WorldWideScience

Sample records for stress-induced oxidative dna

  1. Age-dependent oxidative stress-induced DNA damage in Down's lymphocytes

    International Nuclear Information System (INIS)

    Zana, Marianna; Szecsenyi, Anita; Czibula, Agnes; Bjelik, Annamaria; Juhasz, Anna; Rimanoczy, Agnes; Szabo, Krisztina; Vetro, Agnes; Szucs, Peter; Varkonyi, Agnes; Pakaski, Magdolna; Boda, Krisztina; Rasko, Istvan; Janka, Zoltan; Kalman, Janos

    2006-01-01

    The aim of the present study was to investigate the oxidative status of lymphocytes from children (n = 7) and adults (n = 18) with Down's syndrome (DS). The basal oxidative condition, the vulnerability to in vitro hydrogen peroxide exposure, and the repair capacity were measured by means of the damage-specific alkaline comet assay. Significantly and age-independently elevated numbers of single strand breaks and oxidized bases (pyrimidines and purines) were found in the nuclear DNA of the lymphocytes in the DS group in the basal condition. These results may support the role of an increased level of endogenous oxidative stress in DS and are similar to those previously demonstrated in Alzheimer's disease. In the in vitro oxidative stress-induced state, a markedly higher extent of DNA damage was observed in DS children as compared with age- and gender-matched healthy controls, suggesting that young trisomic lymphocytes are more sensitive to oxidative stress than normal ones. However, the repair ability itself was not found to be deteriorated in either DS children or DS adults

  2. DNA damage and defence gene expression after oxidative stress induced by x-rays and diesel exhaust particles

    Energy Technology Data Exchange (ETDEWEB)

    Risom, Lotte

    2004-07-01

    Particulate air pollution is one the most important environmental health factors for people living in cities. Especially the exhaust particles from traffic are possible causes for cancer and cardiopulmonary diseases. The aim of this thesis was to characterize the health effects of diesel exhaust particles (DEP) by inducing oxidative stress and analyse the underlying mechanisms. Methods for determining oxidative stress, DNA damage, and gene expression were validated and calibrated in lung tissue by studying the dose response relations after ionizing radiation. The study showed the feasibility of partial-body x-ray irradiation as an in vivo model for induction and repair of oxidative DNA damage, of DNA repair enzymes expression, and antioxidant defense genes. A 'nose-only' mouse model for inhalation of ultra-fine particles showed that particles induce oxidative DNA damage in lung tissue and in bronchoalveolar lavage cells. The exposure increased the expression of HO-1 mRNA and oxoguanine DNA glycosylase OGG1 mRNA. The levels of 8-oxodG and OGG1 mRNA were mirror images. Colon and liver were analysed after administration of DEP in the diet with or without increasing doses of sucrose. This study indicated that DEP induces DNA adducts and oxidative stress through formation of DNA strand breaks, DNA repair enzyme expression, apoptosis, and protein oxidisation in colon and liver at relatively low exposure doses. The thesis is based on four published journal articles. (ln)

  3. DNA damage and defence gene expression after oxidative stress induced by x-rays and diesel exhaust particles

    International Nuclear Information System (INIS)

    Risom, Lotte

    2004-01-01

    Particulate air pollution is one the most important environmental health factors for people living in cities. Especially the exhaust particles from traffic are possible causes for cancer and cardiopulmonary diseases. The aim of this thesis was to characterize the health effects of diesel exhaust particles (DEP) by inducing oxidative stress and analyse the underlying mechanisms. Methods for determining oxidative stress, DNA damage, and gene expression were validated and calibrated in lung tissue by studying the dose response relations after ionizing radiation. The study showed the feasibility of partial-body x-ray irradiation as an in vivo model for induction and repair of oxidative DNA damage, of DNA repair enzymes expression, and antioxidant defense genes. A 'nose-only' mouse model for inhalation of ultra-fine particles showed that particles induce oxidative DNA damage in lung tissue and in bronchoalveolar lavage cells. The exposure increased the expression of HO-1 mRNA and oxoguanine DNA glycosylase OGG1 mRNA. The levels of 8-oxodG and OGG1 mRNA were mirror images. Colon and liver were analysed after administration of DEP in the diet with or without increasing doses of sucrose. This study indicated that DEP induces DNA adducts and oxidative stress through formation of DNA strand breaks, DNA repair enzyme expression, apoptosis, and protein oxidisation in colon and liver at relatively low exposure doses. The thesis is based on four published journal articles. (ln)

  4. Evaluation of Cassia tora Linn. against oxidative stress-induced DNA and cell membrane damage

    Directory of Open Access Journals (Sweden)

    R Sunil Kumar

    2017-01-01

    Full Text Available Objective: The present study aims to evaluate antioxidants and protective role of Cassia tora Linn. against oxidative stress-induced DNA and cell membrane damage. Materials and Methods: The total and profiles of flavonoids were identified and quantified through reversed-phase high-performance liquid chromatography. In vitro antioxidant activity was determined using standard antioxidant assays. The protective role of C. tora extracts against oxidative stress-induced DNA and cell membrane damage was examined by electrophoretic and scanning electron microscopic studies, respectively. Results: The total flavonoid content of CtEA was 106.8 ± 2.8 mg/g d.w.QE, CtME was 72.4 ± 1.12 mg/g d.w.QE, and CtWE was 30.4 ± 0.8 mg/g d.w.QE. The concentration of flavonoids present in CtEA in decreasing order: quercetin >kaempferol >epicatechin; in CtME: quercetin >rutin >kaempferol; whereas, in CtWE: quercetin >rutin >kaempferol. The CtEA inhibited free radical-induced red blood cell hemolysis and cell membrane morphology better than CtME as confirmed by a scanning electron micrograph. CtEA also showed better protection than CtME and CtWE against free radical-induced DNA damage as confirmed by electrophoresis. Conclusion: C. tora contains flavonoids and inhibits oxidative stress and can be used for many health benefits and pharmacotherapy.

  5. Oxidative DNA damage and oxidative stress in lead-exposed workers.

    Science.gov (United States)

    Dobrakowski, M; Pawlas, N; Kasperczyk, A; Kozłowska, A; Olewińska, E; Machoń-Grecka, A; Kasperczyk, S

    2017-07-01

    There are many discrepancies among the results of studies on the genotoxicity of lead. The aim of the study was to explore lead-induced DNA damage, including oxidative damage, in relation to oxidative stress intensity parameters and the antioxidant defense system in human leukocytes. The study population consisted of 100 male workers exposed to lead. According to the blood lead (PbB) levels, they were divided into the following three subgroups: a group with PbB of 20-35 μg/dL (low exposure to lead (LE) group), a group with a PbB of 35-50 µg/dL (medium exposure to lead (ME) group), and a group with a PbB of >50 μg/dL (high exposure to lead (HE) group). The control group consisted of 42 healthy males environmentally exposed to lead (PbB lead exposure induces DNA damage, including oxidative damage, in human leukocytes. The increase in DNA damage was accompanied by an elevated intensity of oxidative stress.

  6. GC-Rich Extracellular DNA Induces Oxidative Stress, Double-Strand DNA Breaks, and DNA Damage Response in Human Adipose-Derived Mesenchymal Stem Cells.

    Science.gov (United States)

    Kostyuk, Svetlana; Smirnova, Tatiana; Kameneva, Larisa; Porokhovnik, Lev; Speranskij, Anatolij; Ershova, Elizaveta; Stukalov, Sergey; Izevskaya, Vera; Veiko, Natalia

    2015-01-01

    Cell free DNA (cfDNA) circulates throughout the bloodstream of both healthy people and patients with various diseases. CfDNA is substantially enriched in its GC-content as compared with human genomic DNA. Exposure of haMSCs to GC-DNA induces short-term oxidative stress (determined with H2DCFH-DA) and results in both single- and double-strand DNA breaks (comet assay and γH2AX, foci). As a result in the cells significantly increases the expression of repair genes (BRCA1 (RT-PCR), PCNA (FACS)) and antiapoptotic genes (BCL2 (RT-PCR and FACS), BCL2A1, BCL2L1, BIRC3, and BIRC2 (RT-PCR)). Under the action of GC-DNA the potential of mitochondria was increased. Here we show that GC-rich extracellular DNA stimulates adipocyte differentiation of human adipose-derived mesenchymal stem cells (haMSCs). Exposure to GC-DNA leads to an increase in the level of RNAPPARG2 and LPL (RT-PCR), in the level of fatty acid binding protein FABP4 (FACS analysis) and in the level of fat (Oil Red O). GC-rich fragments in the pool of cfDNA can potentially induce oxidative stress and DNA damage response and affect the direction of mesenchymal stem cells differentiation in human adipose-derived mesenchymal stem cells. Such a response may be one of the causes of obesity or osteoporosis.

  7. GC-Rich Extracellular DNA Induces Oxidative Stress, Double-Strand DNA Breaks, and DNA Damage Response in Human Adipose-Derived Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Svetlana Kostyuk

    2015-01-01

    Full Text Available Background. Cell free DNA (cfDNA circulates throughout the bloodstream of both healthy people and patients with various diseases. CfDNA is substantially enriched in its GC-content as compared with human genomic DNA. Principal Findings. Exposure of haMSCs to GC-DNA induces short-term oxidative stress (determined with H2DCFH-DA and results in both single- and double-strand DNA breaks (comet assay and γH2AX, foci. As a result in the cells significantly increases the expression of repair genes (BRCA1 (RT-PCR, PCNA (FACS and antiapoptotic genes (BCL2 (RT-PCR and FACS, BCL2A1, BCL2L1, BIRC3, and BIRC2 (RT-PCR. Under the action of GC-DNA the potential of mitochondria was increased. Here we show that GC-rich extracellular DNA stimulates adipocyte differentiation of human adipose-derived mesenchymal stem cells (haMSCs. Exposure to GC-DNA leads to an increase in the level of RNAPPARG2 and LPL (RT-PCR, in the level of fatty acid binding protein FABP4 (FACS analysis and in the level of fat (Oil Red O. Conclusions. GC-rich fragments in the pool of cfDNA can potentially induce oxidative stress and DNA damage response and affect the direction of mesenchymal stem cells differentiation in human adipose—derived mesenchymal stem cells. Such a response may be one of the causes of obesity or osteoporosis.

  8. Green Synthesized Zinc Oxide (ZnO) Nanoparticles Induce Oxidative Stress and DNA Damage in Lathyrus sativus L. Root Bioassay System.

    Science.gov (United States)

    Panda, Kamal K; Golari, Dambaru; Venugopal, A; Achary, V Mohan M; Phaomei, Ganngam; Parinandi, Narasimham L; Sahu, Hrushi K; Panda, Brahma B

    2017-05-18

    Zinc oxide nanoparticles (ZnONP-GS) were synthesised from the precursor zinc acetate (Zn(CH₃COO)₂) through the green route using the milky latex from milk weed ( Calotropis gigantea L. R. Br) by alkaline precipitation. Formation of the ZnONP-GS was monitored by UV-visible spectroscopy followed by characterization and confirmation by energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), and X-ray diffraction (XRD). Both the ZnONP-GS and the commercially available ZnONP-S (Sigma-Aldrich) and cationic Zn 2+ from Zn(CH₃COO)₂ were tested in a dose range of 0-100 mg·L -1 for their potency (i) to induce oxidative stress as measured by the generation reactive oxygen species (ROS: O₂ •- , H₂O₂ and • OH), cell death, and lipid peroxidation; (ii) to modulate the activities of antioxidant enzymes: catalase (CAT), superoxide dismutase (SOD), guaiacol peroxidase (GPX), and ascorbate peroxidase (APX); and (iii) to cause DNA damage as determined by Comet assay in Lathyrus sativus L. root bioassay system. Antioxidants such as Tiron and dimethylthiourea significantly attenuated the ZnONP-induced oxidative and DNA damage, suggesting the involvement of ROS therein. Our study demonstrated that both ZnONP-GS and ZnONP-S induced oxidative stress and DNA damage to a similar extent but were significantly less potent than Zn 2+ alone.

  9. Low intensity microwave radiation induced oxidative stress, inflammatory response and DNA damage in rat brain.

    Science.gov (United States)

    Megha, Kanu; Deshmukh, Pravin Suryakantrao; Banerjee, Basu Dev; Tripathi, Ashok Kumar; Ahmed, Rafat; Abegaonkar, Mahesh Pandurang

    2015-12-01

    Over the past decade people have been constantly exposed to microwave radiation mainly from wireless communication devices used in day to day life. Therefore, the concerns over potential adverse effects of microwave radiation on human health are increasing. Until now no study has been proposed to investigate the underlying causes of genotoxic effects induced by low intensity microwave exposure. Thus, the present study was undertaken to determine the influence of low intensity microwave radiation on oxidative stress, inflammatory response and DNA damage in rat brain. The study was carried out on 24 male Fischer 344 rats, randomly divided into four groups (n=6 in each group): group I consisted of sham exposed (control) rats, group II-IV consisted of rats exposed to microwave radiation at frequencies 900, 1800 and 2450 MHz, specific absorption rates (SARs) 0.59, 0.58 and 0.66 mW/kg, respectively in gigahertz transverse electromagnetic (GTEM) cell for 60 days (2h/day, 5 days/week). Rats were sacrificed and decapitated to isolate hippocampus at the end of the exposure duration. Low intensity microwave exposure resulted in a frequency dependent significant increase in oxidative stress markers viz. malondialdehyde (MDA), protein carbonyl (PCO) and catalase (CAT) in microwave exposed groups in comparison to sham exposed group (pmicrowave exposed groups (pmicrowave exposed animal (pmicrowave exposed groups as compared to their corresponding values in sham exposed group (pmicrowave radiation induces oxidative stress, inflammatory response and DNA damage in brain by exerting a frequency dependent effect. The study also indicates that increased oxidative stress and inflammatory response might be the factors involved in DNA damage following low intensity microwave exposure. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Lymphocyte DNA damage and oxidative stress in patients with iron deficiency anemia.

    Science.gov (United States)

    Aslan, Mehmet; Horoz, Mehmet; Kocyigit, Abdurrahim; Ozgonül, Saadet; Celik, Hakim; Celik, Metin; Erel, Ozcan

    2006-10-10

    Oxidant stress has been shown to play an important role in the pathogenesis of iron deficiency anemia. The aim of this study was to investigate the association between lymphocyte DNA damage, total antioxidant capacity and the degree of anemia in patients with iron deficiency anemia. Twenty-two female with iron deficiency anemia and 22 healthy females were enrolled in the study. Peripheral DNA damage was assessed using alkaline comet assay and plasma total antioxidant capacity was determined using an automated measurement method. Lymphocyte DNA damage of patients with iron deficiency anemia was significantly higher than controls (ptotal antioxidant capacity was significantly lower (ptotal antioxidant capacity and hemoglobin levels (r=0.706, ptotal antioxidant capacity and hemoglobin levels were negatively correlated with DNA damage (r=-0.330, p<0.05 and r=-0.323, p<0.05, respectively). In conclusion, both oxidative stress and DNA damage are increased in IDA patients. Increased oxidative stress seems as an important factor that inducing DNA damage in those IDA patients. The relationships of oxidative stress and DNA damage with the severity of anemia suggest that both oxidative stress and DNA damage may, in part, have a role in the pathogenesis of IDA.

  11. Green Synthesized Zinc Oxide (ZnO Nanoparticles Induce Oxidative Stress and DNA Damage in Lathyrus sativus L. Root Bioassay System

    Directory of Open Access Journals (Sweden)

    Kamal K. Panda

    2017-05-01

    Full Text Available Zinc oxide nanoparticles (ZnONP-GS were synthesised from the precursor zinc acetate (Zn(CH3COO2 through the green route using the milky latex from milk weed (Calotropis gigantea L. R. Br by alkaline precipitation. Formation of the ZnONP-GS was monitored by UV-visible spectroscopy followed by characterization and confirmation by energy-dispersive X-ray spectroscopy (EDX, transmission electron microscopy (TEM, and X-ray diffraction (XRD. Both the ZnONP-GS and the commercially available ZnONP-S (Sigma-Aldrich and cationic Zn2+ from Zn(CH3COO2 were tested in a dose range of 0–100 mg·L−1 for their potency (i to induce oxidative stress as measured by the generation reactive oxygen species (ROS: O2•−, H2O2 and •OH, cell death, and lipid peroxidation; (ii to modulate the activities of antioxidant enzymes: catalase (CAT, superoxide dismutase (SOD, guaiacol peroxidase (GPX, and ascorbate peroxidase (APX; and (iii to cause DNA damage as determined by Comet assay in Lathyrus sativus L. root bioassay system. Antioxidants such as Tiron and dimethylthiourea significantly attenuated the ZnONP-induced oxidative and DNA damage, suggesting the involvement of ROS therein. Our study demonstrated that both ZnONP-GS and ZnONP-S induced oxidative stress and DNA damage to a similar extent but were significantly less potent than Zn2+ alone.

  12. Oxidative stress and DNA damage induced by imidacloprid in zebrafish (Danio rerio).

    Science.gov (United States)

    Ge, Weili; Yan, Saihong; Wang, Jinhua; Zhu, Lusheng; Chen, Aimei; Wang, Jun

    2015-02-18

    Imidacloprid is a neonicotinoid insecticide that can have negative effects on nontarget animals. The present study was conducted to assess the toxicity of various imidacloprid doses (0.3, 1.25, and 5 mg/mL) on zebrafish sampled after 7, 14, 21, and 28 days of exposure. The levels of catalase (CAT), superoxide dismutase (SOD), reactive oxygen species (ROS), glutathione-S-transferase (GST), and malondialdehyde (MDA) and the extent of DNA damage were measured to evaluate the toxicity of imidacloprid on zebrafish. SOD and GST activities were noticeably increased during early exposure but were inhibited toward the end of the exposure period. In addition, the CAT levels decreased to the control level following their elevation during early exposure. High concentrations of imidacloprid (1.25 and 5 mg/L) induced excessive ROS production and markedly increased MDA content on the 21st day of exposure. DNA damage was dose- and time-dependent. In conclusion, the present study showed that imidacloprid can induce oxidative stress and DNA damage in zebrafish.

  13. Cadmium Chloride Induces DNA Damage and Apoptosis of Human Liver Carcinoma Cells via Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Anthony Skipper

    2016-01-01

    Full Text Available Cadmium is a heavy metal that has been shown to cause its toxicity in humans and animals. Many documented studies have shown that cadmium produces various genotoxic effects such as DNA damage and chromosomal aberrations. Ailments such as bone disease, renal damage, and several forms of cancer are attributed to overexposure to cadmium.  Although there have been numerous studies examining the effects of cadmium in animal models and a few case studies involving communities where cadmium contamination has occurred, its molecular mechanisms of action are not fully elucidated. In this research, we hypothesized that oxidative stress plays a key role in cadmium chloride-induced toxicity, DNA damage, and apoptosis of human liver carcinoma (HepG2 cells. To test our hypothesis, cell viability was determined by MTT assay. Lipid hydroperoxide content stress was estimated by lipid peroxidation assay. Genotoxic damage was tested by the means of alkaline single cell gel electrophoresis (Comet assay. Cell apoptosis was measured by flow cytometry assessment (Annexin-V/PI assay. The result of MTT assay indicated that cadmium chloride induces toxicity to HepG2 cells in a concentration-dependent manner, showing a 48 hr-LD50 of 3.6 µg/mL. Data generated from lipid peroxidation assay resulted in a significant (p < 0.05 increase of hydroperoxide production, specifically at the highest concentration tested. Data obtained from the Comet assay indicated that cadmium chloride causes DNA damage in HepG2 cells in a concentration-dependent manner. A strong concentration-response relationship (p < 0.05 was recorded between annexin V positive cells and cadmium chloride exposure. In summary, these in vitro studies provide clear evidence that cadmium chloride induces oxidative stress, DNA damage, and programmed cell death in human liver carcinoma (HepG2 cells.

  14. Oxidative Stress Induced Lipid Peroxidation And DNA Adduct Formation In The Pathogenesis Of Multiple Myeloma And Lymphoma

    Directory of Open Access Journals (Sweden)

    Tandon, Ravi

    2013-02-01

    Full Text Available Objective: To access the oxidative stress status by quantification of byproducts generated during lipid peroxidation and DNA breakdown products generated during DNA damage in the blood serum of multiple myeloma and lymphoma patients.Material & Methods: Case control study comprised of 40 patients of multiple myeloma and 20 patients of lymphoma along with 20 age and sex-matched healthy subjects as controls. Levels of Malondialdehyde and 8-hydroxy-2-deoxy-Guanosine were measured to study the oxidative stress status in the study subjects.Results: The level of markers of DNA damage and lipid peroxidation were found to be raised significantly in the study subjects in comparison to healthy controls. The results indicate oxidative stress and DNA damage activity increase progressively with the progression of disease.Conclusion: Oxidative stress causes DNA damage and Lipid peroxidation which results in the formation of DNA adducts leading to mutations thereby indicate the role of oxidative stress in the pathogenesis of multiple myeloma and lymphoma.

  15. Phorate-induced oxidative stress, DNA damage and transcriptional activation of p53 and caspase genes in male Wistar rats

    Energy Technology Data Exchange (ETDEWEB)

    Saquib, Quaiser [Department of Zoology, College of Science, King Saud University, Riyadh (Saudi Arabia); Attia, Sabry M. [Department of Pharmacology, College of Pharmacy, King Saud University, Riyadh (Saudi Arabia); Siddiqui, Maqsood A. [Department of Zoology, College of Science, King Saud University, Riyadh (Saudi Arabia); Aboul-Soud, Mourad A.M. [Department of Zoology, College of Science, King Saud University, Riyadh (Saudi Arabia); Biochemistry Department, Faculty of Agriculture, Cairo University, 12613 Giza (Egypt); Al-Khedhairy, Abdulaziz A. [Department of Zoology, College of Science, King Saud University, Riyadh (Saudi Arabia); Giesy, John P. [Department of Zoology, College of Science, King Saud University, Riyadh (Saudi Arabia); Department of Biomedical and Veterinary Biosciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Canada S7N 5B3 (Canada); Zoology Department and Center for Integrative Toxicology, Michigan State University, East Lansing 48824 (United States); Musarrat, Javed, E-mail: musarratj1@yahoo.com [Department of Zoology, College of Science, King Saud University, Riyadh (Saudi Arabia); Department of Microbiology, Faculty of Agricultural Sciences, AMU, Aligarh (India)

    2012-02-15

    Male Wistar rats exposed to a systemic organophosphorus insecticide, phorate [O,O-diethyl S-[(ethylthio) methyl] phosphorothioate] at varying oral doses of 0.046, 0.092 or 0.184 mg phorate/kg bw for 14 days, exhibited substantial oxidative stress, cellular DNA damage and activation of apoptosis-related p53, caspase 3 and 9 genes. The histopathological changes including the pyknotic nuclei, inflammatory leukocyte infiltrations, renal necrosis, and cardiac myofiber degeneration were observed in the liver, kidney and heart tissues. Biochemical analysis of catalase and glutathione revealed significantly lesser activities of antioxidative enzymes and lipid peroxidation in tissues of phorate exposed rats. Furthermore, generation of intracellular reactive oxygen species and reduced mitochondrial membrane potential in bone marrow cells confirmed phorate-induced oxidative stress. Significant DNA damage was measured through comet assay in terms of the Olive tail moment in bone marrow cells of treated animals as compared to control. Cell cycle analysis also demonstrated the G{sub 2}/M arrest and appearance of a distinctive SubG{sub 1} peak, which signified induction of apoptosis. Up-regulation of tumor suppressor p53 and caspase 3 and 9 genes, determined by quantitative real-time PCR and enzyme-linked immunosorbent assay, elucidated the activation of intrinsic apoptotic pathways in response to cellular stress. Overall, the results suggest that phorate induces genetic alterations and cellular toxicity, which can adversely affect the normal cellular functioning in rats. -- Highlights: ► This is the first report on molecular toxicity of phorate in an in vivo test system. ► Phorate induces biochemical and histological changes in liver, kidney and heart. ► Rats treated with phorate exhibited DNA damage in bone marrow cells. ► Phorate induces apoptosis, oxidative stress and alters mitochondrial fluorescence. ► Phorate induces transcriptional changes and enhanced

  16. Phorate-induced oxidative stress, DNA damage and transcriptional activation of p53 and caspase genes in male Wistar rats

    International Nuclear Information System (INIS)

    Saquib, Quaiser; Attia, Sabry M.; Siddiqui, Maqsood A.; Aboul-Soud, Mourad A.M.; Al-Khedhairy, Abdulaziz A.; Giesy, John P.; Musarrat, Javed

    2012-01-01

    Male Wistar rats exposed to a systemic organophosphorus insecticide, phorate [O,O-diethyl S-[(ethylthio) methyl] phosphorothioate] at varying oral doses of 0.046, 0.092 or 0.184 mg phorate/kg bw for 14 days, exhibited substantial oxidative stress, cellular DNA damage and activation of apoptosis-related p53, caspase 3 and 9 genes. The histopathological changes including the pyknotic nuclei, inflammatory leukocyte infiltrations, renal necrosis, and cardiac myofiber degeneration were observed in the liver, kidney and heart tissues. Biochemical analysis of catalase and glutathione revealed significantly lesser activities of antioxidative enzymes and lipid peroxidation in tissues of phorate exposed rats. Furthermore, generation of intracellular reactive oxygen species and reduced mitochondrial membrane potential in bone marrow cells confirmed phorate-induced oxidative stress. Significant DNA damage was measured through comet assay in terms of the Olive tail moment in bone marrow cells of treated animals as compared to control. Cell cycle analysis also demonstrated the G 2 /M arrest and appearance of a distinctive SubG 1 peak, which signified induction of apoptosis. Up-regulation of tumor suppressor p53 and caspase 3 and 9 genes, determined by quantitative real-time PCR and enzyme-linked immunosorbent assay, elucidated the activation of intrinsic apoptotic pathways in response to cellular stress. Overall, the results suggest that phorate induces genetic alterations and cellular toxicity, which can adversely affect the normal cellular functioning in rats. -- Highlights: ► This is the first report on molecular toxicity of phorate in an in vivo test system. ► Phorate induces biochemical and histological changes in liver, kidney and heart. ► Rats treated with phorate exhibited DNA damage in bone marrow cells. ► Phorate induces apoptosis, oxidative stress and alters mitochondrial fluorescence. ► Phorate induces transcriptional changes and enhanced activities of

  17. Oxidatively generated DNA/RNA damage in psychological stress states

    DEFF Research Database (Denmark)

    Jørgensen, Anders

    2013-01-01

    age-related somatic disorders. The overall aim of the PhD project was to investigate the relation between psychopathology, psychological stress, stress hormone secretion and oxidatively generated DNA and RNA damage, as measured by the urinary excretion of markers of whole-body DNA/RNA oxidation (8...... between the 24 h urinary cortisol excretion and the excretion of 8-oxodG/8-oxoGuo, determined in the same samples. Collectively, the studies could not confirm an association between psychological stress and oxidative stress on nucleic acids. Systemic oxidatively generated DNA/RNA damage was increased......Both non-pathological psychological stress states and mental disorders are associated with molecular, cellular and epidemiological signs of accelerated aging. Oxidative stress on nucleic acids is a critical component of cellular and organismal aging, and a suggested pathogenic mechanism in several...

  18. Bisphenol A induces oxidative stress and DNA damage in hepatic tissue of female rat offspring

    Directory of Open Access Journals (Sweden)

    Jehane I. Eid

    2015-08-01

    Full Text Available Bisphenol A (BPA is an endocrine disrupting compound widely spread in our living environment. It is a contaminant with increasing exposure to it and exerts both toxic and estrogenic effects on mammalian cells. Due to the limited information concerning the effect of BPA on the liver, the present study was designed to assess hepatic tissue injury induced by early life exposure to BPA in female rat offspring. Rat dams (n = 9 were gavaged with 0.5 and 50 mg of BPA/kg b.w./day throughout lactation until weaning. The sham group received olive oil for the same duration while the control group did not receive any injection. The liver tissue was collected from female pups at different pubertal periods (PND50, 90 and 110 to evaluate oxidative stress biomarkers, extent of DNA damage and histopathological changes. Our results indicated that early life exposure to BPA significantly increased oxidative/nitrosative stress, decreased antioxidant enzyme activities, induced DNA damage and chronic severe inflammation in the hepatic tissue in a time dependent manner. These data suggested that BPA causes long-term adverse effects on the liver, which leads to deleterious effects in the liver of female rat offspring.

  19. Grape (Vitis vinifera) extracts protect against radiation-induced oxidative stress and DNA damage

    International Nuclear Information System (INIS)

    Singha, Indrani; Das, Subir Kumar; Saxena, S.; Gautam, S.

    2016-01-01

    Ionizing radiation (IR) causes oxidative stress through the overwhelming generation of reactive oxygen species (ROS) in the living cells leading further to the oxidative damage to biomolecules. Grapes (Vitis vinifera) contain several bioactive phytochemicals and are the richest source of antioxidant. In this study, we investigated and compared in vitro antioxidant activity and DNA damage protective property of the grape extracts of four different cultivars, including the Thompson seedless, Flame seedless, Kishmish chorni and Red globe. The activities of ascorbic acid oxidase and catalase significantly (p<0.01) differed among extracts within the same cultivar, while that of peroxidase and polyphenol oxidase did not differ significantly among extracts of any cultivar. In vitro antioxidant activities were assessed by ferric-reducing antioxidant power (FRAP) assay and ABTS. The superoxide radical-scavenging activity was higher in the seed as compared to the skin or pulp of the same cultivar. DNA damage was evaluated in acellular system using pBR322 plasmid relaxation. Grape extract was able to effectively scavenge free radicals in vitro. It could significantly prevent radiation-induced DNA damage. Furthermore, the protective action of grape depends on the source of extract and type of the cultivars. (author)

  20. Role of oxidative stress and DNA hydroxymethylation in the neurotoxicity of fine particulate matter

    International Nuclear Information System (INIS)

    Wei, Hongying; Feng, Yan; Liang, Fan; Cheng, Wei; Wu, Xiaomeng; Zhou, Ren; Wang, Yan

    2017-01-01

    Highlights: • Oxidative stress-mediated neurocytotoxicity and DNA hydroxymethylation abnormalities involved in neuronal pathology of PM 2.5 . • PM 2.5 particles and toxic compounds adsorbed on the particle caused different types of neurocytotoxicity. • DNA hydroxymethylation abnormalities participated in PM 2.5 -induced impairments in neurite outgrowth and synapse formation. - Abstract: Epidemiological studies have implicated fine particulate matter (PM 2.5 ) as a risk factor for neurodegenerative diseases and neurodevelopmental disorders. However, the underlying molecular mechanisms and the influences of different components remain largely elusive. Here, we extended our previous work to investigate the role of oxidative stress and DNA hydroxymethylation in neuronal pathology of PM 2.5 . We found PM 2.5 and its extracts (water-soluble extracts, organic extracts and carbon core component) differentially caused cell cycle arrest, cell apoptosis and the cell proliferation inhibition in neuronal cells. These effects were mechanistically related to each other and oxidative stress, suggesting PM 2.5 and toxic compounds adsorbed on the particles may cause different types of brain damages. In addition, PM 2.5 and its organic extracts increased global DNA hydroxymethylation and gene-specific DNA hydroxymethylation of neuronal genes, and subsequently interfered with their mRNA expression. The impairments in neuronal progression characterized with decreased length of neurite and reduced mRNA expression of neuronal markers and synaptic markers. The blocking effects of antioxidants demonstrated the involvement of oxidative stress-mediated hydroxymethylation abnormalities in PM 2.5 -induced defects in neurite outgrowth and synapse formation. Our results first revealed the role of oxidative stress-mediated abnormal DNA hydroxymethylation in neuronal impairments of PM 2.5 , and thoroughly evaluated the neurocytotoxicity of different components.

  1. Biomarkers of oxidative stress and DNA damage in agricultural workers: A pilot study

    International Nuclear Information System (INIS)

    Muniz, Juan F.; McCauley, Linda; Scherer, J.; Lasarev, M.; Koshy, M.; Kow, Y.W.; Nazar-Stewart, Valle; Kisby, G.E.

    2008-01-01

    Oxidative stress and DNA damage have been proposed as mechanisms linking pesticide exposure to health effects such as cancer and neurological diseases. A study of pesticide applicators and farmworkers was conducted to examine the relationship between organophosphate pesticide exposure and biomarkers of oxidative stress and DNA damage. Urine samples were analyzed for OP metabolites and 8-hydroxy-2'-deoxyguanosine (8-OH-dG). Lymphocytes were analyzed for oxidative DNA repair activity and DNA damage (Comet assay), and serum was analyzed for lipid peroxides (i.e., malondialdehyde, MDA). Cellular damage in agricultural workers was validated using lymphocyte cell cultures. Urinary OP metabolites were significantly higher in farmworkers and applicators (p < 0.001) when compared to controls. 8-OH-dG levels were 8.5 times and 2.3 times higher in farmworkers or applicators (respectively) than in controls. Serum MDA levels were 4.9 times and 24 times higher in farmworkers or applicators (respectively) than in controls. DNA damage (Comet assay) and oxidative DNA repair were significantly greater in lymphocytes from applicators and farmworkers when compared with controls. Markers of oxidative stress (i.e., increased reactive oxygen species and reduced glutathione levels) and DNA damage were also observed in lymphocyte cell cultures treated with an OP. The findings from these in vivo and in vitro studies indicate that organophosphate pesticides induce oxidative stress and DNA damage in agricultural workers. These biomarkers may be useful for increasing our understanding of the link between pesticides and a number of health effects

  2. DNA protective effects of melatonin on oxidative stress in streptozotocin - induced diabetic rats.

    Directory of Open Access Journals (Sweden)

    Selim Sekkin

    2015-05-01

    the antioxidant system, MEL regulates the expression of several genes such as those of superoxide dismutase (SOD and glutathione peroxidase (2-4. The aim of this study was to research the effects of MEL on oxidative stress and DNA protective effects in streptozotocin-induced diabetic rats. A total of 32 rats were equally divided into 4 experimental groups as Control, Melatonin, Diabetic, and Diabetic + Melatonin. A pancreatic beta-cell cytotoxic agent, single dose streptozotocin (60 mg/kg was given by intraperitoneal route to induce experimental diabetes in rats. Rats with ≥200mg/dL blood glucose level were established as Diabetic and Diabetic + Melatonin groups. MEL (10 mg/kg per day and sodium citrate solution were administrated to rats by intraperitoneal route for 6 weeks. With the termination of the experiment, tissue and blood samples were obtained for further analysis. SOD, catalase (CAT, reduced glutathione (GSH and malondialdehyde (MDA were evaluated in rat liver, renal, brain and pancreas tissues. Body weight, plasma glucose, and %HbA1c levels were studied. DNA damage was analyzed with the comet assay in rat lymphocytes; %Tail DNA and Mean Tail Moment parameters were evaluated (5. Antioxidant and oxidant enzyme levels were similar in the Control and Melatonin groups, although there were significant differences between the Diabetic and Diabetic + Melatonin groups. SOD levels in brain and liver tissues were higher (P<0,001, and CAT activities in renal tissue (P<0,001, GSH levels in pancreas tissue (P<0,01 as well as MDA levels in liver (P<0,001, renal (P<0,001 and brain (P<0,01 tissues were higher in the Diabetic + Melatonin group compared with the Diabetic group. Body weight changes and blood glucose levels of the rats were evaluated during the 6 weeks. The effect of MEL on the body weights of Control and Melatonin as well as Diabetic and Diabetic + Melatonin group rats were similar. MEL had no effect on body weight and the diabetic rats were lighter (P<0

  3. Thyroid hormone-induced oxidative damage on lipids, glutathione and DNA in the mouse heart.

    Science.gov (United States)

    Gredilla, R; Barja, G; López-Torres, M

    2001-10-01

    Oxygen radicals of mitochondrial origin are involved in oxidative damage. In order to analyze the possible relationship between metabolic rate, oxidative stress and oxidative damage, OF1 female mice were rendered hyper- and hypothyroid by chronic administration of 0.0012% L-thyroxine (T4) and 0.05% 6-n-propyl-2-thiouracil (PTU), respectively, in their drinking water for 5 weeks. Hyperthyroidism significantly increased the sensitivity to lipid peroxidation in the heart, although the endogenous levels of lipid peroxidation were not altered. Thyroid hormone-induced oxidative stress also resulted in higher levels of GSSG and GSSG/GSH ratio. Oxidative damage to mitochondrial DNA was greater than that to genomic DNA. Hyperthyroidism decreased oxidative damage to genomic DNA. Hypothyroidism did not modify oxidative damage in the lipid fraction but significantly decreased GSSG and GSSG/GSH ratio and oxidative damage to mitochondrial DNA. These results indicate that thyroid hormones modulate oxidative damage to lipids and DNA, and cellular redox potential in the mouse heart. A higher oxidative stress in the hyperthyroid group is presumably neutralized in the case of nuclear DNA by an increase in repair activity, thus protecting this key molecule. Treatment with PTU, a thyroid hormone inhibitor, reduced oxidative damage in the different cell compartments.

  4. Advances in metal-induced oxidative stress and human disease

    International Nuclear Information System (INIS)

    Jomova, Klaudia; Valko, Marian

    2011-01-01

    Detailed studies in the past two decades have shown that redox active metals like iron (Fe), copper (Cu), chromium (Cr), cobalt (Co) and other metals undergo redox cycling reactions and possess the ability to produce reactive radicals such as superoxide anion radical and nitric oxide in biological systems. Disruption of metal ion homeostasis may lead to oxidative stress, a state where increased formation of reactive oxygen species (ROS) overwhelms body antioxidant protection and subsequently induces DNA damage, lipid peroxidation, protein modification and other effects, all symptomatic for numerous diseases, involving cancer, cardiovascular disease, diabetes, atherosclerosis, neurological disorders (Alzheimer's disease, Parkinson's disease), chronic inflammation and others. The underlying mechanism of action for all these metals involves formation of the superoxide radical, hydroxyl radical (mainly via Fenton reaction) and other ROS, finally producing mutagenic and carcinogenic malondialdehyde (MDA), 4-hydroxynonenal (HNE) and other exocyclic DNA adducts. On the other hand, the redox inactive metals, such as cadmium (Cd), arsenic (As) and lead (Pb) show their toxic effects via bonding to sulphydryl groups of proteins and depletion of glutathione. Interestingly, for arsenic an alternative mechanism of action based on the formation of hydrogen peroxide under physiological conditions has been proposed. A special position among metals is occupied by the redox inert metal zinc (Zn). Zn is an essential component of numerous proteins involved in the defense against oxidative stress. It has been shown, that depletion of Zn may enhance DNA damage via impairments of DNA repair mechanisms. In addition, Zn has an impact on the immune system and possesses neuroprotective properties. The mechanism of metal-induced formation of free radicals is tightly influenced by the action of cellular antioxidants. Many low-molecular weight antioxidants (ascorbic acid (vitamin C), alpha

  5. The Role of Oxidative Stress in Carcinogenesis Induced by Metals and Xenobiotics

    International Nuclear Information System (INIS)

    Henkler, Frank; Brinkmann, Joep; Luch, Andreas

    2010-01-01

    In addition to a wide range of adverse effects on human health, toxic metals such as cadmium, arsenic and nickel can also promote carcinogenesis. The toxicological properties of these metals are partly related to generation of reactive oxygen species (ROS) that can induce DNA damage and trigger redox-dependent transcription factors. The precise mechanisms that induce oxidative stress are not fully understood. Further, it is not yet known whether chronic exposures to low doses of arsenic, cadmium or other metals are sufficient to induce mutations in vivo, leading to DNA repair responses and/or tumorigenesis. Oxidative stress can also be induced by environmental xenobiotics, when certain metabolites are generated that lead to the continuous release of superoxide, as long as the capacity to reduce the resulting dions (quinones) into hydroquinones is maintained. However, the specific significance of superoxide-dependent pathways to carcinogenesis is often difficult to address, because formation of DNA adducts by mutagenic metabolites can occur in parallel. Here, we will review both mechanisms and toxicological consequences of oxidative stress triggered by metals and dietary or environmental pollutants in general. Besides causing DNA damage, ROS may further induce multiple intracellular signaling pathways, notably NF-κB, JNK/SAPK/p38, as well as Erk/MAPK. These signaling routes can lead to transcriptional induction of target genes that could promote proliferation or confer apoptosis resistance to exposed cells. The significance of these additional modes depends on tissue, cell-type and is often masked by alternate oncogenic mechanisms being activated in parallel

  6. Assessment of DNA damage and oxidative stress induced by radiation in Eisenia fetida

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Tae Ho; Kim, Jin Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Nili, Mohammad [Dawnesh Radiation Research Institute, Barcelona (Spain)

    2012-04-15

    Exposure of eukaryotic cells to ionizing radiation results in the immediate formation of free radicals and the occurrence of oxidative cell damage. Recently International Commission on Radiological Protection (ICRP) requires the effect data of ionizing radiation on non-human biota for the radiological protection of the environment. Based on their radioecological properties and their important role in the soil ecosystem, earthworms have been identified by the ICRP as one of the reference animals and plants (RAPs) to be used in environmental radiation protection. The investigation shows that oxidative stress is closely related to the exposed dose of radiation in the environment. To evaluate oxidative stress by ionizing radiation in the earthworm, we performed several experiments. The comet assay is known as a measurement which is one of the best techniques in assessing the DNA damage by oxidative stress. The SOD is a key enzyme in protecting cells against oxidative stress. An increase in the level of antioxidant enzyme such as SOD indicated that the exposure to radiation caused stress responses. Glutathione oxidation is considered as a maker for detection of reactive oxygen species (ROS). The GSSG levels increased progressively with increased exposure dose of ionizing radiation, which suggested a dose-dependent ROS generation.

  7. Resveratrol induces membrane and DNA disruption via pro-oxidant activity against Salmonella typhimurium.

    Science.gov (United States)

    Lee, Wonjong; Lee, Dong Gun

    2017-07-22

    Resveratrol is a flavonoid found in various plants including grapes, which has been reported to be active against various pathogenic bacteria. However, antibacterial effects and mechanisms via pro-oxidant property of resveratrol remain unknown and speculative. This research investigated antibacterial mechanism of resveratrol against a food-borne human pathogen Salmonella typhimurium, and confirmed the cell death associated oxidative damage. Resveratrol increased outer membrane permeability and membrane depolarization. It also was observed DNA injury responses such as DNA fragmentation, increasing DNA contents and cell division inhibition. Intracellular ROS accumulation, GSH depletion and significant increased malondialdehyde levels were confirmed, which indicated pro-oxidant activity of resveratrol and oxidative stress. Furthermore, the observed lethal damages were reduced by antioxidant N-acetylcysteine treatment supported the view that resveratrol-induced oxidative stress stimulated S. typhimurium cell death. In conclusion, this study expands understanding on role of pro-oxidant property and insight into previously unrecognized oxygen-dependent anti-Salmonella mechanism on resveratrol. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Oxidative Stress and DNA Methylation in Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Krishna Vanaja Donkena

    2010-01-01

    Full Text Available The protective effects of fruits, vegetables, and other foods on prostate cancer may be due to their antioxidant properties. An imbalance in the oxidative stress/antioxidant status is observed in prostate cancer patients. Genome oxidative damage in prostate cancer patients is associated with higher lipid peroxidation and lower antioxidant levels. Oxygen radicals are associated with different steps of carcinogenesis, including structural DNA damage, epigenetic changes, and protein and lipid alterations. Epigenetics affects genetic regulation, cellular differentiation, embryology, aging, cancer, and other diseases. DNA methylation is perhaps the most extensively studied epigenetic modification, which plays an important role in the regulation of gene expression and chromatin architecture, in association with histone modification and other chromatin-associated proteins. This review will provide a broad overview of the interplay of oxidative stress and DNA methylation, DNA methylation changes in regulation of gene expression, lifestyle changes for prostate cancer prevention, DNA methylation as biomarkers for prostate cancer, methods for detection of methylation, and clinical application of DNA methylation inhibitors for epigenetic therapy.

  9. Oxidized DNA induces an adaptive response in human fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Kostyuk, Svetlana V., E-mail: svet.kostyuk@gmail.com [Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow (Russian Federation); Tabakov, Viacheslav J.; Chestkov, Valerij V.; Konkova, Marina S.; Glebova, Kristina V.; Baydakova, Galina V.; Ershova, Elizaveta S.; Izhevskaya, Vera L. [Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow (Russian Federation); Baranova, Ancha, E-mail: abaranov@gmu.edu [Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow (Russian Federation); Center for the Study of Chronic Metabolic Diseases, School of System Biology, George Mason University, Fairfax, VA 22030 (United States); Veiko, Natalia N. [Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow (Russian Federation)

    2013-07-15

    Highlights: • We describe the effects of gDNAOX on human fibroblasts cultivated in serum withdrawal conditions. • gDNAOX evokes an adaptive response in human fibroblasts. • gDNAOX increases the survival rates in serum starving cell populations. • gDNAOX enhances the survival rates in cell populations irradiated at 1.2 Gy dose. • gDNAOX up-regulates NRF2 and inhibits NF-kappaB-signaling. - Abstract: Cell-free DNA (cfDNA) released from dying cells contains a substantial proportion of oxidized nucleotides, thus, forming cfDNA{sup OX}. The levels of cfDNA{sup OX} are increased in the serum of patients with chronic diseases. Oxidation of DNA turns it into a stress signal. The samples of genomic DNA (gDNA) oxidized by H{sub 2}O{sub 2}in vitro (gDNA{sup OX}) induce effects similar to that of DNA released from damaged cells. Here we describe the effects of gDNA{sup OX} on human fibroblasts cultivated in the stressful conditions of serum withdrawal. In these cells, gDNA{sup OX} evokes an adaptive response that leads to an increase in the rates of survival in serum starving cell populations as well as in populations irradiated at the dose of 1.2 Gy. These effects are not seen in control populations of fibroblasts treated with non-modified gDNA. In particular, the exposure to gDNA{sup OX} leads to a decrease in the expression of the proliferation marker Ki-67 and an increase in levels of PSNA, a decrease in the proportion of subG1- and G2/M cells, a decrease in proportion of cells with double strand breaks (DSBs). Both gDNA{sup OX} and gDNA suppress the expression of DNA sensors TLR9 and AIM2 and up-regulate nuclear factor-erythroid 2 p45-related factor 2 (NRF2), while only gDNA{sup OX} inhibits NF-κB signaling. gDNA{sup OX} is a model for oxidized cfDNA{sup OX} that is released from the dying tumor cells and being carried to the distant organs. The systemic effects of oxidized DNA have to be taken into account when treating tumors. In particular, the damaged DNA

  10. Diacylglycerol kinase regulation of protein kinase D during oxidative stress-induced intestinal cell injury

    International Nuclear Information System (INIS)

    Song Jun; Li Jing; Mourot, Joshua M.; Mark Evers, B.; Chung, Dai H.

    2008-01-01

    We recently demonstrated that protein kinase D (PKD) exerts a protective function during oxidative stress-induced intestinal epithelial cell injury; however, the exact role of DAG kinase (DGK)ζ, an isoform expressed in intestine, during this process is unknown. We sought to determine the role of DGK during oxidative stress-induced intestinal cell injury and whether DGK acts as an upstream regulator of PKD. Inhibition of DGK with R59022 compound or DGKζ siRNA transfection decreased H 2 O 2 -induced RIE-1 cell apoptosis as measured by DNA fragmentation and increased PKD phosphorylation. Overexpression of kinase-dead DGKζ also significantly increased PKD phosphorylation. Additionally, endogenous nuclear DGKζ rapidly translocated to the cytoplasm following H 2 O 2 treatment. Our findings demonstrate that DGK is involved in the regulation of oxidative stress-induced intestinal cell injury. PKD activation is induced by DGKζ, suggesting DGK is an upstream regulator of oxidative stress-induced activation of the PKD signaling pathway in intestinal epithelial cells

  11. Placental oxidative stress and decreased global DNA methylation are corrected by copper in the Cohen diabetic rat

    Energy Technology Data Exchange (ETDEWEB)

    Ergaz, Zivanit, E-mail: zivanit@hadassah.org.il [Hebrew University Hadassah Medical School, Jerusalem (Israel); Guillemin, Claire [Department of Pharmacology and Therapeutics, McGill University, Montreal (Canada); Neeman-azulay, Meytal; Weinstein-Fudim, Liza [Hebrew University Hadassah Medical School, Jerusalem (Israel); Stodgell, Christopher J.; Miller, Richard K. [Department of Obstetrics and Gynecology, University of Rochester, Rochester (United States); Szyf, Moshe [Department of Pharmacology and Therapeutics, McGill University, Montreal (Canada); Ornoy, Asher [Hebrew University Hadassah Medical School, Jerusalem (Israel)

    2014-05-01

    Fetal Growth Restriction (FGR) is a leading cause for long term morbidity. The Cohen diabetic sensitive rats (CDs), originating from Wistar, develop overt diabetes when fed high sucrose low copper diet (HSD) while the original outbred Sabra strain do not. HSD induced FGR and fetal oxidative stress, more prominent in the CDs, that was alleviated more effectively by copper than by the anti-oxidant vitamins C and E. Our aim was to evaluate the impact of copper or the anti-oxidant Tempol on placental size, protein content, oxidative stress, apoptosis and total DNA methylation. Animals were mated following one month of HSD or regular chow diet and supplemented throughout pregnancy with either 0, 1 or 2 ppm of copper sulfate or Tempol in their drinking water. Placental weight on the 21st day of pregnancy decreased in dams fed HSD and improved upon copper supplementation. Placental/fetal weight ratio increased among the CDs. Protein content decreased in Sabra but increased in CDs fed HSD. Oxidative stress biochemical markers improved upon copper supplementation; immunohistochemistry for oxidative stress markers was similar between strains and diets. Caspase 3 was positive in more placentae of dams fed HSD than those fed RD. Placental global DNA methylation was decreased only among the CDs dams fed HSD. We conclude that FGR in this model is associated with smaller placentae, reduced DNA placental methylation, and increased oxidative stress that normalized with copper supplementation. DNA hypomethylation makes our model a unique method for investigating genes associated with growth, oxidative stress, hypoxia and copper. - Highlights: • Sensitive Cohen diabetic rats (CDs) had small placentae and growth restricted fetuses. • CDs dams fed high sucrose low copper diet had placental global DNA hypomethylation. • Caspase 3 was positive in more placentae of dams fed HSD than those fed RD. • Oxidative stress parameters improved by Tempol and resolved by copper

  12. Placental oxidative stress and decreased global DNA methylation are corrected by copper in the Cohen diabetic rat

    International Nuclear Information System (INIS)

    Ergaz, Zivanit; Guillemin, Claire; Neeman-azulay, Meytal; Weinstein-Fudim, Liza; Stodgell, Christopher J.; Miller, Richard K.; Szyf, Moshe; Ornoy, Asher

    2014-01-01

    Fetal Growth Restriction (FGR) is a leading cause for long term morbidity. The Cohen diabetic sensitive rats (CDs), originating from Wistar, develop overt diabetes when fed high sucrose low copper diet (HSD) while the original outbred Sabra strain do not. HSD induced FGR and fetal oxidative stress, more prominent in the CDs, that was alleviated more effectively by copper than by the anti-oxidant vitamins C and E. Our aim was to evaluate the impact of copper or the anti-oxidant Tempol on placental size, protein content, oxidative stress, apoptosis and total DNA methylation. Animals were mated following one month of HSD or regular chow diet and supplemented throughout pregnancy with either 0, 1 or 2 ppm of copper sulfate or Tempol in their drinking water. Placental weight on the 21st day of pregnancy decreased in dams fed HSD and improved upon copper supplementation. Placental/fetal weight ratio increased among the CDs. Protein content decreased in Sabra but increased in CDs fed HSD. Oxidative stress biochemical markers improved upon copper supplementation; immunohistochemistry for oxidative stress markers was similar between strains and diets. Caspase 3 was positive in more placentae of dams fed HSD than those fed RD. Placental global DNA methylation was decreased only among the CDs dams fed HSD. We conclude that FGR in this model is associated with smaller placentae, reduced DNA placental methylation, and increased oxidative stress that normalized with copper supplementation. DNA hypomethylation makes our model a unique method for investigating genes associated with growth, oxidative stress, hypoxia and copper. - Highlights: • Sensitive Cohen diabetic rats (CDs) had small placentae and growth restricted fetuses. • CDs dams fed high sucrose low copper diet had placental global DNA hypomethylation. • Caspase 3 was positive in more placentae of dams fed HSD than those fed RD. • Oxidative stress parameters improved by Tempol and resolved by copper

  13. Hydrogen-peroxide-induced oxidative stress responses in Desulfovibrio vulgaris Hildenborough

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, A.; He, Z.; Redding-Johanson, A.M.; Mukhopadhyay, A.; Hemme, C.L.; Joachimiak, M.P.; Bender, K.S.; Keasling, J.D.; Stahl, D.A.; Fields, M.W.; Hazen, T.C.; Arkin, A.P.; Wall, J.D.; Zhou, J.; Luo, F.; Deng, Y.; He, Q.

    2010-07-01

    To understand how sulphate-reducing bacteria respond to oxidative stresses, the responses of Desulfovibrio vulgaris Hildenborough to H{sub 2}O{sub 2}-induced stresses were investigated with transcriptomic, proteomic and genetic approaches. H{sub 2}O{sub 2} and induced chemical species (e.g. polysulfide, ROS) and redox potential shift increased the expressions of the genes involved in detoxification, thioredoxin-dependent reduction system, protein and DNA repair, and decreased those involved in sulfate reduction, lactate oxidation and protein synthesis. A gene coexpression network analysis revealed complicated network interactions among differentially expressed genes, and suggested possible importance of several hypothetical genes in H{sub 2}O{sub 2} stress. Also, most of the genes in PerR and Fur regulons were highly induced, and the abundance of a Fur regulon protein increased. Mutant analysis suggested that PerR and Fur are functionally overlapped in response to stresses induced by H{sub 2}O{sub 2} and reaction products, and the upregulation of thioredoxin-dependent reduction genes was independent of PerR or Fur. It appears that induction of those stress response genes could contribute to the increased resistance of deletion mutants to H{sub 2}O{sub 2}-induced stresses. In addition, a conceptual cellular model of D. vulgaris responses to H{sub 2}O{sub 2} stress was constructed to illustrate that this bacterium may employ a complicated molecular mechanism to defend against the H{sub 2}O{sub 2}-induced stresses.

  14. Overexpression of DNA ligase III in mitochondria protects cells against oxidative stress and improves mitochondrial DNA base excision repair

    DEFF Research Database (Denmark)

    Akbari, Mansour; Keijzers, Guido; Maynard, Scott

    2014-01-01

    slower than the preceding mitochondrial BER steps. Overexpression of DNA ligase III in mitochondria improved the rate of overall BER, increased cell survival after menadione induced oxidative stress and reduced autophagy following the inhibition of the mitochondrial electron transport chain complex I...

  15. Relationship between genotoxicity and oxidative stress induced by mercury on common carp (Cyprinus carpio) tissues.

    Science.gov (United States)

    García-Medina, Sandra; Galar-Martínez, Marcela; Gómez-Oliván, Leobardo Manuel; Ruiz-Lara, Karina; Islas-Flores, Hariz; Gasca-Pérez, Eloy

    2017-11-01

    Mercury is one of the most toxic metals in aquatic systems since it is able to induce neurobehavioral disorders as well as renal and gastrointestinal tract damage. The common carp Cyprinus carpio is an important species from both an ecological and economic viewpoint as it is consumed in many countries, the top producers being Mexico, China, India and Japan. The present study aimed to evaluate the relation between Hg-induced oxidative stress and genotoxicity in diverse tissues of C. carpio. Specimens were exposed to 0.01mgHg/L (the maximum permissible limit for aquatic life protection), and lipid peroxidation, protein carbonyl content and the activity of antioxidant enzymes were evaluated at 96h. Micronuclei frequency and DNA damage by comet assay were determined at 12, 24, 48, 72 and 96h. Hg induced oxidative stress and genotoxicity on exposed fish, since inhibition of antioxidant enzymes activity and increases in lipid peroxidation, DNA damage and micronuclei frequency occurred. Blood, gill and liver were more susceptible to oxidative stress, while blood were more sensitive to genotoxicity. In conclusion, Hg at concentrations equal to the maximum permissible limit for aquatic life protection induced oxidative stress and genotoxicity on C. carpio, and these two effects prove to be correlated. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Thinner inhalation effects on oxidative stress and DNA repair in a rat model of abuse.

