated to plasma corticosterone levels. Plasma corticosterone levels were also correlated with immobility in the forced swimming test, indicating a depressive-like profile in the PRS rats. We observed comorbidity with anxiety-like profile on PRS rats that was correlated with a reduced release of glutamate in the ventral hippocampus. Pharmacological approaches aimed at modulating glutamate release may represent a novel therapeutic strategy to treat stress-related disorders. Finally, since depressed patients exhibit changes in HPA axis activity and in circadian rhythmicity as well as in the paradoxical sleep regulation, we suggest that PRS could represent an original animal model of depression.

  19. Food restriction modulates β-adrenergic-sensitive adenylate cyclase in rat liver during aging

    International Nuclear Information System (INIS)

    Katz, M.S.

    1988-01-01

    Adenylate cyclase activities were studied in rat liver during postmaturational aging of male Fischer 344 rats fed ad libitum or restricted to 60% of the ad libitum intake. Catecholamine-stimulated adenylate cyclase activity increased by 200-300% between 6 and 24-27 mo of age in ad libitum-fed rats, whereas in food-restricted rats catecholamine response increased by only 58-84% between 6 and 30 mo. In ad libitum-fed rats, glucagon-stimulated enzyme activity also increased by 40% between 6 and 12 mo and in restricted rats a similar age-related increase was delayed until 18 mo. β-Adrenergic receptor density increased by 50% between 6 and 24 mo in livers from ad libitum-fed but not food-restricted rats and showed a highly significant correlation with maximal isoproterenol-stimulated adenylate cyclase activity over the postmaturational life span. Age-related increases in unstimulated (basal) adenylate cyclase activity and nonreceptor-mediated enzyme activation were retarded by food restriction. The results demonstrate that food restriction diminishes a marked age-related increase in β-adrenergic-sensitive adenylate cyclase activity of rat liver. Alterations of adrenergic-responsive adenylate cyclase with age and the modulatory effects of food restriction appear to be mediated by changes in both receptor and nonreceptor components of adenylate cyclase

  20. Interactions of Aging, Overload, and Creatine Supplementation in Rat Plantaris Muscle

    Directory of Open Access Journals (Sweden)

    Mark D. Schuenke

    2011-01-01

    Full Text Available Attenuation of age-related sarcopenia by creatine supplementation has been equivocal. In this study, plantaris muscles of young (Y; 5m and aging (A; 24m Fisher 344 rats underwent four weeks of either control (C, creatine supplementation (Cr, surgical overload (O, or overload plus creatine (OCr. Creatine alone had no effect on muscle fiber cross-sectional area (CSA or heat shock protein (HSP70 and increased myonuclear domain (MND only in young rats. Overload increased CSA and HSP70 content in I and IIA fibers, regardless of age, and MND in IIA fibers of YO rats. CSA and MND increased in all fast fibers of YOCr, and CSA increased in I and IIA fibers of AOCr. OCR did not alter HSP70, regardless of age. MND did not change in aging rats, regardless of treatment. These data indicate creatine alone had no significant effect. Creatine with overload produced no additional hypertrophy relative to overload alone and attenuated overload-induced HSP70 expression.

  1. Testosterone potentiates the hypoxic ventilatory response of adult male rats subjected to neonatal stress.

    Science.gov (United States)

    Fournier, Sébastien; Gulemetova, Roumiana; Joseph, Vincent; Kinkead, Richard

    2014-05-01

    Neonatal stress disrupts development of homeostatic systems. During adulthood, male rats subjected to neonatal maternal separation (NMS) are hypertensive and show a larger hypoxic ventilatory response (HVR), with greater respiratory instability during sleep. Neonatal stress also affects sex hormone secretion; hypoxia increases circulating testosterone of NMS (but not control) male rats. Given that these effects of NMS are not observed in females, we tested the hypothesis that testosterone elevation is necessary for the stress-related increase of the HVR in adult male rats. Pups subjected to NMS were placed in an incubator for 3 h per day from postnatal day 3 to 12. Control pups remained undisturbed. Rats were reared until adulthood, and the HVR was measured by plethysmography (fractional inspired O2 = 0.12, for 20 min). We used gonadectomy to evaluate the effects of reducing testosterone on the HVR. Gonadectomy had no effect on the HVR of control animals but reduced that of NMS animals below control levels. Immunohistochemistry was used to quantify androgen receptors in brainstem areas involved in the HVR. Androgen receptor expression was generally greater in NMS rats than in control rats; the most significant increase was noted in the caudal region of the nucleus tractus solitarii. We conclude that the abnormal regulation of testosterone is important in stress-related augmentation of the HVR. The greater number of androgen receptors within the brainstem may explain why NMS rats are more sensitive to testosterone withdrawal. Based on the similarities of the cardiorespiratory phenotype of NMS rats and patients suffering from sleep-disordered breathing, these results provide new insight into its pathophysiology, especially sex-based differences in its prevalence. © 2014 The Authors. Experimental Physiology © 2014 The Physiological Society.

  2. Role of insular cortex in visceral hypersensitivity model in rats subjected to chronic stress.

    Science.gov (United States)

    Yi, LiSha; Sun, HuiHui; Ge, Chao; Chen, Ying; Peng, HaiXia; Jiang, YuanXi; Wu, Ping; Tang, YinHan; Meng, QingWei; Xu, ShuChang

    2014-12-30

    Abnormal processing of visceral sensation at the level of the central nervous system has been proven to be important in the pathophysiologic mechanisms of stress related functional gastrointestinal disorders. However, the specific mechanism is still not clear. The insular cortex (IC) was considered as one important visceral sensory area. Moreover, the IC has been shown to be involved in various neuropsychiatric diseases such as panic disorders and post-traumatic stress disorder. However, whether the IC is important in psychological stress related visceral hypersensitivity has not been studied yet. In our study, through destruction of the bilateral IC, we explored whether the IC played a critical role in the formation of visceral hypersensitivity induced by chronic stress on rats. Chronic partial restraint stress was used to establish viscerally hypersensitive rat model. Bilateral IC lesions were generated by N-methyl-D-day (door) aspartate. After a recovery period of 7 days, 14-day consecutive restraint stress was performed. The visceromotor response to colorectal distension was monitored by recording electromyogram to measure rats׳ visceral sensitivity. We found that bilateral insular cortex lesion could markedly inhibit the formation of visceral hypersensitivity induced by chronic stress. The insular cortex plays a critical role in the pathophysiology of stress-related visceral hypersensitivity.

  3. Effect of aerobic exercise intervention on DDT degradation and oxidative stress in rats

    OpenAIRE

    Li, Kefeng; Zhu, Xiaohua; Wang, Yuzhan; Zheng, Shuqian; Dong, Guijun

    2017-01-01

    Dichlorodiphenyltrichloroethane (DDT) reportedly causes extensively acute or chronic effects to human health. Exercise can generate positive stress. We evaluated the effect of aerobic exercise on DDT degradation and oxidative stress. Main methods: Male Wistar rats were randomly assigned into control (C), DDT without exercise training (D), and DDT plus exercise training (DE) groups. The rats were treated as follows: DDT exposure to D and DE groups at the first 2 weeks; aerobic exercise trea...

  4. ESR imaging for estimation oxidative stress in the brain of rats

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, Hidekatsu; Itoh, Osam; Aoyama, Masaaki; Obara, Heitaro; Ohya, Hiroaki; Kamada, Hitoshi [Inst. for Life Support Technology, Matsuei, Yamagata (Japan)

    2002-04-01

    ESR imaging for estimating intracerebral oxidative stress of rats was performed. An acyl-protected hydroxylamine, 1-acetoxy-3-carbamoyl-2,2,5,5-tetramethylpyrrolidine (ACP), is a very stable non-radical compound outside cells, however, within cells, it is easily deprotected with esterase to yield 1-hydroxy-3-carbamoyl-2,2,5,5-tetramethylpyrrolidine, which is oxidized by oxidative stress to yield an ESR-detectable stable nitroxide radical, 3-carbamoyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl. Thus signal intensity in the ESR image reflects the strength of intracellular oxidative stress. From in vivo ESR image data of the brain of rats that received ACP, the average values of ESR signal intensity from the hippocampus, striatum, and cerebral cortex were computed. This imaging technique was applied to an epileptic seizure model. As a result, it was found that following a kainic acid-induced seizure, the oxidative stress in the hippocampus and striatum is enhanced, but not so in the cerebral cortex. (author)

  5. Effects of chronic stress in adolescence on learned fear, anxiety, and synaptic transmission in the rat prelimbic cortex.

    Science.gov (United States)

    Negrón-Oyarzo, Ignacio; Pérez, Miguel Ángel; Terreros, Gonzalo; Muñoz, Pablo; Dagnino-Subiabre, Alexies

    2014-02-01

    The prelimbic cortex and amygdala regulate the extinction of conditioned fear and anxiety, respectively. In adult rats, chronic stress affects the dendritic morphology of these brain areas, slowing extinction of learned fear and enhancing anxiety. The aim of this study was to determine whether rats subjected to chronic stress in adolescence show changes in learned fear, anxiety, and synaptic transmission in the prelimbic cortex during adulthood. Male Sprague Dawley rats were subjected to seven days of restraint stress on postnatal day forty-two (PND 42, adolescence). Afterward, the fear-conditioning paradigm was used to study conditioned fear extinction. Anxiety-like behavior was measured one day (PND 50) and twenty-one days (PND 70, adulthood) after stress using the elevated-plus maze and dark-light box tests, respectively. With another set of rats, excitatory synaptic transmission was analyzed with slices of the prelimbic cortex. Rats that had been stressed during adolescence and adulthood had higher anxiety-like behavior levels than did controls, while stress-induced slowing of learned fear extinction in adolescence was reversed during adulthood. As well, the field excitatory postsynaptic potentials of stressed adolescent rats had significantly lower amplitudes than those of controls, although the amplitudes were higher in adulthood. Our results demonstrate that short-term stress in adolescence induces strong effects on excitatory synaptic transmission in the prelimbic cortex and extinction of learned fear, where the effect of stress on anxiety is more persistent than on the extinction of learned fear. These data contribute to the understanding of stress neurobiology. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Age, subjective stress, and depression after ischemic stroke.

    Science.gov (United States)

    McCarthy, Michael J; Sucharew, Heidi J; Alwell, Kathleen; Moomaw, Charles J; Woo, Daniel; Flaherty, Matthew L; Khatri, Pooja; Ferioli, Simona; Adeoye, Opeolu; Kleindorfer, Dawn O; Kissela, Brett M

    2016-02-01

    The incidence of stroke among younger adults in the United States is increasing. Few studies have investigated the prevalence of depressive symptoms after stroke among different age groups or the extent to which subjective stress at the time of stroke interacts with age to contribute to post-stroke depression. The present study examined whether there exists an age gradient in survivors' level of depressive symptoms and explored the extent to which financial, family, and health-related stress may also impact on depression. Bivariate analyses (N = 322) indicated significant differences in depression and stress by age group, as well as differences in age and stress by 3-month depression status. Linear regression analyses indicated that survivors between the ages of 25-54 and 55-64 years old had, on average, significantly higher depressive symptom scores. Those with financial, family, and health-related stress at the time of stroke, irrespective of age, also had significantly higher scores.

  7. Parameters of Blood Flow in Great Arteries in Hypertensive ISIAH Rats with Stress-Dependent Arterial Hypertension.

    Science.gov (United States)

    Seryapina, A A; Shevelev, O B; Moshkin, M P; Markel', A L

    2016-08-01

    Magnetic resonance angiography was used to examine blood flow in great arteries of hypertensive ISIAH and normotensive Wistar rats. In hypertensive ISIAH rats, increased vascular resistance in the basin of the abdominal aorta and renal arteries as well as reduced fraction of total renal blood flow were found. In contrast, blood flow through both carotid arteries in ISIAH rats was enhanced, which in suggests more intensive blood supply to brain regulatory centers providing enhanced stress reactivity of these rats characterized by stress-dependent arterial hypertension.

  8. Relationship between hyposalivation and oxidative stress in aging mice.

    Science.gov (United States)

    Yamauchi, Yoshitaka; Matsuno, Tomonori; Omata, Kazuhiko; Satoh, Tazuko

    2017-07-01

    The increase in oxidative stress that accompanies aging has been implicated in the abnormal advance of aging and in the onset of various systemic diseases. However, the details of what effects the increase in oxidative stress that accompanies aging has on saliva secretion are not known. In this study, naturally aging mice were used to examine the stimulated whole saliva flow rate, saliva and serum oxidative stress, antioxidant level, submandibular gland H-E staining, and immunofluorescence staining to investigate the effect of aging on the volume of saliva secretion and the relationship with oxidative stress, as well as the effect of aging on the structure of salivary gland tissue. The stimulated whole saliva flow rate decreased significantly with age. Also, oxidative stress increased significantly with age. Antioxidant levels, however, decreased significantly with age. Structural changes of the submandibular gland accompanying aging included atrophy of parenchyma cells and fatty degeneration and fibrosis of stroma, and the submandibular gland weight ratio decreased. These results suggest that oxidative stress increases with age, not just systemically but also locally in the submandibular gland, and that oxidative stress causes changes in the structure of the salivary gland and is involved in hyposalivation.

  9. Social stress induces high intensity sleep in rats

    NARCIS (Netherlands)

    Meerlo, P; Pragt, Bertrand J.; Daan, S

    1997-01-01

    We studied the effect of social stress on sleep electroencephalogram (EEG) in rats. Animals were subjected to a single social defeat by introducing them in the cage of an aggressive male conspecific for 1 h. The animals responded to the social conflict by a sharp increase in EEG slow-wave activity

  10. {sup 125}I-iomazenil - benzodiazepine receptor binding and serum corticosterone level during psychological stress in a rat model

    Energy Technology Data Exchange (ETDEWEB)

    Fukumitsu, Nobuyoshi E-mail: GZL13162@nifty.ne.jp; Ogi, Shigeyuki; Uchiyama, Mayuki; Mori, Yutaka

    2004-02-01

    To test the hypothesis that benzodiazepine receptor density decreases in response to stress, we correlated {sup 125}I-iomazenil ({sup 125}I-IMZ) binding with serum corticosterone levels in a rat model. Wistar male rats were divided into four groups; control group (CON, 10 rats), no physical or psychological stress; and one-, three-, and five-day stress groups of 12 rats each (1-DAY, 3-DAY, and 5-DAY, respectively), receiving psychological stress for the given number of days. Psychological stress were given to rats with a communication box. The standardized uptake value (SUV) of {sup 125}I-iomazenil of the 3-DAY and 5-DAY showed that {sup 125}I-iomazenil - benzodiazepine receptor binding was significantly reduced in the cortices, accumbens nuclei, amygdala and caudate putamen (p<0.05). Serum corticosterone level ratio appeared to be slightly elevated in 3-DAY and 5-DAY, although this elevation was not significant. These data suggest that {sup 125}I-IMZ is a useful radioligand to reflect received stress and its binding in the cortices, accumbens nuclei, amygdala and caudate putamen is strongly affected by psychological stress.

  11. Changes in proinflammatory cytokines and white matter in chronically stressed rats

    Directory of Open Access Journals (Sweden)

    Yang P

    2015-03-01

    Full Text Available Ping Yang,1 Zhenyong Gao,1 Handi Zhang,1 Zeman Fang,1 Cairu Wu,1 Haiyun Xu,1,2 Qing-Jun Huang1 1Mental Health Center, 2Department of Anatomy, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China Abstract: Although the pathogenesis of depression, an incapacitating psychiatric ailment, remains largely unknown, previous human and animal studies have suggested that both proinflammatory cytokines and altered oligodendrocytes play important roles in the condition. This study examined these two factors in the brains of rats following unpredictable chronic mild stress for 4 weeks, with the hypothesis that chronic stress may affect oligodendrocytes and elevate proinflammatory cytokines in the brain. After suffering unpredictable stressors for 4 weeks, the rats showed depression-like behaviors, including decreased locomotion in the open field, increased immobility time in the forced swim test, and decreased sucrose consumption and less sucrose preference when compared with controls. Immunohistochemical staining of brain sections showed higher immunoreactivity of proinflammatory cytokines in certain brain regions of stressed rats compared with controls; lower immunoreactivity of myelin basic protein and fewer mature oligodendrocytes were seen in the prefrontal cortex, but no demyelination was detected. These results are interpreted and discussed in the context of recent findings from human and animal studies. Keywords: cytokines, depression, myelination, oligodendrocytes, stress 

  12. Effect of methanolic extract of Asparagus racemosus Willd. on lipopolysaccharide induced-oxidative stress in rats.

    Science.gov (United States)

    Ahmad, Mohammad Parwez; Hussain, Arshad; Siddiqui, Hefazat Hussain; Wahab, Shadma; Adak, Manoranjan

    2015-03-01

    Lipopolysaccharide (LPS) induced oxidative stress and impairment of normal physiological function generally categorized by increased anxiety and reduced mobility. Therefore, the present study was to find out the effect Methanolic extract of Asparagus racemosus (MEAR ) in lipopolysaccharide (LPS)-induced oxidative stress in rats . LPS-induced oxidative stress in rats was measured by locomotor activity by photoactometer test, anxiety with elevated plus maze test and also studied the oxidative stress markers, nitric oxide and cytokines. The obtained data shows that LPS markedly exhausted (pAsparagus racemosus Willd. is a functionally newer type of cerebroprotective agent.

  13. Sex-dependent effects of high-fat-diet feeding on rat pancreas oxidative stress.

    Science.gov (United States)

    Gómez-Pérez, Yolanda; Gianotti, Magdalena; Lladó, Isabel; Proenza, Ana M

    2011-07-01

    The objective of the study was to investigate whether sex differences in oxidative stress-associated insulin resistance previously reported in rats could be attributed to a possible sex dimorphism in pancreas redox status. Fifteen-month-old male and female Wistar rats were fed a control diet or a high-fat diet for 14 weeks. Serum glucose, lipids, and hormone levels were measured. Insulin immunohistochemistry and morphometric analysis of islets were performed. Pancreas triglyceride content, oxidative damage, and antioxidant enzymatic activities were determined. Lipoprotein lipase, hormone-sensitive lipase, and uncoupling protein 2 (UCP2) levels were also measured. Male rats showed a more marked insulin resistance profile than females. In control female rats, pancreas Mn-superoxide dismutase activity and UCP2 levels were higher, and oxidative damage was lower compared with males. High-fat-diet feeding decreased pancreas triglyceride content in female rats and UCP2 levels in male rats. High-fat-diet female rats showed larger islets than both their control and sex counterparts. These results confirm the existence of a sex dimorphism in pancreas oxidative status in both control and high-fat-diet feeding situations, with female rats showing higher protection against oxidative stress, thus maintaining pancreatic function and contributing to a lower risk of insulin resistance.

  14. RAGE-Specific Inhibitor FPS-ZM1 Attenuates AGEs-Induced Neuroinflammation and Oxidative Stress in Rat Primary Microglia.

    Science.gov (United States)

    Shen, Chao; Ma, Yingjuan; Zeng, Ziling; Yin, Qingqing; Hong, Yan; Hou, Xunyao; Liu, Xueping

    2017-10-01

    Advanced glycation end products (AGEs) enhance microglial activation and intensify the inflammatory response and oxidative stress in the brain. This process may occur due to direct cytotoxicity or interacting with AGEs receptors (RAGE), which are expressed on the surface of microglia. FPS-ZM1 is a high-affinity but nontoxic RAGE-specific inhibitor that has been recently shown to attenuate the Aβ-induced inflammatory response by blocking the ligation of Aβ to RAGE. In this study, we further investigated the effect of FPS-ZM1 on the AGEs/RAGE interaction and downstream elevation of neuroinflammation and oxidative stress in primary microglia cells. The results suggested that FPS-ZM1 significantly suppressed AGEs-induced RAGE overexpression, RAGE-dependent microglial activation, nuclear translocation of nuclear factor kappaB p65 (NF-κB p65), and the expression of downstream inflammatory mediators such as tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), cyclooxygenase 2 (COX-2)/prostaglandin E2 (PGE2) and inducible nitric oxide synthase (iNOS)/nitric oxide (NO). Furthermore, FPS-ZM1 attenuated AGEs-stimulated NADPH oxidase (NOX) activation and reactive oxygen species (ROS) expression. Finally, FPS-ZM1 elevated the levels of transcription factors nuclear-factor (erythroid-derived 2)-like 2 (Nrf2) and heme oxygenase-1 (HO-1), as well as decreased antioxidant capacity and increased production of oxidative species. Our results suggest that FPS-ZM1 may be neuroprotective through attenuating microglial activation, oxidative stress and inflammation by blocking RAGE.

  15. Effect of Kampo medicine "Dai-kenchu-to" on microbiome in the intestine of the rats with fast stress.

    Science.gov (United States)

    Yoshikawa, Kozo; Shimada, Mitsuo; Kuwahara, Tomomi; Hirakawa, Hideki; Kurita, Nobuhiro; Sato, Hirohiko; Utsunomiya, Tohru; Iwata, Takashi; Miyatani, Tomohiko; Higashijima, Jun; Kashihara, Hideya; Takasu, Chie; Matsumoto, Noriko; Nakayama-Imaohji, Haruyuki

    2013-01-01

    Diversity of gut microbiome has been recently reported to be lost in inflammatory bowel disease. We have previously reported that the Dai-kenchu-to (DKT) prevented the bacterial translocation through suppression of cytokine and apoptosis in rat's fast stress model. The aim of this study was to evaluate the effect of DKT on maintenance of microbial diversity in rat's intestine with inflammation. Wister rats were received the fast stress for 5 days. In DKT group, rats were administered with DKT (300 mg/kg/day) during the fast stress (DKT-group). The gut microbiomes were analyzed at before- and after- fast stress, and the effect of DKT for on microbial diversities of the gut were evaluated by the PCR-clone library method targeting the 16 S ribosomal RNA gene. In Control-group, Erysipelotrichaceae increased to 86% in after fast stress, OTU of before-fast stress was 111 and after fast stress was only 9 (changing rate: 58%). The diversity of microbiome was severely decreased. On the other hand, in DKT-group, diversity of microbiome was kept after fast stress (Lachnospiraceae: Ruminococcaceae: Coriobacteriales 54%, 22%, 5%), Operational taxonomic units of before fast stress was 52 and after fast stress was 55 (changing rate: 6%). Family Lachnospiraceae which includes butyrate-producing Clostridia (Clostridium IV and XIVa). DKT prevented the reduction of diversity of microbiome in rat's fast stress model. Our data suggested the new anti-inflammatory mechanism of DKT through gut microbiome.

  16. Neonatal stress-induced affective changes in adolescent Wistar rats: early signs of schizophrenia-like behavior

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo Neves Girardi

    2014-09-01

    Full Text Available Psychiatric disorders are multifactorial diseases with etiology that may involve genetic factors, early life environment and stressful life events. The neurodevelopmental hypothesis of schizophrenia is based on a wealth of data on increased vulnerability in individuals exposed to insults during the perinatal period. Maternal deprivation disinhibits the adrenocortical response to stress in neonatal rats and has been used as an animal model of schizophrenia. To test if long-term affective consequences of early life stress were influenced by maternal presence, we submitted 10-day old rats, either deprived (for 22 h or not from their dams, to a stress challenge (i.p. saline injection. Corticosterone plasma levels were measured 2 h after the challenge, whereas another subgroup was assessed for behavior in the open field, elevated plus maze, social investigation and the negative contrast sucrose consumption test in adolescence (postnatal day 45. Maternally deprived rats exhibited increased plasma corticosterone levels which were higher in maternally deprived and stress challenged pups. Social investigation was impaired in maternally deprived rats only, while saline injection, independently of maternal deprivation, was associated with increased anxiety-like behavior in the elevated plus maze and an impaired intake decrement in the negative sucrose contrast. In the open field, center exploration was reduced in all maternally-deprived adolescents and in control rats challenged with saline injection. The most striking finding was that exposure to a stressful stimulus per se, regardless of maternal deprivation, was linked to differential emotional consequences. We therefore propose that besides being a well-known and validated model of schizophrenia in adult rats, the maternal deprivation paradigm could be extended to model early signs of psychiatric dysfunction, and would particularly be a useful tool to detect early signs that resemble schizophrenia.

  17. Mulberry Leaf Extract Attenuates Oxidative Stress-Mediated Testosterone Depletion in Streptozotocin-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Hajizadeh

    2014-03-01

    Full Text Available Background: It has been proposed that oxidative stress may contribute to the development of testicular abnormalities in diabetes. Morus alba leaf extract (MAE has hypoglycemic and antioxidant properties. We, therefore, explored the impact of the administration of MAE on steroidogenesis in diabetic rats. Methods: To address this hypothesis, we measured the serum level of glucose, insulin, and free testosterone (Ts as well as oxidative stress parameters (including glutathione peroxidase, glutathione reductase, total antioxidant capacity, and malondialdehyde in the testis of control, untreated and MAE-treated (1 g/day/kg diabetic rats. In order to determine the likely mechanism of MAE action on Ts levels, we analyzed the quantitative mRNA expression level of the two key steroidogenic proteins, namely steroid acute regulatory protein (StAR and P450 cholesterol side-chain cleavage enzyme (P450scc, by real-time PCR. Results: The MAE-treated diabetic rats had significantly decreased glucose levels and on the other hand increased insulin and free Ts levels than the untreated diabetic rats. In addition, the administration of MAE to the diabetic rats restored the oxidative stress parameters toward control. Induction of diabetes decreased testicular StAR mRNA expression by 66% and MAE treatment enhanced mRNA expression to the same level of the control group. However, the expression of P540scc was not significantly decreased in the diabetic group as compared to the control group. Conclusion: Our findings indicated that MAE significantly increased Ts production in the diabetic rats, probably through the induction of StAR mRNA expression levels. Administration of MAE to experimental models of diabetes can effectively attenuate oxidative stress-mediated testosterone depletion. Please cite this article as: Hajizadeh MR, Eftekhar E, Zal F, Jaffarian A, Mostafavi-Pour Z. Mulberry Leaf Extract Attenuates Oxidative Stress-Mediated Testosterone Depletion in

  18. Role of Cardamom (Elettaria cardamomum) in Ameliorating Radiation Induced Oxidative Stress In Rats

    International Nuclear Information System (INIS)

    Darwish, M.M.; Abd El Azime, A. Sh.

    2013-01-01

    Radiation is one of the most widespread sources of environmental stress in living environment which cause oxidative stress and metabolic changes. The present study aims to evaluate the antioxidant effect of Cardamom (Elettaria cardamomum) on gamma radiation-induced oxidative damage in liver and heart tis sues. The study was conducted on forty (40) rats which were classified into four equal groups. Group1: Control group, Group. 2: rats given cardamom in basal diet.Group3: Irradiated rats, rats were subjected to whole body gamma irradiation at 6 Gy delivere d as single exposure dose. Group 4: irradiated +cardamom: rats receiving cardamom for 4 weeks and irradiated. The animals were scarified 24h after irradiation. Irradiated animals had significant increase in oxidative stress markers in liver and heart tissues expressed by significant increase of malondialdehyde (MDA) content associated to significant depletion of superoxide dismutase (SOD) , catalase (CAT) activities, and reduced glutathione (GSH) content . Hepatic and cardiac changes included significant increases of serum alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP), lactate dehydrogenase (LDH) , total cholesterol(TC), triacylglycerol(TAG), low-density lipoprotein cholesterol(LDL-C), and iron concentration. While, a significant decre ase in high-density lipoprotein-cholesterol (HDL-C), manganese and copper were observed. Addition of cardamom to the basal diet prior to gamma radiation, improved the tested parameters . So it is a therapeutic alternative for oxidative stress, hyperlipidaemia and trace elements changes. . The data obtained in this study suggest that cardamom may prevent liver and heart from radiation-induced damage.

  19. Treadmill exercise alleviates stress-induced impairment of social interaction through 5-hydroxytryptamine 1A receptor activation in rats.

    Science.gov (United States)

    Kim, Tae-Woon; Lim, Baek-Vin; Kim, Kijeong; Seo, Jin-Hee; Kim, Chang-Ju

    2015-08-01

    Brain-derived neurotrophic factor (BDNF) and its receptors tyrosine kinase B (trkB), and cyclic adenosine monophosphate response element binding protein (CREB) have been suggested as the neurobiological risk factors causing depressive disorder. Serotonin (5-hydroxytryptamine, 5-HT) plays an important role in the pathogenesis of depression. We in-vestigated the effect of treadmill exercise on social interaction in relation with BDNF and 5-HT expressions following stress in rats. Stress was induced by applying inescapable 0.2 mA electric foot shock to the rats for 7 days. The rats in the exercise groups were forced to run on a motorized treadmill for 30 min once a day for 4 weeks. Social interaction test and western blot for BDNF, TrkB, pCREB, and 5-HT1A in the hippocampus were performed. The results indicate that the spend time with unfamiliar partner was decreased by stress, in contrast, treadmill exercise increased the spending time in the stress-induced rats. Expressions of BDNF, TrkB, and pCREB were decreased by stress, in contrast, treadmill exercise enhanced expressions of BDNF, TrkB, and pCREB in the stress-induced rats. In addition, 5-HT1A receptor expression was de-creased by stress, in contrast, treadmill exercise enhanced 5-HT1A expression in the stress-induced rats. In the present study, treadmill exercise alleviated stress-induced social interaction impairment through enhancing hippocampal plasticity and serotonergic function in the hippocampus. These effects of treadmill exercise are achieved through 5-HT1A receptor activation.

  20. Moringa oleifera extract enhances sexual performance in stressed rats.

    Science.gov (United States)

    Prabsattroo, Thawatchai; Wattanathorn, Jintanaporn; Iamsaard, Sitthichai; Somsapt, Pichet; Sritragool, Opass; Thukhummee, Wipawee; Muchimapura, Supaporn

    2015-03-01

    Aphrodisiacs are required to improve male sexual function under stressful conditions. Due to the effects of oxidative stress and dopamine on male sexual function, we hypothesized that Moringa oleifera leaves might improve male sexual dysfunction induced by stress. Therefore, the effects on various factors playing important roles in male sexual behavior, such as antioxidant effects, the suppression of monoamine and phosphodiesterase type 5 (PDE-5) activities, serum testosterone and corticosterone levels, and histomorphological changes in the testes, of a hydroethanolic extract of M. oleifera leaves were investigated. Various doses of extract including 10, 50, and 250 mg/kg body weight (BW) were given orally to male Wistar rats before exposure to 12 h-immobilization stress for 7 d. The results demonstrated that the extract showed both antioxidant and monoamine oxidase type B (MAO-B) suppression activities. At 7 d of treatment, the low dose of extract improved sexual performance in stress-exposed rats by decreasing intromission latency and increasing intromission frequency. It also suppressed PDE-5 activity, decreased serum corticosterone level, but increased serum testosterone, numbers of interstitial cells of Leydig and spermatozoa. The increased numbers of interstitial cells of Leydig and spermatozoa might have been due to the antioxidant effect of the extract. The increased sexual performance during the intromission phase might have been due to the suppression of MAO-B and PDE-5 activities and increased testosterone. Therefore, M. oleifera is a potential aphrodisiac, but further research concerning the precise underlying mechanisms is still needed.

  1. Chronic aerobic exercise training alleviates myocardial fibrosis in aged rats through restoring bioavailability of hydrogen sulfide.

    Science.gov (United States)

    Ma, Ning; Liu, Hong-Mei; Xia, Ting; Liu, Jian-Dong; Wang, Xiao-Ze

    2018-06-02

    Age-related fibrosis is attenuated by aerobic exercise; however, little is known concerning the underlying molecular mechanism. To address this question, aged rats were given moderate-intensity exercise for 12 weeks. After exercise in aged rats, hydrogen sulfide (H2S) levels in plasma and heart increased 39.8% and 90.9%, respectively. Exercise upregulated expression of cystathionine γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3-MST) in heart of aged rats. Furthermore, aged rats were given moderate-intensity exercise for 12 weeks or treated with NaHS (intraperitoneal injection of 0.1 ml/kg/day of 0.28 mol/l NaHS). After exercise in aged rats, Masson-trichrome staining area decreased 34.8% and myocardial hydroxyproline levels decreased 29.6%. Exercise downregulated expression of collagen-I and α-SMA in heart of aged rats. Exercise in aged rats reduced malondialdehyde levels in plasma and heart and 3-nitrotyrosine in heart. Exercise in aged rats reduced mRNA and protein expression of CHOP, GRP78, and XBP1. Exercise also reduced mRNA and protein expression of IL-6 and MCP-1 and suppressed activation of JNK in aging heart. Similar effects were demonstrated in aged rats treated with NaHS. Collectively, exercise restored bioavailability of hydrogen sulfide in the heart of aged rats, which partly explained the benefits of exercise against myocardial fibrosis of aged population.

  2. Aging causes decreased resistance to multiple stresses and a failure to activate specific stress response pathways

    Science.gov (United States)

    Bergsma, Alexis L.; Senchuk, Megan M.; Van Raamsdonk, Jeremy M.

    2016-01-01

    In this work, we examine the relationship between stress resistance and aging. We find that resistance to multiple types of stress peaks during early adulthood and then declines with age. To dissect the underlying mechanisms, we use C. elegans transcriptional reporter strains that measure the activation of different stress responses including: the heat shock response, mitochondrial unfolded protein response, endoplasmic reticulum unfolded protein response, hypoxia response, SKN-1-mediated oxidative stress response, and the DAF-16-mediated stress response. We find that the decline in stress resistance with age is at least partially due to a decreased ability to activate protective mechanisms in response to stress. In contrast, we find that any baseline increase in stress caused by the advancing age is too mild to detectably upregulate any of the stress response pathways. Further exploration of how worms respond to stress with increasing age revealed that the ability to mount a hormetic response to heat stress is also lost with increasing age. Overall, this work demonstrates that resistance to all types of stress declines with age. Based on our data, we speculate that the decrease in stress resistance with advancing age results from a genetically-programmed inactivation of stress response pathways, not accumulation of damage. PMID:27053445

  3. Aging causes decreased resistance to multiple stresses and a failure to activate specific stress response pathways.

    Science.gov (United States)

    Dues, Dylan J; Andrews, Emily K; Schaar, Claire E; Bergsma, Alexis L; Senchuk, Megan M; Van Raamsdonk, Jeremy M

    2016-04-01

    In this work, we examine the relationship between stress resistance and aging. We find that resistance to multiple types of stress peaks during early adulthood and then declines with age. To dissect the underlying mechanisms, we use C. elegans transcriptional reporter strains that measure the activation of different stress responses including: the heat shock response, mitochondrial unfolded protein response, endoplasmic reticulum unfolded protein response, hypoxia response, SKN-1-mediated oxidative stress response, and the DAF-16-mediated stress response. We find that the decline in stress resistance with age is at least partially due to a decreased ability to activate protective mechanisms in response to stress. In contrast, we find that any baseline increase in stress caused by the advancing age is too mild to detectably upregulate any of the stress response pathways. Further exploration of how worms respond to stress with increasing age revealed that the ability to mount a hormetic response to heat stress is also lost with increasing age. Overall, this work demonstrates that resistance to all types of stress declines with age. Based on our data, we speculate that the decrease in stress resistance with advancing age results from a genetically-programmed inactivation of stress response pathways, not accumulation of damage.

  4. Effect of atropine or atenolol on cardiovascular responses to novelty stress in freely-moving rats.

    Science.gov (United States)

    van den Buuse, Maarten

    2002-09-01

    Cardiac hemodynamic mechanisms involved in cardiovascular responses to stress were studied in conscious, freely-moving female spontaneously hypertensive rats exposed for 15 min to an open-field. When pretreated with saline, the rats displayed a rapid rise in blood pressure, heart rate, aortic dP/dt and locomotor activity. In rats pretreated with 0.5 mg/kg of methylatropine, the tachycardia was slightly, but significantly reduced. In rats pretreated with 1 mg/kg of atenolol, the tachycardis and rise in dP/dt were markedly reduced. These data suggest that the cardiac responses to stress include predominantly cardiac sympathetic activation and a minor component of vagal withdrawal.

  5. Curcumin protects against tartrazine-mediated oxidative stress and hepatotoxicity in male rats.

    Science.gov (United States)

    El-Desoky, G E; Abdel-Ghaffar, A; Al-Othman, Z A; Habila, M A; Al-Sheikh, Y A; Ghneim, H K; Giesy, J P; Aboul-Soud, M A M

    2017-02-01

    Synthetic dyes have been reported to exert detrimental effects on the health of humans. This study evaluated the effects of a diet containing tartrazine (Tz) on rats which included: i) biochemical parameters including hepatic enzymes, kidney functions and profiles of lipids; ii) markers of oxidative stress in cells by measuring concentrations of malondialdehyde (MDA) and glutathione (GSH); iii) activities of selected, key hepatic antioxidant enzymes including catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx); iv) pathologies of liver. Also, protective effects of three doses of curcumin (CUR), a natural food coloring agent, on these parameters in rats that had been co-exposed to Tz. Fifty Wistar male albino rats were randomly divided into five groups: Group I, control, where rats were fed a normal diet; Group II, rats were fed normal diets containing 7.5 mg Tz/kg diet, dry mass (dm); In Groups III, IV and V, rats were fed diets containing Tz plus 1.0, 2.0 or 4.0 g CUR/kg diet, dm, respectively. Whole blood was collected after 90 d of exposure, homogenates of liver were prepared and the above analyses were conducted. Exposure to Tz in the diet caused statistically significant (peffects on functions of liver and kidney and the profile of relative concentrations of lipids. CUR significantly (peffects on enzymatic and non-enzymatic antioxidant and indicators of oxidative stress about rats fed Tz (Group II) to values in control rats. However, co-administration of 1.0 g CUR with Tz (Group III) exhibited a negligible effect on those parameters. The results of this study suggest benefits of the use of CUR, as a promising natural food additive to counteract oxidative stress caused by dietary exposure to the synthetic dye Tz due to potent protective antioxidant activity. Blending some natural food additives, such as CUR with diets containing synthetic dyes, could moderate potential effects of these artificial dyes. Decreasing or removing toxins in

  6. Inhibitory effect of the Kampo medicinal formula Yokukansan on acute stress-induced defecation in rats

    Directory of Open Access Journals (Sweden)

    Kanada Y

    2018-04-01

    Full Text Available Yasuaki Kanada, Ayami Katayama, Hideshi Ikemoto, Kana Takahashi, Mana Tsukada, Akio Nakamura, Shogo Ishino, Tadashi Hisamitsu, Masataka Sunagawa Department of Physiology, School of Medicine, Showa University, Shinagawa-ku, Tokyo, Japan Objectives: Irritable bowel syndrome (IBS is a functional gastrointestinal disorder with symptoms of abnormal defecation and abdominal discomfort. Psychological factors are well known to be involved in onset and exacerbation of IBS. A few studies have reported effectiveness of traditional herbal (Kampo medicines in IBS treatment. Yokukansan (YKS has been shown to have anti-stress and anxiolytic effects. We investigated the effect of YKS on defecation induced by stress and involvement of oxytocin (OT, a peptide hormone produced by the hypothalamus, in order to elucidate the mechanism of YKS action. Methods and results: Male Wistar rats were divided into four groups; control, YKS (300 mg/kg PO-treated non-stress (YKS, acute stress (Stress, and YKS (300 mg/kg PO-treated acute stress (Stress+YKS groups. Rats in the Stress and Stress+YKS groups were exposed to a 15-min psychological stress procedure involving novel environmental stress. Levels of plasma OT in the YKS group were significantly higher compared with those in the Control group (P < 0.05, and OT levels in the Stress+YKS group were remarkably higher than those in the other groups (P < 0.01. Next, rats were divided into four groups; Stress, Stress+YKS, Atosiban (OT receptor antagonist; 1 mg/kg IP-treated Stress+YKS (Stress+YKS+B, and OT (0.04 mg/kg IP-treated acute stress (Stress+OT groups. Rats were exposed to acute stress as in the previous experiment, and defecation during the stress load was measured. Administration of YKS or OT significantly inhibited defecation; however, administration of Atosiban partially abolished the inhibitory effect of YKS. Finally, direct action of YKS on motility of isolated colon was assessed. YKS (1 mg/mL, 5 mg/mL did not

  7. Candidate hippocampal biomarkers of susceptibility and resilience to stress in a rat model of depression

    DEFF Research Database (Denmark)

    Henningsen, Kim; Palmfeldt, Johan; Christiansen, Sofie Friis

    2012-01-01

    -scale proteomics was used to map hippocampal protein alterations in different stress states. Membrane proteins were successfully captured by two-phase separation and peptide based proteomics. Using iTRAQ labeling coupled with mass spectrometry, more than 2000 proteins were quantified and 73 proteins were found......Susceptibility to stress plays a crucial role in the development of psychiatric disorders such as unipolar depression and post-traumatic stress disorder. In the present study the chronic mild stress rat model of depression was used to reveal stress-susceptible and stress-resilient rats. Large...... to be differentially expressed. Stress susceptibility was associated with increased expression of a sodium-channel protein (SCN9A) currently investigated as a potential antidepressant target. Differential protein profiling also indicated stress susceptibility to be associated with deficits in synaptic vesicle release...

