WorldWideScience

Sample records for stress-laminated deck bridge

  1. Field performance of timber bridges. 4, Graves Crossing stress-laminated deck bridge

    Science.gov (United States)

    J. P. Wacker; M. A. Ritter

    The Graves Crossing bridge was constructed October 1991 in Antrim County, Michigan, as part of the demonstration timber bridge program sponsored by the USDA Forest Service. The bridge is a two-span continuous, stress-laminated deck superstructure and it is 36-ft long and 26-ft wide. The bridge is one of the first stress-laminated deck bridges to be built of sawn lumber...

  2. Field performance of timber bridges. 8, Lynches Woods Park stress-laminated deck bridge

    Science.gov (United States)

    J. P. Wacker; M. A. Ritter; D. Conger

    The Lynches Woods Park bridge was constructed during the summer of 1990 in Newberry, South Carolina. It is a single-span, single-lane, stress-laminated deck superstructure that measures approximately 30 ft long, 16 ft wide, and 14 in. deep. The bridge is unique in that is one of the first known stress-laminated deck bridges to be constructed of Southern Pine lumber...

  3. Field performance of timber bridges. 9, Big Erick`s stress-laminated deck bridge

    Science.gov (United States)

    J. A. Kainz; J. P. Wacker; M. Nelson

    The Big Erickas bridge was constructed during September 1992 in Baraga County, Michigan. The bridge is 72 ft long, 16 ft wide, and consists of three simple spans: two stress-laminated deck approach spans and a stress-laminated box center span. The bridge is unique in that it is one of the first known stress-laminated timber bridge applications to use Eastern Hemlock...

  4. Field performance of timber bridges. 7, Connell Lake stress-laminated deck bridge

    Science.gov (United States)

    L. E. Hislop; M. A. Ritter

    The Connell Lake bridge was constructed in early 1991 on the Tongass National Forest, Alaska, as a demonstration bridge under the Timber Bridge Initiative. The bridge is a stress-laminated deck structure with an approximate 36-ft length and 18-ft width and is the first known stress-laminated timber bridge constructed in Alaska. Performance of the bridge was monitored...

  5. Field performance of timber bridges. 6, Hoffman Run stress-laminated deck bridge

    Science.gov (United States)

    M. A. Ritter; P. D. Hilbrich Lee; G. J. Porter

    The Hoffman Run bridge, located just outside Dahoga, Pennsylvania, was constructed in October 1990. The bridge is a simple-span, single-lane, stress-laminated deck superstructure that is approximately 26 ft long and 16 ft wide. It is the second stress-laminated timber bridge to be constructed of hardwood lumber in Pennsylvania. The performance of the bridge was...

  6. Field performance of timber bridges. 5, Little Salmon Creek stress-laminated deck bridge

    Science.gov (United States)

    M. A. Ritter; J. A. Kainz; G. J. Porter

    The Little Salmon Creek bridge was constructed in November 1988 on the Allegheny National Forest in Pennsylvania. The bridge is a simple span, single-lane, stress-laminated deck superstructure that is approximately 26-ft long and 16-ft wide. The bridge is unique in that it is the first known stress-laminated timber bridge to be constructed of hardwood lumber. The...

  7. Field performance of timber bridges. 17, Ciphers stress-laminated deck bridge

    Science.gov (United States)

    James P. Wacker; James A. Kainz; Michael A. Ritter

    In September 1989, the Ciphers bridge was constructed within the Beltrami Island State Forest in Roseau County, Minnesota. The bridge superstructure is a two-span continuous stress-laminated deck that is approximately 12.19 m long, 5.49 m wide, and 305 mm deep (40 ft long, 18 ft wide, and 12 in. deep). The bridge is one of the first to utilize red pine sawn lumber for...

  8. Field performance of timber bridges. 10, Sanborn Brook stress-laminated deck bridge

    Science.gov (United States)

    P. D. Hilbrich Lee; J. P. Wacker; M. A. Ritter

    The Sanborn Brook bridge was constructed in August 1991, 10 miles northeast of Concord, New Hampshire, as part of the demonstration timber bridge program of the USDA Forest Service. The bridge is a simple-span, double-lane, stress-laminated deck superstructure constructed from Southern Pine lumber and is approximately 25 ft long and 28 ft wide with a skew of 14 degrees...

  9. Field performance of timber bridges. 15, Pueblo County, Colorado, stress-laminated deck bridge

    Science.gov (United States)

    L. E. Hislop

    The Pueblo County 204B bridge was constructed in March 1990 in Pueblo, Colorado, as a demonstration bridge under the USDA Forest Service Timber Bridge Initiative. The stress-laminated deck superstructure is approximately 10 m long, 9 m wide, and 406 mm deep, with a skew of 10 degrees. Performance monitoring was conducted for 3 years, beginning at...

  10. Field performance of timber bridges. 13, Mohawk Canal stress-laminated bridge

    Science.gov (United States)

    P. D. Hilbrich Lee; X. Lauderdale

    The Mohawk Canal bridge was constructed in August 1994, just outside Roll, Arizona. It is a simple-span, double-lane, stress-laminated deck superstructure, approximately 6.4 m (21 ft) long and 10.4 m (34 ft) wide and constructed with Combination 16F-V3 Douglas Fir glued-laminated timber beam laminations. The performance of the bridge was monitored continuously for 2...

  11. Performance of stress-laminated timber highway bridges in cold climates

    Science.gov (United States)

    James P. Wacker

    2009-01-01

    This paper summarizes recent laboratory and field data studies on thermal performance of stress-laminated timber highway bridges. Concerns about the reliability of stress-laminated deck bridges when exposed to sub-freezing temperatures triggered several investigations. Two laboratory studies were conducted to study the effects of wood species, preservative, moisture...

  12. Field performance of stress-laminated timber bridges on low-volume roads

    Science.gov (United States)

    M. A. Ritter; J. P. Wacker; S. R. Duwadi

    1995-01-01

    Stress-laminated timber bridges were first introduced in the United States in the late 1980s. Since that time, the concept of stress-laminating has received a great deal of attention and hundreds of bridges have been built. Most of these bridges are located on rural low-volume roads. To evaluate the performance of stress-laminated bridges, the United States Department...

  13. Analysis of Biaxially Stressed Bridge Deck Plates

    DEFF Research Database (Denmark)

    Jönsson, Jeppe; Bondum, Tommi Højer

    2012-01-01

    The ultimate state analysis of bridge deck plates at the intersection zone between main girders and transverse beams is complicated by biaxial membrane stresses, which may be in compression or tension in either direction depending on the bridge configuration and the specific location. This paper...

  14. Dynamic assessment of bridge deck performance considering realistic bridge-traffic interaction

    Science.gov (United States)

    2017-09-01

    Concrete bridge decks are directly exposed to daily traffic loads and may experience some surface cracking caused by excessive stress or fatigue accumulation, which requires repair or replacement. Among typical bridges in North America, bridge decks ...

  15. Field performance of timber bridges. 16, North Siwell Road stress-laminated bridge

    Science.gov (United States)

    J. A. Kainz

    The North Siwell Road bridge was constructed during December 1994 in Hinds County, Mississippi. The bridge is a single-span, stress-laminated T-beam structure that measures 9.1 m (30 ft) long and 8.7 m (28.5 ft) wide. Performance of the bridge was monitored for 24 months, beginning at the time of installation. Monitoring involved gathering and evaluating data relative...

  16. Field performance of timber bridges. 12, Christian Hollow stress-laminated box-beam bridge

    Science.gov (United States)

    J. P. Wacker; S. C. Catherman; R. G. Winnett

    In January 1992, the Christian Hollow bridge was constructed in Steuben County, New York. The bridge is a single-span, stress-laminated box-beam superstructure that is 9.1 m long, 9.8 m wide, and 502 mm deep (30 ft long, 32 ft wide, and 19-3/4 in. deep). The performance of the bridge was continuously monitored for 28 months, beginning shortly after installation....

  17. Field performance of timber bridges. 11, Spearfish Creek stress-laminated box-beam bridge

    Science.gov (United States)

    J. P. Wacker; M. A. Ritter; K. Stanfill-McMillan

    The Spearfish Creek bridge was constructed in 1992 in Spearfish, South Dakota. It is a single-span, stress-laminated, box-beam superstructure. Performance of the bridge is being monitored for 5 years, beginning at installation. This report summarizes results for the first 3-1/2 years of monitoring and includes information on the design, construction, and field...

  18. Steel plate reinforcement of orthotropic bridge decks

    NARCIS (Netherlands)

    Teixeira de Freitas, S.

    2012-01-01

    The PhD research is focused on the reinforcement of fatigue cracked orthotropic steel bridge decks (OBD) by adding a second steel plate to the existing deck. The main idea is to stiffen the existing deck plate, which will reduce the stresses at the fatigue sensitive details and extend the fatigue

  19. Pennsylvania hardwood timber bridges : field performance after 10 years

    Science.gov (United States)

    James P. Wacker; Carlito Calil

    2004-01-01

    Several hardwood demonstration timber bridges were built by the Pennsylvania Department of Transportation in the early nineteen nineties. These bridge superstructures are of the recently developed stress-laminated deck design-type using Red Oak lumber laminations that were pressure-treated with creosote preservatives. This paper will describe the data acquisition...

  20. STUDY OF BRIDGE DECK A REVIEW

    OpenAIRE

    MISS. KSHITIJA S. BALWAN , MR. V. G. KHURD , MR. S. S. CHOUGULE

    2018-01-01

    The objective of this study was to understand the meaning of bridge deck. To know the different forms of decks used in bridge design. To understand different methods used for analysis of deck and study of box girder and its evolution

  1. Fatigue Assessment of Full-Scale Retrofitted Orthotropic Bridge Decks

    NARCIS (Netherlands)

    Teixeira De Freitas, S.; Kolstein, M.H.; Bijlaard, F.S.K.

    2017-01-01

    Full-scale fatigue tests were performed on two retrofitted orthotropic bridge decks (OBDs). The retrofitting systems consist of adding a second steel plate on the top of the existing deck. The aim is to reduce the stresses at the fatigue-sensitive details and therefore extend the fatigue life of

  2. Hydrodynamic forces on inundated bridge decks

    Science.gov (United States)

    2009-05-01

    The hydrodynamic forces experienced by an inundated bridge deck have great importance in the design of bridges. Specifically, the drag force, lift force, and the moment acting on the bridge deck under various levels of inundation and a range of flow ...

  3. Abrasion-resistant concrete mix designs for precast bridge deck panels.

    Science.gov (United States)

    2010-08-01

    The report documents laboratory investigations undertaken to develop high performance concrete (HPC) for precast and pre-stressed bridge deck components that would reduce the life-cycle cost of bridges by improving the studded tire wear (abrasion) re...

  4. Live load distribution on longitudinal glued-laminated timber deck bridges : final report : conclusions and recommendations

    Science.gov (United States)

    Fouad Fanous; Jeremy May; Terry Wipf; Michael Ritter

    2010-01-01

    Over the past few years the United States Department of Agriculture (USDA), Forest Products Laboratory (FPL), and the Federal Highway Administration (FHWA) have supported several research programs. This paper is a result of a study sponsored by FPL, with the objective of determining how truckloads are distributed to the deck panels of a longitudinal glued-laminated...

  5. Renovation techniques for fatigue cracked orthotropic steel bridge decks

    NARCIS (Netherlands)

    de Jong, F.B.P.

    2007-01-01

    This dissertation presents the research into renovation techniques for orthotropic steel bridge decks. These techniques are needed to solve fatigue problems in the decks of these bridges, as several fatigue cracks have been detected in the deck structure of these bridges the last decade. A

  6. Linear Cracking in Bridge Decks

    Science.gov (United States)

    2018-03-01

    Concrete cracking in bridge decks remains an important issue relative to deck durability. Cracks can allow increased penetration of chlorides, which can result in premature corrosion of the reinforcing steel and subsequent spalling of the concrete de...

  7. Fiber reinforced polymer bridge decks : [technical summary].

    Science.gov (United States)

    2011-01-01

    A number of researchers have addressed the use of Fiber Reinforced Polymer (FRP) deck as a replacement solution for deteriorated bridge decks made of traditional materials. The use of new, advanced materials such as FRP is advantageous when the bridg...

  8. Investigation of Aerodynamic Interference between Twin Deck Bridges

    Energy Technology Data Exchange (ETDEWEB)

    Sitek, M. A. [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division. Transportation Research and Analysis Computing Center (TRACC); Bojanowski, C. [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division. Transportation Research and Analysis Computing Center (TRACC); Lottes, S. A. [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division. Transportation Research and Analysis Computing Center (TRACC)

    2016-05-01

    Construction of a twin bridge can be a cost effective and minimally disruptive way to increase capacity when an existing bridge is not near the end of its service life. With ever growing vehicular traffic, when demand approaches the capacity of many existing roads and bridges. Remodeling a structure with an insufficient number of lanes can be a good solution in case of smaller and less busy bridges. Closing down or reducing traffic on crossings of greater importance for the construction period, however, can result in major delays and revenue loss for commerce and transportation as well as increasing the traffic load on alternate route bridges. Multiple-deck bridges may be the answer to this issue. A parallel deck can be built next to the existing one, without reducing the flow. Additionally, a new bridge can be designed as a twin or multi-deck structure. Several such structures have been built throughout the United States, among them: - The New NY Bridge Project - the Tappan Zee Hudson River Crossing, - SR-182 Columbia River Bridge, - The Thaddeus Kosciusko Bridge (I-87), - The Allegheny River Bridge, Pennsylvania, which carries I76, - Fred Hartman Bridge, TX, see Figure 1.2. With a growing number of double deck bridges, additional, more detailed, studies on the interaction of such bridge pairs in windy conditions appears appropriate. Aerodynamic interference effects should be examined to assure the aerodynamic stability of both bridges. There are many studies on aerodynamic response of single deck bridges, but the literature on double-deck structures is not extensive. The experimental results from wind tunnels are still limited in number, as a parametric study is required, they can be very time consuming. Literature review shows that some investigation of the effects of gap-width and angle of wind incidence has been done. Most of the CFD computational studies that have been done were limited to 2D simulations. Therefore, it is desirable to investigate twin decks

  9. Hybrid FRP-concrete bridge deck system final report II : long term performance of hybrid FRP-concrete bridge deck system.

    Science.gov (United States)

    2009-06-01

    This report describes the investigation of the long term structural performance of a : hybrid FRP-concrete (HFRPC) bridge deck on steel girders. The study aimed at : assessing three long term aspects pertaining to the HFRPC bridge deck: (1) creep : c...

  10. Exodermic bridge deck performance evaluation.

    Science.gov (United States)

    2010-07-01

    In 1998, the Wisconsin DOT completed a two"leaf bascule bridge in Green Bay with an exodermic deck system. The exodermic deck consisted of 4.5"in thick cast"in"place reinforced concrete supported by a 5.19"in tall unfilled steel grid. The concrete an...

  11. Service Life and Maintenance Modelling of Reinforced Concrete Bridge Decks

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    Recent research in the area of assessment and maintenance of reinforced concrete bridge decks is presented in this paper. Three definitions of service lifetime are introduced and the difficult problem of assessing the service life is discussed. A stochastic modelling of corrosion and corrosion...... cracking is introduced and the site dependency of corrosion is stressed. Finally, a recently developed optimal repair strategy for bridges is briefly explained....

  12. Gust loading on streamlined bridge decks

    DEFF Research Database (Denmark)

    Larose, Guy; Mann, Jakob

    1998-01-01

    The current analytical description of the buffeting action of wind on long-span bridges is based on the strip assumption. However, recent experiments on closed-box girder bridge decks have shown that this assumption is not valid and is the source of an important part of the error margin...... of the analytical prediction methods. In this paper, an analytical model that departs from the strip assumption is used to describe the gust loading on a thin airfoil. A parallel is drawn between the analytical model and direct measurements of gust loading on motionless closed-box girder bridge decks. Empirical...

  13. Fatigue analysis and life prediction of composite highway bridge decks under traffic loading

    Directory of Open Access Journals (Sweden)

    Fernando N. Leitão

    Full Text Available Steel and composite (steel-concrete highway bridges are currently subjected to dynamic actions of variable magnitude due to convoy of vehicles crossing on the deck pavement. These dynamic actions can generate the nucleation of fractures or even their propagation on the bridge deck structure. Proper consideration of all of the aspects mentioned pointed our team to develop an analysis methodology with emphasis to evaluate the stresses through a dynamic analysis of highway bridge decks including the action of vehicles. The design codes recommend the application of the curves S-N associated to the Miner's damage rule to evaluate the fatigue and service life of steel and composite (steel-concrete bridges. In this work, the developed computational model adopted the usual mesh refinement techniques present in finite element method simulations implemented in the ANSYS program. The investigated highway bridge is constituted by four longitudinal composite girders and a concrete deck, spanning 40.0m by 13.5m. The analysis methodology and procedures presented in the design codes were applied to evaluate the fatigue of the bridge determining the service life of the structure. The main conclusions of this investigation focused on alerting structural engineers to the possible distortions, associated to the steel and composite bridge's service life when subjected to vehicle's dynamic actions.

  14. Dynamic assessment of bridge deck performance considering realistic bridge-traffic interaction : research brief

    Science.gov (United States)

    2017-09-01

    This study is to develop simulation methodology to conduct the dynamic assessment of bridge deck performance subjected to traffic. Concrete bridge decks are exposed to daily traffic loads and may experience some surface cracking caused by excessive s...

  15. Static and fatigue investigation of second generation steel free bridge decks

    International Nuclear Information System (INIS)

    Klowak, C.; Memon, Amjad H.; Mufti, Aftab A.

    2006-01-01

    This paper outlines the static and fatigue behavior of two different cast-in-place second generation steel-free bridge decks, which are: hybrid carbon fiber reinforced polymer (CFRP); and glass fiber reinforced polymer (GFRP) and steel strap design. Although cast monolithically, the first deck slab was divided into three segments with different reinforcement configurations. All three segments were tested under a 222kN cyclic loading to investigate fatigue behavior. The second bridge deck comprised an internal panel and two cantilevers and was equipped with a civionics system. The internal panel static test that this paper deals with is useful in the development of fatigue theory derived from fatigue testing of the first bridge deck. Test results form the cyclic loading of the first bridge deck indicated that the cross-sectional area of the reinforcement used in the test bridge deck can be reduced by 40% based on the reinforcement provided in the deck under service loads. The hybrid system also reduced the development of longitudinal crack widths to approximately 0.4 mm under service conditions, compared to the cracks that occurred approximately halfway between adjacent bridge girders that were determined to be roughly 1 mm in several first generation steel-free bridge decks constructed in Canada. Civionics, also discussed in the paper, is a new term coined from Civil-Electronics, which is the application of electronics to civil structures. The Civionics Specifications (2004) developed by ISIS Canada researchers are a helpful design tool for engineers and contractors to develop civionics and structural health monitoring systems for civil infrastructure that will last the lifetime of a structure. The use of civionics for the second test bridge deck ensured the survival of 100% of the 63 internal sensors throughout the rigors of the construction and casting of the deck. (author)

  16. Causes of Early Age Cracking on Concrete Bridge Deck Expansion Joint Repair Sections

    Directory of Open Access Journals (Sweden)

    Jared R. Wright

    2014-01-01

    Full Text Available Cracking of newly placed binary Portland cement-slag concrete adjacent to bridge deck expansion dam replacements has been observed on several newly rehabilitated sections of bridge decks. This paper investigates the causes of cracking by assessing the concrete mixtures specified for bridge deck rehabilitation projects, as well as reviewing the structural design of decks and the construction and curing methods implemented by the contractors. The work consists of (1 a comprehensive literature review of the causes of cracking on bridge decks, (2 a review of previous bridge deck rehabilitation projects that experienced early-age cracking along with construction observations of active deck rehabilitation projects, and (3 an experimental evaluation of the two most commonly used bridge deck concrete mixtures. Based on the literature review, the causes of concrete bridge deck cracking can be classified into three categories: concrete material properties, construction practices, and structural design factors. The most likely causes of the observed early-age cracking were found to be inadequate curing and failure to properly eliminate the risk of plastic shrinkage cracking. These results underscore the significance of proper moist curing methods for concrete bridge decks, including repair sections. This document also provides a blueprint for future researchers to investigate early-age cracking of concrete structures.

  17. Impact of overweight vehicles (with heavy axle loads) on bridge deck deterioration.

    Science.gov (United States)

    2012-03-01

    Bridge deck slabs develop compressive stresses from global flexural deformation and locally from high-level : wheel loads when it is subjected to overweight trucks. This study quantified the impact of overweight vehicles : with heavy axle loads on br...

  18. Longer Lasting Bridge Deck Overlays

    Science.gov (United States)

    2018-04-01

    The objective of this report is to determine the most effective method for bridge deck overlay construction and repair by assessing current practices; examining new products and technologies; and reviewing NCHRP (National Cooperative Highway Research...

  19. Rapid replacement of bridge deck expansion joints study - phase I.

    Science.gov (United States)

    2014-12-01

    Bridge deck expansion joints are used to allow for movement of the bridge deck due to thermal expansion, dynamics loading, and : other factors. More recently, expansion joints have also been utilized to prevent the passage of winter de-icing chemical...

  20. Simple model of cable-stayed bridge deck subjected to static wind loading

    Science.gov (United States)

    Kang, Yi-Lung; Wang, Yang Cheng

    1997-05-01

    Cable-stayed bridges have been known since 18th century with aesthetics design. The structural system and the structural behavior are significantly different from those of continuous bridges. Compared to continuous bridge, cable- stayed bridges have more flexure bridge deck than those of continuous bridges.On the other hand, cable-stayed bridges have less stiffness to resist wind loading especially for lateral loads. The first considering of bridge engineering is safety. In 1940's, Tacoma Narrows Suspension Bridge destroyed by wind loading is a good example even though it is not a cable-stayed bridge. After the bridge was destroyed, a lot of research articles have been published regarding cable supported bridge subjected to wind loading. In recent days, high strength materials have been served. The bridge engineers use the advantages to expand the span length of cable-stayed bridges. Due to the span length increased and the use of high strength materials, cable- stayed bridges have more significant nonlinear behavior subjected to wind loading. In this paper, a slice bridge deck of cable-stayed bridge connected to internal support cables is considered. The deck has been considered to be subjected to lateral static wind loading. Since cables can not take compressive force, the deck has strongly nonlinear behavior even though the materials are linear elastic. Several primary load combinations have ben considered in this paper such as the bridge deck supposed to be moved horizontally without rotation or the bridge deck supposed to be moved horizontally with rotational deformation. The mathematical formulas and the numerical solutions are found and represented in graphical forms. The results can be provided to bridge designers and researchers for further study of this type of structure subjected to wind loading.

  1. Modelling and fatigue life assessment of orthotropic bridge deck details using FEM

    Czech Academy of Sciences Publication Activity Database

    Aygül, M.; AL-Emrani, M.; Urushadze, Shota

    2012-01-01

    Roč. 40, July (2012), s. 129-142 ISSN 0142-1123 R&D Projects: GA MŠk(CZ) 7E08098 Grant - others:evropská komise(XE) RFSR-CT-2008-00033 (BRIFAG) Institutional support: RVO:68378297 Keywords : orthotropic bridge deck * open ribs * structural hot spot stress * effective notch stress Subject RIV: JM - Building Engineering Impact factor: 1.976, year: 2012

  2. PARAMETRIC STUDY OF SKEW ANGLE ON BOX GIRDER BRIDGE DECK

    OpenAIRE

    Shrikant D. Bobade *, Dr. Valsson Varghese

    2016-01-01

    Box girder bridge deck, is the most common type of bridges in world and India, it consists of several Slab or girders. The span in the direction of the roadway and connected across their tops and bottoms by a thin continuous structural stab, the longitudinal box girders can be made of steel or concrete. The Simple supported single span concrete bridge deck is presented in present study. Skewed bridges are suitable in highway design when the geometry of straight bridges is not possible. The sk...

  3. T-section glulam timber bridge modules : modeling and performance

    Science.gov (United States)

    Paul A. Morgan; Steven E. Taylor; Michael A. Ritter; John M. Franklin

    1999-01-01

    This paper describes the design, modeling, and testing of two portable timber bridges, each consisting of two noninterconnected longitudinal glued-laminated timber (glulam) deck panels 1.8 m (6 ft) wide. One bridge is 12.2 m (40 ft) long while the other bridge is 10.7 m (35 ft) long. The deck panels are fabricated in a unique double-tee cross section. The bridges...

  4. Analysis, prediction, and case studies of early-age cracking in bridge decks

    Science.gov (United States)

    ElSafty, Adel; Graeff, Matthew K.; El-Gharib, Georges; Abdel-Mohti, Ahmed; Mike Jackson, N.

    2016-06-01

    Early-age cracking can adversely affect strength, serviceability, and durability of concrete bridge decks. Early age is defined as the period after final setting, during which concrete properties change rapidly. Many factors can cause early-age bridge deck cracking including temperature change, hydration, plastic shrinkage, autogenous shrinkage, and drying shrinkage. The cracking may also increase the effect of freeze and thaw cycles and may lead to corrosion of reinforcement. This research paper presents an analysis of causes and factors affecting early-age cracking. It also provides a tool developed to predict the likelihood and initiation of early-age cracking of concrete bridge decks. Understanding the concrete properties is essential so that the developed tool can accurately model the mechanisms contributing to the cracking of concrete bridge decks. The user interface of the implemented computer Excel program enables the user to input the properties of the concrete being monitored. The research study and the developed spreadsheet were used to comprehensively investigate the issue of concrete deck cracking. The spreadsheet is designed to be a user-friendly calculation tool for concrete mixture proportioning, temperature prediction, thermal analysis, and tensile cracking prediction. The study also provides review and makes recommendations on the deck cracking based mainly on the Florida Department of Transportation specifications and Structures Design Guidelines, and Bridge Design Manuals of other states. The results were also compared with that of other commercially available software programs that predict early-age cracking in concrete slabs, concrete pavement, and reinforced concrete bridge decks. The outcome of this study can identify a set of recommendations to limit the deck cracking problem and maintain a longer service life of bridges.

  5. Experimental Analysis of Stiffness of the Riveted Steel Railway Bridge Deck Members’ Joints

    Directory of Open Access Journals (Sweden)

    Gocál Jozef

    2014-12-01

    Full Text Available The paper deals with the real behaviour of the riveted steel railway bridge deck members’ connections with respect to their bending stiffness. Attention is paid to the stringer-to-cross beam connection as well as the cross beam-to-main girder connection. The stiffness of the two connections is investigated on the basis of evaluation of the experimentally determined stress response of the observed structural members to the actual traffic load on an existing railway bridge.

  6. Issues in bridge deck damage evaluation using aerial photos

    Science.gov (United States)

    Natarajan, M.; Chen, S. E.; Boyle, C.; Martin, E.; Hauser, E.

    2012-04-01

    Small format aerial photography (SFAP) with low flying technique is proposed for damage evaluation of bridge decks. High resolution images obtained using under-belly photography can be used to quantify the various bridge deck problems. The conventional truck-mount or vehicle-mount deck imaging technologies require a large number of image samples. Hence the physical scanning is time consuming and it is also challenging consider the size and location of a bridge. Aerial imaging overcomes these issues, but they face different kinds of challenges that are posed by obstacles such as shadow from trees, power lines and vehicles, signs and luminaries structures. The image resolution uncertainty, which is a function of the pilot skills and flying conditions, may also add additional challenges to aerial imaging technique. Hence different image processing tools have to be integrated into a single package to achieve the desired task. This paper summarizes the challenges faced and the preliminary results are presented and discussed.

  7. Vertical impedance measurements on concrete bridge decks for assessing susceptibility of reinforcing steel to corrosion

    Science.gov (United States)

    Bartholomew, Paul D.; Guthrie, W. Spencer; Mazzeo, Brian A.

    2012-08-01

    Corrosion is a pressing problem for aging concrete infrastructure, especially bridge decks. Because of its sensitivity to factors that affect corrosion of reinforcing steel in concrete, resistivity is an important structural health indicator for reinforced concrete structures. In this research, an instrument was developed to measure vertical impedance on concrete bridge decks. Measurements of vertical impedance on slabs prepared in the laboratory, on slabs removed from decommissioned bridge decks, and on an in-service bridge deck in the field demonstrate the utility of the new apparatus.

  8. Quantifying reinforced concrete bridge deck deterioration using ground penetrating radar

    Science.gov (United States)

    Martino, Nicole Marie

    Bridge decks are deteriorating at an alarming rate due to corrosion of the reinforcing steel, requiring billions of dollars to repair and replace them. Furthermore, the techniques used to assess the decks don't provide enough quantitative information. In recent years, ground penetrating radar (GPR) has been used to quantify deterioration by comparing the rebar reflection amplitudes to technologies serving as ground truth, because there is not an available amplitude threshold to distinguish healthy from corroded areas using only GPR. The goal of this research is to understand the relationship between GPR and deck deterioration, and develop a model to determine deterioration quantities with GPR alone. The beginning of this research determines that not only is the relationship between GPR and rebar corrosion stronger than the relationship between GPR and delaminations, but that the two are exceptionally correlated (90.2% and 86.6%). Next, multiple bridge decks were assessed with GPR and half-cell potential (HCP). Statistical parameters like the mean and skewness were computed for the GPR amplitudes of each deck, and coupled with actual corrosion quantities based on the HCP measurements to form a future bridge deck model that can be used to assess any deck with GPR alone. Finally, in order to understand exactly which component of rebar corrosion (rust, cracking or chloride) attenuates the GPR data, computational modeling was carried out to isolate each variable. The results indicate that chloride is the major contributor to the rebar reflection attenuation, and that computational modeling can be used to accurately simulate GPR attenuation due to chloride.

  9. Flow field analysis of a pentagonal-shaped bridge deck by unsteady RANS

    Directory of Open Access Journals (Sweden)

    Md. Naimul Haque

    2016-01-01

    Full Text Available Long-span cable-stayed bridges are susceptible to dynamic wind effects due to their inherent flexibility. The fluid flow around the bridge deck should be well understood for the efficient design of an aerodynamically stable long-span bridge system. In this work, the aerodynamic features of a pentagonal-shaped bridge deck are explored numerically. The analytical results are compared with past experimental work to assess the capability of two-dimensional unsteady RANS simulation for predicting the aerodynamic features of this type of deck. The influence of the bottom plate slope on aerodynamic response and flow features was investigated. By varying the Reynolds number (2 × 104 to 20 × 104 the aerodynamic behavior at high wind speeds is clarified.

  10. Precision monitoring of bridge deck curvature change during replacement.

    Science.gov (United States)

    2016-05-01

    This project was focused on development and deployment of a system for monitoring vertical : displacement in bridge decks and bridge spans. The system uses high precision wireless inclinometer : sensors to monitor inclinations at various points of a ...

  11. A Highly Accurate and Efficient Analytical Approach to Bridge Deck Free Vibration Analysis

    Directory of Open Access Journals (Sweden)

    D.J. Gorman

    2000-01-01

    Full Text Available The superposition method is employed to obtain an accurate analytical type solution for the free vibration frequencies and mode shapes of multi-span bridge decks. Free edge conditions are imposed on the long edges running in the direction of the deck. Inter-span support is of the simple (knife-edge type. The analysis is valid regardless of the number of spans or their individual lengths. Exact agreement is found when computed results are compared with known eigenvalues for bridge decks with all spans of equal length. Mode shapes and eigenvalues are presented for typical bridge decks of three and four span lengths. In each case torsional and non-torsional modes are studied.

  12. Structural Performance Evaluation of Tsing MA Bridge Deck Using Long-Term Monitoring Data

    Science.gov (United States)

    Ni, Y. Q.; Xia, H. W.; Ko, J. M.

    The Tsing Ma Bridge in Hong Kong is suspension bridge with a main span of 1377 m carrying both highway and railway traffic. After completing its construction in 1997, the bridge was instrumented by the Hong Kong SAR Government Highways Department with a long-term structural health monitoring system comprising about 300 sensors permanently installed on the bridge. As part of this monitoring system, a total of 110 strain gauges have been installed to measure strain at the deck cross-sections and bearings. In this study, a method for real-time structural performance evaluation of the stiffening deck system making use of long-term strain measurement data is proposed and verified using the strain monitoring data from a typical deck cross-section of the Tsing Ma Bridge.

  13. Multidisciplinary health monitoring of a steel bridge deck structure

    NARCIS (Netherlands)

    Pahlavan, P.L.; Pijpers, R.J.M.; Paulissen, J.H.; Hakkesteegt, H.C.; Jansen, T.H.

    2013-01-01

    Fatigue cracks in orthotropic bridge decks are an important cause for the necessary renovation of existing bridges. Parallel utilization of various technologies based on different physical sensing principles can potentially maximize the efficiency of structural health monitoring (SHM) systems for

  14. Recommendations for Longitudinal Post-Tensioning in Full-Depth Precast Concrete Bridge Deck Panels

    OpenAIRE

    Bowers, Susan Elizabeth

    2007-01-01

    Full-depth precast concrete panels offer an efficient alternative to traditional cast-in-place concrete for replacement or new construction of bridge decks. Research has shown that longitudinal post-tensioning helps keep the precast bridge deck in compression and avoid problems such as leaking, cracking, spalling, and subsequent rusting on the beams at the transverse panel joints. Current design recommendations suggest levels of initial compression for precast concrete decks in a very limit...

  15. Hybrid FRP-concrete bridge deck system final report I : development and system performance validation.

    Science.gov (United States)

    2009-10-01

    In this study, the concept of the hybrid FRP-concrete structural systems was applied to both bridge : superstructure and deck systems. Results from the both experimental and computational analysis for : both the hybrid bridge superstructure and deck ...

  16. Optimizing rib width to height and rib spacing to deck plate thickness ratios in orthotropic decks

    Directory of Open Access Journals (Sweden)

    Abdullah Fettahoglu

    2016-12-01

    Full Text Available Orthotropic decks are composed of deck plate, ribs, and cross-beams and are frequently used in industry to span long distances, due to their light structures and load carrying capacities. Trapezoidal ribs are broadly preferred as longitudinal stiffeners in design of orthotropic decks. They supply the required stiffness to the orthotropic deck in traffic direction. Trapezoidal ribs are chosen in industrial applications because of their high torsional and buckling rigidity, less material and welding needs. Rib width, height, spacing, thickness of deck plate are important parameters for designing of orthotropic decks. In the scope of this study, rib width to height and rib spacing to deck plate thickness ratios are assessed by means of the stresses developed under different ratios of these parameters. For this purpose a FE-model of orthotropic bridge is generated, which encompasses the entire bridge geometry and conforms to recommendations given in Eurocode 3 Part 2. Afterwards necessary FE-analyses are performed to reveal the stresses developed under different rib width to height and rib spacing to deck plate thickness ratios. Based on the results obtained in this study, recommendations regarding these ratios are provided for orthotropic steel decks occupying trapezoidal ribs.

  17. Rapid multichannel impact-echo scanning of concrete bridge decks from a continuously moving platform

    Science.gov (United States)

    Mazzeo, Brian A.; Larsen, Jacob; McElderry, Joseph; Guthrie, W. Spencer

    2017-02-01

    Impact-echo testing is a non-destructive evaluation technique for determining the presence of defects in reinforced concrete bridge decks based on the acoustic response of the bridge deck when struck by an impactor. In this work, we build on our prior research with a single-channel impactor to demonstrate a seven-channel impact-echo scanning system with independent control of the impactors. This system is towed by a vehicle and integrated with distance measurement for registering the locations of the impacts along a bridge deck. The entire impact and recording system is computer-controlled. Because of a winch system and hinged frame construction of the apparatus, setup, measurement, and take-down of the apparatus can be achieved in a matter of minutes. Signal processing of the impact responses is performed on site and can produce a map of delaminations immediately after data acquisition. This map can then be used to guide other testing and/or can be referenced with the results of other testing techniques to facilitate comprehensive condition assessments of concrete bridge decks. This work demonstrates how impact-echo testing can be performed in a manner that makes complete bridge deck scanning for delaminations rapid and practical.

  18. Shrinkage and durability study of bridge deck concrete.

    Science.gov (United States)

    2010-12-01

    The Mississippi Department of Transportation is incorporating changes to material : specifications and construction procedures for bridge decks in an effort to reduce shrinkage : cracking. These changes are currently being implemented into a limited ...

  19. A new multiconstraint method for determining the optimal cable stresses in cable-stayed bridges.

    Science.gov (United States)

    Asgari, B; Osman, S A; Adnan, A

    2014-01-01

    Cable-stayed bridges are one of the most popular types of long-span bridges. The structural behaviour of cable-stayed bridges is sensitive to the load distribution between the girder, pylons, and cables. The determination of pretensioning cable stresses is critical in the cable-stayed bridge design procedure. By finding the optimum stresses in cables, the load and moment distribution of the bridge can be improved. In recent years, different research works have studied iterative and modern methods to find optimum stresses of cables. However, most of the proposed methods have limitations in optimising the structural performance of cable-stayed bridges. This paper presents a multiconstraint optimisation method to specify the optimum cable forces in cable-stayed bridges. The proposed optimisation method produces less bending moments and stresses in the bridge members and requires shorter simulation time than other proposed methods. The results of comparative study show that the proposed method is more successful in restricting the deck and pylon displacements and providing uniform deck moment distribution than unit load method (ULM). The final design of cable-stayed bridges can be optimised considerably through proposed multiconstraint optimisation method.

  20. A New Multiconstraint Method for Determining the Optimal Cable Stresses in Cable-Stayed Bridges

    Directory of Open Access Journals (Sweden)

    B. Asgari

    2014-01-01

    Full Text Available Cable-stayed bridges are one of the most popular types of long-span bridges. The structural behaviour of cable-stayed bridges is sensitive to the load distribution between the girder, pylons, and cables. The determination of pretensioning cable stresses is critical in the cable-stayed bridge design procedure. By finding the optimum stresses in cables, the load and moment distribution of the bridge can be improved. In recent years, different research works have studied iterative and modern methods to find optimum stresses of cables. However, most of the proposed methods have limitations in optimising the structural performance of cable-stayed bridges. This paper presents a multiconstraint optimisation method to specify the optimum cable forces in cable-stayed bridges. The proposed optimisation method produces less bending moments and stresses in the bridge members and requires shorter simulation time than other proposed methods. The results of comparative study show that the proposed method is more successful in restricting the deck and pylon displacements and providing uniform deck moment distribution than unit load method (ULM. The final design of cable-stayed bridges can be optimised considerably through proposed multiconstraint optimisation method.

  1. Algorithms for highway-speed acoustic impact-echo evaluation of concrete bridge decks

    Science.gov (United States)

    Mazzeo, Brian A.; Guthrie, W. Spencer

    2018-04-01

    A new acoustic impact-echo testing device has been developed for detecting and mapping delaminations in concrete bridge decks at highway speeds. The apparatus produces nearly continuous acoustic excitation of concrete bridge decks through rolling mats of chains that are placed around six wheels mounted to a hinged trailer. The wheels approximately span the width of a traffic lane, and the ability to remotely lower and raise the apparatus using a winch system allows continuous data collection without stationary traffic control or exposure of personnel to traffic. Microphones near the wheels are used to record the acoustic response of the bridge deck during testing. In conjunction with the development of this new apparatus, advances in the algorithms required for data analysis were needed. This paper describes the general framework of the algorithms developed for converting differential global positioning system data and multi-channel audio data into maps that can be used in support of engineering decisions about bridge deck maintenance, rehabilitation, and replacement (MR&R). Acquisition of position and audio data is coordinated on a laptop computer through a custom graphical user interface. All of the streams of data are synchronized with the universal computer time so that audio data can be associated with interpolated position information through data post-processing. The audio segments are individually processed according to particular detection algorithms that can adapt to variations in microphone sensitivity or particular chain excitations. Features that are greater than a predetermined threshold, which is held constant throughout the analysis, are then subjected to further analysis and included in a map that shows the results of the testing. Maps of data collected on a bridge deck using the new acoustic impact-echo testing device at different speeds ranging from approximately 10 km/h to 55 km/h indicate that the collected data are reasonably repeatable. Use

  2. Evaluation of bridge deck with shrinkage-compensating concrete.

    Science.gov (United States)

    2016-04-01

    Concrete bridge decks are susceptible to premature cracking and to corrosion of reinforcing steel. Low-permeability : concrete does not always ensure durability if the concrete has excessive cracks that facilitate the intrusion of aggressive solution...

  3. Experimental studies on multicellular GFRP bridge deck panels ...

    Indian Academy of Sciences (India)

    M P MUTHURAJ

    2017-11-20

    Nov 20, 2017 ... design of a new bridge deck panel made of GFRP. .... cient manufacturing processes with minimal wastage. But re-use of the remaining FRP elements during manufacture ... Energy consumption for production of different.

  4. Fatigue Properties of Orthotropic Decks on Railway Bridges

    Czech Academy of Sciences Publication Activity Database

    Frýba, Ladislav; Gajdoš, Lubomír

    1999-01-01

    Roč. 21, č. 7 (1999), s. 639-652 ISSN 0141-0296 Grant - others:XX(CZ) ERRI D 191 Keywords : railway bridges * orthotropic decks * fatigue Subject RIV: JM - Building Engineering Impact factor: 0.364, year: 1999

  5. Rapid replacement of Tangier Island bridges including lightweight and durable fiber-reinforced polymer deck systems.

    Science.gov (United States)

    2009-01-01

    Fiber-reinforced polymer (FRP) composite cellular deck systems were used as new bridge decks on two replacement bridges on Tangier Island, Virginia. The most important characteristics of this application were reduced self-weight and increased durabil...

  6. Investigation of early timber–concrete composite bridges in the United States

    Science.gov (United States)

    James P. Wacker; Alfredo Dias; Travis K. Hosteng

    2017-01-01

    The use of timber–concrete composite (TCC) bridges in the United States dates back to circa 1925. Two different TCC systems were constructed during this early period. The first system included a longitudinal nail-laminated deck composite with a concrete deck top layer. The second system included sawn timber stringers supporting a concrete deck top layer. Records...

  7. Bridge deck concrete volume change : final contract report.

    Science.gov (United States)

    2010-02-01

    Concrete structures such as bridge decks, with large surface area relative to volume, shrink and crack, thus reducing service life performance and increasing operation costs. The project evaluated the early, first 24 hours, and long-term, 180 days, s...

  8. Using artificial neural networks in the design of orthotropic bridge decks

    Directory of Open Access Journals (Sweden)

    Ahmed Shamel Fahmy

    2016-12-01

    Full Text Available For orthotropic bridge decks a lot of progress has been made in the development of codes to aid in the design process, in addition to software tools for numerical analysis and design. However, professional software tools will not aid the designer in choosing a preliminary economic layout at the conceptual design stage. Designers would go through iterative, lengthy and expensive procedures to reach the best configuration. The present research provides a methodology to investigate the contingency of using artificial neural networks for conceptual design of orthotropic steel-deck bridge. A neural network model was trained with different combinations of dimensions, and eight types of safety checks were performed on all of them. The resulting network can predict whether the deck is safe or not. It is found that this approach for the selection of orthotropic deck dimensions is a better and cost-effective option compared with international codes or expert opinion.

  9. Research on construction technology for orthotropic steel deck pavement of Haihe River Chunyi Bridge

    Science.gov (United States)

    Xue, Y. C.; Qian, Z. D.; Zhang, M.

    2017-01-01

    In order to ensure the good service quality of orthotropic steel deck pavement of Haihe River Chunyi Bridge in Tianjin, and to reduce the occurrence of pavement diseases like lateral and longitudinal cracks, the key working procedures such as steel deck cleaning, anticorrosive coating, bonding layer spraying, seam cutting, epoxy asphalt concrete’s mixing, transportation, paving and compaction were studied. The study was based on the main features of epoxy asphalt concrete which is the pavement materials of Haihe River Chunyi Bridge, and combined with the basic characteristics and construction conditions of Haihe River Chunyi Bridge. Furthermore, some processing measures like controlling time and temperature, continuous paving with two pavers, lateral feeding, and improving the compaction method were proposed. The project example shows that the processing measures can effectively solve the technical difficulties in the construction of orthotropic steel deck pavement of Haihe River Chunyi Bridge, can greatly improve the construction speed and quality, and can provide reference for the same kinds of orthotropic steel deck pavement construction.

  10. Measurement of bridge deck layout prior to concrete placement : final report.

    Science.gov (United States)

    2017-01-01

    The main objective of this research was to develop a method of measuring and : producing as built bridge drawings. This was the first step in the feasibility : assessment for automated bridge deck paving. The research goes to show the : standard meth...

  11. To the question of reliability and durability ballastless deck of bridge

    Directory of Open Access Journals (Sweden)

    V.V. Prystynskaya

    2012-12-01

    Full Text Available The principal causes of operational defects in bridge ballastless deck plates are considered in the article. The drawbacks of these plates construction that prevent from achieving a higher level of bridge framework reliability and durability have been analysed.

  12. Smart FRP Composite Sandwich Bridge Decks in Cold Regions

    Science.gov (United States)

    2011-07-01

    In this study, new and integrated Smart honeycomb Fiber-Reinforced Polymer (S-FRP) : sandwich materials for various transportation construction applications, with particular emphasis : on highway bridge decks in cold regions, were developed and teste...

  13. Deck and Cable Dynamic Testing of a Single-span Bridge Using Radar Interferometry and Videometry Measurements

    Science.gov (United States)

    Piniotis, George; Gikas, Vassilis; Mpimis, Thanassis; Perakis, Harris

    2016-03-01

    This paper presents the dynamic testing of a roadway, single-span, cable-stayed bridge for a sequence of static load and ambient vibration monitoring scenarios. Deck movements were captured along both sideways of the bridge using a Digital Image Correlation (DIC) and a Ground-based Microwave Interfererometer (GBMI) system. Cable vibrations were measured at a single point location on each of the six cables using the GBMI technique. Dynamic testing involves three types of analyses; firstly, vibration analysis and modal parameter estimation (i. e., natural frequencies and modal shapes) of the deck using the combined DIC and GBMI measurements. Secondly, dynamic testing of the cables is performed through vibration analysis and experimental computation of their tension forces. Thirdly, the mechanism of cable-deck dynamic interaction is studied through their Power Spectra Density (PSD) and the Short Time Fourier Transform (STFT) analyses. Thereby, the global (deck and cable) and local (either deck or cable) bridge modes are identified, serving a concrete benchmark of the current state of the bridge for studying the evolution of its structural performance in the future. The level of synergy and complementarity between the GBMI and DIC techniques for bridge monitoring is also examined and assessed.

  14. Plans for crash-tested wood bridge railings for concrete decks

    Science.gov (United States)

    Michael A. Ritter; Ronald K. Faller; Barry T. Rosson; Paula D. Hilbrich Lee; Sheila Rimal. Duwadi

    1998-01-01

    As part of a continuing cooperative research between the Midwest Roadside Safety Facility (MwRSF); the USDA Forest Service, Forest Products Laboratory (FPL); and the Federal Highway Administration (FHWA), several crashworthy wood bridge railings and approach railing transitions have been adapted for use on concrete bridge decks. These railings meet testing and...

  15. Comparison between major repair and replacement options for a bridge deck life cycle assessment: A case study

    Directory of Open Access Journals (Sweden)

    Abu Dabous Saleh

    2017-01-01

    Full Text Available Material production, manufacturing, transportation, usage, and end of lifeprocessing are usually the main contributors defining the life cycle assessment (LCA. Bridge infrastructure is important to the economy and the society. Over their life cycle, highway bridges experience several stressors that can significantly affect their structural performance and therefore require rehabilitation. This paper discusses the life cycle analysis of bridge rehabilitation decisions and demonstrates the analysis with a case study of a bridge located in Ontario, Canada. The LCA of the bridge deck is analyzed for two rehabilitation strategies: major repair and replacement. The study focuses on evaluating the different life cycle phases of the bridge deck by assessing their carbon dioxide emission, energy consumption and cost. Also, the paper presents the impact of the different elements within each phase to identify the most contributing elements. The LCA of the bridge deck is analyzed and estimated with the aid of CES EduPack 2016 software that includes a database of more than 4000 different materials and more than 200 manufacturing processes. Analysis of the case study shows that material phase causes significant life cycle impact. The study concluded that the deck replacement yields higher environmental impact and life cycle cost compared to repairing and strengthening the deck.

  16. Characterization of stormwater runoff from bridge decks in eastern Massachusetts, 2014–16

    Science.gov (United States)

    Smith, Kirk P.; Sorenson, Jason R.; Granato, Gregory E.

    2018-05-02

    The quality of stormwater runoff from bridge decks (hereafter referred to as “bridge-deck runoff”) was characterized in a field study from August 2014 through August 2016 in which concentrations of suspended sediment (SS) and total nutrients were monitored. These new data were collected to supplement existing highway-runoff data collected in Massachusetts which were deficient in bridge-deck runoff concentration data. Monitoring stations were installed at three bridges maintained by the Massachusetts Department of Transportation in eastern Massachusetts (State Route 2A in the city of Boston, Interstate 90 in the town of Weston, and State Route 20 near Quinsigamond Village in the city of Worcester). The bridges had annual average daily traffic volumes from 21,200 to 124,000 vehicles per day; the land use surrounding the monitoring stations was 25 to 67 percent impervious.Automatic-monitoring techniques were used to collect more than 160 flow-proportional composite samples of bridge-deck runoff. Samples were analyzed for concentrations of SS, loss on ignition of suspended solids (LOI), particulate carbon (PC), total phosphorus (TP), total dissolved nitrogen (DN), and particulate nitrogen (PN). The distribution of particle size of SS also was determined for composite samples. Samples of bridge-deck runoff were collected year round during rain, mixed precipitation, and snowmelt runoff and with different dry antecedent periods throughout the 2-year sampling period.At the three bridge-deck-monitoring stations, median concentrations of SS in composite samples of bridge-deck runoff ranged from 1,490 to 2,020 milligrams per liter (mg/L); however, the range of SS in individual composites was vast at 44 to 142,000 mg/L. Median concentrations of SS were similar in composite samples collected from the State Route 2A and Interstate 90 bridge (2,010 and 2,020 mg/L, respectively), and lowest at the State Route 20 bridge (1,490 mg/L). Concentrations of coarse sediment (greater

  17. Statistical Analysis of Stress Signals from Bridge Monitoring by FBG System

    Directory of Open Access Journals (Sweden)

    Xiao-Wei Ye

    2018-02-01

    Full Text Available In this paper, a fiber Bragg grating (FBG-based stress monitoring system instrumented on an orthotropic steel deck arch bridge is demonstrated. The FBG sensors are installed at two types of critical fatigue-prone welded joints to measure the strain and temperature signals. A total of 64 FBG sensors are deployed around the rib-to-deck and rib-to-diagram areas at the mid-span and quarter-span of the investigated orthotropic steel bridge. The local stress behaviors caused by the highway loading and temperature effect during the construction and operation periods are presented with the aid of a wavelet multi-resolution analysis approach. In addition, the multi-modal characteristic of the rainflow counted stress spectrum is modeled by the method of finite mixture distribution together with a genetic algorithm (GA-based parameter estimation approach. The optimal probability distribution of the stress spectrum is determined by use of Bayesian information criterion (BIC. Furthermore, the hot spot stress of the welded joint is calculated by an extrapolation method recommended in the specification of International Institute of Welding (IIW. The stochastic characteristic of stress concentration factor (SCF of the concerned welded joint is addressed. The proposed FBG-based stress monitoring system and probabilistic stress evaluation methods can provide an effective tool for structural monitoring and condition assessment of orthotropic steel bridges.

  18. Performance evaluation of concrete bridge decks reinforced with MMFX and SSC rebars.

    Science.gov (United States)

    2006-01-01

    This report investigates the performance of bridge decks reinforced with stainless steel clad (SSC) and micro-composite multistructural formable steel (MMFX) rebars. The two-span Galloway Road Bridge on route CR5218 over North Elkhorn Creek in Scott ...

  19. Stress Regression Analysis of Asphalt Concrete Deck Pavement Based on Orthogonal Experimental Design and Interlayer Contact

    Science.gov (United States)

    Wang, Xuntao; Feng, Jianhu; Wang, Hu; Hong, Shidi; Zheng, Supei

    2018-03-01

    A three-dimensional finite element box girder bridge and its asphalt concrete deck pavement were established by ANSYS software, and the interlayer bonding condition of asphalt concrete deck pavement was assumed to be contact bonding condition. Orthogonal experimental design is used to arrange the testing plans of material parameters, and an evaluation of the effect of different material parameters in the mechanical response of asphalt concrete surface layer was conducted by multiple linear regression model and using the results from the finite element analysis. Results indicated that stress regression equations can well predict the stress of the asphalt concrete surface layer, and elastic modulus of waterproof layer has a significant influence on stress values of asphalt concrete surface layer.

  20. Development and validation of deterioration models for concrete bridge decks - phase 1 : artificial intelligence models and bridge management system.

    Science.gov (United States)

    2013-06-01

    This research documents the development and evaluation of artificial neural network (ANN) models to predict the condition ratings of concrete highway bridge decks in Michigan. Historical condition assessments chronicled in the national bridge invento...

  1. Effects of Adhesive Connection on Composite Action between FRP Bridge Deck and Steel Girder

    Directory of Open Access Journals (Sweden)

    Xu Jiang

    2017-01-01

    Full Text Available The FRP-steel girder composite bridge system is increasingly used in new constructions of bridges as well as rehabilitation of old bridges. However, the understanding of composite action between FRP decks and steel girders is limited and needs to be systematically investigated. In this paper, depending on the experimental investigations of FRP to steel girder system, the Finite Element (FE models on experiments were developed and analyzed. Comparison between experiments and FE results indicated that the FE models were much stiffer for in-plane shear stiffness of the FRP deck panel. To modify the FE models, rotational spring elements were added between webs and flanges of FRP decks, to simulate the semirigid connections. Numerical analyses were also conducted on four-point bending experiments of FRP-steel composite girders. Good agreement between experimental results and FE analysis was achieved by comparing the load-deflection curves at midspan and contribution of composite action from FRP decks. With the validated FE models, the parametric studies were conducted on adhesively bonded connection between FRP decks and steel girders, which indicated that the loading transfer capacity of adhesive connection was not simply dependent on the shear modulus or thickness of adhesive layer but dominated by the in-plane shear stiffness K.

  2. Aerodynamic and aeroelastic characteristics of typical bridge decks equipped with wind barriers at the windward bridge-deck edge

    Czech Academy of Sciences Publication Activity Database

    Buljac, Andrija; Kozmar, H.; Pospíšil, Stanislav; Macháček, Michael

    2017-01-01

    Roč. 137, April (2017), s. 310-322 ISSN 0141-0296 R&D Projects: GA ČR(CZ) GA15-01035S; GA MŠk(CZ) LO1219 Keywords : bridge decks * roadway wind barrier * aerodynamic forces and moments * galloping * flutter * wind-tunnel experiments Subject RIV: JM - Building Engineering OBOR OECD: Construction engineering , Municipal and structural engineering Impact factor: 2.258, year: 2016 http://www.sciencedirect.com/science/ article /pii/S014102961730278X

  3. Unmanned Ground Vehicle for Autonomous Non-Destructive Testing of FRP Bridge Decks

    Science.gov (United States)

    Klinkhachorn, P.; Mercer, A. Scott; Halabe, Udaya B.; GangaRao, Hota V. S.