    Science.gov (United States)

    Martínez-Alfaro, Minerva; Cárabez-Trejo, Alfonso; Gallegos-Corona, Marco-Antonio; Pedraza-Aboytes, Gustavo; Hernández-Chan, Nancy Georgina; Leo-Amador, Guillermo Enrique

    2010-04-01

    Humans can come into contact with thinner by occupational exposure or by intentional inhalation abuse. Numerous studies of workers for genotoxic effects of thinner exposure have yielded conflicting results, perhaps because co-exposure to variable other compounds cannot be avoided in workplace exposure studies. In contrast, there is no data concerning the genotoxic effects of intentional inhalation abuse. The aim of this project was to examine the genotoxic effects of thinner inhalation in an animal model of thinner abuse (rats exposed to 3000 ppm toluene, a high solvent concentration over a very short, 15 min time period, twice a day for 6 weeks). The data presented here provides evidence that thinner inhalation in our experimental conditions is able to induce weight loss, lung abnormalities and oxidative stress. This oxidative stress induces oxidative DNA damage that is not a characteristic feature of genotoxic damage. No significant difference in DNA damage and DNA repair (biomarkers of genotoxicity) in lymphocytes from thinner-treated and control rats was found. Lead treatment was used as a positive control in these assays. Finally, bone marrow was evaluated as a biomarker of cellular alteration associated with thinner inhalation. The observed absence of hemopoietic and genetic toxicity could be explained in part by the absence of benzene, the only carcinogenic component of thinner; however, benzene is no longer a common component of thinner. In conclusion, thinner did not cause genotoxic effects in an experimental model of intentional abuse despite the fact that thinner inhalation induces oxidative stress. (c) 2009 John Wiley & Sons, Ltd.

  17. Oxidative damage and cell-programmed death induced in Zea mays L. by allelochemical stress.

    Science.gov (United States)

    Ciniglia, Claudia; Mastrobuoni, Francesco; Scortichini, Marco; Petriccione, Milena

    2015-05-01

    The allelochemical stress on Zea mays was analyzed by using walnut husk washing waters (WHWW), a by-product of Juglans regia post-harvest process, which possesses strong allelopathic potential and phytotoxic effects. Oxidative damage and cell-programmed death were induced by WHWW in roots of maize seedlings. Treatment induced ROS burst, with excess of H2O2 content. Enzymatic activities of catalase were strongly increased during the first hours of exposure. The excess in malonildialdehyde following exposure to WHWW confirmed that oxidative stress severely damaged maize roots. Membrane alteration caused a decrease in NADPH oxidase activity along with DNA damage as confirmed by DNA laddering. The DNA instability was also assessed through sequence-related amplified polymorphism assay, thus suggesting the danger of walnut processing by-product and focusing the attention on the necessity of an efficient treatment of WHWW.

  18. Enhanced 15-HPETE production during oxidant stress induces apoptosis of endothelial cells.

    Science.gov (United States)

    Sordillo, Lorraine M; Weaver, James A; Cao, Yu-Zhang; Corl, Chris; Sylte, Matt J; Mullarky, Isis K

    2005-05-01

    Oxidant stress plays an important role in the etiology of vascular diseases by increasing rates of endothelial cell apoptosis, but few data exist on the mechanisms involved. Using a unique model of oxidative stress based on selenium deficiency (-Se), the effects of altered eicosanoid production on bovine aortic endothelial cells (BAEC) apoptosis was evaluated. Oxidant stress significantly increased the immediate oxygenation product of arachidonic acid metabolized by the 15-lipoxygenase pathway, 15-hydroxyperoxyeicosatetraenoic acid (15-HPETE). Treatment of -Se BAEC with TNFalpha/cyclohexamide (CHX) exhibited elevated levels of apoptosis, which was significantly reduced by the addition of a specific 15-lipoxygenase inhibitor PD146176. Furthermore, the addition of 15-HPETE to PD146176-treated BAEC, partially restored TNF/CHX-induced apoptosis. Increased exposure to 15-HPETE induced apoptosis, as determined by internucleosomal DNA fragmentation, chromatin condensation, caspase-3 activation, and caspase-9 activation, which suggests mitochondrial dysfunction. The expression of Bcl-2 protein also was decreased in -Se BAEC. Addition of a caspase-9 inhibitor (LEHD-fmk) completely blocked 15-HPETE-induced chromatin condensation in -Se BAEC, suggesting that 15-HPETE-induced apoptosis is caspase-9 dependent. Increased apoptosis of BAEC as a result of oxidant stress and subsequent production of 15-HPETE may play a critical role in a variety of inflammatory based diseases.

  19. Pulmonary dysfunctions, oxidative stress and DNA damage in brick kiln workers.

    Science.gov (United States)

    Kaushik, R; Khaliq, F; Subramaneyaan, M; Ahmed, R S

    2012-11-01

    Brick kilns in the suburban areas in developing countries pose a big threat to the environment and hence the health of their workers and people residing around them. The present study was planned to assess the lung functions, oxidative stress parameters and DNA damage in brick kiln workers. A total of 31 male subjects working in brick kiln, and 32 age, sex and socioeconomic status matched controls were included in the study. The lung volumes, capacities and flow rates, namely, forced expiratory volume in first second (FEV(1)), forced vital capacity (FVC), FEV(1)/FVC, expiratory reserve volume, inspiratory capacity (IC), maximal expiratory flow when 50% of FVC is remaining to be expired, maximum voluntary ventilation, peak expiratory flow rate and vital capacity were significantly decreased in the brick kiln workers. Increased oxidative stress as evidenced by increased malonedialdehyde levels and reduced glutathione content, glutathione S-transferase activity and ferric reducing ability of plasma were observed in the study group when compared with controls. Our results indicate a significant correlation between oxidative stress parameters and pulmonary dysfunction, which may be due to silica-induced oxidative stress and resulting lung damage.

  20. Internalization of Staphylococcus aureus in Lymphocytes Induces Oxidative Stress and DNA Fragmentation: Possible Ameliorative Role of Nanoconjugated Vancomycin

    Directory of Open Access Journals (Sweden)

    Subhankari Prasad Chakraborty

    2011-01-01

    Full Text Available Staphylococcus aureus is the most frequently isolated pathogen causing bloodstream infections, skin and soft tissue infections and pneumonia. Lymphocyte is an important immune cell. The aim of the present paper was to test the ameliorative role of nanoconjugated vancomycin against Vancomycin-sensitive Staphylococcus aureus (VSSA and vancomycin-resistant Staphylococcus aureus (VRSA infection-induced oxidative stress in lymphocytes. VSSA and VRSA infections were developed in Swiss mice by intraperitoneal injection of 5×106 CFU/mL bacterial solutions. Nanoconjugated vancomycin was adminstrated to VSSA- and VRSA-infected mice at its effective dose for 10 days. Vancomycin was adminstrated to VSSA- and VRSA-infected mice at a similar dose, respectively, for 10 days. Vancomycin and nanoconjugated vancomycin were adminstrated to normal mice at their effective doses for 10 days. The result of this study reveals that in vivo VSSA and VRSA infection significantly increases the level of lipid peroxidation, protein oxidation, oxidized glutathione level, nitrite generation, nitrite release, and DNA damage and decreases the level of reduced glutathione, antioxidant enzyme status, and glutathione-dependent enzymes as compared to control group, which were increased or decreased significantly near to normal in nanoconjugated vancomycin-treated group. These findings suggest the potential use and beneficial role of nanoconjugated vancomycin against VSSA and VRSA infection-induced oxidative stress in lymphocytes.

  1. [Occupational hazards, DNA damage, and oxidative stress on exposure to waste anesthetic gases].

    Science.gov (United States)

    Lucio, Lorena M C; Braz, Mariana G; do Nascimento Junior, Paulo; Braz, José Reinaldo C; Braz, Leandro G

    The waste anesthetic gases (WAGs) present in the ambient air of operating rooms (OR), are associated with various occupational hazards. This paper intends to discuss occupational exposure to WAGs and its impact on exposed professionals, with emphasis on genetic damage and oxidative stress. Despite the emergence of safer inhaled anesthetics, occupational exposure to WAGs remains a current concern. Factors related to anesthetic techniques and anesthesia workstations, in addition to the absence of a scavenging system in the OR, contribute to anesthetic pollution. In order to minimize the health risks of exposed professionals, several countries have recommended legislation with maximum exposure limits. However, developing countries still require measurement of WAGs and regulation for occupational exposure to WAGs. WAGs are capable of inducing damage to the genetic material, such as DNA damage assessed using the comet assay and increased frequency of micronucleus in professionals with long-term exposure. Oxidative stress is also associated with WAGs exposure, as it induces lipid peroxidation, oxidative damage in DNA, and impairment of the antioxidant defense system in exposed professionals. The occupational hazards related to WAGs including genotoxicity, mutagenicity and oxidative stress, stand as a public health issue and must be acknowledged by exposed personnel and responsible authorities, especially in developing countries. Thus, it is urgent to stablish maximum safe limits of concentration of WAGs in ORs and educational practices and protocols for exposed professionals. Copyright © 2017 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.

  2. Oxidative Stress, DNA Damage and DNA Repair in Female Patients with Diabetes Mellitus Type 2.

    Directory of Open Access Journals (Sweden)

    Annemarie Grindel

    Full Text Available Diabetes mellitus type 2 (T2DM is associated with oxidative stress which in turn can lead to DNA damage. The aim of the present study was to analyze oxidative stress, DNA damage and DNA repair in regard to hyperglycemic state and diabetes duration.Female T2DM patients (n = 146 were enrolled in the MIKRODIAB study and allocated in two groups regarding their glycated hemoglobin (HbA1c level (HbA1c≤7.5%, n = 74; HbA1c>7.5%, n = 72. In addition, tertiles according to diabetes duration (DD were created (DDI = 6.94±3.1 y, n = 49; DDII = 13.35±1.1 y, n = 48; DDIII = 22.90±7.3 y, n = 49. Oxidative stress parameters, including ferric reducing ability potential, malondialdehyde, oxidized and reduced glutathione, reduced thiols, oxidized LDL and F2-Isoprostane as well as the activity of antioxidant enzymes superoxide dismutase, catalase and glutathione peroxidase were measured. Damage to DNA was analyzed in peripheral blood mononuclear cells and whole blood with single cell gel electrophoresis. DNA base excision repair capacity was tested with the modified comet repair assay. Additionally, mRNA expressions of nine genes related to base excision repair were analyzed in a subset of 46 matched individuals.No significant differences in oxidative stress parameters, antioxidant enzyme activities, damage to DNA and base excision repair capacity, neither between a HbA1c cut off />7.5%, nor between diabetes duration was found. A significant up-regulation in mRNA expression was found for APEX1, LIG3 and XRCC1 in patients with >7.5% HbA1c. Additionally, we observed higher total cholesterol, LDL-cholesterol, LDL/HDL-cholesterol, triglycerides, Framingham risk score, systolic blood pressure, BMI and lower HDL-cholesterol in the hyperglycemic group.BMI, blood pressure and blood lipid status were worse in hyperglycemic individuals. However, no major disparities regarding oxidative stress, damage to DNA and DNA repair were present which might be due to good medical

  3. Altered Gravity Induces Oxidative Stress in Drosophila Melanogaster

    Science.gov (United States)

    Bhattacharya, Sharmila; Hosamani, Ravikumar

    2015-01-01

    Altered gravity environments can induce increased oxidative stress in biological systems. Microarray data from our previous spaceflight experiment (FIT experiment on STS-121) indicated significant changes in the expression of oxidative stress genes in adult fruit flies after spaceflight. Currently, our lab is focused on elucidating the role of hypergravity-induced oxidative stress and its impact on the nervous system in Drosophila melanogaster. Biochemical, molecular, and genetic approaches were combined to study this effect on the ground. Adult flies (2-3 days old) exposed to acute hypergravity (3g, for 1 hour and 2 hours) showed significantly elevated levels of Reactive Oxygen Species (ROS) in fly brains compared to control samples. This data was supported by significant changes in mRNA expression of specific oxidative stress and antioxidant defense related genes. As anticipated, a stress-resistant mutant line, Indy302, was less vulnerable to hypergravity-induced oxidative stress compared to wild-type flies. Survival curves were generated to study the combined effect of hypergravity and pro-oxidant treatment. Interestingly, many of the oxidative stress changes that were measured in flies showed sex specific differences. Collectively, our data demonstrate that altered gravity significantly induces oxidative stress in Drosophila, and that one of the organs where this effect is evident is the brain.

  4. p,p'-DDT induces testicular oxidative stress-induced apoptosis in adult rats.

    Science.gov (United States)

    Marouani, Neila; Hallegue, Dorsaf; Sakly, Mohsen; Benkhalifa, Moncef; Ben Rhouma, Khémais; Tebourbi, Olfa

    2017-05-26

    The 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (p,p'-DDT) is a known persistent organic pollutant and male reproductive toxicant. The present study is designed to test the hypothesis that oxidative stress mediates p,p'-DDT-induced apoptosis in testis. Male Wistar rats received an intraperitoneal (ip) injection of the pesticide at doses of 50 and 100mg/kg for 10 consecutive days. The oxidative stress was evaluated by biomarkers such lipid peroxidation (LPO) and metallothioneins (MTs) levels. Antioxidant enzymes activities was assessed by determination of superoxide dismutase (SOD), catalase (CAT) and hydrogen peroxide (H 2 O 2 ) production. In addition, glutathione-dependent enzymes and reducing power in testis was evaluated by glutathione peroxidase (Gpx), glutathione reductase (GR), glutathione S-transferase (GST) activities and reduced and oxidized glutathione (GSH - GSSG) levels. Apoptosis was evaluated by DNA fragmentation detected by agarose gel electrophoresis. Germinal cells apoptosis and the apoptotic index was assessed through the TUNEL assay. After 10 days of treatment, an increase in LPO level and H 2 O 2 production occurred, while MTs level, SOD and CAT activities were decreased. Also, the Gpx, GR, GST, and GSH activities were decreased, whereas GSSG activity was increased. Testicular tissues of treated rats showed pronounced degradation of the DNA into oligonucleotides as seen in the typical electrophoretic DNA ladder pattern. Intense apoptosis was observed in germinal cells of DDT-exposed rats. In addition, the apoptotic index was significantly increased in testis of DDT-treated rats. These results clearly suggest that DDT sub-acute treatment causes oxidative stress in rat testis leading to apoptosis.

  5. GSTP1 Loss results in accumulation of oxidative DNA base damage and promotes prostate cancer cell survival following exposure to protracted oxidative stress.

    Science.gov (United States)

    Mian, Omar Y; Khattab, Mohamed H; Hedayati, Mohammad; Coulter, Jonathan; Abubaker-Sharif, Budri; Schwaninger, Julie M; Veeraswamy, Ravi K; Brooks, James D; Hopkins, Lisa; Shinohara, Debika Biswal; Cornblatt, Brian; Nelson, William G; Yegnasubramanian, Srinivasan; DeWeese, Theodore L

    2016-02-01

    Epigenetic silencing of glutathione S-transferase π (GSTP1) is a hallmark of transformation from normal prostatic epithelium to adenocarcinoma of the prostate. The functional significance of this loss is incompletely understood. The present study explores the effects of restored GSTP1 expression on glutathione levels, accumulation of oxidative DNA damage, and prostate cancer cell survival following oxidative stress induced by protracted, low dose rate ionizing radiation (LDR). GSTP1 protein expression was stably restored in LNCaP prostate cancer cells. The effect of GSTP1 restoration on protracted LDR-induced oxidative DNA damage was measured by GC-MS quantitation of modified bases. Reduced and oxidized glutathione levels were measured in control and GSTP1 expressing populations. Clonogenic survival studies of GSTP1- transfected LNCaP cells after exposure to protracted LDR were performed. Global gene expression profiling and pathway analysis were performed. GSTP1 expressing cells accumulated less oxidized DNA base damage and exhibited decreased survival compared to control LNCaP-Neo cells following oxidative injury induced by protracted LDR. Restoration of GSTP1 expression resulted in changes in modified glutathione levels that correlated with GSTP1 protein levels in response to protracted LDR-induced oxidative stress. Survival differences were not attributable to depletion of cellular glutathione stores. Gene expression profiling and pathway analysis following GSTP1 restoration suggests this protein plays a key role in regulating prostate cancer cell survival. The ubiquitous epigenetic silencing of GSTP1 in prostate cancer results in enhanced survival and accumulation of potentially promutagenic DNA adducts following exposure of cells to protracted oxidative injury suggesting a protective, anti-neoplastic function of GSTP1. The present work provides mechanistic backing to the tumor suppressor function of GSTP1 and its role in prostate carcinogenesis. © 2015

  6. Uranium induces oxidative stress in lung epithelial cells

    International Nuclear Information System (INIS)

    Periyakaruppan, Adaikkappan; Kumar, Felix; Sarkar, Shubhashish; Sharma, Chidananda S.; Ramesh, Govindarajan T.

    2007-01-01

    Uranium compounds are widely used in the nuclear fuel cycle, antitank weapons, tank armor, and also as a pigment to color ceramics and glass. Effective management of waste uranium compounds is necessary to prevent exposure to avoid adverse health effects on the population. Health risks associated with uranium exposure includes kidney disease and respiratory disorders. In addition, several published results have shown uranium or depleted uranium causes DNA damage, mutagenicity, cancer and neurological defects. In the current study, uranium toxicity was evaluated in rat lung epithelial cells. The study shows uranium induces significant oxidative stress in rat lung epithelial cells followed by concomitant decrease in the antioxidant potential of the cells. Treatment with uranium to rat lung epithelial cells also decreased cell proliferation after 72 h in culture. The decrease in cell proliferation was attributed to loss of total glutathione and superoxide dismutase in the presence of uranium. Thus the results indicate the ineffectiveness of antioxidant system's response to the oxidative stress induced by uranium in the cells. (orig.)

  7. Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster.

    Science.gov (United States)

    Ahamed, Maqusood; Posgai, Ryan; Gorey, Timothy J; Nielsen, Mark; Hussain, Saber M; Rowe, John J

    2010-02-01

    Due to the intensive commercial application of silver nanoparticles (Ag NPs), risk assessment of this nanoparticle is of great importance. Our previous in vitro study demonstrated that Ag NPs caused DNA damage and apoptosis in mouse embryonic stem cells and fibroblasts. However, toxicity of Ag NPs in vivo is largely lacking. This study was undertaken to examine the toxic effects of well-characterized polysaccharide coated 10 nm Ag NPs on heat shock stress, oxidative stress, DNA damage and apoptosis in Drosophila melanogaster. Third instar larvae of D. melanogaster were fed a diet of standard cornmeal media mixed with Ag NPs at the concentrations of 50 and 100 microg/ml for 24 and 48 h. Ag NPs up-regulated the expression of heat shock protein 70 and induced oxidative stress in D. melanogaster. Malondialdehyde level, an end product of lipid peroxidation was significantly higher while antioxidant glutathione content was significantly lower in Ag NPs exposed organisms. Activities of antioxidant enzyme superoxide dismutase and catalase were also significantly higher in the organisms exposed to Ag NPs. Furthermore, Ag NPs up-regulated the cell cycle checkpoint p53 and cell signaling protein p38 that are involved in the DNA damage repair pathway. Moreover, activities of caspase-3 and caspase-9, markers of apoptosis were significantly higher in Ag NPs exposed organisms. The results indicate that Ag NPs in D. melanogaster induce heat shock stress, oxidative stress, DNA damage and apoptosis. This study suggests that the organism is stressed and thus warrants more careful assessment of Ag NPs using in vivo models to determine if chronic exposure presents developmental and reproductive toxicity. Copyright 2009 Elsevier Inc. All rights reserved.

  8. Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Ahamed, Maqusood; Posgai, Ryan; Gorey, Timothy J.; Nielsen, Mark; Hussain, Saber M.; Rowe, John J.

    2010-01-01

    Due to the intensive commercial application of silver nanoparticles (Ag NPs), risk assessment of this nanoparticle is of great importance. Our previous in vitro study demonstrated that Ag NPs caused DNA damage and apoptosis in mouse embryonic stem cells and fibroblasts. However, toxicity of Ag NPs in vivo is largely lacking. This study was undertaken to examine the toxic effects of well-characterized polysaccharide coated 10 nm Ag NPs on heat shock stress, oxidative stress, DNA damage and apoptosis in Drosophila melanogaster. Third instar larvae of D. melanogaster were fed a diet of standard cornmeal media mixed with Ag NPs at the concentrations of 50 and 100 μg/ml for 24 and 48 h. Ag NPs up-regulated the expression of heat shock protein 70 and induced oxidative stress in D. melanogaster. Malondialdehyde level, an end product of lipid peroxidation was significantly higher while antioxidant glutathione content was significantly lower in Ag NPs exposed organisms. Activities of antioxidant enzyme superoxide dismutase and catalase were also significantly higher in the organisms exposed to Ag NPs. Furthermore, Ag NPs up-regulated the cell cycle checkpoint p53 and cell signaling protein p38 that are involved in the DNA damage repair pathway. Moreover, activities of caspase-3 and caspase-9, markers of apoptosis were significantly higher in Ag NPs exposed organisms. The results indicate that Ag NPs in D. melanogaster induce heat shock stress, oxidative stress, DNA damage and apoptosis. This study suggests that the organism is stressed and thus warrants more careful assessment of Ag NPs using in vivo models to determine if chronic exposure presents developmental and reproductive toxicity.

  9. HCV-Induced Oxidative Stress: Battlefield-Winning Strategy

    Directory of Open Access Journals (Sweden)

    Khadija Rebbani

    2016-01-01

    Full Text Available About 150 million people worldwide are chronically infected with hepatitis C virus (HCV. The persistence of the infection is controlled by several mechanisms including the induction of oxidative stress. HCV relies on this strategy to redirect lipid metabolism machinery and escape immune response. The 3β-hydroxysterol Δ24-reductase (DHCR24 is one of the newly discovered host markers of oxidative stress. This protein, as HCV-induced oxidative stress responsive protein, may play a critical role in the pathogenesis of HCV chronic infection and associated liver diseases, when aberrantly expressed. The sustained expression of DHCR24 in response to HCV-induced oxidative stress results in suppression of nuclear p53 activity by blocking its acetylation and increasing its interaction with MDM2 in the cytoplasm leading to its degradation, which may induce hepatocarcinogenesis.

  10. Autophagy induction by SIRT6 is involved in oxidative stress-induced neuronal damage

    Directory of Open Access Journals (Sweden)

    Jiaxiang Shao

    2016-03-01

    Full Text Available Abstract SIRT6 is a NAD+-dependent histone deacetylase and has been implicated in the regulation of genomic stability, DNA repair, metabolic homeostasis and several diseases. The effect of SIRT6 in cerebral ischemia and oxygen/glucose deprivation (OGD has been reported, however the role of SIRT6 in oxidative stress damage remains unclear. Here we used SH-SY5Y neuronal cells and found that overexpression of SIRT6 led to decreased cell viability and increased necrotic cell death and reactive oxygen species (ROS production under oxidative stress. Mechanistic study revealed that SIRT6 induced autophagy via attenuation of AKT signaling and treatment with autophagy inhibitor 3-MA or knockdown of autophagy-related protein Atg5 rescued H2O2-induced neuronal injury. Conversely, SIRT6 inhibition suppressed autophagy and reduced oxidative stress-induced neuronal damage. These results suggest that SIRT6 might be a potential therapeutic target for neuroprotection.

  11. Diabetic Cardiovascular Disease Induced by Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Yosuke Kayama

    2015-10-01

    Full Text Available Cardiovascular disease (CVD is the leading cause of morbidity and mortality among patients with diabetes mellitus (DM. DM can lead to multiple cardiovascular complications, including coronary artery disease (CAD, cardiac hypertrophy, and heart failure (HF. HF represents one of the most common causes of death in patients with DM and results from DM-induced CAD and diabetic cardiomyopathy. Oxidative stress is closely associated with the pathogenesis of DM and results from overproduction of reactive oxygen species (ROS. ROS overproduction is associated with hyperglycemia and metabolic disorders, such as impaired antioxidant function in conjunction with impaired antioxidant activity. Long-term exposure to oxidative stress in DM induces chronic inflammation and fibrosis in a range of tissues, leading to formation and progression of disease states in these tissues. Indeed, markers for oxidative stress are overexpressed in patients with DM, suggesting that increased ROS may be primarily responsible for the development of diabetic complications. Therefore, an understanding of the pathophysiological mechanisms mediated by oxidative stress is crucial to the prevention and treatment of diabetes-induced CVD. The current review focuses on the relationship between diabetes-induced CVD and oxidative stress, while highlighting the latest insights into this relationship from findings on diabetic heart and vascular disease.

  12. Lung Oxidative Stress, DNA Damage, Apoptosis, and Fibrosis in Adenine-Induced Chronic Kidney Disease in Mice

    Directory of Open Access Journals (Sweden)

    Abderrahim Nemmar

    2017-11-01

    Full Text Available It is well-established that there is a crosstalk between the lung and the kidney, and several studies have reported association between chronic kidney disease (CKD and pulmonary pathophysiological changes. Experimentally, CKD can be caused in mice by dietary intake of adenine. Nevertheless, the consequence of such intervention on the lung received only scant attention. Here, we assessed the pulmonary effects of adenine (0.2% w/w in feed for 4 weeks-induced CKD in mice by assessing various physiological histological and biochemical endpoints. Adenine treatment induced a significant increase in urine output, urea and creatinine concentrations, and it decreased the body weight and creatinine clearance. It also increased proteinuria and the urinary levels of kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin. Compared with control group, the histopathological evaluation of lungs from adenine-treated mice showed polymorphonuclear leukocytes infiltration in alveolar and bronchial walls, injury, and fibrosis. Moreover, adenine caused a significant increase in lung lipid peroxidation and reactive oxygen species and decreased the antioxidant catalase. Adenine also induced DNA damage assessed by COMET assay. Similarly, adenine caused apoptosis in the lung characterized by a significant increase of cleaved caspase-3. Moreover, adenine induced a significant increase in the expression of nuclear factor erythroid 2–related factor 2 (Nrf2 in the lung. We conclude that administration of adenine in mice induced CKD is accompanied by lung oxidative stress, DNA damage, apoptosis, and Nrf2 expression and fibrosis.

  13. Continuous in vitro exposure of intestinal epithelial cells to E171 food additive causes oxidative stress, inducing oxidation of DNA bases but no endoplasmic reticulum stress.

    Science.gov (United States)

    Dorier, Marie; Béal, David; Marie-Desvergne, Caroline; Dubosson, Muriel; Barreau, Frédérick; Houdeau, Eric; Herlin-Boime, Nathalie; Carriere, Marie

    2017-08-01

    The whitening and opacifying properties of titanium dioxide (TiO 2 ) are commonly exploited when it is used as a food additive (E171). However, the safety of this additive can be questioned as TiO 2 nanoparticles (TiO 2 -NPs) have been classed at potentially toxic. This study aimed to shed some light on the mechanisms behind the potential toxicity of E171 on epithelial intestinal cells, using two in vitro models: (i) a monoculture of differentiated Caco-2 cells and (ii) a coculture of Caco-2 with HT29-MTX mucus-secreting cells. Cells were exposed to E171 and two different types of TiO 2 -NPs, either acutely (6-48 h) or repeatedly (three times a week for 3 weeks). Our results confirm that E171 damaged these cells, and that the main mechanism of toxicity was oxidation effects. Responses of the two models to E171 were similar, with a moderate, but significant, accumulation of reactive oxygen species, and concomitant downregulation of the expression of the antioxidant enzymes catalase, superoxide dismutase and glutathione reductase. Oxidative damage to DNA was detected in exposed cells, proving that E171 effectively induces oxidative stress; however, no endoplasmic reticulum stress was detected. E171 effects were less intense after acute exposure compared to repeated exposure, which correlated with higher Ti accumulation. The effects were also more intense in cells exposed to E171 than in cells exposed to TiO 2 -NPs. Taken together, these data show that E171 induces only moderate toxicity in epithelial intestinal cells, via oxidation.

  14. Comparative analyses reveal different consequences of two oxidative stress inducers, gamma irradiation and potassium tellurite, in the extremophile Deinococcus radiodurans

    International Nuclear Information System (INIS)

    Narasimha, Anaganti; Basu, Bhakti; Apte, Shree Kumar

    2014-01-01

    Proteomic and mass spectrometric analyses revealed differential responses of D. radiodurans to two oxidative stressors. While both elicited oxidative stress alleviation response, major divergence was observed at the level of DNA repair, metabolic pathways and protein homeostasis. Response to gamma irradiation was focused on DNA repair and ROS scavenging but supported metabolism as well as protein homeostasis. Tellurite, induced oxidative stress alleviation but decreased reducing affected and adversely affected metabolism and protein homeostasis

  15. [Biological consequences of oxidative stress induced by pesticides].

    Science.gov (United States)

    Grosicka-Maciąg, Emilia

    2011-06-17

    Pesticides are used to protect plants and numerous plant products. They are also utilized in several industrial branches. These compounds are highly toxic to living organisms. In spite of close supervision in the use of pesticides there is a serious risk that these agents are able to spread into the environment and contaminate water, soil, food, and feedstuffs. Recently, more and more studies have been focused on understanding the toxic mechanisms of pesticide actions. The data indicate that the toxic action of pesticides may include the induction of oxidative stress and accumulation of free radicals in the cell. Long-lasting or acute oxidative stress disturbs cell metabolism and is able to produce permanent changes in the structure of proteins, lipids, and DNA. The proteins that are oxidized may lose or enhance their activity. Moreover, the proteins oxidized are able to form aggregates that inhibit the systems responsible for protein degradation and lead to alterations of proteins in the cell. Once oxidized, lipids have the capacity to damage and depolarize cytoplasmic membranes. Free oxygen radicals are harmful to DNA including damage to single nitric bases, DNA strand breaks and adduct production. Many studies indicate that oxidative stress may accelerate development of numerous diseases including cancer and neurodegenerative ones such as Alzheimer’s and Parkinson’s disease and may also be responsible for infertility.

  16. The effects of lycopene on DNA damage and oxidative stress on indomethacin-induced gastric ulcer in rats.

    Science.gov (United States)

    Boyacioglu, Murat; Kum, Cavit; Sekkin, Selim; Yalinkilinc, Hande Sultan; Avci, Hamdi; Epikmen, Erkmen Tugrul; Karademir, Umit

    2016-04-01

    Lycopene, the main antioxidant compound present in tomatoes, has high singlet oxygen- and peroxyl radicals-quenching ability, resulting in protection against oxidative damage in aerobic cell. Indomethacin is a nonsteroidal anti-inflammatory drug, and can promote oxidative damage in gastric tissue. The aim of this study was to investigate the protective effects of lycopene on an indomethacin-induced gastric ulcer model. A total of 42 adult male Wistar rats were divided into six groups of seven animals as follows: control, indomethacin, lansoprazole, lycopene 10 mg/kg, lycopene 50 mg/kg and lycopene 100 mg/kg. Gastric ulcers were induced by oral administration of indomethacin, after which the differing doses of lycopene were administered by oral gavage. The efficacy of lycopene was compared with lansoprazole. DNA damage of lymphocytes was measured by comet assay. Activities of superoxide dismutase, catalase and myeloperoxidase, as well as malondialdehyde and glutathione levels were determined in stomach tissue. This tissue was also taken for pathological investigations. The TUNEL method was used to detect apoptotic cells in paraffin sections. The results showed that 100 mg/kg lycopene administration significantly decreased % Tail DNA and Mean Tail Moment in the gastric ulcer group, compared with the other treatment groups. This same dose of lycopene also significantly decreased high malondialdehyde level and myeloperoxidase activity, and increased the activity of antioxidant enzymes (with the exception of catalase) in tissue. Apoptosis rates in the stomachs of the rats correlated with the biochemical and histopathological findings. These results indicated that lycopene might have a protective effect against indomethacin-induced gastric ulcer and oxidative stress in rats. Copyright © 2015 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  17. Yeast signaling pathways in the oxidative stress response

    Energy Technology Data Exchange (ETDEWEB)

    Ikner, Aminah [Section of Microbiology, Division of Biological Sciences, University of California, Davis, CA 95616 (United States); Shiozaki, Kazuhiro [Section of Microbiology, Division of Biological Sciences, University of California, Davis, CA 95616 (United States)]. E-mail: kshiozaki@ucdavis.edu

    2005-01-06

    Oxidative stress that generates the reactive oxygen species (ROS) is one of the major causes of DNA damage and mutations. The 'DNA damage checkpoint' that arrests cell cycle and repairs damaged DNA has been a focus of recent studies, and the genetically amenable model systems provided by yeasts have been playing a leading role in the eukaryotic checkpoint research. However, means to eliminate ROS are likely to be as important as the DNA repair mechanisms in order to suppress mutations in the chromosomal DNA, and yeasts also serve as excellent models to understand how eukaryotes combat oxidative stress. In this article, we present an overview of the signaling pathways that sense oxidative stress and induce expression of various anti-oxidant genes in the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe and the pathogenic yeast Candida albicans. Three conserved signaling modules have been identified in the oxidative stress response of these diverse yeast species: the stress-responsive MAP kinase cascade, the multistep phosphorelay and the AP-1-like transcription factor. The structure and function of these signaling modules are discussed.

  18. Yeast signaling pathways in the oxidative stress response

    International Nuclear Information System (INIS)

    Ikner, Aminah; Shiozaki, Kazuhiro

    2005-01-01

    Oxidative stress that generates the reactive oxygen species (ROS) is one of the major causes of DNA damage and mutations. The 'DNA damage checkpoint' that arrests cell cycle and repairs damaged DNA has been a focus of recent studies, and the genetically amenable model systems provided by yeasts have been playing a leading role in the eukaryotic checkpoint research. However, means to eliminate ROS are likely to be as important as the DNA repair mechanisms in order to suppress mutations in the chromosomal DNA, and yeasts also serve as excellent models to understand how eukaryotes combat oxidative stress. In this article, we present an overview of the signaling pathways that sense oxidative stress and induce expression of various anti-oxidant genes in the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe and the pathogenic yeast Candida albicans. Three conserved signaling modules have been identified in the oxidative stress response of these diverse yeast species: the stress-responsive MAP kinase cascade, the multistep phosphorelay and the AP-1-like transcription factor. The structure and function of these signaling modules are discussed

  19. Nickel exposure induces oxidative damage to mitochondrial DNA in Neuro2a cells: the neuroprotective roles of melatonin.

    Science.gov (United States)

    Xu, Shang-Cheng; He, Min-Di; Lu, Yong-Hui; Li, Li; Zhong, Min; Zhang, Yan-Wen; Wang, Yuan; Yu, Zheng-Ping; Zhou, Zhou

    2011-11-01

    Recent studies suggest that oxidative stress and mitochondrial dysfunction play important roles in the neurotoxicity of nickel. Because mitochondrial DNA (mtDNA) is highly vulnerable to oxidative stress and melatonin can efficiently protect mtDNA against oxidative damage in various pathological conditions, the aims of this study were to determine whether mtDNA oxidative damage was involved in the neurotoxicity of nickel and to assay the neuroprotective effects of melatonin in mtDNA. In this study, we exposed mouse neuroblastoma cell lines (Neuro2a) to different concentrations of nickel chloride (NiCl(2), 0.125, 0.25, and 0.5 mm) for 24 hr. We found that nickel significantly increased reactive oxygen species (ROS) production and mitochondrial superoxide levels. In addition, nickel exposure increased mitochondrial 8-hydroxyguanine (8-OHdG) content and reduced mtDNA content and mtDNA transcript levels. Consistent with this finding, nickel was found to destroy mtDNA nucleoid structure and decrease protein levels of Tfam, a key protein component for nucleoid organization. However, all the oxidative damage to mtDNA induced by nickel was efficiently attenuated by melatonin pretreatment. Our results suggest that oxidative damage to mtDNA may account for the neurotoxicity of nickel. Melatonin has great pharmacological potential in protecting mtDNA against the adverse effects of nickel in the nervous system. © 2011 John Wiley & Sons A/S.

  20. Tobacco smoking and oxidative stress to DNA

    DEFF Research Database (Denmark)

    Ellegaard, Pernille Kempel; Poulsen, Henrik Enghusen

    2016-01-01

    Oxidative stress to DNA from smoking was investigated in one randomized smoking cessation study and in 36 cohort studies from excretion of urinary 8-oxo-7-hydrodeoxyguanosine (8-oxodG). Meta-analysis of the 36 cohort studies showed smoking associated with a 15.7% (95% CL 11.0:20.3, p < 0.0001) in...

  1. The effect of obstructive sleep apnea on DNA damage and oxidative stress.

    Science.gov (United States)

    Kang, Il Gyu; Jung, Joo Hyun; Kim, Seon Tae

    2013-06-01

    Obstructive sleep apnea syndrome (OSAS) is associated with repeated hypoxia and re-oxygenation. This characteristic of OSAS may cause oxidative stress and DNA damage. However, the link of OSAS with oxidative stress and DNA damage is still controversial. In the current study, we investigated whether OSAS causes DNA damage using alkaline single-cell gel electrophoresis (comet assay) and measuring oxidative stress by monitoring serum malondialdehyde (MDA) levels. From March 2009 to August 2010, 51 patients who underwent polysomnography (PSG) during the night were enrolled in this study. We obtained serum from the patients at 6 AM. DNA damage and oxidative stress were evaluated using a comet assay and measuring serum MDA, respectively. We divided the patients into two groups according to the existence of comets appearing in the comet assay. Group 1 included 44 patients with negative assay results and group 2 consisted of seven patients with positive comet assay findings. We compared the age, gender proportion, PSG data (respiratory disturbance index [RDI], lowest O2 saturation level, and arousal index [AI]), time of disease onset, smoking habits, and serum MDA levels between the two groups. The average age and gender proportion of the two groups were not statistically different (P>0.05). The average of RDI for group 1 was 30.4±18.4 and 8.0±7.7 (P0.05). No relationship between positive comet assay results and OSAS severity was identified. Results of the current study showed that OSAS was not associated with DNA damage as measured by comet assays or oxidative stress according to serum MDA levels.

  2. Zinc protects HepG2 cells against the oxidative damage and DNA damage induced by ochratoxin A

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Juanjuan; Zhang, Yu [Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China); Xu, Wentao, E-mail: xuwentaoboy@sina.com [Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China); The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083 (China); Luo, YunBo [Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China); The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083 (China); Hao, Junran [Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China); Shen, Xiao Li [The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083 (China); Yang, Xuan [Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China); Li, Xiaohong [The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083 (China); Huang, Kunlun, E-mail: hkl009@163.com [Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China); The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083 (China)

    2013-04-15

    Oxidative stress and DNA damage are the most studied mechanisms by which ochratoxin A (OTA) induces its toxic effects, which include nephrotoxicity, hepatotoxicity, immunotoxicity and genotoxicity. Zinc, which is an essential trace element, is considered a potential antioxidant. The aim of this paper was to investigate whether zinc supplement could inhibit OTA-induced oxidative damage and DNA damage in HepG2 cells and the mechanism of inhibition. The results indicated that that exposure of OTA decreased the intracellular zinc concentration; zinc supplement significantly reduced the OTA-induced production of reactive oxygen species (ROS) and decrease in superoxide dismutase (SOD) activity but did not affect the OTA-induced decrease in the mitochondrial membrane potential (Δψ{sub m}). Meanwhile, the addition of the zinc chelator N,N,N′,N′-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) strongly aggravated the OTA-induced oxidative damage. This study also demonstrated that zinc helped to maintain the integrity of DNA through the reduction of OTA-induced DNA strand breaks, 8-hydroxy-2′-deoxyguanosine (8-OHdG) formation and DNA hypomethylation. OTA increased the mRNA expression of metallothionein1-A (MT1A), metallothionein2-A (MT2A) and Cu/Zn superoxide dismutase (SOD1). Zinc supplement further enhanced the mRNA expression of MT1A and MT2A, but it had no effect on the mRNA expression of SOD1 and catalase (CAT). Zinc was for the first time proven to reduce the cytotoxicity of OTA through inhibiting the oxidative damage and DNA damage, and regulating the expression of zinc-associated genes. Thus, the addition of zinc can potentially be used to reduce the OTA toxicity of contaminated feeds. - Highlights: ► OTA decreased the intracellular zinc concentration. ► OTA induced the formation of 8-OHdG in HepG2 cells. ► It was testified for the first time that OTA induced DNA hypomethylation. ► Zinc protects against the oxidative damage and DNA damage induced by

  3. Zinc protects HepG2 cells against the oxidative damage and DNA damage induced by ochratoxin A

    International Nuclear Information System (INIS)

    Zheng, Juanjuan; Zhang, Yu; Xu, Wentao; Luo, YunBo; Hao, Junran; Shen, Xiao Li; Yang, Xuan; Li, Xiaohong; Huang, Kunlun

    2013-01-01

    Oxidative stress and DNA damage are the most studied mechanisms by which ochratoxin A (OTA) induces its toxic effects, which include nephrotoxicity, hepatotoxicity, immunotoxicity and genotoxicity. Zinc, which is an essential trace element, is considered a potential antioxidant. The aim of this paper was to investigate whether zinc supplement could inhibit OTA-induced oxidative damage and DNA damage in HepG2 cells and the mechanism of inhibition. The results indicated that that exposure of OTA decreased the intracellular zinc concentration; zinc supplement significantly reduced the OTA-induced production of reactive oxygen species (ROS) and decrease in superoxide dismutase (SOD) activity but did not affect the OTA-induced decrease in the mitochondrial membrane potential (Δψ m ). Meanwhile, the addition of the zinc chelator N,N,N′,N′-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) strongly aggravated the OTA-induced oxidative damage. This study also demonstrated that zinc helped to maintain the integrity of DNA through the reduction of OTA-induced DNA strand breaks, 8-hydroxy-2′-deoxyguanosine (8-OHdG) formation and DNA hypomethylation. OTA increased the mRNA expression of metallothionein1-A (MT1A), metallothionein2-A (MT2A) and Cu/Zn superoxide dismutase (SOD1). Zinc supplement further enhanced the mRNA expression of MT1A and MT2A, but it had no effect on the mRNA expression of SOD1 and catalase (CAT). Zinc was for the first time proven to reduce the cytotoxicity of OTA through inhibiting the oxidative damage and DNA damage, and regulating the expression of zinc-associated genes. Thus, the addition of zinc can potentially be used to reduce the OTA toxicity of contaminated feeds. - Highlights: ► OTA decreased the intracellular zinc concentration. ► OTA induced the formation of 8-OHdG in HepG2 cells. ► It was testified for the first time that OTA induced DNA hypomethylation. ► Zinc protects against the oxidative damage and DNA damage induced by OTA in

  4. Oxidative stress-induced autophagy: Role in pulmonary toxicity

    International Nuclear Information System (INIS)

    Malaviya, Rama; Laskin, Jeffrey D.; Laskin, Debra L.

    2014-01-01

    Autophagy is an evolutionarily conserved catabolic process important in regulating the turnover of essential proteins and in elimination of damaged organelles and protein aggregates. Autophagy is observed in the lung in response to oxidative stress generated as a consequence of exposure to environmental toxicants. Whether autophagy plays role in promoting cell survival or cytotoxicity is unclear. In this article recent findings on oxidative stress-induced autophagy in the lung are reviewed; potential mechanisms initiating autophagy are also discussed. A better understanding of autophagy and its role in pulmonary toxicity may lead to the development of new strategies to treat lung injury associated with oxidative stress. - Highlights: • Exposure to pulmonary toxicants is associated with oxidative stress. • Oxidative stress is known to induce autophagy. • Autophagy is upregulated in the lung following exposure to pulmonary toxicants. • Autophagy may be protective or pathogenic

  5. Oxidative stress-induced autophagy: Role in pulmonary toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Malaviya, Rama [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854 (United States); Laskin, Debra L., E-mail: laskin@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States)

    2014-03-01

    Autophagy is an evolutionarily conserved catabolic process important in regulating the turnover of essential proteins and in elimination of damaged organelles and protein aggregates. Autophagy is observed in the lung in response to oxidative stress generated as a consequence of exposure to environmental toxicants. Whether autophagy plays role in promoting cell survival or cytotoxicity is unclear. In this article recent findings on oxidative stress-induced autophagy in the lung are reviewed; potential mechanisms initiating autophagy are also discussed. A better understanding of autophagy and its role in pulmonary toxicity may lead to the development of new strategies to treat lung injury associated with oxidative stress. - Highlights: • Exposure to pulmonary toxicants is associated with oxidative stress. • Oxidative stress is known to induce autophagy. • Autophagy is upregulated in the lung following exposure to pulmonary toxicants. • Autophagy may be protective or pathogenic.

  6. Oxidative stress in MeHg-induced neurotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Farina, Marcelo, E-mail: farina@ccb.ufsc.br [Departamento de Bioquimica, Centro de Ciencias Biologicas, Universidade Federal de Santa Catarina, Florianopolis, SC (Brazil); Aschner, Michael [Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN (United States); Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN (United States); Rocha, Joao B.T., E-mail: jbtrocha@yahoo.com.br [Departamento de Quimica, Centro de Ciencias Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS (Brazil)

    2011-11-15

    Methylmercury (MeHg) is an environmental toxicant that leads to long-lasting neurological and developmental deficits in animals and humans. Although the molecular mechanisms mediating MeHg-induced neurotoxicity are not completely understood, several lines of evidence indicate that oxidative stress represents a critical event related to the neurotoxic effects elicited by this toxicant. The objective of this review is to summarize and discuss data from experimental and epidemiological studies that have been important in clarifying the molecular events which mediate MeHg-induced oxidative damage and, consequently, toxicity. Although unanswered questions remain, the electrophilic properties of MeHg and its ability to oxidize thiols have been reported to play decisive roles to the oxidative consequences observed after MeHg exposure. However, a close examination of the relationship between low levels of MeHg necessary to induce oxidative stress and the high amounts of sulfhydryl-containing antioxidants in mammalian cells (e.g., glutathione) have led to the hypothesis that nucleophilic groups with extremely high affinities for MeHg (e.g., selenols) might represent primary targets in MeHg-induced oxidative stress. Indeed, the inhibition of antioxidant selenoproteins during MeHg poisoning in experimental animals has corroborated this hypothesis. The levels of different reactive species (superoxide anion, hydrogen peroxide and nitric oxide) have been reported to be increased in MeHg-exposed systems, and the mechanisms concerning these increments seem to involve a complex sequence of cascading molecular events, such as mitochondrial dysfunction, excitotoxicity, intracellular calcium dyshomeostasis and decreased antioxidant capacity. This review also discusses potential therapeutic strategies to counteract MeHg-induced toxicity and oxidative stress, emphasizing the use of organic selenocompounds, which generally present higher affinity for MeHg when compared to the classically

  7. Arsenic transformation predisposes human skin keratinocytes to UV-induced DNA damage yet enhances their survival apparently by diminishing oxidant response

    International Nuclear Information System (INIS)

    Sun Yang; Kojima, Chikara; Chignell, Colin; Mason, Ronald; Waalkes, Michael P.

    2011-01-01

    Inorganic arsenic and UV, both human skin carcinogens, may act together as skin co-carcinogens. We find human skin keratinocytes (HaCaT cells) are malignantly transformed by low-level arsenite (100 nM, 30 weeks; termed As-TM cells) and with transformation concurrently undergo full adaptation to arsenic toxicity involving reduced apoptosis and oxidative stress response to high arsenite concentrations. Oxidative DNA damage (ODD) is a possible mechanism in arsenic carcinogenesis and a hallmark of UV-induced skin cancer. In the current work, inorganic arsenite exposure (100 nM) did not induce ODD during the 30 weeks required for malignant transformation. Although acute UV-treatment (UVA, 25 J/cm 2 ) increased ODD in passage-matched control cells, once transformed by arsenic to As-TM cells, acute UV actually further increased ODD (> 50%). Despite enhanced ODD, As-TM cells were resistant to UV-induced apoptosis. The response of apoptotic factors and oxidative stress genes was strongly mitigated in As-TM cells after UV exposure including increased Bcl2/Bax ratio and reduced Caspase-3, Nrf2, and Keap1 expression. Several Nrf2-related genes (HO-1, GCLs, SOD) showed diminished responses in As-TM cells after UV exposure consistent with reduced oxidant stress response. UV-exposed As-TM cells showed increased expression of cyclin D1 (proliferation gene) and decreased p16 (tumor suppressor). UV exposure enhanced the malignant phenotype of As-TM cells. Thus, the co-carcinogenicity between UV and arsenic in skin cancer might involve adaptation to chronic arsenic exposure generally mitigating the oxidative stress response, allowing apoptotic by-pass after UV and enhanced cell survival even in the face of increased UV-induced oxidative stress and increased ODD. - Highlights: → Arsenic transformation adapted to UV-induced apoptosis. → Arsenic transformation diminished oxidant response. → Arsenic transformation enhanced UV-induced DNA damage.

  8. Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury

    Science.gov (United States)

    Azzam, Edouard I.; Jay-Gerin, Jean-Paul; Pain, Debkumar

    2013-01-01

    Cellular exposure to ionizing radiation leads to oxidizing events that alter atomic structure through direct interactions of radiation with target macromolecules or via products of water radiolysis. Further, the oxidative damage may spread from the targeted to neighboring, non-targeted bystander cells through redox-modulated intercellular communication mechanisms. To cope with the induced stress and the changes in the redox environment, organisms elicit transient responses at the molecular, cellular and tissue levels to counteract toxic effects of radiation. Metabolic pathways are induced during and shortly after the exposure. Depending on radiation dose, dose-rate and quality, these protective mechanisms may or may not be sufficient to cope with the stress. When the harmful effects exceed those of homeostatic biochemical processes, induced biological changes persist and may be propagated to progeny cells. Physiological levels of reactive oxygen and nitrogen species play critical roles in many cellular functions. In irradiated cells, levels of these reactive species may be increased due to perturbations in oxidative metabolism and chronic inflammatory responses, thereby contributing to the long-term effects of exposure to ionizing radiation on genomic stability. Here, in addition to immediate biological effects of water radiolysis on DNA damage, we also discuss the role of mitochondria in the delayed outcomes of ionization radiation. Defects in mitochondrial functions lead to accelerated aging and numerous pathological conditions. Different types of radiation vary in their linear energy transfer (LET) properties, and we discuss their effects on various aspects of mitochondrial physiology. These include short and long-term in vitro and in vivo effects on mitochondrial DNA, mitochondrial protein import and metabolic and antioxidant enzymes. PMID:22182453

  9. JNK Phosphorylates SIRT6 to Stimulate DNA Double-Strand Break Repair in Response to Oxidative Stress by Recruiting PARP1 to DNA Breaks

    Directory of Open Access Journals (Sweden)

    Michael Van Meter

    2016-09-01

    Full Text Available The accumulation of damage caused by oxidative stress has been linked to aging and to the etiology of numerous age-related diseases. The longevity gene, sirtuin 6 (SIRT6, promotes genome stability by facilitating DNA repair, especially under oxidative stress conditions. Here we uncover the mechanism by which SIRT6 is activated by oxidative stress to promote DNA double-strand break (DSB repair. We show that the stress-activated protein kinase, c-Jun N-terminal kinase (JNK, phosphorylates SIRT6 on serine 10 in response to oxidative stress. This post-translational modification facilitates the mobilization of SIRT6 to DNA damage sites and is required for efficient recruitment of poly (ADP-ribose polymerase 1 (PARP1 to DNA break sites and for efficient repair of DSBs. Our results demonstrate a post-translational mechanism regulating SIRT6, and they provide the link between oxidative stress signaling and DNA repair pathways that may be critical for hormetic response and longevity assurance.

  10. Periodontitis and increase in circulating oxidative stress

    Directory of Open Access Journals (Sweden)

    Takaaki Tomofuji

    2009-05-01

    Full Text Available Reactive oxygen species (ROS are products of normal cellular metabolism. However, excessive production of ROS oxidizes DNA, lipids and proteins, inducing tissue damage. Studies have shown that periodontitis induces excessive ROS production in periodontal tissue. When periodontitis develops, ROS produced in the periodontal lesion diffuse into the blood stream, resulting in the oxidation of blood molecules (circulating oxidative stress. Such oxidation may be detrimental to systemic health. For instance, previous animal studies suggested that experimental periodontitis induces oxidative damage of the liver and descending aorta by increasing circulating oxidative stress. In addition, it has been revealed that clinical parameters in chronic periodontitis patients showed a significant improvement 2 months after periodontal treatment, which was accompanied by a significant reduction of reactive oxygen metabolites in plasma. Improvement of periodontitis by periodontal treatment could reduce the occurrence of circulating oxidative stress. Furthermore, recent studies indicate that the increase in circulating oxidative stress following diabetes mellitus and inappropriate nutrition damages periodontal tissues. In such cases, therapeutic approaches to systemic oxidative stress might be necessary to improve periodontal health.

  11. Diphenylmethyl selenocyanate attenuates malachite green induced oxidative injury through antioxidation & inhibition of DNA damage in mice

    Science.gov (United States)

    Das, Jayanta Kumar; Sarkar, Sibani; Hossain, Sk Ugir; Chakraborty, Pramita; Das, Rajat Kumar; Bhattacharya, Sudin

    2013-01-01

    Background & objectives: Malachite green (MG), an environmentally hazardous material, is used as a non permitted food colouring agent, especially in India. Selenium (Se) is an essential nutritional trace element required for animals and humans to guard against oxidative stress induced by xenobiotic compounds of diverse nature. In the present study, the role of the selenium compound diphenylmethyl selenocyanate (DMSE) was assessed on the oxidative stress (OS) induced by a food colouring agent, malachite green (MG) in vivo in mice. Methods: Swiss albino mice (Mus musculus) were intraperitoneally injected with MG at a standardized dose of 100 μg/ mouse for 30 days. DMSE was given orally at an optimum dose of 3 mg/kg b.w. in pre (15 days) and concomitant treatment schedule throughout the experimental period. The parameters viz. ALT, AST, LPO, GSH, GST, SOD, CAT, GPx, TrxR, CA, MN, MI and DNA damage have been evaluated. Results: The DMSE showed its potential to protect against MG induced hepatotoxicity by controlling the serum alanine aminotransferase and aspartate amino transferase (ALT and AST) levels and also ameliorated oxidative stress by modulating hepatic lipid peroxidation and different detoxifying and antioxidative enzymes such as glutathione-S-transferase (GST), superoxide dismutase (SOD), catalase (CAT), and also the selenoenzymes such as glutathione peroxidase (GPx) and thioredoxin reductase (TrxR) and reduced glutathione level which in turn reduced DNA damage. Interpretation & conclusions: The organo-selenium compound DMSE showed significant protection against MG induced heptotoxicity and DNA damage in murine model. Better protection was observed in pretreatment group than in the concomitant group. Further studies need to be done to understand the mechanism of action. PMID:23852297

  12. Nitrogen gas plasma treatment of bacterial spores induces oxidative stress that damages the genomic DNA.

    Science.gov (United States)

    Sakudo, Akikazu; Toyokawa, Yoichi; Nakamura, Tetsuji; Yagyu, Yoshihito; Imanishi, Yuichiro

    2017-01-01

    Gas plasma, produced by a short high‑voltage pulse generated from a static induction thyristor power supply [1.5 kilo pulse/sec (kpps)], was demonstrated to inactivate Geobacillus stearothermophilus spores (decimal reduction time at 15 min, 2.48 min). Quantitative polymerase chain reaction and enzyme‑linked immunosorbent assays further indicated that nitrogen gas plasma treatment for 15 min decreased the level of intact genomic DNA and increased the level of 8-hydroxy-2'-deoxyguanosine, a major product of DNA oxidation. Three potential inactivation factors were generated during operation of the gas plasma instrument: Heat, longwave ultraviolet-A and oxidative stress (production of hydrogen peroxide, nitrite and nitrate). Treatment of the spores with hydrogen peroxide (3x2‑4%) effectively inactivated the bacteria, whereas heat treatment (100˚C), exposure to UV-A (75‑142 mJ/cm2) and 4.92 mM peroxynitrite (•ONOO‑), which is decomposed into nitrite and nitrate, did not. The results of the present study suggest the gas plasma treatment inactivates bacterial spores primarily by generating hydrogen peroxide, which contributes to the oxidation of the host genomic DNA.

  13. Metallothionein blocks oxidative DNA damage induced by acute inorganic arsenic exposure

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Wei, E-mail: qu@niehs.nih.gov; Waalkes, Michael P.

    2015-02-01

    We studied how protein metallothionein (MT) impacts arsenic-induced oxidative DNA damage (ODD) using cells that poorly express MT (MT-I/II double knockout embryonic cells; called MT-null cells) and wild-type (WT) MT competent cells. Arsenic (as NaAsO{sub 2}) was less cytolethal over 24 h in WT cells (LC{sub 50} = 11.0 ± 1.3 μM; mean ± SEM) than in MT-null cells (LC{sub 50} = 5.6 ± 1.2 μM). ODD was measured by the immuno-spin trapping method. Arsenic (1 or 5 μM; 24 h) induced much less ODD in WT cells (121% and 141% of control, respectively) than in MT-null cells (202% and 260%). In WT cells arsenic caused concentration-dependent increases in MT expression (transcript and protein), and in the metal-responsive transcription factor-1 (MTF-1), which is required to induce the MT gene. In contrast, basal MT levels were not detectable in MT-null cells and unaltered by arsenic exposure. Transfection of MT-I gene into the MT-null cells markedly reduced arsenic-induced ODD levels. The transport genes, Abcc1 and Abcc2 were increased by arsenic in WT cells but either showed no or very limited increases in MT-null cells. Arsenic caused increases in oxidant stress defense genes HO-1 and GSTα2 in both WT and MT-null cells, but to much higher levels in WT cells. WT cells appear more adept at activating metal transport systems and oxidant response genes, although the role of MT in these responses is unclear. Overall, MT protects against arsenic-induced ODD in MT competent cells by potential sequestration of scavenging oxidant radicals and/or arsenic. - Highlights: • Metallothionein blocks arsenic toxicity. • Metallothionein reduces arsenic-induced DNA damage. • Metallothionein may bind arsenic or radicals produced by arsenic.