  8. Aging-associated oxidative stress leads to decrease in IAS tone via RhoA/ROCK downregulation.

    Science.gov (United States)

    Singh, Jagmohan; Kumar, Sumit; Krishna, Chadalavada Vijay; Rattan, Satish

    2014-06-01

    Internal anal sphincter (IAS) tone plays an important role in rectoanal incontinence (RI). IAS tone may be compromised during aging, leading to RI in certain patients. We examined the influence of oxidative stress in the aging-associated decrease in IAS tone (AADI). Using adult (4-6 mo old) and aging (24-30 mo old) rats, we determined the effect of oxidative stress on IAS tone and the regulatory RhoA/ROCK signal transduction cascade. We determined the effect of the oxidative stress inducer LY83583, which produces superoxide anions (O2 (·-)), on basal and stimulated IAS tone before and after treatment of intact smooth muscle strips and smooth muscle cells with the O2 (·-) scavenger SOD. Our data showed that AADI was associated with a decrease in RhoA/ROCK expression at the transcriptional and translational levels. Oxidative stress with a LY83583-mediated decrease in IAS tone and relaxation of IAS smooth muscle cells was associated with a decrease in RhoA/ROCK signal transduction, which was reversible by SOD. In addition, LY83583 caused a significant decrease in IAS contraction produced by the RhoA activator and a known RhoA/ROCK agonist, U46619, that was also reversible by SOD. The inhibitory effects of LY83583 and the ROCK inhibitor Y27632 on the U46619-induced increase in IAS tone were similar. We conclude that an increase in oxidative stress plays an important role in AADI in the elderly and may be one of the underlying mechanisms of RI in certain aging patients. Copyright © 2014 the American Physiological Society.

  9. The effect of age on digoxin pharmacokinetics in Fischer-344 rats

    International Nuclear Information System (INIS)

    Evans, R.L.; Owens, S.M.; Ruch, S.; Kennedy, R.H.; Seifen, E.

    1990-01-01

    Digoxin protein binding and pharmacokinetics were studied in 4-, 14-, and 25-month-old male Fischer-344 rats to determine if there were age-dependent changes in digoxin disposition. Serum protein binding did not differ among age groups. The average percentage unbound digoxin for all animals was 61.3 ± 5.3% (means ± SD, n = 15). For pharmacokinetic studies, [ 3 H]digoxin and 1 mg/kg unlabeled digoxin were administered as an intravenous bolus dose to animals from each age group. The [ 3 H]digoxin terminal elimination half-life was 2.0, 2.3, and 2.5 hr, respectively. The steady-state volume of distribution in the three age groups was 1.51, 1.49, and 1.27 liters/kg, respectively. Total body clearance for the three age groups was 14.2, 12.1, and 7.5 ml/min/kg, respectively. Analysis of variance of these data followed by Duncan's multiple range test indicated a significant decrease in clearance in the aged rats (25-month-old, p less than 0.05). This age-dependent decrease in clearance suggested that digoxin pharmacokinetics could be a significant factor in age-related alterations in digoxin cardiotoxicity in the rat, as it is in humans, and that the Fischer-344 rat could be a useful model for studies of digoxin pharmacokinetic changes with age

  10. Chronic stress in adulthood followed by intermittent stress impairs spatial memory and the survival of newborn hippocampal cells in aging animals: prevention by FGL, a peptide mimetic of neural cell adhesion molecule

    DEFF Research Database (Denmark)

    Borcel, Erika; Pérez-Alvarez, Laura; Herrero, Ana Isabel

    2008-01-01

    In this study, we examined whether chronic stress in adulthood can exert long-term effects on spatial-cognitive abilities and on the survival of newborn hippocampal cells in aging animals. Male Wistar rats were subjected to chronic unpredictable stress at midlife (12 months old) and then reexposed...... in the hippocampus. Interestingly, spatial-memory performance in the Morris water maze was positively correlated with the number of newborn cells that survived in the dentate gyrus: better spatial memory in the water maze was associated with more 5-bromo-2-deoxyuridine (BrdU)-labeled cells. Administration of FGL......, a peptide mimetic of neural cell adhesion molecule, during the 4 weeks of continuous stress not only prevented the deleterious effects of chronic stress on spatial memory, but also reduced the survival of the newly generated hippocampal cells in aging animals. FGL treatment did not, however, prevent...

  11. Brain Aging and AD-Like Pathology in Streptozotocin-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Jian-Qin Wang

    2014-01-01

    Full Text Available Objective. Numerous epidemiological studies have linked diabetes mellitus (DM with an increased risk of developing Alzheimer’s disease (AD. However, whether or not diabetic encephalopathy shows AD-like pathology remains unclear. Research Design and Methods. Forebrain and hippocampal volumes were measured using stereology in serial coronal sections of the brain in streptozotocin- (STZ- induced rats. Neurodegeneration in the frontal cortex, hypothalamus, and hippocampus was evaluated using Fluoro-Jade C (FJC. Aβ aggregation in the frontal cortex and hippocampus was tested using immunohistochemistry and ELISA. Dendritic spine density in the frontal cortex and hippocampus was measured using Golgi staining, and western blot was conducted to detect the levels of synaptophysin. Cognitive ability was evaluated through the Morris water maze and inhibitory avoidant box. Results. Rats are characterized by insulin deficiency accompanied with polydipsia, polyphagia, polyuria, and weight loss after STZ injection. The number of FJC-positive cells significantly increased in discrete brain regions of the diabetic rats compared with the age-matched control rats. Hippocampal atrophy, Aβ aggregation, and synapse loss were observed in the diabetic rats compared with the control rats. The learning and memory of the diabetic rats decreased compared with those of the age-matched control rats. Conclusions. Our results suggested that aberrant metabolism induced brain aging as characterized by AD-like pathologies.

  12. Brain Aging and AD-Like Pathology in Streptozotocin-Induced Diabetic Rats

    Science.gov (United States)

    Wang, Jian-Qin; Yin, Jie; Song, Yan-Feng; Zhang, Lang; Ren, Ying-Xiang; Wang, De-Gui; Gao, Li-Ping; Jing, Yu-Hong

    2014-01-01

    Objective. Numerous epidemiological studies have linked diabetes mellitus (DM) with an increased risk of developing Alzheimer's disease (AD). However, whether or not diabetic encephalopathy shows AD-like pathology remains unclear. Research Design and Methods. Forebrain and hippocampal volumes were measured using stereology in serial coronal sections of the brain in streptozotocin- (STZ-) induced rats. Neurodegeneration in the frontal cortex, hypothalamus, and hippocampus was evaluated using Fluoro-Jade C (FJC). Aβ aggregation in the frontal cortex and hippocampus was tested using immunohistochemistry and ELISA. Dendritic spine density in the frontal cortex and hippocampus was measured using Golgi staining, and western blot was conducted to detect the levels of synaptophysin. Cognitive ability was evaluated through the Morris water maze and inhibitory avoidant box. Results. Rats are characterized by insulin deficiency accompanied with polydipsia, polyphagia, polyuria, and weight loss after STZ injection. The number of FJC-positive cells significantly increased in discrete brain regions of the diabetic rats compared with the age-matched control rats. Hippocampal atrophy, Aβ aggregation, and synapse loss were observed in the diabetic rats compared with the control rats. The learning and memory of the diabetic rats decreased compared with those of the age-matched control rats. Conclusions. Our results suggested that aberrant metabolism induced brain aging as characterized by AD-like pathologies. PMID:25197672

  13. Stress-enhanced fear learning in rats is resistant to the effects of immediate massed extinction

    Science.gov (United States)

    Long, Virginia A.; Fanselow, Michael S.

    2014-01-01

    Enhanced fear learning occurs subsequent to traumatic or stressful events and is a persistent challenge to the treatment of post-traumatic stress disorder (PTSD). Facilitation of learning produced by prior stress can elicit an exaggerated fear response to a minimally aversive event or stimulus. Stress-enhanced fear learning (SEFL) is a rat model of PTSD; rats previously exposed to the SEFL 15 electrical shocks procedure exhibit several behavioral responses similar to those seen in patients with PTSD. However, past reports found that SEFL is not mitigated by extinction (a model of exposure therapy) when the spaced extinction began 24 h after stress. Recent studies found that extinction from 10 min to 1 h subsequent to fear conditioning “erased” learning, whereas later extinction, occurring from 24 to 72 h after conditioning did not. Other studies indicate that massed extinction is more effective than spaced procedures. Therefore, we examined the time-dependent nature of extinction on the stress-induced enhancement of fear learning using a massed trial’s procedure. Experimental rats received 15 foot shocks and were given either no extinction or massed extinction 10 min or 72 h later. Our present data indicate that SEFL, following traumatic stress, is resistant to immediate massed extinction. Experimental rats showed exaggerated new fear learning regardless of when extinction training occurred. Thus, post-traumatic reactivity such as SEFL does not seem responsive to extinction treatments. PMID:22176467

  14. Brain nicotinic acetylcholine receptors are involved in stress-induced potentiation of nicotine reward in rats.

    Science.gov (United States)

    Javadi, Parastoo; Rezayof, Ameneh; Sardari, Maryam; Ghasemzadeh, Zahra

    2017-07-01

    The aim of the present study was to examine the possible role of nicotinic acetylcholine receptors of the dorsal hippocampus (CA1 regions), the medial prefrontal cortex or the basolateral amygdala in the effect of acute or sub-chronic stress on nicotine-induced conditioned place preference. Our results indicated that subcutaneous administration of nicotine (0.2 mg/kg) induced significant conditioned place preference. Exposure to acute or sub-chronic elevated platform stress potentiated the response of an ineffective dose of nicotine. Pre-conditioning intra-CA1 (0.5-4 µg/rat) or intra-medial prefrontal cortex (0.2-0.3 µg/rat) microinjection of mecamylamine (a non-selective nicotinic acetylcholine receptor antagonist) reversed acute stress-induced potentiation of nicotine reward as measured in the conditioned place preference paradigm. By contrast, pre-conditioning intra-basolateral amygdala microinjection of mecamylamine (4 µg/rat) potentiated the effects of acute stress on nicotine reward. Our findings also showed that intra-CA1 or intra-medial prefrontal cortex, but not intra-basolateral amygdala, microinjection of mecamylamine (4 µg/rat) prevented the effect of sub-chronic stress on nicotine reward. These findings suggest that exposure to elevated platform stress potentiates the rewarding effect of nicotine which may be associated with the involvement of nicotinic acetylcholine receptors. It seems that there is a different contribution of the basolateral amygdala, the medial prefrontal cortex or the CA1 nicotinic acetylcholine receptors in stress-induced potentiation of nicotine-induced conditioned place preference.

  15. Metabolic enhancer piracetam attenuates rotenone induced oxidative stress: a study in different rat brain regions.

    Science.gov (United States)

    Verma, Dinesh Kumar; Joshi, Neeraj; Raju, Kunumuri Sivarama; Wahajuddin, Muhammad; Singh, Rama Kant; Singh, Sarika

    2015-01-01

    Piracetam is clinically being used nootropic drug but the details of its neuroprotective mechanism are not well studied. The present study was conducted to assess the effects of piracetam on rotenone induced oxidative stress by using both ex vivo and in vivo test systems. Rats were treated with piracetam (600 mg/kg b.w. oral) for seven constitutive days prior to rotenone administration (intracerebroventricular, 12 µg) in rat brain. Rotenone induced oxidative stress was assessed after 1 h and 24 h of rotenone administration. Ex vivo estimations were performed by using two experimental designs. In one experimental design the rat brain homogenate was treated with rotenone (1 mM, 2 mM and 4 mM) and rotenone+piracetam (10 mM) for 1 h. While in second experimental design the rats were pretreated with piracetam for seven consecutive days. On eighth day the rats were sacrificed, brain homogenate was prepared and treated with rotenone (1 mM, 2 mM and 4mM) for 1h. After treatment the glutathione (GSH) and malondialdehyde (MDA) levels were estimated in brain homogenate. In vivo study showed that pretreatment of piracetam offered significant protection against rotenone induced decreased GSH and increased MDA level though the protection was region specific. But the co-treatment of piracetam with rotenone did not offer significant protection against rotenone induced oxidative stress in ex vivo study. Whereas ex vivo experiments in rat brain homogenate of piracetam pretreated rats, showed the significant protection against rotenone induced oxidative stress. Findings indicated that pretreatment of piracetam significantly attenuated the rotenone induced oxidative stress though the protection was region specific. Piracetam treatment to rats led to its absorption and accumulation in different brain regions as assessed by liquid chromatography mass spectrometry/mass spectrometry. In conclusion, study indicates the piracetam is able to enhance the antioxidant capacity in brain cells

  16. Possible antidepressant effects of vanillin against experimentally induced chronic mild stress in rats

    Directory of Open Access Journals (Sweden)

    Amira M. Abo-youssef

    2016-06-01

    Full Text Available Vanillin is a flavoring agent widely used in food and beverages such as chocolates and dairy products and it is also used to mask unpleasant tastes in medicine. It has been reported to have antioxidant, anti-inflammatory and antiapoptotic properties. The current study was designed to investigate the protective effects of vanillin against experimentally induced stress in rats. Briefly rats were subdivided into four groups. Three groups were subjected to chronic mild stress and the fourth group served as normal control group. One week before induction of stress drugs or saline was administered daily and continued for another nine weeks. At the end of the experimental period behavioral tests including sucrose preference test, forced swim test and elevated plus maze test were assessed. In addition, brain biochemical parameters including MDA, GSH, NO and serotonin were determined. Vanillin succeeded to restore the behavioral and biochemical changes associated with stress. It significantly increased sucrose consumption in sucrose preference test and time spent in open arm in elevated plus maze test as compared to stress control group. It also reduced immobility time in forced swim test and time spent in closed arm in elevated plus maze test. Additionally, it significantly decreased brain MDA and NO levels and significantly increased brain GSH and Serotonin levels compared to stress control group. It could be concluded that vanillin showed beneficial protective effects against experimentally induced stress in rats.

  17. Effect of endurance exercise training on oxidative stress in spontaneously hypertensive rats (SHR) after emergence of hypertension.

    Science.gov (United States)

    Kimura, Hiroko; Kon, Nobuko; Furukawa, Satoshi; Mukaida, Masahiro; Yamakura, Fumiyuki; Matsumoto, Kazuko; Sone, Hirohito; Murakami-Murofushi, Kimiko

    2010-01-01

    The purpose of this study is to elucidate the effect of wheel training on oxidative stress maker levels in spontaneous hypertensive rats (SHR). 4-hydroxynonenal and 3-nitrotyrosine levels in the aorta of SHRs were allowed to run for 10 weeks from the age of 15 weeks were measured and compared with those of nonexercised SHRs. The 4-hydroxynonenal and 3-nitrotyrosine levels in the exercised group were significantly lower than those in the nonexercised group. The exercised group showed a significant increase of manganese-containing superoxide dismutase. Endurance exercise showed a possible suppressing effect on the arteriosclerosis development by reducing oxidative stress, even after emergence of hypertension.

  18. Oxidative stress, aging, and diseases

    Directory of Open Access Journals (Sweden)

    Liguori I

    2018-04-01

    Full Text Available Ilaria Liguori,1 Gennaro Russo,1 Francesco Curcio,1 Giulia Bulli,1 Luisa Aran,1 David Della-Morte,2,3 Gaetano Gargiulo,4 Gianluca Testa,1,5 Francesco Cacciatore,1,6 Domenico Bonaduce,1 Pasquale Abete1 1Department of Translational Medical Sciences, University of Naples “Federico II”, Naples, Italy; 2Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; 3San Raffaele Roma Open University, Rome, Italy; 4Division of Internal Medicine, AOU San Giovanni di Dio e Ruggi di Aragona, Salerno, Italy; 5Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy; 6Azienda Ospedaliera dei Colli, Monaldi Hospital, Heart Transplantation Unit, Naples, Italy Abstract: Reactive oxygen and nitrogen species (RONS are produced by several endogenous and exogenous processes, and their negative effects are neutralized by antioxidant defenses. Oxidative stress occurs from the imbalance between RONS production and these antioxidant defenses. Aging is a process characterized by the progressive loss of tissue and organ function. The oxidative stress theory of aging is based on the hypothesis that age-associated functional losses are due to the accumulation of RONS-induced damages. At the same time, oxidative stress is involved in several age-related conditions (ie, cardiovascular diseases [CVDs], chronic obstructive pulmonary disease, chronic kidney disease, neurodegenerative diseases, and cancer, including sarcopenia and frailty. Different types of oxidative stress biomarkers have been identified and may provide important information about the efficacy of the treatment, guiding the selection of the most effective drugs/dose regimens for patients and, if particularly relevant from a pathophysiological point of view, acting on a specific therapeutic target. Given the important role of oxidative stress in the pathogenesis of many clinical conditions and aging, antioxidant therapy could positively affect the natural history of

  19. Prenatal stress, regardless of concurrent escitalopram treatment, alters behavior and amygdala gene expression of adolescent female rats

    Science.gov (United States)

    Ehrlich, David E.; Neigh, Gretchen N.; Bourke, Chase H.; Nemeth, Christina L.; Hazra, Rimi; Ryan, Steven J.; Rowson, Sydney; Jairam, Nesha; Sholar, Courtney; Rainnie, Donald G.; Stowe, Zachary N.; Owens, Michael J.

    2015-01-01

    Depression during pregnancy has been linked to in utero stress and is associated with long-lasting symptoms in offspring, including anxiety, helplessness, attentional deficits, and social withdrawal. Depression is diagnosed in 10-20% of expectant mothers, but the impact of antidepressant treatment on offspring development is not well documented, particularly for females. Here, we used a prenatal stress model of maternal depression to test the hypothesis that in utero antidepressant treatment could mitigate the effects of prenatal stress. We also investigated the effects of prenatal stress and antidepressant treatment on gene expression related to GABAergic and serotonergic neurotransmission in the amygdala, which may underlie behavioral effects of prenatal stress. Nulliparous female rats were implanted with osmotic minipumps delivering clinically-relevant concentrations of escitalopram and mated. Pregnant dams were exposed to 12 days of mixed-modality stressors, and offspring were behaviorally assessed in adolescence (postnatal day 28) and adulthood (beyond day 90) to determine the extent of behavioral change. We found that in utero stress exposure, regardless of escitalopram treatment, increased anxiety-like behavior in adolescent females and profoundly influenced amygdala expression of the chloride transporters KCC2 and NKCC1, which regulate GABAergic function. In contrast, prenatal escitalopram exposure alone elevated amygdala expression of 5-HT1A receptors. In adulthood, anxiety-like behavior returned to baseline and gene expression effects in the amygdala abated, whereas deficits emerged in novel object recognition for rats exposed to stress during gestation. These findings suggest prenatal stress causes age-dependent deficits in anxiety-like behavior and amygdala function in female offspring, regardless of antidepressant exposure. PMID:26032436

  20. Hochu-ekki-to Treatment Improves Reproductive and Immune Modulation in the Stress-Induced Rat Model of Polycystic Ovarian Syndrome.

    Science.gov (United States)

    Park, Eunkuk; Choi, Chun Whan; Kim, Soo Jeong; Kim, Yong-In; Sin, Samkee; Chu, Jong-Phil; Heo, Jun Young

    2017-06-13

    The traditional herbal medicine, Hochu-ekki-to, has been shown to have preventive effects on viral infection and stress. This study aimed to evaluate the clinical effects of Hochu-ekki-to on two stress-related rat models of polycystic ovarian syndrome. Female Sprague-Dawley rats were divided into control and treatment groups, the latter of which were subjected to stress induced by exposure to adrenocorticotropic hormone (ACTH) or cold temperatures. After these stress inductions, rats were orally treated with dissolved Hochu-ekki-to once per day for 7 days. Rats subjected to the two different stressors exhibited upregulation of steroid hormone receptors (in ovaries) and reproductive hormones (in blood), and consequent stimulation of abnormal follicle development accompanied by elevation of Hsp 90 expression (in ovaries). Treatment with Hochu-ekki-to for 7 days after stress induction increased immune functions, reduced the stress-induced activation of Hsp 90, and normalized the levels of the tested steroid hormone receptors and reproductive hormones. Our findings suggest that stress stimulations may promote the activation of Hsp 90 via the dysregulation of steroid hormone receptors and reproductive hormones, but that post-stress treatment with Hochu-ekki-to improves reproductive and immune functions in the ovaries of stressed rats.

  1. Resident intruder paradigm-induced aggression relieves depressive-like behaviors in male rats subjected to chronic mild stress

    Science.gov (United States)

    Wei, Sheng; Ji, Xiao-wei; Wu, Chun-ling; Li, Zi-fa; Sun, Peng; Wang, Jie-qiong; Zhao, Qi-tao; Gao, Jie; Guo, Ying-hui; Sun, Shi-guang; Qiao, Ming-qi

    2014-01-01

    Background Accumulating epidemiological evidence shows that life event stressors are major vulnerability factors for psychiatric diseases such as major depression. It is also well known that the resident intruder paradigm (RIP) results in aggressive behavior in male rats. However, it is not known how resident intruder paradigm-induced aggression affects depressive-like behavior in isolated male rats subjected to chronic mild stress (CMS), which is an animal model of depression. Material/Methods Male Wistar rats were divided into 3 groups: non-stressed controls, isolated rats subjected to the CMS protocol, and resident intruder paradigm-exposed rats subjected to the CMS protocol. Results In the sucrose intake test, ingestion of a 1% sucrose solution by rats in the CMS group was significantly lower than in control and CMS+RIP rats after 3 weeks of stress. In the open-field test, CMS rats had significantly lower open-field scores compared to control rats. Furthermore, the total scores given the CMS group were significantly lower than in the CMS+RIP rats. In the forced swimming test (FST), the immobility times of CMS rats were significantly longer than those of the control or CMS+RIP rats. However, no differences were observed between controls and CMS+RIP rats. Conclusions Our data show that aggressive behavior evoked by the resident intruder paradigm could relieve broad-spectrum depressive-like behaviors in isolated adult male rats subjected to CMS. PMID:24911067

  2. Spatial memory is intact in aged rats after propofol anesthesia.

    Science.gov (United States)

    Lee, In Ho; Culley, Deborah J; Baxter, Mark G; Xie, Zhongcong; Tanzi, Rudolph E; Crosby, Gregory

    2008-10-01

    We have previously demonstrated that aged rats have persistent impairment of spatial memory after sedation with nitrous oxide or general anesthesia with isoflurane-nitrous oxide. Propofol has different receptor mechanisms of action and a favorable short-term recovery profile, and it has been proposed that propofol is devoid of enduring effects on cognitive performance. No studies have investigated this question in aged subjects, however, so we designed an experiment to examine the long-term effects of propofol anesthesia on spatial working memory. Eighteen-mo-old rats were randomized to 2 h of 100% oxygen-propofol anesthesia (n=11) or to a control group that breathed 100% oxygen (n=10). Propofol was administered by continuous infusion via a tail vein catheter. Rats breathed spontaneously and rectal temperature was maintained. Mean arterial blood pressure was measured noninvasively and a venous blood gas was obtained just before discontinuation of propofol. After a 2-day recovery, spatial working memory was assessed for 14 days using a 12-arm radial maze. The number of total errors, number of correct choices to first error, and time to complete the maze was recorded and analyzed using a repeated measure analysis of variance (ANOVA), with Pmemory in aged rats. In aged rats, propofol anesthesia is devoid of the persistent memory effects observed with other general anesthetics in this model. Thus, while it appears that the state of general anesthesia is neither necessary nor sufficient for development of postanesthetic memory impairment, the choice of anesthetics may play a role in late cognitive outcome in the aged.

  3. Chrononutrition against Oxidative Stress in Aging

    Directory of Open Access Journals (Sweden)

    M. Garrido

    2013-01-01

    Full Text Available Free radicals and oxidative stress have been recognized as important factors in the biology of aging and in many age-associated degenerative diseases. Antioxidant systems deteriorate during aging. It is, thus, considered that one way to reduce the rate of aging and the risk of chronic disease is to avoid the formation of free radicals and reduce oxidative stress by strengthening antioxidant defences. Phytochemicals present in fruits, vegetables, grains, and other foodstuffs have been linked to reducing the risk of major oxidative stress-induced diseases. Some dietary components of foods possess biological activities which influence circadian rhythms in humans. Chrononutrition studies have shown that not only the content of food, but also the time of ingestion contributes to the natural functioning of the circadian system. Dietary interventions with antioxidant-enriched foods taking into account the principles of chrononutrition are of particular interest for the elderly since they may help amplify the already powerful benefits of phytochemicals as natural instruments with which to prevent or delay the onset of common age-related diseases.

  4. Oxidative stress in ageing of hair.

    Science.gov (United States)

    Trüeb, Ralph M

    2009-01-01

    Experimental evidence supports the hypothesis that oxidative stress plays a major role in the ageing process. Reactive oxygen species are generated by a multitude of endogenous and environmental challenges. Reactive oxygen species or free radicals are highly reactive molecules that can directly damage cellular structural membranes, lipids, proteins, and DNA. The body possesses endogenous defence mechanisms, such as antioxidative enzymes and non-enzymatic antioxidative molecules, protecting it from free radicals by reducing and neutralizing them. With age, the production of free radicals increases, while the endogenous defence mechanisms decrease. This imbalance leads to the progressive damage of cellular structures, presumably resulting in the ageing phenotype. Ageing of hair manifests as decrease of melanocyte function or graying, and decrease in hair production or alopecia. There is circumstantial evidence that oxidative stress may be a pivotal mechanism contributing to hair graying and hair loss. New insights into the role and prevention of oxidative stress could open new strategies for intervention and reversal of the hair graying process and age-dependent alopecia.

  5. Effect of increased magnesium intake on plasma cholesterol, triglyceride and oxidative stress in alloxan-diabetic rats.

    Science.gov (United States)

    Olatunji, L A; Soladoye, A O

    2007-06-01

    Cardiovascular disorders are the primary causes of morbidity and mortality in patients with diabetes mellitus (DM). Agents that improve lipid profile and reduce oxidative stress have been shown to reduce the ensuing risk factors. In the present study, we investigated whether increased magnesium intake could improve hyperglycaemia, dyslipidaemia, and reduce oxidative stress in alloxan-induced diabetic rats. Male Wistar rats were divided into non-diabetic (ND), diabetic (DM) and diabetic fed on a high magnesium diet (DM-Mg) groups. Plasma concentrations of thiobarbituric acid reactive substances (TBARS) were used as markers of oxidative stress. Plasma levels of ascorbic acid, magnesium and calcium were also determined. Diabetes was induced by injecting alloxan (100 mg/kg B.W). The fasting blood glucose levels were significantly lower in the DM-Mg rats than in the DM rats. Plasma total cholesterol, triglyceride, TBARS levels were significantly higher while plasma HDL-cholesterol, HDL-cholesterol/total cholesterol ratio, ascorbic acid levels were significantly lowered in DM rats compared with the ND rats. Increased intake of magnesium significantly abrogated these alterations. There were no significant differences in the plasma levels of magnesium and calcium between the DM and ND groups. However, plasma levels of magnesium but not calcium were significantly elevated in DM-Mg rats when compared with other groups. In conclusion, these results suggest that diet rich in magnesium could exert cardioprotective effect through reduced plasma total cholesterol, triglyceride, oxidative stress and ameliorated HDL-cholesterol/total cholesterol ratio as well as increased plasma ascorbic acid and magnesium in diabetic rats.

  6. Drug-induced oxidative stress in rat liver from a toxicogenomics perspective

    International Nuclear Information System (INIS)

    McMillian, Michael; Nie, Alex; Parker, J. Brandon; Leone, Angelique; Kemmerer, Michael; Bryant, Stewart; Herlich, Judy; Yieh, Lynn; Bittner, Anton; Liu, Xuejun; Wan, Jackson; Johnson, Mark D.; Lord, Peter

    2005-01-01

    Macrophage activators (MA), peroxisome proliferators (PP), and oxidative stressors/reactive metabolites (OS/RM) all produce oxidative stress and hepatotoxicity in rats. However, these three classes of hepatotoxicants give three distinct gene transcriptional profiles on cDNA microarrays, an indication that rat hepatocytes respond/adapt quite differently to these three classes of oxidative stressors. The differential gene responses largely reflect differential activation of transcription factors: MA activate Stat-3 and NFkB, PP activate PPARa, and OS/RM activate Nrf2. We have used gene signature profiles for each of these three classes of hepatotoxicants to categorize over 100 paradigm (and 50+ in-house proprietary) compounds as to their oxidative stress potential in rat liver. In addition to a role for microarrays in predictive toxicology, analyses of small subsets of these signature profiles, genes within a specific pathway, or even single genes often provide important insights into possible mechanisms involved in the toxicities of these compounds

  7. Announced reward counteracts the effects of chronic social stress on anticipatory behavior and hippocampal synaptic plasticity in rats.

    Science.gov (United States)

    Kamal, Amer; Van der Harst, Johanneke E; Kapteijn, Chantal M; Baars, Annemarie J M; Spruijt, Berry M; Ramakers, Geert M J

    2010-04-01

    Chronic stress causes insensitivity to rewards (anhedonia) in rats, reflected by the absence of anticipatory behavior for a sucrose-reward, which can be reversed by antidepressant treatment or repeated announced transfer to an enriched cage. It was, however, not clear whether the highly rewarding properties of the enriched cage alone caused this reversal or whether the anticipation of this reward as such had an additional effect. Therefore, the present study compared the consequences of the announcement of a reward to the mere effect of a reward alone with respect to their efficacy to counteract the consequences of chronic stress. Two forms of synaptic plasticity, long-term potentiation and long-term depression were investigated in area CA1 of the hippocampus. This was done in socially stressed rats (induced by defeat and subsequent long-term individual housing), socially stressed rats that received a reward (short-term enriched housing) and socially stressed rats to which this reward was announced by means of a stimulus that was repeatedly paired to the reward. The results were compared to corresponding control rats. We show that announcement of enriched housing appeared to have had an additional effect compared to the enriched housing per se as indicated by a significant higher amount of LTP. In conclusion, announced short-term enriched housing has a high and long-lasting counteracting efficacy on stress-induced alterations of hippocampal synaptic plasticity. This information is important for counteracting the consequences of chronic stress in both human and captive rats.

  8. The Effect of Synchronized Forced Running with Chronic Stress on Short, Mid and Long- term Memory in Rats.

    Science.gov (United States)

    Radahmadi, Maryam; Alaei, Hojjatallah; Sharifi, Mohammad-Reza; Hosseini, Nasrin

    2013-03-01

    Impairment of learning and memory processes has been demonstrated by many studies using different stressors. Other reports suggested that exercise has a powerful behavioral intervention to improve cognitive function and brain health. In this research, we investigated protective effects of treadmill running on chronic stress-induced memory deficit in rats. Fifty male Wistar rats were randomly divided into five groups (n=10) as follows: Control (Co), Sham (Sh), Stress (St), Exercise (Ex) and Stress and Exercise (St & Ex) groups. Chronic restraint stress was applied by 6h/day/21days and also treadmill running at a speed 20-21m/min for 1h/day/21days. Memory function was evaluated by the passive avoidance test in different intervals (1, 7 and 21 days) after foot shock. OUR RESULTS SHOWED THAT: 1) Although exercise alone showed beneficial effects especially on short and mid-term memory (Pshort, mid and long-term memory deficit in stressed rats. 2) Short and mid-term memory deficit was significantly (PMemory deficit in synchronized exercise with stress group was nearly similar to stressed rats. 4) Helpful effects of exercise were less than harmful effects of stress when they were associated together. The data correspond to the possibility that although treadmill running alone has helpful effects on learning and memory consolidation, but when it is synchronized with stress there is no significant benefit and protective effects in improvement of memory deficit induced by chronic stress. However, it is has a better effect than no training on memory deficit in stressed rats.

  9. Fish oil consumption prevents glucose intolerance and hypercorticosteronemy in footshock-stressed rats

    Directory of Open Access Journals (Sweden)

    Spadari-Bratfisch Regina C

    2011-05-01

    Full Text Available Abstract Background Environmental stress plays an important role in the development of glucose intolerance influencing lipid and glucose metabolism through sympathetic nervous system, cytokines and hormones such as glucocorticoids, catecholamines and glucagon. Otherwise, fish oil prevents glucose intolerance and insulin resistance. Although the mechanisms involved are not fully understood, it is known that sympathetic and HPA responses are blunted and catecholamines and glucocorticoids concentrations can be modulated by fish consumption. The aim of the present study was to evaluate whether fish oil, on a normal lipidic diet: 1 could prevent the effect of footshock-stress on the development of glucose intolerance; 2 modified adiponectin receptor and serum concentration; and 3 also modified TNF-α, IL-6 and interleukin-10 (IL-10 levels in adipose tissue and liver. The study was performed in thirty day-old male Wistar randomly assigned into four groups: no stressed (C and stressed (CS rats fed with control diet, and no stressed (F and stressed (FS rats fed with a fish oil rich diet. The stress was performed as a three daily footshock stress sessions. Results Body weight, carcass fat and protein content were not different among groups. FS presented a reduction on the relative weight of RET. Basal serum glucose levels were higher in CS and FS but 15 min after glucose load just CS remained with higher levels than other groups. Serum corticosterone concentration was increased in CS, this effect was inhibited in FS. However, 15 min after footshock-stress, corticosterone levels were similar among groups. IL-6 was increased in EPI of CS but fish oil consumption prevented IL-6 increase in FS. Similar levels of TNF-α and IL-10 in RET, EPI, and liver were observed among groups. Adipo R1 protein concentration was not different among groups. Footshock-stress did not modify AdipoR2 concentration, but fish oil diet increases AdipoR2 protein concentration

  10. TOLUENE EFFECTS ON OXIDATIVE STRESS IN BRAIN REGIONS OF YOUNG-ADULT, MIDDLE-AGE AND SENESCENT BROWN NORWAY RATS

    Science.gov (United States)

    Aging-related susceptibility to environmental chemicals is poorly understood. Oxidative stress (OS) appears to play an important role in susceptibility and disease in old age. The objectives of this study, therefore, were to test whether OS is a potential toxicity pathway for tol...

  11. Effects Of The Direct Renin Inhibitor Aliskiren On Oxidative Stress In Isolated Rat Heart

    Directory of Open Access Journals (Sweden)

    Plecevic Sasa

    2015-09-01

    Full Text Available Increased activity of the renin-angiotensin-aldosterone system (RAAS plays a significant role in the development and progression of various cardio-metabolic diseases, such as hypertension, atherosclerosis and heart failure. Aliskiren is the newest antihypertensive drug and the first orally active direct renin inhibitor to become available for clinical use. This study investigated the acute and direct effects of Aliskiren on different parameters of oxidative stress on isolated rat heart. The hearts of male Wistar albino rats (n = 24, 8 per experimental group, age 8 weeks, body mass 180–200 g, were excised and retrogradely perfused according to the Langendorfftechnique at a gradually increasing perfusion pressure (40-120 cmH2O. Markers of oxidative stress (NO2−, TBARS, H2O2 and O2− were measured spectrophotometrically after perfusion with three different concentrations of Aliskiren (0.1 μM, 1 μM, and 10 μM. The results demonstrated possible dose-dependent cardioprotective properties of Aliskiren, particularly with higher CPP. Lipid peroxidation (TBARS levels decreased with the highest dose of Aliskiren and higher CPP, and the same trend was observed in nitrite (NO2− and hydrogen peroxide (H2O2 levels. These findings indicate that the acute effects of Aliskiren do not likely promote the production of reactive oxygen species upon higher pressure with the highest dose. Aliskiren may exert beneficial effects on oxidative stress biomarkers.

  12. Protective effects of chronic mild stress during adolescence in the low-novelty responder rat.

    Science.gov (United States)

    Rana, Samir; Nam, Hyungwoo; Glover, Matthew E; Akil, Huda; Watson, Stanley J; Clinton, Sarah M; Kerman, Ilan A

    2016-01-01

    Stress-elicited behavioral and physiologic responses vary widely across individuals and depend on a combination of environmental and genetic factors. Adolescence is an important developmental period when neural circuits that guide emotional behavior and stress reactivity are still maturing. A critical question is whether stress exposure elicits contrasting effects when it occurs during adolescence versus adulthood. We previously found that Sprague-Dawley rats selectively bred for low-behavioral response to novelty (bred Low Responders; bLRs) are particularly sensitive to chronic unpredictable mild stress (CMS) exposure in adulthood, which exacerbates their typically high levels of spontaneous depressive- and anxiety-like behavior. Given developmental processes known to occur during adolescence, we sought to determine whether the impact of CMS on bLR rats is equivalent when they are exposed to it during adolescence as compared with adulthood. Young bLR rats were either exposed to CMS or control condition from postnatal days 35-60. As adults, we found that CMS-exposed bLRs maintained high levels of sucrose preference and exhibited increased social exploration along with decreased immobility on the forced swim test compared with bLR controls. These data indicate a protective effect of CMS exposure during adolescence in bLR rats.

  13. Involvement of the cervical sympathetic nervous system in the changes of calcium homeostasis during turpentine oil-induced stress in rats.

    Science.gov (United States)

    Stern, J E; Ladizesky, M G; Keller Sarmiento, M I; Cardinali, D P

    1993-03-01

    Hypocalcemia is a common finding during stress. The objective of this study was to examine: (a) the changes in circulating calcium, parathyroid hormone (PTH) and calcitonin (CT) concentration in rats stressed by being given a subcutaneous injection of turpentine oil, and (b) the involvement of the sympathetic cervical pathway in stress-induced changes of calcium homeostasis. Four hours after receiving turpentine oil or vehicle, rats were subjected either to hypocalcemia, by being given EDTA intraperitoneally, or to hypercalcemia, by being injected CaCl2 intraperitoneally. Significant changes in serum calcium (10% decrease), serum PTH (28% increase) and CT levels (40% decrease) were observed in stressed rats. EDTA administration brought about a significantly greater hypocalcemia, and a higher PTH secretory response in turpentine oil-stressed rats. During stress, the increase of serum calcium after CaCl2 was significantly smaller, and the rise of CT was greater than in controls. In the case of CT the changes were still observed in rats subjected to superior cervical ganglionectomy (SCGx) 14 days earlier. In the case of PTH, the increase found in stressed rats, but not the augmented response after EDTA, was blunted by SCGx. The potentiation of hypocalcemia brought about by turpentine oil was no longer observed in SCGx rats. In vehicle-treated controls, SCGx delayed PTH response to hypocalcemia, but did not affect the increased response of CT to CaCl2 challenge. The results indicate that a number of changes in calcium homeostasis arise during turpentine oil stress in rats. SCGx was effective to modify the set point for PTH release, but played a minor role in affecting the augmentation of CT release during stress.

  14. Chronic variable stress improves glucose tolerance in rats with sucrose-induced prediabetes

    Science.gov (United States)

    Packard, Amy E. B.; Ghosal, Sriparna; Herman, James P.; Woods, Stephen C.; Ulrich-Lai, Yvonne M.

    2014-01-01

    The incidence of type-2 diabetes (T2D) and the burden it places on individuals, as well as society as a whole, compels research into the causes, factors and progression of this disease. Epidemiological studies suggest that chronic stress exposure may contribute to the development and progression of T2D in human patients. To address the interaction between chronic stress and the progression of T2D, we developed a dietary model of the prediabetic state in rats utilizing unlimited access to 30% sucrose solution (in addition to unlimited access to normal chow and water), which led to impaired glucose tolerance despite elevated insulin levels. We then investigated the effects of a chronic variable stress paradigm (CVS; twice daily exposure to an unpredictable stressor for 2 weeks) on metabolic outcomes in this prediabetic model. Chronic stress improved glucose tolerance in prediabetic rats following a glucose challenge. Importantly, pair-fed control groups revealed that the beneficial effect of chronic stress did not result from the decreased food intake or body weight gain that occurred during chronic stress. The present work suggests that chronic stress in rodents can ameliorate the progression of diet-induced prediabetic disease independent of chronic stress-induced decreases in food intake and body weight. PMID:25001967

  15. Metabolic and oxidative stress markers in Wistar rats after 2?months on a high-fat diet

    OpenAIRE

    Auberval, Nathalie; Dal, St?phanie; Bietiger, William; Pinget, Michel; Jeandidier, Nathalie; Maillard-Pedracini, Elisa; Schini-Kerth, Val?rie; Sigrist, S?verine

    2014-01-01

    Background Metabolic syndrome is associated with an increased risk of cardiovascular and hepatic complications. Oxidative stress in metabolic tissues has emerged as a universal feature of metabolic syndrome and its co-morbidities. We aimed to develop a rapidly and easily induced model of metabolic syndrome in rats to evaluate its impact on plasma and tissue oxidative stress. Materials and methods Metabolic syndrome was induced in rats using a high-fat diet (HFD), and these rats were compared ...

