WorldWideScience

Sample records for stress-strain area predicted

  1. Methods for predicting isochronous stress-strain curves

    International Nuclear Information System (INIS)

    Kiyoshige, Masanori; Shimizu, Shigeki; Satoh, Keisuke.

    1976-01-01

    Isochronous stress-strain curves show the relation between stress and total strain at a certain temperature with time as a parameter, and they are drawn up from the creep test results at various stress levels at a definite temperature. The concept regarding the isochronous stress-strain curves was proposed by McVetty in 1930s, and has been used for the design of aero-engines. Recently the high temperature characteristics of materials are shown as the isochronous stress-strain curves in the design guide for the nuclear energy equipments and structures used in high temperature creep region. It is prescribed that these curves are used as the criteria for determining design stress intensity or the data for analyzing the superposed effects of creep and fatigue. In case of the isochronous stress-strain curves used for the design of nuclear energy equipments with very long service life, it is impractical to determine the curves directly from the results of long time creep test, accordingly the method of predicting long time stress-strain curves from short time creep test results must be established. The method proposed by the authors, for which the creep constitution equations taking the first and second creep stages into account are used, and the method using Larson-Miller parameter were studied, and it was found that both methods were reliable for the prediction. (Kako, I.)

  2. Predicted strains in austenitic stainless steels at stresses above yield

    International Nuclear Information System (INIS)

    Hammond, J.P.; Sikka, V.K.

    1977-01-01

    Tensile results on austenitic stainless steels were analyzed to develop means for predicting strains at stresses above yield for reactor regulatory applications. Eight heats each of types 316 and 304 were tested at 24, 93, 204, and 316 0 C as mill-annealed and at 24 0 C after reannealing. The effects of heat-to-heat variations on total strain (to 5%) at discrete stress levels were portrayed by a rational polynomial incorporating three constants that relate to the basic features of the true-stress-true-strain diagram. Because these constants usually are interrelated, a single parameter, yield strength (YS), proved adequate to predict results. For predictions analytical expressions of yield strength, an average value (YSa), and a lower bound value [YSa - 1.65SEE (standard error of estimate)] were used. Using the rational polynomial with these parameters we determined (1) limits of total maximum strain and (2) ratios of strain of material of lower bound YS to that of average YS. These are recorded at regular increments of stress [34 MPa (5 ksi)] and at ASME Code-related stresses (S/sub y), S/sub m/, 1.2S/sub m/ and 1.5S/sub m/). At intermediate stresses, strain penalties for using material of lower bound strength were large, generally larger for type 316 than type 304. For mill-annealed type 316 at 24, 93, 204, and 316 0 C, the maximum ratios of strain were 8.8, 13.0, 14.1, and 14.9, respectively, whereas for type 304 they were 3.5, 3.4, 5.6, and 4.6. At 1.5S/sub m/ and 316 0 C, a maximum strain of 2.08% was predicted for type 316 and 1.66% for type 304, as contrasted to values of 0.14 and 0.39% for average strain

  3. Fatigue Life Prediction of High Modulus Asphalt Concrete Based on the Local Stress-Strain Method

    Directory of Open Access Journals (Sweden)

    Mulian Zheng

    2017-03-01

    Full Text Available Previously published studies have proposed fatigue life prediction models for dense graded asphalt pavement based on flexural fatigue test. This study focused on the fatigue life prediction of High Modulus Asphalt Concrete (HMAC pavement using the local strain-stress method and direct tension fatigue test. First, the direct tension fatigue test at various strain levels was conducted on HMAC prism samples cut from plate specimens. Afterwards, their true stress-strain loop curves were obtained and modified to develop the strain-fatigue life equation. Then the nominal strain of HMAC course determined using finite element method was converted into local strain using the Neuber method. Finally, based on the established fatigue equation and converted local strain, a method to predict the pavement fatigue crack initiation life was proposed and the fatigue life of a typical HMAC overlay pavement which runs a risk of bottom-up cracking was predicted and validated. Results show that the proposed method was able to produce satisfactory crack initiation life.

  4. Ratchetting strain prediction

    International Nuclear Information System (INIS)

    Noban, Mohammad; Jahed, Hamid

    2007-01-01

    A time-efficient method for predicting ratchetting strain is proposed. The ratchetting strain at any cycle is determined by finding the ratchetting rate at only a few cycles. This determination is done by first defining the trajectory of the origin of stress in the deviatoric stress space and then incorporating this moving origin into a cyclic plasticity model. It is shown that at the beginning of the loading, the starting point of this trajectory coincides with the initial stress origin and approaches the mean stress, displaying a power-law relationship with the number of loading cycles. The method of obtaining this trajectory from a standard uniaxial asymmetric cyclic loading is presented. Ratchetting rates are calculated with the help of this trajectory and through the use of a constitutive cyclic plasticity model which incorporates deviatoric stresses and back stresses that are measured with respect to this moving frame. The proposed model is used to predict the ratchetting strain of two types of steels under single- and multi-step loadings. Results obtained agree well with the available experimental measurements

  5. Modeling Stress Strain Relationships and Predicting Failure Probabilities For Graphite Core Components

    Energy Technology Data Exchange (ETDEWEB)

    Duffy, Stephen [Cleveland State Univ., Cleveland, OH (United States)

    2013-09-09

    This project will implement inelastic constitutive models that will yield the requisite stress-strain information necessary for graphite component design. Accurate knowledge of stress states (both elastic and inelastic) is required to assess how close a nuclear core component is to failure. Strain states are needed to assess deformations in order to ascertain serviceability issues relating to failure, e.g., whether too much shrinkage has taken place for the core to function properly. Failure probabilities, as opposed to safety factors, are required in order to capture the bariability in failure strength in tensile regimes. The current stress state is used to predict the probability of failure. Stochastic failure models will be developed that can accommodate possible material anisotropy. This work will also model material damage (i.e., degradation of mechanical properties) due to radiation exposure. The team will design tools for components fabricated from nuclear graphite. These tools must readily interact with finite element software--in particular, COMSOL, the software algorithm currently being utilized by the Idaho National Laboratory. For the eleastic response of graphite, the team will adopt anisotropic stress-strain relationships available in COMSO. Data from the literature will be utilized to characterize the appropriate elastic material constants.

  6. Modeling Stress Strain Relationships and Predicting Failure Probabilities For Graphite Core Components

    International Nuclear Information System (INIS)

    Duffy, Stephen

    2013-01-01

    This project will implement inelastic constitutive models that will yield the requisite stress-strain information necessary for graphite component design. Accurate knowledge of stress states (both elastic and inelastic) is required to assess how close a nuclear core component is to failure. Strain states are needed to assess deformations in order to ascertain serviceability issues relating to failure, e.g., whether too much shrinkage has taken place for the core to function properly. Failure probabilities, as opposed to safety factors, are required in order to capture the bariability in failure strength in tensile regimes. The current stress state is used to predict the probability of failure. Stochastic failure models will be developed that can accommodate possible material anisotropy. This work will also model material damage (i.e., degradation of mechanical properties) due to radiation exposure. The team will design tools for components fabricated from nuclear graphite. These tools must readily interact with finite element software--in particular, COMSOL, the software algorithm currently being utilized by the Idaho National Laboratory. For the eleastic response of graphite, the team will adopt anisotropic stress-strain relationships available in COMSO. Data from the literature will be utilized to characterize the appropriate elastic material constants.

  7. The Cyclic Stress-Strain Curve of Polycrystals

    DEFF Research Database (Denmark)

    Pedersen, Ole Bøcker; Rasmussen, K. V.; Winter, A. T.

    1982-01-01

    The internal stresses implied by the Sachs model are estimated for individual PSBs at low plastic strain amplitudes and for homogeneously sheared grains at higher plastic strain amplitudes. The analysis shows that the Sachs model can account semi-quantitatively for experimentally measured cyclic...... stress-strain curves for copper. A similar approximative analysis of the Taylor model cannot account for the data. An interesting feature of the Sachs model is that, although it is assumed that the flow condition is entirely controlled by the PSBs. the predicted cyclic stress-strain curve displays...

  8. Prediction of thermal and mechanical stress-strain responses of TMC's subjected to complex TMF histories

    Science.gov (United States)

    Johnson, W. S.; Mirdamadi, M.

    1994-01-01

    This paper presents an experimental and analytical evaluation of cross-plied laminates of Ti-15V-3Cr-3Al-3Sn (Ti-15-3) matrix reinforced with continuous silicon-carbide fibers (SCS-6) subjected to a complex TMF loading profile. Thermomechanical fatigue test techniques were developed to conduct a simulation of a generic hypersonic flight profile. A micromechanical analysis was used. The analysis predicts the stress-strain response of the laminate and of the constituents in each ply during thermal and mechanical cycling by using only constituent properties as input. The fiber was modeled as elastic with transverse orthotropic and temperature-dependent properties. The matrix was modeled using a thermoviscoplastic constitutive relation. The fiber transverse modulus was reduced in the analysis to simulate the fiber-matrix interface failures. Excellent correlation was found between measured and predicted laminate stress-strain response due to generic hypersonic flight profile when fiber debonding was modeled.

  9. Strain dyssynchrony index determined by three-dimensional speckle area tracking can predict response to cardiac resynchronization therapy

    Directory of Open Access Journals (Sweden)

    Onishi Tetsuari

    2011-04-01

    Full Text Available Abstract Background We have previously reported strain dyssynchrony index assessed by two-dimensional speckle tracking strain, and a marker of both dyssynchrony and residual myocardial contractility, can predict response to cardiac resynchronization therapy (CRT. A newly developed three-dimensional (3-D speckle tracking system can quantify endocardial area change ratio (area strain, which coupled with the factors of both longitudinal and circumferential strain, from all 16 standard left ventricular (LV segments using complete 3-D pyramidal datasets. Our objective was to test the hypothesis that strain dyssynchrony index using area tracking (ASDI can quantify dyssynchrony and predict response to CRT. Methods We studied 14 heart failure patients with ejection fraction of 27 ± 7% (all≤35% and QRS duration of 172 ± 30 ms (all≥120 ms who underwent CRT. Echocardiography was performed before and 6-month after CRT. ASDI was calculated as the average difference between peak and end-systolic area strain of LV endocardium obtained from 3-D speckle tracking imaging using 16 segments. Conventional dyssynchrony measures were assessed by interventricular mechanical delay, Yu Index, and two-dimensional radial dyssynchrony by speckle-tracking strain. Response was defined as a ≥15% decrease in LV end-systolic volume 6-month after CRT. Results ASDI ≥ 3.8% was the best predictor of response to CRT with a sensitivity of 78%, specificity of 100% and area under the curve (AUC of 0.93 (p Conclusions ASDI can predict responders and LV reverse remodeling following CRT. This novel index using the 3-D speckle tracking system, which shows circumferential and longitudinal LV dyssynchrony and residual endocardial contractility, may thus have clinical significance for CRT patients.

  10. Predicting creep rupture from early strain data

    International Nuclear Information System (INIS)

    Holmstroem, Stefan; Auerkari, Pertti

    2009-01-01

    To extend creep life modelling from classical rupture modelling, a robust and effective parametric strain model has been developed. The model can reproduce with good accuracy all parts of the creep curve, economically utilising the available rupture models. The resulting combined model can also be used to predict rupture from the available strain data, and to further improve the rupture models. The methodology can utilise unfailed specimen data for life assessment at lower stress levels than what is possible from rupture data alone. Master curves for creep strain and rupture have been produced for oxygen-free phosphorus-doped (OFP) copper with a maximum testing time of 51,000 h. Values of time to specific strain at given stress (40-165 MPa) and temperature (125-350 deg. C) were fitted to the models in the strain range of 0.1-38%. With typical inhomogeneous multi-batch creep data, the combined strain and rupture modelling involves the steps of investigation of the data quality, extraction of elastic and creep strain response, rupture modelling, data set balancing and creep strain modelling. Finally, the master curves for strain and rupture are tested and validated for overall fitting efficiency. With the Wilshire equation as the basis for the rupture model, the strain model applies classical parametric principles with an Arrhenius type of thermal activation and a power law type of stress dependence for the strain rate. The strain model also assumes that the processes of primary and secondary creep can be reasonably correlated. The rupture model represents a clear improvement over previous models in the range of the test data. The creep strain information from interrupted and running tests were assessed together with the rupture data investigating the possibility of rupture model improvement towards lower stress levels by inverse utilisation of the combined rupture based strain model. The developed creep strain model together with the improved rupture model is

  11. Prediction of macroscopic and local stress-strain behaviors of perforated plates under primary and secondary creep conditions

    International Nuclear Information System (INIS)

    Igari, Toshihide; Tokiyoshi, Takumi; Mizokami, Yorikata

    2000-01-01

    Prediction methods of macroscopic and local creep behaviors of perforated plates are examined in order to apply these methods to the structural design of perforated structures such as heat exchangers used in elevated temperatures. Both primary and secondary creeps are considered for predicting macroscopic and local creep behaviors of perorated plates which are made of actual structural materials. Both uniaxial and multiaxial loading of perforated plates are taken into consideration. The concept of effective stress is applied to the prediction of macroscopic creep behaviors of perforated plates, and the predicted results are compared with the numerical results by FEM for the unit section of perorated plated under creep, in order to confirm the propriety of the proposed method. Based on the idea that stress exponents in creep equations govern the stress distribution of perforated plates, a modified Neuber's rule is used for predicting local stress and strain concentrations. The propriety of this prediction method is shown through a comparison of the prediction with the numerical results by FEM for the unit section of perforated plates under creep, and experimental results by the Moire method. (author)

  12. An effective uniaxial tensile stress-strain relationship for prestressed concrete

    International Nuclear Information System (INIS)

    Chitnuyanondh, L.; Rizkalla, S.; Murray, D.W.; MacGregor, J.G.

    1979-02-01

    This report evaluates the direct tensile strength and an equivalent uniaxial tensile stress-strain relationship for prestressed concrete using data from specimens tested at the University of Alberta which represent segments from the wall of a containment vessel. The stress-strain relationship, when used in conjunction with the BOSOR5 program, enables prediction of the response of prestressed concrete under any biaxial combination of compressive and/or tensile stresses. Comparisons between the experimental and analytical (BOSOR5) load-strain response of the wall segments are also presented. It is concluded that the BOSOR5 program is able to predict satisfactorily the response of the wall segments and multi-layered shell structures. (author)

  13. BILAM: a composite laminate failure-analysis code using bilinear stress-strain approximations

    Energy Technology Data Exchange (ETDEWEB)

    McLaughlin, P.V. Jr.; Dasgupta, A.; Chun, Y.W.

    1980-10-01

    The BILAM code which uses constant strain laminate analysis to generate in-plane load/deformation or stress/strain history of composite laminates to the point of laminate failure is described. The program uses bilinear stress-strain curves to model layer stress-strain behavior. Composite laminates are used for flywheels. The use of this computer code will help to develop data on the behavior of fiber composite materials which can be used by flywheel designers. In this program the stress-strain curves are modelled by assuming linear response in axial tension while using bilinear approximations (2 linear segments) for stress-strain response to axial compressive, transverse tensile, transverse compressive and axial shear loadings. It should be noted that the program attempts to empirically simulate the effects of the phenomena which cause nonlinear stress-strain behavior, instead of mathematically modelling the micromechanics involved. This code, therefore, performs a bilinear laminate analysis, and, in conjunction with several user-defined failure interaction criteria, is designed to provide sequential information on all layer failures up to and including the first fiber failure. The modus operandi is described. Code BILAM can be used to: predict the load-deformation/stress-strain behavior of a composite laminate subjected to a given combination of in-plane loads, and make analytical predictions of laminate strength.

  14. Study on elastic-plastic deformation analysis using a cyclic stress-strain curve

    International Nuclear Information System (INIS)

    Igari, Toshihide; Setoguchi, Katsuya; Yamauchi, Masafumi

    1983-01-01

    This paper presents the results of the elastic-plastic deformation analysis using a cyclic stress-strain curve with an intention to apply this method for predicting the low-cycle fatigue life. Uniaxial plastic cycling tests were performed on 2 1/4Cr-1Mo steel to investigate the correspondence between the cyclic stress-strain curve and the hysteresis loop, and also to determine what mathematical model should be used for analysis of deformation at stress reversal. Furthermore, a cyclic in-plane bending test was performed on a flat plate to clarify the validity of the cyclic stress-strain curve-based theoretical analysis. The results obtained are as follows: (1) The cyclic stress-strain curve corresponds nearly to the ascending curve of hysteresis loop scaled by a factor of 1/2 for both stress and strain. Therefore, the cyclic stress-strain curve can be determined from the shape of hysteresis loop, for simplicity. (2) To perform the elastic-plastic deformation analysis using the cyclic stress-strain curve is both practical and effective for predicting the cyclic elastic-plastic deformation of structures at the stage of advanced cycles. And Masing model can serve as a suitable mathematical model for such a deformation analysis. (author)

  15. Application of the predicted heat strain model in development of localized, threshold-based heat stress management guidelines for the construction industry.

    Science.gov (United States)

    Rowlinson, Steve; Jia, Yunyan Andrea

    2014-04-01

    Existing heat stress risk management guidelines recommended by international standards are not practical for the construction industry which needs site supervision staff to make instant managerial decisions to mitigate heat risks. The ability of the predicted heat strain (PHS) model [ISO 7933 (2004). Ergonomics of the thermal environment analytical determination and interpretation of heat stress using calculation of the predicted heat strain. Geneva: International Standard Organisation] to predict maximum allowable exposure time (D lim) has now enabled development of localized, action-triggering and threshold-based guidelines for implementation by lay frontline staff on construction sites. This article presents a protocol for development of two heat stress management tools by applying the PHS model to its full potential. One of the tools is developed to facilitate managerial decisions on an optimized work-rest regimen for paced work. The other tool is developed to enable workers' self-regulation during self-paced work.

  16. Context and strain-dependent behavioral response to stress

    Directory of Open Access Journals (Sweden)

    Baum Amber E

    2008-06-01

    Full Text Available Abstract Background This study posed the question whether strain differences in stress-reactivity lead to differential behavioral responses in two different tests of anxiety. Strain differences in anxiety-measures are known, but strain differences in the behavioral responses to acute prior stress are not well characterized. Methods We studied male Fisher 344 (F344 and Wistar Kyoto (WKY rats basally and immediately after one hour restraint stress. To distinguish between the effects of novelty and prior stress, we also investigated behavior after repeated exposure to the test chamber. Two behavioral tests were explored; the elevated plus maze (EPM and the open field (OFT, both of which are thought to measure activity, exploration and anxiety-like behaviors. Additionally, rearing, a voluntary behavior, and grooming, a relatively automatic, stress-responsive stereotyped behavior were measured in both tests. Results Prior exposure to the test environment increased anxiety-related measures regardless of prior stress, reflecting context-dependent learning process in both tests and strains. Activity decreased in response to repeated testing in both tests and both strains, but prior stress decreased activity only in the OFT which was reversed by repeated testing. Prior stress decreased anxiety-related measures in the EPM, only in F344s, while in the OFT, stress led to increased freezing mainly in WKYs. Conclusion Data suggest that differences in stressfulness of these tests predict the behavior of the two strains of animals according to their stress-reactivity and coping style, but that repeated testing can overcome some of these differences.

  17. On the Rule of Mixtures for Predicting Stress-Softening and Residual Strain Effects in Biological Tissues and Biocompatible Materials

    Directory of Open Access Journals (Sweden)

    Alex Elías-Zúñiga

    2014-01-01

    Full Text Available In this work, we use the rule of mixtures to develop an equivalent material model in which the total strain energy density is split into the isotropic part related to the matrix component and the anisotropic energy contribution related to the fiber effects. For the isotropic energy part, we select the amended non-Gaussian strain energy density model, while the energy fiber effects are added by considering the equivalent anisotropic volumetric fraction contribution, as well as the isotropized representation form of the eight-chain energy model that accounts for the material anisotropic effects. Furthermore, our proposed material model uses a phenomenological non-monotonous softening function that predicts stress softening effects and has an energy term, derived from the pseudo-elasticity theory, that accounts for residual strain deformations. The model’s theoretical predictions are compared with experimental data collected from human vaginal tissues, mice skin, poly(glycolide-co-caprolactone (PGC25 3-0 and polypropylene suture materials and tracheal and brain human tissues. In all cases examined here, our equivalent material model closely follows stress-softening and residual strain effects exhibited by experimental data.

  18. On the Rule of Mixtures for Predicting Stress-Softening and Residual Strain Effects in Biological Tissues and Biocompatible Materials

    Science.gov (United States)

    Elías-Zúñiga, Alex; Baylón, Karen; Ferrer, Inés; Serenó, Lídia; Garcia-Romeu, Maria Luisa; Bagudanch, Isabel; Grabalosa, Jordi; Pérez-Recio, Tania; Martínez-Romero, Oscar; Ortega-Lara, Wendy; Elizalde, Luis Ernesto

    2014-01-01

    In this work, we use the rule of mixtures to develop an equivalent material model in which the total strain energy density is split into the isotropic part related to the matrix component and the anisotropic energy contribution related to the fiber effects. For the isotropic energy part, we select the amended non-Gaussian strain energy density model, while the energy fiber effects are added by considering the equivalent anisotropic volumetric fraction contribution, as well as the isotropized representation form of the eight-chain energy model that accounts for the material anisotropic effects. Furthermore, our proposed material model uses a phenomenological non-monotonous softening function that predicts stress softening effects and has an energy term, derived from the pseudo-elasticity theory, that accounts for residual strain deformations. The model’s theoretical predictions are compared with experimental data collected from human vaginal tissues, mice skin, poly(glycolide-co-caprolactone) (PGC25 3-0) and polypropylene suture materials and tracheal and brain human tissues. In all cases examined here, our equivalent material model closely follows stress-softening and residual strain effects exhibited by experimental data. PMID:28788466

  19. Modeling of stress-strain diagram on the basis of magnetic measurements

    International Nuclear Information System (INIS)

    Gorkunov, Eh.S.; Fedotov, V.P.; Bukhvalov, A.B.; Veselov, I.N.

    1997-01-01

    The model of a stress-strain diagram with taking into account the strain hardening and the growth of metal damageing is proposed. The model is applied to calculate a stress-strain curve for continuous cast 45 steel using the results of magnetic properties measuring. The latter permits predicting the durability of construction elements with the use of nondestructive magnetic testing

  20. Strain limit criteria to predict failure

    International Nuclear Information System (INIS)

    Flanders, H.E.

    1995-01-01

    In recent years extensive effort has been expended to qualify existing structures for conditions that are beyond the original design basis. Determination of the component failure load is useful for this type of evaluation. This paper presents criteria based upon strain limits to predict the load at failure. The failure modes addressed are excessive plastic deformations, localized plastic strains, and structural instability. The effects of analytical method sophistication, as built configurations, material properties degradation, and stress state are addressed by the criteria

  1. [Appraisal of occupational stress and strain in primary and secondary school teachers].

    Science.gov (United States)

    Wang, Z; Lan, Y; Li, J; Wang, M

    2001-09-01

    This study was conducted to assess occupational stress and strain in primary and secondary school teachers. A test of occupational stress and strain was carried out by using Occupational Stress Inventory Revised Edition (OSI-R) in 1460 primary and secondary school teachers (teacher group) and 319 mental workers in non-educational area (non-teacher group as control). The results showed the level of occupational stress in role overload and physical environment in the teacher group was significantly higher than that in the non-teacher group (P < 0.05). In teacher group the level of occupational stress and strain increased with age; the occupational stress and strain in male teachers were significantly higher than those in female teachers (P < 0.01); the occupational stress and strain in secondary school teachers were significantly higher than those in primary school teachers. These results indicate: to protect and promote primary and secondary school teacher's health, particularly male teachers' health, to mitigate their work pressure and to raise the quality of education are important tasks in the area of occupational health.

  2. Patient-Specific MRI-Based Right Ventricle Models Using Different Zero-Load Diastole and Systole Geometries for Better Cardiac Stress and Strain Calculations and Pulmonary Valve Replacement Surgical Outcome Predictions.

    Directory of Open Access Journals (Sweden)

    Dalin Tang

    stress (r = -0.609, P = 0.012 and with pre-PVR RV end-diastole volume (r = -0.60, P = 0.015, but did not correlate with WT, C-curvature, L-curvature, or strain. At begin-ejection, mean RV stress of Group 2 was 57.4% higher than that of Group 1 (130.1±60.7 vs. 82.7±38.8 kPa, P = 0.0042. Stress was the only parameter that showed significant differences between the two groups. The combination of circumferential curvature, RV volume and the difference between begin-ejection stress and end-ejection stress was the best predictor for post PVR outcome with an area under the ROC curve of 0.855. The begin-ejection stress was the best single predictor among the 8 individual parameters with an area under the ROC curve of 0.782.The new 2G model may be able to provide more accurate ventricular stress and strain calculations for potential clinical applications. Combining morphological and mechanical parameters may provide better predictions for post PVR outcome.

  3. Combined-load stress-strain relationship for advanced fiber composites

    Science.gov (United States)

    Chamis, C. C.; Sullivan, T. L.

    1975-01-01

    It was demonstrated experimentally that only one test specimen is required to determine the combined-load stress-strain relationships of a given fiber composite system. These relationships were determined using a thin angle-plied laminate tube and subjecting it to a number of combined-loading conditions. The measured data obtained are compared with theoretical predictions. Some important considerations associated with such a test are identified, and the significance of combined-load stress-strain relationships in certain practical designs are discussed.

  4. Stress and Strain State Analysis of Defective Pipeline Portion

    Science.gov (United States)

    Burkov, P. V.; Burkova, S. P.; Knaub, S. A.

    2015-09-01

    The paper presents computer simulation results of the pipeline having defects in a welded joint. Autodesk Inventor software is used for simulation of the stress and strain state of the pipeline. Places of the possible failure and stress concentrators are predicted on the defective portion of the pipeline.

  5. Burial stress and elastic strain of carbonate rocks

    DEFF Research Database (Denmark)

    Fabricius, Ida Lykke

    2014-01-01

    Burial stress on a sediment or sedimentary rock is relevant for predicting compaction or failure caused by changes in, e.g., pore pressure in the subsurface. For this purpose, the stress is conventionally expressed in terms of its effect: “the effective stress” defined as the consequent elastic...... strain multiplied by the rock frame modulus. We cannot measure the strain directly in the subsurface, but from the data on bulk density and P‐wave velocity, we can estimate the rock frame modulus and Biot's coefficient and then calculate the “effective vertical stress” as the total vertical stress minus...... the product of pore pressure and Biot's coefficient. We can now calculate the elastic strain by dividing “effective stress” with the rock frame modulus. By this procedure, the degree of elastic deformation at a given time and depth can be directly expressed. This facilitates the discussion of the deformation...

  6. Stress-Softening and Residual Strain Effects in Suture Materials

    Directory of Open Access Journals (Sweden)

    Alex Elías-Zúñiga

    2013-01-01

    Full Text Available This work focuses on the experimental characterization of suture material samples of MonoPlus, Monosyn, polyglycolic acid, polydioxanone 2–0, polydioxanone 4–0, poly(glycolide-co-epsilon-caprolactone, nylon, and polypropylene when subjected to cyclic loading and unloading conditions. It is found that all tested suture materials exhibit stress-softening and residual strain effects related to the microstructural material damage upon deformation from the natural, undistorted state of the virgin suture material. To predict experimental observations, a new constitutive material model that takes into account stress-softening and residual strain effects is developed. The basis of this model is the inclusion of a phenomenological nonmonotonous softening function that depends on the strain intensity between loading and unloading cycles. The theory is illustrated by modifying the non-Gaussian average-stretch, full-network model to capture stress-softening and residual strains by using pseudoelasticity concepts. It is shown that results obtained from theoretical simulations compare well with suture material experimental data.

  7. Relationship between fatigue life in the creep-fatigue region and stress-strain response

    Science.gov (United States)

    Berkovits, A.; Nadiv, S.

    1988-01-01

    On the basis of mechanical tests and metallographic studies, strainrange partitioned lives were predicted by introducing stress-strain materials parameters into the Universal Slopes Equation. This was the result of correlating fatigue damage mechanisms and deformation mechanisms operating at elevated temperatures on the basis of observed mechanical and microstructural behavior. Correlation between high temperature fatigue and stress strain properties for nickel base superalloys and stainless steel substantiated the method. Parameters which must be evaluated for PP- and CC- life are the maximum stress achievable under entirely plastic and creep conditions respectively and corresponding inelastic strains, and the two more pairs of stress strain parameters must be ascertained.

  8. Acquirement of true stress-strain curve using true fracture strain obtained by tensile test and FE analysis

    International Nuclear Information System (INIS)

    Lee, Kyoung Yoon; Kim, Tae Hyung; Lee, Hyung Yil

    2009-01-01

    In this work, we predict a true fracture strain using load-displacement curves from tensile test and Finite Element Analysis (FEA), and suggest a method for acquiring true Stress-Strain (SS) curves by predicted fracture strain. We first derived the true SS curve up to necking point from load-displacement curve. As the beginning, the posterior necking part of true SS curve is linearly extrapolated with the slope at necking point. The whole SS curve is then adopted for FE simulation of tensile test. The Bridgman factor or suitable plate correction factors are applied to pre and post FEA. In the load-true strain curve from FEA, the true fracture strain is determined as the matching point to test fracture load. The determined true strain is validated by comparing with test fracture strain. Finally, we complete the true SS curve by combining the prior necking part and linear part, the latter of which connects necking and predicted fracture points.

  9. Acquirement of true stress-strain curve using true fracture strain obtained by tensile test and FE analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyoung Yoon; Kim, Tae Hyung; Lee, Hyung Yil [Sogang University, Seoul (Korea, Republic of)

    2009-07-01

    In this work, we predict a true fracture strain using load-displacement curves from tensile test and Finite Element Analysis (FEA), and suggest a method for acquiring true Stress-Strain (SS) curves by predicted fracture strain. We first derived the true SS curve up to necking point from load-displacement curve. As the beginning, the posterior necking part of true SS curve is linearly extrapolated with the slope at necking point. The whole SS curve is then adopted for FE simulation of tensile test. The Bridgman factor or suitable plate correction factors are applied to pre and post FEA. In the load-true strain curve from FEA, the true fracture strain is determined as the matching point to test fracture load. The determined true strain is validated by comparing with test fracture strain. Finally, we complete the true SS curve by combining the prior necking part and linear part, the latter of which connects necking and predicted fracture points.

  10. Acquirement of True Stress-strain Curve Using True Fracture Strain Obtained by Tensile Test and FE Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyoung Yoon; Lee, Hyung Yil [Sogang University, Seoul (Korea, Republic of); Kim, Tae Hyung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-10-15

    In this work, we predict a true fracture strain using load-displacement curves from tensile test and finite element analysis (FEA), and suggest a method for acquiring true stress-strain (SS) curves by predicted fracture strain. We first derived the true SS curve up to necking point from load-displacement curve. As the beginning, the posterior necking part of true SS curve is linearly extrapolated with the slope at necking point. The whole SS curve is then adopted for FE simulation of tensile test. The Bridgman factor or suitable plate correction factors are applied to pre and post FEA. In the load-true strain curve from FEA, the true fracture strain is determined as the matching point to test fracture load. The determined true strain is validated by comparing with test fracture strain. Finally, we complete the true SS curve by combining the prior necking part and linear part, the latter of which connects necking and predicted fracture points.

  11. Stress strain tensors with their application to x-ray stress measurement

    International Nuclear Information System (INIS)

    Kurita, Masanori

    2015-01-01

    This paper describes in detail the method of obtaining the formulas of stress-strain tensor that express the directional dependence of stress-strain, that is, how these values change in response to coordinate transformation, and clarifies the preconditions for supporting both formulas. The two conversion formulas are both the second order of tensor, and the formula of strain tensor not only does not use the relational expression of stress and strain at all, but also is obtained completely independently of the formula of stress tensor. Except for the condition that the strain is very small (elastic deformation) in the conversion formula of strain, both formulas unconditionally come into effect. In other words, both formulas hold true even in the isotropic elastic body or anisotropic elastic body. It was shown that the conversion formula of strain can be derived from the conversion formula of stress using the formula of Hooke for isotropic elastic body. From these three-dimensional expressions, the two-dimensional stress-strain coordinate conversion formula that is used for Mohr's stress-strain circle was derived. It was shown that these formulas hold true for three-dimensional stress condition with stress-strain components in the three-axial direction that are not plane stress nor plane strain condition. In addition, as an application case of this theory, two-dimensional and three-dimensional X-ray stress measurements that are effective for residual stress measurement were shown. (A.O.)

  12. Micromechanical Model for Deformation in Solids with Universal Predictions for Stress-Strain Curves and Slip Avalanches

    International Nuclear Information System (INIS)

    Dahmen, Karin A.; Ben-Zion, Yehuda; Uhl, Jonathan T.

    2009-01-01

    A basic micromechanical model for deformation of solids with only one tuning parameter (weakening ε) is introduced. The model can reproduce observed stress-strain curves, acoustic emissions and related power spectra, event statistics, and geometrical properties of slip, with a continuous phase transition from brittle to ductile behavior. Exact universal predictions are extracted using mean field theory and renormalization group tools. The results agree with recent experimental observations and simulations of related models for dislocation dynamics, material damage, and earthquake statistics.

  13. Stress-Strain Relationship of Synthetic Fiber Reinforced Concrete Columns

    Directory of Open Access Journals (Sweden)

    Rosidawani

    2017-01-01

    Full Text Available Many empirical confinement models for normal and high strength concrete have been developed. Nevertheless, reported studies in the term of confinement of fiber reinforced concrete are limited. Whereas, the use of fiber reinforced concrete in structural elements has become the subject of the research and has indicated positive experiences. Since the stress-strain relationship of concrete in compression is required for analysis of structural members, the study of the stress-strain relationship for synthetic fiber reinforced concrete is substantial. The aim of the study is to examine the capabilities of the various models available in the literature to predict the actual experimental behavior of synthetic fiber reinforced high-strength concrete columns. The experimental data used are the results of the circular column specimens with the spiral spacing and the volume fraction of synthetic fiber as the test variables. The axial stress-strain curves from the tests are then compared with the various models of confinement from the literature. The performance index of each model is measured by using the coefficient of variation (COV concept of stress and strain behavior parameter. Among the confinement models, Cusson model shows the closest valid value of the coefficient of variation.

  14. Spherical Nanoindentation Stress-Strain Measurements of BOR-60 14YWT-NFA1 Irradiated Tubes

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, Jordan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Carvajal Nunez, Ursula [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Krumwiede, David [Univ. of California, Berkeley, CA (United States); Saleh, Tarik A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hosemann, Peter [Univ. of California, Berkeley, CA (United States); Nelson, Andrew Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Maloy, Stuart Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mara, Nathan Allan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-28

    Spherical nanoindentation stress-strain protocols were applied to characterize unirradiated and fast neutron irradiated nanostructured ferritic alloy (NFA) 14YWT and compared against Berkovich nanohardness and available tensile data. The predicted uniaxial yield strength from spherical, 100 and 5 micron radii, indentation yield strength measurements was 1100-1400 MPa which compares well with the predictions from Berkovich nanohardness, 1200 MPa, and available tensile data, ~1100 MPa. However, spherical indentation measurements predict an increase in the uniaxial yield strength of ~1 GPa while Berkovich nanohardness measurements predict an increase of only ~250 MPa. No tensile data exists on the irradiated condition. It is believed the difference in the predicted uniaxial yield strength between spherical and Berkovich nanoindentation are due to a low number of tests on the irradiated sample combined with the significant heterogeneity in the microstructure, the differences in sensitivity to sample preparation on the irradiated sample between the two indentation protocols , and/or in how strain localizes under the indenter with the possibility of dislocation channeling under Berkovich hardness indents leading to strain softening. Nanoindentation capabilities to test neutron irradiated samples in a radiological area were realized.

  15. Multiaxial Stress-Strain Modeling and Effect of Additional Hardening due to Nonproportional Loading

    International Nuclear Information System (INIS)

    Rashed, G.; Ghajar, R.; Farrahi, G.

    2007-01-01

    Most engineering components are subjected to multiaxial rather than uniaxial cyclic loading, which causes multiaxial fatigue. The pre-requisite to predict the fatigue life of such components is to determine the multiaxial stress strain relationship. In this paper the multiaxial cyclic stress-strain model under proportional loading is derived using the modified power law stress-strain relationship. The equivalent strain amplitude consisted of the normal strain excursion and maximum shear strain amplitude is used in the proportional model to include the additional hardening effect due to nonproportional loading. Therefore a new multiaxial cyclic stress-strain relationship is devised for out of phase nonproportional loading. The model is applied to the nonproportional loading case and the results are compared with the other researchers' experimental data published in the literature, which are in a reasonable agreement with the experimental data. The relationship presented here is convenient for the engineering applications

  16. Four-dimensional echocardiography area strain combined with exercise stress echocardiography to evaluate left ventricular regional systolic function in patients with mild single vessel coronary artery stenosis.

    Science.gov (United States)

    Deng, Yan; Peng, Long; Liu, Yuan-Yuan; Yin, Li-Xue; Li, Chun-Mei; Wang, Yi; Rao, Li

    2017-09-01

    The aim of this prospective study was to assess the diagnosis value of four-dimensional echocardiography area strain (AS) combined with exercise stress echocardiography to evaluate left ventricular regional systolic function in patients with mild single vessel coronary artery stenosis. Based on treadmill exercise load status, two-dimensional conventional echocardiography and four-dimensional echocardiography area strain were performed on patients suspected coronary artery disease before coronary angiogram. Thirty patients (case group) with mild left anterior descending coronary artery stenosis (stenosis Four-dimensional echocardiography area strain combined with exercise stress echocardiography could sensitively find left ventricular regional systolic function abnormality in patients with mild single vessel coronary artery stenosis, and locate stenosis coronary artery accordingly. © 2017, Wiley Periodicals, Inc.

  17. Strain, Stress and Seismicity pattern in Switzerland

    Science.gov (United States)

    Houlié, Nicolas; Woessner, Jochen; Villiger, Arturo; Deichmann, Nicholas; Rothacher, Markus; Giardini, Domenico; Geiger, Alain

    2013-04-01

    Switzerland lies across one of the most complex plate boundary in the world. With a 100 Ma of deformation history, and a wide diversity of deformation mechanism, it is an ideal place to study the link(s) between small strain rates measured at the surface and stress dissipated at depth. The link is of genuine interest for seismic hazard assessment as it provides an independent estimate for moment release within the seismogenic volume. We use geodetic (GPS velocities, shortening axes, strain maps) and seismic (anisotropy, P-axes, focal mechanisms) datasets in order to assess whether the stress accumulated at depth due to the continental collision reflects the deformation rates measured at the surface and correlates with the seismic activity as well as the stress directions deduced from earthquake focal mechanisms throughout the area - or not. While the deformation amplitudes of the area are small (less than 10-7 yr-1) in some areas of Switzerland, we can relate long- and short-term features of the tectonic processes occurring over the last 10+ Ma. Preliminary results suggest that while deformation rates measured by GPS are large in the Ticino compared to the Valais region - its seismic activity rate is lower. This implies other processes might play important roles in the generation of seismicity.

  18. Atlas of stress-strain curves

    CERN Document Server

    2002-01-01

    The Atlas of Stress-Strain Curves, Second Edition is substantially bigger in page dimensions, number of pages, and total number of curves than the previous edition. It contains over 1,400 curves, almost three times as many as in the 1987 edition. The curves are normalized in appearance to aid making comparisons among materials. All diagrams include metric (SI) units, and many also include U.S. customary units. All curves are captioned in a consistent format with valuable information including (as available) standard designation, the primary source of the curve, mechanical properties (including hardening exponent and strength coefficient), condition of sample, strain rate, test temperature, and alloy composition. Curve types include monotonic and cyclic stress-strain, isochronous stress-strain, and tangent modulus. Curves are logically arranged and indexed for fast retrieval of information. The book also includes an introduction that provides background information on methods of stress-strain determination, on...

  19. Predicted tyre-soil interface area and vertical stress distribution based on loading characteristics

    DEFF Research Database (Denmark)

    Schjønning, Per; Stettler, M.; Keller, Thomas

    2015-01-01

    The upper boundary condition for all models simulating stress patterns throughout the soil profile is the stress distribution at the tyre–soil interface. The so-called FRIDA model (Schjønning et al., 2008. Biosyst. Eng. 99, 119–133) treats the contact area as a superellipse and has been shown...... of the actual to recommended inflation pressure ratio. We found that VT and Kr accounted for nearly all variation in the data with respect to the contact area. The contact area width was accurately described by a combination of tyre width and Kr, while the superellipse squareness parameter, n, diminished...... slightly with increasing Kr. Estimated values of the contact area length related to observed data with a standard deviation of about 0.06 m. A difference between traction and implement tyres called for separate prediction equations, especially for the contact area. The FRIDA parameters α and β, reflecting...

  20. Correction of the post -- necking true stress -- strain data using instrumented nanoindentation

    Science.gov (United States)

    Romero Fonseca, Ivan Dario

    The study of large plastic deformations has been the focus of numerous studies particularly in the metal forming processes and fracture mechanics fields. A good understanding of the plastic flow properties of metallic alloys and the true stresses and true strains induced during plastic deformation is crucial to optimize the aforementioned processes, and to predict ductile failure in fracture mechanics analyzes. Knowledge of stresses and strains is extracted from the true stress-strain curve of the material from the uniaxial tensile test. In addition, stress triaxiality is manifested by the neck developed during the last stage of a tensile test performed on a ductile material. This necking phenomenon is the factor responsible for deviating from uniaxial state into a triaxial one, then, providing an inaccurate description of the material's behavior after the onset of necking. The research of this dissertation is aimed at the development of a correction method for the nonuniform plastic deformation (post-necking) portion of the true stress-strain curve. The correction proposed is based on the well-known relationship between hardness and flow (yield) stress, except that instrumented nanoindentation hardness is utilized rather than conventional macro or micro hardness. Three metals with different combinations of strain hardening behavior and crystal structure were subjected to quasi-static tensile tests: power-law strain hardening low carbon G10180 steel (BCC) and electrolytic tough pitch copper C11000 (FCC), and linear strain hardening austenitic stainless steel S30400 (FCC). Nanoindentation hardness values, measured on the broken tensile specimen, were converted into flow stress values by means of the constraint factor C from Tabor's, the representative plastic strainepsilonr and the post-test true plastic strains measured. Micro Vickers hardness testing was carried out on the sample as well. The constraint factors were 5.5, 4.5 and 4.5 and the representative plastic

  1. Model and prediction of stress relaxation of polyurethane fiber

    Science.gov (United States)

    You, Gexin; Wang, Chunyan; Mei, Shuqin; Yang, Bo; Zhou, Xiuwen

    2018-03-01

    In this study, the effect of small strain (less than 10%) on hydrogen bond (H-bond) and crystallinity of dry-spun polyurethane fiber was investigated with fourier transform infrared spectroscopy and x-ray diffractometer, respectively. The results showed that the H-bond of hard segments hardly broke and its degree of crystallinity scarcely varied below strain of 10%. The fiber stress relaxation behavior at 25 °C under small strain was researched using dynamic mechanical analyzer. The stress relaxation modulus constitutive equation was obtained by transforming the non-linear relationship between stress and time into the linear relationship between stress and strain. The stress relaxation modulus master curve at 25 °C was established in terms of short-term stress relaxation tests at elevated temperatures (35 °C, 45 °C, 65 °C and 75 °C) according to time-temperature superposition principle (TTS) to predict long-term behavior within 353 year.

  2. Dynamic stress relaxation due to cyclic variation of strain at elevated temperature

    International Nuclear Information System (INIS)

    Suzuki, F.

    1975-01-01

    The relaxation of stress which occurs when low amplitude alternating strains are superimposed on constant mean total strains is studied in this paper. Experiments were carried out on a 0.16 per cent carbon steel and an AISI 347 stainless steel at 450 0 C and 650 0 C respectively in which the decrease of axial mean stress was measured as a function of time. When even a low amplitude alternating strain was applied, the rate of stress relaxation was observed to increase. Analytical predictions based on creep and static relaxation data show fairly good agreement with experiments in the period corresponding to transient creep. (author)

  3. Temperature-stress phase diagram of strain glass Ti48.5Ni51.5

    International Nuclear Information System (INIS)

    Wang, Y.; Ren, X.; Otsuka, K.; Saxena, A.

    2008-01-01

    The temperature and stress dependence of the properties of a recently discovered strain glass Ti 48.5 Ni 51.5 , which is a glass of frozen local lattice strains, was investigated systematically. It was found that the ideal freezing temperature (T 0 ) of the strain glass decreases with increasing stress. When the stress exceeds a critical value σ c (T), the pseudo-B2 strain glass transforms into B19' martensite. However, the stress-strain behavior associated with such a stress-induced transition showed a crossover at a crossover temperature T CR , which is ∼20 K below T 0 . Above T CR , the sample showed superelastic behavior; however, below T CR , the sample demonstrated plastic behavior. More interestingly, the σ c vs. temperature relation for unfrozen strain glass obeys the Clausius-Clapyeron relationship, whereas that for frozen strain glass disobeys this universal thermodynamic law. A phenomenological explanation is provided for all the phenomena observed, and it is shown that all the anomalous effects come from the broken ergodicity of the glass system and a temperature-dependent relative stability of the martensitic phase. Based on experimental observations, a temperature-stress phase diagram is constructed for this strain glass, which may serve as a guide map for understanding and predicting the properties of strain glass

  4. Development of stress-modified fracture strain criterion for ductile fracture of API X65 steel

    International Nuclear Information System (INIS)

    Oh, Chang Kyun; Kim, Yun Jae; Park, Jin Moo; Kim, Woo Sik; Baek, Jong Hyun

    2005-01-01

    This paper presents a stress-modified fracture strain for API X65 steel used for gas pipeline, as a function of stress triaxiality. To determine the stress-modified fracture strain, tension test of bars with four different notch radii, made of API X65 steel, is firstly performed, from which true fracture strains are determined as a function of notch radius. Then detailed elastic-plastic, large strain Finite Element (FE) analyses are performed to estimate variations of stress triaxiality in the notched bars with load. Combining experimental with FE results provides the true fracture strain as a function of stress triaxiality, which is regarded as a criterion of ductile fracture. Application of the developed stress-modified fracture strain to failure prediction of gas pipes made of API X65 steel with various types of defects is discussed

  5. Rupture prediction for induction bends under opening mode bending with emphasis on strain localization

    International Nuclear Information System (INIS)

    Mitsuya, Masaki; Sakanoue, Takashi

    2015-01-01

    This study focuses on the opening mode of induction bends; this mode represents the deformation outside a bend. Bending experiments on induction bends are shown and the manner of failure of these bends was investigated. Ruptures occur at the intrados of the bends, which undergo tensile stress, and accompany the local reduction of wall thickness, i.e., necking that indicates strain localization. By implementing finite element analysis (FEA), it was shown that the rupture is dominated not by the fracture criterion of material but by the initiation of strain localization that is a deformation characteristic of the material. These ruptures are due to the rapid increase of local strain after the initiation of strain localization and suddenly reach the fracture criterion. For the evaluation of the deformability of the bends, a method based on FEA that can predict the displacement at the rupture is proposed. We show that the yield surface shape and the true stress–strain relationship after uniform elongation have to be defined on the basis of the actual properties of the bend material. The von Mises yield criterion, which is commonly used in cases of elastic–plastic FEA, could not predict the rupture and overestimated the deformability. In contrast, a yield surface obtained by performing tensile tests on a biaxial specimen could predict the rupture. The prediction of the rupture was accomplished by an inverse calibration method that determined the true stress-strain relationship after uniform elongation. As an alternative to the inverse calibration, a simple extrapolation method of the true stress-strain relationship after uniform elongation which can predict the rupture is proposed. - Highlights: • A method based on FEA that can predict the displacement at the rupture is proposed. • The yield surface shape and the true stress–strain have to be defined precisely. • The von Mises yield criterion overestimated the deformability. • The ruptures are due to the

  6. Prediction of stress- and strain-based forming limits of automotive thin sheets by numerical, theoretical and experimental methods

    Science.gov (United States)

    Béres, Gábor; Weltsch, Zoltán; Lukács, Zsolt; Tisza, Miklós

    2018-05-01

    Forming limit is a complex concept of limit values related to the onset of local necking in the sheet metal. In cold sheet metal forming, major and minor limit strains are influenced by the sheet thickness, strain path (deformation history) as well as material parameters and microstructure. Forming Limit Curves are plotted in ɛ1 - ɛ2 coordinate system providing the classic strain-based Forming Limit Diagram (FLD). Using the appropriate constitutive model, the limit strains can be changed into the stress-based Forming Limit Diagram (SFLD), irrespective of the strain path. This study is about the effect of the hardening model parameters on defining of limit stress values during Nakazima tests for automotive dual phase (DP) steels. Five limit strain pairs were specified experimentally with the loading of five different sheet geometries, which performed different strain-paths from pure shear (-2ɛ2=ɛ1) up to biaxial stretching (ɛ2=ɛ1). The former works of Hill, Levy-Tyne and Keeler-Brazier made possible some kind of theoretical strain determination, too. This was followed by the stress calculation based on the experimental and theoretical strain data. Since the n exponent in the Nádai expression is varying with the strain at some DP steels, we applied the least-squares method to fit other hardening model parameters (Ludwik, Voce, Hockett-Sherby) to calculate the stress fields belonging to each limit strains. The results showed that each model parameters could produce some discrepancies between the limit stress states in the range of higher equivalent strains than uniaxial stretching. The calculated hardening models were imported to FE code to extend and validate the results by numerical simulations.

  7. Probabilistic molecular dynamics evaluation of the stress-strain behavior of polyethylene

    International Nuclear Information System (INIS)

    Stowe, J.Q.; Predecki, P.K.; Laz, P.J.; Burks, B.M.; Kumosa, M.

    2009-01-01

    The primary goal of this study was to utilize molecular dynamics to predict the mechanical behavior of polyethylene. In particular, stress-strain relationships, the Young's modulus and Poisson ratio were predicted for low-density polyethylene at several molecular weights and polymer configurations with the number of united CH 2 atoms ranging between 500 and 5000. Probabilistic Monte Carlo methods were also used to identify the extent of uncertainty in mechanical property predictions. In general, asymptotic behavior was observed for stress and the Young's modulus as the molecular weight of the models increased. At the same time, significant variability, of the order of 1000% of the mean, in the stress-strain relationships and the Young's modulus predictions was observed, especially for low molecular weight models. The variability in the Young's modulus predictions ranged from 17.9 to 3.2 GPa for the models ranging from 100 to 5000 CH 2 atom models. However, it was also found that the mean value of the Young's modulus approached a physically possible value of 194 MPa for the 5000 atom model. Poisson ratio predictions also resulted in significant variability, from 200% to 425% of the mean, and ranged from 0.75 to 1.30. The mean value of the Poisson ratios calculated in this study ranged from 0.32 to 0.44 for the 100 to 5000 atom models, respectively.

  8. Strain- and stress-based forming limit curves for DP 590 steel sheet using Marciniak-Kuczynski method

    Science.gov (United States)

    Kumar, Gautam; Maji, Kuntal

    2018-04-01

    This article deals with the prediction of strain-and stress-based forming limit curves for advanced high strength steel DP590 sheet using Marciniak-Kuczynski (M-K) method. Three yield criteria namely Von-Mises, Hill's 48 and Yld2000-2d and two hardening laws i.e., Hollomon power and Swift hardening laws were considered to predict the forming limit curves (FLCs) for DP590 steel sheet. The effects of imperfection factor and initial groove angle on prediction of FLC were also investigated. It was observed that the FLCs shifted upward with the increase of imperfection factor value. The initial groove angle was found to have significant effects on limit strains in the left side of FLC, and insignificant effect for the right side of FLC for certain range of strain paths. The limit strains were calculated at zero groove angle for the right side of FLC, and a critical groove angle was used for the left side of FLC. The numerically predicted FLCs considering the different combinations of yield criteria and hardening laws were compared with the published experimental results of FLCs for DP590 steel sheet. The FLC predicted using the combination of Yld2000-2d yield criterion and swift hardening law was in better coorelation with the experimental data. Stress based forming limit curves (SFLCs) were also calculated from the limiting strain values obtained by M-K model. Theoretically predicted SFLCs were compared with that obtained from the experimental forming limit strains. Stress based forming limit curves were seen to better represent the forming limits of DP590 steel sheet compared to that by strain-based forming limit curves.

  9. Stress and strain measurements in solids

    International Nuclear Information System (INIS)

    Askegaard, V.

    1978-01-01

    A design basis is given for stress- and strain cells to be used in a solid either externally loaded or with a stressfree strain field (for example shrinkage). A stress- and a strain cell has been designed for use in granular materials. Calibration tests show either good or reasonably good correspondance with calculated values. (orig.) [de

  10. Crack tip stress and strain

    International Nuclear Information System (INIS)

    Francois, D.

    1975-01-01

    The study of potential energy variations in a loaded elastic solid containing a crack leads to determination of the crack driving force G. Generalization of this concept to cases other than linear elasticity leads to definition of the integral J. In a linear solid, the crack tip stress field is characterized by a single parameter: the stress-intensity factor K. When the crack tip plastic zone size is confined to the elastic singularity J=G, it is possible to establish relationship between these parameters and plastic strain (and in particular the crack tip opening displacement delta). The stress increases because of the triaxiality effect. This overload rises with increasing strain hardening. When the plastic zone size expands, using certain hypotheses, delta can be calculated. The plastic strain intensity is exclusively dependent on parameter J [fr

  11. Analytical solution for stress, strain and plastic instability of pressurized pipes with volumetric flaws

    International Nuclear Information System (INIS)

    Cunha, Sérgio B.; Netto, Theodoro A.

    2012-01-01

    The mechanical behavior of internally pressurized pipes with volumetric flaws is analyzed. The two possible modes of circumferentially straining the pipe wall are identified and associated to hypothesized geometries. The radial deformation that takes place by bending the pipe wall is studied by means of axisymmetric flaws and the membrane strain developed by unequal hoop deformation is analyzed with the help of narrow axial flaws. Linear elastic shell solutions for stress and strain are developed, the plastic behavior is studied and the maximum hoop stress at the flaw is related to the undamaged pipe hoop stress by means of stress concentration factors. The stress concentration factors are employed to obtain equations predicting the pressure at which the pipe fails by plastic instability for both types of flaw. These analytical solutions are validated by comparison with burst tests on 3″ diameter pipes and finite element simulations. Forty-one burst tests were carried out and two materials with very dissimilar plastic behavior, carbon steel and austenitic stainless steel, were used in the experiments. Both the analytical and the numerical predictions showed good correlation with the experimentally observed burst pressures. - Highlights: ► An analytical model for the burst of a pipe with a volumetric flaw is developed. ► Deformation, strain and stress are modeled in the elastic and plastic domains. ► The model is comprehensively validated by experiments and numerical simulations. ► The burst pressure model’s accuracy is equivalent to finite element simulations.

  12. Stress strain flow curves for Cu-OFP

    International Nuclear Information System (INIS)

    Sandstroem, Rolf; Hallgren, Josefin

    2009-04-01

    Stress strain curves of oxygen free copper alloyed with phosphorus Cu-OFP have been determined in compression and tension. The compression tests were performed at room temperature for strain rates between 10 -5 and 10 -3 1/s. The tests in tension covered the temperature range 20 to 175 deg C for strain rates between 10 -7 and 5x10 -3 1/s. The results in compression and tension were close for similar strain rates. A model for stress strain curves has been formulated using basic dislocation mechanisms. The model has been set up in such a way that fitting of parameters to the curves is avoided. By using a fundamental creep model as a basis a direct relation to creep data has been established. The maximum engineering flow stress in tension is related to the creep stress giving the same strain rate. The model reproduces the measured flow curves as function of temperature and strain rate in the investigated interval. The model is suitable to use in finite-element computations of structures in Cu-OFP

  13. Micromechanical modelling of the cyclic stress-strain behaviour of nickel polycrystals

    International Nuclear Information System (INIS)

    Steckmeyer, A.; Sauzay, M.; Weidner, A.; Hieckmann, E.

    2012-01-01

    A crystalline elasto-plasticity model is proposed to describe the cyclic behaviour of face-centred cubic crystals. It is based on many experimental observations correlating the observed dislocation structures with the orientations of corresponding crystals. The model distinguishes between two families of crystals. The first family gathers crystals for which the tension-compression loading axis is located in the centre of the standard stereo-graphic triangle. These crystals, in which bundle and/or slip band dislocation structures are usually observed, are subjected to single slip deformation. The second family gathers crystals in which labyrinths or wall dislocation structures develop. These crystals are subjected to multiple slip deformation. Crystalline plasticity parameters are adjusted using only the single crystal cyclic stress strain curves measured for one orientation of each of the two families. The relevance of the model is evaluated through finite elements calculations of the uniaxial cyclic deformation of texture-free nickel polycrystals at room temperature. The macroscopic predictions are in reasonable agreement with experimental data concerning both the cyclic stress-strain curve and the hysteresis loops provided either large grain sizes or intermediate to high plastic strains are considered. By construction, the modelling is unable to predict grain size effect observed at low plastic strain. The distributions of the mean grain plastic strains become narrower as the macroscopic plastic strain amplitude increases, which appears consistent with the large scattering in high-cycle fatigue lifetimes usually observed. On the contrary, the distributions of mean grain axial stresses get broader, in agreement with neutron and X-ray diffraction measurement values published in the literature. The influence of the material parameters is then discussed. Finally, the cumulative probability curves of the number of cycles to fatigue microcrack nucleation are deduced

  14. The influence of the anisotropic stress state on the intermediate strain properties of granular material

    KAUST Repository

    Goudarzy, M.

    2017-07-20

    This paper shows the effect of anisotropic stress state on intermediate strain properties of cylindrical samples containing spherical glass particles. Tests were carried out with the modified resonant column device available at Ruhr-Universität Bochum. Dry samples were subjected to two anisotropic stress states: (a) cell pressure, σ′h, constant and vertical stress, σ′v, increased (stress state GB-I) and (b) σ′v/σ′h equal to 2 (stress state GB-II). The experimental results revealed that the effect of stress state GB-II on the modulus and damping ratio was more significant and obvious than stress state GB-I. The effect of the anisotropic stress state was explained through the impact of confining pressure and anisotropic stress components on the stiffness and damping ratio. The results showed that: (a) G(γ) increased, η(γ) decreased and their strain non-linearity decreased with an increase in the confining pressure component σ′vσ′h; (b) G(γ) decreased, η(γ) increased and their strain non-linearity increased with an increase in the anisotropic stress component, σ′v/σ′h. The analysis of results revealed that reference shear strain was also affected by anisotropic stress state. Therefore, an empirical relationship was developed to predict the reference shear strain, as a function of confining pressure and anisotropic stress components. Additionally, the damping ratio was written as a function of the minimum damping ratio and the reference shear strain.

  15. Strain rate effects in stress corrosion cracking

    Energy Technology Data Exchange (ETDEWEB)

    Parkins, R.N. (Newcastle upon Tyne Univ. (UK). Dept. of Metallurgy and Engineering Materials)

    1990-03-01

    Slow strain rate testing (SSRT) was initially developed as a rapid, ad hoc laboratory method for assessing the propensity for metals an environments to promote stress corrosion cracking. It is now clear, however, that there are good theoretical reasons why strain rate, as opposed to stress per se, will often be the controlling parameter in determining whether or not cracks are nucleated and, if so, are propagated. The synergistic effects of the time dependence of corrosion-related reactions and microplastic strain provide the basis for mechanistic understanding of stress corrosion cracking in high-pressure pipelines and other structures. However, while this may be readily comprehended in the context of laboratory slow strain tests, its extension to service situations may be less apparent. Laboratory work involving realistic stressing conditions, including low-frequency cyclic loading, shows that strain or creep rates give good correlation with thresholds for cracking and with crack growth kinetics.

  16. Analytical solution for stress, strain and plastic instability of pressurized pipes with volumetric flaws

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, Sergio B., E-mail: sbcunha@petrobras.com.br [PETROBRAS/TRANSPETRO, Av. Pres. Vargas 328 - 7th floor, Rio de Janeiro, RJ 20091-060 (Brazil); Netto, Theodoro A., E-mail: tanetto@lts.coppe.ufrj.br [COPPE, Federal University ot Rio de Janeiro, Ocean Engineering Department, PO BOX 68508, Rio de Janeiro - RJ (Brazil)

    2012-01-15

    The mechanical behavior of internally pressurized pipes with volumetric flaws is analyzed. The two possible modes of circumferentially straining the pipe wall are identified and associated to hypothesized geometries. The radial deformation that takes place by bending the pipe wall is studied by means of axisymmetric flaws and the membrane strain developed by unequal hoop deformation is analyzed with the help of narrow axial flaws. Linear elastic shell solutions for stress and strain are developed, the plastic behavior is studied and the maximum hoop stress at the flaw is related to the undamaged pipe hoop stress by means of stress concentration factors. The stress concentration factors are employed to obtain equations predicting the pressure at which the pipe fails by plastic instability for both types of flaw. These analytical solutions are validated by comparison with burst tests on 3 Double-Prime diameter pipes and finite element simulations. Forty-one burst tests were carried out and two materials with very dissimilar plastic behavior, carbon steel and austenitic stainless steel, were used in the experiments. Both the analytical and the numerical predictions showed good correlation with the experimentally observed burst pressures. - Highlights: Black-Right-Pointing-Pointer An analytical model for the burst of a pipe with a volumetric flaw is developed. Black-Right-Pointing-Pointer Deformation, strain and stress are modeled in the elastic and plastic domains. Black-Right-Pointing-Pointer The model is comprehensively validated by experiments and numerical simulations. Black-Right-Pointing-Pointer The burst pressure model's accuracy is equivalent to finite element simulations.

  17. Research on dynamic creep strain and settlement prediction under the subway vibration loading.

    Science.gov (United States)

    Luo, Junhui; Miao, Linchang

    2016-01-01

    This research aims to explore the dynamic characteristics and settlement prediction of soft soil. Accordingly, the dynamic shear modulus formula considering the vibration frequency was utilized and the dynamic triaxial test conducted to verify the validity of the formula. Subsequently, the formula was applied to the dynamic creep strain function, with the factors influencing the improved dynamic creep strain curve of soft soil being analyzed. Meanwhile, the variation law of dynamic stress with sampling depth was obtained through the finite element simulation of subway foundation. Furthermore, the improved dynamic creep strain curve of soil layer was determined based on the dynamic stress. Thereafter, it could to estimate the long-term settlement under subway vibration loading by norms. The results revealed that the dynamic shear modulus formula is straightforward and practical in terms of its application to the vibration frequency. The values predicted using the improved dynamic creep strain formula closed to the experimental values, whilst the estimating settlement closed to the measured values obtained in the field test.

  18. Probabilistic analysis of structures involving random stress-strain behavior

    Science.gov (United States)

    Millwater, H. R.; Thacker, B. H.; Harren, S. V.

    1991-01-01

    The present methodology for analysis of structures with random stress strain behavior characterizes the uniaxial stress-strain curve in terms of (1) elastic modulus, (2) engineering stress at initial yield, (3) initial plastic-hardening slope, (4) engineering stress at point of ultimate load, and (5) engineering strain at point of ultimate load. The methodology is incorporated into the Numerical Evaluation of Stochastic Structures Under Stress code for probabilistic structural analysis. The illustrative problem of a thick cylinder under internal pressure, where both the internal pressure and the stress-strain curve are random, is addressed by means of the code. The response value is the cumulative distribution function of the equivalent plastic strain at the inner radius.

  19. Measurements and predictions of strain pole figures for uniaxially compressed stainless steel

    International Nuclear Information System (INIS)

    Larsson, C.; Clausen, B.; Holden, T.M.; Bourke, M.A.M.

    2004-01-01

    Strain pole figures representative of residual intergranular strains were determined from an -2.98% uniaxially compressed austenitic stainless steel sample. The measurements were made using neutron diffraction on the recently commissioned Spectrometer for Materials Research at Temperature and Stress (SMARTS) at Los Alamos National Laboratory, USA. The measurements were compared with predictions from an elasto-plastic self-consistent model and found to be in good agreement

  20. Measurements and predictions of strain pole figures for uniaxially compressed stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, C. [Division of Engineering Materials, Department of Mechanical Engineering, Linkoeping University, 58183 Linkoeping (Sweden)]. E-mail: clarsson@cfl.rr.com; Clausen, B. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Holden, T.M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Bourke, M.A.M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2004-09-15

    Strain pole figures representative of residual intergranular strains were determined from an -2.98% uniaxially compressed austenitic stainless steel sample. The measurements were made using neutron diffraction on the recently commissioned Spectrometer for Materials Research at Temperature and Stress (SMARTS) at Los Alamos National Laboratory, USA. The measurements were compared with predictions from an elasto-plastic self-consistent model and found to be in good agreement.

  1. Tolerance to winemaking stress conditions of Patagonian strains of Saccharomyces eubayanus and Saccharomyces uvarum.

    Science.gov (United States)

    Origone, A C; Del Mónaco, S M; Ávila, J R; González Flores, M; Rodríguez, M E; Lopes, C A

    2017-08-01

    Evaluating the winemaking stress tolerance of a set of both Saccharomyces eubayanus and Saccharomyces uvarum strains from diverse Patagonian habitats. Yeast strains growth was analysed under increasing ethanol concentrations; all of them were able to grow until 8% v/v ethanol. The effect of different temperature and pH conditions as well as at SO 2 and hexose concentrations was evaluated by means of a central composite experimental design. Only two S. uvarum strains (NPCC 1289 and 1321) were able to grow in most stress conditions. Kinetic parameters analysed (μ max and λ) were statistically affected by temperature, pH and SO 2 , but not influenced by sugar concentration. The obtained growth model was used for predicting optimal growth conditions for both strains: 20°C, 0% w/v SO 2 and pH 4·5. Strains from human-associated environments (chichas) presented the highest diversity in the response to different stress factors. Two S. uvarum strains from chichas demonstrated to be the most tolerant to winemaking conditions. This work evidenced the potential use of two S. uvarum yeast strains as starter cultures in wines fermented at low temperatures. Saccharomyces eubayanus was significantly affected by winemaking stress conditions, limiting its use in this industry. © 2017 The Society for Applied Microbiology.

  2. The importance of the strain rate and creep on the stress corrosion cracking mechanisms and models

    International Nuclear Information System (INIS)

    Aly, Omar F.; Mattar Neto, Miguel; Schvartzman, Monica M.A.M.

    2011-01-01

    Stress corrosion cracking is a nuclear, power, petrochemical, and other industries equipment and components (like pressure vessels, nozzles, tubes, accessories) life degradation mode, involving fragile fracture. The stress corrosion cracking failures can produce serious accidents, and incidents which can put on risk the safety, reliability, and efficiency of many plants. These failures are of very complex prediction. The stress corrosion cracking mechanisms are based on three kinds of factors: microstructural, mechanical and environmental. Concerning the mechanical factors, various authors prefer to consider the crack tip strain rate rather than stress, as a decisive factor which contributes to the process: this parameter is directly influenced by the creep strain rate of the material. Based on two KAPL-Knolls Atomic Power Laboratory experimental studies in SSRT (slow strain rate test) and CL (constant load) test, for prediction of primary water stress corrosion cracking in nickel based alloys, it has done a data compilation of the film rupture mechanism parameters, for modeling PWSCC of Alloy 600 and discussed the importance of the strain rate and the creep on the stress corrosion cracking mechanisms and models. As derived from this study, a simple theoretical model is proposed, and it is showed that the crack growth rate estimated with Brazilian tests results with Alloy 600 in SSRT, are according with the KAPL ones and other published literature. (author)

  3. A numerical study of stress/strain response to oil development in reservoir rocks-a case study in Xingshugang area of Daqing Anticline

    International Nuclear Information System (INIS)

    Li Zian; Ma Teng; Yi Jin; Zhu Jiangjian; Lin Ge; Zhang Lu; Zhu Yan; Sun Yaliang; Zhu Jun

    2010-01-01

    Formation pressure and the underground stress field will be disturbed by high pressure injection and production activities during oilfield development. Such disturbance will induce the deformation of formation rock, sometimes causing formation to slip. As a result, production wells and/or injection wells will encounter sanding, casing deformation, or even casing shear problems. This article introduced a simulation study on formation pressure and the underground stress field variation during injection and production activities in the Xingshugang area of the Daqing Anticline, Songliao Basin, China. The relationships of injection pressure to formation pressure, underground stress field variation, and strain variation were investigated in this paper.

  4. Stress-strain properties of railway steel at strain rates of upto 105 per second

    International Nuclear Information System (INIS)

    Hashmi, M.S.J.; Islam, M.N.

    1985-01-01

    This paper presents the stress-strain characteristics of railway steel at strain rates of up to 10 5 /s at room temperature determined by a new technique. In determining the results, account has been taken of the strain-rate variation, the total strain and the strain rate history. The effect of friction, material inertia and temperature rise is also assessed and an empirical constitutive equation describing the strain-rate and strain sensitive flow stress for this type of steel is proposed. (orig.)

  5. FLEXURAL STRESS ANALYSIS OF RIGID PAVEMENTS USING AXI-SYMMETRIC AND PLANE STRAIN FEM

    Directory of Open Access Journals (Sweden)

    V.A. Sawant

    2017-11-01

    Full Text Available The design of pavement involves a study of soils and paving materials, their response under load for different climatic conditions. In the present study, an attempt has been made to compare stresses predicted using two finite element analyses. First analysis is based on the twodimensional plane strain assumption where as in second approach axi-symmetric condition is assumed to consider three-dimensional behavior of rigid pavement. The results are compared with flexural stresses obtained from conventional Portland Cement Association method. The computed flexural stresses obtained from axi-symmetric condition are found to be in close agreement with PCA method. Results of plane strain analysis show a fair agreement after application of an appropriate multiplication factor

  6. Representative Stress-Strain Curve by Spherical Indentation on Elastic-Plastic Materials

    Directory of Open Access Journals (Sweden)

    Chao Chang

    2018-01-01

    Full Text Available Tensile stress-strain curve of metallic materials can be determined by the representative stress-strain curve from the spherical indentation. Tabor empirically determined the stress constraint factor (stress CF, ψ, and strain constraint factor (strain CF, β, but the choice of value for ψ and β is still under discussion. In this study, a new insight into the relationship between constraint factors of stress and strain is analytically described based on the formation of Tabor’s equation. Experiment tests were performed to evaluate these constraint factors. From the results, representative stress-strain curves using a proposed strain constraint factor can fit better with nominal stress-strain curve than those using Tabor’s constraint factors.

  7. Application of local approach to quantitative prediction of degradation in fracture toughness of steels due to pre-straining and irradiation

    International Nuclear Information System (INIS)

    Miyata, T.; Tagawa, T.