  14. Oxidative stress induction by T-2 toxin causes DNA damage and triggers apoptosis via caspase pathway in human cervical cancer cells

    International Nuclear Information System (INIS)

    Chaudhari, Manjari; Jayaraj, R.; Bhaskar, A.S.B.; Lakshmana Rao, P.V.

    2009-01-01

    T-2 toxin is the most toxic trichothecene and both humans and animals suffer from several pathological conditions after consumption of foodstuffs contaminated with trichothecenes. We investigated the molecular mechanism of T-2 toxin induced cytotoxicity and cell death in HeLa cells. T-2 toxin at LC50 of 10 ng/ml caused time dependent increase in cytotoxicity as assessed by dye uptake, lactatedehydrogenase leakage and MTT assay. The toxin caused generation of reactive oxygen species as early as 30 min followed by significant depletion of glutathione levels and increased lipid peroxidation. The results indicate oxidative stress as underlying mechanism of cytotoxicity. Single stranded DNA damage after T-2 treatment was observed as early as 2 and 4 h by DNA diffusion assay. The cells exhibited apoptotic morphology like condensed chromatin and nuclear fragmentation after 4 h of treatment. Downstream of T-2 induced oxidative stress and DNA damage a time dependent increase in expression level of p53 protein was observed. The increase in Bax/Bcl2 ratio indicated shift in response, in favour of apoptotic process in T-2 toxin treated cells. Western blot analysis showed increase in levels of mitochondrial apoptogenic factors Bax, Bcl-2, cytochrome-c followed by activation of caspases-9, -3 and -7 leading to DNA fragmentation and apoptosis. In addition to caspase-dependent pathway, our results showed involvement of caspase-independent AIF pathway in T-2 induced apoptosis. Broad spectrum caspase inhibitor z-VAD-fmk could partially protect the cells from DNA damage but could not inhibit AIF induced oligonucleosomal DNA fragmentation beyond 4 h. Results of the study clearly show that oxidative stress is the underlying mechanism by which T-2 toxin causes DNA damage and apoptosis.

  15. Altered DNA repair, oxidative stress and antioxidant status

    Indian Academy of Sciences (India)

    Coronary artery disease (CAD) is a multifactorial disease caused by the interplay of environmental risk factors with multiple predisposing genes. The present study was undertaken to evaluate the role of DNA repair efficiency and oxidative stress and antioxidant status in CAD patients. Malonaldehyde (MDA), which is an ...

  16. Role of Oxidative Stress in Hepatocarcinogenesis Induced by Hepatitis C Virus

    Directory of Open Access Journals (Sweden)

    Kyoko Tsukiyama-Kohara

    2012-11-01

    Full Text Available Hepatitis C virus (HCV easily establishes chronic hepatitis, cirrhosis, and hepatocellular carcinoma (HCC. During the progression of HCV infections, reactive oxygen species (ROS are generated, and these ROS then induce significant DNA damage. The role of ROS in the pathogenesis of HCV infection is still not fully understood. Recently, we found that HCV induced the expression of 3β-hydroxysterol ∆24-reductase (DHCR24. We also found that a HCV responsive region is present in the 5'-flanking genomic promoter region of DHCR24 and the HCV responsive region was characterized as (−167/−140. Moreover, the transcription factor Sp1 was found to bind to this region in response to oxidative stress under the regulation of ataxia telangiectasia mutated (ATM kinase. Overexpression of DHCR24 impaired p53 activity by suppression of acetylation and increased interaction with MDM2. This impairment of p53 suppressed the hydrogen peroxide-induced apoptotic response in hepatocytes. Thus, a target of oxidative stress in HCV infection is DHCR24 through Sp1, which suppresses apoptotic responses and increases tumorigenicity.

  17. Oxidative stress induces mitochondrial fragmentation in frataxin-deficient cells

    Energy Technology Data Exchange (ETDEWEB)

    Lefevre, Sophie [Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod, CNRS-Universite Paris-Diderot, Sorbonne Paris Cite, 15 rue Helene Brion, 75205 Paris cedex 13 (France); ED515 UPMC, 4 place Jussieu 75005 Paris (France); Sliwa, Dominika [Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod, CNRS-Universite Paris-Diderot, Sorbonne Paris Cite, 15 rue Helene Brion, 75205 Paris cedex 13 (France); Rustin, Pierre [Inserm, U676, Physiopathology and Therapy of Mitochondrial Disease Laboratory, 75019 Paris (France); Universite Paris-Diderot, Faculte de Medecine Denis Diderot, IFR02 Paris (France); Camadro, Jean-Michel [Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod, CNRS-Universite Paris-Diderot, Sorbonne Paris Cite, 15 rue Helene Brion, 75205 Paris cedex 13 (France); Santos, Renata, E-mail: santos.renata@ijm.univ-paris-diderot.fr [Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod, CNRS-Universite Paris-Diderot, Sorbonne Paris Cite, 15 rue Helene Brion, 75205 Paris cedex 13 (France)

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer Yeast frataxin-deficiency leads to increased proportion of fragmented mitochondria. Black-Right-Pointing-Pointer Oxidative stress induces complete mitochondrial fragmentation in {Delta}yfh1 cells. Black-Right-Pointing-Pointer Oxidative stress increases mitochondrial fragmentation in patient fibroblasts. Black-Right-Pointing-Pointer Inhibition of mitochondrial fission in {Delta}yfh1 induces oxidative stress resistance. -- Abstract: Friedreich ataxia (FA) is the most common recessive neurodegenerative disease. It is caused by deficiency in mitochondrial frataxin, which participates in iron-sulfur cluster assembly. Yeast cells lacking frataxin ({Delta}yfh1 mutant) showed an increased proportion of fragmented mitochondria compared to wild-type. In addition, oxidative stress induced complete fragmentation of mitochondria in {Delta}yfh1 cells. Genetically controlled inhibition of mitochondrial fission in these cells led to increased resistance to oxidative stress. Here we present evidence that in yeast frataxin-deficiency interferes with mitochondrial dynamics, which might therefore be relevant for the pathophysiology of FA.

  18. Mitochondrial oxidative stress in human hepatoma cells exposed to stavudine

    International Nuclear Information System (INIS)

    Velsor, Leonard W.; Kovacevic, Miro; Goldstein, Mark; Leitner, Heather M.; Lewis, William; Day, Brian J.

    2004-01-01

    The toxicity of nucleoside reverse transcriptase inhibitors (NRTIs) is linked to altered mitochondrial DNA (mtDNA) replication and subsequent disruption of cellular energetics. This manifests clinically as elevated concentrations of lactate in plasma. The mechanism(s) underlying how the changes in mtDNA replication lead to lactic acidosis remains unclear. It is hypothesized that mitochondrial oxidative stress links the changes in mtDNA replication to mitochondrial dysfunction and ensuing NRTIs toxicity. To test this hypothesis, changes in mitochondrial function, mtDNA amplification efficiency, and oxidative stress were assessed in HepG2-cultured human hepatoblasts treated with the NRTI stavudine (2',3'-didehydro-2',3'-deoxythymidine or d4T) for 48 h. d4T produced significant mitochondrial dysfunction with a 1.5-fold increase in cellular lactate to pyruvate ratios. In addition, d4T caused a dose-dependent decrease in mtDNA amplification and a correlative increase in abundance of markers of mitochondrial oxidative stress. Manganese (III) meso-tetrakis (4-benzoic acid) porphyrin, MnTBAP, a catalytic antioxidant, ameliorated or reversed d4T-induced changes in cell injury, energetics, mtDNA amplification, and mitochondrial oxidative stress. In conclusion, d4T treatment elevates mitochondrial reactive oxygen species (ROS), enhances mitochondrial oxidative stress, and contributes mechanistically to NRTI-induced toxicity. These deleterious events may be potentiated in acquired immunodeficiency syndrome (AIDS) by human immunodeficiency virus (HIV) infection itself, coinfection (e.g., viral hepatitis), aging, substance, and alcohol use

  19. Salivary DNA and markers of oxidative stress in patients with chronic periodontitis.

    Science.gov (United States)

    Baňasová, Lenka; Kamodyová, Natália; Janšáková, Katarína; Tóthová, Ľubomíra; Stanko, Peter; Turňa, Ján; Celec, Peter

    2015-03-01

    Previous observational studies have shown that periodontal status is associated with salivary markers of oxidative damage. A direct comparison of periodontitis patients and controls using a wide palette of salivary markers of oxidative stress is lacking. Characteristics of salivary DNA in periodontitis are unknown. The aim of this study was to compare the salivary markers of oxidative stress and characteristics of salivary DNA between patients with chronic periodontitis and periodontitis-free controls. Saliva was collected from 23 patients with chronic periodontitis and 19 periodontitis-free controls. All participants underwent a clinical periodontal examination. Markers of oxidative and carbonyl stress were measured in saliva. Human and bacterial DNA was quantified, and human DNA integrity was assessed. Salivary thiobarbituric acid-reacting substances were higher in patients than in controls; at least in men, the difference was significant (p periodontitis patients. The results confirmed the association of salivary thiobarbituric acid-reacting substances with periodontitis. Lipid peroxidation in periodontitis seems to be caused by increased production of reactive oxygen species in men and by decreased antioxidant status in women. Whether lower salivary DNA integrity is involved in the pathogenesis of periodontitis remains to be elucidated. Salivary thiobarbituric acid-reacting substances are associated with periodontitis at least on a population level. Sex-specific causes of lipid peroxidation might point towards different pathogenic mechanisms.

  20. Periodontitis and increase in circulating oxidative stress

    OpenAIRE

    Takaaki Tomofuji; Koichiro Irie; Toshihiro Sanbe; Tetsuji Azuma; Daisuke Ekuni; Naofumi Tamaki; Tatsuo Yamamoto; Manabu Morita

    2009-01-01

    Reactive oxygen species (ROS) are products of normal cellular metabolism. However, excessive production of ROS oxidizes DNA, lipids and proteins, inducing tissue damage. Studies have shown that periodontitis induces excessive ROS production in periodontal tissue. When periodontitis develops, ROS produced in the periodontal lesion diffuse into the blood stream, resulting in the oxidation of blood molecules (circulating oxidative stress). Such oxidation may be detrimental to systemic health. Fo...

  1. Titanium dioxide nanoparticles induce oxidative stress and DNA-adduct formation but not DNA-breakage in human lung cells

    Directory of Open Access Journals (Sweden)

    Schins Roel PF

    2009-06-01

    Full Text Available Abstract Titanium dioxide (TiO2, also known as titanium (IV oxide or anatase, is the naturally occurring oxide of titanium. It is also one of the most commercially used form. To date, no parameter has been set for the average ambient air concentration of TiO2 nanoparticles (NP by any regulatory agency. Previously conducted studies had established these nanoparticles to be mainly non-cyto- and -genotoxic, although they had been found to generate free radicals both acellularly (specially through photocatalytic activity and intracellularly. The present study determines the role of TiO2-NP (anatase, ∅ in vitro. For comparison, iron containing nanoparticles (hematite, Fe2O3, ∅ 2-NP did not induce DNA-breakage measured by the Comet-assay in both cell types. Generation of reactive oxygen species (ROS was measured acellularly (without any photocatalytic activity as well as intracellularly for both types of particles, however, the iron-containing NP needed special reducing conditions before pronounced radical generation. A high level of DNA adduct formation (8-OHdG was observed in IMR-90 cells exposed to TiO2-NP, but not in cells exposed to hematite NP. Our study demonstrates different modes of action for TiO2- and Fe2O3-NP. Whereas TiO2-NP were able to generate elevated amounts of free radicals, which induced indirect genotoxicity mainly by DNA-adduct formation, Fe2O3-NP were clastogenic (induction of DNA-breakage and required reducing conditions for radical formation.

  2. Lead induced oxidative stress: beneficial effects of Kombucha tea.

    Science.gov (United States)

    Dipti, P; Yogesh, B; Kain, A K; Pauline, T; Anju, B; Sairam, M; Singh, B; Mongia, S S; Kumar, G Ilavazhagan Devendra; Selvamurthy, W

    2003-09-01

    To evaluate the effect of oral administration of Kombucha tea (K-tea) on lead induced oxidative stress. Sprague Dawley rats were administered 1 mL of 3.8% lead acetate solution daily alone or in combination with K-tea orally for 45 d, and the antioxidant status and lipid peroxidation were evaluated. Oral administration of lead acetate to rats enhanced lipid peroxidation and release of creatine phosphokinase and decreased levels of reduced glutathione (GSH) and antioxidant enzymes (superoxide dismutase, SOD and glutathione peroxidase, GPx). Lead treatment did not alter humoral immunity, but inhibited DTH response when compared to the control. Lead administration also increased DNA fragmentation in liver. Oral administration of Kombucha tea to rats exposed to lead decreased lipid peroxidation and DNA damage with a concomitant increase in the reduced glutathione level and GPx activity. Kombucha tea supplementation relieved the lead induced immunosuppression to appreciable levels. The results suggest that K-tea has potent antioxidant and immunomodulating properties.

  3. Mono-2-ethylhexyl phthalate induces oxidative stress responses in human placental cells in vitro

    International Nuclear Information System (INIS)

    Tetz, Lauren M.; Cheng, Adrienne A.; Korte, Cassandra S.; Giese, Roger W.; Wang, Poguang; Harris, Craig; Meeker, John D.; Loch-Caruso, Rita

    2013-01-01

    Di-2-ethylhexyl phthalate (DEHP) is an environmental contaminant commonly used as a plasticizer in polyvinyl chloride products. Exposure to DEHP has been linked to adverse pregnancy outcomes in humans including preterm birth, low birth-weight, and pregnancy loss. Although oxidative stress is linked to the pathology of adverse pregnancy outcomes, effects of DEHP metabolites, including the active metabolite, mono-2-ethylhexyl phthalate (MEHP), on oxidative stress responses in placental cells have not been previously evaluated. The objective of the current study is to identify MEHP-stimulated oxidative stress responses in human placental cells. We treated a human placental cell line, HTR-8/SVneo, with MEHP and then measured reactive oxygen species (ROS) generation using the dichlorofluorescein assay, oxidized thymine with mass-spectrometry, redox-sensitive gene expression with qRT-PCR, and apoptosis using a luminescence assay for caspase 3/7 activity. Treatment of HTR-8 cells with 180 μM MEHP increased ROS generation, oxidative DNA damage, and caspase 3/7 activity, and resulted in differential expression of redox-sensitive genes. Notably, 90 and 180 μM MEHP significantly induced mRNA expression of prostaglandin-endoperoxide synthase 2 (PTGS2), an enzyme important for synthesis of prostaglandins implicated in initiation of labor. The results from the present study are the first to demonstrate that MEHP stimulates oxidative stress responses in placental cells. Furthermore, the MEHP concentrations used were within an order of magnitude of the highest concentrations measured previously in human umbilical cord or maternal serum. The findings from the current study warrant future mechanistic studies of oxidative stress, apoptosis, and prostaglandins as molecular mediators of DEHP/MEHP-associated adverse pregnancy outcomes. - Highlights: ► MEHP increased reactive oxygen species, oxidative DNA damage, and caspase activity. ► MEHP induced expression of PTGS2, a gene

  4. Mono-2-ethylhexyl phthalate induces oxidative stress responses in human placental cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Tetz, Lauren M., E-mail: ltetz@umich.edu [Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109-2029 (United States); Cheng, Adrienne A.; Korte, Cassandra S. [Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109-2029 (United States); Giese, Roger W.; Wang, Poguang [Department of Pharmaceutical Sciences, Northeastern University, 360 Huntingon Ave, Boston, MA 02115 (United States); Harris, Craig; Meeker, John D.; Loch-Caruso, Rita [Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109-2029 (United States)

    2013-04-01

    Di-2-ethylhexyl phthalate (DEHP) is an environmental contaminant commonly used as a plasticizer in polyvinyl chloride products. Exposure to DEHP has been linked to adverse pregnancy outcomes in humans including preterm birth, low birth-weight, and pregnancy loss. Although oxidative stress is linked to the pathology of adverse pregnancy outcomes, effects of DEHP metabolites, including the active metabolite, mono-2-ethylhexyl phthalate (MEHP), on oxidative stress responses in placental cells have not been previously evaluated. The objective of the current study is to identify MEHP-stimulated oxidative stress responses in human placental cells. We treated a human placental cell line, HTR-8/SVneo, with MEHP and then measured reactive oxygen species (ROS) generation using the dichlorofluorescein assay, oxidized thymine with mass-spectrometry, redox-sensitive gene expression with qRT-PCR, and apoptosis using a luminescence assay for caspase 3/7 activity. Treatment of HTR-8 cells with 180 μM MEHP increased ROS generation, oxidative DNA damage, and caspase 3/7 activity, and resulted in differential expression of redox-sensitive genes. Notably, 90 and 180 μM MEHP significantly induced mRNA expression of prostaglandin-endoperoxide synthase 2 (PTGS2), an enzyme important for synthesis of prostaglandins implicated in initiation of labor. The results from the present study are the first to demonstrate that MEHP stimulates oxidative stress responses in placental cells. Furthermore, the MEHP concentrations used were within an order of magnitude of the highest concentrations measured previously in human umbilical cord or maternal serum. The findings from the current study warrant future mechanistic studies of oxidative stress, apoptosis, and prostaglandins as molecular mediators of DEHP/MEHP-associated adverse pregnancy outcomes. - Highlights: ► MEHP increased reactive oxygen species, oxidative DNA damage, and caspase activity. ► MEHP induced expression of PTGS2, a gene

  5. Thiamine deficiency induces endoplasmic reticulum stress and oxidative stress in human neurons derived from induced pluripotent stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xin; Xu, Mei; Frank, Jacqueline A. [Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536 (United States); Ke, Zun-ji [Department of Biochemistry, Shanghai University of Traditional Chinese Medicine, Shanghai, China 201203 (China); Luo, Jia, E-mail: jialuo888@uky.edu [Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536 (United States); Department of Biochemistry, Shanghai University of Traditional Chinese Medicine, Shanghai, China 201203 (China)

    2017-04-01

    Thiamine (vitamin B1) deficiency (TD) plays a major role in the etiology of Wernicke's encephalopathy (WE) which is a severe neurological disorder. TD induces selective neuronal cell death, neuroinflammation, endoplasmic reticulum (ER) stress and oxidative stress in the brain which are commonly observed in many aging-related neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and progressive supranuclear palsy (PSP). However, the underlying cellular and molecular mechanisms remain unclear. The progress in this line of research is hindered due to the lack of appropriate in vitro models. The neurons derived for the human induced pluripotent stem cells (hiPSCs) provide a relevant and powerful tool for the research in pharmaceutical and environmental neurotoxicity. In this study, we for the first time used human induced pluripotent stem cells (hiPSCs)-derived neurons (iCell neurons) to investigate the mechanisms of TD-induced neurodegeneration. We showed that TD caused a concentration- and duration-dependent death of iCell neurons. TD induced ER stress which was evident by the increase in ER stress markers, such as GRP78, XBP-1, CHOP, ATF-6, phosphorylated eIF2α, and cleaved caspase-12. TD also triggered oxidative stress which was shown by the increase in the expression 2,4-dinitrophenyl (DNP) and 4-hydroxynonenal (HNE). ER stress inhibitors (STF-083010 and salubrinal) and antioxidant N-acetyl cysteine (NAC) were effective in alleviating TD-induced death of iCell neurons, supporting the involvement of ER stress and oxidative stress. It establishes that the iCell neurons are a novel tool to investigate cellular and molecular mechanisms for TD-induced neurodegeneration. - Highlights: • Thiamine deficiency (TD) causes death of human neurons in culture. • TD induces both endoplasmic reticulum (ER) stress and oxidative stress. • Alleviating ER stress and oxidative stress reduces TD-induced

  6. Thiamine deficiency induces endoplasmic reticulum stress and oxidative stress in human neurons derived from induced pluripotent stem cells

    International Nuclear Information System (INIS)

    Wang, Xin; Xu, Mei; Frank, Jacqueline A.; Ke, Zun-ji; Luo, Jia

    2017-01-01

    Thiamine (vitamin B1) deficiency (TD) plays a major role in the etiology of Wernicke's encephalopathy (WE) which is a severe neurological disorder. TD induces selective neuronal cell death, neuroinflammation, endoplasmic reticulum (ER) stress and oxidative stress in the brain which are commonly observed in many aging-related neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and progressive supranuclear palsy (PSP). However, the underlying cellular and molecular mechanisms remain unclear. The progress in this line of research is hindered due to the lack of appropriate in vitro models. The neurons derived for the human induced pluripotent stem cells (hiPSCs) provide a relevant and powerful tool for the research in pharmaceutical and environmental neurotoxicity. In this study, we for the first time used human induced pluripotent stem cells (hiPSCs)-derived neurons (iCell neurons) to investigate the mechanisms of TD-induced neurodegeneration. We showed that TD caused a concentration- and duration-dependent death of iCell neurons. TD induced ER stress which was evident by the increase in ER stress markers, such as GRP78, XBP-1, CHOP, ATF-6, phosphorylated eIF2α, and cleaved caspase-12. TD also triggered oxidative stress which was shown by the increase in the expression 2,4-dinitrophenyl (DNP) and 4-hydroxynonenal (HNE). ER stress inhibitors (STF-083010 and salubrinal) and antioxidant N-acetyl cysteine (NAC) were effective in alleviating TD-induced death of iCell neurons, supporting the involvement of ER stress and oxidative stress. It establishes that the iCell neurons are a novel tool to investigate cellular and molecular mechanisms for TD-induced neurodegeneration. - Highlights: • Thiamine deficiency (TD) causes death of human neurons in culture. • TD induces both endoplasmic reticulum (ER) stress and oxidative stress. • Alleviating ER stress and oxidative stress reduces TD-induced

  7. Acute hypoxia and hypoxic exercise induce DNA strand breaks and oxidative DNA damage in humans

    DEFF Research Database (Denmark)

    Møller, P; Loft, S; Lundby, C

    2001-01-01

    ; lymphocytes were isolated for analysis of DNA strand breaks and oxidatively altered nucleotides, detected by endonuclease III and formamidipyridine glycosylase (FPG) enzymes. Urine was collected for 24 h periods for analysis of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), a marker of oxidative DNA damage...... oxygen species, generated by leakage of the mitochondrial respiration or during a hypoxia-induced inflammation. Furthermore, the presence of DNA strand breaks may play an important role in maintaining hypoxia-induced inflammation processes. Hypoxia seems to deplete the antioxidant system of its capacity...

  8. Toward an understanding of mechanism of aging-induced oxidative stress in human mesenchymal stem cells.

    Science.gov (United States)

    Benameur, Laila; Charif, Naceur; Li, Yueying; Stoltz, Jean-François; de Isla, Natalia

    2015-01-01

    Under physiological conditions, there is a production of limited range of free radicals. However, when the cellular antioxidant defence systems, overwhelm and fail to reverse back the free radicals to their normal basal levels, there is a creation of a condition of redox disequilibrium termed "oxidative stress", which is implicated in a very wide spectrum of genetic, metabolic, and cellular responses. The excess of free radicals can, cause unfavourable molecular alterations to biomolecules through oxidation of lipids, proteins, RNA and DNA, that can in turn lead to mutagenesis, carcinogenesis, and aging. Mesenchymal stem cells (MSCs) have been proven to be a promising source of cells for regenerative medicine, and to be useful in the treatment of pathologies in which tissue damage is linked to oxidative stress. Moreover, MSCs appeared to efficiently manage oxidative stress and to be more resistant to oxidative insult than normal somatic cells, making them an interesting and testable model for the role of oxidative stress in the aging process. In addition, aging is accompanied by a progressive decline in stem cell function, resulting in less effective tissue homeostasis and repair. Also, there is an obvious link between intracellular reactive oxygen species levels and cellular senescence. To date, few studies have investigated the promotion of aging by oxidative stress on human MSCs, and the mechanism by which oxidative stress induce stem cell aging is poorly understood. In this context, the aim of this review is to gain insight the current knowledge about the molecular mechanisms of aging-induced oxidative stress in human MSCs.

  9. Cytoprotective effect against UV-induced DNA damage and oxidative stress: role of new biological UV filter.

    Science.gov (United States)

    Said, T; Dutot, M; Martin, C; Beaudeux, J-L; Boucher, C; Enee, E; Baudouin, C; Warnet, J-M; Rat, P

    2007-03-01

    The majority of chemical solar filters are cytotoxic, particularly on sensitive ocular cells (corneal and conjunctival cells). Consequently, a non-cytotoxic UV filter would be interesting in dermatology, but more especially in ophthalmology. In fact, light damage to the eye can be avoided thanks to a very efficient ocular antioxidant system; indeed, the chromophores absorb light and dissipate its energy. After middle age, a decrease in the production of antioxidants and antioxidative enzymes appears with accumulation of endogenous molecules that are phototoxic. UV radiations can induce reactive oxygen species formation, leading to various ocular diseases. Because most UV filters are cytotoxic for the eye, we investigated the anti-UV properties of Calophyllum inophyllum oil in order to propose it as a potential vehicle, free of toxicity, with a natural UV filter action in ophthalmic formulation. Calophyllum inophyllum oil, even at low concentration (1/10,000, v/v), exhibited significant UV absorption properties (maximum at 300nm) and was associated with an important sun protection factor (18-22). Oil concentrations up to 1% were not cytotoxic on human conjunctival epithelial cells, and Calophyllum inophyllum oil appeared to act as a cytoprotective agent against oxidative stress and DNA damage (85% of the DNA damage induced by UV radiations were inhibited with 1% Calophyllum oil) and did not induce in vivo ocular irritation (Draize test on New Zealand rabbits). Calophyllum inophyllum oil thus exhibited antioxidant and cytoprotective properties, and therefore might serve, for the first time, as a natural UV filter in ophthalmic preparations.

  10. Ursolic Acid-Regulated Energy Metabolism—Reliever or Propeller of Ultraviolet-Induced Oxidative Stress and DNA Damage?

    Directory of Open Access Journals (Sweden)

    Yuan-Hao Lee

    2014-08-01

    sensitizer, ursolic acid (UA, which results in the metabolic adaptation of normal cells against UV-induced ROS, and the metabolic switch of tumor cells subject to UV-induced damage. The multifaceted natural compound, UA, specifically inhibits photo-oxidative DNA damage in retinal pigment epithelial cells while enhancing that in skin melanoma. Considering the UA-mediated differential effects on cell bioenergetics, this article reviews the disparities in glucose metabolism between tumor and normal cells, along with (peroxisome proliferator-activated receptor-γ coactivator 1α-dependent mitochondrial metabolism and redox (reduction-oxidation control to demonstrate UA-induced synthetic lethality in tumor cells.

  11. Targeting EGFR induced oxidative stress by PARP1 inhibition in glioblastoma therapy.

    Science.gov (United States)

    Nitta, Masayuki; Kozono, David; Kennedy, Richard; Stommel, Jayne; Ng, Kimberly; Zinn, Pascal O; Kushwaha, Deepa; Kesari, Santosh; Inda, Maria-del-Mar; Wykosky, Jill; Furnari, Frank; Hoadley, Katherine A; Chin, Lynda; DePinho, Ronald A; Cavenee, Webster K; D'Andrea, Alan; Chen, Clark C

    2010-05-24

    Despite the critical role of Epidermal Growth Factor Receptor (EGFR) in glioblastoma pathogenesis, EGFR targeted therapies have achieved limited clinical efficacy. Here we propose an alternate therapeutic strategy based on the conceptual framework of non-oncogene addiction. A directed RNAi screen revealed that glioblastoma cells over-expressing EGFRvIII, an oncogenic variant of EGFR, become hyper-dependent on a variety of DNA repair genes. Among these, there was an enrichment of Base Excision Repair (BER) genes required for the repair of Reactive Oxygen Species (ROS)-induced DNA damage, including poly-ADP ribose polymerase 1 (PARP1). Subsequent studies revealed that EGFRvIII over-expression in glioblastoma cells caused increased levels of ROS, DNA strand break accumulation, and genome instability. In a panel of primary glioblastoma lines, sensitivity to PARP1 inhibition correlated with the levels of EGFR activation and oxidative stress. Gene expression analysis indicated that reduced expression of BER genes in glioblastomas with high EGFR expression correlated with improved patient survival. These observations suggest that oxidative stress secondary to EGFR hyper-activation necessitates increased cellular reliance on PARP1 mediated BER, and offer critical insights into clinical trial design.

  12. Targeting EGFR induced oxidative stress by PARP1 inhibition in glioblastoma therapy.

    Directory of Open Access Journals (Sweden)

    Masayuki Nitta

    Full Text Available Despite the critical role of Epidermal Growth Factor Receptor (EGFR in glioblastoma pathogenesis, EGFR targeted therapies have achieved limited clinical efficacy. Here we propose an alternate therapeutic strategy based on the conceptual framework of non-oncogene addiction. A directed RNAi screen revealed that glioblastoma cells over-expressing EGFRvIII, an oncogenic variant of EGFR, become hyper-dependent on a variety of DNA repair genes. Among these, there was an enrichment of Base Excision Repair (BER genes required for the repair of Reactive Oxygen Species (ROS-induced DNA damage, including poly-ADP ribose polymerase 1 (PARP1. Subsequent studies revealed that EGFRvIII over-expression in glioblastoma cells caused increased levels of ROS, DNA strand break accumulation, and genome instability. In a panel of primary glioblastoma lines, sensitivity to PARP1 inhibition correlated with the levels of EGFR activation and oxidative stress. Gene expression analysis indicated that reduced expression of BER genes in glioblastomas with high EGFR expression correlated with improved patient survival. These observations suggest that oxidative stress secondary to EGFR hyper-activation necessitates increased cellular reliance on PARP1 mediated BER, and offer critical insights into clinical trial design.

  13. Aryl hydrocarbon receptor protects lung adenocarcinoma cells against cigarette sidestream smoke particulates-induced oxidative stress

    International Nuclear Information System (INIS)

    Cheng, Ya-Hsin; Huang, Su-Chin; Lin, Chun-Ju; Cheng, Li-Chuan; Li, Lih-Ann

    2012-01-01

    Environmental cigarette smoke has been suggested to promote lung adenocarcinoma progression through aryl hydrocarbon receptor (AhR)-signaled metabolism. However, whether AhR facilitates metabolic activation or detoxification in exposed adenocarcinoma cells remains ambiguous. To address this question, we have modified the expression level of AhR in two human lung adenocarcinoma cell lines and examined their response to an extract of cigarette sidestream smoke particulates (CSSP). We found that overexpression of AhR in the CL1-5 cell line reduced CSSP-induced ROS production and oxidative DNA damage, whereas knockdown of AhR expression increased ROS level in CSSP-exposed H1355 cells. Oxidative stress sensor Nrf2 and its target gene NQO1 were insensitive to AhR expression level and CSSP treatment in human lung adenocarcinoma cells. In contrast, induction of AhR expression concurrently increased mRNA expression of xenobiotic-metabolizing genes CYP1B1, UGT1A8, and UGT1A10 in a ligand-independent manner. It appeared that AhR accelerated xenobiotic clearing and diminished associated oxidative stress by coordinate regulation of a set of phase I and II metabolizing genes. However, the AhR-signaled protection could not shield cells from constant oxidative stress. Prolonged exposure to high concentrations of CSSP induced G0/G1 cell cycle arrest via the p53–p21–Rb1 signaling pathway. Despite no effect on DNA repair rate, AhR facilitated the recovery of cells from growth arrest when CSSP exposure ended. AhR-overexpressing lung adenocarcinoma cells exhibited an increased anchorage-dependent and independent proliferation when recovery from exposure. In summary, our data demonstrated that AhR protected lung adenocarcinoma cells against CSSP-induced oxidative stress and promoted post-exposure clonogenicity. -- Highlights: ► AhR expression level influences cigarette sidestream smoke-induced ROS production. ► AhR reduces oxidative stress by coordinate regulation of

  14. Aryl hydrocarbon receptor protects lung adenocarcinoma cells against cigarette sidestream smoke particulates-induced oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Ya-Hsin [Graduate Institute of Basic Medical Science, School of Medicine, China Medical University, Taichung 40402, Taiwan, ROC (China); Huang, Su-Chin; Lin, Chun-Ju; Cheng, Li-Chuan [Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan, ROC (China); Li, Lih-Ann, E-mail: lihann@nhri.org.tw [Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan, ROC (China)

    2012-03-15

    Environmental cigarette smoke has been suggested to promote lung adenocarcinoma progression through aryl hydrocarbon receptor (AhR)-signaled metabolism. However, whether AhR facilitates metabolic activation or detoxification in exposed adenocarcinoma cells remains ambiguous. To address this question, we have modified the expression level of AhR in two human lung adenocarcinoma cell lines and examined their response to an extract of cigarette sidestream smoke particulates (CSSP). We found that overexpression of AhR in the CL1-5 cell line reduced CSSP-induced ROS production and oxidative DNA damage, whereas knockdown of AhR expression increased ROS level in CSSP-exposed H1355 cells. Oxidative stress sensor Nrf2 and its target gene NQO1 were insensitive to AhR expression level and CSSP treatment in human lung adenocarcinoma cells. In contrast, induction of AhR expression concurrently increased mRNA expression of xenobiotic-metabolizing genes CYP1B1, UGT1A8, and UGT1A10 in a ligand-independent manner. It appeared that AhR accelerated xenobiotic clearing and diminished associated oxidative stress by coordinate regulation of a set of phase I and II metabolizing genes. However, the AhR-signaled protection could not shield cells from constant oxidative stress. Prolonged exposure to high concentrations of CSSP induced G0/G1 cell cycle arrest via the p53–p21–Rb1 signaling pathway. Despite no effect on DNA repair rate, AhR facilitated the recovery of cells from growth arrest when CSSP exposure ended. AhR-overexpressing lung adenocarcinoma cells exhibited an increased anchorage-dependent and independent proliferation when recovery from exposure. In summary, our data demonstrated that AhR protected lung adenocarcinoma cells against CSSP-induced oxidative stress and promoted post-exposure clonogenicity. -- Highlights: ► AhR expression level influences cigarette sidestream smoke-induced ROS production. ► AhR reduces oxidative stress by coordinate regulation of

  15. Global DNA methylation and oxidative stress biomarkers in workers exposed to metal oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Liou, Saou-Hsing; Wu, Wei-Te; Liao, Hui-Yi [National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Miaoli County, Taiwan (China); Chen, Chao-Yu; Tsai, Cheng-Yen; Jung, Wei-Ting [Department of Chemistry, Fu Jen Catholic University, New Taipei City, Taiwan (China); Lee, Hui-Ling, E-mail: huilinglee3573@gmail.com [Department of Chemistry, Fu Jen Catholic University, New Taipei City, Taiwan (China)

    2017-06-05

    Highlights: • Global methylation and oxidative DNA damage levels in nanomaterial handling workers were assessed. • 8-isoprostane in exhaled breath condensate of workers exposed to nanoparticles was higher. • 8-OHdG was negatively correlated with global methylation. • Exposure to metal oxide nanoparticles may lead to global methylation and DNA oxidative damage. - Abstract: This is the first study to assess global methylation, oxidative DNA damage, and lipid peroxidation in workers with occupational exposure to metal oxide nanomaterials (NMs). Urinary and white blood cell (WBC) 8-hydroxydeoxyguanosine (8-OHdG), and exhaled breath condensate (EBC) 8-isoprostane were measured as oxidative stress biomarkers. WBC global methylation was measured as an epigenetic alteration. Exposure to TiO{sub 2}, SiO{sub 2,} and indium tin oxide (ITO) resulted in significantly higher oxidative biomarkers such as urinary 8-OHdG and EBC 8-isoprostane. However, significantly higher WBC 8-OHdG and lower global methylation were only observed in ITO handling workers. Significant positive correlations were noted between WBC and urinary 8-OHdG (Spearman correlation r = 0.256, p = 0.003). Furthermore, a significant negative correlation was found between WBC 8-OHdG and global methylation (r = −0.272, p = 0.002). These results suggest that exposure to metal oxide NMs may lead to global methylation, DNA oxidative damage, and lipid peroxidation.

  16. Chronic mitochondrial uncoupling treatment prevents acute cold-induced oxidative stress in birds.

    Science.gov (United States)

    Stier, Antoine; Massemin, Sylvie; Criscuolo, François

    2014-12-01

    Endotherms have evolved two major types of thermogenesis that allow them to actively produce heat in response to cold exposure, either through muscular activity (i.e. shivering thermogenesis) or through futile electro-chemical cycles (i.e. non-shivering thermogenesis). Amongst the latter, mitochondrial uncoupling is of key importance because it is suggested to drive heat production at a low cost in terms of oxidative stress. While this has been experimentally shown in mammals, the oxidative stress consequences of cold exposure and mitochondrial uncoupling are clearly less understood in the other class of endotherms, the birds. We compared metabolic and oxidative stress responses of zebra finches chronically treated with or without a chemical mitochondrial uncoupler (2,4-dinitrophenol: DNP), undergoing an acute (24 h) and a chronic (4 weeks) cold exposure (12 °C). We predicted that control birds should present at least a transient elevation of oxidative stress levels in response to cold exposure. This oxidative stress cost should be more pronounced in control birds than in DNP-treated birds, due to their lower basal uncoupling state. Despite similar increase in metabolism, control birds presented elevated levels of DNA oxidative damage in response to acute (but not chronic) cold exposure, while DNP-treated birds did not. Plasma antioxidant capacity decreased overall in response to chronic cold exposure. These results show that acute cold exposure increases oxidative stress in birds. However, uncoupling mitochondrial functioning appears as a putative compensatory mechanism preventing cold-induced oxidative stress. This result confirms previous observations in mice and underlines non-shivering thermogenesis as a putative key mechanism for endotherms in mounting a response to cold at a low oxidative cost.

  17. Oxidative stress and alterations in DNA methylation: two sides of the same coin in reproduction.

    Science.gov (United States)

    Menezo, Yves J R; Silvestris, Erica; Dale, Brian; Elder, Kay

    2016-12-01

    The negative effect of oxidative stress on the human reproductive process is no longer a matter for debate. Oxidative stress affects female and male gametes and the developmental capacity of embryos. Its effect can continue through late stages of pregnancy. Metabolic disorders and psychiatric problems can also be caued by DNA methylation and epigenetic errors. Age has a negative effect on oxidative stress and DNA methylation, and recent observations suggest that older men are at risk of transmitting epigenetic disorders to their offspring. Environmental endocrine disruptors can also increase oxidative stress and methylation errors. Oxidative stress and DNA methylation feature a common denominator: the one carbon cycle. This important metabolic pathway stimulates glutathione synthesis and recycles homocysteine, a molecule that interferes with the process of methylation. Glutathione plays a pivotal role during oocyte activation, protecting against reactive oxygen species. Assisted reproductive techniques may exacerbate defects in methylation and epigenesis. Antioxidant supplements are proposed to reduce the risk of potentially harmful effects, but their use has failed to prevent problems and may sometimes be detrimental. New concepts reveal a significant correlation between oxidative stress, methylation processes and epigenesis, and have led to changes in media composition with positive preliminary clinical consequences. Copyright © 2016 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  18. Limited Link between Oxidative Stress and Ochratoxin A—Induced Renal Injury in an Acute Toxicity Rat Model

    Directory of Open Access Journals (Sweden)

    Liye Zhu

    2016-12-01

    Full Text Available Ochratoxin A (OTA displays nephrotoxicity and hepatotoxicity. However, in the acute toxicity rat model, there is no evidence on the relationship between OTA and nephrotoxicity and hepatotoxicity. Based on this, the integrated analysis of physiological status, damage biomarkers, oxidative stress, and DNA damage were performed. After OTA treatment, the body weight decreased and AST, ALP, TP, and BUN levels in serum increased. Hydropic degeneration, swelling, vacuolization, and partial drop occurred in proximal tubule epithelial cells. PCNA and Kim-1 were dose-dependently increased in the kidney, but Cox-2 expression and proliferation were not found in the liver. In OTA-treated kidneys, the mRNA expressions of Kim-1, Cox-2, Lcn2, and Clu were dose-dependently increased. The mRNA expressions of Vim and Cox-2 were decreased in OTA-treated livers. Some oxidative stress indicators were altered in the kidneys (ROS and SOD and livers (SOD and GSH. DNA damage and oxidative DNA damage were not found. In conclusion, there is a limited link between oxidative stress and OTA-induced renal injury in an acute toxicity rat model.

  19. DNA lesions induced by replication stress trigger mitotic aberration and tetraploidy development.

    Directory of Open Access Journals (Sweden)

    Yosuke Ichijima

    Full Text Available During tumorigenesis, cells acquire immortality in association with the development of genomic instability. However, it is still elusive how genomic instability spontaneously generates during the process of tumorigenesis. Here, we show that precancerous DNA lesions induced by oncogene acceleration, which induce situations identical to the initial stages of cancer development, trigger tetraploidy/aneuploidy generation in association with mitotic aberration. Although oncogene acceleration primarily induces DNA replication stress and the resulting lesions in the S phase, these lesions are carried over into the M phase and cause cytokinesis failure and genomic instability. Unlike directly induced DNA double-strand breaks, DNA replication stress-associated lesions are cryptogenic and pass through cell-cycle checkpoints due to limited and ineffective activation of checkpoint factors. Furthermore, since damaged M-phase cells still progress in mitotic steps, these cells result in chromosomal mis-segregation, cytokinesis failure and the resulting tetraploidy generation. Thus, our results reveal a process of genomic instability generation triggered by precancerous DNA replication stress.

  20. Paraquat induces oxidative stress and neuronal cell death; neuroprotection by water-soluble Coenzyme Q10

    International Nuclear Information System (INIS)

    McCarthy, S.; Somayajulu, M.; Sikorska, M.; Borowy-Borowski, H.; Pandey, S.

    2004-01-01

    Neuronal cell death induced by oxidative stress is correlated with numerous neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and stroke. The causes of sporadic forms of age-related neurodegenerative diseases are still unknown. Recently, a correlation between paraquat exposure and neurodegenerative diseases has been observed. Paraquat, a nonselective herbicide, was once widely used in North America and is still routinely used in Taiwan. We have used differentiated Human Neuroblastoma (SHSY-5Y) cells as an in vitro model to study the mechanism of cell death induced by paraquat. We observed that paraquat-induced oxidative stress in differentiated SHSY-5Y cells as indicated by an increase in the production of cellular reactive oxygen species (ROS). Furthermore, apoptosis was evident as indicated by cellular and nuclear morphology and DNA fragmentation. Interestingly, pretreatment of SHSY-5Y cells with water-soluble Coenzyme Q 10 (CoQ 10 ) before paraquat exposure inhibited ROS generation. Pretreatment with CoQ 10 also significantly reduced the number of apoptotic cells and DNA fragmentation. We also analyzed the effect of paraquat and CoQ 10 on isolated mitochondria. Our results indicated that treatment with paraquat induced the generation of ROS from isolated mitochondria and depolarization of the inner mitochondrial membrane. Pretreatment with CoQ 10 was able to inhibit ROS generation from isolated mitochondria as well as the collapse of mitochondrial membrane potential. Our results indicate that water-soluble CoQ 10 can prevent oxidative stress and neuronal damage induced by paraquat and therefore, can be used for the prevention and therapy of neurodegenerative diseases caused by environmental toxins

  1. Understanding DNA Under Oxidative Stress and Sensitization: The Role of Molecular Modeling

    Directory of Open Access Journals (Sweden)

    Antonio eMonari

    2015-07-01

    Full Text Available DNA is constantly exposed to damaging threats coming from oxidative stress, i.e. from the presence of free radicals and reactive oxygen species. Sensitization from exogenous and endogenous compounds that strongly enhance the frequency of light-induced lesions also plays an important role. The experimental determination of DNA lesions, though a difficult subject, is somehow well established and allows to elucidate even extremely rare DNA lesions. In parallel, molecular modeling has become fundamental to clearly understand the fine mechanisms related to DNA defects induction. Indeed, it offers an unprecedented possibility to get access to an atomistic or even electronic resolution. Ab initio molecular dynamics may also describe the time-evolution of the molecular system and its reactivity. Yet the modeling of DNA (photo-reactions does necessitate elaborate multi-scale methodologies to tackle a damage induction reactivity that takes place in a complex environment. The double-stranded DNA environment is first characterized by a very high flexibility, that dynamical effects are to be taken into account, but also a strongly inhomogeneous electrostatic embedding. Additionally, one aims at capturing more subtle effects, such as the sequence selectivity which is of critical important for DNA damage. The structure and dynamics of the DNA/sensitizers complexes, as well as the photo-induced electron- and energy-transfer phenomena taking place upon sensitization, should be carefully modeled. Finally the factors inducing different repair ratios for different lesions should also be rationalized.In this review we will critically analyze the different computational strategies used to model DNA lesions. A clear picture of the complex interplay between reactivity and structural factors will be sketched. The use of proper multi-scale modeling leads to the in-depth comprehension of DNA lesions mechanism and also to the rational design of new chemo-therapeutic agents.

  2. CIRRHOSIS INDUCES APOPTOSIS IN RENAL TISSUE THROUGH INTRACELLULAR OXIDATIVE STRESS

    Directory of Open Access Journals (Sweden)

    Keli Cristina Simões da SILVEIRA

    2015-03-01

    Full Text Available Background Renal failure is a frequent and serious complication in patients with decompensated cirrhosis. Objectives We aimed to evaluate the renal oxidative stress, cell damage and impaired cell function in animal model of cirrhosis. Methods Secondary biliary cirrhosis was induced in rats by ligation of the common bile duct. We measured TBARS, ROS and mitochondrial membrane potential in kidney as markers of oxidative stress, and activities of the antioxidant enzymes. Relative cell viability was determined by trypan blue dye-exclusion assay. Annexin V-PE was used with a vital dye, 7-AAD, to distinguish apoptotic from necrotic cells and comet assay was used for determined DNA integrity in single cells. Results In bile duct ligation animals there was significant increase in the kidney lipoperoxidation and an increase of the level of intracellular ROS. There was too an increase in the activity of all antioxidant enzymes evaluated in the kidney. The percentage viability was above 90% in the control group and in bile duct ligation was 64.66% and the dominant cell death type was apoptosis. DNA damage was observed in the bile duct ligation. There was a decreased in the mitochondrial membrane potential from 71.40% ± 6.35% to 34.48% ± 11.40% in bile duct ligation. Conclusions These results indicate that intracellular increase of ROS cause damage in the DNA and apoptosis getting worse the renal function in cirrhosis.

  3. Blockade of Drp1 rescues oxidative stress-induced osteoblast dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Xueqi; Huang, Shengbin; Yu, Qing [Department of Pharmacology and Toxicology and Higuchi Bioscience Center, University of Kansas, Lawrence, KS, 66047 (United States); State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 (China); Yu, Haiyang [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 (China); Yan, Shirley ShiDu, E-mail: shidu@ku.edu [Department of Pharmacology and Toxicology and Higuchi Bioscience Center, University of Kansas, Lawrence, KS, 66047 (United States)

    2015-12-25

    Osteoblast dysfunction, induced by oxidative stress, plays a critical role in the pathophysiology of osteoporosis. However, the underlying mechanisms remain unclarified. Imbalance of mitochondrial dynamics has been closely linked to oxidative stress. Here, we reveal an unexplored role of dynamic related protein 1(Drp1), the major regulator in mitochondrial fission, in the oxidative stress-induced osteoblast injury model. We demonstrate that levels of phosphorylation and expression of Drp1 significantly increased under oxidative stress. Blockade of Drp1, through pharmaceutical inhibitor or gene knockdown, significantly protected against H{sub 2}O{sub 2}-induced osteoblast dysfunction, as shown by increased cell viability, improved cellular alkaline phosphatase (ALP) activity and mineralization and restored mitochondrial function. The protective effects of blocking Drp1 in H{sub 2}O{sub 2}-induced osteoblast dysfunction were evidenced by increased mitochondrial function and suppressed production of reactive oxygen species (ROS). These findings provide new insights into the role of the Drp1-dependent mitochondrial pathway in the pathology of osteoporosis, indicating that the Drp1 pathway may be targetable for the development of new therapeutic approaches in the prevention and the treatment of osteoporosis. - Highlights: • Oxidative stress is an early pathological event in osteoporosis. • Imbalance of mitochondrial dynamics are linked to oxidative stress in osteoporosis. • The role of the Drp1-dependent mitochondrial pathway in osteoporosis.

  4. Differential p53 engagement in response to oxidative and oncogenic stresses in Fanconi anemia mice

    Science.gov (United States)

    Rani, Reena; Li, Jie; Pang, Qishen

    2008-01-01

    Members of the Fanconi anemia (FA) protein family are involved in repair of genetic damage caused by DNA cross-linkers. It is not clear whether the FA proteins function in oxidative DNA damage and oncogenic stress response. Here we report that deficiency in the Fanca gene in mice elicits a p53-dependent growth arrest and DNA damage response to oxidative DNA damage and oncogenic stress. Using a Fanca-/- Trp53-/- double knockout model and a functionally switchable p53 retrovirus, we define the kinetics, dependence, and persistence of p53-mediated response to oxidative and oncogenic stresses in Fanca-/- cells. Notably, oxidative stress induces persistent p53 response in Fanca-/- cells, likely due to accumulation of unrepaired DNA damage. On the other hand, whereas WT cells exhibit prolonged response to oncogene activation, the p53-activating signals induced by oncogenic ras are short-lived in Fanca-/- cells, suggesting that Fanca may be required for the cell to engage p53 during constitutive ras activation. We propose that the FA proteins protect cells from stress-induced proliferative arrest and tumor evolution by acting as a modulator of the signaling pathways that link FA to p53. PMID:19047147

  5. Differential p53 engagement in response to oxidative and oncogenic stresses in Fanconi anemia mice.

    Science.gov (United States)

    Rani, Reena; Li, Jie; Pang, Qishen

    2008-12-01

    Members of the Fanconi anemia (FA) protein family are involved in repair of genetic damage caused by DNA cross-linkers. It is not clear whether the FA proteins function in oxidative DNA damage and oncogenic stress response. Here, we report that deficiency in the Fanca gene in mice elicits a p53-dependent growth arrest and DNA damage response to oxidative DNA damage and oncogenic stress. Using a Fanca-/-Trp53-/- double knockout model and a functionally switchable p53 retrovirus, we define the kinetics, dependence, and persistence of p53-mediated response to oxidative and oncogenic stresses in Fanca-/- cells. Notably, oxidative stress induces persistent p53 response in Fanca-/- cells, likely due to accumulation of unrepaired DNA damage. On the other hand, whereas wild-type cells exhibit prolonged response to oncogene activation, the p53-activating signals induced by oncogenic ras are short-lived in Fanca-/- cells, suggesting that Fanca may be required for the cell to engage p53 during constitutive ras activation. We propose that the FA proteins protect cells from stress-induced proliferative arrest and tumor evolution by acting as a modulator of the signaling pathways that link FA to p53.

  6. Iron, Oxidative Stress and Gestational Diabetes

    Directory of Open Access Journals (Sweden)

    Taifeng Zhuang

    2014-09-01

    Full Text Available Both iron deficiency and hyperglycemia are highly prevalent globally for pregnant women. Iron supplementation is recommended during pregnancy to control iron deficiency. The purposes of the review are to assess the oxidative effects of iron supplementation and the potential relationship between iron nutrition and gestational diabetes. High doses of iron (~relative to 60 mg or more daily for adult humans can induce lipid peroxidation in vitro and in animal studies. Pharmaceutical doses of iron supplements (e.g., 10× RDA or more for oral supplements or direct iron supplementation via injection or addition to the cell culture medium for a short or long duration will induce DNA damage. Higher heme-iron intake or iron status measured by various biomarkers, especially serum ferritin, might contribute to greater risk of gestational diabetes, which may be mediated by iron oxidative stress though lipid oxidation and/or DNA damage. However, information is lacking about the effect of low dose iron supplementation (≤60 mg daily on lipid peroxidation, DNA damage and gestational diabetes. Randomized trials of low-dose iron supplementation (≤60 mg daily for pregnant women are warranted to test the relationship between iron oxidative stress and insulin resistance/gestational diabetes, especially for iron-replete women.

  7. Modulation of Hypercholesterolemia-Induced Oxidative/Nitrative Stress in the Heart

    Science.gov (United States)

    Sárközy, Márta; Pipicz, Márton; Dux, László; Csont, Tamás

    2016-01-01

    Hypercholesterolemia is a frequent metabolic disorder associated with increased risk for cardiovascular morbidity and mortality. In addition to its well-known proatherogenic effect, hypercholesterolemia may exert direct effects on the myocardium resulting in contractile dysfunction, aggravated ischemia/reperfusion injury, and diminished stress adaptation. Both preclinical and clinical studies suggested that elevated oxidative and/or nitrative stress plays a key role in cardiac complications induced by hypercholesterolemia. Therefore, modulation of hypercholesterolemia-induced myocardial oxidative/nitrative stress is a feasible approach to prevent or treat deleterious cardiac consequences. In this review, we discuss the effects of various pharmaceuticals, nutraceuticals, some novel potential pharmacological approaches, and physical exercise on hypercholesterolemia-induced oxidative/nitrative stress and subsequent cardiac dysfunction as well as impaired ischemic stress adaptation of the heart in hypercholesterolemia. PMID:26788247

  8. Oxidative stress generated damage to DNA by gastrointestinal exposure to insoluble particles

    DEFF Research Database (Denmark)

    Møller, Peter; Folkmann, J K; Danielsen, P H

    2012-01-01

    that gastrointestinal exposure to single-walled carbon nanotubes (SWCNT), fullerenes C60, carbon black, titanium dioxide and diesel exhaust particles generates oxidized DNA base lesions in organs such as the bone marrow, liver and lung. Oral exposure to nanosized carbon black has also been associated with increased...... level of lipid peroxidation derived exocyclic DNA adducts in the liver, suggesting multiple pathways of oxidative stress for particle-generated damage to DNA. At equal dose, diesel exhaust particles (SRM2975) generated larger levels of 8-oxo-7,8-dihydro-2'-deoxyguanosine in rat liver than carbon black...

  9. Persistent response of Fanconi anemia haematopoietic stem and progenitor cells to oxidative stress.

    Science.gov (United States)

    Li, Yibo; Amarachintha, Surya; Wilson, Andrew F; Li, Xue; Du, Wei

    2017-06-18

    Oxidative stress is considered as an important pathogenic factor in many human diseases including Fanconi anemia (FA), an inherited bone marrow failure syndrome with extremely high risk of leukemic transformation. Members of the FA protein family are involved in DNA damage and other cellular stress responses. Loss of FA proteins renders cells hypersensitive to oxidative stress and cancer transformation. However, how FA cells respond to oxidative DNA damage remains unclear. By using an in vivo stress-response mouse strain expressing the Gadd45β-luciferase transgene, we show here that haematopoietic stem and progenitor cells (HSPCs) from mice deficient for the FA gene Fanca or Fancc persistently responded to oxidative stress. Mechanistically, we demonstrated that accumulation of unrepaired DNA damage, particularly in oxidative damage-sensitive genes, was responsible for the long-lasting response in FA HSPCs. Furthermore, genetic correction of Fanca deficiency almost completely abolished the persistent oxidative stress-induced G 2 /M arrest and DNA damage response in vivo. Our study suggests that FA pathway is an integral part of a versatile cellular mechanism by which HSPCs respond to oxidative stress.

  10. Oxidative stress/damage induces multimerization and interaction of Fanconi anemia proteins.

    Science.gov (United States)

    Park, Su-Jung; Ciccone, Samantha L M; Beck, Brian D; Hwang, Byounghoon; Freie, Brian; Clapp, D Wade; Lee, Suk-Hee

    2004-07-16

    Fanconi anemia (FANC) is a heterogeneous genetic disorder characterized by a hypersensitivity to DNA-damaging agents, chromosomal instability, and defective DNA repair. Eight FANC genes have been identified so far, and five of them (FANCA, -C, -E, -F, and -G) assemble in a multinuclear complex and function at least in part in a complex to activate FANCD2 by monoubiquitination. Here we show that FANCA and FANCG are redox-sensitive proteins that are multimerized and/or form a nuclear complex in response to oxidative stress/damage. Both FANCA and FANCG proteins exist as monomers under non-oxidizing conditions, whereas they become multimers following H2O2 treatment. Treatment of cells with oxidizing agent not only triggers the multimeric complex of FANCA and FANCG in vivo but also induces the interaction between FANCA and FANCG. N-Ethylmaleimide treatment abolishes multimerization and interaction of FANCA and FANCG in vitro. Taken together, our results lead us to conclude that FANCA and FANCG uniquely respond to oxidative damage by forming complex(es) via intermolecular disulfide linkage(s), which may be crucial in forming such complexes and in determining their function.