  16. Estrogen and voluntary exercise interact to attenuate stress-induced corticosterone release but not anxiety-like behaviors in female rats.

    Science.gov (United States)

    Jones, Alexis B; Gupton, Rebecca; Curtis, Kathleen S

    2016-09-15

    The beneficial effects of physical exercise to reduce anxiety and depression and to alleviate stress are increasingly supported in research studies. The role of ovarian hormones in interactions between exercise and anxiety/stress has important implications for women's health, given that women are at increased risk of developing anxiety-related disorders, particularly during and after the menopausal transition. In these experiments, we tested the hypothesis that estrogen enhances the positive impact of exercise on stress responses by investigating the combined effects of exercise and estrogen on anxiety-like behaviors and stress hormone levels in female rats after an acute stressor. Ovariectomized female rats with or without estrogen were given access to running wheels for one or three days of voluntary running immediately after or two days prior to being subjected to restraint stress. We found that voluntary running was not effective at reducing anxiety-like behaviors, whether or not rats were subjected to restraint stress. In contrast, stress-induced elevations of stress hormone levels were attenuated by exercise experience in estrogen-treated rats, but were increased in rats without estrogen. These results suggest that voluntary exercise may be more effective at reducing stress hormone levels if estrogen is present. Additionally, exercise experience, or the distance run, may be important in reducing stress. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Tart cherries improve working memory in aged rats

    Science.gov (United States)

    Aged rats show impaired performance on cognitive tasks that require the use of spatial learning and memory. In previous studies, we have shown the beneficial effects of various dark-colored berry fruits (blueberries, strawberries, and blackberries) in reversing age-related deficits in behavioral and...

  18. Treadmill exercise does not change gene expression of adrenal catecholamine biosynthetic enzymes in chronically stressed rats

    Directory of Open Access Journals (Sweden)

    LJUBICA GAVRILOVIC

    2013-09-01

    Full Text Available ABSTRACT Chronic isolation of adult animals represents a form of psychological stress that produces sympatho-adrenomedullar activation. Exercise training acts as an important modulator of sympatho-adrenomedullary system. This study aimed to investigate physical exercise-related changes in gene expression of catecholamine biosynthetic enzymes (tyrosine hydroxylase, dopamine-ß-hydroxylase and phenylethanolamine N-methyltransferase and cyclic adenosine monophosphate response element-binding (CREB in the adrenal medulla, concentrations of catecholamines and corticosterone (CORT in the plasma and the weight of adrenal glands of chronically psychosocially stressed adult rats exposed daily to 20 min treadmill running for 12 weeks. Also, we examined how additional acute immobilization stress changes the mentioned parameters. Treadmill running did not result in modulation of gene expression of catecholamine synthesizing enzymes and it decreased the level of CREB mRNA in the adrenal medulla of chronically psychosocially stressed adult rats. The potentially negative physiological adaptations after treadmill running were recorded as increased concentrations of catecholamines and decreased morning CORT concentration in the plasma, as well as the adrenal gland hypertrophy of chronically psychosocially stressed rats. The additional acute immobilization stress increases gene expression of catecholamine biosynthetic enzymes in the adrenal medulla, as well as catecholamines and CORT levels in the plasma. Treadmill exercise does not change the activity of sympatho-adrenomedullary system of chronically psychosocially stressed rats.

  19. Stress Softening Behavior in the Mucosa-Submucosa and Muscle Layers in Normal and Diabetic Rat Esophagus

    DEFF Research Database (Denmark)

    Jiang, Hongbo; Liao, Donghua; Zhao, Jingbo

    2015-01-01

    Background & aims: Stress softening is a feature of mechanical preconditioning in soft tissue. Previously, we demonstrated that esophageal stress softening is reversible by muscle activation with KCl. Since the esophagus consists of muscle and mucosa-submucosa layers, the aim was to study...... the stress softening behavior in these layers in normal and diabetic rat esophagus and how diabetes affect the reversibility of esophageal stress softening.Methods: Ten Wistar rats were injected with STZ and the average blood glucose level reached 25 mmol/L after 8 weeks. Ten rats were used as the normal......M KCl was added for maximum contraction for 3min. KCl was washed out to permit relaxation and contractions were eliminated by immersion into Ca2+-free solution. After 1h rest, the tubes were exposed to five repeated ramp distensions conformed to the aforesaid two series. Stress-strain curves were used...

  20. Adrenal hormones in rats before and after stress-experience: effects of ipsapirone.

    Science.gov (United States)

    Korte, S M; Bouws, G A; Bohus, B

    1992-06-01

    The present study was designed to investigate the effects of the anxiolytic 5-HT1A receptor agonist ipsapirone on the hormonal responses in rats under nonstress and stress conditions by means of repeated blood sampling through an intracardiac catheter. Ipsapirone was given in doses of 2.5, 5, 10, and 20 mg/kg (IP) under nonstress conditions in the home cages of the rats. Plasma corticosterone levels increased in a dose-dependent way in the dose range of 5 to 20 mg/kg, whereas the plasma catecholamines were only significantly increased with the highest dose of the drug. The effect of ipsapirone in control and in stressed rats was studied with the selected dose of 5 mg/kg. Conditioned fear of inescapable electric footshock (0.6 mA, AC for 3 s) given one day earlier was used as stressor. Surprisingly, ipsapirone potentiated the magnitude of the neuroendocrine responses. Rats receiving an inescapable footshock 1 day earlier showed a further elevated corticosterone response to the 5-HT1A receptor agonist ipsapirone even before exposing them to the conditioned stress situation. The present findings suggest that if an animal has no possibilities to escape or avoid a noxious event, functional hypersensitivity will develop in the serotonergic neuronal system, which is reflected in the increased responsiveness of the HPA axis to a 5-HT1A agonist challenge.

  1. Behavioral and neuroendocrine consequences of juvenile stress combined with adult immobilization in male rats.

    Science.gov (United States)

    Fuentes, Silvia; Carrasco, Javier; Armario, Antonio; Nadal, Roser

    2014-08-01

    Exposure to stress during childhood and adolescence increases vulnerability to developing several psychopathologies in adulthood and alters the activity of the hypothalamic-pituitary-adrenal (HPA) axis, the prototypical stress system. Rodent models of juvenile stress appear to support this hypothesis because juvenile stress can result in reduced activity/exploration and enhanced anxiety, although results are not always consistent. Moreover, an in-depth characterization of changes in the HPA axis is lacking. In the present study, the long-lasting effects of juvenile stress on adult behavior and HPA function were evaluated in male rats. The juvenile stress consisted of a combination of stressors (cat odor, forced swim and footshock) during postnatal days 23-28. Juvenile stress reduced the maximum amplitude of the adrenocorticotropic hormone (ACTH) levels (reduced peak at lights off), without affecting the circadian corticosterone rhythm, but other aspects of the HPA function (negative glucocorticoid feedback, responsiveness to further stressors and brain gene expression of corticotrophin-releasing hormone and corticosteroid receptors) remained unaltered. The behavioral effects of juvenile stress itself at adulthood were modest (decreased activity in the circular corridor) with no evidence of enhanced anxiety. Imposition of an acute severe stressor (immobilization on boards, IMO) did not increase anxiety in control animals, as evaluated one week later in the elevated-plus maze (EPM), but it potentiated the acoustic startle response (ASR). However, acute IMO did enhance anxiety in the EPM, in juvenile stressed rats, thereby suggesting that juvenile stress sensitizes rats to the effects of additional stressors. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Caffeine and diphenyl diselenide improve long-term memory impaired in middle-aged rats.

    Science.gov (United States)

    Leite, Marlon R; Marcondes Sari, Marcel Henrique; de Freitas, Mayara L; Oliveira, Lia P; Dalmolin, Laíza; Brandão, Ricardo; Zeni, Gilson

    2014-05-01

    The aim of the present study was to evaluate the effects of diphenyl diselenide (PhSe)2 supplemented diet (10ppm) associated to the administration of caffeine (15mg/kg; i.g.) for 30days on the novel object recognition memory in middle-aged rats. The present findings showed that (PhSe)2-supplemented diet enhanced short-term memory, but not long-term memory, of middle-aged rats in the novel object recognition task. The (PhSe)2 supplemented diet associated with caffeine administration improved long-term memory, but did not alter short-term memory, impaired in middle-aged rats. Daily caffeine administration to middle-aged rats had no effect on the memory tasks. Diet supplemented with (PhSe)2 plus caffeine administration increased the number of crossings and rearings reduced in middle-aged rats. Caffeine administration plus (PhSe)2 diets were effective in increasing the number of rearings and crossings, respectively, in middle-aged rats, [(3)H] glutamate uptake was reduced in hippocampal slices of rats from (PhSe)2 and caffeine plus (PhSe)2 groups. In addition, animals supplemented with (PhSe)2 showed an increase in the pCREB/CREB ratio whereas pAkt/Akt ratio was not modified. These results suggest that the effects of (PhSe)2 on the short-term memory may be related to its ability to decrease the uptake of glutamate, influencing the increase of CREB phosphorylation. (PhSe)2-supplemented diet associated to the administration of caffeine improved long-term memory impaired in middle-aged rats, an effect independent of CREB and Akt phosphorylation. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Effect of turmeric and curcumin on oxidative stress and antioxidant enzymes in streptozotocin-induced diabetic rat.

    Science.gov (United States)

    Suryanarayana, Palla; Satyanarayana, Alleboena; Balakrishna, Nagalla; Kumar, Putcha Uday; Reddy, Geereddy Bhanuprakash

    2007-12-01

    There is increasing evidence that complications related to diabetes are associated with increased oxidative stress. Curcumin, an active principle of turmeric, has several biological properties, including antioxidant activity. The protective effect of curcumin and turmeric on streptozotocin (STZ)-induced oxidative stress in various tissues of rats was studied. Three-month-old Wistar-NIN rats were made diabetic by injecting STZ (35 mg/kg body weight) intraperitoneally and fed either only the AIN-93 diet or the AIN-93 diet containing 0.002% or 0.01% curcumin or 0.5% turmeric for a period of eight weeks. After eight weeks the levels of oxidative stress parameters and activity of antioxidant enzymes were determined in various tissues. STZ-induced hyperglycemia resulted in increased lipid peroxidation and protein carbonyls in red blood cells and other tissues and altered antioxidant enzyme activities. Interestingly, feeding curcumin and turmeric to the diabetic rats controlled oxidative stress by inhibiting the increase in TBARS and protein carbonyls and reversing altered antioxidant enzyme activities without altering the hyperglycemic state in most of the tissues. Turmeric and curcumin appear to be beneficial in preventing diabetes-induced oxidative stress in rats despite unaltered hyperglycemic status.

  4. Effect of a mild dose of X-irradiation on rats under stress

    International Nuclear Information System (INIS)

    Khan, N.A.; Hasan, S.S.

    1984-01-01

    This investigation was apt at studying the effect of a mild dose of X-rays on the normal and shock administered rats. Administration of stress brought about a marked depression in the contents of DNA, RNA and protein in the brain. On the other hand, total body exposure to X-rays was found to increase the levels of DNA, RNA and protein in the brain. Thus, the use of a mild dose of X-rays in stressed animals seems to be stimulatory to the diminished levels of DNA, RNA and protein in the brain. There were rising levels of 5-hydroxy indol acetic acid and Vinyl mandelic acid in the urine of stress administered rats and the enhanced levels of these urinary metabolites appeared to be refractory to the application of X-rays. (orig.) [de

  5. Stress Alone or associated with Ethanol Induces Prostanoid Release in Rat Aorta via α2-Adrenoceptor

    Energy Technology Data Exchange (ETDEWEB)

    Baptista, Rafaela de Fátima Ferreira [Departamento de Farmacologia - Instituto de Biociências - Universidade Estadual Paulista - UNESP - São Paulo, SP (Brazil); Laboratório de Farmacologia - Faculdade de Medicina de Marília - FAMEMA, SP (Brazil); Taipeiro, Elane de Fátima [Laboratório de Farmacologia - Faculdade de Medicina de Marília - FAMEMA, SP (Brazil); Queiroz, Regina Helena Costa [Departamento de Análise Clínica - Toxicológica e Ciência de Alimentos - Faculdade de Ciências Farmacêuticas - USP, São Paulo, SP (Brazil); Chies, Agnaldo Bruno [Departamento de Farmacologia - Instituto de Biociências - Universidade Estadual Paulista - UNESP - São Paulo, SP (Brazil); Laboratório de Farmacologia - Faculdade de Medicina de Marília - FAMEMA, SP (Brazil); Cordellini, Sandra, E-mail: cordelli@ibb.unesp.br [Departamento de Farmacologia - Instituto de Biociências - Universidade Estadual Paulista - UNESP - São Paulo, SP (Brazil)

    2014-03-15

    Stress and ethanol are both, independently, important cardiovascular risk factors. To evaluate the cardiovascular risk of ethanol consumption and stress exposure, isolated and in association, in male adult rats. Rats were separated into 4 groups: Control, ethanol (20% in drinking water for 6 weeks), stress (immobilization 1h day/5 days a week for 6 weeks) and stress/ethanol. Concentration-responses curves to noradrenaline - in the absence and presence of yohimbine, L-NAME or indomethacin - or to phenylephrine were determined in thoracic aortas with and without endothelium. EC50 and maximum response (n=8-12) were compared using two-way ANOVA/Bonferroni method. Either stress or stress in association with ethanol consumption increased the noradrenaline maximum responses in intact aortas. This hyper-reactivity was eliminated by endothelium removal or by the presence of either indomethacin or yohimbine, but was not altered by the presence of L-NAME. Meanwhile, ethanol consumption did not alter the reactivity to noradrenaline. The phenylephrine responses in aortas both with and without endothelium also remained unaffected regardless of protocol. Chronic stress increased rat aortic responses to noradrenaline. This effect is dependent upon the vascular endothelium and involves the release of vasoconstrictor prostanoids via stimulation of endothelial alpha-2 adrenoceptors. Moreover, chronic ethanol consumption appeared to neither influence noradrenaline responses in rat thoracic aorta, nor did it modify the increase of such responses observed as a consequence of stress exposure.

  6. Stress Alone or associated with Ethanol Induces Prostanoid Release in Rat Aorta via α2-Adrenoceptor

    International Nuclear Information System (INIS)

    Baptista, Rafaela de Fátima Ferreira; Taipeiro, Elane de Fátima; Queiroz, Regina Helena Costa; Chies, Agnaldo Bruno; Cordellini, Sandra

    2014-01-01

    Stress and ethanol are both, independently, important cardiovascular risk factors. To evaluate the cardiovascular risk of ethanol consumption and stress exposure, isolated and in association, in male adult rats. Rats were separated into 4 groups: Control, ethanol (20% in drinking water for 6 weeks), stress (immobilization 1h day/5 days a week for 6 weeks) and stress/ethanol. Concentration-responses curves to noradrenaline - in the absence and presence of yohimbine, L-NAME or indomethacin - or to phenylephrine were determined in thoracic aortas with and without endothelium. EC50 and maximum response (n=8-12) were compared using two-way ANOVA/Bonferroni method. Either stress or stress in association with ethanol consumption increased the noradrenaline maximum responses in intact aortas. This hyper-reactivity was eliminated by endothelium removal or by the presence of either indomethacin or yohimbine, but was not altered by the presence of L-NAME. Meanwhile, ethanol consumption did not alter the reactivity to noradrenaline. The phenylephrine responses in aortas both with and without endothelium also remained unaffected regardless of protocol. Chronic stress increased rat aortic responses to noradrenaline. This effect is dependent upon the vascular endothelium and involves the release of vasoconstrictor prostanoids via stimulation of endothelial alpha-2 adrenoceptors. Moreover, chronic ethanol consumption appeared to neither influence noradrenaline responses in rat thoracic aorta, nor did it modify the increase of such responses observed as a consequence of stress exposure

  7. Diverse basal and stress-related phenotypes of Sprague Dawley rats from three vendors

    NARCIS (Netherlands)

    Pecoraro, Norman; Ginsberg, Abigail B.; Warne, James P.; Gomez, Francisca; la Fleur, Susanne E.; Dallman, Mary F.

    2006-01-01

    Based on observed phenotypic differences in growth and ACTH responses to stress in Sprague Dawley rats obtained from different vendors, we ran head-to-head comparisons on rats obtained from three different vendors, Harlan, Charles River, and Simonsen, with respect to baseline phenotypic differences

  8. Developmental stress elicits preference for methamphetamine in the spontaneously hypertensive rat model of attention-deficit/hyperactivity disorder.

    Science.gov (United States)

    Womersley, Jacqueline S; Mpeta, Bafokeng; Dimatelis, Jacqueline J; Kellaway, Lauriston A; Stein, Dan J; Russell, Vivienne A

    2016-06-17

    Developmental stress has been hypothesised to interact with genetic predisposition to increase the risk of developing substance use disorders. Here we have investigated the effects of maternal separation-induced developmental stress using a behavioural proxy of methamphetamine preference in an animal model of attention-deficit/hyperactivity disorder, the spontaneously hypertensive rat, versus Wistar Kyoto and Sprague-Dawley comparator strains. Analysis of results obtained using a conditioned place preference paradigm revealed a significant strain × stress interaction with maternal separation inducing preference for the methamphetamine-associated compartment in spontaneously hypertensive rats. Maternal separation increased behavioural sensitization to the locomotor-stimulatory effects of methamphetamine in both spontaneously hypertensive and Sprague-Dawley strains but not in Wistar Kyoto rats. Our findings indicate that developmental stress in a genetic rat model of attention-deficit/hyperactivity disorder may foster a vulnerability to the development of substance use disorders.

  9. Effects of different timing of stress on corticosterone, BDNF and memory in male rats.

    Science.gov (United States)

    Radahmadi, Maryam; Alaei, Hojjatallah; Sharifi, Mohammad Reza; Hosseini, Nasrin

    2015-02-01

    Learning and memory seem to be affected by chronic stress. Previous reports have considered chronic stress as a precipitating factor of different neuropsychological disorders, while others reported neurobiological adaptations following stress. The present study investigated the effects of chronic stress before, after, and during learning on the changes of learning and memory, on serum and hippocampal levels of corticosterone (CORT), brain-derived neurotrophic factor (BDNF) and body weight in rats. Male Wistar rats were randomly divided into four groups (n=10) including Control (Co), Stress-Learning-Rest (St-L-Re), Rest-Learning-Stress (Re-L-St), and Stress-Learning-Stress (St-L-St) groups. The chronic restraint stress was applied 6 h/day for 21 days. Moreover, the passive avoidance test was used to assess memory deficit, 1, 7, and 21 days after training. At the end of experiments, CORT and BDNF levels were measured. The findings did not support adaptation in chronic stress conditions. The acquisition time as well as the short and mid-term memories was significantly impaired in the St-L-Re group. Short, mid, and long-term memories were significantly impaired in the Re-L-St and St-L-St groups compared with the Co group, as a result of the enhancement of CORT and reduction of BDNF levels. In the St-L-St group, changes in memory functions were less pronounced than in the Re-L-St group. Also, body weight declined following the chronic stress, while recovery period enhanced the body weight gain in stressed rats. It can be concluded that a potential time-dependent involvement of stress and recovery period on the level of BDNF. Longer duration time of chronic stress might promote adaptive effects on memory and CORT level. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Age dependent accumulation of N-acyl-ethanolamine phospholipids in ischemic rat brain

    DEFF Research Database (Denmark)

    Moesgaard, B.; Petersen, G.; Hansen, Harald S.

    2000-01-01

    N-acyl-ethanolamine phospholipids (NAPE) can be formed as a stress response during neuronal injury, and they are precursors for N-acyl- ethanolamines (NAE), some of which are endocannabinoids. The levels of NAPE accumulated during post-decapitative ischemia (6 h at 37°C) were studied in rat brains...... of various age (1, 6, 12, 19, 30, and ~70 days) by the use of P NMR spectroscopy of lipid extracts. This ability to accumulate NAPE was compared with the activity of N-acyltransferase and of NAPE-hydrolyzing phospholipase D (NAPE-PLD) in brain microsomes. These two enzymes are involved in the formation...... brains NAPE accumulation could not be detected (detection limit 0.09 %)]; and 2) this age pattern of accumulation can be explained by a combination of the decreased activity of N- acyltransferase and the increased activity of NAPE-PLD during development. These results point out that it would...

  11. Age-related changes of monoaminooxidases in rat cerebellar cortex

    Directory of Open Access Journals (Sweden)

    FM Tranquilli Leali

    2009-06-01

    Full Text Available Age-related changes of the monoaminoxidases, evaluated by enzymatic staining, quantitative analysis of images, biochemical assay and statistical analysis of data were studied in cerebellar cortex of young (3-month-old and aged (26- month-old male Sprague-Dawley rats. The enzymatic staining shows the presence of monoamino-oxidases within the molecular and granular layers as well as within the Purkinje neurons of the cerebellum of young and aged animals. In molecular layer, and in Purkinje neurons the levels of monoaminooxidases were strongly increased in old rats. The granular layer showed, on the contrary, an age-dependent loss of enzymatic staining. These morphological findings were confirmed by biochemical results. The possibility that age-related changes in monoaminooxidase levels may be due to impaired energy production mechanisms and/or represent the consequence of reduced energetic needs is discussed.

  12. Hypoxic-induced stress protein expression in rat cardiac myocytes

    International Nuclear Information System (INIS)

    Howard, G.; Geoghegan, T.E.

    1986-01-01

    Mammalian stress proteins can be induced in cells and tissues exposed to a variety of conditions including hyperthermia and diminished O 2 supply. The authors have previously shown that the expression of three stress proteins (71, 85, and 95 kDa) was induced in cardiac tissue from mice exposed to hypoxic conditions. The expression of mRNAs coding for the 85 and 95 kDa proteins increase with time of exposure to hypoxia, while the mRNA coding for the 71 kDa protein is transiently induced. The authors extended these studies to investigate the expression of stress proteins in isolated rat cardiac myocytes. Freshly prepared myocytes were exposed to control, hypoxic, anoxic, or heat-shock environments for up to 16 h. The proteins were then labeled for 6 hours with [ 35 S]methionine. Analysis of the solubilized proteins by SDS-PAGE and autoradiography showed that there was a 6-fold increase in synthesis of the 85 kDa protein upon exposure to hypoxia but not heat-shock conditions. The 71 kDa protein was present at high levels in both control and treated myocyte protein preparations, and presumably had been induced during the isolation procedure. Total RNA isolated from intact rat heart and isolated myocytes was compared by cell-free translation analysis and showed induction of RNAs coding for several stress proteins in the myocyte preparation. The induced proteins at 85 and 95 kDa have molecular weights similar to reported cell stress and/or glucose-regulated proteins

  13. Predator Exposure/Psychosocial Stress Animal Model of Post-Traumatic Stress Disorder Modulates Neurotransmitters in the Rat Hippocampus and Prefrontal Cortex

    Science.gov (United States)

    Wilson, C. Brad; Ebenezer, Philip J.; McLaughlin, Leslie D.; Francis, Joseph

    2014-01-01

    Post-Traumatic Stress Disorder (PTSD) can develop in response to a traumatic event involving a threat to life. To date, no diagnostic biomarkers have been identified for PTSD. Recent research points toward physiological abnormalities in the hypothalamic-pituitary-adrenal (HPA) axis, sympathoadrenal medullary and immune system that may be implicated in the disorder. The modulation of neurotransmitters is another possible mechanism, but their role in the progression of PTSD is poorly understood. Low serotonin (5-HT) may be a factor, but it may not be the only neurotransmitter affected as modulation affects levels of other neurotransmitters. In this study, we hypothesized the predator exposure/psychosocial stress rodent model of PTSD may alter levels of 5-HT and other neurotransmitters in the rat hippocampus and prefrontal cortex (PFC). Male Sprague-Dawley rats were used in this experiment. We induced PTSD via a predator exposure/psychosocial stress model, whereby rats were placed in a cage with a cat for 1 hour on days 1 and 11 of the 31-day experiment. Rats also received psychosocial stress via daily cage cohort changes. On day 32, the rats were sacrificed and the brains dissected to remove the hippocampus and PFC. Norepinephrine (NE), 5-Hydroxyindoleacetic acid (5-HIAA), homovanillic acid (HVA), dopamine (DA), and 3,4-Dihydroxyphenylacetic acid (DOPAC), and 5-HT levels in the hippocampus and PFC were measured with high-performance liquid chromatography (HPLC). In the hippocampus, 5-HT and HVA were lower, while NE and DOPAC were higher, in the PTSD group vs. controls. In the PFC, only 5-HT was lower, while NE, DA, and DOPAC were higher, in the PTSD group vs. controls. The rate limiting enzymes tyrosine hydroxylase and tryptophan hydroxylase were also examined and confirmed our findings. These results demonstrate that the predator exposure/psychosocial stress model of PTSD produces neurotransmitter changes similar to those seen in human patients and may cause a

  14. Predator exposure/psychosocial stress animal model of post-traumatic stress disorder modulates neurotransmitters in the rat hippocampus and prefrontal cortex.

    Directory of Open Access Journals (Sweden)

    C Brad Wilson

    Full Text Available Post-Traumatic Stress Disorder (PTSD can develop in response to a traumatic event involving a threat to life. To date, no diagnostic biomarkers have been identified for PTSD. Recent research points toward physiological abnormalities in the hypothalamic-pituitary-adrenal (HPA axis, sympathoadrenal medullary and immune system that may be implicated in the disorder. The modulation of neurotransmitters is another possible mechanism, but their role in the progression of PTSD is poorly understood. Low serotonin (5-HT may be a factor, but it may not be the only neurotransmitter affected as modulation affects levels of other neurotransmitters. In this study, we hypothesized the predator exposure/psychosocial stress rodent model of PTSD may alter levels of 5-HT and other neurotransmitters in the rat hippocampus and prefrontal cortex (PFC. Male Sprague-Dawley rats were used in this experiment. We induced PTSD via a predator exposure/psychosocial stress model, whereby rats were placed in a cage with a cat for 1 hour on days 1 and 11 of the 31-day experiment. Rats also received psychosocial stress via daily cage cohort changes. On day 32, the rats were sacrificed and the brains dissected to remove the hippocampus and PFC. Norepinephrine (NE, 5-Hydroxyindoleacetic acid (5-HIAA, homovanillic acid (HVA, dopamine (DA, and 3,4-Dihydroxyphenylacetic acid (DOPAC, and 5-HT levels in the hippocampus and PFC were measured with high-performance liquid chromatography (HPLC. In the hippocampus, 5-HT and HVA were lower, while NE and DOPAC were higher, in the PTSD group vs. controls. In the PFC, only 5-HT was lower, while NE, DA, and DOPAC were higher, in the PTSD group vs. controls. The rate limiting enzymes tyrosine hydroxylase and tryptophan hydroxylase were also examined and confirmed our findings. These results demonstrate that the predator exposure/psychosocial stress model of PTSD produces neurotransmitter changes similar to those seen in human patients and may

  15. Patterns of gene expression associated with recovery and injury in heat-stressed rats.

    Science.gov (United States)

    Stallings, Jonathan D; Ippolito, Danielle L; Rakesh, Vineet; Baer, Christine E; Dennis, William E; Helwig, Bryan G; Jackson, David A; Leon, Lisa R; Lewis, John A; Reifman, Jaques

    2014-12-03

    The in vivo gene response associated with hyperthermia is poorly understood. Here, we perform a global, multiorgan characterization of the gene response to heat stress using an in vivo conscious rat model. We heated rats until implanted thermal probes indicated a maximal core temperature of 41.8°C (Tc,Max). We then compared transcriptomic profiles of liver, lung, kidney, and heart tissues harvested from groups of experimental animals at Tc,Max, 24 hours, and 48 hours after heat stress to time-matched controls kept at an ambient temperature. Cardiac histopathology at 48 hours supported persistent cardiac injury in three out of six animals. Microarray analysis identified 78 differentially expressed genes common to all four organs at Tc,Max. Self-organizing maps identified gene-specific signatures corresponding to protein-folding disorders in heat-stressed rats with histopathological evidence of cardiac injury at 48 hours. Quantitative proteomics analysis by iTRAQ (isobaric tag for relative and absolute quantitation) demonstrated that differential protein expression most closely matched the transcriptomic profile in heat-injured animals at 48 hours. Calculation of protein supersaturation scores supported an increased propensity of proteins to aggregate for proteins that were found to be changing in abundance at 24 hours and in animals with cardiac injury at 48 hours, suggesting a mechanistic association between protein misfolding and the heat-stress response. Pathway analyses at both the transcript and protein levels supported catastrophic deficits in energetics and cellular metabolism and activation of the unfolded protein response in heat-stressed rats with histopathological evidence of persistent heat injury, providing the basis for a systems-level physiological model of heat illness and recovery.

  16. [Screening differentially expressed plasma proteins in cold stress rats based on iTRAQ combined with mass spectrometry technology].

    Science.gov (United States)

    Liu, Yan-zhi; Guo, Jing-ru; Peng, Meng-ling; Ma, Li; Zhen, Li; Ji, Hong; Yang, Huan-min

    2015-09-01

    Isobaric tags for relative and absolute quantitation (iTRAQ) combined with mass spectrometry were used to screen differentially expressed plasma proteins in cold stress rats. Thirty health SPF Wistar rats were randomly divided into cold stress group A and control group B, then A and B were randomly divided into 3 groups (n = 5): A1, A2, A3 and B1, B2, B3. The temperature of room raising was (24.0 +/- 0.1) degrees C, and the cold stress temperature was (4.0 +/- 0.1) degrees C. The rats were treated with different temperatures until 12 h. The abdominal aortic blood was collected with heparin anticoagulation suction tube. Then, the plasma was separated for protein extraction, quantitative, enzymolysis, iTHAQ labeling, scx fractionation and mass spectrometry analysis. Totally, 1085 proteins were identified in the test, 39 differentially expressed proteins were screened, including 29 up-regulated proteins and 10 down-regulated proteins. Three important differentially expressed proteins related to cold stress were screened by bioinfonnatics analysis (Minor histocompatihility protein HA-1, Has-related protein Rap-1b, Integrin beta-1). In the experiment, the differentially expressed plasma proteins were successfully screened in cold stress rats. iTRAQ technology provided a good platform to screen protein diaguostic markers on cold stress rats, and laid a good foundation for further. study on animal cold stress mechanism.

  17. Manganese-enhanced magnetic resonance imaging (MEMRI) reveals brain circuitry involved in responding to an acute novel stress in rats with a history of repeated social stress.

    Science.gov (United States)

    Bangasser, Debra A; Lee, Catherine S; Cook, Philip A; Gee, James C; Bhatnagar, Seema; Valentino, Rita J

    2013-10-02

    Responses to acute stressors are determined in part by stress history. For example, a history of chronic stress results in facilitated responses to a novel stressor and this facilitation is considered to be adaptive. We previously demonstrated that repeated exposure of rats to the resident-intruder model of social stress results in the emergence of two subpopulations that are characterized by different coping responses to stress. The submissive subpopulation failed to show facilitation to a novel stressor and developed a passive strategy in the Porsolt forced swim test. Because a passive stress coping response has been implicated in the propensity to develop certain psychiatric disorders, understanding the unique circuitry engaged by exposure to a novel stressor in these subpopulations would advance our understanding of the etiology of stress-related pathology. An ex vivo functional imaging technique, manganese-enhanced magnetic resonance imaging (MEMRI), was used to identify and distinguish brain regions that are differentially activated by an acute swim stress (15 min) in rats with a history of social stress compared to controls. Specifically, Mn(2+) was administered intracerebroventricularly prior to swim stress and brains were later imaged ex vivo to reveal activated structures. When compared to controls, all rats with a history of social stress showed greater activation in specific striatal, hippocampal, hypothalamic, and midbrain regions. The submissive subpopulation of rats was further distinguished by significantly greater activation in amygdala, bed nucleus of the stria terminalis, and septum, suggesting that these regions may form a circuit mediating responses to novel stress in individuals that adopt passive coping strategies. The finding that different circuits are engaged by a novel stressor in the two subpopulations of rats exposed to social stress implicates a role for these circuits in determining individual strategies for responding to stressors

  18. Predictors of social instability stress effects on social interaction and anxiety in adolescent male rats.

    Science.gov (United States)

    Hodges, Travis E; Baumbach, Jennet L; McCormick, Cheryl M

    2018-06-21

    Adolescence is an important phase of development of social behaviors, which may be disrupted by the experience of stressors. We previously reported that exposure to social instability stress in adolescence (SS; postnatal day [PND] 30-45) in rats reduced social interactions with unfamiliar peers compared with non-stressed controls (CTL). In experiment 1, we replicated the effect of SS on social interaction and found that the pattern of neural activations based on Fos immunohistochemistry in brain regions during social interactions differed for SS and CTL rats. In experiment 2, we found that individual differences in novelty-seeking behavior on PND 30 and SS exposure were unique predictors of anxiety in the elevated plus maze on PND 46, and interacted to predict social interaction on PND 47; among high novelty-seeking rats, SS and CTL rats do not differ, whereas among low-novelty seeking rats, SS rats engaged in less social interaction than did CTL rats. Thus, high novelty-seeking may be a resilience factor against the effects of social stressors in adolescence. © 2018 Wiley Periodicals, Inc.

  19. Oxidative stress and superoxide dismutase activity in brain of rats ...

    African Journals Online (AJOL)

    JTEkanem

    effect of superoxide dismutase (SOD) activity in brain homogenates of Wistar rats. Oxidative stress measured as ..... on the brain and nervous system of humans as handlers and ... environment may be at higher health risk in that their internal ...

  20. Antidepressant-like effects and possible mechanisms of amantadine on cognitive and synaptic deficits in a rat model of chronic stress.

    Science.gov (United States)

    Yu, Mei; Zhang, Yuan; Chen, Xiaoyu; Zhang, Tao

    2016-01-01

    The aim of this study was to examine whether amantadine (AMA), as a low-affinity noncompetitive N-methyl-d-aspartate (NMDA) receptor antagonist, is able to improve cognitive deficits caused by chronic stress in rats. Male Wistar rats were divided into four groups: control, control + AMA, stress and stress + AMA groups. The chronic stress model combined chronic unpredictable stress (CUS) with isolated feeding. Animals were exposed to CUS continued for 21 days. AMA (25 mg/kg) was administrated p.o. for 20 days from the 4th day of CUS to the 23rd. Weight and sucrose consumption were measured during model establishing period. Spatial memory was evaluated using the Morris water maze (MWM) test. Following MWM testing, both long-term potentiation (LTP) and depotentiation were recorded in the hippocampal CA1 region. NR2B and postsynaptic density protein 95 (PSD-95) proteins were measured by Western-blot analysis. AMA increased weight and sucrose consumption of stressed rats. Spatial memory and reversal learning in stressed rats were impaired relative to controls, whereas AMA significantly attenuated cognitive impairment. AMA also mitigated the chronic stress-induced impairment of hippocampal synaptic plasticity, in which both the LTP and depotentiation were significantly inhibited in stressed rats. Moreover, AMA enhanced the expression of hippocampal NR2B and PSD-95 in stressed rats. The data suggest that AMA may be an effective therapeutic agent for depression-like symptoms and associated cognitive disturbances.

  1. Age-related audiovisual interactions in the superior colliculus of the rat.

    Science.gov (United States)

    Costa, M; Piché, M; Lepore, F; Guillemot, J-P

    2016-04-21

    It is well established that multisensory integration is a functional characteristic of the superior colliculus that disambiguates external stimuli and therefore reduces the reaction times toward simple audiovisual targets in space. However, in a condition where a complex audiovisual stimulus is used, such as the optical flow in the presence of modulated audio signals, little is known about the processing of the multisensory integration in the superior colliculus. Furthermore, since visual and auditory deficits constitute hallmark signs during aging, we sought to gain some insight on whether audiovisual processes in the superior colliculus are altered with age. Extracellular single-unit recordings were conducted in the superior colliculus of anesthetized Sprague-Dawley adult (10-12 months) and aged (21-22 months) rats. Looming circular concentric sinusoidal (CCS) gratings were presented alone and in the presence of sinusoidally amplitude modulated white noise. In both groups of rats, two different audiovisual response interactions were encountered in the spatial domain: superadditive, and suppressive. In contrast, additive audiovisual interactions were found only in adult rats. Hence, superior colliculus audiovisual interactions were more numerous in adult rats (38%) than in aged rats (8%). These results suggest that intersensory interactions in the superior colliculus play an essential role in space processing toward audiovisual moving objects during self-motion. Moreover, aging has a deleterious effect on complex audiovisual interactions. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Cardiac oxidative stress following maternal separation stress was mitigated following adolescent voluntary exercise in adult male rat.

    Science.gov (United States)

    Sahafi, Ehtramolsadat; Peeri, Maghsoud; Hosseini, Mir-Jamal; Azarbyjani, Mohammad Ali

    2018-01-01

    Early life stress (ELS) is known as a risk factor for the development of depression and its associated comorbidities, such as cardiomyopathy in depressed patients. Mitochondrial dysfunction plays a critical role in the pathophysiology of depression and cardiovascular diseases. Evidence indicates that regular physical activity has therapeutic effects on both mood and cardiovascular disorders. Therefore, the voluntary running wheel exercise (RW) during adolescence may be able to attenuate the negative impact of maternal separation stress (MS) as a valid animal model of depression on the behavior and cardiac mitochondrial function of adult rats. To do this, we applied MS to rat pups by separating them from their mothers for 180min during the postnatal day (PND) 2 to PND 14. Next, the animals were randomly divided into different treatment groups (fluoxetine [FLX] and RW) and received the treatments during adolescence, between PND 28 to PND 60. Then, we evaluated the effects of MS on the rat behaviors test, and finally, we assessed reactive oxygen species, mitochondrial glutathione, ATP and cytochrome c release in the cardiac tissue of animals. Our results showed that depressive-like behaviors following MS in adult male rats were associated with oxidative stress in cardiac tissue. Further, we found that treating animals with chronic FLX or RW during adolescence improved animal's behavior as well as cardiac mitochondrial function. The results of this study highlight the importance of adolescence as a period during which treating animals with non-pharmacological agents has significant protective effects against the negative influence of ELS on mood and cardiac energy hemostasis. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Secondhand Smoke Exposure Reduced the Compensatory Effects of IGF-I Growth Signaling in the Aging Rat Hearts.

    Science.gov (United States)

    Wu, Jia-Ping; Hsieh, Dennis Jine-Yuan; Kuo, Wei-Wen; Han, Chien-Kuo; Pai, Peiying; Yeh, Yu-Lan; Lin, Chien-Chung; Padma, V Vijaya; Day, Cecilia Hsuan; Huang, Chih-Yang

    2015-01-01

    Secondhand smoke (SHS) exposure is associated with increased risk of cardiovascular disease. Aging is a physiological process that involves progressive impairment of normal heart functions due to increased vulnerability to damage. This study examines secondhand smoke exposure in aging rats to determine the age-related death-survival balance. Rats were placed into a SHS exposure chamber and exposed to smog. Old age male Sprague-Dawley rats were exposed to 10 cigarettes for 30 min, day and night, continuing for one week. After 4 weeks the rats underwent morphological and functional studies. Left ventricular sections were stained with hematoxylin-eosin for histopathological examination. TUNEL detected apoptosis cells and protein expression related death and survival pathway were analyzed using western blot. Death receptor-dependent apoptosis upregulation pathways and the mitochondria apoptosis proteins were apparent in young SHS exposure and old age rats. These biological markers were enhanced in aging SHS-exposed rats. The survival pathway was found to exhibit compensation only in young SHS-exposed rats, but not in the aging rats. Further decrease in the activity of this pathway was observed in aging SHS-exposed rats. TUNEL apoptotic positive cells were increased in young SHS-exposed rats, and in aging rats with or without SHS-exposure. Aging reduces IGF-I compensated signaling with accelerated cardiac apoptotic effects from second-hand smoke.

  4. Beneficial effects of fluoxetine, reboxetine, venlafaxine, and voluntary running exercise in stressed male rats with anxiety- and depression-like behaviors.