    2007-03-01

    Current non-destructive techniques for defect analysis of FRP bridge decks have a narrow scope. These techniques are very good at detecting certain types of defects but are not robust enough to detect all defects by themselves. For example, infrared thermography (IRT) can detect air filled defects and Ground Penetrating Radar (GPR) is good at detecting water filled ones. These technologies can be combined to create a more robust defect detection scheme. To accomplish this, an Unmanned Ground Vehicle (UGV) has been designed that incorporates both IR and GPR analysis to create a comprehensive defect map of a bridge deck. The UGV autonomously surveys the deck surface and acquires data. The UGV has two 1.5 GHz ground coupled GPR antennas that are mounted on the front of the UGV to collect GPR data. It also incorporates an active heating source and a radiometric IR camera to capture IR images of the deck, even in less than ideal weather scenarios such as cold cloudy days. The UGV is designed so that it can collect data in an assembly line fashion. It moves in 1 foot increments. When moving, it collects GPR data from the two antennas. When it stops it heats a section of the deck. The next time it stops to heat a section, the IR camera is analyzing the preheated deck section while preparing for the next section. Because the data is being continually collected using this method, the UGV can survey the entire deck in an efficient and timely manner.

  4. Performance of Rail Fastening Systems on an Open-Deck Bridge

    Science.gov (United States)

    2018-02-01

    Transportation Technology Center, Inc. (TTCI) monitored the performance of rail fasteners on an open-deck bridge and its approaches, located at Norfolk Southern Corporations (NS's) eastern mega site. The project was co-sponsored by the Federal Rai...

  5. Nondestructive Evaluation of Concrete Bridge Decks with Automated Acoustic Scanning System and Ground Penetrating Radar.

    Science.gov (United States)

    Sun, Hongbin; Pashoutani, Sepehr; Zhu, Jinying

    2018-06-16

    Delamanintions and reinforcement corrosion are two common problems in concrete bridge decks. No single nondestructive testing method (NDT) is able to provide comprehensive characterization of these defects. In this work, two NDT methods, acoustic scanning and Ground Penetrating Radar (GPR), were used to image a straight concrete bridge deck and a curved intersection ramp bridge. An acoustic scanning system has been developed for rapid delamination mapping. The system consists of metal-ball excitation sources, air-coupled sensors, and a GPS positioning system. The acoustic scanning results are presented as a two-dimensional image that is based on the energy map in the frequency range of 0.5⁻5 kHz. The GPR scanning results are expressed as the GPR signal attenuation map to characterize concrete deterioration and reinforcement corrosion. Signal processing algorithms for both methods are discussed. Delamination maps from the acoustic scanning are compared with deterioration maps from the GPR scanning on both bridges. The results demonstrate that combining the acoustic and GPR scanning results will provide a complementary and comprehensive evaluation of concrete bridge decks.

  6. A feasibility study of bridge deck deicing using geothermal energy.

    Science.gov (United States)

    2015-04-01

    In this study, we investigated the feasibility of a ground-coupled system that utilizes heat energy harvested from the ground for : deicing of bridge decks. Heat exchange is performed using circulation loops integrated into the deep foundations suppo...

  7. Demonstration and Validation of a Composite Grid Reinforcement System for Bridge Decks

    Science.gov (United States)

    2016-09-01

    presence of chlorides from road salts that can pene- trate into the concrete deck and cause corrosion of standard steel reinforcement. Installation of the... Corrosion of Metal and Alloys – Corrosivity of Atmospheres – Classification, Determination and Estimation.” Geneva, Switzerland: International Standards...one year), an atmospheric corrosion test rack, (equipped with sensors to monitor corrosion and chlorides were in- serted in the bridge deck), and

  8. Effects of Adhesive Connection on Composite Action between FRP Bridge Deck and Steel Girder

    NARCIS (Netherlands)

    Jiang, X.; Luo, Chengwei; Qiang, X.; Kolstein, M.H.; Bijlaard, F.S.K.

    2017-01-01

    The FRP-steel girder composite bridge system is increasingly used in new constructions of bridges as well as rehabilitation of old bridges. However, the understanding of composite action between FRP decks and steel girders is limited and needs to be systematically investigated. In this paper,

  9. Experimental evaluation of the buckling phenomena in the new joint design for upper deck structure of a bridge

    Directory of Open Access Journals (Sweden)

    Solazzi L.

    2010-06-01

    Full Text Available This paper is concerned with the experimental mechanical analysis of a new design of a joint for a main components of a upper deck of a road bridge. These components are subject to the compression state stress induced by the weight and the load acting on the road. Each upper deck of a bridge (positioned on each side of the bridge is composed by four tubular structures that must be joint each together. The joint must to take in to account many aspects, for example that the length of each component is not the same (because, obviously, there is a mechanical tolerance. This phenomena induce different compression stress on each component and so is very important non only the critical buckling load but also the post buckling behaviour of the structure. It is very important that if a single tubular structure reaches the critical load of instability, it still has load capacity . This is to avoid that, in the case where a column reaches the instability, the entire load acting on a column increase the load on the remaining three. For this purpose many different geometrical solutions have been designed (elaborated by fem analyses and successively tested experimentally. This work reports the main experimental results on the best joint solution and how this increase the load capacity and the displacement respect to the solution without this flange.

  10. Evaluation of bridge decks using non-destructive evaluation (NDE) at near highway speeds for effective asset management.

    Science.gov (United States)

    2015-06-01

    Remote sensing technologies allow for the condition evaluation of bridge decks at near highway speed. : Data collection at near highway speed for assessment of the top of the concrete deck and proof of : concept testing for the underside of the deck ...

  11. Ground penetrating radar utilization in exploring inadequate concrete covers in a new bridge deck

    Directory of Open Access Journals (Sweden)

    Md. Istiaque Hasan

    2014-01-01

    Full Text Available The reinforced concrete cast in place four span deck of a concrete bridge near Roanoke, Texas, was recently completed. Due to possible construction errors, it was suspected that the concrete covers in the deck did not conform to drawings and specifications. A full scale non-destructive evaluation of the concrete covers was carried out using ground penetrating radar (GPR equipment. Cover values were determined from the radargram generated from the scan. The estimated covers were plotted on contour maps. Migration data can substitute the drilling based ground truth data without compromising the concrete cover estimations, except for areas with very high cover values. Areas with high water content may result in inaccurate concrete dielectric constants. Based on the results, significant retrofitting of the bridge deck, such as additional overlay, was recommended.

  12. Structural condition assessment and service load performance of deteriorated prestressed concrete deck beam bridges

    Science.gov (United States)

    Fuentes, Juan Bolivar

    Precast pretensioned deck beam bridges are a generic bridge type widely used by IDOT for new construction through the end of the 1970's and still widely used on county roads throughout Illinois. While these bridges were economical to build, IDOT discontinued their use because reflective cracks developed along the length of the longitudinal joints between beams. Three 30 years old deteriorated beams were removed from an existing bridge over Spoon River in Fulton County, IL and delivered to Newmark Civil Engineering Laboratory. The program consisted of a series of comprehensive, destructive and non-destructive, tests and evaluations of the three beams with emphasis on three major areas; (1) The Condition Assessment of the as-delivered beams. (2) The service load performance of the bridge sub-assemblage constructed from those beams. After a comprehensive inspection of the beams was completed, the beams were integrated together into a bridge subassembly that simulated a bridge lane. (3) Following the service load tests, the three beams were separated and tested individually to failure. The critical signs to be observed in existing structures that will lead the inspectors to conclude that a deck beam is being overloaded were are also studied. Several conclusions were found. Cracking of the longitudinal joint has little effect on the stiffness of the bridge if the transverse rod is snug. The presence of a snug transverse tie rod increases the strength of the longitudinal joint. After a longitudinal joint has fractured, reincorporating a snug transverse rod can significantly reestablish the stiffness of the longitudinal joint and reduce overloading of a deteriorated beam. Participation factors must be based on relative bending moments of one beam with respect to the total amount of bending moment produced by the applied load and not to the amount of total vertical displacement. The participation factors will vary along the span of the bridge deck and will depend on the

  13. Latex-modified fiber-reinforced concrete bridge deck overlay : construction/interim report.

    Science.gov (United States)

    1993-06-01

    Latex-modified concrete (LMC) is Portland cement concrete (PCC) with an admixture of latex. LMC is considered to be nearly impermeable to chlorides and is extensively used to construct bridge deck overlays. Unfortunately, some of these overlays have ...

  14. a finite element model for the analysis of bridge decks

    African Journals Online (AJOL)

    Dr Obe

    A FINITE ELEMENT MODEL FOR THE ANALYSIS OF BRIDGE DECKS. NIGERIAN JOURNAL OF TECHNOLOGY, VOL. 27 NO.1, MARCH 2008. 59. (a) Beam-plate system. (b) T-beam structural model. Fig. 1 Beam-plate structure idealisations. The matrix displacement method of analysis is used. The continuum structure is.

  15. Bridge deck cracking : effects on in-service performance, prevention, and remediation.

    Science.gov (United States)

    2015-08-01

    The main objectives of this project were: (a) to identify the causes of early-age cracking in concrete bridge decks, (b) to provide : recommendations for effective mitigation of early-age cracking, (c) to assess the effect of cracks on the long-term ...

  16. Influence of Pavement on Fatigue Performance of Urban Steel Box Girder Deck

    Directory of Open Access Journals (Sweden)

    Zheng Zhongyue

    2016-01-01

    Full Text Available Based on spatial finite element analysis method, the Influence of pavement on fatigue performance of orthotropic steel deck was analyzed in terms of pavement system, asphalt pavement stiffness. The result shows that compared with asphalt pavement system, RPC pavement system can not only obviously improve the stress condition of steel bridge deck, but also significantly extend the fatigue life of steel bridge panel; Increasing the stiffness of pavement layer can obviously reduce the stress amplitude of fatigue details, especially for direct contact with the pavement.

  17. Numerical simulations and experimental measurements of steel and ice impacts on concrete for acoustic interrogation of delaminations in bridge decks

    Energy Technology Data Exchange (ETDEWEB)

    Mazzeo, Brian A.; Patil, Anjali N.; Klis, Jeffrey M. [Brigham Young University, Department of Electrical and Computer Engineering, Provo, Utah, 84602 (United States); Hurd, Randy C.; Truscott, Tadd T. [Brigham Young University, Department of Mechanical Engineering, Provo, Utah, 84602 (United States); Guthrie, W. Spencer [Brigham Young University, Department of Civil and Environmental Engineering, Provo, Utah, 84602 (United States)

    2014-02-18

    Delaminations in bridge decks typically result from corrosion of the top mat of reinforcing steel, which leads to a localized separation of the concrete cover from the underlying concrete. Because delaminations cannot be detected using visual inspection, rapid, large-area interrogation methods are desired to characterize bridge decks without disruption to traffic, without the subjectivity inherent in existing methods, and with increased inspector safety. To this end, disposable impactors such as water droplets or ice chips can be dropped using automatic dispensers onto concrete surfaces to excite mechanical vibrations while acoustic responses can be recorded using air-coupled microphones. In this work, numerical simulations are used to characterize the flexural response of a model concrete bridge deck subject to both steel and ice impactors, and the results are compared with similar experiments performed in the laboratory on a partially delaminated concrete bridge deck slab. The simulations offer greater understanding of the kinetics of impacts and the responses of materials.

  18. Implementing statistical analysis in multi-channel acoustic impact-echo testing of concrete bridge decks: Determining thresholds for delamination detection

    Science.gov (United States)

    Hendricks, Lorin; Spencer Guthrie, W.; Mazzeo, Brian

    2018-04-01

    An automated acoustic impact-echo testing device with seven channels has been developed for faster surveying of bridge decks. Due to potential variations in bridge deck overlay thickness, varying conditions between testing passes, and occasional imprecise equipment calibrations, a method that can account for variations in deck properties and testing conditions was necessary to correctly interpret the acoustic data. A new methodology involving statistical analyses was therefore developed. After acoustic impact-echo data are collected and analyzed, the results are normalized by the median for each channel, a Gaussian distribution is fit to the histogram of the data, and the Kullback-Leibler divergence test or Otsu's method is then used to determine the optimum threshold for differentiating between intact and delaminated concrete. The new methodology was successfully applied to individual channels of previously unusable acoustic impact-echo data obtained from a three-lane interstate bridge deck surfaced with a polymer overlay, and the resulting delamination map compared very favorably with the results of a manual deck sounding survey.

  19. Composite Action in Prestressed NU I-Girder Bridge Deck Systems Constructed with Bond Breakers to Facilitate Deck Removal : Technical Summary

    Science.gov (United States)

    2017-11-01

    Results are reported from tests of small-scale push-off and large-scale composite NU I-girder specimens conducted to establish an interface connection detail that (1) Facilitates in-situ removal of the bridge deck without damaging prestressed girders...

  20. Effectiveness of polymer bridge deck overlays in highway noise reduction : technical paper.

    Science.gov (United States)

    2016-04-01

    The Kansas Department of Transportation (KDOT) began placing multi-layer polymer bridge deck overlays in 1999 and at the present time have over 200 in service. A few years after placing the overlays, individuals indicated that they noticed how quiet ...

  1. 3D laser scanning for quality control and assurance in bridge deck construction.

    Science.gov (United States)

    2014-08-01

    The inspection of installations of rebar and other embedded components in bridge deck construction is a tedious : task for eld inspectors, requiring considerable eld time for measurement and verication against code requirement. The verica...

  2. Moving dynamic loads caused by bridge deck joint unevenness - a case study

    CSIR Research Space (South Africa)

    Steyn, WJV

    2004-11-01

    Full Text Available This paper focus on the general guidelines regarding maximum unevenness from bridge deck joints for typical South African heavy vehicles, in order to minimize the generation of moving variable loads. In a recent investigation it was found that areas...

  3. Structural design guidelines for concrete bridge decks reinforced with corrosion-resistant reinforcing bars.

    Science.gov (United States)

    2014-10-01

    This research program develops and validates structural design guidelines and details for concrete bridge decks with : corrosion-resistant reinforcing (CRR) bars. A two-phase experimental program was conducted where a control test set consistent : wi...

  4. An Advanced Coupled Genetic Algorithm for Identifying Unknown Moving Loads on Bridge Decks

    Directory of Open Access Journals (Sweden)

    Sang-Youl Lee

    2014-01-01

    Full Text Available This study deals with an inverse method to identify moving loads on bridge decks using the finite element method (FEM and a coupled genetic algorithm (c-GA. We developed the inverse technique using a coupled genetic algorithm that can make global solution searches possible as opposed to classical gradient-based optimization techniques. The technique described in this paper allows us to not only detect the weight of moving vehicles but also find their moving velocities. To demonstrate the feasibility of the method, the algorithm is applied to a bridge deck model with beam elements. In addition, 1D and 3D finite element models are simulated to study the influence of measurement errors and model uncertainty between numerical and real structures. The results demonstrate the excellence of the method from the standpoints of computation efficiency and avoidance of premature convergence.

  5. Two-course bonded concrete bridge deck construction : condition and performance after six years.

    Science.gov (United States)

    1981-01-01

    This report presents the findings from a six-year study of two-course bonded concrete bridge decks constructed in Virginia. Each of three special portland cement concretes was applied as an overlay, or wearing course, on two experimental spans. The o...

  6. Evaluation of performance and maximum length of continuous decks in bridges : part 1.

    Science.gov (United States)

    2011-06-01

    The purpose of this research was to evaluate the performance history of continuous bridge decks in the State of Georgia, to determine why the current design detail works, to recommend a new design detail, and to recommend the maximum and/or optimum l...

  7. A review on the suitability of rubberized concrete for concrete bridge decks

    Science.gov (United States)

    Syamir Senin, Mohamad; Shahidan, Shahiron; Radziah Abdullah, Siti; Anting Guntor, Nickholas; Syazani Leman, Alif

    2017-11-01

    Road authorities manage a large population of ageing bridges, a substantial number of which fail to meet the current requirements either due to deterioration and other structural deficiencies or as a result of the escalating demands imposed by increased traffic. This problem is related to the dynamic load from vehicles. This problem can be solved by producing a type of concrete that can reduce the amplitude of oscillation or vibration such as rubberized concrete. Green construction has been a very important aspect in concrete production field in the last decade. One of the most problematic waste materials is scrap tires. The use of scrap tires in civil engineering is increasing by producing rubberized concrete. Rubberized concrete is a type of concrete that is mixed with rubber. The purpose of this review is to justify the suitability of rubberized concrete for concrete bridge decks. Several parameters named physical, chemical and mechanical properties were measured to ensure the suitability of rubberized concrete for concrete bridge decks. Rubberized concrete has similar workability to normal concrete. The rubber reduced the density and compressive strength of the concrete while increased the flexural strength, water absorption and damping ratio. The used of rubber in concrete beyond 20% is not recommended due to decreasing in compressive strength. Rubberized concrete recommended to be used in circumstances where vibration damping was required such as in bridge construction as shock-wave absorber.

  8. Fatigue crack growth in fiber-metal laminates

    Science.gov (United States)

    Ma, YuE; Xia, ZhongChun; Xiong, XiaoFeng

    2014-01-01

    Fiber-metal laminates (FMLs) consist of three layers of aluminum alloy 2024-T3 and two layers of glass/epoxy prepreg, and it (it means FMLs) is laminated by Al alloy and fiber alternatively. Fatigue crack growth rates in notched fiber-metal laminates under constant amplitude fatigue loading were studied experimentally and numerically and were compared with them in monolithic 2024-T3 Al alloy plates. It is shown that the fatigue life of FMLs is about 17 times longer than monolithic 2024-T3 Al alloy plate; and crack growth rates in FMLs panels remain constant mostly even when the crack is long, unlike in the monolithic 2024-T3 Al alloy plates. The formula to calculate bridge stress profiles of FMLs was derived based on the fracture theory. A program by Matlab was developed to calculate the distribution of bridge stress in FMLs, and then fatigue growth lives were obtained. Finite element models of FMLs were built and meshed finely to analyze the stress distributions. Both results were compared with the experimental results. They agree well with each other.

  9. Process-induced viscoelastic stress in composite laminates

    International Nuclear Information System (INIS)

    Stango, R.J.

    1985-01-01

    In recent years, considerable interest has developed in evaluating the stress response of composite laminates which is associated with cooling the material system from the cure temperature to room temperature. This research examines the fundamental nature of time-dependent residual-thermal stresses in composite laminates which are caused by the extreme temperature reduction encountered during the fabrication process. Viscoelastic stress in finite-width, symmetric composite laminates is examined on the basis of a formulation that employs an incremental hereditary integral approach in conjunction with a quasi-three dimensional finite element analysis. A consistent methodology is developed and employed for the characterization of lamina material properties. Special attention is given to the time-dependent stress response at ply-interface locations near the free-edge. In addition, the influence of cooling path on stress history is examined. Recently published material property data for graphite-epoxy lamina is employed in the analysis. Results of the investigation generally indicate that nominal differences between the thermoelastic and viscoelastic solutions are obtained. Slight changes of the final stress state are observed to result when different cooling paths are selected for the temperature history. The methodology employed is demonstrated to result in an accurate, efficient, and consistent approach for the viscoelastic analysis of advanced composite laminates

  10. CRASH TEST AND EVALUATION OF RESTRAINED SAFETY-SHAPE CONCRETE BARRIERS ON CONCRETE BRIDGE DECK

    Science.gov (United States)

    2018-01-01

    This research designed and tested a new portable concrete barrier that meets the performance of MASH TL-4 and can be used in temporary and permanent applications on bridge decks. Additionally, this new barrier system will minimize deflection, allowin...

  11. Influence of fly ash, slag cement and specimen curing on shrinkage of bridge deck concrete.

    Science.gov (United States)

    2014-12-01

    Cracks occur in bridge decks due to restrained shrinkage of concrete materials. Concrete materials shrink as : cementitious materials hydrate and as water that is not chemically bonded to cementitious materials : migrates from the high humid environm...

  12. Arch-Axis Coefficient Optimization of Long-Span Deck-Type Concrete-Filled Steel Tubular Arch Bridge

    Science.gov (United States)

    Liu, Q. J.; Wan, S.; Liu, H. C.

    2017-11-01

    This paper is based on Nanpuxi super major bridge which is under construction and starts from Wencheng Zhejiang province to Taishun highway. A finite element model of the whole bridge is constructed using Midas Civil finite element software. The most adverse load combination in the specification is taken into consideration to determine the method of calculating the arch-axis coefficient of long-span deck-type concrete-filled steel tubular arch bridge. By doing this, this paper aims at providing references for similar engineering projects.

  13. Estimation of Structure-Borne Noise Reduction Effect of Steel Railway Bridge Equipped with Floating Ladder Track and Floating Reinforced-Concrete Deck

    Science.gov (United States)

    Watanabe, Tsutomu; Sogabe, Masamichi; Asanuma, Kiyoshi; Wakui, Hajime

    A number of steel railway bridges have been constructed in Japan. Thin steel members used for the bridges easily tend to vibrate and generate structure-borne noise. Accordingly, the number of constructions of steel railway bridges tends to decrease in the urban areas from a viewpoint of environmental preservation. Then, as a countermeasure against structure-borne noise generated from steel railway bridges, we have developed a new type of the steel railway bridge equipped with a floating-ladder track and a floating reinforced-concrete (RC) deck. As a result of train-running experiment, it became apparent that the new steel railway bridge installed by double floating system has reduced a vibration velocity level by 10.5 dB(A) at main girder web as compared with a steel railway bridge installed by directly fastened track. This reduction effect was achieved by the ladder track and RC deck supported by resilient materials.

  14. Health monitoring of precast bridge deck panels reinforced with glass fiber reinforced polymer (GFRP) bars.

    Science.gov (United States)

    2012-03-01

    The present research project investigates monitoring concrete precast panels for bridge decks that are reinforced with Glass Fiber Reinforced Polymer (GFRP) bars. Due to the lack of long term research on concrete members reinforced with GFRP bars, lo...

  15. Long-term behaviour of a steel-concrete composite railway bridge deck

    OpenAIRE

    STAQUET, S; TAILHAN, JL; ESPION, B

    2005-01-01

    A prefabricated, composite and prestressed railway bridge deck has been instrumented in June 2000 with strain gages and vibrating wire extensometers. The purpose of this paper is to report on the comparison between strains recorded in situ up to four years with values computed within the framework of an original time-dependent analysis base on the evolution of the degree of hydration and the internal relative humidity in concrete. These fundamental parameters used in the proposed model to com...

  16. Development and validation of deterioration models for concrete bridge decks - phase 2 : mechanics-based degradation models.

    Science.gov (United States)

    2013-06-01

    This report summarizes a research project aimed at developing degradation models for bridge decks in the state of Michigan based on durability mechanics. A probabilistic framework to implement local-level mechanistic-based models for predicting the c...

  17. Experimental Investigation of Membrane Materials used in Multilayer Surfacing Systems for Orthotropic Steel Deck Bridges

    NARCIS (Netherlands)

    Tzimiris, G.

    2017-01-01

    In the Netherlands asphaltic surfacings on orthotropic steel deck bridges (OSDB) mostly consist of two structural layers. The upper layer consists of what is known as very open porous asphalt (ZOAB) for noise reduction. For the lower layer Guss Asphalt (GA) is used. Earlier investigations have shown

  18. Design of pedestrian truss bridge with Sengon-Rubber laminated veneer lumber

    Science.gov (United States)

    Herbudiman, B.; Pranata, Y. A.; Pangestu, L.

    2017-12-01

    Timber bridges are one of the bridge that has long been used, but nowadays, large dimension of sawn timber has limited supply and also it is not environmental-friendly. Laminated veneer lumber (LVL) is a engineered wood that becomes one of the promising alternative, because it is made from lower quality wood that processed to be used as a more quality one. The bridge planned to be a pedestrian truss bridge with length of 9 m, width of 3 m, height of 2.5 m, and using bolt and steel plate as its connection system. Mechanical properties of LVL obtained directly from laboratory test result. Bridge modeling and planning for wood construction refers to SNI 7973:2013, while the loading refers to SNI 1725:2016. Based on the modelling and calculation, the dimension of truss frame and girder beam which are 9 cm x 9 cm and 9 cm x 18 cm have adequate strengths and satisfy deflection requirement.

  19. BILAM: a composite laminate failure-analysis code using bilinear stress-strain approximations

    Energy Technology Data Exchange (ETDEWEB)

    McLaughlin, P.V. Jr.; Dasgupta, A.; Chun, Y.W.

    1980-10-01

    The BILAM code which uses constant strain laminate analysis to generate in-plane load/deformation or stress/strain history of composite laminates to the point of laminate failure is described. The program uses bilinear stress-strain curves to model layer stress-strain behavior. Composite laminates are used for flywheels. The use of this computer code will help to develop data on the behavior of fiber composite materials which can be used by flywheel designers. In this program the stress-strain curves are modelled by assuming linear response in axial tension while using bilinear approximations (2 linear segments) for stress-strain response to axial compressive, transverse tensile, transverse compressive and axial shear loadings. It should be noted that the program attempts to empirically simulate the effects of the phenomena which cause nonlinear stress-strain behavior, instead of mathematically modelling the micromechanics involved. This code, therefore, performs a bilinear laminate analysis, and, in conjunction with several user-defined failure interaction criteria, is designed to provide sequential information on all layer failures up to and including the first fiber failure. The modus operandi is described. Code BILAM can be used to: predict the load-deformation/stress-strain behavior of a composite laminate subjected to a given combination of in-plane loads, and make analytical predictions of laminate strength.

  20. Super-long bridges with floating towers: the role of multi-box decks and Hardware-In-the-Loop technology for wind tunnel tests

    Science.gov (United States)

    Zasso, A.; Argentini, T.; Bayati, I.; Belloli, M.; Rocchi, D.

    2017-12-01

    The super long fjord crossings in E39 Norwegian project pose new challenges to long span bridge design and construction technology. Proposed solutions should consider the adoption of bridge deck with super long spans or floating solutions for at least one of the towers, due to the relevant fjord depth. At the same time, the exposed fjord environment, possibly facing the open ocean, calls for higher aerodynamic stability performances. In relation to this scenario, the present paper addresses two topics: 1) the aerodynamic advantages of multi-box deck sections in terms of aeroelastic stability, and 2) an experimental setup in a wind tunnel able to simulate the aeroelastic bridge response including the wave forcing on the floating.

  1. Control of free-edge interlaminar stresses in composite laminates using piezoelectric actuators

    International Nuclear Information System (INIS)

    Huang, Bin; Soo Kim, Heung

    2014-01-01

    The control of free-edge interlaminar stresses in laminated composite structures using a stress function-based approach is proposed. The assumed stress fields satisfy pointwise traction and free boundary conditions at surfaces. Governing equations are derived using the principle of complementary virtual work. A general eigenvalue solution procedure was adopted to obtain accurate stress states of the laminated composite structure. The results obtained from the proposed method were compared with those obtained by three-dimensional finite element analyses. It was found that interlaminar stresses generated by mechanical loadings could be significantly reduced by applying proper electric fields to piezoelectric actuators, which were surface bonded or embedded in composite laminates. Locations of piezoelectric actuators also influenced the distributions of interlaminar stresses. The results provided that piezoelectric actuators have potential in the application to actively control interlaminar stresses in composite laminates. (paper)

  2. Structural improvement of strengthened deck panels with externally bonded plates

    International Nuclear Information System (INIS)

    Sim, Jongsung; Oh, Hongseob

    2005-01-01

    Concrete bridge decks require eventual replacement and rehabilitation due to decreasing load-carrying capacity. This paper compares different strengthening design procedures that improve the usability and structural performance of bridge decks. The failure characteristics of bridge decks strengthened with various materials such as carbon fiber sheet, glass fiber sheet, steel plate, and grid CFRP and GFRP are analyzed, and the theoretical load-carrying capacities are evaluated using traditional beam and yield line theory, and punching shear analysis. The strengthening materials increase the punching shear strength of the deck and change the failure mode of the strengthened panel

  3. Analysis of interlaminar stresses in symmetric and unsymmetric laminates under various loadings

    Science.gov (United States)

    Leger, C. A.; Chan, W. S.

    1993-04-01

    A quasi-three-dimensional finite-element model is developed to investigate the interlaminar stresses in a composite laminate under combined loadings. An isoparametric quadrilateral element with eight nodes and three degrees of freedom per node is the finite element used in this study. The element is used to model a composite laminate cross section loaded by tension, torsion, transverse shear, and both beam and chord bending which are representative of loading in a helicopter rotor system. Symmetric and unsymmetric laminates are examined with comparisons made between the interlaminar stress distributions and magnitudes for each laminate. Unsymmetric results are compared favorably to limited results found in literature. The unsymmetric interlaminar normal stress distribution in a symmetric laminate containing a free edge delamination is also examined.

  4. Stress analysis on passenger deck due to modification from passenger ship to vehicle-carrying ship

    Science.gov (United States)

    Zubaydi, A.; Sujiatanti, S. H.; Hariyanto, T. R.

    2018-03-01

    Stress is a basic concept in learning about material mechanism. The main focus that needs to be brought to attention in analyzing stress is strength, which is the structural capacity to carry or distribute loads. The structural capacity not only measured by comparing the maximum stress with the material’s yield strength but also with the permissible stress required by the Indonesian Classification Bureau (BKI), which certainly makes it much safer. This final project analyzes stress in passenger deck that experiences modification due to load changes, from passenger load to vehicle one, carrying: 6-wheels truck with maximum weight of 14 tons, a passenger car with maximum weight of 3.5 tons, and a motorcycle with maximum weight of 0.4 tons. The deck structure is modelled using finite element software. The boundary conditions given to the structural model are fix and simple constraint. The load that works on this deck is the deck load which comes from the vehicles on deck with three vehicles’ arrangement plans. After that, software modelling is conducted for analysis purpose. Analysis result shows a variation of maximum stress that occurs i.e. 135 N/mm2, 133 N/mm2, and 152 N/mm2. Those maximum stresses will not affect the structure of passenger deck’s because the maximum stress that occurs indicates smaller value compared to the Indonesian Classification Bureau’s permissible stress (175 N/mm2) as well as the material’s yield strength (235 N/mm2). Thus, the structural strength of passenger deck is shown to be capable of carrying the weight of vehicles in accordance with the three vehicles’ arrangement plans.

  5. Analysis of an Orthotropic Deck Stiffened with a Cement-Based Overlay

    DEFF Research Database (Denmark)

    Walter, Rasmus; Olesen, John Forbes; Stang, Henrik

    2007-01-01

    decks. A solution might be to enhance the stiffness of the traditional orthotropic bridge deck by using a cement-based overlay. In this paper, an orthotropic steel bridge deck stiffened with a cement-based overlay is analyzed. The analysis is based on nonlinear fracture mechanics, and utilizes......Over the past years, with increasing traffic volumes and higher wheel loads, fatigue damage in steel parts of typical orthotropic steel bridge decks has been experienced on heavily trafficked routes. A demand exists to find a durable system to increase the fatigue safety of orthotropic steel bridge...... the finite-element method. The stiffness of the steel deck reinforced with an overlay depends highly on the composite action. The composite action is closely related to cracking of the overlay and interfacial cracking between the overlay and underlying steel plate (debonding). As an example, a real size...

  6. Evaluation of bridge decks using non-destructive evaluation (NDE) at near highway speeds for effective asset management - pilot project.

    Science.gov (United States)

    2016-09-29

    This project piloted the findings from an initial research and development project pertaining to the detection, : quantification, and visualization of bridge deck distresses through the use of remote sensing techniques, specifically : combining optic...

  7. Numerical Simulation of Early Age Cracking of Reinforced Concrete Bridge Decks with a Full-3D Multiscale and Multi-Chemo-Physical Integrated Analysis

    Directory of Open Access Journals (Sweden)

    Tetsuya Ishida

    2018-03-01

    Full Text Available In November 2011, the Japanese government resolved to build “Revival Roads” in the Tohoku region to accelerate the recovery from the Great East Japan Earthquake of March 2011. Because the Tohoku region experiences such cold and snowy weather in winter, complex degradation from a combination of frost damage, chloride attack from de-icing agents, alkali–silica reaction, cracking and fatigue is anticipated. Thus, to enhance the durability performance of road structures, particularly reinforced concrete (RC bridge decks, multiple countermeasures are proposed: a low water-to-cement ratio in the mix, mineral admixtures such as ground granulated blast furnace slag and/or fly ash to mitigate the risks of chloride attack and alkali–silica reaction, anticorrosion rebar and 6% entrained air for frost damage. It should be noted here that such high durability specifications may conversely increase the risk of early age cracking caused by temperature and shrinkage due to the large amounts of cement and the use of mineral admixtures. Against this background, this paper presents a numerical simulation of early age deformation and cracking of RC bridge decks with full 3D multiscale and multi-chemo-physical integrated analysis. First, a multiscale constitutive model of solidifying cementitious materials is briefly introduced based on systematic knowledge coupling microscopic thermodynamic phenomena and microscopic structural mechanics. With the aim to assess the early age thermal and shrinkage-induced cracks on real bridge deck, the study began with extensive model validations by applying the multiscale and multi-physical integrated analysis system to small specimens and mock-up RC bridge deck specimens. Then, through the application of the current computational system, factors that affect the generation and propagation of early age thermal and shrinkage-induced cracks are identified via experimental validation and full-scale numerical simulation on real

  8. The fatigue behavior of composite laminates under various mean stresses

    Science.gov (United States)

    Rotem, A.

    1991-01-01

    A method is developed for predicting the S-N curve of a composite laminate which is subjected to an arbitrary stress ratio, R (minimum stress/maximum stress). The method is based on the measuring of the S-N behavior of two distinct cases, tension-tension and compression-compression fatigue loadings. Using these parameters, expressions are formulated that estimate the fatigue behavior under any stress ratio loading. Experimental results from the testing of graphite/epoxy laminates, with various structures, are compared with the predictions and show good agreement.

  9. Laboratory Testing of Precast Bridge Beck Panel Transverse Connections for Use in Accelerated Bridge Construction

    OpenAIRE

    Porter, Scott D.

    2009-01-01

    Precast concrete bridge deck panels have been used for decades to accelerate bridge construction. Cracking of the transverse connection between panels is a common problem that can damage deck overlays and cause connection leaking leading to corrosion of lower bridge elements. To better understand the behavior of bridge deck transverse female-to-female connections, shear and moment lab testing were performed at Utah State University for the Utah Department of Transportation. Two existing UDOT ...

  10. Finite-Element Investigation of the Structural Behavior of Basalt Fiber Reinforced Polymer (BFRP- Reinforced Self-Compacting Concrete (SCC Decks Slabs in Thompson Bridge

    Directory of Open Access Journals (Sweden)

    Lingzhu Zhou

    2018-06-01

    Full Text Available The need for a sustainable development and improved whole life performance of concrete infrastructure has led to the requirement of more durable and sustainable concrete bridges alongside accurate predictive analysis tools. Using the combination of Self-Compacting Concrete (SCC with industrial by-products and fiber-reinforced polymer (FRP, reinforcement is anticipated to address the concerns of high carbon footprint and corrosion in traditional steel-reinforced concrete structures. This paper presents a numerical investigation of the structural behavior of basalt fiber-reinforced polymer (BFRP-reinforced SCC deck slabs in a real bridge, named Thompson Bridge, constructed in Northern Ireland, U.K. A non-linear finite element (FE model is proposed by using ABAQUS 6.10 in this study, which is aimed at extending the previous investigation of the field test in Thompson Bridge. The results of this field test were used to validate the accuracy of the proposed finite element model. The results showed good agreement between the test results and the numerical results; more importantly, the compressive membrane action (CMA inside the slabs could be well demonstrated by this FE model. Subsequently, a series of parametric studies was conducted to investigate the influence of different parameters on the structural performance of the deck slabs in Thompson Bridge. The results of the analyses are discussed, and conclusions on the behavior of the SCC deck slabs reinforced by BFRP bars are presented.

  11. Progressive damage analysis of carbon/epoxy laminates under couple laser and mechanical loading

    Directory of Open Access Journals (Sweden)

    Wanlei Liu

    Full Text Available A multiscale model based bridge theory is proposed for the progressive damage analysis of carbon/epoxy laminates under couple laser and mechanical loading. The ablation model is adopted to calculate ablation temperature changing and ablation surface degradation. The polynomial strengthening model of matrix is used to improve bridging model for reducing parameter input. Stiffness degradation methods of bridging model are also improved in order to analyze the stress redistribution more accurately when the damage occurs. Thermal-mechanical analyses of the composite plate are performed using the ABAQUS/Explicit program with the developed model implemented in the VUMAT. The simulation results show that this model can be used to proclaim the mesoscale damage mechanism of composite laminates under coupled loading. Keywords: Laser irradiation, Multiscale analysis, Bridge model, Thermal-mechanical

  12. Residual stresses in non-symmetrical carbon-epoxy laminates

    NARCIS (Netherlands)

    Wijskamp, Sebastiaan; Akkerman, Remko; Lamers, E.A.D.; Martin, M.J.; Hahn, H.T.

    2003-01-01

    The curvature of unsymmetrical [0/90] laminates moulded from AS4/8552 uni-directional tape has been measured. A linear thermoelastic approach has been applied to predict the related residual stress state before demoulding, giving an estimate of the stress induced by polymerisation strain. The

  13. Design of Experimental Suspended Footbridge with Deck Made of UHPC

    Directory of Open Access Journals (Sweden)

    Blank Marek

    2016-01-01

    Full Text Available This paper deals with the static and dynamic design of experimental footbridge for pedestrians and cyclists in the municipality Lužec nad Vltavou in Czech Republic, Europe. This work aims to familiarize the reader with calculations carried out and the results obtained, describing the static and dynamic properties of proposed footbridge. The construction of footbridge is designed as a suspended structure with prestressed bridge deck consisting of prefabricated UHPC panels and reversed “V” shaped steel pylon with height of approximately 40 meters. The deck is anchored using 24 steel hangers in one row in a steel pylon - 17 ropes in the main span and 7 cables on the other side. Range of the main span is 99.18 meters and the secondary span is 31.9 m. Deck width is 4.5 meters with 3.0 meters passing space. The bridge is designed for the possibility of passage of vehicles weighting up to 3.5 tons. Deck panels are made of UHPC with reinforcement. At the edge of the bridge on the side of the shorter span the bridge deck is firmly connected with abutment and on the other deck it is stored using a pair of sliding bearings. The utilization of the excellent properties of UHPC allows to design a very thin and lightweight construction of the deck, which could not be achieved with the use of normal concrete.

  14. Fiber reinforced polymer bridge decks.

    Science.gov (United States)

    2011-01-01

    The overarching goal of this study was to perform a comprehensive evaluation of various issues related to the strength and serviceability : of the FRP deck panels that are available in the industry. Specific objectives were to establish critical limi...

  15. On elastic waves in an thinly-layered laminated medium with stress couples under initial stress

    Directory of Open Access Journals (Sweden)

    P. Pal Roy

    1988-01-01

    Full Text Available The present work is concerned with a simple transformation rule in finding out the composite elastic coefficients of a thinly layered laminated medium whose bulk properties are strongly anisotropic with a microelastic bending rigidity. These elastic coefficients which were not known completely for a layered laminated structure, are obtained suitably in terms of initial stress components and Lame's constants λi, μi of initially isotropic solids. The explicit solutions of the dynamical equations for a prestressed thinly layered laminated medium under horizontal compression in a gravity field are derived. The results are discussed specifying the effects of hydrostatic, deviatoric and couple stresses upon the characteristic propagation velocities of shear and compression wave modes.

  16. Modal analysis of cable-stayed UHPC bridge

    Directory of Open Access Journals (Sweden)

    Tej Petr

    2017-01-01

    Full Text Available This paper deals with the dynamic analysis of cable-stayed UHPC bridge over the Vltava river near town Melnik in Czech Republic, Europe. Bridge serves for pedestrians and cyclists. This work aims to familiarize the reader with dynamic calculations carried out and the results obtained, describing the dynamic properties of proposed bridge. The construction of bridge is designed as a cable-stayed structure with prestressed bridge deck consisting of prefabricated UHPC panels and reversed “V” shaped steel pylon with height of approximately 40 meters. The deck is anchored using 24 steel hangers in one row in a steel pylon - 17 ropes in the main span and 7 cables on the other side. Range of the main span is 99.18 meters and the secondary span is 31.9 m. Deck width is 4.5 meters with 3.0 meters passing space. The bridge is designed for the possibility of passage of vehicles weighting up to 3.5 tonnes. Deck panels are made of UHPC with reinforcement. At the edge of the bridge on the side of the shorter span the bridge deck is firmly connected with abutment and on the other deck it is stored using a pair of sliding bearings.

  17. On Rayleigh waves in a thinly layered laminated thermoelastic medium with stress couples under initial stresses

    Directory of Open Access Journals (Sweden)

    Pijush Pal Roy

    1988-01-01

    Full Text Available A study is made of the propagation of Rayleigh waves in a thinly layered laminated thermoelastic medium under deviatoric, hydrostatic, and couple stresses. The frequency equation of the Rayleigh waves is obtained. The phase velocity of the Rayleigh waves depends on the initial stress, deviatoric stress, and the couple stress. The laminated medium is first replaced by an equivalent anisotropic thermoelastic continuum. The corresponding thermoelastic coefficients (after deformation are derived in terms of initially isotropic thermoelastic coefficients (before deformation of individual layers. Several particular cases are discussed for the determination of the displacement fields with or without the effect of the couple stress.

  18. The Impact of Traffic-Induced Bridge Vibration on Rapid Repairing High-Performance Concrete for Bridge Deck Pavement Repairs

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2014-01-01

    Full Text Available Based on forced vibration tests for high-performance concrete (HPC, the influence of bridge vibration induced by traveling vehicle on compressive strength and durability of HPC has been studied. It is concluded that 1 d and 2 d compressive strength of HPC decreased significantly, and the maximum reduction rate is 9.1%, while 28 d compressive strength of HPC had a slight lower with a 3% maximal drop under the action of two simple harmonic vibrations with 2 Hz, 3 mm amplitude, and 4 Hz, 3 mm amplitude. Moreover, the vibration had a slight effect on the compressive strength of HPC when the simple harmonic vibration had 4 Hz and 1 mm amplitude; it is indicated that the amplitude exerts a more prominent influence on the earlier compressive strength with the comparison of the frequency. In addition, the impact of simple harmonic vibration on durability of HPC can be ignored; this shows the self-healing function of concrete resulting from later hydration reaction. Thus, the research achievements mentioned above can contribute to learning the laws by which bridge vibration affects the properties of concrete and provide technical support for the design and construction of the bridge deck pavement maintenance.

  19. ANDERS: future of concrete bridge deck evaluation and rehabilitation

    Science.gov (United States)

    Gucunski, Nenad; Moon, Franklin

    2011-04-01

    The Automated Nondestructive Evaluation and Rehabilitation System (ANDERS) aims to provide a uniquely comprehensive tool that will transform the manner in which bridge decks are assessed and rehabilitated. It is going to be achieved through: 1) much higher evaluation detail and comprehensiveness of detection at an early stage deterioration, 2) comprehensive condition and structural assessment at all stages of deterioration, and 3) integrated assessment and rehabilitation that will be minimally invasive, rapid and cost effective. ANDERS is composed of four systems. that merge novel imaging and NDE techniques, together with novel intervention approaches to arrest the deterioration processes. These technologies are incorporated within a series of human-operated and robotic vehicles. To perform assessments, ANDERS will be equipped with two complimentary nondestructive approaches. The first, Multi-Modal Nondestructive Evaluation (MM-NDE) System aims to identify and characterize localized deterioration with a high degree of resolution. The second, Global Structural Assessment (GSA) System aims to capture global structural characteristics and identify any appreciable effects of deterioration on a bridge structure. Output from these two approaches will be merged through a novel Automated Structural Identification (Auto St-Id) approach that will construct, calibrate, and utilize simulation models to assess overall structural vulnerability and capacity. These three systems comprise the assessment suite of ANDERS and will directly inform the Nondestructive Rehabilitation (NDR) System. The NDR System leverages robotics for the precision and rapid delivery of novel materials capable of halting the early-stage deterioration identified.

  20. Propagation of edge waves in a thinly layered laminated medium with stress couples under initial stresses

    Directory of Open Access Journals (Sweden)

    Pijush Pal Roy

    1987-01-01

    Full Text Available The propagation of edge waves in a thinly layered laminated medium with stress couples under initial stresses is examined. Based upon an approximate representation of a laminated medium by an equivalent anisotropic continuum with average initial and couple stresses, an explicit form of frequency equation is obtained to derive the phase velocity of edge waves. Edge waves exist under certain conditions. The inclusion of couple stresses increases the velocity of wave propagation. For a specific compression, the presence of couple stresses increases the velocity of wave propagation with the increase of wave number, whereas the reverse is the case when there is no couple stress. Numerical computation is performed with graphical representations. Several special cases are also examined.

  1. Ground penetrating radar and microwave tomography 3D applications for the deck evaluation of the Musmeci bridge in Potenza, Italy

    International Nuclear Information System (INIS)

    Bavusi, Massimo; Loperte, Antonio; Lapenna, Vincenzo; Soldovieri, Francesco; Di Napoli, Rosario; Di Cesare, Antonio; Carlo Ponzo, Felice

    2011-01-01

    An extensive experimental and numerical investigation has been carried out to assess the status of the 'Ponte sul Basento' (1967–1976), in the town of Potenza (Basilicata region, southern Italy), better known as the Musmeci bridge. Architecturally, the bridge is a considerable reinforced 20th century concrete structure that was designed and built by the Italian architect Sergio Musmeci (1926–1981). Moreover, the bridge represents an important element of the infrastructural network, linking the city centre to the Potenza-Sicignano highway, crossing the Basento river and the railway close to the main train station of the city. Recently, due to ageing and continuous and significant traffic, the bridge started to be affected by several problems such as water infiltration. Within the presented study, a widespread ground penetrating radar (GPR) survey has been designed to investigate the geometrical characteristics of the bridge deck (Gerber saddles, internal stiffening walls, pillar supports) and detect the presence of defects or damage due to water infiltration and traffic fatigue. Concerning this, a 900 MHz 3D GPR survey has been performed along a zone of one of the lanes on the road surface. Moreover, a second 1500 MHz 3D survey has been carried out at the bottom of the bridge deck in order to gain detailed information about an important structural element of the bridge, the Gerber saddle. Both results have been processed following two approaches: the first a classical time-domain processing session based on commercial software and the use of migration; the second in microwave tomography, an advanced frequency domain automatic PC-based inversion algorithm. In this paper, we present a comparative interpretation of both kinds of processed results, and provide considerations about the investigated structures

  2. Christian Menn's recent bridge designs - Reducing structural elements to the simplest solution

    OpenAIRE

    Brühwiler, E.; Mahmoud, Khaled M.

    2009-01-01

    The conceptual designs by Christian Menn of four landmark bridges are presented: 1) a 350-m span cable-stayed bridge with jointless deck girder, 2) a cable-stayed bridge with a single “spindle-shaped” pylon, 3) a bridge with an arch reaching high above the deck (both carrying a horizontally curved deck girder), and 4) a cable stayed bridge with three pylons monolithically connected to the deck girder. All of the original bridge designs are driven by the aim to optimize the flow of force...

  3. Simulation of Stress Concentration Problems in Laminated Plates by Quasi-Trefftz Finite Element Models

    Directory of Open Access Journals (Sweden)

    Flávio Luiz de Silva Bussamra

    Full Text Available Abstract Hybrid quasi-Trefftz finite elements have been applied with success to the analysis of laminated plates. Two independent fields are approximated by linearly independent, hierarchical polynomials: the stress basis in the domain, adapted from Papkovitch-Neuber solution of Navier equations, and the displacement basis, defined on element surface. The stress field that satisfies the Trefftz constraint a priori for isotropic material is adapted for orthotropic materials, which leads to the term "quasi". In this work, the hexahedral hybrid quasi-Trefftz stress element is applied to the modeling of nonsymmetric laminates and laminated composite plates with geometric discontinuities. The hierarchical p-refinement is exploited.

  4. Semiempirical Methodology for Estimating the Service Life of Concrete Deck Panels Strengthened with Fiber-Reinforced Polymer

    Directory of Open Access Journals (Sweden)

    Eon-Kyoung Kim

    2014-01-01

    Full Text Available Deterioration of concrete bridge decks affects their durability, safety, and function. It is therefore necessary to conduct structural rehabilitation of damaged concrete decks by strengthening them with fiber-reinforced polymer. Of the recent studies on the strengthened structures, most have focused on static behavior; only a few studies have investigated fatigue behavior. Accurate analysis of fatigue in concrete deck performance requires a more realistic simulated moving load. This study developed a theoretical live-load model to reflect the effect of moving vehicle loads, based on a statistical approach to the measurement of real traffic loads over various time periods in Korea. It assessed the fatigue life and strengthening effect of bridge decks strengthened with either carbon fiber sheets or grid carbon fiber polymer plastic using probabilistic and reliability analyses. It used extrapolations and simulations to derive maximum load effects for time periods ranging from 1 day to 75 years. Limited fatigue tests were conducted and probabilistic and reliability analyses were carried out on the strengthened concrete bridge deck specimens to predict the extended fatigue life. Analysis results indicated that strengthened concrete decks provide sufficient resistance against increasing truck loads during the service life of a bridge.

  5. Analysis on Adhesively-Bonded Joints of FRP-steel Composite Bridge under Combined Loading : Arcan Test Study and Numerical Modeling

    NARCIS (Netherlands)

    Jiang, X.; Qiang, X.; Kolstein, M.H.; Bijlaard, F.S.K.

    2016-01-01

    The research presented in this paper is an experimental study and numerical analysis on mechanical behavior of the adhesively-bonded joint between FRP sandwich bridge deck and steel girder. Generally, there are three typical stress states in the adhesively-bonded joint: shear stress, tensile stress,

  6. Application of Composite Structures in Bridge Engineering. Problems of Construction Process and Strength Analysis

    Science.gov (United States)

    Flaga, Kazimierz; Furtak, Kazimierz

    2015-03-01

    Steel-concrete composite structures have been used in bridge engineering from decades. This is due to rational utilisation of the strength properties of the two materials. At the same time, the reinforced concrete (or prestressed) deck slab is more favourable than the orthotropic steel plate used in steel bridges (higher mass, better vibration damping, longer life). The most commonly found in practice are composite girder bridges, particularly in highway bridges of small and medium spans, but the spans may reach over 200 m. In larger spans steel truss girders are applied. Bridge composite structures are also employed in cable-stayed bridge decks of the main girder spans of the order of 600, 800 m. The aim of the article is to present the cionstruction process and strength analysis problems concerning of this type of structures. Much attention is paid to the design and calculation of the shear connectors characteristic for the discussed objects. The authors focused mainly on the issues of single composite structures. The effect of assembly states on the stresses and strains in composite members are highlighted. A separate part of problems is devoted to the influence of rheological factors, i.e. concrete shrinkage and creep, as well as thermal factors on the stresses and strains and redistribution of internal forces.

  7. The effect of edge interlaminar stresses on the strength of carbon/epoxy laminates of different stacking geometry

    OpenAIRE

    MOMCILO STEVANOVIC; MILAN GORDIC; DANIELA SEKULIC; ISIDOR DJORDJEVIC

    2006-01-01

    The effect of edge interlaminar stresses on strength of carbon/epoxy laminates of different stacking geometry: cross-ply, quasi-isotropic and angle-ply laminates with additional 0º and 90º ply was studied. Coupons with two widths of laminates with an inverse stacking sequence were tested in static tensile tests. The effect of edge interlaminar stresses on strength was studied, by comparing the values of the tensile strength of laminate coupons of the same width with an inverse stacking sequen...

  8. Embodied Energy Optimization of Prestressed Concrete Slab Bridge Decks

    Directory of Open Access Journals (Sweden)

    Julián Alcalá

    2018-04-01

    Full Text Available This paper presents one approach to the analysis and design of post-tensioned cast-in-place concrete slab bridge decks. A Simulated Annealing algorithm is applied to two objective functions: (i the economic cost; and (ii the embodied energy at different stages of production materials, transport, and construction. The problem involved 33 discrete design variables: five geometrical ones dealing with the thickness of the slab, the inner and exterior web width, and two flange thicknesses; concrete type; prestressing cables, and 26 variables for the reinforcement set-up. The comparison of the results obtained shows two different optimum families, which indicates that the traditional criteria of economic optimization leads to inefficient designs considering the embodied energy. The results indicate that the objectives are not competing functions, and that optimum energy designs are close to the optimum cost designs. The analysis also showed that the savings of each kW h of energy consumed carries an extra cost of 0.49€. The best cost solution presents 5.3% more embodied energy. The best energy solution is 9.7% more expensive than that of minor cost. In addition, the results have showed that the best cost solutions are not the best energy solutions.

  9. On the thermally-induced residual stresses in thick fiber-thermoplastic matrix (PEEK) cross-ply laminated plates

    Science.gov (United States)

    Hu, Shoufeng; Nairn, John A.

    1992-01-01

    An analytical method for calculating thermally-induced residual stresses in laminated plates is applied to cross-ply PEEK laminates. We considered three cooling procedures: slow cooling (uniform temperature distribution); convective and radiative cooling; and rapid cooling by quenching (constant surface temperature). Some of the calculated stresses are of sufficient magnitude to effect failure properties such as matrix microcracking.

  10. Emery-Dreifuss Muscular Dystrophy-Associated Mutant Forms of Lamin A Recruit the Stress Responsive Protein Ankrd2 into the Nucleus, Affecting the Cellular Response to Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Silvia Angori

    2017-05-01

    Full Text Available Background: Ankrd2 is a stress responsive protein mainly expressed in muscle cells. Upon the application of oxidative stress, Ankrd2 translocates into the nucleus where it regulates the activity of genes involved in cellular response to stress. Emery-Dreifuss Muscular Dystrophy 2 (EDMD2 is a muscular disorder caused by mutations of the gene encoding lamin A, LMNA. As well as many phenotypic abnormalities, EDMD2 muscle cells also feature a permanent basal stress state, the underlying molecular mechanisms of which are currently unclear. Methods: Experiments were performed in EDMD2-lamin A overexpressing cell lines and EDMD2-affected human myotubes. Oxidative stress was produced by H2O2 treatment. Co-immunoprecipitation, cellular subfractionation and immunofluorescence analysis were used to validate the relation between Ankrd2 and forms of lamin A; cellular sensibility to stress was monitored by the analysis of Reactive Oxygen Species (ROS release and cell viability. Results: Our data demonstrate that oxidative stress induces the formation of a complex between Ankrd2 and lamin A. However, EDMD2-lamin A mutants were able to bind and mislocalize Ankrd2 in the nucleus even under basal conditions. Nonetheless, cells co-expressing Ankrd2 and EDMD2-lamin A mutants were more sensitive to oxidative stress than the Ankrd2-wild type lamin A counterpart. Conclusions: For the first time, we present evidence that in muscle fibers from patients affected by EDMD2, Ankrd2 has an unusual nuclear localization. By introducing a plausible mechanism ruling this accumulation, our data hint at a novel function of Ankrd2 in the pathogenesis of EDMD2-affected cells.