    1996-01-01

    Degradation of cleavage fracture toughness for low carbon steels due to pre-straining and irradiation was investigated on the basis of the local fracture criterion approach. Formulation of cleavage fracture toughness through the statistical modelling proposed by BEREMIN has been simplified by the present authors to the expression involving yield stress and cleavage fracture stress of materials. A few percent pre-strain induced by cold rolling deteriorates significantly the cleavage fracture toughness. Ductile-brittle transition temperature is increased to more than 70 C higher by 8% straining in 500 MPa class high strength steel. Quantitative prediction of degradation has been successfully examined through the formulation of the cleavage fracture toughness. Analytical and experimental results indicate that degradation in toughness is caused by the increase of flow stress in pre-strained materials. Quantitative prediction of degradation of toughness due to irradiation has been also examined for the past experiments on the basis of the local fracture criterion approach. Analytical prediction from variance of yield stress by irradiation is well consistent with the experimental results. (orig.)

  8. An exponential strain dependent Rusinek–Klepaczko model for flow stress prediction in austenitic stainless steel 304 at elevated temperatures

    Directory of Open Access Journals (Sweden)

    Amit Kumar Gupta

    2014-10-01

    Full Text Available In this paper, to predict flow stress of Austenitic Stainless Steel (ASS 304 at elevated temperatures the extended Rusinek–Klepaczko (RK model has been modified using an exponential strain dependent term for dynamic strain aging (DSA region. Isothermal tensile tests are conducted on ASS 304 for a temperature range of 323–923 K with an interval of 50 K and at strain rates of 0.0001 s−1, 0.001 s−1, 0.01 s−1 and 0.1 s−1. DSA phenomenon is observed from 623 to 923 K at 0.0001 s−1, 0.001 s−1 and 0.01 s−1. Material constants are calculated using data obtained from these tensile tests for non-DSA and DSA region separately. The predicted results from the RK model are compared with the experimental data to check the accuracy of the constitutive relation. It is observed that to find out the constants of this model, some initial assumptions are required, and these initial values affect the predicted values. Hence, Genetic Algorithm (GA is used to optimize the constants for RK model. Statistical measures such as the correlation coefficient, the average absolute error and standard deviation are used to measure the accuracy of the model. The resulting values of the correlation coefficient for ASS 304 for non-DSA and DSA region using modified extended RK model are 0.9828 and 0.9701. This modified, extended RK model is compared with Johnson–Cook (JC, Zerilli–Armstrong (ZA and Arrhenius models and it is observed that specifically in DSA region, the modified extended RK model gives highly accurate predictions.

  9. Improved failure prediction in forming simulations through pre-strain mapping

    Science.gov (United States)

    Upadhya, Siddharth; Staupendahl, Daniel; Heuse, Martin; Tekkaya, A. Erman

    2018-05-01

    The sensitivity of sheared edges of advanced high strength steel (AHSS) sheets to cracking during subsequent forming operations and the difficulty to predict this failure with any degree of accuracy using conventionally used FLC based failure criteria is a major problem plaguing the manufacturing industry. A possible method that allows for an accurate prediction of edge cracks is the simulation of the shearing operation and carryover of this model into a subsequent forming simulation. But even with an efficient combination of a solid element shearing operation and a shell element forming simulation, the need for a fine mesh, and the resulting high computation time makes this approach not viable from an industry point of view. The crack sensitivity of sheared edges is due to work hardening in the shear-affected zone (SAZ). A method to predict plastic strains induced by the shearing process is to measure the hardness after shearing and calculate the ultimate tensile strength as well as the flow stress. In combination with the flow curve, the relevant strain data can be obtained. To eliminate the time-intensive shearing simulation necessary to obtain the strain data in the SAZ, a new pre-strain mapping approach is proposed. The pre-strains to be mapped are, hereby, determined from hardness values obtained in the proximity of the sheared edge. To investigate the performance of this approach the ISO/TS 16630 hole expansion test was simulated with shell elements for different materials, whereby the pre-strains were mapped onto the edge of the hole. The hole expansion ratios obtained from such pre-strain mapped simulations are in close agreement with the experimental results. Furthermore, the simulations can be carried out with no increase in computation time, making this an interesting and viable solution for predicting edge failure due to shearing.

  10. On generalization uniaxial stress-strain relation

    International Nuclear Information System (INIS)

    Sahay, C.; Dubey, R.N.

    1980-01-01

    Different forms of constitutive relations have been advanced for elastic, plastic and elastic-plastic behaviour of materials. It is shown that the various forms of the stress-strain relationship are specialized forms of generalization of a single stress-strain relation. For example, it is shown how the laws of elastic deformation, and the incremental and total deformation relationship for plastic behaviour are derivable from the Ramberg-Osgood relation. (orig.)

  11. Comparison of stress-based and strain-based creep failure criteria for severe accident analysis

    International Nuclear Information System (INIS)

    Chavez, S.A.; Kelly, D.L.; Witt, R.J.; Stirn, D.P.

    1995-01-01

    We conducted a parametic analysis of stress-based and strain-based creep failure criteria to determine if there is a significant difference between the two criteria for SA533B vessel steel under severe accident conditions. Parametric variables include debris composition, system pressure, and creep strain histories derived from different testing programs and mathematically fit, with and without tertiary creep. Results indicate significant differences between the two criteria. Stress gradient plays an important role in determining which criterion will predict failure first. Creep failure was not very sensitive to different creep strain histories, except near the transition temperature of the vessel steel (900K to 1000K). Statistical analyses of creep failure data of four independent sources indicate that these data may be pooled, with a spline point at 1000K. We found the Manson-Haferd parameter to have better failure predictive capability than the Larson-Miller parameter for the data studied. (orig.)

  12. Pre-diagnosis employment status and financial circumstances predict cancer-related financial stress and strain among breast and prostate cancer survivors.

    Science.gov (United States)

    Sharp, Linda; Timmons, Aileen

    2016-02-01

    Cancer may have a significant financial impact on patients, but the characteristics that predispose patients to cancer-related financial hardship are poorly understood. We investigated factors associated with cancer-related financial stress and strain in breast and prostate cancer survivors in Ireland, which has a complex mixed public-private healthcare system. Postal questionnaires were distributed to 1373 people diagnosed with cancer 3-24 months previously identified from the National Cancer Registry Ireland. Outcomes were cancer-related financial stress (impact of cancer diagnosis on household ability to make ends meet) and financial strain (concerns about household financial situation since cancer diagnosis). Modified Poisson regression was used to estimate relative risks (RR) for factors associated with cancer-related financial stress and strain. Seven hundred forty survivors participated (response rate = 54 %). Of the respondents, 48 % reported cancer-related financial stress and 32 % cancer-related financial strain. Compared to those employed at diagnosis, risk of cancer-related financial stress was significantly lower in those not working (RR = 0.71, 95 % CI 0.58-0.86) or retired (RR = 0.48, 95 % CI 0.34-0.68). It was significantly higher in those who had dependents; experienced financial stress pre-diagnosis; had a mortgage/personal loans; had higher direct medical out-of-pocket costs; and had increased household bills post-diagnosis. For cancer-related financial strain, significant associations were found with dependents, pre-diagnosis employment status and pre-diagnosis financial stress; risk was lower in those with higher direct medical out-of-pocket costs. Cancer-related financial stress and strain are common. Pre-diagnosis employment status and financial circumstances are important predictors of post-diagnosis financial wellbeing. These findings could inform development of tools to identify patients/survivors most in need of financial

  13. Limitations of Hollomon and Ludwigson stress-strain relations in assessing the strain hardening parameters

    International Nuclear Information System (INIS)

    Samuel, K G

    2006-01-01

    It is shown that the deviation from the ideal Hollomon relation in describing the stress-strain behaviour is characteristic of all materials at low strains. The Ludwigson relation describing the deviation from the Hollomon relation at low strains is critically analysed and it is shown that the deviation at low strains is a consequence of some unknown 'plastic strain equivalent' present in the material. Stress strain curves obeying an ideal Hollomon relation as well as that of a structurally modified (prior cold worked) material were simulated and compared. The results show that the yield strength and the flow strength of a material at constant strain rate and temperature are dictated by the magnitude of the 'plastic strain equivalent' term. It is shown that this component need not necessarily mean a prior plastic strain present in the material due to prior cold work alone and that prior cold work strain will add to this. If this component is identified, the stress-strain behaviour can be adequately described by the Swift relation. It is shown that in both formalisms, the strain hardening index is a function of the yield strength of the material

  14. In situ subsoil stress-strain behaviour in relation to soil precompression stress

    DEFF Research Database (Denmark)

    Keller, T; Arvidsson, J; Schjønning, Per

    2012-01-01

    is assumed to be elastic and reversible as long as [sigma] work examined soil stress-strain behavior as measured in situ during wheeling experiments and related it to the stress-strain behavior and [sigma]pc measured on soil cores in uniaxial compression tests in the laboratory. The data......Soil compaction negatively influences many important soil functions, including crop growth. Compaction occurs when the applied stress, [sigma], overcomes the soil strength. Soil strength in relation to compaction is typically expressed by the soil precompression stress, [sigma]pc. Deformation...... analyzed were from a large number of wheeling experiments carried out in Sweden and Denmark on soils with a wide range of texture. Contradicting the concept of precompression stress, we observed residual strain, [Latin Small Letter Open E]res, at [sigma

  15. Stress strain modelling of casting processes in the framework of the control volume method

    DEFF Research Database (Denmark)

    Hattel, Jesper; Andersen, Søren; Thorborg, Jesper

    1998-01-01

    Realistic computer simulations of casting processes call for the solution of both thermal, fluid-flow and stress/strain related problems. The multitude of the influencing parameters, and their non-linear, transient and temperature dependent nature, make the calculations complex. Therefore the nee......, the present model is based on the mainly decoupled representation of the thermal, mechanical and microstructural processes. Examples of industrial applications, such as predicting residual deformations in castings and stress levels in die casting dies, are presented...... for fast, flexible, multidimensional numerical methods is obvious. The basis of the deformation and stress/strain calculation is a transient heat transfer analysis including solidification. This paper presents an approach where the stress/strain and the heat transfer analysis uses the same computational...... domain, which is highly convenient. The basis of the method is the control volume finite difference approach on structured meshes. The basic assumptions of the method are shortly reviewed and discussed. As for other methods which aim at application oriented analysis of casting deformations and stresses...

  16. Development of piping strain sensor for stress evaluation

    International Nuclear Information System (INIS)

    Takahama, Tsunemichi; Nishimura, Kazuma; Ninomiya, Seiichiro; Matsumoto, Yoshihiro; Harada, Yutaka

    2014-01-01

    In a small diameter piping, stresses are generated due to internal fluid or pump vibrations especially around the welding parts. Authors have successfully developed a pipe strain sensor which is able to measure such stresses. Unlike conventional methods using strain gages and adhesive bond, the sensor can measure the strain without putting adhesive bond on the piping surface. However, the strain sensor can provide measurements with a level of accuracy equivalent to that of conventional method using strain gages and adhesive bond. Accordingly, the strain sensor can significantly reduce the working time without any loss of the measurement accuracy. (author)

  17. Assessing Lifetime Stress Exposure Using the Stress and Adversity Inventory for Adults (Adult STRAIN): An Overview and Initial Validation

    Science.gov (United States)

    Slavich, George M.; Shields, Grant S.

    2018-01-01

    ABSTRACT Objective Numerous theories have proposed that acute and chronic stressors may exert a cumulative effect on life-span health by causing biological “wear and tear,” or allostatic load, which in turn promotes disease. Very few studies have directly tested such models, though, partly because of the challenges associated with efficiently assessing stress exposure over the entire life course. To address this issue, we developed the first online system for systematically assessing lifetime stress exposure, called the Stress and Adversity Inventory (STRAIN), and describe its initial validation here. Methods Adults recruited from the community (n = 205) were administered the STRAIN, Childhood Trauma Questionnaire—Short Form, and Perceived Stress Scale, as well as measures of socioeconomic status, personality, social desirability, negative affect, mental and physical health complaints, sleep quality, computer-assessed executive function, and doctor-diagnosed general health problems and autoimmune disorders. Results The STRAIN achieved high acceptability and was completed relatively quickly (mean = 18 minutes 39 seconds; interquartile range = 12–23 minutes). The structure of the lifetime stress data best fit two latent classes overall and five distinct trajectories over time. Concurrent associations with the Childhood Trauma Questionnaire—Short Form and Perceived Stress Scale were good (r values = .147–.552). Moreover, the STRAIN was not significantly related to personality traits or social desirability characteristics and, in adjusted analyses, emerged as the measure most strongly associated with all six of the health and cognitive outcomes assessed except current mental health complaints (β values = .16–.41; risk ratios = 1.02–1.04). Finally, test-retest reliability for the main stress exposure indices over 2–4 weeks was excellent (r values = .904–.919). Conclusions The STRAIN demonstrated good usability and acceptability; very good concurrent

  18. Assessing Lifetime Stress Exposure Using the Stress and Adversity Inventory for Adults (Adult STRAIN): An Overview and Initial Validation.

    Science.gov (United States)

    Slavich, George M; Shields, Grant S

    2018-01-01

    Numerous theories have proposed that acute and chronic stressors may exert a cumulative effect on life-span health by causing biological "wear and tear," or allostatic load, which in turn promotes disease. Very few studies have directly tested such models, though, partly because of the challenges associated with efficiently assessing stress exposure over the entire life course. To address this issue, we developed the first online system for systematically assessing lifetime stress exposure, called the Stress and Adversity Inventory (STRAIN), and describe its initial validation here. Adults recruited from the community (n = 205) were administered the STRAIN, Childhood Trauma Questionnaire-Short Form, and Perceived Stress Scale, as well as measures of socioeconomic status, personality, social desirability, negative affect, mental and physical health complaints, sleep quality, computer-assessed executive function, and doctor-diagnosed general health problems and autoimmune disorders. The STRAIN achieved high acceptability and was completed relatively quickly (mean = 18 minutes 39 seconds; interquartile range = 12-23 minutes). The structure of the lifetime stress data best fit two latent classes overall and five distinct trajectories over time. Concurrent associations with the Childhood Trauma Questionnaire-Short Form and Perceived Stress Scale were good (r values = .147-.552). Moreover, the STRAIN was not significantly related to personality traits or social desirability characteristics and, in adjusted analyses, emerged as the measure most strongly associated with all six of the health and cognitive outcomes assessed except current mental health complaints (β values = .16-.41; risk ratios = 1.02-1.04). Finally, test-retest reliability for the main stress exposure indices over 2-4 weeks was excellent (r values = .904-.919). The STRAIN demonstrated good usability and acceptability; very good concurrent, discriminant, and predictive validity; and excellent test

  19. Lattice strain evolution in IMI 834 under applied stress

    International Nuclear Information System (INIS)

    Daymond, Mark R.; Bonner, Neil W.

    2003-01-01

    The effect of elastic and plastic anisotropy on the evolution of lattice strains in the titanium alloy IMI834 has been examined during a uniaxial tensile test, by in situ monitoring on the Engin instrument at the ISIS pulsed neutron source. Measurements were made at load during an incremental loading test. The data is analysed in the light of the requirements for engineering residual stress scanning measurements performed at polychromatic neutron and synchrotron diffraction sources. Comparisons between the measured strains from different lattice families and the predictions from an elasto-plastic self-consistent model are made. Agreement is good in the elastic regime and for most diffraction planes in the plastic regime

  20. Biaxial failure criteria and stress-strain response for concrete of containment structure

    International Nuclear Information System (INIS)

    Lee, S. K.; Woo, S. K.; Song, Y. C.; Kweon, Y. K.; Cho, C. H.

    2001-01-01

    Biaxial failure criteria and stress-strain response for plain concrete of containment structure on nuclear power plants are studied under uniaxial and biaxial stress(compression-compression, compression-tension, and tension-tension combined stress). The concrete specimens of a square plate type are used for uniaxial and biaxial loading. The experimental data indicate that the strength of concrete under biaxial compression, f 2 /f 1 =-1/-1, is 17 percent larger than under uniaxial compression and the poisson's ratio of concrete is 0.1745. On the base of the results, a biaxial failure envelope for plain concrete that the uniaxial strength is 5660 psi are provided, and the biaxial failure behaviors for three biaxial loading areas are plotted respectively. And, various analytical equations having the reliability are proposed for representations of the biaxial failure criteria and stress-strain response curves of concrete

  1. STRESS AND STRAIN STATE OF REPAIRING SECTION OF PIPELINE

    Directory of Open Access Journals (Sweden)

    V. V. Nikolaev

    2015-01-01

    Full Text Available Reliability of continuous operation of pipelines is an actual problem. For this reason should be developed an effective warning system of the main pipelines‘  failures and accidents not only in design and operation but also in selected repair. Changing of linear, unloaded by bending position leads to the change of stress and strain state of pipelines. And besides this, the stress and strain state should be determined and controlled in the process of carrying out the repair works. The article presents mathematical model of pipeline’s section straining in viscoelastic setting taking into account soils creep and high-speed stress state of pipeline with the purpose of stresses evaluation and load-supporting capacity of repairing section of pipeline, depending on time.  Stress and strain state analysis of pipeline includes longitudinal and circular stresses calculation  with  account of axis-asymmetrical straining and  was  fulfilled  on  the base of momentless theory of shells. To prove the consistency of data there were compared the calcu- lation results and the solution results by analytical methods for different cases (long pipeline’s section strain only under influence of cross-axis action; long pipeline’s section strain under in- fluence of longitudinal stress; long pipeline’s section strain; which is on the elastic foundation, under influence of cross-axis action. Comparison results shows that the calculation error is not more than 3 %.Analysis of stress-strain state change of pipeline’s section was carried out with development  of  this  model,  which  indicates  the  enlargement  of  span  deflection  in  comparison with problem’s solution in elastic approach. It is also proved, that for consistent assessment of pipeline maintenance conditions, it is necessary to consider the areolas of rheological processes of soils. On the base of complex analysis of pipelines there were determined stresses and time

  2. Growth of contact area between rough surfaces under normal stress

    Science.gov (United States)

    Stesky, R. M.; Hannan, S. S.

    1987-05-01

    The contact area between deforming rough surfaces in marble, alabaster, and quartz was measured from thin sections of surfaces bonded under load with low viscosity resin epoxy. The marble and alabaster samples had contact areas that increased with stress at an accelerating rate. This result suggests that the strength of the asperity contacts decreased progressively during the deformation, following some form of strain weakening relationship. This conclusion is supported by petrographic observation of the thin sections that indicate that much of the deformation was cataclastic, with minor twinning of calcite and kinking of gypsum. In the case of the quartz, the observed contact area was small and increased approximately linearly with normal stress. Only the irreversible cataclastic deformation was observed; however strain-induced birefringence and cracking of the epoxy, not observed with the other rocks, suggests that significant elastic deformation occurred, but recovered during unloading.

  3. Micromechanical modeling of stress-induced strain in polycrystalline Ni–Mn–Ga by directional solidification

    International Nuclear Information System (INIS)

    Zhu, Yuping; Shi, Tao; Teng, Yao

    2015-01-01

    Highlights: • A micromechanical model of directional solidification Ni–Mn–Ga is developed. • The stress–strain curves in different directions are tested. • The martensite Young’s moduli in different directions are predicted. • The macro reorientation strains in different directions are investigated. - Abstract: Polycrystalline ferromagnetic shape memory alloy Ni–Mn–Ga produced by directional solidification possess unique properties. Its compressive stress–strain behaviors in loading–unloading cycle show nonlinear and anisotropic. Based on the self-consistent theory and thermodynamics principle, a micromechanical constitutive model of polycrystalline Ni–Mn–Ga by directional solidification is developed considering the generating mechanism of the macroscopic strain and anisotropy. Then, the stress induced strains at different angles to solidification direction are calculated, and the results agree well with the experimental data. The predictive curves of martensite Young’s modulus and macro reorientation strain in different directions are investigated. It may provide theoretical guidance for the design and use of ferromagnetic shape memory alloy

  4. Life prediction of l6 steel using strain-life curve and cyclic stress-strain curve by means of low cycle fatigue testing

    Science.gov (United States)

    Inamdar, Sanket; Ukhande, Manoj; Date, Prashant; Lomate, Dattaprasad; Takale, Shyam; Singh, RKP

    2017-05-01

    L6 Steel is used as die material in closed die hot forging process. This material is having some unique properties. These properties are due to its composition. Strain softening is the noticeable property of this material. Due to this in spite of cracking at high stress this material gets plastically deformed and encounters loss in time as well as money. Studies of these properties are necessary to nurture this material at fullest extent. In this paper, numerous experiments have been carried on L6 material to evaluate cyclic Stress - strain behavior as swell as strain-life behavior of the material. Low cycle fatigue test is carried out on MTS fatigue test machine at fully reverse loading condition R=-1. Also strain softening effect on forging metal forming process is explained in detail. The failed samples during low cycle fatigue test further investigated metallurgically on scanning electron microscopy. Based on this study, life estimation of hot forging die is carried out and it’s correlation with actual shop floor data is found out. This work also concludes about effect of pre-treatments like nitro-carburizing and surface coating on L6 steel material, to enhance its fatigue life to certain extent.

  5. Testing the accelerating moment release (AMR) hypothesis in areas of high stress

    Science.gov (United States)

    Guilhem, Aurélie; Bürgmann, Roland; Freed, Andrew M.; Ali, Syed Tabrez

    2013-11-01

    Several retrospective analyses have proposed that significant increases in moment release occurred prior to many large earthquakes of recent times. However, the finding of accelerating moment release (AMR) strongly depends on the choice of three parameters: (1) magnitude range, (2) area being considered surrounding the events and (3) the time period prior to the large earthquakes. Consequently, the AMR analysis has been criticized as being a posteriori data-fitting exercise with no new predictive power. As AMR has been hypothesized to relate to changes in the state of stress around the eventual epicentre, we compare here AMR results to models of stress accumulation in California. Instead of assuming a complete stress drop on all surrounding fault segments implied by a back-slip stress lobe method, we consider that stress evolves dynamically, punctuated by the occurrence of earthquakes, and governed by the elastic and viscous properties of the lithosphere. We study the seismicity of southern California and extract events for AMR calculations following the systematic approach employed in previous studies. We present several sensitivity tests of the method, as well as grid-search analyses over the region between 1955 and 2005 using fixed magnitude range, radius of the search area and period of time. The results are compared to the occurrence of large events and to maps of Coulomb stress changes. The Coulomb stress maps are compiled using the coseismic stress from all M > 7.0 earthquakes since 1812, their subsequent post-seismic relaxation, and the interseismic strain accumulation. We find no convincing correlation of seismicity rate changes in recent decades with areas of high stress that would support the AMR hypothesis. Furthermore, this indicates limited utility for practical earthquake hazard analysis in southern California, and possibly other regions.

  6. An analytical model to predict and minimize the residual stress of laser cladding process

    Science.gov (United States)

    Tamanna, N.; Crouch, R.; Kabir, I. R.; Naher, S.

    2018-02-01

    Laser cladding is one of the advanced thermal techniques used to repair or modify the surface properties of high-value components such as tools, military and aerospace parts. Unfortunately, tensile residual stresses generate in the thermally treated area of this process. This work focuses on to investigate the key factors for the formation of tensile residual stress and how to minimize it in the clad when using dissimilar substrate and clad materials. To predict the tensile residual stress, a one-dimensional analytical model has been adopted. Four cladding materials (Al2O3, TiC, TiO2, ZrO2) on the H13 tool steel substrate and a range of preheating temperatures of the substrate, from 300 to 1200 K, have been investigated. Thermal strain and Young's modulus are found to be the key factors of formation of tensile residual stresses. Additionally, it is found that using a preheating temperature of the substrate immediately before laser cladding showed the reduction of residual stress.

  7. A NURBS approximation of experimental stress-strain curves

    International Nuclear Information System (INIS)

    Fedorov, Timofey V.; Morrev, Pavel G.

    2016-01-01

    A compact universal representation of monotonic experimental stress-strain curves of metals and alloys is proposed. It is based on the nonuniform rational Bezier splines (NURBS) of second order and may be used in a computer library of materials. Only six parameters per curve are needed; this is equivalent to a specification of only three points in a stress-strain plane. NURBS-functions of higher order prove to be surplus. Explicit expressions for both yield stress and hardening modulus are given. Two types of curves are considered: at a finite interval of strain and at infinite one. A broad class of metals and alloys of various chemical compositions subjected to various types of preliminary thermo-mechanical working is selected from a comprehensive data base in order to test the methodology proposed. The results demonstrate excellent correspondence to the experimental data. Keywords: work hardening, stress-strain curve, spline approximation, nonuniform rational B-spline, NURBS.

  8. Prediction of tensile curves, at 673 K, of cold-worked and stress-relieved zircaloy-4 from creep data

    International Nuclear Information System (INIS)

    Povolo, F.; Buenos Aires Univ. Nacional; Marzocca, A.J.

    1986-01-01

    A constitutive creep equation, based on jog-drag cell-formation, is used to predict tensile curves from creep data obtained in the same material. The predicted tensile curve are compared with actual stress versus plastic strain data, obtained both in cold-work and stress-relieved specimens. Finally, it is shown that the general features of the tensile curves, at low strain rates, are described by the creep model. (orig.)

  9. Characterizations of Stress and Strain Variation in Three-Dimensional Forming of Laser Micro-Manufacturing

    International Nuclear Information System (INIS)

    Ming, Zhou; Guo-Huan, Zhao; Tao, Huang; Hua, Ding; Lan, Cai

    2010-01-01

    A micro-manufacturing technology is presented to form three-dimensional metallic micro-structures directly. Micro grid array structures are replicated on a metallic foil surface, with high spatial resolution in micron levels. The numerical simulation results indicate that the material deformation process is characterized by an ultrahigh strain rate. With increasing pulse duration, the sample absorption strain energy increases, and the sample deformation degree enlarges. The stress state of the central point fluctuates between tensile stress and compression stress. The stress state of the angular point is altered from compressive stress to tensile stress due to geometry and loading conditions. The duration length of pulse stress has an effect on the stress state, as with the increase of pulse duration, fluctuation in the stress state decreases. Therefore, laser micro-manufacturing technology will be a potential laser micro forming method which is characterized by low cost and high efficiency. (fundamental areas of phenomenology(including applications))

  10. Stress overshoot in stress-strain curves of Zr65Al10Ni10Cu15 metallic glass

    International Nuclear Information System (INIS)

    Kawamura, Y.; Shibata, T.; Inoue, A.; Masumoto, T.

    1997-01-01

    The essential features of the stress overshoot in the stress-strain curves of Zr 65 Al 10 Ni 10 Cu 15 (at.%) metallic glass that has a wide supercooled liquid region were revealed. The stress overshoot was dependent on temperature, strain rate, and stress relaxation. During the stretch, a change in strain rate gave rise to stress overshoot or undershoot which was sensitive to the variable quantities in the strain rate. copyright 1997 American Institute of Physics

  11. Normalized Rotational Multiple Yield Surface Framework (NRMYSF) stress-strain curve prediction method based on small strain triaxial test data on undisturbed Auckland residual clay soils

    Science.gov (United States)

    Noor, M. J. Md; Ibrahim, A.; Rahman, A. S. A.

    2018-04-01

    Small strain triaxial test measurement is considered to be significantly accurate compared to the external strain measurement using conventional method due to systematic errors normally associated with the test. Three submersible miniature linear variable differential transducer (LVDT) mounted on yokes which clamped directly onto the soil sample at equally 120° from the others. The device setup using 0.4 N resolution load cell and 16 bit AD converter was capable of consistently resolving displacement of less than 1µm and measuring axial strains ranging from less than 0.001% to 2.5%. Further analysis of small strain local measurement data was performed using new Normalized Multiple Yield Surface Framework (NRMYSF) method and compared with existing Rotational Multiple Yield Surface Framework (RMYSF) prediction method. The prediction of shear strength based on combined intrinsic curvilinear shear strength envelope using small strain triaxial test data confirmed the significant improvement and reliability of the measurement and analysis methods. Moreover, the NRMYSF method shows an excellent data prediction and significant improvement toward more reliable prediction of soil strength that can reduce the cost and time of experimental laboratory test.

  12. Studying the effect of stress relaxation and creep on lattice strain evolution of stainless steel under tension

    International Nuclear Information System (INIS)

    Wang, H.; Clausen, B.; Tomé, C.N.; Wu, P.D.

    2013-01-01

    Due to relatively long associated count times, in situ strain measurements using neutron diffraction requires periodic interruption of the test to collect the diffraction data by holding either the stress or the strain constant. As a consequence, stress relaxation or strain creep induced by the interrupts is inevitable, especially at loads which are close to the flow stress of the material. An in situ neutron diffraction technique, which consists in performing the diffraction measurements using continuous event-mode data collection while conducting the mechanical loading monotonically with a very slow loading rate, is proposed here to avoid the effects associated with interrupts. The lattice strains in stainless steel under uniaxial tension are measured using the three techniques, and the experimental results are compared to study the effect of stress relaxation and strain creep on the lattice strain measurements. The experimental results are simulated using both the elastic viscoplastic self-consistent (EVPSC) model and the elastic plastic self-consistent (EPSC) model. Both the EVPSC and EPSC models give reasonable predictions for all the three tests, with EVPSC having the added advantage over EPSC that it allows us to address the relaxation and creep effects in the interrupted tests

  13. [Norm study of occupational stress on the professionals in Chengdu and Chongqing area].

    Science.gov (United States)

    Zeng, Fan-Hua; Wang, Zhi-Ming; Wang, Mian-Zhen; Lan, Ya-Jia

    2004-12-01

    To establish the norm of occupational stress on the professionals in Chengdu and Chongqing area. According to the "Occupation Sorting Canon in the People's Republic of China", the professionals of the above-mentioned area were sorted out and randomly stratified. The normative data were derived from a sample of 2 064 participants. The modified Occupation Stress Inventory Revised Edition (OSI-R) was used to test the targets' occupational stress level (including stressors, strain and coping resources). (1) In these professionals, the sex ratio was about 1:1, average age (36.4 +/- 9.4) years, average length of service (15.9 +/- 10.0) years, 63.07% people were college educated and over 80% married. (2) Descriptive statistics for OSI-R scale scores for the total normative sample, for gender samples and for occupational group samples were modulated. (3) The gender norm showed that there were heavier role overload and stronger occupational strains in males than those in females (P 0.05). (4) In terms of different occupations, the scores of occupational role and personal strain among various groups indicated significant differences (P 0.05). (5) The major factors influencing OSI-R were sex, occupation and length of service. The norm established can basically represent the occupational stress on professionals in Chengdu and Chongqing area.

  14. A study of fatigue life prediction for automotive spot weldment using local strain approach

    International Nuclear Information System (INIS)

    Lee, Song In; Yu, Hyo Sun; Na, Sung Hun; Na, Eui Gyun

    2000-01-01

    The fatigue crack initiation life is studied on automotive spot weldment made from cold rolled carbon steel(SPC) sheet by using DCPDM and local strain approach. It can be found that the fatigue crack initiation behavior in spot weldment can be definitely detected by DCPDM system. The local stresses and strains are estimated by elastic-plastic FEM analysis and the alternative approximate method based on Neuber's rule were applied to predict the fatigue life of spot weldment. A satisfactory correlation between the predicted life and experimental life can be found in spot weldment within a factor of 4

  15. Stress-strain time-dependent behavior of A356.0 aluminum alloy subjected to cyclic thermal and mechanical loadings

    Science.gov (United States)

    Farrahi, G. H.; Ghodrati, M.; Azadi, M.; Rezvani Rad, M.

    2014-08-01

    This article presents the cyclic behavior of the A356.0 aluminum alloy under low-cycle fatigue (or isothermal) and thermo-mechanical fatigue loadings. Since the thermo-mechanical fatigue (TMF) test is time consuming and has high costs in comparison to low-cycle fatigue (LCF) tests, the purpose of this research is to use LCF test results to predict the TMF behavior of the material. A time-independent model, considering the combined nonlinear isotropic/kinematic hardening law, was used to predict the TMF behavior of the material. Material constants of this model were calibrated based on room-temperature and high-temperature low-cycle fatigue tests. The nonlinear isotropic/kinematic hardening law could accurately estimate the stress-strain hysteresis loop for the LCF condition; however, for the out-of-phase TMF, the condition could not predict properly the stress value due to the strain rate effect. Therefore, a two-layer visco-plastic model and also the Johnson-Cook law were applied to improve the estimation of the stress-strain hysteresis loop. Related finite element results based on the two-layer visco-plastic model demonstrated a good agreement with experimental TMF data of the A356.0 alloy.

  16. Measurement of stress-strain behaviour of human hair fibres using optical techniques.

    Science.gov (United States)

    Lee, J; Kwon, H J

    2013-06-01

    Many studies have presented stress-strain relationship of human hair, but most of them have been based on an engineering stress-strain curve, which is not a true representation of stress-strain behaviour. In this study, a more accurate 'true' stress-strain curve of human hair was determined by applying optical techniques to the images of the hair deformed under tension. This was achieved by applying digital image cross-correlation (DIC) to 10× magnified images of hair fibres taken under increasing tension to estimate the strain increments. True strain was calculated by summation of the strain increments according to the theoretical definition of 'true' strain. The variation in diameter with the increase in longitudinal elongation was also measured from the 40× magnified images to estimate the Poisson's ratio and true stress. By combining the true strain and the true stress, a true stress-strain curve could be determined, which demonstrated much higher stress values than the conventional engineering stress-strain curve at the same degree of deformation. Four regions were identified in the true stress-strain relationship and empirical constitutive equations were proposed for each region. Theoretical analysis on the necking condition using the constitutive equations provided the insight into the failure mechanism of human hair. This analysis indicated that local thinning caused by necking does not occur in the hair fibres, but, rather, relatively uniform deformation takes place until final failure (fracture) eventually occurs. © 2012 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  17. The stress and strain analysis research of class 1 eqnipments

    International Nuclear Information System (INIS)

    Ye Yuanwu; Tang Long; Wang Yueying; Qi Min; Yu Huajin

    2008-01-01

    The class 1 equipment is very important in the nuclear device, in the design and testing process required to carry out their stress and strain analysis, so as to ensure their safety. There are two ways to get stress and strain analysis of the class 1 equipment, the theoretical and experimental methods. Through theoretical method can get the stress and strain of the class 1 equipment, so as to provide a basis for the design of the equipment; through the experimental method to verify the accuracy of the theoretical methods and provide a basis for the safety assessment of the equipment. The main ressel of CEFR (China Experimental Fast Reactor) is the class 1 equipment. In this paper, according to the stress and strain analysis research of CEFR main vessel, the theories and expperimental methods of nuclear class 1 equipments stress and strain analysis has been described. (authors)

  18. An improved Armstrong-Frederick-Type Plasticity Model for Stable Cyclic Stress-Strain Responses Considering Nonproportional Hardening

    Science.gov (United States)

    Li, Jing; Zhang, Zhong-ping; Li, Chun-wang

    2018-03-01

    This paper modified an Armstrong-Frederick-type plasticity model for investigating the stable cyclic deformation behavior of metallic materials with different sensitivity to nonproportional loadings. In the modified model, the nonproportionality factor and nonproportional cyclic hardening coefficient coupled with the Jiang-Sehitoglu incremental plasticity model were used to estimate the stable stress-strain responses of the two materials (1045HR steel and 304 stainless steel) under various tension-torsion strain paths. A new equation was proposed to calculate the nonproportionality factor on the basis of the minimum normal strain range. Procedures to determine the minimum normal strain range were presented for general multiaxial loadings. Then, the modified model requires only the cyclic strain hardening exponent and cyclic strength coefficient to determine the material constants. It is convenient for predicting the stable stress-strain responses of materials in engineering application. Comparisons showed that the modified model can reflect the effect of nonproportional cyclic hardening well.

  19. An Experimental Study of Mortars with Recycled Ceramic Aggregates: Deduction and Prediction of the Stress-Strain

    Directory of Open Access Journals (Sweden)

    Francisca Guadalupe Cabrera-Covarrubias

    2016-12-01

    Full Text Available The difficult current environmental situation, caused by construction industry residues containing ceramic materials, could be improved by using these materials as recycled aggregates in mortars, with their processing causing a reduction in their use in landfill, contributing to recycling and also minimizing the consumption of virgin materials. Although some research is currently being carried out into recycled mortars, little is known about their stress-strain (σ-ε; therefore, this work will provide the experimental results obtained from recycled mortars with recycled ceramic aggregates (with contents of 0%, 10%, 20%, 30%, 50% and 100%, such as the density and compression strength, as well as the σ-ε curves representative of their behavior. The values obtained from the analytical process of the results in order to finally obtain, through numerical analysis, the equations to predict their behavior (related to their recycled content are those of: σ (elastic ranges and failure maximum, ε (elastic ranges and failure maximum, and Resilience and Toughness. At the end of the investigation, it is established that mortars with recycled ceramic aggregate contents of up to 20% could be assimilated just like mortars with the usual aggregates, and the obtained prediction equations could be used in cases of similar applications.

  20. Effect of plastic strain on elastic-plastic fracture toughness of SM490 carbon steel. Assessment by stress-based criterion for ductile crack initiation

    International Nuclear Information System (INIS)

    Kamaya, Masayuki

    2012-01-01

    Although the plastic strain induced in materials increases the mechanical strength, it may reduce the fracture toughness. In this study, the change in fracture toughness of SM490 carbon steel due to pre-straining was investigated using a stress-based criterion for ductile crack initiation. The specimens with blunt notch of various radiuses were used in addition to those with conventional fatigue pre-cracking. The degree of applied plastic strain was 5%, 10% or 20%. The fracture toughness was largest when the induced plastic strain was 5%, although it decreased for the plastic strains of 10% and 20%. The stress and strain distributions near the crack tip of fracture toughness test specimens was investigated by elastic-plastic finite element analyses using a well-correlated stress-strain curve for large strain. It was shown that the critical condition at the onset of the ductile crack was better correlated with the equivalent stress than the plastic strain at the crack tip. By using the stress-based criterion, which was represented by the equivalent stress and stress triaxiality, the change in the fracture toughness due to pre-straining could be reasonably explained. Based on these results, it was concluded that the stress-based criterion should be used for predicting the ductile crack initiation. (author)

  1. Effect of Temperature Reversion on Hot Ductility and Flow Stress-Strain Curves of C-Mn Continuously Cast Steels

    Science.gov (United States)

    Dong, Zhihua; Li, Wei; Long, Mujun; Gui, Lintao; Chen, Dengfu; Huang, Yunwei; Vitos, Levente

    2015-08-01

    The influence of temperature reversion in secondary cooling and its reversion rate on hot ductility and flow stress-strain curve of C-Mn steel has been investigated. Tensile specimens were cooled at various regimes. One cooling regime involved cooling at a constant rate of 100 °C min-1 to the test temperature, while the others involved temperature reversion processes at three different reversion rates before deformation. After hot tensile test, the evolution of mechanical properties of steel was analyzed at various scales by means of microstructure observation, ab initio prediction, and thermodynamic calculation. Results indicated that the temperature reversion in secondary cooling led to hot ductility trough occurring at higher temperature with greater depth. With increasing temperature reversion rate, the low temperature end of ductility trough extended toward lower temperature, leading to wider hot ductility trough with slightly reducing depth. Microstructure examinations indicated that the intergranular fracture related to the thin film-like ferrite and (Fe,Mn)S particles did not changed with varying cooling regimes; however, the Widmanstatten ferrite surrounding austenite grains resulted from the temperature reversion process seriously deteriorated the ductility. In addition, after the temperature reversion in secondary cooling, the peak stress on the flow curve slightly declined and the peak of strain to peak stress occurred at higher temperature. With increasing temperature reversion rate, the strain to peak stress slightly increased, while the peak stress showed little variation. The evolution of plastic modulus and strain to peak stress of austenite with varying temperature was in line with the theoretical prediction on Fe.

  2. Casting and stress-strain simulations of a cast ductile iron component using microstructure based mechanical behavior

    International Nuclear Information System (INIS)

    Olofsson, Jakob; Svensson, Ingvar L

    2012-01-01

    The industrial demand for increased component performance with concurrent reductions in component weight, development times and verifications using physical prototypes drives the need to use the full potential of casting and Finite Element Method (FEM) simulations to correctly predict the mechanical behavior of cast components in service. The mechanical behavior of the component is determined by the casting process, and factors as component geometry and casting process parameters are known to affect solidification and microstructure formation throughout the component and cause local variations in mechanical behavior as well as residual stresses. Though residual stresses are known to be an important factor in the mechanical behavior of the component, the importance of local mechanical behavior is not well established and the material is typically considered homogeneous throughout the component. This paper deals with the influence of solidification and solid state transformation on microstructure formation and the effect of local microstructure variations on the mechanical behavior of the cast component in service. The current work aims to investigate the coupling between simulation of solidification, microstructure and local variations in mechanical behavior and stress-strain simulation. This is done by performing several simulations of a ductile iron component using a recently developed simulation strategy, a closed chain of simulations for cast components, able to predict and describe the local variations in not only elastic but also plastic behavior throughout the component by using microstructural parameters determined by simulations of microstructural evolution in the component during the casting process. In addition the residual stresses are considered. The results show that the FEM simulation results are significantly affected by including microstructure based mechanical behavior. When the applied load is low and the component is subjected to stress levels

  3. Influence of stress triaxiality and strain rate on the failure behavior of a dual-phase DP780 steel

    International Nuclear Information System (INIS)

    Anderson, D.; Winkler, S.; Bardelcik, A.; Worswick, M.J.

    2014-01-01

    Highlights: • DP780 steel sheet sensitive to strain rate and triaxiality. • Specimens failed due to ductile-shear mode. • Extent of transverse cracking due to martensitic islands increased with triaxiality. • Uniaxial stress decreased with strain rate then increased after 0.1 s −1 . • Predicted effective plastic strain, triaxiality at failure increased with strain rate. - Abstract: To better understand the in-service mechanical behavior of advanced high-strength steels, the influence of stress triaxiality and strain rate on the failure behavior of a dual-phase (DP) 780 steel sheet was investigated. Three flat, notched mini-tensile geometries with varying notch severities and initial stress triaxialities of 0.36, 0.45, and 0.74 were considered in the experiments. Miniature specimens were adopted to facilitate high strain rate testing in addition to quasi-static experiments. Tensile tests were conducted at strain rates of 0.001, 0.01, 0.1, 1, 10, and 100 s −1 for all three notched geometries and compared to mini-tensile uniaxial samples. Additional tests at a strain rate of 1500 s −1 were performed using a tensile split Hopkinson bar apparatus. The results showed that the stress–strain response of the DP780 steel exhibited mainly positive strain rate sensitivity for all geometries, with mild negative strain rate sensitivity up to 0.1 s −1 for the uniaxial specimens. The strain at failure was observed to decrease with strain rate at low strain rates of 0.001–0.1 s −1 ; however, it increased by 26% for an increase in strain rate from 0.1 to 1500 s −1 for the uniaxial condition. Initial triaxiality was found to have a significant negative impact on true failure strain with a decrease of 32% at the highest triaxiality compared to the uniaxial condition at a strain rate of 0.001 s −1 . High resolution scanning electron microscopy images of the failure surfaces revealed a dimpled surface while optical micrographs revealed shearing through the

  4. Unified Hall-Petch description of nano-grain nickel hardness, flow stress and strain rate sensitivity measurements

    Science.gov (United States)

    Armstrong, R. W.; Balasubramanian, N.

    2017-08-01

    It is shown that: (i) nano-grain nickel flow stress and hardness data at ambient temperature follow a Hall-Petch (H-P) relation over a wide range of grain size; and (ii) accompanying flow stress and strain rate sensitivity measurements follow an analogous H-P relationship for the reciprocal "activation volume", (1/v*) = (1/A*b) where A* is activation area. Higher temperature flow stress measurements show a greater than expected reduction both in the H-P kɛ and in v*. The results are connected with smaller nano-grain size (tested at very low imposed strain rates.

  5. Effective stress coefficient for uniaxial strain condition

    DEFF Research Database (Denmark)

    Alam, M.M.; Fabricius, I.L.

    2012-01-01

    one dimensional rock mechanical deformation. We further investigated the effect of boundary condition on the stress dependency of effective stress coefficient and discussed its application in reservoir study. As stress field in the reservoirs are most unlikely to be hydrostatic, effective stress...... determined under uniaxial strain condition will be more relevant in reservoir studies. Copyright 2012 ARMA, American Rock Mechanics Association....

  6. Measurement of the uniaxial mechanical properties of rat skin using different stress-strain definitions.

    Science.gov (United States)

    Karimi, A; Navidbakhsh, M

    2015-05-01

    The mechanical properties of skin tissue may vary according to the anatomical locations of a body. There are different stress-strain definitions to measure the mechanical properties of skin tissue. However, there is no agreement as to which stress-strain definition should be implemented to measure the mechanical properties of skin at different anatomical locations. Three stress definitions (second Piola-Kichhoff stress, engineering stress, and true stress) and four strain definitions (Almansi-Hamel strain, Green-St. Venant strain, engineering strain, and true strain) are employed to determine the mechanical properties of skin tissue at back and abdomen locations of a rat body. The back and abdomen skins of eight rats are excised and subjected to a series of tensile tests. The elastic modulus, maximum stress, and strain of skin tissues are measured using three stress definitions and four strain definitions. The results show that the effect of varying the stress definition on the maximum stress measurements of the back skin is significant but not when calculating the elastic modulus and maximum strain. No significant effects are observed on the elastic modulus, maximum stress, and strain measurements of abdomen skin by varying the stress definition. In the true stress-strain diagram, the maximum stress (20%), and elastic modulus (35%) of back skin are significantly higher than that of abdomen skin. The true stress-strain definition is favored to measure the mechanical properties of skin tissue since it gives more accurate measurements of the skin's response using the instantaneous values. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Ductile failure analysis of defective API X65 pipes based on stress-modified fracture strain criterion

    International Nuclear Information System (INIS)

    Oh, Chang Kyun; Kim, Yun Jae; Baek, Jong Hyun; Kim, Young Pyo; Kim, Woo Sik

    2006-01-01

    A local failure criterion for the API X65 steel is applied to predict ductile failure of full-scale API X65 pipes with simulated corrosion and gouge defects under internal pressure. The local failure criterion is the stress-modified fracture strain for the API X65 steel as a function of the stress triaxiality (defined by the ratio of the hydrostatic stress to the effective stress). Based on detailed FE analyses with the proposed local failure criteria, burst pressures of defective pipes are estimated and compared with experimental data. The predicted burst pressures are in good agreement with experimental data. Noting that an assessment equation against the gouge defect is not yet available, parametric study is performed, from which a simple equation is proposed to predict burst pressure for API X65 pipes with gouge defects

  8. A longitudinal examination of the Adaptation to Poverty-Related Stress Model: predicting child and adolescent adjustment over time.

    Science.gov (United States)

    Wadsworth, Martha E; Rindlaub, Laura; Hurwich-Reiss, Eliana; Rienks, Shauna; Bianco, Hannah; Markman, Howard J

    2013-01-01

    This study tests key tenets of the Adaptation to Poverty-related Stress Model. This model (Wadsworth, Raviv, Santiago, & Etter, 2011 ) builds on Conger and Elder's family stress model by proposing that primary control coping and secondary control coping can help reduce the negative effects of economic strain on parental behaviors central to the family stress model, namely, parental depressive symptoms and parent-child interactions, which together can decrease child internalizing and externalizing problems. Two hundred seventy-five co-parenting couples with children between the ages of 1 and 18 participated in an evaluation of a brief family strengthening intervention, aimed at preventing economic strain's negative cascade of influence on parents, and ultimately their children. The longitudinal path model, analyzed at the couple dyad level with mothers and fathers nested within couple, showed very good fit, and was not moderated by child gender or ethnicity. Analyses revealed direct positive effects of primary control coping and secondary control coping on mothers' and fathers' depressive symptoms. Decreased economic strain predicted more positive father-child interactions, whereas increased secondary control coping predicted less negative mother-child interactions. Positive parent-child interactions, along with decreased parent depression and economic strain, predicted child internalizing and externalizing over the course of 18 months. Multiple-group models analyzed separately by parent gender revealed, however, that child age moderated father effects. Findings provide support for the adaptation to poverty-related stress model and suggest that prevention and clinical interventions for families affected by poverty-related stress may be strengthened by including modules that address economic strain and efficacious strategies for coping with strain.

  9. Measurement of stress strain and vibrational properties of tendons

    Science.gov (United States)

    Revel, Gian Marco; Scalise, Alessandro; Scalise, Lorenzo

    2003-08-01

    The authors present a new non-intrusive experimental procedure based on laser techniques for the measurement of mechanical properties of tendons. The procedure is based on the measurement of the first resonance frequency of the tendon by laser Doppler vibrometry during in vitro tensile experiments, with the final aim of establishing a measurement procedure to perform the mechanical characterization of tendons by extracting parameters such as the resonance frequency, also achievable during in vivo investigation. The experimental procedure is reported, taking into account the need to simulate the physiological conditions of the Achilles tendon, and the measurement technique used for the non-invasive determination of tendon cross-sectional area during tensile vibration tests at different load levels is described. The test procedure is based on a tensile machine, which measures longitudinal tendons undergoing controlled load conditions. Cross-sectional area is measured using a new non-contact procedure for the measurement of tendon perimeter (repeatability of 99% and accuracy of 2%). For each loading condition, vibration resonance frequency and damping, cross-sectional area and tensile force are measured, allowing thus a mechanical characterization of the tendon. Tendon stress-strain curves are reported. Stress-strain curves have been correlated to the first vibration resonance frequency and damping of the tendon measured using a single-point laser Doppler vibrometer. Moreover, experimental results have been compared with a theoretical model of a vibrating cord showing discrepancies. In vitro tests are reported, demonstrating the validity of the method for the comparison of different aged rabbit tendons.

  10. Elongational flow of polymer melts at constant strain rate, constant stress and constant force

    Science.gov (United States)

    Wagner, Manfred H.; Rolón-Garrido, Víctor H.

    2013-04-01

    Characterization of polymer melts in elongational flow is typically performed at constant elongational rate or rarely at constant tensile stress conditions. One of the disadvantages of these deformation modes is that they are hampered by the onset of "necking" instabilities according to the Considère criterion. Experiments at constant tensile force have been performed even more rarely, in spite of the fact that this deformation mode is free from necking instabilities and is of considerable industrial relevance as it is the correct analogue of steady fiber spinning. It is the objective of the present contribution to present for the first time a full experimental characterization of a long-chain branched polyethylene melt in elongational flow. Experiments were performed at constant elongation rate, constant tensile stress and constant tensile force by use of a Sentmanat Extensional Rheometer (SER) in combination with an Anton Paar MCR301 rotational rheometer. The accessible experimental window and experimental limitations are discussed. The experimental data are modelled by using the Wagner I model. Predictions of the steady-start elongational viscosity in constant strain rate and creep experiments are found to be identical, albeit only by extrapolation of the experimental data to Hencky strains of the order of 6. For constant stress experiments, a minimum in the strain rate and a corresponding maximum in the elongational viscosity is found at a Hencky strain of the order of 3, which, although larger than the steady-state value, follows roughly the general trend of the steady-state elongational viscosity. The constitutive analysis also reveals that constant tensile force experiments indicate a larger strain hardening potential than seen in constant elongation rate or constant tensile stress experiments. This may be indicative of the effect of necking under constant elongation rate or constant tensile stress conditions according to the Considère criterion.

  11. Healthy work revisited: do changes in time strain predict well-being?

    Science.gov (United States)

    Moen, Phyllis; Kelly, Erin L; Lam, Jack

    2013-04-01

    Building on Karasek and Theorell (R. Karasek & T. Theorell, 1990, Healthy work: Stress, productivity, and the reconstruction of working life, New York, NY: Basic Books), we theorized and tested the relationship between time strain (work-time demands and control) and seven self-reported health outcomes. We drew on survey data from 550 employees fielded before and 6 months after the implementation of an organizational intervention, the results only work environment (ROWE) in a white-collar organization. Cross-sectional (wave 1) models showed psychological time demands and time control measures were related to health outcomes in expected directions. The ROWE intervention did not predict changes in psychological time demands by wave 2, but did predict increased time control (a sense of time adequacy and schedule control). Statistical models revealed increases in psychological time demands and time adequacy predicted changes in positive (energy, mastery, psychological well-being, self-assessed health) and negative (emotional exhaustion, somatic symptoms, psychological distress) outcomes in expected directions, net of job and home demands and covariates. This study demonstrates the value of including time strain in investigations of the health effects of job conditions. Results encourage longitudinal models of change in psychological time demands as well as time control, along with the development and testing of interventions aimed at reducing time strain in different populations of workers.

  12. Time-dependent strains and stresses in a pumpkin balloon

    Science.gov (United States)

    Gerngross, T.; Xu, Y.; Pellegrino, S.

    This paper presents a study of pumpkin-shaped superpressure balloons consisting of gores made from a thin polymeric film attached to high stiffness meridional tendons This type of design is being used for the NASA ULDB balloons The gore film shows considerable time-dependent stress relaxation whereas the behaviour of the tendons is essentially time-independent Upon inflation and pressurization the instantaneous i e linear-elastic strain and stress distributions in the film show significantly higher values in the meridional direction However over time and due to the biaxial visco-elastic stress relaxation of the the gore material the em hoop strains increase and the em meridional stresses decrease whereas the em remaining strain and stress components remain substantially unchanged These results are important for a correct assessment of the structural integrity of a pumpkin balloon in a long-duration mission both in terms of the material performance and the overall stability of the shape of the balloon An experimental investigation of the time dependence of the biaxial strain distribution in the film of a 4 m diameter 48 gore pumpkin balloon is presented The inflated shape of selected gores has been measured using photogrammetry and the time variation in strain components at some particular points of these gores has been measured under constant pressure and temperature The results show good correlation with a numerical study using the ABAQUS finite-element package that includes a widely used model of

  13. Back-propagation neural network-based approximate analysis of true stress-strain behaviors of high-strength metallic material

    International Nuclear Information System (INIS)

    Doh, Jaeh Yeok; Lee, Jong Soo; Lee, Seung Uk

    2016-01-01

    In this study, a Back-propagation neural network (BPN) is employed to conduct an approximation of a true stress-strain curve using the load-displacement experimental data of DP590, a high-strength material used in automobile bodies and chassis. The optimized interconnection weights are obtained with hidden layers and output layers of the BPN through intelligent learning and training of the experimental data; by using these weights, a mathematical model of the material's behavior is suggested through this feed-forward neural network. Generally, the material properties from the tensile test cannot be acquired until the fracture regions, since it is difficult to measure the cross-section area of a specimen after diffusion necking. For this reason, the plastic properties of the true stress-strain are extrapolated using the weighted-average method after diffusion necking. The accuracies of BPN-based meta-models for predicting material properties are validated in terms of the Root mean square error (RMSE). By applying the approximate material properties, the reliable finite element solution can be obtained to realize the different shapes of the finite element models. Furthermore, the sensitivity analysis of the approximate meta-model is performed using the first-order approximate derivatives of the BPN and is compared with the results of the finite difference method. In addition, we predict the tension velocity's effect on the material property through a first-order sensitivity analysis.

  14. Analysis of stress-strain relationships in silicon ribbon

    Science.gov (United States)

    Dillon, O. W., Jr.

    1984-01-01

    An analysis of stress-strain relationships in silicon ribbon is presented. A model to present entire process, dynamical Transit Analysis is developed. It is found that knowledge of past-strain history is significant in modeling activities.

  15. Cement stress predictions after anatomic total shoulder arthroplasty are correlated with preoperative glenoid bone quality.

    Science.gov (United States)

    Terrier, Alexandre; Obrist, Raphaël; Becce, Fabio; Farron, Alain

    2017-09-01

    We hypothesized that biomechanical parameters typically associated with glenoid implant failure after anatomic total shoulder arthroplasty (aTSA) would be correlated with preoperative glenoid bone quality. We developed an objective automated method to quantify preoperative glenoid bone quality in different volumes of interest (VOIs): cortical bone, subchondral cortical plate, subchondral bone after reaming, subchondral trabecular bone, and successive layers of trabecular bone. Average computed tomography (CT) numbers (in Hounsfield units [HU]) were measured in each VOI from preoperative CT scans. In parallel, we built patient-specific finite element models of simulated aTSAs to predict cement stress, bone-cement interfacial stress, and bone strain around the glenoid implant. CT measurements and finite element predictions were obtained for 20 patients undergoing aTSA for primary glenohumeral osteoarthritis. We tested all linear correlations between preoperative patient characteristics (age, sex, height, weight, glenoid bone quality) and biomechanical predictions (cement stress, bone-cement interfacial stress, bone strain). Average CT numbers gradually decreased from cortical (717 HU) to subchondral and trabecular (362 HU) bone. Peak cement stress (4-10 MPa) was located within the keel hole, above the keel, or behind the glenoid implant backside. Cement stress, bone-cement interfacial stress, and bone strain were strongly negatively correlated with preoperative glenoid bone quality, particularly in VOIs behind the implant backside (subchondral trabecular bone) but also in deeper trabecular VOIs. Our numerical study suggests that preoperative glenoid bone quality is an important parameter to consider in aTSA, which may be associated with aseptic loosening of the glenoid implant. These initial results should now be confronted with clinical and radiologic outcomes. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc

  16. Analytic examination of mechanism for compressive residual stress introduction with low plastic strain using peening

    International Nuclear Information System (INIS)

    Ishibashi, Ryo; Hato, Hisamitsu; Miyazaki, Katsumasa; Yoshikubo, Fujio

    2016-01-01

    Our goal for this study was to understand the cause of the differences in surface properties between surfaces processed using water jet peening (WJP) and shot peening (SP) and to examine the compressive residual stress introduction process with low plastic strain using SP. The dynamic behaviors of stress and strain in surfaces during these processes were analyzed through elasto-plastic calculations using a finite-element method program, and the calculated results were compared with measured results obtained through experiments. Media impacting a surface results in a difference in the hardness and microstructure of the processed surface. During SP, a shot deforms the surface locally with stress concentration in the early stages of the impact, while shock waves deform the surface evenly throughout the wave passage across the surface during WJP. A shot with a larger diameter creates a larger impact area on the surface during shot impact. Thus, SP with a large-diameter shot suppresses the stress concentration under the same kinetic energy condition. As the shot diameter increases, the equivalent plastic strain decreases. On the other hand, the shot is subject to size restriction since the calculated results indicate the compressive residual stress at the surface decreased and occasionally became almost zero as the shot diameter increased. Thus, compressive residual stress introduction with low plastic strain by using SP is considered achievable by using shots with a large diameter and choosing the appropriate peening conditions. (author)

  17. Predictions and measurements of residual stress in repair welds in plates

    Energy Technology Data Exchange (ETDEWEB)

    Brown, T.B. [Mitsui Babcock Energy Limited, Technology and Engineering, Porterfield Road, Renfrew, PA4 8DJ, Scotland (United Kingdom)]. E-mail: bbrown@mitsuibabcock.com; Dauda, T.A. [Mitsui Babcock Energy Limited, Technology and Engineering, Porterfield Road, Renfrew, PA4 8DJ, Scotland (United Kingdom); Truman, C.E. [Department of Mechanical Engineering, University of Bristol, Bristol BS8 1TR, England (United Kingdom); Smith, D.J. [Department of Mechanical Engineering, University of Bristol, Bristol BS8 1TR (United Kingdom); Memhard, D. [Fraunhofer-Institut fuer Werkstoffmechanik, Freiburg (Germany); Pfeiffer, W. [Fraunhofer-Institut fuer Werkstoffmechanik, Freiburg (Germany)

    2006-11-15

    This paper presents the work, from the European Union FP-5 project ELIXIR, on a series of rectangular repair welds in P275 and S690 steels to validate the numerical modelling techniques used in the determination of the residual stresses generated during the repair process. The plates were 1,000 mm by 800 mm with thicknesses of 50 and 100 mm. The repair welds were 50%, 75% and 100% through the plate thickness. The repair welds were modelled using the finite element method to make predictions of the as-welded residual stress distributions. These predictions were compared with surface-strain measurements made on the parent plates during welding and found to be in good agreement. Through-thickness residual stress measurements were obtained from the test plates through, and local to, the weld repairs using the deep hole drilling technique. Comparisons between the measurements and the finite element predictions generally showed good agreement, thus providing confidence in the method.

  18. Predictions and measurements of residual stress in repair welds in plates

    International Nuclear Information System (INIS)

    Brown, T.B.; Dauda, T.A.; Truman, C.E.; Smith, D.J.; Memhard, D.; Pfeiffer, W.

    2006-01-01

    This paper presents the work, from the European Union FP-5 project ELIXIR, on a series of rectangular repair welds in P275 and S690 steels to validate the numerical modelling techniques used in the determination of the residual stresses generated during the repair process. The plates were 1,000 mm by 800 mm with thicknesses of 50 and 100 mm. The repair welds were 50%, 75% and 100% through the plate thickness. The repair welds were modelled using the finite element method to make predictions of the as-welded residual stress distributions. These predictions were compared with surface-strain measurements made on the parent plates during welding and found to be in good agreement. Through-thickness residual stress measurements were obtained from the test plates through, and local to, the weld repairs using the deep hole drilling technique. Comparisons between the measurements and the finite element predictions generally showed good agreement, thus providing confidence in the method

  19. Life Stress, Strain, and Deviance Across Schools: Testing the Contextual Version of General Strain Theory in China.

    Science.gov (United States)

    Zhang, Jinwu; Liu, Jianhong; Wang, Xin; Zou, Anquan

    2017-08-01

    General Strain Theory delineates different types of strain and intervening processes from strain to deviance and crime. In addition to explaining individual strain-crime relationship, a contextualized version of general strain theory, which is called the Macro General Strain Theory, has been used to analyze how aggregate variables influence aggregate and individual deviance and crime. Using a sample of 1,852 students (Level 1) nested in 52 schools (Level 2), the current study tests the Macro General Strain Theory using Chinese data. The results revealed that aggregate life stress and strain have influences on aggregate and individual deviance, and reinforce the individual stress-deviance association. The current study contributes by providing the first Macro General Strain Theory test based on Chinese data and offering empirical evidence for the multilevel intervening processes from strain to deviance. Limitations and future research directions are discussed.

  20. The MIDAS touch for Accurately Predicting the Stress-Strain Behavior of Tantalum

    Energy Technology Data Exchange (ETDEWEB)

    Jorgensen, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-03-02

    Testing the behavior of metals in extreme environments is not always feasible, so material scientists use models to try and predict the behavior. To achieve accurate results it is necessary to use the appropriate model and material-specific parameters. This research evaluated the performance of six material models available in the MIDAS database [1] to determine at which temperatures and strain-rates they perform best, and to determine to which experimental data their parameters were optimized. Additionally, parameters were optimized for the Johnson-Cook model using experimental data from Lassila et al [2].

  1. Material Properties Test to Determine Ultimate Strain and True Stress-True Strain Curves for High Yield Steels

    Energy Technology Data Exchange (ETDEWEB)

    K.R. Arpin; T.F. Trimble

    2003-04-01

    This testing was undertaken to develop material true stress-true strain curves for elastic-plastic material behavior for use in performing transient analysis. Based on the conclusions of this test, the true stress-true strain curves derived herein are valid for use in elastic-plastic finite element analysis for structures fabricated from these materials. In addition, for the materials tested herein, the ultimate strain values are greater than those values cited as the limits for the elastic-plastic strain acceptance criteria for transient analysis.

  2. Instantaneous strain measurements during high-temperature stress cycling of a dispersion-strengthened niobium alloy

    International Nuclear Information System (INIS)

    Farkas, D.M.; Mishra, R.S.; Mukherjee, A.K.

    1995-01-01

    Experimental results obtained from stress cycling tests performed during high-temperature creep of a dispersion strengthened niobium alloy indicate that the instantaneous strain following the stress change decreases with accumulated strain. The true work-hardening rate was shown to be a small fraction of the elastic modulus which remained fairly constant throughout the strain history. The instantaneous strain change from a stress addition was typically greater than the strain from the corresponding stress reduction. This effect is quite pronounced for small stress changes and diminishes as the magnitude of the stress change increases. This implies that the mobility of dislocations is impeded in the reverse direction unless the magnitude of stress reduction exceeds the value of the internal stress

  3. Fuel-pin cladding transient failure strain criterion

    International Nuclear Information System (INIS)

    Bard, F.E.; Duncan, D.R.; Hunter, C.W.

    1983-01-01

    A criterion for cladding failure based on accumulated strain was developed for mixed uranium-plutonium oxide fuel pins and used to interpret the calculated strain results from failed transient fuel pin experiments conducted in the Transient Reactor Test (TREAT) facility. The new STRAIN criterion replaced a stress-based criterion that depends on the DORN parameter and that incorrectly predicted fuel pin failure for transient tested fuel pins. This paper describes the STRAIN criterion and compares its prediction with those of the stress-based criterion

  4. A comparative study on the elastic modulus of polyvinyl alcohol sponge using different stress-strain definitions.

    Science.gov (United States)

    Karimi, Alireza; Navidbakhsh, Mahdi; Alizadeh, Mansour; Razaghi, Reza

    2014-10-01

    There have been different stress-strain definitions to measure the elastic modulus of spongy materials, especially polyvinyl alcohol (PVA) sponge. However, there is no agreement as to which stress-strain definition should be implemented. This study was aimed to show how different results are given by the various definitions of stress-strain used, and to recommend a specific definition when testing spongy materials. A fabricated PVA sponge was subjected to a series of tensile tests in order to measure its mechanical properties. Three stress definitions (second Piola-Kichhoff stress, engineering stress, and true stress) and four strain definitions (Almansi-Hamel strain, Green-St. Venant strain, engineering strain, and true strain) were used to determine the elastic modulus. The results revealed that the Almansi-Hamel strain definition exhibited the highest non-linear stress-strain relation and, as a result, may overestimate the elastic modulus at different stress definitions (second Piola-Kichhoff stress, engineering stress, and true stress). The Green-St. Venant strain definition failed to address the non-linear stress-strain relation using different definitions of stress and invoked an underestimation of the elastic modulus values. Engineering stress and strain definitions were only valid for small strains and displacements, which make them impractical when analyzing spongy materials. The results showed that the effect of varying the stress definition on the maximum stress measurements was significant but not when calculating the elastic modulus. It is important to consider which stress-strain definition is employed when characterizing the mechanical properties of spongy materials. Although the true stress-true strain definition exhibits a non-linear relation, we favor it in spongy materials mechanics as it gives more accurate measurements of the material's response using the instantaneous values.

  5. Analysis of residual transverse stresses in a thick UD glass/polyester pultruded profile using hole drilling with strain gage and digital image correlation

    Science.gov (United States)

    Yuksel, Onur; Baran, Ismet; Ersoy, Nuri; Akkerman, Remko

    2018-05-01

    Process induced stresses inherently exist in fiber reinforced polymer composites particularly in thick parts due to the presence of non-uniform cure, shrinkage and thermal expansion/contraction during manufacturing. In order to increase the reliability and the performance of the composite materials, process models are developed to predict the residual stress formation. The accuracy of the process models is dependent on the geometrical (micro to macro), material and process parameters as well as the numerical implementation. Therefore, in order to have reliable process modelling framework, there is a need for validation and if necessary calibration of the developed models. This study focuses on measurement of the transverse residual stresses in a relatively thick pultruded profile (20×20 mm) made of glass/polyester. Process-induced residual stresses in the middle of the profile are examined with different techniques which have never been applied for transverse residual stresses in thick unidirectional composites. Hole drilling method with strain gage and digital image correlation are employed. Strain values measured from measurements are used in a finite element model (FEM) to simulate the hole drilling process and predict the residual stress level. The measured released strain is found to be approximately 180 μm/m from the strain gage. The tensile residual stress at the core of the profile is estimated approximately as 7-10 MPa. Proposed methods and measured values in this study will enable validation and calibration of the process models based on the residual stresses.

  6. Elevated temperature stress strain behavior of beryllium powder product

    International Nuclear Information System (INIS)

    Abeln, S.P.; Field, R.; Mataya, M.C.

    1995-01-01

    Several grades of beryllium powder product were tested under isothermal conditions in compression over a temperature range of room temperature to 1000 C and a strain rate range from 0.001 s -1 to 1 s -1 . Samples were compressed to a total strain of 1 (64% reduction in height). It is shown that all the grades are strain rate sensitive and that strain rate sensitivity increases with temperature. Yield points were exhibited by some grades up to a temperature of 500 C, and appeared to be primarily dependent on prior thermal history which determined the availability of mobile dislocations. Serrated flow in the form of stress drops was seen in all the materials tested and was most pronounced at 500 C. The appearance and magnitude of the stress drops were dependent on accumulated strain, strain rate, sample orientation, and composition. The flow stress and shape of the flow curves differed significantly from grade to grade due to variations in alloy content, the size and distribution of BeO particles, aging precipitates, and grain size. The ductile-brittle transition temperature (DBTT) was determined for each grade of material and shown to be dependent on composition and thermal treatment. Structure/property relationships are discussed using processing history, microscopy (light and transmission), and property data

  7. Analysis of stress-strain behavior in Bi2223 composite tapes

    International Nuclear Information System (INIS)

    Sugano, M.; Osamura, K.; Nyilas, A.

    2004-01-01

    Tensile test was carried out for Bi2223/Ag/Ag alloy composite tapes at RT, 77 and 7 K. Two yielding points are observed in the stress-strain curves. From the stress-strain behavior of the components and critical current (I c ) as a function of tensile strain, it was found that the microscopic reason for these yieldings is attributed to yielding of Ag alloy and fracture of Bi2223, respectively. The strain at the second yielding has temperature dependence and it becomes larger with decreasing measured temperature. From the thermo-mechanical analysis, it can be explained by temperature dependence of compressive residual strain of Bi2223. Reversible recovery of I c was found during loading-unloading test. The relationship between the reversible strain limit and the intrinsic strain of Bi2223 was discussed

  8. Multilinear stress-strain and failure calibrations for Ti-6Al-4V.

    Energy Technology Data Exchange (ETDEWEB)

    Corona, Edmundo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-02-01

    This memo concerns calibration of an elastic-plastic J2 material model for Ti-6Al-4V (grade 5) alloy based on tensile uniaxial stress-strain data obtained in the laboratory. In addition, tension tests on notched specimens provided data to calibrate two ductile failure models: Johnson-Cook and Wellman's tearing parameter. The tests were conducted by Kim Haulen- beek and Dave Johnson (1528) in the Structural Mechanics Laboratory (SML) during late March and early April, 2017. The SML EWP number was 4162. The stock material was a TIMETALR® 6-4 Titanium billet with 9 in. by 9 in. square section and length of 137 in. The product description indicates that it was a forging delivered in annealed condition (2 hours @ 1300oF, AC at the mill). The tensile mechanical properties reported in the material certi cation are given in Table 1, where σo represents the 0.2% strain offset yield stress, σu the ultimate stress, εf the elongation at failure and R.A. the reduction in area.

  9. Pace bowlers in cricket with history of lumbar stress fracture have increased risk of lower limb muscle strains, particularly calf strains.