    Science.gov (United States)

    Lapmanee, Sarawut; Charoenphandhu, Jantarima; Charoenphandhu, Narattaphol

    2013-08-01

    Rodents exposed to mild but repetitive stress may develop anxiety- and depression-like behaviors. Whether this stress response could be alleviated by pharmacological treatments or exercise interventions, such as wheel running, was unknown. Herein, we determined anxiety- and depression-like behaviors in restraint stressed rats (2h/day, 5 days/week for 4 weeks) subjected to acute diazepam treatment (30min prior to behavioral test), chronic treatment with fluoxetine, reboxetine or venlafaxine (10mg/kg/day for 4 weeks), and/or 4-week voluntary wheel running. In elevated plus-maze (EPM) and forced swimming tests (FST), stressed rats spent less time in the open arms and had less swimming duration than the control rats, respectively, indicating the presence of anxiety- and depression-like behaviors. Stressed rats also developed learned fear as evaluated by elevated T-maze test (ETM). Although wheel running could reduce anxiety-like behaviors in both EPM and ETM, only diazepam was effective in the EPM, while fluoxetine, reboxetine, and venlafaxine were effective in the ETM. Fluoxetine, reboxetine, and wheel running, but not diazepam and venlafaxine, also reduced depression-like behavior in FST. Combined pharmacological treatment and exercise did not further reduce anxiety-like behavior in stressed rats. However, stressed rats treated with wheel running plus reboxetine or venlafaxine showed an increase in climbing duration in FST. In conclusion, regular exercise (voluntary wheel running) and pharmacological treatments, especially fluoxetine and reboxetine, could alleviate anxiety- and depression-like behaviors in stressed male rats. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Working memory in bisphenol-A treated middle-aged ovariectomized rats.

    Science.gov (United States)

    Neese, Steven L; Bandara, Suren B; Schantz, Susan L

    2013-01-01

    Over 90% of the U.S. population has detectable bisphenol-A (BPA) in their urine according to recent biomonitoring data. BPA is best known for its estrogenic properties, and most rodent research on the nervous system effects of BPA has focused on determining if chronic exposures during pre- and perinatal development have organizational effects on brain development and behavior. Estrogens also have important impacts on brain and behavior during adulthood, particularly in females during aging, but the impact of BPA on the adult brain is less studied. We have published a series of studies documenting that chronic exposure to various estrogens including 17β-estradiol, ERβ selective SERMs and soy phytoestrogens impairs performance of middle-aged female rats on an operant working memory task. The purpose of this study was to determine if chronic oral exposure to BPA would alter working memory on this same task. Ovariectomized (OVX) middle-aged Long Evans rats were tested on an operant delayed spatial alternation (DSA) task. Rats were treated for 8-10 weeks with either a 0 (vehicle control), 5 or 50 μg/kg bw/day oral bolus of BPA. A subset of the vehicle control rats was implanted with a Silastic implant containing 17β-estradiol (low physiological range) to serve as a positive control. All rats were tested for 25 sessions on the DSA task. BPA treatment did not influence performance accuracy on the DSA task, whereas 17β-estradiol significantly impaired performance, as previously reported. The results of this study suggest that chronic oral exposure to BPA does not alter working memory processes of middle-aged OVX rats assessed by this operant DSA task. Copyright © 2013. Published by Elsevier Inc.

  6. Tualang honey improves memory performance and decreases depressive-like behavior in rats exposed to loud noise stress

    Directory of Open Access Journals (Sweden)

    Khairunnuur Fairuz Azman

    2015-01-01

    Full Text Available Recent evidence has exhibited dietary influence on the manifestation of different types of behavior induced by stressor tasks. The present study examined the effects of Tualang honey supplement administered with the goal of preventing or attenuating the occurrence of stress-related behaviors in male rats subjected to noise stress. Forty-eight adult male rats were randomly divided into the following four groups: i nonstressed with vehicle, ii nonstressed with Tualang honey, iii stressed with vehicle, and iv stressed with honey. The supplement was given once daily via oral gavage at 0.2 g/kg body weight. Two types of behavioral tests were performed, namely, the novel object recognition test to evaluate working memory and the forced swimming test to evaluate depressive-like behavior. Data were analyzed by a two-way analysis of variance (ANOVA using IBM SPSS 18.0. It was observed that the rats subjected to noise stress expressed higher levels of depressive-like behavior and lower memory functions compared to the unexposed control rats. In addition, our results indicated that the supplementation regimen successfully counteracted the effects of noise stress. The forced swimming test indicated that climbing and swimming times were significantly increased and immobility times significantly decreased in honey-supplemented rats, thereby demonstrating an antidepressant-like effect. Furthermore, cognitive function was shown to be intensely affected by noise stress, but the effects were counteracted by the honey supplement. These findings suggest that subchronic exposure to noise stress induces depressive-like behavior and reduces cognitive functions, and that these effects can be attenuated by Tualang honey supplementation. This warrants further studies to examine the role of Tulang honey in mediating such effects.

  7. p,p'-DDT induces testicular oxidative stress-induced apoptosis in adult rats.

    Science.gov (United States)

    Marouani, Neila; Hallegue, Dorsaf; Sakly, Mohsen; Benkhalifa, Moncef; Ben Rhouma, Khémais; Tebourbi, Olfa

    2017-05-26

    The 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (p,p'-DDT) is a known persistent organic pollutant and male reproductive toxicant. The present study is designed to test the hypothesis that oxidative stress mediates p,p'-DDT-induced apoptosis in testis. Male Wistar rats received an intraperitoneal (ip) injection of the pesticide at doses of 50 and 100mg/kg for 10 consecutive days. The oxidative stress was evaluated by biomarkers such lipid peroxidation (LPO) and metallothioneins (MTs) levels. Antioxidant enzymes activities was assessed by determination of superoxide dismutase (SOD), catalase (CAT) and hydrogen peroxide (H 2 O 2 ) production. In addition, glutathione-dependent enzymes and reducing power in testis was evaluated by glutathione peroxidase (Gpx), glutathione reductase (GR), glutathione S-transferase (GST) activities and reduced and oxidized glutathione (GSH - GSSG) levels. Apoptosis was evaluated by DNA fragmentation detected by agarose gel electrophoresis. Germinal cells apoptosis and the apoptotic index was assessed through the TUNEL assay. After 10 days of treatment, an increase in LPO level and H 2 O 2 production occurred, while MTs level, SOD and CAT activities were decreased. Also, the Gpx, GR, GST, and GSH activities were decreased, whereas GSSG activity was increased. Testicular tissues of treated rats showed pronounced degradation of the DNA into oligonucleotides as seen in the typical electrophoretic DNA ladder pattern. Intense apoptosis was observed in germinal cells of DDT-exposed rats. In addition, the apoptotic index was significantly increased in testis of DDT-treated rats. These results clearly suggest that DDT sub-acute treatment causes oxidative stress in rat testis leading to apoptosis.

  8. Aging-Dependent Changes in the Radiation Response of the Adult Rat Brain

    International Nuclear Information System (INIS)

    Schindler, Matthew K.; Forbes, M. Elizabeth; Robbins, Mike E.; Riddle, David R.

    2008-01-01

    Purpose: To assess the impact of aging on the radiation response in the adult rat brain. Methods and Materials: Male rats 8, 18, or 28 months of age received a single 10-Gy dose of whole-brain irradiation (WBI). The hippocampal dentate gyrus was analyzed 1 and 10 weeks later for sensitive neurobiologic markers associated with radiation-induced damage: changes in density of proliferating cells, immature neurons, total microglia, and activated microglia. Results: A significant decrease in basal levels of proliferating cells and immature neurons and increased microglial activation occurred with normal aging. The WBI induced a transient increase in proliferation that was greater in older animals. This proliferation response did not increase the number of immature neurons, which decreased after WBI in young rats, but not in old rats. Total microglial numbers decreased after WBI at all ages, but microglial activation increased markedly, particularly in older animals. Conclusions: Age is an important factor to consider when investigating the radiation response of the brain. In contrast to young adults, older rats show no sustained decrease in number of immature neurons after WBI, but have a greater inflammatory response. The latter may have an enhanced role in the development of radiation-induced cognitive dysfunction in older individuals

  9. Effects of total glucosides of paeony on oxidative stress in the kidney from diabetic rats.

    Science.gov (United States)

    Su, Jing; Zhang, Pei; Zhang, Jing-Jing; Qi, Xiang-Ming; Wu, Yong-Gui; Shen, Ji-Jia

    2010-03-01

    TGP, extracted from the traditional Chinese herb root of Paeonia lactiflora pall, has been shown to have therapeutic effect in experimental diabetic nephropathy. However, its mechanism is not fully understood. In this study, the effects of TGP on oxidative stress were investigated in the kidney of diabetic rats induced by streptozotocin. TGP (50, 100, 200mg/kg) was orally administered once a day for 8 weeks. TGP treatment in all three doses significantly lowered 24 h urinary albumin excretion rate in diabetic rats and attenuated glomerular volume. TGP treatment with 100 and 200mg/kg significantly reduced indices for tubulointerstitial injury in diabetic rats. The level of MDA was significantly increased in the kidney of diabetic rats and attenuated by TGP treatment at the dose of 200mg/kg. TGP treatment in a dose-dependent manner decreased the level of 3-NT protein of the kidney which increased under diabetes. T-AOC was significantly reduced in diabetic rat kidney and remarkably increased by TGP treatment at the dose of 100 and 200mg/kg. Activity of antioxidant enzyme such as SOD, CAT was markedly elevated by TGP treatment with 200mg/kg. Western blot analysis showed that p-p38 MAPK and NF-kappaB p65 protein expression increased in diabetic rat kidney, which were significantly decreased by TGP treatment. It seems likely that oxidative stress is increased in the diabetic rat kidneys, while TGP can prevent diabetes-associated renal damage against oxidative stress.

  10. [A comparative study on behaviors of two depression models in rats induced by chronic forced swimming stress].

    Science.gov (United States)

    Han, Ming-Fei; Gao, Dong; Sun, Xue-Li

    2010-01-01

    To compare the behaviors of rats with depressions induced by chronic forced swimming stress under two different conditions. Eighteen male rats were randomly divided into 3 groups, with 6 rats in each group. The rats in the control group (C group) were not forced into swimming, while the rats in the stress groups (S1 and S2) were forced to swim for 14 consecutive days. The rats in S1 group and S2 group swam for five minutes every morning, in water with (23 +/- 1) degree C, and (10 +/- 0.5) degree C in temperature, respectively. The weight gain, food intake, open-field test and saccharin solution test were observed on the seventh day and fourteenth day. On the seventh day following chronic swim stress, the rats in the S2 group had significant lower ratio in weight gain and food intake than the controls (P forced swimming. On the fourteenth day, the rats in the S1 group still had lower ratio in weight gain, but had higher ratio in food intake and preference for saccharin solution, and greater number of crossing than the controls. Chronic forced swimming at a lower temperature could induce depression better than at a higher temperature.

  11. Differential Effects of Psychological and Physical Stress on the Sleep Pattern in Rats

    OpenAIRE

    Cui, Ranji; Li, Bingjin; Suemaru, Katsuya; Araki, Hiroaki

    2007-01-01

    In the present study, we investigated the acute effects of 2 different kinds of stress, namely physical stress (foot shock) and psychological stress (non-foot shock) induced by the communication box method, on the sleep patterns of rats. The sleep patterns were recorded for 6 h immediately after 1 h of stress. Physical and psychological stress had almost opposite effects on the sleep patterns: In the physical stress group, hourly total rapid eye movement (REM) sleep and total non-REM sleep we...

  12. Possible effects of rosuvastatin on noise-induced oxidative stress in rat brain

    Directory of Open Access Journals (Sweden)

    Alevtina Ersoy

    2014-01-01

    Full Text Available The problem of noise has recently gained more attention as it has become an integral part of our daily lives. However, its influence has yet to be fully elucidated. Other than being an unpleasant stimulus, noise may cause health disorders through annoyance and stress, including oxidative stress. Rosuvastatin, a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, may possess antioxidant properties. Based on rat models, our project investigates the effect of rosuvastatin on noise-induced oxidative stress in the brain tissue. Thirty-two male Wistar albino rats were used. The rats were divided into four groups: Noise exposure plus rosuvastatin usage, only noise exposure, only rosuvastatin usage, and control. After the data had been collected, oxidant and antioxidant parameters were analyzed in the cerebral cortex, brain stem, and cerebellum. Results indicated that superoxide dismutase values were significantly decreased in the cerebral cortex, while malondialdehyde values in the brainstem and cerebellum were significantly increased in the group with only noise exposure. Superoxide dismutase values in the brainstem were significantly increased, but nitric oxide values in the cerebellum and brainstem and malondialdehyde values in the cerebellum and cerebral cortex were significantly decreased in the group where only rosuvastatin was used. During noise exposure, the use of rosuvastatin caused significantly increased superoxide dismutase values in the cerebral cortex and brainstem, but significantly reduced malondialdehyde values in the brain stem. Consequently, our data show that brain tissue was affected by oxidative stress due to continued exposure to noise. This noise-induced stress decreases with rosuvastatin therapy.

  13. eNOS-uncoupling in age-related erectile dysfunction

    OpenAIRE

    Johnson, JM; Bivalacqua, TJ; Lagoda, GA; Burnett, AL; Musicki, B

    2011-01-01

    Aging is associated with ED. Although age-related ED is attributed largely to increased oxidative stress and endothelial dysfunction in the penis, the molecular mechanisms underlying this effect are not fully defined. We evaluated whether endothelial nitric oxide synthase (eNOS) uncoupling in the aged rat penis is a contributing mechanism. Correlatively, we evaluated the effect of replacement with eNOS cofactor tetrahydrobiopterin (BH4) on erectile function in the aged rats. Male Fischer 344 ...

  14. Quantitative analysis of the renal aging in rats. Stereological study

    OpenAIRE

    Melchioretto, Eduardo Felippe; Zeni, Marcelo; Veronez, Djanira Aparecida da Luz; Martins Filho, Eduardo Lopes; Fraga, Rogério de

    2016-01-01

    ABSTRACT PURPOSE: To evaluate the renal function and the renal histological alterations through the stereology and morphometrics in rats submitted to the natural process of aging. METHODS: Seventy two Wistar rats, divided in six groups. Each group was sacrificed in a different age: 3, 6, 9, 12, 18 and 24 months. It was performed right nephrectomy, stereological and morphometric analysis of the renal tissue (renal volume and weight, density of volume (Vv[glom]) and numerical density (Nv[glo...

  15. Do levels of perceived stress increase with increasing age after age 65? A population-based study.

    Science.gov (United States)

    Osmanovic-Thunström, Almira; Mossello, Enrico; Åkerstedt, Torbjörn; Fratiglioni, Laura; Wang, Hui-Xin

    2015-09-01

    psychological and health-related stressors often occur in advanced ages, but little is known about perceived stress in adults aged 65 and over. This study aimed to test the hypothesis that levels of perceived stress increase with increasing age and to detect factors that may account for the association. a dementia-free cohort of 1,656 adults aged 66-97 years living at home or in institutions, participating in the Swedish National Aging and Care study, Kungsholmen (SNAC-K) was assessed for levels of perceived stress using the 10-item perceived stress scale (PSS). prevalence of high stress according to the top tertile of the population (PSS score 20+) was 7.8% in adults aged 81+ years, 7.5% in adults aged 72-78 and 6.2% in adults aged 66 years (P = 0.020). More women than men reported high stress, 8.3 versus 5.4% (P = 0.001). Levels of stress increased with increasing age (P = 0.001) in the linear regression model. This association remained after adjustment for demographic and psychosocial factors, but no longer was present after adjusting for health-related factors. health-related stress is highly prevalent in older adults and seems to play an important role in the association between levels of perceived stress and age in older adults. © The Author 2015. Published by Oxford University Press on behalf of the British Geriatrics Society. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Subacute stress and chronic stress interact to decrease intestinal barrier function in rats.

    Science.gov (United States)

    Lauffer, Adriana; Vanuytsel, Tim; Vanormelingen, Christophe; Vanheel, Hanne; Salim Rasoel, Shadea; Tóth, Joran; Tack, Jan; Fornari, Fernando; Farré, Ricard

    2016-01-01

    Psychological stress increases intestinal permeability, potentially leading to low-grade inflammation and symptoms in functional gastrointestinal disorders. We assessed the effect of subacute, chronic and combined stress on intestinal barrier function and mast cell density. Male Wistar rats were allocated to four experimental groups (n = 8/group): 1/sham; 2/subacute stress (isolation and limited movement for 24 h); 3/chronic crowding stress for 14 days and 4/combined subacute and chronic stress. Jejunum and colon were collected to measure: transepithelial electrical resistance (TEER; a measure of epithelial barrier function); gene expression of tight junction molecules; mast cell density. Plasma corticosterone concentration was increased in all three stress conditions versus sham, with highest concentrations in the combined stress condition. TEER in the jejunum was decreased in all stress conditions, but was significantly lower in the combined stress condition than in the other groups. TEER in the jejunum correlated negatively with corticosterone concentration. Increased expression of claudin 1, 5 and 8, occludin and zonula occludens 1 mRNAs was detected after subacute stress in the jejunum. In contrast, colonic TEER was decreased only after combined stress, and the expression of tight junction molecules was unaltered. Increased mast cell density was observed in the chronic and combined stress condition in the colon only. In conclusion, our data show that chronic stress sensitizes the gastrointestinal tract to the effects of subacute stress on intestinal barrier function; different underlying cellular and molecular alterations are indicated in the small intestine versus the colon.

  17. Physical versus psychological social stress in male rats reveals distinct cardiovascular, inflammatory and behavioral consequences

    Science.gov (United States)

    Padi, Akhila R.; Moffitt, Casey M.; Wilson, L. Britt; Wood, Christopher S.; Wood, Susan K.

    2017-01-01

    Repeated exposure to social stress can precipitate the development of psychosocial disorders including depression and comorbid cardiovascular disease. While a major component of social stress often encompasses physical interactions, purely psychological stressors (i.e. witnessing a traumatic event) also fall under the scope of social stress. The current study determined whether the acute stress response and susceptibility to stress-related consequences differed based on whether the stressor consisted of physical versus purely psychological social stress. Using a modified resident-intruder paradigm, male rats were either directly exposed to repeated social defeat stress (intruder) or witnessed a male rat being defeated. Cardiovascular parameters, behavioral anhedonia, and inflammatory cytokines in plasma and the stress-sensitive locus coeruleus were compared between intruder, witness, and control rats. Surprisingly intruders and witnesses exhibited nearly identical increases in mean arterial pressure and heart rate during acute and repeated stress exposures, yet only intruders exhibited stress-induced arrhythmias. Furthermore, re-exposure to the stress environment in the absence of the resident produced robust pressor and tachycardic responses in both stress conditions indicating the robust and enduring nature of social stress. In contrast, the long-term consequences of these stressors were distinct. Intruders were characterized by enhanced inflammatory sensitivity in plasma, while witnesses were characterized by the emergence of depressive-like anhedonia, transient increases in systolic blood pressure and plasma levels of tissue inhibitor of metalloproteinase. The current study highlights that while the acute cardiovascular responses to stress were identical between intruders and witnesses, these stressors produced distinct differences in the enduring consequences to stress, suggesting that witness stress may be more likely to produce long-term cardiovascular

  18. Cereal based diets modulate some markers of oxidative stress and inflammation in lean and obese Zucker rats

    Directory of Open Access Journals (Sweden)

    Mano Mark

    2011-05-01

    Full Text Available Abstract Background The potential of cereals with high antioxidant capacity for reducing oxidative stress and inflammation in obesity is unknown. This study investigated the impact of wheat bran, barley or a control diet (α-cellulose on the development of oxidative stress and inflammation in lean and obese Zucker rats. Methods Seven wk old, lean and obese male Zucker rats (n = 8/group were fed diets that contained wheat bran, barley or α-cellulose (control. After 3 months on these diets, systolic blood pressure was measured and plasma was analysed for glucose, insulin, lipids, oxygen radical absorbance capacity (ORAC, malondialdehyde, glutathione peroxidase and adipokine concentration (leptin, adiponectin, interleukin (IL-1β, IL-6, TNFα, plasminogen activator inhibitor (PAI-1, monocyte chemotactic protein (MCP-1. Adipokine secretion rates from visceral and subcutaneous adipose tissue explants were also determined. Results Obese rats had higher body weight, systolic blood pressure and fasting blood lipids, glucose, insulin, leptin and IL-1β in comparison to lean rats, and these measures were not reduced by consumption of wheat bran or barley based diets. Serum ORAC tended to be higher in obese rats fed wheat bran and barley in comparison to control (p = 0.06. Obese rats had higher plasma malondialdehyde (p Conclusions A 3-month dietary intervention was sufficient for Zucker obese rats to develop oxidative stress and systemic inflammation. Cereal-based diets with moderate and high antioxidant capacity elicited modest improvements in indices of oxidative stress and inflammation.

  19. Chronic subordinate colony housing (CSC as a model of chronic psychosocial stress in male rats.

    Directory of Open Access Journals (Sweden)

    Kewir D Nyuyki

    Full Text Available Chronic subordinate colony housing (CSC is an adequate and reliable mouse model of chronic psychosocial stress, resulting in reduced body weight gain, reduced thymus and increased adrenal weight, long-lasting anxiety-like behaviour, and spontaneous colitis. Furthermore, CSC mice show increased corticotrophin (ACTH responsiveness to acute heterotypic stressors, suggesting a general mechanism which allows a chronically-stressed organism to adequately respond to a novel threat. Therefore, the aim of the present study was to extend the CSC model to another rodent species, namely male Wistar rats, and to characterize relevant physiological, immunological, and behavioural consequences; placing particular emphasis on changes in hypothalamo-pituitary-adrenal (HPA axis responsiveness to an acute heterotypic stressor. In line with previous mouse data, exposure of Wistar rats to 19 days of CSC resulted in a decrease in body weight gain and absolute thymus mass, mild colonic barrier defects and intestinal immune activation. Moreover, no changes in stress-coping behaviour or social preference were seen; again in agreement with the mouse paradigm. Most importantly, CSC rats showed an increased plasma corticosterone response to an acute heterotypic stressor (open arm, 5 min despite displaying similar basal levels and similar basal and stressor-induced plasma ACTH levels. In contrast to CSC mice, anxiety-related behaviour and absolute, as well as relative adrenal weights remained unchanged in CSC rats. In summary, the CSC paradigm could be established as an adequate model of chronic psychosocial stress in male rats. Our data further support the initial hypothesis that adrenal hyper-responsiveness to ACTH during acute heterotypic stressors represents a general adaptation, which enables a chronically-stressed organism to adequately respond to novel challenges.

  20. Asymmetrical expression of BDNF and NTRK3 genes in frontoparietal cortex of stress-resilient rats in an animal model of depression.

    Science.gov (United States)

    Farhang, Sara; Barar, Jaleh; Fakhari, Ali; Mesgariabbasi, Mehran; Khani, Sajjad; Omidi, Yadollah; Farnam, Alireza

    2014-09-01

    The current study is based on the "approach-withdrawal" theory of emotional regulation and lateralization of brain function in rodents, which has little been studied. The aim was to indentify asymmetry in hemispheric genes expression during depression. Depressive-like symptoms were induced in rats using chronic mild stress protocol. The sucrose consumption test was performed to identify the anhedonic and stress-resilient rats. After decapitation, RNA was extracted from frontotemporal cortex of both hemispheres of anhedonic and stress-resilient rats. The pattern of gene expression in these samples was compared with controls by real-time polymerase chain reaction. A linear mixed model analysis of variance was fitted to the data to estimate the effect of rat line. From the total of 30 rats in the experimental group, five rats were identified to be anhedonic and five were stress-resilient, according to the result of sucrose-consumption test. BDNF and NTRK-3 were expressed at significantly lower levels in the right hemisphere of anhedonic rats compared with stress-resilient rats. No significant difference was found between left hemispheres. Hemispheric asymmetry in the level of gene expression was only observed for the BDNF gene in stress-resilient rats, upregulated in right hemisphere compared with the left. Expression of NTRK3, HTR2A, COMT, and SERT was not lateralized. There was no significant asymmetry between hemispheres of anhedonic rats. This study supports the evidence for the role of genes responsible for neural plasticity in pathophysiology of depression, emphasizing probable hemispheric asymmetry at level of gene expression. Copyright © 2014 Wiley Periodicals, Inc.

  1. Effect of Inhaling Bergamot Oil on Depression-Related Behaviors in Chronic Stressed Rats.

    Science.gov (United States)

    Saiyudthong, Somrudee; Mekseepralard, Chantana

    2015-10-01

    Bergamot essential oil (BEO) possesses sedation and anxiolytic properties similar to diazepam. After long period of exposure to stressors, including restrained stress, depressive-like behavior can be produced. BEO has been suggested to reduce depression. However, there is no scientific evidence supporting this property. To investigate the effect of BEO in chronic stressed rats on: 1) behavior related depressive disorder, 2) hypothalamic pituitary adrenal (HPA) axis response, and iii) brain-derived neurotrophic factor (BDNF) protein levels in hippocampus. Male Wistar rats, weighing 200 to 250 g, were induced chronic restrained stress 15 minutes dailyfor two weeks. For the next two weeks, these rats were divided intofour groups, control-i.p., fluoxetine-i.p., control-inhale, and BEO-inhale. Fluoxetine (10 mg/kg i.p.) or saline was intraperitoneally administered daily while 2.5% BEO or saline was inhaled daily. At the end of the treatment, rats were assessed for depressive-like behavior using the forced swimming test (FST). After the behavioral test, the animals were immediately decapitated and trunk blood samples were collected for the measurement ofcorticosterone and adrenocorticotropic hormone (ACTH) levels and hippocampus was dissected and stored in afreezer at -80 °C until assay for BDNF protein. BEO andfluoxetine significantly decreased the immobility time in the FST (p BDNF protein determination, neither BEO norfluoxetine had any effect on BDNF protein levels in hippocampus compared to their controls. The inhalation ofBEO decrease behavior related depressive disorder similar tofluoxetine but has no effect on HPA axis response and BDNF protein levels in chronic restrained stress.

  2. Altered cardiovascular reactivity and osmoregulation during hyperosmotic stress in adult rats developmentally exposed to polybrominated diphenyl ethers (PBDEs)

    International Nuclear Information System (INIS)

    Shah, Ashini; Coburn, Cary G.; Watson-Siriboe, Abena; Whitley, Rebecca; Shahidzadeh, Anoush; Gillard, Elizabeth R.; Nichol, Robert; Leon-Olea, Martha; Gaertner, Mark; Kodavanti, Prasada Rao S.; Curras-Collazo, Margarita C.

    2011-01-01

    Polybrominated diphenyl ethers (PBDEs) and the structurally similar chemicals polychlorinated biphenyls (PCBs) disrupt the function of multiple endocrine systems. PCBs and PBDEs disrupt the secretion of vasopressin (VP) from the hypothalamus during osmotic activation. Since the peripheral and central vasopressinergic axes are critical for osmotic and cardiovascular regulation, we examined whether perinatal PBDE exposure could impact these functions during physiological activation. Rats were perinatally dosed with a commercial PBDE mixture, DE-71. Dams were given 0 (corn oil control), 1.7 (low dose) or 30.6 mg/kg/day (high dose) in corn oil from gestational day (GD) 6 through postnatal day (PND) 21 by oral gavage. In the male offspring exposed to high dose PBDE plasma thyroxine and triiodothyronine levels were reduced at PND 21 and recovered to control levels by PND 60 when thyroid stimulating hormone levels were elevated. At 14-18 months of age, cardiovascular responses were measured in four groups of rats: Normal (Oil, normosmotic condition), Hyper (Oil, hyperosmotic stress), Hyper PBDE low (1.7 mg/kg/day DE-71 perinatally, hyperosmotic stress), and Hyper PBDE high (30.6 mg/kg/day DE-71 perinatally, hyperosmotic stress). Systolic blood pressure (BP), diastolic BP, and heart rate (HR) were determined using tail cuff sphygmomanometry and normalized to pretreatment values (baseline) measured under basal conditions. Hyperosmotic treatment yielded significant changes in systolic BP in PBDE exposed rats only. Hyper PBDE low and high dose rats showed 36.1 and 64.7% greater systolic BP responses at 3 h post hyperosmotic injection relative to pretreatment baseline, respectively. No treatment effects were measured for diastolic BP and HR. Hyper and Hyper PBDE rats showed increased mean plasma osmolality values by 45 min after injection relative to normosmotic controls. In contrast to Hyper rats, Hyper PBDE (high) rats showed a further increase in mean plasma osmolality at 3

  3. Inhibition of hormonal and behavioral effects of stress by tryptophan in rats.

    Science.gov (United States)

    Gul, Sumera; Saleem, Darakhshan; Haleem, Muhammad A; Haleem, Darakhshan Jabeen

    2017-11-03

    Stress in known to alter hormonal systems. Pharmacological doses of tryptophan, the essential amino acid precursor of serotonin, increase circulating leptin and decrease ghrelin in normal healthy adults. Because systemically injected leptin inhibits stress-induced behavioral deficits and systemically injected serotonin modulates leptin release from the adipocytes, we used tryptophan as a pharmacological tool to modulate hormonal and behavioral responses in unstressed and stressed rats. Leptin, ghrelin, serotonin, tryptophan, and behavior were studied in unstressed and stressed rats following oral administration of 0, 100, 200, and 300 mg/kg of tryptophan. Following oral administration of tryptophan at a dose of 300 mg/kg, circulating levels of serotonin and leptin increased and those of ghrelin decreased in unstressed animals. No effect occurred on 24-hours cumulative food intake and elevated plus maze performance. Exposure to 2 hours immobilization stress decreased 24 hours cumulative food intake and impaired performance in elevated plus maze monitored next day. Serum serotonin decreased, leptin increased, and no effect occurred on ghrelin. Stress effects on serotonin, leptin, food intake, and elevated plus maze performance did not occur in tryptophan-pretreated animals. Tryptophan-induced decreases of ghrelin also did not occur in stressed animals. The findings show an important role of serum serotonin, leptin, and ghrelin in responses to stress and suggest that the essential amino acid tryptophan can improve therapeutics in stress-induced hormonal and behavioral disorders.

  4. Study of the variations in apoptotic factors in hippocampus of male rats with posttraumatic stress disorder

    Directory of Open Access Journals (Sweden)

    Behrang Alani

    2013-01-01

    Full Text Available Background: Post-traumatic stress disorder (PTSD is a stress-related psychosomatic disorder caused by occurrence of a traumatic event and the hippocampus volume of the patients with Post-traumatic stress disorder decreased. However, the mechanisms that cause such damage are not well-understood. The aim of this study is to detect the expression of apoptosis-related Bax, Bcl-2, Caspase-3 and Insulin-like growth Factor-I proteins in the hippocampus region in the Predatory stress rats. Materials and Methods: A total of 70 male wistar rats were divided into Predatory stress groups of 1d, 2d, 3d, 7d, 14d, 30d and a normal control group (N = 10. Rats were subjected to 5 min of predatory stress and then exposed to the elevated plus-maze (EPM. Serum corticosterone and Insulin-like growth factor-1 level of Hippocampus were measured by ELISA technique. The expression of Bax, Bcl-2, and Caspase-3 were detected by western blotting. Results: Rats spent significantly more time in closed arms of the elevated plus maze (EPM than control group after exposure to stress. Serum levels of corticosterone significantly increased at 2d-3d. The expression of hippocampal IGF-1 was significantly up-regulated at 1d-2d after stress. Both Bax and the ratio of Bax/Bcl-2 significantly peaked at Predatory stress 2d-14d. Caspase3 was significantly active among 2d-30 compared to the normal control. Conclusion: The activation of caspase-3 in the stress groups indicates that apoptosis may be one of the reasons inducing hippocampus atrophy and play roles in the pathogenesis of PTSD. Increase in hippocampus levels of IGF-1 during early PTSD might be involved in the early molecular inhibitory mechanism of apoptosis in PTSD.

  5. The effects of honey and vitamin E administration on apoptosis in testes of rat exposed to noise stress

    Directory of Open Access Journals (Sweden)

    Masoud Hemadi

    2013-01-01

    Full Text Available Aims: A variety of stress factors are known to inhibit male reproductive functions. So this study was conducted in order to investigate the effects of honey and vitamin E on the germinative and somatic cells of testes of rats exposed to noise stress. Materials and Methods: Mature male wistar rats (n0 = 24 were randomly grouped as follows: Group 1 (honey + noise stress, 2 (vitamin E + noise stress, 3 (noise stress, and 4 as the control group. In groups 1, 2, and 3, rats were exposed to noise stress. In groups 1 and 2, rats also were given honey and vitamin E, respectively, orally for 50 days. After that, the germinative and somatic cells of testes parenchyma were isolated by digesting the whole testes by a standard method. Next, viability, apoptosis, and necrosis of the cells were evaluated by TUNEL kit and flow cytometry. Results: The rates of apoptosis and necrosis of the testicular cells were increased (P = 0.003 and P = 0.001, respectively, but viability of these cells decreased in testes of rats exposed to noise stress (P = 0.003. However, administration of honey and vitamin E were significantly helpful in keeping the cells of testis parenchyma alive, which suffers from noise pollution (P < 0.05 and P < 0.05, respectively. Conclusions: Noise stress has negative influences on the cells of testicular tissue by increasing apoptotic and necrotic cells. However, the associated enhancement in healthy cells suggests that honey and vitamin E have positive influences on the testis parenchyma.

  6. Metabolic and oxidative stress markers in Wistar rats after 2 months on a high-fat diet.

    Science.gov (United States)

    Auberval, Nathalie; Dal, Stéphanie; Bietiger, William; Pinget, Michel; Jeandidier, Nathalie; Maillard-Pedracini, Elisa; Schini-Kerth, Valérie; Sigrist, Séverine

    2014-01-01

    Metabolic syndrome is associated with an increased risk of cardiovascular and hepatic complications. Oxidative stress in metabolic tissues has emerged as a universal feature of metabolic syndrome and its co-morbidities. We aimed to develop a rapidly and easily induced model of metabolic syndrome in rats to evaluate its impact on plasma and tissue oxidative stress. Metabolic syndrome was induced in rats using a high-fat diet (HFD), and these rats were compared to rats fed a normal diet (ND) for 2 months. Metabolic control was determined by measuring body weight, blood glucose, triglycerides, lipid peroxidation and protein carbonylation in plasma. Insulinemia was evaluated through the measure of C-peptide. Histological analysis was performed on the pancreas, liver and blood vessels. After 2 months, the HFD induced an increase in body weight, insulin and triglycerides. Liver steatosis was also observed in the HFD group, which was associated with an increase in glycogen storage. In the pancreas, the HFD induced islet hyperplasia. Tissue oxidative stress was also increased in the liver, pancreas and blood vessels, but plasma oxidative stress remained unchanged. This paper reports the development of a fast and easy model of rat metabolic syndrome associated with tissue oxidative stress. This model may be a good tool for the biological validation of drugs or antioxidants to limit or prevent the complications of metabolic syndrome.

  7. Effects of chronic restraint stress and estradiol on open field activity, spatial memory, and monoaminergic neurotransmitters in ovariectomized rats.

    Science.gov (United States)

    Bowman, R E; Ferguson, D; Luine, V N

    2002-01-01

    Twenty-one days of chronic restraint stress impairs male rat performance on the radial arm maze [Luine et al. (1994) Brain Res. 639, 167-170], but enhances female rat performance [Bowman et al. (2001) Brain Res. 904, 279-289]. To assess possible ovarian hormone mechanisms underlying this sexually dimorphic response to stress, we examined chronic stress effects in ovariectomized rats. Ovariectomized rats received Silastic capsule implants containing cholesterol or estradiol and were assigned to a daily restraint stress (21 days, 6 h/day) or non-stress group. Following the stress period, subjects were tested for open field activity and radial arm maze performance. Stress and estradiol treatment affected open field activity. All stressed animals, with or without estradiol treatment, made fewer total outer sector crossings. In contrast, estradiol-treated animals, with or without stress, made more inner sector visits, an indication that estradiol decreased anxious behavior on the open field across time. As measured by the total number of visits required to complete the task, stress did not affect radial arm maze performance in ovariectomized rats, but estradiol-treated animals, with or without stress, performed better than non-treated animals on the radial arm maze. Stressed subjects receiving estradiol showed the best radial arm maze performance. Following killing, tissue samples were obtained from various brain regions known to contribute to learning and memory, and monoamine and metabolite levels were measured. Several changes were observed in response to both stress and estradiol. Most noteworthy, stress treatment decreased homovanillic acid levels in the prefrontal cortex, an effect not previously observed in stressed intact females. Estradiol treatment increased norepinephrine levels in CA3 region of the hippocampus, mitigating stress-dependent changes. Both stress and estradiol decreased dentate gyrus levels of 5-hydroxyindole acetic acid. In summary, the current

  8. Loss of perforated synapses in the dentate gyrus: morphological substrate of memory deficit in aged rats.

    Science.gov (United States)

    Geinisman, Y; de Toledo-Morrell, L; Morrell, F

    1986-01-01

    Most, but not all, aged rats exhibit a profound deficit in spatial memory when tested in a radial maze--a task known to depend on the integrity of the hippocampal formation. In this study, animals were divided into three groups based on their spatial memory capacity: young adult rats with good memory, aged rats with impaired memory, and aged rats with good memory. Memory-impaired aged animals showed a loss of perforated axospinous synapses in the dentate gyrus of the hippocampal formation in comparison with either young adults or aged rats with good memory. This finding suggests that the loss of perforated axospinous synapses in the hippocampal formation underlies the age-related deficit in spatial memory. Images PMID:3458260

  9. Bupleurum falcatum prevents depression and anxiety-like behaviors in rats exposed to repeated restraint stress.

    Science.gov (United States)

    Lee, Bombi; Yun, Hye-Yeon; Shim, Insop; Lee, Hyejung; Hahm, Dae-Hyun

    2012-03-01

    Previous studies have demonstrated that repeated restraint stress in rodents produces increases in depression and anxietylike behaviors and alters the expression of corticotrophinreleasing factor (CRF) in the hypothalamus. The current study focused on the impact of Bupleurum falcatum (BF) extract administration on repeated restraint stress-induced behavioral responses using the forced swimming test (FST) and elevated plus maze (EPM) test. Immunohistochemical examinations of tyrosine hydroxylase (TH) expression in rat brain were also conducted. Male rats received daily doses of 20, 50, or 100 mg/kg (i.p.) BF extract for 15 days, 30 min prior to restraint stress (4 h/day). Hypothalamicpituitary- adrenal axis activation in response to repeated restraint stress was confirmed base on serum corticosterone levels and CRF expression in the hypothalamus. Animals that were pre-treated with BF extract displayed significantly reduced immobility in the FST and increased open-arm exploration in the EPM test in comparison with controls. BF also blocked the increase in TH expression in the locus coeruleus of treated rats that experienced restraint stress. Together, these results demonstrate that BF extract administration prior to restraint stress significantly reduces depression and anxiety-like behaviors, possibly through central adrenergic mechanisms, and they suggest a role for BF extract in the treatment of depression and anxiety disorders.

  10. Blood pressure regulation and 45Ca flux in aging Zucker rats

    International Nuclear Information System (INIS)

    Zemel, M.B.; Shehin, S.E.; Chiou, S.Y.; Sowers, J.R.

    1990-01-01

    The authors have previously reported that Zucker obese rats exhibit significant hypertension associated with an impairment in vascular smooth muscle Ca 2+ efflux compared to their lean controls. To further investigate this phenomenon, the authors measured direct intra-arterial blood pressure in previously cannulated, unrestrained, conscious Zucker lean and obese rats at 10 weeks of age and 60 weeks of age. The animals were sacrificed and replicate aortic strips from each were loaded with 45 Ca and 45 Ca efflux was evaluated. Results show that both young and old obese rats exhibit systolic and diastolic hypertension and impaired Ca 2+ efflux, and these defects were exaggerated in the old animals. Further, the old lean animals exhibited diastolic hypertension and impaired Ca 2+ efflux comparable to that found in the young obese animals. This suggests that old Zucker lean rats exhibit the same defects in Ca 2+ efflux comparable to that found in the young obese animals. This suggests that old Zucker lean rats exhibit the same defects in Ca 2+ metabolism previously observed in young Zucker obese rats, possibly due to latent gene expression of the Fa gene in heterozygous lean rats

  11. Running Reduces Uncontrollable Stress-Evoked Serotonin and Potentiates Stress-Evoked Dopamine Concentrations in the Rat Dorsal Striatum.