  11. Exercise-Induced Oxidative Stress Responses in the Pediatric Population

    Directory of Open Access Journals (Sweden)

    Alexandra Avloniti

    2017-01-01

    Full Text Available Adults demonstrate an upregulation of their pro- and anti-oxidant mechanisms in response to acute exercise while systematic exercise training enhances their antioxidant capacity, thereby leading to a reduced generation of free radicals both at rest and in response to exercise stress. However, less information exists regarding oxidative stress responses and the underlying mechanisms in the pediatric population. Evidence suggests that exercise-induced redox perturbations may be valuable in order to monitor exercise-induced inflammatory responses and as such training overload in children and adolescents as well as monitor optimal growth and development. The purpose of this review was to provide an update on oxidative stress responses to acute and chronic exercise in youth. It has been documented that acute exercise induces age-specific transient alterations in both oxidant and antioxidant markers in children and adolescents. However, these responses seem to be affected by factors such as training phase, training load, fitness level, mode of exercise etc. In relation to chronic adaptation, the role of training on oxidative stress adaptation has not been adequately investigated. The two studies performed so far indicate that children and adolescents exhibit positive adaptations of their antioxidant system, as adults do. More studies are needed in order to shed light on oxidative stress and antioxidant responses, following acute exercise and training adaptations in youth. Available evidence suggests that small amounts of oxidative stress may be necessary for growth whereas the transition to adolescence from childhood may promote maturation of pro- and anti-oxidant mechanisms. Available evidence also suggests that obesity may negatively affect basal and exercise-related antioxidant responses in the peripubertal period during pre- and early-puberty.

  12. Melatonin inhibits snake venom and antivenom induced oxidative stress and augments treatment efficacy.

    Science.gov (United States)

    Sharma, Rachana D; Katkar, Gajanan D; Sundaram, Mahalingam S; Swethakumar, Basavarajaiah; Girish, Kesturu S; Kemparaju, Kempaiah

    2017-05-01

    Snakebite is a neglected health hazard. Its patho-physiology has largely been focused on systemic and local toxicities; whereas, venom and antivenom induced oxidative stress has long been ignored. Antivenom therapy although neutralizes venom lethality and saves many lives, remains ineffective against oxidative stress. This prompted us to complement antivenom with an antioxidant molecule melatonin that would protect against oxidative stress and increase the efficacy of the existing snakebite therapy. Here we show that D. russelli and E. carinatus venoms induce strong oxidative stress that persists even after antivenom administration in mice model. Additionally, antivenoms also induce oxidative stress. Polyvalent antivenom induce more oxidative stress than monovalent antivenom. Strikingly, antivenom and melatonin together not only inhibit venom and antivenom induced oxidative stress but also significantly reduce the neutralizing antivenom dose. This study provides a therapeutic potential for enhancing the existing snakebite therapy. The combined treatment of antivenom+melatonin would prevent the upsurge of oxidative stress as well as minimize the antivenom load. Thus the investigation offers immense scope for physicians and toxinologists to reinvestigate, design new strategies and think beyond the conventional mode of antivenom therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Activation of the hypothalamic-pituitary-adrenal stress axis induces cellular oxidative stress

    Directory of Open Access Journals (Sweden)

    Jereme G. Spiers

    2015-01-01

    Full Text Available Glucocorticoids released from the adrenal gland in response to stress-induced activation of the hypothalamic-pituitary-adrenal (HPA axis induce activity in the cellular reduction-oxidation (redox system. The redox system is a ubiquitous chemical mechanism allowing the transfer of electrons between donor/acceptors and target molecules during oxidative phosphorylation while simultaneously maintaining the overall cellular environment in a reduced state. The objective of this review is to present an overview of the current literature discussing the link between HPA axis-derived glucocorticoids and increased oxidative stress, particularly focussing on the redox changes observed in the hippocampus following glucocorticoid exposure.

  14. Electronic cigarette aerosols and copper nanoparticles induce mitochondrial stress and promote DNA fragmentation in lung fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Lerner, Chad A.; Rutagarama, Pierrot; Ahmad, Tanveer; Sundar, Isaac K.; Elder, Alison; Rahman, Irfan, E-mail: irfan_rahman@urmc.rochester.edu

    2016-09-02

    Oxidants or nanoparticles have recently been identified as constituents of aerosols released from various styles of electronic cigarettes (E-cigs). Cells in the lung may be directly exposed to these constituents and harbor reactive properties capable of incurring acute cell injury. Our results show mitochondria are sensitive to both E-cig aerosols and aerosol containing copper nanoparticles when exposed to human lung fibroblasts (HFL-1) using an Air-Liquid Interface culture system, evident by elevated levels of mitochondrial ROS (mtROS). Increased mtROS after aerosol exposure is associated with reduced stability of OxPhos electron transport chain (ETC) complex IV subunit and nuclear DNA fragmentation. Increased levels of IL-8 and IL-6 in HFL-1 conditioned media were also observed. These findings reveal both mitochondrial, genotoxic, and inflammatory stresses are features of direct cell exposure to E-cig aerosols which are ensued by inflammatory duress, raising a concern on deleterious effect of vaping. - Graphical abstract: Oxidants and possibly reactive properties of metal particles in E-cig aerosols impart mitochondrial oxidative stress and DNA damage. These biological effects accompany inflammatory response which may raise concern regarding long term E-cig use. Mitochondria may be particularly sensitive to reactive properties of E-cig aerosols in addition to the potential for them to induce genotoxic stress by generating increased ROS. - Highlights: • Mitochondria are sensitive to both E-cig aerosols and metal nanoparticles. • Increased mtROS by E-cig aerosol is associated with disrupted mitochondrial energy. • E-cig causes nuclear DNA fragmentation. • E-cig aerosols induce pro-inflammatory response in human fibroblasts.

  15. Electronic cigarette aerosols and copper nanoparticles induce mitochondrial stress and promote DNA fragmentation in lung fibroblasts

    International Nuclear Information System (INIS)

    Lerner, Chad A.; Rutagarama, Pierrot; Ahmad, Tanveer; Sundar, Isaac K.; Elder, Alison; Rahman, Irfan

    2016-01-01

    Oxidants or nanoparticles have recently been identified as constituents of aerosols released from various styles of electronic cigarettes (E-cigs). Cells in the lung may be directly exposed to these constituents and harbor reactive properties capable of incurring acute cell injury. Our results show mitochondria are sensitive to both E-cig aerosols and aerosol containing copper nanoparticles when exposed to human lung fibroblasts (HFL-1) using an Air-Liquid Interface culture system, evident by elevated levels of mitochondrial ROS (mtROS). Increased mtROS after aerosol exposure is associated with reduced stability of OxPhos electron transport chain (ETC) complex IV subunit and nuclear DNA fragmentation. Increased levels of IL-8 and IL-6 in HFL-1 conditioned media were also observed. These findings reveal both mitochondrial, genotoxic, and inflammatory stresses are features of direct cell exposure to E-cig aerosols which are ensued by inflammatory duress, raising a concern on deleterious effect of vaping. - Graphical abstract: Oxidants and possibly reactive properties of metal particles in E-cig aerosols impart mitochondrial oxidative stress and DNA damage. These biological effects accompany inflammatory response which may raise concern regarding long term E-cig use. Mitochondria may be particularly sensitive to reactive properties of E-cig aerosols in addition to the potential for them to induce genotoxic stress by generating increased ROS. - Highlights: • Mitochondria are sensitive to both E-cig aerosols and metal nanoparticles. • Increased mtROS by E-cig aerosol is associated with disrupted mitochondrial energy. • E-cig causes nuclear DNA fragmentation. • E-cig aerosols induce pro-inflammatory response in human fibroblasts.

  16. Acute restraint stress induces endothelial dysfunction: role of vasoconstrictor prostanoids and oxidative stress.

    Science.gov (United States)

    Carda, Ana P P; Marchi, Katia C; Rizzi, Elen; Mecawi, André S; Antunes-Rodrigues, José; Padovan, Claudia M; Tirapelli, Carlos R

    2015-01-01

    We hypothesized that acute stress would induce endothelial dysfunction. Male Wistar rats were restrained for 2 h within wire mesh. Functional and biochemical analyses were conducted 24 h after the 2-h period of restraint. Stressed rats showed decreased exploration on the open arms of an elevated-plus maze (EPM) and increased plasma corticosterone concentration. Acute restraint stress did not alter systolic blood pressure, whereas it increased the in vitro contractile response to phenylephrine and serotonin in endothelium-intact rat aortas. NG-nitro-l-arginine methyl ester (l-NAME; nitric oxide synthase, NOS, inhibitor) did not alter the contraction induced by phenylephrine in aortic rings from stressed rats. Tiron, indomethacin and SQ29548 reversed the increase in the contractile response to phenylephrine induced by restraint stress. Increased systemic and vascular oxidative stress was evident in stressed rats. Restraint stress decreased plasma and vascular nitrate/nitrite (NOx) concentration and increased aortic expression of inducible (i) NOS, but not endothelial (e) NOS. Reduced expression of cyclooxygenase (COX)-1, but not COX-2, was observed in aortas from stressed rats. Restraint stress increased thromboxane (TX)B(2) (stable TXA(2) metabolite) concentration but did not affect prostaglandin (PG)F2α concentration in the aorta. Restraint reduced superoxide dismutase (SOD) activity, whereas concentrations of hydrogen peroxide (H(2)O(2)) and reduced glutathione (GSH) were not affected. The major new finding of our study is that restraint stress increases vascular contraction by an endothelium-dependent mechanism that involves increased oxidative stress and the generation of COX-derived vasoconstrictor prostanoids. Such stress-induced endothelial dysfunction could predispose to the development of cardiovascular diseases.

  17. Protective role of morin, a flavonoid, against high glucose induced oxidative stress mediated apoptosis in primary rat hepatocytes.

    Directory of Open Access Journals (Sweden)

    Radhika Kapoor

    Full Text Available Apoptosis is an early event of liver damage in diabetes and oxidative stress has been linked to accelerate the apoptosis in hepatocytes. Therefore, the compounds that can scavenge ROS may confer regulatory effects on high-glucose induced apoptosis. In the present study, primary rat hepatocytes were exposed to high concentration (40 mM of glucose. At this concentration decreased cell viability and enhanced ROS generation was observed. Depleted antioxidant status of hepatocytes under high glucose stress was also observed as evident from transcriptional level and activities of antioxidant enzymes. Further, mitochondrial depolarisation was accompanied by the loss of mitochondrial integrity and altered expression of Bax and Bcl-2. Increased translocation of apoptotic proteins like AIF (Apoptosis inducing factor & Endo-G (endonuclease-G from its resident place mitochondria to nucleus was also observed. Cyt-c residing in the inter-membrane space of mitochondria also translocated to cytoplasm. These apoptotic proteins initiated caspase activation, DNA fragmentation, chromatin condensation, increased apoptotic DNA content in glucose treated hepatocytes, suggesting mitochondria mediated apoptotic mode of cell death. Morin, a dietary flavonoid from Psidium guajava was effective in increasing the cell viability and decreasing the ROS level. It maintained mitochondrial integrity, inhibited release of apoptotic proteins from mitochondria, prevented DNA fragmentation, chromatin condensation and hypodiploid DNA upon exposure to high glucose. This study confirms the capacity of dietary flavonoid Morin in regulating apoptosis induced by high glucose via mitochondrial mediated pathway through intervention of oxidative stress.

  18. NEIL2 protects against oxidative DNA damage induced by sidestream smoke in human cells.

    Directory of Open Access Journals (Sweden)

    Altaf H Sarker

    Full Text Available Secondhand smoke (SHS is a confirmed lung carcinogen that introduces thousands of toxic chemicals into the lungs. SHS contains chemicals that have been implicated in causing oxidative DNA damage in the airway epithelium. Although DNA repair is considered a key defensive mechanism against various environmental attacks, such as cigarette smoking, the associations of individual repair enzymes with susceptibility to lung cancer are largely unknown. This study investigated the role of NEIL2, a DNA glycosylase excising oxidative base lesions, in human lung cells treated with sidestream smoke (SSS, the main component of SHS. To do so, we generated NEIL2 knockdown cells using siRNA-technology and exposed them to SSS-laden medium. Representative SSS chemical compounds in the medium were analyzed by mass spectrometry. An increased production of reactive oxygen species (ROS in SSS-exposed cells was detected through the fluorescent detection and the induction of HIF-1α. The long amplicon-quantitative PCR (LA-QPCR assay detected significant dose-dependent increases of oxidative DNA damage in the HPRT gene of cultured human pulmonary fibroblasts (hPF and BEAS-2B epithelial cells exposed to SSS for 24 h. These data suggest that SSS exposure increased oxidative stress, which could contribute to SSS-mediated toxicity. siRNA knockdown of NEIL2 in hPF and HEK 293 cells exposed to SSS for 24 h resulted in significantly more oxidative DNA damage in HPRT and POLB than in cells with control siRNA. Taken together, our data strongly suggest that decreased repair of oxidative DNA base lesions due to an impaired NEIL2 expression in non-smokers exposed to SSS would lead to accumulation of mutations in genomic DNA of lung cells over time, thus contributing to the onset of SSS-induced lung cancer.

  19. Oxidative stress as a significant factor for development of an adaptive response in irradiated and nonirradiated human lymphocytes after inducing the bystander effect by low-dose X-radiation

    Energy Technology Data Exchange (ETDEWEB)

    Ermakov, Aleksei V., E-mail: avePlato@mail.ru [Research Centre for Medical Genetics, Russian Academy of Medical Science, ul. Moskvorechye, 1, Moscow 115478 (Russian Federation); Konkova, Marina S.; Kostyuk, Svetlana V.; Egolina, Natalya A.; Efremova, Liudmila V.; Veiko, Natalya N. [Research Centre for Medical Genetics, Russian Academy of Medical Science, ul. Moskvorechye, 1, Moscow 115478 (Russian Federation)

    2009-10-02

    X-radiation (10 cGy) was shown to induce in human lymphocytes transposition of homologous chromosomes loci from the membrane towards the centre of the nucleus and activation of the chromosomal nucleolus-forming regions (NFRs). These effects are transmitted by means of extracellular DNA (ecDNA) fragments to nonirradiated cells (the so-called bystander effect, BE). We demonstrated that in the development of the BE an important role is played by oxidative stress (which is brought about by low radiation doses and ecDNA fragments of the culture medium of the irradiated cells), by an enzyme of apoptosis called caspase-3, and by DNA-binding receptors of the bystander cells, presumably TLR9. Proposed herein is a scheme of the development of an adaptive response and the BE on exposure to radiation. Ionizing radiation induces apoptosis of the radiosensitive fraction of cells due to the development of the 'primary' oxidative stress (OS). DNA fragments of apoptotic cells are released into the intercellular space and interact with the DNA-binding receptors of the bystander cells. This interaction activates in lymphocytes signalling pathways associated with synthesis of the reactive oxygen species and nitrogen species, i.e., induces secondary oxidative stress accompanied by apoptosis of part of the cells, etc. Hence, single exposure to radiation may be followed by relatively long-lasting in the cellular population oxidative stress contributing to the development of an adaptive response. We thus believe that ecDNA of irradiated apoptotic lymphocytes is a significant factor of stress-signalling.

  20. Cadmium(Cd)-induced oxidative stress down-regulates the gene expression of DNA mismatch recognition proteins MutS homolog 2 (MSH2) and MSH6 in zebrafish (Danio rerio) embryos

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Todd, E-mail: toddhsu@mail.ntou.edu.tw [Institute of Bioscience and Biotechnology and Center of Excellence for Marine Bioenvironment and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan (China); Huang, Kuan-Ming; Tsai, Huei-Ting; Sung, Shih-Tsung; Ho, Tsung-Nan [Institute of Bioscience and Biotechnology and Center of Excellence for Marine Bioenvironment and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan (China)

    2013-01-15

    DNA mismatch repair (MMR) of simple base mismatches and small insertion-deletion loops in eukaryotes is initiated by the binding of the MutS homolog 2 (MSH2)-MSH6 heterodimer to mismatched DNA. Cadmium (Cd) is a genotoxic heavy metal that has been recognized as a human carcinogen. Oxidant stress and inhibition of DNA repair have been proposed as major factors underlying Cd genotoxicity. Our previous studies indicated the ability of Cd to disturb the gene expression of MSH6 in zebrafish (Danio rerio) embryos. This study was undertaken to explore if Cd-induced oxidative stress down-regulated MSH gene activities. Following the exposure of zebrafish embryos at 1 h post fertilization (hpf) to sublethal concentrations of Cd at 3-5 {mu}M for 4 or 9 h, a parallel down-regulation of MSH2, MSH6 and Cu/Zn superoxide dismutase (Cu/Zn-SOD) gene expression was detected by real-time RT-PCR and the expression levels were 40-50% of control after a 9-h exposure. Cd exposure also induced oxidative stress, yet no inhibition of catalase gene activity was observed. Whole mount in situ hybridization revealed a wide distribution of msh6 mRNA in the head regions of 10 hpf embryos and pretreatment of embryos with antioxidants butylhydroxytoluene (BHT), D-mannitol or N-acetylcysteine (NAC) at 1-10 {mu}M restored Cd-suppressed msh6 expression. QPCR confirmed the protective effects of antioxidants on Cd-suppressed msh2/msh6 mRNA production. Down-regulated MSH gene activities reaching about 50% of control were also induced in embryos exposed to paraquat, a reactive oxygen species (ROS)-generating herbicide, or hydrogen peroxide at 200 {mu}M. Hence, Cd at sublethal levels down-regulates msh2/msh6 expression primarily via ROS as signaling molecules. The transcriptional activation of human msh6 is known to be fully dependent on the specificity factor 1 (Sp1). Cd failed to inhibit the DNA binding activity of zebrafish Sp1 unless at lethal concentrations based on band shift assay, therefore

  1. Bisphenol A induces oxidative stress and mitochondrial dysfunction in lymphoblasts from children with autism and unaffected siblings.

    Science.gov (United States)

    Kaur, Kulbir; Chauhan, Ved; Gu, Feng; Chauhan, Abha

    2014-11-01

    Autism is a behaviorally defined neurodevelopmental disorder. Although there is no single identifiable cause for autism, roles for genetic and environmental factors have been implicated in autism. Extensive evidence suggests increased oxidative stress and mitochondrial dysfunction in autism. In this study, we examined whether bisphenol A (BPA) is an environmental risk factor for autism by studying its effects on oxidative stress and mitochondrial function in the lymphoblasts. When lymphoblastoid cells from autistic subjects and age-matched unaffected sibling controls were exposed to BPA, there was an increase in the generation of reactive oxygen species (ROS) and a decrease in mitochondrial membrane potential in both groups. A further subdivision of the control group into two subgroups-unaffected nontwin siblings and twin siblings-showed significantly higher ROS levels without any exposure to BPA in the unaffected twin siblings compared to the unaffected nontwin siblings. ROS levels were also significantly higher in the autism vs the unaffected nontwin siblings group. The effect of BPA on three important mtDNA genes-NADH dehydrogenase 1, NADH dehydrogenase 4, and cytochrome b-was analyzed to observe any changes in the mitochondria after BPA exposure. BPA induced a significant increase in the mtDNA copy number in the lymphoblasts from the unaffected siblings group and in the unaffected twin siblings group vs the unaffected nontwin siblings. In all three genes, the mtDNA increase was seen in 70% of the subjects. These results suggest that BPA exposure results in increased oxidative stress and mitochondrial dysfunction in the autistic subjects as well as the age-matched sibling control subjects, particularly unaffected twin siblings. Therefore, BPA may act as an environmental risk factor for autism in genetically susceptible children by inducing oxidative stress and mitochondrial dysfunction. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Angiotensin II type 1a receptor-deficient mice develop angiotensin II-induced oxidative stress and DNA damage without blood pressure increase.

    Science.gov (United States)

    Zimnol, Anna; Amann, Kerstin; Mandel, Philipp; Hartmann, Christina; Schupp, Nicole

    2017-12-01

    Hypertensive patients have an increased risk of developing kidney cancer. We have shown in vivo that besides elevating blood pressure, angiotensin II causes DNA damage dose dependently. Here, the role of blood pressure in the formation of DNA damage is studied. Mice lacking one of the two murine angiotensin II type 1 receptor (AT1R) subtypes, AT1aR, were equipped with osmotic minipumps, delivering angiotensin II during 28 days. Parameters of oxidative stress and DNA damage of kidneys and hearts of AT1aR-knockout mice were compared with wild-type (C57BL/6) mice receiving angiotensin II, and additionally, with wild-type mice treated with candesartan, an antagonist of both AT1R subtypes. In wild-type mice, angiotensin II induced hypertension, reduced kidney function, and led to a significant formation of reactive oxygen species (ROS). Furthermore, genomic damage was markedly increased in this group. All these responses to angiotensin II could be attenuated by concurrent administration of candesartan. In AT1aR-deficient mice treated with angiotensin II, systolic pressure was not increased, and renal function was not affected. However, angiotensin II still led to an increase of ROS in kidneys and hearts of these animals. Additionally, genomic damage in the form of double-strand breaks was significantly induced in kidneys of AT1aR-deficient mice. Our results show that angiotensin II induced ROS production and DNA damage even without the presence of AT1aR and independently of blood pressure changes. Copyright © 2017 the American Physiological Society.

  3. Caryocar brasiliense camb protects against genomic and oxidative damage in urethane-induced lung carcinogenesis

    Directory of Open Access Journals (Sweden)

    N.B.R. Colombo

    2015-01-01

    Full Text Available The antioxidant effects of Caryocar brasiliense Camb, commonly known as the pequi fruit, have not been evaluated to determine their protective effects against oxidative damage in lung carcinogenesis. In the present study, we evaluated the role of pequi fruit against urethane-induced DNA damage and oxidative stress in forty 8-12 week old male BALB/C mice. An in vivo comet assay was performed to assess DNA damage in lung tissues and changes in lipid peroxidation and redox cycle antioxidants were monitored for oxidative stress. Prior supplementation with pequi oil or its extract (15 µL, 60 days significantly reduced urethane-induced oxidative stress. A protective effect against DNA damage was associated with the modulation of lipid peroxidation and low protein and gene expression of nitric oxide synthase. These findings suggest that the intake of pequi fruit might protect against in vivo genotoxicity and oxidative stress.

  4. Effects of Uric Acid on Exercise-induced Oxidative Stress

    OpenAIRE

    平井, 富弘

    2001-01-01

    We studied effects of uric acid on exercise― induced oxidative stress in humans based on a hypothesis that uric acid acts as an antioxidant to prevent from exercise―induced oxidative stress. Relation between uric acid level in plasma and increase of thiobarbituric acid reactive substance (TBARS)after the cycle ergometer exercise was examined. Thiobarbituricacid reactive substance in plasma increased after the ergometer exercise. High uric acid in plasma did not result in low increase of TBARS...

  5. Role of Free Radicals, Oxidative Stress and Xenobiotics in Carcinogenesis by Environmental Pollutants

    Directory of Open Access Journals (Sweden)

    Dibyajyoti Saha

    2014-09-01

    Full Text Available Carcinogenesis by many small molecular weight chemicals involves either a direct action of the chemical on cellular DNA or metabolism of the parent chemical to an active or ultimate form, which can than react with cellular DNA to produce a permanent chemical change in a DNA structure. A free radical is an atom or molecule that has one or more unpaired electron(s. These are highly reactive species capable of wide spread, indiscriminate oxidation and per oxidation of proteins, lipids and DNA which can lead to significant cellular damage and even tissue and/or organ failure. . Oxidative stress is a leading cause to damage cells by oxidation. The rate at which oxidative damage is induced (input and the rate at which it is efficiently repaired and removed (output. Xenobiotics are a compound that is foreign to the body. Xenobiotics can produce a variety of biological effects, including pharmacologic responses, toxicity, genes, immunologic reactions and cancer. Oxidative stress is a leading cause to damage cells by oxidation. The rate at which oxidative damage is induced (input and the rate at which it is efficiently repaired and removed (output. This communication highlights the role of carcinogens as environmental pollutants with the possible mechanism of free radicals, oxidative stress and xenobiotics.

  6. Oxidatively-induced DNA damage and base excision repair in euthymic patients with bipolar disorder.

    Science.gov (United States)

    Ceylan, Deniz; Tuna, Gamze; Kirkali, Güldal; Tunca, Zeliha; Can, Güneş; Arat, Hidayet Ece; Kant, Melis; Dizdaroglu, Miral; Özerdem, Ayşegül

    2018-05-01

    Oxidatively-induced DNA damage has previously been associated with bipolar disorder. More recently, impairments in DNA repair mechanisms have also been reported. We aimed to investigate oxidatively-induced DNA lesions and expression of DNA glycosylases involved in base excision repair in euthymic patients with bipolar disorder compared to healthy individuals. DNA base lesions including both base and nucleoside modifications were measured using gas chromatography-tandem mass spectrometry and liquid chromatography-tandem mass spectrometry with isotope-dilution in DNA samples isolated from leukocytes of euthymic patients with bipolar disorder (n = 32) and healthy individuals (n = 51). The expression of DNA repair enzymes OGG1 and NEIL1 were measured using quantitative real-time polymerase chain reaction. The levels of malondialdehyde were measured using high performance liquid chromatography. Seven DNA base lesions in DNA of leukocytes of patients and healthy individuals were identified and quantified. Three of them had significantly elevated levels in bipolar patients when compared to healthy individuals. No elevation of lipid peroxidation marker malondialdehyde was observed. The level of OGG1 expression was significantly reduced in bipolar patients compared to healthy individuals, whereas the two groups exhibited similar levels of NEIL1 expression. Our results suggest that oxidatively-induced DNA damage occurs and base excision repair capacity may be decreased in bipolar patients when compared to healthy individuals. Measurement of oxidatively-induced DNA base lesions and the expression of DNA repair enzymes may be of great importance for large scale basic research and clinical studies of bipolar disorder. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Thiamine deficiency induces endoplasmic reticulum stress and oxidative stress in human neurons derived from induced pluripotent stem cells.

    Science.gov (United States)

    Wang, Xin; Xu, Mei; Frank, Jacqueline A; Ke, Zun-Ji; Luo, Jia

    2017-04-01

    Thiamine (vitamin B1) deficiency (TD) plays a major role in the etiology of Wernicke's encephalopathy (WE) which is a severe neurological disorder. TD induces selective neuronal cell death, neuroinflammation, endoplasmic reticulum (ER) stress and oxidative stress in the brain which are commonly observed in many aging-related neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and progressive supranuclear palsy (PSP). However, the underlying cellular and molecular mechanisms remain unclear. The progress in this line of research is hindered due to the lack of appropriate in vitro models. The neurons derived for the human induced pluripotent stem cells (hiPSCs) provide a relevant and powerful tool for the research in pharmaceutical and environmental neurotoxicity. In this study, we for the first time used human induced pluripotent stem cells (hiPSCs)-derived neurons (iCell neurons) to investigate the mechanisms of TD-induced neurodegeneration. We showed that TD caused a concentration- and duration-dependent death of iCell neurons. TD induced ER stress which was evident by the increase in ER stress markers, such as GRP78, XBP-1, CHOP, ATF-6, phosphorylated eIF2α, and cleaved caspase-12. TD also triggered oxidative stress which was shown by the increase in the expression 2,4-dinitrophenyl (DNP) and 4-hydroxynonenal (HNE). ER stress inhibitors (STF-083010 and salubrinal) and antioxidant N-acetyl cysteine (NAC) were effective in alleviating TD-induced death of iCell neurons, supporting the involvement of ER stress and oxidative stress. It establishes that the iCell neurons are a novel tool to investigate cellular and molecular mechanisms for TD-induced neurodegeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Oxidative Stress Induces Senescence in Cultured RPE Cells.

    Science.gov (United States)

    Aryan, Nona; Betts-Obregon, Brandi S; Perry, George; Tsin, Andrew T

    2016-01-01

    The aim of this research is to determine whether oxidative stress induces cellular senescence in human retinal pigment epithelial cells. Cultured ARPE19 cells were subjected to different concentrations of hydrogen peroxide to induce oxidative stress. Cells were seeded into 24-well plates with hydrogen peroxide added to cell medium and incubated at 37°C + 5% CO2 for a 90-minute period [at 0, 300, 400 and 800 micromolar (MCM) hydrogen peroxide]. The number of viable ARPE19 cells were recorded using the Trypan Blue Dye Exclusion Method and cell senescence was measured by positive staining for senescence-associated beta-galactosidase (SA-beta-Gal) protein. Without hydrogen peroxide treatment, the number of viable ARPE19 cells increased significantly from 50,000 cells/well to 197,000 within 72 hours. Treatment with hydrogen peroxide reduced this level of cell proliferation significantly (to 52,167 cells at 400 MCM; to 49,263 cells at 800 MCM). Meanwhile, cells with a high level of positive senescence-indicator SA-Beta-Gal-positive staining was induced by hydrogen peroxide treatment (from a baseline level of 12% to 80% at 400 MCM and at 800 MCM). Our data suggests that oxidative stress from hydrogen peroxide treatment inhibited ARPE19 cell proliferation and induced cellular senescence.

  9. A review: oxidative stress in fish induced by pesticides.

    Science.gov (United States)

    Slaninova, Andrea; Smutna, Miriam; Modra, Helena; Svobodova, Zdenka

    2009-01-01

    The knowledge in oxidative stress in fish has a great importance for environmental and aquatic toxicology. Because oxidative stress is evoked by many chemicals including some pesticides, pro-oxidant factors' action in fish organism can be used to assess specific area pollution or world sea pollution. Hepatotoxic effect of DDT may be related with lipid peroxidation. Releasing of reactive oxygen species (ROS) after HCB exposure can be realized via two ways: via the uncoupling of the electron transport chain from monooxygenase activity and via metabolism of HCB major metabolite pentachlorophenol. Chlorothalonil disrupts mitochondrial metabolism due to the impairment of NADPH oxidase function. Activation of spleen macrophages and a decrease of catalase (CAT) activity have been observed after endosulfan exposure. Excessive release of superoxide radicals after etoxazole exposure can cause a decrease of CAT activity and increase phagocytic activity of splenocytes. Anticholinergic activity of organophosphates leads to the accumulation of ROS and resulting lipid peroxidation. Carbaryl induces changes in the content of glutathione and antioxidant enzymes activities. The antioxidant enzymes changes have been observed after actuation of pesticides deltamethrin and cypermethrin. Bipyridyl herbicides are able to form redox cycles and thereby cause oxidative stress. Low concentrations of simazine do not cause oxidative stress in carps during sub-chronic tests while sublethal concentrations of atrazin can induce oxidative stress in bluegill sunfish. Butachlor causes increased activity of superoxide dismutase -catalase system in the kidney. Rotenon can inhibit the electron transport in mitochondria and thereby increase ROS production. Dichloroaniline, the metabolite of diuron, has oxidative effects. Oxidative damage from fenpyroximate actuation is related to the disruption of mitochondrial redox respiratory chain. Low concentration of glyphosate can cause mild oxidative stress.

  10. Exacerbation of N-nitrosodiethylamine Induced Hepatotoxicity and DNA Damage in Mice Exposed to Chronic Unpredictable Stress

    Directory of Open Access Journals (Sweden)

    Nayeem Bilal

    2017-06-01

    Full Text Available Psychological stress contributes to increased susceptibility to a number of diseases including cancer. The present study was designed to assess the effect of chronic unpredictable stress on N-nitrosodiethylamine induced liver toxicity in terms of in vivo antioxidant status and DNA damage in Swiss albino mice. The animals used in this study were randomized into different groups based on the treatment with N-nitrosodiethylamine or chronic unpredictable stress alone and post-stress administration of N-nitrosodiethylamine. The mice were sacrificed after 12 weeks of treatment, and the status of major enzymatic and non-enzymatic antioxidants, liver function markers, lipid peroxidation and the extent of DNA damage were determined in circulation and liver tissues of all the groups. The N-nitrosodiethylamine treated group showed significantly compromised levels of the antioxidant enzymes, lipid peroxidation, and the liver function markers with enhanced DNA damage as compared to chronic unpredictable stress or control groups. A similar but less typical pattern observed in the chronic unpredictable stress treated mice. All the measured biochemical parameters were significantly altered in the group treated with the combination of chronic unpredictable stress and N-nitrosodiethylamine when compared to controls, or chronic unpredictable stress alone and/or N-nitrosodiethylamine alone treated groups. Thus, exposure to continuous, unpredictable stress conditions even in general life may significantly enhance the hepatotoxic potential of N-nitrosodiethylamine through an increase in the oxidative stress and DNA damage.

  11. Metformin protects primary rat hepatocytes against oxidative stress-induced apoptosis

    NARCIS (Netherlands)

    Conde de la Rosa, Laura; Vrenken, Titia E; Buist-Homan, Manon; Faber, Klaas Nico; Moshage, Han

    The majority of chronic liver diseases are accompanied by oxidative stress, which induces apoptosis in hepatocytes and liver injury. Recent studies suggest that oxidative stress and insulin resistance are important in the pathogenesis of nonalcoholic fatty liver disease (NAFLD) and the

  12. Blue light-induced oxidative stress in live skin.

    Science.gov (United States)

    Nakashima, Yuya; Ohta, Shigeo; Wolf, Alexander M

    2017-07-01

    Skin damage from exposure to sunlight induces aging-like changes in appearance and is attributed to the ultraviolet (UV) component of light. Photosensitized production of reactive oxygen species (ROS) by UVA light is widely accepted to contribute to skin damage and carcinogenesis, but visible light is thought not to do so. Using mice expressing redox-sensitive GFP to detect ROS, blue light could produce oxidative stress in live skin. Blue light induced oxidative stress preferentially in mitochondria, but green, red, far red or infrared light did not. Blue light-induced oxidative stress was also detected in cultured human keratinocytes, but the per photon efficacy was only 25% of UVA in human keratinocyte mitochondria, compared to 68% of UVA in mouse skin. Skin autofluorescence was reduced by blue light, suggesting flavins are the photosensitizer. Exposing human skin to the blue light contained in sunlight depressed flavin autofluorescence, demonstrating that the visible component of sunlight has a physiologically significant effect on human skin. The ROS produced by blue light is probably superoxide, but not singlet oxygen. These results suggest that blue light contributes to skin aging similar to UVA. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Subway particles are more genotoxic than street particles and induce oxidative stress in cultured human lung cells.

    Science.gov (United States)

    Karlsson, Hanna L; Nilsson, Lennart; Möller, Lennart

    2005-01-01

    Epidemiological studies have shown an association between airborne particles and a wide range of adverse health effects. The mechanisms behind these effects include oxidative stress and inflammation. Even though traffic gives rise to high levels of particles in the urban air, people are exposed to even higher levels in the subway. However, there is a lack of knowledge regarding how particles from different urban subenvironments differ in toxicity. The main aim of the present study was to compare the ability of particles from a subway station and a nearby very busy urban street, respectively, to damage DNA and to induce oxidative stress. Cultured human lung cells (A549) were exposed to particles, DNA damage was analyzed using single cell gel electrophoresis (the comet assay), and the ability to induce oxidative stress was measured as 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) formation in lung cell DNA. We found that the subway particles were approximately eight times more genotoxic and four times more likely to cause oxidative stress in the lung cells. When the particles, water extracts from the particles, or particles treated with the metal chelator deferoxamine mesylate were incubated with 2'-deoxyguanosine (dG) and 8-oxodG was analyzed, we found that the oxidative capacity of the subway particles was due to redox active solid metals. Furthermore, analysis of the atomic composition showed that the subway particles to a dominating degree (atomic %) consisted of iron, mainly in the form of magnetite (Fe3O4). By using electron microscopy, the interaction between the particles and the lung cells was shown. The in vitro reactivity of the subway particles in combination with the high particle levels in subway systems give cause of concern due to the high number of people that are exposed to subway particles on a daily basis. To what extent the subway particles cause health effects in humans needs to be further evaluated.

  14. Role of Oxidative Stress in Epigenetic Modification in Endometriosis.

    Science.gov (United States)

    Ito, Fuminori; Yamada, Yuki; Shigemitsu, Aiko; Akinishi, Mika; Kaniwa, Hiroko; Miyake, Ryuta; Yamanaka, Shoichiro; Kobayashi, Hiroshi

    2017-11-01

    Aberrant DNA methylation and histone modification are associated with an increased risk of reproductive disorders such as endometriosis. However, a cause-effect relationship between epigenetic mechanisms and endometriosis development has not been fully determined. This review provides current information based on oxidative stress in epigenetic modification in endometriosis. This article reviews the English-language literature on epigenetics, DNA methylation, histone modification, and oxidative stress associated with endometriosis in an effort to identify epigenetic modification that causes a predisposition to endometriosis. Oxidative stress, secondary to the influx of hemoglobin, heme, and iron during retrograde menstruation, is involved in the expression of CpG demethylases, ten-eleven translocation, and jumonji (JMJ). Ten-eleven translocation and JMJ recognize a wide range of endogenous DNA methyltransferases (DNMTs). The increased expression levels of DNMTs may be involved in the subsequent downregulation of the decidualization-related genes. This review supports the hypothesis that there are at least 2 distinct phases of epigenetic modification in endometriosis: the initial wave of iron-induced oxidative stress would be followed by the second big wave of epigenetic modulation of endometriosis susceptibility genes. We summarize the recent advances in our understanding of the underlying epigenetic mechanisms focusing on oxidative stress in endometriosis.

  15. The basic chemistry of exercise-induced DNA oxidation: oxidative damage, redox signalling and their interplay

    Directory of Open Access Journals (Sweden)

    James Nathan Cobley

    2015-06-01

    Full Text Available Acute exercise increases reactive oxygen and nitrogen species generation. This phenomenon is associated with two major outcomes: (1 redox signalling and (2 macromolecule damage. Mechanistic knowledge of how exercise-induced redox signalling and macromolecule damage are interlinked is limited. This review focuses on the interplay between exercise-induced redox signalling and DNA damage, using hydroxyl radical (·OH and hydrogen peroxide (H2O2 as exemplars. It is postulated that the biological fate of H2O2 links the two processes and thus represents a bifurcation point between redox signalling and damage. Indeed, H2O2 can participate in two electron signalling reactions but its diffusion and chemical properties permit DNA oxidation following reaction with transition metals and ·OH generation. It is also considered that the sensing of DNA oxidation by repair proteins constitutes a non-canonical redox signalling mechanism. Further layers of interaction are provided by the redox regulation of DNA repair proteins and their capacity to modulate intracellular H2O2 levels. Overall, exercise-induced redox signalling and DNA damage may be interlinked to a greater extent than was previously thought but this requires further investigation.

  16. Petroselinum Crispum is Effective in Reducing Stress-Induced Gastric Oxidative Damage

    OpenAIRE

    Ayşin Akıncı; Mukaddes Eşrefoğlu; Elif Taşlıdere; Burhan Ateş

    2017-01-01

    Background: Oxidative stress has been shown to play a principal role in the pathogenesis of stress-induced gastric injury. Parsley (Petroselinum crispum) contains many antioxidants such as flavanoids, carotenoids and ascorbic acid. Aims: In this study, the histopathological and biochemical results of nutrition with a parsley-rich diet in terms of eliminating stress-induced oxidative gastric injury were evaluated. Study Design: Animal experimentation. Methods: Forty male Wistar albino...

  17. Petroselinum Crispum is Effective in Reducing Stress-Induced Gastric Oxidative Damage

    OpenAIRE

    Ak?nc?, Ay?in; E?refo?lu, Mukaddes; Ta?l?dere, Elif; Ate?, Burhan

    2017-01-01

    Background: Oxidative stress has been shown to play a principal role in the pathogenesis of stress-induced gastric injury. Parsley (Petroselinum crispum) contains many antioxidants such as flavanoids, carotenoids and ascorbic acid. Aims: In this study, the histopathological and biochemical results of nutrition with a parsley-rich diet in terms of eliminating stress-induced oxidative gastric injury were evaluated. Study Design: Animal experimentation Methods: Forty male Wistar albino rats were...

  18. Oral Exposure to Atrazine Induces Oxidative Stress and Calcium Homeostasis Disruption in Spleen of Mice

    Directory of Open Access Journals (Sweden)

    Shuying Gao

    2016-01-01

    Full Text Available The widely used herbicide atrazine (ATR can cause many adverse effects including immunotoxicity, but the underlying mechanisms are not fully understood. The current study investigated the role of oxidative stress and calcium homeostasis in ATR-induced immunotoxicity in mice. ATR at doses of 0, 100, 200, or 400 mg/kg body weight was administered to Balb/c mice daily for 21 days by oral gavage. The studies performed 24 hr after the final exposure showed that ATR could induce the generation of reactive oxygen species in the spleen of the mice, increase the level of advanced oxidation protein product (AOPP in the host serum, and cause the depletion of reduced glutathione in the serum, each in a dose-related manner. In addition, DNA damage was observed in isolated splenocytes as evidenced by increase in DNA comet tail formation. ATR exposure also caused increases in intracellular Ca2+ within splenocytes. Moreover, ATR treatment led to increased expression of genes for some antioxidant enzymes, such as HO-1 and Gpx1, as well as increased expression of NF-κB and Ref-1 proteins in the spleen. In conclusion, it appears that oxidative stress and disruptions in calcium homeostasis might play an important role in the induction of immunotoxicity in mice by ATR.

  19. Modulator effect of watercress against cyclophosphamide-induced oxidative stress in mice

    Directory of Open Access Journals (Sweden)

    Natalia A. Casanova

    2017-06-01

    Full Text Available Watercress (Nasturtium officinale, Cruciferae; W. Aiton is a vegetable widely consumed in our country, with nutritional and potentially chemopreventive properties. Previous reports from our laboratory demonstrated the protective effect of watercress juice against DNA damage induced by cyclophosphamide in vivo. In this study, we evaluated the in vivo effect of cress plant on the oxidative stress in mice. Animals were treated by gavage with different doses of watercress juice (0.5 and 1g/kg body weight for 15 consecutive days before intraperitoneal injection of cyclophosphamide (100 mg/kg body weight. After 24 h, mice were killed by cervical dislocation. The effect of watercress was investigated by assessing the following oxidative stress biomarkers: catalase activity, superoxide dismutase activity, lipid peroxidation, and glutathione balance. Intake of watercress prior to cyclophosphamide administration enhanced superoxide dismutase activity in erythrocytes with no effect on catalase activity. In bone marrow and liver tissues, watercress juice counteracted the effect of cyclophosphamide. Glutathione balance rose by watercress supplementation and lipid oxidation diminished in all matrixes when compared to the respective control groups. Our results support the role of watercress as a diet component with promising properties to be used as health promoter or protective agent against oxidative damage

  20. High Glucose-Induced Oxidative Stress Increases the Copy Number of Mitochondrial DNA in Human Mesangial Cells

    Directory of Open Access Journals (Sweden)

    Ghada Al-Kafaji

    2013-01-01

    Full Text Available Oxidative damage to mitochondrial DNA (mtDNA has been linked to the pathogenicity of diabetic nephropathy. We tested the hypothesis that mtDNA copy number may be increased in human mesangial cells in response to high glucose-induced reactive oxygen species (ROS to compensate for damaged mtDNA. The effect of manganese superoxide dismutase mimetic (MnTBAP on glucose-induced mtDNA copy number was also examined. The copy number of mtDNA was determined by real-time PCR in human mesangial cells cultured in 5 mM glucose, 25 mM glucose, and mannitol (osmotic control, as well as in cells cultured in 25 mM glucose in the presence and absence of 200 μM MnTBAP. Intracellular ROS was assessed by confocal microscopy and flow cytometry in human mesangial cells. The copy number of mtDNA was significantly increased when human mesangial cells were incubated with 25 mM glucose compared to 5 mM glucose and mannitol. In addition, 25 mM glucose rapidly generated ROS in the cells, which was not detected in 5 mM glucose. Furthermore, mtDNA copy number was significantly decreased and maintained to normal following treatment of cells with 25 mM glucose and MnTBAP compared to 25 mM glucose alone. Inclusion of MnTBAP during 25 mM glucose incubation inhibited mitochondrial superoxide in human mesangial cells. Increased mtDNA copy number in human mesangial cells by high glucose could contribute to increased mitochondrial superoxide, and prevention of mtDNA copy number could have potential in retarding the development of diabetic nephropathy.

  1. N-Acetylcysteine protects against trichloroethene-mediated autoimmunity by attenuating oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Gangduo; Wang, Jianling; Ma, Huaxian; Ansari, G.A.S.; Khan, M. Firoze, E-mail: mfkhan@utmb.edu

    2013-11-15

    Exposure to trichloroethene (TCE), a ubiquitous environmental contaminant, is known to induce autoimmunity both in humans and animal models. However, mechanisms underlying TCE-mediated autoimmunity remain largely unknown. Previous studies from our laboratory in MRL +/+ mice suggest that oxidative stress may contribute to TCE-induced autoimmune response. The current study was undertaken to further assess the role of oxidative stress in TCE-induced autoimmunity by supplementing with an antioxidant N-acetylcysteine (NAC). Groups of female MRL +/+ mice were given TCE, NAC or TCE + NAC for 6 weeks (TCE, 10 mmol/kg, i.p., every 4th day; NAC, 250 mg/kg/day through drinking water). TCE exposure led to significant increases in serum levels of anti-nuclear, anti-dsDNA and anti-Sm antibodies. TCE exposure also led to significant induction of anti-malondiadelhyde (MDA)- and anti-hydroxynonenal (HNE)-protein adduct antibodies which were associated with increased ANA in the sera along with increased MDA-/HNE-protein adducts in the livers and kidneys, and increases in protein oxidation (carbonylation) in the sera, livers and kidneys, suggesting an overall increase in oxidative stress. Moreover, TCE exposure also resulted in increased release of IL-17 from splenocytes and increases in IL-17 mRNA expression. Remarkably, NAC supplementation attenuated not only the TCE-induced oxidative stress, IL-17 release and mRNA expression, but also the markers of autoimmunity, as evident from decreased levels of ANA, anti-dsDNA and anti-Sm antibodies in the sera. These results provide further support to a role of oxidative stress in TCE-induced autoimmune response. Attenuation of TCE-induced autoimmunity in mice by NAC provides an approach for preventive and/or therapeutic strategies. - Highlights: • TCE led to increased autoantibodies, supporting its potential to induce autoimmunity. • TCE exposure led to increases in lipid perioxidation and protein carbonyls. • TCE exposure resulted in

  2. N-Acetylcysteine protects against trichloroethene-mediated autoimmunity by attenuating oxidative stress

    International Nuclear Information System (INIS)

    Wang, Gangduo; Wang, Jianling; Ma, Huaxian; Ansari, G.A.S.; Khan, M. Firoze

    2013-01-01

    Exposure to trichloroethene (TCE), a ubiquitous environmental contaminant, is known to induce autoimmunity both in humans and animal models. However, mechanisms underlying TCE-mediated autoimmunity remain largely unknown. Previous studies from our laboratory in MRL +/+ mice suggest that oxidative stress may contribute to TCE-induced autoimmune response. The current study was undertaken to further assess the role of oxidative stress in TCE-induced autoimmunity by supplementing with an antioxidant N-acetylcysteine (NAC). Groups of female MRL +/+ mice were given TCE, NAC or TCE + NAC for 6 weeks (TCE, 10 mmol/kg, i.p., every 4th day; NAC, 250 mg/kg/day through drinking water). TCE exposure led to significant increases in serum levels of anti-nuclear, anti-dsDNA and anti-Sm antibodies. TCE exposure also led to significant induction of anti-malondiadelhyde (MDA)- and anti-hydroxynonenal (HNE)-protein adduct antibodies which were associated with increased ANA in the sera along with increased MDA-/HNE-protein adducts in the livers and kidneys, and increases in protein oxidation (carbonylation) in the sera, livers and kidneys, suggesting an overall increase in oxidative stress. Moreover, TCE exposure also resulted in increased release of IL-17 from splenocytes and increases in IL-17 mRNA expression. Remarkably, NAC supplementation attenuated not only the TCE-induced oxidative stress, IL-17 release and mRNA expression, but also the markers of autoimmunity, as evident from decreased levels of ANA, anti-dsDNA and anti-Sm antibodies in the sera. These results provide further support to a role of oxidative stress in TCE-induced autoimmune response. Attenuation of TCE-induced autoimmunity in mice by NAC provides an approach for preventive and/or therapeutic strategies. - Highlights: • TCE led to increased autoantibodies, supporting its potential to induce autoimmunity. • TCE exposure led to increases in lipid perioxidation and protein carbonyls. • TCE exposure resulted in

  3. The Degree of Radiation-Induced DNA Strand Breaks Is Altered by Acute Sleep Deprivation and Psychological Stress and Is Associated with Cognitive Performance in Humans.

    Science.gov (United States)

    Moreno-Villanueva, Maria; von Scheven, Gudrun; Feiveson, Alan; Bürkle, Alexander; Wu, Honglu; Goel, Namni

    2018-03-27

    Sleep deprivation is associated with impaired immune responses, cancer, and morbidity and mortality, and can degrade cognitive performance, although individual differences exist in such responses. Sleep deprivation induces DNA strand breaks and DNA base oxidation in animals, and psychological stress is associated with increased DNA damage in humans. It remains unknown whether sleep deprivation or psychological stress in humans affects DNA damage response from environmental stressors, and whether these responses predict cognitive performance during sleep deprivation. Sixteen healthy adults (ages 29-52;mean age±SD, 36.4±7.1 years;7 women) participated in a 5-day experiment involving two 8 hour time-in-bed [TIB] baseline nights, followed by 39 hours total sleep deprivation (TSD), and two 8-10 hour TIB recovery nights. A modified Trier Social Stress Test was conducted on the day after TSD. Psychomotor Vigilance Tests measured behavioral attention. DNA damage was assessed in blood cells collected at 5 time points, and blood cells were irradiated ex-vivo. TSD, alone or in combination with psychological stress, did not induce significant increases in DNA damage. By contrast, radiation-induced DNA damage decreased significantly in response to TSD, but increased back to baseline when combined with psychological stress. Cognitively-vulnerable individuals had more radiation-induced DNA strand breaks before TSD, indicating their greater sensitivity to DNA damage from environmental stressors. Our results provide novel insights into the molecular consequences of sleep deprivation, psychological stress, and performance vulnerability. They are important for situations involving sleep loss, radiation exposure and cognitive deficits, including cancer therapy, environmental toxicology, and space medicine.

  4. DNA-methylation changes induced by salt stress in wheat Triticum ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-11-16

    Nov 16, 2009 ... soil roots are the primary point of contact with ionic toxicity and osmotic stress. One of .... liquid nitrogen with mortar and pestle. Then 10 ml of ... room temperature and the crude DNA extract was mixed with 10 ml of chloroform: ..... induces DNA hypomethylation, as reviewed by Cerda and. Weitzman (1997).

  5. Echinacoside Induces Apoptosis in Human SW480 Colorectal Cancer Cells by Induction of Oxidative DNA Damages

    Directory of Open Access Journals (Sweden)

    Liwei Dong

    2015-06-01

    Full Text Available Echinacoside is a natural compound with potent reactive oxygen species (ROS-scavenging and anti-oxidative bioactivities, which protect cells from oxidative damages. As cancer cells are often under intense oxidative stress, we therefore tested if Echinacoside treatment would promote cancer development. Surprisingly, we found that Echinacoside significantly inhibited the growth and proliferation of a panel of cancer cell lines. Treatment of the human SW480 cancer cells with Echinacoside resulted in marked apoptosis and cell cycle arrest, together with a significant increase in active caspase 3 and cleaved PARP, and upregulation of the G1/S-CDK blocker CDKN1B (p21. Interestingly, immunocytochemistry examination of drug-treated cancer cells revealed that Echinacoside caused a significant increase of intracellular oxidized guanine, 8-oxoG, and dramatic upregulation of the double-strand DNA break (DSB-binding protein 53BP1, suggesting that Echinacoside induced cell cycle arrest and apoptosis in SW480 cancer cells via induction of oxidative DNA damages. These results establish Echinacoside as a novel chemical scaffold for development of anticancer drugs.

  6. Sodium nitroprusside (SNP) alleviates the oxidative stress induced ...

    African Journals Online (AJOL)

    Oxidative damage is often induced by abiotic stress, nitric oxide (NO) is considered as a functional molecule in modulating antioxidant metabolism of plants. In the present study, effects of sodium nitroprusside (SNP), a NO donor, on the phenotype, antioxidant capacity and chloroplast ultrastructure of cucumber leaves were ...

  7. Three job stress models/concepts and oxidative DNA damage in a sample of workers in Japan.

    Science.gov (United States)

    Inoue, Akiomi; Kawakami, Norito; Ishizaki, Masao; Tabata, Masaji; Tsuchiya, Masao; Akiyama, Miki; Kitazume, Akiko; Kuroda, Mitsuyo; Shimazu, Akihito

    2009-04-01

    Three job stress models/concepts (the job demands-control [DC] model, the effort-reward imbalance [ERI] model, and organizational justice) have been linked to coronary heart disease (CHD) at work. In recent years, oxidative DNA damage has been identified as a new risk factor for CHD. However, evidence for the association between these job stressors and oxidative DNA damage is limited. The present cross-sectional study investigated the association between these job stress models/concepts and oxidative DNA damage as a possible mediator of the adverse health effects of job stress. A total of 166 male and 51 female workers of a manufacturing factory in Japan were surveyed using a mailed questionnaire regarding job stressors and demographic, occupational, and lifestyle variables. Urinary concentrations of 8-hydroxy-2'-deoxyguanosine (8-OHdG), a biomarker of oxidative DNA damage, were also measured. In male subjects, the urinary concentrations of 8-OHdG were significantly higher among the group with lower interactional justice, one of the two components of organizational justice; however, no association was observed with the DC model or the ERI model. In female subjects, high job demands/control ratio was significantly and positively associated with the urinary concentrations of 8-OHdG. Interactional justice among male workers and the DC model-based strain among female workers may be associated with increased urinary concentrations of 8-OHdG which possibly reflects oxidative DNA damage.

  8. Oxidative stress and inflammation generated DNA damage by exposure to air pollution particles

    DEFF Research Database (Denmark)

    Møller, Peter; Danielsen, Pernille Høgh; Karottki, Dorina Gabriela

    2014-01-01

    at different locations (spatial variability), times (temporal variability) or particle size fraction across different experimental systems of acellular conditions, cultured cells, animals and humans. Nevertheless, there is substantial variation in the genotoxic, inflammation and oxidative stress potential......Generation of oxidatively damaged DNA by particulate matter (PM) is hypothesized to occur via production of reactive oxygen species (ROS) and inflammation. We investigated this hypothesis by comparing ROS production, inflammation and oxidatively damaged DNA in different experimental systems...... investigating air pollution particles. There is substantial evidence indicating that exposure to air pollution particles was associated with elevated levels of oxidatively damaged nucleobases in circulating blood cells and urine from humans, which is supported by observations of elevated levels of genotoxicity...

  9. Grape (Vitis vinifera) extracts protect against radiation-induced oxidative stress in human erythrocyte (red blood cell)

    International Nuclear Information System (INIS)

    Singha, Indrani; Das, Subir Kumar; Gautam, S.

    2016-01-01

    Ionizing radiation (IR) causes oxidative stress through the overwhelming generation of reactive oxygen species (ROS) in the living cells leading further to the oxidative damage to biomolecules. Grapes (Vitis vinifera) contain several bioactive phytochemicals and are the richest source of antioxidant. In this study, we investigated and compared in vitro antioxidant activity and DNA damage protective property of the grape extracts of four different cultivars, including the Thompson seedless, Flame seedless, Kishmish chorni and Red globe. The activities of ascorbic acid oxidase and catalase significantly (p<0.01) differed among extracts within the same cultivar, while that of peroxidase and polyphenol oxidase did not differ significantly among extracts of any cultivar. In vitro antioxidant activities were assessed by ferric-reducing antioxidant power (FRAP) assay and ABTS. The superoxide radical-scavenging activity was higher in the seed as compared to the skin or pulp of the same cultivar. Pretreatment with grape extracts attenuates oxidative stress induced by 4 Gy γ-radiation in human erythrocytes in vitro. These results suggest that grape extract serve as a potential source of natural antioxidants against the IR-induced oxidative stress and also inhibit apoptosis. Furthermore, the protective action of grape depends on the source of extract (seed, skin or pulp) and type of the cultivars. (author)

  10. Triphlorethol-A from Ecklonia cava Up-Regulates the Oxidant Sensitive 8-Oxoguanine DNA Glycosylase 1

    Directory of Open Access Journals (Sweden)

    Ki Cheon Kim

    2014-10-01

    Full Text Available This study investigated the protective mechanisms of triphlorethol-A, isolated from Ecklonia cava, against oxidative stress-induced DNA base damage, especially 8-oxoguanine (8-oxoG, in Chinese hamster lung fibroblast V79-4 cells. 8-Oxoguanine DNA glycosylase-1 (OGG1 plays an important role in the removal of 8-oxoG during the cellular response to DNA base damage. Triphlorethol-A significantly decreased the levels of 8-oxoG induced by H2O2, and this correlated with increases in OGG1 mRNA and OGG1 protein levels. Furthermore, siOGG1-transfected cell attenuated the protective effect of triphlorethol-A against H2O2 treatment. Nuclear factor erythroid 2–related factor 2 (Nrf2 is a transcription factor for OGG1, and Nrf2 combines with small Maf proteins in the nucleus to bind to antioxidant response elements (ARE in the upstream promoter region of the OGG1 gene. Triphlorethol-A restored the expression of nuclear Nrf2, small Maf protein, and the Nrf2-Maf complex, all of which were reduced by oxidative stress. Furthermore, triphlorethol-A increased Nrf2 binding to ARE sequences and the resulting OGG1 promoter activity, both of which were also reduced by oxidative stress. The levels of the phosphorylated forms of Akt kinase, downstream of phosphatidylinositol 3-kinase (PI3K, and Erk, which are regulators of OGG1, were sharply decreased by oxidative stress, but these decreases were prevented by triphlorethol-A. Specific PI3K, Akt, and Erk inhibitors abolished the cytoprotective effects of triphlorethol-A, suggesting that OGG1 induction by triphlorethol-A involves the PI3K/Akt and Erk pathways. Taken together, these data indicate that by activating the DNA repair system, triphlorethol-A exerts protective effects against DNA base damage induced by oxidative stress.