  11. Tensile and compressive failure modes of laminated composites loaded by fatigue with different mean stress

    Science.gov (United States)

    Rotem, Assa

    1990-01-01

    Laminated composite materials tend to fail differently under tensile or compressive load. Under tension, the material accumulates cracks and fiber fractures, while under compression, the material delaminates and buckles. Tensile-compressive fatigue may cause either of these failure modes depending on the specific damage occurring in the laminate. This damage depends on the stress ratio of the fatigue loading. Analysis of the fatigue behavior of the composite laminate under tension-tension, compression-compression, and tension-compression had led to the development of a fatigue envelope presentation of the failure behavior. This envelope indicates the specific failure mode for any stress ratio and number of loading cycles. The construction of the fatigue envelope is based on the applied stress-cycles to failure (S-N) curves of both tensile-tensile and compressive-compressive fatigue. Test results are presented to verify the theoretical analysis.

  12. Evaluation of Interlaminar Stresses in Composite Laminates with a Bolt-Filled Hole Using a Linear Elastic Traction-Separation Description

    Directory of Open Access Journals (Sweden)

    Yong Cao

    2017-01-01

    Full Text Available Determination of the local interlaminar stress distribution in a laminate with a bolt-filled hole is helpful for optimal bolted joint design, due to the three-dimensional (3D nature of the stress field near the bolt hole. A new interlaminar stress distribution phenomenon induced by the bolt-head and clamp-up load, which occurs in a filled-hole composite laminate, is investigated. In order to efficiently evaluate interlaminar stresses under the complex boundary condition, a calculation strategy that using zero-thickness cohesive interface element is presented and validated. The interface element is based on a linear elastic traction-separation description. It is found that the interlaminar stress concentrations occur at the hole edge, as well as the interior of the laminate near the periphery of the bolt head. In addition, the interlaminar stresses near the periphery of the bolt head increased with an increase in the clamp-up load, and the interlaminar normal and shear stresses are not at the same circular position. Therefore, the clamp-up load cannot improve the interlaminar stress distribution in the laminate near the periphery of the bolt head, although it can reduce the magnitude of the interlaminar shear stress at the hole edge. Thus, the interlaminar stress distribution phenomena may lead to delamination initiation in the laminate near the periphery of the bolt head, and should be considered in composite bolted joint design.

  13. Influence of bress laminate volume fraction on electromechanical properties of externally laminated coated conductor tapes

    Energy Technology Data Exchange (ETDEWEB)

    Bautista, Zhierwinjay M.; Shin, Hyung Seop [Dept. of Mechanical Design Engineering, Andong National University, Andong (Korea, Republic of); Lee, Jae Hun; Lee, Hun Ju; Moon, Seung Hyun [SuNAM Co Ltd., Anseong (Korea, Republic of)

    2016-09-15

    The enhancement of mechanical properties of coated conductor (CC) tapes in practical application are usually achieved by reinforcing through lamination or electroplating metal layers on either sides of the CC tape. Mechanical or electromechanical properties of the CC tapes have been largely affected by the lamination structure under various loading modes such as tension, bending or even cyclic. In this study, the influence of brass laminate volume fraction on electromechanical properties of RCE-DR processed Gadolinium-barium-copper-oxide (GdBCO) CC tapes was investigated. The samples used were composed of single-side and both-side laminate of brass layer to the Cu-stabilized CC tape and their Ic behaviors were compared to those of the Cu-stabilized CC tape without external lamination. The stress/strain dependences of Ic in laminated CC tapes under uniaxial tension were analyzed and the irreversible stress/strain limits were determined. As a result, the increase of brass laminate volume fraction initially increased the irreversible strain limit and became gradual. The corresponding irreversible stress limit, however, showed no difference even though the brass laminate volume fraction increased to 3.4. But the irreversible load limit linearly increased with the brass laminate volume fraction.

  14. Integral Abutment and Jointless Bridges

    Directory of Open Access Journals (Sweden)

    Cristian-Claudiu Comisu

    2005-01-01

    Full Text Available Integral bridges, or integral abutment and jointless bridges, as they are more commonly known in the USA, are constructed without any movement joints between spans or between spans and abutments. Typically these bridges have stub-type abutments supported on piles and continuous bridge deck from one embankment to the other. Foundations are usually designed to be small and flexible to facilitate horizontal movement or rocking of the support. Integrally bridges are simple or multiple span ones that have their superstructure cast integrally with their substructure. The jointless bridges cost less to construct and require less maintenance then equivalent bridges with expansion joints. Integral bridges present a challenge for load distribution calculations because the bridge deck, piers, abutments, embankments and soil must all be considered as single compliant system. This paper presents some of the important features of integral abutment and jointless bridge design and some guidelines to achieve improved design. The goal of this paper is to enhance the awareness among the engineering community to use integral abutment and jointless bridges in Romania.

  15. Experimental Investigation of a Self-Sensing Hybrid GFRP-Concrete Bridge Superstructure with Embedded FBG Sensors

    OpenAIRE

    Wang, Yanlei; Li, Yunyu; Ran, Jianghua; Cao, Mingmin

    2012-01-01

    A self-sensing hybrid GFRP-concrete bridge superstructure, which consists of two bridge decks and each bridge deck is comprised of four GFRP box sections combined with a thin layer of concrete in the compression zone, was developed by using eight embedded FBG sensors in the top and bottom flanges of the four GFRP box sections at midspan section of one bridge deck along longitudinal direction, respectively. The proposed self-sensing hybrid bridge superstructure was tested in 4-point loading to...

  16. Super-Light Prefabricated Deck Element Integrated in Traditional Concrete Prefabricated Element Construction

    DEFF Research Database (Denmark)

    Christensen, Jacob Ellehauge; Hertz, Kristian Dahl

    Super-light structures in form of deck elements have been used for the first time in a building to construct indoor pedestrian bridges. Examples of connections to external structures and other super-light deck elements are given along with other details. Other examples on the great versatility...

  17. Numerical Analysis of Stress Concentration in Isotropic and Laminated Plates with Inclined Elliptical Holes

    Science.gov (United States)

    Khechai, Abdelhak; Tati, Abdelouahab; Belarbi, Mohamed Ouejdi; Guettala, Abdelhamid

    2018-03-01

    The design of high-performance composite structures frequently includes discontinuities to reduce the weight and fastener holes for joining. Understanding the behavior of perforated laminates is necessary for structural design. In the current work, stress concentrations taking place in laminated and isotropic plates subjected to tensile load are investigated. The stress concentrations are obtained using a recent quadrilateral finite element of four nodes with 32 DOFs. The present finite element (PE) is a combination of two finite elements. The first finite element is a linear isoparametric membrane element and the second is a high precision Hermitian element. One of the essential objectives of the current investigation is to confirm the capability and efficiency of the PE for stress determination in perforated laminates. Different geometric parameters, such as the cutout form, sizes and cutout orientations, which have a considerable effect on the stress values, are studied. Using the present finite element formulation, the obtained results are found to be in good agreement with the analytical findings, which validates the capability and the efficiency of the proposed formulation. Finally, to understand the material parameters effect such as the orientation of fibers and degree of orthotropy ratio on the stress values, many figures are presented using different ellipse major to minor axis ratio. The stress concentration values are considerably affected by increasing the orientation angle of the fibers and degree of orthotropy.

  18. reliability assessment of stringers spacings in bridges as function

    African Journals Online (AJOL)

    user

    A timber bridge deck is modelled on timber stringers in accordance with current .... simple linear formulation for supporting stringers ... new generation design codes, evaluation of existing ... transverse plank deck the span of the deck is.

  19. Bridge management systems: An asset management tool for road structures

    CSIR Research Space (South Africa)

    Nordengen, Paul A

    2012-10-01

    Full Text Available Culverts Ret Walls Buildings Traffic Storm water Etc ? Combined Priorities and Budget Optimised Programme Bridge Project Funding ? Road projects and bridge projects compete for the same ?pot? of funds ? Road failures are more common and more... & retaining walls 18. Longitudinal members 8. Surfacing/ballast (decks & arches) 9. Deck drainage 19. Transverse members 10. Kerbs/sidewalks 20. Deck slabs & arches 11. Parapets & handrails 21. Miscellaneous Condition Survey ? Survey is required...

  20. RECONSTRUCTION AND REINFORCEMENT OF BRIDGE ACROSS THE RIVER. SYLVA IN KUNGUR, RUSSIA

    Directory of Open Access Journals (Sweden)

    R. Ye. Heizn

    2010-04-01

    Full Text Available Sylva Bridge at Kungur city is one of the oldest road bridges in Perm region, the West Urals, Russia. Its erection was begun in 1912 and was interrupted with the First World War and the further events in Russia. The bridge was opened only in 1931. For 75 years of bridge operation the most part of bridge constructions has been acquired plural damages, both mechanical and corrosion. After the bridge inspection in 2003 and according to the calculations of its capacity, the decision on reconstruction of the bridge was accepted. The purpose of rehabilitation was to replace the timber deck by steel orthotropic deck with asphalt pavement. A new deck was to be engaged in combined action with the existing metal structures with the help of socles with high-strength bolts. Due to this, the bridge carrying capacity was increased as required by the present standards. In 2006, after tests, the bridge was opened for traffic.

  1. Investigation on the performance of bridge approach slab

    Directory of Open Access Journals (Sweden)

    Abdelrahman Amr

    2018-01-01

    Full Text Available In Egypt, where highway bridges are to be constructed on soft cohesive soils, the bridge abutments are usually founded on rigid piles, whereas the earth embankments for the bridge approaches are directly founded on the natural soft ground. Consequently, excessive differential settlement frequently occurs between the bridge deck and the bridge approaches resulting in a “bump” at both ends of the bridge deck. Such a bump not only creates a rough and uncomfortable ride but also represents a hazardous condition to traffic. One effective technique to cope with the bump problem is to use a reinforced concrete approach slab to provide a smooth grade transition between the bridge deck and the approach pavement. Investigating the geotechnical and structural performance of approach slabs and revealing the fundamental affecting factors have become mandatory. In this paper, a 2-D finite element model is employed to investigate the performance of approach slabs. Moreover, an extensive parametric study is carried out to appraise the relatively optimum geometries of approach slab, i.e. slab length, thickness, embedded depth and slope, that can yield permissible bumps. Different geo-mechanical conditions of the cohesive foundation soil and the fill material of the bridge embankment are examined.

  2. Structural evaluation of the John A. Roebling Suspension Bridge : element level analysis.

    Science.gov (United States)

    2008-07-01

    The primary objective of the structural evaluation of the John A. Roebling Bridge is to determine the maximum allowable gross vehicle weight (GVW) that can be carried by the bridge deck structural elements such as the open steel grid deck, channels, ...

  3. Seismic performance evaluation of an historical concrete deck arch bridge using survey and drawing of the damages, in situ tests, dynamic identification and pushover analysis

    Science.gov (United States)

    Bergamo, Otello; Russo, Eleonora; Lodolo, Fabio

    2017-07-01

    The paper describes the performance evaluation of a retrofit historical multi-span (RC) deck arch bridge analyzed with in situ tests, dynamic identification and FEM analysis. The peculiarity of this case study lies in the structural typology of "San Felice" bridge, an historical concrete arch bridge built in the early 20th century, a quite uncommon feature in Italy. The preservation and retrofit of historic cultural heritage and infrastructures has been carefully analyzed in the international codes governing seismic response. A complete survey of the bridge was carried out prior to sketching a drawing of the existing bridge. Subsequently, the study consists in four steps: material investigation and dynamic vibration tests, FEM analysis and calibration, retrofit assessment, pushover analysis. The aim is to define an innovative approach to calibrate the FEM analysis through modern experimental investigations capable of taking structural deterioration into account, and to offer an appropriate and cost-effective retrofitting strategy.

  4. Fatigue in Steel Highway Bridges under Random Loading

    DEFF Research Database (Denmark)

    Agerskov, Henning; Nielsen, J.A.; Vejrum, Tina

    1997-01-01

    on welded plate test specimens have been carried through. The materials that have been used are either conventional structural steel with a yield stress of ~ 400-410 MPa or high-strength steel with a yield stress of ~ 810-840 MPa.The fatigue tests have been carried out using load histories, which correspond......In the present investigation, fatigue damage accumulation in steel highway bridges under random loading is studied. The fatigue life of welded joints has been determined both experimentally and from a fracture mechanics analysis.In the experimental part of the investigation, fatigue test series...... to one week's traffic loading, determined by means of strain gage measurements on the orthotropic steel deck structure of the Farø Bridges in Denmark.The test series which have been carried through show a significant difference between constant amplitude and variable amplitude fatigue test results. Both...

  5. Fatigue in Steel Highway Bridges under Random Loading

    DEFF Research Database (Denmark)

    Agerskov, Henning; Nielsen, Jette Andkjær

    1999-01-01

    have been carried through. The materials that have been used are either conventional structural steel with a yield stress of f(y) similar to 400-410 MPa or high-strength steel with a yield stress of f(y) similar to 810-840 MPa. The fatigue tests have been carried out using load histories, which......Fatigue damage accumulation in steel highway bridges under random loading is studied. The fatigue life of welded joints has been determined both experimentally and from a fracture mechanics analysis. In the experimental part of the investigation, fatigue test series on welded plate test specimens...... correspond to one week's traffic loading, determined by means of strain gauge measurements on the orthotropic steel deck structure of the Faro Bridges in Denmark. The test series carried through show a significant difference between constant amplitude and variable amplitude fatigue test results. Both...

  6. Fatigue evaluation for Tsing Ma Bridge using structural health monitoring data

    Science.gov (United States)

    Chan, Hung-tin Tommy; Ko, Jan Ming; Li, Zhao-Xia

    2001-08-01

    Fatigue assessment for the Tsing Ma Bridge (TMB) are presented based on the British standard BS5400 and the real-time structural health monitoring data under railway loading. TMB, as an essential portion of transport network for the Hong Kong airport, is the longest suspension bridge in the world carrying both highway and railway traffic. The bridge design has been mainly based on BS5400. A structural health monitoring system - Wind and Structural Health Monitoring System (WASHMS) for TMB has been operated since the bridge commissioning in May 1997. In order to assess the fatigue behavior of TMB under railway loading, strain gauges were installed on the bridge deck to measure the strain-time histories as soon as the bridge is loaded by a standard railway loading due to the service of an actual train. The strain-time history data at the critical members are then used to determine the stress spectrum, of which the rainflow method recommended for railway bridges by BS5400 is applied to count cycles of stress range. Miner's law is employed to evaluate fatigue damage and remaining service life of the bridge. The evaluated results of fatigue damage and remaining service life would help us to well understand about the fatigue design of the bridge and status in fatigue accumulation.

  7. Numerical investigation of the bearing capacity of transversely prestressed concrete deck slabs

    NARCIS (Netherlands)

    Amir, S.; Van der Veen, C.; Walraven, J.C.; De Boer, A.

    2014-01-01

    The research subject of this paper is the bearing capacity of transversely prestressed concrete bridge decks between concrete girders under concentrated loads. Experiments on a 1:2 scale model of this bridge were carried out in the laboratory and a 3D nonlinear finite element model was developed in

  8. Low temperature measurement of thermal and mechanical properties of phenolic laminate, the pultruded polyester fiberglass and A and B epoxy putty

    International Nuclear Information System (INIS)

    Wang, S.T.; Kim, S.H.; Kim, N.S.; Cheng, R.S.; Hoffman, J.; Gonczy, J.

    1979-01-01

    Low temperature measurements were made and are reported of thermal and mechanical properties of phenolic laminate, pultruded polyester fiberglass, and A and B epoxy putty. To determine the modulus, compressive and tensile stress and strain, an Instron machine, a Tinus-Olsen testing machine, a Wheatstone bridge and strain gages were used

  9. The approximation function of bridge deck vibration derived from the measured eigenmodes

    Directory of Open Access Journals (Sweden)

    Sokol Milan

    2017-12-01

    Full Text Available This article deals with a method of how to acquire approximate displacement vibration functions. Input values are discrete, experimentally obtained mode shapes. A new improved approximation method based on the modal vibrations of the deck is derived using the least-squares method. An alternative approach to be employed in this paper is to approximate the displacement vibration function by a sum of sine functions whose periodicity is determined by spectral analysis adapted for non-uniformly sampled data and where the parameters of scale and phase are estimated as usual by the least-squares method. Moreover, this periodic component is supplemented by a cubic regression spline (fitted on its residuals that captures individual displacements between piers. The statistical evaluation of the stiffness parameter is performed using more vertical modes obtained from experimental results. The previous method (Sokol and Flesch, 2005, which was derived for near the pier areas, has been enhanced to the whole length of the bridge. The experimental data describing the mode shapes are not appropriate for direct use. Especially the higher derivatives calculated from these data are very sensitive to data precision.

  10. Environmental life cycle assessment of railway bridge materials using UHPFRC

    Science.gov (United States)

    Bizjak, Karmen Fifer; Šajna, Aljoša; Slanc, Katja; Knez, Friderik

    2016-10-01

    The railway infrastructure is a very important component of the world's total transportation network. Investment in its construction and maintenance is significant on a global scale. Previously published life cycle assessment (LCA) studies performed on road and rail systems very seldom included infrastructures in detail, mainly choosing to focus on vehicle manufacturing and fuel consumption. This article presents results from an environmental study for railway steel bridge materials for the demonstration case of the Buna Bridge in Croatia. The goal of these analyses was to compare two different types of remediation works for railway bridges with different materials and construction types. In the first part, the environmental impact of the classical concrete bridge construction was calculated, whereas in the second one, an alternative new solution, namely, the strengthening of the old steel bridge with ultra-high-performance fibre-reinforced concrete (UHPFRC) deck, was studied. The results of the LCA show that the new solution with UHPFRC deck gives much better environmental performance. Up to now, results of LCA of railway open lines, railway bridges and tunnels have been published, but detailed analyses of the new solution with UHPFRC deck above the old bridge have not previously been performed.

  11. Fatigue Performance Assessment of Composite Arch Bridge Suspenders Based on Actual Vehicle Loads

    Directory of Open Access Journals (Sweden)

    Bin Chen

    2015-01-01

    Full Text Available In the through arch bridges, the suspenders are the key components connecting the arch rib and the bridge deck in the middle, and their safety is an increasing focus in the field of bridge engineering. In this study, various vehicle traffic flow parameters are investigated based on the actual vehicle data acquired from the long-term structural health monitoring system of a composite arch bridge. The representative vehicle types and the probability density functions of several parameters are determined, including the gross vehicle weight, axle weight, time headway, and speed. A finite element model of the bridge structure is constructed to determine the influence line of the cable force for various suspenders. A simulated vehicle flow, generated using the Monte Carlo method, is applied on the influence lines of the target suspender to determine the stress process, and then the stress amplitude spectrum is obtained based on the statistical analysis of the stress process using the rainflow counting method. The fatigue performance levels of various suspenders are analyzed according to the Palmgren-Miner linear cumulative damage theory, which helps to manage the safety of the suspenders.

  12. Guardrails for Use on Historic Bridges: Volume 2—Bridge Deck Overhang Design

    OpenAIRE

    Frosch, Robert J.; Morel, Adam J.

    2016-01-01

    Bridges that are designated historic present a special challenge to bridge engineers whenever rehabilitation work or improvements are made to the bridges. Federal and state laws protect historically significant bridges, and railings on these bridges can be subject to protection because of the role they play in aesthetics. Unfortunately, original railings on historic bridges do not typically meet current crash-test requirements and typically do not meet current standards for railing height and...

  13. Finite element modelling for fatigue stress analysis of large suspension bridges

    Science.gov (United States)

    Chan, Tommy H. T.; Guo, L.; Li, Z. X.

    2003-03-01

    Fatigue is an important failure mode for large suspension bridges under traffic loadings. However, large suspension bridges have so many attributes that it is difficult to analyze their fatigue damage using experimental measurement methods. Numerical simulation is a feasible method of studying such fatigue damage. In British standards, the finite element method is recommended as a rigorous method for steel bridge fatigue analysis. This paper aims at developing a finite element (FE) model of a large suspension steel bridge for fatigue stress analysis. As a case study, a FE model of the Tsing Ma Bridge is presented. The verification of the model is carried out with the help of the measured bridge modal characteristics and the online data measured by the structural health monitoring system installed on the bridge. The results show that the constructed FE model is efficient for bridge dynamic analysis. Global structural analyses using the developed FE model are presented to determine the components of the nominal stress generated by railway loadings and some typical highway loadings. The critical locations in the bridge main span are also identified with the numerical results of the global FE stress analysis. Local stress analysis of a typical weld connection is carried out to obtain the hot-spot stresses in the region. These results provide a basis for evaluating fatigue damage and predicting the remaining life of the bridge.

  14. Development and layout of a protocol for the field performance of concrete deck and crack sealers.

    Science.gov (United States)

    2009-09-01

    The main objective of this project was to develop and layout a protocol for the long-term monitoring and assessment of the performance of concrete deck and crack sealants in the field. To accomplish this goal, a total of six bridge decks were chosen ...

  15. Precast Pearl-Chain concrete arch bridges

    DEFF Research Database (Denmark)

    Halding, Philip Skov; Hertz, Kristian Dahl; Schmidt, Jacob Wittrup

    2015-01-01

    A Pearl-Chain Bridge is a closed-spandrel arch bridge consisting of a number of straight pre-fabricated so called Super-Light Deck elements put together in an arch shape by post-tensioning cables. Several Pearl-Chain arches can be positioned adjacent to each other by a crane to achieve a bridge...... of a desired width. On top of the arch is a filling material to level out the surface of the above road. The filling only transfers vertical loads to the arch. The geometry and material properties of Super-Light Decks are presented, and we refer to several fullscale tests of Pearl-Chain arches where...... the technology was used. We also study other important components and details in the Pearl-Chain Bridge concept and review the effects of different types of loads. A theoretical case study of a circular 30 m span Pearl-Chain Bridge is presented showing the influence of a number of parameters: The number of post...

  16. Bridges analysis, design, structural health monitoring, and rehabilitation

    CERN Document Server

    Bakht, Baidar

    2015-01-01

    This book offers a valuable guide for practicing bridge engineers and graduate students in structural engineering; its main purpose is to present the latest concepts in bridge engineering in fairly easy-to-follow terms. The book provides details of easy-to-use computer programs for: ·      Analysing slab-on-girder bridges for live load distribution. ·      Analysing slab and other solid bridge components for live load distribution. ·      Analysing and designing concrete deck slab overhangs of girder bridges under vehicular loads. ·      Determining the failure loads of concrete deck slabs of girder bridges under concentrated wheel loads. In addition, the book includes extensive chapters dealing with the design of wood bridges and soil-steel bridges. Further, a unique chapter on structural health monitoring (SHM) will help bridge engineers determine the actual load carrying capacities of bridges, as opposed to their perceived analytical capacities. The chapter addressing structures...

  17. Evaluation of the increased load bearing capacity of steel beams strengthened with pre-stressed FRP laminates

    Directory of Open Access Journals (Sweden)

    S. Bennati

    2016-10-01

    Full Text Available We analyse the problem of a simply supported steel beam subjected to uniformly distributed load, strengthened with a pre-stressed fibre-reinforced polymer (FRP laminate. We assume that the laminate is first put into tension, then bonded to the beam bottom surface, and finally fixed at both its ends by suitable connections. The beam and laminate are modelled according to classical beam theory. The adhesive is modelled as a cohesive interface with a piecewise linear constitutive law defined over three intervals (elastic response, softening response, debonding. The model is described by a set of differential equations with suitable boundary conditions. An analytical solution to the problem is determined, including explicit expressions for the internal forces and interfacial stresses. As an application, we consider the standard IPE series for the steel beam and the Sika® CarboDur® system for the adhesive and laminate. For each considered cross section, we first carry out a preliminary design of the unstrengthened steel beam. Then, we imagine to apply the FRP strengthening and calculate the loads corresponding to the elastic limit states in the steel beam, adhesive, and laminate. Lastly, we take into account the ultimate limit state corresponding to the plasticisation of the mid-span steel cross section and evaluate the increased load bearing capacity of the strengthened beam

  18. Light-weight aluminium bridges and bridge decks. An overview of recent applications

    NARCIS (Netherlands)

    Maljaars, J.; Soetens, F.; Kluyver, D. de

    2008-01-01

    The last decades have shown a large increase in the application of aluminium alloys for light-weight bridges. For bridge construction, aluminium alloys have some specific advantages, but also some points of attention. This paper deals with some recent projects of aluminium bridges, and for these

  19. Investigation of Influence Factors of Wind-Induced Buffeting Response of a Six-Tower Cable-Stayed Bridge

    Directory of Open Access Journals (Sweden)

    Zhi-Qiang Zhang

    2016-01-01

    Full Text Available This paper presents an investigation of the wind-induced buffeting responses of the Jiashao Bridge, the longest multispan cable-stayed bridge in the world. A three-dimensional finite element model for the Jiashao Bridge is established using the commercial software package ANSYS and a 3D fluctuating wind field is simulated for both bridge deck and towers. A time-domain procedure for analyzing buffeting responses of the bridge is implemented in ANSYS with the aeroelastic effect included. The characteristics of buffeting responses of the six-tower cable-stayed bridge are studied in some detail, focusing on the effects including the difference in the longitudinal stiffness between the side towers and central towers, partially longitudinal constraints between the bridge deck and part of bridge towers, self-excited aerodynamic forces, and the rigid hinge installed in the middle of the bridge deck. The analytical results can provide valuable references for wind-resistant design of multispan cable-stayed bridges in the future.

  20. Study on load test of 100m cross-reinforced deck type concrete box arch bridge

    Science.gov (United States)

    Shi, Jing Xian; Cheng, Ying Jie

    2018-06-01

    Found in the routine quality inspection of highway bridge that many vertical fractures on the main beam (10mT beam) of the steel reinforced concrete arch bridge near the hydropower station. In order to grasp the bearing capacity of this bridge under working conditions with cracks, the static load and dynamic load test of box arch bridge are carried out. The Midas civil theory is calculated by using the special plate trailer - 300 as the calculation load, and the deflection and stress of the critical section are tested by the equivalent cloth load in the test vehicle. The pulsation test, obstacles and no obstacle driving test were carried out. Experimental results show that the bridge under the condition of the test loads is in safe condition, main bearing component of the strength and stiffness meet the design requirements, the crack width does not increase, in the process of loading bridge overall work performance is good.

  1. Timber in Bridge Structures

    OpenAIRE

    Detkin, Viktoria

    2016-01-01

    The purpose of this final year project was to study the properties of timber as a structural material and the suitability of wood in load bearing members for bridge structures. For a case study, an existing timber bridge was selected. Due to its condition the bridge should be replaced. The design of a new bridge with steel beams holding a glulam deck was made. During the case study the replacement of steel beams by glulam timber ones was discussed. Some calculations were made in order to ...

  2. Compressive Membrane Action in Prestressed Concrete Deck Slabs

    NARCIS (Netherlands)

    Amir, S.

    2014-01-01

    One of the most important questions that structural engineers all over the world are dealing with is the safety of the existing structures. In the Netherlands, there are a large number of transversely prestressed bridge decks that have been built in the last century and now need to be investigated

  3. Environmental life cycle assessment of railway bridge materials using UHPFRC

    Directory of Open Access Journals (Sweden)

    Bizjak Karmen Fifer

    2016-10-01

    Full Text Available The railway infrastructure is a very important component of the world’s total transportation network. Investment in its construction and maintenance is significant on a global scale. Previously published life cycle assessment (LCA studies performed on road and rail systems very seldom included infrastructures in detail, mainly choosing to focus on vehicle manufacturing and fuel consumption. This article presents results from an environmental study for railway steel bridge materials for the demonstration case of the Buna Bridge in Croatia. The goal of these analyses was to compare two different types of remediation works for railway bridges with different materials and construction types. In the first part, the environmental impact of the classical concrete bridge construction was calculated, whereas in the second one, an alternative new solution, namely, the strengthening of the old steel bridge with ultra-high-performance fibre-reinforced concrete (UHPFRC deck, was studied. The results of the LCA show that the new solution with UHPFRC deck gives much better environmental performance. Up to now, results of LCA of railway open lines, railway bridges and tunnels have been published, but detailed analyses of the new solution with UHPFRC deck above the old bridge have not previously been performed.

  4. Neutron diffraction stress determination in W-laminates for structural divertor applications

    Directory of Open Access Journals (Sweden)

    R. Coppola

    2015-07-01

    Full Text Available Neutron diffraction measurements have been carried out to develop a non-destructive experimental tool for characterizing the crystallographic structure and the internal stress field in W foil laminates for structural divertor applications in future fusion reactors. The model sample selected for this study had been prepared by brazing, at 1085 °C, 13 W foils with 12 Cu foils. A complete strain distribution measurement through the brazed multilayered specimen and determination of the corresponding stresses has been obtained, assuming zero stress in the through-thickness direction. The average stress determined from the technique across the specimen (over both ‘phases’ of W and Cu is close to zero at −17 ± 32 MPa, in accordance with the expectations.

  5. Estimating bridge stiffness using a forced-vibration technique for timber bridge health monitoring

    Science.gov (United States)

    James P. Wacker; Xiping Wang; Brian Brashaw; Robert J. Ross

    2006-01-01

    This paper describes an effort to refine a global dynamic testing technique for evaluating the overall stiffness of timber bridge superstructures. A forced vibration method was used to measure the frequency response of several simple-span, sawn timber beam (with plank deck) bridges located in St. Louis County, Minnesota. Static load deflections were also measured to...

  6. Bridge deck surface temperature monitoring by infrared thermography and inner structure identification using PPT and PCT analysis methods

    Science.gov (United States)

    Dumoulin, Jean

    2013-04-01

    One of the objectives of ISTIMES project was to evaluate the potentialities offered by the integration of different electromagnetic techniques able to perform non-invasive diagnostics for surveillance and monitoring of transport infrastructures. Among the EM methods investigated, we focused our research and development efforts on uncooled infrared camera techniques due to their promising potential level of dissemination linked to their relative low cost on the market. On the other hand, works were also carried out to identify well adapted implementation protocols and key limits of Pulse Phase Thermography (PPT) and Principal Component Thermography (PCT) processing methods to analyse thermal image sequence and retrieve information about the inner structure. So the first part of this research works addresses infrared thermography measurement when it is used in quantitative mode (not in laboratory conditions) and not in qualitative mode (vision applied to survey). In such context, it requires to process in real time thermal radiative corrections on raw data acquired to take into account influences of natural environment evolution with time, thanks to additional measurements. But, camera sensor has to be enough smart to apply in real time calibration law and radiometric corrections in a varying atmosphere. So, a complete measurement system was studied and developed [1] with low cost infrared cameras available on the market. In the system developed, infrared camera is coupled with other sensors to feed simplified radiative models running, in real time, on GPU available on small PC. The whole measurement system was implemented on the "Musmeci" bridge located in Potenza (Italy). No traffic interruption was required during the mounting of our measurement system. The infrared camera was fixed on top of a mast at 6 m elevation from the surface of the bridge deck. A small weather station was added on the same mast at 1 m under the camera. A GPS antenna was also fixed at the

  7. Wind tunnel test of musi VI bridge

    Science.gov (United States)

    Permata, Robby; Andika, Matza Gusto; Syariefatunnisa, Risdhiawan, Eri; Hermawan, Budi; Noordiana, Indra

    2017-11-01

    Musi VI Bridge is planned to cross the Musi River in Palembang City, South Sumatera Province, Indonesia. The main span is a steel arch type with 200 m length and side span length is 75 m. Finite element analysis results showed that the bridge has frequency ratio for torsional and heaving mode (torsional frequency/heaving frequency)=1.14. This close to unity value rises concern about aerodynamic behaviour and stability of the bridge deck under wind loading. Sectional static and free vibration wind tunnel test were performed to clarify this phenomena in B2TA3 facility in Serpong, Indonesia. The test followed the draft of Guide of Wind Tunnel Test for Bridges developed by Indonesian Ministry of Public Works. Results from wind tunnel testing show that the bridge is safe from flutter instability and no coupled motion vibration observed. Therefore, low value of frequency ratio has no effect to aerodynamic behaviour of the bridge deck. Vortex-induced vibration in heaving mode occurred in relatively low wind velocity with permissible maximum amplitude value.

  8. Strengthening of Existing Bridge Structures for Shear and Bending with Carbon Textile-Reinforced Mortar

    Directory of Open Access Journals (Sweden)

    Martin Herbrand

    2017-09-01

    Full Text Available Increasing traffic loads and changes in code provisions lead to deficits in shear and flexural capacity of many existing highway bridges. Therefore, a large number of structures are expected to require refurbishment and strengthening in the future. This projection is based on the current condition of many older road bridges. Different strengthening methods for bridges exist to extend their service life, all having specific advantages and disadvantages. By applying a thin layer of carbon textile-reinforced mortar (CTRM to bridge deck slabs and the webs of pre-stressed concrete bridges, the fatigue and ultimate strength of these members can be increased significantly. The CTRM layer is a combination of a corrosion resistant carbon fiber reinforced polymer (CFRP fabric and an efficient mortar. In this paper, the strengthening method and the experimental results obtained at RWTH Aachen University are presented.

  9. Strengthening of Existing Bridge Structures for Shear and Bending with Carbon Textile-Reinforced Mortar.

    Science.gov (United States)

    Herbrand, Martin; Adam, Viviane; Classen, Martin; Kueres, Dominik; Hegger, Josef

    2017-09-19

    Increasing traffic loads and changes in code provisions lead to deficits in shear and flexural capacity of many existing highway bridges. Therefore, a large number of structures are expected to require refurbishment and strengthening in the future. This projection is based on the current condition of many older road bridges. Different strengthening methods for bridges exist to extend their service life, all having specific advantages and disadvantages. By applying a thin layer of carbon textile-reinforced mortar (CTRM) to bridge deck slabs and the webs of pre-stressed concrete bridges, the fatigue and ultimate strength of these members can be increased significantly. The CTRM layer is a combination of a corrosion resistant carbon fiber reinforced polymer (CFRP) fabric and an efficient mortar. In this paper, the strengthening method and the experimental results obtained at RWTH Aachen University are presented.

  10. Soil-structure interaction studies for understanding the behavior of integral abutment bridges.

    Science.gov (United States)

    2012-03-01

    Integral Abutment Bridges (IAB) are bridges without any joints within the bridge deck or between the : superstructure and the abutments. An IAB provides many advantages during construction and maintenance of : a bridge. Soil-structure interactions at...

  11. Ceramic laminates with tailored residual stresses

    Directory of Open Access Journals (Sweden)

    Baudín, C.

    2009-12-01

    Full Text Available Severe environments imposed by new technologies demand new materials with better properties and ensured reliability. The intrinsic brittleness of ceramics has forced scientists to look for new materials and processing routes to improve the mechanical behaviour of ceramics in order to allow their use under severe thermomechanical conditions. The laminate approach has allowed the fabrication of a new family of composite materials with strength and reliability superior to those of monolithic ceramics with microstructures similar to those of the constituent layers. The different ceramic laminates developed since the middle 1970´s can be divided in two large groups depending on whether the development of residual stresses between layers is the main design tool. This paper reviews the developments in the control and tailoring of residual stresses in ceramic laminates. The tailoring of the thickness and location of layers in compression can lead to extremely performing structures in terms of strength values and reliability. External layers in compression lead to the strengthening of the structure. When relatively thin and highly compressed layers are located inside the material, threshold strength, crack bifurcation and crack arrest during fracture occur.

    Las severas condiciones de trabajo de las nuevas aplicaciones tecnológicas exigen el uso de materiales con mejores propiedades y alta fiabilidad. La potencialidad de uso de materiales frágiles, como los cerámicos, en estas aplicaciones exige el desarrollo de nuevos materiales y métodos de procesamiento que mejoren su comportamiento mecánico. El concepto de material laminado ha permitido la fabricación de una nueva familia de materiales con tensiones de fractura y fiabilidad superiores a las de materiales monolíticos con microestructuras similares a las de las láminas que conforman el laminado. Los distintos materiales laminados desarrollados desde mediados de los años 70 se pueden

  12. Evaluation of stresses generated in steel finger joint of bridge by X-ray stress measurement

    International Nuclear Information System (INIS)

    Kohri, Ami; Kawano, Yutaka; Nishido, Takayuki

    2017-01-01

    In a steel bridge, the evaluation of the stress generated in the finger joint without a gap to absorb temperature change can be an index when evaluating the remaining life. This study chose as the object the finger joint of a diagonal bridge, where the generated stress state is considered to be more complicated, prepared a finger joint test specimen that simulated an actual part, and performed a load test. For judgment, FEM analysis, non-destructive X-ray stress measurement, and measurement of the generated stress using strain gauge were applied. Compared with the FEM analysis results, the difference in the stress value was generated due to the difference in the contact state, but the trends of the stress distribution were equivalent. In addition, the same measurement value as the strain gauge was obtained, and the validity of the X-ray stress measurement method was confirmed. As a result, it was found that the stress measurement method by X-ray is effective for measuring the generated stress including the residual stress of the finger joint without gap at a bridge. (A.O.)

  13. History of cable-stayed bridges

    DEFF Research Database (Denmark)

    Gimsing, Niels Jørgen

    1999-01-01

    The principle of supporting a bridge deck by inclined tension members leading to towers on either side of the span has been known for centuries. However, the real development of cable-stayed bridges did not begin before the 1950s. Since then the free span has been increased from 183 m in the Strö...

  14. Study on bridge checking evaluation based on deformation-Stress data

    Science.gov (United States)

    Shi, Jing Xian; Cheng, Ying Jie

    2018-06-01

    Bridge structure plays a very important role in human traffic. The evaluation of bridge structure after a certain period of operation has always been the focus of the bridge. Based on the data collected from the health inspection system of a continuous rigid frame bridge on a highway in Yunnan, China, it is found that there is a certain linear relationship between the deformation and stress of the bridge structure. In view of a specific section of the structure, the stress value of this section can be derived according to its deformation value. The coefficient K can be calculated by comparing the estimated value to the actual measured value. According to the range of the K value, the structural state of the bridge can be evaluated to a certain extent.

  15. Effects of ambient temperature changes on integral bridges.

    Science.gov (United States)

    2008-09-01

    Integral bridges (IBs) are jointless bridges whereby the deck is continuous and monolithic with abutment walls. IBs are outperforming their non-integral counterparts in economy and safety. Their principal advantages are derived from the absence of ex...

  16. Railway bridge monitoring during construction and sliding

    Science.gov (United States)

    Inaudi, Daniele; Casanova, Nicoletta; Kronenberg, Pascal; Vurpillot, Samuel

    1997-05-01

    The Moesa railway bridge is a composite steel concrete bridge on three spans of 30 m each. The 50 cm thick concrete deck is supported on the lower flanges of two continuous, 2.7 m high I-beams. The bridge has been constructed alongside an old metallic bridge. After demolishing this one, the new bridge has been slid for 5 m by 4 hydraulic jacks and positioned on the refurbished piles of the old bridge. About 30 fiber optic, low-coherence sensors were imbedded in the concrete deck to monitor its deformations during concrete setting and shrinkage, as well as during the bridge sliding phase. In the days following concrete pour it was possible to follow its thermal expansion due to the exothermic setting reaction and the following thermal and during shrinkage. The deformations induced by the additional load produced by the successive concreting phases were also observed. During the bridge push, which extended over six hours, the embedded and surface mounted sensors allowed the monitoring of the curvature variations in the horizontal plane due to the slightly uneven progression of the jacks. Excessive curvature and the resulting cracking of concrete could be ruled out by these measurements. It was also possible to observe the bridge elongation under the heating action of the sun.

  17. Punching shear strength of transversely prestressed concrete decks

    NARCIS (Netherlands)

    Amir, S.; Van der Veen, C.; Walraven, J.C.

    2012-01-01

    In the Netherlands, there is a need to determine the capacity of bridge decks as a large number of them were built back in the 60’s and 70’s. Since then, not only a lot of additional safety requirements have been incorporated into the modern codes but the traffic flow has also increased drastically.

  18. Analysis of structural diseases in widened structure due to the shrinkage and creep difference of new bridge

    Science.gov (United States)

    Wu, Wenqing; Zhang, Hui

    2018-03-01

    In order to investigate the possible structural diseases brought to the top flange of existing prestressed concrete box girder bridge due to the shrinkage and creep difference between new and old bridge, the stress state of the existing box girder before and after widening and the mechanisms of potential structural diseases were analyzed using finite element method in this paper. Results showed that the inner flange of the old box girder were generally in the state of large tensile stress, the main reason for which was the shrinkage and creep effect difference of the new and old bridge. And the tensile stress was larger than tensile strength of C50 concrete, which would most likely cause crack in the deck plate of box girder. Hence, reinforcement measures are needed to be designed carefully. Meanwhile, the transverse deformation of widened structure had exceeded the distance between the anti-seismic block and the web of box girder at the end cross section, which would squeeze anti-seismic block severely. Therefore, it is necessary to limit the length of continuous bridge in need of widening.

  19. Improvement of fatigue properties of orthotropic decks

    Czech Academy of Sciences Publication Activity Database

    Frýba, Ladislav; Urushadze, Shota

    2011-01-01

    Roč. 33, č. 4 (2011), s. 1166-1169 ISSN 0141-0296 R&D Projects: GA ČR GA103/08/1340; GA MŠk(CZ) 7E08098 Grant - others:BRIFAG -Bridge Fatigue Guidance(XE) RFSR_CT-2008-00033 Institutional research plan: CEZ:AV0Z20710524 Keywords : orthotropic deck * fatigue * prolonged life Subject RIV: JM - Building Engineering Impact factor: 1.351, year: 2011

  20. Minimum weight design of composite laminates for multiple loads

    International Nuclear Information System (INIS)

    Krikanov, A.A.; Soni, S.R.

    1995-01-01

    A new design method of constructing optimum weight composite laminates for multiple loads is proposed in this paper. A netting analysis approach is used to develop an optimization procedure. Three ply orientations permit development of optimum laminate design without using stress-strain relations. It is proved that stresses in minimum weight laminate reach allowable values in each ply with given load. The optimum ply thickness is defined at maximum value among tensile and compressive loads. Two examples are given to obtain optimum ply orientations, thicknesses and materials. For comparison purposes, calculations of stresses are done in orthotropic material using classical lamination theory. Based upon these calculations, matrix degrades at 30 to 50% of ultimate load. There is no fiber failure and therefore laminates withstand all applied loads in both examples

  1. Fatigue Performance of Composite Laminates After Low-velocity Impact

    Directory of Open Access Journals (Sweden)

    LIANG Xiao-lin

    2016-12-01

    Full Text Available Compression-compression fatigue tests were carried out on T300/5405 composite laminates after low-velocity impact, compression performance of the laminates with different impact damages was studied together with its fatigue life and damage propagation under different stress levels, then the effects of impact energy, stress level and damage propagation on fatigue life of laminates were discussed. The results indicate that impact damage can greatly reduce the residual strength of laminates; under low fatigue load levels, the higher impact energy is, the shorter the fatigue life of laminates with impact damage will be; damage propagation undergoes two stages during the fatigue test, namely the steady propagation and the rapid propagation, accounting for 80% and 20% of the overall fatigue life, respectively; damage propagation rate decreases with the reduction of stress level.

  2. Modeling transverse cracking in laminates with a single layer of elements per ply

    NARCIS (Netherlands)

    Van der Meer, F.P.; Davila, C.G.

    2012-01-01

    This study aims to bridge the gap between classical understanding of transverse cracking in [0/90]s laminates and recent computational methods for the modeling of progressive laminate failure. Specifically, the study investigates under which conditions a three-dimensional model with cohesive cracks

  3. The effect of span length and girder type on bridge costs

    Directory of Open Access Journals (Sweden)

    Batikha Mustafa

    2017-01-01

    Full Text Available Bridges have an important role in impacting the civilization, growth and economy of cities from ancient time until these days due to their function in reducing transportation cost and time. Therefore, development of bridges has been a knowledge domain in civil engineering studies in terms of their types and construction materials to confirm a reliable, safe, economic design and construction. Girder-bridge of concrete deck and I-beam girder has been used widely for short and medium span bridges because of ease and low-cost of fabrication. However, many theoretical and practical investigations are still undertaken regarding the type of beam girder; i.e steel composite or prestressed concrete. This paper evaluates the effect of bridge span and the type of girder on the capital cost and life cycle costs of bridges. Three types of girders were investigated in this research: steel composite, pre-tensioned pre-stressed concrete and post-tensioned pre-stressed concrete. The structural design was analyzed for 5 span lengths: 20, 25, 30, 35 and 40m. Then, the capital construction cost was accounted for 15 bridges according to each span and construction materials. Moreover, the maintenance required for 50 years of bridge life was evaluated and built up as whole life costs for each bridge. As a result of this study, the influence of both span length and type of girder on initial construction cost and maintenance whole life costs were assessed to support the decision makers and designers in the selection process for the optimum solution of girder bridges.

  4. Design and construction of Chiburiko Bridge (stress ribbon bridge). Chiburiko bashi (tsurishoban kyo) no sekkei to seko

    Energy Technology Data Exchange (ETDEWEB)

    Kamisakoda, K; Tokuyama, S; Sano, K; Onuma, K [Kashima Corp., Tokyo (Japan)

    1992-07-30

    Chiburiko Bridge lies across Chiburiko which is a lake for agricultural water, and is used by people, carts and cars for administration. It is a stressed-ribbon bridge with the road surface made with concrete covered bands of cables stretched between abutments, and is the first highway bridge in Japan. A report is made on the plan and construction of the bridge. Integration of the precast slab with the cast-in-place concrete as well as mutual integration of the precast slabs are validated by the use of a reproduced model of a part of the bridge. Floor slabs are suspended by cables, and can be constructed with no form nor support by integrating cast-in-place concrete with the precast slabs on mutually joined precast slabs. It has been said that the stressed-ribbon bridge has a structure suitable for long span bridges because it has a simple structure. Studies, however, seems to be necessary on the impact caused by running of vehicles and on the wind resisting stability. 3 refs., 17 figs., 2 tabs.

  5. Prediction of process induced shape distortions and residual stresses in large fibre reinforced composite laminates

    DEFF Research Database (Denmark)

    Nielsen, Michael Wenani

    to their accuracy in predicting process induced strain and stress development in thick section laminates during curing, and more precisely regarding the evolution of the composite thermoset polymer matrix mechanical behaviour during the phase transitions experienced during curing. The different constitutive...

  6. The extrinsic influence of carbon fibre reinforced plastic laminates to ...

    Indian Academy of Sciences (India)

    The placement of a concrete bridge deck over steel is a common design .... The mid-span deflections were monitored and recorded at discrete points. The ... Elastic behaviour of beams comprised of two materials is quite simple to predict using.

  7. Assessment of concrete bridge decks with alkali silica reactions

    DEFF Research Database (Denmark)

    Eriksen, Kirsten; Jansson, Jacob; Geiker, Mette Rica

    2008-01-01

    Based on investigations of concrete from an approximately 40 years old bridge a procedure to support the management of maintenance and repair of alkali silica damaged bridges is proposed. Combined petrography and accelerated expansion testing were undertaken on cores from the Bridge at Skovdiget......, Bagsværd, Denmark to provide information on the damage condition as well as the residual reactivity of the concrete. The Danish Road Directory’s guidelines for inspection and assessment of alkali silica damaged bridges will be briefly presented, and proposed modifications will be describe...

  8. Cost and Ecological Feasibility of using UHPC in Highway Bridges

    Science.gov (United States)

    2017-11-15

    There is a growing interest in expanding the use of Ultra-high performance concrete (UHPC) from bridge deck joints for accelerated bridge construction to complex architectural and advanced structural applications. The high costs currently associated ...

  9. Structure-borne noise of railway composite bridge: Numerical simulation and experimental validation

    Science.gov (United States)

    Li, Xiaozhen; Liu, Quanmin; Pei, Shiling; Song, Lizhong; Zhang, Xun

    2015-09-01

    In order to investigate the characteristics of the noise from steel-concrete composite bridges under high-speed train loading, a model used to predict the bridge-borne noise is established and validated through a field experiment. The numerical model for noise prediction is developed based on the combination of spatial train-track-bridge coupled vibration theory and Statistical Energy Analysis (SEA). Firstly, train-track-bridge coupled vibration is adopted to obtain the velocity time history of the bridge deck vibration. Then, the velocity time history is transferred into frequency domain through FFT to serve as the vibratory energy of SEA deck subsystems. Finally, the transmission of the vibratory energy is obtained by solving the energy balance equations of SEA, and the sound radiation is computed using the vibro-acoustic theory. The numerically computed noise level is verified by a field measurement. It is determined that the dominant frequency of steel-concrete composite bridge-borne noise is 20-1000 Hz. The noise from the bottom flange of steel longitudinal girder is less than other components in the whole frequency bands, while the noise from web of steel longitudinal girder is dominant in high frequency range above 315 Hz. The noise from concrete deck dominates in low-frequency domain ranges from 80 Hz to 160 Hz.

  10. Load Distribution Factors for Composite Multicell Box Girder Bridges

    Science.gov (United States)

    Tiwari, Sanjay; Bhargava, Pradeep

    2017-12-01

    Cellular steel section composite with a concrete deck is one of the most suitable superstructures in resisting torsional and warping effects induced by highway loading. This type of structure has inherently created new design problems for engineers in estimating its load distribution when subjected to moving vehicles. Indian Codes of Practice does not provide any specific guidelines for the design of straight composite concrete deck-steel multi-cell bridges. To meet the practical requirements arising during the design process, a simple design method is needed for straight composite multi-cell bridges in the form of load distribution factors for moment and shear. This work presents load distribution characteristics of straight composite multi-cell box girder bridges under IRC trains of loads.

  11. Stress and strain field singularities, micro-cracks, and their role in failure initiation at the composite laminate free-edge

    Science.gov (United States)

    Dustin, Joshua S.

    A state-of-the-art multi-scale analysis was performed to predict failure initiation at the free-edge of an angle-ply laminate using the Strain Invariant Failure Theory (SIFT), and multiple improvements to this analysis methodology were proposed and implemented. Application of this analysis and theory led to the conclusion that point-wise failure criteria which ignore the singular stress and strain fields from a homogenized analysis and the presence of free-edge damage in the form of micro-cracking, may do so at the expense of failure prediction capability. The main contributions of this work then are made in the study of the laminate free-edge singularity and in the effects of micro-cracking at the composite laminate free-edge. Study of both classical elasticity and finite element solutions of the laminate free-edge stress field based upon the assumption of homogenized lamina properties reveal that the order of the free-edge singularity is sufficiently small such that the domain of dominance of this term away from the laminate free-edge is much smaller than the relevant dimensions of the microstructure. In comparison to a crack-tip field, these free-edge singularities generate stress and strain fields which are half as intense as those at the crack-tip, leading to the conclusion that existing flaws at the free-edge in the form of micro-cracks would be more prone to the initiation of free-edge failure than the existence of a singularity in the free-edge elasticity solutions. A methodical experiment was performed on a family of [±25°/90°] s laminates made of IM7/8552 carbon/epoxy composite, to both characterize micro-cracks present at the laminate free-edge and to study their behavior under the application of a uniform extensional load. The majority of these micro-cracks were of length on the order of a few fiber diameters, though larger micro-cracks as long as 100 fiber diameters were observed in thicker laminates. A strong correlation between the application of

  12. Simple Program to Investigate Hysteresis Damping Effect of Cross-Ties on Cables Vibration of Cable-Stayed Bridges

    Directory of Open Access Journals (Sweden)

    Panagis G. Papadopoulos

    2012-01-01

    Full Text Available A short computer program, fully documented, is presented, for the step-by-step dynamic analysis of isolated cables or couples of parallel cables of a cable-stayed bridge, connected to each other and possibly with the deck of the bridge, by very thin pretensioned wires (cross-ties and subjected to variation of their axial forces due to traffic or to successive pulses of a wind drag force. A simplified SDOF model, approximating the fundamental vibration mode, is adopted for every individual cable. The geometric nonlinearity of the cables is taken into account by their geometric stiffness, whereas the material nonlinearities of the cross-ties include compressive loosening, tensile yielding, and hysteresis stress-strain loops. Seven numerical experiments are performed. Based on them, it is observed that if two interconnected parallel cables have different dynamic characteristics, for example different lengths, thus different masses, weights, and geometric stiffnesses, too, or if one of them has a small additional mass, then a single pretensioned very thin wire, connecting them to each other and possibly with the deck of the bridge, proves effective in suppressing, by its hysteresis damping, the vibrations of the cables.

  13. Study of laminated anisotropic cylindrical shells sensitive to transverse stresses

    International Nuclear Information System (INIS)

    Massard, Thierry

    1979-01-01

    A variational method for the determination of stresses and displacements in a multilayered cylindrical shell is presented. All included materials are linearly anisotropic (monoclinic) - i.e. directional fibres reinforced materials. This study uses a functional which is derived from the potential energy of the structure. The incoming stresses are σ RR , σ Rθ , σ RZ , and the displacements are u θ and u Z . This mixed group is the main variables of the formulation. It is shown that the stationarity conditions of the functional are the equilibrium equations and the associated boundary conditions. An approximate solution can be found using a finite element method which realizes a tridimensional discretization of the structure. The program issued is a specific mean for studying the transverse shear stresses in laminated cylindrical structures. From the results obtained it can be concluded that it meets all requirements for the purposes of this range of problems. (author) [fr

  14. Development of a precast bridge deck overhang system for the rock creek bridge.

    Science.gov (United States)

    2008-12-01

    Precast, prestressed panels are commonly used at interior beams for bridges in Texas. The use of these : panels provides ease of construction, sufficient capacity, and good economy for the construction of : bridges in Texas. Current practice for the ...

  15. Passive Control System for Mitigation of Longitudinal Buffeting Responses of a Six-Tower Cable-Stayed Bridge

    Directory of Open Access Journals (Sweden)

    Fangfang Geng

    2016-01-01

    Full Text Available This paper presents an investigation of mitigation of longitudinal buffeting responses of the Jiashao Bridge, the longest multispan cable-stayed bridge in the world. A time-domain procedure for analyzing buffeting responses of the bridge is implemented in ANSYS with the aeroelastic effect included. The characteristics of longitudinal buffeting responses of the six-tower cable-stayed bridge are studied in some detail, focusing on the effects of insufficient longitudinal stiffness of central towers and partially longitudinal constraints between the bridge deck and part of bridge towers. The effectiveness of viscous fluid dampers on the mitigation of longitudinal buffeting responses of the bridge is further investigated and a multiobjective optimization design method that uses a nondominating sort genetic algorithm II (NSGA-II is used to optimize parameters of the viscous fluid dampers. The results of the parametric investigations show that, by appropriate use of viscous fluid dampers, the top displacements of central towers and base forces of bridge towers longitudinally restricted with the bridge deck can be reduced significantly, with hampering the significant gain achieved in the base forces of bridge towers longitudinally unrestricted with the bridge deck. And the optimized parameters for the viscous fluid dampers can be determined from Pareto-optimal fronts using the NSGA-II that can satisfy the desired performance requirements.