    Directory of Open Access Journals (Sweden)

    Peter J Clark

    Full Text Available Accumulating evidence from both the human and animal literature indicates that exercise reduces the negative consequences of stress. The neurobiological etiology for this stress protection, however, is not completely understood. Our lab reported that voluntary wheel running protects rats from expressing depression-like instrumental learning deficits on the shuttle box escape task after exposure to unpredictable and inescapable tail shocks (uncontrollable stress. Impaired escape behavior is a result of stress-sensitized serotonin (5-HT neuron activity in the dorsal raphe (DRN and subsequent excessive release of 5-HT into the dorsal striatum following exposure to a comparatively mild stressor. However, the possible mechanisms by which exercise prevents stress-induced escape deficits are not well characterized. The purpose of this experiment was to test the hypothesis that exercise blunts the stress-evoked release of 5-HT in the dorsal striatum. Changes to dopamine (DA levels were also examined, since striatal DA signaling is critical for instrumental learning and can be influenced by changes to 5-HT activity. Adult male F344 rats, housed with or without running wheels for 6 weeks, were either exposed to tail shock or remained undisturbed in laboratory cages. Twenty-four hours later, microdialysis was performed in the medial (DMS and lateral (DLS dorsal striatum to collect extracellular 5-HT and DA before, during, and following 2 mild foot shocks. We report wheel running prevents foot shock-induced elevation of extracellular 5-HT and potentiates DA concentrations in both the DMS and DLS approximately 24 h following exposure to uncontrollable stress. These data may provide a possible mechanism by which exercise prevents depression-like instrumental learning deficits following exposure to acute stress.

  12. Physiologic response of rats to cold stress after exposure to 60-Hz electric fields

    International Nuclear Information System (INIS)

    Hilton, D.I.; Phillips, R.D.; Free, M.J.; Lang, L.L.; Chandon, J.H.; Kaune, W.T.

    1978-01-01

    In two experiments, the responses of the hypothalamo-pituitary-adrenal, thermoregulatory and cardiovascular systems were assessed in rats subjected to cold stress after exposure to uniform 60-Hz electric fields of 100 kV/m for one month. In the first experiment, plasma corticosterone levels were measured following exposure or sham exposure with the animals maintained at room temperature (∼23 deg). Corticosterone levels were also measured in rats subjected to cold stress (-13 deg. for one hour) immediately after the exposure period. Plasma corticosterone levels in the cold-stressed animals were significantly higher than in those kept at room temperature; however, there were no significant differences between exposed and sham-exposed animals for either the ambient or cold-stress situations. The second experiment followed the same field exposure and cold-stress protocol, only measurements of heart rate, deep colonic temperature and skin temperature were made before, during and after cold-stressing. The results for exposed and sham-exposed animals were essentially identical, failing to demonstrate any effect of electric field exposure on thermoregulatory and cardiovascular response to cold stress. (author)

  13. The effect of ZMS on brain M receptor in aged rats

    International Nuclear Information System (INIS)

    Hu Mei; Hu Yaer; Zhang Wei; Xia Zongqin

    2001-01-01

    Objective: The purpose of this work was to study the effect of ZMS, an active component of Yin tonic, Zhimu, on brain M 2 receptor density of aged animals and its correlation with the effect on learning/memory ability. Methods: A dual-site competitive binding assay using 3 H-quinuclidinyl benzilate (QNB) as non selective radioligand and unlabelled Methoctramine as selective competitive agent was established for measuring M 2 receptor density in aged rats. Results: In addition to the change of total density of M receptors, the density of a subtype of M receptors, M 2 receptor in brain was significantly decreased in aged rats [(231.8 +- 115.9) fmol·mg -1 (x-bar +- s) in young rats and (97.9 +- 46.3) fmol·mg -1 in aged rats]. When the aged rats were treated with ZMS for two months, in addition to the up-regulation of total M receptors, the M 2 receptor was up-regulated significantly [being (213 +- 77) mg at a ZMS dose of 3.6 mg·kg -1 ·d - '1, and (212 +- 72) mg at a ZMS dose of 18 mg·kg -1 ·d -1 ]. When the correlation between M 2 or total M receptor densities and the learning/memory ability measured by Y-maze performance was examined with linear regression, the correlation coefficient was remarkable (0.721 and 0.505, respectively). Conclusions: ZMS has the ability of up-regulating M 2 receptor and this may be an important factor for the improvement of learning and memory by ZMS

  14. Stress and Sucrose Intake Modulate Neuronal Activity in the Anterior Hypothalamic Area in Rats.

    Science.gov (United States)

    Mitra, Arojit; Guèvremont, Geneviève; Timofeeva, Elena

    2016-01-01

    The anterior hypothalamic area (AHA) is an important integrative relay structure for a variety of autonomic, endocrine, and behavioral responses including feeding behavior and response to stress. However, changes in the activity of the AHA neurons during stress and feeding in freely moving rats are not clear. The present study investigated the firing rate and burst activity of neurons in the central nucleus of the AHA (cAHA) during sucrose intake in non-stressful conditions and after acute stress in freely behaving rats. Rats were implanted with micro-electrodes into the cAHA, and extracellular multi-unit activity was recorded during 1-h access to 10% sucrose in non-stressful conditions or after acute foot shock stress. Acute stress significantly reduced sucrose intake, total sucrose lick number, and lick frequency in licking clusters, and increased inter-lick intervals. At the cluster start (CS) of sucrose licking, the cAHA neurons increased (CS-excited, 20% of the recorded neurons), decreased (CS-inhibited, 42% of the neurons) or did not change (CS-nonresponsive, 38% of the neurons) their firing rate. Stress resulted in a significant increase in the firing rate of the CS-inhibited neurons by decreasing inter-spike intervals within the burst firing of these neurons. This increase in the stress-induced firing rate of the CS-inhibited neurons was accompanied by a disruption of the correlation between the firing rate of CS-inhibited and CS-nonresponsive neurons that was observed in non-stressful conditions. Stress did not affect the firing rate of the CS-excited and CS-nonresponsive neurons. However, stress changed the pattern of burst firing of the CS-excited and CS-nonresponsive neurons by decreasing and increasing the burst number in the CS-excited and CS-nonresponsive neurons, respectively. These results suggest that the cAHA neurons integrate the signals related to stress and intake of palatable food and play a role in the stress- and eating-related circuitry.

  15. Glucocorticoid receptor activation is involved in producing abnormal phenotypes of single-prolonged stress rats: a putative post-traumatic stress disorder model.

    Science.gov (United States)

    Kohda, K; Harada, K; Kato, K; Hoshino, A; Motohashi, J; Yamaji, T; Morinobu, S; Matsuoka, N; Kato, N

    2007-08-10

    Post-traumatic stress disorder (PTSD) is a stress-related mental disorder caused by traumatic experience, and presents with characteristic symptoms, such as intrusive memories, a state of hyperarousal, and avoidance, that endure for years. Single-prolonged stress (SPS) is one of the animal models proposed for PTSD. Rats exposed to SPS showed enhanced inhibition of the hypothalamo-pituitary-adrenal (HPA) axis, which has been reliably reproduced in patients with PTSD, and increased expression of glucocorticoid receptor (GR) in the hippocampus. In this study, we characterized further neuroendocrinologic, behavioral and electrophysiological alterations in SPS rats. Plasma corticosterone recovered from an initial increase within a week, and gross histological changes and neuronal cell death were not observed in the hippocampus of the SPS rats. Behavioral analyses revealed that the SPS rats presented enhanced acoustic startle and impaired spatial memory that paralleled the deficits in hippocampal long-term potentiation (LTP) and depression. Contextual fear memory was enhanced in the rats 1 week after SPS exposure, whereas LTP in the amygdala was blunted. Interestingly, blockade of GR activation by administering 17-beta-hydroxy-11-beta-/4-/[methyl]-[1-methylethyl]aminophenyl/-17-alpha-[prop-1-ynyl]estra-4-9-diene-3-one (RU40555), a GR antagonist, prior to SPS exposure prevented potentiation of fear conditioning and impairment of LTP in the CA1 region. Altogether, SPS caused a number of behavioral changes similar to those described in PTSD, which marks SPS as a putative PTSD model. The preventive effects of a GR antagonist suggested that GR activation might play a critical role in producing the altered behavior and neuronal function of SPS rats.

  16. Aerobic exercise training rescues cardiac protein quality control and blunts endoplasmic reticulum stress in heart failure rats.

    Science.gov (United States)

    Bozi, Luiz H M; Jannig, Paulo R; Rolim, Natale; Voltarelli, Vanessa A; Dourado, Paulo M M; Wisløff, Ulrik; Brum, Patricia C

    2016-11-01

    Cardiac endoplasmic reticulum (ER) stress through accumulation of misfolded proteins plays a pivotal role in cardiovascular diseases. In an attempt to reestablish ER homoeostasis, the unfolded protein response (UPR) is activated. However, if ER stress persists, sustained UPR activation leads to apoptosis. There is no available therapy for ER stress relief. Considering that aerobic exercise training (AET) attenuates oxidative stress, mitochondrial dysfunction and calcium imbalance, it may be a potential strategy to reestablish cardiac ER homoeostasis. We test the hypothesis that AET would attenuate impaired cardiac ER stress after myocardial infarction (MI). Wistar rats underwent to either MI or sham surgeries. Four weeks later, rats underwent to 8 weeks of moderate-intensity AET. Myocardial infarction rats displayed cardiac dysfunction and lung oedema, suggesting heart failure. Cardiac dysfunction in MI rats was paralleled by increased protein levels of UPR markers (GRP78, DERLIN-1 and CHOP), accumulation of misfolded and polyubiquitinated proteins, and reduced chymotrypsin-like proteasome activity. These results suggest an impaired cardiac protein quality control. Aerobic exercise training improved exercise capacity and cardiac function of MI animals. Interestingly, AET blunted MI-induced ER stress by reducing protein levels of UPR markers, and accumulation of both misfolded and polyubiquinated proteins, which was associated with restored proteasome activity. Taken together, our study provide evidence for AET attenuation of ER stress through the reestablishment of cardiac protein quality control, which contributes to better cardiac function in post-MI heart failure rats. These results reinforce the importance of AET as primary non-pharmacological therapy to cardiovascular disease. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  17. Dietary supplementation with fruit polyphenolics ameliorates age-related deficits in behavior and neuronal markers of inflammation and oxidative stress.

    Science.gov (United States)

    Shukitt-Hale, Barbara; Galli, Rachel L; Meterko, Vanessa; Carey, Amanda; Bielinski, Donna F; McGhie, Tony; Joseph, James A

    2005-03-01

    Dietary supplementation with fruit or vegetable extracts can ameliorate age-related declines in measures of learning, memory, motor performance, and neuronal signal transduction in a rat model. To date, blueberries have proved most effective at improving measures of motor performance, spatial learning and memory, and neuronal functioning in old rats. In an effort to further characterize the bioactive properties of fruits rich in color and correspondingly high in anthocyanins and other polyphenolics, 19-month-old male Fischer rats were fed a well-balanced control diet, or the diet supplemented with 2% extract from either blueberry, cranberry, blackcurrant, or Boysenberry fruit for eight weeks before testing began. The blackcurrant and cranberry diets enhanced neuronal signal transduction as measured by striatal dopamine release, while the blueberry and cranberry diets were effective in ameliorating deficits in motor performance and hippocampal HSP70 neuroprotection; these changes in HSP70 were positively correlated with performance on the inclined screen. It appears that the polyphenols in blueberries and cranberries have the ability to improve muscle tone, strength and balance in aging rats, whereas polyphenols in blueberries, cranberries and blackcurrants have the ability to enhance neuronal functioning and restore the brain's ability to generate a neuroprotective response to stress.

  18. Impact of titanium dioxide on androgen receptors, seminal vesicles and thyroid hormones of male rats: possible protective trial with aged garlic extract.

    Science.gov (United States)

    Abu Zeid, E H; Alam, R T M; Abd El-Hameed, N E

    2017-06-01

    The aim of this study was to evaluate the effect of titanium dioxide (TiO 2 ), a widely produced and consumed pigment in various food products, on the post-natal development of male albino rat seminal vesicle and thyroid hormones, as well as to evaluate the ameliorative effect of aged garlic extract (AGE) on TiO 2 -induced alterations. Forty male rat pups (3 weeks old) were divided into four equal groups. The 1st group received distilled water orally (control group), 2nd group was given 2 ml kg -1 AGE, 3rd group was administered TiO 2 (5 g kg -1 BW) day after day for 65 days, and the 4th group administered AGE 6 hr prior to TiO 2 gavage. TiO 2 -exposed rats showed nonsignificant changes in the serum testosterone, TSH, T 3 and T 4 , while serum glucose showed a significant decrease. Androgen receptor (AR) mRNA expression was significantly down-regulated and weak signal of AR immune labelling. Histopathologically, the epithelium cell lining of seminal vesicles showed focal areas of necrosis and fibrous tissue with the prominent fibrous stroma of the atrophied glands. Meanwhile, AGE supplementation ameliorated the deleterious effects of TiO 2 intoxication through protecting the tissues from oxidative stress caused by TiO 2 . In summary, oral administration of TiO 2 resulted in abnormal developmental events in male rat seminal vesicle and AGE able to reduce TiO 2 toxicity. © 2016 Blackwell Verlag GmbH.

  19. Effect of Iron Enriched Bread Intake on the Oxidative Stress Indices in Male Wistar Rats

    Directory of Open Access Journals (Sweden)

    Sharareh Heidari

    2016-08-01

    Full Text Available Background Contrary to the proven benefits of iron, few concerns in producing the oxidative stress is remained problematic. Objectives The aim of the study was to evaluate the oxidative stress in the male Wistar rats fed bread supplemented with iron in different doses i.e., 35 (basic, 70 (two fold, 140 (four fold, and 210 mg/kg (six fold with or without NaHCO3 (250 mg/kg. Methods In this experimental study Iron, ceruloplasmin, ferritin, total iron binding capacity (TIBC, albumin, total protein, uric acid and plasma superoxide dismutase (SOD, glutathione peroxidase (GPX, catalase (CAT, malondialdehyde (MDA, and total antioxidant capacity (TAC, were evaluated in 30 rats at the first and last day of the experiment (day 30. In addition, phytic acid levels were detected in all baked breads. The data were analyzed by ANOVA and t test procedure though SPSS statistical software version 20. Results Serum iron level in rats that received basic level of iron plus NaHCO3 decreased significantly in the last day of the trial. Higher level of serum iron was seen in rats that received iron twofold, fourfold and sixfold and rats that received iron fourfold plus NaHCO3. Serum ceruloplasmin and ferritin in groups of rats that received fourfold level of iron plus NaHCO3 and rats that received iron sixfold showed a significant increase (P ≤ 0.05. Serum total protein and uric acid in rats that received basic level of iron plus NaHCO3 and rats that received twofold level of iron showed a significant decrease. Serum total protein levels in rats that received fourfold level of iron showed a significant decrease. Bread with NaHCO3 showed higher phytic acid levels than other groups. Conclusions These results indicate that oxidative stress was not induced, whereas some antioxidant activities were significantly changed in rats that received iron-enriched bread.

  20. Influence of omega-3 fatty acid status on the way rats adapt to chronic restraint stress.

    Directory of Open Access Journals (Sweden)

    Marie Hennebelle

    Full Text Available Omega-3 fatty acids are important for several neuronal and cognitive functions. Altered omega-3 fatty acid status has been implicated in reduced resistance to stress and mood disorders. We therefore evaluated the effects of repeated restraint stress (6 h/day for 21 days on adult rats fed omega-3 deficient, control or omega-3 enriched diets from conception. We measured body weight, plasma corticosterone and hippocampus glucocorticoid receptors and correlated these data with emotional and depression-like behaviour assessed by their open-field (OF activity, anxiety in the elevated-plus maze (EPM, the sucrose preference test and the startle response. We also determined their plasma and brain membrane lipid profiles by gas chromatography. Repeated restraint stress caused rats fed a control diet to lose weight. Their plasma corticosterone increased and they showed moderate behavioural changes, with increases only in grooming (OF test and entries into the open arms (EPM. Rats fed the omega-3 enriched diet had a lower stress-induced weight loss and plasma corticosterone peak, and reduced grooming. Rats chronically lacking omega-3 fatty acid exhibited an increased startle response, a stress-induced decrease in locomotor activity and exaggerated grooming. The brain omega-3 fatty acids increased as the dietary omega-3 fatty acids increased; diets containing preformed long-chain omega-3 fatty acid were better than diets containing the precursor alpha-linolenic acid. However, the restraint stress reduced the amounts of omega-3 incorporated. These data showed that the response to chronic restraint stress was modulated by the omega-3 fatty acid supply, a dietary deficiency was deleterious while enrichment protecting against stress.

  1. Proximal-tubule-like epithelium in Bowman's capsule in spontaneously hypertensive rats. Changes with age.

    OpenAIRE

    Haensly, W. E.; Granger, H. J.; Morris, A. C.; Cioffe, C.

    1982-01-01

    Kidneys were samples from male spontaneously hypertensive rats (SHR) and normotensive rats (WKY) in four groups. Renal tissues were examined in 64 rats: 6 SHR and 6 WKY rats 8 and 16 weeks of age and 10 SHR and 10 WKY rats 32 and 64 weeks of age. Tissue samples were fixed, processed, and stained by routine histologic procedures. The parietal layer of Bowman's capsule in 100-115 renal corpuscles from right to left kidney sections was classified as squamous or cuboidal epithelium. The cuboidal ...

  2. Oxytocin differently regulates pressor responses to stress in WKY and SHR rats: the role of central oxytocin and V1a receptors.

    Science.gov (United States)

    Wsol, A; Szczepanska-Sadowska, E; Kowalewski, S; Puchalska, L; Cudnoch-Jedrzejewska, A

    2014-01-01

    The role of central oxytocin in the regulation of cardiovascular parameters under resting conditions and during acute stress was investigated in male normotensive Wistar-Kyoto (WKY; n = 40) and spontaneously hypertensive rats (SHR; n = 28). In Experiment 1, mean arterial blood pressure (MABP) and heart rate (HR) were recorded in WKY and SHR rats at rest and after an air-jet stressor during intracerebroventricular (ICV) infusions of vehicle, oxytocin or oxytocin receptor (OTR) antagonist. In Experiment 2, the effects of vehicle, oxytocin and OTR antagonist were determined in WKY rats after prior administration of a V1a vasopressin receptor (V1aR) antagonist. Resting MABP and HR were not affected by any of the ICV infusions either in WKY or in SHR rats. In control experiments (vehicle), the pressor response to stress was significantly higher in SHR. Oxytocin enhanced the pressor response to stress in the WKY rats but reduced it in SHR. During V1aR blockade, oxytocin infusion entirely abolished the pressor response to stress in WKY rats. Combined blockade of V1aR and OTR elicited a significantly greater MABP response to stress than infusion of V1a antagonist and vehicle. This study reveals significant differences in the regulation of blood pressure in WKY and SHR rats during alarming stress. Specifically, the augmentation of the pressor response to stress by exogenous oxytocin in WKY rats is caused by its interaction with V1aR, and endogenous oxytocin regulates the magnitude of the pressor response to stress in WKY rats by simultaneous interaction with OTR and V1aR.

  3. AGE-RAGE Stress, Stressors, and Antistressors in Health and Disease.

    Science.gov (United States)

    Prasad, Kailash; Mishra, Manish

    2018-03-01

    Adverse effects of advanced glycation end-products (AGEs) on the tissues are through nonreceptor- and receptor-mediated mechanisms. In the receptor-mediated mechanism, interaction of AGEs with its cell-bound receptor of AGE (RAGE) increases generation of oxygen radicals, activates nuclear factor-kappa B, and increases expression and release of pro-inflammatory cytokines resulting in the cellular damage. The deleterious effects of AGE and AGE-RAGE interaction are coined as "AGE-RAGE stress." The body is equipped with defense mechanisms to counteract the adverse effects of AGE and RAGE through endogenous enzymatic (glyoxalase 1, glyoxalase 2) and AGE receptor-mediated (AGER1, AGER2) degradation of AGE, and through elevation of soluble receptor of AGE (sRAGE). Exogenous defense mechanisms include reduction in consumption of AGE, prevention of AGE formation, and downregulation of RAGE expression. We have coined AGE and RAGE as "stressors" and the defense mechanisms as "anti-stressors." AGE-RAGE stress is defined as a shift in the balance between stressors and antistressors in the favor of stressors. Measurements of stressors or antistressors alone would not assess AGE-RAGE stress. For true assessment of AGE-RAGE stress, the equation should include all the stressors and antistressors. The equation for AGE-RAGE stress, therefore, would be the ratio of AGE + RAGE/sRAGE + glyoxalase1 + glyoxalase 2 + AGER1 +AGER2. This is, however, not practical in patients. AGE-RAGE stress may be assessed simply by the ratio of AGE/sRAGE. A high ratio of AGE/sRAGE indicates a relative shift in stressors from antistressors, suggesting the presence of AGE-RAGE stress, resulting in tissue damage, initiation, and progression of the diseases and their complications.

  4. Prior stress exposure increases pain behaviors in a rat model of full thickness thermal injury.

    Science.gov (United States)

    Nyland, Jennifer E; McLean, Samuel A; Averitt, Dayna L

    2015-12-01

    Thermal burns among individuals working in highly stressful environments, such as firefighters and military Service Members, are common. Evidence suggests that pre-injury stress may exaggerate pain following thermal injury; however current animal models of burn have not evaluated the potential influence of pre-burn stress. This sham-controlled study evaluated the influence of prior stress exposure on post-burn thermal and mechanical sensitivity in male Sprague-Dawley rats. Rats were exposed to 20 min of inescapable swim stress or sham stress once per day for three days. Exposure to inescapable swim stress (1) increased the intensity and duration of thermal hyperalgesia after subsequent burn and (2) accelerated the onset of thermal hyperalgesia and mechanical allodynia after subsequent burn. This stress-induced exacerbation of pain sensitivity was reversed by pretreatment and concurrent treatment with the serotonin-norepinephrine reuptake inhibitor (SNRI) duloxetine. These data suggest a better understanding of mechanisms by which prior stress augments pain after thermal burn may lead to improved pain treatments for burn survivors. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  5. Ginsenoside Rb1 improves postoperative fatigue syndrome by reducing skeletal muscle oxidative stress through activation of the PI3K/Akt/Nrf2 pathway in aged rats.

    Science.gov (United States)

    Zhuang, Cheng-Le; Mao, Xiang-Yu; Liu, Shu; Chen, Wei-Zhe; Huang, Dong-Dong; Zhang, Chang-Jing; Chen, Bi-Cheng; Shen, Xian; Yu, Zhen

    2014-10-05

    Ginsenoside Rb1 is reported to possess anti-fatigue activity, but the mechanisms remain unknown. The aim of this study was to investigate the molecular mechanisms responsible for the anti-fatigue effect of ginsenoside Rb1 on postoperative fatigue syndrome induced by major small intestinal resection (MSIR) in aged rat. Aged rats with MSIR were administrated with ginsenoside Rb1 (15 mg/kg) once a day from 3 days before surgery to the day of sacrifice, or with saline as corresponding controls. Rats without MSIR but going through the same surgery procedure were administrated with saline as blank controls. Anti-fatigue effect was assessed by an open field test; superoxide dismutase, reactive oxygen species and malondialdehyde in skeletal muscle were determined. The mRNA levels of Akt2 and Nrf2 in skeletal muscle were measured by real-time quantitative PCR. The activation of Akt and Nrf2 was examined by western blot and immunohistofluorescence. Our results revealed that ginsenoside Rb1 significantly increased the journey and the rearing frequency, decreased the time of rest in aged rats with MSIR. In addition, ginsenoside Rb1 significantly reduced reactive oxygen species and malondialdehyde release and increased the superoxide dismutase activity of skeletal muscle in aged rats with MSIR. Ginsenoside Rb1 also increased the expression of Akt2 and Nrf2 mRNA, up-regulated Akt phosphorylation and Nrf2 nuclear translocation. These findings indicate that ginsenoside Rb1 has an anti-fatigue effect on postoperative fatigue syndrome in aged rat, and the mechanism possibly involves activation of the PI3K/Akt pathway with subsequent Nrf2 nuclear translocation and induction of antioxidant enzymes. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Comprehensive identification of age-related lipidome changes in rat amygdala during normal aging.

    Directory of Open Access Journals (Sweden)

    Roman Šmidák

    Full Text Available Brain lipids are integral components of brain structure and function. However, only recent advancements of chromatographic techniques together with mass spectrometry allow comprehensive identification of lipid species in complex brain tissue. Lipid composition varies between the individual areas and the majority of previous reports was focusing on individual lipids rather than a lipidome. Herein, a mass spectrometry-based approach was used to evaluate age-related changes in the lipidome of the rat amygdala obtained from young (3 months and old (20 months males of the Sprague-Dawley rat strain. A total number of 70 lipid species with significantly changed levels between the two animal groups were identified spanning four main lipid classes, i.e. glycerolipids, glycerophospholipids, sphingolipids and sterol lipids. These included phospholipids with pleiotropic brain function, such as derivatives of phosphatidylcholine, phosphatidylserine, and phosphatidylethanolamine. The analysis also revealed significant level changes of phosphatidic acid, diacylglycerol, sphingomyelin and ceramide that directly represent lipid signaling and affect amygdala neuronal activity. The amygdala is a crucial brain region for cognitive functions and former studies on rats and humans showed that this region changes its activity during normal aging. As the information on amygdala lipidome is very limited the results obtained in the present study represent a significant novelty and may contribute to further studies on the role of lipid molecules in age-associated changes of amygdala function.

  7. Granule cell potentials in the dentate gyrus of the hippocampus: coping behavior and stress ulcers in rats.

    Science.gov (United States)

    Henke, P G

    1990-01-01

    Evoked population potentials of the granule cells in the dentate gyrus of the hippocampus were increased in stress-resistant rats and decreased in stress-susceptible rats, as indexed by restraint-induced gastric ulcers. Inescapable, uncontrollable shock stimulation also suppressed granule cell population spikes and interfered with subsequent coping responses when escape was possible, i.e. the so-called helplessness effect. The data were interpreted to indicate that the hippocampus is part of a coping system in stressful situations.

  8. Plasma antioxidant capacity, sexual and thyroid hormones levels, sperm quantity and quality parameters in stressed male rats received nano-particle of selenium

    Directory of Open Access Journals (Sweden)

    M Rezaeian-Tabrizi

    2017-01-01

    Full Text Available Objective: To evaluate the effects of nano-particle of selenium (nSe on plasma antioxidant capacity, sexual and thyroid hormones and spermatogenesis in male rats exposed to oxidative stress.Methods: Forty rats were randomly divided into four treatments with ten replicates. Treatment groups were: C, the control group received normal saline as gavage and injection (i.p.; OS, received tert-butyl hydroperoxide (0.2 mmol/kg body weight for inducing oxidative stress; nSe, received nSe (0.3 mg/kg body weight as gavage, and OS+nSe, received tert-butyl hydroperoxide and nSe. All groups were treated for 28 d and administrations were done each 48 h.Results: Oxidative stress decreased and gavage of nSe to stressed rats increased the antioxidant capacity and activities (P0.05 between rats exposed to oxidative stress and those in the control group for sperm quantity and quality. Gavage of nSe to stressed rats had no effect (P>0.05 on the sperm parameters, except increased viability and progressive percentages.Conclusions: Nano-particle of Selenium administration in stressed rats could ameliorate the negative effects of oxidative stress on the antioxidant capacity and activities, but not on the quantity and quality parameters of sperm.

  9. Exercise Increases Cystathionine-γ-lyase Expression and Decreases the Status of Oxidative Stress in Myocardium of Ovariectomized Rats.

    Science.gov (United States)

    Tang, Zhiping; Wang, Yujun; Zhu, Xiaoyan; Ni, Xin; Lu, Jianqiang

    2016-01-01

    Exercise could be a therapeutic approach for cardiovascular dysfunction induced by estrogen deficiency. Our previous study has shown that estrogen maintains cystathionine-γ-lyase (CSE) expression and inhibits oxidative stress in the myocardium of female rats. In the present study, we investigated whether exercise improves CSE expression and oxidative stress status and ameliorates isoproterenol (ISO)-induced cardiac damage in ovariectomized (OVX) rats. The results showed that treadmill training restored the ovariectomy-induced reduction of CSE and estrogen receptor (ER)α and decrease of total antioxidant capacity (T-AOC) and increase of malondialdehyde (MDA). The level of CSE was positively correlated to T-AOC and ERα while inversely correlated to MDA. OVX rats showed increases in the serum levels of creatine kinase (CK) and lactate dehydrogenase (LDH) and the percentage of TUNEL staining in myocardium upon ISO insult compared to sham rats. Exercise training significantly reduced the serum levels of LDH and CK and the percentage of TUNEL staining in myocardium upon ISO insult in OVX rats. In cultured cardiomyocytes, ISO treatment decreased cell viability and increased LDH release, while overexpression of CSE increased cell viability and decreased LDH release in the cells upon ISO insult. The results suggest that exercise training improves the oxidative stress status and ameliorates the cardiac damage induced by oxidative stress in OVX rats. The improvement of oxidative stress status by exercise might be at least partially due to upregulation of CSE/H2S signaling.

  10. Effect of environmental enrichment exposure on neuronal morphology of streptozotocin-induced diabetic and stressed rat hippocampus

    Directory of Open Access Journals (Sweden)

    Narendra Pamidi

    2014-08-01

    Full Text Available Background: Environmental enrichment (EE exposure is known to influence the structural changes in the neuronal network of hippocampus. In the present study, we evaluated the effects of EE exposure on the streptozotocin (STZ-induced diabetic and stressed rat hippocampus. Methods: Male albino rats of Wistar strain (4-5 weeks old were grouped into normal control (NC, vehicle control (VC, diabetes (DI, diabetes + stress (DI + S, diabetes + EE (DI + E, and diabetes + stress + EE (DI + S + E groups (n = 8 in each group. Rats were exposed to stress and EE after inducing diabetes with STZ (40 mg/kg. Rats were sacrificed on Day 30 and brain sections were processed for cresyl violet staining to quantify the number of surviving neurons in the CA1, CA3, and dentate hilus (DH regions of hippocampus. Results: A significant (p < 0.001 decrease in the number of survived neurons was noticed in DI (CA1, 34.06 ± 3.2; CA3, 36.1 ± 3.62; DH, 9.83 ± 2.02 as well as DI + S (CA1, 14.03 ± 3.12; CA3, 20.27 ± 4.09; DH, 6.4 ± 1.21 group rats compared to NC rats (CA1, 53.64 ± 2.96; CA3, 62.1 ± 3.34; DH, 21.11 ± 1.03. A significant (p < 0.001 increase in the number of survived neurons was observed in DI + E (CA1, 42.3 ± 3.66; CA3, 46.73 ± 4.74; DH, 17.03 ± 2.19 and DI + S + E (CA1, 29.69 ± 4.47; CA3, 36.73 ± 3.89; DH, 12.23 ± 2.36 group rats compared to DI and DI + S groups, respectively. Conclusions: EE exposure significantly reduced the amount of neuronal damage caused by complications of diabetes and stress to the neurons of hippocampus.

  11. Chronic restraint stress in rats causes sustained increase in urinary corticosterone excretion without affecting cerebral or systemic oxidatively generated DNA/RNA damage

    DEFF Research Database (Denmark)

    Jorgensen, Anders; Maigaard, Katrine; Wörtwein, Gitta

    2013-01-01

    acids, 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) and 8-oxo-7,8-dihydroguanosine (8-oxoGuo), respectively, in rats subjected to chronic restraint stress. To reliably collect 24h urine samples, the full 3-week restraint stress paradigm was performed in metabolism cages. We further determined frontal...... and Tnf). The metabolism cage housing in itself did not significantly influence a range of biological stress markers. In the restraint stress group, there was a sustained 2.5 fold increase in 24h corticosterone excretion from day 2 after stress initiation. However, neither whole-body nor cerebral measures......Increased oxidatively generated damage to nucleic acids (DNA/RNA) may be a common mechanism underlying accelerated aging in psychological stress states and mental disorders. In the present study, we measured the urinary excretion of corticosterone and markers of systemic oxidative stress on nucleic...

  12. Garlic and Resveratrol attenuate diabetic complications, loss of β-cells, pancreatic and hepatic oxidative stress in streptozotocin-induced diabetic rats

    Directory of Open Access Journals (Sweden)

    Gagandeep Kaur

    2016-10-01

    Full Text Available Abstract:The study was aimed at finding the effect of garlic and resveratrol on loss of β-cells and diabetic complication in streptozotocin (STZ-induced Type-I diabetic rats. Rats were injected with single dose STZ (50mg/kg, i.p. for induction of type 1 diabetes (Dia and compared with control group. Rats from third (Dia+Gar, fourth (Dia+Resv and fifth (Dia+Met groups were fed raw garlic homogenate (250 mg/kg/day, resveratrol (25 mg/kg/day and metformin (500 mg/kg/day orally, respectively for a period of 4 weeks. Diabetic group had decreased serum insulin and hydrogen sulfide levels along with increased blood glucose and glycated hemoglobin, triglyceride, uric acid and nitric oxide levels. Significant (p<0.05 increase in pancreatic and hepatic TBARS, conjugated dienes, nitric oxide, and AGE level and significant (p<0.05 decrease in SOD, catalase, H2S, GSH level were observed in diabetic group. Administration of garlic, resveratrol and metformin significantly (p<0.05 normalized most of the altered metabolic and oxidative stress parameters as well as histopathological changes. Administration of garlic, resveratrol and 9metformin in diabetic rat decreases pancreatic β-cell damage and hepatic injury. Our data concluded that administration of garlic showed more promising effect in terms of reducing oxidative stress and pathological changes when compared to resveratrol and metformin groups.

  13. Brain and Serum Androsterone is Elevated in Response to Stress in Rats with Mild Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Richard J Servatius

    2016-08-01

    Full Text Available Exposure to lateral fluid percussion (LFP injury consistent with mild traumatic brain injury (mTBI persistently attenuates acoustic startle responses (ASRs in rats. Here, we examined whether the experience of head trauma affects stress reactivity. Male Sprague-Dawley rats were matched for ASRs and randomly assigned to receive mTBI through LFP or experience a sham surgery (SHAM. ASRs were measured post injury days (PIDs 1, 3, 7, 14, 21 and 28. To assess neurosteroids, rats received a single 2.0 mA, 0.5 s foot shock on PID 34 (S34, PID 35 (S35, on both days (2S, or the experimental context (CON. Levels of the neurosteroids pregnenolone (PREG, allopregnanolone (ALLO, and androsterone (ANDRO were determined for the prefrontal cortex, hippocampus and cerebellum. For 2S rats, repeated blood samples were obtained at 15, 30 and 60 min post-stressor for determination of corticosterone (CORT levels after stress or context on PID 34. Similar to earlier work, ASRs were severely attenuated in mTBI rats without remission for 28 days after injury. No differences were observed between mTBI and SHAM rats in basal CORT, peak CORT levels or its recovery. In serum and brain, ANDRO levels were the most stress-sensitive. Stress-induced ANDRO elevations were greater than those in mTBI rats. As a positive allosteric modulator of gamma-aminobutyric acid (GABAA receptors, increased brain ANDRO levels are expected to be anxiolytic. The impact of brain ANDRO elevations in the aftermath of mTBI on coping warrants further elaboration.

  14. Modulating effect of the nootropic drug, piracetam on stress- and subsequent morphine-induced prolactin secretion in male rats.

    Science.gov (United States)

    Matton, A.; Engelborghs, S.; Bollengier, F.; Finné, E.; Vanhaeist, L.

    1996-01-01

    1. The effect of the nootropic drug, piracetam on stress- and subsequent morphine-induced prolactin (PRL) secretion was investigated in vivo in male rats, by use of a stress-free blood sampling and drug administration method by means of a permanent indwelling catheter in the right jugular vein. 2. Four doses of piracetam were tested (20, 100, 200 and 400 mg kg-1), being given intraperitoneally 1 h before blood sampling; control rats received saline instead. After a first blood sample, rats were subjected to immobilization stress and received morphine, 6 mg kg-1, 90 min later. 3. Piracetam had no effect on basal plasma PRL concentration. 4. While in the non-piracetam-treated rats, stress produced a significant rise in plasma PRL concentration, in the piracetam-pretreated rats PRL peaks were attenuated, especially in the group given 100 mg kg-1 piracetam, where plasma PRL concentration was not significantly different from basal values. The dose-response relationship showed a U-shaped curve; the smallest dose had a minor inhibitory effect and the highest dose had no further effect on the PRL rise. 5. In unrestrained rats, morphine led to a significant elevation of plasma PRL concentration. After the application of immobilization stress it lost its ability to raise plasma PRL concentration in the control rats, but not in the piracetam-treated rats. This tolerance was overcome by piracetam in a significant manner but with a reversed dose-response curve; i.e. the smaller the dose of piracetam, the higher the subsequent morphine-induced PRL peak. 6. There is no simple explanation for the mechanism by which piracetam induces these contradictory effects. Interference with the excitatory amino acid system, which is also involved in opiate action, is proposed speculatively as a possible mediator of the effects of piracetam. PMID:8821540

  15. Dietary-Induced Chronic Hypothyroidism Negatively Affects Rat Follicular Development and Ovulation Rate and Is Associated with Oxidative Stress.

    Science.gov (United States)

    Meng, Li; Rijntjes, Eddy; Swarts, Hans; Bunschoten, Annelies; van der Stelt, Inge; Keijer, Jaap; Teerds, Katja

    2016-04-01

    The long-term effects of chronic hypothyroidism on ovarian follicular development in adulthood are not well known. Using a rat model of chronic diet-induced hypothyroidism initiated in the fetal period, we investigated the effects of prolonged reduced plasma thyroid hormone concentrations on the ovarian follicular reserve and ovulation rate in prepubertal (12-day-old) and adult (64-day-old and 120-day-old) rats. Besides, antioxidant gene expression, mitochondrial density and the occurrence of oxidative stress were analyzed. Our results show that continuous hypothyroidism results in lower preantral and antral follicle numbers in adulthood, accompanied by a higher percentage of atretic follicles, when compared to euthyroid age-matched controls. Not surprisingly, ovulation rate was lower in the hypothyroid rats. At the age of 120 days, the mRNA and protein content of superoxide dismutase 1 (SOD1) were significantly increased while catalase (CAT) mRNA and protein content was significantly decreased, suggesting a disturbed antioxidant defense capacity of ovarian cells in the hypothyroid animals. This was supported by a significant reduction in the expression of peroxiredoxin 3 ( ITALIC! Prdx3), thioredoxin reductase 1 ( ITALIC! Txnrd1), and uncoupling protein 2 ( ITALIC! Ucp2) and a downward trend in glutathione peroxidase 3 ( ITALIC! Gpx3) and glutathione S-transferase mu 2 ( ITALIC! Gstm2) expression. These changes in gene expression were likely responsible for the increased immunostaining of the oxidative stress marker 4-hydroxynonenal. Together these results suggest that chronic hypothyroidism initiated in the fetal/neonatal period results in a decreased ovulation rate associated with a disturbance of the antioxidant defense system in the ovary. © 2016 by the Society for the Study of Reproduction, Inc.

  16. Inhibitory Effects of Verrucarin A on Tunicamycin-Induced ER Stress in FaO Rat Liver Cells

    Directory of Open Access Journals (Sweden)

    Eun Young Bae

    2015-05-01

    Full Text Available Endoplasmic reticulum (ER stress is linked with development and maintenance of cancer, and serves as a therapeutic target for treatment of cancer. Verrucarin A, isolated from the broth of Fusarium sp. F060190, showed potential inhibitory activity on tunicamycin-induced ER stress in FaO rat liver cells. In addition, the compound decreased tunicamycin-induced GRP78 promoter activity in a dose dependent manner without inducing significant inhibition of luciferase activity and cell growth for 6 and 12 h. Moreover, the compound decreased the expression of GRP78, CHOP, XBP-1, and suppressed XBP-1, and reduced phosphorylation of IRE1α in FaO rat liver cells. This evidence suggests for the first time that verrucarin A inhibited tunicamycin-induced ER stress in FaO rat liver cells.