  11. Biologically Synthesized Gold Nanoparticles Ameliorate Cold and Heat Stress-Induced Oxidative Stress in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Xi-Feng Zhang

    2016-06-01

    Full Text Available Due to their unique physical, chemical, and optical properties, gold nanoparticles (AuNPs have recently attracted much interest in the field of nanomedicine, especially in the areas of cancer diagnosis and photothermal therapy. Because of the enormous potential of these nanoparticles, various physical, chemical, and biological methods have been adopted for their synthesis. Synthetic antioxidants are dangerous to human health. Thus, the search for effective, nontoxic natural compounds with effective antioxidative properties is essential. Although AuNPs have been studied for use in various biological applications, exploration of AuNPs as antioxidants capable of inhibiting oxidative stress induced by heat and cold stress is still warranted. Therefore, one goal of our study was to produce biocompatible AuNPs using biological methods that are simple, nontoxic, biocompatible, and environmentally friendly. Next, we aimed to assess the antioxidative effect of AuNPs against oxidative stress induced by cold and heat in Escherichia coli, which is a suitable model for stress responses involving AuNPs. The response of aerobically grown E. coli cells to cold and heat stress was found to be similar to the oxidative stress response. Upon exposure to cold and heat stress, the viability and metabolic activity of E. coli was significantly reduced compared to the control. In addition, levels of reactive oxygen species (ROS and malondialdehyde (MDA and leakage of proteins and sugars were significantly elevated, and the levels of lactate dehydrogenase activity (LDH and adenosine triphosphate (ATP significantly lowered compared to in the control. Concomitantly, AuNPs ameliorated cold and heat-induced oxidative stress responses by increasing the expression of antioxidants, including glutathione (GSH, glutathione S-transferase (GST, super oxide dismutase (SOD, and catalase (CAT. These consistent physiology and biochemical data suggest that AuNPs can ameliorate cold and

  12. Poly(GR) in C9ORF72-Related ALS/FTD Compromises Mitochondrial Function and Increases Oxidative Stress and DNA Damage in iPSC-Derived Motor Neurons.

    Science.gov (United States)

    Lopez-Gonzalez, Rodrigo; Lu, Yubing; Gendron, Tania F; Karydas, Anna; Tran, Helene; Yang, Dejun; Petrucelli, Leonard; Miller, Bruce L; Almeida, Sandra; Gao, Fen-Biao

    2016-10-19

    GGGGCC repeat expansions in C9ORF72 are the most common genetic cause of both ALS and FTD. To uncover underlying pathogenic mechanisms, we found that DNA damage was greater, in an age-dependent manner, in motor neurons differentiated from iPSCs of multiple C9ORF72 patients than control neurons. Ectopic expression of the dipeptide repeat (DPR) protein (GR) 80 in iPSC-derived control neurons increased DNA damage, suggesting poly(GR) contributes to DNA damage in aged C9ORF72 neurons. Oxidative stress was also increased in C9ORF72 neurons in an age-dependent manner. Pharmacological or genetic reduction of oxidative stress partially rescued DNA damage in C9ORF72 neurons and control neurons expressing (GR) 80 or (GR) 80 -induced cellular toxicity in flies. Moreover, interactome analysis revealed that (GR) 80 preferentially bound to mitochondrial ribosomal proteins and caused mitochondrial dysfunction. Thus, poly(GR) in C9ORF72 neurons compromises mitochondrial function and causes DNA damage in part by increasing oxidative stress, revealing another pathogenic mechanism in C9ORF72-related ALS and FTD. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Effect of methanolic extract of Asparagus racemosus Willd. on lipopolysaccharide induced-oxidative stress in rats.

    Science.gov (United States)

    Ahmad, Mohammad Parwez; Hussain, Arshad; Siddiqui, Hefazat Hussain; Wahab, Shadma; Adak, Manoranjan

    2015-03-01

    Lipopolysaccharide (LPS) induced oxidative stress and impairment of normal physiological function generally categorized by increased anxiety and reduced mobility. Therefore, the present study was to find out the effect Methanolic extract of Asparagus racemosus (MEAR ) in lipopolysaccharide (LPS)-induced oxidative stress in rats . LPS-induced oxidative stress in rats was measured by locomotor activity by photoactometer test, anxiety with elevated plus maze test and also studied the oxidative stress markers, nitric oxide and cytokines. The obtained data shows that LPS markedly exhausted (pAsparagus racemosus Willd. is a functionally newer type of cerebroprotective agent.

  14. Glutathionylation of the Bacterial Hsp70 Chaperone DnaK Provides a Link between Oxidative Stress and the Heat Shock Response.

    Science.gov (United States)

    Zhang, Hong; Yang, Jie; Wu, Si; Gong, Weibin; Chen, Chang; Perrett, Sarah

    2016-03-25

    DnaK is the major bacterial Hsp70, participating in DNA replication, protein folding, and the stress response. DnaK cooperates with the Hsp40 co-chaperone DnaJ and the nucleotide exchange factor GrpE. Under non-stress conditions, DnaK binds to the heat shock transcription factor σ(32)and facilitates its degradation. Oxidative stress results in temporary inactivation of DnaK due to depletion of cellular ATP and thiol modifications such as glutathionylation until normal cellular ATP levels and a reducing environment are restored. However, the biological significance of DnaK glutathionylation remains unknown, and the mechanisms by which glutathionylation may regulate the activity of DnaK are also unclear. We investigated the conditions under which Escherichia coli DnaK undergoesS-glutathionylation. We observed glutathionylation of DnaK in lysates of E. coli cells that had been subjected to oxidative stress. We also obtained homogeneously glutathionylated DnaK using purified DnaK in the apo state. We found that glutathionylation of DnaK reversibly changes the secondary structure and tertiary conformation, leading to reduced nucleotide and peptide binding ability. The chaperone activity of DnaK was reversibly down-regulated by glutathionylation, accompanying the structural changes. We found that interaction of DnaK with DnaJ, GrpE, or σ(32)becomes weaker when DnaK is glutathionylated, and the interaction is restored upon deglutathionylation. This study confirms that glutathionylation down-regulates the functions of DnaK under oxidizing conditions, and this down-regulation may facilitate release of σ(32)from its interaction with DnaK, thus triggering the heat shock response. Such a mechanism provides a link between oxidative stress and the heat shock response in bacteria. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Oxidative stress induces senescence in human mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Brandl, Anita [Department of Anesthesiology, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg (Germany); Meyer, Matthias; Bechmann, Volker [Department of Trauma Surgery, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg (Germany); Nerlich, Michael [Department of Anesthesiology, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg (Germany); Angele, Peter, E-mail: Peter.Angele@klinik.uni-regensburg.de [Department of Trauma Surgery, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg (Germany)

    2011-07-01

    Mesenchymal stem cells (MSCs) contribute to tissue repair in vivo and form an attractive cell source for tissue engineering. Their regenerative potential is impaired by cellular senescence. The effects of oxidative stress on MSCs are still unknown. Our studies were to investigate into the proliferation potential, cytological features and the telomere linked stress response system of MSCs, subject to acute or prolonged oxidant challenge with hydrogen peroxide. Telomere length was measured using the telomere restriction fragment assay, gene expression was determined by rtPCR. Sub-lethal doses of oxidative stress reduced proliferation rates and induced senescent-morphological features and senescence-associated {beta}-galactosidase positivity. Prolonged low dose treatment with hydrogen peroxide had no effects on cell proliferation or morphology. Sub-lethal and prolonged low doses of oxidative stress considerably accelerated telomere attrition. Following acute oxidant insult p21 was up-regulated prior to returning to initial levels. TRF1 was significantly reduced, TRF2 showed a slight up-regulation. SIRT1 and XRCC5 were up-regulated after oxidant insult and expression levels increased in aging cells. Compared to fibroblasts and chondrocytes, MSCs showed an increased tolerance to oxidative stress regarding proliferation, telomere biology and gene expression with an impaired stress tolerance in aged cells.

  16. An in vivo analysis of Cr6+ induced biochemical, genotoxicological and transcriptional profiling of genes related to oxidative stress, DNA damage and apoptosis in liver of fish, Channa punctatus (Bloch, 1793).

    Science.gov (United States)

    Awasthi, Yashika; Ratn, Arun; Prasad, Rajesh; Kumar, Manoj; Trivedi, Sunil P

    2018-07-01

    Present study was designed to assess the hexavalent chromium (Cr 6+ ) mediated oxidative stress that induces DNA damage and apoptosis in adult fish, Channa punctatus (35 ± 3.0 g; 14.5 ± 1.0 cm; Actinopterygii). Fishes were maintained in three groups for 15, 30 and 45 d of exposure periods. They were treated with 5% (Group T1) and 10% (Group T2) of 96 h-LC 50 of chromium trioxide (Cr 6+ ). Controls were run for the similar duration. A significant (p < 0.05) increment in the activities of antioxidant enzymes, SOD and CAT in liver tissues of the exposed fish evinces the persistence of oxidative stress. A significant (p < 0.05) increase in induction of micronuclei (MN) coupled with transcriptional responses of target genes related to antioxidant enzymes, DNA damage and apoptosis (sod, cat, gsr, nox-1, p53, bax, bcl-2, apaf-1 and casp3a) establishes the impact of oxidative stress due to in vivo, Cr 6+ accumulation in liver as compared to control (0 mg/L), in a dose and exposure-dependent manner. Initially, the increased level of reactive oxygen species (ROS) in liver coincided with that of enhanced mRNA expression of antioxidant enzymes, sod, cat, gsr and nox-1 but, later, the overproduction of ROS, after 45 d of exposure of Cr 6+ , resulted in a significant (p < 0.05) up-regulation of p53. Our findings also unveil that the up-regulation of bax, apaf-1 and casp3a and down-regulation of bcl-2 are associated with Cr 6+ -induced oxidative stress mediated-apoptosis in liver of test fish. Aforesaid molecular markers can, thus, be efficiently utilized for bio-monitoring of aquatic regimes and conservation of fish biodiversity. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Romo1 expression contributes to oxidative stress-induced death of lung epithelial cells

    International Nuclear Information System (INIS)

    Shin, Jung Ar; Chung, Jin Sil; Cho, Sang-Ho; Kim, Hyung Jung; Yoo, Young Do

    2013-01-01

    Highlights: •Romo1 mediates oxidative stress-induced mitochondrial ROS production. •Romo1 induction by oxidative stress plays an important role in oxidative stress-induced apoptosis. •Romo1 overexpression correlates with epithelial cell death in patients with IPF. -- Abstract: Oxidant-mediated death of lung epithelial cells due to cigarette smoking plays an important role in pathogenesis in lung diseases such as idiopathic pulmonary fibrosis (IPF). However, the exact mechanism by which oxidants induce epithelial cell death is not fully understood. Reactive oxygen species (ROS) modulator 1 (Romo1) is localized in the mitochondria and mediates mitochondrial ROS production through complex III of the mitochondrial electron transport chain. Here, we show that Romo1 mediates mitochondrial ROS production and apoptosis induced by oxidative stress in lung epithelial cells. Hydrogen peroxide (H 2 O 2 ) treatment increased Romo1 expression, and Romo1 knockdown suppressed the cellular ROS levels and cell death triggered by H 2 O 2 treatment. In immunohistochemical staining of lung tissues from patients with IPF, Romo1 was mainly localized in hyperplastic alveolar and bronchial epithelial cells. Romo1 overexpression was detected in 14 of 18 patients with IPF. TUNEL-positive alveolar epithelial cells were also detected in most patients with IPF but not in normal controls. These findings suggest that Romo1 mediates apoptosis induced by oxidative stress in lung epithelial cells

  18. Romo1 expression contributes to oxidative stress-induced death of lung epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jung Ar [Department of Internal Medicine, Yonsei University College of Medicine, Yonsei University Health System, Seoul 135-270 (Korea, Republic of); Chung, Jin Sil [Laboratory of Molecular Cell Biology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713 (Korea, Republic of); Cho, Sang-Ho [Department of Pathology, Pochon CHA University, College of Medicine, Gyeonggi-do (Korea, Republic of); Kim, Hyung Jung, E-mail: khj57@yuhs.ac.kr [Department of Internal Medicine, Yonsei University College of Medicine, Yonsei University Health System, Seoul 135-270 (Korea, Republic of); Yoo, Young Do, E-mail: ydy1130@korea.ac.kr [Laboratory of Molecular Cell Biology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713 (Korea, Republic of)

    2013-09-20

    Highlights: •Romo1 mediates oxidative stress-induced mitochondrial ROS production. •Romo1 induction by oxidative stress plays an important role in oxidative stress-induced apoptosis. •Romo1 overexpression correlates with epithelial cell death in patients with IPF. -- Abstract: Oxidant-mediated death of lung epithelial cells due to cigarette smoking plays an important role in pathogenesis in lung diseases such as idiopathic pulmonary fibrosis (IPF). However, the exact mechanism by which oxidants induce epithelial cell death is not fully understood. Reactive oxygen species (ROS) modulator 1 (Romo1) is localized in the mitochondria and mediates mitochondrial ROS production through complex III of the mitochondrial electron transport chain. Here, we show that Romo1 mediates mitochondrial ROS production and apoptosis induced by oxidative stress in lung epithelial cells. Hydrogen peroxide (H{sub 2}O{sub 2}) treatment increased Romo1 expression, and Romo1 knockdown suppressed the cellular ROS levels and cell death triggered by H{sub 2}O{sub 2} treatment. In immunohistochemical staining of lung tissues from patients with IPF, Romo1 was mainly localized in hyperplastic alveolar and bronchial epithelial cells. Romo1 overexpression was detected in 14 of 18 patients with IPF. TUNEL-positive alveolar epithelial cells were also detected in most patients with IPF but not in normal controls. These findings suggest that Romo1 mediates apoptosis induced by oxidative stress in lung epithelial cells.

  19. MicroRNA-122 is involved in oxidative stress in isoniazid-induced liver injury in mice.

    Science.gov (United States)

    Song, L; Zhang, Z R; Zhang, J L; Zhu, X B; He, L; Shi, Z; Gao, L; Li, Y; Hu, B; Feng, F M

    2015-10-27

    Many studies have shown that the pathogenesis of liver injury includes oxidative stress. MicroRNA-122 may be a marker for the early diagnosis of drug-induced liver injury. However, the relationship between microRNA-122 and oxidative stress in anti-tuberculosis drug-induced liver injury remains unknown. We measured changes in tissue microRNA-122 levels and indices of oxidative stress during liver injury in mice after administration of isoniazid, a first-line anti-tuberculosis drug. We quantified microRNA-122 expression and indices of oxidative stress at 7 time points, including 1, 3, and 5 days and 1, 2, 3, and 4 weeks. The tissue microRNA-122 levels and oxidative stress significantly changed at 3 and 5 days, suggesting that isoniazid-induced liver injury reduces oxidative stress and microRNA-122 expression compared to in the control group (P microRNA-122, began to change at 5 days (P microRNA-122 profile may affect oxidative stress by regulating mitochondrial ribosome protein S11 gene during isoniazid-induced liver injury, which may contribute to the response mechanisms of microRNA-122 and oxidative stress.

  20. Prolonged Pulmonary Exposure to Diesel Exhaust Particles Exacerbates Renal Oxidative Stress, Inflammation and DNA Damage in Mice with Adenine-Induced Chronic Renal Failure

    Directory of Open Access Journals (Sweden)

    Abderrahim Nemmar

    2016-05-01

    Full Text Available Background/Aims: Epidemiological evidence indicates that patients with chronic kidney diseases have increased susceptibility to adverse outcomes related to long-term exposure to particulate air pollution. However, mechanisms underlying these effects are not fully understood. Methods: Presently, we assessed the effect of prolonged exposure to diesel exhaust particles (DEP on chronic renal failure induced by adenine (0.25% w/w in feed for 4 weeks, which is known to involve inflammation and oxidative stress. DEP (0.5m/kg was intratracheally (i.t. instilled every 4th day for 4 weeks (7 i.t. instillation. Four days following the last exposure to either DEP or saline (control, various renal endpoints were measured. Results: While body weight was decreased, kidney weight increased in DEP+adenine versus saline+adenine or DEP. Water intake, urine volume, relative kidney weight were significantly increased in adenine+DEP versus DEP and adenine+saline versus saline. Plasma creatinine and urea increased and creatinine clearance decreased in adenine+DEP versus DEP and adenine+saline versus saline. Tumor necrosis factor α, lipid peroxidation and reactive oxygen species were significantly increased in adenine+DEP compared with either DEP or adenine+saline. The antioxidant calase was significantly decreased in adenine+DEP compared with either adenine+saline or DEP. Notably, renal DNA damage was significantly potentiated in adenine+DEP compared with either adenine+saline or DEP. Similarly, systolic blood pressure was increased in adenine+DEP versus adenine+saline or DEP, and in DEP versus saline. Histological evaluation revealed more collagen deposition, higher number of necrotic cell counts and dilated tubules, cast formation and collapsing glomeruli in adenine+DEP versus adenine+saline or DEP. Conclusion: Prolonged pulmonary exposure to diesel exhaust particles worsen renal oxidative stress, inflammation and DNA damage in mice with adenine-induced chronic

  1. Lycopene Prevents Amyloid [Beta]-Induced Mitochondrial Oxidative Stress and Dysfunctions in Cultured Rat Cortical Neurons.

    Science.gov (United States)

    Qu, Mingyue; Jiang, Zheng; Liao, Yuanxiang; Song, Zhenyao; Nan, Xinzhong

    2016-06-01

    Brains affected by Alzheimer's disease (AD) show a large spectrum of mitochondrial alterations at both morphological and genetic level. The causal link between β-amyloid (Aβ) and mitochondrial dysfunction has been established in cellular models of AD. We observed previously that lycopene, a member of the carotenoid family of phytochemicals, could counteract neuronal apoptosis and cell damage induced by Aβ and other neurotoxic substances, and that this neuroprotective action somehow involved the mitochondria. The present study aims to investigate the effects of lycopene on mitochondria in cultured rat cortical neurons exposed to Aβ. It was found that lycopene attenuated Aβ-induced oxidative stress, as evidenced by the decreased intracellular reactive oxygen species generation and mitochondria-derived superoxide production. Additionally, lycopene ameliorated Aβ-induced mitochondrial morphological alteration, opening of the mitochondrial permeability transition pores and the consequent cytochrome c release. Lycopene also improved mitochondrial complex activities and restored ATP levels in Aβ-treated neuron. Furthermore, lycopene prevented mitochondrial DNA damages and improved the protein level of mitochondrial transcription factor A in mitochondria. Those results indicate that lycopene protects mitochondria against Aβ-induced damages, at least in part by inhibiting mitochondrial oxidative stress and improving mitochondrial function. These beneficial effects of lycopene may account for its protection against Aβ-induced neurotoxicity.

  2. Is the Oxidative Stress Really a Disease?

    Directory of Open Access Journals (Sweden)

    Fogarasi Erzsébet

    2016-03-01

    Full Text Available Oxidative stress is an imbalance between free radicals or other reactive species and the antioxidant activity of the organism. Oxidative stress can induce several illnesses such as cardiovascular disease, neurodegenerative disorders, diabetes, cancer, Alzheimer and Parkinson. The biomarkers of oxidative stress are used to test oxidative injury of biomolecules. The indicators of lipid peroxidation (malondialdehyde, 4-hydroxy- 2-nonenal, 2-propenal, isoprostanes, of protein oxidation (carbonylated proteins, tyrosine derivatives, of oxidative damage of DNA, and other biomarkers (glutathione level, metallothioneins, myeloperoxidase activity are the most used oxidative stress markers. Diseases caused by oxidative stress can be prevented with antioxidants. In human body are several enzymes with antioxidant capacity (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and spin traps. Antioxidants are synthetized in the organism (glutathione or arrive in the body by nutrition (ascorbic acid, vitamin E, carotenoids, flavonoids, resveratrol, xanthones. Different therapeutic strategies to reduce oxidative stress with the use of synthetic molecules such as nitrone-based antioxidants (phenyl-α-tert-butyl-nitrone (PBN, 2,4-disulphophenyl- N-tert-butylnitrone (NXY-059, stilbazulenyl nitrone (STAZN, which scavenge a wide variety of free radical species, increase endogenous antioxidant levels and inhibits free radical generation are also tested in animal models.

  3. Quercetin prevents chronic unpredictable stress induced behavioral dysfunction in mice by alleviating hippocampal oxidative and inflammatory stress.

    Science.gov (United States)

    Mehta, Vineet; Parashar, Arun; Udayabanu, Malairaman

    2017-03-15

    It is now evident that chronic stress is associated with anxiety, depression and cognitive dysfunction and very few studies have focused on identifying possible methods to prevent these stress-induced disorders. Previously, we identified abundance of quercetin in Urtica dioica extract, which efficiently attenuated stress related complications. Therefore, current study was designed to investigate the effect of quercetin on chronic unpredicted stress (CUS) induced behavioral dysfunction, oxidative stress and neuroinflammation in the mouse hippocampus. Animals were subjected to unpredicted stress for 21days, during which 30mg/kg quercetin was orally administered to them. Effect of CUS and quercetin treatment on animal behavior was assessed between day 22-26. Afterward, the hippocampus was processed to evaluate neuronal damage, oxidative and inflammatory stress. Results revealed that stressed animals were highly anxious (Elevated Plus Maze and Open Field), showed depressive-like behavior (sucrose preference task), performed poorly in short-term and long-term associative memory task (passive avoidance step-through task) and displayed reduced locomotion (open field). Quercetin alleviated behavioral dysfunction in chronically stressed animals. Compared to CUS, quercetin treatment significantly reduced anxiety, attenuated depression, improved cognitive dysfunction and normalized locomotor activity. Further, CUS elevated the levels of oxidative stress markers (TBARS, nitric oxide), lowered antioxidants (total thiol, catalase), enhanced expression of pro-inflammatory cytokines (IL-6, TNF-α, IL-1β and COX-2) in the hippocampus and damaged hippocampal neurons. Quercetin treatment significantly lowered oxidative and inflammatory stress and prevented neural damage. In conclusion, quercetin can efficiently prevent stress induced neurological complications by rescuing brain from oxidative and inflammatory stress. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. DNA damage and oxidative stress in marine gastropod Morula granulata exposed to phenanthrene

    Digital Repository Service at National Institute of Oceanography (India)

    Bhagat, J.; Sarkar, A.; Ingole, B.S.

    oxidative stress was assessed using a battery of biomarkers such as glutathione-S-transferase (GST), catalase (CAT), and lipid peroxidation (LPO). Our data showed concentration-dependent increase in percentage DNA in tail (TDNA), LPO, and GST activity...

  5. Mechanisms of carbon nanotube-induced toxicity: Focus on oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Shvedova, Anna A., E-mail: ats1@cdc.gov [Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, University of Rome “Tor Vergata”, Rome (Italy); Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, University of Rome “Tor Vergata”, Rome (Italy); Pietroiusti, Antonio [Department of Biopathology, University of Rome “Tor Vergata”, Rome (Italy); Fadeel, Bengt [Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm (Sweden); Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA (United States); Kagan, Valerian E. [Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA (United States)

    2012-06-01

    Nanotechnologies are emerging as highly promising technologies in many sectors in the society. However, the increasing use of engineered nanomaterials also raises concerns about inadvertent exposure to these materials and the potential for adverse effects on human health and the environment. Despite several years of intensive investigations, a common paradigm for the understanding of nanoparticle-induced toxicity remains to be firmly established. Here, the so-called oxidative stress paradigm is scrutinized. Does oxidative stress represent a secondary event resulting inevitably from disruption of biochemical processes and the demise of the cell, or a specific, non-random event that plays a role in the induction of cellular damage e.g. apoptosis? The answer to this question will have important ramifications for the development of strategies for mitigation of adverse effects of nanoparticles. Recent examples of global lipidomics studies of nanoparticle-induced tissue damage are discussed along with proteomics and transcriptomics approaches to achieve a comprehensive understanding of the complex and interrelated molecular changes in cells and tissues exposed to nanoparticles. We also discuss instances of non-oxidative stress-mediated cellular damage resulting from direct physical interference of nanomaterials with cellular structures. -- Highlights: ► CNT induced non-random oxidative stress associated with apoptosis. ► Non-oxidative mechanisms for cellular toxicity of carbon nanotubes. ► Biodegradation of CNT by cells of innate immune system. ► “Omics”-based biomarkers of CNT exposures.

  6. Mechanisms of carbon nanotube-induced toxicity: Focus on oxidative stress

    International Nuclear Information System (INIS)

    Shvedova, Anna A.; Pietroiusti, Antonio; Fadeel, Bengt; Kagan, Valerian E.

    2012-01-01

    Nanotechnologies are emerging as highly promising technologies in many sectors in the society. However, the increasing use of engineered nanomaterials also raises concerns about inadvertent exposure to these materials and the potential for adverse effects on human health and the environment. Despite several years of intensive investigations, a common paradigm for the understanding of nanoparticle-induced toxicity remains to be firmly established. Here, the so-called oxidative stress paradigm is scrutinized. Does oxidative stress represent a secondary event resulting inevitably from disruption of biochemical processes and the demise of the cell, or a specific, non-random event that plays a role in the induction of cellular damage e.g. apoptosis? The answer to this question will have important ramifications for the development of strategies for mitigation of adverse effects of nanoparticles. Recent examples of global lipidomics studies of nanoparticle-induced tissue damage are discussed along with proteomics and transcriptomics approaches to achieve a comprehensive understanding of the complex and interrelated molecular changes in cells and tissues exposed to nanoparticles. We also discuss instances of non-oxidative stress-mediated cellular damage resulting from direct physical interference of nanomaterials with cellular structures. -- Highlights: ► CNT induced non-random oxidative stress associated with apoptosis. ► Non-oxidative mechanisms for cellular toxicity of carbon nanotubes. ► Biodegradation of CNT by cells of innate immune system. ► “Omics”-based biomarkers of CNT exposures.

  7. Peroxisome proliferator-activated receptor delta (PPARdelta) activation protects H9c2 cardiomyoblasts from oxidative stress-induced apoptosis.

    Science.gov (United States)

    Pesant, Matthieu; Sueur, Stéphanie; Dutartre, Patrick; Tallandier, Mireille; Grimaldi, Paul A; Rochette, Luc; Connat, Jean-Louis

    2006-02-01

    Activation of peroxisome proliferator-activated receptor alpha (PPARalpha) and PPARgamma plays beneficial roles in cardiovascular disorders such as atherosclerosis and heart reperfusion. Although PPARalpha and gamma have been documented to reduce oxidative stress in the vasculature and the heart, the role of PPARdelta remains poorly studied. We focused on PPARdelta function in the regulation of oxidative stress-induced apoptosis in the rat cardiomyoblast cell line H9c2. Using semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR), we showed that PPARdelta is the predominantly expressed isotype whereas PPARalpha was weakly detected. By performing cell viability assays, we also showed that the selective PPARdelta agonist GW501516 protected cells from H(2)O(2)-induced cell death. The protective effect of GW501516 was due to an inhibition of H(2)O(2)-triggered apoptosis as shown by annexin-V labeling, DNA fragmentation analysis, and caspase-3 activity measurement. We demonstrated by transient transfection of a dominant negative mutant of PPARdelta that the protection induced by GW501516 was totally dependent on PPARdelta. Semi-quantitative RT-PCR and Western blotting analysis demonstrated that GW501516 treatment upregulated catalase. Moreover, forced overexpression of catalase inhibited H(2)O(2)-triggered apoptosis, as evidenced by annexin-V labeling. Taken together, our results account for an important role of PPARdelta in inhibiting the onset of oxidative stress-induced apoptosis in H9c2 cells. PPARdelta appears to be a new therapeutic target for the regulation of heart reperfusion-associated oxidative stress and stimulation of enzymatic antioxidative defences.

  8. Curcumin Generates Oxidative Stress and Induces Apoptosis in Adult Schistosoma mansoni Worms.

    Directory of Open Access Journals (Sweden)

    Daniela de Paula Aguiar

    Full Text Available Inducing apoptosis is an interesting therapeutic approach to develop drugs that act against helminthic parasites. Researchers have investigated how curcumin (CUR, a biologically active compound extracted from rhizomes of Curcuma longa, affects Schistosoma mansoni and several cancer cell lines. This study evaluates how CUR influences the induction of apoptosis and oxidative stress in couples of adult S. mansoni worms. CUR decreased the viability of adult worms and killed them. The tegument of the parasite suffered morphological changes, the mitochondria underwent alterations, and chromatin condensed. Different apoptotic parameters were determined in an attempt to understand how CUR affected adult S. mansoni worms. CUR induced DNA damage and fragmentation and increased the expression of SmCASP3/7 transcripts and the activity of Caspase 3 in female and male worms. However, CUR did not intensify the activity of Caspase 8 in female or male worms. Evaluation of the superoxide anion and different antioxidant enzymes helped to explore the mechanism of parasite death further. The level of superoxide anion and the activity of Superoxide Dismutase (SOD increased, whereas the activity of Glutathione-S-Transferase (GST, Glutathione reductase (GR, and Glutathione peroxidase (GPX decreased, which culminated in the oxidation of proteins in adult female and male worms incubated with CUR. In conclusion, CUR generated oxidative stress followed by apoptotic-like-events in both adult female and male S. mansoni worms, ultimately killing them.

  9. Environmental stress induces trinucleotide repeat mutagenesis in human cells.

    Science.gov (United States)

    Chatterjee, Nimrat; Lin, Yunfu; Santillan, Beatriz A; Yotnda, Patricia; Wilson, John H

    2015-03-24

    The dynamic mutability of microsatellite repeats is implicated in the modification of gene function and disease phenotype. Studies of the enhanced instability of long trinucleotide repeats (TNRs)-the cause of multiple human diseases-have revealed a remarkable complexity of mutagenic mechanisms. Here, we show that cold, heat, hypoxic, and oxidative stresses induce mutagenesis of a long CAG repeat tract in human cells. We show that stress-response factors mediate the stress-induced mutagenesis (SIM) of CAG repeats. We show further that SIM of CAG repeats does not involve mismatch repair, nucleotide excision repair, or transcription, processes that are known to promote TNR mutagenesis in other pathways of instability. Instead, we find that these stresses stimulate DNA rereplication, increasing the proportion of cells with >4 C-value (C) DNA content. Knockdown of the replication origin-licensing factor CDT1 eliminates both stress-induced rereplication and CAG repeat mutagenesis. In addition, direct induction of rereplication in the absence of stress also increases the proportion of cells with >4C DNA content and promotes repeat mutagenesis. Thus, environmental stress triggers a unique pathway for TNR mutagenesis that likely is mediated by DNA rereplication. This pathway may impact normal cells as they encounter stresses in their environment or during development or abnormal cells as they evolve metastatic potential.

  10. Symbiosis-induced adaptation to oxidative stress.

    Science.gov (United States)

    Richier, Sophie; Furla, Paola; Plantivaux, Amandine; Merle, Pierre-Laurent; Allemand, Denis

    2005-01-01

    Cnidarians in symbiosis with photosynthetic protists must withstand daily hyperoxic/anoxic transitions within their host cells. Comparative studies between symbiotic (Anemonia viridis) and non-symbiotic (Actinia schmidti) sea anemones show striking differences in their response to oxidative stress. First, the basal expression of SOD is very different. Symbiotic animal cells have a higher isoform diversity (number and classes) and a higher activity than the non-symbiotic cells. Second, the symbiotic animal cells of A. viridis also maintain unaltered basal values for cellular damage when exposed to experimental hyperoxia (100% O(2)) or to experimental thermal stress (elevated temperature +7 degrees C above ambient). Under such conditions, A. schmidti modifies its SOD activity significantly. Electrophoretic patterns diversify, global activities diminish and cell damage biomarkers increase. These data suggest symbiotic cells adapt to stress while non-symbiotic cells remain acutely sensitive. In addition to being toxic, high O(2) partial pressure (P(O(2))) may also constitute a preconditioning step for symbiotic animal cells, leading to an adaptation to the hyperoxic condition and, thus, to oxidative stress. Furthermore, in aposymbiotic animal cells of A. viridis, repression of some animal SOD isoforms is observed. Meanwhile, in cultured symbionts, new activity bands are induced, suggesting that the host might protect its zooxanthellae in hospite. Similar results have been observed in other symbiotic organisms, such as the sea anemone Aiptasia pulchella and the scleractinian coral Stylophora pistillata. Molecular or physical interactions between the two symbiotic partners may explain such variations in SOD activity and might confer oxidative stress tolerance to the animal host.

  11. Repair of endogenous and ionizing radiation-induced DNA damages: mechanisms and biological functions

    International Nuclear Information System (INIS)

    Boiteux, S.

    2002-01-01

    The cellular DNA is continuously exposed to endogenous and exogenous stress. Oxidative stress due to cellular metabolism is the major cause of endogenous DNA damage. On the other hand, ionizing radiation (IR) is an important exogenous stress. Both induce similar DNA damages: damaged bases, abasic sites and strand breakage. Most of these lesions are lethal and/or mutagenic. The survival of the cell is managed by efficient and accurate DNA repair mechanisms that remove lesions before their replication or transcription. DNA repair pathways involved in the removal of IR-induced lesions are briefly described. Base excision repair (BER) is mostly involved in the removal of base damage, abasic sites and single strand breaks. In contrast, DNA double strand breaks are mostly repaired by non-homologous end joining (NHEJ) or homologous recombination (HR). How DNA repair pathways prevent cancer process is also discussed. (author)

  12. Replication stress and oxidative damage contribute to aberrant constitutive activation of DNA damage signalling in human gliomas

    DEFF Research Database (Denmark)

    Bartkova, J; Hamerlik, P; Stockhausen, Marie

    2010-01-01

    brain and grade II astrocytomas, despite the degree of DDR activation was higher in grade II tumors. Markers indicative of ongoing DNA replication stress (Chk1 activation, Rad17 phosphorylation, replication protein A foci and single-stranded DNA) were present in GBM cells under high- or low...... and indicate that replication stress, rather than oxidative stress, fuels the DNA damage signalling in early stages of astrocytoma development.......Malignant gliomas, the deadliest of brain neoplasms, show rampant genetic instability and resistance to genotoxic therapies, implicating potentially aberrant DNA damage response (DDR) in glioma pathogenesis and treatment failure. Here, we report on gross, aberrant constitutive activation of DNA...

  13. Immunohistochemical analysis of oxidative stress and DNA repair proteins in normal mammary and breast cancer tissues

    International Nuclear Information System (INIS)

    Curtis, Carol D; Thorngren, Daniel L; Nardulli, Ann M

    2010-01-01

    During the course of normal cellular metabolism, oxygen is consumed and reactive oxygen species (ROS) are produced. If not effectively dissipated, ROS can accumulate and damage resident proteins, lipids, and DNA. Enzymes involved in redox regulation and DNA repair dissipate ROS and repair the resulting damage in order to preserve a functional cellular environment. Because increased ROS accumulation and/or unrepaired DNA damage can lead to initiation and progression of cancer and we had identified a number of oxidative stress and DNA repair proteins that influence estrogen responsiveness of MCF-7 breast cancer cells, it seemed possible that these proteins might be differentially expressed in normal mammary tissue, benign hyperplasia (BH), ductal carcinoma in situ (DCIS) and invasive breast cancer (IBC). Immunohistochemistry was used to examine the expression of a number of oxidative stress proteins, DNA repair proteins, and damage markers in 60 human mammary tissues which were classified as BH, DCIS or IBC. The relative mean intensity was determined for each tissue section and ANOVA was used to detect statistical differences in the relative expression of BH, DCIS and IBC compared to normal mammary tissue. We found that a number of these proteins were overexpressed and that the cellular localization was altered in human breast cancer tissue. Our studies suggest that oxidative stress and DNA repair proteins not only protect normal cells from the damaging effects of ROS, but may also promote survival of mammary tumor cells

  14. Morphological Changes of Yeast Cells due to Oxidative Stress by Mercury and Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Su Hyoun; Ryu, Tae Ho; Kim, Jin Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-05-15

    The yeast Saccharomyces cerevisiae is one of the most important microorganisms employed in industry. Growth rate, mutation, and environmental conditions affect yeast size and shape distributions but, in general, the influence of spatial variations in large-scale bioreactors is not considered. Ionizing radiation induces DNA double strand breaks in the nucleus, In addition, it causes lipid peroxidation, ceramide generation, and protein oxidation in the membrane, cytoplasm, and nucleus. Metal ions are essential to life. However, some metals such as mercury are harmful, even when present at trace amounts. Toxicity of mercury arises mainly from its oxidizing properties. As a metal ion, it induces an oxidative stress or predisposes cells to an oxidative stress, with considerable damage to proteins, lipids and DNA. In this work, we investigated to effect of ionizing radiation (IR) and mercury chloride (II) on cell morphology.

  15. Oxidative stress is involved in Dasatinib-induced apoptosis in rat primary hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Tao; Luo, Peihua; Zhu, Hong; Zhao, Yuqin [Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 (China); Wu, Honghai; Gai, Renhua; Wu, Youping [Center for Drug Safety Evaluation and Research of Zhejiang University, Hangzhou 310058 (China); Yang, Bo [Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 (China); Yang, Xiaochun, E-mail: yangxiaochun@zju.edu.cn [Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 (China); Center for Drug Safety Evaluation and Research of Zhejiang University, Hangzhou 310058 (China); He, Qiaojun, E-mail: qiaojunhe@zju.edu.cn [Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 (China); Center for Drug Safety Evaluation and Research of Zhejiang University, Hangzhou 310058 (China)

    2012-06-15

    Dasatinib, a multitargeted inhibitor of BCR–ABL and SRC kinases, exhibits antitumor activity and extends the survival of patients with chronic myeloid leukemia (CML) and Philadelphia chromosome-positive acute lymphoblastic leukemia (ALL). However, some patients suffer from hepatotoxicity, which occurs through an unknown mechanism. In the present study, we found that Dasatinib could induce hepatotoxicity both in vitro and in vivo. Dasatinib reduced the cell viability of rat primary hepatocytes, induced the release of alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) in vitro, and triggered the ballooning degeneration of hepatocytes in Sprague–Dawley rats in vivo. Apoptotic markers (chromatin condensation, cleaved caspase-3 and cleaved PARP) were detected to indicate that the injury induced by Dasatinib in hepatocytes in vitro was mediated by apoptosis. This result was further validated in vivo using terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assays. Here we found that Dasatinib dramatically increased the level of reactive oxygen species (ROS) in hepatocytes, reduced the intracellular glutathione (GSH) content, attenuated the activity of superoxide dismutase (SOD), generated malondialdehyde (MDA), a product of lipid peroxidation, decreased the mitochondrial membrane potential, and activated nuclear factor erythroid 2-related factor 2 (Nrf2) and mitogen-activated protein kinases (MAPK) related to oxidative stress and survival. These results confirm that oxidative stress plays a pivotal role in Dasatinib-mediated hepatotoxicity. N-acetylcysteine (NAC), a typical antioxidant, can scavenge free radicals, attenuate oxidative stress, and protect hepatocytes against Dasatinib-induced injury. Thus, relieving oxidative stress is a viable strategy for reducing Dasatinib-induced hepatotoxicity. -- Highlights: ►Dasatinib shows potential hepatotoxicity both in vitro and in vivo. ►Apoptosis plays a vital role in Dasatinib-induced

  16. Salidroside Improves Homocysteine-Induced Endothelial Dysfunction by Reducing Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Sin Bond Leung

    2013-01-01

    Full Text Available Hyperhomocysteinemia is associated with an increased risk for cardiovascular diseases through increased oxidative stress. Salidroside is an active ingredient of the root of Rhodiola rosea with documented antioxidative, antihypoxia and neuroprotective properties. However, the vascular benefits of salidroside against endothelial dysfunction have yet to be explored. The present study, therefore, aimed to investigate the protective effect of salidroside on homocysteine-induced endothelial dysfunction. Functional studies on the rat aortas were performed to delineate the vascular effect of salidroside. DHE imaging was used to evaluate the reactive oxygen species (ROS level in aortic wall and endothelial cells. Western blotting was performed to assess the protein expression associated with oxidative stress and nitric oxide (NO bioavailability. Exposure to homocysteine attenuated endothelium-dependent relaxations in rat aortas while salidroside pretreatment rescued it. Salidroside inhibited homocystein-induced elevation in the NOX2 expression and ROS overproduction in both aortas and cultured endothelial cells and increased phosphorylation of eNOS which was diminished by homocysteine. The present study shows that salidroside is effective in preserving the NO bioavailability and thus protects against homocysteine-induced impairment of endothelium-dependent relaxations, largely through inhibiting the NOX2 expression and ROS production. Our results indicate a therapeutic potential of salidroside in the management of oxidative-stress-associated cardiovascular dysfunction.

  17. Salidroside Improves Homocysteine-Induced Endothelial Dysfunction by Reducing Oxidative Stress

    Science.gov (United States)

    Leung, Sin Bond; Zhang, Huina; Lau, Chi Wai; Huang, Yu; Lin, Zhixiu

    2013-01-01

    Hyperhomocysteinemia is associated with an increased risk for cardiovascular diseases through increased oxidative stress. Salidroside is an active ingredient of the root of Rhodiola rosea with documented antioxidative, antihypoxia and neuroprotective properties. However, the vascular benefits of salidroside against endothelial dysfunction have yet to be explored. The present study, therefore, aimed to investigate the protective effect of salidroside on homocysteine-induced endothelial dysfunction. Functional studies on the rat aortas were performed to delineate the vascular effect of salidroside. DHE imaging was used to evaluate the reactive oxygen species (ROS) level in aortic wall and endothelial cells. Western blotting was performed to assess the protein expression associated with oxidative stress and nitric oxide (NO) bioavailability. Exposure to homocysteine attenuated endothelium-dependent relaxations in rat aortas while salidroside pretreatment rescued it. Salidroside inhibited homocystein-induced elevation in the NOX2 expression and ROS overproduction in both aortas and cultured endothelial cells and increased phosphorylation of eNOS which was diminished by homocysteine. The present study shows that salidroside is effective in preserving the NO bioavailability and thus protects against homocysteine-induced impairment of endothelium-dependent relaxations, largely through inhibiting the NOX2 expression and ROS production. Our results indicate a therapeutic potential of salidroside in the management of oxidative-stress-associated cardiovascular dysfunction. PMID:23589720

  18. NRF2 Oxidative Stress Induced by Heavy Metals is Cell Type Dependent

    Science.gov (United States)

    Exposure to metallic environmental toxicants has been demonstrated to induce a variety of oxidative stress responses in mammalian cells. The transcription factor Nrf2 is activated in response to oxidative stress and coordinates the expression of antioxidant gene products. In this...

  19. Live-cell Imaging Approaches for the Investigation of Xenobiotic-Induced Oxidant Stress

    Science.gov (United States)

    BACKGROUND: Oxidant stress is arguably a universal feature in toxicology. Research studies on the role of oxidant stress induced by xenobiotic exposures have typically relied on the identification of damaged biomolecules using a variety of conventional biochemical and molecular t...

  20. Antioxidant-mediated up-regulation of OGG1 via NRF2 induction is associated with inhibition of oxidative DNA damage in estrogen-induced breast cancer

    International Nuclear Information System (INIS)

    Singh, Bhupendra; Chatterjee, Anwesha; Ronghe, Amruta M; Bhat, Nimee K; Bhat, Hari K

    2013-01-01

    Estrogen metabolism-mediated oxidative stress is suggested to play an important role in estrogen-induced breast carcinogenesis. We have earlier demonstrated that antioxidants, vitamin C (Vit C) and butylated hydroxyanisole (BHA) inhibit 17β-estradiol (E2)-mediated oxidative stress and oxidative DNA damage, and breast carcinogenesis in female August Copenhagen Irish (ACI) rats. The objective of the present study was to characterize the mechanism by which above antioxidants prevent DNA damage during breast carcinogenesis. Female ACI rats were treated with E2; Vit C; Vit C + E2; BHA; and BHA + E2 for up to 240 days. mRNA and protein levels of a DNA repair enzyme 8-Oxoguanine DNA glycosylase (OGG1) and a transcription factor NRF2 were quantified in the mammary and mammary tumor tissues of rats after treatment with E2 and compared with that of rats treated with antioxidants either alone or in combination with E2. The expression of OGG1 was suppressed in mammary tissues and in mammary tumors of rats treated with E2. Expression of NRF2 was also significantly suppressed in E2-treated mammary tissues and in mammary tumors. Vitamin C or BHA treatment prevented E2-mediated decrease in OGG1 and NRF2 levels in the mammary tissues. Chromatin immunoprecipitation analysis confirmed that antioxidant-mediated induction of OGG1 was through increased direct binding of NRF2 to the promoter region of OGG1. Studies using silencer RNA confirmed the role of OGG1 in inhibition of oxidative DNA damage. Our studies suggest that antioxidants Vit C and BHA provide protection against oxidative DNA damage and E2-induced mammary carcinogenesis, at least in part, through NRF2-mediated induction of OGG1

  1. Smog induces oxidative stress and microbiota disruption.

    Science.gov (United States)

    Wong, Tit-Yee

    2017-04-01

    Smog is created through the interactions between pollutants in the air, fog, and sunlight. Air pollutants, such as carbon monoxide, heavy metals, nitrogen oxides, ozone, sulfur dioxide, volatile organic vapors, and particulate matters, can induce oxidative stress in human directly or indirectly through the formation of reactive oxygen species. The outermost boundary of human skin and mucous layers are covered by a complex network of human-associated microbes. The relation between these microbial communities and their human host are mostly mutualistic. These microbes not only provide nutrients, vitamins, and protection against other pathogens, they also influence human's physical, immunological, nutritional, and mental developments. Elements in smog can induce oxidative stress to these microbes, leading to community collapse. Disruption of these mutualistic microbiota may introduce unexpected health risks, especially among the newborns and young children. Besides reducing the burning of fossil fuels as the ultimate solution of smog formation, advanced methods by using various physical, chemical, and biological means to reduce sulfur and nitrogen contains in fossil fuels could lower smog formation. Additionally, information on microbiota disruption, based on functional genomics, culturomics, and general ecological principles, should be included in the risk assessment of prolonged smog exposure to the health of human populations. Copyright © 2017. Published by Elsevier B.V.

  2. Skin photoprotection by natural polyphenols: Anti-inflammatory, anti-oxidant and DNA repair mechanisms

    Science.gov (United States)

    Nichols, Joi A.; Katiyar, Santosh K.

    2009-01-01

    Epidemiological, clinical and laboratory studies have implicated solar ultraviolet (UV) radiation in various skin diseases including premature aging of the skin and melanoma and nonmelanoma skin cancers. Chronic UV radiation exposure-induced skin diseases or skin disorders are caused by the excessive induction of inflammation, oxidative stress and DNA damage, etc.. The use of chemopreventive agents, such as plant polyphenols, to inhibit these events in UV-exposed skin is gaining attention. Chemoprevention refers to the use of agents that can inhibit, reverse, or retard the process of these harmful events in the UV-exposed skin. A wide variety of polyphenols or phytochemicals, most of which are dietary supplements, have been reported to possess substantial skin photoprotective effects. This review article summarizes the photoprotective effects of some selected polyphenols, such as green tea polyphenols, grape seed proanthocyanidins, resveratrol, silymarin and genistein, on UV-induced skin inflammation, oxidative stress, and DNA damage, etc., with a focus on mechanisms underlying the photoprotective effects of these polyphenols. The laboratory studies conducted in animal models, suggest that these polyphenols have the ability to protect the skin from the adverse effects of UV radiation, including the risk of skin cancers. It is suggested that polyphenols may favorably supplement sunscreens protection, and may be useful for skin diseases associated with solar UV radiation-induced inflammation, oxidative stress and DNA damage. PMID:19898857

  3. Salidroside Suppresses HUVECs Cell Injury Induced by Oxidative Stress through Activating the Nrf2 Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Yao Zhu

    2016-08-01

    Full Text Available Oxidative stress plays an important role in the pathogenesis of cardiovascular diseases. Salidroside (SAL, one of the main effective constituents of Rhodiola rosea, has been reported to suppress oxidative stress-induced cardiomyocyte injury and necrosis by promoting transcription of nuclear factor E2-related factor 2 (Nrf2-regulated genes such as heme oxygenase-1 (HO-1 and NAD(PH dehydrogenase (quinone1 (NQO1. However, it has not been indicated whether SAL might ameliorate endothelial injury induced by oxidative stress. Here, our study demonstrated that SAL might suppress HUVEC cell injury induced by oxidative stress through activating the Nrf2 signaling pathway. The results of our study indicated that SAL decreased the levels of intercellular reactive oxygen species (ROS and malondialdehyde (MDA, and improved the activities of superoxide dismutase (SOD and catalase (CAT, resulting in protective effects against oxidative stress-induced cell damage in HUVECs. It suppressed oxidative stress damage by inducing Nrf2 nuclear translocation and activating the expression of Nrf2-regulated antioxidant enzyme genes such as HO-1 and NQO1 in HUVECs. Knockdown of Nrf2 with siRNA abolished the cytoprotective effects against oxidative stress, decreased the expression of Nrf2, HO-1, and NQO1, and inhibited the nucleus translocation of Nrf2 in HUVECs. This study is the first to demonstrate that SAL suppresses HUVECs cell injury induced by oxidative stress through activating the Nrf2 signaling pathway.

  4. Melamine Induces Oxidative Stress in Mouse Ovary.

    Directory of Open Access Journals (Sweden)

    Xiao-Xin Dai

    Full Text Available Melamine is a nitrogen heterocyclic triazine compound which is widely used as an industrial chemical. Although melamine is not considered to be acutely toxic with a high LD50 in animals, food contaminated with melamine expose risks to the human health. Melamine has been reported to be responsible for the renal impairment in mammals, its toxicity on the reproductive system, however, has not been adequately assessed. In the present study, we examined the effect of melamine on the follicle development and ovary formation. The data showed that melamine increased reactive oxygen species (ROS levels, and induced granulosa cell apoptosis as well as follicle atresia. To further analyze the mechanism by which melamine induces oxidative stress, the expression and activities of two key antioxidant enzymes superoxide dismutase (SOD and glutathione peroxidase (GPX were analyzed, and the concentration of malondialdehyde (MDA were compared between control and melamine-treated ovaries. The result revealed that melamine changed the expression and activities of SOD and GPX in the melamine-treated mice. Therefore, we demonstrate that melamine causes damage to the ovaries via oxidative stress pathway.

  5. Radioprotective efficacy of bisarylidene cyclopentanone on electron beam radiation induced oxidative stress in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Darshan Raj, C.G.; Sarojini, B.K.; Musthafa Khaleel, V.; Ramesh, S.R.; Ramakrishna, M.K.; Narayana, B.; Sanjeev, Ganesh

    2010-01-01

    Present study was carried out for evaluating the radioprotective effect of bischalcone (2E, 5E) - 2,5-bis (3-methoxy-4-hydroxy-benzylidene) cyclopentanone (curcumin analog (CA)), on electron beam radiation induced oxidative stress in Drosophila melanogaster adults. The oxidative stress markers and antioxidants included superoxide dismutase (SOD) and catalase (CAT). The oxidative stress was induced at 1.5 Gy. (author)

  6. Carnosine attenuates cyclophosphamide-induced bone marrow suppression by reducing oxidative DNA damage

    Directory of Open Access Journals (Sweden)

    Jie Deng

    2018-04-01

    Full Text Available Oxidative DNA damage in bone marrow cells is the main side effect of chemotherapy drugs including cyclophosphamide (CTX. However, not all antioxidants are effective in inhibiting oxidative DNA damage. In this study, we report the beneficial effect of carnosine (β-alanyl-l-histidine, a special antioxidant with acrolein-sequestering ability, on CTX-induced bone marrow cell suppression. Our results show that carnosine treatment (100 and 200 mg/kg, i.p. significantly inhibited the generation of reactive oxygen species (ROS and 8-hydroxy-2′-deoxyguanosine (8-oxo-dG, and decreased chromosomal abnormalities in the bone marrow cells of mice treated with CTX (20 mg/kg, i.v., 24 h. Furthermore, carnosine evidently mitigated CTX-induced G2/M arrest in murine bone marrow cells, accompanied by reduced ratios of p-Chk1/Chk1 and p-p53/p53 as well as decreased p21 expression. In addition, cell apoptosis caused by CTX was also suppressed by carnosine treatment, as assessed by decreased TUNEL-positive cell counts, down-regulated expressions of Bax and Cyt c, and reduced ratios of cleaved Caspase-3/Caspase-3. These results together suggest that carnosine can protect murine bone marrow cells from CTX-induced DNA damage via its antioxidant activity. Keywords: Carnosine, Cyclophosphamide, Oxidative DNA damage, Sister chromatid exchange, Apoptosis, Cell cycle arrest

  7. Intragenic origins due to short G1 phases underlie oncogene-induced DNA replication stress.

    Science.gov (United States)

    Macheret, Morgane; Halazonetis, Thanos D

    2018-03-01

    Oncogene-induced DNA replication stress contributes critically to the genomic instability that is present in cancer. However, elucidating how oncogenes deregulate DNA replication has been impeded by difficulty in mapping replication initiation sites on the human genome. Here, using a sensitive assay to monitor nascent DNA synthesis in early S phase, we identified thousands of replication initiation sites in cells before and after induction of the oncogenes CCNE1 and MYC. Remarkably, both oncogenes induced firing of a novel set of DNA replication origins that mapped within highly transcribed genes. These ectopic origins were normally suppressed by transcription during G1, but precocious entry into S phase, before all genic regions had been transcribed, allowed firing of origins within genes in cells with activated oncogenes. Forks from oncogene-induced origins were prone to collapse, as a result of conflicts between replication and transcription, and were associated with DNA double-stranded break formation and chromosomal rearrangement breakpoints both in our experimental system and in a large cohort of human cancers. Thus, firing of intragenic origins caused by premature S phase entry represents a mechanism of oncogene-induced DNA replication stress that is relevant for genomic instability in human cancer.

  8. Mixed chemical-induced oxidative stress in occupational exposure ...

    African Journals Online (AJOL)

    Mixed chemical-induced oxidative stress in occupational exposure in Nigerians. JI Anetor, SA Yaqub, GO Anetor, AC Nsonwu, FAA Adeniyi, S Fukushima. Abstract. Exposure to single chemicals and associated disorders in occupational environments has received significant attention. Understanding these events holds ...

  9. Chemoprotective Effect of Taurine on Potassium Bromate-Induced DNA Damage, DNA-Protein Cross-Linking and Oxidative Stress in Rat Intestine

    Science.gov (United States)

    Ahmad, Mir Kaisar; Khan, Aijaz Ahmed; Ali, Shaikh Nisar; Mahmood, Riaz

    2015-01-01

    Potassium bromate (KBrO3) is widely used as a food additive and is a major water disinfection by-product. It induces multiple organ toxicity in humans and experimental animals and is a probable human carcinogen. The present study reports the protective effect of dietary antioxidant taurine on KBrO3-induced damage to the rat intestine. Animals were randomly divided into four groups: control, KBrO3 alone, taurine alone and taurine+ KBrO3. Administration of KBrO3 alone led to decrease in the activities of intestinal brush border membrane enzymes while those of antioxidant defence and carbohydrate metabolism were also severely altered. There was increase in DNA damage and DNA-protein cross-linking. Treatment with taurine, prior to administration of KBrO3, resulted in significant attenuation in all these parameters but the administration of taurine alone had no effect. Histological studies supported these biochemical results showing extensive intestinal damage in KBrO3-treated animals and greatly reduced tissue injury in the taurine+ KBrO3 group. These results show that taurine ameliorates bromate induced tissue toxicity and oxidative damage by improving the antioxidant defence, tissue integrity and energy metabolism. Taurine can, therefore, be potentially used as a therapeutic/protective agent against toxicity of KBrO3 and related compounds. PMID:25748174

  10. Increased oxidative DNA damage in mononuclear leukocytes in vitiligo

    Energy Technology Data Exchange (ETDEWEB)

    Giovannelli, Lisa [Department of Preclinical and Clinical Pharmacology, University of Florence, Viale Pieraccini 6, 50139 Florence (Italy)]. E-mail: lisag@pharm.unifi.it; Bellandi, Serena [Department of Dermatological Sciences, University of Florence, Viale Pieraccini 6, 50139 Florence (Italy); Pitozzi, Vanessa [Department of Preclinical and Clinical Pharmacology, University of Florence, Viale Pieraccini 6, 50139 Florence (Italy); Fabbri, Paolo [Department of Dermatological Sciences, University of Florence, Viale Pieraccini 6, 50139 Florence (Italy); Dolara, Piero [Department of Preclinical and Clinical Pharmacology, University of Florence, Viale Pieraccini 6, 50139 Florence (Italy); Moretti, Silvia [Department of Dermatological Sciences, University of Florence, Viale Pieraccini 6, 50139 Florence (Italy)

    2004-11-22

    Vitiligo is an acquired pigmentary disorder of the skin of unknown aetiology. The autocytotoxic hypothesis suggests that melanocyte impairment could be related to increased oxidative stress. Evidences have been reported that in vitiligo oxidative stress might also be present systemically. We used the comet assay (single cell alkaline gel electrophoresis) to evaluate DNA strand breaks and DNA base oxidation, measured as formamidopyrimidine DNA glycosylase (FPG)-sensitive sites, in peripheral blood cells from patients with active vitiligo and healthy controls. The basal level of oxidative DNA damage in mononuclear leukocytes was increased in vitiligo compared to normal subjects, whereas DNA strand breaks (SBs) were not changed. This alteration was not accompanied by a different capability to respond to in vitro oxidative challenge. No differences in the basal levels of DNA damage in polymorphonuclear leukocytes were found between patients and healthy subjects. Thus, this study supports the hypothesis that in vitiligo a systemic oxidative stress exists, and demonstrates for the first time the presence of oxidative alterations at the nuclear level. The increase in oxidative DNA damage shown in the mononuclear component of peripheral blood leukocytes from vitiligo patients was not particularly severe. However, these findings support an adjuvant role of antioxidant treatment in vitiligo.