  16. Monitoring of wind load and response for cable-supported bridges in Hong Kong

    Science.gov (United States)

    Wong, Kai-yuen; Chan, Wai-Yee K.; Man, King-Leung

    2001-08-01

    Structural health monitoring for the three cable-supported bridges located in the West of Hong Kong or the Tsing Ma Control Area has been carried out since the opening of these bridges to public traffic. The three cable-supported bridges are referred to as the Tsing Ma (suspension) Bridge, the Kap Shui Mun (cable-stayed) Bridge and the Ting Kau (cable-stayed) Bridge. The structural health monitoring works involved are classified as six monitoring categories, namely, wind load and response, temperature load and response, traffic load and response, geometrical configuration monitoring, strains and stresses/forces monitoring and global dynamic characteristics monitoring. As wind loads and responses had been a major concern in the design and construction stages, this paper therefore outlines the work of wind load and response monitoring on Tsing Ma, Kap Shui Mun and Ting Kau Bridges. The paper starts with a brief description of the sensory systems. The description includes the layout and performance requirements of sensory systems for wind load and responses monitoring. Typical results of wind load and response monitoring in graphical forms are then presented. These graphical forms include the plots of wind rose diagrams, wind incidences vs wind speeds, wind turbulence intensities, wind power spectra, gust wind factors, coefficient of terrain roughness, extreme wind analyses, deck deflections/rotations vs wind speeds, acceleration spectra, acceleration/displacement contours, and stress demand ratios. Finally conclusions on wind load and response monitoring on the three cable-supported bridges are drawn.

  17. On the typography of flight-deck documentation

    Science.gov (United States)

    Degani, Asaf

    1992-01-01

    Many types of paper documentation are employed on the flight-deck. They range from a simple checklist card to a bulky Aircraft Flight Manual (AFM). Some of these documentations have typographical and graphical deficiencies; yet, many cockpit tasks such as conducting checklists, way-point entry, limitations and performance calculations, and many more, require the use of these documents. Moreover, during emergency and abnormal situations, the flight crews' effectiveness in combating the situation is highly dependent on such documentation; accessing and reading procedures has a significant impact on flight safety. Although flight-deck documentation are an important (and sometimes critical) form of display in the modern cockpit, there is a dearth of information on how to effectively design these displays. The object of this report is to provide a summary of the available literature regarding the design and typographical aspects of printed matter. The report attempts 'to bridge' the gap between basic research about typography, and the kind of information needed by designers of flight-deck documentation. The report focuses on typographical factors such as type-faces, character height, use of lower- and upper-case characters, line length, and spacing. Some graphical aspects such as layout, color coding, fonts, and character contrast are also discussed. In addition, several aspects of cockpit reading conditions such as glare, angular alignment, and paper quality are addressed. Finally, a list of recommendations for the graphical design of flight-deck documentation is provided.

  18. Effects of CFRP Strengthening on Dynamic and Fatigue Responses of Composite Bridge

    Directory of Open Access Journals (Sweden)

    Kittisak Kuntiyawichai

    2014-01-01

    Full Text Available This paper investigates the effect of CFRP strengthening on dynamic and fatigue responses of composite bridge using finite element program ABAQUS. Dynamic and fatigue responses of composite bridge due to truck load based on AASHTO standard are investigated. Two types of CFRP strengthening techniques, CFRP sheets and CFRP deck, are applied to both the damaged and undamaged bridges. For the case of damaged bridge, two through-thickness crack sizes, 3 mm and 6 mm in depth, are assumed at midspan of the steel girders. Furthermore, effects of the number of steel girders on the dynamic and fatigue responses are also considered. The results show that the maximum responses of composite bridges occur for dual lane cases. By using CFRP as a strengthening material, the maximum stress and deflection of the steel girders reduce and consequently increase the fatigue life of the girders. After introducing initial crack into the steel girders of the composite bridges, the fatigue life of the bridges is dramatically reduced. However, the overall performance of the damaged composite bridge can be improved by using CFRP, albeit with less effectiveness. Therefore, if cracks are found, steel welding must be performed before strengthening the composite bridge by CFRP.

  19. A Theoretical Model for Estimation of Yield Strength of Fiber Metal Laminate

    Science.gov (United States)

    Bhat, Sunil; Nagesh, Suresh; Umesh, C. K.; Narayanan, S.

    2017-08-01

    The paper presents a theoretical model for estimation of yield strength of fiber metal laminate. Principles of elasticity and formulation of residual stress are employed to determine the stress state in metal layer of the laminate that is found to be higher than the stress applied over the laminate resulting in reduced yield strength of the laminate in comparison with that of the metal layer. The model is tested over 4A-3/2 Glare laminate comprising three thin aerospace 2014-T6 aluminum alloy layers alternately bonded adhesively with two prepregs, each prepreg built up of three uni-directional glass fiber layers laid in longitudinal and transverse directions. Laminates with prepregs of E-Glass and S-Glass fibers are investigated separately under uni-axial tension. Yield strengths of both the Glare variants are found to be less than that of aluminum alloy with use of S-Glass fiber resulting in higher laminate yield strength than with the use of E-Glass fiber. Results from finite element analysis and tensile tests conducted over the laminates substantiate the theoretical model.

  20. Bridge Deck Runoff: Water Quality Analysis and BMP Effectiveness

    Science.gov (United States)

    2010-12-01

    The Alaska Department of Transportation (ADOT) is responsible for more than 700 bridges - most span water bodies. Are these water bodies affected by stormwater runoff from ADOT bridges? What are the regulatory and economic constraints on the ADOT reg...

  1. Precast concrete elements for accelerated bridge construction : laboratory testing of precast substructure components, Boone County bridge.

    Science.gov (United States)

    2009-01-01

    Vol. 1-1: In July 2006, construction began on an accelerated bridge project in Boone County, Iowa that was composed of precast substructure : elements and an innovative, precast deck panel system. The superstructure system consisted of full-depth dec...

  2. Golden Gate Bridge response: a study with low-amplitude data from three earthquakes

    Science.gov (United States)

    Çelebi, Mehmet

    2012-01-01

    The dynamic response of the Golden Gate Bridge, located north of San Francisco, CA, has been studied previously using ambient vibration data and finite element models. Since permanent seismic instrumentation was installed in 1993, only small earthquakes that originated at distances varying between ~11 to 122 km have been recorded. Nonetheless, these records prompted this study of the response of the bridge to low amplitude shaking caused by three earthquakes. Compared to previous ambient vibration studies, the earthquake response data reveal a slightly higher fundamental frequency (shorter-period) for vertical vibration of the bridge deck center span (~7.7–8.3 s versus 8.2–10.6 s), and a much higher fundamental frequency (shorter period) for the transverse direction of the deck (~11.24–16.3 s versus ~18.2 s). In this study, it is also shown that these two periods are dominant apparent periods representing interaction between tower, cable, and deck.

  3. The future of rapid bridge deck replacement.

    Science.gov (United States)

    2015-06-01

    Replacing aging, deteriorated infrastructure often requires road closures and traffic detours which impose : inconvenience and delay on commerce and members of the motoring public. Accelerated bridge construction : techniques often use precast member...

  4. Track-Bridge Longitudinal Interaction of Continuous Welded Rails on Arch Bridge

    Directory of Open Access Journals (Sweden)

    Rong Chen

    2013-01-01

    Full Text Available Taking arch bridges, including deck, half-through, and through arch bridges (short for DAB, HTAB, and TAB as examples, mechanics analysis models of longitudinal interaction between continuously welded rails (short for CWRs and arch bridges are established. Based on the finite element method (FEM, the longitudinal interaction calculation software of CWR on arch bridges has been developed. Focusing on an HTAB, the tension, compression, and deflection conditions are calculated and analyzed. The results show that the mechanics analysis models of three types of arch bridges can truly reflect the real state of the structure; the calculation software can be used for systematic research of the CWR on arch bridge; as for HTAB, temperature difference of arch rib has a small effect on rail tension/compression, and arch bridge can be simplified as a continuous beam for rail tension/compression additional force calculation; in calculation of deflection conditions of HTAB, it is suggested that train loads are arranged on half span and full span and take the direction of load entering bridge into account. Additionally, the deflection additional force variation of CFST basket handle arch bridge is different from that of ordinary bridge.

  5. Evaluation of concrete bridge mix designs for control of cracking, phase I.

    Science.gov (United States)

    2014-11-01

    Cracking of concrete is a common problem with concrete structures such as bridge decks, pavements and bridge : rail. The Agency of Transportation (VTrans) has recently invested in higher performing concrete mixes that are : more impervious and has hi...

  6. Standard plans for timber bridge superstructures

    Science.gov (United States)

    James P. Wacker; Matthew S. Smith

    2001-01-01

    These standardized bridge plans are for superstructures consisting of treated timber. Seven superstructure types are includes: five longitudinal and two transverse deck systems. Both HS520 and HS25 loadings are included, along with L/360 and L/500 deflection criteria.

  7. Study on the Spatial Stress of the Chongqing Yangtze River Bridge in China

    Directory of Open Access Journals (Sweden)

    Yan Li

    2014-09-01

    Full Text Available Continuous rigid-frame bridges are usually used in building bridges with long span and high piers. It is characterized by the consolidation between piers and beams in the middle of bridge piers and flexible bridge piers in the lower part. Among all the factors, curvature has the most obvious influence on the stress of curved continuous rigid-frame bridge, because of which, the curved beam bridge produces coupling effect of bending moment and receives complicated stress, leading to the deformation such as torsion and displacement of radial direction. No matter it is the castscaffold construction or cantilever construction, for continuous rigid-frame bridges, considering that after the long term creep of concrete, structure stress tends to be in a drop-frame state, so it is necessary to know the mechanical properties of the finished bridge. Taking the Chongqing Yangtze River Bridge as an example, this paper mainly analyzes the internal forces and deformations of a finished curved continuotus rigid-frame bridge by establishing a spatial finite element model with Midas Civil 2006 software and by changing the model’s radius of curvature. The results show that as the curvature increases, the vertical deformation and torsion angle of the long-span curved continuous rigid-frame bridge are both reduced under the effect of a dead load and prestressed load, presenting mechanical properties of bridge, namely, “coupling effect of bending moment”. In the model analyzed, the deformation of the bridge in the transverse direction also behaves a trend of gradual decrease with an increase in radius of curvature with the range 500–2000 m.

  8. Probabilistic and sensitivity analysis of Botlek Bridge structures

    Directory of Open Access Journals (Sweden)

    Králik Juraj

    2017-01-01

    Full Text Available This paper deals with the probabilistic and sensitivity analysis of the largest movable lift bridge of the world. The bridge system consists of six reinforced concrete pylons and two steel decks 4000 tons weight each connected through ropes with counterweights. The paper focuses the probabilistic and sensitivity analysis as the base of dynamic study in design process of the bridge. The results had a high importance for practical application and design of the bridge. The model and resistance uncertainties were taken into account in LHS simulation method.

  9. Special Fluid Viscous Dampers For The Messina Strait Bridge

    International Nuclear Information System (INIS)

    Colato, Gian Paolo; Infanti, Samuele; Castellano, Maria Gabriella

    2008-01-01

    The Messina Strait Bridge would be the world's longest suspension bridge, with a design earthquake characterised by a PGA value of 0.58 g and a distance between the ipocenter and the bridge of 15 km. Said critical structure of course would need a suitable restraint system for traffic braking loads, wind and seismic actions. Each type of load requires a specific behaviour of the restraint system, making its design a big challenge.The restraint system comprises special types of fluid viscous dampers, installed both in longitudinal and transverse direction, both at the towers and at the anchorages. In seismic conditions they behave as viscous dampers, to reduce the forces on the structural elements and the movements of the bridge deck. But in service dynamic conditions, e.g. under traffic or wind load, the devices shall behave like shock transmission units, thus preventing the longitudinal and transverse movements of the deck.FIP Industriale cooperated with the selected General Contractor, a consortium lead by Impregilo, in the design of said viscous dampers. This paper describes the main features of said devices

  10. Interfacial fracture of the fibre-metal laminates based on fibre reinforced thermoplastics

    International Nuclear Information System (INIS)

    Abdullah, M.R.; Prawoto, Y.; Cantwell, W.J.

    2015-01-01

    As the adhesion quality plays an important role in determining the mechanical performance and environmental stability of most types of fibre-metal laminates (FMLs), investigating the interfacial fracture properties becomes one of the key factors for the improvement. Adhesion of a self-reinforced polypropylene (SRPP) and glass fibre reinforced polypropylene (GFPP) based FML is evaluated experimentally. Single Cantilever Beam (SCB) tests were performed to access interfacial fracture energy (G c ) of the bi-material laminates and their associated interlayer materials. Simulations mimicking the experiments were also performed. The energy needed to fracture was obtained experimentally and also via stress intensity factor from the simulations. The test results show that good adhesion between the aluminium and fibre reinforced thermoplastics can be achieved using a sulphuric acid anodising surface pre-treatment. Further examination has shown that the edges of the test samples highlighted the presence of significant fibre bridging in the SRPP and plastics deformation in the GFPP. - Highlights: • Adhesion of a self-reinforced polypropylene and glass fibre reinforced polypropylene is evaluated. • Single Cantilever Beam tests were performed to access interfacial fracture energy. • The energy needed to fracture was obtained experimentally and also via stress intensity factor from the simulations. • The test results show that best adhesion is achieved using a sulphuric acid anodizing surface pre-treatment

  11. Is deck B a disadvantageous deck in the Iowa Gambling Task?

    Directory of Open Access Journals (Sweden)

    Chiu Yao-Chu

    2007-03-01

    Full Text Available Abstract Background The Iowa gambling task is a popular test for examining monetary decision behavior under uncertainty. According to Dunn et al. review article, the difficult-to-explain phenomenon of "prominent deck B" was revealed, namely that normal decision makers prefer bad final-outcome deck B to good final-outcome decks C or D. This phenomenon was demonstrated especially clearly by Wilder et al. and Toplak et al. The "prominent deck B" phenomenon is inconsistent with the basic assumption in the IGT; however, most IGT-related studies utilized the "summation" of bad decks A and B when presenting their data, thereby avoiding the problems associated with deck B. Methods To verify the "prominent deck B" phenomenon, this study launched a two-stage simple version IGT, namely, an AACC and BBDD version, which possesses a balanced gain-loss structure between advantageous and disadvantageous decks and facilitates monitoring of participant preferences after the first 100 trials. Results The experimental results suggested that the "prominent deck B" phenomenon exists in the IGT. Moreover, participants cannot suppress their preference for deck B under the uncertain condition, even during the second stage of the game. Although this result is incongruent with the basic assumption in IGT, an increasing number of studies are finding similar results. The results of the AACC and BBDD versions can be congruent with the decision literatures in terms of gain-loss frequency. Conclusion Based on the experimental findings, participants can apply the "gain-stay, loss-shift" strategy to overcome situations involving uncertainty. This investigation found that the largest loss in the IGT did not inspire decision makers to avoid choosing bad deck B.

  12. Damage evolution under cyclic multiaxial stress state: A comparative analysis between glass/epoxy laminates and tubes

    DEFF Research Database (Denmark)

    Quaresimin, M.; Carraro, P.A.; Mikkelsen, Lars Pilgaard

    2014-01-01

    In this work an experimental investigation on damage initiation and evolution in laminates under cyclic loading is presented. The stacking sequence [0/θ2/0/-θ2]s has been adopted in order to investigate the influence of the local multiaxial stress state in the off-axis plies and the possible effect...

  13. Parametrically excited oscillation of stay cable and its control in cable-stayed bridges.

    Science.gov (United States)

    Sun, Bing-nan; Wang, Zhi-gang; Ko, J M; Ni, Y Q

    2003-01-01

    This paper presents a nonlinear dynamic model for simulation and analysis of a kind of parametrically excited vibration of stay cable caused by support motion in cable-stayed bridges. The sag, inclination angle of the stay cable are considered in the model, based on which, the oscillation mechanism and dynamic response characteristics of this kind of vibration are analyzed through numerical calculation. It is noted that parametrically excited oscillation of a stay cable with certain sag, inclination angle and initial static tension force may occur in cable-stayed bridges due to deck vibration under the condition that the natural frequency of a cable approaches to about half of the first model frequency of the bridge deck system. A new vibration control system installed on the cable anchorage is proposed as a possible damping system to suppress the cable parametric oscillation. The numerical calculation results showed that with the use of this damping system, the cable oscillation due to the vibration of the deck and/or towers will be considerably reduced.

  14. Coupling vibration research on Vehicle-bridge system

    Science.gov (United States)

    Zhou, Jiguo; Wang, Guihua

    2018-01-01

    The vehicle-bridge coupling system forms when vehicle running on a bridge. It will generate a relatively large influence on the driving comfort and driving safe when the vibration of the vehicle is bigger. A three-dimensional vehicle-bridge system with biaxial seven degrees of freedom has been establish in this paper based on finite numerical simulation. Adopting the finite element transient numerical simulation to realize the numerical simulation of vehicle-bridge system coupling vibration. Then, analyze the dynamic response of vehicle and bridge while different numbers of vehicles running on the bridge. Got the variation rule of vertical vibration of car body and bridge, and that of the contact force between the wheel and bridge deck. The research results have a reference value for the analysis about the vehicle running on a large-span cabled bridge.

  15. Polyurethane foam infill for fiber-reinforced polymer (FRP) bridge deck panels.

    Science.gov (United States)

    2014-05-01

    Although still in their infancy, fiber-reinforced polymer (FRP) bridges have shown great promise in eliminating corrosion : concerns and meeting (or exceeding) FHWAs goal of 100-year life spans for bridges. While FRP bridges are cost-effective in ...

  16. Design and Analysis of Collapsible Scissor Bridge

    Directory of Open Access Journals (Sweden)

    Biro Mohamad Nabil Aklif

    2018-01-01

    Full Text Available Collapsible scissor bridge is a portable bridge that can be deployed during emergency state to access remote areas that are affected by disaster such as flood. The objective of this research is to design a collapsible scissor bridge which is able to be transported by a 4x4 vehicle and to be deployed to connect remote areas. The design is done by using Solidworks and numerical analysis for structural strength is conducted via ANSYS. The research starts with parameters setting and modelling. Finite element analysis is conducted to analyze the strength by determining the safety factor of the bridge. Kutzbach equation is also analyzed to ensure that the mechanism is able to meet the targeted degree of motion. There are five major components of the scissor structure; pin, deck, cross shaft and deck shaft. The structure is controlled by hydraulic pump driven by a motor for the motions. Material used in simulation is A36 structural steel due to limited library in ANSYS. However, the proposed material is Fiber Reinforced Polymer (FRP composites as they have a high strength to weight ratio. FRP also tends to be corrosion resistance and this characteristic is useful in flooded area.

  17. Experimental Validation of a Numerical Model for Three-Dimensional High-Speed Railway Bridge Analysis by Comparison with a Small-Scale Model

    DEFF Research Database (Denmark)

    Sneideris, J.; Bucinskas, Paulius; Agapii, L.

    2015-01-01

    The aim of this paper is to perform dynamic analysis of a multi-span railway bridge interacting with the underlying soil. A small-scale model of a bridge structure is constructed for experimental testing and the results are compared with a computational model. The computational model in this paper...... dimensional 10-degrees-of-freedom system. The subsoil model utilizes Green’s function for a horizontally layered half-space. The small-scale experimental model consists of bridge deck, columns and footings which are made from Plexiglas. An electric vehicle travels along the bridge deck on a track to simulate...

  18. Failure modes of laminate structures

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, L.B.; Druce, R.L.; Wilson, M.J.

    1987-06-01

    Laminate structures composed of alternating thin layers of conductor and dielectric material are commonly used in energy storage and transmission components. The failure of the dielectric layers in regions of high field stress, with applied 60 Hz ac, dc and impulse voltages, was studied. Several geometries were compared, including staggered and flush edges. Electrical trees developed between the laminated dielectric layers. The visual characteristics and growth rates of the electrical trees under ac, dc and impulse stresses were different. Partial discharge detection and analysis was used to measure the inception voltage and discharge activity at the conductor edge voids, to observe tree formation and growth, and to predict impending failure due to dielectric erosion. Electric field distributions were modeled and partial discharge inception levels were estimated from known void geometries. The staggered edge geometry appears to enhance the electric field stress at the recessed electrode.

  19. Statistical variations in chloride diffusion in concrete bridges

    Czech Academy of Sciences Publication Activity Database

    Tikalsky, P.; Pustka, D.; Marek, Pavel

    2005-01-01

    Roč. 102, č. 3 (2005), s. 481-486 ISSN 0889-3241 Institutional research plan: CEZ:AV0Z20710524 Keywords : bridge deck * corrosion * durability Subject RIV: JM - Building Engineering Impact factor: 0.544, year: 2005

  20. Determination of PVB interlayer’s shear modulus and its effect on normal stress distribution in laminated glass panels

    Science.gov (United States)

    Hána, T.; Eliášová, M.; Machalická, K.; Vokáč, M.

    2017-10-01

    Noticing the current architecture, there are many examples of glass bearing members such as beams, panes, ribs stairs or even columns. Most of these elements are made of laminated glass from panes bonded by polymer interlayer so the task of transferring shear forces between the glass panes needs to be investigated due to the lack of knowledge. This transfer depends on stiffness of polymer material, which is affected by temperature and load duration. It is essential to catch the safe side with limit cases when designing these members if the exact material behaviour is not specified. There are lots of interlayers for structural laminated glass applications available on a market. Most of them exhibit different properties, which need to be experimentally verified. This paper is focused on tangent shear modulus of PVB (polyvinyl-buthyral) interlayer and its effect on the stress distribution in glass panes when loaded. This distribution may be determined experimentally or numerically, respectively. This enables to design structural laminated glass members more effectively regarding price and safety. Furthermore, this is the way, how to extend the use of laminated glass in architectural design.

  1. MASH test 3-11 of the TxDOT single slope bridge rail (type SSTR) on pan-formed bridge deck

    Science.gov (United States)

    2011-03-01

    The objective of this crash test was to determine whether the TxDOT Single Slope Traffic Rail (Type : SSTR) would perform acceptably on a pan-formed deck when tested according to the guidelines set forth in : Manual for Assessing Safety Hardware (MAS...

  2. Seismic Responses of a Cable-Stayed Bridge with Consideration of Uniform Temperature Load

    Directory of Open Access Journals (Sweden)

    Junjun Guo

    2016-12-01

    Full Text Available The effects of temperature load on the dynamic responses of cable-stayed bridges have attracted the attention of researchers in recent years. However, these investigations mainly focus on the influence of temperature on the dynamic characteristics of structures, such as vibration mode and frequency. This paper discusses the effects of uniform temperature changes on the seismic responses of a cable-stayed bridge. A three dimensional finite element model of a cable-stayed bridge using OpenSees is established for nonlinear time history analysis, and uniform temperature load is applied to the prototype bridge before the conducting of seismic excitation. Three ground motion records are selected from the PEER strong motion database based on the design spectrum. Case studies are then performed considering the varying temperature and the connections between the deck and pylons of the bridge. The result shows that the seismic responses of the bridge are significantly increased with the consideration of temperature load. Meanwhile, the types between the deck and pylon also have notable impacts on the seismic responses of the bridge with and without temperature changes. This research could provide a reference for designers during the design phase of cable-stayed brides.

  3. Behaviour of Mechanically Laminated CLT Members

    Science.gov (United States)

    Kuklík, P.; Velebil, L.

    2015-11-01

    Cross laminated timber (CLT) is one of the structural building systems based on the lamination of multiple layers, where each layer is oriented perpendicularly to each other. Recent requirements are placed to develop an alternative process based on the mechanical lamination of the layers, which is of particular interest to our research group at the University Centre for Energy Efficient Buildings. The goal is to develop and verify the behaviour of mechanically laminated CLT wall panels exposed to shear stresses in the plane. The shear resistance of mechanically jointed CLT is ensured by connecting the layers by screws. The paper deals with the experimental analysis focused on the determination of the torsional stiffness and the slip modulus of crossing areas for different numbers of orthogonally connected layers. The results of the experiments were compared with the current analytical model.

  4. FEATURES OF DESIGN OF TIED-ARCH BRIDGES WITH FLEXIBLE INCLINED SUSPENSION HANGERS

    Directory of Open Access Journals (Sweden)

    V. O. Samosvat

    2017-10-01

    Full Text Available Purpose. Investigation and analysis of the hanger arrangement and the structural stability of a Network arch bridge – a tied-arch bridge with inclined hangers that cross each other at least twice. It is also necessary to make a comparative analysis with other types of hanger arrangements. Methodology. The authors in their research investigated a large number of parameters to determine their influence in the force distribution in the arch. Eventually they determined optimal values for all parameters. These optimal values allowed developing a design guide that leads to optimal arch design. When solving this problem, the authors used three-dimensional finite element models and the objective was to determine the most suitable solution for a road bridge, with a span of 100 meters, consisting of two inclined steel arches, located on a road with two traffic lanes, subjected to medium traffic. The virtual prototype of the model is performed by finite element simulator Midas Civil. Findings. In this study, for the bridge deck, a concrete tie appears to be the best solution considering the structural behavior of network arches, but economic advantages caused by easier erection may lead to steel or a composite bridge deck as better alternatives. Design requirements and local conditions of each particular bridge project will decide the most economic deck design.Originality. To ensure passenger comfort and the stability and continuity of the track, deformations of bridges are constricted. A network arch is a stiff structure with small deflections and therefore suitable to comply with such demands even for high speed railway traffic.
A network arch bridge with a concrete tie usually saves more than half the steel required for tied arches with vertical hangers and concrete ties. Practical value. Following the study design advice given in this article leads to savings of about 60 % of structural steel compared with conventional tied arch bridges with

  5. Process Modelling of Curing Process-Induced Internal Stress and Deformation of Composite Laminate Structure with Elastic and Viscoelastic Models

    Science.gov (United States)

    Li, Dongna; Li, Xudong; Dai, Jianfeng

    2018-06-01

    In this paper, two kinds of transient models, the viscoelastic model and the linear elastic model, are established to analyze the curing deformation of the thermosetting resin composites, and are calculated by COMSOL Multiphysics software. The two models consider the complicated coupling between physical and chemical changes during curing process of the composites and the time-variant characteristic of material performance parameters. Subsequently, the two proposed models are implemented respectively in a three-dimensional composite laminate structure, and a simple and convenient method of local coordinate system is used to calculate the development of residual stresses, curing shrinkage and curing deformation for the composite laminate. Researches show that the temperature, degree of curing (DOC) and residual stresses during curing process are consistent with the study in literature, so the curing shrinkage and curing deformation obtained on these basis have a certain referential value. Compared the differences between the two numerical results, it indicates that the residual stress and deformation calculated by the viscoelastic model are more close to the reference value than the linear elastic model.

  6. Multiobjective Optimal Control of Longitudinal Seismic Response of a Multitower Cable-Stayed Bridge

    Directory of Open Access Journals (Sweden)

    Geng Fangfang

    2016-01-01

    Full Text Available The dynamic behavior of a multitower cable-stayed bridge with the application of partially longitudinal constraint system using viscous fluid dampers under real earthquake ground motions is presented. The study is based on the dynamic finite element model of the Jiashao Bridge, a six-tower cable-stayed bridge in China. The prime aim of the study is to investigate the effectiveness of viscous fluid dampers on the longitudinal seismic responses of the bridge and put forth a multiobjective optimization design method to determine the optimized parameters of the viscous fluid dampers. The results of the investigations show that the control objective of the multitower cable-stayed bridge with the partially longitudinal constraint system is to yield maximum reductions in the base forces of bridge towers longitudinally restricted with the bridge deck, with slight increases in the base forces of bridge towers longitudinally unrestricted with the bridge deck. To this end, a multiobjective optimization design method that uses a nondominating sort genetic algorithm II (NSGA-II is used to optimize parameters of the viscous fluid dampers. The effectiveness of the proposed optimization design method is demonstrated for the multitower cable-stayed bridge with the partially longitudinal constraint system, which reveals that a design engineer can choose a set of proper parameters of the viscous fluid dampers from Pareto optimal fronts that can satisfy the desired performance requirements.

  7. Strength and durability of near-surface mounted CFRP bars for shear strengthening reinforced concrete bridge girders.

    Science.gov (United States)

    2012-03-01

    During the interstate expansion of the 1950s, many conventionally reinforced concrete deck girder bridges were built throughout the country. These aging bridges commonly exhibit diagonal cracking and rate inadequately for shear, thus they are candida...

  8. Seismic Response Analysis of Continuous Multispan Bridges with Partial Isolation

    Directory of Open Access Journals (Sweden)

    E. Tubaldi

    2015-01-01

    Full Text Available Partially isolated bridges are a particular class of bridges in which isolation bearings are placed only between the piers top and the deck whereas seismic stoppers restrain the transverse motion of the deck at the abutments. This paper proposes an analytical formulation for the seismic analysis of these bridges, modelled as beams with intermediate viscoelastic restraints whose properties describe the pier-isolator behaviour. Different techniques are developed for solving the seismic problem. The first technique employs the complex mode superposition method and provides an exact benchmark solution to the problem at hand. The two other simplified techniques are based on an approximation of the displacement field and are useful for preliminary assessment and design purposes. A realistic bridge is considered as case study and its seismic response under a set of ground motion records is analyzed. First, the complex mode superposition method is applied to study the characteristic features of the dynamic and seismic response of the system. A parametric analysis is carried out to evaluate the influence of support stiffness and damping on the seismic performance. Then, a comparison is made between the exact solution and the approximate solutions in order to evaluate the accuracy and suitability of the simplified analysis techniques for evaluating the seismic response of partially isolated bridges.

  9. Thermal analysis of GFRP-reinforced continuous concrete decks subjected to top fire

    Science.gov (United States)

    Hawileh, Rami A.; Rasheed, Hayder A.

    2017-12-01

    This paper presents a numerical study that investigates the behavior of continuous concrete decks doubly reinforced with top and bottom glass fiber reinforced polymer (GFRP) bars subjected to top surface fire. A finite element (FE) model is developed and a detailed transient thermal analysis is performed on a continuous concrete bridge deck under the effect of various fire curves. A parametric study is performed to examine the top cover thickness and the critical fire exposure curve needed to fully degrade the top GFRP bars while achieving certain fire ratings for the deck considered. Accordingly, design tables are prepared for each fire curve to guide the engineer to properly size the top concrete cover and maintain the temperature in the GFRP bars below critical design values in order to control the full top GFRP degradation. It is notable to indicate that degradation of top GFRP bars do not pose a collapse hazard but rather a serviceability concern since cracks in the negative moment region widen resulting in simply supported spans.

  10. Progressive delamination in polymer matrix composite laminates: A new approach

    Science.gov (United States)

    Chamis, C. C.; Murthy, P. L. N.; Minnetyan, L.

    1992-01-01

    A new approach independent of stress intensity factors and fracture toughness parameters has been developed and is described for the computational simulation of progressive delamination in polymer matrix composite laminates. The damage stages are quantified based on physics via composite mechanics while the degradation of the laminate behavior is quantified via the finite element method. The approach accounts for all types of composite behavior, laminate configuration, load conditions, and delamination processes starting from damage initiation, to unstable propagation, and to laminate fracture. Results of laminate fracture in composite beams, panels, plates, and shells are presented to demonstrate the effectiveness and versatility of this new approach.

  11. Effects of differently hardened brass foil laminate on the electromechanical property of externally laminated CC tapes

    Energy Technology Data Exchange (ETDEWEB)

    Bautista, Zhierwinjay; Shin, Hyung Seop [Dept. of Mechanical Design Engineering, Andong National University, Andong (Korea, Republic of); Mean, Byoung Jean; Lee, Jae Hun [SuNAM Co Ltd., Anseong (Korea, Republic of)

    2016-12-15

    The mechanical properties of REBCO coated conductor (CC) wires under uniaxial tension are largely determined by the thick component layers in the architecture, namely, the substrate and the stabilizer or even the reinforcement layer. Depending on device applications of the CC tapes, it is necessary to reinforce thin metallic foils externally to one-side or both sides of the CC tapes. Due to the external reinforcement of brass foils, it was found that this could increase the reversible strain limit from the Cu-stabilized CC tapes. In this study, the effects of differently hardened brass foil laminate on the electromechanical property of CC tapes were investigated under uniaxial tension loading. The tensile strain dependence of the critical current (I{sub c}) was measured at 77 K and self-field. Depending on whether the I{sub c} of CC tapes were measured during loading or after unloading, a reversible strain (or stress) limit could be determined, respectively. The both-sides of the Cu-stabilized CC tapes were laminated with brass foils with different hardness, namely 1/4H, 1H and EH. From the obtained results, it showed that the yield strength of the brass laminated CC tapes with EH brass foil laminate was comparable to the one of the Cu-stabilized CC tape due to its large yield strength even though its large volume fraction. It was found that the brass foil with different hardness was mainly sensitive on the stress dependence of I{sub c}, but not on the strain sensitivity due to the residual strain induced in the laminated CC tapes during unloading.

  12. Evaluation of shear-compressive strength properties for laminated GFRP composites in electromagnet system

    Science.gov (United States)

    Song, Jun Hee; Kim, Hak Kun; Kim, Sam Yeon

    2014-07-01

    Laminated fiber-reinforced composites can be applied to an insulating structure of a nuclear fusion device. It is necessary to investigate the interlaminar fracture characteristics of the laminated composites for the assurance of design and structural integrity. The three methods used to prepare the glass fiber reinforced plastic composites tested in this study were vacuum pressure impregnation, high pressure laminate (HPL), and prepreg laminate. We discuss the design criteria for safe application of composites and the shear-compressive test methods for evaluating mechanical properties of the material. Shear-compressive tests could be performed successfully using series-type test jigs that were inclined 0°, 30°, 45°, 60°, and 75° to the normal axis. Shear strength depends strongly on the applied compressive stress. The design range of allowable shear stress was extended by use of the appropriate composite fabrication method. HPL had the largest design range, and the allowable interlaminar shear stress was 0.254 times the compressive stress.

  13. Prediction of fatigue damage in tapered laminates

    DEFF Research Database (Denmark)

    Raeis Hosseiny, Seyed Aydin; Jakobsen, Johnny

    2017-01-01

    Effective implementation of ply-drops configurations substantially improve the damage tolerant design of flexible and aero-elastic wind turbine blades. Terminating a number of layers for an optimized blade design creates local bending effects. Inter-laminar stress states in tapered areas give rise...... to delamination and premature structural failure. Precise calculation of the stress levels for embedded ply-drops is required to predict failure initiation within acceptable limits. Multi-axial stress states in orthotropic laminates subjected to diverse loading mechanisms nucleate microscopic cracks....... By increasing the cracks density, damage occurs when residual material properties reduce to a critical level. Residual strength and stiffness of simple laminates are assigned in a set of fatigue failure criteria to assess the remaining life of the components by increasing number of loading cycles. The mode...

  14. Strength and durability of near-surface mounted CFRP bars for shear strengthening reinforced concrete bridge girders : appendices.

    Science.gov (United States)

    2012-01-01

    During the interstate expansion of the 1950s, many conventionally reinforced concrete deck girder bridges were built throughout the country. These aging bridges commonly exhibit diagonal cracking and rate inadequately for shear, thus they are candida...

  15. Analysis of a hybrid balanced laminate as a structural material for thick composite beams with axial stiffeners

    Energy Technology Data Exchange (ETDEWEB)

    Modak, Partha; Hossain, M. Jamil, E-mail: jamil917@gmail.com; Ahmed, S. Reaz [Department of Mechanical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000 (Bangladesh)

    2016-07-12

    An accurate stress analysis has been carried out to investigate the suitability of a hybrid balanced laminate as a structural material for thick composite beams with axial stiffeners. Three different balanced laminates composed of dissimilar ply material as well as fiber orientations are considered for a thick beam on simple supports with stiffened lateral ends. A displacement potential based elasticity approach is used to obtain the numerical solution of the corresponding elastic fields. The overall laminate stresses as well as individual ply stresses are analysed mainly in the perspective of laminate hybridization. Both the fiber material and ply angle of individual laminas are found to play dominant roles in defining the design stresses of the present composite beam.

  16. Concurrent material-fabrication optimization of metal-matrix laminates under thermo-mechanical loading

    Science.gov (United States)

    Saravanos, D. A.; Morel, M. R.; Chamis, C. C.

    1991-01-01

    A methodology is developed to tailor fabrication and material parameters of metal-matrix laminates for maximum loading capacity under thermomechanical loads. The stresses during the thermomechanical response are minimized subject to failure constrains and bounds on the laminate properties. The thermomechanical response of the laminate is simulated using nonlinear composite mechanics. Evaluations of the method on a graphite/copper symmetric cross-ply laminate were performed. The cross-ply laminate required different optimum fabrication procedures than a unidirectional composite. Also, the consideration of the thermomechanical cycle had a significant effect on the predicted optimal process.

  17. Strength and durability of near-surface mounted CFRP bars for shear strengthening reinforced concrete bridge girders : final report.

    Science.gov (United States)

    2012-03-01

    During the interstate expansion of the 1950s, many conventionally reinforced concrete deck girder bridges were built throughout the country. These aging bridges commonly exhibit diagonal cracking and rate inadequately for shear, thus they are candida...

  18. Mechanical properties of superelastic Cu–Al–Be wires at cold temperatures for the seismic protection of bridges

    International Nuclear Information System (INIS)

    Zhang Yunfeng; Zhu Songye; Camilleri, Joseph A

    2008-01-01

    This paper examines the suitability of superelastic copper–aluminum–beryllium (Cu–Al–Be) alloy wires for the seismic protection of bridges in cold regions. Experimental results for the mechanical properties of superelastic Cu–Al–Be alloy wires at a variety of temperatures and loading rates are presented. This research is motivated by the recent use of shape memory alloys for bridge restrainers subject to harsh winter conditions, especially in cold regions. Bridge restrainers made of superelastic Cu–Al–Be wire strands are expected to be used for protecting bridge decks from excessive displacement when subjected to strong earthquakes. Using a temperature chamber, superelastic Cu–Al–Be wires with a diameter of 1.4 mm were tested under uniaxial cyclic loading at various loading rates and cold temperatures. The test results from 23 to −50 °C demonstrate that Cu–Al–Be exhibits superelastic behavior at cold temperatures down to −85 °C. It is also found that with decreasing temperature the transformation plateau stress is reduced while its fatigue life increases under cyclic testing

  19. Economic impact of multi-span, prestressed concrete girder bridges designed as simple span versus continuous span : final report.

    Science.gov (United States)

    2016-10-01

    The objective of this study was to determine the economic impact of designing pre-tensioned prestressed concrete beam (PPCB) : bridges utilizing the continuity developed in the bridge deck as opposed to the current Iowa Department of Transportation (...

  20. Condition assessment of timber bridges. 2, Evaluation of several stress-wave tools

    Science.gov (United States)

    Brian K. Brashaw; Robert J. Vatalaro; James P. Wacker; Robert J. Ross

    2005-01-01

    This study was conducted to evaluate the accuracy and reliability of several stress-wave devices widely used for locating deteriorated areas in timber bridge members. Bridge components containing different levels of natural decay were tested using various devices. The specimens were then sawn (along their length) into slabs to expose their interior condition. The...

  1. Strength and durability of near-surface mounted CFRP bars for shear strengthening reinforced concrete bridge girders : final report appendices.

    Science.gov (United States)

    2012-03-01

    During the interstate expansion of the 1950s, many conventionally reinforced concrete deck girder bridges were built throughout the country. These aging bridges commonly exhibit diagonal cracking and rate inadequately for shear, thus they are candida...

  2. Optimization of wood plastic composite decks

    Science.gov (United States)

    Ravivarman, S.; Venkatesh, G. S.; Karmarkar, A.; Shivkumar N., D.; Abhilash R., M.

    2018-04-01

    Wood Plastic Composite (WPC) is a new class of natural fibre based composite material that contains plastic matrix reinforced with wood fibres or wood flour. In the present work, Wood Plastic Composite was prepared with 70-wt% of wood flour reinforced in polypropylene matrix. Mechanical characterization of the composite was done by carrying out laboratory tests such as tensile test and flexural test as per the American Society for Testing and Materials (ASTM) standards. Computer Aided Design (CAD) model of the laboratory test specimen (tensile test) was created and explicit finite element analysis was carried out on the finite element model in non-linear Explicit FE code LS - DYNA. The piecewise linear plasticity (MAT 24) material model was identified as a suitable model in LS-DYNA material library, describing the material behavior of the developed composite. The composite structures for decking application in construction industry were then optimized for cross sectional area and distance between two successive supports (span length) by carrying out various numerical experiments in LS-DYNA. The optimized WPC deck (Elliptical channel-2 E10) has 45% reduced weight than the baseline model (solid cross-section) considered in this study with the load carrying capacity meeting acceptance criterion (allowable deflection & stress) for outdoor decking application.

  3. Dynamic response of the train-track-bridge system subjected to derailment impacts

    Science.gov (United States)

    Ling, Liang; Dhanasekar, Manicka; Thambiratnam, David P.

    2018-04-01

    Derailments on bridges, although not frequent, when occurs due to a complex dynamic interaction of the train-track-bridge structural system, are very severe. Furthermore, the forced vibration induced by the post-derailment impacts can toss out the derailed wagons from the bridge deck with severe consequences to the traffic underneath and the safety of the occupants of the wagons. This paper presents a study of the train-track-bridge interaction during a heavy freight train crossing a concrete box girder bridge from a normal operation to a derailed state. A numerical model that considers the bridge vibration, train-track interaction and the train post-derailment behaviour is formulated based on a coupled finite-element - multi-body dynamics (FE-MBD) theory. The model is applied to predict the post-derailment behaviour of a freight train composed of one locomotive and several wagons, as well as the dynamic response of a straight single-span simply supported bridge containing ballast track subjected to derailment impacts. For this purpose, a typical derailment scenario of a heavy freight train passing over a severe track geometry defect is introduced. The dynamic derailment behaviour of the heavy freight train and the dynamic responses of the rail bridge are illustrated through numerical examples. The results exhibit the potential for tossing out of the derailed trains from the unstable increase in the yaw angle signature and a lower rate of increase of the bridge deck bending moment compared to the increase in the static axle load of the derailed wheelset.

  4. Pilot Study for Investigating the Cyclic Response of the Recentering Bridge Bearing System Combined with the Friction Damper

    Directory of Open Access Journals (Sweden)

    Jong Wan Hu

    2016-01-01

    Full Text Available The bridge bearing is one of the component members which provide resting supports between piers and decks. The bridge bearing is intended to control longitudinal movement caused by traffic flow and thermal expansion, thereby reducing stress concentration. In high seismicity area, the bridge bearing has been utilized as the base isolation system to mitigate acceleration transferred from the ground. Although the existing bridge bearing installed between superstructure and substructure provides extra flexibility to the base of the entire structure, considerable permanent deformation occurs due to lack of recentering capacity after earthquake. It is required to spend extra cost for repairing impaired parts. The bridge bearings integrated with superelastic shape memory alloy (SMA devices used for upgrading the recentering effect into the friction damper are proposed in this study. The refined finite element (FE analyses are introduced to reproduce the response of such new structures under cyclic loading condition. The bridge bearing systems that maintain uniform recentering capability are designed with various friction coefficients so as to examine energy dissipation and residual deformation through FE analyses. After observing FE analysis results, optimal design for the recentering bridge bearing system will be proposed to take advantage of energy dissipation and self-centering capacity.

  5. Economic impact of multi-span, prestressed concrete girder bridges designed as simple span versus continuous span : tech transfer summary.

    Science.gov (United States)

    2016-10-01

    The objective of this study was to determine the economic impact of : designing pre-tensioned prestressed concrete beam (PPCB) bridges : utilizing the continuity developed in the bridge deck as opposed to the : current Iowa Department of Transportati...

  6. A sensor network system for the health monitoring of the Parkview bridge deck.

    Science.gov (United States)

    2010-01-31

    Bridges are a critical component of the transportation infrastructure. There are approximately 600,000 bridges in : the United State according to the Federal Highway Administration. Four billion vehicles traverse these bridges daily. : Regular inspec...

  7. Combined tension and bending testing of tapered composite laminates

    Science.gov (United States)

    O'Brien, T. Kevin; Murri, Gretchen B.; Hagemeier, Rick; Rogers, Charles

    1994-11-01

    A simple beam element used at Bell Helicopter was incorporated in the Computational Mechanics Testbed (COMET) finite element code at the Langley Research Center (LaRC) to analyze the responce of tappered laminates typical of flexbeams in composite rotor hubs. This beam element incorporated the influence of membrane loads on the flexural response of the tapered laminate configurations modeled and tested in a combined axial tension and bending (ATB) hydraulic load frame designed and built at LaRC. The moments generated from the finite element model were used in a tapered laminated plate theory analysis to estimate axial stresses on the surface of the tapered laminates due to combined bending and tension loads. Surfaces strains were calculated and compared to surface strains measured using strain gages mounted along the laminate length. The strain distributions correlated reasonably well with the analysis. The analysis was then used to examine the surface strain distribution in a non-linear tapered laminate where a similarly good correlation was obtained. Results indicate that simple finite element beam models may be used to identify tapered laminate configurations best suited for simulating the response of a composite flexbeam in a full scale rotor hub.

  8. Development of precast bridge deck overhang system : technical report.

    Science.gov (United States)

    2011-07-01

    The implementation of full-depth, precast overhang panel systems has the potential to improve constructability, : productivity, and make bridges more economical. Initial testing and analyses reported in the 0-6100-2 report resulted in : a design that...

  9. The Aurora-B-dependent NoCut checkpoint prevents damage of anaphase bridges after DNA replication stress.

    Science.gov (United States)

    Amaral, Nuno; Vendrell, Alexandre; Funaya, Charlotta; Idrissi, Fatima-Zahra; Maier, Michael; Kumar, Arun; Neurohr, Gabriel; Colomina, Neus; Torres-Rosell, Jordi; Geli, María-Isabel; Mendoza, Manuel

    2016-05-01

    Anaphase chromatin bridges can lead to chromosome breakage if not properly resolved before completion of cytokinesis. The NoCut checkpoint, which depends on Aurora B at the spindle midzone, delays abscission in response to chromosome segregation defects in yeast and animal cells. How chromatin bridges are detected, and whether abscission inhibition prevents their damage, remain key unresolved questions. We find that bridges induced by DNA replication stress and by condensation or decatenation defects, but not dicentric chromosomes, delay abscission in a NoCut-dependent manner. Decatenation and condensation defects lead to spindle stabilization during cytokinesis, allowing bridge detection by Aurora B. NoCut does not prevent DNA damage following condensin or topoisomerase II inactivation; however, it protects anaphase bridges and promotes cellular viability after replication stress. Therefore, the molecular origin of chromatin bridges is critical for activation of NoCut, which plays a key role in the maintenance of genome stability after replicative stress.

  10. Reduction of seismic response long-span PC cable-stayed bridge by passive dampers; Damper ni yoru saidai PC shachokyo no jishinji oto no teigen

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, T.; Yamanobe, S.; Niihara, Y. [Kajima Corp., Tokyo (Japan)

    1994-10-31

    It is important in designing a PC cable-stayed bridge to properly estimate the seismic response of the bridge for reduction of the response. In this paper, an improvement of the seismic resistance of PC cable-stayed bridges when dampers are installed between the deck and piers and lateral vibration of the deck is restricted is investigated using a time history response model. PC cable-stayed bridges with a span length of 400 m, particularly two types of bridges of harp and semi-harp are investigated and the following is found by analyzing the case where there are installed hysteresis type dampers (with 1 cm yield displacement and secondary rigidity assumed to be 1/10 times that of initial rigidity, the initial rigidity being parametrically changed.) or viscous type dampers (a damping factor is changed.) The result shows that the dampers can reduce the seismic response of a PC cable-stayed bridge and that a semi-harp configuration of stay cables where stay cable members are substantially vertically arranged is more effective than a harp configuration for the seismic performance of PC cable-stayed bridges. The damper partly bear inertial force of the bridge upon earthquake whereby tension of the stay cable members is reduced and bending moment of the deck is reduced. There is existing an optimum characteristic value of the damper concerning the bending moment of the piers. 5 refs., 7 figs., 2 tabs.

  11. Laminates

    Science.gov (United States)

    Lepedat, Karin; Wagner, Robert; Lang, Jürgen

    The use of phenolic resin for the impregnation of a carrier material such as paper or fabric based on either organic or inorganic fibers was and still is one of the most important application areas for liquid phenolic resins. Substrates like paper, cotton, or glass fabric impregnated with phenolic resins are used as core layers for decorative and technical laminates and for many other different industrial applications. Nowadays, phenolic resins for decorative laminates used for furniture, flooring, or in the construction and transportation industry have gained significant market share. The Laminates chapter mainly describes the manufacture of decorative laminates especially the impregnation and pressing process with special emphasis to new technological developments and recent trends. Moreover, the different types of laminates are introduced, combined with some brief comments as they relate to the market for decorative surfaces.

  12. Active aerodynamic stabilisation of long suspension bridges

    DEFF Research Database (Denmark)

    Nissen, Henrik Ditlev; Sørensen, Paul Haase; Jannerup, Ole Erik

    2004-01-01

    The paper describes the addition of actively controlled appendages (flaps) attached along the length of the bridge deck to dampen wind-induced oscillations in long suppension bridges. A novel approach using control systems methods for the analysis of dynamic stability is presented. In order to make...... use of control analysis and design techniques, a linear model of the structural and aerodynamic motion around equilibriun is developed. The model is validated through comparison with finite element calculations and wind tunnel experimental data on the Great Belt East Bridge in Denmark. The developed...... active control scheme is local in that the flap control signal at a given longitudinal position along the bridge only depends on local motion measurements. The analysis makes use of the Nyquist stability criteria and an anlysis of the sensitivity function for stability analysis. The analysis shows...

  13. Critical traffic loading for the design of prestressed concrete bridge

    International Nuclear Information System (INIS)

    Hassan, M.I.U.

    2009-01-01

    A study has been carried out to determine critical traffic loadings for the design of bridge superstructures. The prestressed concrete girder bridge already constructed in Lahore is selected for the analysis as an example. Standard traffic loadings according to AASHTO (American Association of State Highway and Transportation Officials) and Pakistan Highway Standards are used for this purpose. These include (1) HL-93 Truck, (2) Lane and (3) Tandem Loadings in addition to (4) Military tank loading, (5) Class-A, (6) Class-B and (7) Class-AA loading, (8) NLC (National Logistic Cell) and (9) Volvo truck loadings. Bridge superstructure including transom beam is analyzed Using ASD and LRFD (Load and Resistance Factor Design) provisions of AASHTO specifications. For the analysis, two longer and shorter spans are selected. This includes the analysis of bridge deck; interior and exterior girder; a typical transom beam and a pier. Dead and live loading determination is carried out using both computer aided and manual calculations. Evaluation of traffic loadings is done for all the bridge components to find out the critical loading. HL-93 loading comes out to be the most critical loading and where this loading is not critical in case of bridge decks; a factor of 1.15 is introduced to make it equivalent with HL-93 -Ioading. SAP-2000 (Structural Engineering Services of Pakistan) and MS-Excel is employed for analysis of bridge superstructure subjected to this loading. Internal forces are obtained for the structural elements of the bridge for all traffic loadings mentioned. It is concluded that HL-93 loading can be used for the design of prestressed concrete girder bridge. Bridge design authorities like NHA (National Highway Authority) and different cities development authorities are using different standard traffic loadings. A number of suggestions are made from the results of the research work related to traffic loadings and method of design. These recommendations may be

  14. Constitutive and numerical modeling of soil and soil-pile interaction for 3D applications and Kealakaha stream bridge case study.

    Science.gov (United States)

    2011-12-01

    This study is concerned with developing new modeling tools for predicting the response of the new Kealakaha : Stream Bridge to static and dynamic loads, including seismic shaking. The bridge will span 220 meters, with the : deck structure being curve...

  15. Analysis on Adhesively-Bonded Joints of FRP-steel Composite Bridge under Combined Loading: Arcan Test Study and Numerical Modeling

    Directory of Open Access Journals (Sweden)

    Xu Jiang

    2016-01-01

    Full Text Available The research presented in this paper is an experimental study and numerical analysis on mechanical behavior of the adhesively-bonded joint between FRP sandwich bridge deck and steel girder. Generally, there are three typical stress states in the adhesively-bonded joint: shear stress, tensile stress, and combination of both. To realize these stress states in the adhesively-bonded joint during tests, a specific loading device is developed with the capacity of providing six different loading angles, which are 0°(pure tension, 18°, 36°, 54°, 72° and 90°(pure shear. Failure modes of adhesively-bonded joints are investigated. It indicates that, for the pure shear loading, the failure mode is the cohesive failure (near the interface between the adhesive layer and the steel support in the adhesive layer. For the pure tensile and combined loading conditions, the failure mode is the combination of fiber breaking, FRP delamination and interfacial adhesion failure between the FRP sandwich deck and the adhesive layer. The load-bearing capacities of adhesive joints under combined loading are much lower than those of the pure tensile and pure shear loading conditions. According to the test results of six angle loading conditions, a tensile/shear failure criterion of the adhesively-bonded joint is obtained. By using Finite Element (FE modeling method, linear elastic simulations are performed to characterize the stress distribution throughout the adhesively-bonded joint.

  16. Effects of stacking sequence on fracture mechanisms in quasi-isotropic Carbon/epoxy laminates under tensile loading

    International Nuclear Information System (INIS)

    Hessabi, Z. R.; Majidi, B.; Aghazadeh, J.

    2006-01-01

    The progress of damage in quasi-isotropic carbon/epoxy laminates under tensile loading has been Investigated microscopically. One significant mode of failure in laminated composites is delamination initiating at free edges. The interlaminar stress in the boundary ply along the free edges of a laminated composite is the main factor to cause delamination. The laminate stacking sequence affects the interlaminar stress distribution and consequently may change the mode of failure. It is of design importance to determine a suitable criterion based on stress analysis to obtain the best stacking sequence. In the present work, tensile properties of six samples with different stacking sequences have been examined. Results showed that stress analysis at distance very close to the free edges is a suitable criterion to predict the initiation of delamination and the stacking sequence of [90/45/0/-45] s , has the highest strength among the others. Furthermore finite element analysis showed that the adjacent ±45 plies cause premature delamination during tensile loading

  17. Modeling the Non-Linear Response of Fiber-Reinforced Laminates Using a Combined Damage/Plasticity Model

    Science.gov (United States)

    Schuecker, Clara; Davila, Carlos G.; Pettermann, Heinz E.

    2008-01-01

    The present work is concerned with modeling the non-linear response of fiber reinforced polymer laminates. Recent experimental data suggests that the non-linearity is not only caused by matrix cracking but also by matrix plasticity due to shear stresses. To capture the effects of those two mechanisms, a model combining a plasticity formulation with continuum damage has been developed to simulate the non-linear response of laminates under plane stress states. The model is used to compare the predicted behavior of various laminate lay-ups to experimental data from the literature by looking at the degradation of axial modulus and Poisson s ratio of the laminates. The influence of residual curing stresses and in-situ effect on the predicted response is also investigated. It is shown that predictions of the combined damage/plasticity model, in general, correlate well with the experimental data. The test data shows that there are two different mechanisms that can have opposite effects on the degradation of the laminate Poisson s ratio which is captured correctly by the damage/plasticity model. Residual curing stresses are found to have a minor influence on the predicted response for the cases considered here. Some open questions remain regarding the prediction of damage onset.

  18. Durability of Materials in Pearl-Chain Bridges

    DEFF Research Database (Denmark)

    Lund, Mia Schou Møller

    . The construction of the Pearl-Chain arch is simple. The arch is assembled on its side, next to the road that the bridge will span, by placing a number of plane prefabricated Super-Light Decks that consist of lightweight aggregate concrete and conventional concrete, in the desired arch shape. Mortar joints are cast...... is stabilized by casting a fill material between the spandrel walls of the arch. Finally, the road surface is cast on top of the fill material. New bridges are designed for a service lifetime of at least 100 years. Hence, the specifications of the materials used in Pearl-Chain Bridges are high. This PhD study...... and pervious concrete were also investigated. The most suitable fill material for Pearl-Chain Bridges depends on the particular bridge design; the results obtained and presented in the present PhD study provide guidance on how to decide which fill material is most suitable regarding strength, permeability...