  17. Carnosine supplementation protects rat brain tissue against ethanol-induced oxidative stress.

    Science.gov (United States)

    Ozel Turkcu, Ummuhani; Bilgihan, Ayşe; Biberoglu, Gursel; Mertoglu Caglar, Oznur

    2010-06-01

    Ethanol causes oxidative stress and tissue damage. The aim of this study was to investigate the effect of antioxidant carnosine on the oxidative stress induced by ethanol in the rat brain tissue. Forty male rats were divided equally into four groups as control, carnosine (CAR), ethanol (EtOH), and ethanol plus carnosine (EtOH + CAR). Rats in the control group (n = 10) were injected intraperitoneally (i.p.) with 0.9% saline; EtOH group (n = 10) with 2 g/kg/day ethanol, CAR group (n = 10) received carnosine at a dose of 1 mg/kg/day and EtOH + CAR group (n = 10) received carnosine (orally) and ethanol (i.p.). All animals were sacrificed using ketamine and brain tissues were removed. Malondialdehyde (MDA), protein carbonyl (PCO) and tissue carnosine levels, and superoxide dismutase (SOD) activities were measured. Endogenous CAR levels in the rat brain tissue specimens were significantly increased in the CAR and EtOH groups when compared to the control animals. MDA and PCO levels in the EtOH group were significantly increased as compared to the other groups (P < 0.05). CAR treatment also decreased MDA levels in the CAR group as compared to the control group. Increased SOD activities were obtained in the EtOH + CAR group as compared to the control (P < 0.05). CAR levels in the rat brain were significantly increased in the CAR, EtOH and CAR + EtOH groups when compared to the control animals. These findings indicated that carnosine may appear as a protective agent against ethanol-induced brain damage.

  18. Pathways Involving Beta-3 Adrenergic Receptors Modulate Cold Stress-Induced Detrusor Overactivity in Conscious Rats.

    Science.gov (United States)

    Imamura, Tetsuya; Ishizuka, Osamu; Ogawa, Teruyuki; Yamagishi, Takahiro; Yokoyama, Hitoshi; Minagawa, Tomonori; Nakazawa, Masaki; Nishizawa, Osamu

    2015-01-01

    To investigate pathways involving beta-3 adrenergic receptors (ARs) in detrusor overactivity induced by cold stress, we determined if the beta-3 AR agonist CL316243 could modulate the cold stress-induced detrusor overactivity in normal rats. Two days prior to cystometric investigations, the bladders of 10-week-old female Sprague-Dawley rats were cannulated. Cystometric measurements of the unanesthetized, unrestricted rats were taken to estimate baseline values at room temperature (RT, 27 ± 2 °C) for 20 min. They were then intravenously administered vehicle, 0.1, or 1.0 mg/kg CL316243 (n = 6 in each group). Five minutes after the treatments, they were gently and quickly transferred to the low temperature (LT, 4 ± 2 °C) room for 40 min where the cystometric measurements were again made. Afterward, the rats were returned to RT for final cystometric measurements. The cystometric effects of CL316243 were also measured at RT (n = 6 in each group). At RT, both low and high dose of CL316243 decreased basal and micturition pressure while the high dose (1.0 mg/kg) significantly increased voiding interval and bladder capacity. During LT exposure, the high dose of CL316243 partially reduced cold stress-induced detrusor overactivity characterized by increased basal pressure and urinary frequency. The high drug dose also significantly inhibited the decreases of both voiding interval and bladder capacity compared to the vehicle- and low dose (0.1 mg/kg)-treated rats. A high dose of the beta-3 agonist CL316243 could modulate cold stress-induced detrusor overactivity. Therefore, one of the mechanisms in cold stress-induced detrusor overactivity includes a pathway involving beta-3 ARs. © 2014 Wiley Publishing Asia Pty Ltd.

  19. Non-invasively assessing disturbance and stress in laboratory rats by scoring chromodacryorrhoea.

    Science.gov (United States)

    Mason, Georgia; Wilson, David; Hampton, Charlotte; Würbel, Hanno

    2004-06-01

    In rats, like many rodents, Harderian glands next to the orbits secrete porphyrins, lipids and other compounds. High levels of secretion lead to chromodacryorrhoea (red or "bloody" tears), often taken as a sign of stress or disease. Here, we developed a scoring system for recording chromodacryorrhoea in a quantitative way, and investigated whether the low-level, transient Harderian secretions of normal, healthy rats correlate with low to moderate levels of stress or disturbance. Rather than exposing our subjects (24 Lister Hoodeds, housed in 11 single-sex cages) experimentally to stressors, we made opportunistic use of three likely sources of low-level stress within the unit: 1) building maintenance work, taking several hours and involving several potential stressors; 2) visits by unfamiliar humans, and the other mild sources of disturbance normal in an animal unit; and 3) social status within the cage. The mean daily chromodacryorrhoea score increased most with the severe disturbance of building maintenance work (F1,9 = 602.67, p < < 0.0001), and also increased--though to a lesser extent--with the mild disturbance of visitors and similar (F1,9 = 8.77, p = 0.008), while being the subordinate member of a cage-group had a smaller effect still (F1,6 = 7.86, p = 0.03). Individual rats scored consistently across treatment conditions, and there was also significant inter-observer reliability between independent scorers. We therefore suggest that scoring chromodacryorrhoea could be a simple, practical and non-invasive way of sensitively assessing the impact on rats of housing, husbandry, or procedures.

  20. Acute Ethanol Gavage Attenuates Hemorrhage/Resuscitation-Induced Hepatic Oxidative Stress in Rats

    Directory of Open Access Journals (Sweden)

    B. Relja

    2012-01-01

    Full Text Available Acute ethanol intoxication increases the production of reactive oxygen species (ROS. Hemorrhagic shock with subsequent resuscitation (H/R also induces ROS resulting in cellular and hepatic damage in vivo. We examined the role of acute ethanol intoxication upon oxidative stress and subsequent hepatic cell death after H/R. 14 h before H/R, rats were gavaged with single dose of ethanol or saline (5 g/kg, EtOH and ctrl; H/R_EtOH or H/R_ctrl, resp.. Then, rats were hemorrhaged to a mean arterial blood pressure of 30±2 mmHg for 60 min and resuscitated. Two control groups underwent surgical procedures without H/R (sham_ctrl and sham_EtOH, resp.. Liver tissues were harvested at 2, 24, and 72 h after resuscitation. EtOH-gavage induced histological picture of acute fatty liver. Hepatic oxidative (4-hydroxynonenal, 4-HNE and nitrosative (3-nitrotyrosine, 3-NT stress were significantly reduced in EtOH-gavaged rats compared to controls after H/R. Proapoptotic caspase-8 and Bax expressions were markedly diminished in EtOH-gavaged animals compared with controls 2 h after resuscitation. EtOH-gavage increased antiapoptotic Bcl-2 gene expression compared with controls 2 h after resuscitation. iNOS protein expression increased following H/R but was attenuated in EtOH-gavaged animals after H/R. Taken together, the data suggest that acute EtOH-gavage may attenuate H/R-induced oxidative stress thereby reducing cellular injury in rat liver.

  1. Agomelatine, venlafaxine, and running exercise effectively prevent anxiety- and depression-like behaviors and memory impairment in restraint stressed rats.

    Directory of Open Access Journals (Sweden)

    Sarawut Lapmanee

    Full Text Available Several severe stressful situations, e.g., natural disaster, infectious disease out break, and mass casualty, are known to cause anxiety, depression and cognitive impairment, and preventive intervention for these stress complications is worth exploring. We have previously reported that the serotonin-norepinephrine-dopamine reuptake inhibitor, venlafaxine, as well as voluntary wheel running are effective in the treatment of anxiety- and depression-like behaviors in stressed rats. But whether they are able to prevent deleterious consequences of restraint stress in rats, such as anxiety/depression-like behaviors and memory impairment that occur afterward, was not known. Herein, male Wistar rats were pre-treated for 4 weeks with anti-anxiety/anti-depressive drugs, agomelatine and venlafaxine, or voluntary wheel running, followed by 4 weeks of restraint-induced stress. During the stress period, rats received neither drug nor exercise intervention. Our results showed that restraint stress induced mixed anxiety- and depression-like behaviors, and memory impairment as determined by elevated plus-maze, elevated T-maze, open field test (OFT, forced swimming test (FST, and Morris water maze (MWM. Both pharmacological pre-treatments and running successfully prevented the anxiety-like behavior, especially learned fear, in stressed rats. MWM test suggested that agomelatine, venlafaxine, and running could prevent stress-induced memory impairment, but only pharmacological treatments led to better novel object recognition behavior and positive outcome in FST. Moreover, western blot analysis demonstrated that venlafaxine and running exercise upregulated brain-derived neurotrophic factor (BDNF expression in the hippocampus. In conclusion, agomelatine, venlafaxine as well as voluntary wheel running had beneficial effects, i.e., preventing the restraint stress-induced anxiety/depression-like behaviors and memory impairment.

  2. Apelin-APJ system is responsible for stress-induced increase in atrial natriuretic peptide expression in rat heart.

    Science.gov (United States)

    Izgut-Uysal, Vecihe Nimet; Acar, Nuray; Birsen, Ilknur; Ozcan, Filiz; Ozbey, Ozlem; Soylu, Hakan; Avci, Sema; Tepekoy, Filiz; Akkoyunlu, Gokhan; Yucel, Gultekin; Ustunel, Ismail

    2018-04-01

    The cardiovascular system is a primary target of stress and stress is the most important etiologic factor in cardiovascular diseases. Stressors increase expressions of atrial natriuretic peptide (ANP) and apelin in cardiac tissue. The aim of the present study was to investigate whether stress-induced apelin has an effect on the expression of ANP in the right atrium of rat heart. The rats were divided into the control, stress and F13A+stress groups. In the stress and F13A+stress groups, the rats were subjected to water immersion and restraint stress (WIRS) for 6h. In the F13A+stress group, apelin receptor antagonist F13A, was injected intravenously immediately before application of WIRS. The plasma samples were obtained for the measurement of corticosterone and atrial natriuretic peptide. The atrial samples were used for immunohistochemistry and western blot analysis. F13A administration prevented the rise of plasma corticosterone and ANP levels induced by WIRS. While WIRS application increased the expressions of apelin, HIF-1α and ANP in atrial tissue, while F13A prevented the stress-induced increase in the expression of HIF-1α and ANP. Stress-induced apelin induces ANP expression in atrial tissue and may play a role in cardiovascular homeostasis by increasing ANP expression under WIRS conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Dopamine transporter imaging in the aged rat: a [123I]FP-CIT SPECT study

    International Nuclear Information System (INIS)

    Niñerola-Baizán, Aida; Rojas, Santiago; Roé-Vellvé, Núria; Lomeña, Francisco; Ros, Domènec

    2015-01-01

    Introduction: Rodent models are extensively used to assess the biochemical and physiological changes associated with aging. They play a major role in the development of therapies for age-related pathologies such as Parkinson's disease. To validate the usefulness of these animal models in aging or age-related disease research, the consistency of cerebral aging processes across species must be evaluated. The dopaminergic system seems particularly susceptible to the aging process. One of the results of this susceptibility is a decline in striatal dopamine transporter (DAT) availability. Methods: We sought to ascertain whether similar age changes could be detected in-vivo in rats, using molecular imaging techniques such as single photon emission computed tomography (SPECT) with [ 123 I]FP-CIT. Results: A significant decrease of 17.21% in the striatal specific uptake ratio was observed in the aged rats with respect to the young control group. Conclusions: Our findings suggest that age-related degeneration in the nigrostriatal track is similar in humans and rats, which supports the use of this animal in models to evaluate the effect of aging on the dopaminergic system. Advances in Knowledge and Implications for patient Care: Our findings indicate that age-related degeneration in the nigrostriatal track is similar in humans and rats and that these changes can be monitored in vivo using small animal SPECT with [ 123 I]FP-CIT, which could facilitate the translational research in rat models of age related disorders of dopaminergic system

  4. Effects of prenatal stress on anxiety- and depressive-like behaviors are sex-specific in prepubertal rats.

    Science.gov (United States)

    Iturra-Mena, Ann Mary; Arriagada-Solimano, Marcia; Luttecke-Anders, Ariane; Dagnino-Subiabre, Alexies

    2018-05-17

    The fetal brain is highly susceptible to stress in late pregnancy, with lifelong effects of stress on physiology and behavior. The aim of this study was to determine the physiological and behavioral effects of prenatal stress during the prepubertal period of female and male rats. We subjected pregnant Sprague-Dawley rats to a restraint stress protocol from gestational day 14 until 21, a critical period for fetal brain susceptibility to stress effects. Male and female offspring were subsequently assessed at postnatal day 24 for anxiety- and depressive-like behaviors, and spontaneous social interaction. We also assessed maternal behaviors and two stress markers: basal vs. acute-evoked stress levels of serum corticosterone and body weight gain. Prenatal stress did not affect the maternal behavior, while both female and male offspring had higher body weight gain. On the other hand, lower levels of corticosterone after acute stress stimulation as well as anxiety- and depressive-like behaviors were only evident in stressed males compared to control males. These results suggest that prenatal stress induced sex-specific effects on the hypothalamus-pituitary-adrenal (HPA) axis activity and on behavior during prepuberty. The HPA axis of prenatally stressed male rats was less active compared to control males, as well as they were more anxious and experienced depressive-like behaviors. Our results can be useful to study the neurobiological basis of childhood depression at a pre-clinical level. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  5. Atrial arrhythmia in ageing spontaneously hypertensive rats: unraveling the substrate in hypertension and ageing.

    Directory of Open Access Journals (Sweden)

    Dennis H Lau

    Full Text Available BACKGROUND: Both ageing and hypertension are known risk factors for atrial fibrillation (AF although the pathophysiological contribution or interaction of the individual factors remains poorly understood. Here we aim to delineate the arrhythmogenic atrial substrate in mature spontaneously hypertensive rats (SHR. METHODS: SHR were studied at 12 and 15 months of age (n = 8 per group together with equal numbers of age-matched normotensive Wistar-Kyoto control rats (WKY. Electrophysiologic study was performed on superfused isolated right and left atrial preparations using a custom built high-density multiple-electrode array to determine effective refractory periods (ERP, atrial conduction and atrial arrhythmia inducibility. Tissue specimens were harvested for structural analysis. RESULTS: COMPARED TO WKY CONTROLS, THE SHR DEMONSTRATED: Higher systolic blood pressure (p<0.0001, bi-atrial enlargement (p<0.05, bi-ventricular hypertrophy (p<0.05, lower atrial ERP (p = 0.008, increased atrial conduction heterogeneity (p = 0.001 and increased atrial interstitial fibrosis (p = 0.006 & CD68-positive macrophages infiltration (p<0.0001. These changes resulted in higher atrial arrhythmia inducibility (p = 0.01 and longer induced AF episodes (p = 0.02 in 15-month old SHR. Ageing contributed to incremental bi-atrial hypertrophy (p<0.01 and atrial conduction heterogeneity (p<0.01 without affecting atrial ERP, fibrosis and arrhythmia inducibility. The limited effect of ageing on the atrial substrate may be secondary to the reduction in CD68-positive macrophages. CONCLUSIONS: Significant atrial electrical and structural remodeling is evident in the ageing spontaneously hypertensive rat atria. Concomitant hypertension appears to play a greater pathophysiological role than ageing despite their compounding effect on the atrial substrate. Inflammation is pathophysiologically linked to the pro-fibrotic changes in the hypertensive atria.

  6. Localisation of selected Ca2+-transport systems in rat's heart and kidney and their modulation by stress

    International Nuclear Information System (INIS)

    Zacikova, L.

    2000-01-01

    This thesis deals with the identification of selected calcium transport systems and their modulation by immobilization stress in rat heart and kidney. In our experiments we used normotensive (Sprague-Dawley, Wistar-Kyoto) and hypertensive (SHR) strains. We compared mRNA levels, protein expression and activity of the Na + /Ca 2+ exchanger from hearts of control animals, animals subjected to a single (once) or repeated (seven times) immobilization stress and from animals treated continually with cortisol. We have observed that immobilization stress increased both, gene expression and protein message of the Na + /Ca 2 + exchanger in rat cardiac left, but not right ventricle. This effect is not mediated through the glucocorticoid responsive element. We have found that cortisol decreased activity of the N a +/Ca 2+ exchanger without changing expression and protein amount of this transport system. IP3 receptor of type I and 2 was detected on mRNA levels in rat cardiac atria. Very small amounts of these receptors were observed in rat cardiac ventricles. Since it was difficult to detect these amounts in ventricles, we used 'seminested' PCR to verify expression of IP 3 R1 and 2 in cardiac ventricles. The highest levels of IP 3 R1 and 2 were expressed in left atria. Immobilization stress significantly increased mRNA IP 3 R1 and 2 in rat cardiac atria. We observed both, mRNA and type 1 IP 3 receptor's protein in renal medulla, but not in renal cortex. We have found that this receptor was approximately twice as abundant in normotensive as in genetically hypertensive rat kidney. Immobilization stress significantly down-regulated IP 3 R1 in renal medulla, but not in renal cortex. To investigate the role of NAADP in signaling we measured 45 Ca 2+ release from rat cardiac microsomes. We examined concentration and time dependence of 45 Ca 2+ release from rat cardiac microsomes. All these results could contribute to the understanding of Ca 2+ modulation in cardiac and kidney under

  7. Effect of aerobic exercise intervention on DDT degradation and oxidative stress in rats.

    Science.gov (United States)

    Li, Kefeng; Zhu, Xiaohua; Wang, Yuzhan; Zheng, Shuqian; Dong, Guijun

    2017-03-01

    Dichlorodiphenyltrichloroethane (DDT) reportedly causes extensively acute or chronic effects to human health. Exercise can generate positive stress. We evaluated the effect of aerobic exercise on DDT degradation and oxidative stress. Male Wistar rats were randomly assigned into control (C), DDT without exercise training (D), and DDT plus exercise training (DE) groups. The rats were treated as follows: DDT exposure to D and DE groups at the first 2 weeks; aerobic exercise treatment only to the DE group from the 1st day until the rats are killed. DDT levels in excrements, muscle, liver, serum, and hearts were analyzed. Superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and malondialdehyde (MDA) levels were determined. Aerobic exercise accelerated the degradation of DDT primarily to DDE due to better oxygen availability and aerobic condition and promoted the degradation of DDT. Cumulative oxidative damage of DDT and exercise led to significant decrease of SOD level. Exercise resulted in consistent increase in SOD activity. Aerobic exercise enhanced activities of CAT and GSH-Px and promoted MDA scavenging. Results suggested that exercise can accelerate adaptive responses to oxidative stress and activate antioxidant enzymes activities. Exercise can also facilitate the reduction of DDT-induced oxidative damage and promoted DDT degradation. This study strongly implicated the positive effect of exercise training on DDT-induced liver oxidative stress.

  8. Prolactin and aging: X-irradiated and estrogen-induced rat mammary tumorigenesis

    International Nuclear Information System (INIS)

    Ito, A.; Naito, M.; Watanabe, H.; Yokoro, K.

    1984-01-01

    Both sexes of inbred WF rats at either 8 or 28-60 weeks of age were exposed to 200 rad whole-body radiation, 2.5 or 5.0 mg 17 beta-estradiol (E2), or both agents The female rats treated with E2 alone or with both X-rays and E2 at 8 weeks of age showed a high incidence of mammary carcinomas (MCA), a large increase in pituitary weight, and a rise in serum prolactin (PRL) levels. However, the same treatments to males did not induce MCA despite a moderate increase in both pituitary weight and serum PRL. Ovariectomy prior to E2 treatment failed to modify the occurrence of MCA or pituitary tumors. When X-rays and E2 were given to female rats at 28-60 weeks of age, pituitary weight, serum PRL levels, and the incidence of MCA were unaffected. When the E2 pellet was kept for the first 24 weeks and withdrawn during the last 12 weeks, the incidence of MCA, pituitary weight, and serum PRL was low. It was concluded that: 1) the pituitary glands of young female rats were susceptible to E2 treatment but were insensitive in older females, and 2) the occurrence of MCA in female rats appeared to be promoted by elevated PRL levels secreted by E2-induced pituitary tumors. Mammary tissue of male rats was less sensitive to PRL levels in the development of MCA

  9. Lithium modulates the chronic stress-induced effect on blood glucose level of male rats

    Directory of Open Access Journals (Sweden)

    Popović Nataša

    2010-01-01

    Full Text Available In the present study we examined gross changes in the mass of whole adrenal glands and that of the adrenal cortex, as well as the serum corticosterone and glucose level of mature male Wistar rats subjected to three different treatments: animals subjected to chronic restraint-stress, animals injected with lithium (Li and chronically stressed rats treated with Li. Under all three conditions we observed hypertrophy of whole adrenals, as well as the adrenal cortices. Chronic restraint stress, solely or in combination with Li treatment, significantly elevated the corticosterone level, but did not change the blood glucose level. Animals treated only with Li exhibited an elevated serum corticosterone level and blood glucose level. The aim of our study was to investigate the modulation of the chronic stress-induced effect on the blood glucose level by lithium, as a possible mechanism of avoiding the damage caused by chronic stress. Our results showed that lithium is an agent of choice which may help to reduce stress-elevated corticosterone and replenish exhausted glucose storages in an organism.

  10. Impaired succinic dehydrogenase activity of rat Purkinje cell mitochondria during aging.

    Science.gov (United States)

    Fattoretti, P; Bertoni-Freddari, C; Caselli, U; Paoloni, R; Meier-Ruge, W

    1998-03-16

    The perikaryal Purkinje cell mitochondria positive to the copper ferrocyanide histochemical reaction for succinic dehydrogenase (SDH) have been investigated by means of semiautomatic morphometric methods in rats of 3, 12 and 24 months of age. The number of organelles/microm3 of Purkinje cell cytoplasm (Numeric density: Nv), the average mitochondrial volume (V) and the mitochondrial volume fraction (Volume density: Vv) were the ultrastructural parameters taken into account. Nv was significantly higher at 12 than at 3 and 24 months of age. V was significantly decreased at 12 and 24 months of age, but no difference was envisaged between adult and old rats. Vv was significantly decreased in old animals vs. the other age groups. In young and old rats, the percentage of organelles larger than 0.32 microm3 was 13.5 and 11%, respectively, while these enlarged mitochondria accounted for less than 1% in the adult group. Since SDH activity is of critical importance when energy demand is high, the marked decrease of Vv supports an impaired capacity of the old Purkinje cells to match actual energy supply at sustained transmission of the nervous impulse. However, the high percentage of enlarged organelles found in old rats may witness a morphofunctional compensatory response.

  11. Stress responses during ageing: molecular pathways regulating protein homeostasis.

    Science.gov (United States)

    Kyriakakis, Emmanouil; Princz, Andrea; Tavernarakis, Nektarios

    2015-01-01

    The ageing process is characterized by deterioration of physiological function accompanied by frailty and ageing-associated diseases. The most broadly and well-studied pathways influencing ageing are the insulin/insulin-like growth factor 1 signaling pathway and the dietary restriction pathway. Recent studies in diverse organisms have also delineated emerging pathways, which collectively or independently contribute to ageing. Among them the proteostatic-stress-response networks, inextricably affect normal ageing by maintaining or restoring protein homeostasis to preserve proper cellular and organismal function. In this chapter, we survey the involvement of heat stress and endoplasmic reticulum stress responses in the regulation of longevity, placing emphasis on the cross talk between different response mechanisms and their systemic effects. We further discuss novel insights relevant to the molecular pathways mediating these stress responses that may facilitate the development of innovative interventions targeting age-related pathologies such as diabetes, cancer, cardiovascular and neurodegenerative diseases.

  12. The number of granule cells in rat hippocampus is reduced after chronic mild stress and re-established after chronic escitalopram treatment

    DEFF Research Database (Denmark)

    Jayatissa, Magdalena N; Bisgaard, Christina; West, Mark J

    2008-01-01

    mild stress and chronic escitalopram treatment. Furthermore, we investigated which classes of immature granule cells are affected by stress and targeted by escitalopram. Rats were initially exposed to 2weeks of CMS and 4weeks of escitalopram treatment with concurrent exposure to stress. The behavioral...... changes, indicating a decrease in sensitivity to a reward, were assessed in terms of sucrose consumption. We found a significant 22.4% decrease in the total number of granule cells in the stressed rats. This decrease was reversed in the stressed escitalopram treated rats that responded to the treatment......, but not in the rats that did not respond to escitalopram treatment. These changes were not followed by alterations in the volume of the granule cell layer. We also showed a differential regulation of dentate neurons, in different stages of development, by chronic stress and chronic escitalopram treatment. Our study...

  13. Prenatal exposure to escitalopram and/or stress in rats: a prenatal stress model of maternal depression and its treatment

    Science.gov (United States)

    Bourke, Chase H.; Capello, Catherine F.; Rogers, Swati M.; Yu, Megan L.; Boss-Williams, Katherine A.; Weiss, Jay M.; Stowe, Zachary N.; Owens, Michael J.

    2014-01-01

    Rationale A rigorously investigated model of stress and antidepressant administration during pregnancy is needed to evaluate possible effects on the mother. Objective The objective of this study was to develop a model of clinically relevant prenatal exposure to an antidepressant and stress during pregnancy to evaluate the effects on maternal care behavior. Results Female rats implanted with 28 day osmotic minipumps delivering the SSRI escitalopram throughout pregnancy had serum escitalopram concentrations in a clinically observed range (17-65 ng/mL). A separate cohort of pregnant females exposed to a chronic unpredictable mild stress paradigm on gestational days 10-20 showed elevated baseline (305 ng/mL), and acute stress-induced (463 ng/mL), plasma corticosterone concentrations compared to unstressed controls (109 ng/mL). A final cohort of pregnant dams were exposed to saline (control), escitalopram, stress, or stress and escitalopram to determine the effects on maternal care. Maternal behavior was continuously monitored over the first 10 days post parturition. A reduction of 35% in maternal contact and 11% in nursing behavior was observed due to stress during the light cycle. Licking and grooming behavior was unaffected by stress or drug exposure in either the light or dark cycle. Conclusions These data indicate that: 1) clinically relevant antidepressant treatment during human pregnancy can be modeled in rats using escitalopram; 2) chronic mild stress can be delivered in a manner that does not compromise fetal viability; and 3) neither of these prenatal treatments substantially altered maternal care post parturition. PMID:23436130

  14. Task-specific compensation and recovery following focal motor cortex lesion in stressed rats.

    Science.gov (United States)

    Kirkland, Scott W; Smith, Lori K; Metz, Gerlinde A

    2012-03-01

    One reason for the difficulty to develop effective therapies for stroke is that intrinsic factors, such as stress, may critically influence pathological mechanisms and recovery. In cognitive tasks, stress can both exaggerate and alleviate functional loss after focal ischemia in rodents. Using a comprehensive motor assessment in rats, this study examined if chronic stress and corticosterone treatment affect skill recovery and compensation in a task-specific manner. Groups of rats received daily restraint stress or oral corticosterone supplementation for two weeks prior to a focal motor cortex lesion. After lesion, stress and corticosterone treatments continued for three weeks. Motor performance was assessed in two skilled reaching tasks, skilled walking, forelimb inhibition, forelimb asymmetry and open field behavior. The results revealed that persistent stress and elevated corticosterone levels mainly limit motor recovery. Treated animals dropped larger amounts of food in successful reaches and showed exaggerated loss of forelimb inhibition early after lesion. Stress also caused a moderate, but non-significant increase in infarct size. By contrast, stress and corticosterone treatments promoted reaching success and other quantitative measures in the tray reaching task. Comparative analysis revealed that improvements are due to task-specific development of compensatory strategies. These findings suggest that stress and stress hormones may partially facilitate task-specific and adaptive compensatory movement strategies. The observations support the notion that hypothalamic-pituitary-adrenal axis activation may be a key determinant of recovery and motor system plasticity after ischemic stroke.

  15. The rat closely mimics oxidative stress and inflammation in humans after exercise but not after exercise combined with vitamin C administration.

    Science.gov (United States)

    Veskoukis, Aristidis S; Goutianos, Georgios; Paschalis, Vassilis; Margaritelis, Nikos V; Tzioura, Aikaterini; Dipla, Konstantina; Zafeiridis, Andreas; Vrabas, Ioannis S; Kyparos, Antonios; Nikolaidis, Michalis G

    2016-04-01

    The purpose of the present study was to directly compare oxidative stress and inflammation responses between rats and humans. We contrasted rat and human oxidative stress and inflammatory responses to exercise (pro-oxidant stimulus) and/or vitamin C (anti-oxidant stimulus) administration. Vitamin C was administered orally in both species (16 mg kg(-1) of body weight). Twelve redox biomarkers and seven inflammatory biomarkers were determined in plasma and erythrocytes pre- and post-exercise or pre- and post-exercise combined with vitamin C administration. Exercise increased oxidative stress and induced an inflammatory state in rats and humans. There were only 1/19 significant species × exercise interactions (catalase), indicating similar responses to exercise between rats and humans in redox and inflammatory biomarkers. Vitamin C decreased oxidative stress and increased antioxidant capacity only in humans and did not affect the redox state of rats. In contrast, vitamin C induced an anti-inflammatory state only in rats and did not affect the inflammatory state of humans. There were 10/19 significant species × vitamin C interactions, indicating that rats poorly mimic human oxidative stress and inflammatory responses to vitamin C administration. Exercise after acute vitamin C administration altered redox state only in humans and did not affect the redox state of rats. On the contrary, inflammation biomarkers changed similarly after exercise combined with vitamin C in both rats and humans. The rat adequately mimics human responses to exercise in basic blood redox/inflammatory profile, yet this is not the case after exercise combined with vitamin C administration.

  16. Impaired cardiac ischemic tolerance in spontaneously hypertensive rats is attenuated by adaptation to chronic and acute stress.

    Science.gov (United States)

    Ravingerová, T; Bernátová, I; Matejíková, J; Ledvényiová, V; Nemčeková, M; Pecháňová, O; Tribulová, N; Slezák, J

    2011-01-01

    Chronic hypertension may have a negative impact on the myocardial response to ischemia. On the other hand, intrinsic ischemic tolerance may persist even in the pathologically altered hearts of hypertensive animals, and may be modified by short- or long-term adaptation to different stressful conditions. The effects of long-term limitation of living space (ie, crowding stress [CS]) and brief ischemia-induced stress on cardiac response to ischemia/reperfusion (I/R) injury are not yet fully characterized in hypertensive subjects. The present study was designed to test the influence of chronic and acute stress on the myocardial response to I/R in spontaneously hypertensive rats (SHR) compared with their effects in normotensive counterparts. In both groups, chronic, eight-week CS was induced by caging five rats per cage in cages designed for two rats (200 cm(2)/rat), while controls (C) were housed four to a cage in cages designed for six animals (480 cm(2)/rat). Acute stress was evoked by one cycle of I/R (5 min each, ischemic preconditioning) before sustained I/R in isolated Langendorff-perfused hearts of normotensive and SHR rats. At baseline conditions, the effects of CS were manifested only as a further increase in blood pressure in SHR, and by marked limitation of coronary perfusion in normotensive animals, while no changes in heart mechanical function were observed in any of the groups. Postischemic recovery of contractile function, severity of ventricular arrhythmias and lethal injury (infarction size) were worsened in the hypertrophied hearts of C-SHR compared with normotensive C. However, myo-cardial stunning and reperfusion-induced ventricular arrhythmias were attenuated by CS in SHR, which was different from deterioration of I/R injury in the hearts of normotensive animals. In contrast, ischemic preconditioning conferred an effective protection against I/R in both groups, although the extent of anti-infarct and anti-arrhythmic effects was lower in SHR. Both

  17. Stress biology and aging mechanisms: toward understanding the deep connection between adaptation to stress and longevity.

    Science.gov (United States)

    Epel, Elissa S; Lithgow, Gordon J

    2014-06-01

    The rate of biological aging is modulated in part by genes interacting with stressor exposures. Basic research has shown that exposure to short-term stress can strengthen cellular responses to stress ("hormetic stress"). Hormetic stress promotes longevity in part through enhanced activity of molecular chaperones and other defense mechanisms. In contrast, prolonged exposure to stress can overwhelm compensatory responses ("toxic stress") and shorten lifespan. One key question is whether the stressors that are well understood in basic models of aging can help us understand psychological stressors and human health. The psychological stress response promotes regulatory changes important in aging (e.g., increases in stress hormones, inflammation, oxidative stress, insulin). The negative effects of severe stress are well documented in humans. Potential positive effects of acute stress (stress resistance) are less studied, especially at the cellular level. Can stress resistance slow the rate of aging in humans, as it does in model organisms? If so, how can we promote stress resistance in humans? We urge a new research agenda embracing the continuum from cellular stress to psychological stress, using basic and human research in tandem. This will require interdisciplinary novel approaches that hold much promise for understanding and intervening in human chronic disease. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Age, stress, and isolation in older adults living with HIV.

    Science.gov (United States)

    Webel, Allison R; Longenecker, Chris T; Gripshover, Barbara; Hanson, Jan E; Schmotzer, Brian J; Salata, Robert A

    2014-01-01

    People living with HIV (PLWH) have increasingly longer life spans. This age group faces different challenges than younger PLWH, which may include increased stress and social isolation. The purpose of this study was to determine whether the age and sex of PLWH are associated with measures of physiologic stress, perceived stress, and social isolation. In this cross-sectional study, we enrolled 102 PLWH equally into four groups divided by age (younger or older than 50 years) and gender. Participants completed well-validated survey measurements of stress and isolation, and their heart rate variability over 60 minutes was measured by Holter monitor. The mean (SD) Perceived Stress Scale score was 17.4 (6.94), mean Visual Analog Stress Scale score was 3.51 (2.79), and mean Hawthorne Friendship Scale score, a measure of social isolation, was 17.03 (4.84). Mean heart rate variability expressed as the SD of successive N-N intervals was 65.47 (31.16) msec. In multivariable regression models that controlled for selected demographic variables, there was no relationship between the Perceived Stress Scale and age (coefficient = -0.09, p =-0.23) or female gender (coefficient = -0.12, p = 0.93); however, there was a modest relationship between female gender and stress using the Visual Analog Stress Scale (coefficient = 1.24, p = 0.05). Perceived Stress was negatively associated with the Hawthorne Friendship score (coefficient = -0.34, p = 0.05). Hawthorne Friendship score was positively associated with younger age (coefficient = 0.11, p = 0.02). Age was the only independent predictor of physiologic stress as measured by heart rate variability (coefficient = -1.3, p age-related changes in heart rate variability do not appear to be related to perceived stress or social isolation. Future longitudinal research is required to more thoroughly understand this relationship and its impact on the health of PLWH.

  19. Anti-stress effects of transcutaneous electrical nerve stimulation (TENS) on colonic motility in rats.

    Science.gov (United States)

    Yoshimoto, Sazu; Babygirija, Reji; Dobner, Anthony; Ludwig, Kirk; Takahashi, Toku

    2012-05-01

    Disorders of colonic motility may contribute to symptoms in patients with irritable bowel syndrome (IBS), and stress is widely believed to play a major role in developing IBS. Stress increases corticotropin releasing factor (CRF) of the hypothalamus, resulting in acceleration of colonic transit in rodents. In contrast, hypothalamic oxytocin (OXT) has an anti-stress effect via inhibiting CRF expression and hypothalamic-pituitary-adrenal axis activity. Although transcutaneous electrical nerve stimulation (TENS) and acupuncture have been shown to have anti-stress effects, the mechanism of the beneficial effects remains unknown. We tested the hypothesis that TENS upregulates hypothalamic OXT expression resulting in reduced CRF expression and restoration of colonic dysmotility in response to chronic stress. Male SD rats received different types of stressors for seven consecutive days (chronic heterotypic stress). TENS was applied to the bilateral hind limbs every other day before stress loading. Another group of rats did not receive TENS treatment. TENS significantly attenuated accelerated colonic transit induced by chronic heterotypic stress, which was antagonized by a central injection of an OXT antagonist. Immunohistochemical study showed that TENS increased OXT expression and decreased CRF expression at the paraventricular nucleus (PVN) following chronic heterotypic stress. It is suggested that TENS upregulates hypothalamic OXT expression which acts as an anti-stressor agent and mediates restored colonic dysmotility following chronic stress. TENS may be useful to treat gastrointestinal symptoms associated with stress.

  20. Ascorbic acid deficiency aggravates stress-induced gastric mucosal lesions in genetically scorbutic ODS rats.

    Science.gov (United States)

    Ohta, Y; Chiba, S; Imai, Y; Kamiya, Y; Arisawa, T; Kitagawa, A

    2006-12-01

    We examined whether ascorbic acid (AA) deficiency aggravates water immersion restraint stress (WIRS)-induced gastric mucosal lesions in genetically scorbutic ODS rats. ODS rats received scorbutic diet with either distilled water containing AA (1 g/l) or distilled water for 2 weeks. AA-deficient rats had 12% of gastric mucosal AA content in AA-sufficient rats. AA-deficient rats showed more severe gastric mucosal lesions than AA-sufficient rats at 1, 3 or 6 h after the onset of WIRS, although AA-deficient rats had a slight decrease in gastric mucosal AA content, while AA-sufficient rats had a large decrease in that content. AA-deficient rats had more decreased gastric mucosal nonprotein SH and vitamin E contents and increased gastric mucosal lipid peroxide content than AA-sufficient rats at 1, 3 or 6 h of WIRS. These results indicate that AA deficiency aggravates WIRS-induced gastric mucosal lesions in ODS rats by enhancing oxidative damage in the gastric mucosa.

  1. Postnatal treatment with metyrapone attenuates the effects of diet-induced obesity in female rats exposed to early-life stress.

    Science.gov (United States)

    Murphy, Margaret O; Herald, Joseph B; Wills, Caleb T; Unfried, Stanley G; Cohn, Dianne M; Loria, Analia S

    2017-02-01

    Experimental studies in rodents have shown that females are more susceptible to exhibiting fat expansion and metabolic disease compared with males in several models of fetal programming. This study tested the hypothesis that female rat pups exposed to maternal separation (MatSep), a model of early-life stress, display an exacerbated response to diet-induced obesity compared with male rats. Also, we tested whether the postnatal treatment with metyrapone (MTP), a corticosterone synthase inhibitor, would attenuate this phenotype. MatSep was performed in WKY offspring by separation from the dam (3 h/day, postnatal days 2-14). Upon weaning, male and female rats were placed on a normal (ND; 18% kcal fat) or high-fat diet (HFD; 60% kcal fat). Nondisturbed littermates served as controls. In male rats, no diet-induced differences in body weight (BW), glucose tolerance, and fat tissue weight and morphology were found between MatSep and control male rats. However, female MatSep rats displayed increased BW gain, fat pad weights, and glucose intolerance compared with control rats (P obesity risk factors, including elevated adiposity, hyperleptinemia, and glucose intolerance. These findings show that exposure to stress hormones during early life could be a key event to enhance diet-induced obesity and metabolic disease in female rats. Thus, pharmacological and/or behavioral inflection of the stress levels is a potential therapeutic approach for prevention of early life stress-enhanced obesity and metabolic disease. Copyright © 2017 the American Physiological Society.

  2. The influence of social environment in early life on the behavior, stress response, and reproductive system of adult male Norway rats selected for different attitudes to humans.

    Science.gov (United States)

    Gulevich, R G; Shikhevich, S G; Konoshenko, M Yu; Kozhemyakina, R V; Herbeck, Yu E; Prasolova, L A; Oskina, I N; Plyusnina, I Z

    2015-05-15

    The influence of social disturbance in early life on behavior, response of blood corticosterone level to restraint stress, and endocrine and morphometric indices of the testes was studied in 2-month Norway rat males from three populations: not selected for behavior (unselected), selected for against aggression to humans (tame), and selected for increased aggression to humans (aggressive). The experimental social disturbance included early weaning, daily replacement of cagemates from days 19 to 25, and subsequent housing in twos till the age of 2months. The social disturbance increased the latent period of aggressive behavior in the social interaction test in unselected males and reduced relative testis weights in comparison to the corresponding control groups. In addition, experimental unselected rats had smaller diameters of seminiferous tubules and lower blood testosterone levels. In the experimental group, tame rats had lower basal corticosterone levels, and aggressive animals had lower hormone levels after restraint stress in comparison to the control. The results suggest that the selection in two directions for attitude to humans modifies the response of male rats to social disturbance in early life. In this regard, the selected rat populations may be viewed as a model for investigation of (1) neuroendocrinal mechanisms responsible for the manifestation of aggression and (2) interaction of the hypothalamic-pituitary-adrenal and hypothalamic-pituitary-gonadal systems in stress. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Effect of prenatal restraint stress and morphine co-administration on plasma vasopressin concentration and anxiety behaviors in adult rat offspring.