  11. Increased oxidative DNA damage in mononuclear leukocytes in vitiligo

    International Nuclear Information System (INIS)

    Giovannelli, Lisa; Bellandi, Serena; Pitozzi, Vanessa; Fabbri, Paolo; Dolara, Piero; Moretti, Silvia

    2004-01-01

    Vitiligo is an acquired pigmentary disorder of the skin of unknown aetiology. The autocytotoxic hypothesis suggests that melanocyte impairment could be related to increased oxidative stress. Evidences have been reported that in vitiligo oxidative stress might also be present systemically. We used the comet assay (single cell alkaline gel electrophoresis) to evaluate DNA strand breaks and DNA base oxidation, measured as formamidopyrimidine DNA glycosylase (FPG)-sensitive sites, in peripheral blood cells from patients with active vitiligo and healthy controls. The basal level of oxidative DNA damage in mononuclear leukocytes was increased in vitiligo compared to normal subjects, whereas DNA strand breaks (SBs) were not changed. This alteration was not accompanied by a different capability to respond to in vitro oxidative challenge. No differences in the basal levels of DNA damage in polymorphonuclear leukocytes were found between patients and healthy subjects. Thus, this study supports the hypothesis that in vitiligo a systemic oxidative stress exists, and demonstrates for the first time the presence of oxidative alterations at the nuclear level. The increase in oxidative DNA damage shown in the mononuclear component of peripheral blood leukocytes from vitiligo patients was not particularly severe. However, these findings support an adjuvant role of antioxidant treatment in vitiligo

  12. Secondhand smoke exposure induces acutely airway acidification and oxidative stress.

    Science.gov (United States)

    Kostikas, Konstantinos; Minas, Markos; Nikolaou, Eftychia; Papaioannou, Andriana I; Liakos, Panagiotis; Gougoura, Sofia; Gourgoulianis, Konstantinos I; Dinas, Petros C; Metsios, Giorgos S; Jamurtas, Athanasios Z; Flouris, Andreas D; Koutedakis, Yiannis

    2013-02-01

    Previous studies have shown that secondhand smoke induces lung function impairment and increases proinflammatory cytokines. The aim of the present study was to evaluate the acute effects of secondhand smoke on airway acidification and airway oxidative stress in never-smokers. In a randomized controlled cross-over trial, 18 young healthy never-smokers were assessed at baseline and 0, 30, 60, 120, 180 and 240 min after one-hour secondhand smoke exposure at bar/restaurant levels. Exhaled NO and CO measurements, exhaled breath condensate collection (for pH, H(2)O(2) and NO(2)(-)/NO(3)(-) measurements) and spirometry were performed at all time-points. Secondhand smoke exposure induced increases in serum cotinine and exhaled CO that persisted until 240 min. Exhaled breath condensate pH decreased immediately after exposure (p secondhand smoke induced airway acidification and increased airway oxidative stress, accompanied by significant impairment of lung function. Despite the reversal in EBC pH and lung function, airway oxidative stress remained increased 4 h after the exposure. Clinical trial registration number (EudraCT): 2009-013545-28. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Low-Dose Ionizing Radiation Affects Mesenchymal Stem Cells via Extracellular Oxidized Cell-Free DNA: A Possible Mediator of Bystander Effect and Adaptive Response

    Directory of Open Access Journals (Sweden)

    V. A. Sergeeva

    2017-01-01

    Full Text Available We have hypothesized that the adaptive response to low doses of ionizing radiation (IR is mediated by oxidized cell-free DNA (cfDNA fragments. Here, we summarize our experimental evidence for this model. Studies involving measurements of ROS, expression of the NOX (superoxide radical production, induction of apoptosis and DNA double-strand breaks, antiapoptotic gene expression and cell cycle inhibition confirm this hypothesis. We have demonstrated that treatment of mesenchymal stem cells (MSCs with low doses of IR (10 cGy leads to cell death of part of cell population and release of oxidized cfDNA. cfDNA has the ability to penetrate into the cytoplasm of other cells. Oxidized cfDNA, like low doses of IR, induces oxidative stress, ROS production, ROS-induced oxidative modifications of nuclear DNA, DNA breaks, arrest of the cell cycle, activation of DNA reparation and antioxidant response, and inhibition of apoptosis. The MSCs pretreated with low dose of irradiation or oxidized cfDNA were equally effective in induction of adaptive response to challenge further dose of radiation. Our studies suggest that oxidized cfDNA is a signaling molecule in the stress signaling that mediates radiation-induced bystander effects and that it is an important component of the development of radioadaptive responses to low doses of IR.

  14. Restoration of nuclear-import failure caused by triple A syndrome and oxidative stress

    International Nuclear Information System (INIS)

    Kiriyama, Takao; Hirano, Makito; Asai, Hirohide; Ikeda, Masanori; Furiya, Yoshiko; Ueno, Satoshi

    2008-01-01

    Triple A syndrome is an autosomal recessive neurological disease, mimicking motor neuron disease, and is caused by mutant ALADIN, a nuclear-pore complex component. We recently discovered that the pathogenesis involved impaired nuclear import of DNA repair proteins, including DNA ligase I and the cerebellar ataxia causative protein aprataxin. Such impairment was overcome by fusing classical nuclear localization signal (NLS) and 137-aa downstream sequence of XRCC1, designated stretched NLS (stNLS). We report here that the minimum essential sequence of stNLS (mstNLS) is residues 239-276, downsized by more than 100 aa. mstNLS enabled efficient nuclear import of DNA repair proteins in patient fibroblasts, functioned under oxidative stress, and reduced oxidative-stress-induced cell death, more effectively than stNLS. The stress-tolerability of mstNLS was also exerted in control fibroblasts and neuroblastoma cells. These findings may help develop treatments for currently intractable triple A syndrome and other oxidative-stress-related neurological diseases, and contribute to nuclear compartmentalization study

  15. Involvement of inositol biosynthesis and nitric oxide in the mediation of UV-B induced oxidative stress

    Directory of Open Access Journals (Sweden)

    Dmytro I Lytvyn

    2016-04-01

    Full Text Available The involvement of NO-signaling in ultraviolet B (UV-B induced oxidative stress in plants is an open question. Inositol biosynthesis contributes to numerous cellular functions, including the regulation of plants tolerance to stress. This work reveals the involvement of inositol-3-phosphate synthase 1 (IPS1, a key enzyme for biosynthesis of myo-inositol and its derivatives, in the response to NO-dependent oxidative stress in Arabidopsis. Homozygous mutants deficient for IPS1 (atips1 and wild-type plants were transformed with a reduction-oxidation-sensitive green fluorescent protein 2 (grx1-rogfp2 and used for the dynamic measurement of UV-B-induced and SNP (sodium nitroprusside-mediated oxidative stresses by confocal microscopy. atips1 mutants displayed greater tissue-specific resistance to the action of UV-B than the wild type. SNP can act both as an oxidant or repairer depending on the applied concentration, but mutant plants were more tolerant than the wild type to nitrosative effects of high concentration of SNP. Additionally, pretreatment with low concentrations of SNP (10, 100 μM before UV-B irradiation resulted in a tissue-specific protective effect that was enhanced in atips1. We conclude that the interplay between nitric oxide and inositol signaling can be involved in the mediation of UV-B-initiated oxidative stress in the plant cell.

  16. Protective effects of pulmonary epithelial lining fluid on oxidative stress and DNA single-strand breaks caused by ultrafine carbon black, ferrous sulphate and organic extract of diesel exhaust particles

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, Hsiao-Chi [School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan (China); Cheng, Yi-Ling; Lei, Yu-Chen [Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan (China); Chang, Hui-Hsien [Institute of Environmental Health, College of Public Health, National Taiwan University, Taipei, Taiwan (China); Cheng, Tsun-Jen, E-mail: tcheng@ntu.edu.tw [Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan (China); Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan (China)

    2013-02-01

    Pulmonary epithelial lining fluid (ELF) is the first substance to make contact with inhaled particulate matter (PM) and interacts chemically with PM components. The objective of this study was to determine the role of ELF in oxidative stress, DNA damage and the production of proinflammatory cytokines following physicochemical exposure to PM. Ultrafine carbon black (ufCB, 15 nm; a model carbonaceous core), ferrous sulphate (FeSO{sub 4}; a model transition metal) and a diesel exhaust particle (DEP) extract (a model organic compound) were used to examine the acellular oxidative potential of synthetic ELF and non-ELF systems. We compared the effects of exposure to ufCB, FeSO{sub 4} and DEP extract on human alveolar epithelial Type II (A549) cells to determine the levels of oxidative stress, DNA single-strand breaks and interleukin-8 (IL-8) production in ELF and non-ELF systems. The effects of ufCB and FeSO{sub 4} on the acellular oxidative potential, cellular oxidative stress and DNA single-strand breakage were mitigated significantly by the addition of ELF, whereas there was no decrease following treatment with the DEP extract. There was no significant effect on IL-8 production following exposure to samples that were suspended in ELF/non-ELF systems. The results of the present study indicate that ELF plays an important role in the initial defence against PM in the pulmonary environment. Experimental components, such as ufCB and FeSO{sub 4}, induced the production of oxidative stress and led to DNA single-strand breaks, which were moderately prevented by the addition of ELF. These findings suggest that ELF plays a protective role against PM-driven oxidative stress and DNA damage. -- Highlights: ► To determine the role of ELF in ROS, DNA damage and IL-8 after exposure to PM. ► ufCB, FeSO{sub 4} and DEP extract were used to examine the protective effects of ELF. ► PM-driven oxidative stress and DNA single-strand breakage were mitigated by ELF. ► The findings

  17. Consequences of low birthweight on urinary excretion of DNA markers of oxidative stress in young men

    DEFF Research Database (Denmark)

    Hillestrøm, P R; Weimann, A; Jensen, C B

    2006-01-01

    OBJECTIVE: Low birthweight (LBW) has been associated with an increased risk of development of type 2 diabetes in adult life. Both type 1 and type 2 diabetes mellitus are characterized by increased oxidative stress. The purpose of this study was to investigate whether young healthy adults born...... with LBW showed differences in oxidative stress under normal conditions and during the added challenge of a physiological Intralipid infusion. MATERIAL AND METHODS: Urinary excretion of DNA markers of oxidative stress were analyzed by LC-MS/MS in 19 men (aged 19 years) with LBW and in 19 age matched...... with LBW and NBW (66.9 versus 73.9 nmol/15 h, 17.8 versus 18.5 nmol/15 h, 11.9 versus 14.4 nmol/15 h and 44.0 versus 43.2 pmol/15 h, respectively). Furthermore, Intralipid infusion did not affect excretion of DNA adducts in LBW or NBW subjects. Statistically significant correlations were found between body...

  18. The impact of partial manganese superoxide dismutase (SOD2)-deficiency on mitochondrial oxidant stress, DNA fragmentation and liver injury during acetaminophen hepatotoxicity

    International Nuclear Information System (INIS)

    Ramachandran, Anup; Lebofsky, Margitta; Weinman, Steven A.; Jaeschke, Hartmut

    2011-01-01

    Acetaminophen (APAP) hepatotoxicity is the most frequent cause of acute liver failure in many countries. The mechanism of cell death is initiated by formation of a reactive metabolite that binds to mitochondrial proteins and promotes mitochondrial dysfunction and oxidant stress. Manganese superoxide dismutase (SOD2) is a critical defense enzyme located in the mitochondrial matrix. The objective of this investigation was to evaluate the functional consequences of partial SOD2-deficiency (SOD2+/-) on intracellular signaling mechanisms of necrotic cell death after APAP overdose. Treatment of C57Bl/6J wild type animals with 200 mg/kg APAP resulted in liver injury as indicated by elevated plasma alanine aminotransferase activities (2870 ± 180 U/L) and centrilobular necrosis at 6 h. In addition, increased tissue glutathione disulfide (GSSG) levels and GSSG-to-GSH ratios, delayed mitochondrial GSH recovery, and increased mitochondrial protein carbonyls and nitrotyrosine protein adducts indicated mitochondrial oxidant stress. In addition, nuclear DNA fragmentation (TUNEL assay) correlated with translocation of Bax to the mitochondria and release of apoptosis-inducing factor (AIF). Furthermore, activation of c-jun-N-terminal kinase (JNK) was documented by the mitochondrial translocation of phospho-JNK. SOD2+/- mice showed 4-fold higher ALT activities and necrosis, an enhancement of all parameters of the mitochondrial oxidant stress, more AIF release and more extensive DNA fragmentation and more prolonged JNK activation. Conclusions: the impaired defense against mitochondrial superoxide formation in SOD2+/- mice prolongs JNK activation after APAP overdose and consequently further enhances the mitochondrial oxidant stress leading to exaggerated mitochondrial dysfunction, release of intermembrane proteins with nuclear DNA fragmentation and more necrosis.

  19. Etiologies of sperm oxidative stress

    Directory of Open Access Journals (Sweden)

    Parvin Sabeti

    2016-04-01

    Full Text Available Sperm is particularly susceptible to reactive oxygen species (ROS during critical phases of spermiogenesis. However, the level of seminal ROS is restricted by seminal antioxidants which have beneficial effects on sperm parameters and developmental potentials. Mitochondria and sperm plasma membrane are two major sites of ROS generation in sperm cells. Besides, leukocytes including polymer phonuclear (PMN leukocytes and macrophages produce broad category of molecules including oxygen free radicals, non-radical species and reactive nitrogen species. Physiological role of ROS increase the intracellular cAMP which then activate protein kinase in male reproductive system. This indicates that spermatozoa need small amounts of ROS to acquire the ability of nuclear maturation regulation and condensation to fertilize the oocyte. There is a long list of intrinsic and extrinsic factors which can induce oxidative stress to interact with lipids, proteins and DNA molecules. As a result, we have lipid peroxidation, DNA fragmentation, axonemal damage, denaturation of the enzymes, over generation of superoxide in the mitochondria, lower antioxidant activity and finally abnormal spermatogenesis. If oxidative stress is considered as one of the main cause of DNA damage in the germ cells, then there should be good reason for antioxidant therapy in these conditions

  20. Experimental Hepatic Carcinogenesis: Oxidative Stress and Natural Antioxidants

    Directory of Open Access Journals (Sweden)

    Velid Unsal

    2017-08-01

    Full Text Available Hepatocellular carcinoma is one of the most common cancers in the world, and it is influenced by agents such as DEN, 2-AAF, phenobarbital, alcohol, aflatoxin B1 metabolite or hepatitis viruses (B and C. Oxidative stress is becoming recognized as a key factor in the progression of hepatocarcinogenesis. Reactive oxygen species can play a leading role in initiation and promotion of hepatic carcinogenesis. The metabolites of DEN Diethylnitrosamine (DEN mediate the binding of tumour promoters by covalently binding to the DNA with one or two oxidation-providing electrons. 2-AAF is the inducer of DEN, and it is involved in tumour formation in the bladder and liver. Reactive Oxygen species (ROS; carbohydrates, lipids, DNA and enzymes, such as affect all important structures. Additionally, an excessive amount of ROS is highly toxic to cells. Antioxidants are protects against ROS, toxic substances, carcinogens. This review focuses on the literature on studies of Hepatic Carcinogenesis, oxidative stress and antioxidant therapy.

  1. Neuromodulatory Effects of Hesperidin in Mitigating Oxidative Stress in Streptozotocin Induced Diabetes

    Directory of Open Access Journals (Sweden)

    Mohammad Ashafaq

    2014-01-01

    Full Text Available Oxidative stress has been implicated in pathogenesis of streptozotocin- (STZ- induced diabetes mellitus and its complication in central nervous system (CNS. Recent studies have provided insights on antioxidants and their emergence as potential therapeutic and nutraceutical. The present study examined the hypothesis that hesperidin (HP ameliorates oxidative stress and may be a limiting factor in the extent of CNS complication following diabetes. To test this hypothesis rats were divided into four groups: control, diabetic, diabetic-HP treated, and vehicle for HP treatment group. Diabetes mellitus was induced by a single injection of STZ (65 mg/kg body weight. Three days after STZ injection, HP was given (50 mg/kg b.wt. orally once daily for four weeks. The results of the present investigation suggest that the significant elevated levels of oxidative stress markers were observed in STZ-treated animals, whereas significant depletion in the activity of nonenzymatic antioxidants and enzymatic antioxidants was witnessed in diabetic rat brain. Neurotoxicity biomarker activity was also altered significantly. HP treatment significantly attenuated the altered levels of oxidative stress and neurotoxicity biomarkers. Our results demonstrate that HP exhibits potent antioxidant and neuroprotective effects on the brain tissue against the diabetic oxidative damage in STZ-induced rodent model.

  2. Oxidative stress damage-associated molecular signaling pathways differentiate spontaneous preterm birth and preterm premature rupture of the membranes.

    Science.gov (United States)

    Dutta, Eryn H; Behnia, Faranak; Boldogh, Istvan; Saade, George R; Taylor, Brandie D; Kacerovský, Marian; Menon, Ramkumar

    2016-02-01

    In women with preterm premature rupture of the membranes (PPROM), increased oxidative stress may accelerate premature cellular senescence, senescence-associated inflammation and proteolysis, which may predispose them to rupture. We demonstrate mechanistic differences between preterm birth (PTB) and PPROM by revealing differences in fetal membrane redox status, oxidative stress-induced damage, distinct signaling pathways and senescence activation. Oxidative stress-associated fetal membrane damage and cell cycle arrest determine adverse pregnancy outcomes, such as spontaneous PTB and PPROM. Fetal membranes and amniotic fluid samples were collected from women with PTB and PPROM. Molecular, biochemical and histologic markers were used to document differences in oxidative stress and antioxidant enzyme status, DNA damage, secondary signaling activation by Ras-GTPase and mitogen-activated protein kinases, and activation of senescence between membranes from the two groups. Oxidative stress was higher and antioxidant enzymes were lower in PPROM compared with PTB. PTB membranes had minimal DNA damage and showed activation of Ras-GTPase and ERK/JNK signaling pathway with minimal signs of senescence. PPROM had higher numbers of cells with DNA damage, prosenescence stress kinase (p38 MAPK) activation and signs of senescence. Samples were obtained retrospectively after delivery. The markers of senescence that we tested are specific but are not sufficient to confirm senescence as the pathology in PPROM. Oxidative stress-induced DNA damage and senescence are characteristics of fetal membranes from PPROM, compared with PTB with intact membranes. PTB and PPROM arise from distinct pathophysiologic pathways. Oxidative stress and oxidative stress-induced cellular damages are likely determinants of the mechanistic signaling pathways and phenotypic outcome. This study is supported by developmental funds to Dr R. Menon from the Department of Obstetrics and Gynecology at The University of

  3. Proteome oxidative carbonylation during oxidative stress-induced premature senescence of WI-38 human fibroblasts

    DEFF Research Database (Denmark)

    Le Boulch, Marine; Ahmed, Emad K; Rogowska-Wrzesinska, Adelina

    2018-01-01

    Accumulation of oxidatively damaged proteins is a hallmark of cellular and organismal ageing, and is also a phenotypic feature shared by both replicative senescence and stress-induced premature senescence of human fibroblasts. Moreover, proteins that are building up as oxidized (i.e. the "Oxi-pro...

  4. Protective effects of gallic acid against spinal cord injury-induced oxidative stress.

    Science.gov (United States)

    Yang, Yong Hong; Wang, Zao; Zheng, Jie; Wang, Ran

    2015-08-01

    The present study aimed to investigate the role of gallic acid in oxidative stress induced during spinal cord injury (SCI). In order to measure oxidative stress, the levels of lipid peroxide, protein carbonyl, reactive oxygen species and nitrates/nitrites were determined. In addition, the antioxidant status during SCI injury and the protective role of gallic acid were investigated by determining glutathione levels as well as the activities of catalase, superoxide dismutase, glutathione peroxidase and glutathione-S-transferase. Adenosine triphophatase (ATPase) enzyme activities were determined to evaluate the role of gallic acid in SCI-induced deregulation of the activity of enzymes involved in ion homeostasis. The levels of inflammatory markers such as nuclear factor (NF)-κB and cycloxygenase (COX)-2 were determined by western blot analysis. Treatment with gallic acid was observed to significantly mitigate SCI-induced oxidative stress and the inflammatory response by reducing the oxidative stress, decreasing the expression of NF-κB and COX-2 as well as increasing the antioxidant status of cells. In addition, gallic acid modulated the activity of ATPase enzymes. Thus the present study indicated that gallic acid may have a role as a potent antioxidant and anti-inflammatory agent against SCI.

  5. Protection of swimming-induced oxidative stress in some vital ...

    African Journals Online (AJOL)

    Protection of swimming-induced oxidative stress in some vital organs by the treatment of composite extract of Withania somnifera, Ocimum sanctum and Zingiber officinalis in male rat. D Misra, B Maiti, D Ghosh ...

  6. Time series analysis of blood oxidative stress value in irradiated rats

    International Nuclear Information System (INIS)

    Kaneko, Takashi; Goto, Jun; Nomiya, Takuma; Nemoto, Kenji

    2011-01-01

    Indirect effect of ionizing-radiation causes free radicals and reactive oxgen species (ROS). These ROS interact with DNA or other organella, and cause oxidative damage to nucleic acids, membrane lipoprotein, mitchondria and others. The purpose of this study is to evaluate oxidative damage by irradiation using d-ROMs test. Electron beam was irradiated to the thigh of Wistar strain female rats, and reactive oxygen metabolites in the blood from these rats were measured and analysed. From the results, 2 Gy group shows significantly higher oxidative stress level than those of 0 Gy group especially in day 3 after irradiation. This oxidative stress definitely seemed to be caused by exposure to ionizing-radiation. In contrast, the group of 30 Gy-irradiation showed no significant increase of oxidative stress level. It was thought that oxidative stress caused by radiation was neutralized by expression of stress-induced antioxidant enzymes. These data resulted that d-ROMs test is useful for measuring oxidative stress levels of irradiated mammalian animals. (author)

  7. Oxidative stress induced inflammation initiates functional decline of tear production.

    Directory of Open Access Journals (Sweden)

    Yuichi Uchino

    Full Text Available Oxidative damage and inflammation are proposed to be involved in an age-related functional decline of exocrine glands. However, the molecular mechanism of how oxidative stress affects the secretory function of exocrine glands is unclear. We developed a novel mev-1 conditional transgenic mouse model (Tet-mev-1 using a modified tetracycline system (Tet-On/Off system. This mouse model demonstrated decreased tear production with morphological changes including leukocytic infiltration and fibrosis. We found that the mev-1 gene encodes Cyt-1, which is the cytochrome b(560 large subunit of succinate-ubiquinone oxidoreductase in complex II of mitochondria (homologous to succinate dehydrogenase C subunit (SDHC in humans. The mev-1 gene induced excessive oxidative stress associated with ocular surface epithelial damage and a decrease in protein and aqueous secretory function. This new model provides evidence that mitochondrial oxidative damage in the lacrimal gland induces lacrimal dysfunction resulting in dry eye disease. Tear volume in Tet-mev-1 mice was lower than in wild type mice and histopathological analyses showed the hallmarks of lacrimal gland inflammation by intense mononuclear leukocytic infiltration and fibrosis in the lacrimal gland of Tet-mev-1 mice. These findings strongly suggest that oxidative stress can be a causative factor for the development of dry eye disease.

  8. Clinical Relevance of Biomarkers of Oxidative Stress

    DEFF Research Database (Denmark)

    Frijhoff, Jeroen; Winyard, Paul G; Zarkovic, Neven

    2015-01-01

    SIGNIFICANCE: Oxidative stress is considered to be an important component of various diseases. A vast number of methods have been developed and used in virtually all diseases to measure the extent and nature of oxidative stress, ranging from oxidation of DNA to proteins, lipids, and free amino ac....... The vast diversity in oxidative stress between diseases and conditions has to be taken into account when selecting the most appropriate biomarker.......SIGNIFICANCE: Oxidative stress is considered to be an important component of various diseases. A vast number of methods have been developed and used in virtually all diseases to measure the extent and nature of oxidative stress, ranging from oxidation of DNA to proteins, lipids, and free amino...... acids. RECENT ADVANCES: An increased understanding of the biology behind diseases and redox biology has led to more specific and sensitive tools to measure oxidative stress markers, which are very diverse and sometimes very low in abundance. CRITICAL ISSUES: The literature is very heterogeneous...

  9. Low-Dose Ionizing Radiation Exposure, Oxidative Stress and Epigenetic Programing of Health and Disease.

    Science.gov (United States)

    Tharmalingam, Sujeenthar; Sreetharan, Shayenthiran; Kulesza, Adomas V; Boreham, Douglas R; Tai, T C

    2017-10-01

    Ionizing radiation exposure from medical diagnostic imaging has greatly increased over the last few decades. Approximately 80% of patients who undergo medical imaging are exposed to low-dose ionizing radiation (LDIR). Although there is widespread consensus regarding the harmful effects of high doses of radiation, the biological effects of low-linear energy transfer (LET) LDIR is not well understood. LDIR is known to promote oxidative stress, however, these levels may not be large enough to result in genomic mutations. There is emerging evidence that oxidative stress causes heritable modifications via epigenetic mechanisms (DNA methylation, histone modification, noncoding RNA regulation). These epigenetic modifications result in permanent cellular transformations without altering the underlying DNA nucleotide sequence. This review summarizes the major concepts in the field of epigenetics with a focus on the effects of low-LET LDIR (stress on epigenetic gene modification. In this review, we show evidence that suggests that LDIR-induced oxidative stress provides a mechanistic link between LDIR and epigenetic gene regulation. We also discuss the potential implication of LDIR exposure during pregnancy where intrauterine fetal development is highly susceptible to oxidative stress-induced epigenetic programing.

  10. Protective effects of carnosol against oxidative stress induced brain damage by chronic stress in rats.

    Science.gov (United States)

    Samarghandian, Saeed; Azimi-Nezhad, Mohsen; Borji, Abasalt; Samini, Mohammad; Farkhondeh, Tahereh

    2017-05-04

    Oxidative stress through chronic stress destroys the brain function. There are many documents have shown that carnosol may have a therapeutic effect versus free radical induced diseases. The current research focused the protective effect of carnosol against the brain injury induced by the restraint stress. The restraint stress induced by keeping animals in restrainers for 21 consecutive days. Thereafter, the rats were injected carnosol or vehicle for 21 consecutive days. At the end of experiment, all the rats were subjected to his open field test and forced swimming test. Afterwards, the rats were sacrificed for measuring their oxidative stress parameters. To measure the modifications in the biochemical aspects after the experiment, the activities of malondialdehyde (MDA), reduced glutathione (GSH), as well as superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR) and catalase (CAT) were evaluated in the whole brain. Our data showed that the animals received chronic stress had a raised immobility time versus the non-stressed animals (p < 0.01). Furthermore, chronic stress diminished the number of crossing in the animals that were subjected to the chronic stress versus the non-stressed rats (p < 0.01). Carnosol ameliorated this alteration versus the non-treated rats (p < 0.05). In the vehicle treated rats that submitted to the stress, the level of MDA levels was significantly increased (P < 0.001), and the levels of GSH and antioxidant enzymes were significantly decreased versus the non-stressed animals (P < 0.001). Carnosol treatment reduced the modifications in the stressed animals as compared with the control groups (P < 0.001). All of these carnosol effects were nearly similar to those observed with fluoxetine. The current research shows that the protective effects of carnosol may be accompanied with enhanced antioxidant defenses and decreased oxidative injury.

  11. Oxidative-stress-mediated teratogenesis and the role of folate

    NARCIS (Netherlands)

    Tran, Y.H.; Bergman, J.; Bakker, M.; Groen, H.; Wilffert, B.

    2016-01-01

    Background: Oxidative stress (OS) is one of the underlying teratogenic mechanisms of medical drugs. Folate is indirectly involved in OS because of its role in the methylation steps in the detoxification of xenobiotics and in the repair of OS-induced DNA damage. Our study was to explore the

  12. Anti-oxidative effects of Rooibos tea (Aspalathus linearis on immobilization-induced oxidative stress in rat brain.

    Directory of Open Access Journals (Sweden)

    In-Sun Hong

    Full Text Available Exposure to chronic psychological stress may be related to increased reactive oxygen species (ROS or free radicals, and thus, long-term exposure to high levels of oxidative stress may cause the accumulation of oxidative damage and eventually lead to many neurodegenerative diseases. Compared with other organs, the brain appears especially susceptible to excessive oxidative stress due to its high demand for oxygen. In the case of excessive ROS production, endogenous defense mechanisms against ROS may not be sufficient to suppress ROS-associated oxidative damage. Dietary antioxidants have been shown to protect neurons against a variety of experimental neurodegenerative conditions. In particular, Rooibos tea might be a good source of antioxidants due to its larger proportion of polyphenolic compounds. An optimal animal model for stress should show the features of a stress response and should be able to mimic natural stress progression. However, most animal models of stress, such as cold-restraint, electric foot shock, and burn shock, usually involve physical abuse in addition to the psychological aspects of stress. Animals subjected to chronic restraint or immobilization are widely believed to be a convenient and reliable model to mimic psychological stress. Therefore, in the present study, we propose that immobilization-induced oxidative stress was significantly attenuated by treatment with Rooibos tea. This conclusion is demonstrated by Rooibos tea's ability to (i reverse the increase in stress-related metabolites (5-HIAA and FFA, (ii prevent lipid peroxidation (LPO, (iii restore stress-induced protein degradation (PD, (iv regulate glutathione metabolism (GSH and GSH/GSSG ratio, and (v modulate changes in the activities of antioxidant enzymes (SOD and CAT.

  13. Oxidative Stress Induces Endothelial Cell Senescence via Downregulation of Sirt6

    Directory of Open Access Journals (Sweden)

    Rong Liu

    2014-01-01

    Full Text Available Accumulating evidence has shown that diabetes accelerates aging and endothelial cell senescence is involved in the pathogenesis of diabetic vascular complications, including diabetic retinopathy. Oxidative stress is recognized as a key factor in the induction of endothelial senescence and diabetic retinopathy. However, specific mechanisms involved in oxidative stress-induced endothelial senescence have not been elucidated. We hypothesized that Sirt6, which is a nuclear, chromatin-bound protein critically involved in many pathophysiologic processes such as aging and inflammation, may have a role in oxidative stress-induced vascular cell senescence. Measurement of Sirt6 expression in human endothelial cells revealed that H2O2 treatment significantly reduced Sirt6 protein. The loss of Sirt6 was associated with an induction of a senescence phenotype in endothelial cells, including decreased cell growth, proliferation and angiogenic ability, and increased expression of senescence-associated β-galactosidase activity. Additionally, H2O2 treatment reduced eNOS expression, enhanced p21 expression, and dephosphorylated (activated retinoblastoma (Rb protein. All of these alternations were attenuated by overexpression of Sirt6, while partial knockdown of Sirt6 expression by siRNA mimicked the effect of H2O2. In conclusion, these results suggest that Sirt6 is a critical regulator of endothelial senescence and oxidative stress-induced downregulation of Sirt6 is likely involved in the pathogenesis of diabetic retinopathy.

  14. 24-Epibrassinolide, a Phytosterol from the Brassinosteroid Family, Protects Dopaminergic Cells against MPP+-Induced Oxidative Stress and Apoptosis

    Directory of Open Access Journals (Sweden)

    Julie Carange

    2011-01-01

    Full Text Available Oxidative stress and apoptosis are frequently cited to explain neuronal cell damage in various neurodegenerative disorders, such as Parkinson' s disease. Brassinosteroids (BRs are phytosterols recognized to promote stress tolerance of vegetables via modulation of the antioxidative enzyme cascade. However, their antioxidative effects on mammalian neuronal cells have never been examined so far. We analyzed the ability of 24-epibrassinolide (24-Epi, a natural BR, to protect neuronal PC12 cells from 1-methyl-4-phenylpyridinium- (MPP+- induced oxidative stress and consequent apoptosis in dopaminergic neurons. Our results demonstrate that 24-Epi reduces the levels of intracellular reactive oxygen species and modulates superoxide dismutase, catalase, and glutathione peroxidase activities. Finally, we determined that the antioxidative properties of 24-Epi lead to the inhibition of MPP+-induced apoptosis by reducing DNA fragmentation as well as the Bax/Bcl-2 protein ratio and cleaved caspase-3. This is the first time that the potent antioxidant and neuroprotective role of 24-Epi has been shown in a mammalian neuronal cell line.

  15. Protective Effect of Wheat Peptides against Indomethacin-Induced Oxidative Stress in IEC-6 Cells

    Directory of Open Access Journals (Sweden)

    Hong Yin

    2014-01-01

    Full Text Available Recent studies have demonstrated that wheat peptides protected rats against non-steroidal anti-inflammatory drugs-induced small intestinal epithelial cells damage, but the mechanism of action is unclear. In the present study, an indomethacin-induced oxidative stress model was used to investigate the effect of wheat peptides on the nuclear factor-κB(NF-κB-inducible nitric oxide synthase-nitric oxide signal pathway in intestinal epithelial cells-6 cells. IEC-6 cells were treated with wheat peptides (0, 125, 500 and 2000 mg/L for 24 h, followed by 90 mg/L indomethacin for 12 h. Wheat peptides significantly attenuated the indomethacin-induced decrease in superoxide dismutase and glutathione peroxidase activity. Wheat peptides at 2000 mg/L markedly decreased the expression of the NF-κB in response to indomethacin-induced oxidative stress. This study demonstrated that the addition of wheat peptides to a culture medium significantly inhibited the indomethacin-induced release of malondialdehyde and nitrogen monoxide, and increased antioxidant enzyme activity in IEC-6 cells, thereby providing a possible explanation for the protective effect proposed for wheat peptides in the prevention of indomethacin-induced oxidative stress in small intestinal epithelial cells.

  16. Effect of complex polyphenols and tannins from red wine (WCPT) on chemically induced oxidative DNA damage in the rat.

    Science.gov (United States)

    Casalini, C; Lodovici, M; Briani, C; Paganelli, G; Remy, S; Cheynier, V; Dolara, P

    1999-08-01

    Flavonoids are polyphenolic antioxidants occurring in vegetables and fruits as well as beverages such as tea and wine which have been thought to influence oxidative damage. We wanted to verify whether a complex mixture of wine tannins (wine complex polyphenols and tannins, WCPT) prevent chemically-induced oxidative DNA damage in vivo. Oxidative DNA damage was evaluated by measuring the ratio of 8-hydroxy-2'-deoxyguanosine (80HdG)/ 2-deoxyguanosine (2dG) x 10(-6) in hydrolyzed DNA using HPLC coupled with electrochemical and UV detectors. We treated rats with WCPT (57 mg/kg p.o.) for 14 d, a dose 10-fold higher than what a moderate wine drinker would be exposed to. WCPT administration significantly reduced the ratio of 80HdG/2dG x 10(-6) in liver DNA obtained from rats treated with 2-nitropropane (2NP) relative to controls administered 2NP only (33. 3 +/- 2.5 vs. 44.9 +/- 3.2 x 10(-6) 2dG; micro +/- SE; p<0.05). On the contrary, pretreatment with WCPT for 10 d did not protect the colon mucosa from oxidative DNA damage induced by 1, 2-dimethylhydrazine (DMH). 2NP and DMH are hepatic and colon carcinogens, respectively, capable of inducing oxidative DNA damage. WCPT have protective action against some types of chemically-induced oxidative DNA damage in vivo.

  17. TBHQ Alleviated Endoplasmic Reticulum Stress-Apoptosis and Oxidative Stress by PERK-Nrf2 Crosstalk in Methamphetamine-Induced Chronic Pulmonary Toxicity

    Directory of Open Access Journals (Sweden)

    Yun Wang

    2017-01-01

    Full Text Available Methamphetamine (MA leads to cardiac and pulmonary toxicity expressed as increases in inflammatory responses and oxidative stress. However, some interactions may exist between oxidative stress and endoplasmic reticulum stress (ERS. The current study is designed to investigate if both oxidative stress and ERS are involved in MA-induced chronic pulmonary toxicity and if antioxidant tertiary butylhydroquinone (TBHQ alleviated ERS-apoptosis and oxidative stress by PERK-Nrf2 crosstalk. In this study, the rats were randomly divided into control group, MA-treated group (MA, and MA plus TBHQ-treated group (MA + TBHQ. Chronic exposure to MA resulted in slower growth of weight and pulmonary toxicity of the rats by increasing the pulmonary arterial pressure, promoting the hypertrophy of right ventricle and the remodeling of pulmonary arteries. MA inhibited the Nrf2-mediated antioxidative stress by downregulation of Nrf2, GCS, and HO-1 and upregulation of SOD2. MA increased GRP78 to induce ERS. Overexpression and phosphorylation of PERK rapidly phosphorylated eIF2α, increased ATF4, CHOP, bax, caspase 3, and caspase 12, and decreased bcl-2. These changes can be reversed by antioxidant TBHQ through upregulating expression of Nrf2. The above results indicated that TBHQ can alleviate MA-induced oxidative stress which can accelerate ERS to initiate PERK-dependent apoptosis and that PERK/Nrf2 is likely to be the key crosstalk between oxidative stress and ERS in MA-induced chronic pulmonary toxicity.

  18. Prolonged Pulmonary Exposure to Diesel Exhaust Particles Exacerbates Renal Oxidative Stress, Inflammation and DNA Damage in Mice with Adenine-Induced Chronic Renal Failure.

    Science.gov (United States)

    Nemmar, Abderrahim; Karaca, Turan; Beegam, Sumaya; Yuvaraju, Priya; Yasin, Javed; Hamadi, Naserddine Kamel; Ali, Badreldin H

    2016-01-01

    Epidemiological evidence indicates that patients with chronic kidney diseases have increased susceptibility to adverse outcomes related to long-term exposure to particulate air pollution. However, mechanisms underlying these effects are not fully understood. Presently, we assessed the effect of prolonged exposure to diesel exhaust particles (DEP) on chronic renal failure induced by adenine (0.25% w/w in feed for 4 weeks), which is known to involve inflammation and oxidative stress. DEP (0.5m/kg) was intratracheally (i.t.) instilled every 4th day for 4 weeks (7 i.t. instillation). Four days following the last exposure to either DEP or saline (control), various renal endpoints were measured. While body weight was decreased, kidney weight increased in DEP+adenine versus saline+adenine or DEP. Water intake, urine volume, relative kidney weight were significantly increased in adenine+DEP versus DEP and adenine+saline versus saline. Plasma creatinine and urea increased and creatinine clearance decreased in adenine+DEP versus DEP and adenine+saline versus saline. Tumor necrosis factor α, lipid peroxidation and reactive oxygen species were significantly increased in adenine+DEP compared with either DEP or adenine+saline. The antioxidant calase was significantly decreased in adenine+DEP compared with either adenine+saline or DEP. Notably, renal DNA damage was significantly potentiated in adenine+DEP compared with either adenine+saline or DEP. Similarly, systolic blood pressure was increased in adenine+DEP versus adenine+saline or DEP, and in DEP versus saline. Histological evaluation revealed more collagen deposition, higher number of necrotic cell counts and dilated tubules, cast formation and collapsing glomeruli in adenine+DEP versus adenine+saline or DEP. Prolonged pulmonary exposure to diesel exhaust particles worsen renal oxidative stress, inflammation and DNA damage in mice with adenine-induced chronic renal failure. Our data provide biological plausibility that air

  19. UVA-induced DNA double-strand breaks result from the repair of clustered oxidative DNA damages

    Science.gov (United States)

    Greinert, R.; Volkmer, B.; Henning, S.; Breitbart, E. W.; Greulich, K. O.; Cardoso, M. C.; Rapp, Alexander

    2012-01-01

    UVA (320–400 nm) represents the main spectral component of solar UV radiation, induces pre-mutagenic DNA lesions and is classified as Class I carcinogen. Recently, discussion arose whether UVA induces DNA double-strand breaks (dsbs). Only few reports link the induction of dsbs to UVA exposure and the underlying mechanisms are poorly understood. Using the Comet-assay and γH2AX as markers for dsb formation, we demonstrate the dose-dependent dsb induction by UVA in G1-synchronized human keratinocytes (HaCaT) and primary human skin fibroblasts. The number of γH2AX foci increases when a UVA dose is applied in fractions (split dose), with a 2-h recovery period between fractions. The presence of the anti-oxidant Naringin reduces dsb formation significantly. Using an FPG-modified Comet-assay as well as warm and cold repair incubation, we show that dsbs arise partially during repair of bi-stranded, oxidative, clustered DNA lesions. We also demonstrate that on stretched chromatin fibres, 8-oxo-G and abasic sites occur in clusters. This suggests a replication-independent formation of UVA-induced dsbs through clustered single-strand breaks via locally generated reactive oxygen species. Since UVA is the main component of solar UV exposure and is used for artificial UV exposure, our results shine new light on the aetiology of skin cancer. PMID:22941639

  20. Lead-induced DNA damage in Vicia faba root cells: Potential involvement of oxidative stress

    OpenAIRE

    Pourrut, Bertrand; Jean, Séverine; Silvestre, Jérôme; Pinelli, Eric

    2011-01-01

    Genotoxic effects of lead (0–20 µM) were investigated in whole-plant roots of Vicia faba L., grown hydroponically under controlled conditions. Lead-induced DNA damage in V. faba roots was evaluated by use of the comet assay, which allowed the detection of DNA strand-breakage and with the V. faba micronucleus test, which revealed chromosome aberrations. The results clearly indicate that lead induced DNA fragmentation in a dose-dependant manner with a maximum effect at 10 µM. In addition, at th...

  1. Melatonin resists oxidative stress-induced apoptosis in nucleus pulposus cells.

    Science.gov (United States)

    He, Ruijun; Cui, Min; Lin, Hui; Zhao, Lei; Wang, Jiayu; Chen, Songfeng; Shao, Zengwu

    2018-04-15

    Intervertebral disc degeneration (IVDD) is thought to be the major cause of low back pain (LBP), which is still in lack of effective etiological treatment. Oxidative stress has been demonstrated to participate in the impairment of nucleus pulposus cells (NPCs). As the most important neuroendocrine hormone in biological clock regulation, melatonin (MLT) is also featured by good antioxidant effect. In this study, we investigated the effect and mechanisms of melatonin on oxidative stress-induced damage in rat NPCs. Cytotoxicity of H 2 O 2 and protecting effect of melatonin were analyzed with Cell Counting kit-8 (CCK-8). Cell apoptosis rate was detected by Annexin V-FITC/PI staining. DCFH-DA probe was used for the reactive oxygen species (ROS) detection. The mitochondrial membrane potential (MMP) changes were analyzed with JC-1 probe. Intracellular oxidation product and reductants were measured through enzymatic reactions. Extracellular matrix (ECM) and apoptosis associated proteins were analyzed with Western blot assays. Melatonin preserved cell viability of NPCs under oxidative stress. The apoptosis rate, ROS level and malonaldehyde (MDA) declined with melatonin. MLT/H 2 O 2 group showed higher activities of GSH and SOD. The fall of MMP receded and the expression of ECM protein increased with treatment of melatonin. The mitochondrial pathway of apoptosis was inhibited by melatonin. Melatonin alleviated the oxidative stress-induced apoptosis of NPCs. Melatonin could be a promising alternative in treatment of IVDD. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Mechanism of metformin action in MCF-7 and MDA-MB-231 human breast cancer cells involves oxidative stress generation, DNA damage, and transforming growth factor β1 induction.

    Science.gov (United States)

    Marinello, Poliana Camila; da Silva, Thamara Nishida Xavier; Panis, Carolina; Neves, Amanda Fouto; Machado, Kaliana Larissa; Borges, Fernando Henrique; Guarnier, Flávia Alessandra; Bernardes, Sara Santos; de-Freitas-Junior, Júlio Cesar Madureira; Morgado-Díaz, José Andrés; Luiz, Rodrigo Cabral; Cecchini, Rubens; Cecchini, Alessandra Lourenço

    2016-04-01

    The participation of oxidative stress in the mechanism of metformin action in breast cancer remains unclear. We investigated the effects of clinical (6 and 30 μM) and experimental concentrations of metformin (1000 and 5000 μM) in MCF-7 and in MDA-MB-231 cells, verifying cytotoxicity, oxidative stress, DNA damage, and intracellular pathways related to cell growth and survival after 24 h of drug exposure. Clinical concentrations of metformin decreased metabolic activity of MCF-7 cells in the MTT assay, which showed increased oxidative stress and DNA damage, although cell death and impairment in the proliferative capacity were observed only at higher concentrations. The reduction in metabolic activity and proliferation in MDA-MB-231 cells was present only at experimental concentrations after 24 h of drug exposition. Oxidative stress and DNA damage were induced in this cell line at experimental concentrations. The drug decreased cytoplasmic extracellular signal-regulated kinases 1 and 2 (ERK1/2) and AKT and increased nuclear p53 and cytoplasmic transforming growth factor β1 (TGF-β1) in both cell lines. These findings suggest that metformin reduces cell survival by increasing reactive oxygen species, which induce DNA damage and apoptosis. A relationship between the increase in TGF-β1 and p53 levels and the decrease in ERK1/2 and AKT was also observed. These findings suggest the mechanism of action of metformin in both breast cancer cell lineages, whereas cell line specific undergoes redox changes in the cells in which proliferation and survival signaling are modified. Taken together, these results highlight the potential clinical utility of metformin as an adjuvant during the treatment of luminal and triple-negative breast cancer.

  3. Geoditin A Induces Oxidative Stress and Apoptosis on Human Colon HT29 Cells

    Directory of Open Access Journals (Sweden)

    Wing-Keung Liu

    2010-01-01

    Full Text Available Geoditin A, an isomalabaricane triterpene isolated from the marine sponge Geodia japonica, has been demonstrated to dissipate mitochondrial membrane potential, activate caspase 3, decrease cytoplasmic proliferating cell nuclear antigen (PCNA, and induce apoptosis of leukemia cells, but the underlying mechanism remains unclear [1]. In this study, we found fragmentation of Golgi structure, suppression of transferrin receptor expression, production of oxidants, and DNA fragmentation in human colon cancer HT29 cells after treatment with geoditin A for 24 h. This apoptosis was not abrogated by chelation of intracellular iron with salicylaldehyde isonicotinoyl hydrazone (SIH, but suppressed by N-acetylcysteine (NAC, a thiol antioxidant and GSH precursor, indicating that the cytotoxic effect of geoditin A is likely mediated by a NAC-inhibitable oxidative stress. Our results provide a better understanding of the apoptotic properties and chemotherapeutical potential of this marine triterpene.

  4. Ex-vivo and in vitro protective effects of kolaviron against oxygen-derived radical-induced DNA damage and oxidative stress in human lymphocytes and rat liver cells

    DEFF Research Database (Denmark)

    Farombi, E.O.; Moller, P.; Dragsted, L.O.

    2004-01-01

    at concentrations between 30-90 mumol/L and decreased H2O2-induced DNA strand breaks and oxidized bases. Neither alpha-tocopherol nor curcumin decreased H2O2-induced DNA damage in this assay. In lymphocytes incubated with Fe3+ /GSH, Fe3+ was reduced to Fe2+ by GSH initiating a free radical generating reaction which...

  5. Oxidative stress and nerve damage: Role in chemotherapy induced peripheral neuropathy

    Directory of Open Access Journals (Sweden)

    Aparna Areti

    2014-01-01

    Full Text Available Peripheral neuropathy is a severe dose limiting toxicity associated with cancer chemotherapy. Ever since it was identified, the clear pathological mechanisms underlying chemotherapy induced peripheral neuropathy (CIPN remain sparse and considerable involvement of oxidative stress and neuroinflammation has been realized recently. Despite the empirical use of antioxidants in the therapy of CIPN, the oxidative stress mediated neuronal damage in peripheral neuropathy is still debatable. The current review focuses on nerve damage due to oxidative stress and mitochondrial dysfunction as key pathogenic mechanisms involved in CIPN. Oxidative stress as a central mediator of apoptosis, neuroinflammation, metabolic disturbances and bioenergetic failure in neurons has been highlighted in this review along with a summary of research on dietary antioxidants and other nutraceuticals which have undergone prospective controlled clinical trials in patients undergoing chemotherapy.

  6. Thrombosis, systemic and cardiac oxidative stress and DNA damage induced by pulmonary exposure to diesel exhaust particles, and the effect of nootkatone thereon.

    Science.gov (United States)

    Nemmar, Abderrahim; Al-Salam, Suhail; Beegam, Sumaya; Yuvaraju, Priya; Ali, Badreldin H

    2018-01-05

    Adverse cardiovascular effects of particulate air pollution persist even at lower concentrations than those of the current air quality limit. Therefore, identification of safe and effective measures against particles-induced cardiovascular toxicity is needed. Nootkatone is a sesquiterpenoid in grapefruit with diverse bioactivities including anti-inflammatory and antioxidant effects. However, its protective effect on the cardiovascular injury induced by diesel exhaust particles (DEP) has not been studied before. We assessed the possible protective effect of nootkatone (90 mg/kg) administered by gavage 1h before intratracheal (i.t.) instillation of DEP (30 μg/mouse). Twenty-four h following the i.t. administration of DEP various thrombotic and cardiac parameters were assessed. Nootkatone inhibited the prothrombotic effect induced by DEP in pial arterioles and venules in vivo and platelet aggregation in whole blood in vitro. Also, nootkatone prevented the shortening of activated partial thromboplastin time and prothrombin time induced by DEP. Nootkatone inhibited the increase of plasma concentration of fibrinogen, plasminogen activator inhibitor-1, interleukin-6 and lipid peroxidation induced by DEP. Immunohistochemically, hearts showed an analogous increase in glutathione and nuclear factor erythroid-derived 2-like 2 (Nrf2) expression by cardiac myocytes and endothelial cells following DEP exposure, and these effects were enhanced in mice treated with nootkatone+DEP. Likewise, heme oxygenase-1 (HO-1) was increased in mice treated with nootkatone+DEP compared with those treated with DEP or nootkatone+saline. The DNA damage caused by DEP was prevented by nootkatoone pretreatment. In conclusion, nootkatoone alleviates DEP-induced thrombogenicity and systemic and cardiac oxidative stress and DNA damage, at least partly, through Nrf2 and HO-1 activation.

  7. Renal Oxidative Stress Induced by Long-Term Hyperuricemia Alters Mitochondrial Function and Maintains Systemic Hypertension

    Directory of Open Access Journals (Sweden)

    Magdalena Cristóbal-García

    2015-01-01

    Full Text Available We addressed if oxidative stress in the renal cortex plays a role in the induction of hypertension and mitochondrial alterations in hyperuricemia. A second objective was to evaluate whether the long-term treatment with the antioxidant Tempol prevents renal oxidative stress, mitochondrial alterations, and systemic hypertension in this model. Long-term (11-12 weeks and short-term (3 weeks effects of oxonic acid induced hyperuricemia were studied in rats (OA, 750 mg/kg BW, OA+Allopurinol (AP, 150 mg/L drinking water, OA+Tempol (T, 15 mg/kg BW, or vehicle. Systolic blood pressure, renal blood flow, and vascular resistance were measured. Tubular damage (urine N-acetyl-β-D-glucosaminidase and oxidative stress markers (lipid and protein oxidation along with ATP levels were determined in kidney tissue. Oxygen consumption, aconitase activity, and uric acid were evaluated in isolated mitochondria from renal cortex. Short-term hyperuricemia resulted in hypertension without demonstrable renal oxidative stress or mitochondrial dysfunction. Long-term hyperuricemia induced hypertension, renal vasoconstriction, tubular damage, renal cortex oxidative stress, and mitochondrial dysfunction and decreased ATP levels. Treatments with Tempol and allopurinol prevented these alterations. Renal oxidative stress induced by hyperuricemia promoted mitochondrial functional disturbances and decreased ATP content, which represent an additional pathogenic mechanism induced by chronic hyperuricemia. Hyperuricemia-related hypertension occurs before these changes are evident.

  8. The Drosophila carbonyl reductase sniffer prevents oxidative stress-induced neurodegeneration.

    Science.gov (United States)

    Botella, Jose A; Ulschmid, Julia K; Gruenewald, Christoph; Moehle, Christoph; Kretzschmar, Doris; Becker, Katja; Schneuwly, Stephan

    2004-05-04

    A growing body of evidence suggests that oxidative stress is a common underlying mechanism in the pathogenesis of neurodegenerative disorders such as Alzheimer's, Huntington's, Creutzfeld-Jakob and Parkinson's diseases. Despite the increasing number of reports finding a causal relation between oxidative stress and neurodegeneration, little is known about the genetic elements that confer protection against the deleterious effects of oxidation in neurons. We have isolated and characterized the Drosophila melanogaster gene sniffer, whose function is essential for preventing age-related neurodegeneration. In addition, we demonstrate that oxidative stress is a direct cause of neurodegeneration in the Drosophila central nervous system and that reduction of sniffer activity leads to neuronal cell death. The overexpression of the gene confers neuronal protection against oxygen-induced apoptosis, increases resistance of flies to experimental normobaric hyperoxia, and improves general locomotor fitness. Sniffer belongs to the family of short-chain dehydrogenase/reductase (SDR) enzymes and exhibits carbonyl reductase activity. This is the first in vivo evidence of the direct and important implication of this enzyme as a neuroprotective agent in the cellular defense mechanisms against oxidative stress.

  9. Exposure to Ultrafine Particles from Ambient Air and Oxidative Stress-Induced DNA Damage

    DEFF Research Database (Denmark)

    Bräuner, Elvira Vaclavik; Forchhammer, Lykke; Møller, Peter

    2007-01-01

    mononuclear cells (PBMCs) during controlled exposure to urban air particles with assignment of number concentration (NC) to four size modes with average diameters of 12, 23, 57, and 212 nm. DESIGN. Twenty-nine healthy adults participated in a randomized, two-factor cross-over study with or without biking...... exercise for 180 min and with exposure to particles (NC 6169-15362/cm3) or filtered air (NC 91-542/cm3) for 24 hr. METHODS: The levels of DNA strand breaks (SBs), oxidized purines as formamidopyrimidine DNA glycolase (FPG) sites, and activity of 7,8-dihydro-8-oxoguanine-DNA glycosylase (OGG1) in PBMCs were...

  10. Preterm newborns show slower repair of oxidative damage and paternal smoking associated DNA damage.

    Science.gov (United States)

    Vande Loock, Kim; Ciardelli, Roberta; Decordier, Ilse; Plas, Gina; Haumont, Dominique; Kirsch-Volders, Micheline

    2012-09-01

    Newborns have to cope with hypoxia during delivery and a sudden increase in oxygen at birth. Oxygen will partly be released as reactive oxygen species having the potential to cause damage to DNA and proteins. In utero, increase of most (non)-enzymatic antioxidants occurs during last weeks of gestation, making preterm neonates probably more sensitive to oxidative stress. Moreover, it has been hypothesized that oxidative stress might be the common etiological factor for certain neonatal diseases in preterm infants. The aim of this study was to assess background DNA damage; in vitro H(2)O(2) induced oxidative DNA damage and repair capacity (residual DNA damage) in peripheral blood mononucleated cells from 25 preterm newborns and their mothers. In addition, demographic data were taken into account and repair capacity of preterm was compared with full-term newborns. Multivariate linear regression analysis revealed that preterm infants from smoking fathers have higher background DNA damage levels than those from non-smoking fathers, emphasizing the risk of paternal smoking behaviour for the progeny. Significantly higher residual DNA damage found after 15-min repair in preterm children compared to their mothers and higher residual DNA damage after 2 h compared to full-term newborns suggest a slower DNA repair capacity in preterm children. In comparison with preterm infants born by caesarean delivery, preterm infants born by vaginal delivery do repair more slowly the in vitro induced oxidative DNA damage. Final impact of passive smoking and of the slower DNA repair activity of preterm infants need to be confirmed in a larger study population combining transgenerational genetic and/or epigenetic effects, antioxidant levels, genotypes, repair enzyme efficiency/levels and infant morbidity.