    Science.gov (United States)

    Orchard, John; Farhart, Patrick; Kountouris, Alex; James, Trefor; Portus, Marc

    2010-01-01

    To assess whether a history of lumbar stress fracture in pace bowlers in cricket is a risk factor for lower limb muscle strains. This was a prospective cohort risk factor study, conducted using injury data from contracted first class pace bowlers in Australia during seasons 1998-1999 to 2008-2009 inclusive. There were 205 pace bowlers, 33 of whom suffered a lumbar stress fracture when playing first class cricket. Risk ratios ([RR] with 95% confidence intervals[CI]) were calculated to compare the seasonal incidence of various injuries between bowlers with a prior history of lumbar stress fracture and those with no history of lumbar stress fracture. Risk of calf strain was strongly associated with prior lumbar stress fracture injury history (RR = 4.1; 95% CI: 2.4-7.1). Risks of both hamstring strain (RR = 1.5; 95% CI: 1.03-2.1) and quadriceps strain (RR = 2.0; 95% CI: 1.1-3.5) were somewhat associated with history of lumbar stress fracture. Risk of groin strain was not associated with history of lumbar stress fracture (RR = 0.7; 95% CI: 0.4-1.1). Other injuries showed little association with prior lumbar stress fracture, although knee cartilage injuries were more likely in the non-stress fracture group. Bony hypertrophy associated with lumbar stress fracture healing may lead to subsequent lumbar nerve root impingement, making lower limb muscle strains more likely to occur. Confounders may be responsible for some of the findings. In particular, bowling speed is likely to be independently correlated with risk of lumbar stress fracture and risk of muscle strain. However, as the relationship between lumbar stress fracture history and calf strain was very strong, and that there is a strong theoretical basis for the connection, it is likely that this is a true association.

  10. Local stress modification during in situ transmission electron microscopy straining experiments

    Czech Academy of Sciences Publication Activity Database

    Zárubová, Niva; Gemperle, Antonín; Gemperlová, Juliana

    2007-01-01

    Roč. 462, - (2007), s. 407-411 ISSN 0921-5093 R&D Projects: GA ČR GA202/04/2016 Institutional research plan: CEZ:AV0Z10100520 Keywords : in situ TEM straining, Local stress in a strained foil * local stress in a strained foil Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.457, year: 2007

  11. Pace bowlers in cricket with history of lumbar stress fracture have increased risk of lower limb muscle strains, particularly calf strains

    Directory of Open Access Journals (Sweden)

    John Orchard

    2010-09-01

    Full Text Available John Orchard1, Patrick Farhart2, Alex Kountouris3, Trefor James3, Marc Portus31School of Public Health, University of Sydney, Australia; 2Punjab Kings XI team, Indian Premier League, India; 3Cricket Australia, Melbourne, AustraliaObjective: To assess whether a history of lumbar stress fracture in pace bowlers in cricket is a risk factor for lower limb muscle strains.Methods: This was a prospective cohort risk factor study, conducted using injury data from contracted first class pace bowlers in Australia during seasons 1998–1999 to 2008–2009 inclusive. There were 205 pace bowlers, 33 of whom suffered a lumbar stress fracture when playing first class cricket. Risk ratios ([RR] with 95% confidence intervals[CI] were calculated to compare the seasonal incidence of various injuries between bowlers with a prior history of lumbar stress fracture and those with no history of lumbar stress fracture.Results: Risk of calf strain was strongly associated with prior lumbar stress fracture injury history (RR = 4.1; 95% CI: 2.4–7.1. Risks of both hamstring strain (RR = 1.5; 95% CI: 1.03–2.1 and quadriceps strain (RR = 2.0; 95% CI: 1.1–3.5 were somewhat associated with history of lumbar stress fracture. Risk of groin strain was not associated with history of lumbar stress fracture (RR = 0.7; 95% CI: 0.4–1.1. Other injuries showed little association with prior lumbar stress fracture, although knee cartilage injuries were more likely in the non-stress fracture group.Conclusion: Bony hypertrophy associated with lumbar stress fracture healing may lead to subsequent lumbar nerve root impingement, making lower limb muscle strains more likely to occur. Confounders may be responsible for some of the findings. In particular, bowling speed is likely to be independently correlated with risk of lumbar stress fracture and risk of muscle strain. However, as the relationship between lumbar stress fracture history and calf strain was very strong, and that there is a

  12. Application of the strain energy for fatigue life prediction (LCF) of metals by the energy-based criterion

    International Nuclear Information System (INIS)

    Shahram Shahrooi; Ibrahim Henk Metselaar; Zainul Huda; Ghezavati, H.R.

    2009-01-01

    Full text: In this study, the plastic strain energy under multiaxial fatigue condition has been calculated in the cyclic plasticity models by the stress-strain hysteresis loops. Then, using the results of these models, the fatigue lives in energy-based fatigue model is predicted and compared to experimental data. Moreover, a weighting factor on shear plastic work is presented to decrease the life factors in the model fatigue. (author)

  13. An experimental study on the mechanical properties of rat brain tissue using different stress-strain definitions.

    Science.gov (United States)

    Karimi, Alireza; Navidbakhsh, Mahdi

    2014-07-01

    There are different stress-strain definitions to measure the mechanical properties of the brain tissue. However, there is no agreement as to which stress-strain definition should be employed to measure the mechanical properties of the brain tissue at both the longitudinal and circumferential directions. It is worth knowing that an optimize stress-strain definition of the brain tissue at different loading directions may have implications for neuronavigation and surgery simulation through haptic devices. This study is aimed to conduct a comparative study on different results are given by the various definitions of stress-strain and to recommend a specific definition when testing brain tissues. Prepared cylindrical samples are excised from the parietal lobes of rats' brains and experimentally tested by applying load on both the longitudinal and circumferential directions. Three stress definitions (second Piola-Kichhoff stress, engineering stress, and true stress) and four strain definitions (Almansi-Hamel strain, Green-St. Venant strain, engineering strain, and true strain) are used to determine the elastic modulus, maximum stress and strain. The highest non-linear stress-strain relation is observed for the Almansi-Hamel strain definition and it may overestimate the elastic modulus at different stress definitions at both the longitudinal and circumferential directions. The Green-St. Venant strain definition fails to address the non-linear stress-strain relation using different definitions of stress and triggers an underestimation of the elastic modulus. The results suggest the application of the true stress-true strain definition for characterization of the brain tissues mechanics since it gives more accurate measurements of the tissue's response using the instantaneous values.

  14. The role of creep in stress strain curves for copper

    International Nuclear Information System (INIS)

    Sandström, Rolf; Hallgren, Josefin

    2012-01-01

    Highlights: ► A dislocation based model takes into account both dynamic and static recovery. ► Tests at constant load and at constant strain rate modelled without fitting parameters. ► The model can describe primary and secondary creep of Cu-OFP from 75 to 250 °C. ► The temperature and strain rate dependence of stress strain curves can be modelled. ► Intended for the slow strain rates in canisters for storage of nuclear waste. - Abstract: A model for plastic deformation in pure copper taking work hardening, dynamic recovery and static recovery into account, has been formulated using basic dislocation mechanisms. The model is intended to be used in finite-element computations of the long term behaviour of structures in Cu-OFP for storage of nuclear waste. The relation between the strain rate and the maximum flow stress in the model has been demonstrated to correspond to strain rate versus stress in creep tests for oxygen free copper alloyed with phosphorus Cu-OFP. A further development of the model can also represent the primary and secondary stage of creep curves. The model is compared to stress strain curves in compression and tension for Cu-OFP. The compression tests were performed at room temperature for strain rates between 5 × 10 −5 and 5 × 10 −3 s −1 . The tests in tension covered the temperature range 20–175 °C for strain rates between 1 × 10 −7 and 1 × 10 −4 s −1 . Consequently, it is demonstrated that the model can represent mechanical test data that have been generated both at constant load and at constant strain rate without the use of any fitting parameters.

  15. Prediction of material creep behaviour for strain based life assessment applications

    Energy Technology Data Exchange (ETDEWEB)

    Rantala, J H; Hurst, R C [EC JRC IAM, Petten (Netherlands); Bregani, F [ENEL, Milan (Italy)

    1999-12-31

    In this work the idea of using constant load uniaxial creep test results instead of constant stress results for developing a CDM creep model for the P92 material is demonstrated. Due to limited availability of creep test results this work is based on incomplete test data and a general stress rupture line. In spite of these limitations a material creep model was developed for use in a FE analysis. Using P91 material as an example, a method is proposed to account for differences in strain evolution as a function of stress which normally manifests itself as lower strain values at low stresses in a normalised time-strain plot. This allows the CDM model to be used both in FE analysis and in strain-based life assessment engineering calculations. (orig.) 3 refs.

  16. Prediction of material creep behaviour for strain based life assessment applications

    Energy Technology Data Exchange (ETDEWEB)

    Rantala, J.H.; Hurst, R.C. [EC JRC IAM, Petten (Netherlands); Bregani, F. [ENEL, Milan (Italy)

    1998-12-31

    In this work the idea of using constant load uniaxial creep test results instead of constant stress results for developing a CDM creep model for the P92 material is demonstrated. Due to limited availability of creep test results this work is based on incomplete test data and a general stress rupture line. In spite of these limitations a material creep model was developed for use in a FE analysis. Using P91 material as an example, a method is proposed to account for differences in strain evolution as a function of stress which normally manifests itself as lower strain values at low stresses in a normalised time-strain plot. This allows the CDM model to be used both in FE analysis and in strain-based life assessment engineering calculations. (orig.) 3 refs.

  17. Uncertainty Quantification and Comparison of Weld Residual Stress Measurements and Predictions.

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, John R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brooks, Dusty Marie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-10-01

    In pressurized water reactors, the prevention, detection, and repair of cracks within dissimilar metal welds is essential to ensure proper plant functionality and safety. Weld residual stresses, which are difficult to model and cannot be directly measured, contribute to the formation and growth of cracks due to primary water stress corrosion cracking. Additionally, the uncertainty in weld residual stress measurements and modeling predictions is not well understood, further complicating the prediction of crack evolution. The purpose of this document is to develop methodology to quantify the uncertainty associated with weld residual stress that can be applied to modeling predictions and experimental measurements. Ultimately, the results can be used to assess the current state of uncertainty and to build confidence in both modeling and experimental procedures. The methodology consists of statistically modeling the variation in the weld residual stress profiles using functional data analysis techniques. Uncertainty is quantified using statistical bounds (e.g. confidence and tolerance bounds) constructed with a semi-parametric bootstrap procedure. Such bounds describe the range in which quantities of interest, such as means, are expected to lie as evidenced by the data. The methodology is extended to provide direct comparisons between experimental measurements and modeling predictions by constructing statistical confidence bounds for the average difference between the two quantities. The statistical bounds on the average difference can be used to assess the level of agreement between measurements and predictions. The methodology is applied to experimental measurements of residual stress obtained using two strain relief measurement methods and predictions from seven finite element models developed by different organizations during a round robin study.

  18. Determination of the strain generated in InAs/InP quantum wires: prediction of nucleation sites

    International Nuclear Information System (INIS)

    Molina, S I; Ben, T; Sales, D L; Pizarro, J; Galindo, P L; Varela, M; Pennycook, S J; Fuster, D; Gonzalez, Y; Gonzalez, L

    2006-01-01

    The compositional distribution in a self-assembled InAs(P) quantum wire grown by molecular beam epitaxy on an InP(001) substrate has been determined by electron energy loss spectrum imaging. We have determined the strain and stress fields generated in and around this wire capped with a 5 nm InP layer by finite element calculations using as input the compositional map experimentally obtained. Preferential sites for nucleation of wires grown on the surface of this InP capping layer are predicted, based on chemical potential minimization, from the determined strain and stress fields on this surface. The determined preferential sites for wire nucleation agree with their experimentally measured locations. The method used in this paper, which combines electron energy loss spectroscopy, high-resolution Z contrast imaging, and elastic theory finite element calculations, is believed to be a valuable technique of wide applicability for predicting the preferential nucleation sites of epitaxial self-assembled nano-objects

  19. Determination of the strain generated in InAs/InP quantum wires: prediction of nucleation sites

    Energy Technology Data Exchange (ETDEWEB)

    Molina, S I [Departamento de Ciencia de los Materiales e I.M. y Q.I., Facultad de Ciencias, Universidad de Cadiz, Campus RIo San Pedro, s/n, 11510 Puerto Real, Cadiz (Spain); Ben, T [Departamento de Ciencia de los Materiales e I.M. y Q.I., Facultad de Ciencias, Universidad de Cadiz, Campus RIo San Pedro, s/n, 11510 Puerto Real, Cadiz (Spain); Sales, D L [Departamento de Ciencia de los Materiales e I.M. y Q.I., Facultad de Ciencias, Universidad de Cadiz, Campus RIo San Pedro, s/n, 11510 Puerto Real, Cadiz (Spain); Pizarro, J [Departamento de Lenguajes y Sistemas Informaticos, CASEM, Universidad de Cadiz, Campus RIo San Pedro, s/n, 11510 Puerto Real, Cadiz (Spain); Galindo, P L [Departamento de Lenguajes y Sistemas Informaticos, CASEM, Universidad de Cadiz, Campus RIo San Pedro, s/n, 11510 Puerto Real, Cadiz (Spain); Varela, M [Condensed Matter Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Pennycook, S J [Condensed Matter Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Fuster, D [Instituto de Microelectronica de Madrid (CNM, CSIC), Isaac Newton 8, 28760 Tres Cantos, Madrid (Spain); Gonzalez, Y [Instituto de Microelectronica de Madrid (CNM, CSIC), Isaac Newton 8, 28760 Tres Cantos, Madrid (Spain); Gonzalez, L [Instituto de Microelectronica de Madrid (CNM, CSIC), Isaac Newton 8, 28760 Tres Cantos, Madrid (Spain)

    2006-11-28

    The compositional distribution in a self-assembled InAs(P) quantum wire grown by molecular beam epitaxy on an InP(001) substrate has been determined by electron energy loss spectrum imaging. We have determined the strain and stress fields generated in and around this wire capped with a 5 nm InP layer by finite element calculations using as input the compositional map experimentally obtained. Preferential sites for nucleation of wires grown on the surface of this InP capping layer are predicted, based on chemical potential minimization, from the determined strain and stress fields on this surface. The determined preferential sites for wire nucleation agree with their experimentally measured locations. The method used in this paper, which combines electron energy loss spectroscopy, high-resolution Z contrast imaging, and elastic theory finite element calculations, is believed to be a valuable technique of wide applicability for predicting the preferential nucleation sites of epitaxial self-assembled nano-objects.

  20. Investigation of isochronous stress-strain formulations for elevated temperature structural design

    International Nuclear Information System (INIS)

    Koo, Gyeong Hoi; Kim, Jong Bum

    2012-01-01

    For elevated temperature design evaluations by the ASME-NH rules, the most important material data is the isochronous stress-strain curves, which can provide design creep information. The main purpose of this paper is to investigate appropriate formulations to be able to generate the isochronous stress-strain curves and implement it to the computer program which is coded the ASME-NH design evaluation procedures. To do this, formulations by the strain-time relationship are investigated in detail and the sensitivity studies for rapid initial transient creep contributions, slower and longer transient creep contribution, and secondary creep contributions are carried out for type 316 austenitic stainless steel. From the results of this study, it is found that the strain-time relationship formulations can well describe the isochronous stress-strain curves with the transient creep contributions

  1. Stress markers in relation to job strain in human service organizations.

    Science.gov (United States)

    Ohlson, C G; Söderfeldt, M; Söderfeldt, B; Jones, I; Theorell, T

    2001-01-01

    Workers in human service organizations are often confronted with conflicting demands in providing care or education. The aim of this cross-sectional study was to relate levels of endocrine stress markers to perceived job strain in two human service organizations. Employees in two local units of the social insurance organization and two local units of the individual and family care sections of the social welfare in Sweden were selected and 103 employees participated (56% participation rate). The perceived job strain was assessed with a standardized questionnaire containing questions of the demand-control model. Questions specially designed to measure emotional demands were also included. The stress markers cortisol, prolactin, thyroid-stimulating hormone, testosterone and IgA and IgG were analysed in blood samples. The main finding was an association between high emotional strain and increased levels of prolactin. The levels of cortisol, but none of the other four stress markers, increased slightly with emotional strain. Emotional strain experienced in human service work may cause psychological stress. The increase in prolactin was modest but consistent with findings in other published studies on stress-related endocrine alterations. Copyright 2001 S. Karger AG, Basel.

  2. Resistance of functional Lactobacillus plantarum strains against food stress conditions.

    Science.gov (United States)

    Ferrando, Verónica; Quiberoni, Andrea; Reinhemer, Jorge; Suárez, Viviana

    2015-06-01

    The survival of three Lactobacillus plantarum strains (Lp 790, Lp 813 and Lp 998) with functional properties was studied taking into account their resistance to thermal, osmotic and oxidative stress factors. Stress treatments applied were: 52 °C-15 min (Phosphate Buffer pH 7, thermal shock), H2O2 0.1% (p/v) - 30 min (oxidative shock) and NaCl aqueous solution at 17, 25 and 30% (p/v) (room temperature - 1 h, osmotic shock). The osmotic stress was also evaluated on cell growth in MRS broth added of 2, 4, 6, 8 and 10% (p/v) of NaCl, during 20 h at 30 °C. The cell thermal adaptation was performed in MRS broth, selecting 45 °C for 30 min as final conditions for all strains. Two strains (Lp 813 and Lp 998) showed, in general, similar behaviour against the three stress factors, being clearly more resistant than Lp 790. An evident difference in growth kinetics in presence of NaCl was observed between Lp 998 and Lp 813, Lp998 showing a higher optical density (OD570nm) than Lp 813 at the end of the assay. Selected thermal adaptation improved by 2 log orders the thermal resistance of both strains, but cell growth in presence of NaCl was enhanced only in Lp 813. Oxidative resistance was not affected with this thermal pre-treatment. These results demonstrate the relevance of cell technological resistance when selecting presumptive "probiotic" cultures, since different stress factors might considerably affect viability or/and performance of the strains. The incidence of stress conditions on functional properties of the strains used in this work are currently under research in our group. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Leuconostoc strains isolated from dairy products: Response against food stress conditions.

    Science.gov (United States)

    D'Angelo, Luisa; Cicotello, Joaquín; Zago, Miriam; Guglielmotti, Daniela; Quiberoni, Andrea; Suárez, Viviana

    2017-09-01

    A systematic study about the intrinsic resistance of 29 strains (26 autochthonous and 3 commercial ones), belonging to Leuconostoc genus, against diverse stress factors (thermal, acidic, alkaline, osmotic and oxidative) commonly present at industrial or conservation processes were evaluated. Exhaustive result processing was made by applying one-way ANOVA, Student's test (t), multivariate analysis by Principal Component Analysis (PCA) and Matrix Hierarchical Cluster Analysis. In addition, heat adaptation on 4 strains carefully selected based on previous data analysis was assayed. The strains revealed wide diversity of resistance to stress factors and, in general, a clear relationship between resistance and Leuconostoc species was established. In this sense, the highest resistance was shown by Leuconostoc lactis followed by Leuconostoc mesenteroides strains, while Leuconostoc pseudomesenteroides and Leuconostoc citreum strains revealed the lowest resistance to the stress factors applied. Heat adaptation improved thermal cell survival and resulted in a cross-resistance against the acidic factor. However, all adapted cells showed diminished their oxidative resistance. According to our knowledge, this is the first study regarding response of Leuconostoc strains against technological stress factors and could establish the basis for the selection of "more robust" strains and propose the possibility of improving their performance during industrial processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Prediction of stress-strain state of municipal solid waste with application of soft soil creep model

    Directory of Open Access Journals (Sweden)

    Ofrikhter Vadim Grigor'evich

    Full Text Available The deformation of municipal solid waste is a complex process caused by the nature of MSW, the properties of which differ from the properties of common soils. The mass of municipal solid waste shows the mixed behaviour partially similar to granular soils, and partially - to cohesive. So, one of mechanical characteristics of MSW is the cohesion typical to cohesive soils, but at the same time the filtration coefficient of MSW has an order of 1 m/day that is characteristic for granular soils. It has been established that MSW massif can be simulated like the soil reinforced by randomly oriented fibers. Today a significant amount of the verified and well proved software products are available for numerical modelling of soils. The majority of them use finite element method (FEM. The soft soil creep model (SSC-model seems to be the most suitable for modelling of municipal solid waste, as it allows estimating the development of settlements in time with separation of primary and secondary consolidation. Unlike the soft soil, one of the factors of secondary consolidation of MSW is biological degradation, the influence of which is possible to consider at the definition of the modified parameters essential for soft soil model. Application of soft soil creep model allows carrying out the calculation of stress-strain state of waste from the beginning of landfill filling up to any moment of time both during the period of operation and in postclosure period. The comparative calculation presented in the paper is executed in Plaxis software using the soft-soil creep model in contrast to the calculation using the composite model of MSW. All the characteristics for SSC-model were derived from the composite model. The comparative results demonstrate the advantage of SSC-model for prediction of the development of MSW stress-strain state. As far as after the completion of the biodegradation processes MSW behaviour is similar to cohesion-like soils, the demonstrated

  5. Study of stress-strain state of pipeline under permafrost conditions

    Science.gov (United States)

    Tarasenko, A. A.; Redutinskiy, M. N.; Chepur, P. V.; Gruchenkova, A. A.

    2018-05-01

    In this paper, the dependences of the stress-strain state and subsidence of pipelines on the dimensions of the subsidence zone are obtained for the sizes of pipes that have become most widespread during the construction of main oil pipelines (530x10, 820x12, 1020x12, 1020x14, 1020x16, 1220x14, 1220x16, 1220x18 mm). True values of stresses in the pipeline wall, as well as the exact location of maximum stresses for the interval of subsidence zones from 5 to 60 meters, are determined. For this purpose, the authors developed a finite element model of the pipeline that takes into account the actual interaction of the pipeline with the subgrade and allows calculating the SSS of the structure for a variable subsidence zone. Based on the obtained dependences for the underground laying of oil pipelines in permafrost areas, it is proposed to artificially limit the zone of possible subsidence by separation supports from the soil with higher building properties and physical-mechanical parameters. This technical solution would significantly reduce costs when constructing new oil pipelines in permafrost areas.

  6. Computer modeling of the stress-strain state of welded construction

    Science.gov (United States)

    Nurguzhin, Marat; Danenova, Gulmira; Akhmetzhanov, Talgat

    2017-11-01

    At the present time the maintenance of the welded construction serviceability over normative service life is provided by the maintenance system on the basis of the guiding documents according to the concept of "fail safe". However, technology factors relating to welding such as high residual stresses and significant plastic strains are not considered in the guiding documents. The design procedure of the stressed-strained state of welded constructions is suggested in the paper. The procedure investigates welded constructions during welding and the external load using the program ANSYS. In this paper, the model of influence of the residual stress strain state on the factor of stress intensity is proposed. The calculation method of the residual stressed-strained state (SSS) taking into account the phase transition is developed by the authors. Melting and hardening of a plate material during heating and cooling is considered. The thermomechanical problem of heating a plate by a stationary heat source is solved. The setup of the heating spot center on distance (190 mm) from the crack top in a direction of its propagation leads to the fact that the value of total factor of stress intensity will considerably decrease under action of the specified residual compressing stresses. It can lower the speed of the crack propagation to zero. The suggested method of survivability maintenance can be applied during operation with the purpose of increasing the service life of metal constructions up to running repair of technological machines.

  7. A model for the stress-strain behavior of toughened polystyrene. Part 2

    NARCIS (Netherlands)

    Sjoerdsma, S.D.; Heikens, D.

    1982-01-01

    The general stress-strain relationship derived in an earlier paper is applied to analyse experimental stress-strain curves of polystyrene-polyethylene blends. It is concluded from the stress and temperature dependence of the rates of craze initiation and craze growth that these rates can be

  8. Mechanical stresses and strains in superconducting dipole magnets for high energy accelerators

    International Nuclear Information System (INIS)

    Greben, L.I.; Mironov, E.S.; Moustafin, H.H.

    1979-01-01

    Stress and strain distributions in superconducting dipole magnets were investigated numerically. A finite element computer program was developed to calculate stresses and displacements due to thermal stress, electromagnetic forces and prestressing of structural elements. Real mechanical and thermal properties of superconducting dipole elements are taken into account. Numerical results of stress and strain patterns in dipole magnets are presented

  9. Macro and intergranular stress responses of austenitic stainless steel to 90° strain path changes

    International Nuclear Information System (INIS)

    Gonzalez, D.; Kelleher, J.F.; Quinta da Fonseca, J.; Withers, P.J.

    2012-01-01

    Highlights: ► We measure and model the macro and IG stresses of ASS to 90° strain path changes. ► The macro stress–strain curves show a clear Bauschinger effect on reloading. ► This is only partially captured by the model. ► The measured {h k l} families show an earlier microyield than predicted. ► This difference is more noticeable for a strain path with a higher reversibility. - Abstract: Strain path history can play a crucial role in sensitising/desensitising metals to various damage mechanisms and yet little work has been done to quantify and understand how intergranular strains change upon path changes, or their effect on the macroscopic behaviour. Here we have measured, by neutron diffraction, and modelled, by crystal plasticity finite elements, the stress–strain responses of 316L stainless steel over three different 90° strain path changes using an assembled microstructure of randomly oriented crystallites. The measurements show a clear Bauschinger effect on reloading that is only partially captured by the model. Further, measurements of the elastic response of different {h k l} grain families revealed an even earlier onset of yield for strain paths reloaded in compression while a strain path reloaded in tension showed good agreement with corresponding predictions. Finally, we propose that the study of strain path effects provides a more rigorous test of crystal plasticity models than conventional in situ diffraction studies of uniaxial loading.

  10. Inverse strain rate effect on cyclic stress response in annealed Zircaloy-2

    Energy Technology Data Exchange (ETDEWEB)

    Sudhakar Rao, G.; Verma, Preeti [Center of Advanced Study, Department of Metallurgical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India); Chakravartty, J.K. [Mechanical Metallurgy Group, Bhabha Atomic Research Center, Trombay 400 085, Mumbai (India); Nudurupati, Saibaba [Nuclear Fuel Complex, Hyderabad 500 062 (India); Mahobia, G.S.; Santhi Srinivas, N.C. [Center of Advanced Study, Department of Metallurgical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India); Singh, Vakil, E-mail: vsingh.met@itbhu.ac.in [Center of Advanced Study, Department of Metallurgical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India)

    2015-02-15

    Low cycle fatigue behavior of annealed Zircaloy-2 was investigated at 300 and 400 °C at different strain amplitudes and strain rates of 10{sup −2}, 10{sup −3}, and 10{sup −4} s{sup −1}. Cyclic stress response showed initial hardening with decreasing rate of hardening, followed by linear cyclic hardening and finally secondary hardening with increasing rate of hardening for low strain amplitudes at both the temperatures. The rate as well the degree of linear hardening and secondary hardening decreased with decrease in strain rate at 300 °C, however, there was inverse effect of strain rate on cyclic stress response at 400 °C and cyclic stress was increased with decrease in strain rate. The fatigue life decreased with decrease in strain rate at both the temperatures. The occurrence of linear cyclic hardening, inverse effect of strain rate on cyclic stress response and deterioration in fatigue life with decrease in strain rate may be attributed to dynamic strain aging phenomena resulting from enhanced interaction of dislocations with solutes. Fracture surfaces revealed distinct striations, secondary cracking, and oxidation with decrease in strain rate. Deformation substructure showed parallel dislocation lines and dislocation band structure at 300 °C. Persistent slip band wall structure and development of fine Corduroy structure was observed at 400 °C.

  11. Inverse strain rate effect on cyclic stress response in annealed Zircaloy-2

    International Nuclear Information System (INIS)

    Sudhakar Rao, G.; Verma, Preeti; Chakravartty, J.K.; Nudurupati, Saibaba; Mahobia, G.S.; Santhi Srinivas, N.C.; Singh, Vakil

    2015-01-01

    Low cycle fatigue behavior of annealed Zircaloy-2 was investigated at 300 and 400 °C at different strain amplitudes and strain rates of 10 −2 , 10 −3 , and 10 −4 s −1 . Cyclic stress response showed initial hardening with decreasing rate of hardening, followed by linear cyclic hardening and finally secondary hardening with increasing rate of hardening for low strain amplitudes at both the temperatures. The rate as well the degree of linear hardening and secondary hardening decreased with decrease in strain rate at 300 °C, however, there was inverse effect of strain rate on cyclic stress response at 400 °C and cyclic stress was increased with decrease in strain rate. The fatigue life decreased with decrease in strain rate at both the temperatures. The occurrence of linear cyclic hardening, inverse effect of strain rate on cyclic stress response and deterioration in fatigue life with decrease in strain rate may be attributed to dynamic strain aging phenomena resulting from enhanced interaction of dislocations with solutes. Fracture surfaces revealed distinct striations, secondary cracking, and oxidation with decrease in strain rate. Deformation substructure showed parallel dislocation lines and dislocation band structure at 300 °C. Persistent slip band wall structure and development of fine Corduroy structure was observed at 400 °C

  12. Apparent stress-strain relationships in experimental equipment where magnetorheological fluids operate under compression mode

    International Nuclear Information System (INIS)

    Mazlan, S A; Ekreem, N B; Olabi, A G

    2008-01-01

    This paper presents an experimental investigation of two different magnetorheological (MR) fluids, namely, water-based and hydrocarbon-based MR fluids in compression mode under various applied currents. Finite element method magnetics was used to predict the magnetic field distribution inside the MR fluids generated by a coil. A test rig was constructed where the MR fluid was sandwiched between two flat surfaces. During the compression, the upper surface was moved towards the lower surface in a vertical direction. Stress-strain relationships were obtained for arrangements of equipment where each type of fluid was involved, using compression test equipment. The apparent compressive stress was found to be increased with the increase in magnetic field strength. In addition, the apparent compressive stress of the water-based MR fluid showed a response to the compressive strain of greater magnitude. However, during the compression process, the hydrocarbon-based MR fluid appeared to show a unique behaviour where an abrupt pressure drop was discovered in a region where the apparent compressive stress would be expected to increase steadily. The conclusion is drawn that the apparent compressive stress of MR fluids is influenced strongly by the nature of the carrier fluid and by the magnitude of the applied current

  13. EVALUATION OF STRAIN-STRESS STATE OF THE RAILS IN THE PRODUCTION

    Directory of Open Access Journals (Sweden)

    V. V. Muravev

    2017-01-01

    Full Text Available High values of residual stresses is one of the most common reason of breaking lots of metal constructions, including rails. These stresses can reach values of flow limit, especially in the area of faults. Estimation of residual stresses values allows to get information about technical condition of the rail and also allow to avoid abnormal situations So, the aim of the research is creating the model of stress-strain state of the rail, which was hardened in its top and bottom, and to compare modeling results with experimental measurements of stresses and discrepancy of the housing.For creating the model and making evaluations by finite element method we used a program COMSOL. Forces on the top and bottom of the rail cause tension stresses, forces on the web of the rail cause tensile stresses. We compared calculated values of stresses with discrepancy of the housing. The discrepancy of the housing is informative characteristic for estimating the residual stresses according to standards. For experimental measurements we used an acoustic structuroscope SEMA. This structuroscope uses the acoustoelastic phenomenon for measurements. We made measurements of the five rails.According to the calculation results of the model, critical discrepancy of the housing in 2 mm corresponded to the following values of maximum stresses: –54 MPa in the top of the rail, 86 MPa in the web and –62 MPa in the bottom of the rail. Experimental measurements are the following: from –48 MPa to – 64 MPa in the top of the rail, 54 MPa to 93 MPa in the web of the rail, and –59 MPA to –74 MPa in the bottom of the rail. Absolute error was ±5 MPa.Thus we created the model, which allowed to analyze strain-stress state and compare real values of stresses with discrepancy of the housing. Results of the modeling showed coincidence with structure of distribution of residual stresses in five probes of rails. 

  14. Stress and strain distribution in three different mini dental implant designs using in implant retained overdenture: a finite element analysis study

    Science.gov (United States)

    AUNMEUNGTONG, W.; KHONGKHUNTHIAN, P.; RUNGSIYAKULL, P.

    2016-01-01

    SUMMARY Finite Element Analysis (FEA) has been used for prediction of stress and strain between dental implant components and bone in the implant design process. Purpose Purpose of this study was to characterize and analyze stress and strain distribution occurring in bone and implants and to compare stress and strain of three different implant designs. Materials and methods Three different mini dental implant designs were included in this study: 1. a mini dental implant with an internal implant-abutment connection (MDIi); 2. a mini dental implant with an external implant-abutment connection (MDIe); 3. a single piece mini dental implant (MDIs). All implant designs were scanned using micro-CT scans. The imaging details of the implants were used to simulate models for FEA. An artificial bone volume of 9×9 mm in size was constructed and each implant was placed separately at the center of each bone model. All bone-implant models were simulatively loaded under an axial compressive force of 100 N and a 45-degree force of 100 N loading at the top of the implants using computer software to evaluate stress and strain distribution. Results There was no difference in stress or strain between the three implant designs. The stress and strain occurring in all three mini dental implant designs were mainly localized at the cortical bone around the bone-implant interface. Oblique 45° loading caused increased deformation, magnitude and distribution of stress and strain in all implant models. Conclusions Within the limits of this study, the average stress and strain in bone and implant models with MDIi were similar to those with MDIe and MDIs. The oblique 45° load played an important role in dramatically increased average stress and strain in all bone-implant models. Clinical implications Mini dental implants with external or internal connections have similar stress distribution to single piece mini dental implants. In clinical situations, the three types of mini dental implant

  15. Stress and strain distribution in three different mini dental implant designs using in implant retained overdenture: a finite element analysis study.

    Science.gov (United States)

    Aunmeungtong, W; Khongkhunthian, P; Rungsiyakull, P

    2016-01-01

    Finite Element Analysis (FEA) has been used for prediction of stress and strain between dental implant components and bone in the implant design process. Purpose of this study was to characterize and analyze stress and strain distribution occurring in bone and implants and to compare stress and strain of three different implant designs. Three different mini dental implant designs were included in this study: 1. a mini dental implant with an internal implant-abutment connection (MDIi); 2. a mini dental implant with an external implant-abutment connection (MDIe); 3. a single piece mini dental implant (MDIs). All implant designs were scanned using micro-CT scans. The imaging details of the implants were used to simulate models for FEA. An artificial bone volume of 9×9 mm in size was constructed and each implant was placed separately at the center of each bone model. All bone-implant models were simulatively loaded under an axial compressive force of 100 N and a 45-degree force of 100 N loading at the top of the implants using computer software to evaluate stress and strain distribution. There was no difference in stress or strain between the three implant designs. The stress and strain occurring in all three mini dental implant designs were mainly localized at the cortical bone around the bone-implant interface. Oblique 45° loading caused increased deformation, magnitude and distribution of stress and strain in all implant models. Within the limits of this study, the average stress and strain in bone and implant models with MDIi were similar to those with MDIe and MDIs. The oblique 45° load played an important role in dramatically increased average stress and strain in all bone-implant models. Mini dental implants with external or internal connections have similar stress distribution to single piece mini dental implants. In clinical situations, the three types of mini dental implant should exhibit the same behavior to chewing force.

  16. Relating high-temperature flow stress of AISI 316 stainless steel to strain and strain rate

    International Nuclear Information System (INIS)

    Matteazzi, S.; Paitti, G.; Boerman, D.

    1982-01-01

    The authors have performed an experimental determination of tensile stress-strain curves for different strain rates (4.67 x 10 - 5 , 4.67 x 10 - 2 s - 1 ) and for a variety of temperature conditions (773-1073 K) of AISI 316H stainless steel (annealed conditions) and also a computer analysis of the experimental curves using a fitting program which takes into consideration different constitutive relations describing the plastic flow behaviour of the metals. The results show that the materials tested are clearly affected by strain rate only at the highest temperature investigated (1073 K) and that the plastic strain is the more significant variable. Of the constitutive equations considered, Voce's relation gives the best fit for the true stress-time-strain curves. However, the Ludwik and Ludwigson equations also provide a description of the experimental data, whereas Hollomon's equation does not suitably characterize AISI 316H stainless steel and can be applied with some accuracy only at 1073 K. (author)

  17. Modeling assumptions influence on stress and strain state in 450 t cranes hoisting winch construction

    Directory of Open Access Journals (Sweden)

    Damian GĄSKA

    2011-01-01

    Full Text Available This work investigates the FEM simulation of stress and strain state of the selected trolley’s load-carrying structure with 450 tones hoisting capacity [1]. Computational loads were adopted as in standard PN-EN 13001-2. Model of trolley was built from several cooperating with each other (in contact parts. The influence of model assumptions (simplification in selected construction nodes to the value of maximum stress and strain with its area of occurrence was being analyzed. The aim of this study was to determine whether the simplification, which reduces the time required to prepare the model and perform calculations (e.g., rigid connection instead of contact are substantially changing the characteristics of the model.

  18. Annealing effects on strain and stress sensitivity of polymer optical fibre based sensors

    DEFF Research Database (Denmark)

    Pospori, A.; Marques, C. A. F.; Zubel, M. G.

    2016-01-01

    The annealing effects on strain and stress sensitivity of polymer optical fibre Bragg grating sensors after their photoinscription are investigated. PMMA optical fibre based Bragg grating sensors are first photo-inscribed and then they were placed into hot water for annealing. Strain, stress...... fibre tends to increase the strain, stress and force sensitivity of the photo-inscribed sensor....

  19. Effect of Local Strain Distribution of Cold-Rolled Alloy 690 on Primary Water Stress Corrosion Crack Growth Behavior

    Directory of Open Access Journals (Sweden)

    Kim S.-W.

    2017-06-01

    Full Text Available This work aims to study the stress corrosion crack growth behavior of cold-rolled Alloy 690 in the primary water of a pressurized water reactor. Compared with Alloy 600, which shows typical intergranular cracking along high angle grain boundaries, the cold-rolled Alloy 690, with its heterogeneous microstructure, revealed an abnormal crack growth behavior in mixed mode, that is, in transgranular cracking near a banded region, and in intergranular cracking in a matrix region. From local strain distribution analysis based on local mis-orientation, measured along the crack path using the electron back scattered diffraction method, it was suggested that the abnormal behavior was attributable to a heterogeneity of local strain distribution. In the cold-rolled Alloy 690, the stress corrosion crack grew through a highly strained area formed by a prior cold-rolling process in a direction perpendicular to the maximum principal stress applied during a subsequent stress corrosion cracking test.

  20. Study of the location of testing area in residual stress measurement by Moiré interferometry combined with hole-drilling method

    Science.gov (United States)

    Qin, Le; Xie, HuiMin; Zhu, RongHua; Wu, Dan; Che, ZhiGang; Zou, ShiKun

    2014-04-01

    This paper investigates the effect of the location of testing area in residual stress measurement by Moiré interferometry combined with hole-drilling method. The selection of the location of the testing area is analyzed from theory and experiment. In the theoretical study, the factors which affect the surface released radial strain ɛ r were analyzed on the basis of the formulae of the hole-drilling method, and the relations between those factors and ɛ r were established. By combining Moiré interferometry with the hole-drilling method, the residual stress of interference-fit specimen was measured to verify the theoretical analysis. According to the analysis results, the testing area for minimizing the error of strain measurement is determined. Moreover, if the orientation of the maximum principal stress is known, the value of strain will be measured with higher precision by the Moiré interferometry method.

  1. Constitutive analysis to predict the hot deformation behavior of 34CrMo4 steel with an optimum solution method for stress multiplier

    International Nuclear Information System (INIS)

    Xu, Wujiao; Zou, Mingping; Zhang, Lei

    2014-01-01

    The hot deformation behaviors of steel 34CrMo4 is investigated by hot compression test with the temperature range of 1073–1373 K and the strain rate range of 0.01–10 s −1 . The flow behaviors of 34CrMo4 steel were characterized based on the true stress–true strain curves. The hyperbolic sine law in Arrhenius type is adopted in the constitutive modeling for 34CrMo4. Solving algorithm of the stress multiplier α in hyperbolic sine law is a key factor to guarantee the constitutive model accuracy. How to solve the stress multiplier α is investigated and an optimum solution method for α is proposed. Meanwhile, the influence of strain is incorporated in constitutive analysis by considering the effect of strain on material constants α, n, Q and A. With the optimum solution method for stress multiplier α proposed, the stress prediction is satisfactory with the higher correlation coefficient, R = 0.988 and the lower average absolute relative error, AARE = 3.44% for the entire strain rate-temperature domain. The optimum solution method for stress multiplier α can also be applied for other materials to predict the flow behavior more accurately. - Highlights: • Isothermal compression tests were conducted to study the flow behavior of 34CrMo4. • The influence of strain is incorporated in constitutive model. • An optimum solution method for stress multiplier α is proposed

  2. Cyclic stress-strain behaviour under thermomechanical fatigue conditions - Modeling by means of an enhanced multi-component model

    Energy Technology Data Exchange (ETDEWEB)

    Christ, H J [Institut fuer Werkstofftechnik, Universitaet Siegen, D-57068 Siegen (Germany); Bauer, V, E-mail: hans-juergen.christ@uni-siegen.d [Wieland Werke AG, Graf-Arco Str. 36, D-89072 Ulm (Germany)

    2010-07-01

    The cyclic stress-strain behaviour of metals and alloys in cyclic saturation can reasonably be described by means of simple multi-component models, such as the model based on a parallel arrangement of elastic-perfectly plastic elements, which was originally proposed by Masing already in 1923. This model concept was applied to thermomechanical fatigue loading of two metallic engineering materials which were found to be rather oppositional with respect to cyclic plastic deformation. One material is an austenitic stainless steel of type AISI304L which shows dynamic strain aging (DSA) and serves as an example for a rather ductile alloy. A dislocation arrangement was found after TMF testing deviating characteristically from the corresponding isothermal microstructures. The second material is a third-generation near-gamma TiAl alloy which is characterized by a very pronounced ductile-to-brittle transition (DBT) within the temperature range of TMF cycling. Isothermal fatigue testing at temperatures below the DBT temperature leads to cyclic hardening, while cyclic softening was found to occur above DBT. The combined effect under TMF leads to a continuously developing mean stress. The experimental observations regarding isothermal and non-isothermal stress-strain behaviour and the correlation to the underlying microstructural processes was used to further develop the TMF multi-composite model in order to accurately predict the TMF stress-strain response by taking the alloy-specific features into account.

  3. A constitutive framework for modelling thin incompressible viscoelastic materials under plane stress in the finite strain regime

    Science.gov (United States)

    Kroon, M.

    2011-11-01

    Rubbers and soft biological tissues may undergo large deformations and are also viscoelastic. The formulation of constitutive models for these materials poses special challenges. In several applications, especially in biomechanics, these materials are also relatively thin, implying that in-plane stresses dominate and that plane stress may therefore be assumed. In the present paper, a constitutive model for viscoelastic materials in the finite strain regime and under the assumption of plane stress is proposed. It is assumed that the relaxation behaviour in the direction of plane stress can be treated separately, which makes it possible to formulate evolution laws for the plastic strains on explicit form at the same time as incompressibility is fulfilled. Experimental results from biomechanics (dynamic inflation of dog aorta) and rubber mechanics (biaxial stretching of rubber sheets) were used to assess the proposed model. The assessment clearly indicates that the model is fully able to predict the experimental outcome for these types of material.

  4. The study of stress-strain state of stabilized layered soil foundations

    Directory of Open Access Journals (Sweden)

    Sokolov Mikhail V.

    2017-01-01

    Full Text Available Herein presented are the results of modeling and analysis of stress-strain state of layered inhomogeneous foundation soil when it is stabilised by injection to different depths. Produced qualitative and quantitative analysis of the components of the field of isolines of stresses, strains, stress concentration and the difference between the strain at the boundary of different elastic horizontal layers. Recommendations are given for the location of stabilised zones in relation to the border of different elastic layers. In particular, it found that stabilization of soil within the weak layer is inappropriate, since it practically provides no increase in the stability of the soil foundation, and when performing stabilisation of soil foundations, it is recommended to place the lower border of the stabilisation zone below the border of a stronger layer, at this the distribution of stresses and strains occurs more evenly, and load-bearing capacity of this layer is used to the maximum.

  5. The stress-strain relationship for multilayers of the high Tc superconducting oxides

    International Nuclear Information System (INIS)

    Hidaka, H.; Yamamura, H.

    1988-01-01

    This paper reports the calculation of the stress-strain relationship for multilayers of the high Tc superconducting oxides. The elucidation of this relationship is expected quite helpful for the preparation of high-quality multilayers of these materials. This calculation is possible to do in the same way of Timoshenko's bi-metal treatment. The authors did computation of the residual stress and strain, and the state of stress and strain for these multilayers has been acquired in detail by this calculation

  6. Comparison of Quantitative Wall Motion Analysis and Strain For Detection Of Coronary Stenosis With Three-Dimensional Dobutamine Stress Echocardiography

    Science.gov (United States)

    Parker, Katherine M.; Clark, Alexander P.; Goodman, Norman C.; Glover, David K.; Holmes, Jeffrey W.

    2015-01-01

    Background Quantitative analysis of wall motion from three-dimensional (3D) dobutamine stress echocardiography (DSE) could provide additional diagnostic information not available from qualitative analysis. In this study we compare the effectiveness of 3D fractional shortening (3DFS), a measure of wall motion computed from 3D echocardiography (3DE), to strain and strain rate measured with sonomicrometry for detecting critical stenoses during DSE. Methods Eleven open-chest dogs underwent DSE both with and without a critical stenosis. 3DFS was measured from 3DE images acquired at peak stress. 3DFS was normalized by subtracting average 3DFS during control peak stress (Δ3DFS). Strains in the perfusion defect (PD) were measured from sonomicrometry, and PD size and location were measured with microspheres. Results A Δ3DFS abnormality indicated the presence of a critical stenosis with high sensitivity and specificity (88% and 100%, respectively), and Δ3DFS abnormality size correlated with PD size (R2=0.54). The sensitivity and specificity for Δ3DFS was similar to that for area strain (88%, 100%) and circumferential strain and strain rate (88%, 92% and 88%, 86%, respectively), while longitudinal strain and strain rate were less specific. Δ3DFS correlated significantly with both coronary flow reserve (R2=0.71) and PD size (R2=0.97), while area strain correlated with PD size only (R2=0.67), and other measures were not significantly correlated with flow reserve or PD size. Conclusion Quantitative wall motion analysis using Δ3DFS is effective for detecting critical stenoses during DSE, performing similarly to 3D strain, and provides potentially useful information on the size and location of a perfusion defect. PMID:24815588

  7. Job stress models for predicting burnout syndrome: a review.

    Science.gov (United States)

    Chirico, Francesco

    2016-01-01

    In Europe, the Council Directive 89/391 for improvement of workers' safety and health has emphasized the importance of addressing all occupational risk factors, and hence also psychosocial and organizational risk factors. Nevertheless, the construct of "work-related stress" elaborated from EU-OSHA is not totally corresponding with the "psychosocial" risk, that is a broader category of risk, comprising various and different psychosocial risk factors. The term "burnout", without any binding definition, tries to integrate symptoms as well as cause of the burnout process. In Europe, the most important methods developed for the work related stress risk assessment are based on the Cox's transactional model of job stress. Nevertheless, there are more specific models for predicting burnout syndrome. This literature review provides an overview of job burnout, highlighting the most important models of job burnout, such as the Job Strain, the Effort/Reward Imbalance and the Job Demands-Resources models. The difference between these models and the Cox's model of job stress is explored.

  8. Effects of strain rate, mixing ratio, and stress-strain definition on the mechanical behavior of the polydimethylsiloxane (PDMS) material as related to its biological applications.

    Science.gov (United States)

    Khanafer, Khalil; Duprey, Ambroise; Schlicht, Marty; Berguer, Ramon

    2009-04-01

    Tensile tests on Polydimethylsiloxane (PDMS) materials were conducted to illustrate the effects of mixing ratio, definition of the stress-strain curve, and the strain rate on the elastic modulus and stress-strain curve. PDMS specimens were prepared according to the ASTM standards for elastic materials. Our results indicate that the physiological elastic modulus depends strongly on the definition of the stress-strain curve, mixing ratio, and the strain rate. For various mixing ratios and strain rates, true stress-strain definition results in higher stress and elastic modulus compared with engineering stress-strain and true stress-engineering strain definitions. The elastic modulus increases as the mixing ratio increases up-to 9:1 ratio after which the elastic modulus begins to decrease even as the mixing ratio continues to increase. The results presented in this study will be helpful to assist the design of in vitro experiments to mimic blood flow in arteries and to understand the complex interaction between blood flow and the walls of arteries using PDMS elastomer.

  9. Dynamic strain aging of zircaloy-4 PWR fuel cladding in biaxial stress state

    International Nuclear Information System (INIS)

    Park, Ki Seong; Lee, Byong Whi

    1989-01-01

    The expanding copper mandrel test performed at three strain rates (3.2x10E-5/s,2.0x10E-6/s and 1.2x10E-7/s) over 553-873 K temperature range by varying the heating rates (8-10deg C/s,1-2deg C/s and 0.5deg C/s) in air and in vacuum (5x10E-5 torr). The yield stress peak, the strain rate sensitivity minimum and the activation volume peaks could be explained in terms of the dynamic strain aging. The activation energy for dynamic strain aging obtained from the yield stress peak temperature and strain rate was 196 KJ/mol and this value was in good agreement with the activation energy for oxygen diffusion in α-zirconium and Zircaloy-2 (207-220KJ/mol). Therefore, oxygen atoms are responsible for the dynamic strain aging which appeared between 573K and 673K. The yield stress increase due to the oxidation was obtained by comparing the yield stress in air with that in vacuum and represented by the percentage increase of yield stress (σ y a -σ y v /σ y v ). The slower the strain rate, the greater the percentage increase occurs. In order to estimate the yield stress of PWR fuel cladding material under the service environment, the yield stress in water was obtained by comparing the oxidation rate in air that in water assuming the relationship between the oxygen pick-up amount and the yield stress increase. (Author)

  10. Numerical analysis oriented biaxial stress-strain relation and failure criterion of plain concrete

    International Nuclear Information System (INIS)

    Link, J.

    1975-01-01

    A biaxial stress-strain relation and failure criterion is proposed, which is applicable to structural analysis methods. The formulation of material behavior of plain concrete in biaxial stress-state was developed. A nonlinear elastic, anisotropic stress-strain relation was derived with two moduli of elasticity, E 1 , E 2 and Poisson's ratios, ν 1 , ν 2 , which depend on the prevailing biaxial stress state. The stress-strain relation is valid in the whole biaxial stress field, that means with a smooth transition between the domains of tension/tension, tension/compression and compression/compression. The stress-dependent moduli E 1 , E 2 and the Poisson's ratios ν 1 , ν 2 are approximated by polynomials, trigonometrical and exponential functions. A failure criterion was defined by approximating the test results of the biaxial ultimate concrete strength with a 7th degree polynomial, which is also valid in the whole biaxial stress domain. The definition of the state of failure is given as a function of stresses as well as strains. Initial parameters of the formulation of the biaxial material behavior are the uniaxial cylindrical strength of concrete and the initial values of Young's modulus and Poisson's ratio. A simple expansion of this formulation makes it applicable not only to normal but also to light-weight concrete. Comparison of numerically calculated stress-strain curves up to the ultimate biaxial stresses which indicate the failure criteria with those obtained from tests show a very good agreement. It is shown, that the biaxial stress-strain relation can be extended for use in cases of triaxial tension/tension/compression stress state. Numerical examples of analysis of concrete slabs show the importance of incorporation of a realistic material behavior for better safety estimations

  11. Prediction of process induced shape distortions and residual stresses in large fibre reinforced composite laminates

    DEFF Research Database (Denmark)

    Nielsen, Michael Wenani

    to their accuracy in predicting process induced strain and stress development in thick section laminates during curing, and more precisely regarding the evolution of the composite thermoset polymer matrix mechanical behaviour during the phase transitions experienced during curing. The different constitutive...

  12. Thermographic Analysis of Stress Distribution in Welded Joints

    Directory of Open Access Journals (Sweden)

    Domazet Ž.

    2010-06-01

    Full Text Available The fatigue life prediction of welded joints based on S-N curves in conjunction with nominal stresses generally is not reliable. Stress distribution in welded area affected by geometrical inhomogeneity, irregular welded surface and weld toe radius is quite complex, so the local (structural stress concept is accepted in recent papers. The aim of this paper is to determine the stress distribution in plate type aluminum welded joints, to analyze the reliability of TSA (Thermal Stress Analysis in this kind of investigations, and to obtain numerical values for stress concentration factors for practical use. Stress distribution in aluminum butt and fillet welded joints is determined by using the three different methods: strain gauges measurement, thermal stress analysis and FEM. Obtained results show good agreement - the TSA mutually confirmed the FEM model and stresses measured by strain gauges. According to obtained results, it may be stated that TSA, as a relatively new measurement technique may in the future become a standard tool for the experimental investigation of stress concentration and fatigue in welded joints that can help to develop more accurate numerical tools for fatigue life prediction.

  13. Thermographic Analysis of Stress Distribution in Welded Joints

    Science.gov (United States)

    Piršić, T.; Krstulović Opara, L.; Domazet, Ž.

    2010-06-01

    The fatigue life prediction of welded joints based on S-N curves in conjunction with nominal stresses generally is not reliable. Stress distribution in welded area affected by geometrical inhomogeneity, irregular welded surface and weld toe radius is quite complex, so the local (structural) stress concept is accepted in recent papers. The aim of this paper is to determine the stress distribution in plate type aluminum welded joints, to analyze the reliability of TSA (Thermal Stress Analysis) in this kind of investigations, and to obtain numerical values for stress concentration factors for practical use. Stress distribution in aluminum butt and fillet welded joints is determined by using the three different methods: strain gauges measurement, thermal stress analysis and FEM. Obtained results show good agreement - the TSA mutually confirmed the FEM model and stresses measured by strain gauges. According to obtained results, it may be stated that TSA, as a relatively new measurement technique may in the future become a standard tool for the experimental investigation of stress concentration and fatigue in welded joints that can help to develop more accurate numerical tools for fatigue life prediction.

  14. Cyclic behavior of Ta at low temperatures under low stresses and strain rates

    International Nuclear Information System (INIS)

    Stickler, C.; Knabl, W.; Stickler, R.; Weiss, B.

    2001-01-01

    The cyclic stress-strain response of recrystallized technically pure Ta was investigated in the stress range well below the technical flow stress, for temperatures between 173 K and 423 K, at loading rates between 0.042 Mpa/s and 4.2 Mpa/s with resulting plastic strains between -5 up to 1X10 -2 . Cyclic hardening-softening curves were recorded in multiple step tests. Cyclic stress strain curves exhibit straight portions associated with microplastic, transition range and macroplastic deformation mechanisms. The microstructure of the deformed specimens was characterized by SEM and TEM techniques which revealed typical dislocation arrangements related to plastic strain amplitudes and test temperatures. A mechanism of the microstrain deformation of Ta is proposed. (author)

  15. Temperature and strain-rate dependence of the flow stress of ultrapure tantalum single crystals

    International Nuclear Information System (INIS)

    Werner, M.

    1987-01-01

    Measurements of the temperature dependence of the cyclic flow stress of ultrapure tantalum single crystals (RRR >∼ 14000) are extended to lower temperatures. After cyclic deformation well into saturation at 400 K, the temperature dependence of the flow stress is measured between 80 and 450 K at five different plastic resolved shear-strain rates, ε pl , in the range 2 x 10 -5 to 6 x 10 -3 s -1 . Below a critical temperature T k the flow stress is dominantly controlled by the mobility of screw dislocations. A recent theory of Seeger describes the 'thermal' component, σ*, of the flow stress (resolved shear stress) in the temperature and stress regime where the strain rate is determined by the formation and migration of kink pairs. The analytical expressions are valid in well-defined ranges of stress and temperature. The evaluation of the experimental data yields a value for the formation enthalpy of two isolated kinks 2H k = 0.98 eV. From the low-stress (σ* k = 2.0 x 10 -6 m 2 s -1 . The product of the density of mobile screw dislocations and the distance between insurmountable obstacles is found to be 2 x 10 -5 m -1 . The stress dependence of the kink-pair formation enthalpy H kp follows the theoretically predicted curve in the elastic-interaction stress regime. At the transition to the line-tension approximation (near σ* ∼ 80 MPa) the activation volume increases rather abruptly. Moreover, the quantitative analysis involves kinks other than those of minimum height. The most likely candidates are kinks on {211} planes. (author)

  16. Financial strain is associated with increased oxidative stress levels: the Women's Health and Aging Studies.

    Science.gov (United States)

    Palta, Priya; Szanton, Sarah L; Semba, Richard D; Thorpe, Roland J; Varadhan, Ravi; Fried, Linda P

    2015-01-01

    Elevated oxidative stress levels may be one mechanism contributing to poor health outcomes. Financial strain and oxidative stress are each predictors of morbidity and mortality, but little research has investigated their relationship. Community-dwelling older adults (n = 728) from the Women's Health and Aging Studies I and II were included in this cross-sectional analysis. Financial strain was ascertained as an ordinal response to: "At the end of the month, do you have more than enough money left over, just enough, or not enough?" Oxidative stress was measured using serum protein carbonyl concentrations. Linear regression was used to quantify the relationship between financial strain and oxidative stress. Participants who reported high financial strain exhibited 13.4% higher protein carbonyl concentrations compared to individuals who reported low financial strain (p = 0.002). High financial strain may be associated with increased oxidative stress, suggesting that oxidative stress could mediate associations between financial strain and poor health. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Stress/strain/time properties of highly compacted bentonite

    International Nuclear Information System (INIS)

    Pusch, R.

    1983-05-01

    In this paper, a recently developed creep theory based on statistical mechanics has been used to analyze a number of experimental creep curves, the conclusion being that the creep behavior of dense MX-80 bentonite is in agreement with the physical model, and that the average bond strength is within the hydrogen bond region. The latter conclusion thus indicates that interparticle displacements leading to macroscopic creep takes place in interparticle and intraparticle water lattices. These findings were taken as a justification to apply the creep theory to a prediction of the settlement over a one million year period. It gave an estimated settlement of 1 cm at maximum, which is of no practical significance. The thixotropic and viscous properties of highly compacted bentonite present certain difficulties in the determination and evaluation of the stress/strain/time parameters that are required for ordinary elastic and elasto-plastic analyses. Still, these parameters could be sufficiently well identified to allow for a preliminary estimation of the stresses induced in the metal canisters by slight rock displacements. The analysis, suggests that a 1 cm rapid shear perpendicular to the axes of the canisters can take place without harming them. (author)

  18. Stresses and strains in thick perforated orthotropic plates

    Science.gov (United States)

    A. Alshaya; John Hunt; R. Rowlands

    2016-01-01

    Stress and strain concentrations and in-plane and out-of-plane stress constraint factors associated with a circular hole in thick, loaded orthotropic composite plates are determined by three-dimensional finite element method. The plate has essentially infinite in-plane geometry but finite thickness. Results for Sitka Spruce wood are emphasized, although some for carbon...

  19. 3D characterization of coal strains induced by compression, carbon dioxide sorption, and desorption at in-situ stress conditions

    International Nuclear Information System (INIS)

    Pone, J. Denis N.; Halleck, Phillip M.; Mathews, Jonathan P.

    2010-01-01

    Sequestration of carbon dioxide in unmineable coal seams is an option to combat climate change and an opportunity to enhance coalbed methane production. Prediction of sequestration potential in coal requires characterization of porosity, permeability, sorption capacity and the magnitude of swelling due to carbon dioxide uptake or shrinkage due to methane and water loss. Unfortunately, the majority of data characterizing coal-gas systems have been obtained from powdered, unconfined coal samples. Little is known about confined coal behavior during carbon dioxide uptake and methane desorption. The present work focuses on the characterization of lithotype specific deformation, and strain behavior during CO 2 uptake at simulated in-situ stress conditions. It includes the evaluation of three-dimensional strain induced by the confining stress, the sorption, and the desorption of carbon dioxide. X-ray computed tomography allowed three-dimensional characterization of the bituminous coal deformation samples under hydrostatic stress. The application of 6.9 MPa of confining stress contributes an average of - 0.34% volumetric strain. Normal strains due to confining stress were - 0.08%, - 0.15% and - 0.11% along the x, y and z axes respectively. Gas injection pressure was 3.1 MPa and the excess sorption was 0.85 mmol/g. Confined coal exposed to CO 2 for 26 days displays an average volumetric expansion of 0.4%. Normal strains due to CO 2 sorption were 0.11%, 0.22% and 0.11% along x, y and z axes. Drainage of the CO 2 induced an average of - 0.33% volumetric shrinkage. Normal strains due to CO 2 desorption were - 0.23%, - 0.08% and - 0.02% along x, y and z axes. Alternating positive and negative strain values observed along the sample length during compression, sorption and desorption respectively emphasized that both localized compression/compaction and expansion of coal will occur during CO 2 sequestration. (author)

  20. Stress tolerance and growth physiology of yeast strains from the Brazilian fuel ethanol industry.

    Science.gov (United States)

    Della-Bianca, B E; Gombert, A K

    2013-12-01

    Improved biofuels production requires a better understanding of industrial microorganisms. Some wild Saccharomyces cerevisiae strains, isolated from the fuel ethanol industry in Brazil, present exceptional fermentation performance, persistence and prevalence in the harsh industrial environment. Nevertheless, their physiology has not yet been systematically investigated. Here we present a first systematic evaluation of the widely used industrial strains PE-2, CAT-1, BG-1 and JP1, in terms of their tolerance towards process-related stressors. We also analyzed their growth physiology under heat stress. These strains were evaluated in parallel to laboratory and baker's strains. Whereas the industrial strains performed in general better than the laboratory strains under ethanol or acetic acid stresses and on industrial media, high sugar stress was tolerated equally by all strains. Heat and low pH stresses clearly distinguished fuel ethanol strains from the others, indicating that these conditions might be the ones that mostly exert selective pressure on cells in the industrial environment. During shake-flask cultivations using a synthetic medium at 37 °C, industrial strains presented higher ethanol yields on glucose than the laboratory strains, indicating that they could have been selected for this trait-a response to energy-demanding fermentation conditions. These results might be useful to guide future improvements of large-scale fuel ethanol production via engineering of stress tolerance traits in other strains, and eventually also for promoting the use of these fuel ethanol strains in different industrial bioprocesses.

  1. Measurement of Plastic Stress and Strain for Analytical Method Verification (MSFC Center Director's Discretionary Fund Project No. 93-08)

    Science.gov (United States)

    Price, J. M.; Steeve, B. E.; Swanson, G. R.

    1999-01-01

    The analytical prediction of stress, strain, and fatigue life at locations experiencing local plasticity is full of uncertainties. Much of this uncertainty arises from the material models and their use in the numerical techniques used to solve plasticity problems. Experimental measurements of actual plastic strains would allow the validity of these models and solutions to be tested. This memorandum describes how experimental plastic residual strain measurements were used to verify the results of a thermally induced plastic fatigue failure analysis of a space shuttle main engine fuel pump component.

  2. A prospective cohort study of deficient maternal nurturing attitudes predicting adulthood work stress independent of adulthood hostility and depressive symptoms.

    Science.gov (United States)

    Hintsanen, M; Kivimäki, M; Hintsa, T; Theorell, T; Elovainio, M; Raitakari, O T; Viikari, J S A; Keltikangas-Järvinen, L

    2010-09-01

    Stressful childhood environments arising from deficient nurturing attitudes are hypothesized to contribute to later stress vulnerability. We examined whether deficient nurturing attitudes predict adulthood work stress. Participants were 443 women and 380 men from the prospective Cardiovascular Risk in Young Finns Study. Work stress was assessed as job strain and effort-reward imbalance in 2001 when the participants were from 24 to 39 years old. Deficient maternal nurturance (intolerance and low emotional warmth) was assessed based on mothers' reports when the participants were at the age of 3-18 years and again at the age of 6-21 years. Linear regressions showed that deficient emotional warmth in childhood predicted lower adulthood job control and higher job strain. These associations were not explained by age, gender, socioeconomic circumstances, maternal mental problems or participant hostility, and depressive symptoms. Deficient nurturing attitudes in childhood might affect sensitivity to work stress and selection into stressful work conditions in adulthood. More attention should be paid to pre-employment factors in work stress research.

  3. The effect of hydrogen on the multiaxial stress-strain behavior of titanium tubing

    International Nuclear Information System (INIS)

    Lentz, C.W.; Hecker, S.S.; Koss, D.A.; Stout, M.G.

    1983-01-01

    The influence of internal hydrogen on the multiaxial stress-strain behavior of commercially pure titanium has been studied. Thin-walled specimens containing either 20 or 1070 ppm hydrogen were tested at constant stress ratios in combined tension and internal pressure. Hydrogen lowers the yield strength but has no significant effect on strain hardening behavior at strains epsilon greater than or equal to 0.02. Thus, hydrogen embrittlement under plain strain or equibiaxial loading is not a consequence of changes of flow behavior. The yielding behavior is described well by Hill's quadratic yield criterion. As measured mechanically and pole figure analysis, the plastic anisotropy changes with deformation in a manner which depends on stress state. A strain dependent, texture-induced strengthening effect in equibiaxial tension an enhanced strain hardening rate

  4. Strain localization and elastic-plastic coupling during deformation of porous sandstone

    Energy Technology Data Exchange (ETDEWEB)

    Dewers, Thomas A. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Geomechanics Dept.; Issen, Kathleen A. [Clarkson Univ., Potsdam, NY (United States). Mechanical and Aeronautical Engineering; Holcomb, David J. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Geomechanics Dept.; Olsson, William A. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Geomechanics Dept.; Ingraham, Mathew D. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Geomechanics Dept.

    2017-09-12

    Results of axisymmetric compression tests on weak, porous Castlegate Sandstone (Cretaceous, Utah, USA), covering a range of dilational and compactional behaviors, are examined for localization behavior. Assuming isotropy, bulk and shear moduli evolve as increasing functions of mean stress and Mises equivalent shear stress respectively, and as decreasing functions of work-conjugate plastic strains. Acoustic emissions events located during testing show onset of localization and permit calculation of observed shear and low-angle compaction localization zones, or bands, as localization commences. Total strain measured experimentally partitions into: A) elastic strain with constant moduli, B) elastic strain due to stress dependence of moduli, C) elastic strain due to moduli degradation with increasing plastic strain, and D) plastic strain. The third term is the elastic-plastic coupling strain, and though often ignored, contributes significantly to pre-failure total strain for brittle and transitional tests. Constitutive parameters and localization predictions derived from experiments are compared to theoretical predictions. In the brittle regime, predictions of band angles (angle between band normal and maximum compression) demonstrate good agreement with observed shear band angles. Compaction localization was observed in the transitional regime in between shear localization and spatially pervasive compaction, over a small range of mean stresses. In contrast with predictions however, detailed acoustic emissions analyses in this regime show low angle, compaction-dominated but shear-enhanced, localization.

  5. Effect of nitrogen concentration and temperature on the critical resolved shear stress and strain rate sensitivity of vanadium

    International Nuclear Information System (INIS)

    Rehbein, D.K.

    1980-08-01

    The critical resolved shear stress and strain rate sensitivity were measured over the temperature range from 77 to 400 0 K for vanadium-nitrogen alloys containing from 0.0004 to 0.184 atom percent nitrogen. These properties were found to be strongly dependent on both the nitrogen concentration and temperature. The following observations were seen in this investigation: the overall behavior of the alloys for the temperature and concentration range studied follows a form similar to that predicted; the concentration dependence of the critical resolved shear stress after subtracting the hardening due to the pure vanadium lattice obeys Labusch's c/sup 2/3/ relationship above 200 0 K and Fleischer's c/sup 1/2/ relationship below 200 0 K; the theoretical predictions of Fleischer's model for the temperature dependence of the critical resolved shear stress are in marked disagreement with the behavior found; and the strain rate sensitivity, par. delta tau/par. deltaln γ, exhibits a peak at approximately 100 0 K that decreases in height as the nitrogen concentration increases. A similar peak has been observed in niobium by other investigators but the effect of concentration on the peak height is quite different

  6. Geomechanical Modeling of CO2 Injection Site to Predict Wellbore Stresses and Strains for the Design of Wellbore Seal Repair Materials

    Science.gov (United States)

    Sobolik, S. R.; Gomez, S. P.; Matteo, E. N.; Stormont, J.

    2015-12-01

    This paper will present the results of large-scale three-dimensional calculations simulating the hydrological-mechanical behavior of a CO2injection reservoir and the resulting effects on wellbore casings and sealant repair materials. A critical aspect of designing effective wellbore seal repair materials is predicting thermo-mechanical perturbations in local stress that can compromise seal integrity. The DOE-NETL project "Wellbore Seal Repair Using Nanocomposite Materials," is interested in the stress-strain history of abandoned wells, as well as changes in local pressure, stress, and temperature conditions that accompany carbon dioxide injection or brine extraction. Two distinct computational models comprise the current modeling effort. The first is a field scale model that uses the stratigraphy, material properties, and injection history from a pilot CO2injection operation in Cranfield, MS to develop a stress-strain history for wellbore locations from 100 to 400 meters from an injection well. The results from the field scale model are used as input to a more detailed model of a wellbore casing. The 3D wellbore model examines the impacts of various loading scenarios on a casing structure. This model has been developed in conjunction with bench-top experiments of an integrated seal system in an idealized scaled wellbore mock-up being used to test candidate seal repair materials. The results from these models will be used to estimate the necessary mechanical properties needed for a successful repair material. This material is based upon work supported by the US Department of Energy (DOE) National Energy Technology Laboratory (NETL) under Grant Number DE-FE0009562. This project is managed and administered by the Storage Division of the NETL and funded by DOE/NETL and cost-sharing partners. This work was funded in part by the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science

  7. Perceived exertion is as effective as the perceptual strain index in predicting physiological strain when wearing personal protective clothing.

    Science.gov (United States)

    Borg, David N; Costello, Joseph T; Bach, Aaron J; Stewart, Ian B

    2017-02-01

    The perceptual strain index (PeSI) has been shown to overcome the limitations associated with the assessment of the physiological strain index (PSI), primarily the need to obtain a core body temperature measurement. The PeSI uses the subjective scales of thermal sensation and perceived exertion (RPE) to provide surrogate measures of core temperature and heart rate, respectively. Unfortunately, thermal sensation has shown large variability in providing an estimation of core body temperature. Therefore, the primary aim of this study was to determine if thermal comfort improved the ability of the PeSI to predict the PSI during exertional-heat stress. Eighteen healthy males (age: 23.5years; body mass: 79.4kg; maximal aerobic capacity: 57.2ml·kg -1 ·min -1 ) wore four different chemical/biological protective garments while walking on treadmill at a low (temperatures 21, 30 or 37°C. Trials were terminated when heart rate exceeded 90% of maximum, when core body temperature reached 39°C, at 120min or due to volitional fatigue. Core body temperature, heart rate, thermal sensation, thermal comfort and RPE were recorded at 15min intervals and at termination. Multiple statistical methods were used to determine the most accurate perceptual predictor. Significant moderate relationships were observed between the PeSI (r=0.74; pestimate physiological strain during exertional-heat stress under these work conditions. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Effect of nonlinear stress-strain relationship on bending strength of isotropic graphite

    International Nuclear Information System (INIS)

    Arai, Taketoshi; Oku, Tatsuo

    1978-05-01

    Four-point bending tests were made on rectangular isotropic 7477PT graphite specimens of different sizes to observe the relation between load and outermost fiber strain. Analytical methods, allowing for nonlinear stress-strain relationships different between tension and compression, were developed for calculating the fiber stress distribution in a beam and the failure probability based on the Weibull statistical theory for bending fracture. With increase of the stress, the stress-strain curves for tension deviate from the linearity and also from those for compression. The true bending strengths of the rectangular bars are 10 -- 20 percent lower than elastic bending strengths. Revised Weibull theory gives failure probability distributions agreeing with measured ones, compared with the theory based on elastic behavior. (auth.)