  19. Master plot analysis of microcracking in graphite/epoxy and graphite/PEEK laminates

    Science.gov (United States)

    Nairn, John A.; Hu, Shoufeng; Bark, Jong Song

    1993-01-01

    We used a variational stress analysis and an energy release rate failure criterion to construct a master plot analysis of matrix microcracking. In the master plot, the results for all laminates of a single material are predicted to fall on a single line whose slope gives the microcracking toughness of the material. Experimental results from 18 different layups of AS4/3501-6 laminates show that the master plot analysis can explain all observations. In particular, it can explain the differences between microcracking of central 90 deg plies and of free-surface 90 deg plies. Experimental results from two different AS4/PEEK laminates tested at different temperatures can be explained by a modified master plot that accounts for changes in the residual thermal stresses. Finally, we constructed similar master plot analyses for previous literature microcracking models. All microcracking theories that ignore the thickness dependence of the stresses gave poor results.

  20. Determination of Fracture Parameters for Multiple Cracks of Laminated Composite Finite Plate

    Science.gov (United States)

    Srivastava, Amit Kumar; Arora, P. K.; Srivastava, Sharad Chandra; Kumar, Harish; Lohumi, M. K.

    2018-04-01

    A predictive method for estimation of stress state at zone of crack tip and assessment of remaining component lifetime depend on the stress intensity factor (SIF). This paper discusses the numerical approach for prediction of first ply failure load (FL), progressive failure load, SIF and critical SIF for multiple cracks configurations of laminated composite finite plate using finite element method (FEM). The Hashin and Chang failure criterion are incorporated in ABAQUS using subroutine approach user defined field variables (USDFLD) for prediction of progressive fracture response of laminated composite finite plate, which is not directly available in the software. A tensile experiment on laminated composite finite plate with stress concentration is performed to validate the numerically predicted subroutine results, shows excellent agreement. The typical results are presented to examine effect of changing the crack tip distance (S), crack offset distance (H), and stacking fiber angle (θ) on FL, and SIF .

  1. Performance of a Press-Lam bridge : a 5-year load-testing and monitoring program

    Science.gov (United States)

    D. S. Gromala; R. C. Moody; M. M. Sprinkel

    1985-01-01

    This paper summarizes the results of load tests on an experimental highway bridge erected and put into service on the George Washington National Forest in Virginia in 1977. The bridge, made entirely of Press-Lam, a laminated veneer lumber (LVL) product, was load tested 1 month, 1 year, and 5 years after erection. The bridge continues to perform quite well and,...

  2. Progressive collapse susceptibility of a long span suspension bridge

    DEFF Research Database (Denmark)

    Olmati, Pierluigi; Giuliani, Luisa

    2013-01-01

    Long span bridges are complex structural systems, often having strategic roles in the network infrastructures; consequently their susceptibility to a disproportionate response in case of local failures needs to be assessed. In particular, current regulations prescribe that the structural robustness...... should be maintained in case of an accidental hanger detachment. Local damages in bridges, which are characterized by an horizontal load transfer system, may progress along the deck or along the suspension system, as the dynamic overloading of the structural elements immediately adjacent to the failed...

  3. Fatigue Analysis of Notched Laminates: A Time-Efficient Macro-Mechanical Approach

    Science.gov (United States)

    Naghipour, P.; Pineda, E. J.; Bednarcyk, B. A.; Arnold, S. M.; Waas, A. M.

    2016-01-01

    A coupled transversely isotropic deformation and damage fatigue model is implemented within the finite element method and was utilized along with a static progressive damage model to predict the fatigue life, stiffness degradation as a function of number of cycles, and post-fatigue tension and compression response of notched, multidirectional laminates. Initially, the material parameters for the fatigue model were obtained utilizing micromechanics simulations and the provided [0], [90] and [plus or minus 45] experimental composite laminate S-N (stress-cycle) data. Within the fatigue damage model, the transverse and shear properties of the plies were degraded with an isotropic scalar damage variable. The damage in the longitudinal (fiber) ply direction was suppressed, and only the strength of the fiber was degraded as a function of fatigue cycles. A maximum strain criterion was used to capture the failure in each element, and once this criterion was satisfied, the longitudinal stiffness of the element was decreased by a factor of 10 (sup 4). The resulting, degraded properties were then used to calculate the new stress state. This procedure was repeated until final failure of the composite laminate was achieved or a specified number of cycles reached. For post-fatigue tension and compression behavior, four internal state variables were used to control the damage and failure. The predictive capability of the above-mentioned approach was assessed by performing blind predictions of the notched multidirectional IM7/977-3 composite laminates response under fatigue and post-fatigue tensile and compressive loading, followed by a recalibration phase. Although three different multidirectional laminates were analyzed in the course of this study, only detailed results (i.e., stiffness degradation and post-fatigue stress-train curves as well as damage evolution states for a single laminate ([30/60/90/minus 30/minus 60] (sub 2s)) are discussed in detail here.

  4. Lamination cooling system

    Science.gov (United States)

    Rippel, Wally E.; Kobayashi, Daryl M.

    2005-10-11

    An electric motor, transformer or inductor having a lamination cooling system including a stack of laminations, each defining a plurality of apertures at least partially coincident with apertures of adjacent laminations. The apertures define a plurality of cooling-fluid passageways through the lamination stack, and gaps between the adjacent laminations are sealed to prevent a liquid cooling fluid in the passageways from escaping between the laminations. The gaps are sealed by injecting a heat-cured sealant into the passageways, expelling excess sealant, and heat-curing the lamination stack. The apertures of each lamination can be coincident with the same-sized apertures of adjacent laminations to form straight passageways, or they can vary in size, shape and/or position to form non-axial passageways, angled passageways, bidirectional passageways, and manifold sections of passageways that connect a plurality of different passageway sections. Manifold members adjoin opposite ends of the lamination stack, and each is configured with one or more cavities to act as a manifold to adjacent passageway ends. Complex manifold arrangements can create bidirectional flow in a variety of patterns.

  5. Modeling of Nonlinear Mechanical Response in CFRP Angle-Ply Laminates

    Science.gov (United States)

    Ogihara, Shinji

    2014-03-01

    It is known that the failure process in angle-ply laminate involves matrix cracking and delamination and that they exhibit nonlinear stress-strain relation. There may be a significant effect of the constituent blocked ply thickness on the mechanical behavior of angle-ply laminates. These days, thin prepregs whose thickness is, for example 50 micron, are developed and commercially available. Therefore, we can design wide variety of laminates with various constituent ply thicknesses. In this study, effects of constituent ply thickness on the nonlinear mechanical behavior and the damage behavior of CFRP angle-ply laminates are investigated experimentally. Based on the experimental results, the mechanical response in CFRP angle-ply laminates is modeled by using the finite strain viscoplasticity model. We evaluated the mechanical behavior and damage behavior in CFRP angle-ply laminates with different constituent ply thickness under tensile loading experimentally. It was found that as the constituent ply thickness decreases, the strength and failure strain increases. We also observed difference in damage behavior. The preliminary results of finite strain viscoplasticity model considering the damage effect for laminated composites are shown. A qualitative agreement is obtained.

  6. Discrete Material and Thickness Optimization of laminated composite structures including failure criteria

    DEFF Research Database (Denmark)

    Lund, Erik

    2017-01-01

    This work extends the Discrete Material and Thickness Optimization approach to structural optimization problems where strength considerations in the form of failure criteria are taken into account for laminated composite structures. It takes offset in the density approaches applied for stress...... constrained topology optimization of single-material problems and develops formulations for multi-material topology optimization problems applied for laminated composite structures. The method can be applied for both stress- and strain-based failure criteria. The large number of local constraints is reduced...

  7. Stress intensity factors for fatigue loaded details between crossbeams and trapezoidal stringers

    NARCIS (Netherlands)

    Maljaars, J.; Pijpers, R.J.M.

    2013-01-01

    A number of orthotropic deck structures of existing bridges are suffering from fatigue cracks. Maintenance of these deck structures may consist of regular inspections and repair of detected cracks. The usual fatigue design life procedure for aswelded structures based on S-N curves is not feasible

  8. The GDQ Method of Thermal Vibration Laminated Shell with Actuating Magnetostrictive Layers

    Directory of Open Access Journals (Sweden)

    C.C. Hong

    2017-06-01

    Full Text Available The research of laminated magnetostrictive shell under thermal vibration was computed by using the generalized differential quadrature (GDQ method. In the thermoelastic stress-strain equations that contain the terms linear temperature rise and the magnetostrictive material with velocity feedback control. The dynamic equilibrium differential equations with displacements were normalized and discretized into the dynamic discretized equations by the GDQ method. Two edges of laminated shell with clamped boundary conditions were considered. The values of interlaminar thermal stresses and center displacement of shell with and without velocity feedback control were calculated, respectively. The purpose of this research is to compute the time responses of displacement and stresses in the laminated magnetostrictive shell subjected to thermal vibration with suitable controlled gain values. The numerical GDQ results of displacement and stresses are also obtained and investigated. With velocity feedback and suitable control gain values are found to reduce the amplitude of displacement and stresses into a smaller value. The higher values of temperature get the higher amplitude of displacement and stresses. The GDQ results of actuating magnetostrictive shells can be applied in the field of morphing aircraft (adaptive structures and smart materials to reduce and suppress the vibration when under aero-thermal flutter.

  9. LAMINATES

    Directory of Open Access Journals (Sweden)

    Gökay Nemli

    2004-04-01

    Full Text Available Wood based panel producers afford to present their products either in sized semi-finished form or as covered in general by the in additional investments realized. The fact that the laminated material has a certain market share as well as the increase in demand for furniture types finished in various profiles have put the laminated sheets which provide very comprehensive design facilities at the top place and caused such boards to spread over the market rather more quickly. In line with this development, great developments have also been recorded during recent years in laminate utilization in furniture factoring sector and fast steps taken towards a more rational working environment. In this study, laminates types and manufacturing technologies were investigated.

  10. Determination of in-situ strength on selected bridge element concrete girder and slab of Nagtahan bridge using rebound hammer test

    International Nuclear Information System (INIS)

    Uy, Bernadette Betsy B.; Banaga, Renato T.

    2013-01-01

    This study examined the extent of the damage due to fire on the affected areas of the bridge structure. The need to assess the damage of the Nagtahan Bridge is very useful to provide appropriate measures in the repair or in the reinforcement of the bridge, hence will ensure its strength and integrity. The study included two (2) spans of the bridge deck/slab with specific locations of the bridge that were subjected for testing. The Rebound Hammer was used as a preliminary test in evaluating the bridge condition. Its capability is to assess the in-place uniformity of concrete, to delineate regions in a structure of poor quality or deteriorated concrete, and to estimate the in-place strength; and ultimately, for relative comparison between the different structures of the bridge. With the use of the NDT Rebound Hammer Test, the researchers were able to determine whether or not the in-situ strength of the bridge's concrete has been weakened due to fire. The DPW-Standard Specification is the government acceptable manual, containing the acceptance criteria, used as the basis for standard construction procedures in the department.(author)

  11. Investigation of Forming Performance of Laminated Steel Sheets Using Finite Element Analyses

    International Nuclear Information System (INIS)

    Liu Wenning; Sun Xin; Ruokolainen, Robert; Gayden Xiaohong

    2007-01-01

    Laminated steel sheets have been used in automotive structures for reducing in-cabin noise. However, due to the marked difference in material properties of the different laminated layers, integrating laminated steel parts into the manufacturing processes can be challenging. Especially, the behavior of laminated sheets during forming processes is very different from that of monolithic steel sheets. During the deep-draw forming process, large shear deformation and corresponding high interfacial stress may initiate and propagate interfacial cracks between the core polymer and the metal skin, hence degrading the performance of the laminated sheets. In this paper, the formability of the laminated steel sheets is investigated by means of numerical analysis. The goal of this work is to gain insight into the relationship between the individual properties of the laminated sheet layers and the corresponding formability of the laminated sheet as a whole, eventually leading to reliable design and successful forming process development of such materials. Finite element analyses of laminate sheet forming are presented. Effects of polymer core thickness and viscoelastic properties of the polymer core, as well as punching velocity, are also investigated

  12. Strategic Planning for the National Bridge Stock of Iran

    Directory of Open Access Journals (Sweden)

    Ali Sahrapeyma

    2013-06-01

    Full Text Available The National Bridge Stock of Iran consists of about 330,000 bridges, of which around 50% are older than 30 years. Since 2010, Iran Road Maintenance & Transportation Organization has started implementing a comprehensive Bridge Management System in order to manage this aged stock efficiently. To predict future conditions of bridge stock, a heuristic numerical method is presented. This methodology is based on Markovian process to model deterioration of bridge decks and a multi-objective optimization problem to find the best solutions. The optimization problem involves three decision variables regarding management strategies, and has three objectives regarding cost minimization. Constraints of the problem are the percentage of deficient bridges, the percentage of bridges under MR&Rs (Maintenance, Repair and Rehabilitation and the average value of condition scores. The results show that to avoid future challenges, the annual budget for bridge maintenance should be increased, the current maintenance strategy should be improved as soon as possible, and national manuals and instructions for inspection, condition rating and maintenance should be developed.

  13. Evaluation of Fatigue Strength Improvement by CFRP Laminates and Shot Peening onto the Tension Flanges Joining Corrugated SteelWebs

    Directory of Open Access Journals (Sweden)

    Zhi-Yu Wang

    2015-08-01

    Full Text Available Corrugated steel web with inherent high out-of-plane stiffness has a promising application in configuring large span highway bridge girders. Due to the irregularity of the configuration details, the local stress concentration poses a major fatigue problem for the welded flange plates of high strength low alloy structural steels. In this work, the methods of applying CFRP laminate and shot peening onto the surfaces of the tension flanges were employed with the purpose of improving the fatigue strength of such configuration details. The effectiveness of this method in the improvement of fatigue strength has been examined experimentally. Test results show that the shot peening significantly increases hardness and roughness in contrast to these without treatment. Also, it has beneficial effects on the fatigue strength enhancement when compared against the test data of the joints with CFRP strengthening. The stiffness degradation during the loading progress is compared with each treatment. Incorporating the stress acting on the constituent parts of the CFRP laminates, a discussion is made regarding the mechanism of the retrofit and related influencing factors such as corrosion and economic cost. This work could enhance the understanding of the CFRP and shot peening in repairing such welded details and shed light on the reinforcement design of welded joints between corrugated steel webs and flange plates.

  14. Parameters That Effect the Interfacial Stresses in Fibre Reinforced Plastic Laminates Strengthened Rc Beams

    Directory of Open Access Journals (Sweden)

    Barış Sayın

    2010-01-01

    Full Text Available The use of externally bonded fiber-reinforced plastic (FRP laminates for strengthening of reinforced concrete beams has become an effective method. This method has been used because of the advantages of FRP materials such as their high strength-to-weight ratio, good corrosion resistance, and versatility in coping with different sectional shapes and corners. Many studies on this theme have been carried out since the early 1900s. In this study, interfacial stresses of reinforced concrete beams strengthened with FRP effect the parameters will be studied as experimental and numerical. Adhesives used in the beams applied to FRP's thickness, adhesive type and the state of the concrete surface, produced experimental samples are exposed to the bending effect will be studied as a comparative. Afterwards, by using the ANSYS® WB finite element program to model and analyze RC beams by externally bonding FRP will be carried out. Adhesive thickness, adhesive type, the concrete surface will be performed by entering the parameters for analysis of stress can be obtained as a result. Thus, the analytical expressions of stress and normal stress equations will establish should be modified. Finite element analysis and experimental results will be compared, compatibility investigated, the results and recommendations presented by the study be completed.

  15. Finite Element Analysis for Fatigue Damage Reduction in Metallic Riveted Bridges Using Pre-Stressed CFRP Plates

    Directory of Open Access Journals (Sweden)

    Elyas Ghafoori

    2014-04-01

    Full Text Available Many old riveted steel bridges remain operational and require retrofit to accommodate ever increasing demands. Complicating retrofit efforts, riveted steel bridges are often considered historical structures where structural modifications that affect the original construction are to be avoided. The presence of rivets along with preservation requirements often prevent the use of traditional retrofit methods, such as bonding of fiber reinforced composites, or the addition of supplementary steel elements. In this paper, an un-bonded post-tensioning retrofit method is numerically investigated using existing railway riveted bridge geometry in Switzerland. The finite element (FE model consists of a global dynamic model for the whole bridge and a more refined sub-model for a riveted joint. The FE model results include dynamic effects from axle loads and are compared with field measurements. Pre-stressed un-bonded carbon fiber reinforced plastic (CFRP plates will be considered for the strengthening elements. Fatigue critical regions of the bridge are identified, and the effects of the un-bonded post-tensioning method with different pre-stress levels on fatigue susceptibility are explored. With an applied 40% CFRP pre-stress, fatigue damage reductions of more than 87% and 85% are achieved at the longitudinal-to-cross beam connections and cross-beam bottom flanges, respectively.

  16. Experimental and Numerical Study of Interface Crack Propagation in Foam Cored Sandwich Beams

    DEFF Research Database (Denmark)

    Berggreen, Carl Christian; Simonsen, Bo Cerup; Borum, Kaj Kvisgård

    2007-01-01

    application example is to tear off one of the face laminates from the sandwich. This configuration can be found in many applications but is considered here to be occurring in a ship structure, particularly at the hard spot where the superstructure meets the deck. Face tearing experiments are carried out...... experiments and theory. For cores with higher density, the crack tends to propagate in the laminate itself with extensive fiber bridging leading to rather conservative numerical predictions. However, for structural configurations where LEFM can be applied, the presented procedure is sufficiently robust...... and accurate to be used in a number of important engineering applications, for example risk-based inspection and repair schemes....

  17. Laminated articles

    International Nuclear Information System (INIS)

    Ridgway, P.C.; Case, D.F.

    1979-01-01

    In a method of bonding laminations of a magnetic core, photo-resist material consisting of a co-polymer is applied as a film to a sheet of magnetic material to define lamination shapes to enable the laminations to be formed by etching. The film of photo-resist material on the laminations is then utilised to bond the laminations together in a stack. In order to permit the core to operate at temperatures higher than the softening temperature of the photo-resist material, the bonded stack is irradiated with 1 - 2 Mer gamma radiation to a dose of 1 - 5 Mrads in 2 - 10 hrs to cause changes to the bonding material such that the material does not soften at the operating temperature of the core. (U.K.)

  18. Hygrothermal effects on the tensile strength of carbon/epoxy laminates with molded edges

    Directory of Open Access Journals (Sweden)

    Cândido Geraldo Maurício

    2000-01-01

    Full Text Available The interlaminar stresses are confined to a region near the free edge. Therefore, the laminate stacking sequence and the free edge finishing are some of the factors that affect the strength of the laminate and limit its life. The use of molded edges eliminates the need for trimming and machining the laminates edges thus improving productivity. However, this fabrication technique may have a detrimental effect on the laminate strength for certain stacking sequences. This effect in the presence of moisture has not been characterized. This work presents the results of a comparative study of the resistance to delamination of laminates with machined edges and molded edges. Additionally, two environmental conditions were considered: dry laminates and laminates saturated with moisture. The tensile strength of the laminates were measured and micrographs were used to analyze the microstructure of the laminates near the free edges. It is concluded that the mechanical properties of advanced composites depend on the environmental conditions and the fabrication techniques used to produce the laminates. Therefore, it is necessary to account for these factors when experimentally determining the design allowables.

  19. Fracture mechanical treatment of bridging stresses in ceramics

    International Nuclear Information System (INIS)

    Fett, T.; Munz, D.

    1993-12-01

    Failure of ceramic materials often starts from cracks which can originate at pores, inclusions or can be generated during surface treatment. Fracture occurs when the stress intensity factor of the most serious crack in a component reaches a critical value K lc , the fracture toughness of the material. In case of ideal brittle materials the fracture toughness is independent of the crack extension and, consequently, identical with the stress intensity factor K l0 necessary for the onset of stable crack growth. It is a well-known fact that failure of several ceramics is influenced by an increasing crack-growth resistance curve. Several effects are responsible for this behaviour. Crack-border interactions in the wake of the advancing crack, residual stress fields in the crack region of transformation-toughened ceramics, the generation of a micro-crack zone ahead the crack tip and crack branching. The effect of increasing crack resistance has consequences on many properties of ceramic materials. In this report the authors discuss the some aspects of R-curve behaviour as the representation by stress intensity factors or energies and the influence on the compliance using the bridging stress model. (orig.) [de

  20. Cluster analysis of stress corrosion mechanisms for steel wires used in bridge cables through acoustic emission particle swarm optimization.

    Science.gov (United States)

    Li, Dongsheng; Yang, Wei; Zhang, Wenyao

    2017-05-01

    Stress corrosion is the major failure type of bridge cable damage. The acoustic emission (AE) technique was applied to monitor the stress corrosion process of steel wires used in bridge cable structures. The damage evolution of stress corrosion in bridge cables was obtained according to the AE characteristic parameter figure. A particle swarm optimization cluster method was developed to determine the relationship between the AE signal and stress corrosion mechanisms. Results indicate that the main AE sources of stress corrosion in bridge cables included four types: passive film breakdown and detachment of the corrosion product, crack initiation, crack extension, and cable fracture. By analyzing different types of clustering data, the mean value of each damage pattern's AE characteristic parameters was determined. Different corrosion damage source AE waveforms and the peak frequency were extracted. AE particle swarm optimization cluster analysis based on principal component analysis was also proposed. This method can completely distinguish the four types of damage sources and simplifies the determination of the evolution process of corrosion damage and broken wire signals. Copyright © 2017. Published by Elsevier B.V.

  1. Seismic Retrofitting of an Existing Steel Railway Bridge by Fluid Viscous Dampers

    Science.gov (United States)

    Gangopadhyay, Avijit; Ghosh, Aparna Dey

    2016-09-01

    There are over a lakh of bridges in the Indian Railways, many of which have become seismically deficient, either through aging or due to inadequate seismic design considerations. The extensive damage of bridges all over the world in recent earthquakes has propelled significant advancement in earthquake protection and retrofitting of bridges. Amongst various passive control systems that are reliable as well as cost-effective, Fluid Viscous Dampers (FVDs) are proving to be successful in bridge vibration control. Orificed FVDs, commercially available as Taylor Devices, have already been successfully installed in several bridges worldwide. However, there has been no such application or study related to Indian railway bridges. In this paper, an existing thirty years' old railway bridge in Jharkhand, India, has been analyzed in SAP2000v14 considering reduced stiffness and found deficient when subjected to spectrum-compatible accelerograms. Subsequent retrofitting of the bridge superstructure with FVDs has been carried out and the results indicate substantial reductions in the responses of the bridge deck.

  2. Stress distribution and displacement of abutment of middle implant-natural teeth fixed bridge under different loading

    International Nuclear Information System (INIS)

    Chen Erjun; Zhou Yanmin; Ma Chenchun; Cong Zhiqiang; Jiang Yonghua

    2004-01-01

    Objective: To study stress distribution and displacement of abutment of middle implant-natural teeth fixed bridge under different loading. Methods: The stress distribution and displacement of abutment were studied and analyzed by means of three-dimensional finite element when different loading was applied. Results: The biggest stress of middle implant was 4-5 times as big as that of natural teeth. Under concentrated vertical loading, the biggest stress of implant was about 2 times higher than that under dispersed vertical loading. There was no significant difference of biggest stress on the implant between concentrated oblique loading and dispersed oblique loading. The biggest stress of implant under oblique loading was 3 times as big as that under dispersed vertical loading. The biggest stress of natural teeth under dispersed loading was lower than that under concentrated loading. The maximum displacement of implant in occlusal-gum direction was great lower than that of natural teeth. Both in buccal-lingual direction and medial-distal direction, the displacement of implant were about equal to that of natural teeth. Conclusion: The oblique loading is the main force to destroy the middle implant-natural teeth fixed bridge. The lean of cusp should be reduced. The abnormally high occlusal points should be deleted. The bite points should be well distributed. The fixed bridge is feasible. (authors)

  3. Identification of aeroelastic forces and static drag coefficients of a twin cable bridge stay from full-scale ambient vibration measurements

    DEFF Research Database (Denmark)

    Acampora, Antonio; Georgakis, Christos T.; Macdonald, J.H.G.

    2014-01-01

    Despite much research in recent years, large amplitude vibrations of inclined cables continue to be of concern for cable-stayed bridges. Various excitation mechanisms have been suggested, including rain-wind excitation, dry inclined cable galloping, high reduced velocity vortex shedding...... and excitation from the deck and/or towers. Although there have been many observations of large cable vibrations on bridges, there are relatively few cases of direct full-scale cable vibration and wind measurements, and most research has been based on wind tunnel tests and theoretical modelling.This paper...... presents results from full-scale measurements on the special arrangement of twin cables adopted for the Øresund Bridge. The monitoring system records wind and weather conditions, as well as accelerations of certain cables and a few locations on the deck and tower. Using the Eigenvalue Realization Algorithm...

  4. Specific contribution of lamin A and lamin C in the development of laminopathies

    International Nuclear Information System (INIS)

    Sylvius, Nicolas; Hathaway, Andrea; Boudreau, Emilie; Gupta, Pallavi; Labib, Sarah; Bolongo, Pierrette M.; Rippstein, Peter; McBride, Heidi; Bilinska, Zofia T.; Tesson, Frederique

    2008-01-01

    Mutations in the lamin A/C gene are involved in multiple human disorders for which the pathophysiological mechanisms are partially understood. Conflicting results prevail regarding the organization of lamin A and C mutants within the nuclear envelope (NE) and on the interactions of each lamin to its counterpart. We over-expressed various lamin A and C mutants both independently and together in COS7 cells. When expressed alone, lamin A with cardiac/muscular disorder mutations forms abnormal aggregates inside the NE and not inside the nucleoplasm. Conversely, the equivalent lamin C organizes as intranucleoplasmic aggregates that never connect to the NE as opposed to wild type lamin C. Interestingly, the lamin C molecules present within these aggregates exhibit an abnormal increased mobility. When co-expressed, the complex formed by lamin A/C aggregates in the NE. Lamin A and C mutants for lipodystrophy behave similarly to the wild type. These findings reveal that lamins A and C may be differentially affected depending on the mutation. This results in multiple possible physiological consequences which likely contribute in the phenotypic variability of laminopathies. The inability of lamin C mutants to join the nuclear rim in the absence of lamin A is a potential pathophysiological mechanism for laminopathies

  5. Determination of brace forces caused by construction loads and wind loads during bridge construction : [summary].

    Science.gov (United States)

    2014-04-01

    Bridges are constructed in stages as pilings, : columns, girders, decks, and other components : are added. At each stage, the structure must be : stable. Girders, which add significant weight to : the developing structure, rest on elastomeric : beari...

  6. An analytical nonlinear magnetoelectric coupling model of laminated composites under combined pre-stress and magnetic bias loadings

    International Nuclear Information System (INIS)

    Zhou, Hao-Miao; Qu, Shao-Xing; Ou, Xiao-Wei; Xiao, Ying; Wu, Hua-Ping

    2013-01-01

    Based on the equivalent circuit method, this paper adopts the nonlinear magnetostrictive constitutive relations to establish an analytical nonlinear magnetoelectric coefficient model for magnetostrictive/piezoelectric/magnetostrictive laminated magnetoelectric composites. When the pre-stress is set to zero in the model, the predicted results of the magnetoelectric coefficient coincide well with the available experimental results both qualitatively and quantitatively. Using the model, we can qualitatively predict the influence of the pre-stress, magnetic bias fields and the volume fraction of the magnetostrictive material on the magnetoelectric coefficient. The predicted results show that the influences of the pre-stress on the magnetoelectric coefficient, which varies with the magnetic bias field, before and after reaching the magnetoelectric coefficient maximum, are opposite. That is, the influence of the pre-stress on curves of the magnetoelectric coefficient reverses when the magnetoelectric coefficient reaches its maximum. Therefore, the correct setting of the pre-stress can lower the applied magnetic bias field and improve the magnetoelectric coefficient. The established nonlinear magnetoelectric effect model can provide a theoretical basis for regulating the magnetoelectric coefficient by the pre-stress and magnetic bias field and make it possible to design high-precision miniature magnetoelectric devices. (paper)

  7. Estimation of stepwise crack propagation in ceramic laminates with strong interfaces

    Directory of Open Access Journals (Sweden)

    K. Štegnerová

    2015-10-01

    Full Text Available During the last years many researchers put so much effort to design layered structures combining different materials in order to improve low fracture toughness and mechanical reliability of the ceramics. It has been proven, that an effective way is to create layered ceramics with strongly bonded interfaces. After the cooling process from the sintering temperature, due to the different coefficients of thermal expansion of individual constituents of the composite, significant internal residual stresses are developed within the layers. These stresses can change the crack behaviour. This results to the higher value of so-called apparent fracture toughness, i.e. higher resistance of the ceramic laminate to the crack propagation. The contribution deals with a description of the specific crack behaviour in the layered alumina-zirconia ceramic laminate. The main aim is to clarify crack behaviour in the compressive layer and provide computational tools for estimation of crack behaviour in the field of strong residual stresses. The crack propagation was investigated on the basis of linear elastic fracture mechanics. Fracture parameters were computed numerically and by author’s routines. Finite element models were developed in order to obtain a stress distribution in the laminate containing a crack and to simulate crack propagation. The sharp change of the crack propagation direction was estimated using Sih’s criterion based on the strain energy density factor. Estimated crack behaviour is qualitatively in a good agreement with experimental observations. Presented approach contributes to the better understanding of the toughening mechanism of ceramic laminates and can be advantageously used for design of new layered ceramic composites and for better prediction of their failure.

  8. Aerodynamic problems of cable-stayed bridges spanning over one thousand meters

    Institute of Scientific and Technical Information of China (English)

    Chen Airong; Ma Rujin; Wang Dalei

    2009-01-01

    Tbe elongating of cable-stayed bridge brings a series of aerodynamic problems. First of all, geometric nonlin-ear effect of extreme long cable is much more significant for cable-stayed bridge spanning over one thousand meters. Lat-eral static wind load will generate additional displacement of long cables, which causes the decrease of supporting rigidi-ty of the whole bridge and the change of dynamic properties. Wind load, being the controlling load in the design of ca-hie-stayed bridge, is a critical problem and needs to be solved. Meanwhile, research on suitable system between pylon and deck indicates fixed-fixed connection system is an effective way for improvement performance of cable-stayed bridges under longitudinal wind load. In order to obtain aerodynamic parameters of cable-stayed bridge spanning over one thou-sand meters, identification method for flutter derivatives of full bridge aero-elastic model is developed in this paper. Furthermore, vortex induced vibration and Reynolds number effect are detailed discussed.

  9. Numerical analysis of laminated elastomer by FEM

    International Nuclear Information System (INIS)

    Mazda, T.; Shiojiri, H.

    1993-01-01

    A Computer code based on mixed finite element method was developed for three dimensional large strain analyses of laminated elastomers including nonlinear bulk stress vs. bulk strain relationships. The adopted element is the variable node element with maximum node numbers of 27 for displacements and 4 for pressures. At first, the displacements and pressures were calculated by the code using single element under various loading conditions. The results were compared with theoretical solutions and the both results' exactly coincided with each other. Next, the analyses of laminated elastomers subjected to axial loadings were conducted using both the new code and ABAQUS code, and the results were compared with the test results. The agreement of the results of the present code were better than ABAQUS code mainly due to the capability of handling wider range of material properties. Lastly, the shearing tests of laminated elastomers were simulated by the new code. The results were shown to be in good agreement with the test results. (author)

  10. 46 CFR 108.486 - Helicopter decks.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Helicopter decks. 108.486 Section 108.486 Shipping COAST... Fire Extinguishing Systems Fire Protection for Helicopter Facilities § 108.486 Helicopter decks. At least two of the accesses to the helicopter landing deck must each have a fire hydrant on the unit's...

  11. Fatigue of graphite/epoxy /0/90/45/-45/s laminates under dual stress levels

    Science.gov (United States)

    Yang, J. N.; Jones, D. L.

    1982-01-01

    A model for the prediction of loading sequence effects on the statistical distribution of fatigue life and residual strength in composite materials is generalized and applied to (0/90/45/-45)s graphite/epoxy laminates. Load sequence effects are found to be caused by both the difference in residual strength when failure occurs (boundary effect) and the effect of previously applied loads (memory effect). The model allows the isolation of these two effects, and the estimation of memory effect magnitudes under dual fatigue loading levels. It is shown that the material memory effect is insignificant, and that correlations between predictions of the number of early failures agree with the verification tests, as do predictions of fatigue life and residual strength degradation under dual stress levels.

  12. Invertebrate lamins

    International Nuclear Information System (INIS)

    Melcer, Shai; Gruenbaum, Yosef; Krohne, Georg

    2007-01-01

    Lamins are the main component of the nuclear lamina and considered to be the ancestors of all intermediate filament proteins. They are localized mainly at the nuclear periphery where they form protein complexes with integral proteins of the nuclear inner membrane, transcriptional regulators, histones and chromatin modifiers. Studying lamins in invertebrate species has unique advantages including the smaller number of lamin genes in the invertebrate genomes and powerful genetic analyses in Caenorhabditis elegans and Drosophila melanogaster. These simpler nuclear lamina systems allow direct analyses of their structure and functions. Here we give an overview of recent advances in the field of invertebrate nuclear lamins with special emphasis on their evolution, assembly and functions

  13. Identification of aeroelastic forces on bridge cables from full-scale measurements

    DEFF Research Database (Denmark)

    Acampora, Antonio; Macdonald, J.H.G.; Georgakis, Christos

    2011-01-01

    Despite much research in recent years, large amplitude vibrations of inclined cables continue to be of concern for cable-stayed bridges. Various mechanisms have been suggested for their excitation, including rain-wind excitation, dry inclined cable galloping, high reduced velocity vortex shedding...... Bridge. The system records wind conditions and weather conditions, as well as accelerations of certain cables and a few locations on the deck and tower. Using state-of-the-art methods of output-only system identification, the vibration modes of the cables have been identified. From these modes...

  14. Bridge Management Strategy Based on Extreme User Costs for Bridge Network Condition

    Directory of Open Access Journals (Sweden)

    Ladislaus Lwambuka

    2014-01-01

    Full Text Available This paper presents a practical approach for prioritization of bridge maintenance within a given bridge network. The maintenance prioritization is formulated as a multiobjective optimization problem where the simultaneous satisfaction of several conflicting objectives includes minimization of maintenance costs, maximization of bridge deck condition, and minimization of traffic disruption and associated user costs. The prevalence of user cost during maintenance period is twofold; the first case refers to the period of dry season where normally the traffic flow is diverted to alternative routes usually resurfaced to regain traffic access. The second prevalence refers to the absence of alternative routes which is often the case in the least developed countries; in this case the user cost referred to results from the waiting time while the traffic flow is put on hold awaiting accomplishment of the maintenance activity. This paper deals with the second scenario of traffic closure in the absence of alternative diversion routes which in essence results in extreme user cost. The paper shows that the multiobjective optimization approach remains valid for extreme cases of user costs in the absence of detour roads as often is the scenario in countries with extreme poor road infrastructure.

  15. A study of an influence of a fiber arrangement of a laminate ply on the distribution and values of stresses in the multi-layered composite material

    Directory of Open Access Journals (Sweden)

    Herbuś Krzysztof

    2017-01-01

    Full Text Available In the work are presented studies related with the influence of a fiber arrangement of a laminate ply on the distribution and values of stresses in the multi-layered composite material. For this purpose, the characteristics of the three-point bending test, according to the standard PN-EN ISO 7438, of specimens made from the composite material, where a single ply is a composition of epoxy resin and glass fibres, was mapped. The modelling process of the multi-layered composite material and its strength verification was performed in the PLM Siemens NX system. Based on the results of performed numerical studies, the relation between the value of the main angle of an arrangement of fibers in each plies of the laminate, and the distribution and values of stresses, occurring in the examined specimens has been determined.

  16. Benefits of measuring half-cell potentials and rebar corrosion rates in condition surveys of concrete bridge decks.

    Science.gov (United States)

    1992-01-01

    The practice of conducting a half-cell potential survey during the assessment of the condition of a concrete deck was reexamined with the objective of eliminating some of the doubts concerning its benefits. It was found that the survey grid size of 4...

  17. 75 FR 4584 - Wire Decking From China

    Science.gov (United States)

    2010-01-28

    ... Decking From China AGENCY: United States International Trade Commission. ACTION: Scheduling of the final... subsidized and less-than-fair-value imports from China of wire decking, provided for in subheadings 9403.90... China of wire decking, and that such [[Page 4585

  18. Transient thermal-mechanical behavior of cracked glass-cloth-reinforced epoxy laminates at low temperatures

    International Nuclear Information System (INIS)

    Shindo, Y.; Ueda, S.

    1997-01-01

    We consider the transient thermal-mechanical response of cracked G-10CR glass-cloth-reinforced epoxy laminates with temperature-dependent properties. The glass-cloth-reinforced epoxy laminates are suddenly cooled on the surfaces. A generalized plane strain finite element model is used to study the influence of warp angle and crack formation on the thermal shock behavior of two-layer woven laminates at low temperatures. Numerical calculations are carried out, and the transient temperature distribution and the thermal-mechanical stresses are shown graphically

  19. Statistical damage analysis of transverse cracking in high temperature composite laminates

    International Nuclear Information System (INIS)

    Sun Zuo; Daniel, I.M.; Luo, J.J.

    2003-01-01

    High temperature polymer composites are receiving special attention because of their potential applications to high speed transport airframe structures and aircraft engine components exposed to elevated temperatures. In this study, a statistical analysis was used to study the progressive transverse cracking in a typical high temperature composite. The mechanical properties of this unidirectional laminate were first characterized both at room and high temperatures. Damage mechanisms of transverse cracking in cross-ply laminates were studied by X-ray radiography at room temperature and in-test photography technique at high temperature. Since the tensile strength of unidirectional laminate along transverse direction was found to follow Weibull distribution, Monte Carlo simulation technique based on experimentally obtained parameters was applied to predict transverse cracking at different temperatures. Experiments and simulation showed that they agree well both at room temperature and 149 deg. C (stress free temperature) in terms of applied stress versus crack density. The probability density function (PDF) of transverse crack spacing considering statistical strength distribution was also developed, and good agreements with simulation and experimental results are reached. Finally, a generalized master curve that predicts the normalized applied stress versus normalized crack density for various lay-ups and various temperatures was established

  20. Discussion on runoff purification technology of highway bridge deck based on water quality safety

    Science.gov (United States)

    Tan, Sheng-guang; Liu, Xue-xin; Zou, Guo-ping; Xiong, Xin-zhu; Tao, Shuang-cheng

    2018-06-01

    Aiming at the actual problems existing, including a poor purification effect of highway bridge runoff collection and treatment system across sensitive water and necessary manual emergency operation, three kinds of technology, three pools system of bridge runoff purification, the integral pool of bridge runoff purification and ecological planting tank, are put forward by optimizing the structure of purification unit and system setting. At the same time, we come up with an emergency strategy for hazardous material leakage basing on automatic identification and remote control of traffic accidents. On the basis of combining these with the optimized pool structure, sensitive water safety can be guaranteed and water pollution, from directly discharging of bridge runoff, can be decreased. For making up for the shortages of green highway construction technology, the technique has important reference value.

  1. 46 CFR 132.320 - Helicopter-landing decks.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Helicopter-landing decks. 132.320 Section 132.320 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS FIRE-PROTECTION EQUIPMENT Miscellaneous § 132.320 Helicopter-landing decks. Each vessel with a helicopter-landing deck must...

  2. Bovine laminitis: clinical aspects, pathology and pathogenesis with reference to acute equine laminitis.

    Science.gov (United States)

    Boosman, R; Németh, F; Gruys, E

    1991-07-01

    This review deals with the features of clinical and subclinical laminitis in cattle. Prominent clinical signs of acute laminitis are a tender gait and arched back. The sole horn reveals red and yellowish discolourations within five days. In subacute and chronic cases clinical signs are less severe. In chronic laminitis the shape of the claws is altered. Laminitis is frequently followed by sole ulceration and white zone lesions. Blood tests showed no significant changes for laminitic animals. Arteriographic studies of claws affected by laminitis indicated that blood vessels had narrowed lumens. Gross pathology revealed congestion of the corium and rotation of the distal phalanx. Histopathologic studies indicate that laminitis is associated with changes of the vasculature. Peripartum management and nutrition are important factors in its aetiology. It is hypothesised that laminitis is evoked by disturbed digital circulation. In the pathogenesis of acute laminitis three factors are considered important: the occurrence of thrombosis, haemodynamic aspects of the corium, and endotoxins which trigger these pathologic events.

  3. Life-cycle assessment of redwood decking in the United States with a comparison to three other decking materials

    Science.gov (United States)

    R. Bergman; H. Sup-Han; E. Oneil; I. Eastin

    2013-01-01

    The goal of the study was to conduct a life-cycle inventory (LCI) of California redwood (Sequoia sempervirens) decking that would quantify the critical environmental impacts of decking from cradle to grave. Using that LCI data, a life-cycle assessment (LCA) was produced for redwood decking. The results were used to compare the environmental footprint...

  4. Effect of shallow angles on compressive strength of biaxial and triaxial laminates.

    Science.gov (United States)

    Jia, Hongli; Yang, Hyun-Ik

    2016-01-01

    Biaxial (BX) and triaxial (TX) composite laminates with ±45° angled plies have been widely used in wind turbine blades. As the scale of blades increases, BX and TX laminates with shallow-angled plies (i.e. off-axis ply angle shallow-angled BX and TX laminates are critical considering their locations in a wind turbine blade, and therefore in this study, the uniaxial static compression tests were conducted using BX and TX laminates with angled-plies of ±45°, ±35°, and ±25°, for the purpose of evaluation. On the other hand, Mori-Tanaka mean field homogenization method was employed to predict elastic constants of plies in BX and TX laminates involved in tests; linear regression analyses of experimentally measured ply strengths collected from various sources were then performed to estimate strengths of plies in BX and TX laminates; finally, Tsai-Wu, Hashin, and Puck failure criteria were chosen to predict compressive strengths of BX and TX laminates. Comparison between theoretical predictions and test results were carried out to illustrate the effectiveness of each criterion. The compressive strength of BX laminate decreases as ply angle increases, and the trend was successfully predicted by all three failure criteria. For TX laminates, ±35° angled plies rather than ±45° angled plies led to the lowest laminate compressive strength. Hashin and Puck criteria gave good predictions at certain ply angles for TX laminates, but Tsai-Wu criterion was able to capture the unexpected strength variation of TX laminates with ply angle. It was concluded that the transverse tensile stress in 0° plies of TX laminates, which attains its maximum when the off-axis ply angle is 35°, is the dominant factor in failure determination if using Tsai-Wu criterion. This explains the unexpected strength variation of TX laminates with ply angle, and also indicates that proper selection of ply angle is the key to fully utilizing the advantages of shallow-angled laminates.

  5. Real-time stress monitoring of highway bridges with a secured wireless sensor network.

    Science.gov (United States)

    2011-12-01

    "This collaborative research aims to develop a real-time stress monitoring system for highway bridges with a secured wireless sensor network. The near term goal is to collect wireless sensor data under different traffic patterns from local highway br...

  6. Strain features and condition assessment of orthotropic steel deck cable-supported bridges subjected to vehicle loads by using dense FBG strain sensors

    Science.gov (United States)

    Wei, Shiyin; Zhang, Zhaohui; Li, Shunlong; Li, Hui

    2017-10-01

    Strain is a direct indicator of structural safety. Therefore, strain sensors have been used in most structural health monitoring systems for bridges. However, until now, the investigation of strain response has been insufficient. This paper conducts a comprehensive study of the strain features of the U ribs and transverse diaphragm on an orthotropic steel deck and proposes a statistical paradigm for crack detection based on the features of vehicle-induced strain response by using the densely distributed optic fibre Bragg grating (FBG) strain sensors. The local feature of strain under vehicle load is highlighted, which enables the use of measurement data to determine the vehicle loading event and to make a decision regarding the health status of a girder near the strain sensors via technical elimination of the load information. Time-frequency analysis shows that the strain contains three features: the long-term trend item, the short-term trend item, and the instantaneous vehicle-induced item (IVII). The IVII is the wheel-induced strain with a remarkable local feature, and the measured wheel-induced strain is only influenced by the vehicle near the FBG sensor, while other vehicles slightly farther away have no effect on the wheel-induced strain. This causes the local strain series, among the FBG strain sensors in the same transverse locations of different cross-sections, to present similarities in shape to some extent and presents a time delay in successive order along the driving direction. Therefore, the strain series induced by an identical vehicle can be easily tracked and compared by extracting the amplitude and calculating the mutual ratio to eliminate vehicle loading information, leaving the girder information alone. The statistical paradigm for crack detection is finally proposed, and the detection accuracy is then validated by using dense FBG strain sensors on a long-span suspension bridge in China.

  7. Inhibition of Prenylation Promotes Caspase 3 Activation, Lamin B Degradation and Loss in Metabolic Cell Viability in Pancreatic β-Cells

    Directory of Open Access Journals (Sweden)

    Khadija G. Syeda

    2017-10-01

    Full Text Available Background/Aims: Lamins are intermediate filament proteins that constitute the main components of the lamina underlying the inner-nuclear membrane and serve to organize chromatin. Lamins (e.g., lamin B undergo posttranslational modifications (e.g., isoprenylation at their C-terminal cysteine residues. Such modifications are thought to render optimal association of lamins with the nuclear envelop. Using human islets, rodent islets, and INS-1 832/13 cells, we recently reported significant metabolic defects under glucotoxic and endoplasmic reticulum (ER stress conditions, including caspase 3 activation and lamin B degradation. The current study is aimed at further understanding the regulatory roles of protein prenylation in the induction of the aforestated metabolic defects. Methods: Subcellular phase partitioning assay was done using Triton X-114. Cell morphology and metabolic cell viability assays were carried out using standard methodologies. Results: We report that exposure of pancreatic β-cells to Simvastatin, an inhibitor of mevalonic acid (MVA biosynthesis, and its downstream isoprenoid derivatives, or FTI-277, an inhibitor of farnesyltransferase that mediates farnesylation of lamins, leads to activation of caspase 3 and lamin B degradation. Furthermore, Simvastatin-treatment increased activation of p38MAPK (a stress kinase and inhibited ERK1/2 (regulator of cell proliferation. Inhibition of farnesylation also resulted in the release of degraded lamin B into the cytosolic fraction and promoted loss in metabolic cell viability. Conclusion: Based on these findings we conclude that protein prenylation plays key roles in islet β-cell function. These findings affirm further support to the hypothesis that defects in prenylation pathway induce caspase-3 activation and nuclear lamin degradation in pancreatic β-cells under the duress of metabolic stress (e.g., glucotoxicity.

  8. An evaluation of alternative stator lamination materials for a high-speed, 1.5 MW, permanent magnet generator

    NARCIS (Netherlands)

    Paulides, J.J.H.; Jewell, G.W.; Howe, D.

    2004-01-01

    The influence of the choice of stator lamination material on the iron loss in a high speed, high power permanent magnet generator, which is interfaced to a DC link via a simple bridge rectifier, is investigated. The rating of the generator is representative of machines which would be employed in

  9. Design and Construction of Operation Bridge for Research Reactor

    International Nuclear Information System (INIS)

    Jung, Kwangsub; Choi, Jinbok; Lee, Jongmin; Oh, Jinho

    2015-01-01

    The operation bridge contains a lower working deck mounted on a saddle that travels on rails. Upright members are mounted on the saddle to support the upper structure and two hoist monorails. The saddle contains an anti-derail system that is composed of seismic lugs and guide rollers. The operation bridge travels along the rails to transport the fuel assembly, irradiated object, and reactor components in the pools by using tools. Hoists are installed at the top girder. The hoist is suspended from the monorail by means of a motor driven trolley that runs along the monorail. Movements of hoist and trolley are controlled by using the control pendant switch. Processes of design and construction of the operation bridge for the research reactor are introduced. The operation bridge is designed under consideration of functions of handling equipment in the pool and operational limits for safety. Structural analysis is carried out to evaluate the structural integrity in the seismic events. Tests and inspections are also performed during fabrication and installation to confirm the function and safety of the operation bridge

  10. Repair of white oak glued-laminated beams

    Science.gov (United States)

    Lawrence A. Soltis; Robert J. Ross

    1999-01-01

    Connections between steel side plates and white oak glued-laminated beams subjected to tension perpendicular-to-grain stresses were tested to failure. The beams were then repaired with five different configurations using two sizes of lag screws, with and without steel reinforcing plates. The repaired beams were re-tested to failure. Results indicate that in all...

  11. Stress analysis in curved composites due to thermal loading

    Science.gov (United States)

    Polk, Jared Cornelius

    Many structures in aircraft, cars, trucks, ships, machines, tools, bridges, and buildings, consist of curved sections. These sections vary from straight line segments that have curvature at either one or both ends, segments with compound curvatures, segments with two mutually perpendicular curvatures or Gaussian curvatures, and segments with a simple curvature. With the advancements made in multi-purpose composites over the past 60 years, composites slowly but steadily have been appearing in these various vehicles, compound structures, and buildings. These composite sections provide added benefits over isotropic, polymeric, and ceramic materials by generally having a higher specific strength, higher specific stiffnesses, longer fatigue life, lower density, possibilities in reduction of life cycle and/or acquisition cost, and greater adaptability to intended function of structure via material composition and geometry. To be able to design and manufacture a safe composite laminate or structure, it is imperative that the stress distributions, their causes, and effects are thoroughly understood in order to successfully accomplish mission objectives and manufacture a safe and reliable composite. The objective of the thesis work is to expand upon the knowledge of simply curved composite structures by exploring and ascertaining all pertinent parameters, phenomenon, and trends in stress variations in curved laminates due to thermal loading. The simply curved composites consist of composites with one radius of curvature throughout the span of the specimen about only one axis. Analytical beam theory, classical lamination theory, and finite element analysis were used to ascertain stress variations in a flat, isotropic beam. An analytical method was developed to ascertain the stress variations in an isotropic, simply curved beam under thermal loading that is under both free-free and fixed-fixed constraint conditions. This is the first such solution to Author's best knowledge

  12. Upstand Finite Element Analysis of Slab Bridges

    OpenAIRE

    O'Brien, Eugene J.; Keogh, D.L.

    1998-01-01

    For slab bridge decks with wide transverse edge cantilevers, the plane grillage analogy is shown to be an inaccurate method of linear elastic analysis due to variations in the vertical position of the neutral axis. The upstand grillage analogy is also shown to give inaccurate results, this time due to inappropriate modelling of in-plane distortions. An alternative method, known as upstand finite element analysis, is proposed which is sufficiently simple to be used on an everyday basis in the ...

  13. Effects of the shock duration on the response of CFRP composite laminates

    International Nuclear Information System (INIS)

    Gay, Elise; Berthe, Laurent; Boustie, Michel; Arrigoni, Michel; Buzaud, Eric

    2014-01-01

    Shock loads induce a local tensile stress within a sample. The location and amplitude of this high strain rate stress can be monitored respectively by the duration and intensity of the shock. The process is applied to carbon fibre reinforced polymer (CFRP) composites, involved in aeronautic or defense industry. This paper describes the response of CFRP laminates of different thicknesses to a shock load normal to the fibres direction. The effects of the shock duration on the wave propagation are key issues of this work. Experiments have been performed on high power laser facilities and on a high power pulsed generator to get a wide range of pulse duration from fs to µs. Numerical simulation provides a comprehensive approach of the wave propagation and tensile stress generation within these complex materials. The main result concerns the relation between the load duration, the tensile stress and the induced delamination within 1, 4 and 8 ply composite laminates. (paper)

  14. Smart timber bridge on geosynthetic reinforced soil (GRS) abutments

    Science.gov (United States)

    Adam Senalik; James P. Wacker; Travis K. Hosteng; John Hermanson

    2017-01-01

    Recently, Buchanan County, Iowa, has cooperated with the U.S. Federal Highway Administration (FHWA), USDA Forest Service, Forest Products Laboratory (FPL), and Iowa State University’s Bridge Engineering Center (ISU–BEC) to initiate a project involving the construction and monitoring of a glued-laminated (glulam) timber superstructure on geosynthetic reinforced soil (...

  15. 46 CFR 28.565 - Water on deck.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Water on deck. 28.565 Section 28.565 Shipping COAST... VESSELS Stability § 28.565 Water on deck. (a) Each vessel with bulwarks must comply with the requirements... energy, “b” in Figure 28.565, must not be less than the water on deck heeling energy, “a” in Figure 28...

  16. Suspension state increases reattachment of breast cancer cells by up-regulating lamin A/C.

    Science.gov (United States)

    Zhang, Xiaomei; Lv, Yonggang

    2017-12-01

    Extravasation is a rate-limiting step of tumor metastasis, for which adhesion to endothelium of circulating tumor cells (CTCs) is the prerequisite. The suspension state of CTCs undergoing detachment from primary tumor is a persistent biomechanical cue, which potentially regulates the biophysical characteristics and cellular behaviors of tumor cells. In this study, breast tumor cells MDA-MB-231 in suspension culture condition were used to investigate the effect of suspension state on reattachment of CTCs. Our study demonstrated that suspension state significantly increased the adhesion ability of breast tumor cells. In addition, suspension state markedly promoted the formation of stress fibers and focal adhesions and reduced the motility in reattached breast cancer cells. Moreover, lamin A/C was reversibly accumulated at posttranscriptional level under suspension state, improving the cell stiffness of reattached breast cancer cells. Disruption of actin cytoskeleton by cytochalasin D caused lamin A/C accumulation. Conversely, decreasing actomyosin contraction by ROCK inhibitor Y27632 reduced lamin A/C level. Knocking down lamin A/C weakened the suspension-induced increase of adhesion, and also abolished the suspension-induced decrease of motility and increase of stress fibers and focal adhesion in reattaching tumor cells, suggesting a crucial role of lamin A/C. In conclusion, it was demonstrated that suspension state promoted the reattachment of breast tumor cells by up-regulating lamin A/C via cytoskeleton disruption. These findings highlight the important role of suspension state for tumor cells in tumor metastasis. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Analysis of noncoplanar pressurized laminations in X2 steel pipes by non-linear finite element

    Energy Technology Data Exchange (ETDEWEB)

    Morales, Alfredo [Instituto Tecnologico de Puebla (Mexico). Dept. de Posgrado; Gonzalez, Jorge L.; Hallen, Jose M. [Instituto Politecnico Nacional (Mexico). Escuela Superior de Ingenieria Quimica e Industrias Extractivas (ESIQIE). Dept. de Ingenieria Metalurgica

    2005-07-01

    Hydrogen induced cracking is of great interest in the mechanical integrity assessment of sour gas pipelines. Multiple stepwise cracks with internal pressure called laminations are often observed in pipelines and their interaction and coalescence may significantly affect the residual strength of the pipes. In this work, the interacting fields of non coplanar pressurized laminations in the wall of a pipe under pressure are analyzed by non-lineal finite element, considering an isotropic hardening law and the real tensile properties of the X52 steel. The results are presented as the evolution of the stress fields in the interlaminar region as a function of the pressure inside the laminations. It is found that for two approaching stepwise laminations the critical pressure follows a hyperbolic type law, thus the effect of the lamination length is principal for greater lengths and for shorter lengths the effect is minimum. The critical pressure is defined as pressure inside the lamination that causes plastification of the interlaminar region. (author)

  18. Duality and the Deck effect

    CERN Document Server

    Törnqvist, N A

    1972-01-01

    As shown by Deck, the double-peripheral model for three-particle final states gives a substantial low-mass enhancement over phase space in two-body subchannels. With the advent of duality it was conjectured that the Deck effect and a true resonance are just different manifestations of the same phenomena. Thus the presence of a Deck enhancement could be interpreted as evidence for the existence of the A/sub 1/ resonance. The conjecture has been subject to criticism of two different kinds. These two points are clarified by constructing a counter example to the conjecture of Chew and Pignotti, using the five-point amplitude (B/sub 5/) of the generalized Veneziano model. (8 refs).