  11. Targeting DNA Replication Stress for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Jun Zhang

    2016-08-01

    Full Text Available The human cellular genome is under constant stress from extrinsic and intrinsic factors, which can lead to DNA damage and defective replication. In normal cells, DNA damage response (DDR mediated by various checkpoints will either activate the DNA repair system or induce cellular apoptosis/senescence, therefore maintaining overall genomic integrity. Cancer cells, however, due to constitutive growth signaling and defective DDR, may exhibit “replication stress” —a phenomenon unique to cancer cells that is described as the perturbation of error-free DNA replication and slow-down of DNA synthesis. Although replication stress has been proven to induce genomic instability and tumorigenesis, recent studies have counterintuitively shown that enhancing replicative stress through further loosening of the remaining checkpoints in cancer cells to induce their catastrophic failure of proliferation may provide an alternative therapeutic approach. In this review, we discuss the rationale to enhance replicative stress in cancer cells, past approaches using traditional radiation and chemotherapy, and emerging approaches targeting the signaling cascades induced by DNA damage. We also summarize current clinical trials exploring these strategies and propose future research directions including the use of combination therapies, and the identification of potential new targets and biomarkers to track and predict treatment responses to targeting DNA replication stress.

  12. Protection of cisplatin-induced spermatotoxicity, DNA damage and chromatin abnormality by selenium nano-particles

    Energy Technology Data Exchange (ETDEWEB)

    Rezvanfar, Mohammad Amin; Rezvanfar, Mohammad Ali [Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences (TUMS), Tehran (Iran, Islamic Republic of); Shahverdi, Ahmad Reza [Department of Pharmaceutical Biotechnology and Biotechnology Research Centre, Faculty of Pharmacy, TUMS, Tehran (Iran, Islamic Republic of); Ahmadi, Abbas [Department of Histology and Embryology, Faculty of Veterinary Medicine, Urmia University, Urmia (Iran, Islamic Republic of); Baeeri, Maryam; Mohammadirad, Azadeh [Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences (TUMS), Tehran (Iran, Islamic Republic of); Abdollahi, Mohammad, E-mail: mohammad.abdollahi@utoronto.ca [Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences (TUMS), Tehran (Iran, Islamic Republic of)

    2013-02-01

    Cisplatin (CIS), an anticancer alkylating agent, induces DNA adducts and effectively cross links the DNA strands and so affects spermatozoa as a male reproductive toxicant. The present study investigated the cellular/biochemical mechanisms underlying possible protective effect of selenium nano-particles (Nano-Se) as an established strong antioxidant with more bioavailability and less toxicity, on reproductive toxicity of CIS by assessment of sperm characteristics, sperm DNA integrity, chromatin quality and spermatogenic disorders. To determine the role of oxidative stress (OS) in the pathogenesis of CIS gonadotoxicity, the level of lipid peroxidation (LPO), antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) and peroxynitrite (ONOO) as a marker of nitrosative stress (NS) and testosterone (T) concentration as a biomarker of testicular function were measured in the blood and testes. Thirty-two male Wistar rats were equally divided into four groups. A single IP dose of CIS (7 mg/kg) and protective dose of Nano-Se (2 mg/kg/day) were administered alone or in combination. The CIS-exposed rats showed a significant increase in testicular and serum LPO and ONOO level, along with a significant decrease in enzymatic antioxidants levels, diminished serum T concentration and abnormal histologic findings with impaired sperm quality associated with increased DNA damage and decreased chromatin quality. Coadministration of Nano-Se significantly improved the serum T, sperm quality, and spermatogenesis and reduced CIS-induced free radical toxic stress and spermatic DNA damage. In conclusion, the current study demonstrated that Nano-Se may be useful to prevent CIS-induced gonadotoxicity through its antioxidant potential. Highlights: ► Cisplatin (CIS) affects spermatozoa as a male reproductive toxicant. ► Effect of Nano-Se on CIS-induced spermatotoxicity was investigated. ► CIS-exposure induces oxidative sperm DNA damage

  13. Quercitrin protects skin from UVB-induced oxidative damage

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Yuanqin [Cancer Institute, The First Affiliated Hospital, China Medical University, Shenyang (China); Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY (United States); Li, Wenqi; Son, Young-Ok; Sun, Lijuan; Lu, Jian; Kim, Donghern; Wang, Xin [Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY (United States); Yao, Hua [Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang (China); Wang, Lei; Pratheeshkumar, Poyil; Hitron, Andrew J. [Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY (United States); Luo, Jia [Department of Internal Medicine, University of Kentucky, 800 Rose Street, Lexington, KY (United States); Gao, Ning [Department of Pharmacognos, College of Pharmacy, 3rd Military Medical University, Chongqing (China); Shi, Xianglin [Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY (United States); Zhang, Zhuo, E-mail: zhuo.zhang@uky.edu [Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY (United States)

    2013-06-01

    Exposure of the skin to ultraviolet B (UVB) radiation causes oxidative damage to skin, resulting in sunburn, photoaging, and skin cancer. It is generally believed that the skin damage induced by UV irradiation is a consequence of generation of reactive oxygen species (ROS). Recently, there is an increased interest in the use of natural products as chemopreventive agents for non-melanoma skin cancer (NMSC) due to their antioxidants and anti-inflammatory properties. Quercitrin, glycosylated form of quercetin, is the most common flavonoid in nature with antioxidant properties. The present study investigated the possible beneficial effects of quercitrin to inhibit UVB irradiation-induced oxidative damage in vitro and in vivo. Our results showed that quercitrin decreased ROS generation induced by UVB irradiation in JB6 cells. Quercitrin restored catalase expression and GSH/GSSG ratio reduced by UVB exposure, two major antioxidant enzymes, leading to reductions of oxidative DNA damage and apoptosis and protection of the skin from inflammation caused by UVB exposure. The present study demonstrated that quercitrin functions as an antioxidant against UVB irradiation-induced oxidative damage to skin. - Highlights: • Oxidative stress plays a key role in UV-induced cell and tissue injuries. • Quercitrin decreases ROS generation and restores antioxidants irradiated by UVB. • Quercitrin reduces UVB-irradiated oxidative DNA damage, apoptosis, and inflammation. • Quercitrin functions as an antioxidant against UVB-induced skin injuries.

  14. Quercitrin protects skin from UVB-induced oxidative damage

    International Nuclear Information System (INIS)

    Yin, Yuanqin; Li, Wenqi; Son, Young-Ok; Sun, Lijuan; Lu, Jian; Kim, Donghern; Wang, Xin; Yao, Hua; Wang, Lei; Pratheeshkumar, Poyil; Hitron, Andrew J.; Luo, Jia; Gao, Ning; Shi, Xianglin; Zhang, Zhuo

    2013-01-01

    Exposure of the skin to ultraviolet B (UVB) radiation causes oxidative damage to skin, resulting in sunburn, photoaging, and skin cancer. It is generally believed that the skin damage induced by UV irradiation is a consequence of generation of reactive oxygen species (ROS). Recently, there is an increased interest in the use of natural products as chemopreventive agents for non-melanoma skin cancer (NMSC) due to their antioxidants and anti-inflammatory properties. Quercitrin, glycosylated form of quercetin, is the most common flavonoid in nature with antioxidant properties. The present study investigated the possible beneficial effects of quercitrin to inhibit UVB irradiation-induced oxidative damage in vitro and in vivo. Our results showed that quercitrin decreased ROS generation induced by UVB irradiation in JB6 cells. Quercitrin restored catalase expression and GSH/GSSG ratio reduced by UVB exposure, two major antioxidant enzymes, leading to reductions of oxidative DNA damage and apoptosis and protection of the skin from inflammation caused by UVB exposure. The present study demonstrated that quercitrin functions as an antioxidant against UVB irradiation-induced oxidative damage to skin. - Highlights: • Oxidative stress plays a key role in UV-induced cell and tissue injuries. • Quercitrin decreases ROS generation and restores antioxidants irradiated by UVB. • Quercitrin reduces UVB-irradiated oxidative DNA damage, apoptosis, and inflammation. • Quercitrin functions as an antioxidant against UVB-induced skin injuries

  15. New insight into multifunctional role of peroxiredoxin family protein: Determination of DNA protection properties of bacterioferritin comigratory protein under hyperthermal and oxidative stresses

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sangmin, E-mail: taeinlee2011@kangwon.ac.kr [Department of Biochemistry, College of Natural Sciences, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, South Korea (Korea, Republic of); Chung, Jeong Min [Department of Biochemistry, College of Natural Sciences, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, South Korea (Korea, Republic of); Yun, Hyung Joong; Won, Jonghan [Advanced Nano Surface Research Group, Korea Basic Science Institute, 169-148 Gwahak-ro, Daejeon, 305-333 (Korea, Republic of); Jung, Hyun Suk, E-mail: hsjung@kangwon.ac.kr [Department of Biochemistry, College of Natural Sciences, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, South Korea (Korea, Republic of)

    2016-01-22

    Bacterioferritin comigratory protein (BCP) is a monomeric conformer acting as a putative thiol-dependent bacterial peroxidase, however molecular basis of DNA-protection via DNA-binding has not been clearly understood. In this study, we characterized the DNA binding properties of BCP using various lengths and differently shaped architectures of DNA. An electrophoretic mobility shift assay and electron microscopy analysis showed that recombinant TkBCP bound to DNA of a circular shape (double-stranded DNA and single-stranded DNA) and a linear shape (16–1000 bp) as well as various architectures of DNA. In addition, DNA protection experiments indicated that TkBCP can protect DNA against hyperthermal and oxidative stress by removing highly reactive oxygen species (ROS) or by protecting DNA from thermal degradation. Based on these results, we suggest that TkBCP is a multi-functional DNA-binding protein which has DNA chaperon and antioxidant functions. - Highlights: • Bacterioferritin comigratory protein (BCP) protects DNA from oxidative stress by reducing ROS. • TkBCP does not only scavenge ROS, but also protect DNA from hyperthermal stress. • BCP potentially adopts the multi-functional role in DNA binding activities and anti-oxidant functions.

  16. New insight into multifunctional role of peroxiredoxin family protein: Determination of DNA protection properties of bacterioferritin comigratory protein under hyperthermal and oxidative stresses

    International Nuclear Information System (INIS)

    Lee, Sangmin; Chung, Jeong Min; Yun, Hyung Joong; Won, Jonghan; Jung, Hyun Suk

    2016-01-01

    Bacterioferritin comigratory protein (BCP) is a monomeric conformer acting as a putative thiol-dependent bacterial peroxidase, however molecular basis of DNA-protection via DNA-binding has not been clearly understood. In this study, we characterized the DNA binding properties of BCP using various lengths and differently shaped architectures of DNA. An electrophoretic mobility shift assay and electron microscopy analysis showed that recombinant TkBCP bound to DNA of a circular shape (double-stranded DNA and single-stranded DNA) and a linear shape (16–1000 bp) as well as various architectures of DNA. In addition, DNA protection experiments indicated that TkBCP can protect DNA against hyperthermal and oxidative stress by removing highly reactive oxygen species (ROS) or by protecting DNA from thermal degradation. Based on these results, we suggest that TkBCP is a multi-functional DNA-binding protein which has DNA chaperon and antioxidant functions. - Highlights: • Bacterioferritin comigratory protein (BCP) protects DNA from oxidative stress by reducing ROS. • TkBCP does not only scavenge ROS, but also protect DNA from hyperthermal stress. • BCP potentially adopts the multi-functional role in DNA binding activities and anti-oxidant functions.

  17. DNA Oncogenic Virus-Induced Oxidative Stress, Genomic Damage, and Aberrant Epigenetic Alterations

    Directory of Open Access Journals (Sweden)

    Mankgopo Magdeline Kgatle

    2017-01-01

    Full Text Available Approximately 20% of human cancers is attributable to DNA oncogenic viruses such as human papillomavirus (HPV, hepatitis B virus (HBV, and Epstein-Barr virus (EBV. Unrepaired DNA damage is the most common and overlapping feature of these DNA oncogenic viruses and a source of genomic instability and tumour development. Sustained DNA damage results from unceasing production of reactive oxygen species and activation of inflammasome cascades that trigger genomic changes and increased propensity of epigenetic alterations. Accumulation of epigenetic alterations may interfere with genome-wide cellular signalling machineries and promote malignant transformation leading to cancer development. Untangling and understanding the underlying mechanisms that promote these detrimental effects remain the major objectives for ongoing research and hope for effective virus-induced cancer therapy. Here, we review current literature with an emphasis on how DNA damage influences HPV, HVB, and EBV replication and epigenetic alterations that are associated with carcinogenesis.

  18. Exercise training attenuates sympathetic activation and oxidative stress in diet-induced obesity.

    Science.gov (United States)

    Li, G; Liu, J-Y; Zhang, H-X; Li, Q; Zhang, S-W

    2015-01-01

    It is known that excessive sympathetic activity and oxidative stress are enhanced in obesity. This study aimed to clarify whether exercise training (ET) attenuates sympathetic activation and oxidative stress in obesity. The obesity was induced by high-fat diet (HFD) for 12 weeks. Male Sprague-Dawley rats were assigned to four groups: regular diet (RD) plus sedentary (RD-S), RD plus ET (RD-ET), HFD plus sedentary (HFD-S), and HFD plus ET (HFD-ET). The rats in RD-ET and HFD-ET groups were trained on a motorized treadmill for 60 min/day, five days/week for 8 weeks. The sympathetic activity was evaluated by the plasma norepinephrine (NE) level. The superoxide anion, malondialdehyde and F2-isoprostanes levels in serum and muscles were measured to evaluate oxidative stress. The ET prevented the increases in the body weight, arterial pressure and white adipose tissue mass in HFD rats. The NE level in plasma and oxidative stress related parameters got lower in HFD-ET group compared with HFD-S group. We have found decreased mRNA and protein levels of toll-like receptor (TLR)-2 and TLR-4 by ET in HFD rats. These findings suggest that ET may be effective for attenuating sympathetic activation and oxidative stress in diet-induced obesity.

  19. 2- and 4-Aminobiphenyls induce oxidative DNA damage in human hepatoma (Hep G2) cells via different mechanisms

    International Nuclear Information System (INIS)

    Wang Shuchi; Chung, Jing-Gung; Chen, C.-H.; Chen, S.-C.

    2006-01-01

    4-Aminobiphenyl (4-ABP) and its analogue, 2-aminobiphenyl (2-ABP), were examined for their ability to induce oxidative DNA damage in Hep G2 cells. Using the alkaline comet assay, we showed that 2-ABP and 4-ABP (25-200 μM) were able to induce the DNA damage in Hep G2 cells. With both compounds, formation of intracellular reactive oxygen species (ROS) was detected using flow cytometry analysis. Post-treatment of 2-ABP and 4-ABP-treated cells by endonuclease III (Endo III) or formamidopyrimidine-DNA glycosylase (Fpg) to determine the formation of oxidized pyrimidines or oxidized purines showed a significant increase of the extent of DNA migration. This indicated that oxidative DNA damage occurs in Hep G2 cells after exposure to 2-ABP and 4-ABP. This assumption was further substantiated by the fact that the spin traps, 5,5-dimethyl-pyrroline-N-oxide (DMPO) and N-tert-butyl-α-phenylnitrone (PBN), decreased DNA damage significantly. Furthermore, addition of the catalase (100 U/ml) caused a decrease in the DNA damage induced by 2-ABP or 4-ABP, indicating that H 2 O 2 is involved in ABP-induced DNA damage. Pre-incubation of the cells with the iron chelator desferrioxamine (DFO) (1 mM) and with the copper chelator neocupronine (NC) (100 μM) also decreased DNA damage in cells treated with 200 μM 2-ABP or 200 μM 4-ABP, while the calcium chelator {1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester}(BAPTA/AM) (10 μM) decreased only DNA strand breaks in cells exposed to 4-ABP. This suggested that ions are involved in the formation of DNA strand breaks. Using RT-PCR and Western blotting, lower inhibition of the expression of the OGG1 gene and of the OGG1 protein was observed in cells treated with 4-ABP, and 2-ABP-treated cells showed a marked reduction in the expression of OGG1 gene and OGG1 protein. Taken together, our finding indicated the mechanisms of induced oxidative DNA damage in Hep G2 cell by 2-ABP and 4-ABP are different, although both

  20. Troxerutin attenuates diet-induced oxidative stress, impairment of mitochondrial biogenesis and respiratory chain complexes in mice heart.

    Science.gov (United States)

    Rajagopalan, Geetha; Chandrasekaran, Sathiya Priya; Carani Venkatraman, Anuradha

    2017-01-01

    Mitochondrial abnormality is thought to play a key role in cardiac disease originating from the metabolic syndrome (MS). We evaluated the effect of troxerutin (TX), a semi-synthetic derivative of the natural bioflavanoid rutin, on the respiratory chain complex activity, oxidative stress, mitochondrial biogenesis and dynamics in heart of high fat, high fructose diet (HFFD) -induced mouse model of MS. Adult male Mus musculus mice of body weight 25-30 g were fed either control diet or HFFD for 60 days. Mice from each dietary regimen were divided into two groups on the 16th day and were treated or untreated with TX (150 mg/kg body weight [bw], per oral) for the next 45 days. At the end of experimental period, respiratory chain complex activity, uncoupling proteins (UCP)-2 and -3, mtDNA content, mitochondrial biogenesis and dynamics, oxidative stress markers and reactive oxygen species (ROS) generation were analyzed. Reduced mtDNA abundance with alterations in the expression of genes related to mitochondrial biogenesis and fission and fusion processes were observed in HFFD-fed mice. Disorganized and smaller mitochondria, reduction in complexes I, III and IV activities (by about 55%) and protein levels of UCP-2 (52%) and UCP-3 (46%) were noted in these mice. TX administration suppressed oxidative stress, improved the oxidative capacity and biogenesis and restored fission/fusion imbalance in the cardiac mitochondria of HFFD-fed mice. TX protects the myocardium by modulating the putative molecules of mitochondrial biogenesis and dynamics and by its anti-oxidant function in a mouse model of MS. © 2016 John Wiley & Sons Australia, Ltd.

  1. Mercury chloride-induced oxidative stress in human erythrocytes ...

    African Journals Online (AJOL)

    ONOS

    2010-01-25

    Jan 25, 2010 ... Mercury can exist in the environment as metal, as monovalent and divalent salts and as organomercurials, one of the most important of which is mercuric chloride (HgCl2). It has been shown to induce oxidative stress in erythrocytes through the generation of free radicals and alteration of the.

  2. Neuroprotective effects of ganoderma lucidum polysaccharides against oxidative stress-induced neuronal apoptosis

    Science.gov (United States)

    Sun, Xin-zhi; Liao, Ying; Li, Wei; Guo, Li-mei

    2017-01-01

    Ganoderma lucidum polysaccharides have protective effects against apoptosis in neurons exposed to ischemia/reperfusion injury, but the mechanisms are unclear. The goal of this study was to investigate the underlying mechanisms of the effects of ganoderma lucidum polysaccharides against oxidative stress-induced neuronal apoptosis. Hydrogen peroxide (H2O2) was used to induce apoptosis in cultured cerebellar granule cells. In these cells, ganoderma lucidum polysaccharides remarkably suppressed H2O2-induced apoptosis, decreased expression of caspase-3, Bax and Bim and increased that of Bcl-2. These findings suggested that ganoderma lucidum polysaccharides regulate expression of apoptosis-associated proteins, inhibit oxidative stress-induced neuronal apoptosis and, therefore, have significant neuroprotective effects. PMID:28761429

  3. [Endonuclease modified comet assay for oxidative DNA damage induced by detection of genetic toxicants].

    Science.gov (United States)

    Zhao, Jian; Li, Hongli; Zhai, Qingfeng; Qiu, Yugang; Niu, Yong; Dai, Yufei; Zheng, Yuxin; Duan, Huawei

    2014-03-01

    The aim of this study was to investigate the use of the lesion-specific endonucleases-modified comet assay for analysis of DNA oxidation in cell lines. DNA breaks and oxidative damage were evaluated by normal alkaline and formamidopyrimidine-DNA-glycosylase (FPG) modified comet assays. Cytotoxicity were assessed by MTT method. The human bronchial epithelial cell (16HBE) were treated with benzo (a) pyrene (B(a)P), methyl methanesulfonate (MMS), colchicine (COL) and vincristine (VCR) respectively, and the dose is 20 µmol/L, 25 mg/ml, 5 mg/L and 0.5 mg/L for 24 h, respectively. Oxidative damage was also detected by levels of reactive oxygen species in treated cells. Four genotoxicants give higher cytotoxicity and no significant changes on parameters of comet assay treated by enzyme buffer. Cell survival rate were (59.69 ± 2.60) %, (54.33 ± 2.81) %, (53.11 ± 4.00) %, (51.43 ± 3.92) % in four groups, respectively. There was the direct DNA damage induced by test genotoxicants presented by tail length, Olive tail moment (TM) and tail DNA (%) in the comet assay. The presence of FPG in the assays increased DNA migration in treated groups when compared to those without it, and the difference was statistically significant which indicated that the clastogen and aneugen could induce oxidative damage in DNA strand. In the three parameters, the Olive TM was changed most obviously after genotoxicants treatment. In the contrast group, the Olive TM of B(a) P,MMS, COL,VCR in the contrast groups were 22.99 ± 17.33, 31.65 ± 18.86, 19.86 ± 9.56 and 17.02 ± 9.39, respectively, after dealing with the FPG, the Olive TM were 34.50 ± 17.29, 43.80 ± 10.06, 33.10 ± 12.38, 28.60 ± 10.53, increased by 58.94%, 38.48%, 66.86% and 68.21%, respectively (t value was 3.91, 3.89, 6.66 and 3.87, respectively, and all P comet assay appears more specific for detecting oxidative DNA damage induced by genotoxicants exposure, and the application of comet assay will be expanded. The endonuclease

  4. Characterization of coal fly ash nanoparticles and induced oxidative DNA damage in human peripheral blood mononuclear cells

    International Nuclear Information System (INIS)

    Dwivedi, Sourabh; Saquib, Quaiser; Al-Khedhairy, Abdulaziz A.; Ali, Al-Yousef Sulaiman; Musarrat, Javed

    2012-01-01

    The nano-sized particles present in coal fly ash (CFA) were characterized through the X-ray diffraction (XRD), transmission and scanning electron microscopy (TEM, SEM), atomic force microscopy (AFM) and Fourier transform infrared spectroscopy (FTIR) analyses. The XRD data revealed the average crystallite size of the CFA nanoparticles (CFA-NPs) as 14 nm. TEM and SEM imaging demonstrated predominantly spherical and some polymorphic structures in the size range of 11 to 25 nm. The amount of heavy metal associated with CFA particles (μg/g) were determined as Fe (34160.0 ± 1.38), Ni (150.8 ± 0.78), Cu (99.3 ± 0.56) and Cr (64.0 ± 0.86). However, the bioavailability of heavy metals in terms of percent release was in the order as Cr > Ni > Cu > Fe in CFA-dimethyl sulfoxide (DMSO) extract. The comet and cytokinesis blocked micronucleus (CBMN) assays revealed substantial genomic DNA damage in peripheral blood mononuclear (PBMN) cells treated with CFA-NPs in Aq and DMSO extracts. About 1.8 and 3.6 strand breaks per unit of DNA were estimated through alkaline unwinding assay at 1:100 DNA nucleotide/CFA ppm ratios with the Aq and DMSO extracts, respectively. The DNA and mitochondrial damage was invariably greater with CFA-DMSO extract vis-à-vis -Aq extract. Generation of superoxide anions (O 2 • − ) and intracellular reactive oxygen species (ROS) through metal redox-cycling, alteration in mitochondrial potential and 8-oxodG production elucidated CFA-NPs induced oxidative stress as a plausible mechanism for CFA-induced genotoxicity. -- Highlights: ► CFA consists of spherical crystalline nanoparticles in size range of 11–25 nm. ► Alkaline unwinding assay revealed single-strandedness in CFA treated ctDNA. ► CFA nanoparticles exhibited the ability to induce ROS and oxidative DNA damage. ► Comet and CBMN assays revealed DNA and chromosomal breakage in PBMN cells. ► CFA-NPs resulted in mitochondrial membrane damage in PBMN cells.

  5. Characterization of coal fly ash nanoparticles and induced oxidative DNA damage in human peripheral blood mononuclear cells

    Energy Technology Data Exchange (ETDEWEB)

    Dwivedi, Sourabh; Saquib, Quaiser; Al-Khedhairy, Abdulaziz A. [Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Ali, Al-Yousef Sulaiman [Department of Medical Laboratory Sciences, College of Applied Medical Science, University of Dammam, P.O. Box 1683, Hafr Al Batin-31991 (Saudi Arabia); Musarrat, Javed, E-mail: musarratj1@yahoo.com [Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Department of Agricultural Microbiology, Faculty of Agricultural Sciences, AMU, Aligarh202002 (India)

    2012-10-15

    The nano-sized particles present in coal fly ash (CFA) were characterized through the X-ray diffraction (XRD), transmission and scanning electron microscopy (TEM, SEM), atomic force microscopy (AFM) and Fourier transform infrared spectroscopy (FTIR) analyses. The XRD data revealed the average crystallite size of the CFA nanoparticles (CFA-NPs) as 14 nm. TEM and SEM imaging demonstrated predominantly spherical and some polymorphic structures in the size range of 11 to 25 nm. The amount of heavy metal associated with CFA particles ({mu}g/g) were determined as Fe (34160.0 {+-} 1.38), Ni (150.8 {+-} 0.78), Cu (99.3 {+-} 0.56) and Cr (64.0 {+-} 0.86). However, the bioavailability of heavy metals in terms of percent release was in the order as Cr > Ni > Cu > Fe in CFA-dimethyl sulfoxide (DMSO) extract. The comet and cytokinesis blocked micronucleus (CBMN) assays revealed substantial genomic DNA damage in peripheral blood mononuclear (PBMN) cells treated with CFA-NPs in Aq and DMSO extracts. About 1.8 and 3.6 strand breaks per unit of DNA were estimated through alkaline unwinding assay at 1:100 DNA nucleotide/CFA ppm ratios with the Aq and DMSO extracts, respectively. The DNA and mitochondrial damage was invariably greater with CFA-DMSO extract vis-a-vis -Aq extract. Generation of superoxide anions (O{sub 2} Bullet {sup -}) and intracellular reactive oxygen species (ROS) through metal redox-cycling, alteration in mitochondrial potential and 8-oxodG production elucidated CFA-NPs induced oxidative stress as a plausible mechanism for CFA-induced genotoxicity. -- Highlights: Black-Right-Pointing-Pointer CFA consists of spherical crystalline nanoparticles in size range of 11-25 nm. Black-Right-Pointing-Pointer Alkaline unwinding assay revealed single-strandedness in CFA treated ctDNA. Black-Right-Pointing-Pointer CFA nanoparticles exhibited the ability to induce ROS and oxidative DNA damage. Black-Right-Pointing-Pointer Comet and CBMN assays revealed DNA and chromosomal

  6. Buffer modulation of menadione-induced oxidative stress in Saccharomyces cerevisiae.

    Science.gov (United States)

    Lushchak, Oleh V; Bayliak, Maria M; Korobova, Olha V; Levine, Rodney L; Lushchak, Volodymyr I

    2009-01-01

    The objective of this study was to compare, in vivo, the effects of bicarbonate and phosphate buffers on survival and menadione-induced oxidative stress in yeast cells. The latter were treated with different concentrations of menadione in the presence of these two buffers. At 25 mM concentration of buffers, menadione only slightly reduced yeast surviving; at 50 mM concentration, cell killing by menadione was much more pronounced in bicarbonate than in phosphate buffer. Although the content of protein carbonyl groups did not show development of oxidative stress under menadione-induced stress, inactivation of aconitase and decrease in glutathione level mirrored its induction. However, cellular glutathione and aconitase activity decrease did not correlate with yeast survival. In vitro, aconitase was more quickly inactivated in 50 mM carbonate, than in 50 mM phosphate buffer. The possible involvement of the carbonate radical in these processes is discussed.

  7. Oxidative Stress in the Carcinogenicity of Chemical Carcinogens

    International Nuclear Information System (INIS)

    Kakehashi, Anna; Wei, Min; Fukushima, Shoji; Wanibuchi, Hideki

    2013-01-01

    This review highlights several in vivo studies utilizing non-genotoxic and genotoxic chemical carcinogens, and the mechanisms of their high and low dose carcinogenicities with respect to formation of oxidative stress. Here, we survey the examples and discuss possible mechanisms of hormetic effects with cytochrome P 450 inducers, such as phenobarbital, α-benzene hexachloride and 1,1-bis(p-chlorophenyl)-2,2,2-trichloroethane. Epigenetic processes differentially can be affected by agents that impinge on oxidative DNA damage, repair, apoptosis, cell proliferation, intracellular communication and cell signaling. Non-genotoxic carcinogens may target nuclear receptors and induce post-translational modifications at the protein level, thereby impacting on the stability or activity of key regulatory proteins, including oncoproteins and tumor suppressor proteins. We further discuss role of oxidative stress focusing on the low dose carcinogenicities of several genotoxic carcinogens such as a hepatocarcinogen contained in seared fish and meat, 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline, arsenic and its metabolites, and the kidney carcinogen potassium bromate

  8. Oxidative Stress in the Carcinogenicity of Chemical Carcinogens

    Energy Technology Data Exchange (ETDEWEB)

    Kakehashi, Anna; Wei, Min [Department of Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-Ku, Osaka 545-8585 (Japan); Fukushima, Shoji [Japan Bioassay Research Center, Japan Industrial Safety and Health Association, 2445 Hirasawa, Hadano, Kanagawa 257-0015 (Japan); Wanibuchi, Hideki, E-mail: wani@med.osaka-cu.ac.jp [Department of Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-Ku, Osaka 545-8585 (Japan)

    2013-10-28

    This review highlights several in vivo studies utilizing non-genotoxic and genotoxic chemical carcinogens, and the mechanisms of their high and low dose carcinogenicities with respect to formation of oxidative stress. Here, we survey the examples and discuss possible mechanisms of hormetic effects with cytochrome P{sub 450} inducers, such as phenobarbital, α-benzene hexachloride and 1,1-bis(p-chlorophenyl)-2,2,2-trichloroethane. Epigenetic processes differentially can be affected by agents that impinge on oxidative DNA damage, repair, apoptosis, cell proliferation, intracellular communication and cell signaling. Non-genotoxic carcinogens may target nuclear receptors and induce post-translational modifications at the protein level, thereby impacting on the stability or activity of key regulatory proteins, including oncoproteins and tumor suppressor proteins. We further discuss role of oxidative stress focusing on the low dose carcinogenicities of several genotoxic carcinogens such as a hepatocarcinogen contained in seared fish and meat, 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline, arsenic and its metabolites, and the kidney carcinogen potassium bromate.

  9. Oxidative Stress in Fish induced by Environmental Pollutants

    Directory of Open Access Journals (Sweden)

    Anton Kováčik

    2017-05-01

    Full Text Available Environmental pollutants represent a risk factor for human and animals in all areas of occurrence. Environmental pollution caused by anthropogenic activities is a major problem in many countries. Numbers of studies deals with cumulation of xenobiotics in tissues but not all respond to the real impact on living organisms. Freshwater fishes are exposed to several anthropogenic contaminants. The most commonly studied are three metals: mercury (Hg, lead (Pb, cadmium (Cd. These contaminants could have several impacts to oxidative stress. In the normal healthy cell, ROS and pro-oxidant products are detoxified by antioxidant defences. Redox-active or Redox-inactive metals may cause an increase in production of reactive oxygen species (ROS. Mercury has a high affinity for thiol groups, and can non-specifically affect several enzymes, e. g. GSH (glutathione, which can induce GSH depletion and oxidative stress in tissue, also can induce lipid peroxidation, and mitochondrial dysfunction. The toxicity of Cd to aquatic species depends on speciation, with the free ion, Cd2+ concentration being proportional to bioavailability. Cadmium toxicity worsened of Ca, Na, and Mg ions homeostasis. Lead can be toxic to nervous and skeletal systems; at cellular level can cause apoptosis, also can affect mitochondria, neurotransmitters, and can substitute for Ca.

  10. Heavy Metal-Induced Oxidative DNA Damage in Earthworms: A Review

    Directory of Open Access Journals (Sweden)

    Takeshi Hirano

    2010-01-01

    Full Text Available Earthworms can be used as a bio-indicator of metal contamination in soil, Earlier reports claimed the bioaccumulation of heavy metals in earthworm tissues, while the metal-induced mutagenicity reared in contaminated soils for long duration. But we examined the metal-induced mutagenicity in earthworms reared in metal containing culture beddings. In this experiment we observed the generation of 8-oxoguanine (8-oxo-Gua in earthworms exposed to cadmium and nickel in soil. 8-oxo-Gua is a major premutagenic form of oxidative DNA damage that induces GC-to-TA point mutations, leading to carcinogenesis.

  11. Effect of atorvastatin on hyperglycemia-induced brain oxidative stress and neuropathy induced by diabetes

    Directory of Open Access Journals (Sweden)

    Nastaran Faghihi

    2015-04-01

    Conclusion: The findings of the present study reveal that atorvastatin is able to prevent hyperglycemia-induced diabetic neuropathy and inhibit brain oxidative stress during diabetes. It is probable that reduction of urea is one of the reasons for atorvastatin prevention of hyperglycemia-induced neuropathy.

  12. Evidence against the nuclear in situ binding of arsenicals-oxidative stress theory of arsenic carcinogenesis

    International Nuclear Information System (INIS)

    Kitchin, Kirk T.; Wallace, Kathleen

    2008-01-01

    A large amount of evidence suggests that arsenicals act via oxidative stress in causing cancer in humans and experimental animals. It is possible that arsenicals could bind in situ close to nuclear DNA followed by Haber-Weiss type oxidative DNA damage. Therefore, we tested this hypothesis by using radioactive 73 As labeled arsenite and vacuum filtration methodology to determine the binding affinity and capacity of 73 As arsenite to calf thymus DNA and Type 2A unfractionated histones, histone H3, H4 and horse spleen ferritin. Arsenicals are known to release redox active Fe from ferritin. At concentrations up to about 1 mM, neither DNA nor any of the three proteins studied, Type II-A histones, histone H3, H4 or ferritin, bound radioactive arsenite in a specific manner. Therefore, it appears highly unlikely that initial in situ binding of trivalent arsenicals, followed by in situ oxidative DNA damage, can account for arsenic's carcinogenicity. This experimental evidence (lack of arsenite binding to DNA, histone Type II-A and histone H3, H4) does not rule out other possible oxidative stress modes of action for arsenic such as (a) diffusion of longer lived oxidative stress molecules, such as H 2 O 2 into the nucleus and ensuing oxidative damage, (b) redox chemistry by unbound arsenicals in the nucleus, or (c) arsenical-induced perturbations in Fe, Cu or other metals which are already known to oxidize DNA in vitro and in vivo

  13. Palladium induced oxidative stress and cell death in normal ...

    African Journals Online (AJOL)

    Our findings clearly indicate that Pd induces reactive oxygen species (ROS) formation and oxidative stress, mitochondrial and lysosomal injury and finally cell death. These effects are reversed by antioxidants and ROS scavengers, mitochondrial permeability transmission [1] pore sealing agent, ATP progenitor, and ...

  14. Classical and alternative macrophage activation in the lung following ozone-induced oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Sunil, Vasanthi R., E-mail: sunilva@pharmacy.rutgers.edu [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ 08854 (United States); Patel-Vayas, Kinal; Shen, Jianliang [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ 08854 (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Medicine, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ (United States); Laskin, Debra L. [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ 08854 (United States)

    2012-09-01

    Ozone is a pulmonary irritant known to cause oxidative stress, inflammation and tissue injury. Evidence suggests that macrophages play a role in the pathogenic response; however, their contribution depends on the mediators they encounter in the lung which dictate their function. In these studies we analyzed the effects of ozone-induced oxidative stress on the phenotype of alveolar macrophages (AM). Exposure of rats to ozone (2 ppm, 3 h) resulted in increased expression of 8-hydroxy-2′-deoxyguanosine (8-OHdG), as well as heme oxygenase-1 (HO-1) in AM. Whereas 8-OHdG was maximum at 24 h, expression of HO-1 was biphasic increasing after 3 h and 48–72 h. Cleaved caspase-9 and beclin-1, markers of apoptosis and autophagy, were also induced in AM 24 h post-ozone. This was associated with increased bronchoalveolar lavage protein and cells, as well as matrix metalloproteinase (MMP)-2 and MMP-9, demonstrating alveolar epithelial injury. Ozone intoxication resulted in biphasic activation of the transcription factor, NFκB. This correlated with expression of monocyte chemotactic protein‐1, inducible nitric oxide synthase and cyclooxygenase‐2, markers of proinflammatory macrophages. Increases in arginase-1, Ym1 and galectin-3 positive anti-inflammatory/wound repair macrophages were also observed in the lung after ozone inhalation, beginning at 24 h (arginase-1, Ym1), and persisting for 72 h (galectin-3). This was associated with increased expression of pro-surfactant protein-C, a marker of Type II cell proliferation and activation, important steps in wound repair. These data suggest that both proinflammatory/cytotoxic and anti-inflammatory/wound repair macrophages are activated early in the response to ozone-induced oxidative stress and tissue injury. -- Highlights: ► Lung macrophages are highly sensitive to ozone induced oxidative stress. ► Ozone induces autophagy and apoptosis in lung macrophages. ► Proinflammatory and wound repair macrophages are activated

  15. Use of Saliva Biomarkers to Monitor Efficacy of Vitamin C in Exercise-Induced Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Levi W. Evans

    2017-01-01

    Full Text Available Saliva is easily obtainable for medical research and requires little effort or training for collection. Because saliva contains a variety of biological compounds, including vitamin C, malondialdehyde, amylase, and proteomes, it has been successfully used as a biospecimen for the reflection of health status. A popular topic of discussion in medical research is the potential association between oxidative stress and negative outcomes. Systemic biomarkers that represent oxidative stress can be found in saliva. It is unclear, however, if saliva is an accurate biospecimen as is blood and/or plasma. Exercise can induce oxidative stress, resulting in a trend of antioxidant supplementation to combat its assumed detriments. Vitamin C is a popular antioxidant supplement in the realm of sports and exercise. One potential avenue for evaluating exercise induced oxidative stress is through assessment of biomarkers like vitamin C and malondialdehyde in saliva. At present, limited research has been done in this area. The current state of research involving exercise-induced oxidative stress, salivary biomarkers, and vitamin C supplementation is reviewed in this article.

  16. Protective Effects of Alkaloid Compounds from Nelumbinis Plumula on tert-Butyl Hydroperoxide-Induced Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Ze-Bin Guo

    2013-08-01

    Full Text Available This study was conducted to investigate the effect of Nelumbinis Plumula total alkaloid (NPA and its main alkaloid components on oxidative stress induced by tert-butyl hydroperoxide (t-BHP in the human hepatocellular HepG2 cell line. According to HPLC analysis, several major alkaloid compounds such as liensinine, isoliensinine and neferine were present in NPA. The cytotoxic effects in 0.55 mM t-BHP-induced HepG2 cells were significantly inhibited by NPA and the major compound in NPA, neferine, showed the strongest activities. The protective effect of neferine against oxidative stress induced by t-BHP may be associated with decreased ROS formation, TBARS generation, LDH release and increased GSH levels, suggesting their involvement of the cytoprotective on oxidative stress. The effects were comparable with quercetin, which was used as positive control. Overall, total alkaloid and alkaloid compounds from Nelumbinis Plumula displayed a significant cytoprotective effect against oxidative stress. Further study is needed to elucidate the relationship between the chemical structures of the components in NPA and their protective effect on oxidative stress.

  17. The Role of the Transcriptional Response to DNA Replication Stress.

    Science.gov (United States)

    Herlihy, Anna E; de Bruin, Robertus A M

    2017-03-02

    During DNA replication many factors can result in DNA replication stress. The DNA replication stress checkpoint prevents the accumulation of replication stress-induced DNA damage and the potential ensuing genome instability. A critical role for post-translational modifications, such as phosphorylation, in the replication stress checkpoint response has been well established. However, recent work has revealed an important role for transcription in the cellular response to DNA replication stress. In this review, we will provide an overview of current knowledge of the cellular response to DNA replication stress with a specific focus on the DNA replication stress checkpoint transcriptional response and its role in the prevention of replication stress-induced DNA damage.

  18. The Role of the Transcriptional Response to DNA Replication Stress

    Science.gov (United States)

    Herlihy, Anna E.; de Bruin, Robertus A.M.

    2017-01-01

    During DNA replication many factors can result in DNA replication stress. The DNA replication stress checkpoint prevents the accumulation of replication stress-induced DNA damage and the potential ensuing genome instability. A critical role for post-translational modifications, such as phosphorylation, in the replication stress checkpoint response has been well established. However, recent work has revealed an important role for transcription in the cellular response to DNA replication stress. In this review, we will provide an overview of current knowledge of the cellular response to DNA replication stress with a specific focus on the DNA replication stress checkpoint transcriptional response and its role in the prevention of replication stress-induced DNA damage. PMID:28257104

  19. Oxidative stress negatively affects human sperm mitochondrial respiration.

    Science.gov (United States)

    Ferramosca, Alessandra; Pinto Provenzano, Sara; Montagna, Daniela Domenica; Coppola, Lamberto; Zara, Vincenzo

    2013-07-01

    To correlate the level of oxidative stress in serum and seminal fluid and the level of sperm deoxyribonucleic acid (DNA) fragmentation with sperm mitochondrial respiratory efficiency. Sperm mitochondrial respiratory activity was evaluated with a polarographic assay of oxygen consumption carried out in hypotonically treated sperm cells. A possible relationship between sperm mitochondrial respiratory efficiency, the level of oxidative stress, and the level of sperm DNA fragmentation was investigated. Sperm motility was positively correlated with mitochondrial respiration but negatively correlated with oxidative stress and DNA fragmentation. Interestingly, sperm mitochondrial respiratory activity was negatively affected by oxidative stress and DNA fragmentation. Our data indicate that sperm mitochondrial respiration is decreased in patients with high levels of reactive oxygen species by an uncoupling between electron transport and adenosine triphosphate synthesis. This reduction in mitochondrial functionality might be 1 of the reasons responsible for the decrease in spermatozoa motility. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Enhanced transfection by antioxidative polymeric gene carrier that reduces polyplex-mediated cellular oxidative stress.

    Science.gov (United States)

    Lee, Min Sang; Kim, Nak Won; Lee, Kyuri; Kim, Hongtae; Jeong, Ji Hoon

    2013-06-01

    To test the hypothesis in which polyplex-induced oxidative stress may affect overall transfection efficiency, an antioxidative transfection system minimizing cellular oxidative stress was designed for enhanced transfection. An amphiphilic copolymer (PEI-PLGA) was synthesized and used as a micelle-type gene carrier containing hydrophobic antioxidant, α-tocopherol. Cellular oxidative stress and the change of mitochondrial membrane potential after transfection was measured by using a fluorescent probe (H₂DCFDA) and lipophilic cationic probe (JC-1), respectively. Transfection efficiency was determined by measuring a reporter gene (luciferase) expression level. The initial transfection study with conventional PEI/plasmid DNA polyplex showed significant generation of reactive oxygen species (ROS). The PEI-PLGA copolymer successfully carried out the simultaneous delivery of α-tocopherol and plasmid DNA (PEI-PLGA/Toco/pDNA polyplex) into cells, resulting in a significant reduction in cellular ROS generation after transfection and helped to maintain the mitochondrial membrane potential (ΔΨ). In addition, the transfection efficiency was dramatically increased using the antioxidative transfection system. This work showed that oxidative stress would be one of the important factors that should be considered in designing non-viral gene carriers and suggested a possible way to reduce the carrier-mediated oxidative stress, which consequently leads to enhanced transfection.

  1. Relative contribution of homologous recombination and non-homologous end-joining to DNA double-strand break repair after oxidative stress in Saccharomyces cerevisiae.

    Science.gov (United States)

    Letavayová, Lucia; Marková, Eva; Hermanská, Katarína; Vlcková, Viera; Vlasáková, Danusa; Chovanec, Miroslav; Brozmanová, Jela

    2006-05-10

    Oxidative damage to DNA seems to be an important factor in developing many human diseases including cancer. It involves base and sugar damage, base-free sites, DNA-protein cross-links and DNA single-strand (SSB) and double-strand (DSB) breaks. Oxidative DSB can be formed in various ways such as their direct induction by the drug or their generation either through attempted and aborted repair of primary DNA lesions or through DNA replication-dependent conversion of SSB. In general, two main pathways are responsible for repairing DSB, homologous recombination (HR) and non-homologous end-joining (NHEJ), with both of them being potential candidates for the repair of oxidative DSB. We have examined relative contribution of HR and NHEJ to cellular response after oxidative stress in Saccharomyces cerevisiae. Therefore, cell survival, mutagenesis and DSB induction and repair in the rad52, yku70 and rad52 yku70 mutants after hydrogen peroxide (H(2)O(2)), menadione (MD) or bleomycin (BLM) exposure were compared to those obtained for the corresponding wild type. We show that MD exposure does not lead to observable DSB induction in yeast, suggesting that the toxic effects of this agent are mediated by other types of DNA damage. Although H(2)O(2) treatment generates some DSB, their yield is relatively low and hence DSB may only partially be responsible for toxicity of H(2)O(2), particularly at high doses of the agent. On the other hand, the basis of the BLM toxicity resides primarily in DSB induction. Both HR and NHEJ act on BLM-induced DSB, although their relative participation in the process is not equal. Based on our results we suggest that the complexity and/or the quality of the BLM-induced DSB might represent an obstacle for the NHEJ pathway.

  2. Application of an immunoperoxidase staining method for detection of 7,8-dihydro-8-oxodeoxyguanosine as a biomarker of chemical-induced oxidative stress in marine organisms

    International Nuclear Information System (INIS)

    Machella, Nicola; Regoli, Francesco; Cambria, Antonio; Santella, Regina M.

    2004-01-01

    7,8-Dihydro-8-oxodeoxyguanosine (8-oxo-dG) is a typical modification of DNA caused by oxygen free radicals and can be an useful biomarker for pollutants inducing oxidative stress. An immunoperoxidase method using monoclonal antibody 1F7 toward 8-oxo-dG was applied to tissues and smeared cells of marine organisms for detection and quantification of oxidative DNA damage in such models. The assay, previously employed on human cells, was assessed for the first time on Mediterranean mussels (Mytilus galloprovincialis) and European eels (Anguilla anguilla), exposed to model pro-oxidant chemicals, namely benzo[a]pyrene (B[a]P) and copper. Quantification of 8-oxo-dG was microscopically carried out and expressed as relative nuclear staining intensity. Higher levels of oxidative DNA damage were detected in the digestive glands of treated mussels compared to controls, while the effect was less pronounced in haemocytes, characterized by more elevated basal levels of 8-oxo-dG. The assay was suitable for detection of 8-oxo-dG also in fish liver sections indicating consistent damage after B[a]P exposure. The main advantage of the immunohistochemical approach is the elimination of DNA extraction which considerably reduces the processing of biological samples. In addition, the assay requires small amounts of frozen tissues or fixed cells for detection of 8-oxo-dG and is potentially able to discriminate variable susceptibility to oxidative stress in different cell types. Although further investigations are required for the improvement and the validation of the assay in field conditions, laboratory exposures provided useful indications on the consistency of the approach and the efficacy of antibody 1F7 in marine organisms for a rapid assessment of pollutant-induced oxidative DNA damage

  3. Accelerated aging in schizophrenia patients: the potential role of oxidative stress.

    Science.gov (United States)

    Okusaga, Olaoluwa O

    2014-08-01

    Several lines of evidence suggest that schizophrenia, a severe mental illness characterized by delusions, hallucinations and thought disorder is associated with accelerated aging. The free radical (oxidative stress) theory of aging assumes that aging occurs as a result of damage to cell constituents and connective tissues by free radicals arising from oxygen-associated reactions. Schizophrenia has been associated with oxidative stress and chronic inflammation, both of which also appear to reciprocally induce each other in a positive feedback manner. The buildup of damaged macromolecules due to increased oxidative stress and failure of protein repair and maintenance systems is an indicator of aging both at the cellular and organismal level. When compared with age-matched healthy controls, schizophrenia patients have higher levels of markers of oxidative cellular damage such as protein carbonyls, products of lipid peroxidation and DNA hydroxylation. Potential confounders such as antipsychotic medication, smoking, socio-economic status and unhealthy lifestyle make it impossible to solely attribute the earlier onset of aging-related changes or oxidative stress to having a diagnosis of schizophrenia. Regardless of whether oxidative stress can be attributed solely to a diagnosis of schizophrenia or whether it is due to other factors associated with schizophrenia, the available evidence is in support of increased oxidative stress-induced cellular damage of macromolecules which may play a role in the phenomenon of accelerated aging presumed to be associated with schizophrenia.

  4. 4β-Hydroxywithanolide E selectively induces oxidative DNA damage for selective killing of oral cancer cells.

    Science.gov (United States)

    Tang, Jen-Yang; Huang, Hurng-Wern; Wang, Hui-Ru; Chan, Ya-Ching; Haung, Jo-Wen; Shu, Chih-Wen; Wu, Yang-Chang; Chang, Hsueh-Wei

    2018-03-01

    Reactive oxygen species (ROS) induction had been previously reported in 4β-hydroxywithanolide (4βHWE)-induced selective killing of oral cancer cells, but the mechanism involving ROS and the DNA damage effect remain unclear. This study explores the role of ROS and oxidative DNA damage of 4βHWE in the selective killing of oral cancer cells. Changes in cell viability, morphology, ROS, DNA double strand break (DSB) signaling (γH2AX foci in immunofluorescence and DSB signaling in western blotting), and oxidative DNA damage (8-oxo-2'deoxyguanosine [8-oxodG]) were detected in 4βHWE-treated oral cancer (Ca9-22) and/or normal (HGF-1) cells. 4βHWE decreased cell viability, changed cell morphology and induced ROS generation in oral cancer cells rather than oral normal cells, which were recovered by a free radical scavenger N-acetylcysteine (NAC). For immunofluorescence, 4βHWE also accumulated more of the DSB marker, γH2AX foci, in oral cancer cells than in oral normal cells. For western blotting, DSB signaling proteins such as γH2AX and MRN complex (MRE11, RAD50, and NBS1) were overexpressed in 4βHWE-treated oral cancer cells in different concentrations and treatment time. In the formamidopyrimidine-DNA glycolyase (Fpg)-based comet assay and 8-oxodG-based flow cytometry, the 8-oxodG expressions were higher in 4βHWE-treated oral cancer cells than in oral normal cells. All the 4βHWE-induced DSB and oxidative DNA damage to oral cancer cells were recovered by NAC pretreatment. Taken together, the 4βHWE selectively induced DSB and oxidative DNA damage for the ROS-mediated selective killing of oral cancer cells. © 2017 Wiley Periodicals, Inc.

  5. Mercury-induced oxidative stress in Indian mustard (Brassica juncea L.).

    Science.gov (United States)

    Shiyab, Safwan; Chen, Jian; Han, Fengxiang X; Monts, David L; Matta, Fank B; Gu, Mengmeng; Su, Yi; Masad, Motasim A

    2009-10-01

    Mercury, a potent neurotoxin, is released to the environment in significant amounts by both natural processes and anthropogenic activities. No natural hyperaccumulator plant has been reported for mercury phytoremediation. Few studies have been conducted on the physiological responses of Indian mustard, a higher biomass plant with faster growth rates, to mercury pollution. This study investigated the phytotoxicity of mercury to Indian mustard (Brassica juncea L.) and mercury-induced oxidative stress in order to examine the potential application of Indian mustard to mercury phytoremediation. Two common cultivars (Florida Broadleaf and Longstanding) of Indian mustard were grown hydroponically in a mercury-spiked solution. Plant uptake, antioxidative enzymes, peroxides, and lipid peroxidation under mercury stress were investigated. Antioxidant enzymes (catalase, CAT; peroxidase, POD; and superoxide dismutase, SOD) were the most sensitive indices of mercury-induced oxidative response of Indian mustard plants. Indian mustard effectively generated an enzymatic antioxidant defense system (especially CAT) to scavenge H(2)O(2), resulting in lower H(2)O(2) in shoots with higher mercury concentrations. These two cultivars of Indian mustard demonstrated an efficient metabolic defense and adaptation system to mercury-induced oxidative stress. A majority of Hg was accumulated in the roots and low translocations of Hg from roots to shoots were found in two cultivars of Indian mustard. Thus Indian mustard might be a potential candidate plant for phytofiltration/phytostabilization of mercury contaminated waters and wastewater.

  6. Oxidative stress signaling to chromatin in health and disease

    KAUST Repository

    Kreuz, Sarah

    2016-06-20

    Oxidative stress has a significant impact on the development and progression of common human pathologies, including cancer, diabetes, hypertension and neurodegenerative diseases. Increasing evidence suggests that oxidative stress globally influences chromatin structure, DNA methylation, enzymatic and non-enzymatic post-translational modifications of histones and DNA-binding proteins. The effects of oxidative stress on these chromatin alterations mediate a number of cellular changes, including modulation of gene expression, cell death, cell survival and mutagenesis, which are disease-driving mechanisms in human pathologies. Targeting oxidative stress-dependent pathways is thus a promising strategy for the prevention and treatment of these diseases. We summarize recent research developments connecting oxidative stress and chromatin regulation.

  7. γ-irradiation-induced oxidative stress and aging of cultured endothelial cells

    International Nuclear Information System (INIS)

    Van Uye, A.; Agay, D.; Drouet, M.; Chancerelle, Y.; Mathieu, J.; Kergonou, J.F.; Mestries, J.C.

    1995-01-01

    The aim of this work was to study aging of cultured vascular cells. In order to induce an oxidative stress, which is known to participate in aging process, we apply γ-induced peroxidation and is revealed by indirect immunofluorescence. (author)

  8. Protective effect of zinc supplementation against cadmium-induced oxidative stress and the RANK/RANKL/OPG system imbalance in the bone tissue of rats

    International Nuclear Information System (INIS)

    Brzóska, Malgorzata M.; Rogalska, Joanna

    2013-01-01

    It was investigated whether protective influence of zinc (Zn) against cadmium (Cd)-induced disorders in bone metabolism may be related to its antioxidative properties and impact on the receptor activator of nuclear factor (NF)-κΒ (RANK)/RANK ligand (RANKL)/osteoprotegerin (OPG) system. Numerous indices of oxidative/antioxidative status, and Cd and Zn were determined in the distal femur of the rats administered Zn (30 and 60 mg/l) or/and Cd (5 and 50 mg/l) for 6 months. Soluble RANKL (sRANKL) and OPG were measured in the bone and serum. Zn supplementation importantly protected from Cd-induced oxidative stress preventing protein, DNA, and lipid oxidation in the bone. Moreover, Zn protected from the Cd-induced increase in sRANKL concentration and the sRANKL/OPG ratio, and decrease in OPG concentration in the bone and serum. Numerous correlations were noted between indices of the oxidative/antioxidative bone status, concentrations of sRANKL and OPG in the bone and serum, as well as the bone concentrations of Zn and Cd, and previously reported by us in these animals (Brzóska et al., 2007) indices of bone turnover and bone mineral density. The results allow us to conclude that the ability of Zn to prevent from oxidative stress and the RANK/RANKL/OPG system imbalance may be implicated in the mechanisms of its protective impact against Cd-induced bone damage. This paper is the first report from an in vivo study providing evidence that beneficial Zn impact on the skeleton under exposure to Cd is related to the improvement of the bone tissue oxidative/antioxidative status and mediating the RANK/RANKL/OPG system. - Highlights: • Cd induces oxidative stress in the bone tissue. • Cd disturbs bone metabolism via disorder of the RANK/RANKL/OPG system balance. • Zn supplementation protects from Cd-induced oxidative stress in the bone tissue. • Zn protects from the RANK/RANKL/OPG system imbalance caused by Cd in the bone tissue. • Enhanced Zn intake protects from Cd-induced

  9. Protective effect of zinc supplementation against cadmium-induced oxidative stress and the RANK/RANKL/OPG system imbalance in the bone tissue of rats

    Energy Technology Data Exchange (ETDEWEB)

    Brzóska, Malgorzata M., E-mail: Malgorzata.Brzoska@umb.edu.pl; Rogalska, Joanna

    2013-10-01

    It was investigated whether protective influence of zinc (Zn) against cadmium (Cd)-induced disorders in bone metabolism may be related to its antioxidative properties and impact on the receptor activator of nuclear factor (NF)-κΒ (RANK)/RANK ligand (RANKL)/osteoprotegerin (OPG) system. Numerous indices of oxidative/antioxidative status, and Cd and Zn were determined in the distal femur of the rats administered Zn (30 and 60 mg/l) or/and Cd (5 and 50 mg/l) for 6 months. Soluble RANKL (sRANKL) and OPG were measured in the bone and serum. Zn supplementation importantly protected from Cd-induced oxidative stress preventing protein, DNA, and lipid oxidation in the bone. Moreover, Zn protected from the Cd-induced increase in sRANKL concentration and the sRANKL/OPG ratio, and decrease in OPG concentration in the bone and serum. Numerous correlations were noted between indices of the oxidative/antioxidative bone status, concentrations of sRANKL and OPG in the bone and serum, as well as the bone concentrations of Zn and Cd, and previously reported by us in these animals (Brzóska et al., 2007) indices of bone turnover and bone mineral density. The results allow us to conclude that the ability of Zn to prevent from oxidative stress and the RANK/RANKL/OPG system imbalance may be implicated in the mechanisms of its protective impact against Cd-induced bone damage. This paper is the first report from an in vivo study providing evidence that beneficial Zn impact on the skeleton under exposure to Cd is related to the improvement of the bone tissue oxidative/antioxidative status and mediating the RANK/RANKL/OPG system. - Highlights: • Cd induces oxidative stress in the bone tissue. • Cd disturbs bone metabolism via disorder of the RANK/RANKL/OPG system balance. • Zn supplementation protects from Cd-induced oxidative stress in the bone tissue. • Zn protects from the RANK/RANKL/OPG system imbalance caused by Cd in the bone tissue. • Enhanced Zn intake protects from Cd-induced

  10. Effects of Kombucha on oxidative stress induced nephrotoxicity in rats.

    Science.gov (United States)

    Gharib, Ola Ali

    2009-11-27

    Trichloroethylene (TCE) may induce oxidative stress which generates free radicals and alters antioxidants or oxygen-free radical scavenging enzymes. Twenty male albino rats were divided into four groups: (1) the control group treated with vehicle, (2) Kombucha (KT)-treated group, (3) TCE-treated group and (4) KT/TCE-treated group. Kidney lipid peroxidation, glutathione content, nitric oxide (NO) and total blood free radical concentrations were evaluated. Serum urea, creatinine level, gamma-glutamyl transferase (GGT) and lactate dehydrogenase (LDH) activities were also measured. TCE administration increased the malondiahyde (MDA) and NO contents in kidney, urea and creatinine concentrations in serum, total free radical level in blood and GGT and LDH activities in serum, whereas it decreased the glutathione (GSH) level in kidney homogenate. KT administration significantly improved lipid peroxidation and oxidative stress induced by TCE. The present study indicates that Kombucha may repair damage caused by environmental pollutants such as TCE and may be beneficial to patient suffering from renal impairment.