  9. The Strain and Grain Size Dependence of the Flow Stress of Copper

    DEFF Research Database (Denmark)

    Hansen, Niels; Ralph, B.

    1982-01-01

    Tensile stress strain data for 99.999% copper at room and liquid nitrogen temperature as a function of grain size are presented together with some microstructural observations made by transmission electron microscopy. It is shown that the flow stress data, at constant strain may be expressed...

  10. Stress and strain fluctuations in plastic deformation of crystals with disordered microstructure

    International Nuclear Information System (INIS)

    Kapetanou, O; Zaiser, M; Weygand, D

    2015-01-01

    We investigate the spatial structure of stress and strain patterns in crystal plasticity. To this end, we combine theoretical arguments with plasticity simulations using three different models: (i) a generic model of bulk crystal plasticity with stochastic evolution of the local microstructure, (ii) a 2D discrete dislocation simulation assuming single-slip deformation in a bulk crystal, and (iii) a 3D discrete dislocation model for deformation of micropillars in multiple slip. For all three models we investigate the scale-dependent magnitude of local fluctuations of internal stress and plastic strain, and we determine the spatial structure of the respective auto- and cross-correlation functions. The investigations show that, in the course of deformation, nontrivial long range correlations emerge in the stress and strain patterns. We investigate the influence of boundary conditions on the observed spatial patterns of stress and strain, and discuss implications of our findings for larger-scale plasticity models. (paper)

  11. Anti-Inflammatory Lactobacillus rhamnosus CNCM I-3690 Strain Protects against Oxidative Stress and Increases Lifespan in Caenorhabditis elegans

    Science.gov (United States)

    Grompone, Gianfranco; Martorell, Patricia; Llopis, Silvia; González, Núria; Genovés, Salvador; Mulet, Ana Paula; Fernández-Calero, Tamara; Tiscornia, Inés; Bollati-Fogolín, Mariela; Chambaud, Isabelle; Foligné, Benoit; Montserrat, Agustín; Ramón, Daniel

    2012-01-01

    Numerous studies have shown that resistance to oxidative stress is crucial to stay healthy and to reduce the adverse effects of aging. Accordingly, nutritional interventions using antioxidant food-grade compounds or food products are currently an interesting option to help improve health and quality of life in the elderly. Live lactic acid bacteria (LAB) administered in food, such as probiotics, may be good antioxidant candidates. Nevertheless, information about LAB-induced oxidative stress protection is scarce. To identify and characterize new potential antioxidant probiotic strains, we have developed a new functional screening method using the nematode Caenorhabditis elegans as host. C. elegans were fed on different LAB strains (78 in total) and nematode viability was assessed after oxidative stress (3 mM and 5 mM H2O2). One strain, identified as Lactobacillus rhamnosus CNCM I-3690, protected worms by increasing their viability by 30% and, also, increased average worm lifespan by 20%. Moreover, transcriptomic analysis of C. elegans fed with this strain showed that increased lifespan is correlated with differential expression of the DAF-16/insulin-like pathway, which is highly conserved in humans. This strain also had a clear anti-inflammatory profile when co-cultured with HT-29 cells, stimulated by pro-inflammatory cytokines, and co-culture systems with HT-29 cells and DC in the presence of LPS. Finally, this Lactobacillus strain reduced inflammation in a murine model of colitis. This work suggests that C. elegans is a fast, predictive and convenient screening tool to identify new potential antioxidant probiotic strains for subsequent use in humans. PMID:23300685

  12. Anti-inflammatory Lactobacillus rhamnosus CNCM I-3690 strain protects against oxidative stress and increases lifespan in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Gianfranco Grompone

    Full Text Available Numerous studies have shown that resistance to oxidative stress is crucial to stay healthy and to reduce the adverse effects of aging. Accordingly, nutritional interventions using antioxidant food-grade compounds or food products are currently an interesting option to help improve health and quality of life in the elderly. Live lactic acid bacteria (LAB administered in food, such as probiotics, may be good antioxidant candidates. Nevertheless, information about LAB-induced oxidative stress protection is scarce. To identify and characterize new potential antioxidant probiotic strains, we have developed a new functional screening method using the nematode Caenorhabditis elegans as host. C. elegans were fed on different LAB strains (78 in total and nematode viability was assessed after oxidative stress (3 mM and 5 mM H(2O(2. One strain, identified as Lactobacillus rhamnosus CNCM I-3690, protected worms by increasing their viability by 30% and, also, increased average worm lifespan by 20%. Moreover, transcriptomic analysis of C. elegans fed with this strain showed that increased lifespan is correlated with differential expression of the DAF-16/insulin-like pathway, which is highly conserved in humans. This strain also had a clear anti-inflammatory profile when co-cultured with HT-29 cells, stimulated by pro-inflammatory cytokines, and co-culture systems with HT-29 cells and DC in the presence of LPS. Finally, this Lactobacillus strain reduced inflammation in a murine model of colitis. This work suggests that C. elegans is a fast, predictive and convenient screening tool to identify new potential antioxidant probiotic strains for subsequent use in humans.

  13. Cyclic Elastoplastic Performance of Aluminum 7075-T6 Under Strain- and Stress-Controlled Loading

    Science.gov (United States)

    Agius, Dylan; Wallbrink, Chris; Kourousis, Kyriakos I.

    2017-12-01

    Elastoplastic investigations of aerospace aluminum are important in the development of an understanding of the possible cyclic transient effects and their contribution to the material performance under cyclic loading. Cyclic plasticity can occur in an aerospace aluminum component or structure depending on the loading conditions and the presence of external and internal discontinuities. Therefore, it is vital that the cyclic transient effects of aerospace aluminum are recognized and understood. This study investigates experimentally the cyclic elastoplastic performance of aluminum 7075-T6 loaded in symmetric strain control, and asymmetric stress and strain control. A combination of cyclic hardening and softening was noticed from high strain amplitude symmetric strain-controlled tests and at low stress amplitude asymmetric stress-controlled tests. From asymmetric strain control results, the extent of mean stress relaxation depended on the size of the strain amplitude. Additionally, saturation of the ratcheting strain (plastic shakedown) was also found to occur during asymmetric stress control tests. The experimental results were further analyzed using published microstructure research from the past two decades to provide added explanation of the micro-mechanism contribution to the cyclic transient behavior.

  14. Effects of mean strain on the random cyclic stress-strain relations of 0Cr18Ni10Ti pipe steel

    International Nuclear Information System (INIS)

    Zhao Yongxiang; Yang Bing

    2005-01-01

    Experimental study is performed for the effects of the mean strain on the random cyclic stress-strain relations of the new nuclear material, 0Cr18Ni10Ti pipe steel. From saving the size of specimens, an improved maximum likelihood fatigue test method is proposed to operate the present strain-controlled fatigue tests. Six straining ratios, -1, -0.52, -0.22, 0.029, 0.18, and 0.48, respectively, are applied to study the effects. Fatigue test has been carried out on totally 104 specimens. The test results reveal that the material exhibits a Masing behaviour and the saturation hysteresis loops under the six ratios hold an entirely relaxation effect of mean stress. There is no effectively method for the description of the mean straining effects under this case. Previous Zhao's random stress-strain relations are therefore applied to characterizing effectively the scattering test data under the six ratios on a basis of Ramberg-Osgood equation. Then the effects of the ratios are analyzed respectively on the average stress amplitudes, the standard deviations of the stress amplitudes, and the stress amplitudes under different survival probabilities and confidences. The results reveal that the ratios act a relatively decreasing effect to the stress amplitudes under higher survival probabilities and confidences. The strongest effect appears at the ratio of 0.029, and a weaker effect acts as the distance increase of the ratio from the zero. In addition, it is indicated that the effects from the sense of average fatigue lives might result in a wrong conclusion. The effects can be appropriately assessed from a probabilistic sense to take into account the scattering regularity of test data and the size of sampling. (author)

  15. Effects of strain rate, stress condition and environment on iodine embrittlement of Ziracloy-2

    International Nuclear Information System (INIS)

    Une, K.

    1979-01-01

    Iodine stress corrosion cracking (SCC) susceptibility of Zircaloy became higher with decreasing strain rate. Critical strain rate, below which high SCC severity was observed, substantially depended on Zircaloy stress condition. This strain rate (7 x 10 -3 min -1 ) under plane strain condition was about 3.5 times as fast as that (2 x 10 -3 min -1 ) under uniaxial condition. The maximum iodine embrittlement in Zircaloy was found in stress ratio α (axial/tangential stress) range of 0.5 to 0.7. No embrittlement occurred at α = infinity because of its texture effect. The SCC fracture stresses were about 39 kg/mm 2 for unirradiated and stress-relieved material, and about 34 kg/mm 2 for recrystallized material, whose ratios to yield strength of each material were 0.8 and 1.2. Impurity gases of oxygen and moisture in the iodine had the effects of reducing Zircaloy SCC susceptibility. Stress-relieved material was more sensitive to environmental impurities than recrystallized material

  16. Stress, strain, and temperature induced permeability changes in potential repository rocks

    International Nuclear Information System (INIS)

    Heard, H.C.; Duba, A.

    1977-01-01

    Work is in progress to assess the permeability characteristics of coarse-grained igneous rocks as affected by pressure, deviatoric stress, and temperature. In order to predict the long-term behavior of these rocks, both virgin and fractured, permeability and all principal strains resulting from an imposed deviatoric stress under various simulated lithostatic pressures are being measured. In addition, compressional as well as shear velocities and electrical conductivity are being evaluated along these principal directions. These simultaneous measurements are being made initially at 25 0 C on a 15 cm diameter by 30 cm long sample in a pressure apparatus controlled by a mini-computer. Correlation of these data with similar field observations should then allow simplified exploration for a suitable repository site as well as the prediction of the response of a mined cavity with both distance and time at this site. After emplacement of the waste canisters, the mechanical stability and hydrologic integrity of this mined repository will be directly influenced by the fracturing of the surrounding rock which results from local temperature differences and the thermal expansion of that rock. Temperatures (and, hence, these differences) in the vicinity of the repository are expected to be affected by the presence of pore fluids (single- or two-phase) in the rock, the heat capacity and the thermal conductivity of this system. In turn, these are all dependent upon lithostatic pressure, pore pressure, and stress. Thermal expansion (and fracturing) will also be affected by the lithostatic (and effective) pressure, the deviatoric stress field, and the initial anisotropy of the rock

  17. Strain histograms are equal to strain ratios in predicting malignancy in breast tumours

    DEFF Research Database (Denmark)

    Carlsen, Jonathan Frederik; Ewertsen, Caroline; Sletting, Susanne

    2017-01-01

    Objectives: To assess whether strain histograms are equal to strain ratios in predicting breast tumour malignancy and to see if either could be used to upgrade Breast Imaging Reporting and Data System (BI-RADS) 3 tumours for immediate biopsy. Methods: Ninety-nine breast tumours were examined using...

  18. Influence of stress, temperature, and strain on calcite twins constrained by deformation experiments

    Science.gov (United States)

    Rybacki, E.; Evans, B.; Janssen, C.; Wirth, R.; Dresen, G.

    2013-08-01

    A series of low-strain triaxial compression and high-strain torsion experiments were performed on marble and limestone samples to examine the influence of stress, temperature, and strain on the evolution of twin density, the percentage of grains with 1, 2, or 3 twin sets, and the twin width—all parameters that have been suggested as either paleopiezometers or paleothermometers. Cylindrical and dog-bone-shaped samples were deformed in the semibrittle regime between 20 °C and 350 °C, under confining pressures of 50-400 MPa, and at strain rates of 10- 4-10- 6 s- 1. The samples sustained shear stresses, τ, up to 280 MPa, failing when deformed to shear strains γ > 1. The mean width of calcite twins increased with both temperature and strain, and thus, measurement of twin width provides only a rough estimation of peak temperature, unless additional constraints on deformation are known. In Carrara marble, the twin density, NL (no of twins/mm), increased as the rock hardened with strain and was approximately related to the peak differential stress, σ (MPa), by the relation σ=19.5±9.8√{N}. Dislocation tangles occurred along twin boundaries, resulting in a complicated cell structure, which also evolved with stress. As previously established, the square root of dislocation density, observed after quench, also correlated with peak stress. Apparently, both twin density and dislocation cell structure are important state variables for describing the strength of these rocks.

  19. Investigation of Stress-Strain-Time Relationships of Concrete Filled Steel Tube Columns

    Directory of Open Access Journals (Sweden)

    Mutlu Seçer

    2010-01-01

    Full Text Available In this study, time dependent creep and shrinkage behaviors of concrete filled steel box section columns are investigated by using various methods. Time dependent behavior is examined by using effective modulus method, age-adjusted effective modulus method, creep rate method and Dischinger method. Shrinkage and creep strains are modeled using ACI 209 specification. In the study, in order to investigate time dependent behavior numerically, a concrete filled steel box section column is selected in a twenty story building and the time dependent stress decrease in concrete and stress increase in steel box section and the changes in strain components are calculated. Stress – time, strain – time and strain components – time graphics are shown and the advantages and the disadvantages of the numerical methods in modeling the time dependent behavior are revealed respectively.

  20. Intraspecies diversity of Lactobacillus sakei response to oxidative stress and variability of strain performance in mixed strains challenges.

    Science.gov (United States)

    Guilbaud, Morgan; Zagorec, Monique; Chaillou, Stéphane; Champomier-Vergès, Marie-Christine

    2012-04-01

    Lactobacillus sakei is a meat-borne lactic acid bacterium species exhibiting a wide genomic diversity. We have investigated the diversity of response to various oxidative compounds, between L. sakei strains, among a collection representing the genomic diversity. We observed various responses to the different compounds as well as a diversity of response depending on the aeration conditions used for cell growth. A principal component analysis revealed two main phenotypic groups, partially correlating with previously described genomic clusters. We designed strains mixes composed of three different strains, in order to examine the behavior of each strain, when cultured alone or in the presence of other strains. The strains composing the mixtures were chosen as diverse as possible, i.e. exhibiting diverse responses to oxidative stress and belonging to different genomic clusters. Growth and survival rates of each strain were monitored under various aeration conditions, with or without heme supplementation. The results obtained suggest that some strains may act as "helper" or "burden" strains depending on the oxidative conditions encountered during incubation. This study confirms that resistance to oxidative stress is extremely variable within the L. sakei species and that this property should be considered when investigating starter performance in the complex meat bacterial ecosystems. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. 3D characterization of coal strains induced by compression, carbon dioxide sorption, and desorption at in-situ stress conditions

    Energy Technology Data Exchange (ETDEWEB)

    Pone, J. Denis N.; Halleck, Phillip M.; Mathews, Jonathan P. [Department of Energy and Mineral Engineering and The EMS Energy Institute, The Pennsylvania State University, University Park, PA 16802 (United States)

    2010-06-01

    Sequestration of carbon dioxide in unmineable coal seams is an option to combat climate change and an opportunity to enhance coalbed methane production. Prediction of sequestration potential in coal requires characterization of porosity, permeability, sorption capacity and the magnitude of swelling due to carbon dioxide uptake or shrinkage due to methane and water loss. Unfortunately, the majority of data characterizing coal-gas systems have been obtained from powdered, unconfined coal samples. Little is known about confined coal behavior during carbon dioxide uptake and methane desorption. The present work focuses on the characterization of lithotype specific deformation, and strain behavior during CO{sub 2} uptake at simulated in-situ stress conditions. It includes the evaluation of three-dimensional strain induced by the confining stress, the sorption, and the desorption of carbon dioxide. X-ray computed tomography allowed three-dimensional characterization of the bituminous coal deformation samples under hydrostatic stress. The application of 6.9 MPa of confining stress contributes an average of - 0.34% volumetric strain. Normal strains due to confining stress were - 0.08%, - 0.15% and - 0.11% along the x, y and z axes respectively. Gas injection pressure was 3.1 MPa and the excess sorption was 0.85 mmol/g. Confined coal exposed to CO{sub 2} for 26 days displays an average volumetric expansion of 0.4%. Normal strains due to CO{sub 2} sorption were 0.11%, 0.22% and 0.11% along x, y and z axes. Drainage of the CO{sub 2} induced an average of - 0.33% volumetric shrinkage. Normal strains due to CO{sub 2} desorption were - 0.23%, - 0.08% and - 0.02% along x, y and z axes. Alternating positive and negative strain values observed along the sample length during compression, sorption and desorption respectively emphasized that both localized compression/compaction and expansion of coal will occur during CO{sub 2} sequestration. (author)

  2. PNNL Stress/Strain Correlation for Zircaloy

    Energy Technology Data Exchange (ETDEWEB)

    Geelhood, Kenneth J.; Beyer, Carl E.; Luscher, Walter G.

    2008-07-18

    Pacific Northwest National Laboratory (PNNL) was tasked with incorporating cladding mechanical property data into the Nuclear Regulatory Commission (NRC) fuel codes, FRAPCON-31 and FRAPTRAN2, by the NRC Office of Nuclear Reactor Research. The objective of that task was to create a mechanical model that can calculate true stress, true strain, and the possible failure of the fuel rod cladding based on uniaxial test data.

  3. Precursory accelerated Benioff strain in the Aegean area

    Energy Technology Data Exchange (ETDEWEB)

    Papazachos, C.; Papazachos, B. [Thessaloniki Univ., Thessaloniki (Greece). Geophysical Laboratory

    2001-04-01

    Accelerating seismic crustal information due to the occurrence of intermediate magnitude earthquakes leading to the generation of a main shock has recently been considered a critical phenomenon. This hypothesis is tested by the use of a large sample concerning the Aegean area. Elliptical critical regions for fifty-two strong main shocks, which have occurred in the Aegean area since 1930, have been identified by applying a power-law relation between the cumulative Benioff strain and the time to the main rupture. Empirical relations between the parameters of this model have been further improved by the use of a large data sample. The spatial distribution of pre shocks with respect to the main shock is examined and its tectonic significance is pointed out. The possibility of using the results of this work to predict the epicentre, magnitude and time of ensuing main shocks are discussed and further work towards this goal is suggested.

  4. Development of transformation bands in TiNi SMA for various stress and strain rates studied by a fast and sensitive infrared camera

    International Nuclear Information System (INIS)

    Pieczyska, E A; Kulasinski, K; Tobushi, H

    2013-01-01

    TiNi shape memory alloy (SMA) was subjected to tension at various strain rates for stress- and strain-controlled tests. The nucleation, development and saturation of the stress-induced martensitic transformation were investigated, based on the specimen temperature changes, measured by a fast and sensitive infrared camera. It was found that the initial, macroscopically homogeneous phase transformation occurs at the same stress level for all strain rates applied, regardless of the loading manner, while the stress of the localized transformation increases with the strain rate. At higher strain rate, a more dynamic course of the transformation process was observed, revealed in the creation of numerous fine transformation bands. An inflection point was noticed on the stress–strain curve, dividing the transformation range into two stages: the first heterogeneous, where transformation bands nucleate and evolve throughout the sample; the second, where the bands overlap, related to significant temperature increase and an upswing region of the curve. In the final part of the SMA loading a decrease of the average sample temperature revealed the saturation stage of the transformation. It was also observed that nucleation of the localized martensitic forward transformation takes place in the weakest area of the sample in both approaches, whereas the reverse transformation always initiates in its central part. (paper)

  5. The effects of strain induced martensite on stress corrosion cracking in AISI 304 stainless steel

    International Nuclear Information System (INIS)

    Lee, W. S.; Kwon, S. I.

    1989-01-01

    The effects of strain induced martensite on stress corrosion cracking behavior in AISI 304 stainless steel in boiling 42 wt% MgCl 2 solution were investigated using monotonic SSRT and cyclic SSRT with R=0.1 stress ratio. As the amount of pre-strain increased, the failure time of the specimens in monotonic SSRT test decreased independent of the existence of strain induced martensite. The strain induced martensite seems to promote the crack initiation but to retard the crack propagation during stress corrosion cracking

  6. Fatigue Behavior under Multiaxial Stress States Including Notch Effects and Variable Amplitude Loading

    Science.gov (United States)

    Gates, Nicholas R.

    The central objective of the research performed in this study was to be able to better understand and predict fatigue crack initiation and growth from stress concentrations subjected to complex service loading histories. As such, major areas of focus were related to the understanding and modeling of material deformation behavior, fatigue damage quantification, notch effects, cycle counting, damage accumulation, and crack growth behavior under multiaxial nominal loading conditions. To support the analytical work, a wide variety of deformation and fatigue tests were also performed using tubular and plate specimens made from 2024-T3 aluminum alloy, with and without the inclusion of a circular through-thickness hole. However, the analysis procedures implemented were meant to be general in nature, and applicable to a wide variety of materials and component geometries. As a result, experimental data from literature were also used, when appropriate, to supplement the findings of various analyses. Popular approaches currently used for multiaxial fatigue life analysis are based on the idea of computing an equivalent stress/strain quantity through the extension of static yield criteria. This equivalent stress/strain is then considered to be equal, in terms of fatigue damage, to a uniaxial loading of the same magnitude. However, it has often been shown, and was shown again in this study, that although equivalent stress- and strain-based analysis approaches may work well in certain situations, they lack a general robustness and offer little room for improvement. More advanced analysis techniques, on the other hand, provide an opportunity to more accurately account for various aspects of the fatigue failure process under both constant and variable amplitude loading conditions. As a result, such techniques were of primary interest in the investigations performed. By implementing more advanced life prediction methodologies, both the overall accuracy and the correlation of fatigue

  7. Strain-rate effect on initial crush stress of irregular honeycomb under dynamic loading and its deformation mechanism

    Science.gov (United States)

    Wang, Peng; Zheng, Zhijun; Liao, Shenfei; Yu, Jilin

    2018-02-01

    The seemingly contradictory understandings of the initial crush stress of cellular materials under dynamic loadings exist in the literature, and a comprehensive analysis of this issue is carried out with using direct information of local stress and strain. Local stress/strain calculation methods are applied to determine the initial crush stresses and the strain rates at initial crush from a cell-based finite element model of irregular honeycomb under dynamic loadings. The initial crush stress under constant-velocity compression is identical to the quasi-static one, but less than the one under direct impact, i.e. the initial crush stresses under different dynamic loadings could be very different even though there is no strain-rate effect of matrix material. A power-law relation between the initial crush stress and the strain rate is explored to describe the strain-rate effect on the initial crush stress of irregular honeycomb when the local strain rate exceeds a critical value, below which there is no strain-rate effect of irregular honeycomb. Deformation mechanisms of the initial crush behavior under dynamic loadings are also explored. The deformation modes of the initial crush region in the front of plastic compaction wave are different under different dynamic loadings.

  8. Fatigue life prediction method for contact wire using maximum local stress

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Seok; Haochuang, Li; Seok, Chang Sung; Koo, Jae Mean [Sungkyunkwan University, Suwon (Korea, Republic of); Lee, Ki Won; Kwon, Sam Young; Cho, Yong Hyeon [Korea Railroad Research Institute, Uiwang (Korea, Republic of)

    2015-01-15

    Railway contact wires supplying electricity to trains are exposed to repeated mechanical strain and stress caused by their own weight and discontinuous contact with a pantograph during train operation. Since the speed of railway transportation has increased continuously, railway industries have recently reported a number of contact wire failures caused by mechanical fatigue fractures instead of normal wear, which has been a more common failure mechanism. To secure the safety and durability of contact wires in environments with increased train speeds, a bending fatigue test on contact wire has been performed. The test equipment is too complicated to evaluate the fatigue characteristics of contact wire. Thus, the axial tension fatigue test was performed for a standard specimen, and the bending fatigue life for the contact wire structure was then predicted using the maximum local stress occurring at the top of the contact wire. Lastly, the tested bending fatigue life of the structure was compared with the fatigue life predicted by the axial tension fatigue test for verification.

  9. Fatigue life prediction method for contact wire using maximum local stress

    International Nuclear Information System (INIS)

    Kim, Yong Seok; Haochuang, Li; Seok, Chang Sung; Koo, Jae Mean; Lee, Ki Won; Kwon, Sam Young; Cho, Yong Hyeon

    2015-01-01

    Railway contact wires supplying electricity to trains are exposed to repeated mechanical strain and stress caused by their own weight and discontinuous contact with a pantograph during train operation. Since the speed of railway transportation has increased continuously, railway industries have recently reported a number of contact wire failures caused by mechanical fatigue fractures instead of normal wear, which has been a more common failure mechanism. To secure the safety and durability of contact wires in environments with increased train speeds, a bending fatigue test on contact wire has been performed. The test equipment is too complicated to evaluate the fatigue characteristics of contact wire. Thus, the axial tension fatigue test was performed for a standard specimen, and the bending fatigue life for the contact wire structure was then predicted using the maximum local stress occurring at the top of the contact wire. Lastly, the tested bending fatigue life of the structure was compared with the fatigue life predicted by the axial tension fatigue test for verification.

  10. A quantitative prediction model of SCC rate for nuclear structure materials in high temperature water based on crack tip creep strain rate

    International Nuclear Information System (INIS)

    Yang, F.Q.; Xue, H.; Zhao, L.Y.; Fang, X.R.

    2014-01-01

    Highlights: • Creep is considered to be the primary mechanical factor of crack tip film degradation. • The prediction model of SCC rate is based on crack tip creep strain rate. • The SCC rate calculated at the secondary stage of creep is recommended. • The effect of stress intensity factor on SCC growth rate is discussed. - Abstract: The quantitative prediction of stress corrosion cracking (SCC) of structure materials is essential in safety assessment of nuclear power plants. A new quantitative prediction model is proposed by combining the Ford–Andresen model, a crack tip creep model and an elastic–plastic finite element method. The creep at the crack tip is considered to be the primary mechanical factor of protective film degradation, and the creep strain rate at the crack tip is suggested as primary mechanical factor in predicting the SCC rate. The SCC rates at secondary stage of creep are recommended when using the approach introduced in this study to predict the SCC rates of materials in high temperature water. The proposed approach can be used to understand the SCC crack growth in structural materials of light water reactors

  11. Finite Element Simulation of Shot Peening: Prediction of Residual Stresses and Surface Roughness

    Science.gov (United States)

    Gariépy, Alexandre; Perron, Claude; Bocher, Philippe; Lévesque, Martin

    Shot peening is a surface treatment that consists of bombarding a ductile surface with numerous small and hard particles. Each impact creates localized plastic strains that permanently stretch the surface. Since the underlying material constrains this stretching, compressive residual stresses are generated near the surface. This process is commonly used in the automotive and aerospace industries to improve fatigue life. Finite element analyses can be used to predict residual stress profiles and surface roughness created by shot peening. This study investigates further the parameters and capabilities of a random impact model by evaluating the representative volume element and the calculated stress distribution. Using an isotropic-kinematic hardening constitutive law to describe the behaviour of AA2024-T351 aluminium alloy, promising results were achieved in terms of residual stresses.

  12. Hand immersion in cold water alleviating physiological strain and increasing tolerance to uncompensable heat stress.

    Science.gov (United States)

    Khomenok, Gennadi A; Hadid, Amir; Preiss-Bloom, Orahn; Yanovich, Ran; Erlich, Tomer; Ron-Tal, Osnat; Peled, Amir; Epstein, Yoram; Moran, Daniel S

    2008-09-01

    The current study examines the use of hand immersion in cold water to alleviate physiological strain caused by exercising in a hot climate while wearing NBC protective garments. Seventeen heat acclimated subjects wearing a semi-permeable NBC protective garment and a light bulletproof vest were exposed to a 125 min exercise-heat stress (35 degrees C, 50% RH; 5 km/h, 5% incline). The heat stress exposure routine included 5 min rest in the chamber followed by two 50:10 min work-rest cycles. During the control trial (CO), there was no intervention, whilst in the intervention condition the subjects immersed their hands and forearms in a 10 degrees C water bath (HI). The results demonstrated that hand immersion in cold water significantly reduced physiological strain. In the CO exposure during the first and second resting periods, the average rectal temperature (T (re)) practically did not decrease. With hand immersion, the mean (SD) T (re) decreased by 0.45 (0.05 degrees C) and 0.48 degrees C (0.06 degrees C) during the first and second rest periods respectively (P immersion in cold water for 10 min is an effective method for decreasing the physiological strain caused by exercising under heat stress while wearing NBC protective garments. The method is convenient, simple, and allows longer working periods in hot or contaminated areas with shorter resting periods.

  13. CYCLIC PLASTIC BEHAVIOUR OF UFG COPPER UNDER CONTROLLED STRESS AND STRAIN LOADING

    Directory of Open Access Journals (Sweden)

    Lucie Navrátilová

    2012-01-01

    Full Text Available The influence of stress- and strain-controlled loading on microstructure and cyclic plastic behaviour of ultrafine-grained copper prepared by equal channel angular pressing was examined. The stability of microstructure is a characteristic feature for stress-controlled test whereas grain coarsening and development of bimodal structure was observed after plastic strain-controlled tests. An attempt to explain the observed behaviour was made.

  14. Strain-encoded cardiac MRI as an adjunct for dobutamine stress testing: incremental value to conventional wall motion analysis.

    Science.gov (United States)

    Korosoglou, Grigorios; Lossnitzer, Dirk; Schellberg, Dieter; Lewien, Antje; Wochele, Angela; Schaeufele, Tim; Neizel, Mirja; Steen, Henning; Giannitsis, Evangelos; Katus, Hugo A; Osman, Nael F

    2009-03-01

    High-dose dobutamine stress MRI is safe and feasible for the diagnosis of coronary artery disease (CAD) in humans. However, the assessment of cine scans relies on the visual interpretation of regional wall motion, which is subjective. Recently, strain-encoded MRI (SENC) has been proposed for the direct color-coded visualization of myocardial strain. The purpose of our study was to compare the diagnostic value of SENC with that provided by conventional wall motion analysis for the detection of inducible ischemia during dobutamine stress MRI. Stress-induced ischemia was assessed by wall motion analysis and by SENC in 101 patients with suspected or known CAD and in 17 healthy volunteers who underwent dobutamine stress MRI in a clinical 1.5-T scanner. Quantitative coronary angiography deemed as the standard reference for the presence or absence of significant CAD (> or =50% diameter stenosis). On a coronary vessel level, SENC detected inducible ischemia in 86 of 101 versus 71 of 101 diseased coronary vessels (P or =50% stenosis (area under the curve, 0.96; SE, 0.01; 95% CI, 0.94 to 0.98; P<0.001). The direct color-coded visualization of strain on MR images is a useful adjunct for dobutamine stress MRI, which provides incremental value for the detection of CAD compared with conventional wall motion readings on cine images.

  15. Annealing and etching effects on strain and stress sensitivity of polymer optical fibre Bragg grating sensors

    DEFF Research Database (Denmark)

    Pospori, A.; Marques, C. A.F.; Sáez-Rodríguez, D.

    2017-01-01

    Thermal annealing and chemical etching effects on the strain and stress sensitivity of polymer optical fibre based sensors are investigated. Bragg grating sensors have been photo-inscribed in PMMA optical fibre and their strain and stress sensitivity has been characterised before and after any...... annealing or etching process. The annealing and etching processes have been tried in different sequence in order to investigate their impact on the sensor's performance. Results show with high confidence that fibre annealing can improve both strain and stress sensitivities. The fibre etching can also...... provide stress sensitivity enhancement, however the strain sensitivity changes seems to be random....

  16. The Effect of Grain Size and Strain on the Tensile Flow Stress of Aluminium at Room Temperature

    DEFF Research Database (Denmark)

    Hansen, Niels

    1977-01-01

    stress-grain size relationship was analyzed in terms of matrix strengthening and grain boundary strengthening according to the dislocation concept of Ashby. At intermediate strains this approach gives a good description of the effect of strain, grain size and purity on the flow stress.......Tensile-stress-strain data over a strain range from 0.2 to 30% were obtained at room temperature for 99.999 and 99.5% aluminium as a function of grain size. The yield stress-grain size relationship can be expressed by a Petch-Hall relation with approximately the same slope for the two materials....... The flow stress-grain size relationship can adequately be expressed by a modified Petch-Hall relation; for 99.999% aluminium material the slope increases with strain through a maximum around 15–20%, whereas for 99.5% aluminium the slope decreases with the strain to zero at strains about 10%. The flow...

  17. Prediction of inelastic behavior and creep-fatigue life of perforated plates

    International Nuclear Information System (INIS)

    Igari, Toshihide; Setoguchi, Katsuya; Nakano, Shohki; Nomura, Shinichi

    1991-01-01

    Prediction methods of macroscopic and local stress-strain behavior of perforated plates in plastic and creep regime which are proposed by the authors are applied to the inelastic analysis and creep-fatigue life prediction of perforated cylinder subjected to cyclic thermal stress. Stress-strain behavior of perforated cylinder is analyzed by modeling the perforated portion to cylinder with equivalent-solid-plate properties. Creep-fatigue lives at around a hole of perforated plates are predicted by using the local stress-strain behavior and are compared with experimentally observed lives. (author)

  18. Undirected learning styles and academic risk: Analysis of the impact of stress, strain and coping.

    Science.gov (United States)

    Kimatian, Stephen; Lloyd, Sara; Berger, Jeffrey; Steiner, Lorraine; McKay, Robert; Schwengal, Deborah

    2017-01-01

    Learning style inventories used in conjunction with a measure of academic achievement consistently show an association of meaning directed learning patterns with academic success, but have failed to show a clear association of undirected learning styles with academic failure. Using survey methods with anesthesia residents, this study questioned whether additional assessment of factors related to stress, strain, and coping help to better define the association between undirected learning styles and academic risk. Pearson chi squared tests. 296 subjects were enrolled from eight institutions with 142 (48%) completing the study. American Board of Anesthesiologists In Training Examinations (ITE) percentiles (ITE%) were used as a measure of academic achievement. The Vermunt Inventory of Learning Styles (ILS) was used to identify four learning patterns and 20 strategies, and the Osipow Stress Inventory-Revised (OSI-R) was used as a measure of six scales of occupational stress, four of personal strain, and four coping resources. Two learning patterns had significant relationship with ITE scores. As seen in previous studies, Meaning Directed Learning was beneficial for academic achievement while Undirected Learning was the least beneficial. Higher scores on Meaning Directed Learning correlated positively with higher ITE scores while higher Undirected and lower Meaning Directed patterns related negatively to ITE%. OSI-R measures of stress, strain and coping indicated that residents with Undirected learning patterns had higher scores on three scales related to stress, and 4 related to strain, while displaying lower scores on two scales related to coping. Residents with higher Meaning Directed patterns scored lower on two scales of stress and two scales of strain, with higher scores on two scales for coping resources. Low Meaning Directed and high Undirected learning patterns correlated with lower ITE percentiles, higher scores for stress and strain, and lower coping resources

  19. Influence of the representation models of the stress-strain law on the LMFBR structures in an HCDA

    International Nuclear Information System (INIS)

    Daneri, A.; Toselli, G.; Trombetti, T.; Blanche, Y.; Louvet, J.; Obry, P.

    1982-01-01

    Most of analysis involved in mechanical calculations related to explosive accidents in fast breeder reactor are now aware of the inadequacy of certain roug stress-strain laws to representing the correct behaviour of vessel materials. Indeed stress waves along the vessel walls deform the material at high strain rate with multiaxial loading or reverse loading. Recently different questions have been under investigation in France in this direction and the present study, performed in the frame of the agreement CNEN-CEA, is an example of the way how two very important factors (strain rate and strain hardening) may be taken into account in the consecutive equations of materials subject to dynamic deformations. Several parametric calculations have been carried out with the hydrodynamic structural codes ASTARTE 3/4 and SIRIUS, which are the Lagrangian validated codes now available at the CNEN and CEA Cadarache Computing Centres.Analysis was performed by comparing two reference calculations relating to the MARA 01 and COVA IT7 explosive tests with experimental data and with other calculations in which different values of the initial hardening and of the strain rates of the tank shell material were introduced. In general both codes give similar results; improvements of predicted axial and hoop strain and of impulses in water have been reached in certain cases but it is difficult to find a general trend and there is no ideal constitutive model: indeed the strain rate is not constant in time, in place and in direction and some parts of the vessels are uniaxially loaded while others are multiaxially loaded

  20. Influence of the representation models of the stress-strain law on the LMFBR structures in an HCDA

    International Nuclear Information System (INIS)

    Daneri, A.; Toselli, G.; Trombetti, T.; Blanchet, Y.; Louvet, J.; Obry, P.

    1981-08-01

    Most of analysis involved in mechanical calculations related to explosive accidents in fast breeder reactors are now aware of the inadequacy of certain rough stress-strain laws to representing the correct behaviour of vessel materials. Indeed stress waves along the vessel walls deform the material at a high strain rate with multiaxial loading or reverse loading. Recently different questions have been under investigation in France in this direction and the present study, performed in the frame of the agreement CNEN-CEA, is an example of the way how two very important factors (strain rate and strain hardening) may be taken into account in the constitutive equations of materials subject to dynamic deformations. Several parametric calculations have been carried out with the hydrodynamic structural codes ASTARTE-3/4 and SIRIUS, which are the Lagrangian validated code now available at the CNEN and CEA-Cadarache computing centres. Analysis was performed by comparing two reference calculations relating to the MARA 01 and COVA IT7 explosive tests with experimental data and with other calculations in which different values of the initial hardening and of the strain rates of the tank shell material were introduced. In general both codes give similar results; improvements of predicted axial and hoop strains and of impulses in water have been reached in certain cases but it is difficult to find a general trend and there is no ideal constitutive model: indeed the strain rate is not constant in time, in place and in direction and some parts of the vessels are uniaxially loaded while others are multiaxially loaded

  1. Effect of Annealing on Strain-Temperature Response under Constant Tensile Stress in Cold-Worked NiTi Thin Wire

    OpenAIRE

    Yan, Xiaojun; Van Humbeeck, Jan

    2011-01-01

    The present paper aims to understand the influence of annealing on the strain-temperature response of a cold-worked NiTi wire under constant tensile stress. It was found that transformation behavior, stress-strain relationship, and strain-temperature response of the cold-worked NiTi wire are strongly affected by the annealing temperature. Large martensitic strains can be reached even though the applied stress is below the plateau stress of the martensite phase. At all stress levels transforma...

  2. A Constitutive Model for Strain-Controlled Strength Degradation of Rockmasses (SDR)

    Science.gov (United States)

    Kalos, A.; Kavvadas, M.

    2017-11-01

    The paper describes a continuum, rate-independent, incremental plasticity constitutive model applicable in weak rocks and heavily fractured rockmasses, where mechanical behaviour is controlled by rockmass strength rather than structural features (discontinuities). The model describes rockmass structure by a generalised Hoek-Brown Structure Envelope (SE) in the stress space. Stress paths inside the SE are nonlinear and irreversible to better simulate behaviour at strains up to peak strength and under stress reversals. Stress paths on the SE have user-controlled volume dilatancy (gradually reducing to zero at large shear strains) and can model post-peak strain softening of brittle rockmasses via a structure degradation (damage) mechanism triggered by accumulated plastic shear strains. As the SE may strain harden with plastic strains, ductile behaviour can also be modelled. The model was implemented in the Finite Element Code Simulia ABAQUS and was applied in plane strain (2D) excavation of a cylindrical cavity (tunnel) to predict convergence-confinement curves. It is shown that small-strain nonlinearity, variable volume dilatancy and post-peak hardening/softening strongly affect the predicted curves, resulting in corresponding differences of lining pressures in real tunnel excavations.

  3. AC loss characteristics of Bi2223/Ag sheathed tape wires subjected to mechanical strains and stresses

    International Nuclear Information System (INIS)

    Tsukamoto, Osami; Li, Z

    2007-01-01

    The influence of uniaxial tensile stress-strain on the AC loss characteristics of multifilamentary Bi2223/Ag sheathed tape wires was investigated. The uniaxial tensile stress-strain was applied to the sample wire in liquid nitrogen at atmospheric pressure, and the AC losses (transport, magnetization and total losses) were measured by an electric method. Two kinds of wire, oxide-dispersion strengthened Ag-alloy sheathed and Ag-alloy sheathed wires, were tested. The stress-strain curves of the tested wires were divided in three regions, i.e. elastic deformation, continuous plastic deformation and serrated-like plastic deformation regions, though the ranges of those regions were different for different kinds of wire. In the elastic and continuous plastic regions, the stress-strain curve was smooth and continuous, and in the serrated-like plastic region, the curve was rough. In the serrated-like plastic region, the wires kept elongating, while increase of the tensile stress was suspended. Dependences of the critical currents on the stress-strain were generally as follows. While decreases of the wire critical currents were in the range of less than 4% of the original values of the no-stress condition, the critical currents of the wires were reversible, that is, the critical currents recovered the original values at zero stress when the stress were released, regardless of whether the wires were in the elastic or continuous plastic region. In the continuous plastic region, the critical currents decreased up to 10%-15% of the original values and the critical currents were irreversible when the degradations of the critical currents exceeded about 4%. In the serrated-like plastic regions, the critical currents were more severely degraded. The AC loss characteristics of the wires are different in those regions. In the elastic and continuous plastic regions, the absolute values of AC losses were dependent on the stress-strain. However, the dependences of those normalized

  4. Models for prediction of soil precompression stress from readily available soil properties

    DEFF Research Database (Denmark)

    Schjønning, Per; Lamandé, Mathieu

    2018-01-01

    matric potentials. σpc was estimated from the original stress-strain curves by a novel, numerical method for estimating the stress at maximum curvature, assumingly partitioning the curve into elastic and plastic sections. Multiple regression was used to identify the drivers best describing the variation......Compaction of the subsoil is an almost irreversible damage to the soil resource. Modern machinery exerts high mechanical stresses to the subsoil, and a range of studies report significant effects on soil functions. There is an urgent need for quantitative knowledge of soil strength in order...... to evaluate sustainability of current field traffic. The aim of this study was to identify the most important drivers of soil precompression stress, σpc, and to develop pedotransfer functions for prediction of σpc. We revisited previously published data on σpc for a silty clay loam soil at a range of soil...

  5. Prediction of inelastic behavior and creep-fatigue life of perforated plates

    International Nuclear Information System (INIS)

    Igari, Toshihide; Yamauchi, Masafumi; Nomura, Shinichi.

    1992-01-01

    Prediction methods of macroscopic and local stress-strain behaviors of perforated plates in plastic and creep regime are proposed in this paper, and are applied to the creep-fatigue life prediction of perforated plates. Both equivalent-solid-plate properties corresponding to the macroscopic behavior and the stress-strain concentration around a hole were obtained by assuming the analogy between plasticity and creep and also by extending the authors' proposal in creep condition. The perforated plates which were made of Hastelloy XR were subjected to the strain-controlled cyclic test at 950degC in air in order to experimentally obtain the macroscopic behavior such as the cyclic stress-strain curve and creep-fatigue life around a hole. The results obtained are summarized as follows. (1) The macroscopic behavior of perforated plates including cyclic stress-strain behavior and relaxation is predictable by using the proposed method in this paper. (2) The creep-fatigue life around a hole can be predicted by using the proposed method for stress-strain concentration around a hole. (author)

  6. Strain measurement technique

    International Nuclear Information System (INIS)

    1987-01-01

    The 10 contributions are concerned with selected areas of application, such as strain measurements in wood, rubber/metal compounds, sets of strain measurements on buildings, reinforced concrete structures without gaps, pipes buried in the ground and measurements of pressure fluctuations. To increase the availability and safety of plant, stress analyses were made on gas turbine rotors with HT-DMS or capacitive HT-DMS (high temperature strain measurements). (DG) [de

  7. The mechanical behaviour of NBR/FEF under compressive cyclic stress strain

    Science.gov (United States)

    Mahmoud, W. E.; El-Eraki, M. H. I.; El-Lawindy, A. M. Y.; Hassan, H. H.

    2006-06-01

    Acrylonitrile butadiene rubber compounds filled with different concentrations of fast extrusion furnace (FEF) carbon black were experimentally investigated. The stress-strain curves of the composites were studied, which suggest good filler-matrix adhesion. The large reinforcement effect of the filler followed the Guth model for non-spherical particles. The effect of FEF carbon black on the cyclic fatigue and hysteresis was also examined. The loading and unloading stress-strain relationships for any cycle were described by applying Ogden's model for rubber samples. The dissipation energy that indicates the vibration damping capacity for all samples was determined. A simple model was proposed, to investigate the relation between maximum stress and the number of cyclic fatigue.

  8. The mechanical behaviour of NBR/FEF under compressive cyclic stress-strain

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoud, W E [Faculty of Science, Physics Department, Suez Canal University, Ismailia (Egypt); El-Eraki, M H I [Faculty of Science, Physics Department, Suez Canal University, Ismailia (Egypt); El-Lawindy, A M Y [Faculty of Science, Physics Department, Suez Canal University, Ismailia (Egypt); Hassan, H H [Faculty of Science, Physics Department, Cairo University, Giza (Egypt)

    2006-06-07

    Acrylonitrile butadiene rubber compounds filled with different concentrations of fast extrusion furnace (FEF) carbon black were experimentally investigated. The stress-strain curves of the composites were studied, which suggest good filler-matrix adhesion. The large reinforcement effect of the filler followed the Guth model for non-spherical particles. The effect of FEF carbon black on the cyclic fatigue and hysteresis was also examined. The loading and unloading stress-strain relationships for any cycle were described by applying Ogden's model for rubber samples. The dissipation energy that indicates the vibration damping capacity for all samples was determined. A simple model was proposed, to investigate the relation between maximum stress and the number of cyclic fatigue.

  9. The mechanical behaviour of NBR/FEF under compressive cyclic stress-strain

    International Nuclear Information System (INIS)

    Mahmoud, W E; El-Eraki, M H I; El-Lawindy, A M Y; Hassan, H H

    2006-01-01

    Acrylonitrile butadiene rubber compounds filled with different concentrations of fast extrusion furnace (FEF) carbon black were experimentally investigated. The stress-strain curves of the composites were studied, which suggest good filler-matrix adhesion. The large reinforcement effect of the filler followed the Guth model for non-spherical particles. The effect of FEF carbon black on the cyclic fatigue and hysteresis was also examined. The loading and unloading stress-strain relationships for any cycle were described by applying Ogden's model for rubber samples. The dissipation energy that indicates the vibration damping capacity for all samples was determined. A simple model was proposed, to investigate the relation between maximum stress and the number of cyclic fatigue

  10. Stress Tolerance Variations in Saccharomyces cerevisiae Strains from Diverse Ecological Sources and Geographical Locations.

    Directory of Open Access Journals (Sweden)

    Yan-Lin Zheng

    Full Text Available The budding yeast Saccharomyces cerevisiae is a platform organism for bioethanol production from various feedstocks and robust strains are desirable for efficient fermentation because yeast cells inevitably encounter stressors during the process. Recently, diverse S. cerevisiae lineages were identified, which provided novel resources for understanding stress tolerance variations and related shaping factors in the yeast. This study characterized the tolerance of diverse S. cerevisiae strains to the stressors of high ethanol concentrations, temperature shocks, and osmotic stress. The results showed that the isolates from human-associated environments overall presented a higher level of stress tolerance compared with those from forests spared anthropogenic influences. Statistical analyses indicated that the variations of stress tolerance were significantly correlated with both ecological sources and geographical locations of the strains. This study provides guidelines for selection of robust S. cerevisiae strains for bioethanol production from nature.

  11. Apolipoprotein A-IV constrains HPA and behavioral stress responsivity in a strain-dependent manner.

    Science.gov (United States)

    Packard, Amy E B; Zhang, Jintao; Myers, Brent; Ko, Chih-Wei; Wang, Fei; Tso, Patrick; Ulrich-Lai, Yvonne M

    2017-12-01

    There is a critical gap in our knowledge of the mechanisms that govern interactions between daily life experiences (e.g., stress) and metabolic diseases, despite evidence that stress can have profound effects on cardiometabolic health. Apolipoprotein A-IV (apoA-IV) is a protein found in chylomicrons (lipoprotein particles that transport lipids throughout the body) where it participates in lipid handling and the regulation of peripheral metabolism. Moreover, apoA-IV is expressed in brain regions that regulate energy balance including the arcuate nucleus. Given that both peripheral and central metabolic processes are important modulators of hypothalamic-pituitary-adrenocortical (HPA) axis activity, the present work tests the hypothesis that apoA-IV activity affects stress responses. As emerging data suggests that apoA-IV actions can vary with background strain, we also explore the strain-dependence of apoA-IV stress regulation. These studies assess HPA axis, metabolic (hyperglycemia), and anxiety-related behavioral responses to psychogenic stress in control (wildtype) and apoA-IV-deficient (KO) mice on either the C57Bl/6J (C57) or 129×1/SvJ (129) background strain. The results indicate that apoA-IV KO increases post-stress corticosterone and anxiety-related behavior specifically in the 129 strain, and increases stress-induced hyperglycemia exclusively in the C57 strain. These data support the hypothesis that apoA-IV is a novel factor that limits stress reactivity in a manner that depends on genetic background. An improved understanding of the complex relationship among lipid homeostasis, stress sensitivity, and genetics is needed to optimize the development of personalized treatments for stress- and metabolism-related diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Friction stress effects on mode I crack growth predictions

    NARCIS (Netherlands)

    Chen, Q.; Deshpande, V.S.; Giessen, E. van der; Needleman, A.

    2003-01-01

    The effect of a lattice friction stress on the monotonic growth of a plane strain mode I crack under small-scale yielding conditions is analyzed using discrete dislocation plasticity. When the friction stress is increased from zero to half the dislocation nucleation stress, the crack tip stress

  13. Flow stress and dynamic strain-ageing of β-transformed Zircaloy-4

    International Nuclear Information System (INIS)

    Woo, O.T.; Tseng, D.; Tangri, K.; MacEwen, S.R.

    1979-01-01

    The 0.2% yield stress of β-transformed Zircaloy-4 was found to be independent of prior-β grain size but varied as the inverse of the transformed β plate width. A dislocation loop expansion model originally proposed by Langford and Cohen (1969) for cold-drawn iron wires is used to explain the inverse plate width dependence. Both air-cooled and water-quenched samples exhibited dynamic strain-ageing effects in approximately the same temperature range of 573 to 673 K: (a) a local minimum in strain-rate sensitivity is associated with a peak or an inflection point in the temperature dependence of the 0.2% yield stress for water-quenched or air-cooled samples respectively, and (b) yield drops were observed in strain rate change tests. (Auth.)

  14. Influence of local microplastic strains on stress corrosion of 08Kh18N10T steel

    International Nuclear Information System (INIS)

    Moskvin, L.N.; Efimov, A.A.; Sherman, Ya.I.; Fedorova, T.I.

    1987-01-01

    Study on specific features of microhomogeneous strain in the process of plastic strain development and their role in stress corrosion of 08Kh18N10T steel sheet specimens subject to preliminary strain by 1, 3, 6, 16 and 23% and subsequent tests of stress corrosion in magnesium chloride solution at 150 deg C 140 MPa has been carried out. Analysis of test results has shown that microplastic strain is distributed over a specimen nonuniformly and is accompanied with the slip bands formation which are sources of corrosion crack origination and development. 08Kh18N10T steel manifests the highest trend to stress corrosion under 1% microplastic strain

  15. Consistent stress-strain ductile fracture model as applied to two grades of beryllium

    International Nuclear Information System (INIS)

    Priddy, T.G.; Benzley, S.E.; Ford, L.M.

    1980-01-01

    Published yield and ultimate biaxial stress and strain data for two grades of beryllium are correlated with a more complete method of characterizing macroscopic strain at fracture initiation in ductile materials. Results are compared with those obtained from an exponential, mean stress dependent, model. Simple statistical methods are employed to illustrate the degree of correlation for each method with the experimental data

  16. Simulation of Stress-Strain State of Shovel Rotary Support Kingpin

    Science.gov (United States)

    Khoreshok, A. A.; Buyankin, P. V.; Vorobiev, A. V.; Dronov, A. A.

    2016-04-01

    The article presents the sequence of computational simulation of stress-strain state of shovel’s rotary support. Computation results are analyzed, the kingpin is specified as the most loaded element, maximum stress zones are identified. Kingpin design modification such as enhancement of fillet curvature radius to 25 mm and displacement of eyebolt holes on the diameter of 165 mm are proposed, thus diminishing impact of stress concentrators and improving reliability of the rotary support.

  17. Stress corrosion crack initiation of Zircaloy-4 cladding tubes in an iodine vapor environment during creep, relaxation, and constant strain rate tests

    Science.gov (United States)

    Jezequel, T.; Auzoux, Q.; Le Boulch, D.; Bono, M.; Andrieu, E.; Blanc, C.; Chabretou, V.; Mozzani, N.; Rautenberg, M.

    2018-02-01

    During accidental power transient conditions with Pellet Cladding Interaction (PCI), the synergistic effect of the stress and strain imposed on the cladding by thermal expansion of the fuel, and corrosion by iodine released as a fission product, may lead to cladding failure by Stress Corrosion Cracking (SCC). In this study, internal pressure tests were conducted on unirradiated cold-worked stress-relieved Zircaloy-4 cladding tubes in an iodine vapor environment. The goal was to investigate the influence of loading type (constant pressure tests, constant circumferential strain rate tests, or constant circumferential strain tests) and test temperature (320, 350, or 380 °C) on iodine-induced stress corrosion cracking (I-SCC). The experimental results obtained with different loading types were consistent with each other. The apparent threshold hoop stress for I-SCC was found to be independent of the test temperature. SEM micrographs of the tested samples showed many pits distributed over the inner surface, which tended to coalesce into large pits in which a microcrack could initiate. A model for the time-to-failure of a cladding tube was developed using finite element simulations of the viscoplastic mechanical behavior of the material and a modified Kachanov's damage growth model. The times-to-failure predicted by this model are consistent with the experimental data.

  18. Modelling of loading, stress relaxation and stress recovery in a shape memory polymer.

    Science.gov (United States)

    Sweeney, J; Bonner, M; Ward, I M

    2014-09-01

    A multi-element constitutive model for a lactide-based shape memory polymer has been developed that represents loading to large tensile deformations, stress relaxation and stress recovery at 60, 65 and 70°C. The model consists of parallel Maxwell arms each comprising neo-Hookean and Eyring elements. Guiu-Pratt analysis of the stress relaxation curves yields Eyring parameters. When these parameters are used to define the Eyring process in a single Maxwell arm, the resulting model yields at too low a stress, but gives good predictions for longer times. Stress dip tests show a very stiff response on unloading by a small strain decrement. This would create an unrealistically high stress on loading to large strain if it were modelled by an elastic element. Instead it is modelled by an Eyring process operating via a flow rule that introduces strain hardening after yield. When this process is incorporated into a second parallel Maxwell arm, there results a model that fully represents both stress relaxation and stress dip tests at 60°C. At higher temperatures a third arm is required for valid predictions. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  19. Mental Strain and Chronic Stress among University Students with Symptoms of Irritable Bowel Syndrome

    Directory of Open Access Journals (Sweden)

    Marco D. Gulewitsch

    2013-01-01

    Full Text Available Aim. To investigate the degree of mental strain and chronic stress in a German community sample of students with IBS-like symptoms. Methods and Materials. Following an internet-based survey about stress, this study recruited 176 German university students (23.45±2.48 years; 48.3% males with IBS-like symptoms according to Rome III and 181 students without IBS (23.55±2.82 years; 50.3% males and compared them regarding current mental strain (SCL-90-R and the extend of chronic stress. Beyond this, IBS subtypes, IBS severity, and health care utilization were assessed. Results. Students fulfilling IBS criteria showed significantly elevated values of mental strain and chronic stress. Nearly 40% of the IBS group (versus 20% of the controls reached a clinically relevant value on the SCL-90-R global severity scale. IBS subtypes did not differ in terms of mental distress or chronic stress. Somatization, anxiety, and the chronic stressors “work overload,” “social tension,” and “dissatisfaction with job” were most closely connected to IBS symptom severity. Regarding health care utilization, our results show that consulting a physician frequently was not associated significantly with elevated mental strain or chronic stress but with IBS symptom severity. Conclusion. Our data contribute additional evidence to the distinct association between psychological stress and IBS in community samples.

  20. Large area strain analysis using scanning transmission electron microscopy across multiple images

    International Nuclear Information System (INIS)

    Oni, A. A.; Sang, X.; LeBeau, J. M.; Raju, S. V.; Saxena, S.; Dumpala, S.; Broderick, S.; Rajan, K.; Kumar, A.; Sinnott, S.

    2015-01-01

    Here, we apply revolving scanning transmission electron microscopy to measure lattice strain across a sample using a single reference area. To do so, we remove image distortion introduced by sample drift, which usually restricts strain analysis to a single image. Overcoming this challenge, we show that it is possible to use strain reference areas elsewhere in the sample, thereby enabling reliable strain mapping across large areas. As a prototypical example, we determine the strain present within the microstructure of a Ni-based superalloy directly from atom column positions as well as geometric phase analysis. While maintaining atomic resolution, we quantify strain within nanoscale regions and demonstrate that large, unit-cell level strain fluctuations are present within the intermetallic phase

  1. Small area analysis using micro-diffraction techniques

    International Nuclear Information System (INIS)

    Goehner, Raymond P.; Tissot, Ralph G. Jr.; Michael, Joseph R.

    2000-01-01

    An overall trend toward smaller electronic packages and devices makes it increasingly important and difficult to obtain meaningful diffraction information from small areas. X-ray micro-diffraction, electron back-scattered diffraction (EBSD) and Kossel are micro-diffraction techniques used for crystallographic analysis including texture, phase identification and strain measurements. X-ray micro-diffraction primarily is used for phase analysis and residual strain measurements. X-ray micro-diffraction primarily is used for phase analysis and residual strain measurements of areas between 10 microm to 100 microm. For areas this small glass capillary optics are used for producing a usable collimated x-ray beam. These optics are designed to reflect x-rays below the critical angle therefore allowing for larger solid acceptance angle at the x-ray source resulting in brighter smaller x-ray beams. The determination of residual strain using micro-diffraction techniques is very important to the semiconductor industry. Residual stresses have caused voiding of the interconnect metal which then destroys electrical continuity. Being able to determine the residual stress helps industry to predict failures from the aging effects of interconnects due to this stress voiding. Stress measurements would be impossible using a conventional x-ray diffractometer; however, utilizing a 30 microm glass capillary these small areas are readily assessable for analysis. Kossel produces a wide angle diffraction pattern from fluorescent x-rays generated in the sample by an e-beam in a SEM. This technique can yield very precise lattice parameters for determining strain. Fig. 2 shows a Kossel pattern from a Ni specimen. Phase analysis on small areas is also possible using an energy dispersive spectrometer (EBSD) and x-ray micro-diffraction techniques. EBSD has the advantage of allowing the user to observe the area of interest using the excellent imaging capabilities of the SEM. An EDS detector has been

  2. Remaining stress-state and strain-energy in tempered glass fragments

    DEFF Research Database (Denmark)

    Nielsen, Jens Henrik

    2016-01-01

    to the fragmentation process and some authors e.g. Barsom (J Am Ceram Soc 51(2):75, 1968), Gulati (Glass processing days, Tamglass Engineering Oy, Tampere, 1997), Warren (Fractography of glasses and ceramics IV, Alfred University, Alfred, 2001) and Tandon and Glass (Fracture mechanics of ceramics—active materials......When tempered glass breaks, it shatters into relatively small pieces depending on the residual stress state in the glass. This has been known for centuries and is currently used in standards for classifying whether a piece of glass is tempered or not. However, the process of fragmentation...... is complex and only a few, relatively simple, models have been suggested for predicting the fragment size. The full theoretical explanation is still to be found and this work aims at providing another brick to the puzzle. The strain-energy present in tempered glass is obviously contributing...

  3. Stress strain modelling and analysis of a piezo-coated optical fibre sensor

    Science.gov (United States)

    Al-Raweshidy, H.; Ali, H.; Obayya, S. S. A.; Langley, R.; Batchelor, J.

    2005-02-01

    A finite element model, using commercially available software, is presented to simulate the piezoelectrically induced stresses and strains in an optical fibre to be used as antenna. These stresses and strains are generated by a layer of piezoelectric polymer deposited on the cladding of a short fibre sample. The theoretical basis for the work is briefly explained and the modelling process is emphasised. Two types of fibre are investigated - circular fibre and D-fibre, and the results compared, analysed and discussed. It is shown that in the D-fibre, the stress and displacement increased by 1.46 and 115 times, respectively, in comparison with the circular fibre.

  4. Occupational stress and strain in the Royal Navy 2007.

    Science.gov (United States)

    Bridger, R S; Brasher, K; Dew, A; Kilminster, S

    2008-12-01

    Previous surveys of psychological strain in the Naval Service (NS) have shown higher than expected levels of strain when compared to the general population. To repeat the survey last carried out in 2004 and to obtain further information on the nature of the occupational stressors associated with strain. General Health Questionnaire-12 strain rates and job/life stressors were measured using a Work and Well-Being Questionnaire. Models of strain were developed for male and female personnel in the Royal Navy (RN) and males in the Royal Marines (RM). The response rate was 57%. The psychological strain rate was 31.5% overall. Personnel suffering from strain tended to be 'overcommitted' to work, had low levels of commitment to the NS and had suffered stressful life events (SLEs) in the previous 12 months. Strain rates declined with age and rank in males, but not in females. Strain was significantly positively correlated with levels of overcommitment, effort-reward imbalance (ERI), role conflict, work-family conflict, organizational commitment and exposure to SLEs. Models of strain in the males and females in the RN and in the RM accounted for between 37 and 44% of the variance in strain. The survey provides evidence for both the demand control and ERI models-components of these models contribute independently to strain. High levels of commitment to the organization were associated with lower strain and exposure to SLEs to higher strain.

  5. Development of a quick and easy-to-install strain measurement tool for piping stress evaluation

    International Nuclear Information System (INIS)

    Takahama, Tsunemichi; Nishimura, Kazuma; Ninomiya, Seiichiro; Matsumoto, Yoshihiro; Harada, Yutaka

    2015-01-01

    To avoid failures of small bore piping connections caused by high cycle fatigue, it is important to measure the stresses around the connections. To measure such stresses, the authors have developed an easily-attachable and detachable strain measurement tool which utilizes strain gauges in combination with our patented strain gauge holder. Traditionally, strain gauges have been bonded to piping surfaces using adhesive; however, with the newly-developed measurement tool, bonding adhesive is no longer necessary. The tool can be installed quickly and easily on a piping surface and measure the strains on the piping as accurately as adhesively-bonded strain gauges. Accordingly, the new strain measurement tool significantly reduces the work time without affecting the measurement accuracy. (author)

  6. Prediction of the Stress-Strain Behavior of Open-Cell Aluminum Foam under Compressive Loading and the Effects of Various RVE Boundary Conditions

    Science.gov (United States)

    Hamidi Ghaleh Jigh, Behrang; Farsi, Mohammad Ali; Hosseini Toudeshky, Hossein

    2018-04-01

    The prediction of the mechanical behavior of metallic foams with realistic microstructure and the effects of various boundary conditions on the mechanical behavior is an important and challenging issue in modeling representative volume elements (RVEs). A numerical investigation is conducted to determine the effects of various boundary conditions and cell wall cross sections on the compressive mechanical properties of aluminum foam, including the stiffness, plateau stress and onset strain of densification. The open-cell AA6101-T6 aluminum foam Duocel is used in the analyses in this study. Geometrical characteristics including the cell size, foam relative density, and cross-sectional shape and thickness of the cell walls are extracted from images of the foam. Then, the obtained foam microstructure is analyzed as a 2D model. The ligaments are modeled as shear deformable beams with elastic-plastic material behavior. To prevent interpenetration of the nodes and walls inside the cells with large deformations, self-contact-type frictionless interaction is stipulated between the internal surfaces. Sensitivity analyses are performed using several boundary conditions and cells wall cross-sectional shapes. The predicted results from the finite element analyses are compared with the experimental results. Finally, the most appropriate boundary conditions, leading to more consistent results with the experimental data, are introduced.

  7. Prediction of the Stress-Strain Behavior of Open-Cell Aluminum Foam under Compressive Loading and the Effects of Various RVE Boundary Conditions

    Science.gov (United States)

    Hamidi Ghaleh Jigh, Behrang; Farsi, Mohammad Ali; Hosseini Toudeshky, Hossein

    2018-05-01

    The prediction of the mechanical behavior of metallic foams with realistic microstructure and the effects of various boundary conditions on the mechanical behavior is an important and challenging issue in modeling representative volume elements (RVEs). A numerical investigation is conducted to determine the effects of various boundary conditions and cell wall cross sections on the compressive mechanical properties of aluminum foam, including the stiffness, plateau stress and onset strain of densification. The open-cell AA6101-T6 aluminum foam Duocel is used in the analyses in this study. Geometrical characteristics including the cell size, foam relative density, and cross-sectional shape and thickness of the cell walls are extracted from images of the foam. Then, the obtained foam microstructure is analyzed as a 2D model. The ligaments are modeled as shear deformable beams with elastic-plastic material behavior. To prevent interpenetration of the nodes and walls inside the cells with large deformations, self-contact-type frictionless interaction is stipulated between the internal surfaces. Sensitivity analyses are performed using several boundary conditions and cells wall cross-sectional shapes. The predicted results from the finite element analyses are compared with the experimental results. Finally, the most appropriate boundary conditions, leading to more consistent results with the experimental data, are introduced.

  8. Experimental Characterization of Stress- and Strain-Dependent Stiffness in Grouted Rock Masses.

    Science.gov (United States)

    Kim, Ji-Won; Chong, Song-Hun; Cho, Gye-Chun

    2018-03-29

    Grouting of fractured rock mass prior to excavation results in grout-filled discontinuities that govern the deformation characteristics of a site. The influence of joint characteristics on the properties of grouted rocks is important in assessing the effects of grouting on jointed rock mass. However, grouting remains a predominantly empirical practice and the effects of grouting on rock joint behavior and material properties have yet to be accurately assessed. Granular materials, including jointed rocks, typically display nonlinear strain-dependent responses that can be characterized by the shear modulus degradation curve. In this study, the effects of grouting on the strain-dependent shear stiffness of jointed rock mass were investigated at the small-strain (below 10 -5 ) and mid-strain (10 -5 to 10 -3 ) ranges using the quasi-static resonant column test and rock mass dynamic test devices. The effects of curing time, axial stress, initial joint roughness, and grouted joint thickness were examined. The results show that (1) grouting of rock joints leads to decreased stress sensitivity and increased small-strain shear stiffness for all tested samples; (2) the grouted rock samples display similar modulus degradation characteristics as the applied grout material; (3) the initial joint roughness determines the stress-dependent behaviors and general stiffness range of the jointed and grouted rocks, but the strain-dependent behaviors are dependent on the properties of the grout material; (4) increased grouted joint thickness results in larger contribution of the grout properties in the overall grouted rock mass.

  9. Stress generation in a developmental context: the role of youth depressive symptoms, maternal depression, the parent-child relationship, and family stress.

    Science.gov (United States)

    Chan, Priscilla T; Doan, Stacey N; Tompson, Martha C

    2014-02-01

    The present study examined stress generation in a developmental and family context among 171 mothers and their preadolescent children, ages 8-12 years, at baseline (Time 1) and 1-year follow-up (Time 2). In the current study, we examined the bidirectional relationship between children's depressive symptoms and dependent family stress. Results suggest that children's baseline level of depressive symptoms predicted the generation of dependent family stress 1 year later. However, baseline dependent family stress did not predict an increase in children's depressive symptoms 1 year later. In addition, we examined whether a larger context of both child chronic strain (indicated by academic, behavioral, and peer stress) and family factors, including socioeconomic status and parent-child relationship quality, would influence the stress generation process. Although both chronic strain and socioeconomic status were not associated with dependent family stress at Time 2, poorer parent-child relationship quality significantly predicted greater dependent family stress at Time 2. Child chronic strain, but neither socioeconomic status nor parent-child relationship quality, predicted children's depression symptoms at Time 2. Finally, gender, maternal depression history, and current maternal depressive symptoms did not moderate the relationship between level of dependent family stress and depressive symptoms. Overall, findings provide partial support for a developmental stress generation model operating in the preadolescent period.

  10. Occupational imbalance and the role of perceived stress in predicting stress-related disorders.

    Science.gov (United States)

    Håkansson, Carita; Ahlborg, Gunnar

    2017-03-02

    Stress-related disorders are the main reason for sick leave in many European countries. The aim of the present study was to explore whether perceived occupational imbalance predicts stress-related disorders, potential gender differences, and to explore the mediating role of perceived stress. Longitudinal data on 2223 employees in a public organization in Sweden were collected by surveys, and analyzed by logistic regression. Occupational imbalance predicted stress-related disorders among both women and men. However, what aspects of occupational imbalance which predicted stress-related disorders differ by gender. Perceived stress was not a mediator in these associations. How women and men perceived their occupational balance affected the risk of stress-related disorders. The results may be used to develop effective strategies to decrease stress-related disorders.

  11. Development of serial measurement system for three-dimensional stress determination by over-coring the strains on borehole wall

    International Nuclear Information System (INIS)

    Itamoto, Masaharu; Kuwabara, Kazumichi; Tanno, Takeo; Nakayama, Yoshiki; Mizuta, Yoshiaki

    2007-01-01

    In order to determine the three-dimensional stress state in serial order, the authors developed the serial measurement system for three-dimensional stress determination by over-coring the strains on the borehole wall. The serial stress measurements give the value of the stresses with high accuracy and bring the regional stress variations. In this paper, the authors describe the studies through FEM analysis on the effect of over-coring diameter, the influence of strain gauge length and the behavior of strain on the borehole wall, induced by biaxial external loading. We developed the multi-strain gauge mounted packer and examined it by measuring the strains on the borehole wall through biaxial loading test. The Laboratory tests showed its applicability to practical use. (author)

  12. Conduction band structure and electron mobility in uniaxially strained Si via externally applied strain in nanomembranes

    Energy Technology Data Exchange (ETDEWEB)

    Chen Feng [Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Euaruksakul, Chanan; Himpsel, F J; Lagally, Max G [University of Wisconsin-Madison, Madison, WI 53706 (United States); Liu Zheng; Liu Feng, E-mail: lagally@engr.wisc.edu [University of Utah, Salt Lake City, UT 84112 (United States)

    2011-08-17

    Strain changes the band structure of semiconductors. We use x-ray absorption spectroscopy to study the change in the density of conduction band (CB) states when silicon is uniaxially strained along the [1 0 0] and [1 1 0] directions. High stress can be applied to silicon nanomembranes, because their thinness allows high levels of strain without fracture. Strain-induced changes in both the sixfold degenerate {Delta} valleys and the eightfold degenerate L valleys are determined quantitatively. The uniaxial deformation potentials of both {Delta} and L valleys are directly extracted using a strain tensor appropriate to the boundary conditions, i.e., confinement in the plane in the direction orthogonal to the straining direction, which correspond to those of strained CMOS in commercial applications. The experimentally determined deformation potentials match the theoretical predictions well. We predict electron mobility enhancement created by strain-induced CB modifications.