    Science.gov (United States)

    Nakhjiri, Elnaz; Saboory, Ehsan; Roshan-Milani, Shiva; Rasmi, Yousef; Khalafkhani, Davod

    2017-03-01

    Stressful events and exposure to opiates during gestation have important effects on the later mental health of the offspring. Anxiety is among the most common mental disorders. The present study aimed to identify effects of prenatal restraint stress and morphine co-administration on plasma vasopressin concentration (PVC) and anxiety behaviors in rats. Pregnant rats were divided into four groups (n = 6, each): saline, morphine, stress + saline and stress + morphine treatment. The stress procedure consisted of restraint twice per day, two hours per session, for three consecutive days starting on day 15 of pregnancy. Rats in the saline and morphine groups received either 0.9% saline or morphine intraperitoneally on the same days. In the morphine/saline + stress groups, rats were exposed to restraint stress and received either morphine or saline intraperitoneally. All offspring were tested in an elevated plus maze (EPM) on postnatal day 90 (n = 6, each sex), and anxiety behaviors of each rat were recorded. Finally, blood samples were collected to determine PVC. Prenatal morphine exposure reduced anxiety-like behaviors. Co-administration of prenatal stress and morphine increased locomotor activity (LA) and PVC. PVC was significantly lower in female offspring of the morphine and morphine + stress groups compared with males in the same group, but the opposite was seen in the saline + stress group. These data emphasize the impact of prenatal stress and morphine on fetal neuroendocrine development, with long-term changes in anxiety-like behaviors and vasopressin secretion. These changes are sex specific, indicating differential impact of prenatal stress and morphine on fetal neuroendocrine system development. Lay Summary Pregnant women are sometimes exposed to stressful and painful conditions which may lead to poor outcomes for offspring. Opiates may provide pain and stress relief to these mothers. In this study, we used an experimental model of

  4. Prenatal zinc reduces stress response in adult rat offspring exposed to lipopolysaccharide during gestation.

    Science.gov (United States)

    Galvão, Marcella C; Chaves-Kirsten, Gabriela P; Queiroz-Hazarbassanov, Nicolle; Carvalho, Virgínia M; Bernardi, Maria M; Kirsten, Thiago B

    2015-01-01

    Previous investigations by our group have shown that prenatal treatment with lipopolysaccharide (LPS; 100 μg/kg, intraperitoneally) on gestation day (GD) 9.5 in rats, which mimics infections by Gram-negative bacteria, induces short- and long-term behavioral and neuroimmune changes in the offspring. Because LPS induces hypozincemia, dams were treated with zinc after LPS in an attempt to prevent or ameliorate the impairments induced by prenatal LPS exposure. LPS can also interfere with hypothalamic-pituitary-adrenal (HPA) axis development; thus, behavioral and neuroendocrine parameters linked to HPA axis were evaluated in adult offspring after a restraint stress session. We prenatally exposed Wistar rats to LPS (100 μg/kg, intraperitoneally, on GD 9.5). One hour later they received zinc (ZnSO4, 2 mg/kg, subcutaneously). Adult female offspring that were in metestrus/diestrus were submitted to a 2 h restraint stress session. Immediately after the stressor, 22 kHz ultrasonic vocalizations, open field behavior, serum corticosterone and brain-derived neurotrophic factor (BDNF) levels, and striatal and hypothalamic neurotransmitter and metabolite levels were assessed. Offspring that received prenatal zinc after LPS presented longer periods in silence, increased locomotion, and reduced serum corticosterone and striatal norepinephrine turnover compared with rats treated with LPS and saline. Prenatal zinc reduced acute restraint stress response in adult rats prenatally exposed to LPS. Our findings suggest a potential beneficial effect of prenatal zinc, in which the stress response was reduced in offspring that were stricken with infectious/inflammatory processes during gestation. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. The combined effects of pyridostigmine and chronic stress on brain cortical and blood acetylcholinesterase, corticosterone, prolactin and alternation performance in rats.

    Science.gov (United States)

    Kant, G J; Bauman, R A; Feaster, S R; Anderson, S M; Saviolakis, G A; Garcia, G E

    2001-01-01

    Thousands of soldiers who served in the Gulf War have symptoms that have been collectively termed Gulf War Illness (GWI). It has been suggested that a combination of operational stress and pyridostigmine, a drug given as a pretreatment to protect soldiers against the effects of exposure to nerve agents, might have had unexpected adverse health effects causing these symptoms. Our laboratory has previously modeled operational stress in rats using a paradigm of around-the-clock intermittent signalled footshock. In the present studies, this model was used to investigate the potential synergistic effects of chronic stress and pyridostigmine on physiology and behavior. Seventy-two rats were trained to perform an alternation lever pressing task to earn their entire daily food intake. The rats were then implanted with osmotic minipumps containing vehicle, pyridostigmine (25 mg/ml pyridostigmine bromide) or physostigmine (20 mg/ml eserine hemisulfate). The pumps delivered 1 microl/h, which resulted in a cumulative dosing of approximately 1.5 mg/kg/day of pyridostigmine or 1.2 mg/kg/day of physostigmine, equimolar doses of the two drugs. The rats were then returned to their home cages where performance continued to be measured 24 h/day. After 4 days, 24 of the 72 rats were trained to escape signalled footshock (avoidance-escape group) and 24 other rats (yoked-stressed group) were each paired to a rat in the avoidance-escape group. The remaining 24 rats were not subjected to footshock (unstressed group). Shock trials were intermittently presented in the home cage 24 h/day for 3 days, while alternation performance continued to be measured. Since only 12 test cages were available, each condition was repeated to achieve a final n of six rats per group. Pyridostigmine and physostigmine each decreased blood acetylcholinesterase levels by approximately 50%. Physostigmine also decreased brain cortical acetylcholinesterase levels by approximately 50%, while pyridostigmine had no

  6. Protective role of female gender in programmed accelerated renal aging in the rat.

    Science.gov (United States)

    Pijacka, Wioletta; Clifford, Bethan; Tilburgs, Chantal; Joles, Jaap A; Langley-Evans, Simon; McMullen, Sarah

    2015-04-01

    The aging kidney exhibits a progressive decline in glomerular filtration rate, accompanied by inflammatory and oxidative damage. We hypothesized that accelerated, age-related progression of renal injury is ovarian hormones-dependant. To address this we used an established model of developmentally programmed accelerated renal aging in the rat, superimposed by ovariectomy to assess interactions between ovarian hormones and the aging process. Under our experimental conditions, we found that kidney function worsens with age, that is GFR reduces over 18 month analyzed time-course and this was worsened by fetal exposure to maternal low-protein diet and absence of estrogen. Reduction in GFR was followed by increases in albuminuria, proteinuria, inflammatory markers, and tissue carbonyls, all suggesting inflammatory response and oxidative stress. This was associated with changes in AGTR2 expression which was greater at 18 months of age compared to earlier time points, but in MLP offspring only. Our studies show an influence of ovarian hormones on programmed accelerated renal aging and the AGTR2 across the lifespan. The main findings are that ovariectomy is a risk factor for increased aging-related renal injury and that this and oxidative damage might be related to changes in AGTR2 expression. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  7. Aging induced ER stress alters sleep and sleep homeostasis

    Science.gov (United States)

    Brown, Marishka K.; Chan, May T.; Zimmerman, John E.; Pack, Allan I.; Jackson, Nicholas E.; Naidoo, Nirinjini

    2014-01-01

    Alterations in the quality, quantity and architecture of baseline and recovery sleep have been shown to occur during aging. Sleep deprivation induces endoplasmic reticular (ER) stress and upregulates a protective signaling pathway termed the unfolded protein response (UPR). The effectiveness of the adaptive UPR is diminished by age. Previously, we showed that endogenous chaperone levels altered recovery sleep in Drosophila melanogaster. We now report that acute administration of the chemical chaperone sodium 4-phenylbutyrate (PBA) reduces ER stress and ameliorates age-associated sleep changes in Drosophila. PBA consolidates both baseline and recovery sleep in aging flies. The behavioral modifications of PBA are linked to its suppression of ER stress. PBA decreased splicing of x-box binding protein 1 (XBP1) and upregulation of phosphorylated elongation initiation factor 2 α (p-eIF2α), in flies that were subjected to sleep deprivation. We also demonstrate that directly activating ER stress in young flies fragments baseline sleep and alters recovery sleep. Alleviating prolonged/sustained ER stress during aging contributes to sleep consolidation and improves recovery sleep/ sleep debt discharge. PMID:24444805

  8. Lipofundin 20% induces hyperlipidemia and oxidative stress in male Sprague Dawley rats

    Directory of Open Access Journals (Sweden)

    L DelgadoRoche

    2012-06-01

    Full Text Available Lipofundin is a lipid emulsion used in parenteral nutrition. One of adverse effects reported for this kind of pharmaceutical products is the capacity to induce oxidative stress, which is an important contributor of many diseases, such as cardiovascular diseases. The aim of the present work was to evaluate the effects of Lipofundin administration on lipid profile and serum redox biomarkers, in order to determine if both events are responsible for the undesirable effects of this lipid emulsion. Male Sprague Dawley rats were intravenously administered with 2 mL/kg of Lipofundin 20% daily, for 8 days. Then, serum lipid profile and redox biomarkers were spectrophotometrically determined. A significant increase (p<0,05 of serum lipids and biomolecules damages was observed at the end of the experiment, while a reduction of antioxidant capacity was also detected in treated rats compared with controls. Our data demonstrated that Lipofundin 20% induces hyperlipidemia, which promotes an oxidative stress state in Sprague Dawley rats. [Vet. World 2012; 5(3.000: 133-137

  9. Modulating effect of the nootropic drug, piracetam on stress- and subsequent morphine-induced prolactin secretion in male rats.

    OpenAIRE

    Matton, A.; Engelborghs, S.; Bollengier, F.; Finné, E.; Vanhaeist, L.

    1996-01-01

    1. The effect of the nootropic drug, piracetam on stress- and subsequent morphine-induced prolactin (PRL) secretion was investigated in vivo in male rats, by use of a stress-free blood sampling and drug administration method by means of a permanent indwelling catheter in the right jugular vein. 2. Four doses of piracetam were tested (20, 100, 200 and 400 mg kg-1), being given intraperitoneally 1 h before blood sampling; control rats received saline instead. After a first blood sample, rats we...

  10. Role of Acorus calamus and alpha-asarone on hippocampal dependent memory in noise stress exposed rats.

    Science.gov (United States)

    Sundaramahalingam, Manikandan; Ramasundaram, Srikumar; Rathinasamy, Sheela Devi; Natarajan, Ruvanthika Pulipakkam; Somasundaram, Thangam

    2013-08-15

    Stress is a condition or stimulus that threatens an organism's survival. Noise is an environmental stressor. It is well known that long term as well as acute exposure to noise led to oxidative stress. In the present study, it was investigated that the persistence of noise stress (100 dBA/4 h/d for 30 days) could cause memory impairment in rats and whether ethylacetate extract of AC EAAC (50 mg kg(-1) b.wt.) and alpha-Asarone (9 mg kg(-1) b.wt.). treatment can prevent or not. In order to understand the possible mechanism behind it, antioxidant status and acetylcholinesterase (AChE) activity in hippocampus was evaluated after rats were tested in Radial Eight-arm Maze (RAM). Heat shock protein 70 (hsp 70) expression in hippocampus was also evaluated to understand the intensity of stress level. Results showed that after noise stress exposure, time taken to visit all the baited arms, working and reference memory errors were increased in RAM. The superoxide dismutase, lipid peroxidation, AChE activity, hsp 70 were significantly increased with concomitant decrease in catalase, glutathione peroxidase activity and G6PD activity of non-enzymatic levels was observed in the 30 days noise stress exposed group. When rats were co-administrated with EAAC and alpha-Asarone prevents the noise stress induced alterations significantly. In Conclusion, noise stress induced oxidative stress, increased AChE activity, and over expression of hsp 70 in hippocampus region might have led to the impairment of spatial memory. EAAC and alpha-Asarone prevents this noise stress induced memory impairment.

  11. Analgesia for early-life pain prevents deficits in adult anxiety and stress in rats.

    Science.gov (United States)

    Victoria, Nicole C; Karom, Mary C; Murphy, Anne Z

    2015-01-01

    Previous studies in rats have established that inflammatory pain experienced on the day of birth (P0) decreases sensitivity to acute noxious, anxiety- and stress-provoking stimuli. However, to date, the impact of early-life pain on adult responses to chronic stress is not known. Further, the ability of morphine, administered at the time of injury, to mitigate changes in adult behavioral and hormonal responses to acute or chronic stressors has not been examined. P0 male and female Sprague-Dawley rat pups were given an intraplantar injection of 1% carrageenan or handled in an identical manner in the presence or absence of morphine. As adults, rats that experienced early-life pain displayed decreased sensitivity to acute stressors, as indicated by increased time in the inner area of the Open Field, and increased latency to immobility and decreased time immobile in the Forced Swim Test (FST). An accelerated return of corticosterone to baseline was also observed. Morphine administration at the time of injury completely reversed this 'hyporesponsive' phenotype. By contrast, following 7 days of chronic variable stress, injured animals displayed a 'hyperresponsive' phenotype in that they initiated immobility and spent significantly more time immobile in the FST than controls. Responses to chronic stress were also rescued in animals that received morphine at the time of injury. These data suggest that analgesia for early-life pain prevents adult hyposensitivity to acute anxiety- and stress-provoking stimuli and increased vulnerability to chronic stress, and have important clinical implications for the management of pain in infants. © 2014 S. Karger AG, Basel.

  12. Effect of chronic restraint stress on inhibitory gating in the auditory cortex of rats.

    Science.gov (United States)

    Ma, Lanlan; Li, Wai; Li, Sibin; Wang, Xuejiao; Qin, Ling

    2017-05-01

    A fundamental adaptive mechanism of auditory function is inhibitory gating (IG), which refers to the attenuation of neural responses to repeated sound stimuli. IG is drastically impaired in individuals with emotional and cognitive impairments (i.e. posttraumatic stress disorder). The objective of this study was to test whether chronic stress impairs the IG of the auditory cortex (AC). We used the standard two-tone stimulus paradigm and examined the parametric qualities of IG in the AC of rats by recording the electrophysiological signals of a single-unit and local field potential (LFP) simultaneously. The main results of this study were that most of the AC neurons showed a weaker response to the second tone than to the first tone, reflecting an IG of the repeated input. A fast negative wave of LFP showed consistent IG across the sampled AC sites, whereas a slow positive wave of LFP had less IG effect. IG was diminished following chronic restraint stress at both, the single-unit and LFP level, due to the increase in response to the second tone. This study provided new evidence that chronic stress disrupts the physiological function of the AC. Lay Summary The effects of chronic stress on IG were investigated by recording both, single-unit spike and LFP activities, in the AC of rats. In normal rats, most of the single-unit and N25 LFP activities in the AC showed an IG effect. IG was diminished following chronic restraint stress at both, the single-unit and LFP level.

  13. Pulpal responses to cavity preparation in aged rat molars.

    Science.gov (United States)

    Kawagishi, Eriko; Nakakura-Ohshima, Kuniko; Nomura, Shuichi; Ohshima, Hayato

    2006-10-01

    The dentin-pulp complex is capable of repair after tooth injuries including dental procedures. However, few data are available concerning aged changes in pulpal reactions to such injuries. The present study aimed to clarify the capability of defense in aged pulp by investigating the responses of odontoblasts and cells positive for class II major histocompatibility complex (MHC) to cavity preparation in aged rat molars (300-360 days) and by comparing the results with those in young adult rats (100 days). In untreated control teeth, immunoreactivity for intense heat-shock protein (HSP)-25 and nestin was found in odontoblasts, whereas class-II-MHC-positive cells were densely distributed in the periphery of the pulp. Cavity preparation caused two types of pulpal reactions based on the different extent of damage in the aged rats. In the case of severe damage, destruction of the odontoblast layer was conspicuous at the affected site. By 12 h after cavity preparation, numerous class-II-MHC-positive cells appeared along the pulp-dentin border but subsequently disappeared together with HSP-25-immunopositive cells, and finally newly differentiated odontoblast-like cells took the place of the degenerated odontoblasts and acquired immunoreactivity for HSP-25 and nestin by postoperative day 3. In the case of mild damage, no remarkable changes occurred in odontoblasts after operation, and some survived through the experimental stages. These findings indicate that aged pulp tissue still possesses a defense capacity, and that a variety of reactions can occur depending on the difference in the status of dentinal tubules and/or odontoblast processes in individuals.

  14. Effects of intermittent fasting on age-related changes on Na,K-ATPase activity and oxidative status induced by lipopolysaccharide in rat hippocampus.

    Science.gov (United States)

    Vasconcelos, Andrea Rodrigues; Kinoshita, Paula Fernanda; Yshii, Lidia Mitiko; Marques Orellana, Ana Maria; Böhmer, Ana Elisa; de Sá Lima, Larissa; Alves, Rosana; Andreotti, Diana Zukas; Marcourakis, Tania; Scavone, Cristoforo; Kawamoto, Elisa Mitiko

    2015-05-01

    Chronic neuroinflammation is a common characteristic of neurodegenerative diseases, and lipopolysaccharide (LPS) signaling is linked to glutamate-nitric oxide-Na,K-ATPase isoforms pathway in central nervous system (CNS) and also causes neuroinflammation. Intermittent fasting (IF) induces adaptive responses in the brain that can suppress inflammation, but the age-related effect of IF on LPS modulatory influence on nitric oxide-Na,K-ATPase isoforms is unknown. This work compared the effects of LPS on the activity of α1,α2,3 Na,K-ATPase, nitric oxide synthase gene expression and/or activity, cyclic guanosine monophosphate, 3-nitrotyrosine-containing proteins, and levels of thiobarbituric acid-reactive substances in CNS of young and older rats submitted to the IF protocol for 30 days. LPS induced an age-related effect in neuronal nitric oxide synthase activity, cyclic guanosine monophosphate, and levels of thiobarbituric acid-reactive substances in rat hippocampus that was linked to changes in α2,3-Na,K-ATPase activity, 3-nitrotyrosine proteins, and inducible nitric oxide synthase gene expression. IF induced adaptative cellular stress-response signaling pathways reverting LPS effects in rat hippocampus of young and older rats. The results suggest that IF in both ages would reduce the risk for deficits on brain function and neurodegenerative disorders linked to inflammatory response in the CNS. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Delayed cutaneous wound healing in aged rats compared to younger ones.

    Science.gov (United States)

    Soybir, Onur C; Gürdal, Sibel Ö; Oran, Ebru Ş; Tülübaş, Feti; Yüksel, Meral; Akyıldız, Ayşenur İ; Bilir, Ayhan; Soybir, Gürsel R

    2012-10-01

    Delayed wound healing in elderly males is a complex process in which the factors responsible are not fully understood. This study investigated the hormonal, oxidative and angiogenic factors affecting wound healing in aged rats. Two groups consisting of eight healthy male Wistar Albino rats [young (30 ± 7 days) and aged (360 ± 30 days)], and a cutaneous incision wound healing model were used. Scar tissue samples from wounds on the 7th, 14th and 21st days of healing were evaluated for hydroxyproline and vascular endothelial growth factor content. Macrophage, lymphocyte, fibroblast and polymorphonuclear cell infiltration; collagen formation and vascularization were assessed by light and electron microscopy. The free oxygen radical content of the wounds was measured by a chemiluminescence method. Blood sample analysis showed that the hydroxyproline and total testosterone levels were significantly higher, and the oxygen radical content was significantly lower in young rats. Histopathological, immunohistochemical and ultrastructural evaluations revealed higher amounts of fibroblasts and collagen fibers, and more vascularization in young rats. These results are indicative of the delayed wound healing in aged rats. A combination of multiple factors including hormonal regulation, free oxygen radicals and impaired angiogenesis appears to be the cause of delayed cutaneous healing. © 2011 The Authors. International Wound Journal © 2011 Blackwell Publishing Ltd and Medicalhelplines.com Inc.

  16. Minocycline attenuates cognitive impairment induced by isoflurane anesthesia in aged rats.

    Directory of Open Access Journals (Sweden)

    Feijuan Kong

    Full Text Available Postoperative cognitive dysfunction (POCD is a clinical phenomenon characterized by cognitive deficits in patients after anesthesia and surgery, especially in geriatric surgical patients. Although it has been documented that isoflurane exposure impaired cognitive function in several aged animal models, there are few clinical interventions and treatments available to prevent this disorder. Minocycline has been well established to exert neuroprotective effects in various experimental animal models and neurodegenerative diseases. Therefore, we hypothesized that pretreatment with minocycline attenuates isoflurane-induced cognitive decline in aged rats. In the present study, twenty-month-old rats were administered minocycline or an equal volume of saline by intraperitoneal injection 12 h before exposure to isoflurane. Then the rats were exposed to 1.3% isoflurane for 4 h. Two weeks later, spatial learning and memory of the rats were examined using the Morris Water Maze. We found that pretreatment with minocycline mitigated isoflurane-induced cognitive deficits and suppressed the isoflurane-induced excessive release of IL-1β and caspase-3 in the hippocampal CA1 region at 4 h after isoflurane exposure, as well as the number of TUNEL-positive nuclei. In addition, minocycline treatment also prevented the changes of synaptic ultrastructure in the hippocampal CA1 region induced by isoflurane. In conclusion, pretreatment with minocycline attenuated isoflurane-induced cognitive impairment in aged rats.

  17. Cardioprotective effect of amlodipine in oxidative stress induced by experimental myocardial infarction in rats

    Directory of Open Access Journals (Sweden)

    Sudhira Begum

    2007-12-01

    Full Text Available The present study investigated whether the administration of amlodipine ameliorates oxidative stress induced by experimental myocardial infarction in rats. Adrenaline was administered and myocardial damage was evaluated biochemically [significantly increased serum aspertate aminotransferase (AST, lactate dehydrogenase (LDH and malondialdehyde (MDA levels of myocardial tissue] and histologically (morphological changes of myocardium. Amlodipine was administered as pretreatment for 14 days in adrenaline treated rats. Statistically significant amelioration in all the biochemical parameters supported by significantly improved myocardial morphology was observed in amlodipine pretreatment. It was concluded that amlodipine afforded cardioprotection by reducing oxidative stress induced in experimental myocardial infarction of catecholamine assault.

  18. Low intensity microwave radiation induced oxidative stress, inflammatory response and DNA damage in rat brain.

    Science.gov (United States)

    Megha, Kanu; Deshmukh, Pravin Suryakantrao; Banerjee, Basu Dev; Tripathi, Ashok Kumar; Ahmed, Rafat; Abegaonkar, Mahesh Pandurang

    2015-12-01

    Over the past decade people have been constantly exposed to microwave radiation mainly from wireless communication devices used in day to day life. Therefore, the concerns over potential adverse effects of microwave radiation on human health are increasing. Until now no study has been proposed to investigate the underlying causes of genotoxic effects induced by low intensity microwave exposure. Thus, the present study was undertaken to determine the influence of low intensity microwave radiation on oxidative stress, inflammatory response and DNA damage in rat brain. The study was carried out on 24 male Fischer 344 rats, randomly divided into four groups (n=6 in each group): group I consisted of sham exposed (control) rats, group II-IV consisted of rats exposed to microwave radiation at frequencies 900, 1800 and 2450 MHz, specific absorption rates (SARs) 0.59, 0.58 and 0.66 mW/kg, respectively in gigahertz transverse electromagnetic (GTEM) cell for 60 days (2h/day, 5 days/week). Rats were sacrificed and decapitated to isolate hippocampus at the end of the exposure duration. Low intensity microwave exposure resulted in a frequency dependent significant increase in oxidative stress markers viz. malondialdehyde (MDA), protein carbonyl (PCO) and catalase (CAT) in microwave exposed groups in comparison to sham exposed group (pmicrowave exposed groups (pmicrowave exposed animal (pmicrowave exposed groups as compared to their corresponding values in sham exposed group (pmicrowave radiation induces oxidative stress, inflammatory response and DNA damage in brain by exerting a frequency dependent effect. The study also indicates that increased oxidative stress and inflammatory response might be the factors involved in DNA damage following low intensity microwave exposure. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Quercetin Attenuates Vascular Calcification through Suppressed Oxidative Stress in Adenine-Induced Chronic Renal Failure Rats.

    Science.gov (United States)

    Chang, Xue-Ying; Cui, Lei; Wang, Xing-Zhi; Zhang, Lei; Zhu, Dan; Zhou, Xiao-Rong; Hao, Li-Rong

    2017-01-01

    This study investigated whether quercetin could alleviate vascular calcification in experimental chronic renal failure rats induced by adenine. 32 adult male Wistar rats were randomly divided into 4 groups fed normal diet, normal diet with quercetin supplementation (25 mg/kg·BW/d), 0.75% adenine diet, or adenine diet with quercetin supplementation. All rats were sacrificed after 6 weeks of intervention. Serum renal functions biomarkers and oxidative stress biomarkers were measured and status of vascular calcification in aorta was assessed. Furthermore, the induced nitric oxide synthase (iNOS)/p38 mitogen activated protein kinase (p38MAPK) pathway was determined to explore the potential mechanism. Adenine successfully induced renal failure and vascular calcification in rat model. Quercetin supplementation reversed unfavorable changes of phosphorous, uric acid (UA) and creatinine levels, malonaldehyde (MDA) content, and superoxide dismutase (SOD) activity in serum and the increases of calcium and alkaline phosphatase (ALP) activity in the aorta ( P chronic renal failure rats, possibly through the modulation of oxidative stress and iNOs/p38MAPK pathway.

  20. Quercetin Attenuates Vascular Calcification through Suppressed Oxidative Stress in Adenine-Induced Chronic Renal Failure Rats

    Science.gov (United States)

    Chang, Xue-ying; Cui, Lei; Wang, Xing-zhi; Zhang, Lei; Zhu, Dan

    2017-01-01

    Background This study investigated whether quercetin could alleviate vascular calcification in experimental chronic renal failure rats induced by adenine. Methods 32 adult male Wistar rats were randomly divided into 4 groups fed normal diet, normal diet with quercetin supplementation (25 mg/kg·BW/d), 0.75% adenine diet, or adenine diet with quercetin supplementation. All rats were sacrificed after 6 weeks of intervention. Serum renal functions biomarkers and oxidative stress biomarkers were measured and status of vascular calcification in aorta was assessed. Furthermore, the induced nitric oxide synthase (iNOS)/p38 mitogen activated protein kinase (p38MAPK) pathway was determined to explore the potential mechanism. Results Adenine successfully induced renal failure and vascular calcification in rat model. Quercetin supplementation reversed unfavorable changes of phosphorous, uric acid (UA) and creatinine levels, malonaldehyde (MDA) content, and superoxide dismutase (SOD) activity in serum and the increases of calcium and alkaline phosphatase (ALP) activity in the aorta (P chronic renal failure rats, possibly through the modulation of oxidative stress and iNOs/p38MAPK pathway. PMID:28691026

  1. Naked mole-rat mortality rates defy Gompertzian laws by not increasing with age

    Science.gov (United States)

    Ruby, J Graham; Smith, Megan

    2018-01-01

    The longest-lived rodent, the naked mole-rat (Heterocephalus glaber), has a reported maximum lifespan of >30 years and exhibits delayed and/or attenuated age-associated physiological declines. We questioned whether these mouse-sized, eusocial rodents conform to Gompertzian mortality laws by experiencing an exponentially increasing risk of death as they get older. We compiled and analyzed a large compendium of historical naked mole-rat lifespan data with >3000 data points. Kaplan-Meier analyses revealed a substantial portion of the population to have survived at 30 years of age. Moreover, unlike all other mammals studied to date, and regardless of sex or breeding-status, the age-specific hazard of mortality did not increase with age, even at ages 25-fold past their time to reproductive maturity. This absence of hazard increase with age, in defiance of Gompertz’s law, uniquely identifies the naked mole-rat as a non-aging mammal, confirming its status as an exceptional model for biogerontology. PMID:29364116

  2. Cardiovascular response to acute stress in freely moving rats: time-frequency analysis.

    Science.gov (United States)

    Loncar-Turukalo, Tatjana; Bajic, Dragana; Japundzic-Zigon, Nina

    2008-01-01

    Spectral analysis of cardiovascular series is an important tool for assessing the features of the autonomic control of the cardiovascular system. In this experiment Wistar rats ecquiped with intraarterial catheter for blood pressure (BP) recording were exposed to stress induced by blowing air. The problem of non stationary data was overcomed applying the Smoothed Pseudo Wigner Villle (SPWV) time-frequency distribution. Spectral analysis was done before stress, during stress, immediately after stress and later in recovery. The spectral indices were calculated for both systolic blood pressure (SBP) and pulse interval (PI) series. The time evolution of spectral indices showed perturbed sympathovagal balance.

  3. Incentive relativity in middle aged rats.

    Science.gov (United States)

    Justel, N; Mustaca, A; Boccia, M; Ruetti, E

    2014-01-24

    Response to a reinforcer is affected by prior experience with different reward values of that reward, a phenomenon known as incentive relativity. Two different procedures to study this phenomenon are the incentive downshift (ID) and the consummatory anticipatory negative contrast (cANC), the former is an emotional-cognitive protocol and the latter cognitive one. Aged rodents, as also well described in aged humans, exhibit alterations in cognitive functions. The main goal of this work was to evaluate the effect of age in the incentive' assessment using these two procedures. The results indicated that aged rats had an adequate assessment of the rewards but their performance is not completely comparable to that of young subjects. They recover faster from the ID and they had a cognitive impairment in the cANC. The results are discussed in relation to age-related changes in memory and emotion. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. Assessment the effect of NO inhibition on hippocampal normetanephrine level in stress and non-stress conditions in adult male rats

    Directory of Open Access Journals (Sweden)

    Hana Molahoveizeh

    2016-01-01

    Full Text Available Background: Nitric oxide (NO has a role in the regulation of neurotransmitters release such as norepinephrine, in the hippocampus.Normetanephrine (NMN is a metabolite of norepinephrine created by action of catechol-O-methyl transferase (COMT on norepinephrine. Several studies have shown that various stresses increased release of norepinephrine and its metabolites. Therefore in the present study, the role of Nitric oxide in regulation of norepinephrine release and its metabolism was investigated by administration of L-NAME (NO synthase inhibitor in stressed and non-stressed rats. Materials and Methods: For this purpose, 50 adult rats were divided into 10 groups, of which 5 groups were exposed to restraint stress while another 5 groups were without stress. These two set of groups included intact, saline and L-NAME (20, 40, 80 mg/kg. Thirty minutes after intraperituneal injection of L-NAME, brains removed, the hippocampus dissected, weighed, homogenized and centrifuged then amount of NMN measured by ELISA kit. Results: The results showed that in non-stressed condition amount of NMN were significantly increased in group that received L-NAME (80 mg/kg in comparison with other groups but in stress condition, amount of NMN was significantly decreased in groups that received L-NAME (20,40,80 mg/kg, in comparison with control and saline groups. Comparison between stress and non-stressed groups showed that stress alone cause an increase in amount of NMN in control and saline groups. Conclusion: In conclusion, NO synthesis inhibition produced opposite responses with respect to NMN amount in the presence or absence of stress, and probably L-NAME preventing the effect of stress on increasing NMN levels mediated by nitrergic pathway.

  5. Fluoride-elicited developmental testicular toxicity in rats: roles of endoplasmic reticulum stress and inflammatory response.

    Science.gov (United States)

    Zhang, Shun; Jiang, Chunyang; Liu, Hongliang; Guan, Zhizhong; Zeng, Qiang; Zhang, Cheng; Lei, Rongrong; Xia, Tao; Gao, Hui; Yang, Lu; Chen, Yihu; Wu, Xue; Zhang, Xiaofei; Cui, Yushan; Yu, Linyu; Wang, Zhenglun; Wang, Aiguo

    2013-09-01

    Long-term excessive fluoride intake is known to be toxic and can damage a variety of organs and tissues in the human body. However, the molecular mechanisms underlying fluoride-induced male reproductive toxicity are not well understood. In this study, we used a rat model to simulate the situations of human exposure and aimed to evaluate the roles of endoplasmic reticulum (ER) stress and inflammatory response in fluoride-induced testicular injury. Sprague-Dawley rats were administered with sodium fluoride (NaF) at 25, 50 and 100mg/L via drinking water from pre-pregnancy to gestation, birth and finally to post-puberty. And then the testes of male offspring were studied at 8weeks of age. Our results demonstrated that fluoride treatment increased MDA accumulation, decreased SOD activity, and enhanced germ cell apoptosis. In addition, fluoride elevated mRNA and protein levels of glucose-regulated protein 78 (GRP78), inositol requiring ER-to-nucleus signal kinase 1 (IRE1), and C/EBP homologous protein (CHOP), indicating activation of ER stress signaling. Furthermore, fluoride also induced testicular inflammation, as manifested by gene up-regulation of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), in a nuclear factor-κB (NF-κB)-dependent manner. These were associated with marked histopathological lesions including injury of spermatogonia, decrease of spermatocytes and absence of elongated spermatids, as well as severe ultrastructural abnormalities in testes. Taken together, our results provide compelling evidence that ER stress and inflammation would be novel and significant mechanisms responsible for fluoride-induced disturbance of spermatogenesis and germ cell loss in addition to oxidative stress. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Toxic effects of maternal zearalenone exposure on intestinal oxidative stress, barrier function, immunological and morphological changes in rats.

    Directory of Open Access Journals (Sweden)

    Min Liu

    Full Text Available The present study was conducted to investigate the effects of maternal zearalenone (ZEN exposure on the intestine of pregnant Sprague-Dawley (SD rats and its offspring. Ninety-six pregnant SD rats were randomly divided into four groups and were fed with diets containing ZEN at concentrations of 0.3 mg/kg, 48.5 mg/kg, 97.6 mg/kg or 146.0 mg/kg from gestation days (GD 1 to 7. All rats were fed with mycotoxin-free diet until their offspring were weaned at three weeks of age. The small intestinal fragments from pregnant rats at GD8, weaned dams and pups were collected and studied for toxic effects of ZEN on antioxidant status, immune response, expression of junction proteins, and morphology. The results showed that ZEN induced oxidative stress, affected the villous structure and reduced the expression of junction proteins claudin-4, occludin and connexin43 (Cx43 in a dose-dependent manner in pregnant rats. Different effects on the expression of cytokines were also observed both in mRNA and protein levels in these pregnant groups. Ingestion of high levels of ZEN caused irreversible damage in weaned dams, such as oxidative stress, decreased villi hight and low expression of junction proteins and cytokines. Decreased expression of jejunal interleukin-8 (IL-8 and increased expression of gastrointestinal glutathione peroxidase (GPx2 mRNA were detected in weaned offspring, indicating long-term damage caused by maternal ZEN. We also found that the Nrf2 expression both in mRNA and protein levels were up-regulated in the ZEN-treated groups of pregnant dams and the high-dose of ZEN group of weaned dams. The data indicate that modulation of Nrf2-mediated pathway is one of mechanism via which ZEN affects gut wall antioxidant and inflammatory responses.

  7. [Free radical modification of proteins in brain structure of Sprague-Dawley rats and some behaviour indicators after prenatal stress].

    Science.gov (United States)

    V'iushina, A V; Pritvorova, A V; Flerov, M A

    2012-08-01

    We studied the influence of late prenatal stress on free radical oxidation processes in Sprague-Dawley rats cortex, striatum, hippocampus, hypothalamus proteins. It was shown that after prenatal stress most changes were observed in hypothalamus and hippocampus. It was shown that in hypothalamus spontaneous oxidation level increased, but level of induced oxidation decreased, the opposite changes were found in hippocampus. Simultaneously minor changes of protein modification were observed in cortex and striatum. It was shown that prenatal stress changed both correlation of proteins free radical oxidation in studied structures and values of these data regarding to control. In test of "open field" motor activity in rats after prenatal stress decreased and time of freezing and grooming increased; opposite, in T-labyrinth motor activity and time of grooming in rats after prenatal stress increased, but time of freezing decreased.

  8. Increased Oxidative Stress and Imbalance in Antioxidant Enzymes in the Brains of Alloxan-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Luciane B. Ceretta

    2012-01-01

    Full Text Available Diabetes Mellitus (DM is associated with pathological changes in the central nervous system (SNC as well as alterations in oxidative stress. Thus, the main objective of this study was to evaluate the effects of the animal model of diabetes induced by alloxan on memory and oxidative stress. Diabetes was induced in Wistar rats by using a single injection of alloxan (150 mg/kg, and fifteen days after induction, the rats memory was evaluated through the use of the object recognition task. The oxidative stress parameters and the activity of antioxidant enzymes, superoxide dismutase (SOD, and catalase (CAT were measured in the rat brain. The results showed that diabetic rats did not have alterations in their recognition memory. However, the results did show that diabetic rats had increases in the levels of superoxide in the prefrontal cortex, and in thiobarbituric acid reactive species (TBARS production in the prefrontal cortex and in the amygdala in submitochondrial particles. Also, there was an increase in protein oxidation in the hippocampus and striatum, and in TBARS oxidation in the striatum and amygdala. The SOD activity was decreased in diabetic rats in the striatum and amygdala. However, the CAT activity was increased in the hippocampus taken from diabetic rats. In conclusion, our findings illustrate that the animal model of diabetes induced by alloxan did not cause alterations in the animals’ recognition memory, but it produced oxidants and an imbalance between SOD and CAT activities, which could contribute to the pathophysiology of diabetes.

  9. Age-related ultrastructural and monoamine oxidase changes in the rat optic nerve.

    Science.gov (United States)

    Taurone, S; Ripandelli, G; Minni, A; Lattanzi, R; Miglietta, S; Pepe, N; Fumagalli, L; Micera, A; Pastore, F S; Artico, M

    2016-01-01

    The aim of this paper is to study the morphology and the distribution of the monoamine oxidase enzymatic system in the optic nerve of 4 month-old Wistar (young) and 28 month-old Wistar (old) rats. The optic nerve was harvested from 20 young and old rats. The segment of optic nerve was divided longitudinally into two pieces, each 0.1 mm in length. The first piece was used for transmission electron microscopy. The second piece was stained with histochemical reaction for monoamine oxidase. The agerelated changes in the optic nerve of rats include micro-anatomical details, ultrastructure and monoamine oxidase histochemical staining. A strong decrease of the thin nerve fibers and a swelling of the thick ones can be observed in optic nerve fibers of old rats. Increased monoamine oxidase histochemical staining of the optic nerve of aged rats is well demonstrated. The increase of meningeal shealth and the decrease of thin nerve fibers of the optic nerve in old rats are well documented. Morphological, ultrastructural and histochemical changes observed in optic nerve fibers of the old rats show a close relation with aging.

  10. Changes in acetylcholine content, release and muscarinic receptors in rat hippocampus under cold stress

    International Nuclear Information System (INIS)

    Fatranska, M.; Budai, D.; Gulya, K; Kvetnansky, R.

    1989-01-01

    The aim was to study the mechanism of the previously established decrease in acetylcholine (ACh) concentration in the rat hippocampus under cold stress. Male rats were exposed for 14 days to cold (5 degree C) or kept (controls) at room temperature (24 degree C). Acetylcholine content, release and muscarinic receptor binding were investigated in the hippocampus. Cold exposure resulted in a decrease of ACh concentration in the dorsal hippocampus. Moreover, the potassium-evoked release of ACh from hippocampal slices was increased and an increase of maximal binding capacity of [ 3 H](-) quinuclidinyl benzilate in the dorsal hippocampus of cold exposed animals was also observed. Thus the decrease of hippocampal ACh concentration under cold exposure is probably due to its increased release. On balance then, our results demonstrate that cold stress in the rat induces significant activation of the hippocampal cholinergic system

  11. Measurement of the uniaxial mechanical properties of rat skin using different stress-strain definitions.

    Science.gov (United States)

    Karimi, A; Navidbakhsh, M

    2015-05-01

    The mechanical properties of skin tissue may vary according to the anatomical locations of a body. There are different stress-strain definitions to measure the mechanical properties of skin tissue. However, there is no agreement as to which stress-strain definition should be implemented to measure the mechanical properties of skin at different anatomical locations. Three stress definitions (second Piola-Kichhoff stress, engineering stress, and true stress) and four strain definitions (Almansi-Hamel strain, Green-St. Venant strain, engineering strain, and true strain) are employed to determine the mechanical properties of skin tissue at back and abdomen locations of a rat body. The back and abdomen skins of eight rats are excised and subjected to a series of tensile tests. The elastic modulus, maximum stress, and strain of skin tissues are measured using three stress definitions and four strain definitions. The results show that the effect of varying the stress definition on the maximum stress measurements of the back skin is significant but not when calculating the elastic modulus and maximum strain. No significant effects are observed on the elastic modulus, maximum stress, and strain measurements of abdomen skin by varying the stress definition. In the true stress-strain diagram, the maximum stress (20%), and elastic modulus (35%) of back skin are significantly higher than that of abdomen skin. The true stress-strain definition is favored to measure the mechanical properties of skin tissue since it gives more accurate measurements of the skin's response using the instantaneous values. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Gestational chronic mild stress: Effects on acoustic startle in male offspring of rats

    DEFF Research Database (Denmark)

    Hougaard, K.S.; Mandrup, Karen; Kjaer, S.L.