  19. Computational and experimental investigation of free vibration and flutter of bridge decks

    Science.gov (United States)

    Helgedagsrud, Tore A.; Bazilevs, Yuri; Mathisen, Kjell M.; Øiseth, Ole A.

    2018-06-01

    A modified rigid-object formulation is developed, and employed as part of the fluid-object interaction modeling framework from Akkerman et al. (J Appl Mech 79(1):010905, 2012. https://doi.org/10.1115/1.4005072) to simulate free vibration and flutter of long-span bridges subjected to strong winds. To validate the numerical methodology, companion wind tunnel experiments have been conducted. The results show that the computational framework captures very precisely the aeroelastic behavior in terms of aerodynamic stiffness, damping and flutter characteristics. Considering its relative simplicity and accuracy, we conclude from our study that the proposed free-vibration simulation technique is a valuable tool in engineering design of long-span bridges.

  20. Minimization of complementary energy to predict shear modulus of laminates with intralaminar cracks

    International Nuclear Information System (INIS)

    Giannadakis, K; Varna, J

    2012-01-01

    The most common damage mode and the one examined in this work is the formation of intralaminar cracks in layers of laminates. These cracks can occur when the composite structure is subjected to mechanical and/or thermal loading and eventually lead to degradation of thermo-elastic properties. In the present work, the shear modulus reduction due to cracking is studied. Mathematical models exist in literature for the simple case of cross-ply laminates. The in-plane shear modulus of a damaged laminate is only considered in a few studies. In the current work, the shear modulus reduction in cross-plies will be analysed based on the principle of minimization of complementary energy. Hashin investigated the in-plane shear modulus reduction of cross-ply laminates with cracks in inside 90-layer using this variational approach and assuming that the in-plane shear stress in layers does not depend on the thickness coordinate. In the present study, a more detailed and accurate approach for stress estimation is followed using shape functions for this dependence with parameters obtained by minimization. The results for complementary energy are then compared with the respective from literature and finally an expression for shear modulus degradation is derived.

  1. Lamination cooling system formation method

    Science.gov (United States)

    Rippel, Wally E [Altadena, CA; Kobayashi, Daryl M [Monrovia, CA

    2009-05-12

    An electric motor, transformer or inductor having a cooling system. A stack of laminations have apertures at least partially coincident with apertures of adjacent laminations. The apertures define straight or angled cooling-fluid passageways through the lamination stack. Gaps between the adjacent laminations are sealed by injecting a heat-cured sealant into the passageways, expelling excess sealant, and heat-curing the lamination stack. Manifold members adjoin opposite ends of the lamination stack, and each is configured with one or more cavities to act as a manifold to adjacent passageway ends. Complex manifold arrangements can create bidirectional flow in a variety of patterns.

  2. Hygrothermal Effect on Mechanical and Fatigue Properties of laminated Lower Limb Socket and Bacteria Growth

    Directory of Open Access Journals (Sweden)

    Fadhel Abbas Abdullah

    2016-12-01

    Full Text Available In this work, hygrothermal effect on the mechanical and fatigue properties of prosthetic socket lamination and its effect on the bacteria growth were studied. Two laminations composite materials were used in manufacturing prosthetic socket by using vacuum device. The reinforced materials of these laminations were perlon and carbon nanopowder (CNP while the matrix material was polyurethane resin. Tests performed in this work were the moisture absorption properties test to calculate percent moisture content according to ASTM 5229, tensile and fatigue tests with and without the hygrothermal effect to find the mechanical and fatigue properties, and the bacteria growth test under the hygrothermal effect to calculate the number of bacteria on the laminations. The results showed that the lamination (10 perlon+1 wt % CNP has mechanical properties than lamination (10 perlon with and without hygrothermal effect. The mechanical and fatigue properties for the two laminations were decreasing with increasing temperature and moisture.. Adding carbon nanopowder to the lamination (10 perlon increased ultimate stress, modulus of elastic, and endurance limit by (1.36, 2.35, and2.72 time respectively. Finally, the results showed that the Staphylococcus aureus growth increases with increasing temperature and moisture on the two laminations used in manufacturing prosthetic socket, and adding carbon nanopowder also increased the Staphylococcus aureus growth on the lamination.

  3. 46 CFR 108.487 - Helicopter deck fueling operations.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Helicopter deck fueling operations. 108.487 Section 108... DESIGN AND EQUIPMENT Fire Extinguishing Systems Fire Protection for Helicopter Facilities § 108.487 Helicopter deck fueling operations. (a) Each helicopter landing deck on which fueling operations are...

  4. Analysis of spring-in in U-shaped composite laminates: Numerical and experimental results

    Science.gov (United States)

    Bellini, Costanzo; Sorrentino, Luca; Polini, Wilma; Parodo, Gianluca

    2018-05-01

    The phenomena that happen during the cure process of a composite material laminate are responsible for the rise of residual stresses and, consequently, for the deformation at the end of the manufacturing process. The most analyzed deformation is the spring-in, that represent the flange-to-flange angle deviance from the theoretical value. In this work, the influence of some parameters, such as the laminate thickness, the stacking sequence and the mold radius, on the spring-in angle of a U-shaped laminate was studied exploring a full factorial plan through numerical simulations. First of all, a numerical model proper for cure simulation was introduced and its suitability to simulate the deformation behavior was demonstrated. As a result, only the stacking sequence influenced the spring-in value, while the effect of the tool radius and laminate thickness was minimal.

  5. Pontes protendidas de madeira: alternativa técnico-econômica para vias rurais Pre-stressed timber bridges: economic choice for rural roads

    Directory of Open Access Journals (Sweden)

    Thalita F. da Fonte

    2007-08-01

    minimize the budget needed to these improvements. This work reports on a technical and economical viability analysis of transversally pre-stressed timber bridges, for the use in rural and secondary roads. The analysis was made through design, construction and monitoring of the first pre-stress-laminated timber bridge in South America. The results show high performance, low cost, easy and quick execution.

  6. Lamins of the sea lamprey (Petromyzon marinus) and the evolution of the vertebrate lamin protein family.

    Science.gov (United States)

    Schilf, Paul; Peter, Annette; Hurek, Thomas; Stick, Reimer

    2014-07-01

    Lamin proteins are found in all metazoans. Most non-vertebrate genomes including those of the closest relatives of vertebrates, the cephalochordates and tunicates, encode only a single lamin. In teleosts and tetrapods the number of lamin genes has quadrupled. They can be divided into four sub-types, lmnb1, lmnb2, LIII, and lmna, each characterized by particular features and functional differentiations. Little is known when during vertebrate evolution these features have emerged. Lampreys belong to the Agnatha, the sister group of the Gnathostomata. They split off first within the vertebrate lineage. Analysis of the sea lamprey (Petromyzon marinus) lamin complement presented here, identified three functional lamin genes, one encoding a lamin LIII, indicating that the characteristic gene structure of this subtype had been established prior to the agnathan/gnathostome split. Two other genes encode lamins for which orthology to gnathostome lamins cannot be designated. Search for lamin gene sequences in all vertebrate taxa for which sufficient sequence data are available reveals the evolutionary time frame in which specific features of the vertebrate lamins were established. Structural features characteristic for A-type lamins are not found in the lamprey genome. In contrast, lmna genes are present in all gnathostome lineages suggesting that this gene evolved with the emergence of the gnathostomes. The analysis of lamin gene neighborhoods reveals noticeable similarities between the different vertebrate lamin genes supporting the hypothesis that they emerged due to two rounds of whole genome duplication and makes clear that an orthologous relationship between a particular vertebrate paralog and lamins outside the vertebrate lineage cannot be established. Copyright © 2014 Elsevier GmbH. All rights reserved.

  7. Experimental and Numerical Study on the Tensile Behaviour of UACS/Al Fibre Metal Laminate

    Science.gov (United States)

    Xue, Jia; Wang, Wen-Xue; Zhang, Jia-Zhen; Wu, Su-Jun; Li, Hang

    2015-10-01

    A new fibre metal laminate fabricated with aluminium sheets and unidirectionally arrayed chopped strand (UACS) plies is proposed. The UACS ply is made by cutting parallel slits into a unidirectional carbon fibre prepreg. The UACS/Al laminate may be viewed as aluminium laminate reinforced by highly aligned, discontinuous carbon fibres. The tensile behaviour of UACS/Al laminate, including thermal residual stress and failure progression, is investigated through experiments and numerical simulation. Finite element analysis was used to simulate the onset and propagation of intra-laminar fractures occurring within slits of the UACS plies and delamination along the interfaces. The finite element models feature intra-laminar cohesive elements inserted into the slits and inter-laminar cohesive elements inserted at the interfaces. Good agreement are obtained between experimental results and finite element analysis, and certain limitations of the finite element models are observed and discussed. The combined experimental and numerical studies provide a detailed understanding of the tensile behaviour of UACS/Al laminates.

  8. Assessment and propagation of mechanical property uncertainties in fatigue life prediction of composite laminates

    DEFF Research Database (Denmark)

    Castro, Oscar; Branner, Kim; Dimitrov, Nikolay Krasimirov

    2018-01-01

    amplitude loading cycles. Fatigue life predictions of unidirectional and multi-directional glass/epoxy laminates are carried out to validate the proposed model against experimental data. The probabilistic fatigue behavior of laminates is analyzed under constant amplitude loading conditions as well as under......A probabilistic model for estimating the fatigue life of laminated composite materials considering the uncertainty in their mechanical properties is developed. The uncertainty in the material properties is determined from fatigue coupon tests. Based on this uncertainty, probabilistic constant life...... diagrams are developed which can efficiently estimate probabilistic É›-N curves at any load level and stress ratio. The probabilistic É›-N curve information is used in a reliability analysis for fatigue limit state proposed for estimating the probability of failure of composite laminates under variable...

  9. 46 CFR 174.215 - Drainage of weather deck.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Drainage of weather deck. 174.215 Section 174.215 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY SPECIAL RULES... weather deck. The weather deck must have open rails to allow rapid clearing of water, or must have freeing...

  10. 46 CFR 173.062 - Drainage of weather deck.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Drainage of weather deck. 173.062 Section 173.062 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY SPECIAL RULES PERTAINING TO VESSEL USE School Ships § 173.062 Drainage of weather deck. The weather deck of each sailing...

  11. A Mixed-Mode (I-II) Fracture Criterion for AS4/8552 Carbon/Epoxy Composite Laminate

    Science.gov (United States)

    Karnati, Sidharth Reddy

    A majority of aerospace structures are subjected to bending and stretching loads that introduce peel and shear stresses between the plies of a composite laminate. These two stress components cause a combination of mode I and II fracture modes in the matrix layer of the composite laminate. The most common failure mode in laminated composites is delamination that affects the structural integrity of composite structures. Damage tolerant designs of structures require two types of materials data: mixed-mode (I-II) delamination fracture toughness that predicts failure and delamination growth rate that predicts the life of the structural component. This research focuses determining mixed-mode (I-II) fracture toughness under a combination of mode I and mode II stress states and then a fracture criterion for AS4/8552 composite laminate, which is widely used in general aviation. The AS4/8552 prepreg was supplied by Hexcel Corporation and autoclave fabricated into a 20-ply unidirectional laminate with an artificial delamination by a Fluorinated Ethylene Propylene (FEP) film at the mid-plane. Standard split beam specimens were prepared and tested in double cantilever beam (DCB) and end notched flexure modes to determine mode I (GIC) and II (GIIC) fracture toughnesses, respectively. The DCB specimens were also tested in a modified mixed-mode bending apparatus at GIIm /GT ratios of 0.18, 0.37, 0.57 and 0.78, where GT is total and GIIm is the mode II component of energy release rates. The measured fracture toughness, GC, was found to follow the locus a power law equation. The equation was validated for the present and literature experimental data.

  12. Stochastic-Strength-Based Damage Simulation of Ceramic Matrix Composite Laminates

    Science.gov (United States)

    Nemeth, Noel N.; Mital, Subodh K.; Murthy, Pappu L. N.; Bednarcyk, Brett A.; Pineda, Evan J.; Bhatt, Ramakrishna T.; Arnold, Steven M.

    2016-01-01

    The Finite Element Analysis-Micromechanics Analysis Code/Ceramics Analysis and Reliability Evaluation of Structures (FEAMAC/CARES) program was used to characterize and predict the progressive damage response of silicon-carbide-fiber-reinforced reaction-bonded silicon nitride matrix (SiC/RBSN) composite laminate tensile specimens. Studied were unidirectional laminates [0] (sub 8), [10] (sub 8), [45] (sub 8), and [90] (sub 8); cross-ply laminates [0 (sub 2) divided by 90 (sub 2),]s; angled-ply laminates [plus 45 (sub 2) divided by -45 (sub 2), ]s; doubled-edge-notched [0] (sub 8), laminates; and central-hole laminates. Results correlated well with the experimental data. This work was performed as a validation and benchmarking exercise of the FEAMAC/CARES program. FEAMAC/CARES simulates stochastic-based discrete-event progressive damage of ceramic matrix composite and polymer matrix composite material structures. It couples three software programs: (1) the Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC), (2) the Ceramics Analysis and Reliability Evaluation of Structures Life Prediction Program (CARES/Life), and (3) the Abaqus finite element analysis program. MAC/GMC contributes multiscale modeling capabilities and micromechanics relations to determine stresses and deformations at the microscale of the composite material repeating-unit-cell (RUC). CARES/Life contributes statistical multiaxial failure criteria that can be applied to the individual brittle-material constituents of the RUC, and Abaqus is used to model the overall composite structure. For each FEAMAC/CARES simulation trial, the stochastic nature of brittle material strength results in random, discrete damage events that incrementally progress until ultimate structural failure.

  13. Noise from Aft Deck Exhaust Nozzles: Differences in Experimental Embodiments

    Science.gov (United States)

    Bridges, James E.

    2014-01-01

    Two embodiments of a rectangular nozzle on an aft deck are compared. In one embodiment the lower lip of the nozzle was extended with the sidewalls becoming triangles. In a second embodiment a rectangular nozzle was fitted with a surface that fit flush to the lower lip and extended outward from the sides of the nozzle, approximating a semi-infinite plane. For the purpose of scale-model testing, making the aft deck an integral part of the nozzle is possible for relatively short deck lengths, but a separate plate model is more flexible, accounts for the expanse of deck to the sides of the nozzle, and allows the nozzle to stand off from the deck. Both embodiments were tested and acoustic far-field results were compared. In both embodiments the extended deck introduces a new noise source, but the amplitude of the new source was dependent upon the span (cross-stream dimension) of the aft deck. The noise increased with deck length (streamwise dimension), and in the case of the beveled nozzle it increased with increasing aspect ratio. In previous studies of slot jets in wings it was noted that the increased noise from the extended aft deck appears as a dipole at the aft deck trailing edge, an acoustic source type with different dependence on velocity than jet mixing noise. The extraneous noise produced by the aft deck in the present studies also shows this behavior both in directivity and in velocity scaling.

  14. Effect of laminate edge conditions on the formation of microvoids in composite laminates

    Science.gov (United States)

    Anderson, J. P.; Altan, M. C.

    2015-05-01

    Manufacturing defects such as microvoids are common in thermoset composite components and are known to negatively affect their strength. The resin pressure developed in and the resin flow out from the laminates during cure have been reported to be the primary factors influencing the final void content of a composite component. In this work, the effect of laminate edge conditions during the cure process on the formation of microvoids was experimentally investigated. This was achieved by fabricating eight-ply laminates from TenCate® BT250/7781 prepreg in a hot-press at a constant cure pressure of 170 kPa while limiting the laminate perimeter available for resin flow by 0%, 25%, 50%, 75%, and 100%. The individual plies of these five laminates were conditioned at 99% relative humidity before curing to maximize the moisture present in the lay-up before fabrication. The presence of moisture in the lay-ups was expected to promote void formation and allow the effect of restricting flow at the edges of a laminate to be better identified. The restriction of resin outflow was found to cause the average characteristic void diameter to decrease by 17% and void content to rise by 33%. This phenomenon was identified to be a result of the outflow restriction increasing the number of voids trapped within the laminate and indicates that for laminates cured at low pressures resin outflow is the dominant mechanism for void reduction.

  15. Cone calorimeter tests of wood-based decking materials

    Science.gov (United States)

    Robert H. White; Mark A. Dietenberger; Nicole M. Stark

    2007-01-01

    New technologies in building materials have resulted in the use of a wide variety of materials in decks. As part of our effort to address fire concerns in the wildland-urban interface, the Forest Products Laboratory has been examining the fire performance of decking products. In addition to preservative-treated wood, decking products include wood-plastic composites and...

  16. 46 CFR 12.15-13 - Deck engine mechanic.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Deck engine mechanic. 12.15-13 Section 12.15-13 Shipping... ENDORSEMENTS Qualified Member of the Engine Department § 12.15-13 Deck engine mechanic. (a) An applicant for an endorsement as deck engine mechanic shall be a person holding an MMC or MMD endorsed as junior engineer. The...

  17. Effect of Stacking Layup on Spring-back Deformation of Symmetrical Flat Laminate Composites Manufactured through Autoclave Processing

    Science.gov (United States)

    Nasir, M. N. M.; Seman, M. A.; Mezeix, L.; Aminanda, Y.; Rivai, A.; Ali, K. M.

    2017-03-01

    The residual stresses that develop within fibre-reinforced laminate composites during autoclave processing lead to dimensional warpage known as spring-back deformation. A number of experiments have been conducted on flat laminate composites with unidirectional fibre orientation to examine the effects of both the intrinsic and extrinsic parameters on the warpage. This paper extends the study on to the symmetrical layup effect on spring-back for flat laminate composites. Plies stacked at various symmetrical sequences were fabricated to observe the severity of the resulting warpage. Essentially, the experimental results demonstrated that the symmetrical layups reduce the laminate stiffness in its principal direction compared to the unidirectional laminate thus, raising the spring-back warpage with the exception of the [45/-45]S layup due to its quasi-isotropic property.

  18. OGT (O-GlcNAc Transferase) Selectively Modifies Multiple Residues Unique to Lamin A.

    Science.gov (United States)

    Simon, Dan N; Wriston, Amanda; Fan, Qiong; Shabanowitz, Jeffrey; Florwick, Alyssa; Dharmaraj, Tejas; Peterson, Sherket B; Gruenbaum, Yosef; Carlson, Cathrine R; Grønning-Wang, Line M; Hunt, Donald F; Wilson, Katherine L

    2018-05-17

    The LMNA gene encodes lamins A and C with key roles in nuclear structure, signaling, gene regulation, and genome integrity. Mutations in LMNA cause over 12 diseases ('laminopathies'). Lamins A and C are identical for their first 566 residues. However, they form separate filaments in vivo, with apparently distinct roles. We report that lamin A is β- O -linked N -acetylglucosamine- (O -GlcNAc)-modified in human hepatoma (Huh7) cells and in mouse liver. In vitro assays with purified O -GlcNAc transferase (OGT) enzyme showed robust O -GlcNAcylation of recombinant mature lamin A tails (residues 385⁻646), with no detectable modification of lamin B1, lamin C, or 'progerin' (Δ50) tails. Using mass spectrometry, we identified 11 O -GlcNAc sites in a 'sweet spot' unique to lamin A, with up to seven sugars per peptide. Most sites were unpredicted by current algorithms. Double-mutant (S612A/T643A) lamin A tails were still robustly O -GlcNAc-modified at seven sites. By contrast, O -GlcNAcylation was undetectable on tails bearing deletion Δ50, which causes Hutchinson⁻Gilford progeria syndrome, and greatly reduced by deletion Δ35. We conclude that residues deleted in progeria are required for substrate recognition and/or modification by OGT in vitro. Interestingly, deletion Δ35, which does not remove the majority of identified O -GlcNAc sites, does remove potential OGT-association motifs (lamin A residues 622⁻625 and 639⁻645) homologous to that in mouse Tet1. These biochemical results are significant because they identify a novel molecular pathway that may profoundly influence lamin A function. The hypothesis that lamin A is selectively regulated by OGT warrants future testing in vivo, along with two predictions: genetic variants may contribute to disease by perturbing OGT-dependent regulation, and nutrient or other stresses might cause OGT to misregulate wildtype lamin A.

  19. Cohesive Modeling of Transverse Cracking in Laminates with a Single Layer of Elements per Ply

    Science.gov (United States)

    VanDerMeer, Frans P.; Davila, Carlos G.

    2013-01-01

    This study aims to bridge the gap between classical understanding of transverse cracking in cross-ply laminates and recent computational methods for the modeling of progressive laminate failure. Specifically, the study investigates under what conditions a finite element model with cohesive X-FEM cracks can reproduce the in situ effect for the ply strength. It is shown that it is possible to do so with a single element across the thickness of the ply, provided that the interface stiffness is properly selected. The optimal value for this interface stiffness is derived with an analytical shear lag model. It is also shown that, when the appropriate statistical variation of properties has been applied, models with a single element through the thickness of a ply can predict the density of transverse matrix cracks

  20. Hardening of particle/oil/water suspensions due to capillary bridges: Experimental yield stress and theoretical interpretation.

    Science.gov (United States)

    Danov, Krassimir D; Georgiev, Mihail T; Kralchevsky, Peter A; Radulova, Gergana M; Gurkov, Theodor D; Stoyanov, Simeon D; Pelan, Eddie G

    2018-01-01

    Suspensions of colloid particles possess the remarkable property to solidify upon the addition of minimal amount of a second liquid that preferentially wets the particles. The hardening is due to the formation of capillary bridges (pendular rings), which connect the particles. Here, we review works on the mechanical properties of such suspensions and related works on the capillary-bridge force, and present new rheological data for the weakly studied concentration range 30-55 vol% particles. The mechanical strength of the solidified capillary suspensions, characterized by the yield stress Y, is measured at the elastic limit for various volume fractions of the particles and the preferentially wetting liquid. A quantitative theoretical model is developed, which relates Y with the maximum of the capillary-bridge force, projected on the shear plane. A semi-empirical expression for the mean number of capillary bridges per particle is proposed. The model agrees very well with the experimental data and gives a quantitative description of the yield stress, which increases with the rise of interfacial tension and with the volume fractions of particles and capillary bridges, but decreases with the rise of particle radius and contact angle. The quantitative description of capillary force is based on the exact theory and numerical calculation of the capillary bridge profile at various bridge volumes and contact angles. An analytical formula for Y is also derived. The comparison of the theoretical and experimental strain at the elastic limit reveals that the fluidization of the capillary suspension takes place only in a deformation zone of thickness up to several hundred particle diameters, which is adjacent to the rheometer's mobile plate. The reported experimental results refer to water-continuous suspension with hydrophobic particles and oily capillary bridges. The comparison of data for bridges from soybean oil and hexadecane surprisingly indicate that the yield strength is

  1. Modal Parameter Identification and Numerical Simulation for Self-anchored Suspension Bridges Based on Ambient Vibration

    Science.gov (United States)

    Liu, Bing; Sun, Li Guo

    2018-06-01

    This paper chooses the Nanjing-Hangzhou high speed overbridge, a self-anchored suspension bridge, as the research target, trying to identify the dynamic characteristic parameters of the bridge by using the peak-picking method to analyze the velocity response data under ambient excitation collected by 7 vibration pickup sensors set on the bridge deck. The ABAQUS is used to set up a three-dimensional finite element model for the full bridge and amends the finite element model of the suspension bridge based on the identified modal parameter, and suspender force picked by the PDV100 laser vibrometer. The study shows that the modal parameter can well be identified by analyzing the bridge vibration velocity collected by 7 survey points. The identified modal parameter and measured suspender force can be used as the basis of the amendment of the finite element model of the suspension bridge. The amended model can truthfully reflect the structural physical features and it can also be the benchmark model for the long-term health monitoring and condition assessment of the bridge.

  2. Analysis of Thermo-Acoustic Emission from Damage in Composite Laminates under Thermal Cyclic Loading

    International Nuclear Information System (INIS)

    Kim, Young Bok; Min, Dae Hong; Lee, Deok Bo; Choi, Nak Sam

    2001-01-01

    An investigation on nondestructive evaluation of thermal stress-reduced damage in the composite laminates (3mm in thickness and [+45 6 /-45 6 ] S lay-up angles) has been performed using the thermo-acoustic emission technique. Reduction of thermo-AE events due to repetitive thermal load cycles showed a Kaiser effect. An analysis of the thermo-AE behavior determined the stress free temperature of composite laminates. Fiber fracture and matrix cracks were observed using the optical microscopy, scanning electron microscopy and ultrasonic C-sean. Short-Time Fourier Transform of thermo-AE signals offered the time-frequency characteristics which might classify the thermo-AE as three different types to estimate the damage processes of the composites

  3. Application of an automated wireless structural monitoring system for long-span suspension bridges

    International Nuclear Information System (INIS)

    Kurata, M.; Lynch, J. P.; Linden, G. W. van der; Hipley, P.; Sheng, L.-H.

    2011-01-01

    This paper describes an automated wireless structural monitoring system installed at the New Carquinez Bridge (NCB). The designed system utilizes a dense network of wireless sensors installed in the bridge but remotely controlled by a hierarchically designed cyber-environment. The early efforts have included performance verification of a dense network of wireless sensors installed on the bridge and the establishment of a cellular gateway to the system for remote access from the internet. Acceleration of the main bridge span was the primary focus of the initial field deployment of the wireless monitoring system. An additional focus of the study is on ensuring wireless sensors can survive for long periods without human intervention. Toward this end, the life-expectancy of the wireless sensors has been enhanced by embedding efficient power management schemes in the sensors while integrating solar panels for power harvesting. The dynamic characteristics of the NCB under daily traffic and wind loads were extracted from the vibration response of the bridge deck and towers. These results have been compared to a high-fidelity finite element model of the bridge.

  4. Application of AN Automated Wireless Structural Monitoring System for Long-Span Suspension Bridges

    Science.gov (United States)

    Kurata, M.; Lynch, J. P.; van der Linden, G. W.; Hipley, P.; Sheng, L.-H.

    2011-06-01

    This paper describes an automated wireless structural monitoring system installed at the New Carquinez Bridge (NCB). The designed system utilizes a dense network of wireless sensors installed in the bridge but remotely controlled by a hierarchically designed cyber-environment. The early efforts have included performance verification of a dense network of wireless sensors installed on the bridge and the establishment of a cellular gateway to the system for remote access from the internet. Acceleration of the main bridge span was the primary focus of the initial field deployment of the wireless monitoring system. An additional focus of the study is on ensuring wireless sensors can survive for long periods without human intervention. Toward this end, the life-expectancy of the wireless sensors has been enhanced by embedding efficient power management schemes in the sensors while integrating solar panels for power harvesting. The dynamic characteristics of the NCB under daily traffic and wind loads were extracted from the vibration response of the bridge deck and towers. These results have been compared to a high-fidelity finite element model of the bridge.

  5. Parametric study on patch repaired CFRP laminates using FEA

    Energy Technology Data Exchange (ETDEWEB)

    Kashfuddoja, M.; Ramji, M. [Indian Institute of Technology. Engineering Optics Lab. Dept. of Mechanical Engineering, Hyderabad (India)

    2012-07-01

    Carbon fibre reinforced plastic (CFRP) composite laminates have become popular for structural applications as they are lighter, stronger and tougher. Composite structures are also susceptible to damage while in service. For improved service life, the damage needs to be repaired so that repair structure integrity is enhanced. Various parameters like patch size and shape, it's layup sequence and adhesive thickness would influence the performance of the repaired structure. In present work, a parametric study is carried out using finite element analysis (FEA) to investigate the influence of various parameters involved in composite repair. The panel is made of carbon / epoxy composite laminate with stacking sequence of (0/{+-}45/900)s and is subjected to tensile load. Damaged CFRP laminates is repaired by symmetrical patch adhesively bonded over the damaged area. Circular patch of different stacking sequence and size is considered. Influence of adhesive material and it's thickness on repair efficiency is also investigated. The influence of various repair parameters on peel stress is also analysed. (Author)

  6. Full-Scale Evaluation of DuraDeck (registered trademark) and MegaDeck (trademark) Matting Systems

    Science.gov (United States)

    2013-07-01

    plates studded with threaded bolts were placed ERDC/GSL TR-13-27 10 underneath two pre-drilled corners of the panel. The plates were positioned so...metal plates studded with threaded ERDC/GSL TR-13-27 4 Figure 1. DuraDeck® mat panel, top surface. Figure 2. DuraDeck® mat panel, bottom surface...ERDC/GSL TR-13-27 5 bolts , as shown in Figure 3, underneath the mat corners and then installing special connector nuts from the top surface

  7. "Subclinical" laminitis in dairy cattle.

    Science.gov (United States)

    Vermunt, J J

    1992-12-01

    In dairying countries worldwide, the economic importance of lameness in cattle is now recognised. Laminitis is regarded as a major predisposing factor in lameness caused by claw disorders such as white zone lesions, sole ulcer, and heel horn erosion. The existence of subclinical laminitis was first suggested in the late 1970s by Dutch workers describing the symptoms of sole haemorrhages and yellowish-coloured, soft sole horn. In an attempt to clarify some of the confusing and often conflicting terminology, the literature on laminitis is reviewed. Disturbed haemodynamics, in particular repeated or prolonged dilation of arteriovenous anastomoses, have been implicated in the pathogenesis of both equine and bovine laminitis. Some characteristics of the vascular system of the bovine claw which may be of importance in the pathophysiology of the subclinical laminitis syndrome are therefore discussed. Clinical observations suggest that subclinical laminitis is a multifactorial disease. The different factors that are or may be involved in its aetiology vary in complexity and severity according to the management protocol of the animals. The possible involvement of subclinical laminitis in claw lesions is assessed.

  8. Simulation of delamination crack growth in composite laminates: application of local and non-local interface damage models

    International Nuclear Information System (INIS)

    Ijaz, H.; Asad, M.

    2015-01-01

    The use of composite laminates is increasing in these days due to higher strength and low density values in comparison of metals. Delamination is a major source of failure in composite laminates. Damage mechanics based theories are employed to simulate the delamination phenomena between composite laminates. These damage models are inherently local and can cause the concentration of stresses around the crack tip. In the present study integral type non-local damage formulation is proposed to avoid the localization problem associated to damage formulation. A comprehensive study is carried out for the models and classical local damage model are performed and results are compared with available experimental data for un IMS/924 Carbon/fiber epoxy composite laminate. (author)

  9. Delamination behaviour in differently copper laminated REBCO coated conductor tapes under transverse loading

    Energy Technology Data Exchange (ETDEWEB)

    Gorospe, Alking [Department of Mechanical Design Engineering, Andong National University, 1375 Kyungdong-Ro, Andong 760-749 (Korea, Republic of); Department of Engineering, Aurora State College of Technology, Baler Aurora 3200 (Philippines); Nisay, Arman [Department of Mechanical Design Engineering, Andong National University, 1375 Kyungdong-Ro, Andong 760-749 (Korea, Republic of); Shin, Hyung-Seop, E-mail: hsshin@andong.ac.kr [Department of Mechanical Design Engineering, Andong National University, 1375 Kyungdong-Ro, Andong 760-749 (Korea, Republic of)

    2014-09-15

    Highlights: • I{sub c} degradation behavior under transverse tension loading in different CC tape structure. • Weibull distribution analysis applied on delamination mechanism of CC tape. • Delamination mechanism on CC tapes depending on copper lamination type. • SEM and WDS mapping analysis of delamination sites under transverse loading. - Abstract: Laminated HTS coated conductor (CC) tapes having a unique multi-layer structure made them vulnerable when exposed to transverse loading. Electromechanical transport properties of these CC tapes can be affected by excessive transverse stresses. Due to the coefficient of thermal expansion (CTE) mismatch and incompatibility among constituent materials used in coil applications, delamination among layers occurs and causes critical current, I{sub c} degradation in the CC tapes. In this study, the delamination behaviors in copper (Cu) solder-laminated CC tapes by soldering and surround Cu-stabilized ones by electroplating under transverse tension loading were investigated. Similarly to the surround Cu-stabilized CC tapes in our previous reports, the Cu solder-laminated CC tapes also showed an abrupt and gradual I{sub c} degradation behavior. However, the Cu solder-laminated CC tapes showed different delamination morphologies as compared to the surround Cu-stabilized CC tapes; the superconducting side and the substrate side of the Cu solder laminated CC tapes were totally separated by delamination. On the other hand, the brass laminate did not show any significant effect on the delamination strength when it is added upon the surround Cu-stabilized CC tapes.

  10. Calibration of Elasto-Magnetic Sensors on In-Service Cable-Stayed Bridges for Stress Monitoring.

    Science.gov (United States)

    Cappello, Carlo; Zonta, Daniele; Laasri, Hassan Ait; Glisic, Branko; Wang, Ming

    2018-02-05

    The recent developments in measurement technology have led to the installation of efficient monitoring systems on many bridges and other structures all over the world. Nowadays, more and more structures have been built and instrumented with sensors. However, calibration and installation of sensors remain challenging tasks. In this paper, we use a case study, Adige Bridge, in order to present a low-cost method for the calibration and installation of elasto-magnetic sensors on cable-stayed bridges. Elasto-magnetic sensors enable monitoring of cable stress. The sensor installation took place two years after the bridge construction. The calibration was conducted in two phases: one in the laboratory and the other one on site. In the laboratory, a sensor was built around a segment of cable that was identical to those of the cable-stayed bridge. Then, the sample was subjected to a defined tension force. The sensor response was compared with the applied load. Experimental results showed that the relationship between load and magnetic permeability does not depend on the sensor fabrication process except for an offset. The determination of this offset required in situ calibration after installation. In order to perform the in situ calibration without removing the cables from the bridge, vibration tests were carried out for the estimation of the cables' tensions. At the end of the paper, we show and discuss one year of data from the elasto-magnetic sensors. Calibration results demonstrate the simplicity of the installation of these sensors on existing bridges and new structures.

  11. Calibration of Elasto-Magnetic Sensors on In-Service Cable-Stayed Bridges for Stress Monitoring

    Directory of Open Access Journals (Sweden)

    Carlo Cappello

    2018-02-01

    Full Text Available The recent developments in measurement technology have led to the installation of efficient monitoring systems on many bridges and other structures all over the world. Nowadays, more and more structures have been built and instrumented with sensors. However, calibration and installation of sensors remain challenging tasks. In this paper, we use a case study, Adige Bridge, in order to present a low-cost method for the calibration and installation of elasto-magnetic sensors on cable-stayed bridges. Elasto-magnetic sensors enable monitoring of cable stress. The sensor installation took place two years after the bridge construction. The calibration was conducted in two phases: one in the laboratory and the other one on site. In the laboratory, a sensor was built around a segment of cable that was identical to those of the cable-stayed bridge. Then, the sample was subjected to a defined tension force. The sensor response was compared with the applied load. Experimental results showed that the relationship between load and magnetic permeability does not depend on the sensor fabrication process except for an offset. The determination of this offset required in situ calibration after installation. In order to perform the in situ calibration without removing the cables from the bridge, vibration tests were carried out for the estimation of the cables’ tensions. At the end of the paper, we show and discuss one year of data from the elasto-magnetic sensors. Calibration results demonstrate the simplicity of the installation of these sensors on existing bridges and new structures.

  12. Machined GRP laminates for components in heavy electrical engineering and their use at very low temperatures

    International Nuclear Information System (INIS)

    Fuchs, H.

    1982-01-01

    Safe and economical components can be produced from machined GRP laminates. Matrix system, fibre reinforcement and elastic properties are described. Onset of damage and long-term properties are given with detailed charting of tests. Application of the laminate studies at stresses of up to half their short-term strength can be made, provided creep strain and its dependence on time and temperature are considered

  13. Criterion for matrix cracking in glass fiber reinforced cross-ply laminates. GFRP chokko sekisoban ni okeru matrix kiretsu no hattatsu kijun

    Energy Technology Data Exchange (ETDEWEB)

    Motoki, S.; Fukuda, T. (Osaka City Univ., Osaka (Japan). Faculty of Engineering); Tanaka, M. (Kobe City College of Technology, Kobe (Japan))

    1992-05-15

    In this research, with regard to GFRP cross-ply laminates, which were the most basic lamination composition, the factors governing the progress of matrix cracks at the 90{degree} layer were studied, in particular the criterion for not depending on the thickness of the 90{degree} layer was examined. For the experiment concerning the above, GFRP prepreg was laminated and three kinds of cross-ply laminates were made for use. A quasistatic tensile load was applied to these specimens and a load-displacement curve was measured, and at the same time, the matrix crack numbers generated in the 90{degree} layer were counted. As a result, it was found that the maximum value of the vertical stress in the loading direction of 90{degree} layer did not depend on the lamination composition, hence could become the criterion for the crack progress. Also it was found that in case when this stress surpassed a certain threshold value, cracks were formed, but in case when it was smaller than the threshold value, no crack was formed. 12 refs., 14 figs.

  14. Influence of Connector Width on the Stress Distribution of Posterior Bridges under Loading

    Directory of Open Access Journals (Sweden)

    A. Azary

    2011-06-01

    Full Text Available Objective: In all ceramic fixed partial dentures the connector area is a common fracture location. The survival time of three-unit fixed partial dentures may be improved by altering the connector design in regions of maximum tension. The purpose of this study was to determine the effect of buccolingual increase of the connector width on the stress distribution in posterior fixed partial dentures made of IPS Empress 2. To simulate the anatomical condition, we used three-dimensional finite element analysis to generate.Materials and Methods: Three models of three-unit bridges replacing the first molar were prepared. The buccolingual connector width varied from 3.0 to 5.0 mm. Bridges were vertically loaded with 600 N at one point on the central fossa of the pontic, at 12 points along the cusp-fossa contact (50 N each, or at eight points along the cusp-marginal ridge contact (75 N each. Alternatively, a load of 225 N was applied at a 45º angle from the lingual side.Results: Stress concentrations were observed within or near the connectors. The von Mises stress decreased by increasing connector width, regardless of whether the loading was applied vertically or at an angle.Conclusion: Within the limitations of this study, we conclude that increasing the connector width decreases the failure probability when a vertical or angled load is applied.

  15. Seismic response of cable stayed bridges under multi support excitation

    Directory of Open Access Journals (Sweden)

    Mahmoud Reza ُُShiravand

    2017-07-01

    Full Text Available In this Study, the seismic response of cable stayed bridges have been evaluated under multi-support excitations. There are three sources that cause the earthquake wave characteristics change during its propagation path. Local site effect, loss of coherency and wave passage effect are three sources of spatial variation of seismic ground motions. In long span structures, such as cable supported bridges, this phenomenon is more evident and traditional analyzing (uniform excitation may not be valid and be conservative. Thus, it is necessary to investigate the response of cable stayed bridges under non-uniform excitations. For this purpose, the non-uniform time histories were artificially generated using Kriging method based on a set of known time history in the west support of bridge. Nonlinear time history analysis was performed and cables axial force, deck moment, pylons moment and finally drift ratio of bridge have been examined in order to investigate how non-uniform excitation change the seismic response of bridge compared with uniform excitations. Results show non-uniform excitation in some bridge components increase responses and decreases in the others. In non-uniform excitation, although total time history energy is lesser than uniform excitation, it can significantly change the distribution of the forces and makes differential displacement between cables supports and increase the possibility of failure.

  16. WORM: A general-purpose input deck specification language

    International Nuclear Information System (INIS)

    Jones, T.

    1999-01-01

    Using computer codes to perform criticality safety calculations has become common practice in the industry. The vast majority of these codes use simple text-based input decks to represent the geometry, materials, and other parameters that describe the problem. However, the data specified in input files are usually processed results themselves. For example, input decks tend to require the geometry specification in linear dimensions and materials in atom or weight fractions, while the parameter of interest might be mass or concentration. The calculations needed to convert from the item of interest to the required parameter in the input deck are usually performed separately and then incorporated into the input deck. This process of calculating, editing, and renaming files to perform a simple parameter study is tedious at best. In addition, most computer codes require dimensions to be specified in centimeters, while drawings or other materials used to create the input decks might be in other units. This also requires additional calculation or conversion prior to composition of the input deck. These additional calculations, while extremely simple, introduce a source for error in both the calculations and transcriptions. To overcome these difficulties, WORM (Write One, Run Many) was created. It is an easy-to-use programming language to describe input decks and can be used with any computer code that uses standard text files for input. WORM is available, via the Internet, at worm.lanl.gov. A user's guide, tutorials, example models, and other WORM-related materials are also available at this Web site. Questions regarding WORM should be directed to wormatlanl.gov

  17. Design of Usui bridge (PC cable stayed bridge). Usuihashi (PC shachokyo) no sekkei ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Kido, M.; Iizuka, Y. (Japan Highway Public Corp., Tokyo (Japan)); Tanaka, S.; Otsuka, K. (P.S. Concrete Co. Ltd. Kajima Corp. Joint Venture, Tokyo (Japan)); Kitakuni, S. (Kajima Corp., Tokyo (Japan))

    1991-11-30

    Structure and design of single suspension PC cable bridge, which is first kind of high way bridge in Japan and aiming to start for general use by March, 1993, are reported. As a construction outline, main construction quantity and general layout of the whole bridge together with the selective detail and characteristics of the diagonal member, tower, main girder and tower support member, are cited. Design conditions( load, materials, allowable stress and others ), basic plan of the design, and structure analysis( surface stress framed structure analysis, stereoscopic framework analysis and FEM analysis of local stress ) are explained. Design of structure member like main girder is based on diagonal member tension, wave shearing force, level of diagonal strain stress, bending stress when diagonal member anchors the deformed main tower caused by living load during earth quake, principal stress of main tower junction and local stress etc. Main tower support member design is based on the results of corbel shearing force at varied cross section and main stress, and diagonal member design is decided by allowable stress. Diagonal member anchorage traverse beam design depends on bending moment of traverse beam and shearing force. 3 refs., 15 figs., 1 tab.

  18. Thermal flexural analysis of cross-ply laminated plates using trigonometric shear deformation theory

    Directory of Open Access Journals (Sweden)

    Yuwaraj Marotrao Ghugal

    Full Text Available Thermal stresses and displacements for orthotropic, two-layer antisymmetric, and three-layer symmetric square cross-ply laminated plates subjected to nonlinear thermal load through the thickness of laminated plates are presented by using trigonometric shear deformation theory. The in-plane displacement field uses sinusoidal function in terms of thickness co-ordinate to include the shear deformation effect. The theory satisfies the shear stress free boundary conditions on the top and bottom surfaces of the plate. The present theory obviates the need of shear correction factor. Governing equations and boundary conditions of the theory are obtained using the principle of virtual work. The validity of present theory is verified by comparing the results with those of classical plate theory and first order shear deformation theory and higher order shear deformation theory.

  19. Rapid replacement of bridge deck expansion joints study - phase I : [tech transfer summary].

    Science.gov (United States)

    2014-12-01

    This initial research phase focused on documenting the current : means and methods of bridge expansion joint deterioration, : maintenance, and replacement and on identifying improvements : through all of the input gathered.

  20. Experimental study on AR fiberglass connectors for bridges made of composite materials

    Directory of Open Access Journals (Sweden)

    Tolosana, N.

    2006-06-01

    Full Text Available One highly relevant aspect in composite material bridgedesing is the study of the shear connectors to be used.Composite material bridges most commonly comprise acomposite deck resting on steel or reinforced concrete girders.This article analyzes the connectors most frequentlyused in such bridges.It also reviews the connectors used in the King StormwaterChannel Bridge, whose fibreglass deck is supported bygirders made of concrete-filled carbon fibre girders.The paper advances proposals for several types of connectorsand discusses the results of push-out test run ona number of prototypes with different geometries.The results are analyzed to identify the optimum model forthe “Autovia del Cantabrico” Overpass, with its 46-m span,carbon fibre girders and AR glass shear connectors.Un aspecto relevante dentro del proyecto de un puenterealizado en materiales compuestos es el estudio de losconectores. El caso mas frecuente de puente en materialescompuestos es aquel que presenta un tablero de materialescompuestos soportado por vigas metalicas o de hormigonarmado. En este trabajo se analizaran los tipos deconectores mas utilizados en este tipo de puentesSe analizaran tambien los conectores utilizados en elKing Stormwater Channel Bridge, donde ademas deltablero en fibra de vidrio, se fabricaron las vigas en fibrasde carbono rellenas de hormigon.En este articulo se propondran varios tipos de conectoresy se presentaran los resultados experimentales correspondientesal ensayo de “push-out” de varios prototipos condiferentes geometrias.Tras evaluar los resultados, se determinara el mas idoneopara su implantacion en el Paso Superior de la Autovia delCantabrico, de 46 metros de luz y que presenta las vigasen fibra de carbono y los conectores de vidrio AR.

  1. Super-bridges suspended over carbon nanotube cables

    Science.gov (United States)

    Carpinteri, Alberto; Pugno, Nicola M.

    2008-11-01

    In this paper the new concept of 'super-bridges', i.e. kilometre-long bridges suspended over carbon nanotube cables, is introduced. The analysis shows that the use of realistic (thus defective) carbon nanotube bundles as suspension cables can enlarge the current limit main span by a factor of ~3. Too large compliance and dynamic self-excited resonances could be avoided by additional strands, rendering the super-bridge anchored as a spider's cobweb. As an example, we have computed the limit main spans of the current existing 19 suspended-deck bridges longer than 1 km assuming them to have substituted their cables with carbon nanotube bundles (thus maintaining the same geometry, with the exception of the length) finding spans of up to ~6.3 km. We thus suggest that the design of the Messina bridge in Italy, which would require a main span of ~3.3 km, could benefit from the use of carbon nanotube bundles. We believe that their use represents a feasible and economically convenient solution. The plausibility of these affirmations is confirmed by a statistical analysis of the existing 100 longest suspended bridges, which follow a Zipf's law with an exponent of 1.1615: we have found a Moore-like (i.e. exponential) law, in which the doubling of the capacity (here the main span) per year is substituted by the factor 1.0138. Such a law predicts that the realization of the Messina bridge using conventional materials will only occur around the middle of the present century, whereas it could be expected in the near future if carbon nanotube bundles were used. A simple cost analysis concludes the paper.

  2. Super-bridges suspended over carbon nanotube cables

    International Nuclear Information System (INIS)

    Carpinteri, Alberto; Pugno, Nicola M

    2008-01-01

    In this paper the new concept of 'super-bridges', i.e. kilometre-long bridges suspended over carbon nanotube cables, is introduced. The analysis shows that the use of realistic (thus defective) carbon nanotube bundles as suspension cables can enlarge the current limit main span by a factor of ∼3. Too large compliance and dynamic self-excited resonances could be avoided by additional strands, rendering the super-bridge anchored as a spider's cobweb. As an example, we have computed the limit main spans of the current existing 19 suspended-deck bridges longer than 1 km assuming them to have substituted their cables with carbon nanotube bundles (thus maintaining the same geometry, with the exception of the length) finding spans of up to ∼6.3 km. We thus suggest that the design of the Messina bridge in Italy, which would require a main span of ∼3.3 km, could benefit from the use of carbon nanotube bundles. We believe that their use represents a feasible and economically convenient solution. The plausibility of these affirmations is confirmed by a statistical analysis of the existing 100 longest suspended bridges, which follow a Zipf's law with an exponent of 1.1615: we have found a Moore-like (i.e. exponential) law, in which the doubling of the capacity (here the main span) per year is substituted by the factor 1.0138. Such a law predicts that the realization of the Messina bridge using conventional materials will only occur around the middle of the present century, whereas it could be expected in the near future if carbon nanotube bundles were used. A simple cost analysis concludes the paper.

  3. DESIGN ALTERNATIVES ON THE LAMINATES

    Directory of Open Access Journals (Sweden)

    Gökay Nemli

    2004-04-01

    Full Text Available Wood based panel manufacturers use increasing volumes of laminates. Laminates are resistant to the water, humidity, scratch, abrasion, burning and chemicals. These products consist of printed decor papers that have been saturated with thermosetting resin. In this study, laminate types, composition form and design alternatives were investigated.

  4. Investigation of the Mechanical Properties of Hybrid Carbon-Hemp Laminated Composites Used as Thermal Insulation for Different Industrial Applications

    Directory of Open Access Journals (Sweden)

    M. L. Scutaru

    2014-04-01

    Full Text Available Carbon-hemp composite laminate provides good thermal properties. For this reason this type of material is presently being used for various applications like insulator for airplanes, spaceships, nuclear reactors, and so forth. Unfortunately their mechanical properties are less studied. These characteristics are very important since they should be guaranteed also for important mechanical stress in addition to the thermal one. The present paper presents a study regarding the impact testing of some hybrid composite laminate panels based on polyester resin reinforced with both carbon and hemp fabric. The effects of different impact speeds on the mechanical behavior of these panels have been analyzed. The paper lays stress on the characterization of this hybrid composite laminate regarding the impact behavior of these panels by dropping a weight with low velocity.

  5. A theory of piezoelectric laminates

    International Nuclear Information System (INIS)

    Giangreco, E.

    1997-01-01

    A theory of piezoelectric laminates is rationally derived from the three-dimensional Voigt theory of piezoelectricity. The present theory is a generalization to piezoelectric laminates of the Reissner-Mindlin-type layer-wise theory of elastic laminates. Both a differential formulation and a variational formulation of the piezoelectric laminate problem are presented. The proposed theory is adopted in the analysis of simple problems, in order to verify its effectiveness. The results it provides turn out to be in good agreement with the results supplied by the Voigt theory of piezoelectricity

  6. Evaluation of Force-Time Changes During Impact of Hybrid Laminates Made of Titanium and Fibrous Composite

    Directory of Open Access Journals (Sweden)

    Jakubczak P.

    2016-06-01

    Full Text Available Fibre metal laminates (FML are the modern hybrid materials with potential wide range of applications in aerospace technology due to their excellent mechanical properties (particularly fatigue strength, resistance to impacts and also excellent corrosion resistance. The study describes the resistance to low velocity impacts in Ti/CFRP laminates. Tested laminates were produced in autoclave process. The laminates were characterized in terms of their response to impacts in specified energy range (5J, 10J, 20J. The tests were performed in accordance with ASTM D7137 standard. The laminates were subjected to impacts by means of hemispherical impactor with diameter of 12,7 mm. The following values have been determined: impact force vs. time, maximum force and the force at which the material destruction process commences (Pi. It has been found that fibre titanium laminates are characterized by high resistance to impacts. This feature is associated with elasto-plastic properties of metal and high rigidity of epoxy - fibre composite. It has been observed that Ti/CFRP laminates are characterized by more instable force during impact in stage of stabilization of impactor-laminate system and stage of force growth that glass fibre laminates. It has been observed more stable force decrease in stage of stress relaxation and withdrawal of the impactor. In energy range under test, the laminates based on titanium with glass and carbon fibres reinforcement demonstrate similar and high resistance to low-velocity impact, measured by means of failure initiation force and impact maximum force.

  7. Disassembly of an arch bridge deformed due to landslide activity and the replacement of a new bridge in the same site. Jisuberi ni yori henkei shita arch bashi no kaitai to shinbashi no kakekae

    Energy Technology Data Exchange (ETDEWEB)

    Sano, S; Morimoto, C; Tomoda, T; Mizukawa, Y; Onushi, M; Ito, T [Kawasaki Heavy Industries, Ltd., Tokyo (Japan)

    1991-10-20

    This report describes the replacement process of an arch bridge deformed due to landslide activity, selection and contents of the disassembly method, and configuration of the new bridge and its design method. The Ryugu Bridge had been damaged by landslides over an extended period. It was a deck arch bridge having originally a span of 74 meters, but it had shortened by 424 mm due to landslide activity during 14 years since its completion. Then it was decided to be replaced by a new bridge having an adjustable structure to support the movement of its abutments. As disassembly of the deformed arch bridge could be dangerous, the best methodology was studied, and the disassembly was carried out by the cable method. The new bridge had box-girder parts in both side of the main truss, so as to be adjustable to the change of the span length, and the bridge was designed for a working life of 50 years if the bearing supports and expansion joints were reset every 10 years. Concerning the connecting parts between the box-girder and the main truss, appropriateness of the sectional configuration was verified by FEM analysis. 9 refs., 18 figs., 2 tab.

  8. The shock response of float-glass laminates

    International Nuclear Information System (INIS)

    Bourne, N.K.

    2005-01-01

    Interfaces within glass targets give rise to variations in the mode of failure of material components. The wide use of such laminates merits further investigation of the failure mechanism. It is already known that when shocked above a threshold of 4 GPa, glass fails under compression behind a propagating front following the compression front. Work is presented which indicates how this failure process is altered by bonding together two plates to introduce an interface, rather than leaving a monolithic target. After crossing an internal interface, the failure wave propagates only after a delay in soda-lime glass and the failed strength of the material is increased at the inner interface compared with that at the impact face. Addition of a second interface illustrates these effects. Recent work has shown that failure of more than two plates bonded together during impact shapes the pulse transmitted through materials. Indeed it has been suggested that glass sheets bonded together show some of the features of polycrystalline brittle materials. In this work, the stress has been monitored at different stations in the laminate to ascertain the effect of varying the number of tiles within the laminate. It is found that the pulse rises to ca. 4 GPa quickly and then is ramped more gradually as the number of glass sheets is increased

  9. Effects of stacking sequence on impact damage resistance and residual strength for quasi-isotropic laminates

    Science.gov (United States)

    Dost, Ernest F.; Ilcewicz, Larry B.; Avery, William B.; Coxon, Brian R.

    1991-01-01

    Residual strength of an impacted composite laminate is dependent on details of the damage state. Stacking sequence was varied to judge its effect on damage caused by low-velocity impact. This was done for quasi-isotropic layups of a toughened composite material. Experimental observations on changes in the impact damage state and postimpact compressive performance were presented for seven different laminate stacking sequences. The applicability and limitations of analysis compared to experimental results were also discussed. Postimpact compressive behavior was found to be a strong function of the laminate stacking sequence. This relationship was found to depend on thickness, stacking sequence, size, and location of sublaminates that comprise the impact damage state. The postimpact strength for specimens with a relatively symmetric distribution of damage through the laminate thickness was accurately predicted by models that accounted for sublaminate stability and in-plane stress redistribution. An asymmetric distribution of damage in some laminate stacking sequences tended to alter specimen stability. Geometrically nonlinear finite element analysis was used to predict this behavior.

  10. Monitoring of Bridges by a Laser Pointer: Dynamic Measurement of Support Rotations and Elastic Line Displacements: Methodology and First Test.