  13. Modeling of the stress-strain state of the ground mass contaminated with peracetic acid

    Directory of Open Access Journals (Sweden)

    Levenko Anna

    2017-01-01

    Full Text Available None of the methods described previously provides a solution to the problem that deals with the SSS evaluation of the ground mass which is under the influence of chemically active substances and, in particular, under the influence of peracetic acid. The stress-strain state of the ground mass contaminated with peracetic acid was estimated. Stresses occurring in the ground mass in the natural state were determined after the entry of acid into it and after the chemical fixation of it with sodium silicate. All the parameters of the stress-strain state of the ground mass were obtained under a number of physical and mechanical conditions. It was determined that following the work on the silicatization of the ground mass contaminated with peracetic acid the quantity of strain decreased by 26.11 to 48.9%. The comparison of the results of stress calculations indicates the stress reduction in the ground mass in 1.8 – 2.6 times after its fixing.

  14. Effect of Pre-strain and High Stresses on the Bainitic Transformation of Manganese-boron Steel 22MnB5

    Science.gov (United States)

    Said Schicchi, Diego; Hunkel, Martin

    2018-06-01

    During the last decade, the use of press-hardened components in the automotive industry has grown considerably. The so-called tailored tempering, also known as partial press hardening, employs locally heated tools seeking to obtain bainitic transformations. This leads to (seamless) zones within the formed parts with higher ductility. Due to the intrinsic nature of this process, phase transformations happen under the influence of high loads and in pre-deformed austenite. The austenite pre-strain state and applied stresses affect the kinetics of the bainitic transformation. Moreover, stresses have an additional relevant effect in this process, the so-called transformation plasticity. Linear transformation plasticity models have been successfully used to predict the behavior in the presence of low stresses. Nonetheless, because of the process's severe conditions, these tend to fail. A strong nonlinearity of the transformation plasticity strain is observed for applied stresses above the austenite yield strength. Using thermomechanical tests on sheet specimens of a manganese-boron steel (22MnB5), widely utilized in the industry, the effect on the bainitic transformation of various degrees of deformation in the range of 0 to 18 pct, applied stresses in the range of 0 to 250 MPa and the transformation plasticity effect are investigated in this work.

  15. On the prediction of ductile fracture by void coalescence and strain localization

    Science.gov (United States)

    Luo, Tuo; Gao, Xiaosheng

    2018-04-01

    This paper presents a unit cell model based on the observation that ductile fracture occurs when plastic flow is localized in a band. The unit cell consists of three void containing material units stacked in the direction normal to the localization plane. Localization takes place in the middle material unit while the two outer units undergo elastic recovery after failure occurs. Thus a failure criterion is established as when the macroscopic effective strain of the outer material units reaches the maximum value. Analyses are conducted to demonstrate the effect of the voids existing outside the localization band. Comparisons of the present model with several previous models suggest that the present model is not only easy to implement in finite element analysis but also more suitable to robustly determine the failure strain. A series of unit cell analyses are conducted for various macroscopic stress triaxialities and Lode parameters. The analysis results confirm that for a fixed Lode parameter, the failure strain decreases exponentially with the stress triaxiality and for a given stress triaxiality, it increases as the stress state approaches the generalized tension and generalized compression. The analysis results also reveal the effect of the stress state on the deformed void shape within and near the localization band.

  16. Discussion on accuracy of weld residual stress measurement by neutron diffraction. Influence of strain free reference

    International Nuclear Information System (INIS)

    Suzuki, Hiroshi; Akita, Koichi

    2012-01-01

    It is required to evaluate a strain-free reference, α 0 , to perform accurate stress measurement using neutron diffraction. In this study, accuracy of neutron stress measurement was quantitatively discussed from α 0 evaluations on a dissimilar metal butt-weld between a type 304 austenitic stainless steel and an A533B low alloy ferritic steel. A strain-free standard specimen and a sliced specimen with 10 mm thickness taken from the dissimilar metal butt-weld were utilized. In the lattice constant evaluation using the standard specimen, average lattice constant derived from multiple hkl reflections was evaluated as the stress-free reference with cancelling out an intergranular strain. Comparing lattice constant distributions in each reflection with average lattice constant distribution in the standard specimen, αFe211 and γFe311 reflections were judged as a suitable reflection for neutron strain measurement to reduce intergranular strain effects. Residual stress distribution in the sliced specimen evaluated using α 0 measured here exhibited higher accuracy than that measured using strain gauges. On the other hand, α 0 distributions were evaluated using the sliced specimen under the plane-stress condition. Existence of slight longitudinal residual stresses near the weld center decreased accuracy of the α 0 evaluations, which means that it is required to optimize the thickness of the sliced specimen for accurate α 0 evaluation under plane strain condition. As a conclusion of this study, it was confirmed that procedures of accurate α 0 evaluation, optimization of the measurement condition, and multiple evaluations on the results play an important role to improve accuracy of the residual stress measurement using neutron diffraction. (author)

  17. Prediction (early recognition) of emerging flu strain clusters

    Science.gov (United States)

    Li, X.; Phillips, J. C.

    2017-08-01

    Early detection of incipient dominant influenza strains is one of the key steps in the design and manufacture of an effective annual influenza vaccine. Here we report the most current results for pandemic H3N2 flu vaccine design. A 2006 model of dimensional reduction (compaction) of viral mutational complexity derives two-dimensional Cartesian mutational maps (2DMM) that exhibit an emergent dominant strain as a small and distinct cluster of as few as 10 strains. We show that recent extensions of this model can detect incipient strains one year or more in advance of their dominance in the human population. Our structural interpretation of our unexpectedly rich 2DMM involves sialic acid, and is based on nearly 6000 strains in a series of recent 3-year time windows. Vaccine effectiveness is predicted best by analyzing dominant mutational epitopes.

  18. Intra-species Genomic and Physiological Variability Impact Stress Resistance in Strains of Probiotic Potential.

    Science.gov (United States)

    Arnold, Jason W; Simpson, Joshua B; Roach, Jeffrey; Kwintkiewicz, Jakub; Azcarate-Peril, M Andrea

    2018-01-01

    Large-scale microbiome studies have established that most of the diversity contained in the gastrointestinal tract is represented at the strain level; however, exhaustive genomic and physiological characterization of human isolates is still lacking. With increased use of probiotics as interventions for gastrointestinal disorders, genomic and functional characterization of novel microorganisms becomes essential. In this study, we explored the impact of strain-level genomic variability on bacterial physiology of two novel human Lactobacillus rhamnosus strains (AMC143 and AMC010) of probiotic potential in relation to stress resistance. The strains showed differences with known probiotic strains ( L. rhamnosus GG, Lc705, and HN001) at the genomic level, including nucleotide polymorphisms, mutations in non-coding regulatory regions, and rearrangements of genomic architecture. Transcriptomics analysis revealed that gene expression profiles differed between strains when exposed to simulated gastrointestinal stresses, suggesting the presence of unique regulatory systems in each strain. In vitro physiological assays to test resistance to conditions mimicking the gut environment (acid, alkali, and bile stress) showed that growth of L. rhamnosus AMC143 was inhibited upon exposure to alkaline pH, while AMC010 and control strain LGG were unaffected. AMC143 also showed a significant survival advantage compared to the other strains upon bile exposure. Reverse transcription qPCR targeting the bile salt hydrolase gene ( bsh ) revealed that AMC143 expressed bsh poorly (a consequence of a deletion in the bsh promoter and truncation of bsh gene in AMC143), while AMC010 had significantly higher expression levels than AMC143 or LGG. Insertional inactivation of the bsh gene in AMC010 suggested that bsh could be detrimental to bacterial survival during bile stress. Together, these findings show that coupling of classical microbiology with functional genomics methods for the

  19. Intra-species Genomic and Physiological Variability Impact Stress Resistance in Strains of Probiotic Potential

    Directory of Open Access Journals (Sweden)

    Jason W. Arnold

    2018-02-01

    Full Text Available Large-scale microbiome studies have established that most of the diversity contained in the gastrointestinal tract is represented at the strain level; however, exhaustive genomic and physiological characterization of human isolates is still lacking. With increased use of probiotics as interventions for gastrointestinal disorders, genomic and functional characterization of novel microorganisms becomes essential. In this study, we explored the impact of strain-level genomic variability on bacterial physiology of two novel human Lactobacillus rhamnosus strains (AMC143 and AMC010 of probiotic potential in relation to stress resistance. The strains showed differences with known probiotic strains (L. rhamnosus GG, Lc705, and HN001 at the genomic level, including nucleotide polymorphisms, mutations in non-coding regulatory regions, and rearrangements of genomic architecture. Transcriptomics analysis revealed that gene expression profiles differed between strains when exposed to simulated gastrointestinal stresses, suggesting the presence of unique regulatory systems in each strain. In vitro physiological assays to test resistance to conditions mimicking the gut environment (acid, alkali, and bile stress showed that growth of L. rhamnosus AMC143 was inhibited upon exposure to alkaline pH, while AMC010 and control strain LGG were unaffected. AMC143 also showed a significant survival advantage compared to the other strains upon bile exposure. Reverse transcription qPCR targeting the bile salt hydrolase gene (bsh revealed that AMC143 expressed bsh poorly (a consequence of a deletion in the bsh promoter and truncation of bsh gene in AMC143, while AMC010 had significantly higher expression levels than AMC143 or LGG. Insertional inactivation of the bsh gene in AMC010 suggested that bsh could be detrimental to bacterial survival during bile stress. Together, these findings show that coupling of classical microbiology with functional genomics methods for the

  20. Microstructure and temperature dependence of intergranular strains on diffractometric macroscopic residual stress analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, J.N., E-mail: Julia.Wagner@kit.edu [KNMF, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Hofmann, M. [Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II), TU München, Lichtenbergstr. 1, 85747 Garching (Germany); Wimpory, R. [Helmholtz-Zentrum Berlin für Materialien und Energie, D-14109 Berlin Wannsee (Germany); Krempaszky, C. [Christian-Doppler-Labor für Werkstoffmechanik von Hochleistungslegierungen, TU München, Boltzmannstr. 15, 85747 Garching (Germany); Lehrstuhl für Werkstoffkunde und Werkstoffmechanik, TU München, Boltzmannstr. 15, 85747 Garching (Germany); Stockinger, M. [Böhler Schmiedetechnik GmbH and Co KG, Mariazeller Straße 25, 8605 Kapfenberg (Austria)

    2014-11-17

    Knowledge of the macroscopic residual stresses in components of complex high performance alloys is crucial when it comes to considering the safety and manufacturing aspects of components. Diffraction experiments are one of the key methods for studying residual stresses. However a component of the residual strain determined by diffraction experiments, known as microstrain or intergranular residual strain, occurs over the length scale of the grains and thus plays only a minor role for the life time of such components. For the reliable determination of macroscopic strains (with the minimum influence of these intergranular residual strains), the ISO standard recommends the use of particular Bragg reflections. Here we compare the build-up of intergranular strain of two different precipitation hardened IN 718 (INCONEL 718) samples, with identical chemical composition. Since intergranular strains are also affected by temperature, results from room temperature measurement are compared to results at T=550 °C. It turned out that microstructural parameters, such as grain size or type of precipitates, have a larger effect on the intergranular strain evolution than the influence of temperature at the measurement temperature of T=550 °C. The results also show that the choice of Bragg reflections for the diffractometric residual stress analysis is dependent not only on its chemical composition, but also on the microstructure of the sample. In addition diffraction elastic constants (DECs) for all measured Bragg reflections are given.

  1. Large-strain time-temperature equivalence in high density polyethylene for prediction of extreme deformation and damage

    Directory of Open Access Journals (Sweden)

    Gray G.T.

    2012-08-01

    Full Text Available Time-temperature equivalence is a widely recognized property of many time-dependent material systems, where there is a clear predictive link relating the deformation response at a nominal temperature and a high strain-rate to an equivalent response at a depressed temperature and nominal strain-rate. It has been found that high-density polyethylene (HDPE obeys a linear empirical formulation relating test temperature and strain-rate. This observation was extended to continuous stress-strain curves, such that material response measured in a load frame at large strains and low strain-rates (at depressed temperatures could be translated into a temperature-dependent response at high strain-rates and validated against Taylor impact results. Time-temperature equivalence was used in conjuction with jump-rate compression tests to investigate isothermal response at high strain-rate while exluding adiabatic heating. The validated constitutive response was then applied to the analysis of Dynamic-Tensile-Extrusion of HDPE, a tensile analog to Taylor impact developed at LANL. The Dyn-Ten-Ext test results and FEA found that HDPE deformed smoothly after exiting the die, and after substantial drawing appeared to undergo a pressure-dependent shear damage mechanism at intermediate velocities, while it fragmented at high velocities. Dynamic-Tensile-Extrusion, properly coupled with a validated constitutive model, can successfully probe extreme tensile deformation and damage of polymers.

  2. Transesophageal echocardiographic strain imaging predicts aortic biomechanics: Beyond diameter.

    Science.gov (United States)

    Emmott, Alexander; Alzahrani, Haitham; Alreishidan, Mohammed; Therrien, Judith; Leask, Richard L; Lachapelle, Kevin

    2018-03-11

    Clinical guidelines recommend resection of ascending aortic aneurysms at diameters 5.5 cm or greater to prevent rupture or dissection. However, approximately 40% of all ascending aortic dissections occur below this threshold. We propose new transesophageal echocardiography strain-imaging moduli coupled with blood pressure measurements to predict aortic dysfunction below the surgical threshold. A total of 21 patients undergoing aortic resection were recruited to participate in this study. Transesophageal echocardiography imaging of the aortic short-axis and invasive radial blood pressure traces were taken for 3 cardiac cycles. By using EchoPAC (GE Healthcare, Madison, Wis) and postprocessing in MATLAB (MathWorks, Natick, Mass), circumferential stretch profiles were generated and combined with the blood pressure traces. From these data, 2 in vivo stiffness moduli were calculated: the Cardiac Cycle Pressure Modulus and Cardiac Cycle Stress Modulus. From the resected aortic ring, testing squares were isolated for ex vivo mechanical analysis and histopathology. Each square underwent equibiaxial tensile testing to generate stress-stretch profiles for each patient. Two ex vivo indices were calculated from these profiles (energy loss and incremental stiffness) for comparison with the Cardiac Cycle Pressure Modulus and Cardiac Cycle Stress Modulus. The echo-derived stiffness moduli demonstrate positive significant covariance with ex vivo tensile biomechanical indices: energy loss (vs Cardiac Cycle Pressure Modulus: R 2  = 0.5873, P biomechanics and histopathology, which demonstrates the added benefit of using simple echocardiography-derived biomechanics to stratify patient populations. Copyright © 2018. Published by Elsevier Inc.

  3. Simulation of cyclic stress-strain relation under non proportional loading

    International Nuclear Information System (INIS)

    Chen, X.; Zhu, Q.X.; Abel, A.

    1995-01-01

    A series of cyclic constitutive experiments have been conducted on 42 Cr Mo steel on MTS809 machine under tension-torsional loading. Thin-walled tube specimen were used. Two kinds of cruciform strain path have been investigated. The paper suggests a simple method for the calculation of stable cyclic stress and strain values based on a modified endochronic constitutive theory by redefined intrinsic time scale. (author). 6 refs., 3 figs

  4. Modeling stress/strain-dependent permeability changes for deep geoenergy applications

    Science.gov (United States)

    Rinaldi, Antonio Pio; Rutqvist, Jonny

    2016-04-01

    Rock permeability is a key parameter in deep geoenergy systems. Stress and strain changes induced at depth by fluid injection or extraction may substantially alter the rock permeability in an irreversible way. With regard to the geoenergies, some applications require the permeability to be enhanced to improve productivity. The rock permeability is generally enhanced by shearing process of faults and fractures (e.g. hydroshearing for Enhanced and Deep Geothermal Systems), or the creation of new fractures (e.g. hydrofracturing for shale gas). However, such processes may, at the same time, produce seismicity that can be felt by the local population. Moreover, the increased permeability due to fault reactivation may pose at risk the sealing capacity of a storage site (e.g. carbon sequestration or nuclear waste disposal), providing then a preferential pathway for the stored fluids to escape at shallow depth. In this work we present a review of some recent applications aimed at understanding the coupling between stress (or strain) and permeability. Examples of geoenergy applications include both EGS and CO2 sequestration. To investigate both "wanted" and "unwanted" effects, THM simulations have been carried out with the TOUGH-FLAC simulator. Our studies include constitutive equations relating the permeability to mean effective stress, effective normal stress, volumetric strain, as well as accounting for permeability variation as related to fault/fracture reactivation. Results show that the geomechanical effects have a large role in changing the permeability, hence affecting fluids leakage, reservoir enhancement, as well as the induced seismicity.

  5. Interface stresses in fiber-reinforced materials with regular fiber arrangements

    Science.gov (United States)

    Mueller, W. H.; Schmauder, S.

    The theory of linear elasticity is used here to analyze the stresses inside and at the surface of fiber-reinforced composites. Plane strain, plane stress, and generalized plane strain are analyzed using the shell model and the BHE model and are numerically studied using finite element analysis. Interface stresses are shown to depend weakly on Poisson's ratio. For equal values of the ratio, generalized plane strain and plane strain results are identical. For small volume fractions up to 40 vol pct of fibers, the shell and the BHE models predict the interface stresses very well over a wide range of elastic mismatches and for different fiber arrangements. At higher volume fractions the stresses are influenced by interactions with neighboring fibers. Introducing an external pressure into the shell model allows the prediction of interface stresses in real composite with isolated or regularly arranged fibers.

  6. Low-temperature strain ageing in In-Pb alloys under stress relaxation conditions

    International Nuclear Information System (INIS)

    Fomenko, L.S.

    2000-01-01

    The dynamic strain ageing (DSA) of In-Pb (6 and 8 at. % Pb) substitutional solid solution single crystals is studied at temperatures 77-205 K under stress relaxation conditions. The dependences of the stress increment after relaxation connected with DSA on stress relaxation time, stress relaxation rate at the end of the relaxation, temperature, alloy content, flow stress, and strain are determined. It is shown that the DSA kinetic is described by a Harper-type equation with the exponent equal to 1/3 and a low activation energy value (0.3-0.34 eV). This provides a low temperature of the DSA onset (∼ 0.17 T m , where T m is the melt temperature) and is evidence of pipe-mode diffusion. It is supposed that the obstacles to dislocation motion in the crystals studied consist of the groups of solutes, and the strength of the obstacles increases during the DSA due to the pipe diffusion of the solute atoms along the dislocations

  7. Experimental Characterization of Stress- and Strain-Dependent Stiffness in Grouted Rock Masses

    Directory of Open Access Journals (Sweden)

    Ji-Won Kim

    2018-03-01

    Full Text Available Grouting of fractured rock mass prior to excavation results in grout-filled discontinuities that govern the deformation characteristics of a site. The influence of joint characteristics on the properties of grouted rocks is important in assessing the effects of grouting on jointed rock mass. However, grouting remains a predominantly empirical practice and the effects of grouting on rock joint behavior and material properties have yet to be accurately assessed. Granular materials, including jointed rocks, typically display nonlinear strain-dependent responses that can be characterized by the shear modulus degradation curve. In this study, the effects of grouting on the strain-dependent shear stiffness of jointed rock mass were investigated at the small-strain (below 10−5 and mid-strain (10−5 to 10−3 ranges using the quasi-static resonant column test and rock mass dynamic test devices. The effects of curing time, axial stress, initial joint roughness, and grouted joint thickness were examined. The results show that (1 grouting of rock joints leads to decreased stress sensitivity and increased small-strain shear stiffness for all tested samples; (2 the grouted rock samples display similar modulus degradation characteristics as the applied grout material; (3 the initial joint roughness determines the stress-dependent behaviors and general stiffness range of the jointed and grouted rocks, but the strain-dependent behaviors are dependent on the properties of the grout material; (4 increased grouted joint thickness results in larger contribution of the grout properties in the overall grouted rock mass.

  8. On the importance of retaining stresses and strains in repositioning computational biomechanical models of the cervical spine.

    Science.gov (United States)

    Boakye-Yiadom, Solomon; Cronin, Duane S

    2018-01-01

    Human body models are created in a specific posture and often repositioned and analyzed without retaining stresses that result from repositioning. For example, repositioning a human neck model within the physiological range of motion to a head-turned posture prior to an impact results in initial stresses within the tissues distracted from their neutral position. The aim of this study was to investigate the effect of repositioning on the subsequent kinetics, kinematics, and failure modes, of a lower cervical spine motion segment, to support future research at the full neck level. Repositioning was investigated for 3 modes (tension, flexion, and extension) and 3 load cases. The model was repositioned and loaded to failure in one continuous load history (case 1), or repositioned then restarted with retained stresses and loaded to failure (case 2). In case 3, the model was repositioned and then restarted in a stress-free state, representing current repositioning methods. Not retaining the repositioning stresses and strains resulted in different kinetics, kinematics, or failure modes, depending on the mode of loading. For the motion segment model, the differences were associated with the intervertebral disc fiber reorientation and load distribution, because the disc underwent the largest deformation during repositioning. This study demonstrated that repositioning led to altered response and tissue failure, which is critical for computational models intended to predict injury at the tissue level. It is recommended that stresses and strains be included and retained for subsequent analysis when repositioning a human computational neck model. Copyright © 2017 John Wiley & Sons, Ltd.

  9. Recent advances in residual stress measurement

    International Nuclear Information System (INIS)

    Withers, P.J.; Turski, M.; Edwards, L.; Bouchard, P.J.; Buttle, D.J.

    2008-01-01

    Until recently residual stresses have been included in structural integrity assessments of nuclear pressure vessels and piping in a very primitive manner due to the lack of reliable residual stress measurement or prediction tools. This situation is changing the capabilities of newly emerging destructive (i.e. the contour method) and non-destructive (i.e. magnetic and high-energy synchrotron X-ray strain mapping) residual stress measurement techniques for evaluating ferritic and austenitic pressure vessel components are contrasted against more well-established methods. These new approaches offer the potential for obtaining area maps of residual stress or strain in welded plants, mock-up components or generic test-pieces. The mapped field may be used directly in structural integrity calculations, or indirectly to validate finite element process/structural models on which safety cases for pressurised nuclear systems are founded. These measurement methods are complementary in terms of application to actual plant, cost effectiveness and measurements in thick sections. In each case an exemplar case study is used to illustrate the method and to highlight its particular capabilities

  10. Slow strain rate stress corrosion cracking under multiaxial deformation conditions: technique and application to admiralty brass

    International Nuclear Information System (INIS)

    Blanchard, W.K.; Heldt, L.A.; Koss, D.

    1984-01-01

    A set of straightforward experimental techniques are described for the examination of slow strain rate stress corrosion cracking (SCC) of sheet deforming under nearly all multiaxial deformation conditions which result in sheet thinning. Based on local fracture strain as a failure criterion, the results contrast stress corrosion susceptibility in uniaxial tension with those in both plane strain and balanced biaxial tension. These results indicate that the loss of ductility of the brass increases as the stress state changes from uniaxial toward balanced biaxial tension

  11. Life prediction methodology for thermal-mechanical fatigue and elevated temperature creep design

    Science.gov (United States)

    Annigeri, Ravindra

    Nickel-based superalloys are used for hot section components of gas turbine engines. Life prediction techniques are necessary to assess service damage in superalloy components resulting from thermal-mechanical fatigue (TMF) and elevated temperature creep. A new TMF life model based on continuum damage mechanics has been developed and applied to IN 738 LC substrate material with and without coating. The model also characterizes TMF failure in bulk NiCoCrAlY overlay and NiAl aluminide coatings. The inputs to the TMF life model are mechanical strain range, hold time, peak cycle temperatures and maximum stress measured from the stabilized or mid-life hysteresis loops. A viscoplastic model is used to predict the stress-strain hysteresis loops. A flow rule used in the viscoplastic model characterizes the inelastic strain rate as a function of the applied stress and a set of three internal stress variables known as back stress, drag stress and limit stress. Test results show that the viscoplastic model can reasonably predict time-dependent stress-strain response of the coated material and stress relaxation during hold times. In addition to the TMF life prediction methodology, a model has been developed to characterize the uniaxial and multiaxial creep behavior. An effective stress defined as the applied stress minus the back stress is used to characterize the creep recovery and primary creep behavior. The back stress has terms representing strain hardening, dynamic recovery and thermal recovery. Whenever the back stress is greater than the applied stress, the model predicts a negative creep rate observed during multiple stress and multiple temperature cyclic tests. The model also predicted the rupture time and the remaining life that are important for life assessment. The model has been applied to IN 738 LC, Mar-M247, bulk NiCoCrAlY overlay coating and 316 austenitic stainless steel. The proposed model predicts creep response with a reasonable accuracy for wide range of

  12. A Modified Johnson-Cook Model for Sheet Metal Forming at Elevated Temperatures and Its Application for Cooled Stress-Strain Curve and Spring-Back Prediction

    International Nuclear Information System (INIS)

    Duc-Toan, Nguyen; Tien-Long, Banh; Young-Suk, Kim; Dong-Won, Jung

    2011-01-01

    In this study, a modified Johnson-Cook (J-C) model and an innovated method to determine (J-C) material parameters are proposed to predict more correctly stress-strain curve for tensile tests in elevated temperatures. A MATLAB tool is used to determine material parameters by fitting a curve to follow Ludwick's hardening law at various elevated temperatures. Those hardening law parameters are then utilized to determine modified (J-C) model material parameters. The modified (J-C) model shows the better prediction compared to the conventional one. As the first verification, an FEM tensile test simulation based on the isotropic hardening model for boron sheet steel at elevated temperatures was carried out via a user-material subroutine, using an explicit finite element code, and compared with the measurements. The temperature decrease of all elements due to the air cooling process was then calculated when considering the modified (J-C) model and coded to VUMAT subroutine for tensile test simulation of cooling process. The modified (J-C) model showed the good agreement between the simulation results and the corresponding experiments. The second investigation was applied for V-bending spring-back prediction of magnesium alloy sheets at elevated temperatures. Here, the combination of proposed J-C model with modified hardening law considering the unusual plastic behaviour for magnesium alloy sheet was adopted for FEM simulation of V-bending spring-back prediction and shown the good comparability with corresponding experiments.

  13. Stress-strain relationship of high-strength steel (HSS) reinforcing bars

    Science.gov (United States)

    Anggraini, Retno; Tavio, Raka, I. Gede Putu; Agustiar

    2018-05-01

    The introduction of High-Strength Steel (HSS) reinforcing bars in reinforced concrete members has gained much attention in recent years and led to many advantages such as construction timesaving. It is also more economical since it can reduce the amount of reinforcing steel bars used in concrete members which in turn alleviates the congestion of reinforcement. Up to present, the building codes, e.g. American Concrete Institute (ACI) 318M-14 and Standard National Indonesia (SNI) 2847:2013, still restrict the use of higher-strength steel reinforcing bars for concrete design up to Grade 420 MPa due to the possible suspected brittle behavior of concrete members. This paper evaluates the characteristics of stress-strain relationships of HSS bars if they are comparable to the characteristics of those of Grade 420 MPa. To achieve the objective of the study, a series of steel bars from various grades (420, 550, 650, and 700 MPa) was selected. Tensile tests of these steel samples were conducted under displacement-controlled mode to capture the complete stress-strain curves and particularly the post-yield response of the steel bars. The results indicate that all the steel bars tested had the actual yield strengths greater than the corresponding specified values. The stress-strain curves of HSS reinforcing bars (Grade 550, 650, and 700 MPa) performed slightly different characteristics with those of Grade 420 MPa.

  14. Heat stress and strain in exercise and sport.

    Science.gov (United States)

    Brotherhood, John R

    2008-01-01

    Heat stress arising from the thermal environment is of concern to sports medicine and to sports administration because of the perceived risk of heat casualties, in particular heat stroke. Many sports organizations recommend environmental indices such as the WBGT for assessing risk and setting environmental limits for training and competition. But the limits are not justified by evidence. This article describes the nature of heat stress in sport and how it may be assessed objectively. Heat stress and the principal human responses to exercise heat stress are reviewed briefly. Metabolic heat production and the thermal environment provoke separate and largely independent physiological strains. Metabolic heat production drives body core temperature, and the thermal environment drives skin temperature; the combined stresses are integrated to drive sweat rate. Control of core temperature depends on adequate sweat production and the capacity of the environment to evaporate the sweat. The nature of exercise heat stress is demonstrated by rational analysis of the physical heat exchanges between the body and the environment. The principles of this analysis are applied to critical review of current practice in the assessment of heat stress in sport. The article concludes with discussion of research to establish methods for objective sport-specific assessment of heat stress.

  15. Strain Elastography for Prediction of Malignancy in Soft Tissue Tumours--Preliminary Results

    DEFF Research Database (Denmark)

    Riishede, I; Ewertsen, C; Carlsen, J

    2015-01-01

    PURPOSE: To evaluate the ability of strain elastography to predict malignancy in patients with soft tissue tumors, and to compare three evaluation methods of strain elastography: strain ratios, strain histograms and visual scoring. MATERIALS AND METHODS: 60 patients with 61 tumors were analyzed...

  16. Prediction of failure strain and burst pressure in high yield-to-tensile strength ratio linepipe

    International Nuclear Information System (INIS)

    Law, M.; Bowie, G.

    2007-01-01

    Failure pressures and strains were predicted for a number of burst tests as part of a project to explore failure strain in high yield-to-tensile strength ratio linepipe. Twenty-three methods for predicting the burst pressure and six methods of predicting the failure strain are compared with test results. Several methods were identified which gave accurate and reliable estimates of burst pressure. No method of accurately predicting the failure strain was found, though the best was noted

  17. Prediction of failure strain and burst pressure in high yield-to-tensile strength ratio linepipe

    Energy Technology Data Exchange (ETDEWEB)

    Law, M. [Institute of Materials and Engineering Science, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW (Australia)]. E-mail: mlx@ansto.gov.au; Bowie, G. [BlueScope Steel Ltd., Level 11, 120 Collins St, Melbourne, Victoria 3000 (Australia)

    2007-08-15

    Failure pressures and strains were predicted for a number of burst tests as part of a project to explore failure strain in high yield-to-tensile strength ratio linepipe. Twenty-three methods for predicting the burst pressure and six methods of predicting the failure strain are compared with test results. Several methods were identified which gave accurate and reliable estimates of burst pressure. No method of accurately predicting the failure strain was found, though the best was noted.

  18. Bioethanol strains of Saccharomyces cerevisiae characterised by microsatellite and stress resistance

    Directory of Open Access Journals (Sweden)

    Vanda Renata Reis

    Full Text Available Abstract Strains of Saccharomyces cerevisiae may display characteristics that are typical of rough-type colonies, made up of cells clustered in pseudohyphal structures and comprised of daughter buds that do not separate from the mother cell post-mitosis. These strains are known to occur frequently in fermentation tanks with significant lower ethanol yield when compared to fermentations carried out by smooth strains of S. cerevisiae that are composed of dispersed cells. In an attempt to delineate genetic and phenotypic differences underlying the two phenotypes, this study analysed 10 microsatellite loci of 22 S. cerevisiae strains as well as stress resistance towards high concentrations of ethanol and glucose, low pH and cell sedimentation rates. The results obtained from the phenotypic tests by Principal-Component Analysis revealed that unlike the smooth colonies, the rough colonies of S. cerevisiae exhibit an enhanced resistance to stressful conditions resulting from the presence of excessive glucose and ethanol and high sedimentation rate. The microsatellite analysis was not successful to distinguish between the colony phenotypes as phenotypic assays. The relevant industrial strain PE-2 was observed in close genetic proximity to rough-colony although it does not display this colony morphology. A unique genetic pattern specific to a particular phenotype remains elusive.

  19. Experimental determination of the micro-scale strength and stress-strain relation of an epoxy resin

    DEFF Research Database (Denmark)

    Zike, Sanita; Sørensen, Bent F.; Mikkelsen, Lars Pilgaard

    2016-01-01

    An approach is developed for determining the stress-strain law and a failure stress appropriate for micro-mechanical models of polymer materials. Double cantilever beam test specimens, made of an epoxy polymer with notches having finite root radius, were subjected to pure bending moments in an en......An approach is developed for determining the stress-strain law and a failure stress appropriate for micro-mechanical models of polymer materials. Double cantilever beam test specimens, made of an epoxy polymer with notches having finite root radius, were subjected to pure bending moments......-scale (5–6%). The hardening exponent of a power law hardening material was obtained by the use of the J-integral, estimating the strain energy density around the notch. The hardening exponent was found to be within the range of 5–6 and the corresponding micro-scale failure stress was in the range of 220...

  20. Experimental study of the strain state at the area of a surface defect in a steel cylindrical shell subjected to internal pressure

    OpenAIRE

    Бесчетников, Д. А.

    2014-01-01

    Experimental research of stress-strain state at the area of local volumetric surface defects of the pipeline systems is an important goal because results of the measurements are necessary for increasing of effectiveness of existing repair technologies using fiber reinforcement polymer composite materials. In this work the description of experiment carried out by the author is presented with statement of results. The experiment was devoted to strain gauging of a steel cylindrical shell with vo...

  1. Strain and stress tensors of rolled uranium plate by Rietveld refinement of TOF neutron-diffraction data

    International Nuclear Information System (INIS)

    Balzar, D.; Popa, N.C.; Vogel, S.

    2010-01-01

    We report the complete macroscopic average strain and stress tensors for a cold-rolled uranium plate, based on the neutron TOF measurements. Both tensors were determined by the least-squares refinement of the interplanar spacings of 19 Bragg reflections. Based on the pole figures, as determined by GSAS, a triclinic sample symmetry of the uranium plate was assumed. Strain and stress are tensile in both the transverse and rolling directions and very small in the normal direction (through the thickness of the plate). Shear strain and stress components are compressive and of significant magnitude.

  2. Influence of Additive Manufactured Scaffold Architecture on the Distribution of Surface Strains and Fluid Flow Shear Stresses and Expected Osteochondral Cell Differentiation.

    Science.gov (United States)

    Hendrikson, Wim J; Deegan, Anthony J; Yang, Ying; van Blitterswijk, Clemens A; Verdonschot, Nico; Moroni, Lorenzo; Rouwkema, Jeroen

    2017-01-01

    Scaffolds for regenerative medicine applications should instruct cells with the appropriate signals, including biophysical stimuli such as stress and strain, to form the desired tissue. Apart from that, scaffolds, especially for load-bearing applications, should be capable of providing mechanical stability. Since both scaffold strength and stress-strain distributions throughout the scaffold depend on the scaffold's internal architecture, it is important to understand how changes in architecture influence these parameters. In this study, four scaffold designs with different architectures were produced using additive manufacturing. The designs varied in fiber orientation, while fiber diameter, spacing, and layer height remained constant. Based on micro-CT (μCT) scans, finite element models (FEMs) were derived for finite element analysis (FEA) and computational fluid dynamics (CFD). FEA of scaffold compression was validated using μCT scan data of compressed scaffolds. Results of the FEA and CFD showed a significant impact of scaffold architecture on fluid shear stress and mechanical strain distribution. The average fluid shear stress ranged from 3.6 mPa for a 0/90 architecture to 6.8 mPa for a 0/90 offset architecture, and the surface shear strain from 0.0096 for a 0/90 offset architecture to 0.0214 for a 0/90 architecture. This subsequently resulted in variations of the predicted cell differentiation stimulus values on the scaffold surface. Fluid shear stress was mainly influenced by pore shape and size, while mechanical strain distribution depended mainly on the presence or absence of supportive columns in the scaffold architecture. Together, these results corroborate that scaffold architecture can be exploited to design scaffolds with regions that guide specific tissue development under compression and perfusion. In conjunction with optimization of stimulation regimes during bioreactor cultures, scaffold architecture optimization can be used to improve

  3. Gene Transcription and Virulence Potential of Listeria monocytogenes Strains After Exposure to Acidic and NaCl Stress

    DEFF Research Database (Denmark)

    Olesen, Inger; Vogensen, Finn Kvist; Jespersen, Lene

    2009-01-01

    transcription were observed both after exposure to shock (six genes) and after long-term adaptation to stress (18 genes). In the shock experiments, a transient induction of clpC and clpE was seen for both strains, while transient induction of sigB, inlA, and inlB was observed for strain 4140 only; actA was only...... induced in EGD-e after NaCl shock. The longterm stress experiments were included to imitate the stress conditions encountered by L. monocytogenes when present in food products. Long-term adaptation of EGD-e to acidic stress induced transcription of iap and repressed flaA, while genes related to stress......Gene transcription and virulence potential of two strains of Listeria monocytogenes, EGD-e and 4140, were compared by quantitative real-time polymerase chain reaction and in a Caco-2 in vitro model after exposure to acidic (pH 5.5) and NaCl (4.5% w=v) stress. Strain-dependent differences in gene...

  4. Analysis of Thermal Stresses and Strains Developing during the Heat Treatment of Windmill Shaft

    Directory of Open Access Journals (Sweden)

    Cebo-Rudnicka A.

    2017-06-01

    Full Text Available In the paper the results of evaluation of the temperature and stress fields during four cycles of the heat treatment process of the windmill shaft has been presented. The temperature field has been calculated from the solution to the heat conduction equation over the whole heat treatment cycles of the windmill shaft. To calculate the stress field an incremental method has been used. The relations between stresses and strains have been described by Prandtl-Reuss equation for the elastic-plastic body. In order to determine the changes in the temperature and stress fields during heat treatment of the windmill shaft self-developed software utilizing the Finite Element Method has been used. This software can also be used to calculate temperature changes and stress field in ingots and other axially symmetric products. In the mathematical model of heating and cooling of the shaft maximum values of the strains have been determined, which allowed to avoid the crack formation. The critical values of strains have been determined by using modified Rice and Tracy criterion.

  5. Influence of anisotropic hardening on longitudinal welding strains and stresses

    International Nuclear Information System (INIS)

    Gatovskij, K.M.; Revutskij, M.N.

    1981-01-01

    The algorithm and program for estimation of longitudinal welding strains and stresses with account of hardening and Bauschinger effect, which expand the possibilities of more complete description of stress change during thermodeformation welding cycles at bead surfacing on plate made of the 06Kh18N9T steel and AMg61 alloy. It is shown that for metals, deformation curves which are characterized by considerable yield moduli (Esub(T)/E>=0.05) hardening effect is considerable and its account leads to the decrease of stress level in the heataffected zone (down to 20%) [ru

  6. Unpredictable chronic mild stress differentially impairs social and contextual discrimination learning in two inbred mouse strains.

    Science.gov (United States)

    van Boxelaere, Michiel; Clements, Jason; Callaerts, Patrick; D'Hooge, Rudi; Callaerts-Vegh, Zsuzsanna

    2017-01-01

    Alterations in the social and cognitive domain are considered important indicators for increased disability in many stress-related disorders. Similar impairments have been observed in rodents chronically exposed to stress, mimicking potential endophenotypes of stress-related psychopathologies such as major depression disorder (MDD), anxiety, conduct disorder, and posttraumatic stress disorder (PTSD). Data from numerous studies suggest that deficient plasticity mechanisms in hippocampus (HC) and prefrontal cortex (PFC) might underlie these social and cognitive deficits. Specifically, stress-induced deficiencies in neural plasticity have been associated with a hypodopaminergic state and reduced neural plasticity persistence. Here we assessed the effects of unpredictable chronic mild stress (UCMS) on exploratory, social and cognitive behavior of females of two inbred mouse strains (C57BL/6J and DBA/2J) that differ in their dopaminergic profile. Exposure to chronic stress resulted in impaired circadian rhythmicity, sociability and social cognition in both inbred strains, but differentially affected activity patterns and contextual discrimination performance. These stress-induced behavioral impairments were accompanied by reduced expression levels of brain derived neurotrophic factor (BDNF) in the prefrontal cortex. The strain-specific cognitive impairment was coexistent with enhanced plasma corticosterone levels and reduced expression of genes related to dopamine signaling in hippocampus. These results underline the importance of assessing different strains with multiple test batteries to elucidate the neural and genetic basis of social and cognitive impairments related to chronic stress.

  7. Specific strain work as a failure criterion in plane stress state

    International Nuclear Information System (INIS)

    Zuchowski, R.; Zietkowski, L.

    1985-01-01

    An experimental verification of failure criterion based on specific strain work was performed. Thin-walled cylindrical specimens were examined by loading with constant force and constant torque moment, assuming different values for particular tests, at the same time keeping stress intensity constant, and by subjecting to thermal cycling. It was found that the critical value of failure did not depend on axial-to-shearing stresses ratio, i.e., on the type of state of stress. Thereby, the validity of the analysed failure criterion in plane stress was confirmed. Besides, a simple description of damage development in plane stress was suggested. (orig./RF)

  8. Stress-strain effects in alumina-Cu reinforced Nb3Sn wires fabricated by the tube process

    International Nuclear Information System (INIS)

    Murase, Satoru; Nakayama, Shigeo; Masegi, Tamaki; Koyanagi, Kei; Nomura, Shunji; Shiga, Noriyuki; Kobayashi, Norio; Watanabe, Kazuo.

    1997-01-01

    In order to fabricate a large-bore, high-field magnet which achieves a low coil weight and volume, a high strength compound superconducting wire is required. For those demands we have developed the reinforced Nb 3 Sn wire using alumina dispersion strengthened copper (alumina-Cu) as a reinforcement material and the tube process of the Nb 3 Sn wire fabrication. The ductility study of the composites which consisted of the reinforcement, Nb tube, Cu, and Cu clad Sn brought a 1 km long alumina-Cu reinforced Nb 3 Sn wire successfully. Using fabricated wires measurements and evaluations of critical current density as parameters of magnetic field, tensile stress, tensile strain, and transverse compressive stress, and those of stress-strain curves at 4.2 K were performed. They showed superior performance such as high 0.3% proof stress (240 MPa at 0.3% strain) and high maximum tolerance stress (320 MPa) which were two times as large as those of conventional Cu matrix Nb 3 Sn wire. The strain sensitivity parameters were obtained for the reinforced Nb 3 Sn wire and the Cu matrix one using the scaling law. Residual stress of the component materials caused by cooling down to 4.2 K from heat-treatment temperature was calculated using equivalent Young's modulus, equivalent yield strength, thermal expansion coefficient and other mechanical parameters. Calculated stress-strain curves at 4.2 K for the reinforced Nb 3 Sn wire and the Cu matrix one based on calculation of residual stress, had good agreement with the experimental values. (author)

  9. Coupled stress-strain and electrical resistivity measurements on copper based shape memory single crystals

    Directory of Open Access Journals (Sweden)

    Gonzalez Cezar Henrique

    2004-01-01

    Full Text Available Recently, electrical resistivity (ER measurements have been done during some thermomechanical tests in copper based shape memory alloys (SMA's. In this work, single crystals of Cu-based SMA's have been studied at different temperatures to analyse the relationship between stress (s and ER changes as a function of the strain (e. A good consistency between ER change values is observed in different experiments: thermal martensitic transformation, stress induced martensitic transformation and stress induced reorientation of martensite variants. During stress induced martensitic transformation (superelastic behaviour and stress induced reorientation of martensite variants, a linear relationship is obtained between ER and strain as well as the absence of hys teresis. In conclusion, the present results show a direct evidence of martensite electrical resistivity anisotropy.

  10. Necking of anisotropic micro-films with strain-gradient effects

    DEFF Research Database (Denmark)

    Legarth, Brian Nyvang

    2008-01-01

    Necking of stubby micro-films of aluminum is investigated numerically by considering tension of a specimen with an initial imperfection used to onset localisation. Plastic anisotropy is represented by two different yield criteria and strain-gradient effects are accounted for using the visco......-plastic finite strain model. Furthermore, the model is extended to isotropic anisotropic hardening (evolving anisotropy). For isotropic hardening plastic anisotropy affects the predicted overall nominal stress level, while the peak stress remains at an overall logarithmic strain corresponding to the hardening...... exponent. This holds true for both local and nonlocal materials. Anisotropic hardening delays the point of maximum overall nominal stress....

  11. Stress-strain effects on powder-in-tube MgB2 tapes and wires

    International Nuclear Information System (INIS)

    Katagiri, Kazumune; Takaya, Ryuya; Kasaba, Koichi; Tachikawa, Kyoji; Yamada, Yutaka; Shimura, Satoshi; Koshizuka, Naoki; Watanabe, Kazuo

    2005-01-01

    The effects of stress-strain on the critical current, I c , of ex situ powder-in-tube (PIT)-processed Ni-sheathed MgB 2 tapes and round wires as well as in situ PIT-processed Cu-sheathed wires at 4.2 K in a magnetic field up to 5 T have been studied. The effect of In powder addition on the Ni-sheathed MgB 2 wire was not so clear compared with that in the tape, in which the irreversible strain, ε irr , for the I c degradation onset increases significantly by the addition. This is attributed to the difference in the microstructure of the core associated with cold workings. A peak and gradual degradation behaviour of I c with strain beyond ε irr was found in the wire, whereas no evident peak and a steep degradation behaviour was found in the tape. As a possible reason, the difference in the triaxial residual stress state at 4.2 K due to the difference in geometry of the cross-section is suspected. The transverse compression tests revealed that I c of the wire did not degrade up to 270 MPa. Again, the effect of In addition was minimal. The Young's modulus of MgB 2 , 31-41 GPa, at room temperature was estimated by a tensile test of Cu sheath wire using a high-accuracy extensometer and the law of mixtures. The tensile strain dependence of I c in the Cu sheath wire was similar to that in the Ni-sheathed wire, ε irr being 0.4%. However, the stress corresponding to ε irr , 50 MPa, was about 1/10 of that for the Ni-sheath wire and the irreversible transverse compressive stress, 150 MPa, was also lower. The effect of bending strain on the I c in Cu-sheathed wire was compared with that of the tensile strain

  12. PREDICTION OF MAXIMUM CREEP STRAIN OF HIGH PERFORMANCE STEEL FIBER REINFORCED CONCRETE

    Directory of Open Access Journals (Sweden)

    Mishina Alexandra Vasil'evna

    2012-12-01

    Full Text Available The strongest research potential is demonstrated by the areas of application of high performance steel fiber reinforced concrete (HPSFRC. The research of its rheological characteristics is very important for the purposes of understanding its behaviour. This article is an overview of an experimental study of UHSSFRC. The study was carried out in the form of lasting creep tests of HPSFRC prism specimen, loaded by stresses of varied intensity. The loading was performed at different ages: 7, 14, 28 and 90 days after concreting. The stress intensity was 0.3 and 0.6 Rb; it was identified on the basis of short-term crush tests of similar prism-shaped specimen, performed on the same day. As a result, values of ultimate creep strains and ultimate specific creep of HPSFRC were identified. The data was used to construct an experimental diagramme of the ultimate specific creep on the basis of the HPSFRC loading age if exposed to various stresses. The research has resulted in the identification of a theoretical relationship that may serve as the basis for the high-precision projection of the pattern of changes in the ultimate specific creep of HPSFRC, depending on the age of loading and the stress intensity.

  13. Ground Motion Prediction Equations Empowered by Stress Drop Measurement

    Science.gov (United States)

    Miyake, H.; Oth, A.

    2015-12-01

    Significant variation of stress drop is a crucial issue for ground motion prediction equations and probabilistic seismic hazard assessment, since only a few ground motion prediction equations take into account stress drop. In addition to average and sigma studies of stress drop and ground motion prediction equations (e.g., Cotton et al., 2013; Baltay and Hanks, 2014), we explore 1-to-1 relationship for each earthquake between stress drop and between-event residual of a ground motion prediction equation. We used the stress drop dataset of Oth (2013) for Japanese crustal earthquakes ranging 0.1 to 100 MPa and K-NET/KiK-net ground motion dataset against for several ground motion prediction equations with volcanic front treatment. Between-event residuals for ground accelerations and velocities are generally coincident with stress drop, as investigated by seismic intensity measures of Oth et al. (2015). Moreover, we found faster attenuation of ground acceleration and velocities for large stress drop events for the similar fault distance range and focal depth. It may suggest an alternative parameterization of stress drop to control attenuation distance rate for ground motion prediction equations. We also investigate 1-to-1 relationship and sigma for regional/national-scale stress drop variation and current national-scale ground motion equations.

  14. Childhood Adversity, Daily Stress, and Marital Strain in Same-Sex and Different-Sex Marriages

    Science.gov (United States)

    Donnelly, Rachel; Umberson, Debra; Kroeger, Rhiannon A.

    2017-01-01

    Childhood adversity has enduring consequences for individuals throughout life, including increased reactivity to stress that may contribute to marital strain in adulthood. Past research on gendered experiences of heterosexual spouses raises questions about how the influence of childhood adversity might differ for men and women in same-sex marriages. We analyze dyadic diary data from 756 individuals in 106 male same-sex, 157 female same-sex, and 115 different-sex marriages to consider how childhood adversity moderates the association between daily stress and marital strain. Results suggest that the negative consequences of daily stress for marital strain are amplified by past childhood adversity with variation for men and women in same- and different-sex unions, such that women and those in same-sex marriages may experience some protection from the adverse consequences of childhood adversity.

  15. Analysis of stress- strain distribution of dowel and glue line in L-type furniture joint by means of finite element method

    Directory of Open Access Journals (Sweden)

    mossayeb dalvand

    2017-08-01

    Full Text Available In this study 3D stress-strain distribution of dowel and glue line on L-type joints made of plywood doweled was investigated. Members of joints made of 11-ply hardwood plywood (Hornbeam, Beech and Alder that were 19 mm in thickness. In this study effect of beech dowels in three levels diameters (6, 8 and 10 mm and penetration of depth (9, 13 and 17 mm on bending moment capacity of L-type joints under compression loading was investigated as experimental test, then stress-strain distribution of wood dowel and glue line in specimens were simulated by means of ANSYS 15 software with finite element method (FEM.Results have shown that bending moment resistance increased with increasing dowel diameter from 6 to 8 mm, but downward trend was observed with increasing 8 to 10 mm in dowel diameter. Bending moment resistance increased with increasing penetration depth. Also, result obtained of simulation by means of ANSYS software have shown that stress-strain in dowel and glue line increased with increasing diameter of dowel and Increasing stress in joints made of diameter dowel 10 mm due to fracture in joints and decrease in resistance once. According to results obtained of model analysis, the ultimate stress of dowel and glue line occurred in the area that joints were contacted.

  16. Strain hardening and plastic instability properties of austenitic stainless steels after proton and neutron irradiation

    International Nuclear Information System (INIS)

    Byun, T.S.; Farrell, K.; Lee, E.H.; Hunn, J.D.; Mansur, L.K.

    2001-01-01

    Strain hardening and plastic instability properties were analyzed for EC316LN, HTUPS316, and AL6XN austenitic stainless steels after combined 800 MeV proton and spallation neutron irradiation to doses up to 10.7 dpa. The steels retained good strain-hardening rates after irradiation, which resulted in significant uniform strains. It was found that the instability stress, the stress at the onset of necking, had little dependence on the irradiation dose. Tensile fracture stress and strain were calculated from the stress-strain curve data and were used to estimate fracture toughness using an existing model. The doses to plastic instability and fracture, the accumulated doses at which the yield stress reaches instability stress or fracture stress, were predicted by extrapolation of the yield stress, instability stress, and fracture stress to higher dose. The EC316LN alloy required the highest doses for plastic instability and fracture. Plastic deformation mechanisms are discussed in relation to the strain-hardening properties of the austenitic stainless steels

  17. Prediction of multiaxial fatigue life for notched specimens of titanium alloy TC4

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Z. R.; Li, Z. X. [Southeast University, Nanjing (China); Hu, X. T.; Song, Y. D. [Nanjing University, Nanjing (China)

    2016-05-15

    Both the proportional and nonproportional multiaxial fatigue tests were conducted on two kinds of notched specimens of titanium alloy TC4. The multiaxial fatigue critical area of notched specimen is considered as the location experiencing the maximum damage. It is unsatisfactory to predict the multiaxial fatigue life with the local stress and strain in the fatigue critical area. The critical distance concepts are employed in the multiaxial life prediction method for notched specimens. The proposed method was checked by the test data of TC4 notched specimens. The prediction results are almost within a factor of three scatter band of the test results.

  18. Fatigue life evaluation based on welding residual stress relaxation and notch strain approach for cruciform welded joint

    International Nuclear Information System (INIS)

    Han, Jeong Woo; Han, Seung Ho; Shin, Byung Chun; Kim, Jae Hoon

    2003-01-01

    The fatigue strength of welded joint is influenced by the welding residual stress which is relaxed depending on local stress distributed in vicinity of stress raisers, eg. under cut, overlap and blow hole. To evaluate its fatigue life the geometry of the stress raisers and the welding residual stress should be taken into account. The several methods based on notch strain approach have been proposed in order to consider the two factors above mentioned. These methods, however, have shown considerable differences between analytical and experimental results. It is due to the fact that the amount of the relaxed welding residual stress evaluated by the cyclic stress-strain relationship do not correspond with that occurred in reality. In this paper the residual stress relaxation model based on experimental results was used in order to reduce the discrepancy of the estimated amount of the relaxed welding residual stress. Under an assumption of the superimposition of the relaxed welding residual stress and the local stress, a modified notch strain approach was proposed and verified to the cruciform welded joint

  19. Unpredictable chronic mild stress differentially impairs social and contextual discrimination learning in two inbred mouse strains.

    Directory of Open Access Journals (Sweden)

    Michiel van Boxelaere

    Full Text Available Alterations in the social and cognitive domain are considered important indicators for increased disability in many stress-related disorders. Similar impairments have been observed in rodents chronically exposed to stress, mimicking potential endophenotypes of stress-related psychopathologies such as major depression disorder (MDD, anxiety, conduct disorder, and posttraumatic stress disorder (PTSD. Data from numerous studies suggest that deficient plasticity mechanisms in hippocampus (HC and prefrontal cortex (PFC might underlie these social and cognitive deficits. Specifically, stress-induced deficiencies in neural plasticity have been associated with a hypodopaminergic state and reduced neural plasticity persistence. Here we assessed the effects of unpredictable chronic mild stress (UCMS on exploratory, social and cognitive behavior of females of two inbred mouse strains (C57BL/6J and DBA/2J that differ in their dopaminergic profile. Exposure to chronic stress resulted in impaired circadian rhythmicity, sociability and social cognition in both inbred strains, but differentially affected activity patterns and contextual discrimination performance. These stress-induced behavioral impairments were accompanied by reduced expression levels of brain derived neurotrophic factor (BDNF in the prefrontal cortex. The strain-specific cognitive impairment was coexistent with enhanced plasma corticosterone levels and reduced expression of genes related to dopamine signaling in hippocampus. These results underline the importance of assessing different strains with multiple test batteries to elucidate the neural and genetic basis of social and cognitive impairments related to chronic stress.

  20. Effect of salt stress on the physiology of Frankia sp strain CcI6

    Indian Academy of Sciences (India)

    2013-10-01

    Oct 1, 2013 ... the strain is closely related to Frankia sp. strain CcI3. ... [Oshone R, Mansour SR and Tisa LS 2013 Effect of salt stress on the physiology of Frankia sp strain CcI6. .... This work was supported in part by US-Egypt Joint Research.

  1. Bioethanol strains of Saccharomyces cerevisiae characterised by microsatellite and stress resistance.

    Science.gov (United States)

    Reis, Vanda Renata; Antonangelo, Ana Teresa Burlamaqui Faraco; Bassi, Ana Paula Guarnieri; Colombi, Débora; Ceccato-Antonini, Sandra Regina

    Strains of Saccharomyces cerevisiae may display characteristics that are typical of rough-type colonies, made up of cells clustered in pseudohyphal structures and comprised of daughter buds that do not separate from the mother cell post-mitosis. These strains are known to occur frequently in fermentation tanks with significant lower ethanol yield when compared to fermentations carried out by smooth strains of S. cerevisiae that are composed of dispersed cells. In an attempt to delineate genetic and phenotypic differences underlying the two phenotypes, this study analysed 10 microsatellite loci of 22 S. cerevisiae strains as well as stress resistance towards high concentrations of ethanol and glucose, low pH and cell sedimentation rates. The results obtained from the phenotypic tests by Principal-Component Analysis revealed that unlike the smooth colonies, the rough colonies of S. cerevisiae exhibit an enhanced resistance to stressful conditions resulting from the presence of excessive glucose and ethanol and high sedimentation rate. The microsatellite analysis was not successful to distinguish between the colony phenotypes as phenotypic assays. The relevant industrial strain PE-2 was observed in close genetic proximity to rough-colony although it does not display this colony morphology. A unique genetic pattern specific to a particular phenotype remains elusive. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  2. Formation of stress/strain cycles for analytical assessment of fatigue crack initiation and growth

    International Nuclear Information System (INIS)

    Tashkinov, A.V.

    2005-01-01

    This paper discusses standard techniques for setting up cycles of stresses, strains and stress intensity factors (SIF) for use in analysing the fatigue characteristics of crack-free components or the fatigue crack growth if crack-like flaws are present. A number of improved techniques are proposed. An enhanced procedure for analytical description of true metal stress-strain curves, covering plastic effects, is presented. This procedure involves standard physical and mechanical properties of the metal in question, such as ultimate stress, yield stress and elasticity modulus. It is emphasized that the currently practiced rain-flow method of design cycle formation, which is effective for an actual (truly known) cyclic loading history, is not suitable for a projected (anticipated) history, as it leaves out of account possible variations in the sequence of operating conditions. Improved techniques for establishing design stress/strain and SIF cycles are described, which make allowance for the most unfavourable sequence of events in the projected loading history. The paper points to a basic difference in the methods of design cycle formation, employed in assessment of the current condition of a component (with the actual history accounted for) and in estimation of the residual lifetime or life extension (for a projected history). (authors)

  3. [Relationship between occupational stress and working ability of workers in a petroleum processing enterprise in high altitude area].

    Science.gov (United States)

    Ma, X M; Kang, H L; Shi, C B; Li, Y; Wu, Y F; Liu, Z H; Wang, G; Lei, H Y

    2017-12-20

    Objective: To investigate the relationship between occupational stress and working ability of workers in a petroleum processing enterprise in a high altitude area. Methods: A total of 728 workers in a petroleum processing enterprise at an altitude of 2850 m were subjected to a survey using Occupational Stress Inventory (OSI) , Work Ability Index (WAI) Scale, Occupational Role Questionnaire (ORQ) , Personal Strain Questionnaire (PSQ) , and Personal Resource Questionnaire (PRQ) from May 2014 to August 2016. Results: Of the 728 workers, 55 (7.6%) had a poor working ability, moderate in 262 (35.9%) , and good in 411 (56.5%). There were significant differences in WAI between the workers with different types of work, sexes, ages, and working years ( P occupational stress groups ( P Occupational stress is an influencing factor for the working ability of workers in the petroleum processing enterprise in the high altitude area. Hypoxia in high altitude area may further reduce the working ability. In order to reduce occupational stress and improve work ability, it should be considered to strengthen skills training, improve the working environment, and pay attention to mental health.

  4. Strain gradient plasticity-based modeling of hydrogen environment assisted cracking

    DEFF Research Database (Denmark)

    Martínez Pañeda, Emilio; Niordson, Christian Frithiof; P. Gangloff, Richard

    2016-01-01

    Finite element analysis of stress about a blunt crack tip, emphasizing finite strain and phenomenologicaland mechanism-based strain gradient plasticity (SGP) formulations, is integrated with electrochemical assessment of occluded-crack tip hydrogen (H) solubility and two H-decohesion models...... to predict hydrogen environment assisted crack growth properties. SGP elevates crack tip geometrically necessary dislocation density and flow stress, with enhancement declining with increasing alloy strength. Elevated hydrostatic stress promotes high-trapped H concentration for crack tip damage......; it is imperative to account for SGP in H cracking models. Predictions of the threshold stress intensity factor and H-diffusion limited Stage II crack growth rate agree with experimental data for a high strength austenitic Ni-Cusuperalloy (Monel®K-500) and two modern ultra-high strength martensitic steels (Aer...

  5. Stress-Strain Law for Confined Concrete with Hardening or Softening Behavior

    Directory of Open Access Journals (Sweden)

    Piero Colajanni

    2013-01-01

    Full Text Available This paper provides a new general stress-strain law for concrete confined by steel, fiber reinforced polymer (FRP, or fiber reinforced cementitious matrix (FRCM, obtained by a suitable modification of the well-known Sargin’s curve for steel confined concrete. The proposed law is able to reproduce stress-strain curve of any shape, having both hardening or softening behavior, by using a single closed-form simple algebraic expression with constant coefficients. The coefficients are defined on the basis of the stress and the tangent modulus of the confined concrete in three characteristic points of the curve, thus being related to physical meaningful parameters. It will be shown that if the values of the parameters of the law are deduced from experimental tests, the model is able to accurately reproduce the experimental curve. If they are evaluated on the basis of an analysis-oriented model, the proposed model provides a handy equivalent design model.

  6. Analysis of stress and strain in a rotating disk mounted on a rigid shaft

    Directory of Open Access Journals (Sweden)

    Alexandrova Nelli N.

    2006-01-01

    Full Text Available The plane state of stress in an elastic-perfectly plastic isotropic rotating annular disk mounted on a rigid shaft is studied. The analysis of stresses, strains and displacements within the disk of constant thickness and density is based on the Mises yield criterion and its associated flow rule. It is observed that the plastic deformation is localized in the vicinity of the inner radius of the disk, and the disk of a sufficiently large outer radius never becomes fully plastic. The semi-analytical method of stress-strain analysis developed is illustrated by some numerical examples. .

  7. Stress and strain in the contractile and cytoskeletal filaments of airway smooth muscle.

    Science.gov (United States)

    Deng, Linhong; Bosse, Ynuk; Brown, Nathan; Chin, Leslie Y M; Connolly, Sarah C; Fairbank, Nigel J; King, Greg G; Maksym, Geoffrey N; Paré, Peter D; Seow, Chun Y; Stephen, Newman L

    2009-10-01

    Stress and strain are omnipresent in the lung due to constant lung volume fluctuation associated with respiration, and they modulate the phenotype and function of all cells residing in the airways including the airway smooth muscle (ASM) cell. There is ample evidence that the ASM cell is very sensitive to its physical environment, and can alter its structure and/or function accordingly, resulting in either desired or undesired consequences. The forces that are either conferred to the ASM cell due to external stretching or generated inside the cell must be borne and transmitted inside the cytoskeleton (CSK). Thus, maintaining appropriate levels of stress and strain within the CSK is essential for maintaining normal function. Despite the importance, the mechanisms regulating/dysregulating ASM cytoskeletal filaments in response to stress and strain remained poorly understood until only recently. For example, it is now understood that ASM length and force are dynamically regulated, and both can adapt over a wide range of length, rendering ASM one of the most malleable living tissues. The malleability reflects the CSK's dynamic mechanical properties and plasticity, both of which strongly interact with the loading on the CSK, and all together ultimately determines airway narrowing in pathology. Here we review the latest advances in our understanding of stress and strain in ASM cells, including the organization of contractile and cytoskeletal filaments, range and adaptation of functional length, structural and functional changes of the cell in response to mechanical perturbation, ASM tone as a mediator of strain-induced responses, and the novel glassy dynamic behaviors of the CSK in relation to asthma pathophysiology.

  8. Stress corrosion cracking lifetime prediction of spring screw

    International Nuclear Information System (INIS)

    Koh, S. K.; Ryu, C. H.

    2004-01-01

    A lifetime prediction of holddown spring screw in nuclear fuel assembly was performed using fracture mechanics approach. The spring screw was designed such that it was capable of sustaining the loads imposed by the initial tensile preload and operational loads. In order to investigate the cause of failure and to predict the stress corrosion cracking life of the screw, a stress analysis of the top nozzle spring assembly was done using finite element analysis. The elastic-plastic finite element analysis showed that the local stresses at the critical regions of head-shank fillet and thread root significantly exceeded than the yield strength of the screw material, resulting in local plastic deformation. Normalized stress intensity factors for PWSCC life prediction was proposed. Primary water stress corrosion cracking life of the Inconel 600 screw was predicted by using integration of the Scott model and resulted in 1.78 years, which was fairly close to the actual service life of the holddown spring screw

  9. Study on the stress and strain during welding of plate-to-pipe joint

    Energy Technology Data Exchange (ETDEWEB)

    Na, S.J.; Kim, H.W.

    1986-09-01

    In manufacturing of pipe walls for boiler units, distortion can result in pipe-to-pipe joints from the nonuniform expansion and contraction of the weld metal and the adjacent base metal during heating and cooling cycle of the welding process. In this study, the stresses and strains during longitudinal welding of the plate-to-pipe joint were investigated. Using the method of sucessive elastic solution, longitudinal stresses and strains during and after welding were calculated from the information of temperature distributions obtained by Rosenthal's equations. In order to confirm the validity of the numerical results, the temperature and residual stress distributions were measured and compared with the calculated results. In spite of some assumptions, the one-dimensional analytical results of residual stresses were in fairly good agreement with the experimental ones. The residual stresses due to welding of plate-to-pipe joints are tensile near the weld line and compressive in the base metal as in the welding of plates. The amount and distribution of residual stresses were deeply dependent on the heat input ratio of the plate and pipe.

  10. On stress/strain shielding and the material stiffness paradigm for dental implants.

    Science.gov (United States)

    Korabi, Raoof; Shemtov-Yona, Keren; Rittel, Daniel

    2017-10-01

    Stress shielding considerations suggest that the dental implant material's compliance should be matched to that of the host bone. However, this belief has not been confirmed from a general perspective, either clinically or numerically. To characterize the influence of the implant stiffness on its functionality using the failure envelope concept that examines all possible combinations of mechanical load and application angle for selected stress, strain and displacement-based bone failure criteria. Those criteria represent bone yielding, remodeling, and implant primary stability, respectively MATERIALS AND METHODS: We performed numerical simulations to generate failure envelopes for all possible loading configurations of dental implants, with stiffness ranging from very low (polymer) to extremely high, through that of bone, titanium, and ceramics. Irrespective of the failure criterion, stiffer implants allow for improved implant functionality. The latter reduces with increasing compliance, while the trabecular bone experiences higher strains, albeit of an overall small level. Micromotions remain quite small irrespective of the implant's stiffness. The current paradigm favoring reduced implant material's stiffness out of concern for stress or strain shielding, or even excessive micromotions, is not supported by the present calculations, that point exactly to the opposite. © 2017 Wiley Periodicals, Inc.

  11. Spall damage of a mild carbon steel: Effects of peak stress, strain rate and pulse duration

    International Nuclear Information System (INIS)

    Li, C.; Li, B.; Huang, J.Y.; Ma, H.H.; Zhu, M.H.; Zhu, J.; Luo, S.N.

    2016-01-01

    We investigate spall damage of a mild carbon steel under high strain-rate loading, regarding the effects of peak stress, strain rate, and pulse duration on spall strength and damage, as well as related microstructure features, using gas gun plate impact, laser velocimetry, and electron backscatter diffraction analysis. Our experiments demonstrate strong dependences of spall strength on peak stress and strain rate, and its weak dependence on pulse duration. We establish numerical relations between damage and peak stress or pulse duration. Brittle and ductile spall fracture modes are observed at different loading conditions. Damage nucleates at grain boundaries and triple junctions, either as transgranular cleavage cracks or voids.

  12. Spall damage of a mild carbon steel: Effects of peak stress, strain rate and pulse duration

    Energy Technology Data Exchange (ETDEWEB)

    Li, C. [College of Physical Science and Technology, Sichuan University, Chengdu, Sichuan 610064 (China); Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610031 (China); Li, B.; Huang, J.Y. [The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610031 (China); CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027 (China); Ma, H.H. [CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027 (China); Zhu, M.H. [Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Zhu, J., E-mail: zhujun01@163.com [College of Physical Science and Technology, Sichuan University, Chengdu, Sichuan 610064 (China); Luo, S.N., E-mail: sluo@pims.ac.cn [The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610031 (China); Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China)

    2016-04-13

    We investigate spall damage of a mild carbon steel under high strain-rate loading, regarding the effects of peak stress, strain rate, and pulse duration on spall strength and damage, as well as related microstructure features, using gas gun plate impact, laser velocimetry, and electron backscatter diffraction analysis. Our experiments demonstrate strong dependences of spall strength on peak stress and strain rate, and its weak dependence on pulse duration. We establish numerical relations between damage and peak stress or pulse duration. Brittle and ductile spall fracture modes are observed at different loading conditions. Damage nucleates at grain boundaries and triple junctions, either as transgranular cleavage cracks or voids.

  13. A comparative study on the uniaxial mechanical properties of the umbilical vein and umbilical artery using different stress-strain definitions.

    Science.gov (United States)

    Karimi, Alireza; Navidbakhsh, Mahdi

    2014-12-01

    The umbilical cord is part of the fetus and generally includes one umbilical vein (UV) and two umbilical arteries (UAs). As the saphenous vein and UV are the most commonly used veins for the coronary artery disease treatment as a coronary artery bypass graft (CABG), understating the mechanical properties of UV has a key asset in its performance for CABG. However, there is not only a lack of knowledge on the mechanical properties of UV and UA but there is no agreement as to which stress-strain definition should be implemented to measure their mechanical properties. In this study, the UV and UA samples were removed after caesarean from eight individuals and subjected to a series of tensile testing. Three stress definitions (second Piola-Kichhoff stress, engineering stress, and true stress) and four strain definitions (Almansi-Hamel strain, Green-St. Venant strain, engineering strain, and true strain) were employed to determine the linear mechanical properties of UVs and UAs. The nonlinear mechanical behavior of UV/UA was computationally investigated using hyperelastic material models, such as Ogden and Mooney-Rivlin. The results showed that the effect of varying the stress definition on the maximum stress measurements of the UV/UA is significant but not when calculating the elastic modulus. In the true stress-strain diagram, the maximum strain of UV was 92 % higher, while the elastic modulus and maximum stress were 162 and 42 % lower than that of UA. The Mooney-Rivlin material model was designated to represent the nonlinear mechanical behavior of the UV and UA under uniaxial loading.

  14. Evaluation of Pressure Pain Threshold as a Measure of Perceived Stress and High Job Strain

    DEFF Research Database (Denmark)

    Hven, Lisbeth; Frost, Poul; Bonde, Jens Peter Ellekilde

    2017-01-01

    pressure pain algometry measurements of PPT on the trapezius and supraspinatus muscles and the tibia. Associations of stress symptoms and job strain with PPT of each site was analyzed for men and women separately with adjustment for age body mass index, and discomfort in the anatomical region closest...... to the point of pressure algometry using multivariable linear regression. RESULTS: We found significant inverse associations between perceived stress and PPT in both genders in models adjusting for age and body mass index: the higher level of perceived stress, the lower the threshold. For job strain...... associations between perceived stress and PPT, the discriminative capability of PPT to distinguish individuals with and without stress is low. PPT measured by pressure algometry seems not applicable as a diagnostic tool of a state of mental stress....