    2011-01-01

    An increasing number of scientific studies indicate that maternal stress during pregnancy influences fetal development of the nervous system and thereby the behavioural phenotype. We have previously reported attenuated prepulse inhibition (PPI) of the startle reaction in adult female rats derived...... paradigm of stressors affected the PPI response pattern in male rats. In prenatally manipulated males, the PPI response differed statistically significantly, depending on prior exposure to an episode of postnatal acute stress (blood sampling under restraint). In contrast, the PPI response in control males...... was unaffected by this postnatal experience. The present work supports the hypothesis that the maternal environment is a long-term determinant of phenotypic differences in sensitivity to stressors....

  13. Electroconvulsive Stimulation, but not Chronic Restraint Stress, Causes Structural Alterations in Adult Rat Hippocampus

    DEFF Research Database (Denmark)

    Olesen, Mikkel V.; Wörtwein, Gitta; Pakkenberg, Bente

    2015-01-01

    The neurobiological mechanisms underlying depression are not fully understood. Only a few previous studies have used validated stereological methods to test how stress and animal paradigms of depression affect adult hippocampal neurogenesis and whether antidepressant therapy can counteract possible...... changes in an animal model. Thus, in this study we applied methods that are state of the art in regard to stereological cell counting methods. Using a validated rat model of depression in combination with a clinically relevant schedule of electroconvulsive stimulation, we estimated the total number...... of newly formed neurons in the hippocampal subgranular zone. Also estimated were the total number of neurons and the volume of the granule cell layer in adult rats subjected to chronic restraint stress and electroconvulsive stimulation either alone or in combination. We found that chronic restraint stress...

  14. Hydroxylation of 25-hydroxyvitamin D3 by renal mitochondria from rats of different ages.

    Science.gov (United States)

    Ishida, M; Bulos, B; Takamoto, S; Sacktor, B

    1987-08-01

    The hydroxylation of 25-hydroxyvitamin D3 (25OHD3) in kidney mitochondria from female rats of different ages was studied. The specific activity of 1 alpha-hydroxylase was highest in mitochondria isolated from the 2-month-old rat (0.47 pmol/10 min X mg protein), falling gradually with age to 0.17, 0.10, 0.07, and 0.06 pmol/10 min X mg protein in 6-, 12-, 18-, and 24-month-old rats, respectively. The alteration in 1 alpha-hydroxylase activity with age was due to a change in the V'm of the system; the K'm for 25OHD3 was unchanged (3.9-4.0 microM). The specific activity of 24-hydroxylase was lowest in mitochondria isolated from the 2-month-old rat (8.2 pmol/10 min X mg protein), increasing to 37.8, 37.4, 38.2, and 55.7 pmol/10 min X mg protein in 6-, 12-, 18-, and 24-month-old rats, respectively. The alteration in 24-hydroxylase activity with age was due to a change in the V'm of the system; the K'm value for 25OHD3 was unchanged (1.1-1.2 microM). The age-dependent decrease in 1 alpha-hydroxylase and concomitant increase in 24-hydroxylase activities observed in mitochondria isolated from kidneys of 2-, 6-, 12-, 18-, and 24-month-old rats could not be attributed to changes in the bioenergetic properties, i.e. the respiratory chain, of the mitochondria. The relative mitochondrial content of the kidney, however, probably decreased with age. These findings support the view that the kidneys of aged rats produce less 1,25-dihydroxyvitamin D3 because of lower mitochondrial 1 alpha-hydroxylase specific activity and reduced number of mitochondria. This would be consistent with the lower levels of vitamin D hormone reported in the serum of senescent rats.

  15. High Hydrostatic Pressure Extract of Ginger Exerts Antistress Effects in Immobilization-Stressed Rats.

    Science.gov (United States)

    Moon, Sohee; Lee, Mak-Soon; Jung, Sunyoon; Kang, Bori; Kim, Seog-Young; Park, Seonyoung; Son, Hye-Yeon; Kim, Chong-Tai; Jo, Young-Hee; Kim, In-Hwan; Kim, Young Soon; Kim, Yangha

    2017-09-01

    Stress contributes to physiological changes such as weight loss and hormonal imbalances. The aim of the present study was to investigate antistress effects of high hydrostatic pressure extract of ginger (HPG) in immobilization-stressed rats. Male Sprague-Dawley rats (n = 24) were divided into three groups as follows: control (C), immobilization stress (2 h daily, for 2 weeks) (S), and immobilization stress (2 h daily, for 2 weeks) plus oral administration of HPG (150 mg/kg body weight/day) (S+G). Immobilization stress reduced the body weight gain and thymus weight by 50.2% and 31.3%, respectively, compared to the control group. The levels of serum aspartate transaminase, alanine transaminase, and corticosterone were significantly higher in the stress group, compared to the control group. Moreover, immobilization stress elevated the mRNA levels of tyrosine hydroxylase (Th), dopamine beta-hydroxylase (Dbh), and cytochrome P450 side-chain cleavage (P450scc), which are related to catecholamine and corticosterone synthesis in the adrenal gland. HPG administration also increased the body weight gain and thymus weight by 12.7% and 16.6%, respectively, compared to the stress group. Furthermore, the mRNA levels of Th, Dbh, phenylethanolamine-N-methyltransferase, and P450scc were elevated by the HPG treatment when compared to the stress group. These results suggest that HPG would have antistress effects partially via the reversal of stress-induced physiological changes and suppression of mRNA expression of genes related to corticosterone and catecholamine synthetic enzymes.

  16. Effect of Xiaoyaosan Decoction on Learning and Memory Deficit in Rats Induced by Chronic Immobilization Stress

    OpenAIRE

    Meng, Zhen-Zhi; Chen, Jia-Xu; Jiang, You-Ming; Zhang, Han-Ting

    2013-01-01

    Xiaoyaosan (XYS) decoction is a famous prescription which can protect nervous system from stress and treat liver stagnation and spleen deficiency syndrome (LSSDS). In this experiment, we observed the effect of XYS decoction on chronic immobilization stress (CIS) induced learning and memory deficit in rats from behaviors and changes of proteins in hippocampus. We used XYS decoction to treat CIS induced learning and memory deficit in rats with rolipram as positive control, used change of body w...

  17. Paroxetine ameliorates changes in hippocampal energy metabolism in chronic mild stress-exposed rats

    Directory of Open Access Journals (Sweden)

    Khedr LH

    2015-11-01

    Full Text Available Lobna H Khedr, Noha N Nassar, Ezzeldin S El-Denshary, Ahmed M Abdel-tawab 1Department of Pharmacology, Faculty of Pharmacy, Misr International University, 2Department of Pharmacology, Faculty of Pharmacy, Cairo University, 3Department of Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt Abstract: The molecular mechanisms underlying stress-induced depression have not been fully outlined. Hence, the current study aimed at testing the link between behavioral changes in chronic mild stress (CMS model and changes in hippocampal energy metabolism and the role of paroxetine (PAROX in ameliorating these changes. Male Wistar rats were divided into three groups: vehicle control, CMS-exposed rats, and CMS-exposed rats receiving PAROX (10 mg/kg/day intraperitoneally. Sucrose preference, open-field, and forced swimming tests were carried out. Corticosterone (CORT was measured in serum, while adenosine triphosphate and its metabolites, cytosolic cytochrome-c (Cyt-c, caspase-3 (Casp-3, as well as nitric oxide metabolites (NOx were measured in hippocampal tissue homogenates. CMS-exposed rats showed a decrease in sucrose preference as well as body weight compared to control, which was reversed by PAROX. The latter further ameliorated the CMS-induced elevation of CORT in serum (91.71±1.77 ng/mL vs 124.5±4.44 ng/mL, P<0.001 as well as the changes in adenosine triphosphate/adenosine diphosphate (3.76±0.02 nmol/mg protein vs 1.07±0.01 nmol/mg protein, P<0.001. Furthermore, PAROX reduced the expression of Cyt-c and Casp-3, as well as restoring NOx levels. This study highlights the role of PAROX in reversing depressive behavior associated with stress-induced apoptosis and changes in hippocampal energy metabolism in the CMS model of depression. Keywords: rats, CMS, hippocampus, paroxetine, apoptosis, adenine nucleotides, cytochrome-c, caspase-3

  18. Prior parity positively regulates learning and memory in young and middle-aged rats.

    Science.gov (United States)

    Zimberknopf, Erica; Xavier, Gilberto F; Kinsley, Craig H; Felicio, Luciano F

    2011-08-01

    Reproductive experience in female rats modifies acquired behaviors, induces long-lasting functional neuroadaptations and can also modify spatial learning and memory. The present study supports and expands this knowledge base by employing the Morris water maze, which measures spatial memory. Age-matched young adult (YNG) nulliparous (NULL; nonmated) and primiparous (PRIM; one pregnancy and lactation) female rats were tested 15 d after the litter's weaning. In addition, corresponding middle-aged (AGD) PRIM (mated in young adulthood so that pregnancy, parturition, and lactation occurred at the same age as in YNG PRIM) and NULL female rats were tested at 18 mo of age. Behavioral evaluation included: 1) acquisition of reference memory (platform location was fixed for 14 to 19 d of testing); 2) retrieval of this information associated with extinction of the acquired response (probe test involving removal of the platform 24 h after the last training session); and 3) performance in a working memory version of the task (platform presented in a novel location every day for 13 d, and maintained in a fixed location within each day). YNG PRIM outperformed NULL rats and showed different behavioral strategies. These results may be related to changes in locomotor, mnemonic, and cognitive processes. In addition, YNG PRIM exhibited less anxiety-like behavior. Compared with YNG rats, AGD rats showed less behavioral flexibility but stronger memory consolidation. These data, which were obtained by using a well-documented spatial task, demonstrate long lasting modifications of behavioral strategies in both YNG and AGD rats associated with a single reproductive experience.

  19. Moxonidine-induced central sympathoinhibition improves prognosis in rats with hypertensive heart failure.

    Science.gov (United States)

    Honda, Nobuhiro; Hirooka, Yoshitaka; Ito, Koji; Matsukawa, Ryuichi; Shinohara, Keisuke; Kishi, Takuya; Yasukawa, Keiji; Utsumi, Hideo; Sunagawa, Kenji

    2013-11-01

    Enhanced central sympathetic outflow is an indicator of the prognosis of heart failure. Although the central sympatholytic drug moxonidine is an established therapeutic strategy for hypertension, its benefits for hypertensive heart failure are poorly understood. In the present study, we investigated the effects of central sympathoinhibition by intracerebral infusion of moxonidine on survival in a rat model of hypertensive heart failure and the possible mechanisms involved. As a model of hypertensive heart failure, we fed Dahl salt-sensitive rats an 8% NaCl diet from 7 weeks of age. Intracerebroventricular (ICV) infusion of moxonidine (moxonidine-ICV-treated group [Mox-ICV]) or vehicle (vehicle-ICV-treated group [Veh-ICV]) was performed at 14-20 weeks of age, during the increased heart failure phase. Survival rates were examined, and sympathetic activity, left ventricular function and remodelling, and brain oxidative stress were measured. Hypertension and left ventricular hypertrophy were established by 13 weeks of age. At around 20 weeks of age, Veh-ICV rats exhibited overt heart failure concomitant with increased urinary norepinephrine (uNE) excretion as an index of sympathetic activity, dilated left ventricle, decreased percentage fractional shortening, and myocardial fibrosis. Survival rates at 21 weeks of age (n = 28) were only 23% in Veh-ICV rats, and 76% (n = 17) in Mox-ICV rats with concomitant decreases in uNE, myocardial fibrosis, collagen type I/III ratio, brain oxidative stress, and suppressed left ventricular dysfunction. Moxonidine-induced central sympathoinhibition attenuated brain oxidative stress, prevented cardiac dysfunction and remodelling, and improved the prognosis in rats with hypertensive heart failure. Central sympathoinhibition can be effective for the treatment of hypertensive heart failure.

  20. Temporal analysis of the spontaneous baroreceptor reflex during mild emotional stress in the rat.

    Science.gov (United States)

    Bajić, Dragana; Loncar-Turukalo, Tatjana; Stojicić, Sonja; Sarenac, Olivera; Bojić, Tijana; Murphy, David; Paton, Julian F R; Japundzić-Zigon, Nina

    2010-03-01

    The effect of emotional stress on the spontaneous baroreceptor reflex (sBRR) in freely moving rats was investigated. Six male Wistar rats equipped with an intra-arterial polyethylene catheter were exposed to a 2-min air-jet stress. For time course analysis of the sBRR response to stress, the records of systolic blood pressure (SBP) and pulse interval (PI) were divided into five regions: baseline (BASELINE), acute exposure to air-jet stress (STRESS), immediate recovery (IMMED. RECOVERY), remaining recovery (RECOVERY), and delayed response (DELAYED RESPONSE). In addition to sBRR sensitivity and effectiveness, we introduce the sequence coverage area and its median for evaluation of the sBRR operating range and set point. During exposure to STRESS and IMMED. RECOVERY, sBRR sensitivity was preserved, its effectiveness was decreased, its operating range was enlarged, and the set point was shifted towards higher SBP and lower PI values. According to the joint symbolic dynamics analysis, the SBP and PI relationship became less predictable hence more prone to respond to stress. In RECOVERY the parameters regained baseline values and DELAYED RESPONSE occurred during which re-setting of sBRR was noted. It follows that emotional stress modulates sBRR differentially during the time course of stress and recovery, affecting both linearity and unpredictability of the BP and PI relationship.

  1. A self-medication hypothesis for increased vulnerability to drug abuse in prenatally restraint stressed rats.

    Science.gov (United States)

    Reynaert, Marie-Line; Marrocco, Jordan; Gatta, Eleonora; Mairesse, Jérôme; Van Camp, Gilles; Fagioli, Francesca; Maccari, Stefania; Nicoletti, Ferdinando; Morley-Fletcher, Sara

    Stress-related events that occur in the perinatal period can permanently change brain and behavior of the developing individual and there is increasing evidence that early-life adversity is a contributing factor in the etiology of drug abuse and mood disorders. Neural adaptations resulting from early-life stress may mediate individual differences in novelty responsiveness and in turn contribute to drug abuse vulnerability. Prenatal restraint stress (PRS) in rats is a well-documented model of early stress known to induce long-lasting neurobiological and behavioral alterations including impaired feedback mechanisms of the HPA axis, enhanced novelty seeking, and increased sensitiveness to psychostimulants as well as anxiety/depression-like behavior. Together with the HPA axis, functional alterations of the mesolimbic dopamine system and of the metabotropic glutamate receptors system appear to be involved in the addiction-like profile of PRS rats.

  2. Effect of chronic exposure to aspartame on oxidative stress in the brain of albino rats.

    Science.gov (United States)

    Iyyaswamy, Ashok; Rathinasamy, Sheeladevi

    2012-09-01

    This study was aimed at investigating the chronic effect of the artificial sweetener aspartame on oxidative stress in brain regions of Wistar strain albino rats. Many controversial reports are available on the use of aspartame as it releases methanol as one of its metabolite during metabolism. The present study proposed to investigate whether chronic aspartame (75 mg/kg) administration could release methanol and induce oxidative stress in the rat brain. To mimic the human methanol metabolism, methotrexate (MTX)-treated rats were included to study the aspartame effects. Wistar strain male albino rats were administered with aspartame orally and studied along with controls and MTX-treated controls. The blood methanol level was estimated, the animal was sacrificed and the free radical changes were observed in brain discrete regions by assessing the scavenging enzymes, reduced glutathione, lipid peroxidation (LPO) and protein thiol levels. It was observed that there was a significant increase in LPO levels, superoxide dismutase (SOD) activity, GPx levels and CAT activity with a significant decrease in GSH and protein thiol. Moreover, the increases in some of these enzymes were region specific. Chronic exposure of aspartame resulted in detectable methanol in blood. Methanol per se and its metabolites may be responsible for the generation of oxidative stress in brain regions.

  3. The interaction between dietary Fe, Cu and stress in Cu-67 retention and serum ceruloplasmin (Cp) activity in rats

    International Nuclear Information System (INIS)

    Pellett, L.; Kattelmann, K.; Zinn, K.; Trokey, D.; Forrester, I.; Gordon, D.T.

    1991-01-01

    The objectives of the study were to determine the effects of dietary Fe and stress on Cu-67 retention and serum Cp activity in the rat. A 2 x 2 x 2 factorial arrangement of treatments was utilized. Male Sprague Dawley weanling rats were fed AIN-76 diets ad lib containing 0.8 ppm Cu (CuD) or 5.7 ppm Cu (CuA) with 22.5 ppm Fe (FeA) or 280 ppm Fe (FeE). After 19 days, one-half of the animals of each treatment were stressed by an intramuscular injection of 0.1 ml turpentine/100 gm body weight. Forty-eight hours later, animals were gavaged with Cu-67 and counted over a 7 day period in a whole body high resolution gamma counter. Cu-67 retention was 20% higher in CuD rats compared to CuA rats. There were no significant effects caused by Fe or stress or the interaction between these variables on Cu-67 retention. In rats fed FeE-CuA diets, serum Cp activity was significantly depressed compared to rats fed FeA-CuA diets. These reductions in the acute phase protein Cp, were 85% and 70% in nonstressed and stressed rats, respectively. The results of this study suggest that the negative interaction effects of excess Fe on Cu utilization does not occur at the site of Cu absorption, but within the body and specifically in the liver

  4. Effects of Resveratrol Supplementation on Bone Growth in Young Rats and Microarchitecture and Remodeling in Ageing Rats

    Directory of Open Access Journals (Sweden)

    Alice M. C. Lee

    2014-12-01

    Full Text Available Osteoporosis is a highly prevalent skeletal disorder in the elderly that causes serious bone fractures. Peak bone mass achieved at adolescence has been shown to predict bone mass and osteoporosis related risk fracture later in life. Resveratrol, a natural polyphenol compound, may have the potential to promote bone formation and reduce bone resorption. However, it is unclear whether it can aid bone growth and bone mass accumulation during rapid growth and modulate bone metabolism during ageing. Using rat models, the current study investigated the potential effects of resveratrol supplementation during the rapid postnatal growth period and in late adulthood (early ageing on bone microarchitecture and metabolism. In the growth trial, 4-week-old male hooded Wistar rats on a normal chow diet were given resveratrol (2.5 mg/kg/day or vehicle control for 5 weeks. In the ageing trial, 6-month-old male hooded Wistar rats were treated with resveratrol (20 mg/kg/day or vehicle for 3 months. Treatment effects in the tibia were examined by μ-computer tomography (μ-CT analysis, bone histomorphometric measurements and reverse transcription-polymerase chain reaction (RT-PCR gene expression analysis. Resveratrol treatment did not affect trabecular bone volume and bone remodeling indices in the youth animal model. Resveratrol supplementation in the early ageing rats tended to decrease trabecular bone volume, Sirt1 gene expression and increased expression of adipogenesis-related genes in bone, all of which were statistically insignificant. However, it decreased osteocalcin expression (p = 0.03. Furthermore, serum levels of bone resorption marker C-terminal telopeptides type I collagen (CTX-1 were significantly elevated in the resveratrol supplementation group (p = 0.02 with no changes observed in serum levels of bone formation marker alkaline phosphatase (ALP. These results in rat models suggest that resveratrol supplementation does not significantly affect bone

  5. Pair-housing of male and female rats during chronic stress exposure results in gender-specific behavioral responses

    NARCIS (Netherlands)

    Westenbroek, C.; Snijders, T.A.B.; Den Boer, J.A.; Gerrits, Marjolein; Fokkema, D.S.; ter Horst, G.J

    Social support has a positive influence on the course of a depression and social housing of rats could provide an animal model for studying the neurobiological mechanisms of social support. Male and female rats were subjected to chronic footshock stress for 3 weeks and pair-housing of rats was used

  6. Effects of chronic multiple stress on learning and memory and the expression of Fyn, BDNF, TrkB in the hippocampus of rats.

    Science.gov (United States)

    Li, Xiao-Heng; Liu, Neng-Bao; Zhang, Min-Hai; Zhou, Yan-Ling; Liao, Jia-Wan; Liu, Xiang-Qian; Chen, Hong-Wei

    2007-04-20

    The effect of chronic stress on cognitive functions has been one of the hot topics in neuroscience. But there has been much controversy over its mechanism. The aim of this study was to investigate the effects of chronic multiple stress on spatial learning and memory as well as the expression of Fyn, BDNF and TrkB in the hippocampus of rats. Adult rats were randomly divided into control and chronic multiple stressed groups. Rats in the multiple stressed group were irregularly and alternatively exposed to situations of vertical revolution, sleep expropriation and restraint lasting for 6 weeks, 6 hours per day with night illumination for 6 weeks. Before and after the period of chronic multiple stresses, the performance of spatial learning and memory of all rats was measured using the Morris Water Maze (MWM). The expression of Fyn, BDNF and TrkB proteins in the hippocampus was assayed by Western blotting and immunohistochemical methods. The levels of Fyn and TrkB mRNAs in the hippocampus of rats were detected by RT-PCR technique. The escape latency in the control group and the stressed group were 15.63 and 8.27 seconds respectively. The performance of spatial learning and memory of rats was increased in chronic multiple stressed group (P < 0.05). The levels of Fyn, BDNF and TrkB proteins in the stressed group were higher than those of the control group (P < 0.05). The results of immunoreactivity showed that Fyn was present in the CA3 region of the hippocampus and BDNF positive particles were distributed in the nuclei of CA1 and CA3 pyramidal cells as well as DG granular cells. Quantitative analysis indicated that level of Fyn mRNA was also upregulated in the hippocampus of the stressed group (P < 0.05). Chronic multiple stress can enhance spatial learning and memory function of rats. The expression of Fyn, BDNF and TrkB proteins and the level of Fyn mRNA are increased in the stessed rat hippocampus. These suggest that Fyn and BDNF/TrkB signal transduction pathways may

  7. Agonist and antagonist binding to rat brain muscarinic receptors: influence of aging

    International Nuclear Information System (INIS)

    Gurwitz, D.; Egozi, Y.; Henis, Y.I.; Kloog, Y.; Sokolovsky, M.

    1987-01-01

    The objective of the present study was to determine the binding properties of muscarinic receptors in six brain regions in mature and old rats of both sexes by employing direct binding of [ 3 H]-antagonist as well as of the labeled natural neurotransmitter, [ 3 H]-acetylcholine [( 3 H]-AcCh). In addition, age-related factors were evaluated in the modulation processes involved in agonist binding. The results indicate that as the rat ages the density of the muscarinic receptors is altered differently in the various brain regions: it is decreased in the cerebral cortex, hippocampus, striatum and olfactory bulb of both male and female rats, but is increased (58%) in the brain stem of senescent males while no significant change is observed for females. The use of the highly sensitive technique measuring direct binding of [ 3 H]-AcCh facilitated the separate detection of age-related changes in the two classes (high- and low-affinity) of muscarinic agonist binding sites. In old female rats the density of high-affinity [ 3 H]-AcCh binding sites was preserved in all tissues studied, indicating that the decreases in muscarinic receptor density observed with [ 3 H]-antagonist represent a loss of low-affinity agonist binding sites. In contrast, [ 3 H]-AcCh binding is decreased in the hypothalamus and increased in the brain stem of old male rats. These data imply sexual dimorphism of the aging process in central cholinergic mechanisms

  8. Effect of aspartame on biochemical and oxidative stress parameters in rat blood

    Directory of Open Access Journals (Sweden)

    Prokić Marko D.

    2015-01-01

    Full Text Available Aspartame (ASP is one of the most widely used nonnutritive sweeteners. This study investigates the chronic effects of ASP on hematological and biochemical parameters, and its effects on the oxidative/antioxidative status in the red blood cells of Wistar albino rats. Rats were provided with ASP (40 mg/kg/daily for six weeks in drinking water. Increased food and fluid intake was observed in the ASP-treated rats. Total body mass was significantly decreased in the ASP-treated rats. Treatment with ASP caused an increase in the concentrations of glucose, cholesterol, LDL-cholesterol, and in the activities of alanine aminotransferase (ALT, aspartate aminotransferase (AST and lactate dehydrogenase (LDH, as well as a decrease in the levels of HDL-cholesterol in the serum. A significant decline in the number of white blood cells (WBC was observed after ASP uptake. Based on the results we conclude that ASP induces oxidative stress, observed as an alteration of the glutathione redox status, which leads to increased concentrations of nitric oxide (NO and lipid peroxides (LPO in the red blood cells. Changes in biochemical parameters, lipid metabolism, as well as changes in the levels of oxidative stress markers and the appearance of signs of liver damage indicate that chronic use of ASP can lead to the development of hyperglycemia, hypercholesterolemia and associated diseases. [Projekat Ministarstva nauke Republike Srbije, br. 173041

  9. Using of Coffee and Cardamom Mixture to Ameliorate Oxidative Stress Induced in irradiated Rats

    International Nuclear Information System (INIS)

    Hamza, R.G.; Osman, N.N.

    2013-01-01

    Human exposure to ionizing radiation induced overproduction of free radicals leading to oxidative stress. This study aimed to evaluate the possibility of using of coffee and cardamom mixture; as natural antioxidant compounds ; to ameliorate oxidative stress in rats induced by exposure to ionizing radiation. Phenolic contents in coffee and essential oils in cardamom were identified by using HPLC chromatography and GC/MS analysis. Four groups of adult male rats were used; the control group (A), the second group (B) received orally the mixture extract of coffee and cardamom (60 mg/100g body weight) for 8 weeks, the third group (C) irradiated (6 Gy) and the fourth group (D) received orally the mixture extract for 8 weeks and exposed to radiation at the 4th week. The results revealed that the administration of mixture extract of coffee and cardamom to rats significantly reduced the damage effect induced by irradiation via the adjustment of the antioxidant status, decreasing of malondialdehyde content and the subsequent amending of different biochemical parameters as well as some hormones. Accordingly, it is possible to indicate that coffee-cardamom reduced the radiation exposure induced oxidative stress.

  10. IGF-I Gene Therapy in Aging Rats Modulates Hippocampal Genes Relevant to Memory Function.

    Science.gov (United States)

    Pardo, Joaquín; Abba, Martin C; Lacunza, Ezequiel; Ogundele, Olalekan M; Paiva, Isabel; Morel, Gustavo R; Outeiro, Tiago F; Goya, Rodolfo G

    2018-03-14

    In rats, learning and memory performance decline during normal aging, which makes this rodent species a suitable model to evaluate therapeutic strategies. In aging rats, insulin-like growth factor-I (IGF-I), is known to significantly improve spatial memory accuracy as compared to control counterparts. A constellation of gene expression changes underlie the hippocampal phenotype of aging but no studies on the effects of IGF-I on the hippocampal transcriptome of old rodents have been documented. Here, we assessed the effects of IGF-I gene therapy on spatial memory performance in old female rats and compared them with changes in the hippocampal transcriptome. In the Barnes maze test, experimental rats showed a significantly higher exploratory frequency of the goal hole than controls. Hippocampal RNA-sequencing showed that 219 genes are differentially expressed in 28-month-old rats intracerebroventricularly injected with an adenovector expressing rat IGF-I as compared with placebo adenovector-injected counterparts. From the differentially expressed genes, 81 were down and 138 upregulated. From those genes, a list of functionally relevant genes, concerning hippocampal IGF-I expression, synaptic plasticity as well as neuronal function was identified. Our results provide an initial glimpse at the molecular mechanisms underlying the neuroprotective actions of IGF-I in the aging brain.

  11. Long-Term Exercise Protects against Cellular Stresses in Aged Mice

    Directory of Open Access Journals (Sweden)

    Irina Belaya

    2018-01-01

    Full Text Available The current study examined the effect of aging and long-term wheel-running on the expression of heat shock protein (HSP, redox regulation, and endoplasmic reticulum (ER stress markers in tibialis anterior (T.A. and soleus muscle of mice. Male mice were divided into young (Y, 3-month-old, old-sedentary (OS, 24-month-old, and old-exercise (OE, 24-month-old groups. The OE group started voluntary wheel-running at 3 months and continued until 24 months of age. Aging was associated with a higher thioredoxin-interacting protein (TxNiP level, lower thioredoxin-1 (TRX-1 to TxNiP ratio—a determinant of redox regulation and increased CHOP, an indicator of ER stress-related apoptosis signaling in both muscles. Notably, GRP78, a key indicator of ER stress, was selectively elevated in T.A. Long-term exercise decreased TxNiP in T.A. and soleus muscles and increased the TRX-1/TxNiP ratio in soleus muscle of aged mice. Inducible HSP70 and constituent HSC70 were upregulated, whereas CHOP was reduced after exercise in soleus muscle. Thus, our data demonstrated that aging induced oxidative stress and activated ER stress-related apoptosis signaling in skeletal muscle, whereas long-term wheel-running improved redox regulation, ER stress adaptation and attenuated ER stress-related apoptosis signaling. These findings suggest that life-long exercise can protect against age-related cellular stress.

  12. The influence of daily stress and resilience on successful ageing.

    Science.gov (United States)

    Byun, J; Jung, D

    2016-09-01

    The aim of this study was to identify the effects of daily stress and resilience on successful ageing among community-dwelling older adults. Ageing can be a positive experience if there is good adaptation to ageing processes. Positive ageing needs to be a basis of nursing care, health promotion and education within community settings. Data were collected in March and April of 2014 from 262 older adults living in Seoul and Jeju, South Korea. We used a four-part survey consisting of demographic data, daily stress, resilience and successful ageing scales, in total 91 items. Data were analysed using descriptive statistics, t-test, one-way ANOVA, Tukey HSD test, Pearson's correlation coefficient and hierarchical multiple regression analysis to identify the influence of variables on successful ageing. Successful ageing had a significant negative correlation with daily stress and a positive correlation with resilience. Daily stress had a negative correlation with resilience. Findings of hierarchical multiple regression analysis indicated that resilience and subjective economic status had an effect on successful ageing. Furthermore, these variables accounted for 41.6% of the variance in successful ageing. Data were collected in only two cities of Korea based on convenience sampling. The findings of the study suggest that daily stress and resilience have a statistically significant relationship with successful ageing. Furthermore, resilience is an important influential factor and a much-needed personal characteristic for one's successful ageing. Nurses can advocate joining with health and social policy makers to implement policies on healthy ageing, including evaluation of stress, education programmes and implementation of self-help groups to enhance resilience in older people. © 2016 International Council of Nurses.

  13. Intrauterine ethanol exposure results in hypothalamic oxidative stress and neuroendocrine alterations in adult rat offspring.

    Science.gov (United States)

    Dembele, Korami; Yao, Xing-Hai; Chen, Li; Nyomba, B L Grégoire

    2006-09-01

    Prenatal ethanol (EtOH) exposure is associated with low birth weight, followed by increased appetite, catch-up growth, insulin resistance, and impaired glucose tolerance in the rat offspring. Because EtOH can induce oxidative stress, which is a putative mechanism of insulin resistance, and because of the central role of the hypothalamus in the regulation of energy homeostasis and insulin action, we investigated whether prenatal EtOH exposure causes oxidative damage to the hypothalamus, which may alter its function. Female rats were given EtOH by gavage throughout pregnancy. At birth, their offspring were smaller than those of non-EtOH rats. Markers of oxidative stress and expression of neuropeptide Y and proopiomelanocortin (POMC) were determined in hypothalami of postnatal day 7 (PD7) and 3-mo-old (adult) rat offspring. In both PD7 and adult rats, prenatal EtOH exposure was associated with decreased levels of glutathione and increased expression of MnSOD. The concentrations of lipid peroxides and protein carbonyls were normal in PD7 EtOH-exposed offspring, but were increased in adult EtOH-exposed offspring. Both PD7 and adult EtOH-exposed offspring had normal neuropeptide Y and POMC mRNA levels, but the adult offspring had reduced POMC protein concentration. Thus only adult offspring preexposed to EtOH had increased hypothalamic tissue damage and decreased levels of POMC, which could impair melanocortin signaling. We conclude that prenatal EtOH exposure causes hypothalamic oxidative stress, which persists into adult life and alters melanocortin action during adulthood. These neuroendocrine alterations may explain weight gain and insulin resistance in rats exposed to EtOH early in life.

  14. Blood-brain barrier and cerebral blood flow: Age differences in hemorrhagic stroke

    Directory of Open Access Journals (Sweden)

    Semyachkina-Glushkovskaya Oxana

    2015-11-01

    Full Text Available Neonatal stroke is similar to the stroke that occurs in adults and produces a significant morbidity and long-term neurologic and cognitive deficits. There are important differences in the factors, clinical events and outcomes associated with the stroke in infants and adults. However, mechanisms underlying age differences in the stroke development remain largely unknown. Therefore, treatment guidelines for neonatal stroke must extrapolate from the adult data that is often not suitable for children. The new information about differences between neonatal and adult stroke is essential for identification of significant areas for future treatment and effective prevention of neonatal stroke. Here, we studied the development of stress-induced hemorrhagic stroke and possible mechanisms underlying these processes in newborn and adult rats. Using histological methods and magnetic resonance imaging, we found age differences in the type of intracranial hemorrhages. Newborn rats demonstrated small superficial bleedings in the cortex while adult rats had more severe deep bleedings in the cerebellum. Using Doppler optical coherent tomography, we found higher stress-reactivity of the sagittal sinus to deleterious effects of stress in newborn vs. adult rats suggesting that the cerebral veins are more vulnerable to negative stress factors in neonatal vs. adult brain in rats. However, adult but not newborn rats demonstrated the stroke-induced breakdown of blood brain barrier (BBB permeability. The one of possible mechanisms underlying the higher resistance to stress-related stroke injures of cerebral vessels in newborn rats compared with adult animals is the greater expression of two main tight junction proteins of BBB (occludin and claudin-5 in neonatal vs. mature brain in rats.

  15. Acai fruit improves motor and cognitive function in aged rats

    Science.gov (United States)

    Aged rats show impaired performance on motor and cognitive tasks that require the use of spatial learning and memory. In previous studies, we have shown the beneficial effects of various berry fruits (blueberries, strawberries, and blackberries) in reversing age-related deficits in behavioral and ne...

  16. Relative radiosensitivity of rat lenses as a function of age

    International Nuclear Information System (INIS)

    Merriam, G.R. Jr.; Szechter, A.

    1975-01-01

    The effect of age on the development of radiation cataracts in rat lenses has been investigated using the Columbia--Sherman rat as an experiment model. A detailed pattern of age dependence was obtained at several different dose levels. In general at dose levels from 200 to 300 rads the lens changes occurred sooner and progressed faster in the adult lenses than in young lenses. In the dose range from 300 rads to 900 rads opacities developed sooner in the young lenses but progression was faster and severe opacities developed sooner in adult lenses. Above 900 rads opacities developed sooner and progressed faster in the young lenses. (U.S.)

  17. Consequences of age on ischemic wound healing in rats: altered antioxidant activity and delayed wound closure.

    Science.gov (United States)

    Moor, Andrea N; Tummel, Evan; Prather, Jamie L; Jung, Michelle; Lopez, Jonathan J; Connors, Sarah; Gould, Lisa J

    2014-04-01

    Advertisements targeted at the elderly population suggest that antioxidant therapy will reduce free radicals and promote wound healing, yet few scientific studies substantiate these claims. To better understand the potential utility of supplemental antioxidant therapy for wound healing, we tested the hypothesis that age and tissue ischemia alter the balance of endogenous antioxidant enzymes. Using a bipedicled skin flap model, ischemic and non-ischemic wounds were created on young and aged rats. Wound closure and the balance of the critical antioxidants superoxide dismutase and glutathione in the wound bed were determined. Ischemia delayed wound closure significantly more in aged rats. Lower superoxide dismutase 2 and glutathione in non-ischemic wounds of aged rats indicate a basal deficit due to age alone. Ischemic wounds from aged rats had lower superoxide dismutase 2 protein and activity initially, coupled with decreased ratios of reduced/oxidized glutathione and lower glutathione peroxidase activity. De novo glutathione synthesis, to restore redox balance in aged ischemic wounds, was initiated as evidenced by increased glutamate cysteine ligase. Results demonstrate deficiencies in two antioxidant pathways in aged rats that become exaggerated in ischemic tissue, culminating in profoundly impaired wound healing and prolonged inflammation.

  18. Effects of Qingshen Granules on the Oxidative Stress-NF/kB Signal Pathway in Unilateral Ureteral Obstruction Rats.

    Science.gov (United States)

    Jin, Hua; Wang, Yiping; Wang, Dong; Zhang, Lei

    2018-01-01

    Background . The activation of NF-kappa B (NF/kB) signaling pathway plays an important role in the process of epithelial-mesenchymal transition (EMT) and renal interstitial fibrosis (RIF) in renal tubules. The process of oxidative stress reaction in kidney is via excessive reactive oxygen species (ROS) production to activate NF/kB signaling pathway. Qingshen Granule (QSG) is an effective Chinese formula utilized to treat chronic renal failure. Previous studies confirmed that QSG could inhibit RIF in unilateral ureteral obstruction (UUO) rats. In this study, we used UUO rats to investigate the effects of QSG on oxidative stress and the activation of NF/kB signaling. Seventy male Sprague-Dawley (SD) rats were randomly divided into a sham group, UUO model group, Qingshen Granules (QSG) high-dose, medium-dose, and low-dose groups, PDTC group, and candesartan group (10 rats in each group). Our study demonstrated that oxidative stress-NF/kB signal pathway contributed to the formation of UUO renal interstitial fibrosis. QSG may protect against RIF by inhibiting the oxidative stress-NF/kB signal pathway, reducing inflammation, and improving renal tubular EMT.

  19. Vascular dysfunction in Chronic Mild Stress (CMS) induced depression model in rats: monoamine homeostasis and endothelial dysfunction

    DEFF Research Database (Denmark)

    Bouzinova, Elena; Wiborg, Ove; Aalkjær, Christian

    Major depression and cardiovascular diseases have strong co-morbidity but the reason for this is unknown. In CMS model of depression only some rats develop depression-like symptoms (i.e. anhedonia, measured by sucrose intake) while others are resilient to 8 weeks of CMS. Anhedonic rats have...... decreased cardiac output and unchanged blood pressure, suggesting increased total peripheral resistance. Small mesenteric and femoral arteries from CMS and non-stressed rats responded similarly to noradrenaline (NA) under control conditions but inhibition of neuronal reuptake with cocaine increased NA...... sensitivity stronger in anhedonic than in resilient and non-stressed groups. In contrast, corticosterone-sensitive extra-neuronal monoamine uptake was diminished in rats exposed to CMS. These changes in monoamine homeostasis were associated with upregulation neuronal NA transporter and reduced expression...

  20. Neuroprotective effects of the polyphenolic antioxidant agent, Curcumin, against homocysteine-induced cognitive impairment and oxidative stress in the rat.

    Science.gov (United States)

    Ataie, Amin; Sabetkasaei, Masoumeh; Haghparast, Abbas; Moghaddam, Akbar Hajizadeh; Kazeminejad, Behrang

    2010-10-01

    Aging is the major risk factor for neurodegenerative diseases and oxidative stress is involved in the pathophysiology of these diseases. In this study, the possible antioxidant and neuroprotective properties of the polyphenolic antioxidant compound, Curcumin against homocysteine (Hcy) neurotoxicity was investigated. Curcumin (5 and 50mg/kg) was injected intraperitoneally once daily for a period of 10 days beginning 5 days prior to Hcy (0.2 micromol/microl) intrahippocampal injection in rats. Biochemical and behavioral studies, including passive avoidance learning and locomotor activity tests were studied 24h after the last Curcumin or its vehicle injection. We detected Malondialdehyde (MDA) and Super oxide anion (SOA) in rats' hippocampi. Results indicated that Hcy could induce lipid peroxidation and increase MDA and SOA levels in rats' hippocampi. Additionally, Hcy impaired memory retention in passive avoidance learning test. However, Curcumin treatment decreased MDA and SOA levels significantly as well as improved learning and memory in rats. Histopathological analysis also indicated that Hcy could decrease hippocampus cell count and Curcumin inhibited this toxic effect. These results suggest that Hcy may induce lipid peroxidation in rats' hippocampi and polyphenol treatment (Curcumin) improved learning and memory deficits by protecting the nervous system against Hcy toxicity. (c) 2010 Elsevier Inc. All rights reserved.