    Science.gov (United States)

    Artese, Serena; Achilli, Vladimiro; Zinno, Raffaele

    2018-01-25

    Deck inclination and vertical displacements are among the most important technical parameters to evaluate the health status of a bridge and to verify its bearing capacity. Several methods, both conventional and innovative, are used for structural rotations and displacement monitoring; however, none of these allow, at the same time, precision, automation, static and dynamic monitoring without using high cost instrumentation. The proposed system uses a common laser pointer and image processing. The elastic line inclination is measured by analyzing the single frames of an HD video of the laser beam imprint projected on a flat target. For the image processing, a code was developed in Matlab ® that provides instantaneous rotation and displacement of a bridge, charged by a mobile load. An important feature is the synchronization of the load positioning, obtained by a GNSS receiver or by a video. After the calibration procedures, a test was carried out during the movements of a heavy truck maneuvering on a bridge. Data acquisition synchronization allowed us to relate the position of the truck on the deck to inclination and displacements. The inclination of the elastic line at the support was obtained with a precision of 0.01 mrad. The results demonstrate the suitability of the method for dynamic load tests, and the control and monitoring of bridges.

  11. Monitoring of Bridges by a Laser Pointer: Dynamic Measurement of Support Rotations and Elastic Line Displacements: Methodology and First Test

    Directory of Open Access Journals (Sweden)

    Serena Artese

    2018-01-01

    Full Text Available Deck inclination and vertical displacements are among the most important technical parameters to evaluate the health status of a bridge and to verify its bearing capacity. Several methods, both conventional and innovative, are used for structural rotations and displacement monitoring; however, none of these allow, at the same time, precision, automation, static and dynamic monitoring without using high cost instrumentation. The proposed system uses a common laser pointer and image processing. The elastic line inclination is measured by analyzing the single frames of an HD video of the laser beam imprint projected on a flat target. For the image processing, a code was developed in Matlab® that provides instantaneous rotation and displacement of a bridge, charged by a mobile load. An important feature is the synchronization of the load positioning, obtained by a GNSS receiver or by a video. After the calibration procedures, a test was carried out during the movements of a heavy truck maneuvering on a bridge. Data acquisition synchronization allowed us to relate the position of the truck on the deck to inclination and displacements. The inclination of the elastic line at the support was obtained with a precision of 0.01 mrad. The results demonstrate the suitability of the method for dynamic load tests, and the control and monitoring of bridges.

  12. Development of failure criterion for Kevlar-epoxy fabric laminates

    Science.gov (United States)

    Tennyson, R. C.; Elliott, W. G.

    1984-01-01

    The development of the tensor polynomial failure criterion for composite laminate analysis is discussed. In particular, emphasis is given to the fabrication and testing of Kevlar-49 fabric (Style 285)/Narmco 5208 Epoxy. The quadratic-failure criterion with F(12)=0 provides accurate estimates of failure stresses for the Kevlar/Epoxy investigated. The cubic failure criterion was re-cast into an operationally easier form, providing the engineer with design curves that can be applied to laminates fabricated from unidirectional prepregs. In the form presented no interaction strength tests are required, although recourse to the quadratic model and the principal strength parameters is necessary. However, insufficient test data exists at present to generalize this approach for all undirectional prepregs and its use must be restricted to the generic materials investigated to-date.

  13. A historical perspective of laminitis.

    Science.gov (United States)

    Heymering, Henry W

    2010-04-01

    The causes of laminitis are many-often interrelated, sometimes direct opposites. The history of laminitis has been a search for the cause or causes of laminitis and for effective treatment. Going in and out of fashion, many treatments have lasted for centuries, some for millennia, but very few have been proven. Copyright 2010 Elsevier Inc. All rights reserved.

  14. Composite lamination method

    Science.gov (United States)

    Dickerson, G. E. (Inventor)

    1977-01-01

    A process was developed for preparing relatively thick composite laminate structure wherein thin layers of prepreg tapes are assembled, these thin layers are cut into strips that are partially cured, and stacked into the desired thickness with uncured prepreg disposed between each layer of strips. The formed laminate is finally cured and thereafter machined to the desired final dimensions.

  15. Glucocorticoids and laminitis in the horse.

    Science.gov (United States)

    Johnson, Philip J; Slight, Simon H; Ganjam, Venkataseshu K; Kreeger, John M

    2002-08-01

    The administration of exogenously administered GCs and syndromes associated with GC excess are both attended by increased risk for the development of laminitis in adult horses. However, there exists substantial controversy as to whether excess GCs cause laminitis de novo. If true, the pathogenesis of laminitis arising from the effects of GC excess is probably different from that associated with diseases of the gastrointestinal tract and endotoxemia. Although a satisfactory explanation for the development of laminitis as a consequence of GC action is currently lacking, numerous possible and plausible theoretical mechanisms do exist. Veterinarians must exert caution with respect to the use of GCs in adult horses. The extent to which individual horses are predisposed to laminitis as a result of GC effect cannot be predicted based on current information. However, the administration of systemic GCs to horses that have been previously affected by laminitis should be used only with extreme caution, and should be accompanied by careful monitoring for further signs of laminitis. The risk of laminitis appears to be greater during treatment using some GCs (especially dexamethasone and triamcinalone) compared with others (prednisone and prednisolone). Whenever possible, to reduce the risk of laminitis, GCs should be administered locally. For example, the risk of GC-associated laminitis is evidently considerably reduced in horses affected with chronic obstructive pulmonary disease (COPD) if GC treatment is administered via inhalation. We have hypothesized that structural changes in the equine hoof that resemble laminitis may arise as a consequence of excess GC effect. Although these changes are not painful per se, and are not associated with inflammation, they could likely predispose affected horses to the development of bona fide laminitis for other reasons. Moreover, the gross morphological appearance of the chronically GC-affected hoof resembles that of a chronically

  16. Thermoviscoelastic characterization and prediction of Kevlar/epoxy composite laminates

    Science.gov (United States)

    Gramoll, K. C.; Dillard, D. A.; Brinson, H. F.

    1990-01-01

    The thermoviscoelastic characterization of Kevlar 49/Fiberite 7714A epoxy composite lamina and the development of a numerical procedure to predict the viscoelastic response of any general laminate constructed from the same material were studied. The four orthotropic material properties, S sub 11, S sub 12, S sub 22, and S sub 66, were characterized by 20 minute static creep tests on unidirectional (0) sub 8, (10) sub 8, and (90) sub 16 lamina specimens. The Time-Temperature Superposition-Principle (TTSP) was used successfully to accelerate the characterization process. A nonlinear constitutive model was developed to describe the stress dependent viscoelastic response for each of the material properties. A numerical procedure to predict long term laminate properties from lamina properties (obtained experimentally) was developed. Numerical instabilities and time constraints associated with viscoelastic numerical techniques were discussed and solved. The numerical procedure was incorporated into a user friendly microcomputer program called Viscoelastic Composite Analysis Program (VCAP), which is available for IBM PC type computers. The program was designed for ease of use. The final phase involved testing actual laminates constructed from the characterized material, Kevlar/epoxy, at various temperatures and load level for 4 to 5 weeks. These results were compared with the VCAP program predictions to verify the testing procedure and to check the numerical procedure used in the program. The actual tests and predictions agreed for all test cases which included 1, 2, 3, and 4 fiber direction laminates.

  17. Wave impact on a deck or baffle

    Science.gov (United States)

    Md Noar, Nor Aida Zuraimi; Greenhow, Martin

    2015-02-01

    Some coastal or ocean structures have deck-like baffles or horizontal platforms that can be exposed to wave action in heavy seas. A similar situation may occur in partially-filled tanks with horizontal baffles that become engulfed by sloshing waves. This can result in dangerous wave impact loads (slamming) causing a rapid rise of pressures which may lead to local damaging by crack initiation and/or propagation. We consider the wave impact against the whole of underside of horizontal deck (or baffle) projecting from a seawall (or vertical tank wall), previously studied by Wood and Peregrine (1996) using a different method based on conformal mappings. The approach used is to simplify the highly time-dependent and very nonlinear problem by considering the time integral of the pressure over the duration of the impact pressure-impulse, P (x, y). Our method expresses this in terms of eigenfunctions that satisfy the boundary conditions apart from that on the impact region and the matching of the two regions (under the platform and under the free surface); this results in a matrix equation to be solved numerically. As in Wood and Peregrine, we found that the pressure impulse on the deck increases when the length of deck increases, there is a strong pressure gradient beneath the deck near the seaward edge and the maximum pressure impulse occurs at the landward end of the impact zone.

  18. Characterization and Formability of Titanium/Aluminum Laminate Composites Fabricated by Hot Pressing

    Science.gov (United States)

    Qin, Liang; Wang, Hui; Cui, Shengqiang; Wu, Qian; Fan, Minyu; Yang, Zonghui; Tao, Jie

    2017-07-01

    The Ti/Al laminate composites were prepared by hot pressing to investigate the forming performance due to the corresponding potential applications in both the aerospace and auto industry. The bonding interface morphology and element distributions were characterized by SEM and EDS. The phase constituent was detected by XRD. It was observed that these composites presented good bonding interfaces between Ti and Al layers, and no low-sized voids and intermetallic compounds formed at the interface. In addition, the formability of these laminate composites was studied by the uniaxial tension tests, the limit drawing ratio (LDR) and the forming limit curve (FLC) experiments, respectively. The results indicated that the flow stress increased along with the strain rate increment. A constitutive equation was developed for deformation behavioral description of these laminate composites. The LDR value was 1.8, and the most susceptible region to present cracks was located at the punch profile radius. The forming limit curve of the laminate composites was located between the curves of titanium and aluminum and intersected with the major strain line at approximately 0.31. The macroscopic cracks of the FLC sample demonstrated a saw-toothed crack feature.

  19. In situ measurement using FBGs of process-induced strains during curing of thick glass/epoxy laminate plate

    DEFF Research Database (Denmark)

    Nielsen, Michael Wenani; Schmidt, Jacob Wittrup; Hattel, Jesper Henri

    2012-01-01

    For large composite structures, such as wind turbine blades, thick laminates are required to withstand large in-service loads. During the manufacture of thick laminates, one of the challenges met is avoiding process-induced shape distortions and residual stresses. In this paper, embedded fibre...... Bragg grating sensors are used to monitor process-induced strains during vacuum infusion of a thick glass/epoxy laminate. The measured strains are compared with predictions from a cure hardening instantaneous linear elastic (CHILE) thermomechanical numerical model where different mechanical boundary...... conditions are employed. The accuracy of the CHILE model in predicting process-induced internal strains, in what is essentially a viscoelastic boundary value problem, is investigated. A parametric study is furthermore performed to reveal the effect of increasing the laminate thickness. The numerical model...

  20. Strategies for fracture toughness, strength and reliability optimisation of ceramic-ceramic laminates

    Czech Academy of Sciences Publication Activity Database

    Šestáková, L.; Bermejo, R.; Chlup, Zdeněk; Danzer, R.

    2011-01-01

    Roč. 102, č. 6 (2011), s. 613-626 ISSN 1862-5282 Institutional research plan: CEZ:AV0Z20410507 Keywords : Ceramic laminates * Layered ceramics * Residual stress * Fracture toughness * Threshold strength Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 0.830, year: 2011

  1. Truck-based mobile wireless sensor networks for the experimental observation of vehicle–bridge interaction

    International Nuclear Information System (INIS)

    Kim, Junhee; Lynch, Jerome P; Lee, Jong-Jae; Lee, Chang-Geun

    2011-01-01

    Heavy vehicles driving over a bridge create a complex dynamic phenomenon known as vehicle–bridge interaction. In recent years, interest in vehicle–bridge interaction has grown because a deeper understanding of the phenomena can lead to improvements in bridge design methods while enhancing the accuracy of structural health monitoring techniques. The mobility of wireless sensors can be leveraged to directly monitor the dynamic coupling between the moving vehicle and the bridge. In this study, a mobile wireless sensor network is proposed for installation on a heavy truck to capture the vertical acceleration, horizontal acceleration and gyroscopic pitching of the truck as it crosses a bridge. The vehicle-based wireless monitoring system is designed to interact with a static, permanent wireless monitoring system installed on the bridge. Specifically, the mobile wireless sensors time-synchronize with the bridge's wireless sensors before transferring the vehicle response data. Vertical acceleration and gyroscopic pitching measurements of the vehicle are combined with bridge accelerations to create a time-synchronized vehicle–bridge response dataset. In addition to observing the vehicle vibrations, Kalman filtering is adopted to accurately track the vehicle position using the measured horizontal acceleration of the vehicle and positioning information derived from piezoelectric strip sensors installed on the bridge deck as part of the bridge monitoring system. Using the Geumdang Bridge (Korea), extensive field testing of the proposed vehicle–bridge wireless monitoring system is conducted. Experimental results verify the reliability of the wireless system and the accuracy of the vehicle positioning algorithm

  2. Photovoltaic-Panel Laminator

    Science.gov (United States)

    Keenan, R.

    1985-01-01

    Two-piece unit heats and presses protective layers to form laminate. Rubber diaphragm between upper and lower vacuum chambers alternates between neutral position and one that presses against solar-cell array, supplying distributed force necessary to press layers of laminate together. Encapsulation helps to protect cells from environment and to ensure long panel life while allowing efficient generation of electricity from Sunlight.

  3. Predisposing factors of laminitis in cattle.

    Science.gov (United States)

    Vermunt, J J; Greenough, P R

    1994-01-01

    Laminitis is regarded as a major predisposing factor in lameness caused by claw disorders. Despite intensive study, both by experiment and by clinical observation, knowledge of the precise aetiology and pathogenesis of bovine laminitis is still incomplete. It is often hypothesized that changes in the micro-circulation of the corum (dermis) of the bovine claw contribute significantly to the development of laminitis; arteriovenous anastomoses (AVAs) playing a crucial role. Many factors have been implicated as contributing causes of laminitis in cattle; the disease has a multifactorial aetiology. The cause of laminitis should be considered as a combination of predisposing factors leading to vascular (AVAs in particular) reactivity and inhibition of normal horn synthesis. Nutrition, disease, management and behaviour appear to be closely involved in the pathogenesis of bovine laminitis. The major factors predisposing to laminitis in cattle, as reported or suggested in the literature, are reviewed, including systemic disease, nutrition (barley grain, protein, carbohydrate and fibre), management (housing, bedding and exercise), calving, season, age, growth, genetics, conformation and behaviour.

  4. Laminitis and the equine metabolic syndrome.

    Science.gov (United States)

    Johnson, Philip J; Wiedmeyer, Charles E; LaCarrubba, Alison; Ganjam, V K Seshu; Messer, Nat T

    2010-08-01

    Although much has been written about laminitis in the context of its association with inflammatory processes, recognition is growing that most cases of laminitis examined by veterinarians in private practice are those associated with pasture grazing, obesity, and insulin resistance (IR). The term 'endocrinopathic laminitis' has been adopted to classify the instances of laminitis in which the origin seems to be more strongly associated with an underlying endocrinopathy, such as either IR or the influence of corticosteroids. Results of a recent study suggest that obesity and IR represent the most common metabolic and endocrinopathic predispositions for laminitis in horses. IR also plays an important role in the pathogenesis of laminitis that develops when some horses or ponies are allowed to graze pastures at certain times of the year. The term equine metabolic syndrome (EMS) has been proposed as a label for horses whose clinical examination results (including both physical examination and laboratory testing) suggest heightened risk for developing laminitis as a result of underlying IR. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  5. 46 CFR 109.575 - Accumulation of liquids on helicopter decks.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Accumulation of liquids on helicopter decks. 109.575... DRILLING UNITS OPERATIONS Miscellaneous § 109.575 Accumulation of liquids on helicopter decks. The master or person in charge shall ensure that no liquids are allowed to accumulate on the helicopter decks. ...

  6. Experiments and theory on deck and girder crushing

    DEFF Research Database (Denmark)

    Simonsen, Bo Cerup; Ocakli, Hasan

    1999-01-01

    -deflection curves and modes of deformation for decks, stringer decks and deep thin-walled beams subjected to central or excentric point loads between transverse frames. Based on theory and experiments, various modelling aspects of the local/global failure of the beams are discussed. The agreement between......This paper is concerned with theoretical and experimental analysis of deep plastic collapse of a deck or deep girder subjected to an in-plane, concentrated load. A theory is derived which is valid until initition of fracture in the structure. The presented experimental results show load...

  7. Evaluation of Different Software Packages in Flow Modeling under Bridge Structures

    Directory of Open Access Journals (Sweden)

    Mohammad Taghi Dastorani

    2007-01-01

    Full Text Available This study is an independent and a comparative research concerning the accuracy, capability and suitability of three well-known packages ofISIS, MIKE11 and HEC-RAS as hydraulic river modeling software packages for modeling the flow through bridges. The research project was designed to assess the ability of each software package to model the flow through bridge structures. It was carried out using the data taken from experiments completed by a 22-meter laboratory flume at theUniversityofBirmingham. The flume has a compound cross section containing a main channel and two flood plains on either side. For this study a smooth main channel and a smooth floodplain have been assumed. Two types of bridges are modeled in this research; a multiple opening semi-circular arch bridge and a single opening straight deck bridge. For each bridge, two different simulations were carried out using two different upstream boundaries as low flow and high flow simulations. According to the results, all three packages were able to model arch and US BPR bridges but in some cases they presented different results. The highest water elevation upstream the bridge (maximum afflux was the main parameter to be compared to the measured values.ISISand HEC-RAS (especially HEC-RAS seem to be more efficient to model arch bridge. However, in some cases, MIKE 11 produced considerably higher results than those of the other two packages. To model USBPR bridge, all three packages produced reasonable results. However, the results by HEC-RAS are the best when the outputs are compared to the experimental data.

  8. A failure scenario of ceramic laminates with strong interfaces

    Czech Academy of Sciences Publication Activity Database

    Náhlík, Luboš; Štegnerová, Kateřina; Máša, Bohuslav; Hutař, Pavel

    2016-01-01

    Roč. 167, NOV (2016), s. 56-67 ISSN 0013-7944 R&D Projects: GA ČR GA15-09347S; GA MŠk LM2015069 Institutional support: RVO:68081723 Keywords : Damage mechanism * Ceramic laminates * Residual stresses * Strain energy density factor * Crack propagation direction Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 2.151, year: 2016 http://www.sciencedirect.com/science/article/pii/S0013794416301783

  9. Continuous jute fibre reinforced laminated paper composite

    Indian Academy of Sciences (India)

    Jute fibre; laminated paper composite; plastic bag pollution. Abstract. Plastic bags create a serious environmental problem. The proposed jute fibre reinforced laminated paper composite and reinforcement-fibre free paper laminate may help to combat the war against this pollutant to certain extent. The paper laminate ...

  10. Modeling the kinematics of multi-axial composite laminates as a stacking of 2D TIF plies

    Science.gov (United States)

    Ibañez, Ruben; Abisset-Chavanne, Emmanuelle; Chinesta, Francisco; Huerta, Antonio

    2016-10-01

    Thermoplastic composites are widely considered in structural parts. In this paper attention is paid to sheet forming of continuous fiber laminates. In the case of unidirectional prepregs, the ply constitutive equation is modeled as a transversally isotropic fluid, that must satisfy both the fiber inextensibility as well as the fluid incompressibility. When the stacking sequence involves plies with different orientations the kinematics of each ply during the laminate deformation varies significantly through the composite thickness. In our former works we considered two different approaches when simulating the squeeze flow induced by the laminate compression, the first based on a penalty formulation and the second one based on the use of Lagrange multipliers. In the present work we propose an alternative approach that consists in modeling each ply involved in the laminate as a transversally isotropic fluid - TIF - that becomes 2D as soon as incompressibility constraint and plane stress assumption are taken into account. Thus, composites laminates can be analyzed as a stacking of 2D TIF models that could eventually interact by using adequate friction laws at the inter-ply interfaces.

  11. Development of test method for assessing the bonding characteristics of membrane layers in wearing course laid on orthotropic steel bridge decks

    NARCIS (Netherlands)

    Liu, X.; Scarpas, A.; Li, J.; Tzimiris, G.; Hofman, R.; Voskuilen, J.

    2013-01-01

    In order to adequately characterize the adhesive bonding strength of the various membranes with surrounding materials on orthotropic steel decks and collect the necessary parameters for FE modeling, details of the Membrane Adhesion Test (MAT) are introduced. Analytical constitutive relations of the

  12. Assessment of various failure theories for weight and cost optimized laminated composites using genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Goyal, T. [Indian Institute of Technology Kanpur. Dept. of Aerospace Engineering, UP (India); Gupta, R. [Infotech Enterprises Ltd., Hyderabad (India)

    2012-07-01

    In this work, minimum weight-cost design for laminated composites is presented. A genetic algorithm has been developed for the optimization process. Maximum-Stress, Tsai-Wu and Tsai-Hill failure criteria have been used along with buckling analysis parameter for the margin of safety calculations. The design variables include three materials; namely Carbon-Epoxy, Glass-Epoxy, Kevlar-Epoxy; number of plies; ply orientation angles, varying from -75 deg. to 90 deg. in the intervals of 15 deg. and ply thicknesses which depend on the material in use. The total cost is a sum of material cost and layup cost. Layup cost is a function of the ply angle. Validation studies for solution convergence and weight-cost inverse proportionality are carried out. One set of results for shear loading are also validated from literature for a particular case. A Pareto-Optimal solution set is demonstrated for biaxial loading conditions. It is then extended to applied moments. It is found that global optimum for a given loading condition is a function of the failure criteria for shear loading, with Maximum Stress criteria giving the lightest-cheapest and Tsai-Wu criteria giving the heaviest-costliest optimized laminates. Optimized weight results are plotted from the three criteria to do a comparative study. This work gives a global optimized laminated composite and also a set of other local optimum laminates for a given set of loading conditions. The current algorithm also provides with adequate data to supplement the use of different failure criteria for varying loadings. This work can find use in the industry and/or academia considering the increased use of laminated composites in modern wind blades. (Author)

  13. Wettability of graphene-laminated micropillar structures

    International Nuclear Information System (INIS)

    Bong, Jihye; Seo, Keumyoung; Ju, Sanghyun; Park, Ji-Hoon; Ahn, Joung Real

    2014-01-01

    The wetting control of graphene is of great interest for electronic, mechanical, architectural, and bionic applications. In this study, the wettability of graphene-laminated micropillar structures was manipulated by changing the height of graphene-laminated structures and employing the trichlorosilane (HDF-S)-based self-assembly monolayer. Graphene-laminated micropillar structures with HDF-S exhibited higher hydrophobicity (contact angle of 129.5°) than pristine graphene thin film (78.8°), pristine graphene-laminated micropillar structures (97.5°), and HDF-S self-assembled graphene thin film (98.5°). Wetting states of the graphene-laminated micropillar structure with HDF-S was also examined by using a urea solution, which flowed across the surface without leaving any residues

  14. Formulation of Equations of Motion for a Simply Supported Bridge under a Moving Railway Freight Vehicle

    Directory of Open Access Journals (Sweden)

    Ping Lou

    2007-01-01

    Full Text Available Based on energy approach, the equations of motion in matrix form for the railway freight vehicle-bridge interaction system are derived, in which the dynamic contact forces between vehicle and bridge are considered as internal forces. The freight vehicle is modelled as a multi-rigid-body system, which comprises one car body, two bogie frames and four wheelsets. The bogie frame is linked with the car body through spring-dashpot suspension systems, and the bogie frame is rigidly linked with wheelsets. The bridge deck, together with railway track resting on bridge, is modelled as a simply supported Bernoulli-Euler beam and its deflection is described by superimposing modes. The direct time integration method is applied to obtain the dynamic response of the vehicle-bridge interaction system at each time step. A computer program has been developed for analyzing this system. The correctness of the proposed procedure is confirmed by one numerical example. The effect of different beam mode numbers and various surface irregularities of beam on the dynamic responses of the vehicle-bridge interaction system are investigated.

  15. Estimation of durability of GFRP laminates under stress-corrosive environments using acoustic emission; AE wo mochiita ouryoku fushoku kankyoka deno GFRP no taikyusei hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Yoshimichi. [Seikow Chemical Engineering and Machinery, Ltd., Hyogo (Japan). Laboratory of Composite Materials; Nishiyabu, Kazuaki. [Osaka Prefectural College of Tehcnology, Osaka (Japan)

    1999-05-15

    The objective of this investigation is to estimate the creep life of glass fiber reinforced plastic (GFRP) under stress-corrosive environments using acoustic emission(AE). The laminates were fabricated using combinations of vinylester resin (R806) and random fiber mat or woven cloth. The creep tests were conducted in 5% nitric acid (HNO{sub 3}) environment. The AE depends on the loading level and the environment condition. For the creep test, the woven cloth reinforced specimens gave higher number of AE counts than the random mat reinforced specimens. The creep life decreased with increasing creep stress, whereas the rate of AE counts increased with increasing creep stress. A linear relationship was found between the creep life and the AE count rate. Using the proposed equation, a prediction of the creep life of GFRP under corrosive environments would presumably be possible. (author)

  16. Microcracking in composite laminates under thermal and mechanical loading. Thesis

    Science.gov (United States)

    Maddocks, Jason R.

    1995-01-01

    Composites used in space structures are exposed to both extremes in temperature and applied mechanical loads. Cracks in the matrix form, changing the laminate thermoelastic properties. The goal of the present investigation is to develop a predictive methodology to quantify microcracking in general composite laminates under both thermal and mechanical loading. This objective is successfully met through a combination of analytical modeling and experimental investigation. In the analysis, the stress and displacement distributions in the vicinity of a crack are determined using a shear lag model. These are incorporated into an energy based cracking criterion to determine the favorability of crack formation. A progressive damage algorithm allows the inclusion of material softening effects and temperature-dependent material properties. The analysis is implemented by a computer code which gives predicted crack density and degraded laminate properties as functions of any thermomechanical load history. Extensive experimentation provides verification of the analysis. AS4/3501-6 graphite/epoxy laminates are manufactured with three different layups to investigate ply thickness and orientation effects. Thermal specimens are cooled to progressively lower temperatures down to -184 C. After conditioning the specimens to each temperature, cracks are counted on their edges using optical microscopy and in their interiors by sanding to incremental depths. Tensile coupons are loaded monotonically to progressively higher loads until failure. Cracks are counted on the coupon edges after each loading. A data fit to all available results provides input parameters for the analysis and shows them to be material properties, independent of geometry and loading. Correlation between experiment and analysis is generally very good under both thermal and mechanical loading, showing the methodology to be a powerful, unified tool. Delayed crack initiation observed in a few cases is attributed to a

  17. Vibration analysis of concrete bridges during a train pass-by using various models

    International Nuclear Information System (INIS)

    Li, Qi; Wang, Ke; Cheng, Shili; Li, Wuqian; Song, Xiaodong

    2016-01-01

    The vibration of a bridge must be determined in order to predict the bridge noise during a train pass-by. It can be generally solved with different models either in the time domain or the frequency domain. The computation cost and accuracy of these models vary a lot in a wide frequency band. This study aims to compare the results obtained from various models for recommending the most suitable model in further noise prediction. First, train-track-bridge models in the time domain are developed by using the finite element method and mode superposition method. The rails are modeled by Timoshenko beam elements and the bridge is respectively modeled by shell elements and volume elements. Second, power flow models for the coupled system are established in the frequency domain. The rails are modelled by infinite Timoshenko beams and the bridge is respectively represented by three finite element models, an infinite Kirchhoff plate, and an infinite Mindlin plate model. The vibration at given locations of the bridge and the power input to the bridges through the rail fasteners are calculated using these models. The results show that the shear deformation of the bridge deck has significant influences on the bridge vibration at medium-to-high frequencies. The Mindlin plate model can be used to represent the U-shaped girder to obtain the power input to the bridge with high accuracy and efficiency. (paper)

  18. Characterization of damaged composite laminates by an optical measurement of the displacement field

    International Nuclear Information System (INIS)

    Loukil, M S; Ayadi, Z; Varna, J

    2012-01-01

    The degradation of the elastic properties of composite laminates with intralaminar cracks is caused by reduced stress in the damaged layer which is mainly due to two parameters: the crack opening displacement (COD) and the crack sliding displacement (CSD). In this paper these parameters are measured experimentally providing laminate stiffness reduction models with valuable information for validation of used assumptions and for defining limits of their application. In particular, the displacement field on the edges of a [0/ +70 4 / −70 4 ] s glass fiber/epoxy laminate specimens with multiple intralaminar cracks is studied and the COD and CSD dependence on the applied mechanical load is measured. The specimen full-field displacement measurement is carried out using ESPI (Electronic Speckle Pattern Interferometry). By studying the displacement discontinuities, the crack face displacements were measured. A comparison between the COD and the CSD (for the same crack) is performed.

  19. Curing of Thick Thermoset Composite Laminates: Multiphysics Modeling and Experiments

    Science.gov (United States)

    Anandan, S.; Dhaliwal, G. S.; Huo, Z.; Chandrashekhara, K.; Apetre, N.; Iyyer, N.

    2017-11-01

    Fiber reinforced polymer composites are used in high-performance aerospace applications as they are resistant to fatigue, corrosion free and possess high specific strength. The mechanical properties of these composite components depend on the degree of cure and residual stresses developed during the curing process. While these parameters are difficult to determine experimentally in large and complex parts, they can be simulated using numerical models in a cost-effective manner. These simulations can be used to develop cure cycles and change processing parameters to obtain high-quality parts. In the current work, a numerical model was built in Comsol MultiPhysics to simulate the cure behavior of a carbon/epoxy prepreg system (IM7/Cycom 5320-1). A thermal spike was observed in thick laminates when the recommended cure cycle was used. The cure cycle was modified to reduce the thermal spike and maintain the degree of cure at the laminate center. A parametric study was performed to evaluate the effect of air flow in the oven, post cure cycles and cure temperatures on the thermal spike and the resultant degree of cure in the laminate.

  20. The Influence of the Track Axis Curvature at Railway Filler-Beam Deck Bridges

    Directory of Open Access Journals (Sweden)

    Răzvan Marian Stănescu

    2016-06-01

    Full Text Available The article presents a comparative study between the simplified method calculation proposed by the prescriptions of design codes and the analysis with the FEM program LUSAS [1], regarding the influence of the curvature of the track axis at railway bridges with steel beams embedded in concrete.

  1. Damage Localization of Cable-Supported Bridges Using Modal Frequency Data and Probabilistic Neural Network

    Directory of Open Access Journals (Sweden)

    X. T. Zhou

    2014-01-01

    Full Text Available This paper presents an investigation on using the probabilistic neural network (PNN for damage localization in the suspension Tsing Ma Bridge (TMB and the cable-stayed Ting Kau Bridge (TKB from simulated noisy modal data. Because the PNN approach describes measurement data in a Bayesian probabilistic framework, it is promising for structural damage detection in noisy conditions. For locating damage on the TMB deck, the main span of the TMB is divided into a number of segments, and damage to the deck members in a segment is classified as one pattern class. The characteristic ensembles (training samples for each pattern class are obtained by computing the modal frequency change ratios from a 3D finite element model (FEM when incurring damage at different members of the same segment and then corrupting the analytical results with random noise. The testing samples for damage localization are obtained in a similar way except that damage is generated at locations different from the training samples. For damage region/type identification of the TKB, a series of pattern classes are defined to depict different scenarios with damage occurring at different portions/components. Research efforts have been focused on evaluating the influence of measurement noise level on the identification accuracy.

  2. Modelling and experimental contrast of the mechanical behaviour of structural laminated glass

    Directory of Open Access Journals (Sweden)

    Sanz-Ablanedo, E.

    2010-12-01

    Full Text Available This paper presents a numerical simulation of the mechanical behaviour of laminated glass plates (glass- PVB-glass and its experimental verification. The viscoelastic characterization of the intermediate layer of PVB has been done by means of stress relaxation tests at various temperatures. The consideration of PVB as a viscoelastic material permits to analyze the real response of the structural element of laminated glass under time variations of temperature, of application of loading, of stress state, etc. Displacements obtained with the numerical analysis have been verified experimentally with laminated glass plates under lateral load using close range photogrammetry and dial gauges indicators. The analysis of results confirms the time dependent behaviour of the glass-PVB-glass laminate and suggests the validity of the proposed model.

    Este trabajo presenta la simulación numérica del comportamiento mecánico de placas de vidrio laminado (vidrio-PVB-vidrio y su comprobación experimental. La caracterización viscoelástica de la lámina intermedia de PVB se ha realizado mediante ensayos de relajación de tensiones a diversas temperaturas. La consideración del PVB como material viscoelástico permite analizar la respuesta real del elemento estructural de vidrio laminado ante variaciones en el tiempo de la temperatura, de la velocidad de aplicación de las cargas, del estado tensional, etc. Los desplazamientos obtenidos numéricamente han sido contrastados experimentalmente en placas de vidrio laminado sometidas a carga lateral mediante fotogrametría de objeto cercano y relojes comparadores. Del análisis de los resultados se confirma el comportamiento variable en el tiempo del conjunto vidrio-PVB-vidrio y se deduce la validez de la modelización propuesta.

  3. Dermal fibroblasts in Hutchinson-Gilford progeria syndrome with the lamin A G608G mutation have dysmorphic nuclei and are hypersensitive to heat stress

    Directory of Open Access Journals (Sweden)

    Worman Howard J

    2005-06-01

    Full Text Available Abstract Background Hutchinson-Gilford progeria syndrome (HGPS, OMIM 176670 is a rare sporadic disorder with an incidence of approximately 1 per 8 million live births. The phenotypic appearance consists of short stature, sculptured nose, alopecia, prominent scalp veins, small face, loss of subcutaneous fat, faint mid-facial cyanosis, and dystrophic nails. HGPS is caused by mutations in LMNA, the gene that encodes nuclear lamins A and C. The most common mutation in subjects with HGPS is a de novo single-base pair substitution, G608G (GGC>GGT, within exon 11 of LMNA. This creates an abnormal splice donor site, leading to expression of a truncated protein. Results We studied a new case of a 5 year-old girl with HGPS and found a heterozygous point mutation, G608G, in LMNA. Complementary DNA sequencing of RNA showed that this mutation resulted in the deletion of 50 amino acids in the carboxyl-terminal tail domain of prelamin A. We characterized a primary dermal fibroblast cell line derived from the subject's skin. These cells expressed the mutant protein and exhibited a normal growth rate at early passage in primary culture but showed alterations in nuclear morphology. Expression levels and overall distributions of nuclear lamins and emerin, an integral protein of the inner nuclear membrane, were not dramatically altered. Ultrastructural analysis of the nuclear envelope using electron microscopy showed that chromatin is in close association to the nuclear lamina, even in areas with abnormal nuclear envelope morphology. The fibroblasts were hypersensitive to heat shock, and demonstrated a delayed response to heat stress. Conclusion Dermal fibroblasts from a subject with HGPS expressing a mutant truncated lamin A have dysmorphic nuclei, hypersensitivity to heat shock, and delayed response to heat stress. This suggests that the mutant protein, even when expressed at low levels, causes defective cell stability, which may be responsible for phenotypic

  4. 77 FR 53251 - Annual Materials Report on New Bridge Construction and Bridge Rehabilitation

    Science.gov (United States)

    2012-08-31

    ... INFORMATION CONTACT: Ms. Ann Shemaka, Office of Bridge Technology, (202) 366-1575, or via email at [email protected] or Mr. Thomas Everett, Office of Bridge Technology, (202) 366-4675, or via email at thomas... the NBI: steel, concrete, pre-stressed concrete, and other. The category ``other'' includes wood...

  5. Elastic-plastic analysis of AS4/PEEK composite laminate using a one-parameter plasticity model

    Science.gov (United States)

    Sun, C. T.; Yoon, K. J.

    1992-01-01

    A one-parameter plasticity model was shown to adequately describe the plastic deformation of AS4/PEEK (APC-2) unidirectional thermoplastic composite. This model was verified further for unidirectional and laminated composite panels with and without a hole. The elastic-plastic stress-strain relations of coupon specimens were measured and compared with those predicted by the finite element analysis using the one-parameter plasticity model. The results show that the one-parameter plasticity model is suitable for the analysis of elastic-plastic deformation of AS4/PEEK composite laminates.

  6. Nonlinear analysis of AS4/PEEK thermoplastic composite laminate using a one parameter plasticity model

    Science.gov (United States)

    Sun, C. T.; Yoon, K. J.

    1990-01-01

    A one-parameter plasticity model was shown to adequately describe the orthotropic plastic deformation of AS4/PEEK (APC-2) unidirectional thermoplastic composite. This model was verified further for unidirectional and laminated composite panels with and without a hole. The nonlinear stress-strain relations were measured and compared with those predicted by the finite element analysis using the one-parameter elastic-plastic constitutive model. The results show that the one-parameter orthotropic plasticity model is suitable for the analysis of elastic-plastic deformation of AS4/PEEK composite laminates.

  7. Intelligent control for braking-induced longitudinal vibration responses of floating-type railway bridges

    Science.gov (United States)

    Qu, Wei-Lian; Qin, Shun-Quan; Tu, Jian-Weia; Liu, Jia; Zhou, Qiang; Cheng, Haibin; Pi, Yong-Lin

    2009-12-01

    This paper presents an intelligent control method and its engineering application in the control of braking-induced longitudinal vibration of floating-type railway bridges. Equations of motion for the controlled floating-type railway bridges have been established based on the analysis of the longitudinal vibration responses of floating-type railway bridges to train braking and axle-loads of moving trains. For engineering applications of the developed theory, a full-scale 500 kN smart magnetorheologic (MR) damper has been designed, fabricated and used to carry out experiments on the intelligent control of braking-induced longitudinal vibration. The procedure for using the developed intelligent method in conjunction with the full-scale 500 kN MR dampers has been proposed and used to control the longitudinal vibration responses of the deck of floating-type railway bridges induced by train braking and axle-loads of moving trains. This procedure has been applied to the longitudinal vibration control of the Tian Xingzhou highway and railway cable-stayed bridge over the Yangtze River in China. The simulated results have shown that the intelligent control system using the smart MR dampers can effectively control the longitudinal response of the floating-type railway bridge under excitations of braking and axle-loads of moving trains.

  8. Intelligent control for braking-induced longitudinal vibration responses of floating-type railway bridges

    International Nuclear Information System (INIS)

    Qu, Wei-Lian; Tu, Jian-Weia; Liu, Jia; Zhou, Qiang; Qin, Shun-Quan; Cheng, Haibin; Pi, Yong-Lin

    2009-01-01

    This paper presents an intelligent control method and its engineering application in the control of braking-induced longitudinal vibration of floating-type railway bridges. Equations of motion for the controlled floating-type railway bridges have been established based on the analysis of the longitudinal vibration responses of floating-type railway bridges to train braking and axle-loads of moving trains. For engineering applications of the developed theory, a full-scale 500 kN smart magnetorheologic (MR) damper has been designed, fabricated and used to carry out experiments on the intelligent control of braking-induced longitudinal vibration. The procedure for using the developed intelligent method in conjunction with the full-scale 500 kN MR dampers has been proposed and used to control the longitudinal vibration responses of the deck of floating-type railway bridges induced by train braking and axle-loads of moving trains. This procedure has been applied to the longitudinal vibration control of the Tian Xingzhou highway and railway cable-stayed bridge over the Yangtze River in China. The simulated results have shown that the intelligent control system using the smart MR dampers can effectively control the longitudinal response of the floating-type railway bridge under excitations of braking and axle-loads of moving trains

  9. Lamins, laminopathies and disease mechanisms

    Indian Academy of Sciences (India)

    2011-07-08

    Jul 8, 2011 ... Lamins, laminopathies and disease mechanisms: Possible role for proteasomal degradation of ... Mutations in the human lamin genes lead to highly degenerative genetic diseases that affect a number of different ... June 2018.

  10. Cyclic and dynamic response of a bridge pier model located at the Volvi European test site in Greece

    International Nuclear Information System (INIS)

    Manos, G.C.; Kourtides, V.; Soulis, V.J.

    2005-01-01

    the presence or not of diagonal cables between the foundation and the deck as well the presence or not of extra mass at the deck apart from the concrete slab. The deck acceleration response was recorded and was studied in the frequency domain in order to extract the most significant eigen-modes and eigen-frequencies for the various configurations of the pier bridge model, which are presented here in a summary form. Moreover, an extensive numerical simulation of the response was also performed, which includes the flexibility of the foundation. Good agreement can be seen when the measured values are compared with the corresponding numerical predictions. (authors)

  11. Buckling analysis of laminated sandwich beam with soft core

    Directory of Open Access Journals (Sweden)

    Anupam Chakrabarti

    Full Text Available Stability analysis of laminated soft core sandwich beam has been studied by a C0 FE model developed by the authors based on higher order zigzag theory (HOZT. The in-plane displacement variation is considered to be cubic for the face sheets and the core, while transverse displacement is quadratic within the core and constant in the faces beyond the core. The proposed model satisfies the condition of stress continuity at the layer interfaces and the zero stress condition at the top and bottom of the beam for transverse shear. Numerical examples are presented to illustrate the accuracy of the present model.

  12. Energy Saving Glass Lamination via Selective Radio Frequency Heating

    Energy Technology Data Exchange (ETDEWEB)

    Allan, Shawn M; Baranova, Inessa; Poley, Joseph; Reis, Henrique

    2012-02-27

    This project focused on advancing radio-frequency (RF) lamination technology closer to commercial implementation, in order to reduce the energy intensity of glass lamination by up to 90%. Lamination comprises a wide range of products including autoglass, architectural safety and innovative design glass, transparent armor (e.g. bullet proof glass), smart glass, mirrors, and encapsulation of photovoltaics. Lamination is also the fastest growing segment of glass manufacturing, with photovoltaics, architectural needs, and an anticipated transition to laminated side windows in vehicles. The state-of-the-art for glass lamination is to use autoclaves, which apply heat and uniform gas pressure to bond the laminates over the course of 1 to 18 hours. Laminates consist of layers of glass or other materials bonded with vinyl or urethane interlayers. In autoclaving, significant heat energy is lost heating the chamber, pressurized air, glass racks, and the glass. In RF lamination, the heat is generated directly in the vinyl interlayer, causing it to heat and melt quickly, in just 1 to 10 minutes, without significantly heating the glass or the equipment. The main purpose of this project was to provide evidence that low energy, rapid RF lamination quality met the same standards as conventionally autoclaved windows. The development of concepts for laminating curved glass with RF lamination was a major goal. Other primary goals included developing a stronger understanding of the lamination product markets described above, and to refine the potential benefits of commercial implementation. The scope of the project was to complete implementation concept studies in preparation for continuation into advanced development, pilot studies, and commercial implementation. The project consisted of 6 main tasks. The first dealt with lamination with poly-vinyl butyral (PVB) interlayers, which prior work had shown difficulties in achieving good quality laminates, working with Pilkington North

  13. Energy Saving Glass Lamination via Selective Radio Frequency Heating

    Energy Technology Data Exchange (ETDEWEB)

    Allan, Shawn M.

    2012-02-27

    This project focused on advancing radio-frequency (RF) lamination technology closer to commercial implementation, in order to reduce the energy intensity of glass lamination by up to 90%. Lamination comprises a wide range of products including autoglass, architectural safety and innovative design glass, transparent armor (e.g. bullet proof glass), smart glass, mirrors, and encapsulation of photovoltaics. Lamination is also the fastest growing segment of glass manufacturing, with photovoltaics, architectural needs, and an anticipated transition to laminated side windows in vehicles. The state-of-the-art for glass lamination is to use autoclaves, which apply heat and uniform gas pressure to bond the laminates over the course of 1 to 18 hours. Laminates consist of layers of glass or other materials bonded with vinyl or urethane interlayers. In autoclaving, significant heat energy is lost heating the chamber, pressurized air, glass racks, and the glass. In RF lamination, the heat is generated directly in the vinyl interlayer, causing it to heat and melt quickly, in just 1 to 10 minutes, without significantly heating the glass or the equipment. The main purpose of this project was to provide evidence that low energy, rapid RF lamination quality met the same standards as conventionally autoclaved windows. The development of concepts for laminating curved glass with RF lamination was a major goal. Other primary goals included developing a stronger understanding of the lamination product markets described above, and to refine the potential benefits of commercial implementation. The scope of the project was to complete implementation concept studies in preparation for continuation into advanced development, pilot studies, and commercial implementation. The project consisted of 6 main tasks. The first dealt with lamination with poly-vinyl butyral (PVB) interlayers, which prior work had shown difficulties in achieving good quality laminates, working with Pilkington North

  14. Third-order polynomial model for analyzing stickup state laminated structure in flexible electronics

    Science.gov (United States)

    Meng, Xianhong; Wang, Zihao; Liu, Boya; Wang, Shuodao

    2018-02-01

    Laminated hard-soft integrated structures play a significant role in the fabrication and development of flexible electronics devices. Flexible electronics have advantageous characteristics such as soft and light-weight, can be folded, twisted, flipped inside-out, or be pasted onto other surfaces of arbitrary shapes. In this paper, an analytical model is presented to study the mechanics of laminated hard-soft structures in flexible electronics under a stickup state. Third-order polynomials are used to describe the displacement field, and the principle of virtual work is adopted to derive the governing equations and boundary conditions. The normal strain and the shear stress along the thickness direction in the bi-material region are obtained analytically, which agree well with the results from finite element analysis. The analytical model can be used to analyze stickup state laminated structures, and can serve as a valuable reference for the failure prediction and optimal design of flexible electronics in the future.

  15. Experimental verification of a progressive damage model for composite laminates based on continuum damage mechanics. M.S. Thesis Final Report

    Science.gov (United States)

    Coats, Timothy William

    1994-01-01

    Progressive failure is a crucial concern when using laminated composites in structural design. Therefore the ability to model damage and predict the life of laminated composites is vital. The purpose of this research was to experimentally verify the application of the continuum damage model, a progressive failure theory utilizing continuum damage mechanics, to a toughened material system. Damage due to tension-tension fatigue was documented for the IM7/5260 composite laminates. Crack density and delamination surface area were used to calculate matrix cracking and delamination internal state variables, respectively, to predict stiffness loss. A damage dependent finite element code qualitatively predicted trends in transverse matrix cracking, axial splits and local stress-strain distributions for notched quasi-isotropic laminates. The predictions were similar to the experimental data and it was concluded that the continuum damage model provided a good prediction of stiffness loss while qualitatively predicting damage growth in notched laminates.

  16. Impact damages modeling in laminated composite structures

    Directory of Open Access Journals (Sweden)

    Kreculj Dragan D.

    2014-01-01

    Full Text Available Laminated composites have an important application in modern engineering structures. They are characterized by extraordinary properties, such as: high strength and stiffness and lightweight. Nevertheless, a serious obstacle to more widespread use of those materials is their sensitivity to the impact loads. Impacts cause initiation and development of certain types of damages. Failures that occur in laminated composite structures can be intralaminar and interlaminar. To date it was developed a lot of simulation models for impact damages analysis in laminates. Those models can replace real and expensive testing in laminated structures with a certain accuracy. By using specialized software the damage parameters and distributions can be determined (at certain conditions on laminate structures. With performing numerical simulation of impact on composite laminates there are corresponding results valid for the analysis of these structures.

  17. Development of MIDAS/SMR Input Deck for SMART

    International Nuclear Information System (INIS)

    Cho, S. W.; Oh, H. K.; Lee, J. M.; Lee, J. H.; Yoo, K. J.; Kwun, S. K.; Hur, H.

    2010-01-01

    The objective of this study is to develop MIDAS/SMR code basic input deck for the severe accidents by simulating the steady state for the SMART plant. SMART plant is an integrated reactor developed by KAERI. For the assessment of reactor safety and severe accident management strategy, it is necessary to simulate severe accidents using the MIDAS/SMR code which is being developed by KAERI. The input deck of the MIDAS/SMR code for the SMART plant is prepared to simulate severe accident sequences for the users who are not familiar with the code. A steady state is obtained and the results are compared with design values. The input deck will be improved through the simulation of the DBAs and severe accidents. The base input deck of the MIDAS/SMR code can be used to simulate severe accident scenarios after improvement. Source terms and hydrogen generation can be analyzed through the simulation of the severe accident. The information gained from analyses of severe accidents is expected to be helpful to develop the severe accident management strategy

  18. Self-Healing Laminate System

    Science.gov (United States)

    Beiermann, Brett A. (Inventor); Keller, Michael W. (Inventor); White, Scott R. (Inventor); Sottos, Nancy R. (Inventor)

    2016-01-01

    A laminate material may include a first flexible layer, and a self-healing composite layer in contact with the first flexible layer. The composite layer includes an elastomer matrix, a plurality of first capsules including a polymerizer, and a corresponding activator for the polymerizer. The laminate material may self-heal when subjected to a puncture or a tear.

  19. Identification of causes and solution strategies for deck cracking in jointless bridges : research report.

    Science.gov (United States)

    2012-07-01

    Bridges have traditionally relied on a system of expansion joints and flexible bearings to accommodate movements due to temperature, creep, and shrinkage loading. Joints and elements in their vicinity experience a high amount of degradation; thus mod...

  20. Numerical Modelling of the Dynamic Response of High-Speed Railway Bridges Considering Vehicle-Structure and Structure-Soil-Structure Interaction

    DEFF Research Database (Denmark)

    Bucinskas, Paulius; Agapii, L.; Sneideris, J.

    2015-01-01

    is idealized as a multi-degree-of-freedom system, modelled with two layers of spring-dashpot suspension systems. Coupling the vehicle system and railway track is realized through interaction forces between the wheels and the rail, where the irregularities of the track are implemented as a random stationary......The aim of this paper is the dynamic analysis of a multi-support bridge structure exposed to high-speed railway traffic. The proposed computational model has a unified approach for simultaneously accounting for the bridge structure response, soil response and forces induced by the vehicle....... The bridge structure is modelled in three dimensions based on the finite element method using two-noded three-dimensional beam elements. The track structure is composed of three layers: rail, sleepers and deck which are connected through spring-dashpot systems. The vehicle travelling along a bridge...

  1. Camber Evolution and Stress Development of Porous Ceramic Bilayers During Co-Firing

    DEFF Research Database (Denmark)

    Ni, De Wei; Esposito, Vincenzo; Schmidt, Cristine Grings

    2013-01-01

    sintering mismatch stress in co-fired CGO-LSM/CGO bilayer laminates was significantly lower than general sintering stresses expected for free sintering conditions. As a result, no co-firing defects were observed in the bilayer laminates, illustrating an acceptable sintering compatibility of the ceramic...

  2. Analysis on and Optimization of a Circular Piezoelectric Composite Laminate for a Micro-Pump Driver

    International Nuclear Information System (INIS)

    Jia, Jianyuan; Wang, Weidong; Huang, Xinbo

    2002-01-01

    Among the various micro-pump actuation devices, piezoelectric composite laminate actuation has become an effective method. Due to lacking of analysis treatments, the design of this type micro-pump is in a great limitation. In this paper, an electromechanical-coupled mechanics model is established for the circle-flake micro-actuator. A kind of analysis and design method is presented that piezoelectric plate's radial strain induced by inverse piezoelectric effect is equivalently substituted with transverse stress on piezoelectric composite laminates. It is pointed out that the equivalent transverse load depends on the edge electric field distribution of parallel plate capacitor. The question has been solved that where the neutral plane in the piezoelectric composite laminates lies. Finally, an optimization design is developed on the radius ratio of piezoelectric-to-silicon plate radius by utilizing of FEA modeling

  3. Evaluation of the MMCLIFE 3.0 code in predicting crack growth in titanium aluminide composites

    International Nuclear Information System (INIS)

    Harmon, D.; Larsen, J.M.

    1999-01-01

    Crack growth and fatigue life predictions made with the MMCLIFE 3.0 code are compared to test data for unidirectional, continuously reinforced SCS-6/Ti-14Al-21Nb (wt pct) composite laminates. The MMCLIFE 3.0 analysis package is a design tool capable of predicting strength and fatigue performance in metal matrix composite (MMC) laminates. The code uses a combination of micromechanic lamina and macromechanic laminate analyses to predict stresses and uses linear elastic fracture mechanics to predict crack growth. The crack growth analysis includes a fiber bridging model to predict the growth of matrix flaws in 0 degree laminates and is capable of predicting the effects of interfacial shear stress and thermal residual stresses. The code has also been modified to include edge-notch flaws in addition to center-notch flaws. The model was correlated with constant amplitude, isothermal data from crack growth tests conducted on 0- and 90 degree SCS-6/Ti-14-21 laminates. Spectrum fatigue tests were conducted, which included dwell times and frequency effects. Strengths and areas for improvement for the analysis are discussed

  4. The impact of stress on financial decision-making varies as a function of depression and anxiety symptoms

    Directory of Open Access Journals (Sweden)

    Oliver J. Robinson

    2015-02-01

    Full Text Available Stress can precipitate the onset of mood and anxiety disorders. This may occur, at least in part, via a modulatory effect of stress on decision-making. Some individuals are, however, more resilient to the effects of stress than others. The mechanisms underlying such vulnerability differences are nevertheless unknown. In this study we attempted to begin quantifying individual differences in vulnerability by exploring the effect of experimentally induced stress on decision-making. The threat of unpredictable shock was used to induce stress in healthy volunteers (N = 47 using a within-subjects, within-session design, and its impact on a financial decision-making task (the Iowa Gambling Task was assessed alongside anxious and depressive symptomatology. As expected, participants learned to select advantageous decks and avoid disadvantageous decks. Importantly, we found that stress provoked a pattern of harm-avoidant behaviour (decreased selection of disadvantageous decks in individuals with low levels of trait anxiety. By contrast, individuals with high trait anxiety demonstrated the opposite pattern: stress-induced risk-seeking (increased selection of disadvantageous decks. These contrasting influences of stress depending on mood and anxiety symptoms might provide insight into vulnerability to common mental illness. In particular, we speculate that those who adopt a more harm-avoidant strategy may be better able to regulate their exposure to further environmental stress, reducing their susceptibility to mood and anxiety disorders.

  5. The impact of stress on financial decision-making varies as a function of depression and anxiety symptoms.

    Science.gov (United States)

    Robinson, Oliver J; Bond, Rebecca L; Roiser, Jonathan P

    2015-01-01

    Stress can precipitate the onset of mood and anxiety disorders. This may occur, at least in part, via a modulatory effect of stress on decision-making. Some individuals are, however, more resilient to the effects of stress than others. The mechanisms underlying such vulnerability differences are nevertheless unknown. In this study we attempted to begin quantifying individual differences in vulnerability by exploring the effect of experimentally induced stress on decision-making. The threat of unpredictable shock was used to induce stress in healthy volunteers (N = 47) using a within-subjects, within-session design, and its impact on a financial decision-making task (the Iowa Gambling Task) was assessed alongside anxious and depressive symptomatology. As expected, participants learned to select advantageous decks and avoid disadvantageous decks. Importantly, we found that stress provoked a pattern of harm-avoidant behaviour (decreased selection of disadvantageous decks) in individuals with low levels of trait anxiety. By contrast, individuals with high trait anxiety demonstrated the opposite pattern: stress-induced risk-seeking (increased selection of disadvantageous decks). These contrasting influences of stress depending on mood and anxiety symptoms might provide insight into vulnerability to common mental illness. In particular, we speculate that those who adopt a more harm-avoidant strategy may be better able to regulate their exposure to further environmental stress, reducing their susceptibility to mood and anxiety disorders.

  6. Effects of concrete moisture on polymer overlay bond over new concrete : [technical summary].

    Science.gov (United States)

    2015-06-01

    Epoxy polymer overlays have been used for decades on existing bridge decks to protect : the deck and extend its service life. The polymer overlays ability to seal a bridge deck : is now being specified for new construction. Questions exist about t...