  15. Stress/strain characteristics of Cu alloy sheath in situ processed MgB2 superconducting wires

    International Nuclear Information System (INIS)

    Katagiri, Kazumune; Kasaba, Koichi; Shoji, Yoshitaka

    2005-01-01

    The mechanical properties of copper and copper alloy (Cu-Zr, Cu-Be and Cu-Cr) sheath in situ PIT-processed MgB 2 superconducting wires were studied at room temperature (RT) and 4.2 K. The effects of stress-strain on the critical current (I c ) of the wires have also been studied at 4.2 K and in magnetic fields up to 5 T. It has been clarified that alloying the Cu sheath significantly increases the yield and flow stresses of the wires at both RT and 4.2 K. The 0.5% flow stresses of the Cu alloy sheath wire were 147-237 MPa, whereas that of Cu was 55 MPa. At RT, serration corresponding to multiple cracking was observed around a strain of 0.4% and the stress-strain curves saturated beyond that point. The strain dependence of I c prior to the critical strain (ε irr ) was different depending on the magnetic field; being almost constant at 2 T and increasing with strain at 5 T. The I c decreased beyond ε irr , which is much larger for Cu alloy sheath wires as compared to Cu sheath wire. This is due to the difference in the residual compressive strain in the MgB 2 core during cooling from the heat-treatment temperature to 4.2 K, which is determined through relaxation by yielding in the sheath materials. The transverse compression tests revealed that the I c of the Cu alloy sheath wire did not degrade up to 314 MPa, which is also higher than that of Cu sheath wire. (author)

  16. Monitoring the ethanol stress response of a sigM deletion strain of B. cereus ATCC 14579.

    NARCIS (Netherlands)

    Voort, van der M.

    2008-01-01

    Here, the role of σM and its regulon in stress response and survival of B. cereus ATCC 14579 was assessed by comparative transciptome and phenotypic analysis of this strain and its sigM deletion strain. Exposure of B. cereus ATCC 14579 to a wide range of stresses revealed expression of sigM,

  17. Cyclic Strain Resistance, Stress Response, Fatigue Life, and Fracture Behavior of High Strength Low Alloy Steel 300 M

    Science.gov (United States)

    Manigandan, K.; Srivatsan, T. S.; Tammana, Deepthi; Poorgangi, Behrang; Vasudevan, Vijay K.

    2014-05-01

    The focus of this technical manuscript is a record of the specific role of microstructure and test specimen orientation on cyclic stress response, cyclic strain resistance, and cyclic stress versus strain response, deformation and fracture behavior of alloy steel 300 M. The cyclic strain amplitude-controlled fatigue properties of this ultra-high strength alloy steel revealed a linear trend for the variation of log elastic strain amplitude with log reversals-to-failure, and log plastic strain amplitude with log reversals-to-failure for both longitudinal and transverse orientations. Test specimens of the longitudinal orientation showed only a marginal improvement over the transverse orientation at equivalent values of plastic strain amplitude. Cyclic stress response revealed a combination of initial hardening for the first few cycles followed by gradual softening for a large portion of fatigue life before culminating in rapid softening prior to catastrophic failure by fracture. Fracture characteristics of test specimens of this alloy steel were different at both the macroscopic and fine microscopic levels over the entire range of cyclic strain amplitudes examined. Both macroscopic and fine microscopic observations revealed fracture to be a combination of both brittle and ductile mechanisms. The underlying mechanisms governing stress response, deformation characteristics, fatigue life, and final fracture behavior are presented and discussed in light of the competing and mutually interactive influences of test specimen orientation, intrinsic microstructural effects, deformation characteristics of the microstructural constituents, cyclic strain amplitude, and response stress.

  18. An atomic resolution scanning tunneling microscope that applies external tensile stress and strain in an ultrahigh vacuum

    International Nuclear Information System (INIS)

    Fujita, D; Kitahara, M; Onishi, K; Sagisaka, K

    2008-01-01

    We have developed an ultrahigh vacuum scanning tunneling microscope with an in situ external stress application capability in order to determine the effects of stress and strain on surface atomistic structures. It is necessary to understand these effects because controlling them will be a key technology that will very likely be used in future nanometer-scale fabrication processes. We used our microscope to demonstrate atomic resolution imaging under external tensile stress and strain on the surfaces of wafers of Si(111) and Si(001). We also successfully observed domain redistribution induced by applying uniaxial stress at an elevated temperature on the surface of a wafer of vicinal Si(100). We confirmed that domains for which an applied tensile stress is directed along the dimer bond become less stable and shrink. This suggests that it may be feasible to fabricate single domain surfaces in a process that controls surface stress and strain

  19. Does acute stress disorder predict posttraumatic stress disorder following bank robbery?

    DEFF Research Database (Denmark)

    Hansen, M.; Elklit, A.

    2013-01-01

    Unfortunately, the number of bank robberies is increasing and little is known about the subsequent risk of posttraumatic stress disorder (PTSD). Several studies have investigated the prediction of PTSD through the presence of acute stress disorder (ASD). However, there have only been a few studies...... following nonsexual assault. The present study investigated the predictive power of different aspects of the ASD diagnosis and symptom severity on PTSD prevalence and symptom severity in 132 bank employees. The PTSD diagnosis, based on the three core symptom clusters, was best identified using cutoff scores...... on the Acute Stress Disorder scale. ASD severity accounted for 40% and the inclusion of other risk factors accounted for 50% of the PTSD severity variance. In conclusion, results indicated that ASD appears to predict PTSD differently following nonsexual assault than other trauma types. ASD severity...

  20. Stress Survival Islet 2, Predominantly Present in Listeria monocytogenes Strains of Sequence Type 121, Is Involved in the Alkaline and Oxidative Stress Responses.

    Science.gov (United States)

    Harter, Eva; Wagner, Eva Maria; Zaiser, Andreas; Halecker, Sabrina; Wagner, Martin; Rychli, Kathrin

    2017-08-15

    The foodborne pathogen Listeria monocytogenes is able to survive a variety of stress conditions leading to the colonization of different niches like the food processing environment. This study focuses on the hypervariable genetic hot spot lmo0443 to lmo0449 haboring three inserts: the stress survival islet 1 (SSI-1), the single-gene insert LMOf2365_0481 , and two homologous genes of the nonpathogenic species Listeria innocua : lin0464 , coding for a putative transcriptional regulator, and lin0465 , encoding an intracellular PfpI protease. Our prevalence study revealed a different distribution of the inserts between human and food-associated isolates. The lin0464-lin0465 insert was predominantly found in food-associated strains of sequence type 121 (ST121). Functional characterization of this insert showed that the putative PfpI protease Lin0465 is involved in alkaline and oxidative stress responses but not in acidic, gastric, heat, cold, osmotic, and antibiotic stresses. In parallel, deletion of lin0464 decreased survival under alkaline and oxidative stresses. The expression of both genes increased significantly under oxidative stress conditions independently of the alternative sigma factor σ B Furthermore, we showed that the expression of the protease gene lin0465 is regulated by the transcription factor lin0464 under stress conditions, suggesting that lin0464 and lin0465 form a functional unit. In conclusion, we identified a novel stress survival islet 2 (SSI-2), predominantly present in L. monocytogenes ST121 strains, beneficial for survival under alkaline and oxidative stresses, potentially supporting adaptation and persistence of L. monocytogenes in food processing environments. IMPORTANCE Listeria monocytogenes strains of ST121 are known to persist for months and even years in food processing environments, thereby increasing the risk of food contamination and listeriosis. However, the molecular mechanism underlying this remarkable niche-specific adaptation

  1. Flow stress asymmetry and cyclic stress--strain response in a BCC Ti--V alloy

    International Nuclear Information System (INIS)

    Koss, D.A.; Wojcik, C.C.

    1976-01-01

    The cyclic stress-strain response of relatively stable bcc β-phase Ti--40 percent V alloy single crystals was studied. Flow stress asymmetry found in the alloy is attributed to the fact that screw dislocations, when gliding on a (211) plane, are more mobile in the twinning direction than in the antitwinning direction. Thus the flow stress of the crystal is greater when it is sheared in the antitwinning direction than in the twinning direction (the latter case results when crystals of the 100 orientation are stressed in tension and those of the 110 orientation are stressed in compression). Such behavior can be a result of the core of a screw dislocation being asymmetric under stress which causes the flow stress asymmetry observed. It should be noted that screw dislocations dominate the low temperature deformation structure of Ti-40V, which strongly suggests deformation is controlled by screw dislocation motion. The observation in Mo that the microyield stress is independent of crystal orientation could be a result of edge dislocation motion controlling microyield in that instance and this observation would not be inconsistent with screw dislocation motion controlling the macroscopic (epsilon/sub p/ greater than 0.05 percent) deformation measured here

  2. High energy X-ray diffraction analysis of strain and residual stress in silicon nitride ceramic diffusion bonds

    International Nuclear Information System (INIS)

    Vila, M.; Prieto, C.; Miranzo, P.; Osendi, M.I.; Terry, A.E.; Vaughan, G.B.M.

    2005-01-01

    High resolution X-ray scanning diffractometry is used to study the residual stress in binary metal/ceramic (Ni/Si 3 N 4 ) diffusion bonds fabricated by simultaneous high temperature heating and uniaxial pressing. In order to diminish the experimental error on the stress determination, the method consists of three steps: (i) to measure the axial and radial strains following some selected lines at the inner volume of the ceramic; (ii) to fit the strain data using finite element method (FEM) analysis and (iii) to determinate stresses by using the results obtained from the FEM method in the strain calculation

  3. Influence of Trabecular Bone on Peri-Implant Stress and Strain Based on Micro-CT Finite Element Modeling of Beagle Dog.

    Science.gov (United States)

    Liao, Sheng-Hui; Zhu, Xing-Hao; Xie, Jing; Sohodeb, Vikesh Kumar; Ding, Xi

    2016-01-01

    The objective of this investigation is to analyze the influence of trabecular microstructure modeling on the biomechanical distribution of the implant-bone interface. Two three-dimensional finite element mandible models, one with trabecular microstructure (a refined model) and one with macrostructure (a simplified model), were built. The values of equivalent stress at the implant-bone interface in the refined model increased compared with those of the simplified model and strain on the contrary. The distributions of stress and strain were more uniform in the refined model of trabecular microstructure, in which stress and strain were mainly concentrated in trabecular bone. It was concluded that simulation of trabecular bone microstructure had a significant effect on the distribution of stress and strain at the implant-bone interface. These results suggest that trabecular structures could disperse stress and strain and serve as load buffers.

  4. Deformation-strain field in Sichuan and its surrounding areas based on GPS data

    Directory of Open Access Journals (Sweden)

    Fuchao Chen

    2015-05-01

    Full Text Available The strain rate in Sichuan and its surrounding areas, and the activity rate and strain rate in two block boundary fault zones were calculated according to the block movement parameters estimated using the station speed obtained from regional GPS station observation data in these areas for 2009–2011 and GPS continuous station data for 2011–2013. The movement field characteristics in these areas were analyzed with the Sichuan Basin as the reference. Results show that the principal strain rate and maximum shear strain rate of the Bayan Har block were the largest, followed by those of the Sichuan–Yunnan block and Sichuan Basin. The deep normal strain rate in the Longmenshan fault zone was compressive and large over the study period. The normal strain rate in the Xianshuihe fault zone was tensile.

  5. Individual stress vulnerability is predicted by short-term memory and AMPA receptor subunit ratio in the hippocampus.

    Science.gov (United States)

    Schmidt, Mathias V; Trümbach, Dietrich; Weber, Peter; Wagner, Klaus; Scharf, Sebastian H; Liebl, Claudia; Datson, Nicole; Namendorf, Christian; Gerlach, Tamara; Kühne, Claudia; Uhr, Manfred; Deussing, Jan M; Wurst, Wolfgang; Binder, Elisabeth B; Holsboer, Florian; Müller, Marianne B

    2010-12-15

    Increased vulnerability to aversive experiences is one of the main risk factors for stress-related psychiatric disorders as major depression. However, the molecular bases of vulnerability, on the one hand, and stress resilience, on the other hand, are still not understood. Increasing clinical and preclinical evidence suggests a central involvement of the glutamatergic system in the pathogenesis of major depression. Using a mouse paradigm, modeling increased stress vulnerability and depression-like symptoms in a genetically diverse outbred strain, and we tested the hypothesis that differences in AMPA receptor function may be linked to individual variations in stress vulnerability. Vulnerable and resilient animals differed significantly in their dorsal hippocampal AMPA receptor expression and AMPA receptor binding. Treatment with an AMPA receptor potentiator during the stress exposure prevented the lasting effects of chronic social stress exposure on physiological, neuroendocrine, and behavioral parameters. In addition, spatial short-term memory, an AMPA receptor-dependent behavior, was found to be predictive of individual stress vulnerability and response to AMPA potentiator treatment. Finally, we provide evidence that genetic variations in the AMPA receptor subunit GluR1 are linked to the vulnerable phenotype. Therefore, we propose genetic variations in the AMPA receptor system to shape individual stress vulnerability. Those individual differences can be predicted by the assessment of short-term memory, thereby opening up the possibility for a specific treatment by enhancing AMPA receptor function.

  6. Strain-energy effects on dynamic fragmentation

    International Nuclear Information System (INIS)

    Glenn, L.A.; Chudnovsky, A.

    1986-01-01

    Grady's model of the dynamic fragmentation process, in which the average fragment size is determined by balancing the local kinetic energy and the surface energy, is modified to include the stored elastic (strain) energy. The revised model predicts that the strain energy should dominate for brittle materials, with low fracture toughness and high fracture-initiation stress. This conclusion is not borne out, however, by limited experimental data on brittle steels, even when the kinetic-energy density is small compared with the strain-energy density

  7. Stress field determination in an alloy 600 stress corrosion crack specimen

    International Nuclear Information System (INIS)

    Rassineux, B.; Labbe, T.

    1995-05-01

    In the context of EDF studies on stress corrosion cracking rates in the Alloy 600 steam generators tubes, we studied the influence of strain hardened surface layers on the different stages of cracking for a tensile smooth specimen (TLT). The stress field was notably assessed to try and explain the slow/rapid-propagation change observed beyond the strain hardened layers. The main difficulty is to simulate in a finite element model the inner and outer surfaces of these strain hardened layers, produced by the final manufacturing stages of SG tubes which have not been heat treated. In the model, the strain hardening is introduced by simulating a multi-layer material. Residual stresses are simulated by an equivalent fictitious thermomechanical calculation, realigned with respect to X-ray measurements. The strain hardening introduction method was validated by an analytical calculation giving identical results. Stress field evolution induced by specimen tensile loading were studied using an elastoplastic 2D finite element calculations performed with the Aster Code. The stress profile obtained after load at 660 MPa shows no stress discontinuity at the boundary between the strain hardened layer and the rest of the tube. So we propose that a complementary calculation be performed, taking into account the multi-cracked state of the strain hardened zones by means of a damage variable. In fact, this state could induce stress redistribution in the un-cracked area, which would perhaps provide an explanation of the crack-ground rate change beyond the strain hardened zone. The calculations also evidence the harmful effects of plastic strains on a strain hardened layer due to the initial state of the tube (not heat-treated), to grit blasting or to shot peening. The initial compressive stress condition of this surface layer becomes, after plastic strain, a tensile stress condition. These results are confirmed by laboratory test. (author). 10 refs., 18 figs., 9 tabs., 2 appends

  8. Evaluation of fracture toughness of vessel materials using small-size specimens and full stress-strain curves

    Energy Technology Data Exchange (ETDEWEB)

    Lebedev, A A; Chausov, N G [Akademyiya Nauk Ukrayini, Kiev (Ukraine)

    1994-12-31

    Physically substantiated dependences between crack resistance characteristics determined by the parameters of descending sections of full stress-strain curves and stressed state rigidity at crack initiation moment, have been experimentally obtained. The possibility of crack resistance reliable estimation based on full stress-strain obtained using small-size specimens with different concentrators, has thus been experimentally substantiated. Results obtained by the method and actual temperature dependence of irradiated steel 15X2NMFA crack resistance characteristics, agreed well. 2 refs., 7 figs.

  9. Prediction of hot deformation behavior of high phosphorus steel using artificial neural network

    Science.gov (United States)

    Singh, Kanchan; Rajput, S. K.; Soota, T.; Verma, Vijay; Singh, Dharmendra

    2018-03-01

    To predict the hot deformation behavior of high phosphorus steel, the hot compression experiments were performed with the help of thermo-mechanical simulator Gleeble® 3800 in the temperatures ranging from 750 °C to 1050 °C and strain rates of 0.001 s-1, 0.01 s-1, 0.1 s-1, 0.5 s-1, 1.0 s-1 and 10 s-1. The experimental stress-strain data are employed to develop artificial neural network (ANN) model and their predictability. Using different combination of temperature, strain and strain rate as a input parameter and obtained experimental stress as a target, a multi-layer ANN model based on feed-forward back-propagation algorithm is trained, to predict the flow stress for a given processing condition. The relative error between predicted and experimental stress are in the range of ±3.5%, whereas the correlation coefficient (R2) of training and testing data are 0.99986 and 0.99999 respectively. This shows that a well-trained ANN model has excellent capability to predict the hot deformation behavior of materials. Comparative study shows quite good agreement of predicted and experimental values.

  10. Proteomic analysis reveals contrasting stress response to uranium in two nitrogen-fixing Anabaena strains, differentially tolerant to uranium

    Energy Technology Data Exchange (ETDEWEB)

    Panda, Bandita; Basu, Bhakti; Acharya, Celin; Rajaram, Hema; Apte, Shree Kumar, E-mail: aptesk@barc.gov.in

    2017-01-15

    Highlights: • Response of two native cyanobacterial strains to uranium exposure was studied. • Anabaena L-31 exhibited higher tolerance to uranium as compared to Anabaena 7120. • Uranium exposure differentially affected the proteome profiles of the two strains. • Anabaena L-31 showed better sustenance of photosynthesis and carbon metabolism. • Anabaena L-31 displayed superior oxidative stress defense than Anabaena 7120. - Abstract: Two strains of the nitrogen-fixing cyanobacterium Anabaena, native to Indian paddy fields, displayed differential sensitivity to exposure to uranyl carbonate at neutral pH. Anabaena sp. strain PCC 7120 and Anabaena sp. strain L-31 displayed 50% reduction in survival (LD{sub 50} dose), following 3 h exposure to 75 μM and 200 μM uranyl carbonate, respectively. Uranium responsive proteome alterations were visualized by 2D gel electrophoresis, followed by protein identification by MALDI-ToF mass spectrometry. The two strains displayed significant differences in levels of proteins associated with photosynthesis, carbon metabolism, and oxidative stress alleviation, commensurate with their uranium tolerance. Higher uranium tolerance of Anabaena sp. strain L-31 could be attributed to sustained photosynthesis and carbon metabolism and superior oxidative stress defense, as compared to the uranium sensitive Anabaena sp. strain PCC 7120. Significance: Uranium responsive proteome modulations in two nitrogen-fixing strains of Anabaena, native to Indian paddy fields, revealed that rapid adaptation to better oxidative stress management, and maintenance of metabolic and energy homeostasis underlies superior uranium tolerance of Anabaena sp. strain L-31 compared to Anabaena sp. strain PCC 7120.

  11. Quantitative circumferential strain analysis using adenosine triphosphate-stress/rest 3-T tagged magnetic resonance to evaluate regional contractile dysfunction in ischemic heart disease

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Masashi, E-mail: m.nakamura1230@gmail.com [Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon-city, Ehime 791-0295 (Japan); Kido, Tomoyuki [Department of Radiology, Saiseikai Matsuyama Hospital, Ehime 791-0295 (Japan); Kido, Teruhito; Tanabe, Yuki; Matsuda, Takuya; Nishiyama, Yoshiko; Miyagawa, Masao; Mochizuki, Teruhito [Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon-city, Ehime 791-0295 (Japan)

    2015-08-15

    Highlights: • Infarcted segments could be differentiated from non-ischemic and ischemic segments with high sensitivity and specificity under at rest conditions. • The time-to-peak circumferential strain values in infarcted segments were more significantly delayed than those in non-ischemic and ischemic segments. • Both circumferential strain and circumferential systolic strain rate values under ATP-stress conditions were significantly lower in ischemic segments than in non-ischemic segments. • Subtracting stress and rest circumferential strain had a higher diagnostic capability for ischemia relative to only utilizing rest or ATP-stress circumferential strain values. • A circumferential strain analysis using tagged MR can quantitatively assess contractile dysfunction in ischemic and infarcted myocardium. - Abstract: Purpose: We evaluated whether a quantitative circumferential strain (CS) analysis using adenosine triphosphate (ATP)-stress/rest 3-T tagged magnetic resonance (MR) imaging can depict myocardial ischemia as contractile dysfunction during stress in patients with suspected coronary artery disease (CAD). We evaluated whether it can differentiate between non-ischemia, myocardial ischemia, and infarction. We assessed its diagnostic performance in comparison with ATP-stress myocardial perfusion MR and late gadolinium enhancement (LGE)-MR imaging. Methods: In 38 patients suspected of having CAD, myocardial segments were categorized as non-ischemic (n = 485), ischemic (n = 74), or infarcted (n = 49) from the results of perfusion MR and LGE-MR. The peak negative CS value, peak circumferential systolic strain rate (CSR), and time-to-peak CS were measured in 16 segments. Results: A cutoff value of −12.0% for CS at rest allowed differentiation between infarcted and other segments with a sensitivity of 79%, specificity of 76%, accuracy of 76%, and an area under the curve (AUC) of 0.81. Additionally, a cutoff value of 477.3 ms for time-to-peak CS at rest

  12. Stress evaluation of baffle former bolt for IASCC failure prediction

    International Nuclear Information System (INIS)

    Matsubara, T.; Tsutsui, T.; Kamei, Y.; Kitsu, M.

    2011-01-01

    Baffle structure in PWRs Reactor is quite important assembly for the core safety, and Baffle Former Bolts (BFBs) are fastener members for maintaining Baffle structure. It has been reported worldwide that some of BFBs were cracked due to IASCC (Irradiation Assisted Stress Corrosion Cracking) because BFBs are located at core region under severe environments, high neutron flux, high temperature and high stress. According to the material studies of IASCC on austenitic stainless steel, a crack initiation of IASCC is strongly related with the stress and the neutron fluence. For this reason, it is very important for IASCC failure prediction to simulate the stress of BFBs. However, the stress of BFBs are considered to be influenced by several factors and to be changed complexly as operational time increases, by irradiation creep of Bolt itself, swelling of Baffle structure, and so on. Therefore, it is difficult to estimate the stress histories of BFBs (Bolt stress as a function of operational time) precisely. Then, the author has developed the calculation method of the stress histories of BFBs considering irradiation effects (swelling and irradiation creep). In this method, the stress histories of BFBs are calculated by combining two kinds of FE models, Global model (modeled whole Baffle structure which consists of Baffle plates, Former plates and Core Barrel) and Local model (modeled around BFB finely). The whole Baffle structure deformation changes as a function of heat, swelling and irradiated creep are calculated by Global model, and the stress histories of BFBs are calculated by Local model using the outputs (deformations on driving nodes) of Global model. In the FE analysis of Local model, the stress of BFBs are calculated considering irradiation effects and elastic-plastic characteristics depending on neutron fluence, so this method enables to calculate precisely the stress of extreme small area of BFBs surface. This paper shows the outline of the calculation method

  13. Stress-strain relationship and XRD line broadening in [0001] textured hexagonal polycrystalline materials

    International Nuclear Information System (INIS)

    Yokoyama, Ryouichi

    2011-01-01

    Stress analysis with X-ray diffraction (XRD) for hexagonal polycrystalline materials in the Laue classes 6/mmm and 6/m has been studied on the basis of the crystal symmetry of the constituent crystallites which was proposed by R. Yokoyama and J. Harada ['Re-evaluation of formulae for X-ray stress analysis in polycrystalline specimens with fibre texture', Journal of Applied Crystallography, Vol.42, pp.185-191 (2009)]. The relationship between the stress and strain observable by XRD in a hexagonal polycrystalline material with [0001] fibre texture was formulated in terms of the elastic compliance defined for its single crystal. As a result, it was shown that the average strains obtained in the crystallites for both symmetries of 6/mmm and 6/m are different from each other under the triaxial or biaxial stress field. Then, it turned out that the line width of XRD changes depending on the measurement direction. (author)

  14. The Relationship between Financial Strain, Perceived Stress, Psychological Symptoms, and Academic and Social Integration in Undergraduate Students

    Science.gov (United States)

    Adams, Danielle R.; Meyers, Steven A.; Beidas, Rinad S.

    2016-01-01

    Objective: Financial strain may directly or indirectly (i.e., through perceived stress) impact students' psychological symptoms and academic and social integration, yet few studies have tested these relationships. The authors explored the mediating effect of perceived stress on the relationship between financial strain and 2 important outcomes:…

  15. Evaluation of Pressure Pain Threshold as a Measure of Perceived Stress and High Job Strain

    DEFF Research Database (Denmark)

    Hven, Lisbeth; Frost, Poul; Bonde, Jens Peter Ellekilde

    2017-01-01

    OBJECTIVE: To investigate whether pressure pain threshold (PPT), determined by pressure algometry, can be used as an objective measure of perceived stress and job strain. METHODS: We used cross-sectional base line data collected during 1994 to 1995 within the Project on Research and Intervention...... in Monotonous work (PRIM), which included 3123 employees from a variety of Danish companies. Questionnaire data included 18 items on stress symptoms, 23 items from the Karasek scale on job strain, and information on discomfort in specified anatomical regions was also collected. Clinical examinations included...... pressure pain algometry measurements of PPT on the trapezius and supraspinatus muscles and the tibia. Associations of stress symptoms and job strain with PPT of each site was analyzed for men and women separately with adjustment for age body mass index, and discomfort in the anatomical region closest...

  16. Stresses and strains in the steel containment resulting from transient pressure and temperature loading during loss-of-coolant accident

    International Nuclear Information System (INIS)

    Gruner, P.; Kuntze, W.M.; Jansky, J.

    1985-01-01

    Posttest calculations of stresses and strains in the steel containment of the German research reactor HDR were performed for a simulated LOCA. The results of the theoretical investigations are presented and compared to experimental findings. The pressure and temperature loading of the shell was determined with the thermodynamic code COFLOW on the basis of a multi-compartment model. Using a three-dimensional finite element model the temporal behaviour of the containment was calculated employing the structural mechanics code ASKA. Global bending deformations and local negative straining of the steel shell is discussed. Theoretical and experimental results agree in most cases rather well. Reasons for deviations will be discussed. The specific behaviour of strains found in the vicinity of locally heated areas will be explained by means of analytical considerations. (orig.)

  17. Axial and transverse stress-strain characterization of the EU dipole high current density Nb{sub 3}Sn strand

    Energy Technology Data Exchange (ETDEWEB)

    Nijhuis, A; Ilyin, Y; Abbas, W [Faculty of Science and Technology, Low Temperature Division, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands)], E-mail: a.nijhuis@tnw.utwente.nl

    2008-06-15

    We have measured the critical current (I{sub c}) of a high current density Nb{sub 3}Sn strand subjected to spatial periodic bending, periodic contact stress and uniaxial strain. The strand is destined for the cable-in-conduit conductors (CICC) of the European dipole (EDIPO) 12.5 T superconducting magnet test facility. The spatial periodic bending was applied on the strand, using the bending wavelengths from 5 to 10 mm with a peak bending strain of 1.5%, a periodic contact stress with a periodicity of 4.7 mm and a stress level exceeding 250 MPa. For the uniaxial strain characterization, the voltage-current characteristics were measured with an applied axial strain from -0.9% to +0.3%, with a magnetic field from 6 to 14 T, temperature from 4.2 to 10 K and currents up to almost 900 A. In addition the axial stiffness was determined by a tensile axial stress-strain test. The characterization of the strand is essential for understanding the behaviour of the strand under mainly axial thermal stress variation during cool down and transverse electromagnetic forces during charging, which is essential for the design of the CICC for the dipole magnet. The strand appears to be fully reversible in the compressive regime during the axial strain testing, while in the tensile regime, the behaviour is already irreversibly degraded when reaching the maximum in the critical current versus strain characteristic. The degradation is accentuated by an immediate decrease of the n value by a factor of 2. The parameters for the improved deviatoric strain description are derived from the I{sub c} data, giving the accuracy of the scaling with a standard deviation of 4 A, which is by far within the expected deviation for the large scale strand production of such a high J{sub c} strand. The I{sub c} versus the applied bending strain follows the low resistivity limit, indicative of full interfilament current transfer, while a strong decrease is observed at a peak bending strain of {approx}0

  18. Shear-coupled grain-boundary migration dependence on normal strain/stress

    Science.gov (United States)

    Combe, N.; Mompiou, F.; Legros, M.

    2017-08-01

    In specific conditions, grain-boundary (GB) migration occurs in polycrystalline materials as an alternative vector of plasticity compared to the usual dislocation activity. The shear-coupled GB migration, the expected most efficient GB based mechanism, couples the GB motion to an applied shear stress. Stresses on GB in polycrystalline materials seldom have, however, a unique pure shear component. This work investigates the influence of a normal strain on the shear coupled migration of a Σ 13 (320 )[001 ] GB in a copper bicrystal using atomistic simulations. We show that the yield shear stress inducing the GB migration strongly depends on the applied normal stress. Beyond, the application of a normal stress on this GB qualitatively modifies the GB migration: while the Σ 13 (320 )[001 ] GB shear couples following the 〈110 〉 migration mode without normal stress, we report the observation of the 〈010 〉 mode under a sufficiently high tensile normal stress. Using the nudge elastic band method, we uncover the atomistic mechanism of this 〈010 〉 migration mode and energetically characterize it.

  19. Effects of static strain aging on residual stress stability and alternating bending strength of shot peened AISI 4140

    Energy Technology Data Exchange (ETDEWEB)

    Menig, R.; Schulze, V.; Voehringer, O. [Inst. fuer Werkstoffkunde 1, Univ. Karlsruhe (TH), Karlsruhe (Germany)

    2002-07-01

    Increases of residual stress stability and alternating bending strength of shot peened AISI 4140 are obtained by successive annealing treatments. This is caused by static strain aging effects, which lead to pinning of dislocations by carbon atoms and very small carbides. It will be shown that by well directed annealing of a quenched and tempered AISI 4140 it is possible to maximize the positive effects of static strain aging, without causing extended thermal residual stress relaxation. The amount of yield stress increases caused by static strain aging is quantified using tensile tests. Static strain aging is also found to be responsible for an increase of the quasi static and cyclic surface yield strength present after shot peening. (orig.)

  20. Exoproteome analysis reveals higher abundance of proteins linked to alkaline stress in persistent Listeria monocytogenes strains.

    Science.gov (United States)

    Rychli, Kathrin; Grunert, Tom; Ciolacu, Luminita; Zaiser, Andreas; Razzazi-Fazeli, Ebrahim; Schmitz-Esser, Stephan; Ehling-Schulz, Monika; Wagner, Martin

    2016-02-02

    The foodborne pathogen Listeria monocytogenes, responsible for listeriosis a rare but severe infection disease, can survive in the food processing environment for month or even years. So-called persistent L. monocytogenes strains greatly increase the risk of (re)contamination of food products, and are therefore a great challenge for food safety. However, our understanding of the mechanism underlying persistence is still fragmented. In this study we compared the exoproteome of three persistent strains with the reference strain EGDe under mild stress conditions using 2D differential gel electrophoresis. Principal component analysis including all differentially abundant protein spots showed that the exoproteome of strain EGDe (sequence type (ST) 35) is distinct from that of the persistent strain R479a (ST8) and the two closely related ST121 strains 4423 and 6179. Phylogenetic analyses based on multilocus ST genes showed similar grouping of the strains. Comparing the exoproteome of strain EGDe and the three persistent strains resulted in identification of 22 differentially expressed protein spots corresponding to 16 proteins. Six proteins were significantly increased in the persistent L. monocytogenes exoproteomes, among them proteins involved in alkaline stress response (e.g. the membrane anchored lipoprotein Lmo2637 and the NADPH dehydrogenase NamA). In parallel the persistent strains showed increased survival under alkaline stress, which is often provided during cleaning and disinfection in the food processing environments. In addition, gene expression of the proteins linked to stress response (Lmo2637, NamA, Fhs and QoxA) was higher in the persistent strain not only at 37 °C but also at 10 °C. Invasion efficiency of EGDe was higher in intestinal epithelial Caco2 and macrophage-like THP1 cells compared to the persistent strains. Concurrently we found higher expression of proteins involved in virulence in EGDe e.g. the actin-assembly-inducing protein ActA and the

  1. Evaluation of an energy-based fatigue approach considering mean stress effects

    Energy Technology Data Exchange (ETDEWEB)

    Kabir, S. M. Humayun [Chittagong University of Engineering and Technology, Chittagong (Bangladesh); Yeo, Tae In [University of Ulsan, Ulsan (Korea, Republic of)

    2014-04-15

    In this paper, an attempt is made to extend the total strain energy approach for predicting the fatigue life subjected to mean stress under uniaxial state. The effects of means stress on the fatigue failure of a ferritic stainless steel and high pressure tube steel are studied under strain-controlled low cycle fatigue condition. Based on the fatigue results from different strain ratios, modified total strain energy density approach is proposed to account for the mean stress effects. The proposed damage parameter provides convenient means of evaluating fatigue life with mean stress effects considering the fact that the definitions used for measuring strain energies are the same as in the fully-reversed cycling (R = -1). A good agreement is observed between experimental life and predicted life using proposed approach. Two other mean stress models (Smith-Watson-Topper model and Morrow model) are also used to evaluate the low cycle fatigue data. Based on a simple statistical estimator, the proposed approach is compared with these models and is found realistic.

  2. Evaluation of an energy-based fatigue approach considering mean stress effects

    International Nuclear Information System (INIS)

    Kabir, S. M. Humayun; Yeo, Tae In

    2014-01-01

    In this paper, an attempt is made to extend the total strain energy approach for predicting the fatigue life subjected to mean stress under uniaxial state. The effects of means stress on the fatigue failure of a ferritic stainless steel and high pressure tube steel are studied under strain-controlled low cycle fatigue condition. Based on the fatigue results from different strain ratios, modified total strain energy density approach is proposed to account for the mean stress effects. The proposed damage parameter provides convenient means of evaluating fatigue life with mean stress effects considering the fact that the definitions used for measuring strain energies are the same as in the fully-reversed cycling (R = -1). A good agreement is observed between experimental life and predicted life using proposed approach. Two other mean stress models (Smith-Watson-Topper model and Morrow model) are also used to evaluate the low cycle fatigue data. Based on a simple statistical estimator, the proposed approach is compared with these models and is found realistic.

  3. Prediction of crack growth direction by Strain Energy Sih's Theory on specimens SEN under tension-compression biaxial loading employing Genetic Algorithms

    International Nuclear Information System (INIS)

    Rodriguez-MartInez R; Lugo-Gonzalez E; Urriolagoitia-Calderon G; Urriolagoitia-Sosa G; Hernandez-Gomez L H; Romero-Angeles B; Torres-San Miguel Ch

    2011-01-01

    Crack growth direction has been studied in many ways. Particularly Sih's strain energy theory predicts that a fracture under a three-dimensional state of stress spreads in direction of the minimum strain energy density. In this work a study for angle of fracture growth was made, considering a biaxial stress state at the crack tip on SEN specimens. The stress state applied on a tension-compression SEN specimen is biaxial one on crack tip, as it can observed in figure 1. A solution method proposed to obtain a mathematical model considering genetic algorithms, which have demonstrated great capacity for the solution of many engineering problems. From the model given by Sih one can deduce the density of strain energy stored for unit of volume at the crack tip as dW = [1/2E(σ 2 x + σ 2 y ) - ν/E(σ x σy)]dV (1). From equation (1) a mathematical deduction to solve in terms of θ of this case was developed employing Genetic Algorithms, where θ is a crack propagation direction in plane x-y. Steel and aluminium mechanical properties to modelled specimens were employed, because they are two of materials but used in engineering design. Obtained results show stable zones of fracture propagation but only in a range of applied loading.

  4. Maximum stress estimation model for multi-span waler beams with deflections at the supports using average strains.

    Science.gov (United States)

    Park, Sung Woo; Oh, Byung Kwan; Park, Hyo Seon

    2015-03-30

    The safety of a multi-span waler beam subjected simultaneously to a distributed load and deflections at its supports can be secured by limiting the maximum stress of the beam to a specific value to prevent the beam from reaching a limit state for failure or collapse. Despite the fact that the vast majority of accidents on construction sites occur at waler beams in retaining wall systems, no safety monitoring model that can consider deflections at the supports of the beam is available. In this paper, a maximum stress estimation model for a waler beam based on average strains measured from vibrating wire strain gauges (VWSGs), the most frequently used sensors in construction field, is presented. The model is derived by defining the relationship between the maximum stress and the average strains measured from VWSGs. In addition to the maximum stress, support reactions, deflections at supports, and the magnitudes of distributed loads for the beam structure can be identified by the estimation model using the average strains. Using simulation tests on two multi-span beams, the performance of the model is evaluated by estimating maximum stress, deflections at supports, support reactions, and the magnitudes of distributed loads.

  5. Enhancing water stress tolerance improves fitness in biological control strains of Lactobacillus plantarum in plant environments.

    Science.gov (United States)

    Daranas, Núria; Badosa, Esther; Francés, Jesús; Montesinos, Emilio; Bonaterra, Anna

    2018-01-01

    Lactobacillus plantarum strains PM411 and TC92 can efficiently control bacterial plant diseases, but their fitness on the plant surface is limited under unfavourable low relative humidity (RH) conditions. To increase tolerance of these strains to water stress, an adaptive strategy was used consisting of hyperosmotic and acidic conditions during growth. Adapted cells had higher survival rates under desiccation than non-adapted cells. Transcript levels and patterns of general stress-related genes increased immediately after the combined-stress adaptation treatment, and remained unaltered or repressed during the desiccation challenge. However, there were differences between strains in the transcription patterns that were in agreement with a better performance of adapted cells of PM411 than TC92 in plant surfaces under low RH environmental conditions. The combined-stress adaptation treatment increased the survival of PM411 cells consistently in different plant hosts in the greenhouse and under field conditions. Stress-adapted cells of PM411 had similar biocontrol potential against bacterial plant pathogens than non-adapted cells, but with less variability within experiments.

  6. Enhancing water stress tolerance improves fitness in biological control strains of Lactobacillus plantarum in plant environments.

    Directory of Open Access Journals (Sweden)

    Núria Daranas

    Full Text Available Lactobacillus plantarum strains PM411 and TC92 can efficiently control bacterial plant diseases, but their fitness on the plant surface is limited under unfavourable low relative humidity (RH conditions. To increase tolerance of these strains to water stress, an adaptive strategy was used consisting of hyperosmotic and acidic conditions during growth. Adapted cells had higher survival rates under desiccation than non-adapted cells. Transcript levels and patterns of general stress-related genes increased immediately after the combined-stress adaptation treatment, and remained unaltered or repressed during the desiccation challenge. However, there were differences between strains in the transcription patterns that were in agreement with a better performance of adapted cells of PM411 than TC92 in plant surfaces under low RH environmental conditions. The combined-stress adaptation treatment increased the survival of PM411 cells consistently in different plant hosts in the greenhouse and under field conditions. Stress-adapted cells of PM411 had similar biocontrol potential against bacterial plant pathogens than non-adapted cells, but with less variability within experiments.

  7. Determination of parameters for a stress-strain constitutive equation considering time-dependent behavior of Toki granite

    International Nuclear Information System (INIS)

    Hirano, Toru; Seno, Yasuhiro; Nakama, Shigeo; Okubo, Seisuke

    2008-01-01

    Toki granite was tested to obtain parameters for the constitutive equation. The testing method was uniaxial compressive loading at the moderate a constant strain rate that is decreased after yielding to obtain the complete stress-strain curve. In addition, two kinds of the strain rate were alternately switched to obtain the parameter n from one specimen. The n represents the strength time-dependence in the constitutive equation. The second parameter m can be obtained by fitting the experimental stress-strain curve to the calculated curve. The m accounts for the behavior after yielding. According to the results, Toki granite has n=52 and m=60, showing relatively weak time-dependence of creep failure. (author)

  8. A Comparative Study Between Strain And Stress Based Forming Limit Analysis By Applying Several Phenomenological Yield Criteria

    International Nuclear Information System (INIS)

    Butuc, Marilena C.; Vincze, Gabriela T.; Gracio, Jose J.; Barata da Rocha, A.

    2005-01-01

    The present work aims at analyzing a comparative study between the strain-based forming limit criterion (FLD) and the stress-based forming limit criterion (FLSD), under linear and complex strain paths. The selected material is an AA5182-0 aluminium alloy. Some relevant remarks about stress-based forming limit criterion concept are presented

  9. Evaluation of area strain response of dielectric elastomer actuator using image processing technique

    Science.gov (United States)

    Sahu, Raj K.; Sudarshan, Koyya; Patra, Karali; Bhaumik, Shovan

    2014-03-01

    Dielectric elastomer actuator (DEA) is a kind of soft actuators that can produce significantly large electric-field induced actuation strain and may be a basic unit of artificial muscles and robotic elements. Understanding strain development on a pre-stretched sample at different regimes of electrical field is essential for potential applications. In this paper, we report about ongoing work on determination of area strain using digital camera and image processing technique. The setup, developed in house consists of low cost digital camera, data acquisition and image processing algorithm. Samples have been prepared by biaxially stretched acrylic tape and supported between two cardboard frames. Carbon-grease has been pasted on the both sides of the sample, which will be compliant with electric field induced large deformation. Images have been grabbed before and after the application of high voltage. From incremental image area, strain has been calculated as a function of applied voltage on a pre-stretched dielectric elastomer (DE) sample. Area strain has been plotted with the applied voltage for different pre-stretched samples. Our study shows that the area strain exhibits nonlinear relationship with applied voltage. For same voltage higher area strain has been generated on a sample having higher pre-stretched value. Also our characterization matches well with previously published results which have been done with costly video extensometer. The study may be helpful for the designers to fabricate the biaxial pre-stretched planar actuator from similar kind of materials.

  10. Stress and strain patterns, kinematics and deformation mechanisms in a basement-cored anticline: Sheep Mountain Anticline, Wyoming

    Science.gov (United States)

    Amrouch, Khalid; Lacombe, Olivier; Bellahsen, Nicolas; Daniel, Jean-Marc; Callot, Jean-Paul

    2010-02-01

    In order to characterize and compare the stress-strain record prior to, during, and just after folding at the macroscopic and the microscopic scales and to provide insights into stress levels sustained by folded rocks, we investigate the relationship between the stress-strain distribution in folded strata derived from fractures, striated microfaults, and calcite twins and the development of the Laramide, basement-cored Sheep Mountain Anticline, Wyoming. Tectonic data were mainly collected in Lower Carboniferous to Permian carbonates and sandstones. In both rock matrix and veins, calcite twins recorded three different tectonic stages: the first stage is a pre-Laramide (Sevier) layer-parallel shortening (LPS) parallel to fold axis, the second one is a Laramide LPS perpendicular to the fold axis, and the third stage corresponds to Laramide late fold tightening with compression also perpendicular to the fold axis. Stress and strain orientations and regimes at the microscale agree with the polyphase stress evolution revealed by populations of fractures and striated microfaults, testifying for the homogeneity of stress record at different scales through time. Calcite twin analysis additionally reveals significant variations of differential stress magnitudes between fold limbs. Our results especially point to an increase of differential stress magnitudes related to Laramide LPS from the backlimb to the forelimb of the fold possibly in relation with motion of an underlying basement thrust fault that likely induced stress concentrations at its upper tip. This result is confirmed by a simple numerical model. Beyond regional implications, this study highlights the potential of calcite twin analyses to yield a representative quantitative picture of stress and strain patterns related to folding.

  11. Mode I and mixed mode crack-tip fields in strain gradient plasticity

    DEFF Research Database (Denmark)

    Goutianos, Stergios

    2011-01-01

    Strain gradients develop near the crack-tip of Mode I or mixed mode cracks. A finite strain version of the phenomenological strain gradient plasticity theory of Fleck–Hutchinson (2001) is used here to quantify the effect of the material length scales on the crack-tip stress field for a sharp...... stationary crack under Mode I and mixed mode loading. It is found that for material length scales much smaller than the scale of the deformation gradients, the predictions converge to conventional elastic–plastic solutions. For length scales sufficiently large, the predictions converge to elastic solutions....... Thus, the range of length scales over which a strain gradient plasticity model is necessary is identified. The role of each of the three material length scales, incorporated in the multiple length scale theory, in altering the near-tip stress field is systematically studied in order to quantify...

  12. Prevention of brittle fracture of steel structures by controlling the local stress and strain fields

    Directory of Open Access Journals (Sweden)

    Moyseychik Evgeniy Alekseevich

    Full Text Available In the article the author offers a classification of the methods to increase the cold resistance of steel structural shapes with a focus on the regulation of local fields of internal stresses and strains to prevent brittle fracture of steel structures. The need of a computer thermography is highlighted not only for visualization of temperature fields on the surface, but also to control the fields of residual stresses and strains in a controlled element.

  13. Investigations into the Surface Strain/Stress State in a Single-Crystal Superalloy via XRD Characterization

    Directory of Open Access Journals (Sweden)

    Haodong Duan

    2018-05-01

    Full Text Available The present study was aimed at determining the surface strain/stress state in an Ni-based single-crystal (SC superalloy that was subjected to two different cooling rates from solid solution temperature through using the X-ray diffraction (XRD method. The normal stresses σ 11 s and σ 22 s were determined, then the Von Mises stresses ( σ V M s were derived from them. Field emission gun scanning electron microscope (FEG-SEM and transmission electron microscope (TEM micrographs were taken to illustrate the strain/stress state change. The precipitation of the secondary γ′ phases in the γ phase and the formation of the dislocation in the interphase upon a slower cooling rate caused the γ phase lattice distortion to increase, so a larger σ V M s of the γ phase was realized in comparison to the faster cooling sample. For both of the two cooling modes, we found that the σ V M s of the γ′ phase increased due to the growth of the γ′ phase during the aging process. Also, the aging process led to pronouncedly anisotropic lattice mismatches in the {331} and {004} planes. In addition, the surface strain/stress states of a cylinder sample and a tetragonal sample were also studied using a faster cooling rate, and σ 11 s and σ 22 s were analyzed to explain the influence of the shape factor on the stress anisotropy in the [001] and [ 1 1 ¯ 0 ] orientations. The strain in the [001] orientation of the γ phase is more sensitive to the shape change.

  14. Strain modulations as a mechanism to reduce stress relaxation in laryngeal tissues.

    Science.gov (United States)

    Hunter, Eric J; Siegmund, Thomas; Chan, Roger W

    2014-01-01

    Vocal fold tissues in animal and human species undergo deformation processes at several types of loading rates: a slow strain involved in vocal fold posturing (on the order of 1 Hz or so), cyclic and faster posturing often found in speech tasks or vocal embellishment (1-10 Hz), and shear strain associated with vocal fold vibration during phonation (100 Hz and higher). Relevant to these deformation patterns are the viscous properties of laryngeal tissues, which exhibit non-linear stress relaxation and recovery. In the current study, a large strain time-dependent constitutive model of human vocal fold tissue is used to investigate effects of phonatory posturing cyclic strain in the range of 1 Hz to 10 Hz. Tissue data for two subjects are considered and used to contrast the potential effects of age. Results suggest that modulation frequency and extent (amplitude), as well as the amount of vocal fold overall strain, all affect the change in stress relaxation with modulation added. Generally, the vocal fold cover reduces the rate of relaxation while the opposite is true for the vocal ligament. Further, higher modulation frequencies appear to reduce the rate of relaxation, primarily affecting the ligament. The potential benefits of cyclic strain, often found in vibrato (around 5 Hz modulation) and intonational inflection, are discussed in terms of vocal effort and vocal pitch maintenance. Additionally, elderly tissue appears to not exhibit these benefits to modulation. The exacerbating effect such modulations may have on certain voice disorders, such as muscle tension dysphonia, are explored.

  15. Strain modulations as a mechanism to reduce stress relaxation in laryngeal tissues.

    Directory of Open Access Journals (Sweden)

    Eric J Hunter

    Full Text Available Vocal fold tissues in animal and human species undergo deformation processes at several types of loading rates: a slow strain involved in vocal fold posturing (on the order of 1 Hz or so, cyclic and faster posturing often found in speech tasks or vocal embellishment (1-10 Hz, and shear strain associated with vocal fold vibration during phonation (100 Hz and higher. Relevant to these deformation patterns are the viscous properties of laryngeal tissues, which exhibit non-linear stress relaxation and recovery. In the current study, a large strain time-dependent constitutive model of human vocal fold tissue is used to investigate effects of phonatory posturing cyclic strain in the range of 1 Hz to 10 Hz. Tissue data for two subjects are considered and used to contrast the potential effects of age. Results suggest that modulation frequency and extent (amplitude, as well as the amount of vocal fold overall strain, all affect the change in stress relaxation with modulation added. Generally, the vocal fold cover reduces the rate of relaxation while the opposite is true for the vocal ligament. Further, higher modulation frequencies appear to reduce the rate of relaxation, primarily affecting the ligament. The potential benefits of cyclic strain, often found in vibrato (around 5 Hz modulation and intonational inflection, are discussed in terms of vocal effort and vocal pitch maintenance. Additionally, elderly tissue appears to not exhibit these benefits to modulation. The exacerbating effect such modulations may have on certain voice disorders, such as muscle tension dysphonia, are explored.

  16. Novel Approach for Prediction of Localized Necking in Case of Nonlinear Strain Paths

    Science.gov (United States)

    Drotleff, K.; Liewald, M.

    2017-09-01

    Rising customer expectations regarding design complexity and weight reduction of sheet metal components alongside with further reduced time to market implicate increased demand for process validation using numerical forming simulation. Formability prediction though often is still based on the forming limit diagram first presented in the 1960s. Despite many drawbacks in case of nonlinear strain paths and major advances in research in the recent years, the forming limit curve (FLC) is still one of the most commonly used criteria for assessing formability of sheet metal materials. Especially when forming complex part geometries nonlinear strain paths may occur, which cannot be predicted using the conventional FLC-Concept. In this paper a novel approach for calculation of FLCs for nonlinear strain paths is presented. Combining an interesting approach for prediction of FLC using tensile test data and IFU-FLC-Criterion a model for prediction of localized necking for nonlinear strain paths can be derived. Presented model is purely based on experimental tensile test data making it easy to calibrate for any given material. Resulting prediction of localized necking is validated using an experimental deep drawing specimen made of AA6014 material having a sheet thickness of 1.04 mm. The results are compared to IFU-FLC-Criterion based on data of pre-stretched Nakajima specimen.

  17. "MENTAL STRAIN, MORE IMPORTANT THAN STRESSFUL LIFE EVENTS IN MYOCARDIAL INFARCTION"

    OpenAIRE

    M. Moosavi; M. Eslami; O. Sheikh Bagloo B. Birashk

    2004-01-01

    Stressful life events may play an important role in coronary heart disease and sudden cardiac death. This study was performed to compare the frequency of stressful events and mental strain in patients with acute myocardial infarction (MI) and normal population. A case-control study was performed on 50 survivors of MI and 50 controls with no evidence of cardiovascular disease, matched by age, gender, education, race, and number of family members. A questionnaire was used to determine the numbe...

  18. Effect of dynamic strain aging on cyclic stress response and deformation behavior of Zircaloy-2

    International Nuclear Information System (INIS)

    Sudhakar Rao, G.; Verma, Preeti; Mahobia, G.S.; Santhi Srinivasa, N.C.; Singh, Vakil; Chakravartty, J.K.; Nudurupatic, Saibaba

    2016-01-01

    The effect of strain rate and temperature was studied on cyclic stress response and deformation behavior of annealed Zircaloy-2. Dynamic strain aging was exhibited under some test conditions. The cyclic stress response was found to be dependent on temperature and strain rate. At 300 °C, with decrease in strain rate, there was decrease in the rate as well as the degree of cyclic hardening. However, at 400°C, there was opposite trend and with decrease in strain rate both the rate as well as the degree of hardening increased. The deformation substructure showed dislocation bands, dislocation vein structure, PSB wall structure at both the temperatures. Irrespective of the temperature, there was dislocation loop structure, known as corduroy structure, at both the test temperatures. Based on the dislocation structure, the initial linear hardening is attributed to development of veins and PSB wall structure and the secondary hardening to the Corduroy structure. (author)

  19. Mean stress effects on high-cycle fatigue of Alloy 718

    International Nuclear Information System (INIS)

    Korth, G.E.

    1980-07-01

    This report covers an investigation of the effects of tensile mean stress on the high-cycle fatigue properties of Alloy 718. Three test temperatures (24, 427, and 649 degree C) were employed, and there were tests in both strain and load control. Results were compared with three different models: linear Modified-Goodman, Peterson cubic, and stress-strain parameter. The linear Modified-Goodman model gave good correlation with actual test data for low and moderate mean stress values, but the stress-strain parameter showed excellent correlation over the entire range of possible mean stresses and therefore is recommended for predicting mean stress effects of Alloy 718. 13 refs., 12 figs

  20. Strain-specific differences of the effects of stress on memory in Lymnaea.

    Science.gov (United States)

    Hughes, Emily; Shymansky, Tamila; Swinton, Erin; Lukowiak, Kai S; Swinton, Cayley; Sunada, Hiroshi; Protheroe, Amy; Phillips, Iain; Lukowiak, Ken

    2017-03-01

    Stress alters the ability to form, recall and maintain memory according to the Yerkes-Dodson/Hebb (YDH) law. The effects of environmentally relevant stressors, such as low environmental calcium and crowding, on learning and memory have previously been described in a laboratory-reared 'average' strain of Lymnaea stagnalis (i.e. the Dutch strain) as well as two strains of freshly collected L . stagnalis with enhanced memory formation abilities (i.e. 'smart' snails). Here, we use L . stagnalis to study the effects of other environmentally relevant stressors on memory formation in two other strains of freshly collected snails, one 'smart' and one 'average'. The stressors we examined are thermal, resource restriction combined with food odour, predator detection and, for the first time, tissue injury (shell damage). We show that the same stressor has significantly different effects on memory formation depending on whether snails are 'smart' or 'average'. Specifically, our data suggest that a stressor or a combination of stressors act to enhance memory in 'average' snails but obstruct memory formation in 'smart' snails. These results are consistent with the YDH law and our hypothesis that 'smart' snails are more easily stressed than 'average' snails. © 2017. Published by The Company of Biologists Ltd.

  1. Role of stress areas, stress severity, and stressful life events on the onset of depressive disorder: a case-control study.

    Science.gov (United States)

    Lueboonthavatchai, Peeraphon

    2009-09-01

    Although the stress and stressful life events are known as the precipitation of depressive disorder, the areas of stress and types of stressful life events found in depression are varied by different socio-cultural context. Identify the stress areas, stress severity, and types of stressful life events associated with the onset of depressive disorder in Thai depressed patients. Ninety depressed and ninety non-depressed subjects, aged above 18 years old, from the Department of Psychiatry, King Chulalongkorn Memorial Hospital, were recruited into the present study between July 2007 and January 2008. All subjects completed a demographic data form, and a 1-Year Life Stress Event Questionnaire. The association between the number of stressful life events, stress areas, stress severity, types of stressful life events, and the onset of depressive disorder were analyzed by independent t-test and chi-square test. Logistic regression was performed to identify the predictors of depressive disorder. Most of the subjects were young and middle-aged women, living in Bangkok and the central region. The depressed subjects experienced more stressful life events than the non-depressed subjects (5.81 +/- 3.19 vs. 3.24 +/- 2.80 events in one year) (p stress areas (health-related, family-related, financial, occupational, and social stress), and overall stress were associated with the onset of depressive disorder (p stress in all areas were at the higher risk of depressive disorder than those with the mild stress (p stress was the stress area highest associated with the depressive disorder (OR = 5.93, 95% CI = 2.33-16.92, p stressful life events associated with the onset of depressive disorder were the medical hospitalization, medical illness leading to missing work or disturbed daily routine, change in sleeping habits, absence of recreation, arguments with spouse, sexual difficulties with spouse, family financial problems, job loss, and trouble with boss (p stress was the significant

  2. Phasic and tonic stress-strain data obtained in intact intestinal segment in vitro

    DEFF Research Database (Denmark)

    Zhao, Jingbo; Liao, Donghua; Gregersen, Hans

    2008-01-01

    segments were isolated from ten Wistar rats and put into an organ bath containing 37 degrees C aerated Krebs solution. Ramp distension was done on active and passive intestinal segments at longitudinal stretch ratios of 0, 10, and 20%. Ramp pressures from 0 to 7.5 cmH(2)O were applied to the intestinal...... was defined as the total stress minus the passive stress. The total and passive circumferential stresses increased exponentially as a function of the strain. The amplitude of both the total and passive stress was biggest in the jejunum. The total circumferential stress decreased whereas the passive...

  3. One- and multistage total strain and stress-controlled fatigue tests with a steel of type 42 CrMo 4 subject to varied residual and mean stress loading. Final report

    International Nuclear Information System (INIS)

    Macherauch, E.; Schulze, V.

    1995-01-01

    Work under this research project covered tests with the quenched and tempered steel 42 CrMo 4 to which one- and two-stage tension-compression fatigue stresses were applied with varying mean loads, under conditions of nominal stress and total strain control. Shot peening was used to induce various microstructural conditions in the material at the surface and near below. Softening in the material was observed to be a continuous process, and the steel showed no stabilised, cyclic deformation behaviour. The cyclic stress-strain curve measured with equal stress amplitudes and total strain control applied shows higher plastic strain amplitudes than that measured with nominal stresses. The fatigue behaviour under two-stage loading depends on the chosen sequence of loads applied, the testing periods, and the overall testing procedure, so that there is no way of deriving data for two-stage testing procedures from single-stage test results. (orig.) [de

  4. Application of indirect stress measurement techniques (non strain gauge based technology) to quantify stress environments in mines

    CSIR Research Space (South Africa)

    Stacey, TR

    2002-03-01

    Full Text Available Reliable values of in situ stress are essential for the valid modelling of mine layouts. Available non-strain gauge methods are reviewed as potential practical techniques for South African mines. From this review it is concluded that the most...

  5. Mimicking biological stress-strain behaviour with synthetic elastomers

    Science.gov (United States)

    Vatankhah-Varnosfaderani, Mohammad; Daniel, William F. M.; Everhart, Matthew H.; Pandya, Ashish A.; Liang, Heyi; Matyjaszewski, Krzysztof; Dobrynin, Andrey V.; Sheiko, Sergei S.

    2017-09-01

    Despite the versatility of synthetic chemistry, certain combinations of mechanical softness, strength, and toughness can be difficult to achieve in a single material. These combinations are, however, commonplace in biological tissues, and are therefore needed for applications such as medical implants, tissue engineering, soft robotics, and wearable electronics. Present materials synthesis strategies are predominantly Edisonian, involving the empirical mixing of assorted monomers, crosslinking schemes, and occluded swelling agents, but this approach yields limited property control. Here we present a general strategy for mimicking the mechanical behaviour of biological materials by precisely encoding their stress-strain curves in solvent-free brush- and comb-like polymer networks (elastomers). The code consists of three independent architectural parameters—network strand length, side-chain length and grafting density. Using prototypical poly(dimethylsiloxane) elastomers, we illustrate how this parametric triplet enables the replication of the strain-stiffening characteristics of jellyfish, lung, and arterial tissues.

  6. Strain gradient plasticity effects in whisker-reinforced metals

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof

    2002-01-01

    A metal reinforced by fibers in the micron range is studied using the strain gradient plasticity theory of Fleck and Hutchinson (2001). Cell-model analyzes are used to study the influence of the material length parameters numerically. Different higher order boundary conditions are considered...... at the fiber-matrix interface. The results are presented as overall stress-strain curves for the whisker-reinforced metal, and also contour plots of effective plastic strain are shown. The strain gradient plasticity theory predicts a significant stiffening effect when compared to conventional models...

  7. Maximum Stress Estimation Model for Multi-Span Waler Beams with Deflections at the Supports Using Average Strains

    Directory of Open Access Journals (Sweden)

    Sung Woo Park

    2015-03-01

    Full Text Available The safety of a multi-span waler beam subjected simultaneously to a distributed load and deflections at its supports can be secured by limiting the maximum stress of the beam to a specific value to prevent the beam from reaching a limit state for failure or collapse. Despite the fact that the vast majority of accidents on construction sites occur at waler beams in retaining wall systems, no safety monitoring model that can consider deflections at the supports of the beam is available. In this paper, a maximum stress estimation model for a waler beam based on average strains measured from vibrating wire strain gauges (VWSGs, the most frequently used sensors in construction field, is presented. The model is derived by defining the relationship between the maximum stress and the average strains measured from VWSGs. In addition to the maximum stress, support reactions, deflections at supports, and the magnitudes of distributed loads for the beam structure can be identified by the estimation model using the average strains. Using simulation tests on two multi-span beams, the performance of the model is evaluated by estimating maximum stress, deflections at supports, support reactions, and the magnitudes of distributed loads.

  8. Predicting employees' well-being using work-family conflict and job strain models.

    Science.gov (United States)

    Karimi, Leila; Karimi, Hamidreza; Nouri, Aboulghassem

    2011-04-01

    The present study examined the effects of two models of work–family conflict (WFC) and job-strain on the job-related and context-free well-being of employees. The participants of the study consisted of Iranian employees from a variety of organizations. The effects of three dimensions of the job-strain model and six forms of WFC on affective well-being were assessed. The results of hierarchical multiple regression analysis revealed that the number of working hours, strain-based work interfering with family life (WIF) along with job characteristic variables (i.e. supervisory support, job demands and job control) all make a significant contribution to the prediction of job-related well-being. On the other hand, strain-based WIF and family interfering with work (FIW) significantly predicted context-free well-being. Implications are drawn and recommendations made regarding future research and interventions in the workplace.

  9. Calculation of elastic-plastic strain ranges for fatigue analysis based on linear elastic stresses

    International Nuclear Information System (INIS)

    Sauer, G.

    1998-01-01

    Fatigue analysis requires that the maximum strain ranges be known. These strain ranges are generally computed from linear elastic analysis. The elastic strain ranges are enhanced by a factor K e to obtain the total elastic-plastic strain range. The reliability of the fatigue analysis depends on the quality of this factor. Formulae for calculating the K e factor are proposed. A beam is introduced as a computational model for determining the elastic-plastic strains. The beam is loaded by the elastic stresses of the real structure. The elastic-plastic strains of the beam are compared with the beam's elastic strains. This comparison furnishes explicit expressions for the K e factor. The K e factor is tested by means of seven examples. (orig.)

  10. Modeling the Monotonic and Cyclic Tensile Stress-Strain Behavior of 2D and 2.5D Woven C/SiC Ceramic-Matrix Composites

    Science.gov (United States)

    Li, L. B.

    2018-05-01

    The deformation of 2D and 2.5 C/SiC woven ceramic-matrix composites (CMCs) in monotonic and cyclic loadings has been investigated. Statistical matrix multicracking and fiber failure models and the fracture mechanics interface debonding approach are used to determine the spacing of matrix cracks, the debonded length of interface, and the fraction of broken fibers. The effects of fiber volume fraction and fiber Weibull modulus on the damage evolution in the composites and on their tensile stress-strain curves are analyzed. When matrix multicracking and fiber/matrix interface debonding occur, the fiber slippage relative to the matrix in the debonded interface region of the 0° warp yarns is the main reason for the emergance of stress-strain hysteresis loops for 2D and 2.5D woven CMCs. A model of these loops is developed, and histeresis loops for the composites in cyclic loadings/unloadings are predicted.

  11. Transformation of localized necking of strain space into stress space for advanced high strength steel sheet

    Science.gov (United States)

    Nakwattanaset, Aeksuwat; Suranuntchai, Surasak

    2018-03-01

    Normally, Forming Limit Curves (FLCs) can’t explain for shear fracture better than Damage Curve, this article aims to show the experimental of Forming Limit Curve (FLC) for Advanced High Strength Steel (AHSS) sheets grade JAC780Y with the Nakazima forming test and tensile tests of different sample geometries. From these results, the Forming Limit Curve (strain space) was transformed to damage curve (stress space) between plastic strain and stress triaxiality. Therefore, Stress space transformed using by Hill-48 and von-Mises yield function. This article shows that two of these yield criterions can use in the transformation.

  12. Strains and stresses in the rock around and unlined hot water cavern

    Science.gov (United States)

    Rehbinder, Göran

    1984-07-01

    Hot water stored in an unlined rock cavern is an efficient energy storage. A research program has been carried out with a test plant at the city of Avesta, Sweden. The plant consists of a rock cavern, the volume of which is 15000 m3, which serves as an energy buffer in the district heating system of the city. The water is heated from a garbage incinerator located close to the cavern. During the first test period the temperature of the stored water has varied between 40°C and 95°C. The heating of the rock causes strains and stresses in the rock. The measurements show that the state in the rock does mainly respond to the average temperature and not to the fluctuations. The maximum thermal stress is 9 MPa occurring at the wall of the cavern. The heave of the ground is less than 5 mm. The development of stress and strain will continue after the first test period since thermal equilibrium was not reached during this period.

  13. Structural elements and incremental strain history of the basement rocks of Um Had area, central Eastern Desert, Egypt

    International Nuclear Information System (INIS)

    Akawy, Ahmed

    2009-01-01

    The Um Had area, central Eastern Desert, Egypt shows a regional stretching in the NW-SE and a contraction in the NE-SW direction. Major NW-SE folds, small recumbent folds, and local thrusts and reverse faults were recognized. Complicated relation between folds and boudinage was identified. This stretching amount ranges from 1.282 to 1.309. Earlier coaxial and later non-coaxial strains were inferred. The change from axial to non-coaxial stress regime was gradual and the latter was associated with minor clockwise and anticlockwise rotation of structural elements. During the non-coaxial strain, strain fringes were formed as a consequence of the high circulation of fluids in low temperature and high pressure conditions. Superimposed strain fringes indicating right- and left-lateral senses of movement were recognized. At least three generations of fringes were recognized, implying three stages of non-coaxial stretching. Each generation has about 15 increments which show irregular strain gradient and intensity over the different increments. Eastwards, the strain increments became mature and westwards, the finite strain increases. The strongest finite strain was found in a narrow belt delimiting the basement rocks on the west and underlying the Phanerozoic sediments. Chocolate-tablet structure was recorded and indicates later multidirectional tension. Not all Nubia Sandstone exposures are overlying the basement rocks and some are separated by NW-SE normal faults. Major NW-SE normal faults are cutting basement rocks of different ages. (author)

  14. Hydrostatic Stress Effects Incorporated Into the Analysis of the High-Strain-Rate Deformation of Polymer Matrix Composites

    Science.gov (United States)

    Goldberg, Robert K.; Roberts, Gary D.

    2003-01-01

    Procedures for modeling the effect of high strain rate on composite materials are needed for designing reliable composite engine cases that are lighter than the metal cases in current use. The types of polymer matrix composites that are likely to be used in such an application have a deformation response that is nonlinear and that varies with strain rate. The nonlinearity and strain rate dependence of the composite response is primarily due to the matrix constituent. Therefore, in developing material models to be used in the design of impact-resistant composite engine cases, the deformation of the polymer matrix must be correctly analyzed. However, unlike in metals, the nonlinear response of polymers depends on the hydrostatic stresses, which must be accounted for within an analytical model. An experimental program has been carried out through a university grant with the Ohio State University to obtain tensile and shear deformation data for a representative polymer for strain rates ranging from quasi-static to high rates of several hundred per second. This information has been used at the NASA Glenn Research Center to develop, characterize, and correlate a material model in which the strain rate dependence and nonlinearity (including hydrostatic stress effects) of the polymer are correctly analyzed. To obtain the material data, Glenn s researchers designed and fabricated test specimens of a representative toughened epoxy resin. Quasi-static tests at low strain rates and split Hopkinson bar tests at high strain rates were then conducted at the Ohio State University. The experimental data confirmed the strong effects of strain rate on both the tensile and shear deformation of the polymer. For the analytical model, Glenn researchers modified state variable constitutive equations previously used for the viscoplastic analysis of metals to allow for the analysis of the nonlinear, strain-rate-dependent polymer deformation. Specifically, we accounted for the effects of

  15. Does Acute Stress Disorder Predict Posttraumatic Stress Disorder Following Bank Robbery?

    Science.gov (United States)

    Hansen, Maj; Elklit, Ask

    2013-01-01

    Unfortunately, the number of bank robberies is increasing and little is known about the subsequent risk of posttraumatic stress disorder (PTSD). Several studies have investigated the prediction of PTSD through the presence of acute stress disorder (ASD). However, there have only been a few studies following nonsexual assault. The present study…

  16. Casting of organic glass by radiation-induced polymerization of glass-forming monomers at low temperature. II. Optical strain of remaining stress type

    International Nuclear Information System (INIS)

    Okubo, H.; Yoshii, F.; Kaetsu, I.; Honda, S.

    1978-01-01

    Previously it was found that casting could be carried out efficiently without strain formation by radiation-induced polymerization of glass-forming monomers. Two types of strain were observed in casting: thermal stream type, which was studied previously, and remained stress type. In this report, the effect of various factors on the formation of remaining stress-type strain in radiation-induced casting polymerization was studied. It was found that the molecular weight of prepolymer did not affect strain formation, while prepolymer concentration and viscosity of the system had a serious influence on strain formation. It could be deduced that this type of strain formed as a result of remaining inner stress due to poor relaxation of the shrinking stress. It was realized that less volume shrinkage of glass-forming monomers accompanying casting polymerization reduced the strain formation of this type in radiation-induced casting polymerization at low temperatures

  17. Influence of copper volume fraction on tensile strain/stress tolerances of critical current in a copper-plated DyBCO-coated conductor

    International Nuclear Information System (INIS)

    Ochiai, Shojiro; Okuda, Hiroshi; Arai, Takahiro; Sugano, Michinaka; Osamura, Kozo; Prusseit, Werner

    2013-01-01

    The influence of the volume fraction (V f ) of copper, plated at room temperature over a DyBa 2 Cu 3 O 7-δ -coated conductor, on the tensile strain tolerance and stress tolerance of critical current at 77 K was studied over a wide range of copper V f values. The copper plating exerts a tensile stress during cooling because copper has a higher coefficient of thermal expansion than the substrate conductor. Before application of tensile strain, the copper plated at room temperature yielded at 77 K when the copper V f was lower than a critical value, and was in an elastic state at 77 K when the copper V f was higher than the critical value. The strain tolerance of critical current increased with increasing copper V f due to an increase in thermally induced compressive strain in the substrate tape. The stress tolerance of critical current decreased with increasing copper V f because copper is softer than the substrate tape. These results, together with the trade-off between strain tolerance and stress tolerance (i.e., stress tolerance decreases with increasing strain tolerance), were analyzed by modeling. The results show that the restriction imposed by the trade-off, which limits the ability to simultaneously obtain a high strain tolerance and a high stress tolerance, can be relaxed by strengthening the copper. (author)

  18. Measurement of residual stresses using fracture mechanics weight functions

    International Nuclear Information System (INIS)

    Fan, Y.

    2000-01-01

    A residual stress measurement method has been developed to quantify through-the-thickness residual stresses. Accurate measurement of residual stresses is crucial for many engineering structures. Fabrication processes such as welding and machining generate residual stresses that are difficult to predict. Residual stresses affect the integrity of structures through promoting failures due to brittle fracture, fatigue, stress corrosion cracking, and wear. In this work, the weight function theory of fracture mechanics is used to measure residual stresses. The weight function theory is an important development in computational fracture mechanics. Stress intensity factors for arbitrary stress distribution on the crack faces can be accurately and efficiently computed for predicting crack growth. This paper demonstrates that the weight functions are equally useful in measuring residual stresses. In this method, an artificial crack is created by a thin cut in a structure containing residual stresses. The cut relieves the residual stresses normal to the crack-face and allows the relieved residual stresses to deform the structure. Strain gages placed adjacent to the cut measure the relieved strains corresponding to incrementally increasing depths of the cut. The weight functions of the cracked body relate the measured strains to the residual stresses normal to the cut within the structure. The procedure details, such as numerical integration of the singular functions in applying the weight function method, will be discussed

  19. Measurement of residual stresses using fracture mechanics weight functions

    International Nuclear Information System (INIS)

    Fan, Y.

    2001-01-01

    A residual stress measurement method has been developed to quantify through-the-thickness residual stresses. Accurate measurement of residual stresses is crucial for many engineering structures. Fabrication processes such as welding and machining generate residual stresses that are difficult to predict. Residual stresses affect the integrity of structures through promoting failures due to brittle fracture, fatigue, stress corrosion cracking, and wear. In this work, the weight function theory of fracture mechanics is used to measure residual stresses. The weight function theory is an important development in computational fracture mechanics. Stress intensity factors for arbitrary stress distribution on the crack faces can be accurately and efficiently computed for predicting crack growth. This paper demonstrates that the weight functions are equally useful in measuring residual stresses. In this method, an artificial crack is created by a thin cut in a structure containing residual stresses. The cut relieves the residual stresses normal to the crack-face and allows the relieved residual stresses to deform the structure. Strain gages placed adjacent to the cut measure the relieved strains corresponding to incrementally increasing depths of the cut. The weight functions of the cracked body relate the measured strains to the residual stresses normal to the cut within the structure. The procedure details, such as numerical integration of the singular functions in applying the weight function method, will be discussed. (author)

  20. Resiliency to social defeat stress relates to the inter-strain social interaction and is influenced by season variation.

    Science.gov (United States)

    Han, Qiuqin; Yang, Liu; Liu, Yan; Lv, Ning; Yu, Jin; Wu, Gencheng; Zhang, Yuqiu

    2014-02-21

    Exposure to social defeat (SD) stress exerts social avoidance and depressive disorders. Little is known about the relationship between resiliency to stressors and the inter-strain social interaction (SI) level. We hypothesized that SD resiliency is correlated with a high SI between the same strain. C57BL/6J mice experienced a 10-day period of SD stress by repeated CD-1 mice offensive. The susceptible mice exhibited significant social-avoidance behaviors with less time in interaction-zone (IZ) and lower social interaction ratio (SIR) toward the Target (CD-1 mice), while resilient ones exhibited similar social interaction to control mice. When the Target was C57BL/6J mouse, either susceptible or resilient mice spent more time in IZ and the inter-strain SI in the resilient group was significantly higher than the susceptible. Correlation analysis revealed a significantly non-zero slope of the linear relationship between SIRs toward two strains. But different groups had a similar baseline of the inter-strain SI before stress, indicating a SD-induced defect in both types of SI. In addition, in four different seasons, animals exhibited a significant resiliency to the stress in summer. These data suggest that SD resiliency is related to a higher SI toward the same-strain, and may be regulated by seasonal variations. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. Tensile stress-strain and work hardening behaviour of P9 steel for wrapper application in sodium cooled fast reactors

    Science.gov (United States)

    Christopher, J.; Choudhary, B. K.; Isaac Samuel, E.; Mathew, M. D.; Jayakumar, T.

    2012-01-01

    Tensile flow behaviour of P9 steel with different silicon content has been examined in the framework of Hollomon, Ludwik, Swift, Ludwigson and Voce relationships for a wide temperature range (300-873 K) at a strain rate of 1.3 × 10 -3 s -1. Ludwigson equation described true stress ( σ)-true plastic strain ( ɛ) data most accurately in the range 300-723 K. At high temperatures (773-873 K), Ludwigson equation reduces to Hollomon equation. The variations of instantaneous work hardening rate ( θ = dσ/ dɛ) and θσ with stress indicated two-stage work hardening behaviour. True stress-true plastic strain, flow parameters, θ vs. σ and θσ vs. σ with respect to temperature exhibited three distinct temperature regimes and displayed anomalous behaviour due to dynamic strain ageing at intermediate temperatures. Rapid decrease in flow stress and flow parameters, and rapid shift in θ- σ and θσ- σ towards lower stresses with increase in temperature indicated dominance of dynamic recovery at high temperatures.

  2. Metabolic fingerprinting of bacterial strains isolated from northern areas of Pakistan

    International Nuclear Information System (INIS)

    Zaheer, A.; Latif, Z.

    2017-01-01

    The diversity of Plant Growth Promoting Rhizobacteria (PGPR) in the rhizosphere plays a key role in the maintenance of sustainable agricultural system. In this study, samples were obtained from northern areas of Pakistan. Thirty bacterial strains were isolated, purified, characterized biochemically and subjected to the metabolic fingerprinting by performing nitrogen fixation, phosphate solubilization, protease, indole acetic acid (IAA) production, antibiotic susceptibility and heavy metal resistance test, lead acetate assay for the H2S production. Strains showing distinct characteristics were further characterized by 16S rDNA sequencing and characterized as Bacillus pumilus (KT273321), Acinetobacter baumanii (KT273323), Acinetobacter junii (KT273324), Pseudomonas aeruginosa (KT273325), Bacillus circulans (KT273326) and Bacillus cereus (KT273327). As most of the strains show positive results for resistance against heavy metals, phosphate solubilization, nitrogen fixation, IAA production, and so these strains might be utilized for the removal of heavy metals from the ecosystem as well as biofertilizer in agriculture lands of northern areas. (author)

  3. Effects of stress on the oxide layer thickness and post-oxidation creep strain of zircaloy-4

    International Nuclear Information System (INIS)

    Lim, Sang Ho; Yoon, Young Ku

    1986-01-01

    Effects of compressive stress generated in the oxide layer and its subsequent relief on oxidation rate and post-oxidation creep characteristics of zircaloy-4 were investigated by oxidation studies in steam with and without applied tensile stress and by creep testing at 700 deg C in high purity argon. The thickness of oxide layer increased with the magnitude of tensile stress applied during oxidation at 650 deg C in steam whereas similar phenomenon was not observed during oxidation at 800 deg C. Zircaloy-4 specimens oxidized at 600 deg C in steam without applied stress exhibited higher creep strain than that shown by unoxidized specimens when creep-tested in argon. Zircaloy-4 specimens oxidized at 600 deg C steam under the applied stress of 8.53MPa and oxidized at 800 deg C under the applied stress of 0 and 8.53MPa exhibited lower strain than that shown by unoxidized specimen. The above experimental results were accounted for on the basis of interactions among applied stress during oxidation, compressive stress generated in the oxide layer and elasticity of zircaloy-4 matrix. (Author)

  4. The impact of area deprivation on parenting stress

    NARCIS (Netherlands)

    Spijkers, Willem; Jansen, Danielle E. M. C.; Reijneveld, Sijmen A.

    2012-01-01

    Background: Area deprivation negatively affects health and lifestyles, among which child behaviours. The latter may aggravate the effects of area deprivation on parental health due to higher rates of parenting stress. However, evidence on the influence of the living environment on parenting stress

  5. Creep Rupture Life Prediction Based on Analysis of Large Creep Deformation

    Directory of Open Access Journals (Sweden)

    YE Wenming

    2016-08-01

    Full Text Available A creep rupture life prediction method for high temperature component was proposed. The method was based on a true stress-strain elastoplastic creep constitutive model and the large deformation finite element analysis method. This method firstly used the high-temperature tensile stress-strain curve expressed by true stress and strain and the creep curve to build materials' elastoplastic and creep constitutive model respectively, then used the large deformation finite element method to calculate the deformation response of high temperature component under a given load curve, finally the creep rupture life was determined according to the change trend of the responsive curve.The method was verified by durable test of TC11 titanium alloy notched specimens under 500 ℃, and was compared with the three creep rupture life prediction methods based on the small deformation analysis. Results show that the proposed method can accurately predict the high temperature creep response and long-term life of TC11 notched specimens, and the accuracy is better than that of the methods based on the average effective stress of notch ligament, the bone point stress and the fracture strain of the key point, which are all based on small deformation finite element analysis.

  6. Elasto-plastic stress/strain at notches, comparison of test and approximative computations

    International Nuclear Information System (INIS)

    Beste, A.; Seeger, T.

    1979-01-01

    The lifetime of cyclically loaded components is decisively determined by the value of the local load in the notch root. The determination of the elasto-plastic notch-stress and-strain is therefore an important element of recent methods of lifetime determination. These local loads are normally calculated with the help of approximation formulas. Yet there are no details about their accuracy. The basic construction of the approximation formulas is presented, along with some particulars. The use of approximations within the fully plastic range and for material laws which show a non-linear stress-strain (sigma-epsilon-)-behaviour from the beginning is explained. The use of approximation for cyclic loads is particularly discussed. Finally, the approximations are evaluated in terms of their exactness. The test results are compared with the results of the approximation calculations. (orig.) 891 RW/orig. 892 RKD [de

  7. Effectiveness of halo-tolerant, auxin producing Pseudomonas and Rhizobium strains to improve osmotic stress tolerance in mung bean (Vigna radiata L.

    Directory of Open Access Journals (Sweden)

    Maqshoof Ahmad

    2013-12-01

    Full Text Available Halo-tolerant, auxin producing bacteria could be used to induce salt tolerance in plants. A number of Rhizobium and auxin producing rhizobacterial strains were assessed for their ability to tolerate salt stress by conducting osmoadaptation assay. The selected strains were further screened for their ability to induce osmotic stress tolerance in mung bean seedlings under salt-stressed axenic conditions in growth pouch/jar trials. Three most effective strains of Rhizobium and Pseudomonas containing ACC-deaminase were evaluated in combination, for their ability to induce osmotic stress tolerance in mung bean at original, 4, and 6 dS m-1 under axenic conditions. Results showed that sole inoculation of Rhizobium and Pseudomonas strains improved the total dry matter up to 1.4, and 1.9 fold, respectively, while the increase in salt tolerance index was improved up to 1.3 and 2.0 fold by the Rhizobium and Pseudomonas strains, respectively. However, up to 2.2 fold increase in total dry matter and salt tolerance index was observed due to combined inoculation of Rhizobium and Pseudomonas strains. So, combined application of Rhizobium and Pseudomonas strains could be explored as an effective strategy to induce osmotic stress tolerance in mung bean.

  8. Sandstone compaction under actively controlled uniaxial strain conditions - an experimental study on the causes of subsidence in the Dutch Wadden Area

    Science.gov (United States)

    Hol, Sander; Mossop, Antony; van der Linden, Arjan; Zuiderwijk, Pedro; Makurat, Axel; van Eijs, Rob

    2016-04-01

    In the Wadden Sea, a tidal-flat area located between the North Sea and the Dutch mainland shore, and UNESCO World Heritage site, subsidence could potentially impact the ecological system. To guide the licensing process governing gas extraction for the area by a solid understanding of the system's response to production, Nederlandse Aardolie Maatschappij (NAM) has carried out a study on the magnitudes, timing, and mechanisms of subsidence related to gas production. As part of this study program, we address the effect of production-induced reservoir compaction, using core samples from the Moddergat field located at the Wadden Sea coastline, from a depth of ~3800 m TVDSS, to assess the nature of the compaction mechanisms that operate. In this contribution, we focus on the uniaxial strain response of Permian, Aeolian sandstone to pore pressure depletion. As the majority of experiments reported in the literature are conducted under triaxial stress conditions, this data set is somewhat unique, and can help confirm the validity of micromechanical processes found for triaxial stress conditions. We report over 30 data sets of experiments carried out using 1.0 and 1.5 inch diameter plugs, sub-sampled from the extracted sandstone core material. The experiments start at in-situ conditions of pore pressure (Pf=~57 MPa), stress (Sv=~80 MPa, Sh=~67 MPa) and temperature (T up to 100 °C), and deplete to a pore pressure of 3 MPa, under actively controlled lateral constraint boundary conditions (i.e. uniaxial strain). Care was taken to systematically vary porosity and sample morphology to ensure representation of the intra-reservoir variability. Our laboratory data show that pressure-depletion results in a strain in the range of 5·10-3-1·10-2 over the total duration of the experiments of 5-12 weeks, with approximately 80% of the total strain response being close to instantaneous, and 20% developing over time. The total strain response develops during depletion as a result of

  9. Stress hormones at rest and following exercise testing predict coronary artery disease severity and outcome.

    Science.gov (United States)

    Popovic, Dejana; Damjanovic, Svetozar; Djordjevic, Tea; Martic, Dejana; Ignjatovic, Svetlana; Milinkovic, Neda; Banovic, Marko; Lasica, Ratko; Petrovic, Milan; Guazzi, Marco; Arena, Ross

    2017-09-01

    Despite considerable knowledge regarding the importance of stress in coronary artery disease (CAD) pathogenesis, its underestimation persists in routine clinical practice, in part attributable to lack of a standardized, objective assessment. The current study examined the ability of stress hormones to predict CAD severity and prognosis at basal conditions as well as during and following an exertional stimulus. Forty Caucasian subjects with significant coronary artery lesions (≥50%) were included. Within 2 months of coronary angiography, cardiopulmonary exercise testing (CPET) on a recumbent ergometer was performed in conjunction with stress echocardiography (SE). At rest, peak and after 3 min of recovery following CPET, plasma levels of cortisol, adrenocorticotropic hormone (ACTH) and NT-pro-brain natriuretic peptide (NT-pro-BNP) were measured by immunoassay sandwich technique, radioimmunoassay, and radioimmunometric technique, respectively. Subjects were subsequently followed a mean of 32 ± 10 months. Mean ejection fraction was 56.7 ± 9.6%. Subjects with 1-2 stenotic coronary arteries (SCA) demonstrated a significantly lower plasma cortisol levels during CPET compared to those with 3-SCA (p  .05). Among CPET, SE, and hormonal parameters, cortisol at rest and during CPET recovery demonstrated the best predictive value in distinguishing between 1-, 2-, and 3-SCA [area under ROC curve 0.75 and 0.77 (SE = 0.11, 0.10; p = .043, .04) for rest and recovery, respectively]. ΔCortisol peak/rest predicted cumulative cardiac events (area under ROC curve 0.75, SE = 0.10, p = .049). Cortisol at rest and following an exercise test holds predictive value for CAD severity and prognosis, further demonstrating a link between stress and unwanted cardiac events.

  10. Numerical simulation of stress-strain state of electrophoretic shell molds

    Science.gov (United States)

    Sviridov, A. V.; Odinokov, V. I.; Dmitriev, E. A.; Evstigneev, A. I.; Bashkov, O. V.

    2017-10-01

    In the foundry engineering, castings obtained in one-piece non-gas-generating high-refractory electrophoretic shell molds (ShM) by investment patterns (IP) have an increased rejects percentage associated with low deformation resistance and crack resistance of the SM at different stages of their formation and manufacturing. Crack resistance of the ShM based on IP depends mainly on their stress-strain state (SSS) at various stages of mold forming. SSS decrease significantly improves their crack resistance and decreases their rejects percentage of castings occurring due to clogging and surface defects. In addition, the known methods of decreasing the SSS are still poorly understood. Thus, current research trends are to determine SSS at each stage of ShM forming and develop the ways to decrease it. Theoretical predicting of crack formation in multiple-layer axisymmetric shell molds is given in the work [1], and SSS of multiple-layer axisymmetric shell molds is given in the work [2]. Monolayer electrophoretic ShM had a lack of concern in this field, thus it became an argument for the present workMathematical Model of ShM SSS

  11. Numerical Evaluation of Size Effect on the Stress-Strain Behaviour of Geotextile-Reinforced Sand

    DEFF Research Database (Denmark)

    Hosseinpour, I.; Mirmoradi, S.H.; Barari, Amin

    2010-01-01

    This paper studies the effect of sample size on the stress-strain behavior and strength characteristics of geotextile reinforced sand using the finite element numerical analysis. The effect of sample size was investigated by studying the effects of varying the number of geotextile layers, the con......This paper studies the effect of sample size on the stress-strain behavior and strength characteristics of geotextile reinforced sand using the finite element numerical analysis. The effect of sample size was investigated by studying the effects of varying the number of geotextile layers...... on the mechanical behavior of reinforced sand decreases with an increase in the sample size....

  12. A Combined Precipitation, Yield Stress, and Work Hardening Model for Al-Mg-Si Alloys Incorporating the Effects of Strain Rate and Temperature

    Science.gov (United States)

    Myhr, Ole Runar; Hopperstad, Odd Sture; Børvik, Tore

    2018-05-01

    In this study, a combined precipitation, yield strength, and work hardening model for Al-Mg-Si alloys known as NaMo has been further developed to include the effects of strain rate and temperature on the resulting stress-strain behavior. The extension of the model is based on a comprehensive experimental database, where thermomechanical data for three different Al-Mg-Si alloys are available. In the tests, the temperature was varied between 20 °C and 350 °C with strain rates ranging from 10-6 to 750 s-1 using ordinary tension tests for low strain rates and a split-Hopkinson tension bar system for high strain rates, respectively. This large span in temperatures and strain rates covers a broad range of industrial relevant problems from creep to impact loading. Based on the experimental data, a procedure for calibrating the different physical parameters of the model has been developed, starting with the simplest case of a stable precipitate structure and small plastic strains, from which basic kinetic data for obstacle limited dislocation glide were extracted. For larger strains, when work hardening becomes significant, the dynamic recovery was linked to the Zener-Hollomon parameter, again using a stable precipitate structure as a basis for calibration. Finally, the complex situation of concurrent work hardening and dynamic evolution of the precipitate structure was analyzed using a stepwise numerical solution algorithm where parameters representing the instantaneous state of the structure were used to calculate the corresponding instantaneous yield strength and work hardening rate. The model was demonstrated to exhibit a high degree of predictive power as documented by a good agreement between predictions and measurements, and it is deemed well suited for simulations of thermomechanical processing of Al-Mg-Si alloys where plastic deformation is carried out at various strain rates and temperatures.

  13. Prediction of crack growth direction by Strain Energy Sih's Theory on specimens SEN under tension-compression biaxial loading employing Genetic Algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-MartInez R; Lugo-Gonzalez E; Urriolagoitia-Calderon G; Urriolagoitia-Sosa G; Hernandez-Gomez L H; Romero-Angeles B; Torres-San Miguel Ch, E-mail: rrodriguezm@ipn.mx, E-mail: urrio332@hotmail.com, E-mail: guiurri@hotmail.com, E-mail: luishector56@hotmail.com, E-mail: romerobeatriz98@hotmail.com, E-mail: napor@hotmail.com [INSTITUTO POLITECNICO NACIONAL Seccion de Estudios de Posgrado e Investigacion (SEPI), Escuela Superior de Ingenieria Mecanica y Electrica (ESIME), Edificio 5. 2do Piso, Unidad Profesional Adolfo Lopez Mateos ' Zacatenco' Col. Lindavista, C.P. 07738, Mexico, D.F. (Mexico)

    2011-07-19

    Crack growth direction has been studied in many ways. Particularly Sih's strain energy theory predicts that a fracture under a three-dimensional state of stress spreads in direction of the minimum strain energy density. In this work a study for angle of fracture growth was made, considering a biaxial stress state at the crack tip on SEN specimens. The stress state applied on a tension-compression SEN specimen is biaxial one on crack tip, as it can observed in figure 1. A solution method proposed to obtain a mathematical model considering genetic algorithms, which have demonstrated great capacity for the solution of many engineering problems. From the model given by Sih one can deduce the density of strain energy stored for unit of volume at the crack tip as dW = [1/2E({sigma}{sup 2}{sub x} + {sigma}{sup 2}{sub y}) - {nu}/E({sigma}{sub x}{sigma}{sub y})]dV (1). From equation (1) a mathematical deduction to solve in terms of {theta} of this case was developed employing Genetic Algorithms, where {theta} is a crack propagation direction in plane x-y. Steel and aluminium mechanical properties to modelled specimens were employed, because they are two of materials but used in engineering design. Obtained results show stable zones of fracture propagation but only in a range of applied loading.

  14. Model-based methodology to develop the isochronous stress-strain curves for modified 9Cr steels

    International Nuclear Information System (INIS)

    Kim, Woo Gon; Yin, Song Nan; Kim, Sung Ho; Lee, Chan Bock; Jung, Ik Hee

    2008-01-01

    Since high temperature materials are designed with a target life based on a specified amount of allowable strain and stress, their Isochronous Stress-Strain Curves (ISSC) are needed to avoid an excessive deformation during an intended service life. In this paper, a model-based methodology to develop the isochronous curves for a G91 steel is described. Creep strain-time curves were reviewed for typical high-temperature materials, and Garofalo's model which conforms well to the primary and secondary creep stages was proper for the G91 steel. Procedures to obtain an instantaneous elastic-plastic strain, ε i were given in detail. Also, to accurately determine the P 1 , P 2 and P 3 parameters in the Garofalo's model, a Nonlinear Least Square Fitting (NLSF) method was adopted and useful. The long-term creep curves for the G91 steel can be modeled by the Garofalo's model, and the long-term ISSCs can be developed using the modeled creep curves

  15. Stress-strain curve of concretes with recycled concrete aggregates: analysis of the NBR 8522 methodology

    Directory of Open Access Journals (Sweden)

    D. A. GUJEL

    Full Text Available ABSTRACT This work analyses the methodology "A" (item A.4 employed by the Brazilian Standard ABNT 8522 (ABNT, 2008 for determining the stress-strain behavior of cylindrical specimens of concrete, presenting considerations about possible enhancements aiming it use for concretes with recycled aggregates with automatic test equipment. The methodology specified by the Brazilian Standard presents methodological issues that brings distortions in obtaining the stress-strain curve, as the use of a very limited number of sampling points and by inducing micro cracks and fluency in the elastic behavior of the material due to the use of steady stress levels in the test. The use of a base stress of 0.5 MPa is too low for modern high load test machines designed do high strength concrete test. The work presents a discussion over these subjects, and a proposal of a modified test procedure to avoid such situations.

  16. Simulation of three-dimensional tectonic stress fields and quantitative prediction of tectonic fracture within the Damintun Depression, Liaohe Basin, northeast China

    Science.gov (United States)

    Guo, Peng; Yao, Leihua; Ren, Desheng

    2016-05-01

    Tectonic fractures are important factors that influence oil and natural gas migration and accumulation within "buried hill" reservoirs. To obtain a quantitative forecast of the development and distribution of reservoir fractures in the Damintun Depression, we analyzed the characteristics of regional structural evolution and paleotectonic stress field setting. A reasonable geological model of the research area was built based on an interpretation of the geological structure, a test for rock mechanics, and experiment on acoustic emission. Thereafter, a three-dimensional paleotectonic stress field during the Yanshan movement was simulated by the finite element method. Rock failure criterion and comprehensive evaluation coefficient of fractures were used to determine the quantitative development of fractures and predict zones that are prone to fracture development. Under an intense Yanshan movement, high stress strength is distributed in the south and northeast parts of the study area, where stress is extremely high. The fracture development zones are mainly controlled by the tectonic stress field and typically located in the same areas as those of high maximum principal and shear stresses. The predicted areas with developed fractures are consistent with the wells with high fracture linear density and in locations with high-producing oil and gas wells.

  17. Fatigue properties of JIS H3300 C1220 copper for strain life prediction

    Science.gov (United States)

    Harun, Muhammad Faiz; Mohammad, Roslina

    2018-05-01

    The existing methods for estimating strain life parameters are dependent on the material's monotonic tensile properties. However, a few of these methods yield quite complicated expressions for calculating fatigue parameters, and are specific to certain groups of materials only. The Universal Slopes method, Modified Universal Slopes method, Uniform Material Law, the Hardness method, and Medians method are a few existing methods for predicting strain-life fatigue based on monotonic tensile material properties and hardness of material. In the present study, nine methods for estimating fatigue life and properties are applied on JIS H3300 C1220 copper to determine the best methods for strain life estimation of this ductile material. Experimental strain-life curves are compared to estimations obtained using each method. Muralidharan-Manson's Modified Universal Slopes method and Bäumel-Seeger's method for unalloyed and low-alloy steels are found to yield batter accuracy in estimating fatigue life with a deviation of less than 25%. However, the prediction of both methods only yield much better accuracy for a cycle of less than 1000 or for strain amplitudes of more than 1% and less than 6%. Manson's Original Universal Slopes method and Ong's Modified Four-Point Correlation method are found to predict the strain-life fatigue of copper with better accuracy for a high number of cycles of strain amplitudes of less than 1%. The differences between mechanical behavior during monotonic and cyclic loading and the complexity in deciding the coefficient in an equation are probably the reason for the lack of a reliable method for estimating fatigue behavior using the monotonic properties of a group of materials. It is therefore suggested that a differential approach and new expressions be developed to estimate the strain-life fatigue parameters for ductile materials such as copper.

  18. Cyclic stress at mHz frequencies aligns fibroblasts in direction of zero strain.

    Directory of Open Access Journals (Sweden)

    Uta Faust

    Full Text Available Recognition of external mechanical signals is vital for mammalian cells. Cyclic stretch, e.g. around blood vessels, is one such signal that induces cell reorientation from parallel to almost perpendicular to the direction of stretch. Here, we present quantitative analyses of both, cell and cytoskeletal reorientation of umbilical cord fibroblasts. Cyclic strain of preset amplitudes was applied at mHz frequencies. Elastomeric chambers were specifically designed and characterized to distinguish between zero strain and minimal stress directions and to allow accurate theoretical modeling. Reorientation was only induced when the applied stretch exceeded a specific amplitude, suggesting a non-linear response. However, on very soft substrates no mechanoresponse occurs even for high strain. For all stretch amplitudes, the angular distributions of reoriented cells are in very good agreement with a theory modeling stretched cells as active force dipoles. Cyclic stretch increases the number of stress fibers and the coupling to adhesions. We show that changes in cell shape follow cytoskeletal reorientation with a significant temporal delay. Our data identify the importance of environmental stiffness for cell reorientation, here in direction of zero strain. These in vitro experiments on cultured cells argue for the necessity of rather stiff environmental conditions to induce cellular reorientation in mammalian tissues.

  19. Numerical and experimental study of moisture-induced stress and strain field developments in timber logs

    DEFF Research Database (Denmark)

    Larsen, Finn; Ormarsson, Sigurdur

    2013-01-01

    shrinkage and the inhomogeneity of the material. To obtain a better understanding of how stresses develop during climatic variations, the field histories of stresses (and strains) in cross sections in their entirety need to be studied. The present paper reports on experiments and numerical simulations...

  20. Determination of the State of Strain of Large Floating Covers Using Unmanned Aerial Vehicle (UAV) Aided Photogrammetry

    Science.gov (United States)

    Ong, Wern Hann; Chiu, Wing Kong; Kuen, Thomas; Kodikara, Jayantha

    2017-01-01

    Floating covers used in waste water treatment plants are one of the many structures formed with membrane materials. These structures are usually large and can spread over an area measuring 470 m × 170 m. The aim of this paper is to describe recent work to develop an innovative and effective approach for structural health monitoring (SHM) of such large membrane-like infrastructure. This paper will propose a potentially cost-effective non-contact approach for full-field strain and stress mapping using an unmanned aerial vehicle (UAV) mounted with a digital camera and a global positioning system (GPS) tracker. The aim is to use the images acquired by the UAV to define the geometry of the floating cover using photogrammetry. In this manner, any changes in the geometry of the floating cover due to forces acting beneath resulting from its deployment and usage can be determined. The time-scale for these changes is in terms of weeks and months. The change in the geometry can be implemented as input conditions to a finite element model (FEM) for stress prediction. This will facilitate the determination of the state of distress of the floating cover. This paper investigates the possibility of using data recorded from a UAV to predict the strain level and assess the health of such structures. An investigation was first conducted on a laboratory sized membrane structure instrumented with strain gauges for comparison against strains, which were computed from 3D scans of the membrane geometry. Upon validating the technique in the laboratory, it was applied to a more realistic scenario: an outdoor test membrane structure and capable UAV were constructed to see if the shape of the membrane could be computed. The membrane displacements were then used to calculate the membrane stress and strain, state demonstrating a new way to perform structural health monitoring on membrane structures. PMID:28788081

  1. Determination of the State of Strain of Large Floating Covers Using Unmanned Aerial Vehicle (UAV) Aided Photogrammetry.

    Science.gov (United States)

    Ong, Wern Hann; Chiu, Wing Kong; Kuen, Thomas; Kodikara, Jayantha

    2017-07-28

    Floating covers used in waste water treatment plants are one of the many structures formed with membrane materials. These structures are usually large and can spread over an area measuring 470 m × 170 m. The aim of this paper is to describe recent work to develop an innovative and effective approach for structural health monitoring (SHM) of such large membrane-like infrastructure. This paper will propose a potentially cost-effective non-contact approach for full-field strain and stress mapping using an unmanned aerial vehicle (UAV) mounted with a digital camera and a global positioning system (GPS) tracker. The aim is to use the images acquired by the UAV to define the geometry of the floating cover using photogrammetry. In this manner, any changes in the geometry of the floating cover due to forces acting beneath resulting from its deployment and usage can be determined. The time-scale for these changes is in terms of weeks and months. The change in the geometry can be implemented as input conditions to a finite element model (FEM) for stress prediction. This will facilitate the determination of the state of distress of the floating cover. This paper investigates the possibility of using data recorded from a UAV to predict the strain level and assess the health of such structures. An investigation was first conducted on a laboratory sized membrane structure instrumented with strain gauges for comparison against strains, which were computed from 3D scans of the membrane geometry. Upon validating the technique in the laboratory, it was applied to a more realistic scenario: an outdoor test membrane structure and capable UAV were constructed to see if the shape of the membrane could be computed. The membrane displacements were then used to calculate the membrane stress and strain, state demonstrating a new way to perform structural health monitoring on membrane structures.

  2. Recent Methodologies for Creep Deformation Analysis and Its Life Prediction

    International Nuclear Information System (INIS)

    Kim, Woo-Gon; Park, Jae-Young; Iung

    2016-01-01

    To design the high-temperature creeping materials, various creep data are needed for codification, as follows: i) stress vs. creep rupture time for base metals and weldments (average and minimum), ii) stress vs. time to 1% total strain (average), iii) stress vs. time to onset of tertiary creep (minimum), and iv) constitutive eqns. for conducting time- and temperature- dependent stress-strain (average), and v) isochronous stress-strain curves (average). Also, elevated temperature components such as those used in modern power generation plant are designed using allowable stress under creep conditions. The allowable stress is usually estimated on the basis of up to 10"5 h creep rupture strength at the operating temperature. The master curve of the “sinh” function was found to have a wider acceptance with good flexibility in the low stress ranges beyond the experimental data. The proposed multi-C method in the LM parameter revealed better life prediction than a single-C method. These improved methodologies can be utilized to accurately predict the long-term creep life or strength of Gen-IV nuclear materials which are designed for life span of 60 years

  3. A Mutated Yeast Strain with Enhanced Ethanol Production Efficiency and Stress Tolerance

    Directory of Open Access Journals (Sweden)

    Naghmeh Hemmati1*, David A. Lightfoot1,2, and Ahmed Fakhoury3

    2012-05-01

    Full Text Available One of the strategies to improve and optimize bio-ethanolproduction from new feed stocks is to develop new strainsof Saccharomyces cerevisiae with tolerance to stresses. Themain objectives here were to; generate S. cerevisiae mutantstolerant to high ethanol concentrations; test for their abilityto ferment maize starch; and partially characterize the mutationsresponsible for the new phenotypes. A combinationof mutagenesis, selection and cross-stress protection methodswere used. EMS (ethyl methanesulfonate was used tomutagenize one S. cerevisiae strain. The mutagenized yeaststrain was exposed to high concentrations of ethanol andtolerant mutants were isolated. Mutants showed improvedethanol yield (0.02-0.03 g/g of maize and fermentation efficiency(3-5%. Finally, AFLP (Amplified Fragment LengthPolymorphism was performed to identify polymorphisms inthe mutants that might underlie the strains ethanol tolerance.The best performing mutant isolate had four altered genetranscripts encoding; an arginine uptake and canavanine resistanceprotein (CAN1; mitochondrial membrane proteins(SLS1; a putative membrane glycoprotein (VTH1; and cytochromeC oxidase (COX6; EC 1.9.3.1 among about 1,000tested. It was concluded these mutations might underlie theimproved ethanol production efficiency and stress tolerance.

  4. Summary report - development of laboratory tests and the stress- strain behaviour of Olkiluoto mica gneiss

    International Nuclear Information System (INIS)

    Hakala, M.; Heikkilae, E.

    1997-05-01

    This work summarizes the project aimed at developing and qualifying a suitable combination of laboratory tests to establish a statistically reliable stress-strain behaviour of the main rock types at Posiva Oy's detailed investigation sites for disposal of spent nuclear fuel. The work includes literature study of stress-strain behaviour of brittle rock, development and qualification of laboratory tests, suggested test procedures and interpretation methods and finally testing of Olkiluoto mica gneiss. The Olkiluoto study includes over 130 loading tests. Besides the commonly used laboratory tests, direct tensile tests, damage controlled tests and acoustic emission measurements were also carried out. (orig.) (54 refs.)

  5. Stress tolerant virulent strains of Cronobacter sakazakii from food

    Directory of Open Access Journals (Sweden)

    Md Fakruddin

    2014-01-01

    Full Text Available BACKGROUND: Cronobacter sakazakii is considered as an emerging foodborne pathogen. The aim of this study was to isolate and characterize virulent strains of Cronobacter sakazakii from food samples of Bangladesh. RESULT: Six (6 Cronobacter sakazakii was isolated and identified from 54 food samples on the basis of biochemical characteristics, sugar fermentation, SDS-PAGE of whole cell protein, plasmid profile and PCR of Cronobacter spp. specific genes (esak, gluA, zpx, ompA, ERIC, BOX-AIR and sequencing. These strains were found to have moderately high antibiotic resistance against common antibiotics and some are ESBL producer. Most of the C. sakazakii isolates were capable of producing biofilm (strong biofilm producer, extracellular protease and siderophores, curli expression, haemolysin, haemagglutinin, mannose resistant haemagglutinin, had high cell surface hydrophobicity, significant resistance to human serum, can tolerate high concentration of salt, bile and DNase production. Most of them produced enterotoxins of different molecular weight. The isolates pose significant serological cross-reactivity with other gram negative pathogens such as serotypes of Salmonella spp., Shigella boydii, Shigella sonnei, Shigella flexneri and Vibrio cholerae. They had significant tolerance to high temperature, low pH, dryness and osmotic stress. CONCLUSION: Special attention should be given in ensuring hygiene in production and post-processing to prevent contamination of food with such stress-tolerant virulent Cronobacter sakazakii.

  6. Stress-sensitive tissue regeneration in viscoelastic biomaterials subjected to modulated tensile strain.

    Science.gov (United States)

    Belfiore, Laurence A; Floren, Michael L; Paulino, Alexandre T; Belfiore, Carol J

    2011-09-01

    This research contribution addresses the mechanochemistry of intra-tissue mass transfer for nutrients, oxygen, growth factors, and other essential ingredients that anchorage-dependent cells require for successful proliferation on biocompatible surfaces. The unsteady state reaction-diffusion equation (i.e., modified diffusion equation) is solved according to the von Kármán-Pohlhausen integral method of boundary layer analysis when nutrient consumption and tissue regeneration are stimulated by harmonically imposed stress. The mass balance with diffusion and stress-sensitive kinetics represents a rare example where the Damköhler and Deborah numbers appear together in an effort to simulate the development of mass transfer boundary layers in porous viscoelastic biomaterials. The Boltzmann superposition integral is employed to calculate time-dependent strain in terms of the real and imaginary components of dynamic compliance for viscoelastic solids that transmit harmonic excitation to anchorage-dependent cells. Rates of nutrient consumption under stress-free conditions are described by third-order kinetics which include local mass densities of nutrients, oxygen, and attached cells that maintain dynamic equilibrium with active protein sites in the porous matrix. Thinner nutrient mass transfer boundary layers are stabilized at shorter dimensionless diffusion times when the stress-free intra-tissue Damköhler number increases above its initial-condition-sensitive critical value. The critical stress-sensitive intra-tissue Damköhler number, above which it is necessary to consider the effect of harmonic strain on nutrient consumption and tissue regeneration, is proportional to the Deborah number and corresponds to a larger fraction of the stress-free intra-tissue Damköhler number in rigid biomaterials. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Stress and strain provide positional and directional cues in development.

    Directory of Open Access Journals (Sweden)

    Behruz Bozorg

    2014-01-01

    Full Text Available The morphogenesis of organs necessarily involves mechanical interactions and changes in mechanical properties of a tissue. A long standing question is how such changes are directed on a cellular scale while being coordinated at a tissular scale. Growing evidence suggests that mechanical cues are participating in the control of growth and morphogenesis during development. We introduce a mechanical model that represents the deposition of cellulose fibers in primary plant walls. In the model both the degree of material anisotropy and the anisotropy direction are regulated by stress anisotropy. We show that the finite element shell model and the simpler triangular biquadratic springs approach provide equally adequate descriptions of cell mechanics in tissue pressure simulations of the epidermis. In a growing organ, where circumferentially organized fibers act as a main controller of longitudinal growth, we show that the fiber direction can be correlated with both the maximal stress direction and the direction orthogonal to the maximal strain direction. However, when dynamic updates of the fiber direction are introduced, the mechanical stress provides a robust directional cue for the circumferential organization of the fibers, whereas the orthogonal to maximal strain model leads to an unstable situation where the fibers reorient longitudinally. Our investigation of the more complex shape and growth patterns in the shoot apical meristem where new organs are initiated shows that a stress based feedback on fiber directions is capable of reproducing the main features of in vivo cellulose fiber directions, deformations and material properties in different regions of the shoot. In particular, we show that this purely mechanical model can create radially distinct regions such that cells expand slowly and isotropically in the central zone while cells at the periphery expand more quickly and in the radial direction, which is a well established growth pattern

  8. Stress and strain provide positional and directional cues in development.

    Science.gov (United States)

    Bozorg, Behruz; Krupinski, Pawel; Jönsson, Henrik

    2014-01-01

    The morphogenesis of organs necessarily involves mechanical interactions and changes in mechanical properties of a tissue. A long standing question is how such changes are directed on a cellular scale while being coordinated at a tissular scale. Growing evidence suggests that mechanical cues are participating in the control of growth and morphogenesis during development. We introduce a mechanical model that represents the deposition of cellulose fibers in primary plant walls. In the model both the degree of material anisotropy and the anisotropy direction are regulated by stress anisotropy. We show that the finite element shell model and the simpler triangular biquadratic springs approach provide equally adequate descriptions of cell mechanics in tissue pressure simulations of the epidermis. In a growing organ, where circumferentially organized fibers act as a main controller of longitudinal growth, we show that the fiber direction can be correlated with both the maximal stress direction and the direction orthogonal to the maximal strain direction. However, when dynamic updates of the fiber direction are introduced, the mechanical stress provides a robust directional cue for the circumferential organization of the fibers, whereas the orthogonal to maximal strain model leads to an unstable situation where the fibers reorient longitudinally. Our investigation of the more complex shape and growth patterns in the shoot apical meristem where new organs are initiated shows that a stress based feedback on fiber directions is capable of reproducing the main features of in vivo cellulose fiber directions, deformations and material properties in different regions of the shoot. In particular, we show that this purely mechanical model can create radially distinct regions such that cells expand slowly and isotropically in the central zone while cells at the periphery expand more quickly and in the radial direction, which is a well established growth pattern in the meristem.

  9. In Situ Investigation of the Evolution of Lattice Strain and Stresses in Austenite and Martensite During Quenching and Tempering of Steel

    DEFF Research Database (Denmark)

    Villa, M.; Niessen, F.; Somers, M. A. J.

    2018-01-01

    Energy dispersive synchrotron X-ray diffraction was applied to investigate in situ the evolution of lattice strains and stresses in austenite and martensite during quenching and tempering of a soft martensitic stainless steel. In one experiment, lattice strains in austenite and martensite were...... measured in situ in the direction perpendicular to the sample surface during an austenitization, quenching, and tempering cycle. In a second experiment, the sin2ψ method was applied in situ during the austenite-to-martensite transformation to distinguish between macro- and phase-specific micro......-stresses and to follow the evolution of these stresses during transformation. Martensite formation evokes compressive stress in austenite that is balanced by tensile stress in martensite. Tempering to 748 K (475 °C) leads to partial relaxation of these stresses. Additionally, data reveal that (elastic) lattice strain...

  10. Ventral tegmental area dopamine revisited: effects of acute and repeated stress

    Science.gov (United States)

    Holly, Elizabeth N.; Miczek, Klaus A.

    2015-01-01

    Aversive events rapidly and potently excite certain dopamine neurons in the ventral tegmental area (VTA), promoting phasic increases in the medial prefrontal cortex and nucleus accumbens. This is in apparent contradiction to a wealth of literature demonstrating that most VTA dopamine neurons are strongly activated by reward and reward-predictive cues while inhibited by aversive stimuli. How can these divergent processes both be mediated by VTA dopamine neurons? The answer may lie within the functional and anatomical heterogeneity of the VTA. We focus on VTA heterogeneity in anatomy, neurochemistry, electrophysiology, and afferent/efferent connectivity. Second, recent evidence for a critical role of VTA dopamine neurons in response to both acute and repeated stress will be discussed. Understanding which dopamine neurons are activated by stress, the neural mechanisms driving the activation, and where these neurons project will provide valuable insight into how stress can promote psychiatric disorders associated with the dopamine system, such as addiction and depression. PMID:26676983

  11. Extension of the M-D model for treating stress drops in salt

    International Nuclear Information System (INIS)

    Munson, D.E.; DeVries, K.L.; Fossum, A.F.; Callahan, G.D.

    1993-01-01

    Development of the multimechanism deformation (M-D) constitutive model for steady state creep, which incorporates irreversible workhardening and recovery transient strains, was motivated by the need to predict very long term closures in underground rooms for radioactive waste repositories in salt. The multimechanism deformation model for the creep deformation of salt is extended to treat the response of salt to imposed stress drops. Stress drop tests produce a very distinctive behavior where both reversible elastic strain and reversible time dependent strain occur. These transient strains are negative compared to the positive transient strains produced by the normal creep workhardening and recovery processes. A simple micromechanical evolutionary process is defined to account for the accumulation of these reversible strains, and their subsequent release with decreases in stress. A number of experimental stress drop tests for various stress drop magnitudes and temperatures are adequately simulated with the model

  12. SGH: stress or strain gradient hypothesis? Insights from an elevation gradient on the roof of the world.

    Science.gov (United States)

    Liancourt, Pierre; Le Bagousse-Pinguet, Yoann; Rixen, Christian; Dolezal, Jiri

    2017-07-01

    The stress gradient hypothesis (SGH), the view that competition prevails in undisturbed and productive environments, and shifts to facilitation in disturbed or stressful environments, has become a central paradigm in ecology. However, an alternative view proposes that the relationship between biotic interactions and environmental severity should be unimodal instead of monotonic. Possible causes of discrepancies between these two views were examined in the high elevation desert of the arid Trans-Himalayas. A putative nurse species and its associated plant community was surveyed over its entire elevation range, spanning from alpine to desert vegetation belts. The results were analysed at the community level (vegetation cover and species richness), considering the distinction between the intensity and the importance of biotic interactions. Interactions at the species level (pairwise interactions) were also considered, i.e. the variation of biotic interactions within the niche of a species, for which the abundance (species cover) and probability of occurrence (presence/absence) for the most widespread species along the gradient were distinguished. Overall, facilitation was infrequent in our study system; however, it was observed for the two most widespread species. At the community level, the intensity and importance of biotic interactions showed a unimodal pattern. The departure from the prediction of the SGH happened abruptly where the nurse species entered the desert vegetation belt at the lowest elevation. This abrupt shift was attributed to the turnover of species with contrasting tolerances. At the species level, however, facilitation increased consistently as the level of stress increases and individuals deviate from their optimum (increasing strain). While the stress gradient hypothesis was not supported along our elevation gradient at the community level, the strain gradient hypothesis, considering how species perceive the ambient level of stress and deviate

  13. Calculation of Debye-Scherrer diffraction patterns from highly stressed polycrystalline materials

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, M. J., E-mail: macdonm@umich.edu [Applied Physics Program, University of Michigan, Ann Arbor, Michigan 48109 (United States); SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Vorberger, J. [Helmholtz Zentrum Dresden-Rossendorf, 01328 Dresden (Germany); Gamboa, E. J.; Glenzer, S. H.; Fletcher, L. B. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Drake, R. P. [Climate and Space Sciences and Engineering, Applied Physics, and Physics, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2016-06-07

    Calculations of Debye-Scherrer diffraction patterns from polycrystalline materials have typically been done in the limit of small deviatoric stresses. Although these methods are well suited for experiments conducted near hydrostatic conditions, more robust models are required to diagnose the large strain anisotropies present in dynamic compression experiments. A method to predict Debye-Scherrer diffraction patterns for arbitrary strains has been presented in the Voigt (iso-strain) limit [Higginbotham, J. Appl. Phys. 115, 174906 (2014)]. Here, we present a method to calculate Debye-Scherrer diffraction patterns from highly stressed polycrystalline samples in the Reuss (iso-stress) limit. This analysis uses elastic constants to calculate lattice strains for all initial crystallite orientations, enabling elastic anisotropy and sample texture effects to be modeled directly. The effects of probing geometry, deviatoric stresses, and sample texture are demonstrated and compared to Voigt limit predictions. An example of shock-compressed polycrystalline diamond is presented to illustrate how this model can be applied and demonstrates the importance of including material strength when interpreting diffraction in dynamic compression experiments.

  14. Stress Measurement around a Circular Role in a Cantilever Beam under Bending Moment Using Strain Gage and Reflective Photoelasticity

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Tae Hyun; Park, Tae Geun; Yang, Min Bok [Kunsan National University, Gunsan (Korea, Republic of)

    2006-10-15

    It is necessary to study on the stress concentration experimentally, which is the main reason to avoid mechanical dilapidation and failure, when designing a mechanical structure. Stress concentration factor of a specimen of cantilever beam with a circular hole in the center was measured using both strain gage and photoelastic methods in this paper. In strain-gage measurement, three strain gages along the line near a hole of the specimen were installed and maximum strain was extrapolated from three measurements. In photoelastic measurement, two methods were employed. First, the Babinet-Soleil compensation method was used to measure the maximum strain. Secondly, photoelastic 4-step phase shilling method was applied to observe the strain distribution around the hole. Measurements obtained by different experiments were comparable within the range of experimental error

  15. Stress Measurement around a Circular Role in a Cantilever Beam under Bending Moment Using Strain Gage and Reflective Photoelasticity

    International Nuclear Information System (INIS)

    Baek, Tae Hyun; Park, Tae Geun; Yang, Min Bok

    2006-01-01

    It is necessary to study on the stress concentration experimentally, which is the main reason to avoid mechanical dilapidation and failure, when designing a mechanical structure. Stress concentration factor of a specimen of cantilever beam with a circular hole in the center was measured using both strain gage and photoelastic methods in this paper. In strain-gage measurement, three strain gages along the line near a hole of the specimen were installed and maximum strain was extrapolated from three measurements. In photoelastic measurement, two methods were employed. First, the Babinet-Soleil compensation method was used to measure the maximum strain. Secondly, photoelastic 4-step phase shilling method was applied to observe the strain distribution around the hole. Measurements obtained by different experiments were comparable within the range of experimental error

  16. Determine variation of poisson ratios and thermal creep stresses and strain rates in an isotropic disc

    Directory of Open Access Journals (Sweden)

    Gupta Nishi

    2016-01-01

    Full Text Available Seth's transition theory is applied to the problem of thermal creep transition stresses and strain rates in a thin rotating disc with shaft having variable density by finite deformation. Neither the yield criterion nor the associated flow rule is assumed here. The results obtained here are applicable to compressible materials. If the additional condition of incompressibility is imposed, then the expression for stresses corresponds to those arising from Tresca yield condition. Thermal effect decreased value of radial stress at the internal surface of the rotating isotropic disc made of compressible material as well as incompressible material and this value of radial stress further much increases with the increase in angular speed. With the introduction of thermal effects, the maximum value of strain rates further increases at the internal surface for compressible materials as compare to incompressible material.

  17. Estimation of lattice strain in nanocrystalline RuO2 by Williamson-Hall and size-strain plot methods

    Science.gov (United States)

    Sivakami, R.; Dhanuskodi, S.; Karvembu, R.

    2016-01-01

    RuO2 nanoparticles (RuO2 NPs) have been successfully synthesized by the hydrothermal method. Structure and the particle size have been determined by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and transmission electron microscopy (TEM). UV-Vis spectra reveal that the optical band gap of RuO2 nanoparticles is red shifted from 3.95 to 3.55 eV. BET measurements show a high specific surface area (SSA) of 118-133 m2/g and pore diameter (10-25 nm) has been estimated by Barret-Joyner-Halenda (BJH) method. The crystallite size and lattice strain in the samples have been investigated by Williamson-Hall (W-H) analysis assuming uniform deformation, deformation stress and deformation energy density, and the size-strain plot method. All other relevant physical parameters including stress, strain and energy density have been calculated. The average crystallite size and the lattice strain evaluated from XRD measurements are in good agreement with the results of TEM.

  18. Carbon Nanotube/Polymer Nanocomposites Flexible Stress and Strain Sensors

    Science.gov (United States)

    Kang, Jin Ho; Sauti, Godfrey; Park, Cheol; Scholl, Jonathan A.; Lowther, Sharon E.; Harrison, Joycelyn S.

    2008-01-01

    Conformable stress and strain sensors are required for monitoring the integrity of airframe structures as well as for sensing the mechanical stimuli in prosthetic arms. For this purpose, we have developed a series of piezoresistive single-wall carbon nanotube (SWCNT)/polymer nanocomposites. The electromechanical coupling of pressure with resistance changes in these nanocomposites is exceptionally greater than that of metallic piezoresistive materials. In fact, the piezoresistive stress coefficient (pi) of a SWCNT/polymer nanocomposite is approximately two orders of magnitude higher than that of a typical metallic piezoresistive. The piezoresistive stress coefficient is a function of the nanotube concentration wherein the maximum value occurs at a concentration just above the percolation threshold concentration (phi approx. 0.05 %). This response appears to originate from a change in intrinsic resistivity under compression/tension. A systematic study of the effect of the modulus of the polymer matrix on piezoresistivity allowed us to make flexible and conformable sensors for biomedical applications. The prototype haptic sensors using these nanocomposites are demonstrated. The piezocapacitive properties of SWCNT/polymer are also characterized by monitoring the capacitance change under pressure.

  19. Prediction of crack propagation and arrest in X100 natural gas transmission pipelines with a strain rate dependent damage model (SRDD). Part 2: Large scale pipe models with gas depressurisation

    International Nuclear Information System (INIS)

    Oikonomidis, F.; Shterenlikht, A.; Truman, C.E.

    2014-01-01

    Part 1 of this paper described a specimen for the measurement of high strain rate flow and fracture properties of pipe material and for tuning a strain rate dependent damage model (SRDD). In part 2 the tuned SRDD model is used for the simulation of axial crack propagation and arrest in X100 natural gas pipelines. Linear pressure drop model was adopted behind the crack tip, and an exponential gas depressurisation model was used ahead of the crack tip. The model correctly predicted the crack initiation (burst) pressure, the crack speed and the crack arrest length. Strain rates between 1000 s −1 and 3000 s −1 immediately ahead of the crack tip are predicted, giving a strong indication that a strain rate material model is required for the structural integrity assessment of the natural gas pipelines. The models predict the stress triaxiality of about 0.65 for at least 1 m ahead of the crack tip, gradually dropping to 0.5 at distances of about 5–7 m ahead of the crack tip. Finally, the models predicted a linear drop in crack tip opening angle (CTOA) from about 11−12° at the onset of crack propagation down to 7−8° at crack arrest. Only the lower of these values agree with those reported in the literature for quasi-static measurements. This discrepancy might indicate substantial strain rate dependence in CTOA. - Highlights: • Finite element simulations of 3 burst tests of X100 pipes are detailed. • Strain rate dependent damage model, tuned on small scale X100 samples, was used. • The models correctly predict burst pressure, crack speed and crack arrest length. • The model predicts a crack length dependent critical CTOA. • The strain rate dependent damage model is verified as mesh independent

  20. Observations of hydrotectonic stress/strain events at a basement high at the Nicoya outer rise

    Science.gov (United States)

    Tryon, M. D.; Brown, K. M.

    2005-12-01

    There is substantial and growing evidence from heat flow and coring investigations that the oceanic plate off Costa Rica is highly hydrologically active and that this activity is responsible for one of the most anomalously cold thermal environments encountered in the oceanic environment. Recent work by Fisher, et al. has identified limited regions above certain topographic highs with extremely high heat flows. Pore water profiles from cores above these thinly sedimented basement highs suggest upward flow on the order of ~1 cm/yr. These highs may be the principal regions of out-flow from the basement in this region and, thus, can potentially be used to constrain the general level of hydrologic activity. The nine Chemical and Aqueous Transport (CAT) meters we deployed at one of the highest heatflow sites provide a temporal record of both in-flow and out-flow of aqueous fluids at rates as low as 0.1 mm/yr. Our objective was to provide a direct measurement of long term flow rates to address the following questions: (1) What are the characteristic fluid fluxes at basement highs of the low heat flow region of the northern Costa Rican incoming plate, and (2) is this flow temporally variable? The results of the instrument deployments agree quite closely in general with the coring results in that the background rates are on the order of 1 cm/yr or less. There is, however, considerable detail in the temporal records which suggest small scale tectonic stress transients causing temporary increases in flow rate. While this is certainly not an area of major tectonic activity, the site is located at the top of the outer rise where one would expect bending-related stress and fault reactivation to occur. The CAT meters are capable of detecting minute strain events in the underlying sediments and therefore may be detecting small localized strain events. Two periods of increased flow lasting a few weeks each occur during the 5 month deployment and are indicated on all of the

  1. Metabolic Modeling of Common Escherichia coli Strains in Human Gut Microbiome

    Directory of Open Access Journals (Sweden)

    Yue-Dong Gao

    2014-01-01

    Full Text Available The recent high-throughput sequencing has enabled the composition of Escherichia coli strains in the human microbial community to be profiled en masse. However, there are two challenges to address: (1 exploring the genetic differences between E. coli strains in human gut and (2 dynamic responses of E. coli to diverse stress conditions. As a result, we investigated the E. coli strains in human gut microbiome using deep sequencing data and reconstructed genome-wide metabolic networks for the three most common E. coli strains, including E. coli HS, UTI89, and CFT073. The metabolic models show obvious strain-specific characteristics, both in network contents and in behaviors. We predicted optimal biomass production for three models on four different carbon sources (acetate, ethanol, glucose, and succinate and found that these stress-associated genes were involved in host-microbial interactions and increased in human obesity. Besides, it shows that the growth rates are similar among the models, but the flux distributions are different, even in E. coli core reactions. The correlations between human diabetes-associated metabolic reactions in the E. coli models were also predicted. The study provides a systems perspective on E. coli strains in human gut microbiome and will be helpful in integrating diverse data sources in the following study.

  2. Accelerating early anti-tuberculosis drug discovery by creating mycobacterial indicator strains that predict mode of action

    KAUST Repository

    Boot, Maikel

    2018-04-13

    Due to the rise of drug resistant forms of tuberculosis there is an urgent need for novel antibiotics to effectively combat these cases and shorten treatment regimens. Recently, drug screens using whole cell analyses have been shown to be successful. However, current high-throughput screens focus mostly on stricto sensu life-death screening that give little qualitative information. In doing so, promising compound scaffolds or non-optimized compounds that fail to reach inhibitory concentrations are missed. To accelerate early TB drug discovery, we performed RNA sequencing on Mycobacterium tuberculosis and Mycobacterium marinum to map the stress responses that follow upon exposure to sub-inhibitory concentrations of antibiotics with known targets: ciprofloxacin, ethambutol, isoniazid, streptomycin and rifampicin. The resulting dataset comprises the first overview of transcriptional stress responses of mycobacteria to different antibiotics. We show that antibiotics can be distinguished based on their specific transcriptional stress fingerprint. Notably, this fingerprint was more distinctive in M. marinum. We decided to use this to our advantage and continue with this model organism. A selection of diverse antibiotic stress genes was used to construct stress reporters. In total, three functional reporters were constructed to respond to DNA damage, cell wall damage and ribosomal inhibition. Subsequently, these reporter strains were used to screen a small anti-TB compound library to predict the mode of action. In doing so, we could identify the putative mode of action for three novel compounds, which confirms our approach.

  3. Neutron-diffraction measurement of the evolution of strain for non-uniform plastic deformation

    CERN Document Server

    Rogge, R B; Boyce, D

    2002-01-01

    Neutrons are particularly adept for the validation of modeling predictions of stress and strain. In recent years, there has been a significant effort to model the evolution of both the macroscopic stresses and the intergranular stress during plastic deformation. These have had broad implications with regard to understanding the evolution of residual stress and to diffraction-based measurements of strain. Generally the modeling and associated measurements have been performed for simple uniaxial tension, leaving questions with regard to plastic deformation under multi-axial stress and non-uniform stress. Extensive measurements of the strain profile across a plastic hinge for each of a series of loading and unloading cycles to progressively higher degrees of plastic deformation are presented. These measurements are used to assess multiple-length-scale finite-element modeling (FEM) of the plastic hinge, in which the elements will range in size from single crystallites (as used in successful simulations of uniaxia...

  4. Neutron-diffraction measurement of the evolution of strain for non-uniform plastic deformation

    International Nuclear Information System (INIS)

    Rogge, R.B.; Dawson, P.R.; Boyce, D.

    2002-01-01

    Neutrons are particularly adept for the validation of modeling predictions of stress and strain. In recent years, there has been a significant effort to model the evolution of both the macroscopic stresses and the intergranular stress during plastic deformation. These have had broad implications with regard to understanding the evolution of residual stress and to diffraction-based measurements of strain. Generally the modeling and associated measurements have been performed for simple uniaxial tension, leaving questions with regard to plastic deformation under multi-axial stress and non-uniform stress. Extensive measurements of the strain profile across a plastic hinge for each of a series of loading and unloading cycles to progressively higher degrees of plastic deformation are presented. These measurements are used to assess multiple-length-scale finite-element modeling (FEM) of the plastic hinge, in which the elements will range in size from single crystallites (as used in successful simulations of uniaxial tension) to macroscopic elements (as typically used in FEM simulations). (orig.)

  5. True stress control asymmetric cyclic plastic behavior in SA333 C-Mn steel

    International Nuclear Information System (INIS)

    Paul, Surajit Kumar; Sivaprasad, S.; Dhar, S.; Tarafder, S.

    2010-01-01

    Asymmetric cyclic loading in the plastic region can leads to progressive accumulation of permanent strain. True stress controlled uniaxial asymmetric cycling on SA333 steel is conducted at various combinations of mean stress and stress amplitude in laboratory environment. It is investigated that fatigue life increases in the presence of mean stress. Plastic strain amplitude and hysteresis loop area are found to decrease with increasing mean stress. A huge difference of life and ratcheting strain accumulation is found in engineering and true stress controlled tests.

  6. Stress in junior enlisted air force women with and without children.

    Science.gov (United States)

    Hopkins-Chadwick, Denise L; Ryan-Wenger, Nancy

    2009-04-01

    The objective was to determine if there are differences between young enlisted military women with and without preschool children on role strain, stress, health, and military career aspiration and to identify the best predictors of these variables. The study used a cross-sectional descriptive design of 50 junior Air Force women with preschool children and 50 women without children. There were no differences between women with and without children in role strain, stress, health, and military career aspiration. In all women, higher stress was moderately predictive of higher role strain (39.9% of variance explained) but a poor predictor of career aspiration (3.8% of variance explained). Lower mental health scores were predicted by high stress symptoms (27.9% of variance explained), low military career aspiration (4.1% of variance explained), high role strain (4.0% of variance explained), and being non-White (3.9% of variance explained). Aspiration for a military career was predicted by high perceived availability of military resources (16.8% of variance explained), low family of origin socioeconomic status (4.5% of variance explained), and better mental health status (3.3% of variance explained). Contrary to theoretical expectations, in this sample, motherhood was not a significant variable. Increased role strain, stress, and decreased health as well as decreased military career aspiration were evident in both groups and may have more to do with individual coping skills and other unmeasured resources. More research is needed to determine what nursing interventions are needed to best support both groups of women.

  7. Different response to acetic acid stress in Saccharomyces cerevisiae wild-type and l-ascorbic acid-producing strains.

    Science.gov (United States)

    Martani, Francesca; Fossati, Tiziana; Posteri, Riccardo; Signori, Lorenzo; Porro, Danilo; Branduardi, Paola

    2013-09-01

    Biotechnological processes are of increasing significance for industrial production of fine and bulk chemicals, including biofuels. Unfortunately, under operative conditions microorganisms meet multiple stresses, such as non-optimal pH, temperature, oxygenation and osmotic stress. Moreover, they have to face inhibitory compounds released during the pretreatment of lignocellulosic biomasses, which constitute the preferential substrate for second-generation processes. Inhibitors include furan derivatives, phenolic compounds and weak organic acids, among which acetic acid is one of the most abundant and detrimental for cells. They impair cellular metabolism and growth, reducing the productivity of the process: therefore, the development of robust cell factories with improved production rates and resistance is of crucial importance. Here we show that a yeast strain engineered to endogenously produce vitamin C exhibits an increased tolerance compared to the parental strain when exposed to acetic acid at moderately toxic concentrations, measured as viability on plates. Starting from this evidence, we investigated more deeply: (a) the nature and levels of reactive oxygen species (ROS); (b) the activation of enzymes that act directly as detoxifiers of reactive oxygen species, such as superoxide dismutase (SOD) and catalase, in parental and engineered strains during acetic acid stress. The data indicate that the engineered strain can better recover from stress by limiting ROS accumulation, independently from SOD activation. The engineered yeast can be proposed as a model for further investigating direct and indirect mechanism(s) by which an antioxidant can rescue cells from organic acid damage; moreover, these studies will possibly provide additional targets for further strain improvements. Copyright © 2013 John Wiley & Sons, Ltd.

  8. Influence of microscopic strain heterogeneity on the formability of martensitic stainless steel

    Science.gov (United States)

    Bettanini, Alvise Miotti; Delannay, Laurent; Jacques, Pascal J.; Pardoen, Thomas; Badinier, Guillaume; Mithieux, Jean-Denis

    2017-10-01

    Both finite element modeling and mean field (Mori-Tanaka) modeling are used to predict the strain partitioning in the martensite-ferrite microstructure of an AISI 410 martensitic stainless steel. Numerical predictions reproduce experimental trends according to which macroscopic strength is increased when the dissolution of carbides leads to carbon enrichment of martensite. However, the increased strength contrast of ferrite and martensite favours strain localization and high stress triaxiality in ferrite, which in turn promotes ductile damage development.

  9. Tensile Stress-Strain Results for 304L and 316L Stainless-Steel Plate at Temperature

    International Nuclear Information System (INIS)

    R. K. Blandford; D. K. Morton; S. D. Snow; T. E. Rahl

    2007-01-01

    The Idaho National Laboratory (INL) is conducting moderate strain rate (10 to 200 per second) research on stainless steel materials in support of the Department of Energy's (DOE) National Spent Nuclear Fuel Program (NSNFP). For this research, strain rate effects are characterized by comparison to quasi-static tensile test results. Considerable tensile testing has been conducted resulting in the generation of a large amount of basic material data expressed as engineering and true stress-strain curves. The purpose of this paper is to present the results of quasi-static tensile testing of 304/304L and 316/316L stainless steels in order to add to the existing data pool for these materials and make the data more readily available to other researchers, engineers, and interested parties. Standard tensile testing of round specimens in accordance with ASTM procedure A 370-03a were conducted on 304L and 316L stainless-steel plate materials at temperatures ranging from -20 F to 600 F. Two plate thicknesses, eight material heats, and both base and weld metal were tested. Material yield strength, Young's modulus, ultimate strength, ultimate strain, failure strength and failure strain were determined, engineering and true stress-strain curves to failure were developed, and comparisons to ASME Code minimums were made. The procedures used during testing and the typical results obtained are described in this paper

  10. Prediction of strain values in reinforcements and concrete of a RC frame using neural networks

    Science.gov (United States)

    Vafaei, Mohammadreza; Alih, Sophia C.; Shad, Hossein; Falah, Ali; Halim, Nur Hajarul Falahi Abdul

    2018-03-01

    The level of strain in structural elements is an important indicator for the presence of damage and its intensity. Considering this fact, often structural health monitoring systems employ strain gauges to measure strains in critical elements. However, because of their sensitivity to the magnetic fields, inadequate long-term durability especially in harsh environments, difficulties in installation on existing structures, and maintenance cost, installation of strain gauges is not always possible for all structural components. Therefore, a reliable method that can accurately estimate strain values in critical structural elements is necessary for damage identification. In this study, a full-scale test was conducted on a planar RC frame to investigate the capability of neural networks for predicting the strain values. Two neural networks each of which having a single hidden layer was trained to relate the measured rotations and vertical displacements of the frame to the strain values measured at different locations of the frame. Results of trained neural networks indicated that they accurately estimated the strain values both in reinforcements and concrete. In addition, the trained neural networks were capable of predicting strains for the unseen input data set.

  11. Summary report - development of laboratory tests and the stress- strain behaviour of Olkiluoto mica gneiss

    Energy Technology Data Exchange (ETDEWEB)

    Hakala, M.; Heikkilae, E. [Helsinki Univ. of Technology, Espoo (Finland). Lab. of Rock Engineering

    1997-05-01

    This work summarizes the project aimed at developing and qualifying a suitable combination of laboratory tests to establish a statistically reliable stress-strain behaviour of the main rock types at Posiva Oy`s detailed investigation sites for disposal of spent nuclear fuel. The work includes literature study of stress-strain behaviour of brittle rock, development and qualification of laboratory tests, suggested test procedures and interpretation methods and finally testing of Olkiluoto mica gneiss. The Olkiluoto study includes over 130 loading tests. Besides the commonly used laboratory tests, direct tensile tests, damage controlled tests and acoustic emission measurements were also carried out. (orig.) (54 refs.).

  12. Settlement Prediction of Footings Using VS

    Directory of Open Access Journals (Sweden)

    Hyung Ik CHO

    2017-10-01

    Full Text Available The shear wave velocity (VS is a key parameter for estimating the deformation characteristics of soil. In order to predict the settlement of shallow footings in granular soil, the VS and the concept of Schmertmann’s framework were adopted. The VS was utilized to represent soil stiffness instead of cone tip resistance (qc because the VS can be directly related to the small-strain shear modulus. By combining the VS measured in the field and the modulus reduction curve measured in the laboratory, the deformation characteristics of soil can be reliably estimated. Vertical stress increments were determined using two different profiles of the strain influence factor (Iz proposed in Schmertmann’s method and that calculated from the theory of elasticity. The corresponding modulus variation was determined by considering the stress level and strain at each depth. This state-dependent stress-strain relationship was utilized to calculate the settlement of footings based on the theory of elasticity. To verify the developed method, geotechnical centrifuge tests were carried out. The VS profiles were measured before each loading test, and the load-settlement curves were obtained during the tests. Comparisons between the measured and estimated load-settlement curves showed that the developed method adequately predicts the settlement of footings, especially for over-consolidated ground conditions.

  13. Modification of Flow Stress Curves and Constitutive Equations During Hot Compression Deformation of 5083 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    FU Ping

    2017-08-01

    Full Text Available The flow stress behavior of 5083 aluminum alloy was investigated under hot compression deformation at 523-723K,strain rates of 0.01-10s-1 and true strains of 0-0.7 with Gleeble-3800 thermal simulator. Based on the heat transfer effect on alloy deformation heat effect, the flow stress curves were corrected. The results show that influence of heat conduction can not be neglected and becomes more obvious with the increase of true strain. The corrected flow stress has little influence on the peak stress, but the steady flow stress softening trends to be diminished to some degree. The flow stress can be predicted by the Zener-Hollomon parameters in the constitutive equation. The corrected measured value exhibits a good agreement with the flow stress predicted by the constitutive equation, and the average relative error is only 5.21%.

  14. Internal stresses in steel plate generated by shape memory alloy inserts

    International Nuclear Information System (INIS)

    Malard, B.; Pilch, J.; Sittner, P.; Davydov, V.; Sedlák, P.; Konstantinidis, K.; Hughes, D.J.

    2012-01-01

    Graphical abstract: Display Omitted Highlights: ► Thermoresponsive internal stresses introduced into steel by embedding SMA inclusions. ► Neutron strain scanning on steel plate coupons with NiTi inserts at 21 °C and 130 °C. ► Internal stress field in steel evaluated directly from strains and by FE simulation. ► Internal stress generation by SMA insert resistant to thermal and mechanical fatigue. - Abstract: Neutron strain scanning was employed to investigate the internal stress fields in steel plate coupons with embedded prestrained superelastic NiTi shape memory alloy inserts. Strain fields in steel were evaluated at T = 21 °C and 130 °C on virgin coupons as well as on mechanically and thermally fatigued coupons. Internal stress fields were evaluated by direct calculation of principal stress components from the experimentally measured lattice strains as well as by employing an inverse finite element modeling approach. It is shown that if the NiTi inserts are embedded into the elastic steel matrix following a carefully designed technological procedure, the internal stress fields vary with temperature in a reproducible and predictable way. It is estimated that this mechanism of internal stress generation can be safely applied in the temperature range from −20 °C to 150 °C and is relatively resistant to thermal and mechanical fatigue. The predictability and fatigue endurance of the mechanism are of essential importance for the development of future smart metal matrix composites or smart structures with embedded shape memory alloy components.

  15. Fluorescent differential display analysis of Lactobacillus sakei strains under stress conditions.

    Science.gov (United States)

    Bonomo, Maria Grazia; Sico, Maria Anna; Grieco, Simona; Salzano, Giovanni

    2010-07-01

    Lactobacillus (Lb.) sakei is widely used as starter in the production process of Italian fermented sausages and its growth and survival are affected by various factors such as temperature, pH and salt concentration. We studied the behaviour of Lb. sakei strains under various growth conditions relative to acid, osmotic and heat stress treatments by a novel fluorescent differential display (FDD) technique. This study obtained the development and the optimization of a technique that allows the identification of genome expression changes, associated with differential microbial behaviour under different stress conditions with a better stress response definition and a better discrimination of starter cultures. DNA sequence information from the FDD products provided an important tool to assess and observe the response to a variety of environmental stimuli and the adaptation to bacterial stress. Our work provided an innovative FDD method, with a high level of reproducibility and quality for studying and probing the knowledge of the relation between differential genome expression and different stresses tolerance. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  16. Financial Impact of Colorectal Cancer and Its Consequences: Associations Between Cancer-Related Financial Stress and Strain and Health-Related Quality of Life.