  7. Properties of Chitosan-Laminated Collagen Film

    Directory of Open Access Journals (Sweden)

    Vera Lazić

    2012-01-01

    Full Text Available The objective of this study is to determine physical, mechanical and barrier properties of chitosan-laminated collagen film. Commercial collagen film, which is used for making collagen casings for dry fermented sausage production, was laminated with chitosan film layer in order to improve the collagen film barrier properties. Different volumes of oregano essential oil per 100 mL of filmogenic solution were added to chitosan film layer: 0, 0.2, 0.4, 0.6 and 0.8 mL to optimize water vapour barrier properties. Chitosan layer with 0.6 or 0.8 % of oregano essential oil lowered the water vapour transmission rate to (1.85±0.10·10–6 and (1.78±0.03·10–6 g/(m2·s·Pa respectively, compared to collagen film ((2.51±0.05·10–6 g/(m2·s·Pa. However, chitosan-laminated collagen film did not show improved mechanical properties compared to the collagen one. Tensile strength decreased from (54.0±3.8 MPa of the uncoated collagen film to (36.3±4.0 MPa when the film was laminated with 0.8 % oregano essential oil chitosan layer. Elongation at break values of laminated films did not differ from those of collagen film ((18.4±2.7 %. Oxygen barrier properties were considerably improved by lamination. Oxygen permeability of collagen film was (1806.8±628.0·10–14 cm3/(m·s·Pa and values of laminated films were below 35·10–14 cm3/(m·s·Pa. Regarding film appearance and colour, lamination with chitosan reduced lightness (L and yellowness (+b of collagen film, while film redness (+a increased. These changes were not visible to the naked eye.

  8. "The Battery" designed with Super-Light (concrete) Decks

    DEFF Research Database (Denmark)

    Castberg, Niels Andreas; Hertz, Kristian Dahl

    This paper describes how Super-Light structures can be used as a structural principle for the buildings in the project ‘The Battery’ designed by Bjarke Ingels Group. The overall structural concept is described and the advantages of using super-light slabs for the project are explored. Especially...... the cantilevered internal corridors are investigated. Super-Light Structures is a newly patented structural concrete concept. Slabs based on the concept are the first structural element developed under the patent. The slabs called SL-decks have multiple advantages compared to traditional hollow core slabs....... The paper aims to describe the concept of how the deck can be used in these innovative buildings and how the special advantages of the SL-decks are applied....

  9. Numerical Investigation of Corrugated Wire Mesh Laminate

    Directory of Open Access Journals (Sweden)

    Jeongho Choi

    2013-01-01

    Full Text Available The aim of this work is to develop a numerical model of Corrugated Wire Mesh Laminate (CWML capturing all its complexities such as nonlinear material properties, nonlinear geometry and large deformation behaviour, and frictional behaviour. Development of such a model will facilitate numerical simulation of the mechanical behaviour of the wire mesh structure under various types of loading as well as the variation of the CWML configuration parameters to tailor its mechanical properties to suit the intended application. Starting with a single strand truss model consisting of four waves with a bilinear stress-strain model to represent the plastic behaviour of stainless steel, the finite element model is gradually built up to study single-layer structures with 18 strands of corrugated wire meshes consistency and double- and quadruple-layered laminates with alternating crossply orientations. The compressive behaviour of the CWML model is simulated using contact elements to model friction and is compared to the load-deflection behaviour determined experimentally in uniaxial compression tests. The numerical model of the CWML is then employed to conduct the aim of establishing the upper and lower bounds of stiffness and load capacity achievable by such structures.

  10. A multiscale and multiphysics numerical framework for modelling of hygrothermal ageing in laminated composites

    NARCIS (Netherlands)

    Barcelos Carneiro M Rocha, Iuri; van der Meer, F.P.; Nijssen, RPL; Sluijs, Bert

    2017-01-01

    In this work, a numerical framework for modelling of hygrothermal ageing in laminated composites is proposed. The model consists of a macroscopic diffusion analysis based on Fick's second law coupled with a multiscale FE2 stress analysis in order to take microscopic degradation

  11. Design Optimization of Hybrid FRP/RC Bridge

    Science.gov (United States)

    Papapetrou, Vasileios S.; Tamijani, Ali Y.; Brown, Jeff; Kim, Daewon

    2018-04-01

    The hybrid bridge consists of a Reinforced Concrete (RC) slab supported by U-shaped Fiber Reinforced Polymer (FRP) girders. Previous studies on similar hybrid bridges constructed in the United States and Europe seem to substantiate these hybrid designs for lightweight, high strength, and durable highway bridge construction. In the current study, computational and optimization analyses were carried out to investigate six composite material systems consisting of E-glass and carbon fibers. Optimization constraints are determined by stress, deflection and manufacturing requirements. Finite Element Analysis (FEA) and optimization software were utilized, and a framework was developed to run the complete analyses in an automated fashion. Prior to that, FEA validation of previous studies on similar U-shaped FRP girders that were constructed in Poland and Texas is presented. A finer optimization analysis is performed for the case of the Texas hybrid bridge. The optimization outcome of the hybrid FRP/RC bridge shows the appropriate composite material selection and cross-section geometry that satisfies all the applicable Limit States (LS) and, at the same time, results in the lightest design. Critical limit states show that shear stress criteria determine the optimum design for bridge spans less than 15.24 m and deflection criteria controls for longer spans. Increased side wall thickness can reduce maximum observed shear stresses, but leads to a high weight penalty. A taller cross-section and a thicker girder base can efficiently lower the observed deflections and normal stresses. Finally, substantial weight savings can be achieved by the optimization framework if base and side-wall thickness are treated as independent variables.

  12. 46 CFR 45.143 - Hull openings above freeboard deck.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Hull openings above freeboard deck. 45.143 Section 45.143 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES GREAT LAKES LOAD LINES Conditions of Assignment § 45.143 Hull openings above freeboard deck. Closures for openings above...

  13. Static Analysis of Laminated Composite Plate using New Higher Order Shear Deformation Plate Theory

    Directory of Open Access Journals (Sweden)

    Ibtehal Abbas Sadiq

    2017-02-01

    Full Text Available In the present work a theoretical analysis depending on the new higher order . element in shear deformation theory for simply supported cross-ply laminated plate is developed. The new displacement field of the middle surface expanded as a combination of exponential and trigonometric function of thickness coordinate with the transverse displacement taken to be constant through the thickness. The governing equations are derived using Hamilton’s principle and solved using Navier solution method to obtain the deflection and stresses under uniform sinusoidal load. The effect of many design parameters such as number of laminates, aspect ratio and thickness ratio on static behavior of the laminated composite plate has been studied. The modal of the present work has been verified by comparing the results of shape functions with that were obtained by other workers. Result shows the good agreement with 3D elasticity solution and that published by other researchers.

  14. Covered Bridge Security Manual

    Science.gov (United States)

    Brett Phares; Terry Wipf; Ryan Sievers; Travis Hosteng

    2013-01-01

    The design, construction, and use of covered timber bridges is all but a lost art in these days of pre-stressed concrete, high-performance steel, and the significant growth both in the volume and size of vehicles. Furthermore, many of the existing covered timber bridges are preserved only because of their status on the National Registry of Historic Places or the...

  15. Aluminium bridges, aluminium bridge decks

    NARCIS (Netherlands)

    Soetens, F.; Straalen, IJ.J. van

    2003-01-01

    Applications of aluminium have grown considerably in building and civil engineering the last decade. In building and civil engineering the increase of aluminium applications is due to various aspects like light weight, durability and maintenance, use of extrusions, and esthetics. The paper starts

  16. Structural properties of laminated Douglas fir/epoxy composite material

    Energy Technology Data Exchange (ETDEWEB)

    Spera, D.A. (National Aeronautics and Space Administration, Cleveland, OH (USA). Lewis Research Center); Esgar, J.B. (Sverdrup Technology, Inc., Cleveland, OH (USA)); Gougeon, M.; Zuteck, M.D. (Gougeon Bros., Bay City, MI (USA))

    1990-05-01

    This publication contains a compilation of static and fatigue and strength data for laminated-wood material made from Douglas fir and epoxy. Results of tests conducted by several organizations are correlated to provide insight into the effects of variables such as moisture, size, lamina-to-lamina joint design, wood veneer grade, and the ratio of cyclic stress to steady stress during fatigue testing. These test data were originally obtained during development of wood rotor blades for large-scale wind turbines of the horizontal-axis (propeller) configuration. Most of the strength property data in this compilation are not found in the published literature. Test sections ranged from round cylinders 2.25 in. in diameter to rectangular slabs 6 in. by 24 in. in cross section and approximately 30 ft long. All specimens were made from Douglas fir veneers 0.10 in. thick, bonded together with the WEST epoxy system developed for fabrication and repair of wood boats. Loading was usually parallel to the grain. Size effects (reduction in strength with increase in test volume) are observed in some of the test data, and a simple mathematical model is presented that includes the probability of failure. General characteristics of the wood/epoxy laminate are discussed, including features that make it useful for a wide variety of applications. 9 refs.

  17. Analysis of a damaged and repaired pre-stressed concrete bridge girder by vehicle impact and effectiveness of repair procedure

    OpenAIRE

    Domínguez Mayans, Félix

    2014-01-01

    This thesis aims to study the structural consequences of the damages produced by vehicle impact in a pres-stressed concrete bridge girder and the repair procedure in a real case-study damaged after the bridge was opened to service. From the analysis of the situation of the beam and its damage state, a study of the repair actions carried out on this beam has been analyzed in order to determine the efficiency of the repair and if other alternatives are possible or more efficient. A stat...

  18. Determining Time Variation of Cable Tension Forces in Suspended Bridges Using Time-Frequency Analysis

    Directory of Open Access Journals (Sweden)

    Gannon Stromquist-LeVoir

    2018-01-01

    Full Text Available A feasibility study was conducted to develop a novel method to determine the temporal changes of tensile forces in bridge suspender cables using time-frequency analysis of ambient vibration measurements. An analytical model of the suspender cables was developed to evaluate the power spectral density (PSD function of a cable with consideration of cable flexural stiffness. Discrete-time, short-time Fourier transform (STFT was utilized to analyze the recorded acceleration histories in both time and frequency domains. A mathematical convolution of the analytical PSD function and time-frequency data was completed to evaluate changes in cable tension force over time. The method was implemented using acceleration measurements collected from an in-service steel arch bridge with a suspended deck to calculate the temporal variation in cable forces from the vibration measurements. The observations served as proof of concept that the proposed method may be used for cable fatigue life calculations and bridge weigh-in-motion studies.

  19. Flexible concrete link slabs used as expansion joints in bridge decks

    DEFF Research Database (Denmark)

    Lárusson, Lárus Helgi; Fischer, Gregor

    2011-01-01

    of water through the expansion joint and subsequent corrosion of girders and girder bearings. Investigations on joint-less superstructures using conventional steel reinforcement in so-called concrete link slabs indicate improved performance and economic feasibility. However, this concept requires...... relatively large amounts of steel reinforcement for crack control purposes and consequently provides a relatively large flexural stiffness and negative moment capacity at the joint between the spans. These contradicting requirements and effects in existing replacement concepts for damaged mechanical bridge...... joints are currently unresolved. In the proposed system described in this paper, a ductile cement-based composite section reinforced with Glass Fiber Reinforced Polymers (GFRP) replaces the damaged expansion joint. The combination of this ductile concrete together with corrosion resistant GFRP...

  20. Lifetime Reliability Assessment of Concrete Slab Bridges

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    A procedure for lifetime assesment of the reliability of short concrete slab bridges is presented in the paper. Corrosion of the reinforcement is the deterioration mechanism used for estimating the reliability profiles for such bridges. The importance of using sensitivity measures is stressed....... Finally the produce is illustrated on 6 existing UK bridges....

  1. Modeling Bistable Composite Laminates for Piezoelectric Morphing Structures

    OpenAIRE

    Darryl V. Murray; Oliver J. Myers

    2013-01-01

    A sequential modeling effort for bistable composite laminates for piezoelectric morphing structures is presented. Thin unsymmetric carbon fiber composite laminates are examined for use of morphing structures using piezoelectric actuation. When cooling from the elevated cure temperature to room temperature, these unsymmetric composite laminates will deform. These postcure room temperature deformation shapes can be used as morphing structures. Applying a force to these deformed laminates will c...

  2. Seismic Retrofit of a Multispan Prestressed Concrete Girder Bridge with Friction Pendulum Devices

    Directory of Open Access Journals (Sweden)

    Alberto Maria Avossa

    2018-01-01

    Full Text Available The paper deals with the proposal and application of a procedure for the seismic retrofit of an existing multispan prestressed concrete girder bridge defined explicitly for the use of friction pendulum devices as an isolation system placed between piers top and deck. First, the outcomes of the seismic risk assessment of the existing bridge, performed using an incremental noniterative Nonlinear Static Procedure, based on the Capacity Spectrum Method as well as the Inelastic Demand Response Spectra, are described and discussed. Then, a specific multilevel design process, based on a proper application of the hierarchy of strength considerations and the Direct Displacement-Based Design approach, is adopted to dimension the FPD devices. Furthermore, to assess the impact of the FPD nonlinear behaviour on the bridge seismic response, a device model that reproduces the variation of the normal force and friction coefficient, the bidirectional coupling, and the large deformation effects during nonlinear dynamic analyses was used. Finally, the paper examines the effects of the FPD modelling parameters on the behaviour of the retrofitted bridge and assesses its seismic response with the results pointing out the efficiency of the adopted seismic retrofit solution.

  3. Real-time seismic monitoring of the integrated cape girardeau bridge array and recorded earthquake response

    Science.gov (United States)

    Celebi, M.

    2006-01-01

    This paper introduces the state of the art, real-time and broad-band seismic monitoring network implemented for the 1206 m [3956 ft] long, cable-stayed Bill Emerson Memorial Bridge in Cape Girardeau (MO), a new Mississippi River crossing, approximately 80 km from the epicentral region of the 1811-1812 New Madrid earthquakes. The bridge was designed for a strong earthquake (magnitude 7.5 or greater) during the design life of the bridge. The monitoring network comprises a total of 84 channels of accelerometers deployed on the superstructure, pier foundations and at surface and downhole free-field arrays of the bridge. The paper also presents the high quality response data obtained from the network. Such data is aimed to be used by the owner, researchers and engineers to assess the performance of the bridge, to check design parameters, including the comparison of dynamic characteristics with actual response, and to better design future similar bridges. Preliminary analyses of ambient and low amplitude small earthquake data reveal specific response characteristics of the bridge and the free-field. There is evidence of coherent tower, cable, deck interaction that sometimes results in amplified ambient motions. Motions at the lowest tri-axial downhole accelerometers on both MO and IL sides are practically free from any feedback from the bridge. Motions at the mid-level and surface downhole accelerometers are influenced significantly by feedback due to amplified ambient motions of the bridge. Copyright ASCE 2006.

  4. Thermal stress state of laminated shells of revolution made of isotropic and linearly orthotropic materials

    International Nuclear Information System (INIS)

    Savchenko, V.G.

    1995-01-01

    In this investigation, we will use a cylindrical coordinate system to study the stress state of laminated shells of revolution made of inelastically deforming isotropic materials and elastic materials with linear orthotropy. One of the principal directions of anisotropy coincides with the axis of revolution of the body. The shells will be subjected to nonaxisymmetric loading by body bar K (K Z , K r , K var-phi ) and surface bar t n (t nz , t nr , t nvar-phi ) forces and heating. The level of loading is such that the rheological properties of the materials of the layers are not a factor, although their thermomechanical characteristics depend on temperature. In addition, the loading and heating of the body occur in such a way that simple (or close to simple) deformation processes take place in its isotropic elements. These processes are accompanied by inelastic strains and the formation of unloading regions in which plastic strains having the sign opposite the initial strains develop. It is assumed that the layers of the body are secured to one another without interference and that conditions corresponding to ideal contact prevail at their interfaces

  5. Subclinical laminitis in dairy heifers.

    Science.gov (United States)

    Bradley, H K; Shannon, D; Neilson, D R

    1989-08-19

    By causing poorer horn quality, subclinical laminitis is considered to be a major predisposing cause of other hoof problems, particularly sole ulcers in newly calved heifers. In this study the hind hooves of 136 female Friesian/Holstein cattle aged between four months and two years were examined to discover at what age the signs of subclinical laminitis appeared. Sole haemorrhages were found in the hoof horn of calves as young as five months. The consistent finding of these lesions in heifers of all ages indicated that subclinical laminitis of varying degree was a common condition during the early growing period of young dairy heifers.

  6. Simulation of the Vacuum Assisted Resin Transfer Molding (VARTM) process and the development of light-weight composite bridging

    Science.gov (United States)

    Robinson, Marc J.

    A continued desire for increased mobility in the aftermath of natural disasters, or on the battlefield, has lead to the need for improved light-weight bridging solutions. This research investigates the development of a carbon/epoxy composite bridging system to meet the needs for light-weight bridging. The research focuses on two main topics. The first topic is that of processing composite structures and the second is the design and testing of these structures. In recent years the Vacuum Assisted Resin Transfer Molding (VARTM) process has become recognized as a low-cost manufacturing alternative for large Fiber Reinforced Polymer (FRP) composite structures for civil, military, and aerospace applications. The success of the VARTM process (complete wet-out) is very sensitive to the resin injection strategy used and the proper placement of flow distribution materials and inlet and vacuum ports. Predicting the flow front pattern, the time required for infusing a part with resin, and the time required to bleed excess resin at the end of filling, is critical to ensure that the part will become completely impregnated and desired fiber volume fractions achieved prior to the resin gelling (initiation of cure). In order to eliminate costly trial and error experiments to determine the optimal infusion strategy, this research presents a simulation model which considers in-plane flow as well as flow through the thickness of the preform. In addition to resin filling, the current model is able to simulate the bleeding of resin at the end of filling to predict the required bleeding time to reach desired fiber volume fractions for the final part. In addition to processing, the second portion of the dissertation investigates the design and testing of composite bridge deck sections which also serve as short-span bridging for gaps up to 4 m in length. The research focuses on the design of a light-weight core material for bridge decking as well as proof loading of short-span bridge

  7. Advanced ground-penetrating, imaging radar for bridge inspection

    International Nuclear Information System (INIS)

    Warhus, J.P.; Nelson, S.D.; Mast, J.E.; Johansson, E.M.

    1994-01-01

    During FY-93, the authors continued with development and experimental evaluation of components and system concepts aimed at improving ground-penetrating imaging radar (GPIR) for nondestructive evaluation of bridge decks and other high-value concrete structures. They developed and implemented a laboratory test bed, including features to facilitate component testing antenna system configuration evaluation, and collection of experimental data from realistic test objects. In addition, they developed pulse generators and antennas for evaluation and use in antenna configuration studies. This project was part of a cooperative effort with the Computational Electronics and Electromagnetics and Remote Imaging and Signal Engineering Thrust Areas, which contributed signal- and image-processing algorithm and software development and modeling support

  8. Multiscale Static Analysis of Notched and Unnotched Laminates Using the Generalized Method of Cells

    Science.gov (United States)

    Naghipour Ghezeljeh, Paria; Arnold, Steven M.; Pineda, Evan J.; Stier, Bertram; Hansen, Lucas; Bednarcyk, Brett A.; Waas, Anthony M.

    2016-01-01

    The generalized method of cells (GMC) is demonstrated to be a viable micromechanics tool for predicting the deformation and failure response of laminated composites, with and without notches, subjected to tensile and compressive static loading. Given the axial [0], transverse [90], and shear [+45/-45] response of a carbon/epoxy (IM7/977-3) system, the unnotched and notched behavior of three multidirectional layups (Layup 1: [0,45,90,-45](sub 2S), Layup 2: [0,60,0](sub 3S), and Layup 3: [30,60,90,-30, -60](sub 2S)) are predicted under both tensile and compressive static loading. Matrix nonlinearity is modeled in two ways. The first assumes all nonlinearity is due to anisotropic progressive damage of the matrix only, which is modeled, using the multiaxial mixed-mode continuum damage model (MMCDM) within GMC. The second utilizes matrix plasticity coupled with brittle final failure based on the maximum principle strain criteria to account for matrix nonlinearity and failure within the Finite Element Analysis--Micromechanics Analysis Code (FEAMAC) software multiscale framework. Both MMCDM and plasticity models incorporate brittle strain- and stress-based failure criteria for the fiber. Upon satisfaction of these criteria, the fiber properties are immediately reduced to a nominal value. The constitutive response for each constituent (fiber and matrix) is characterized using a combination of vendor data and the axial, transverse, and shear responses of unnotched laminates. Then, the capability of the multiscale methodology is assessed by performing blind predictions of the mentioned notched and unnotched composite laminates response under tensile and compressive loading. Tabulated data along with the detailed results (i.e., stress-strain curves as well as damage evolution states at various ratios of strain to failure) for all laminates are presented.

  9. Effects of vertically aligned carbon nanotubes on shear performance of laminated nanocomposite bonded joints

    Directory of Open Access Journals (Sweden)

    Davood Askari and Mehrdad N Ghasemi-Nejhad

    2012-01-01

    Full Text Available The main objective is to improve the most commonly addressed weakness of the laminated composites (i.e. delamination due to poor interlaminar strength using carbon nanotubes (CNTs as reinforcement between the laminae and in the transverse direction. In this work, a chemical vapor deposition technique has been used to grow dense vertically aligned arrays of CNTs over the surface of chemically treated two-dimensionally woven cloth and fiber tows. The nanoforest-like fabrics can be used to fabricate three-dimensionally reinforced laminated nanocomposites. The presence of CNTs aligned normal to the layers and in-between the layers of laminated composites is expected to considerably enhance the properties of the laminates. To demonstrate the effectiveness of our approach, composite single lap-joint specimens were fabricated for interlaminar shear strength testing. It was observed that the single lap-joints with through-the-thickness CNT reinforcement can carry considerably higher shear stresses and strains. Close examination of the test specimens showed that the failure of samples with CNT nanoforests was completely cohesive, while the samples without CNT reinforcement failed adhesively. This concludes that the adhesion of adjacent carbon fabric layers can be considerably improved owing to the presence of vertically aligned arrays of CNT nanoforests.

  10. Effects of vertically aligned carbon nanotubes on shear performance of laminated nanocomposite bonded joints.

    Science.gov (United States)

    Askari, Davood; Ghasemi-Nejhad, Mehrdad N

    2012-08-01

    The main objective is to improve the most commonly addressed weakness of the laminated composites (i.e. delamination due to poor interlaminar strength) using carbon nanotubes (CNTs) as reinforcement between the laminae and in the transverse direction. In this work, a chemical vapor deposition technique has been used to grow dense vertically aligned arrays of CNTs over the surface of chemically treated two-dimensionally woven cloth and fiber tows. The nanoforest-like fabrics can be used to fabricate three-dimensionally reinforced laminated nanocomposites. The presence of CNTs aligned normal to the layers and in-between the layers of laminated composites is expected to considerably enhance the properties of the laminates. To demonstrate the effectiveness of our approach, composite single lap-joint specimens were fabricated for interlaminar shear strength testing. It was observed that the single lap-joints with through-the-thickness CNT reinforcement can carry considerably higher shear stresses and strains. Close examination of the test specimens showed that the failure of samples with CNT nanoforests was completely cohesive, while the samples without CNT reinforcement failed adhesively. This concludes that the adhesion of adjacent carbon fabric layers can be considerably improved owing to the presence of vertically aligned arrays of CNT nanoforests.

  11. Embedded adhesive connection for laminated glass plates

    DEFF Research Database (Denmark)

    Hansen, Jens Zangenberg; Poulsen, S.H.; Bagger, A.

    2012-01-01

    The structural behavior of a new connection design, the embedded adhesive connection, used for laminated glass plates is investigated. The connection consists of an aluminum plate encapsulated in-between two adjacent triple layered laminated glass plates. Fastening between glass and aluminum...... usage in a design situation. The embedded connection shows promising potential as a future fastening system for load-carrying laminated glass plates....

  12. Finite Element Simulation of Aluminium/GFRP Fibre Metal Laminate under Tensile Loading

    Science.gov (United States)

    Merzuki, M. N. M.; Rejab, M. R. M.; Romli, N. K.; Bachtiar, D.; Siregar, J.; Rani, M. F.; Salleh, Salwani Mohd

    2018-03-01

    The response of a fibre metal laminate (FML) model to the tensile loading is predicted through a computational approach. The FML consisted with layers of aluminum alloy and embedded with one layer of composite material, Glass fibre Reinforced Plastic (GFRP). The glass fibre and aluminium alloy 2024-0 was laminated by using thermoset epoxy. A compression moulding technique was used in the process of a FML fabrication. The aluminium has been roughen by a metal sanding method which to improve the bonding between the fibre and metal layer. The main objective of this paper is to determine the failure behaviour of the FML under the tensile loading. The responses on the FML under the tensile loading were numerically performed. The FML was modelled and analysed by using Abaqus/CAE 6.13 version. Based on the experimental and FE data of the tensile, the ultimate tensile stress is 120 MPa where delamination and fibre breakage happened. A numerical model was developed and agreed well with the experimental results. The laminate has an inelastic respond to increase the tensile loads which due to the plasticity of the aluminium layers.

  13. The development of PVC-laminated steel sheet by an electron beam curing method

    International Nuclear Information System (INIS)

    Masuhara, Ken-ichi; Koshiishi, Kenji; Tomosue, Takao; Mori, Koji; Honma, Nobuyuki

    1988-01-01

    Polyvinyl chloride (PVC) film-laminated steel sheets are used for household electric appliances and building materials. Those are produced usually by pressing a PVC film onto a steel sheet imediately after a themosetting adhesive has been applied to the sheet and curing. However, a major problem of this method is that the appearance of the PVC films such as gloss and embossment changes during pressing due to the heat that is required for causing bonding, therefore, the development of an adhesive which can be cured at lower temperature is necessary. Nisshin Steel Co., Ltd. has developed PVC film-laminated steel sheets for which electron beam (EB) curable adhesives are used to overcome this problem. The advantage of these adhesives is that they can be quickly cured at room temperature. The production procedure of PVC-laminated steel sheets by EB curing is outlined. But this method has encountered two problems: poor adhesion between substrates and adhesive due to the residual stress, and the deterioration of the PVC films due to EB irradiation. EB curable adhesives are mainly composed of acrylic ester oligomers and monomers, and thier adhesion was improved by organic pretreatment. On the other hand, EB-proof PVC films were developed. The general properties of PVC-laminated steel sheets produced by EB curing are reported. (K.I.)

  14. An experimental investigation of glare and restructured fiber metal laminates

    Science.gov (United States)

    Benedict, Adelina Vanessa

    Fiber Metal Laminates (FMLs) are a group of materials fabricated by bonding glass/epoxy layers within metal layers. This class of materials can provide good mechanical properties, as well as weight savings. An FML known as Glass Laminate Aluminum Reinforced Epoxy (GLARE) was studied. An experimental investigation comprising of microscopy and tensile testing was carried out using different grades of GLARE. Microscopy revealed the construction details of GLARE, while tensile testing provided means of measuring and analyzing its stress-strain responses. Next, different metal surface pretreatment methods were explored. These included sandblasting, Phosphoric Acid Anodizing (PAA), and AC-130 Sol-Gel treatment. Woven S-2 glass, an epoxy adhesive, and aluminum alloy sheet metal were used to fabricate restructured FMLs using time and cost effective procedures. Additional microscopy and tensile testing allowed for comparisons with GLARE and aircraft grade aluminum alloys. The restructured FMLs showed similar behaviors to GLARE with potential significant improvements in fabrication efficiency.

  15. Increasing the Capacity of Existing Bridges by Using Unbonded Prestressing Technology: A Case Study

    Directory of Open Access Journals (Sweden)

    Antonino Recupero

    2014-01-01

    Full Text Available External posttensioning or unbonded prestressing was found to be a powerful tool for retrofitting and for increasing the life extension of existing structures. Since the 1950s, this technique of reinforcement was applied with success to bridge structures in many countries, and was found to provide an efficient and economic solution for a wide range of bridge types and conditions. Unbonded prestressing is defined as a system in which the post-tensioning tendons or bars are located outside the concrete cross-section and the prestressing forces are transmitted to the girder through the end anchorages, deviators, or saddles. In response to the demand for a faster and more efficient transportation system, there was a steady increase in the weight and volume of traffic throughout the world. Besides increases in legal vehicle loads, the overloading of vehicles is a common problem and it must also be considered when designing or assessing bridges. As a result, many bridges are now required to carry loads significantly greater than their original design loads; and their deck results still deteriorated by cracking of concrete, corrosion of rebars, snapping of tendons, and so forth. In the following, a case study about a railway bridge retrofitted by external posttensioning technique will be illustrated.

  16. A superconducting magnet mandrel with minimum symmetry laminations for proton therapy

    Science.gov (United States)

    Caspi, S.; Arbelaez, D.; Brouwer, L.; Dietderich, D. R.; Felice, H.; Hafalia, R.; Prestemon, S.; Robin, D.; Sun, C.; Wan, W.

    2013-08-01

    The size and weight of ion-beam cancer therapy gantries are frequently determined by a large aperture, curved, ninety degree, dipole magnet. The higher fields achievable with superconducting technology promise to greatly reduce the size and weight of this magnet and therefore also the gantry as a whole. This paper reports advances in the design of winding mandrels for curved, canted cosine-theta (CCT) magnets in the context of a preliminary magnet design for a proton gantry. The winding mandrel is integral to the CCT design and significantly affects the construction cost, stress management, winding feasibility, eddy current power losses, and field quality of the magnet. A laminated mandrel design using a minimum symmetry in the winding path is introduced and its feasibility demonstrated by a rapid prototype model. Piecewise construction of the mandrel using this laminated approach allows for increased manufacturing techniques and material choices. Sectioning the mandrel also reduces eddy currents produced during field changes accommodating the scan of beam energies during treatment. This symmetry concept can also greatly reduce the computational resources needed for 3D finite element calculations. It is shown that the small region of symmetry forming the laminations combined with periodic boundary conditions can model the entire magnet geometry disregarding the ends.

  17. Non-destructive inspection protocol for reinforced concrete barriers and bridge railings

    Energy Technology Data Exchange (ETDEWEB)

    Chintakunta, Satish R. [Engineering and Software Consultants, Inc., 14123 Robert Paris Ct., Chantilly, VA 20151 (United States); Boone, Shane D. [Federal Highway Administration, Turner Fairbank Highway Research Center, 6300 Georgetown Pike, McLean, VA 22101 (United States)

    2014-02-18

    Reinforced concrete highway barriers and bridge railings serve to prevent errant vehicles from departing the travel way at grade separations. Despite the important role that they play in maintaining safety and their ubiquitous nature, barrier inspection rarely moves beyond visual inspection. In August 2008, a tractor-trailer fatally departed William Preston Lane, Jr. Memorial Bridge after it dislodged a section of the bridge barrier. Investigations following the accident identified significant corrosion of the anchor bolts attaching the bridge railing to the bridge deck. As a result of the information gathered during its investigation of the accident, the National Transportation Safety Board (NTSB) made recommendations to the Federal Highway Administration concerning Non-Destructive Evaluation (NDE) of concrete bridge railings. The Center for nondestructive evaluation (NDE) at Turner Fairbank Highway Research Center in McLean, VA is currently evaluating feasibility of using four technologies - ground penetrating radar (GPR), ultrasonic pulse-echo, digital radiography and infrared thermal imaging methods to develop bridge inspection methods that augment visual inspections, offer reliable measurement techniques, and are practical, both in terms of time and cost, for field inspection work. Controlled samples containing predefined corrosion levels in reinforcing steel were embedded at barrier connection points for laboratory testing. All four NDE techniques were used in the initial phase I testing. An inspection protocol for detecting and measuring the corrosion of reinforced steel embedded in the anchorage system will be developed as part of phase II research. The identified technologies shall be further developed for field testing utilizing a structure with a barrier in good condition and a structure with a barrier in poor condition.

  18. Non-destructive inspection protocol for reinforced concrete barriers and bridge railings

    Science.gov (United States)

    Chintakunta, Satish R.; Boone, Shane D.

    2014-02-01

    Reinforced concrete highway barriers and bridge railings serve to prevent errant vehicles from departing the travel way at grade separations. Despite the important role that they play in maintaining safety and their ubiquitous nature, barrier inspection rarely moves beyond visual inspection. In August 2008, a tractor-trailer fatally departed William Preston Lane, Jr. Memorial Bridge after it dislodged a section of the bridge barrier. Investigations following the accident identified significant corrosion of the anchor bolts attaching the bridge railing to the bridge deck. As a result of the information gathered during its investigation of the accident, the National Transportation Safety Board (NTSB) made recommendations to the Federal Highway Administration concerning Non-Destructive Evaluation (NDE) of concrete bridge railings. The Center for nondestructive evaluation (NDE) at Turner Fairbank Highway Research Center in McLean, VA is currently evaluating feasibility of using four technologies - ground penetrating radar (GPR), ultrasonic pulse-echo, digital radiography and infrared thermal imaging methods to develop bridge inspection methods that augment visual inspections, offer reliable measurement techniques, and are practical, both in terms of time and cost, for field inspection work. Controlled samples containing predefined corrosion levels in reinforcing steel were embedded at barrier connection points for laboratory testing. All four NDE techniques were used in the initial phase I testing. An inspection protocol for detecting and measuring the corrosion of reinforced steel embedded in the anchorage system will be developed as part of phase II research. The identified technologies shall be further developed for field testing utilizing a structure with a barrier in good condition and a structure with a barrier in poor condition.

  19. Evaluation of Behaviours of Laminated Glass

    Science.gov (United States)

    Sable, L.; Japins, G.; Kalnins, K.

    2015-11-01

    Visual appearance of building facades and other load bearing structures, which now are part of modern architecture, is the reason why it is important to investigate in more detail the reliability of laminated glass for civil structures. Laminated glass in particular has become one of the trendy materials, for example Apple© stores have both load carrying capacity and transparent appearance. Glass has high mechanical strength and relatively medium density, however, the risk of sudden brittle failure like concrete or other ceramics determine relatively high conservatism in design practice of glass structures. This should be changed as consumer requirements evolve calling for a safe and reliable design methodology and corresponding building standards. A design methodology for glass and glass laminates should be urgently developed and included as a chapter in Eurocode. This paper presents initial experimental investigation of behaviour of simple glass sheets and laminated glass samples in 4-point bending test. The aim of the current research is to investigate laminated glass characteristic values and to verify the obtained experimental results with finite element method for glass and EVA material in line with future European Structural Design of Glass Components code.

  20. Thermoelastic wave propagation in laminated composites plates

    Directory of Open Access Journals (Sweden)

    Verma K. L.

    2012-12-01

    Full Text Available The dispersion of thermoelastic waves propagation in an arbitrary direction in laminated composites plates is studied in the framework of generalized thermoelasticity in this article. Three dimensional field equations of thermoelasticity with relaxation times are considered. Characteristic equation is obtained on employing the continuity of displacements, temperature, stresses and thermal gradient at the layers’ interfaces. Some important particular cases such as of free waves on reducing plates to single layer and the surface waves when thickness tends to infinity are also discussed. Uncoupled and coupled thermoelasticity are the particular cases of the obtained results. Numerical results are also obtained and represented graphically.

  1. Static and Dynamic Behavior of High Modulus Hybrid Boron/Glass/Aluminum Fiber Metal Laminates

    Science.gov (United States)

    Yeh, Po-Ching

    2011-12-01

    This dissertation presents the investigation of a newly developed hybrid fiber metal laminates (FMLs) which contains commingled boron fibers, glass fibers, and 2024-T3 aluminum sheets. Two types of hybrid boron/glass/aluminum FMLs are developed. The first, type I hybrid FMLs, contained a layer of boron fiber prepreg in between two layers of S2-glass fiber prepreg, sandwiched by two aluminum alloy 2024-T3 sheets. The second, type II hybrid FMLs, contained three layer of commingled hybrid boron/glass fiber prepreg layers, sandwiched by two aluminum alloy 2024-T3 sheets. The mechanical behavior and deformation characteristics including blunt notch strength, bearing strength and fatigue behavior of these two types of hybrid boron/glass/aluminum FMLs were investigated. Compared to traditional S2-glass fiber reinforced aluminum laminates (GLARE), the newly developed hybrid boron/glass/aluminum fiber metal laminates possess high modulus, high yielding stress, and good blunt notch properties. From the bearing test result, the hybrid boron/glass/aluminum fiber metal laminates showed outstanding bearing strength. The high fiber volume fraction of boron fibers in type II laminates lead to a higher bearing strength compared to both type I laminates and traditional GLARE. Both types of hybrid FMLs have improved fatigue crack initiation lives and excellent fatigue crack propagation resistance compared to traditional GLARE. The incorporation of the boron fibers improved the Young's modulus of the composite layer in FMLs, which in turn, improved the fatigue crack initiation life and crack propagation rates of the aluminum sheets. Moreover, a finite element model was established to predict and verify the properties of hybrid boron/glass/aluminum FMLs. The simulated results showed good agreement with the experimental results.

  2. Two-Dimensional Analysis of Cable Stayed Bridge under Wave Loading

    Science.gov (United States)

    Seeram, Madhuri; Manohar, Y.

    2018-06-01

    In the present study finite element analysis is performed for a modified fan type cable-stayed bridge using ANSYS Mechanical. A cable stayed bridge with two towers and main deck is considered for the present study. Dynamic analysis is performed to evaluate natural frequencies. The obtained natural frequencies and mode shapes of cable stayed bridge are compared to the existing results. Further studies have been conducted for offshore area application by increasing the pylon/tower height depending upon the water depth. Natural frequencies and mode shapes are evaluated for the cable stayed bridge for offshore area application. The results indicate that the natural periods are higher than the existing results due to the effect of increase in mass of the structure and decrease in stiffness of the pylon/tower. The cable stayed bridge is analyzed under various environmental loads such as dead, live, vehicle, seismic and wave loading. Morison equation is considered to evaluate the wave force. The sum of inertia and drag force is taken as the wave force distribution along the fluid interacting height of the pylon. Airy's wave theory is used to assess water particle kinematics, for the wave periods ranging from 5 to 20 s and unit wave height. The maximum wave force among the different regular waves is considered in the wave load case. The support reactions, moments and deflections for offshore area application are highlighted. It is observed that the maximum support reactions and support moments are obtained due to wave and earthquake loading respectively. Hence, it is concluded that the wave and earthquake forces shall be given significance in the design of cable stayed bridge.

  3. Fluid-structure interaction analysis of a deck structure during a HCDA

    International Nuclear Information System (INIS)

    Kulak, R.F.

    1979-01-01

    Presented is an assessment of the structural integrity of the deck structure of a pool-type LMFBR during a Hypothetical Core Disruptive Accident (HCDA). During this accident the sodium above the core is propelled upward until it impacts against the deck structure. This hydrodynamic loading could produce (1) significant structural damage and (2) sodium leak paths. A finite-element model is used to study the deck dynamics during slug impact. By using the symmetry of the system, a sector model which accounts for the salient features of the system is developed. The main radial I-beam, component support I-beam and bottom annular plate are modeled using triangular plate elements. The concrete fill is modeled using hexahedral continuum elements. Using the above finite-element model the dynamics of the deck during a HCDA are investigated

  4. Self-heating forecasting for thick laminate specimens in fatigue

    Science.gov (United States)

    Lahuerta, F.; Westphal, T.; Nijssen, R. P. L.

    2014-12-01

    Thick laminate sections can be found from the tip to the root in most common wind turbine blade designs. Obtaining accurate and reliable design data for thick laminates is subject of investigations, which include experiments on thick laminate coupons. Due to the poor thermal conductivity properties of composites and the material self-heating that occurs during the fatigue loading, high temperature gradients may appear through the laminate thickness. In the case of thick laminates in high load regimes, the core temperature might influence the mechanical properties, leading to premature failures. In the present work a method to forecast the self-heating of thick laminates in fatigue loading is presented. The mechanical loading is related with the laminate self-heating, via the cyclic strain energy and the energy loss ratio. Based on this internal volumetric heat load a thermal model is built and solved to obtain the temperature distribution in the transient state. Based on experimental measurements of the energy loss factor for 10mm thick coupons, the method is described and the resulting predictions are compared with experimental surface temperature measurements on 10 and 30mm UD thick laminate specimens.

  5. Estimation of stepwise crack propagation in ceramic laminates with strong interfaces

    Czech Academy of Sciences Publication Activity Database

    Náhlík, Luboš; Štegnerová, Kateřina; Hutař, Pavel

    2015-01-01

    Roč. 9, č. 34 (2015), s. 116-124 ISSN 1971-8993. [International Conference on Crack Paths /5./. Ferrara, 16.09.2015-18.09.2015] R&D Projects: GA ČR(CZ) GA15-09347S Institutional support: RVO:68081723 Keywords : Ceramic laminates * Crack behaviour * Residual stresses * Strain energy density factor * Crack propagation direction Subject RIV: JL - Materials Fatigue, Friction Mechanics http://www.fracturae.com/index.php/fis/article/view/IGF-ESIS.34.12

  6. Numerical investigation into thermal load responses of steel railway bridge

    Science.gov (United States)

    Saravana Raja Mohan, K.; Sreemathy, J. R.; Saravanan, U.

    2017-07-01

    Bridge design requires consideration of the effects produced by temperature variations and the resultant thermal gradients in the structure. Temperature fluctuation leads to expansion and contraction of bridges and these movements are taken care by providing expansion joints and bearings. Free movements of a member can be restrained by imposing certain boundary condition but at the same time considerable allowances should be made for the stresses resulting from this restrained condition since the additional deformations and stresses produced may affect the ultimate and serviceability limit states of the structure. If the reaction force generated by the restraints is very large, then its omission can lead to unsafe design. The principal objective of this research is to study the effects of temperature variation on stresses and deflection in a steel railway bridge. A numerical model, based on finite element analysis is presented for evaluating the thermal performance of the bridge. The selected bridge is analyzed and the temperature field distribution and the corresponding thermal stresses and strains are calculated using the finite element software ABAQUS. A thorough understanding of the thermal load responses of a structure will result in safer and dependable design practices.

  7. 29 CFR 1915.73 - Guarding of deck openings and edges.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Guarding of deck openings and edges. 1915.73 Section 1915.73 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION..., Ladders and Other Working Surfaces § 1915.73 Guarding of deck openings and edges. (a) The provisions of...

  8. Investigation into the Quality of Thermally Treated Package Lamination

    Directory of Open Access Journals (Sweden)

    Darius Kazlauskas

    2011-02-01

    Full Text Available The article deals with the problem of delaminating the package after pasteurization at relatively high temperatures. The main parameters of the lamination process influencing lamination strength were determined. The role of the amount of lamination glue and tension in the rewinder for two glue types were experimentally examined defining lamination regimes at which the process of delamination is excluded.Article in Lithuanian

  9. Energy Saving Glass Lamination via Selective Radio-Frequency Heating

    Energy Technology Data Exchange (ETDEWEB)

    Shulman, Holly S.; Allan, Shawn M.

    2009-11-11

    This Inventions and Innovations program supported the technical and commercial research and development needed to elevate Ceralink's energy saving process for flat glass lamination from bench scale to a self-supporting technology with significant potential for growth. Radio-frequency heating was any un-explored option for laminating glass prior to this program. With significant commercial success through time and energy savings in the wood, paper, and plastics industries, RF heating was found to have significant promise for the energy intensive glass lamination industry. A major technical goal of the program was to demonstrate RF lamination across a wide range of laminate sizes and materials. This was successfully accomplished, dispelling many skeptics' concerns about the abilities of the technology. Ceralink laminated panels up to 2 ft x 3 ft, with four sets processed simultaneously, in a 3 minute cycle. All major categories of interlayer materials were found to work with RF lamination. In addition to laminating glass, other materials including photovoltaic silicon solar cells, light emitting diodes, metallized glass, plastics (acrylic and polycarbonate), and ceramics (alumina) were found compatible with the RF process. This opens up a wide range of commercial opportunities beyond the initially targeted automotive industry. The dramatic energy savings reported for RF lamination at the bench scale were found to be maintained through the scale up of the process. Even at 2 ft x 3 ft panel sizes, energy savings are estimated to be at least 90% compared to autoclaving or vacuum lamination. With targeted promotion through conference presentations, press releases and internet presence, RF lamination has gained significant attention, drawing large audiences at American Ceramic Society meetings. The commercialization success of the project includes the establishment of a revenue-generating business model for providing process development and demonstrations for

  10. Investigating extreme event loading on coastal bridges using wireless sensor technology

    Science.gov (United States)

    Gelineau, Douglas A.; Davis, Justin R.; Rice, Jennifer A.

    2017-04-01

    Coastal infrastructure, such as bridges, are susceptible to many forms of coastal hazards: particularly hurricane surge and wave loading. These two forms of loading can cause catastrophic damage to aging highway infrastructure. It is estimated that storm damage costs the United States about $50 Billion per year. In light of this, it is crucial that we understand the damaging forces placed on infrastructure during storm events so that we can develop safer and more resilient coastal structures. This paper presents the ongoing research to enable the efficient collection of extreme event loads acting on both the substructure and superstructure of low clearance, simple span, reinforced concrete bridges. Bridges of this type were commonly constructed during the 1950's and 60's and are particularly susceptible to deck unseating caused by hurricane surge and wave loading. The sensing technology used to capture this data must be ruggedized to survive in an extremely challenging environment, be designed to allow for redundancy in the event of sensors or other network components being lost in the storm, and be relatively low cost to allow for more bridges to be instrumented per storm event. The prototype system described in this paper includes wireless technology, rapid data transmission, and, for the sensors, self-contained power. While this specific application focuses on hurricane hazards, the framework can be extended to include other natural hazards.

  11. Theoretical and Experimental Studies of Wave Impact underneath Decks of Offshore Platforms

    Energy Technology Data Exchange (ETDEWEB)

    Baarholm, Rolf Jarle

    2001-07-01

    The main objective of this thesis has been to study the phenomenon of water impact underneath the decks of offshore platforms due to propagating waves. The emphasis has been on the impact loads. Two theoretical methods based on two-dimensional potential theory have been developed, a Wagner based method (WBM) and a nonlinear boundary element method (BEM). A procedure to account for three-dimensional effects is suggested. The deck is assumed to be rigid. Initial studies of the importance of hydroelasticity for wave loads on an existing deck structure have been performed. For a given design wave, the local structural responses were found to behave quasi-static. Global structural response has not been studied. In the Wagner based method gravity is neglected and a linear spatial distribution of the relative impact velocity along the deck is assumed. The resulting boundary value problem is solved analytically for each time step. A numerical scheme for stepping the wetted deck area in time is presented. The nonlinear boundary element method includes gravity, and the exact impact velocity is considered. The incident wave velocity potential is given a priori, and a boundary value problem for the perturbation velocity potential associated with the impact is defined. The boundary value problem is solved for each time step by applying Green's second identity. The exact boundary conditions are imposed on the exact boundaries. A Kutta condition is introduced as the fluid flow reaches the downstream end of the deck. At present, the BEM is only applicable for fixed platform decks. To validate the theories, experiments have been carried out in a wave flume. The experiments were performed in two-dimensional flow condition with a fixed horizontal deck at different vertical levels above the mean free surface. The vertical force on the deck and the wetting of the deck were the primary parameters measured. Only regular propagating waves were applied. When a wave hits the deck, the

  12. Investigation of Flow Behavior around Corotating Blades in a Double-Spindle Lawn Mower Deck

    OpenAIRE

    Chon W.; Amano R. S.

    2005-01-01

    When the airflow patterns inside a lawn mower deck are understood, the deck can be redesigned to be efficient and have an increased cutting ability. To learn more, a combination of computational and experimental studies was performed to investigate the effects of blade and housing designs on a flow pattern inside a 1.1m wide corotating double-spindle lawn mower deck with side discharge. For the experimental portion of the study, air velocities inside the deck were measured using a laser Do...

  13. Full-scale measurements and system identification on Sutong cable-stayed bridge during Typhoon Fung-Wong.

    Science.gov (United States)

    Wang, Hao; Tao, Tianyou; Guo, Tong; Li, Jian; Li, Aiqun

    2014-01-01

    The structural health monitoring system (SHMS) provides an effective tool to conduct full-scale measurements on existing bridges for essential research on bridge wind engineering. In July 2008, Typhoon Fung-Wong lashed China and hit Sutong cable-stayed bridge (SCB) in China. During typhoon period, full-scale measurements were conducted to record the wind data and the structural vibration responses were collected by the SHMS installed on SCB. Based on the statistical method and the spectral analysis technique, the measured data are analyzed to obtain the typical parameters and characteristics. Furthermore, this paper analyzed the measured structural vibration responses and indicated the vibration characteristics of the stay cable and the deck, the relationship between structural vibrations and wind speed, the comparison of upstream and downstream cable vibrations, the effectiveness of cable dampers, and so forth. Considering the significance of damping ratio in vibration mitigation, the modal damping ratios of the SCB are identified based on the Hilbert-Huang transform (HHT) combined with the random decrement technique (RDT). The analysis results can be used to validate the current dynamic characteristic analysis methods, buffeting calculation methods, and wind tunnel test results of the long-span cable-stayed bridges.

  14. Full-Scale Measurements and System Identification on Sutong Cable-Stayed Bridge during Typhoon Fung-Wong

    Directory of Open Access Journals (Sweden)

    Hao Wang

    2014-01-01

    Full Text Available The structural health monitoring system (SHMS provides an effective tool to conduct full-scale measurements on existing bridges for essential research on bridge wind engineering. In July 2008, Typhoon Fung-Wong lashed China and hit Sutong cable-stayed bridge (SCB in China. During typhoon period, full-scale measurements were conducted to record the wind data and the structural vibration responses were collected by the SHMS installed on SCB. Based on the statistical method and the spectral analysis technique, the measured data are analyzed to obtain the typical parameters and characteristics. Furthermore, this paper analyzed the measured structural vibration responses and indicated the vibration characteristics of the stay cable and the deck, the relationship between structural vibrations and wind speed, the comparison of upstream and downstream cable vibrations, the effectiveness of cable dampers, and so forth. Considering the significance of damping ratio in vibration mitigation, the modal damping ratios of the SCB are identified based on the Hilbert-Huang transform (HHT combined with the random decrement technique (RDT. The analysis results can be used to validate the current dynamic characteristic analysis methods, buffeting calculation methods, and wind tunnel test results of the long-span cable-stayed bridges.

  15. Construction of the Chamagawa bridge; Chamagawabashi no seko

    Energy Technology Data Exchange (ETDEWEB)

    Kawado, A.; Okawa, M. [Honshu-Shikoku Bridge Authority, Tokyo (Japan); Yoshii, M.; Oda, I.

    1997-09-30

    The Chamagawa Bridge is a reinforced concrete fixed-arch bridge which is located at the northern end of Awaji Island, 1.5 km away from the Honshu-Shikoku linking large-scale Akashi Strait Bridge. This paper describes the design and construction of the bridge. Overhang construction method using cable stayed members was adopted. Against the tensile stress generated in the arch-ring under construction, reaction force was burdened with cable stayed columns, anchor blocks and ground anchors by regulating stress using cable stayed members and by resisting using PC steel rods arranging in the arch-ring. For the construction of arch-ring, a space was made for fabricating a specific large-scale movable working vehicle by the grounding support. Then, overhang construction was started. For the construction of overhang, construction of cable stayed members, regulation of stress, and tension of ground anchors were conducted with the construction of each block. The construction of linking block in the center was conducted by hanging support method after the specific large-scale movable working vehicle was taken to pieces. After the connection of arch-ring, tensile forces of cable stayed members and ground anchors were released. The bridge was completed in the down road in 1997. 1 ref., 21 figs., 6 tabs.

  16. Flight Deck I-Glasses, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Flight Deck i-Glasses is a color, stereoscopic 3-D display mounted on consumer style eye glass frames that will enhance operator performance and multi-modal...

  17. Comparison of deck- and trial-based approaches to advantageous decision making on the Iowa Gambling Task.

    Science.gov (United States)

    Visagan, Ravindran; Xiang, Ally; Lamar, Melissa

    2012-06-01

    We compared the original deck-based model of advantageous decision making assessed with the Iowa Gambling Task (IGT) with a trial-based approach across behavioral and physiological outcomes in 33 younger adults (15 men, 18 women; 22.2 ± 3.7 years of age). One administration of the IGT with simultaneous measurement of skin conductance responses (SCRs) was performed and the two methods applied: (a) the original approach of subtracting disadvantageous picks of Decks A and B from advantageous picks of Decks C and D and (b) a trial-based approach focused on the financial outcome for each deck leading up to the trial in question. When directly compared, the deck-based approach resulted in a more advantageous behavioral profile than did the trial-based approach. Analysis of SCR data revealed no significant differences between methods for physiological measurements of SCR fluctuations or anticipatory responses to disadvantageous picks. Post hoc investigation of the trial-based method revealed Deck B contributed to both advantageous and disadvantageous decision making for the majority of participants. When divided by blocks of 20, the number of advantageous to disadvantageous choices reversed as the task progressed despite the total number of picks from Deck B remaining high. SCR fluctuations for Deck B, although not significantly different from the other decks, did show a sharp decline after the first block of 20 and remained below levels for Decks C and D toward the end of the task, suggesting that participants may have gained knowledge of the frequency of loss for this deck. (c) 2012 APA, all rights reserved

  18. Cloning and Characterization of Sf9 Cell Lamin and the Lamin Conformational Changes during Autographa californica multiple nucleopolyhedrovirus Infection

    Directory of Open Access Journals (Sweden)

    Wenqiang Wei

    2016-05-01

    Full Text Available At present, the details of lamina alterations after baculovirus infection remain elusive. In this study, a lamin gene in the Sf9 cell line of Spodoptera frugiperda was cloned. The open reading frame (orf of the Sf9 lamin was 1860 bp and encoded a protein with a molecular weight of 70 kDa. A transfection assay with a red fluorescence protein (rfp-lamin fusion protein indicated that Sf9 lamin was localized in the nuclear rim. Transmission electron microscopy observations indicated that Autographa californica multiple nucleopolyhedrovirus (AcMNPV nucleocapsids may pass through the nuclear envelope. Immunofluorescence assay indicated that the lamina showed a ruffled staining pattern with the formation of invaginations in the Sf9 cells infected with AcMNPV, while it was evenly distributed at the nuclear periphery of mock-infected cells. Western blotting results indicated that the total amount of lamin in the baculovirus-infected Sf9 cells was significantly decreased compared with the mock-infected cells. These results imply that AcMNPV infection induces structural and biochemical rearrangements of lamina of Sf9 cells.

  19. Aircraft Carrier Flight and Hangar Deck Fire Protection: History and Current Status

    National Research Council Canada - National Science Library

    Darwin, Robert L; Bowman, Howard L; Hunstad, Mary; Leach, William B; Williams, Frederick W

    2005-01-01

    .... Next, a review of firefighting systems, including the firefighting agents currently in use, as well as the current tactics for fighting fires on the flight deck and the hangar deck, is provided...

  20. 46 CFR 108.133 - Hull superstructure, structural bulkheads, decks, and deckhouses.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Hull superstructure, structural bulkheads, decks, and deckhouses. 108.133 Section 108.133 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A... Protection § 108.133 Hull superstructure, structural bulkheads, decks, and deckhouses. Each hull...