    Science.gov (United States)

    Sharp, Linda; O'Leary, Eamonn; O'Ceilleachair, Alan; Skally, Mairead; Hanly, Paul

    2018-01-01

    The financial impact and consequences of cancer on the lives of survivors remain poorly understood. This is especially true for colorectal cancer. We investigated objective cancer-related financial stress, subjective cancer-related financial strain, and their association with health-related quality of life in colorectal cancer survivors. This was a cross-sectional postal survey. The study was conducted in Ireland, which has a mixed public-private healthcare system. Colorectal cancer survivors, diagnosed 6 to 37 months prior, were identified from the population-based National Cancer Registry. Cancer-related financial stress was assessed as impact of cancer on household ability to make ends meet and cancer-related financial strain by feelings about household financial situation since cancer diagnosis. Health-related quality of life was based on European Organisation for Research and Treatment of Cancer QLQ-C30 global health status. Logistic regression was used to identify associations between financial stress and strain and low health-related quality of life (lowest quartile, score ≤50). A total of 493 survivors participated. Overall, 41% reported cancer-related financial stress and 39% cancer-related financial strain; 32% reported both financial stress and financial strain. After adjustment for sociodemographic and clinical variables, the odds of low health-related quality of life were significantly higher in those who reported cancer-related financial stress postdiagnosis compared with those who reported no change in financial stress postcancer (OR = 2.54 (95% CI, 1.62-3.99)). The odds of low health-related quality of life were also significantly higher in those with worse financial strain postdiagnosis (OR =1.73 (95% CI, 1.09-2.72)). The OR for those with both cancer-related financial stress and financial strain was 2.59 (95% CI, 1.59-4.22). Survey responders were younger, on average, than nonresponders. Responders and nonresponders may have differed in cancer

  17. Comparison of heat strain recovery in different anti-heat stress clothing ensembles after work to exhaustion.

    Science.gov (United States)

    Zhao, Yijie; Yi, Wen; Chan, Albert P C; Chan, Daniel W M

    2017-10-01

    A hot environment combined with physically demanding tasks can subject workers to a higher risk of heat stress. A series of regulations and guidelines have been proposed to design appropriate anti-heat stress work uniform to reduce body heat strain. The present study aimed to examine heat strain recovery in different anti-heat stress clothing ensembles after work to exhaustion in the heat. 10 healthy males performed intermittent treadmill running/walking to exhaustion, followed by 30min passive recovery sitting in a climatic chamber, which simulated the hot and humid outdoor environment (34°C temperature, 60% relative humidity, 0.3m/s air velocity, and 450W/m 2 solar radiation). The participants took part in five wear trials in counter-balanced order, including Sportswear, CIC Uniform, NEW Uniform, ICEBANK Cooling Vest, and NEW Cooling Vest, which have different levels of cooling capacity. Core temperature, skin temperature, heart rate, sweat loss, ratings of perceived exertion, and thermal sensations were measured throughout the entire heat exposure period. Physiological heat strain indices, including the physiological strain index (PhSI) and the perceptual strain index (PeSI), were used as a yardstick to quantify and compare the rate of recovery. Significantly lower physiological strain was observed in the newly developed NEW Uniform and NEW Cooling Vest groups compared with the commonly worn CIC Uniform group during recovery. At the end of the recovery period, participants in NEW Cooling Vest achieved the highest recovery (42.18% in PhSI and 81.08% in PeSI), followed by ICEBANK Cooling Vest, Sportswear, NEW Uniform, and CIC Uniform. The cooling capacity of anti-heat stress clothing ensembles and the recovery time significantly affect the rate of recovery in PhSI and PeSI, which may benefit the industry by formulating the appropriate work-rest schedule by considering the clothing effect. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Response of rocks to large stresses

    International Nuclear Information System (INIS)

    Schock, R.N.

    1976-01-01

    To predict the dimensions and characteristics of impact- and explosion-induced craters, one must know the equation of state of the rocks in which the crater is formed. Recent experimental data shed light upon inelastic processes that influence the stress/strain behavior of rocks. We examine these data with a view to developing models that could be used in predicting cratering phenomena. New data is presented on the volume behavior of two dissimilar rocks subjected to tensile stresses

  19. Concentration of stresses and strains in a notched cyclinder of a viscoplastic material under harmonic loading

    Science.gov (United States)

    Zhuk, Ya A.; Senchenkov, I. K.

    1999-02-01

    Certain aspects of the correct definitions of stress and strain concentration factors for elastic-viscoplastic solids under cyclic loading are discussed. Problems concerning the harmonic kinematic excitation of cylindrical specimens with a lateral V-notch are examined. The behavior of the material of a cylinder is modeled using generalized flow theory. An approximate model based on the concept of complex moduli is used for comparison. Invariant characteristics such as stress and strain intensities and maximum principal stress and strain are chosen as constitutive quantities for concentration-factor definitions. The behavior of time-varying factors is investigated. Concentration factors calculated in terms of the amplitudes of the constitutive quantities are used as representative characteristics over the cycle of vibration. The dependences of the concentration factors on the loads are also studied. The accuracy of Nueber's and Birger's formulas is evaluated. The solution of the problem in the approximate formulation agrees with its solution in the exact formulation. The possibilities of the approximate model for estimating low-cycle fatigue are evaluated.

  20. Microstructure and strain-stress analysis of the dynamic strain aging in inconel 625 at high temperature

    Science.gov (United States)

    Maj, P.; Zdunek, J.; Mizera, J.; Kurzydlowski, K. J.; Sakowicz, B.; Kaminski, M.

    2017-01-01

    Serrated flow is a result of unstable plastic flow, which occurs during tensile and compression tests on some dilute alloys. This phenomenon is referred as the Portevin Le-Chatelier effect (PLC effect). The aim of this research was to investigate and analyze this phenomenon in Inconel 625 solution strengthened superalloy. The tested material was subjected to tensile tests carried out within the temperature range 200-700 °C, with three different strain rates: 0.002 1/s, 0.01/s, and 0.05 1/s and additional compression tests with high deformation speeds of 0.1, 1, and 10 1/s. The tensile strain curves were analyzed in terms of intensity and the observed patterns of serrations Using a modified stress drop method proposed by the authors, the activation energy was calculated with the assumption that the stress drops' distribution is a direct representation of an average solute atom's interaction with dislocations. Subsequently, two models, the standard vacancy diffusion Bilby-Cottrell model and the realistic cross-core diffusion mechanism proposed by Zhang and Curtin, were compared. The results obtained show that the second one agrees with the experimental data. Additional microstructure analysis was performed to identify microstructure elements that may be responsible for the PLC effect. Based on the results, the relationship between the intensity of the phenomenon and the conditions of the tests were determined.

  1. Simulation of tensile stress-strain properties of irradiated type 316 SS by heavily cold-worked material

    International Nuclear Information System (INIS)

    Muto, Yasushi; Jitsukawa, Shiro; Hishinuma, Akimichi

    1995-07-01

    Type 316 stainless steel is one of the most promising candidate materials to be used for the structural parts of plasma facing components in the nuclear fusion reactor. The neutron irradiation make the material brittle and reduces its uniform elongation to almost zero at heavy doses. In order to apply such a material of reduced ductility to structural components, the structural integrity should be examined and assured by the fracture mechanics. The procedure requires a formulated stress-strain relationship. However, the available irradiated tensile test data are very limited at present, so that the cold-worked material was used as a simulated material in this study. Property changes of 316 SS, that is, a reduction of uniform elongation and an enhancement of yield stress are seemingly very similar for both the irradiated 316 SS and the cold-worked one. The specimens made of annealed 316 SS, 20% (or 15%) cold worked one and 40% cold worked one were prepared. After the formulation of stress strain behavior, the equation for the cold-worked 316 SS was fitted to the data on irradiated material under the assumption that the yield stress is the same for both materials. In addition, the upper limit for the plastic strain was introduced using the data on the irradiated material. (author)

  2. Heart rate during conflicts predicts post-conflict stress-related behavior in greylag geese.

    Directory of Open Access Journals (Sweden)

    Claudia A F Wascher

    Full Text Available BACKGROUND: Social stressors are known to be among the most potent stressors in group-living animals. This is not only manifested in individual physiology (heart rate, glucocorticoids, but also in how individuals behave directly after a conflict. Certain 'stress-related behaviors' such as autopreening, body shaking, scratching and vigilance have been suggested to indicate an individual's emotional state. Such behaviors may also alleviate stress, but the behavioral context and physiological basis of those behaviors is still poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: We recorded beat-to-beat heart rates (HR of 22 greylag geese in response to agonistic encounters using fully implanted sensor-transmitter packages. Additionally, for 143 major events we analyzed the behavior shown by our focal animals in the first two minutes after an interaction. Our results show that the HR during encounters and characteristics of the interaction predicted the frequency and duration of behaviors shown after a conflict. CONCLUSIONS/SIGNIFICANCE: To our knowledge this is the first study to quantify the physiological and behavioral responses to single agonistic encounters and to link this to post conflict behavior. Our results demonstrate that 'stress-related behaviors' are flexibly modulated by the characteristics of the preceding aggressive interaction and reflect the individual's emotional strain, which is linked to autonomic arousal. We found no support for the stress-alleviating hypothesis, but we propose that stress-related behaviors may play a role in communication with other group members, particularly with pair-partners.

  3. Stress and strain effects on the properties of composite superconductors

    International Nuclear Information System (INIS)

    Welch, D.O.

    1982-01-01

    Practical superconductors for use in the production of high magnetic fields are generally in the form of composites of filaments of superconducting material embedded in a matrix of normally conducting material. Lorentz forces which arise during magnet operation are examples of sources of external stress, while internal stresses can arise during the fabrication of the composite superconductor, primarily due to differential thermal contraction between different materials in the composite. The properties of superconducting compounds are often sensitive functions of the elastic strain state in the compound; consequently there is a strong coupling between the mechanical and electrical properties of composite superconductors. The basic features of this phenomenon will be illustrated by a discussion of the properties of simple composite superconductors

  4. Numerical Prediction of Springback Shape of Severely Bent Sheet Metal

    International Nuclear Information System (INIS)

    Iwata, Noritoshi; Murata, Atsunobu; Yogo, Yasuhiro; Tsutamori, Hideo; Niihara, Masatomo; Ishikura, Hiroshi; Umezu, Yasuyoshi

    2007-01-01

    In the sheet metal forming simulation, the shell element widely used is assumed as a plane stress state based on the Mindlin-Reissner theory. Numerical prediction with the conventional shell element is not accurate when the bending radius is small compared to the sheet thickness. The main reason is because the strain and stress formulation of the conventional shell element does not fit the actual phenomenon. In order to predict precisely the springback of a bent sheet with a severe bend, a measurement method for through-thickness strain has been proposed. The strain was formulated based on measurement results and calculation results from solid element. Through-thickness stress distribution was formulated based on the equilibrium. The proposed shell element based on the formulations was newly introduced into the FEM code. The accuracy of this method's prediction of the springback shape of two bent processes has been confirmed. As a result, it was found that the springback shape even in severe bending can be predicted with high accuracy. Moreover, the calculation time in the proposed shell element is about twice that in the conventional shell element, and has been shortened to about 1/20 compared to a solid element

  5. Ability to Discriminate Between Sustainable and Unsustainable Heat Stress Exposures-Part 2: Physiological Indicators.

    Science.gov (United States)

    Garzón-Villalba, Ximena P; Wu, Yougui; Ashley, Candi D; Bernard, Thomas E

    2017-07-01

    There are times when it is not practical to assess heat stress using environmental metrics and metabolic rate, and heat strain may provide an alternative approach. Heat strain indicators have been used for decades as tools for monitoring physiological responses to work in hot environments. Common indicators of heat strain are body core temperature (assessed here as rectal temperature Tre), heart rate (HR), and average skin temperature (Tsk). Data collected from progressive heat stress trials were used to (1) demonstrate if physiological heat strain indicators (PHSIs) at the upper limit of Sustainable heat stress were below generally accepted limits; (2) suggest values for PHSIs that demonstrate a Sustainable level of heat stress; (3) suggest alternative PHSIs; and (4) determine if metabolic rate was an effect modifier. Two previous progressive heat stress studies included 176 trials with 352 pairs of Sustainable and Unsustainable exposures over a range of relative humidities and metabolic rates using 29 participants. To assess the discrimination ability of PHSIs, conditional logistic regression and stepwise logistic regression were used to find the best combinations of predictors of Unsustainable exposures. The accuracy of the models was assessed using receiver operating characteristic curves. Current recommendations for physiological heat strain limits were associated with probabilities of Unsustainable greater than 0.5. Screening limits for Sustainable heat stress were Tre of 37.5°C, HR of 105 bpm, and Tsk of 35.8°C. Tsk alone resulted in an area under the curve of 0.85 and the combination of Tsk and HR (area under the curve = 0.88) performed the best. The adjustment for metabolic rate was statistically significant for physiological strain index or ∆Tre-sk as main predictors, but its effect modification was negligible and could be ignored. Based on the receiver operating characteristic curve, PHSIs (Tre, HR, and Tsk) can accurately predict Unsustainable heat

  6. Nickel--chromium strain gages for cryogenic stress analysis of superconducting structures in high magnetic fields

    International Nuclear Information System (INIS)

    Freynik, H.S. Jr.; Roach, D.R.; Deis, D.W.; Hirzel, D.G.

    1977-01-01

    Evaluation and calibration measurements were performed on commercial nickel-chromium metal-foil strain gages in a high-magnetic-field (12 T), liquid-helium (4.2 K) environment. The purpose was to fully characterize strain gages for use at cryogenic temperatures in high magnetic fields. In this study, the magnetoresistance of a number of strain gages was measured in three orthogonal directions at mechanical strain levels to 8900 μm/m. As a result, a unique calibration curve was defined for magnetoresistance strain errors that is independent of strain level and field direction to 12 T at 4.2 K. A current strain-gage application is the measurement of superconductor mechanical properties. These gages will soon be used in the stress analysis of superconducting fusion magnets during cooldown from ambient temperatures and during operation at 4.2 K with magnetic fields to 12 T

  7. Ratcheting and low cycle fatigue behavior of SA333 steel and their life prediction

    International Nuclear Information System (INIS)

    Paul, Surajit Kumar; Sivaprasad, S.; Dhar, S.; Tarafder, S.

    2010-01-01

    Ratcheting and low cycle fatigue (LCF) experiments have been conducted at 25 o C temperature in laboratory environment under different loading conditions. SA333 steel exhibits cyclic hardening throughout its life during LCF. It is found that ratcheting strain increases with both increasing mean stress and stress amplitude. It has also been noticed that plastic strain amplitude and plastic strain energy decrease with increase in mean stress at constant stress amplitude. Ratcheting and LCF life in the range of 10 2 -10 5 cycles have been predicted with the help of a mean stress-based fatigue lifing equation.

  8. LCF life prediction for waspaloy in the creep-fatigue interaction regime

    International Nuclear Information System (INIS)

    Yeom, Jong Taek; Park, Nho Kwang

    2001-01-01

    This paper describes the empirical rule of strain rate modified linear accumulation of creep damage(SRM rule) for Low-Cycle Fatigue(LCF) life prediction of Waspaloy in the creep-fatigue interaction regime and Chaboche type unified viscoplastic model predicting the stress-strain response in various cyclic loading conditions. The comparison of the experimental data and the predictions for strain controlled LCF tests carried out for various strain ranges at 600 .deg. C and 650 .deg. C was made. Chaboche type unified viscoplastic model described efficiently the inelastic deformation behavior during LCF tests. Crack-initiation lifting method to predict the material life was investigated with Strain Rate Modification(SRM) rule. The application of SRM rule to LCF tests on Waspaloy indicated a good agreement between measured and predicted cycles to failure

  9. Metamorphosis of strain/stress on optical band gap energy of ZAO thin films via manipulation of thermal annealing process

    International Nuclear Information System (INIS)

    Malek, M.F.; Mamat, M.H.; Musa, M.Z.; Soga, T.; Rahman, S.A.; Alrokayan, Salman A.H.; Khan, Haseeb A.; Rusop, M.

    2015-01-01

    We report on the growth of Al-doped ZnO (ZAO) thin films prepared by the sol–gel technique associated with dip-coating onto Corning 7740 glass substrates. The influence of varying thermal annealing (T a ) temperature on crystallisation behaviour, optical and electrical properties of ZAO films has been systematically investigated. All films are polycrystalline with a hexagonal wurtzite structure with a preferential orientation according to the direction 〈0 0 2〉. The metamorphosis of strain/stress effects in ZAO thin films has been investigated using X-ray diffraction. The as growth films have a large compressive stress of 0.55 GPa, which relaxed to 0.25 GPa as the T a was increased to 500 °C. Optical parameters such as optical transmittance, absorption coefficient, refractive index and optical band gap energy have been studied and discussed with respect to T a . All films exhibit a transmittance above 80–90% along the visible–NIR range up to 1500 nm and a sharp absorption onset below 400 nm corresponding to the fundamental absorption edge of ZnO. Experimental results show that the tensile stress in the films reveals an incline pattern with the optical band gap energy, while the compressive stress shows opposite relation. - Highlights: • Minimum stress of highly c-axis oriented ZAO was grown at suitable T a temperature. • The ZAO crystal orientation was influenced by strain/stress of the film. • Minimum stress/strain of ZAO film leads to lower defects. • Bandgap and defects were closely intertwined with strain/stress. • We report additional optical and electrical properties based on T a temperature

  10. Metamorphosis of strain/stress on optical band gap energy of ZAO thin films via manipulation of thermal annealing process

    Energy Technology Data Exchange (ETDEWEB)

    Malek, M.F., E-mail: firz_solarzelle@yahoo.com [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); NANO-SciTech Centre (NST), Institute of Science (IOS), Universiti Teknologi MARA UiTM, 40450 Shah Alam, Selangor (Malaysia); Mamat, M.H. [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); Musa, M.Z. [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM) Pulau Pinang, Jalan Permatang Pauh, 13500 Permatang Pauh, Pulau Pinang (Malaysia); Soga, T. [Department of Frontier Materials, Nagoya Institute of Technology (NITech), Nagoya 466-8555 (Japan); Rahman, S.A. [Low Dimensional Materials Research Centre (LDMRC), Department of Physics, Faculty of Science, Universiti Malaya (UM), 50603 Kuala Lumpur (Malaysia); Alrokayan, Salman A.H.; Khan, Haseeb A. [Department of Biochemistry, College of Science, King Saud University (KSU), Riyadh 11451 (Saudi Arabia); Rusop, M. [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); NANO-SciTech Centre (NST), Institute of Science (IOS), Universiti Teknologi MARA UiTM, 40450 Shah Alam, Selangor (Malaysia)

    2015-04-15

    We report on the growth of Al-doped ZnO (ZAO) thin films prepared by the sol–gel technique associated with dip-coating onto Corning 7740 glass substrates. The influence of varying thermal annealing (T{sub a}) temperature on crystallisation behaviour, optical and electrical properties of ZAO films has been systematically investigated. All films are polycrystalline with a hexagonal wurtzite structure with a preferential orientation according to the direction 〈0 0 2〉. The metamorphosis of strain/stress effects in ZAO thin films has been investigated using X-ray diffraction. The as growth films have a large compressive stress of 0.55 GPa, which relaxed to 0.25 GPa as the T{sub a} was increased to 500 °C. Optical parameters such as optical transmittance, absorption coefficient, refractive index and optical band gap energy have been studied and discussed with respect to T{sub a}. All films exhibit a transmittance above 80–90% along the visible–NIR range up to 1500 nm and a sharp absorption onset below 400 nm corresponding to the fundamental absorption edge of ZnO. Experimental results show that the tensile stress in the films reveals an incline pattern with the optical band gap energy, while the compressive stress shows opposite relation. - Highlights: • Minimum stress of highly c-axis oriented ZAO was grown at suitable T{sub a} temperature. • The ZAO crystal orientation was influenced by strain/stress of the film. • Minimum stress/strain of ZAO film leads to lower defects. • Bandgap and defects were closely intertwined with strain/stress. • We report additional optical and electrical properties based on T{sub a} temperature.

  11. MM98.57 Quantification of Combined Strain Paths

    DEFF Research Database (Denmark)

    Nielsen, Morten Sturgård; Wanheim, Tarras

    1998-01-01

    this curve into useful scalar relations from experimental data.The strain history for plane strain when assuming volume constancy may be plotted in a shear strain, normal strain diagram, which has the property of showing both the rotation of principal deformation axes during the deformation and the amount...... is to describe the total strain history as a curve in the 6-dimensional shear strain, normal strain space. In order to be able to use these experimental data for calculation, the development of this strain curve must be transformed into a set of scalar relations that may be used for predicting the yield surface...... at a given point in a new strain history. A simple example of this concept is to take the length of the strain curve as describing scalar relation: E.g. to use the equivalent strain as parameter for describing the yield stress. This paper focuses on the strain curve concept and the possibilities to convert...

  12. Thermo-mechanical characterization of a thermoplastic composite and prediction of the residual stresses and lamina curvature during cooling

    Science.gov (United States)

    Péron, Mael; Jacquemin, Frédéric; Casari, Pascal; Orange, Gilles; Bailleul, Jean-Luc; Boyard, Nicolas

    2017-10-01

    The prediction of process induced stresses during the cooling of thermoplastic composites still represents a challenge for the scientific community. However, a precise determination of these stresses is necessary in order to optimize the process conditions and thus lower the stresses effects on the final part health. A model is presented here, that permits the estimation of residual stresses during cooling. It relies on the nonlinear laminate theory, which has been adapted to arbitrary layup sequences. The developed model takes into account the heat transfers through the thickness of the laminate, together with the crystallization kinetics. The development of the composite mechanical properties during cooling is addressed by an incremental linear elastic constitutive law, which also considers thermal and crystallization strains. In order to feed the aforementioned model, a glass fiber and PA6.6 matrix unidirectional (UD) composite has been characterized. This work finally focuses on the identification of the material and process related parameters that lower the residual stresses level, including the ply sequence, the fiber volume fraction and the cooling rate.

  13. On the use of effective stress in three-dimensional hydro-mechanical coupled model

    International Nuclear Information System (INIS)

    Arairo, W.; Prunier, F.; Djeran-Maigre, I.; Millard, A.

    2014-01-01

    In the last decades, a number of hydro-mechanical elastoplastic constitutive models for unsaturated soils have been proposed. Those models couple the hydraulic and mechanical behaviour of unsaturated soils, and take into account the effects of the degree of saturation on the stress-strain behaviour and the effects of deformation on the soil-water characteristic response with a simple reversible part for the hysteresis. In addition, the influence of the suction on the stress-strain behaviour is considered. However, until now, few models predict the stress-strain and soil-water characteristic responses of unsaturated soils in a fully three-dimensional Finite Element code. This paper presents the predictions of an unsaturated soil model in a Three-dimensional Framework, and develops a study on the effect of partial saturation on the stability of shallow foundation resting on unsaturated silty soil. Qualitative predictions of the constitutive model show that incorporating a special formulation for the effective stress into an elastoplastic coupled hydro-mechanical model opens a full range of possibilities in modelling unsaturated soil behaviour. (authors)

  14. Residual stresses in non-symmetrical carbon-epoxy laminates

    NARCIS (Netherlands)

    Wijskamp, Sebastiaan; Akkerman, Remko; Lamers, E.A.D.; Martin, M.J.; Hahn, H.T.

    2003-01-01

    The curvature of unsymmetrical [0/90] laminates moulded from AS4/8552 uni-directional tape has been measured. A linear thermoelastic approach has been applied to predict the related residual stress state before demoulding, giving an estimate of the stress induced by polymerisation strain. The

  15. Differences in the cyclic deformation behaviour of quenched and tempered steel 42 CrMo 4 (AISI 4140) due to stress- and strain-control

    International Nuclear Information System (INIS)

    Schulze, V.; Lang, K.-H.; Voehringer, O.; Macherauch, E.

    1998-01-01

    Cyclic stress-strain-curves and Manson-Coffin-plots of quenched and tempered steel 42 CrMo 4 (AISI 4140) strongly depend on whether they are determined under stress- or total-strain-control. At total-strain-controlled experiments, this is caused on the one hand by comparatively high initial stress-amplitudes which lead to distinctive cyclic work softening. On the other hand, the occuring differences in the evolution of inhomogeneous deformation patterns at both types of loading, which can be recorded by means of photoelasticity and microscopy, lead to differently distributed plastic deformations and to different integral values of plastic strain. (orig.)

  16. Analysis of Mechanical Stresses/Strains in Superconducting Wire

    Science.gov (United States)

    Barry, Matthew; Chen, Jingping; Zhai, Yuhu

    2016-10-01

    The optimization of superconducting magnet performance and development of high-field superconducting magnets will greatly impact the next generation of fusion devices. A successful magnet development, however, relies deeply on the understanding of superconducting materials. Among the numerous factors that impact a superconductor's performance, mechanical stress is the most important because of the extreme operation temperature and large electromagnetic forces. In this study, mechanical theory is used to calculate the stresses/strains in typical superconducting strands, which consist of a stabilizer, a barrier, a matrix and superconducting filaments. Both thermal loads and mechanical loads are included in the analysis to simulate operation conditions. Because this model simulates the typical architecture of major superconducting materials, such as Nb3Sn, MgB2, Bi-2212 etc., it provides a good overall picture for us to understand the behavior of these superconductors in terms of thermal and mechanical loads. This work was supported in part by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Science Undergraduate Laboratory Internship (SULI) program.

  17. The Stress-Strain State of Recent Structures in the Northeastern Sector of the Russian Arctic Region

    Science.gov (United States)

    Imaeva, L. P.; Imaev, V. S.; Mel'nikova, V. I.

    2018-03-01

    Complex research to determine the stress-strain state of the Earth's crust and the types of seismotectonic destruction for the northeastern sector of the Russian Arctic was conducted. The principles of regional ranking of neotectonic structures were developed according to the activity of geodynamic processes, and argumentation for their class differentiation is presented. The structural-tectonic position, the parameters of the deep structure, the system of active faults, and the tectonic stress fields, calculated on the basis of both tectonophysical analysis of discontinuous and folded late Cenozoic deformations and seismological data, were analyzed. This complex of investigations made it possible to determine the directions of the main axes of deformations of the stress-strain state of the Earth's crust and to reveal the regularity in the change of tectonic regimes.

  18. Combinatorial Strategies for Improving Multiple-Stress Resistance in Industrially Relevant Escherichia coli Strains

    DEFF Research Database (Denmark)

    Lennen, Rebecca; Herrgard, Markus

    2014-01-01

    High-cell-density fermentation for industrial production of chemicals can impose numerous stresses on cells due to high substrate, product, and by-product concentrations; high osmolarity; reactive oxygen species; and elevated temperatures. There is a need to develop platform strains of industrial...

  19. Theoretical and experimental study of high strain, high strain rate materials viscoplastic behaviour. Application to Mars 190 steel and tantalum

    International Nuclear Information System (INIS)

    Juanicotena, A.

    1998-01-01

    This work enters in the general framework of the study and modelling of metallic materials viscoplastic behaviour in the area of high strain and high strain rate, from 10 4 to 10 5 s -1 . We define a methodology allowing to describe the behaviour of armor steel Mars 190 and tantalum in the initial area. In a first time, the study of visco-plasticity physical mechanisms shows the necessity to take into account some fundamental processes of the plastic deformation. Then, the examination of various constitutive relations allows to select the Preston-Tonks-Wallace model, that notably reproduce the physical phenomenon of the flow stress saturation. In a second part, a mechanical characterization integrating loading direction, strain rate and temperature effects is conducted on the two materials. Moreover, these experimental results allow to calculate associated constants to Preston-Tonks-Wallace, Zerilli-Armstrong and Johnson-Cook models for each material. In a third time, in order to evaluate and to validate these constitutive laws, we conceive and develop an experimental device open to reach the area of study: the expanding spherical shell test. It concerns to impose a free radial expanding to a thin spherical shell by means a shock wave generated by an explosive. By the radial expanding velocity measure, we can determine stress, strain rate and strain applied on the spherical shell at each time. In a four and last part, we evaluate constitutive models out of their optimization area's. This validation is undertaken by comparisons 'experimental results/calculations' with the help of global experiences like expanding spherical shell test and Taylor test. (author)

  20. In Situ Investigation of the Evolution of Lattice Strain and Stresses in Austenite and Martensite During Quenching and Tempering of Steel

    Science.gov (United States)

    Villa, M.; Niessen, F.; Somers, M. A. J.

    2018-01-01

    Energy dispersive synchrotron X-ray diffraction was applied to investigate in situ the evolution of lattice strains and stresses in austenite and martensite during quenching and tempering of a soft martensitic stainless steel. In one experiment, lattice strains in austenite and martensite were measured in situ in the direction perpendicular to the sample surface during an austenitization, quenching, and tempering cycle. In a second experiment, the sin2 ψ method was applied in situ during the austenite-to-martensite transformation to distinguish between macro- and phase-specific micro-stresses and to follow the evolution of these stresses during transformation. Martensite formation evokes compressive stress in austenite that is balanced by tensile stress in martensite. Tempering to 748 K (475 °C) leads to partial relaxation of these stresses. Additionally, data reveal that (elastic) lattice strain in austenite is not hydrostatic but hkl dependent, which is ascribed to plastic deformation of this phase during martensite formation and is considered responsible for anomalous behavior of the 200 γ reflection.

  1. Testing the Predictive Power of Coulomb Stress on Aftershock Sequences

    Science.gov (United States)

    Woessner, J.; Lombardi, A.; Werner, M. J.; Marzocchi, W.

    2009-12-01

    Empirical and statistical models of clustered seismicity are usually strongly stochastic and perceived to be uninformative in their forecasts, since only marginal distributions are used, such as the Omori-Utsu and Gutenberg-Richter laws. In contrast, so-called physics-based aftershock models, based on seismic rate changes calculated from Coulomb stress changes and rate-and-state friction, make more specific predictions: anisotropic stress shadows and multiplicative rate changes. We test the predictive power of models based on Coulomb stress changes against statistical models, including the popular Short Term Earthquake Probabilities and Epidemic-Type Aftershock Sequences models: We score and compare retrospective forecasts on the aftershock sequences of the 1992 Landers, USA, the 1997 Colfiorito, Italy, and the 2008 Selfoss, Iceland, earthquakes. To quantify predictability, we use likelihood-based metrics that test the consistency of the forecasts with the data, including modified and existing tests used in prospective forecast experiments within the Collaboratory for the Study of Earthquake Predictability (CSEP). Our results indicate that a statistical model performs best. Moreover, two Coulomb model classes seem unable to compete: Models based on deterministic Coulomb stress changes calculated from a given fault-slip model, and those based on fixed receiver faults. One model of Coulomb stress changes does perform well and sometimes outperforms the statistical models, but its predictive information is diluted, because of uncertainties included in the fault-slip model. Our results suggest that models based on Coulomb stress changes need to incorporate stochastic features that represent model and data uncertainty.

  2. Study of Strain-Stress Behavior of Non-Pressure Reinforced Concrete Pipes Used in Road Building

    Science.gov (United States)

    Rakitin, B. A.; Pogorelov, S. N.; Kolmogorova, A. O.

    2017-11-01

    The article contains the results of the full-scale tests performed for special road products - large-diameter non-pressure concrete pipes reinforced with a single space cylindrical frame manufactured with the technology of high-frequency vertical vibration molding with an immediate demolding. The authors studied the change in the strain-stress behavior of reinforced concrete pipes for underground pipeline laying depending on their laying depth in the trench and the transport load considering the properties of the surrounding ground mass. The strain-stress behavior of the reinforced concrete pipes was evaluated using the strain-gauge method based on the application of active resistance strain gauges. Based on the completed research, the authors made a conclusion on the applicability of a single space frame for reinforcement of large-diameter non-pressure concrete pipes instead of a double frame which allows one to significantly reduce the metal consumption for the production of one item. As a result of the full-scale tests of reinforced concrete pipes manufactured by vertical vibration molding, the authors obtained new data on the deformation of a pipeline cross-section depending on the placement of the transport load with regard to the axis.

  3. Stressed and strained state for cermetic-rod-type fuel element

    International Nuclear Information System (INIS)

    Kulikov, I.S.

    1987-01-01

    Calculation technique for designing the stress-strained state of a cermetic rod-type fuel element has been proposed. The technique is based on the time-dependent step-by-step method and the solution of the deformation equilibrium equation for continuous and thick-wall long cylinders at every temporal step by the finite difference method. Additional strains, caused by thermal expansion and radiation swelling, have been taken into account. The transion from the non-contact model to the stiff-contact model has been provided in the case of cladding-fuel gap dissappearing in one or a number of cross-sections along the fuel element height. The method is supplemented by the formula for fuel cans stability estimation in the case of high coolant external pressure. The example of estimation of the cermetic-rod-type fuel elements are considered as an example

  4. Elastic-plastic potential functionals for rates and increments of stress and strain

    International Nuclear Information System (INIS)

    Feijoo, R.A.; Zouain, N.

    1990-03-01

    In this work attention is focused in the derivation of variational formulations of the constutive relationship in the form of conjugate potential functionals from which stress and strain rates are derived as elements of the corresponding sub-differential sets. The main result obtained is a pair of potential functionals. (A.C.A.S.) [pt

  5. Occupational heat stress assessment and protective strategies in the context of climate change

    Science.gov (United States)

    Gao, Chuansi; Kuklane, Kalev; Östergren, Per-Olof; Kjellstrom, Tord

    2018-03-01

    Global warming will unquestionably increase the impact of heat on individuals who work in already hot workplaces in hot climate areas. The increasing prevalence of this environmental health risk requires the improvement of assessment methods linked to meteorological data. Such new methods will help to reveal the size of the problem and design appropriate interventions at individual, workplace and societal level. The evaluation of occupational heat stress requires measurement of four thermal climate factors (air temperature, humidity, air velocity and heat radiation); available weather station data may serve this purpose. However, the use of meteorological data for occupational heat stress assessment is limited because weather stations do not traditionally and directly measure some important climate factors, e.g. solar radiation. In addition, local workplace environmental conditions such as local heat sources, metabolic heat production within the human body, and clothing properties, all affect the exchange of heat between the body and the environment. A robust occupational heat stress index should properly address all these factors. This article reviews and highlights a number of selected heat stress indices, indicating their advantages and disadvantages in relation to meteorological data, local workplace environments, body heat production and the use of protective clothing. These heat stress and heat strain indices include Wet Bulb Globe Temperature, Discomfort Index, Predicted Heat Strain index, and Universal Thermal Climate Index. In some cases, individuals may be monitored for heat strain through physiological measurements and medical supervision prior to and during exposure. Relevant protective and preventive strategies for alleviating heat strain are also reviewed and proposed.

  6. Interfacial stresses in a bi-material assembly with a compliant bonding layer

    International Nuclear Information System (INIS)

    Suhir, E; Vujosevic, M

    2008-01-01

    We examine an elongated bi-material adhesively bonded or soldered assembly with a continuous compliant attachment (bonding layer). The assembly is subjected to external tensile forces or to bending moments applied to one of the assembly components. We develop simple predictive analytical ('mathematical') models for the evaluation of interfacial shearing (in the case of external tensile forces) and peeling (in the case of external bending moments) stresses and strains in the bonding material. The developed models can be helpful in stress-strain analyses of assemblies of the type in question and particularly for printed-circuit-board (PCB)/surface-mounted-device (SMD) assemblies employed in electronic packaging. These models enable one to particularly evaluate the maximum interfacial stresses in the bonding material from the predicted or measured strains in the PCB in the vicinity of but still outside the surface-mounted package

  7. Estimation of lattice strain in nanocrystalline RuO2 by Williamson-Hall and size-strain plot methods.

    Science.gov (United States)

    Sivakami, R; Dhanuskodi, S; Karvembu, R

    2016-01-05

    RuO2 nanoparticles (RuO2 NPs) have been successfully synthesized by the hydrothermal method. Structure and the particle size have been determined by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and transmission electron microscopy (TEM). UV-Vis spectra reveal that the optical band gap of RuO2 nanoparticles is red shifted from 3.95 to 3.55eV. BET measurements show a high specific surface area (SSA) of 118-133m(2)/g and pore diameter (10-25nm) has been estimated by Barret-Joyner-Halenda (BJH) method. The crystallite size and lattice strain in the samples have been investigated by Williamson-Hall (W-H) analysis assuming uniform deformation, deformation stress and deformation energy density, and the size-strain plot method. All other relevant physical parameters including stress, strain and energy density have been calculated. The average crystallite size and the lattice strain evaluated from XRD measurements are in good agreement with the results of TEM. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Organizational stress and individual strain: A social-psychological study of risk factors in coronary heart disease among administrators, engineers, and scientists

    Science.gov (United States)

    Caplan, R. D.

    1971-01-01

    It is hypothesized that organizational stresses, such as high quantitative work load, responsibility for persons, poor relations with role senders, and contact with alien organizational territories, may be associated with high levels of psychological and physiological strain which are risk factors in coronary heart disease. It is further hypothesized that persons with coronary-prone Type A personality characteristics are most likely to exhibit strain under conditions of organizational stress. Measures of these stresses, personality traits, and strains were obtained from 205 male NASA administrators, engineers, and scientists. Type A personality measures included sense of time urgency, persistence, involved striving, leadership, and preference for competitive and environmentally overburdening situations.

  9. The nonlinear Maxwell-type model for viscoelastoplastic materials: simulation of temperature influence on creep, relaxation and strain-stress curves

    Directory of Open Access Journals (Sweden)

    Andrew V. Khokhlov

    2017-04-01

    Full Text Available The nonlinear Maxwell-type constitutive relation with two arbitrary material functions for viscoelastoplastic multi-modulus materials is studied analytically in uniaxial isothermic case to reveal the model abilities and applicability scope and to develop techniques of its identification, tuning and fitting. The constitutive equation is aimed at adequate modeling of the rheological phenomena set which is typical for reonomic materials exhibiting non-linear hereditary properties, strong strain rate sensitivity, secondary creep, yielding at constant stress, tension compression asymmetry and such temperature effects as increase of material compliance, strain rate sensitivity and rates of dissipation, relaxation, creep and plastic strain accumulation with temperature growth. The model is applicable for simulation of mechanical behaviour of various polymers, their solutions and melts, solid propellants, sand-asphalt concretes, composite materials, titanium and aluminum alloys, ceramics at high temperature and so on. To describe the influence of temperature on material mechanical behavior (under isothermic conditions, two scalar material parameters of the model (viscosity coefficient and “modulus of elasticity” are considered as a functions of temperature level. The general restrictions on their properties which are necessary and sufficient for adequate qualitative description of the basic thermomechanical phenomena related to typical temperature influence on creep and relaxation curves, creep recovery curves, creep curves under step-wise loading and quasi-static stress-strain curves of viscoelastoplastic materials are obtained. The restrictions are derived using systematic analytical study of general qualitative features of the theoretic creep and relaxation curves, creep curves under step-wise loading, long-term strength curves and stress-strain curves at constant strain or stress rates generated by the constitutive equation (under minimal

  10. Comparison of Measured Residual Stress in an Extra Thick Multi-pass Weld Using Neutron Diffraction Method and Inherent Strain Method

    International Nuclear Information System (INIS)

    Park, JeongUng; An, GyuBaek; Woo, Wan Chuck

    2015-01-01

    With the increase of large-scale containership, a large amount of high-strength steels with extra thick plates is being extensively used. The welding stress existing in the extra thick welded plates has a significant effect on the integrity of the component in terms of brittle fracture and fatigue behavior. It has been reported that welding residual stress distribution in an extra thick plate can affect the propagation path of the crack. Therefore, it is important to measure the distribution of welding residual stresses for the reliable design of the welded structures. So far various researches have been carried out for the determination of residual stresses on the surface of steels. In this paper, the total residual stresses in the 70 mm thick multipass FACW butt joint were measured by integrating initial stress into ISM. Concretely, two methods named as initial stress integrated ISM and initial inherent strain integrated ISM were employed to determine the total residual stresses. Furthermore, the distributions of residual stresses were compared with the results of the Neutron Diffraction Method(NDM). In order to measure the three dimensional residual stresses in the welded joint with initial stresses existing before welding, initial stress integrated ISM and initial inherent strain integrated ISM were developed. The residual stresses in 70 mm-thick butt joint by flux cored arc welding were carried out with a good accuracy using the two developed methods. The residual stresses in welded joint using both initial stress integrated ISM and initial inherent strain integrated ISM agreed well with the results measured by Neutron Diffraction Method. This suggests that the integrated ISM is a reliable method for residual stress measurement if initial stress existed

  11. On the use of wearable physiological monitors to assess heat strain during occupational heat stress.

    Science.gov (United States)

    Notley, Sean R; Flouris, Andreas D; Kenny, Glen P

    2018-05-04

    Workers in many industries are required to perform arduous work in high heat stress conditions, which can lead to rapid increases in body temperature that elevate the risk of heat-related illness or even death. Traditionally, effort to mitigate work-related heat injury has been directed to the assessment of environmental heat stress (e.g., wet-bulb globe temperature), rather than the associated physiological strain responses (e.g., heart rate, skin and core temperatures). However, since a workers physiological response to a given heat stress is modified independently by inter-individual factors (e.g., age, sex, chronic disease, others) and intra-individual factors both within (e.g., medication use, fitness, acclimation and hydration state, others) and beyond a workers control (e.g., shift duration, illness, others), it becomes challenging to protect workers on an individual basis from heat-related injury without assessing those physiological responses. Recent advancements in wearable technology have made it possible to monitor one or more physiological indices of heat strain. Nonetheless, information on the utility of the wearable systems available for assessing occupational heat strain is unavailable. This communication is therefore directed at identifying the physiological indices of heat strain that may be quantified in the workplace and evaluating the wearable monitoring systems available for assessing those responses. Finally, emphasis is directed to the barriers associated with implementing these devices to assist in mitigating work-related heat injury. This information is fundamental for protecting worker health and could also be utilized to prevent heat illnesses in vulnerable people during leisure or athletic activities in the heat.

  12. Effect of particle shapes on effective strain gradient of SiC particle reinforced aluminum composites

    International Nuclear Information System (INIS)

    Liu, X; Cao, D F; Mei, H; Liu, L S; Lei, Z T

    2013-01-01

    The stress increments depend not only on the plastic strain but also on the gradient of plastic strain, when the characteristic length scale associated with non-uniform plastic deformation is on the order of microns. In the present research, the Taylor-based nonlocal theory of plasticity (TNT plasticity), with considering both geometrically necessary dislocations and statistically stored dislocations, is applied to investigated the effect of particle shapes on the strain gradient and mechanical properties of SiC particle reinforced aluminum composites (SiC/Al composites). Based on this theory, a two-dimensional axial symmetry cell model is built in the ABAQUS finite element code through its USER-ELEMENT (UEL) interface. Some comparisons with the classical plastic theory demonstrate that the effective stress predicted by TNT plasticity is obviously higher than that predicted by classical plastic theory. The results also demonstrate that the irregular particles cause higher effective gradient strain which is attributed to the fact that angular shape particles give more geometrically.

  13. Modeling and Measurement of Stress and Strain Evolution in Cu Interconnects

    International Nuclear Information System (INIS)

    Besser, Paul R.; Zhai, Charlie Jun

    2004-01-01

    The damascene fabrication method and the introduction of low-K dielectrics present a host of reliability challenges to Cu interconnects and fundamentally change the mechanical stress state of Cu lines used as interconnects for integrated circuits. In order to capture the effect of individual process steps on the stress evolution in the BEoL (Back End of Line), a process-oriented finite element modeling (FEM) approach was developed. In this model, the complete stress history at any step of BEoL can be simulated as a dual damascene Cu structure is fabricated. The model was calibrated with both wafer-curvature blanket film measurements and X-Ray diffraction (XRD) measurement of metal line stress. The Cu line stress evolution was simulated during the process of multi-step processing for dual damascene Cu/TEOS and Cu/low-k structures. The in-plane stress of Cu lines is nearly independent of subsequent processes, while the out-of-plane stress increases considerably with the subsequent process steps. The modeling results will be compared with recent XRD measurements and extended generically to illustrate the relative influence of the dielectric (ILD) modulus (E) and coefficient of thermal expansion (CTE) on strain/stress in the Cu lines. It will be shown that the stress magnitude and state (hydrostatic, deviatoric) depend on ILD properties. The stress along the line length (longitudinal) is substrate-dominated, while the transverse and normal stresses vary with both CTE and modulus of the dielectric. The hydrostatic stress is primarily determined by ILD modulus and is nearly independent of the ILD CTE, while the Von Mises stress depends on both CTE and E of the ILD. The stress of the Cu line tends to be more deviatoric with spin-on low K ILDs, and more hydrostatic with oxide encapsulation

  14. Elastic (stress-strain) halo associated with ion-induced nano-tracks in lithium niobate: role of crystal anisotropy

    International Nuclear Information System (INIS)

    Rivera, A; Garcia, G; Olivares, J; Crespillo, M L; Agulló-López, F

    2011-01-01

    The elastic strain/stress fields (halo) around a compressed amorphous nano-track (core) caused by a single high-energy ion impact on LiNbO 3 are calculated. A method is developed to approximately account for the effects of crystal anisotropy of LiNbO 3 (symmetry 3m) on the stress fields for tracks oriented along the crystal axes (X, Y or Z). It only considers the zero-order (axial) harmonic contribution to the displacement field in the perpendicular plane and uses effective Poisson moduli for each particular orientation. The anisotropy is relatively small; however, it accounts for some differential features obtained for irradiations along the crystallographic axes X, Y and Z. In particular, the irradiation-induced disorder (including halo) and the associated surface swelling appear to be higher for irradiations along the X- or Y-axis in comparison with those along the Z-axis. Other irradiation effects can be explained by the model, e.g. fracture patterns or the morphology of pores after chemical etching of tracks. Moreover, it offers interesting predictions on the effect of irradiation on lattice parameters.

  15. Stress-strain response of plastic waste mixed soil.

    Science.gov (United States)

    Babu, G L Sivakumar; Chouksey, Sandeep Kumar

    2011-03-01

    Recycling plastic waste from water bottles has become one of the major challenges worldwide. The present study provides an approach for the use plastic waste as reinforcement material in soil. The experimental results in the form of stress-strain-pore water pressure response are presented. Based on experimental test results, it is observed that the strength of soil is improved and compressibility reduced significantly with addition of a small percentage of plastic waste to the soil. The use of the improvement in strength and compressibility response due to inclusion of plastic waste can be advantageously used in bearing capacity improvement and settlement reduction in the design of shallow foundations. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. On the derivative of the stress-strain relation in a no-tension material

    Czech Academy of Sciences Publication Activity Database

    Padovani, C.; Šilhavý, Miroslav

    2017-01-01

    Roč. 22, č. 7 (2017), s. 1606-1618 ISSN 1081-2865 Institutional support: RVO:67985840 Keywords : no-tension material * stress-strain relation Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 2.953, year: 2016 http:// journals .sagepub.com/doi/10.1177/1081286515571786

  17. Simple regional strain pattern analysis to predict response to cardiac resynchronization therapy

    DEFF Research Database (Denmark)

    Risum, Niels; Jons, Christian; Olsen, Niels T

    2012-01-01

    A classical strain pattern of early contraction in one wall and prestretching of the opposing wall followed by late contraction has previously been associated with left bundle branch block (LBBB) activation and short-term response to cardiac resynchronization therapy (CRT). Aims of this study were...... to establish the long-term predictive value of an LBBB-related strain pattern and to identify changes in contraction patterns during short-term and long-term CRT....

  18. On the evolution and modelling of lattice strains during the cyclic loading of TWIP steel

    International Nuclear Information System (INIS)

    Saleh, Ahmed A.; Pereloma, Elena V.; Clausen, Bjørn; Brown, Donald W.; Tomé, Carlos N.; Gazder, Azdiar A.

    2013-01-01

    The evolution of lattice strains in fully annealed Fe–24Mn–3Al–2Si–1Ni–0.06C twinning-induced plasticity (TWIP) steel is investigated via in situ neutron diffraction during cyclic (tension–compression) loading between strain limits of ±1%. The pronounced Bauschinger effect observed upon load reversal is accounted for by a combination of the intergranular residual stresses and the intragranular sources of back stress, such as dislocation pile-ups at the intersection of stacking faults. The recently modified elasto-plastic self-consistent (EPSC) model which empirically accounts for both intergranular and intragranular back stresses has been successfully used to simulate the macroscopic stress–strain response and the evolution of the lattice strains. The EPSC model captures the experimentally observed tension–compression asymmetry as it accounts for the directionality of twinning as well as Schmid factor considerations. For the strain limits used in this study, the EPSC model also predicts that the lower flow stress on reverse shear loading reported in earlier Bauschinger-type experiments on TWIP steel is a geometrical or loading path effect

  19. STRESS - STRAIN CURVE ANALYSIS OF WOVEN FABRICS MAD E FROM COMBED YARNS TYPE WOOL

    Directory of Open Access Journals (Sweden)

    VÎLCU Adrian

    2014-05-01

    Full Text Available The paper analyses the tensile behavior of woven fabrics made from 45%Wool + 55% PES used for garments. Analysis of fabric behavior during wearing has shown that these are submitted to simple and repeated uni-axial or bi-axial tensile strains. The level of these strains is often within the elastic limit, rarely going over yielding. Therefore the designer must be able to evaluate the mechanical behavior of such fabrics in order to control the fabric behavior in the garment. This evaluation is carried out based on the tensile testing, using certain indexes specific to the stress-strain curve. The paper considers an experimental matrix based on woven fabrics of different yarn counts, different or equal yarn count for warp and weft systems and different structures. The fabrics were tested using a testing machine and the results were then compared in order to determine the fabrics’ tensile behavior and the factors of influence that affect it.From the point of view of tensile testing, the woven materials having twill weave are preferable because this type of structure is characterized by higher durability and better yarn stability in the fabric. In practice, the woven material must exhibit an optimum behavior to repeated strains, flexions and abrasions during wearing process. The analysis of fabrics tensile properties studied by investigation of stress-strain diagrams reveals that the main factors influencing the tensile strength are: yarns fineness, technological density of those two systems of yarns and the weaving type.

  20. Strain-tempering of low carbon martensite steel wire by rapid heating

    International Nuclear Information System (INIS)

    Torisaka, Yasunori; Kihara, Junji

    1978-01-01

    In the production of prestressed concrete steel wires, a series of the cold drawing-patenting process are performed to improve the strength. In order to reduce cyclic process, the low carbon martensite steel wire which can be produced only by the process of hot rolling and direct quench has been investigated as strain-tempering material. When strain-tempering is performed on the low carbon martensite steel wire, stress relaxation (Re%) increases and mechanical properties such as total elongation, reduction of area, ultimate tensile strength and proof stress decrease remarkably by annealing. In order to shorten the heating time, the authors performed on the steel wire the strain-tempering with a heating time of 1.0 s using direct electrical resistance heating and examined the effects of rapid heating on the stress relaxation and the mechanical properties. Stress relaxation decreases without impairment of the mechanical properties up to a strain-tempering temperature of 573 K. Re(%) after 10.8 ks is 0% at the testing temperature 301 K, 0.49% at 363 K and 1.39% at 433 K. (auth.)

  1. Predicting Posttraumatic Stress Symptom Prevalence and Local Distribution after an Earthquake with Scarce Data.

    Science.gov (United States)

    Dussaillant, Francisca; Apablaza, Mauricio

    2017-08-01

    After a major earthquake, the assignment of scarce mental health emergency personnel to different geographic areas is crucial to the effective management of the crisis. The scarce information that is available in the aftermath of a disaster may be valuable in helping predict where are the populations that are in most need. The objectives of this study were to derive algorithms to predict posttraumatic stress (PTS) symptom prevalence and local distribution after an earthquake and to test whether there are algorithms that require few input data and are still reasonably predictive. A rich database of PTS symptoms, informed after Chile's 2010 earthquake and tsunami, was used. Several model specifications for the mean and centiles of the distribution of PTS symptoms, together with posttraumatic stress disorder (PTSD) prevalence, were estimated via linear and quantile regressions. The models varied in the set of covariates included. Adjusted R2 for the most liberal specifications (in terms of numbers of covariates included) ranged from 0.62 to 0.74, depending on the outcome. When only including peak ground acceleration (PGA), poverty rate, and household damage in linear and quadratic form, predictive capacity was still good (adjusted R2 from 0.59 to 0.67 were obtained). Information about local poverty, household damage, and PGA can be used as an aid to predict PTS symptom prevalence and local distribution after an earthquake. This can be of help to improve the assignment of mental health personnel to the affected localities. Dussaillant F , Apablaza M . Predicting posttraumatic stress symptom prevalence and local distribution after an earthquake with scarce data. Prehosp Disaster Med. 2017;32(4):357-367.

  2. Determination of the State of Strain of Large Floating Covers Using Unmanned Aerial Vehicle (UAV Aided Photogrammetry

    Directory of Open Access Journals (Sweden)

    Wern Hann Ong

    2017-07-01

    Full Text Available Floating covers used in waste water treatment plants are one of the many structures formed with membrane materials. These structures are usually large and can spread over an area measuring 470 m × 170 m. The aim of this paper is to describe recent work to develop an innovative and effective approach for structural health monitoring (SHM of such large membrane-like infrastructure. This paper will propose a potentially cost-effective non-contact approach for full-field strain and stress mapping using an unmanned aerial vehicle (UAV mounted with a digital camera and a global positioning system (GPS tracker. The aim is to use the images acquired by the UAV to define the geometry of the floating cover using photogrammetry. In this manner, any changes in the geometry of the floating cover due to forces acting beneath resulting from its deployment and usage can be determined. The time-scale for these changes is in terms of weeks and months. The change in the geometry can be implemented as input conditions to a finite element model (FEM for stress prediction. This will facilitate the determination of the state of distress of the floating cover. This paper investigates the possibility of using data recorded from a UAV to predict the strain level and assess the health of such structures. An investigation was first conducted on a laboratory sized membrane structure instrumented with strain gauges for comparison against strains, which were computed from 3D scans of the membrane geometry. Upon validating the technique in the laboratory, it was applied to a more realistic scenario: an outdoor test membrane structure and capable UAV were constructed to see if the shape of the membrane could be computed. The membrane displacements were then used to calculate the membrane stress and strain, state demonstrating a new way to perform structural health monitoring on membrane structures.

  3. Predicting behavior during interracial interactions: a stress and coping approach.

    Science.gov (United States)

    Trawalter, Sophie; Richeson, Jennifer A; Shelton, J Nicole

    2009-11-01

    The social psychological literature maintains unequivocally that interracial contact is stressful. Yet research and theory have rarely considered how stress may shape behavior during interracial interactions. To address this empirical and theoretical gap, the authors propose a framework for understanding and predicting behavior during interracial interactions rooted in the stress and coping literature. Specifically, they propose that individuals often appraise interracial interactions as a threat, experience stress, and therefore cope-they antagonize, avoid, freeze, or engage. In other words, the behavioral dynamics of interracial interactions can be understood as initial stress reactions and subsequent coping responses. After articulating the framework and its predictions for behavior during interracial interactions, the authors examine its ability to organize the extant literature on behavioral dynamics during interracial compared with same-race contact. They conclude with a discussion of the implications of the stress and coping framework for improving research and fostering more positive interracial contact.

  4. Study on residual stress across the pipes' thickness using outer surface rapid heating. Development of pipe outer surface irradiated laser stress improvement process (L-SIP)

    International Nuclear Information System (INIS)

    Ohta, Takahiro; Terasaki, Toshio

    2009-01-01

    The new process called L-SIP (outer surface irradiated Laser Stress Improvement Process) is developed to improve the tensile residual stress of the inner surface near the butt welded joints of pipes in the compression stress. The temperature gradient occurs in the thickness of pipes in heating the outer surface rapidly by laser beam. By the thermal expansion difference between the inner surface and the outer surface, the compression plastic strain generates near the outer surface and the tensile plastic strain generates near the inner surface of pipes. The compression stress occurs near the inner surface of pipes by the plastic deformation. In this paper, the theoretical equation which calculates residual stress distribution from the inherent strain distribution in the thickness of pipes is derived. And, the relation between the distribution of temperature and the residual stress in the thickness is examined for various pipes size. (1) By rapidly heating from the outer surface, the residual stress near the inner surface of the pipe is improved to the compression stress. (2) Pipes size hardly affects the distribution of the residual stress in the stainless steel pipes for piping (JISG3459). (3) The temperature rising area from the outside is smaller, the area of the compression residual stress near the inner surface becomes wider. (author)

  5. Inherently variable responses to glucocorticoid stress among endogenous retroviruses isolated from 23 mouse strains.

    Science.gov (United States)

    Hsu, Karen; Lee, Young-Kwan; Chew, Alex; Chiu, Sophia; Lim, Debora; Greenhalgh, David G; Cho, Kiho

    2017-10-01

    Active participation of endogenous retroviruses (ERVs) in disease processes has been exemplified by the finding that the HERV (human ERV)-W envelope protein is involved in the pathogenesis of multiple sclerosis, an autoimmune disease. We also demonstrated that injury-elicited stressors alter the expression of murine ERVs (MuERVs), both murine leukemia virus-type and mouse mammary tumor virus (MMTV)-type (MMTV-MuERV). In this study, to evaluate MMTV-MuERVs' responses to stress (e.g., injury, infection)-elicited systemic glucocorticoid (GC) levels, we examined the GC-stress response of 64 MMTV-MuERV promoters isolated from the genomes of 23 mouse strains. All 64 promoters responded to treatment with a synthetic GC, dexamethasone (DEX), at a wide range from a 0.6- to 85.7-fold increase in reporter activity compared to no treatment. An analysis of the 10 lowest and 10 highest DEX responders revealed specific promoter elements exclusively present in either the three lowest or the two highest responders. Each promoter had a unique profile of transcription regulatory elements and the glucocorticoid response element (GRE) was identified in all promoters with the number of GREs ranging from 2 to 7. The three lowest DEX responders were the only promoters with two GREs. The findings from this study suggest that certain MMTV-MuERVs are more responsive to stress-elicited systemic GC elevation compared to the others. The mouse strain-specific genomic MMTV-MuERV profiles and individual MMTV-MuERVs' differential responses to GC-stress might explain, at least in part, the variable inflammatory responses to injury and/or infection, often observed among different mouse strains. This article is part of a Special Issue entitled: Immune and Metabolic Alterations in Trauma and Sepsis edited by Dr. Raghavan Raju. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Modeling fracture in the context of a strain-limiting theory of elasticity: a single anti-plane shear crack

    KAUST Repository

    Rajagopal, K. R.

    2011-01-06

    This paper is the first part of an extended program to develop a theory of fracture in the context of strain-limiting theories of elasticity. This program exploits a novel approach to modeling the mechanical response of elastic, that is non-dissipative, materials through implicit constitutive relations. The particular class of models studied here can also be viewed as arising from an explicit theory in which the displacement gradient is specified to be a nonlinear function of stress. This modeling construct generalizes the classical Cauchy and Green theories of elasticity which are included as special cases. It was conjectured that special forms of these implicit theories that limit strains to physically realistic maximum levels even for arbitrarily large stresses would be ideal for modeling fracture by offering a modeling paradigm that avoids the crack-tip strain singularities characteristic of classical fracture theories. The simplest fracture setting in which to explore this conjecture is anti-plane shear. It is demonstrated herein that for a specific choice of strain-limiting elasticity theory, crack-tip strains do indeed remain bounded. Moreover, the theory predicts a bounded stress field in the neighborhood of a crack-tip and a cusp-shaped opening displacement. The results confirm the conjecture that use of a strain limiting explicit theory in which the displacement gradient is given as a function of stress for modeling the bulk constitutive behavior obviates the necessity of introducing ad hoc modeling constructs such as crack-tip cohesive or process zones in order to correct the unphysical stress and strain singularities predicted by classical linear elastic fracture mechanics. © 2011 Springer Science+Business Media B.V.

  7. First-principles studies on the pressure dependences of the stress-strain relationship and elastic stability of semiconductors

    International Nuclear Information System (INIS)

    Wang, S Q; Ye, H Q; Yip, S

    2006-01-01

    We investigate the stress-strain relationship and elastic stability of zinc-blende GaP, GaN, InP and BN lattices under hydrostatic pressure by first-principles calculation. A simple and direct ab initio implementation for studying the mechanical properties of cubic crystals is developed. The four phases' full-set stress-strain coefficients in wide pressure ranges are theoretically calculated. The fundamental mechanism of elastic stability and the origin of phase transformation under hydrostatic pressure are explored. We found that the abilities for most of these lattices are enhanced to sustain axial strain but weaken to shear strain under higher pressure. The conditions of lattice stability are analysed using both the thermodynamic work-energy criterion and the elastic-stiffness criteria. We show that the lattice collapse of the perfect crystals is caused by the disappearance of their bulk moduli under volume dilation. Lattice defects are considered to be the main reason causing phase transformation under pressure. The correlation between the phonon softening and the variation of elastic coefficients is studied. The pressure dependence of the Kleinman internal strain parameter and its relationship to elastic stability is also explored

  8. High strain rates spallation phenomena with relation to the equation of state

    International Nuclear Information System (INIS)

    Dekel, E.

    1997-11-01

    Theoretical spall strength, defined as the stress needed to separate a material along a plane surface instantaneously, is one order of magnitude larger then the measured spell strength at strain rates up to 10 6 s -1 . The discrepancy is explained by material initial flaws and cavities which grow and coalesce under stress and weaken the material. Measurements of spall strength of materials shocked by a high power laser shows a rapid increase in the spall strength with the strain rate at strain rates of about 10 7 s -1 . This indicates that the initial flaws does not have time to coalesce and the interatomic forces become dominant. In order to break the material more cavities must be created. This cavities are characterized by the interatomic forces and are created statistically: material under tensile stress is in a metastable condition and due to thermal fluctuations cavities are formed. Cavities larger than a certain critical size grow due to the stress. They grow until the material disintegrates at the spall plane. The theoretical results predict the increase in spall strength at high strain rates, as observed experimentally. (authors)

  9. A fiber optics sensor for strain and stress management in superconducting accelerator magnets

    International Nuclear Information System (INIS)

    van Oort, J.M.; ten Kate, H.H.J.

    1993-01-01

    A novel cryogenic interferometric fiber optics sensor for the measurement of strain and stress in the coil windings of superconducting accelerator magnets is described. The sensor can operate with two different readout sources, monochromatic laser light and white light respectively. The sensor head is built up as an extrinsic Fabry-Perot interferometer formed with two cleaved fiber surfaces, and can be mounted in several configurations. When read with laser light, the sensor is an extremely sensitive relative strain or temperature detector. When read with white light the absolute strain and pressure can be measured. Results are presented of tests in several configurations at 77 K and 4.2 K, both for the relative and absolute readout method. Finally, the possible use for quench localization using the temperature sensitivity is described

  10. Stress and Strain Gradients in a Low Carbon Steel Deformed under Heavy Sliding

    DEFF Research Database (Denmark)

    Zhang, Xiaodan; Hansen, Niels; Huang, Xiaoxu

    A recent study [1] has shown that a microstructure can be refined to a record low of 5 nm and that dislocation glide is still a controlling mechanism at this length scale. In this study, by heavy rotatory sliding of a low carbon steel a gradient structure has been produced extending to about 2.5 mm...... on the deformation microstructure using the classic stress-structure relationship. Computational and materials modelling has been advanced from bulk to gradient structures leading to dissemination of constitutive stress-strain equations in gradient structures....

  11. On the cyclic stress-strain behavior and low cycle fatigue of aerospace materials

    Science.gov (United States)

    Burbach, J.

    1972-01-01

    The elastic-plastic deformation behavior under cyclic stress of a number of different engineering materials was experimentally investigated with the aid of high-precision methods of measuring, some of which had been newly developed. Experiments made with a variety of steels, the titanium alloy Ti-A16-V4, a cobalt (tungsten) alloy, the high-temperature material Nimonic 90 and Dural (A1-Cu) are reported. The theory given in an attempt to explain these experiments is aimed at finding general formulas for the cyclic stress-strain behavior materials.

  12. Salt stress-induced transcription of σB- and CtsR-regulated genes in persistent and non-persistent Listeria monocytogenes strains from food processing plants.

    Science.gov (United States)

    Ringus, Daina L; Ivy, Reid A; Wiedmann, Martin; Boor, Kathryn J

    2012-03-01

    Listeria monocytogenes is a foodborne pathogen that can persist in food processing environments. Six persistent and six non-persistent strains from fish processing plants and one persistent strain from a meat plant were selected to determine if expression of genes in the regulons of two stress response regulators, σ(B) and CtsR, under salt stress conditions is associated with the ability of L. monocytogenes to persist in food processing environments. Subtype data were also used to categorize the strains into genetic lineages I or II. Quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) was used to measure transcript levels for two σ(B)-regulated genes, inlA and gadD3, and two CtsR-regulated genes, lmo1138 and clpB, before and after (t=10 min) salt shock (i.e., exposure of exponential phase cells to BHI+6% NaCl for 10 min at 37°C). Exposure to salt stress induced higher transcript levels relative to levels under non-stress conditions for all four stress and virulence genes across all wildtype strains tested. Analysis of variance (ANOVA) of induction data revealed that transcript levels for one gene (clpB) were induced at significantly higher levels in non-persistent strains compared to persistent strains (p=0.020; two-way ANOVA). Significantly higher transcript levels of gadD3 (p=0.024; two-way ANOVA) and clpB (p=0.053; two-way ANOVA) were observed after salt shock in lineage I strains compared to lineage II strains. No clear association between stress gene transcript levels and persistence was detected. Our data are consistent with an emerging model that proposes that establishment of L. monocytogenes persistence in a specific environment occurs as a random, stochastic event, rather than as a consequence of specific bacterial strain characteristics.

  13. Static strain aging of Zircaloy-2: the effect of dislocation dynamics on yielding behaviour

    International Nuclear Information System (INIS)

    Thorpe, W.R.; Smith, I.O.

    1981-01-01

    The static strain-aging response of Zircaloy-2 was determined in the temperature range 293-723 K. A modified Hahn yielding model was found to provide a satisfactory description of the magnitude and shape of the yield points after aging, thereby providing information about the mobile dislocation density and the dislocation generation rate. For example, the characteristic double peak in the temperature dependence of strain aging was simplified to a single broad minimum in the mobile dislocation density over the temperature interval 500-700 K. The shape of the yield point was also found to be temperature dependent; the yield drop became less sharp at test temperatures above 648 K. This was ascribed to the inhibition of dislocation multiplication by dynamic strain aging. A kinetic law was developed by applying Snoek ordering kinetics to the process of dislocation locking and the resultant change in mobile dislocation density was then used to predict the strain-aging response as a function of aging time. The stress dependence of strain aging at 573 K was investigated at aging stresses of between 0.07 and 0.975 of the flow stress sigmasub(f). The strain-aging response increased for aging at stresses between 0.07sigmassub(f) and 0.8sigmasub(f), whereafter it declined steeply to the limit of zero at the flow stress. (Auth.)

  14. STRAIN-CONTROLLED BIAXIAL TENSION OF NATURAL RUBBER: NEW EXPERIMENTAL DATA

    KAUST Repository

    Pancheri, Francesco Q.

    2014-03-01

    We present a new experimental method and provide data showing the response of 40A natural rubber in uniaxial, pure shear, and biaxial tension. Real-time biaxial strain control allows for independent and automatic variation of the velocity of extension and retraction of each actuator to maintain the preselected deformation rate within the gage area of the specimen. Wealso focus on the Valanis-Landel hypothesis that is used to verify and validate the consistency of the data.Weuse a threeterm Ogden model to derive stress-stretch relations to validate the experimental data. The material model parameters are determined using the primary loading path in uniaxial and equibiaxial tension. Excellent agreement is found when the model is used to predict the response in biaxial tension for different maximum in-plane stretches. The application of the Valanis-Landel hypothesis also results in excellent agreement with the theoretical prediction.

  15. Experimental Study and Modelling of Poly (Methyl Methacrylate) and Polycarbonate Compressive Behavior from Low to High Strain Rates

    Science.gov (United States)

    El-Qoubaa, Z.; Colard, L.; Matadi Boumbimba, R.; Rusinek, A.

    2018-03-01

    This paper concerns an experimental investigation of Polycarbonate and Poly (methyl methacrylate) compressive behavior from low to high strain rates. Experiments were conducted from 0.001/s to ≈ 5000/s for PC and from 0.001/s to ≈ 2000/s for PMMA. The true strain-stress behavior is established and analyzed at various stain rates. Both PC and PMMA mechanical behavior appears as known, to be strain rate and temperature dependent. The DSGZ model is selected for modelling the strain-stress curves while the yield stress is reproduced using the cooperative model and a modified Eyring equation based on Eyring first process theory. All the three models predictions are in agreement with experiments performed on PC and PMMA.

  16. Fundamental approaches to predicting stress corrosion: 'Quantitative micro-nano' (QMN) approach to predicting stress corrosion cracking in water cooled nuclear plants

    International Nuclear Information System (INIS)

    Staehle, R.W.

    2010-01-01

    This paper describes the modeling and experimental studies of stress corrosion cracking with full disciplinary set at the atomic level. Its objective is to develop an intellectual structure for quantitative prediction of stress corrosion cracking in water cooled reactors.

  17. The influence of the anisotropic stress state on the intermediate strain properties of granular material

    KAUST Repository

    Goudarzy, M.; Kö nig, D.; Santamarina, Carlos; Schanz, T.

    2017-01-01

    This paper shows the effect of anisotropic stress state on intermediate strain properties of cylindrical samples containing spherical glass particles. Tests were carried out with the modified resonant column device available at Ruhr

  18. Analysis of the Temperature and Strain-Rate Dependences of Strain Hardening

    Science.gov (United States)

    Kreyca, Johannes; Kozeschnik, Ernst

    2018-01-01

    A classical constitutive modeling-based Ansatz for the impact of thermal activation on the stress-strain response of metallic materials is compared with the state parameter-based Kocks-Mecking model. The predicted functional dependencies suggest that, in the first approach, only the dislocation storage mechanism is a thermally activated process, whereas, in the second approach, only the mechanism of dynamic recovery is. In contradiction to each of these individual approaches, our analysis and comparison with experimental evidence shows that thermal activation contributes both to dislocation generation and annihilation.

  19. Relaxation of thermal stress by dislocation motion in passivated metal interconnects

    NARCIS (Netherlands)

    Nicola, L; Van der Giessen, E; Needleman, A

    The development and relaxation of stress in metal interconnects strained by their surroundings (substrate and passivation layers) is predicted by a discrete dislocation analysis. The model is based on a two-dimensional plane strain formulation, with deformation fully constrained in the line

  20. Determination of Stress-Strain Characteristics of Railhead Steel using Image Analysis

    OpenAIRE

    Bandula-Heva; T.; Dhanasekar; M.

    2011-01-01

    True stress-strain curve of railhead steel is required to investigate the behaviour of railhead under wheel loading through elasto-plastic Finite Element (FE) analysis. To reduce the rate of wear, the railhead material is hardened through annealing and quenching. The Australian standard rail sections are not fully hardened and hence suffer from non-uniform distribution of the material property; usage of average properties in the FE modelling can potentially induce error in the predic...