  11. Bursopentin (BP5 protects dendritic cells from lipopolysaccharide-induced oxidative stress for immunosuppression.

    Directory of Open Access Journals (Sweden)

    Tao Qin

    Full Text Available Dendritic cells (DCs play a vital role in the regulation of immune-mediated inflammatory diseases. Thus, DCs have been regarded as a major target for the development of immunomodulators. However, oxidative stress could disturb inflammatory regulation in DCs. Here, we examined the effect of bursopentine (BP5, a novel pentapeptide isolated from chicken bursa of fabricius, on the protection of DCs against oxidative stress for immunosuppression. BP5 showed potent protective effects against the lipopolysaccharide (LPS-induced oxidative stress in DCs, including nitric oxide, reactive oxygen species and lipid peroxidation. Furthermore, BP5 elevated the level of cellular reductive status through increasing the reduced glutathione (GSH and the GSH/GSSG ratio. Concomitant with these, the activities of several antioxidative redox enzymes, including glutathione peroxidase (GPx, catalase (CAT and superoxide dismutase (SOD, were obviously enhanced. BP5 also suppressed submucosal DC maturation in the LPS-stimulated intestinal epithelial cells (ECs/DCs coculture system. Finally, we found that heme oxygenase 1 (HO-1 was remarkably upregulated by BP5 in the LPS-induced DCs, and played an important role in the suppression of oxidative stress and DC maturation. These results suggested that BP5 could protect the LPS-activated DCs against oxidative stress and have potential applications in DC-related inflammatory responses.

  12. Anesthetic-Induced Oxidative Stress and Potential Protection

    Directory of Open Access Journals (Sweden)

    Cheng Wang

    2010-01-01

    Full Text Available Prolonged exposure of developing mammals to general anesthetics affects the N-methyl-D-aspartate (NMDA–type glutamate or γ-aminobutyric acid (GABA receptor systems and enhances neuronal toxicity. Stimulation of immature neurons by NMDA antagonists or GABA agonists is thought to increase overall nervous system excitability and may contribute to abnormal neuronal cell death during development. Although the precise mechanisms by which NMDA antagonists or GABA agonists cause neuronal cell death are still not completely understood, up-regulation of the NMDA receptor subunit NR1 may be an initiative factor in neuronal cell death. It is increasingly apparent that mitochondria lie at the center of the cell death regulation process. Evidence for the role of oxidative stress in anesthetic-induced neurotoxicity has been generated in studies that apply oxidative stress blockers. Prevention of neuronal death by catalase and superoxide dismutase in vitro, or by M40403 (superoxide dismutase mimetic in vivo, supports the contention that the involvement of reactive oxygen species (ROS and the nature of neuronal cell death in rodents is mainly apoptotic. However, more evidence is necessary to in order verify the role of the NMDA receptor subunit NR1 and ROS in anesthetic-induced neurodegeneration.

  13. Expression of Aluminum-Induced Genes in Transgenic Arabidopsis Plants Can Ameliorate Aluminum Stress and/or Oxidative Stress1

    Science.gov (United States)

    Ezaki, Bunichi; Gardner, Richard C.; Ezaki, Yuka; Matsumoto, Hideaki

    2000-01-01

    To examine the biological role of Al-stress-induced genes, nine genes derived from Arabidopsis, tobacco (Nicotiana tabacum L.), wheat (Triticum aestivum L.), and yeast (Saccharomyces cerevisiae) were expressed in Arabidopsis ecotype Landsberg. Lines containing eight of these genes were phenotypically normal and were tested in root elongation assays for their sensitivity to Al, Cd, Cu, Na, Zn, and to oxidative stresses. An Arabidopsis blue-copper-binding protein gene (AtBCB), a tobacco glutathione S-transferase gene (parB), a tobacco peroxidase gene (NtPox), and a tobacco GDP-dissociation inhibitor gene (NtGDI1) conferred a degree of resistance to Al. Two of these genes, AtBCB and parB, and a peroxidase gene from Arabidopsis (AtPox) also showed increased resistance to oxidative stress induced by diamide, while parB conferred resistance to Cu and Na. Al content of Al-treated root tips was reduced in the four Al-resistant plant lines compared with wild-type Ler-0, as judged by morin staining. All four Al-resistant lines also showed reduced staining of roots with 2′,7′-dichloro fluorescein diacetate (H2DCFDA), an indicator of oxidative stress. We conclude that Al-induced genes can serve to protect against Al toxicity, and also provide genetic evidence for a link between Al stress and oxidative stress in plants. PMID:10712528

  14. Protective Effect of Thymoquinone against Cyclophosphamide-Induced Hemorrhagic Cystitis through Inhibiting DNA Damage and Upregulation of Nrf2 Expression

    Science.gov (United States)

    Gore, Prashant R.; Prajapati, Chaitali P.; Mahajan, Umesh B.; Goyal, Sameer N.; Belemkar, Sateesh; Ojha, Shreesh; Patil, Chandragouda R.

    2016-01-01

    Cyclophosphamide (CYP) induced hemorrhagic cystitis is a dose-limiting side effect involving increased oxidative stress, inflammatory cytokines and suppressed activity of nuclear factor related erythroid 2-related factor (Nrf2). Thymoquinone (TQ), an active constituent of Nigella sativa seeds, is reported to increase the expression of Nrf2, exert antioxidant action, and anti-inflammatory effects in the experimental animals. The present study was designed to explore the effects of TQ on CYP-induced hemorrhagic cystitis in Balb/c mice. Cystitis was induced by a single intraperitoneal injection of CYP (200 mg/kg). TQ was administered intraperitoneally at 5, 10 and 20 mg/kg doses twice a day, for three days before and three days after the CYP administration. The efficacy of TQ was determined in terms of the protection against the CYP-induced histological perturbations in the bladder tissue, reduction in the oxidative stress, and inhibition of the DNA fragmentation. Immunohistochemistry was performed to examine the expression of Nrf2. TQ protected against CYP-induced oxidative stress was evident from significant reduction in the lipid peroxidation, restoration of the levels of reduced glutathione, catalase and superoxide dismutase activities. TQ treatment significantly reduced the DNA damage evident as reduced DNA fragmentation. A significant decrease in the cellular infiltration, edema, epithelial denudation and hemorrhage were observed in the histological observations. There was restoration and rise in the Nrf2 expression in the bladder tissues of mice treated with TQ. These results confirm that, TQ ameliorates the CYP-induced hemorrhagic cystitis in mice through reduction in the oxidative stress, inhibition of the DNA damage and through increased expression of Nrf2 in the bladder tissues. PMID:27489498

  15. SIRT1 sensitizes hepatocellular carcinoma cells expressing hepatitis B virus X protein to oxidative stress-induced apoptosis

    International Nuclear Information System (INIS)

    Srisuttee, Ratakorn; Koh, Sang Seok; Malilas, Waraporn; Moon, Jeong; Cho, Il-Rae; Jhun, Byung Hak; Horio, Yoshiyuki; Chung, Young-Hwa

    2012-01-01

    Highlights: ► Up-regulation of SIRT1 protein and activity sensitizes Hep3B-HBX cells to oxidative stress-induced apoptosis. ► Nuclear localization of SIRT1 is not required for oxidation-induced apoptosis. ► Ectopic expression and enhanced activity of SIRT1 attenuate JNK phosphorylation. ► Inhibition of SIRT1 activity restores resistance to oxidation-induced apoptosis through JNK activation. -- Abstract: We previously showed that SIRT1 deacetylase inhibits proliferation of hepatocellular carcinoma cells expressing hepatitis B virus (HBV) X protein (HBX), by destabilization of β-catenin. Here, we report another role for SIRT1 in HBX-mediated resistance to oxidative stress. Ectopic expression and enhanced activity of SIRT1 sensitize Hep3B cells stably expressing HBX to oxidative stress-induced apoptosis. SIRT1 mutant analysis showed that nuclear localization of SIRT1 is not required for sensitization of oxidation-mediated apoptosis. Furthermore, ectopic expression of SIRT1 and treatment with resveratrol (a SIRT1 activator) attenuated JNK phosphorylation, which is a prerequisite for resistance to oxidative stress-induced apoptosis. Conversely, suppression of SIRT1 activity with nicotinamide inhibited the effect of resveratrol on JNK phosphorylation, leading to restoration of resistance to oxidation-induced apoptosis. Taken together, these results suggest that up-regulation of SIRT1 under oxidative stress may be a therapeutic strategy for treatment of hepatocellular carcinoma cells related to HBV through inhibition of JNK activation.

  16. SIRT1 sensitizes hepatocellular carcinoma cells expressing hepatitis B virus X protein to oxidative stress-induced apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Srisuttee, Ratakorn [WCU, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Koh, Sang Seok [Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, University of Science and Technology, Daejeon 305-333 (Korea, Republic of); Department of Functional Genomics, University of Science and Technology, Daejeon 305-333 (Korea, Republic of); Malilas, Waraporn; Moon, Jeong; Cho, Il-Rae [WCU, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Jhun, Byung Hak [Department of Applied Nanoscience, Pusan National University, Busan 609-735 (Korea, Republic of); Horio, Yoshiyuki [Department of Pharmacology, Sapporo Medical University, Sapporo 060-8556 (Japan); Chung, Young-Hwa, E-mail: younghc@pusan.ac.kr [WCU, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735 (Korea, Republic of)

    2012-12-07

    Highlights: Black-Right-Pointing-Pointer Up-regulation of SIRT1 protein and activity sensitizes Hep3B-HBX cells to oxidative stress-induced apoptosis. Black-Right-Pointing-Pointer Nuclear localization of SIRT1 is not required for oxidation-induced apoptosis. Black-Right-Pointing-Pointer Ectopic expression and enhanced activity of SIRT1 attenuate JNK phosphorylation. Black-Right-Pointing-Pointer Inhibition of SIRT1 activity restores resistance to oxidation-induced apoptosis through JNK activation. -- Abstract: We previously showed that SIRT1 deacetylase inhibits proliferation of hepatocellular carcinoma cells expressing hepatitis B virus (HBV) X protein (HBX), by destabilization of {beta}-catenin. Here, we report another role for SIRT1 in HBX-mediated resistance to oxidative stress. Ectopic expression and enhanced activity of SIRT1 sensitize Hep3B cells stably expressing HBX to oxidative stress-induced apoptosis. SIRT1 mutant analysis showed that nuclear localization of SIRT1 is not required for sensitization of oxidation-mediated apoptosis. Furthermore, ectopic expression of SIRT1 and treatment with resveratrol (a SIRT1 activator) attenuated JNK phosphorylation, which is a prerequisite for resistance to oxidative stress-induced apoptosis. Conversely, suppression of SIRT1 activity with nicotinamide inhibited the effect of resveratrol on JNK phosphorylation, leading to restoration of resistance to oxidation-induced apoptosis. Taken together, these results suggest that up-regulation of SIRT1 under oxidative stress may be a therapeutic strategy for treatment of hepatocellular carcinoma cells related to HBV through inhibition of JNK activation.

  17. Drug-induced oxidative stress in rat liver from a toxicogenomics perspective

    International Nuclear Information System (INIS)

    McMillian, Michael; Nie, Alex; Parker, J. Brandon; Leone, Angelique; Kemmerer, Michael; Bryant, Stewart; Herlich, Judy; Yieh, Lynn; Bittner, Anton; Liu, Xuejun; Wan, Jackson; Johnson, Mark D.; Lord, Peter

    2005-01-01

    Macrophage activators (MA), peroxisome proliferators (PP), and oxidative stressors/reactive metabolites (OS/RM) all produce oxidative stress and hepatotoxicity in rats. However, these three classes of hepatotoxicants give three distinct gene transcriptional profiles on cDNA microarrays, an indication that rat hepatocytes respond/adapt quite differently to these three classes of oxidative stressors. The differential gene responses largely reflect differential activation of transcription factors: MA activate Stat-3 and NFkB, PP activate PPARa, and OS/RM activate Nrf2. We have used gene signature profiles for each of these three classes of hepatotoxicants to categorize over 100 paradigm (and 50+ in-house proprietary) compounds as to their oxidative stress potential in rat liver. In addition to a role for microarrays in predictive toxicology, analyses of small subsets of these signature profiles, genes within a specific pathway, or even single genes often provide important insights into possible mechanisms involved in the toxicities of these compounds

  18. The role of heat shock protein 70 in oxidant stress and inflammatory injury in quail spleen induced by cold stress.

    Science.gov (United States)

    Ren, Jiayi; Liu, Chunpeng; Zhao, Dan; Fu, Jing

    2018-05-15

    The aim of this study was to investigate the role of heat shock protein 70 (Hsp70) in oxidative stress and inflammatory damage in the spleen of quails which were induced by cold stress. One hundred ninety-two 15-day-old male quails were randomly divided into 12 groups and kept at 12 ± 1 °C to examine acute and chronic cold stress. We first detected the changes in activities of antioxidant enzymes in the spleen tissue under acute and chronic cold stress. The activities of glutathione peroxidase (GSH-Px) fluctuated in acute cold stress groups, while they were significantly decreased (p stress. The activities of superoxide dismutase (SOD), inducible nitric oxide synthase (iNOS), and nitric oxide (NO) content were decreased significantly (p stress groups. Malondialdehyde (MDA) content was significantly increased (p stress except the 0.5 h group of acute cold stress. Besides, histopathological analysis showed that quail's spleen tissue was inflammatory injured seriously in both the acute and chronic cold stress groups. Additionally, the inflammatory factors (cyclooxygenase-2 (COX-2), prostaglandin E synthase (PTGES), iNOS, nuclear factor-kappa B (NF-κB), and tumor necrosis factor-a (TNF-α)) and Hsp70 mRNA levels were increased in both of the acute and chronic cold stress groups compared with the control groups. These results suggest that oxidative stress and inflammatory injury could be induced by cold stress in spleen tissues of quails. Furthermore, the increased expression of Hsp70 may play a role in protecting the spleen against oxidative stress and inflammatory damage caused by cold stress.

  19. Oxidative damage of DNA in subjects occupationally exposed to lead.

    Science.gov (United States)

    Pawlas, Natalia; Olewińska, Elżbieta; Markiewicz-Górka, Iwona; Kozłowska, Agnieszka; Januszewska, Lidia; Lundh, Thomas; Januszewska, Ewa; Pawlas, Krystyna

    2017-09-01

    Exposure to lead (Pb) in environmental and occupational settings continues to be a serious public health problem and may pose an elevated risk of genetic damage. The aim of this study was to assess the level of oxidative stress and DNA damage in subjects occupationally exposed to lead. We studied a population of 78 male workers exposed to lead in a lead and zinc smelter and battery recycling plant and 38 men from a control group. Blood lead levels were detected by graphite furnace atomic absorption spectrophotometry and plasma lead levels by inductively coupled plasma-mass spectrometry. The following assays were performed to assess the DNA damage and oxidative stress: comet assay, determination of 8-hydroxy-2'-deoxyguanosine (8-OHdG), lipid peroxidation and total antioxidant status (TAS). The mean concentration of lead in the blood of the exposed group was 392 ± 103 μg/L and was significantly higher than in the control group (30.3 ± 29.4 μg/L, p lead exposure [lead in blood, lead in plasma, zinc protoporphyrin (ZPP)] and urine concentration of 8-OHdG. The level of oxidative damage of DNA was positively correlated with the level of lipid peroxidation (TBARS) and negatively with total anti-oxidative status (TAS). Our study suggests that occupational exposure causes an increase in oxidative damage to DNA, even in subjects with relatively short length of service (average length of about 10 years). 8-OHdG concentration in the urine proved to be a sensitive and non-invasive marker of lead induced genotoxic damage.

  20. Impaired Mitochondrial Respiratory Functions and Oxidative Stress in Streptozotocin-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Subbuswamy K. Prabu

    2011-05-01

    Full Text Available We have previously shown a tissue-specific increase in oxidative stress in the early stages of streptozotocin (STZ-induced diabetic rats. In this study, we investigated oxidative stress-related long-term complications and mitochondrial dysfunctions in the different tissues of STZ-induced diabetic rats (>15 mM blood glucose for 8 weeks. These animals showed a persistent increase in reactive oxygen and nitrogen species (ROS and RNS, respectively production. Oxidative protein carbonylation was also increased with the maximum effect observed in the pancreas of diabetic rats. The activities of mitochondrial respiratory enzymes ubiquinol: cytochrome c oxidoreductase (Complex III and cytochrome c oxidase (Complex IV were significantly decreased while that of NADH:ubiquinone oxidoreductase (Complex I and succinate:ubiquinone oxidoreductase (Complex II were moderately increased in diabetic rats, which was confirmed by the increased expression of the 70 kDa Complex II sub-unit. Mitochondrial matrix aconitase, a ROS sensitive enzyme, was markedly inhibited in the diabetic rat tissues. Increased expression of oxidative stress marker proteins Hsp-70 and HO-1 was also observed along with increased expression of nitric oxide synthase. These results suggest that mitochondrial respiratory complexes may play a critical role in ROS/RNS homeostasis and oxidative stress related changes in type 1 diabetes and may have implications in the etiology of diabetes and its complications.

  1. Oxidative Stress Function in Women over 40 Years of Age, Considering Their Lifestyle.

    Science.gov (United States)

    Gonçalves Mota, Maria Paula; Santos, Zirlene; Soares, Jorge; Pereira, Ana; Fonseca, Sandra; Peixoto, Francisco; Gaivão, Isabel; Oliveira, Maria

    2017-01-01

    Aging is dependent on biological processes that determine the aging of the organism at the cellular level. The Oxidative Stress Theory of Aging might explain some of the age-related changes in cell macromolecules. Moreover, exposome and lifestyle may also induce changes in cell damage induced by oxidative stress. The aim of the present study was to analyze the related redox changes in lymphocyte function of healthy women over 40 years old. Three groups: younger (YG: 40-49 years), middle aged (MAG: 50-59 years), and older (OG: ≥60 years) were evaluated on anthropometric variables, blood pressure, cardiovascular fitness, lifestyle habits, perceived stress, DNA damage, malondialdehyde, catalase activity, and total antioxidant capacity. Physical activity and cardiovascular fitness were significantly higher in YG and MAG as compared to the OG. Systolic blood pressure increased significantly with group age. Frequency and total amount of alcohol intake were lower in the OG and higher in the MAG. No significant differences were observed between the three groups in oxidative stress parameters. Only alcohol consumption was associated with the higher DNA FPG-sensitive sites, and only in the YG ( p  stress parameters measured in the healthy women over the age of 40 who took part in the study. Conscious lifestyle behaviors (decrease in alcohol and smoking habits) could have impaired the expected age-related oxidative stress increase.

  2. Petroselinum Crispum is Effective in Reducing Stress-Induced Gastric Oxidative Damage

    Directory of Open Access Journals (Sweden)

    Ayşin Akıncı

    2017-02-01

    Full Text Available Background: Oxidative stress has been shown to play a principal role in the pathogenesis of stress-induced gastric injury. Parsley (Petroselinum crispum contains many antioxidants such as flavanoids, carotenoids and ascorbic acid. Aims: In this study, the histopathological and biochemical results of nutrition with a parsley-rich diet in terms of eliminating stress-induced oxidative gastric injury were evaluated. Study Design: Animal experimentation. Methods: Forty male Wistar albino rats were divided into five groups: control, stress, stress + standard diet, stress + parsley-added diet and stress + lansoprazole (LPZ groups. Subjects were exposed to 72 hours of fasting and later immobilized and exposed to the cold at +4 degrees for 8 hours to create a severe stress condition. Samples from the animals’ stomachs were arranged for microscopic and biochemical examinations. Results: Gastric mucosal injury was obvious in rats exposed to stress. The histopathologic damage score of the stress group (7.00±0.57 was higher than that of the control group (1.50±0.22 (p<0.05. Significant differences in histopathologic damage score were found between the stress and stress + parsley-added diet groups (p<0.05, the stress and stress + standard diet groups (p<0.05, and the stress and stress + LPZ groups (p<0.05. The mean tissue malondialdehyde levels of the stress + parsley-added group and the stress + LPZ group were lower than that of the stress group (p<0.05. Parsley supported the cellular antioxidant system by increasing the mean tissue glutathione level (53.31±9.50 and superoxide dismutase (15.18±1.05 and catalase (16.68±2.29 activities. Conclusion: Oral administration of parsley is effective in reducing stress-induced gastric injury by supporting the cellular antioxidant defence system

  3. cis-Bifenthrin enantioselectively induces hepatic oxidative stress in mice.

    Science.gov (United States)

    Jin, Yuanxiang; Wang, Jiangcong; Pan, Xiuhong; Wang, Linggang; Fu, Zhengwei

    2013-09-01

    Bifenthrin (BF), as a chiral synthetic pyrethroid, is widely used to control field and household pests. In China, the commercial cis-BF contained two enantiomers including 1R-cis-BF and 1S-cis-BF. However, the difference in oxidative stress induced by the two enantiomers in mice still remains unclear. In the present study, 4 week-old adolescent male ICR mice were orally administered cis-BF, 1R-cis-BF or 1S-cis-BF daily for 2, 4 and 6 weeks at doses of 5 mg/kg/day, respectively. We found that the hepatic reactive oxygen species (ROS) levels, as well as the malondialdehyde (MDA) and glutathione (GSH) content both in the serum and liver increased significantly in the 4 or 6 weeks 1S-cis-BF treated groups. The activities of superoxide dismutase (SOD) and catalase (CAT) also changed significantly in the serum and liver of 1S-cis-BF treated mice. More importantly, the significant differences in MDA content and CAT activity both in the serum and liver, and the activities of total antioxidant capacity (T-AOC) and SOD in serum were also observed between the 1S-cis-BF and 1R-cis-BF treated groups. Moreover, the transcription of oxidative stress response related genes including Sod1, Cat and heme oxygenase-1(Ho-1) in the liver of 1S-cis-BF treated groups were also significant higher than those in 1R-cis-BF treated group. Thus, it was concluded that cis-BF induced hepatic oxidative stress in an enantiomer specific manner in mice when exposed during the puberty, and that 1S-cis-BF showed much more toxic in hepatic oxidative stress than 1R-cis-BF. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Oxidative DNA damage is instrumental in hyperreplication stress-induced inviability of Escherichia coli

    DEFF Research Database (Denmark)

    Charbon, Godefroid; Bjørn, Louise; Mendoza-Chamizo, Belén

    2014-01-01

    In Escherichia coli, an increase in the ATP bound form of the DnaA initiator protein results in hyperinitiation and inviability. Here, we show that such replication stress is tolerated during anaerobic growth. In hyperinitiating cells, a shift from anaerobic to aerobic growth resulted in appearance...

  5. Oxidative stress inhibits adhesion and transendothelial migration, and induces apoptosis and senescence of induced pluripotent stem cells.

    Science.gov (United States)

    Wu, Yi; Zhang, Xueqing; Kang, Xueling; Li, Ning; Wang, Rong; Hu, Tiantian; Xiang, Meng; Wang, Xinhong; Yuan, Wenjun; Chen, Alex; Meng, Dan; Chen, Sifeng

    2013-09-01

    Oxidative stress caused by cellular accumulation of reactive oxygen species (ROS) is a major contributor to disease and cell death. However, how induced pluripotent stem cells (iPSC) respond to different levels of oxidative stress is largely unknown. Here, we investigated the effect of H2 O2 -induced oxidative stress on iPSC function in vitro. Mouse iPSC were treated with H2 O2 (25-100 μmol/L). IPSC adhesion, migration, viability, apoptosis and senescence were analysed. Expression of adhesion-related genes, stress defence genes, and osteoblast- and adipocyte-associated genes were determined by reverse transcription polymerase chain reaction. The present study found that H2 O2 (25-100 μmol/L) decreased iPSC adhesion to matrix proteins and endothelial cells, and downregulated gene expression levels of adhesion-related molecules, such as integrin alpha 7, cadherin 1 and 5, melanoma cell adhesion molecule, vascular cell adhesion molecule 1, and monocyte chemoattractant protein-1. H2 O2 (100 μmol/L) decreased iPSC viability and inhibited the capacity of iPSC migration and transendothelial migration. iPSC were sensitive to H2 O2 -induced G2/M arrest, senescence and apoptosis when exposed to H2 O2 at concentrations above 25 μmol/L. H2 O2 increased the expression of stress defence genes, including catalase, cytochrome B alpha, lactoperoxidase and thioredoxin domain containing 2. H2 O2 upregulated the expression of osteoblast- and adipocyte-associated genes in iPSC during their differentiation; however, short-term H2 O2 -induced oxidative stress did not affect the protein expression of the pluripotency markers, octamer-binding transcription factor 4 and sex-determining region Y-box 2. The present results suggest that iPSC are sensitive to H2 O2 toxicity, and inhibition of oxidative stress might be a strategy for improving their functions. © 2013 Wiley Publishing Asia Pty Ltd.

  6. Towards a "free radical theory of graying": melanocyte apoptosis in the aging human hair follicle is an indicator of oxidative stress induced tissue damage.

    Science.gov (United States)

    Arck, Petra Clara; Overall, Rupert; Spatz, Katharina; Liezman, Christiane; Handjiski, Bori; Klapp, Burghard F; Birch-Machin, Mark A; Peters, Eva Milena Johanne

    2006-07-01

    Oxidative stress is generated by a multitude of environmental and endogenous challenges such as radiation, inflammation, or psychoemotional stress. It also speeds the aging process. Graying is a prominent but little understood feature of aging. Intriguingly, the continuous melanin synthesis in the growing (anagen) hair follicle generates high oxidative stress. We therefore hypothesize that hair bulb melanocytes are especially susceptible to free radical-induced aging. To test this hypothesis, we subjected human scalp skin anagen hair follicles from graying individuals to macroscopic and immunohistomorphometric analysis and organ culture. We found evidence of melanocyte apoptosis and increased oxidative stress in the pigmentary unit of graying hair follicles. The "common" deletion, a marker mitochondrial DNA-deletion for accumulating oxidative stress damage, occurred most prominently in graying hair follicles. Cultured unpigmented hair follicles grew better than pigmented follicles of the same donors. Finally, cultured pigmented hair follicles exposed to exogenous oxidative stress (hydroquinone) showed increased melanocyte apoptosis in the hair bulb. We conclude that oxidative stress is high in hair follicle melanocytes and leads to their selective premature aging and apoptosis. The graying hair follicle, therefore, offers a unique model system to study oxidative stress and aging and to test antiaging therapeutics in their ability to slow down or even stop this process.

  7. Protective effects of erythropoietin against cuprizone-induced oxidative stress and demyelination in the mouse corpus callosum

    Directory of Open Access Journals (Sweden)

    Iraj Ragerdi Kashani

    2017-08-01

    Full Text Available Objective(s: Increasing evidence in both experimental and clinical studies suggests that oxidative stress plays a major role in the pathogenesis of multiple sclerosis. The aim of the present work is to investigate the protective effects of erythropoietin against cuprizone-induced oxidative stress. Materials and Methods: Adult male C57BL/6J mice were fed a chow containing 0.2 % cuprizone for 6 weeks. After 3 weeks, mice were simultaneously treated with erythropoietin (5,000 IU/ kg body weight by daily intraperitoneal injections. Results: Our results showed that cuprizone induced oxidative stress accompanied with down-regulation of subunits of the respiratory chain complex and demyelination of corpus callosum. Erythropoietin antagonized these effects. Biochemical analysis showed that oxidative stress induced by cuprizone was regulated by erythropoietin. Similarly, erythropoietin induced the expression of subunits of the respiratory chain complex over normal control values reflecting a mechanism to compensate cuprizone-mediated down-regulation of these genes. Conclusion: The data implicate that erythropoietin abolishes destructive cuprizone effects in the corpus callosum by decreasing oxidative stress and restoring mitochondrial respiratory enzyme activity.

  8. Evaluation of Mango Byproduct Extracts as Antioxidant Against Pb-Acetate-Induced Oxidative Stress and Genotoxicity in Mice

    Directory of Open Access Journals (Sweden)

    Makawy Aida I. El

    2015-03-01

    Full Text Available The antioxidant and antiproliferative properties of mango by-products were investigated. This study was carried out to evaluate the protective role of mango peel or kernel defatted extracts against Pb-acetate adverse effects on oxidant/antioxidant status, liver dysfunction biomarkers, histopathological changes and genotoxicity in male mice. Total phenolic content and antioxidant activity of both extracts were evaluated. Two doses of both extracts (50 and 100 mg/kg were used to evaluate their role against the toxicity of Pb-acetate (500 ppm. Mice given mango extracts with Pb-acetate had significantly lower plasma MDA, AST and ALT and higher glutathione than mice given Pb-acetate alone. Mango extracts prevented the histopathological changes in liver induced by Pb-acetate and decreased the cytotoxicity of lead by increasing the ratio of PCE/NCE. Mango extract treatment reduced the DNA damage induced by Pb-acetate in liver as demonstrated by a reduction in micronuclei and decrease in tail length, tail DNA% and Olive tail moment. It can be concluded that mango by-product extracts have potential to protect from oxidative stress and genotoxicity of lead.

  9. Kombucha Tea Ameliorates Trichloroethylene Induced Hepatic Damages in Rats via Inhibition of Oxidative Stress and Free Radicals Induction

    International Nuclear Information System (INIS)

    Gharib, O.A.; Gharib, M.A.

    2008-01-01

    Kombucha Tea (KT) is reported to exhibit a wide variety of biological effects, including antioxidant. Evidence shows the important role of oxidative stress in the hepatic damage. The aim of this study is to investigate the possible protective effects of oral administration of KT in rats with trichloroethylene (TCE)-induced damage for ten consecutive days. Hepatic damage was evaluated by measuring total free radicals levels, biochemical and histological examinations. Serum gamma glutamyl transferase (GGT) activity (the hepatic damage marker), total protein, albumin and globulin as well as malonaldehyde (MDA), glutathione (GSH) content, nitric oxide (NO) concentration were evaluated in liver tissue homogenates. Total free radicals concentration in blood was examined by electron spin resonance (ESR). Total protein, DNA concentration, cell number and cell size in liver tissues were also examined. The rats orally administrated with TCE for ten days indicates hepatic damage changes, an increase in blood total free radicals concentration was observed, serum GGT activity, liver MDA, NO levels, total protein and decreased GSH content, DNA concentration and cell number. This accompanied with an increase in cell size of liver tissues, whereas KT reversed these effects. Furthermore, KT inhibits the concentration of total free radicals in blood and decreasing the increment of MDA and NO concentration. Histological studies reveal partial healing in those rats treated by KT after oral administration with TCE. The present results suggest that KT ameliorates TCE induced hepatic damage in rats probably due to its content of glucuronic, acetic acid and B vitamins via inhibition of oxidative stress and total free radicals

  10. Modulation of proteostasis counteracts oxidative stress and affects DNA base excision repair capacity in ATM-deficient cells.

    Science.gov (United States)

    Poletto, Mattia; Yang, Di; Fletcher, Sally C; Vendrell, Iolanda; Fischer, Roman; Legrand, Arnaud J; Dianov, Grigory L

    2017-09-29

    Ataxia telangiectasia (A-T) is a syndrome associated with loss of ATM protein function. Neurodegeneration and cancer predisposition, both hallmarks of A-T, are likely to emerge as a consequence of the persistent oxidative stress and DNA damage observed in this disease. Surprisingly however, despite these severe features, a lack of functional ATM is still compatible with early life, suggesting that adaptation mechanisms contributing to cell survival must be in place. Here we address this gap in our knowledge by analysing the process of human fibroblast adaptation to the lack of ATM. We identify profound rearrangement in cellular proteostasis occurring very early on after loss of ATM in order to counter protein damage originating from oxidative stress. Change in proteostasis, however, is not without repercussions. Modulating protein turnover in ATM-depleted cells also has an adverse effect on the DNA base excision repair pathway, the major DNA repair system that deals with oxidative DNA damage. As a consequence, the burden of unrepaired endogenous DNA lesions intensifies, progressively leading to genomic instability. Our study provides a glimpse at the cellular consequences of loss of ATM and highlights a previously overlooked role for proteostasis in maintaining cell survival in the absence of ATM function. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. A switch from high-fidelity to error-prone DNA double-strand break repair underlies stress-induced mutation.

    Science.gov (United States)

    Ponder, Rebecca G; Fonville, Natalie C; Rosenberg, Susan M

    2005-09-16

    Special mechanisms of mutation are induced in microbes under growth-limiting stress causing genetic instability, including occasional adaptive mutations that may speed evolution. Both the mutation mechanisms and their control by stress have remained elusive. We provide evidence that the molecular basis for stress-induced mutagenesis in an E. coli model is error-prone DNA double-strand break repair (DSBR). I-SceI-endonuclease-induced DSBs strongly activate stress-induced mutations near the DSB, but not globally. The same proteins are required as for cells without induced DSBs: DSBR proteins, DinB-error-prone polymerase, and the RpoS starvation-stress-response regulator. Mutation is promoted by homology between cut and uncut DNA molecules, supporting a homology-mediated DSBR mechanism. DSBs also promote gene amplification. Finally, DSBs activate mutation only during stationary phase/starvation but will during exponential growth if RpoS is expressed. Our findings reveal an RpoS-controlled switch from high-fidelity to mutagenic DSBR under stress. This limits genetic instability both in time and to localized genome regions, potentially important evolutionary strategies.

  12. Chronic unpredictable stress deteriorates the chemopreventive efficacy of pomegranate through oxidative stress pathway.

    Science.gov (United States)

    Hasan, Shirin; Suhail, Nida; Bilal, Nayeem; Ashraf, Ghulam Md; Zaidi, Syed Kashif; AlNohair, Sultan; Banu, Naheed

    2016-05-01

    Chronic unpredictable stress (CUS) can influence the risk and progression of cancer through increased oxidative stress. Pomegranate is known to protect carcinogenesis through its anti-oxidative properties. This study is carried out to examine whether CUS affects the chemopreventive potential of pomegranate through oxidative stress pathway. Role of CUS on early stages of 7, 12 dimethyl benz(a) anthracene (DMBA) induced carcinogenesis, and its pre-exposure effect on chemopreventive efficacy of pomegranate juice (PJ) was examined in terms of in vivo antioxidant and biochemical parameters in Swiss albino rats. Rats were divided in various groups and were subjected to CUS paradigm, DMBA administration (65 mg/kg body weight, single dose), and PJ treatment. Exposure to stress (alone) and DMBA (alone) led to increased oxidative stress by significantly decreasing the antioxidant enzymes activities and altering the glutathione (GSH), malondialdehyde (MDA), glutamate oxaloacetate transaminase (GOT), and glutamate pyruvate transaminase (GPT) levels. A significant increase in DNA damage demonstrated by comet assay was seen in the liver cells. Stress exposure to DMBA-treated rats further increased the oxidative stress and disturbed the biochemical parameters as compared to DMBA (alone)-treated rats. Chemoprevention with PJ in DMBA (alone)-treated rats restored the altered parameters. However, in the pre-stress DMBA-treated rats, the overall antioxidant potential of PJ was significantly diminished. Our results indicate that chronic stress not only increases the severity of carcinogenesis but also diminishes the anti-oxidative efficacy of PJ. In a broader perspective, special emphasis should be given to stress management and healthy diet during cancer chemoprevention.

  13. Ultrafine particles from diesel engines induce vascular oxidative stress via JNK activation.

    Science.gov (United States)

    Li, Rongsong; Ning, Zhi; Cui, Jeffery; Khalsa, Bhavraj; Ai, Lisong; Takabe, Wakako; Beebe, Tyler; Majumdar, Rohit; Sioutas, Constantinos; Hsiai, Tzung

    2009-03-15

    Exposure to particulate air pollution is linked to increased incidences of cardiovascular diseases. Ambient ultrafine particles (UFP) from diesel vehicle engines have been shown to be proatherogenic in ApoE knockout mice and may constitute a major cardiovascular risk in humans. We posited that circulating nano-sized particles from traffic pollution sources induce vascular oxidative stress via JNK activation in endothelial cells. Diesel UFP were collected from a 1998 Kenworth truck. Intracellular superoxide assay revealed that these UFP dose-dependently induced superoxide (O(2)(-)) production in human aortic endothelial cells (HAEC). Flow cytometry showed that UFP increased MitoSOX red intensity specific for mitochondrial superoxide. Protein carbonyl content was increased by UFP as an indication of vascular oxidative stress. UFP also up-regulated heme oxygenase-1 (HO-1) and tissue factor (TF) mRNA expression, and pretreatment with the antioxidant N-acetylcysteine significantly decreased their expression. Furthermore, UFP transiently activated JNK in HAEC. Treatment with the JNK inhibitor SP600125 and silencing of both JNK1 and JNK2 with siRNA inhibited UFP-stimulated O(2)(-) production and mRNA expression of HO-1 and TF. Our findings suggest that JNK activation plays an important role in UFP-induced oxidative stress and stress response gene expression.

  14. The role of mitochondrial DNA damage at skeletal muscle oxidative stress on the development of type 2 diabetes.

    Science.gov (United States)

    Dos Santos, Julia Matzenbacher; de Oliveira, Denise Silva; Moreli, Marcos Lazaro; Benite-Ribeiro, Sandra Aparecida

    2018-04-20

    Reduced cellular response to insulin in skeletal muscle is one of the major components of the development of type 2 diabetes (T2D). Mitochondrial dysfunction involves in the accumulation of toxic reactive oxygen species (ROS) that leads to insulin resistance. The aim of this study was to verify the involvement of mitochondrial DNA damage at ROS generation in skeletal muscle during development of T2D. Wistar rats were fed a diet containing 60% fat over 8 weeks and at day 14 a single injection of STZ (25 mg/kg) was administered (T2D-induced). Control rats received standard food and an injection of citrate buffer. Blood and soleus muscle were collected. Abdominal fat was quantified as well as glucose, triglyceride, LDL, HDL, and total cholesterol in plasma and mtDNA copy number, cytochrome b (cytb) mRNA, 8-hydroxyguanosine, and 8-isoprostane (a marker of ROS) in soleus muscle. T2D-induced animal presented similar characteristics to humans that develop T2D such as changes in blood glucose, abdominal fat, LDL, HDL and cholesterol total. In soleus muscle 8-isoprostane, mtDNA copy number and 8-hydroxyguanosine were increased, while cytb mRNA was decreased in T2D. Our results suggest that in the development of T2D, when risks factors of T2D are present, intracellular oxidative stress increases in skeletal muscle and is associated with a decrease in cytb transcription. To overcome this process mtDNA increased but due to the proximity of ROS generation, mtDNA remains damaged by oxidation leading to an increase in ROS in a vicious cycle accounting to the development of insulin resistance and further T2D.

  15. Simvastatin Attenuates Contrast-Induced Nephropathy through Modulation of Oxidative Stress, Proinflammatory Myeloperoxidase, and Nitric Oxide

    Directory of Open Access Journals (Sweden)

    Ketab E. Al-Otaibi

    2012-01-01

    Full Text Available Contrast media- (CM- induced nephropathy is a serious complication of radiodiagnostic procedures. Available data suggests that the development of prophylaxis strategies is limited by poor understanding of pathophysiology of CM-induced nephropathy. Present study was designed to determine the role of oxidative stress, myeloperoxidase, and nitric oxide in the pathogenesis of iohexol model of nephropathy and its modification with simvastatin (SSTN. Adult Sprague Dawley rats were divided into seven groups. After 24 h of water deprivation, all the rats except in control and SSTN-only groups were injected (10 ml/kg with 25% glycerol. After 30 min, SSTN (15, 30, and 60 mg/kg was administered orally, daily for 4 days. Twenty-four hours after the glycerol injection, iohexol was infused (8 ml/kg through femoral vein over a period of 2 min. All the animals were sacrificed on day 5 and blood and kidneys were collected for biochemical and histological studies. The results showed that SSTN dose dependently attenuated CM-induced rise of creatinine, urea, and structural abnormalities suggesting its nephroprotective effect. A significant increase in oxidative stress (increased lipid hydroperoxides and reduced glutathione levels and myeloperoxidase (MPO and decreased nitric oxide in CM group were reversed by SSTN. These findings support the use of SSTN to combat CM-induced nephrotoxicity.

  16. Genome-wide map of Apn1 binding sites under oxidative stress in Saccharomyces cerevisiae.

    Science.gov (United States)

    Morris, Lydia P; Conley, Andrew B; Degtyareva, Natalya; Jordan, I King; Doetsch, Paul W

    2017-11-01

    The DNA is cells is continuously exposed to reactive oxygen species resulting in toxic and mutagenic DNA damage. Although the repair of oxidative DNA damage occurs primarily through the base excision repair (BER) pathway, the nucleotide excision repair (NER) pathway processes some of the same lesions. In addition, damage tolerance mechanisms, such as recombination and translesion synthesis, enable cells to tolerate oxidative DNA damage, especially when BER and NER capacities are exceeded. Thus, disruption of BER alone or disruption of BER and NER in Saccharomyces cerevisiae leads to increased mutations as well as large-scale genomic rearrangements. Previous studies demonstrated that a particular region of chromosome II is susceptible to chronic oxidative stress-induced chromosomal rearrangements, suggesting the existence of DNA damage and/or DNA repair hotspots. Here we investigated the relationship between oxidative damage and genomic instability utilizing chromatin immunoprecipitation combined with DNA microarray technology to profile DNA repair sites along yeast chromosomes under different oxidative stress conditions. We targeted the major yeast AP endonuclease Apn1 as a representative BER protein. Our results indicate that Apn1 target sequences are enriched for cytosine and guanine nucleotides. We predict that BER protects these sites in the genome because guanines and cytosines are thought to be especially susceptible to oxidative attack, thereby preventing large-scale genome destabilization from chronic accumulation of DNA damage. Information from our studies should provide insight into how regional deployment of oxidative DNA damage management systems along chromosomes protects against large-scale rearrangements. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  17. Citric acid effects on brain and liver oxidative stress in lipopolysaccharide-treated mice.

    Science.gov (United States)

    Abdel-Salam, Omar M E; Youness, Eman R; Mohammed, Nadia A; Morsy, Safaa M Youssef; Omara, Enayat A; Sleem, Amany A

    2014-05-01

    Citric acid is a weak organic acid found in the greatest amounts in citrus fruits. This study examined the effect of citric acid on endotoxin-induced oxidative stress of the brain and liver. Mice were challenged with a single intraperitoneal dose of lipopolysaccharide (LPS; 200 μg/kg). Citric acid was given orally at 1, 2, or 4 g/kg at time of endotoxin injection and mice were euthanized 4 h later. LPS induced oxidative stress in the brain and liver tissue, resulting in marked increase in lipid peroxidation (malondialdehyde [MDA]) and nitrite, while significantly decreasing reduced glutathione, glutathione peroxidase (GPx), and paraoxonase 1 (PON1) activity. Tumor necrosis factor-alpha (TNF-α) showed a pronounced increase in brain tissue after endotoxin injection. The administration of citric acid (1-2 g/kg) attenuated LPS-induced elevations in brain MDA, nitrite, TNF-α, GPx, and PON1 activity. In the liver, nitrite was decreased by 1 g/kg citric acid. GPx activity was increased, while PON1 activity was decreased by citric acid. The LPS-induced liver injury, DNA fragmentation, serum transaminase elevations, caspase-3, and inducible nitric oxide synthase expression were attenuated by 1-2 g/kg citric acid. DNA fragmentation, however, increased after 4 g/kg citric acid. Thus in this model of systemic inflammation, citric acid (1-2 g/kg) decreased brain lipid peroxidation and inflammation, liver damage, and DNA fragmentation.

  18. Evaluation of radioprotective efficacy of pyrimidine-5-carboxylate derivative on radiation induced oxidative stress using Drosophila melanogaster

    International Nuclear Information System (INIS)

    Sarojini, B.K.; Mohan, B.J.; Narayana, B.; Sanjeev, Ganesh

    2014-01-01

    In the present study, radioprotection efficacy of Ethyl 4-(4-fluorophenyl)-6-methyl-2-thioxo-1,2,3,4-tetra hydropyrimidine-5-carboxylate (PYR) was evaluated against the gamma ray induced oxidative stress using drosophila melanogaster (Oregon K). The gamma ray irradiated flies were assayed for oxidative stress markers namely; Thiobarbituric acid reactive substances (TBARS) and enzymatic antioxidant SOD and CAT. The oxidative stress was induced at 6 Gy. (author)

  19. Oxidative stress

    Directory of Open Access Journals (Sweden)

    Stevanović Jelka

    2012-01-01

    Full Text Available The unceasing need for oxygen is in contradiction to the fact that it is in fact toxic to mammals. Namely, its monovalent reduction can have as a consequence the production of short-living, chemically very active free radicals and certain non-radical agents (nitrogen-oxide, superoxide-anion-radicals, hydroxyl radicals, peroxyl radicals, singlet oxygen, peroxynitrite, hydrogen peroxide, hypochlorous acid, and others. There is no doubt that they have numerous positive roles, but when their production is stepped up to such an extent that the organism cannot eliminate them with its antioxidants (superoxide-dismutase, glutathione-peroxidase, catalase, transferrin, ceruloplasmin, reduced glutathion, and others, a series of disorders is developed that are jointly called „oxidative stress.“ The reactive oxygen species which characterize oxidative stress are capable of attacking all main classes of biological macromolecules, actually proteins, DNA and RNA molecules, and in particular lipids. The free radicals influence lipid peroxidation in cellular membranes, oxidative damage to DNA and RNA molecules, the development of genetic mutations, fragmentation, and the altered function of various protein molecules. All of this results in the following consequences: disrupted permeability of cellular membranes, disrupted cellular signalization and ion homeostasis, reduced or loss of function of damaged proteins, and similar. That is why the free radicals that are released during oxidative stress are considered pathogenic agents of numerous diseases and ageing. The type of damage that will occur, and when it will take place, depends on the nature of the free radicals, their site of action and their source. [Projekat Ministarstva nauke Republike Srbije, br. 173034, br. 175061 i br. 31085

  20. Natriuretic peptide receptor-C activation attenuates angiotensin II-induced enhanced oxidative stress and hyperproliferation of aortic vascular smooth muscle cells.

    Science.gov (United States)

    Madiraju, Padma; Hossain, Ekhtear; Anand-Srivastava, Madhu B

    2018-02-07

    We showed previously that natriuretic peptide receptor-C (NPR-C) agonist, C-ANP 4-23 , attenuated the enhanced expression of Giα proteins in vascular smooth muscle cells (VSMC) from spontaneously hypertensive rats (SHR) through the inhibition of enhanced oxidative stress. Since the enhanced levels of endogenous angiotensin II (Ang II) contribute to the overexpression of Giα proteins and augmented oxidative stress in VSMC from SHR, the present study was undertaken to investigate if C-ANP 4-23 could also attenuate angiotensin II (Ang II)-induced oxidative stress and associated signaling. Ang II treatment of aortic VSMC augmented the levels of superoxide anion (O 2 - ), NADPH oxidase activity, and the expression of NADPH oxidase subunits and C-ANP 4-23 treatment attenuated all these to control levels. In addition, Ang II-induced enhanced levels of thiobarbituric acid-reactive substances (TBARS) and protein carbonyl content were also attenuated toward control levels by C-ANP 4-23 treatment. On the other hand, Ang II inhibited the levels of nitric oxide (NO) and augmented the levels of peroxynitrite (OONO - ) in VSMC which were restored to control levels by C-ANP 4-23 treatment. Furthermore, C-ANP 4-23 treatment attenuated Ang II-induced enhanced expression of Giα proteins, phosphorylation of p38, JNK, and ERK 1,2 as well as hyperproliferation of VSMC as determined by DNA synthesis, and metabolic activity. These results indicate that C-ANP 4-23 , via the activation of NPR-C, attenuates Ang II-induced enhanced nitroxidative stress, overexpression of Giα proteins, increased activation of the p38/JNK/ERK 1,2 signaling pathways, and hyperproliferation of VSMC. It may be suggested that C-ANP 4-23 could be used as a therapeutic agent in the treatment of vascular remodeling associated with hypertension and atherosclerosis.

  1. Enhanced oxidative stress and aberrant mitochondrial biogenesis in human neuroblastoma SH-SY5Y cells during methamphetamine induced apoptosis

    International Nuclear Information System (INIS)

    Wu, C.-W.; Ping, Y.-H.; Yen, J.-C.; Chang, C.-Y.; Wang, S.-F.; Yeh, C.-L.; Chi, C.-W.; Lee, H.-C.

    2007-01-01

    Methamphetamine (METH) is an abused drug that may cause psychiatric and neurotoxic damage, including degeneration of monoaminergic terminals and apoptosis of non-monoaminergic cells in Brain. The cellular and molecular mechanisms underlying these METH-induced neurotoxic effects remain to be clarified. In this study, we performed a time course assessment to investigate the effects of METH on intracellular oxidative stress and mitochondrial alterations in a human dopaminergic neuroblastoma SH-SY5Y cell line. We characterized that METH induces a temporal sequence of several cellular events including, firstly, a decrease in mitochondrial membrane potential within 1 h of the METH treatment, secondly, an extensive decline in mitochondrial membrane potential and increase in the level of reactive oxygen species (ROS) after 8 h of the treatment, thirdly, an increase in mitochondrial mass after the drug treatment for 24 h, and finally, a decrease in mtDNA copy number and mitochondrial proteins per mitochondrion as well as the occurrence of apoptosis after 48 h of the treatment. Importantly, vitamin E attenuated the METH-induced increases in intracellular ROS level and mitochondrial mass, and prevented METH-induced cell death. Our observations suggest that enhanced oxidative stress and aberrant mitochondrial biogenesis may play critical roles in METH-induced neurotoxic effects

  2. Genetic damage caused by methyl-parathion in mouse spermatozoa is related to oxidative stress

    International Nuclear Information System (INIS)

    Pina-Guzman, B.; Solis-Heredia, M.J.; Rojas-Garcia, A.E.; Uriostegui-Acosta, M.; Quintanilla-Vega, B.

    2006-01-01

    Organophosphorous (OP) pesticides are considered genotoxic mainly to somatic cells, but results are not conclusive. Few studies have reported OP alterations on sperm chromatin and DNA, and oxidative stress has been related to their toxicity. Sperm cells are very sensitive to oxidative damage which has been associated with reproductive dysfunctions. We evaluated the effects of methyl-parathion (Me-Pa; a widely used OP) on sperm DNA, exploring the sensitive stage(s) of spermatogenesis and the relationship with oxidative stress. Male mice (10-12-weeks old) were administered Me-Pa (3-20 mg/kg bw/i.p.) and euthanized at 7- or 28-days post-treatment. Mature spermatozoa were obtained and evaluated for chromatin structure through SCSA (Sperm Chromatin Structure Assay; DNA Fragmentation Index parameters: Mean DFI and DFI%) and chromomycin-A 3 (CMA 3 )-staining, for DNA damage through in situ-nick translation (NT-positive) and for oxidative stress through lipid peroxidation (LPO; malondialdehyde production). At 7-days post-treatment (mature spermatozoa when Me-Pa exposure), dose-dependent alterations in chromatin structure (Mean DFI and CMA 3 -staining) were observed, as well as increased DNA damage, from 2-5-fold in DFI% and NT-positive cells. Chromatin alterations and DNA damage were also observed at 28-days post-treatment (cells at meiosis at the time of exposure); suggesting that the damage induced in spermatocytes was not repaired. Positive correlations were observed between LPO and sperm DNA-related parameters. These data suggest that oxidative stress is related to Me-Pa alterations on sperm DNA integrity and cells at meiosis (28-days post-treatment) and epididymal maturation (7-days post-treatment) are Me-Pa targets. These findings suggest a potential risk of Me-Pa to the offspring after transmission

  3. Evaluation of oxidative stress in D-serine induced nephrotoxicity

    International Nuclear Information System (INIS)

    Orozco-Ibarra, Marisol; Medina-Campos, Omar Noel; Sanchez-Gonzalez, Dolores Javier; Martinez-Martinez, Claudia Maria; Floriano-Sanchez, Esau; Santamaria, Abel; Ramirez, Victoria; Bobadilla, Norma A.; Pedraza-Chaverri, Jose

    2007-01-01

    It has been suggested that oxidative stress is involved in D-serine-induced nephrotoxicity. The purpose of this study was to assess if oxidative stress is involved in this experimental model using several approaches including (a) the determination of several markers of oxidative stress and the activity of some antioxidant enzymes in kidney and (b) the use of compounds with antioxidant or prooxidant effects. Rats were sacrificed at several periods of time (from 3 to 24 h) after a single i.p. injection of D-serine (400 mg/kg). Control rats were injected with L-serine (400 mg/kg) and sacrificed 24 h after. The following markers were used to assess the temporal aspects of renal damage: (a) urea nitrogen (BUN) and creatinine in blood serum, (b) kidney injury molecule (KIM-1) mRNA levels, and (c) tubular necrotic damage. In addition, creatinine clearance, proteinuria, and urinary excretion of N-acetyl-β-D-glucosaminidase (NAG) were measured 24 h after D-serine injection. Protein carbonyl content, malondialdehyde (MDA), 4-hydroxy-2-nonenal (4-HNE), fluorescent products of lipid peroxidation, reactive oxygen species (ROS), glutathione (GSH) content, and heme oxygenase-1 (HO-1) expression were measured as markers of oxidative stress in the kidney. Additional experiments were performed using the following compounds with antioxidant or pro-oxidant effects before D-serine injection: (a) α-phenyl-tert-butyl-nitrone (PBN), a spin trapping agent; (b) 5,10,15,20-tetrakis (4-sulfonatophenyl) porphyrinato iron(III) (FeTPPS), a soluble complex able to metabolize peroxynitrite; (c) aminotriazole (ATZ), a catalase (CAT) inhibitor; (d) stannous chloride (SnCl 2 ), an HO-1 inductor; (e) tin mesoporphyrin (SnMP), an HO inhibitor. In the time-course study, serum creatinine and BUN increased significantly on 15-24 and 20-24 h, respectively, and KIM-1 mRNA levels increased significantly on 6-24 h. Histological analyses revealed tubular necrosis at 12 h. The activity of antioxidant enzymes

  4. Effects of Kombucha on oxidative stress induced nephrotoxicity in rats

    Directory of Open Access Journals (Sweden)

    Gharib Ola

    2009-11-01

    Full Text Available Abstract Background Trichloroethylene (TCE may induce oxidative stress which generates free radicals and alters antioxidants or oxygen-free radical scavenging enzymes. Methods Twenty male albino rats were divided into four groups: (1 the control group treated with vehicle, (2 Kombucha (KT-treated group, (3 TCE-treated group and (4 KT/TCE-treated group. Kidney lipid peroxidation, glutathione content, nitric oxide (NO and total blood free radical concentrations were evaluated. Serum urea, creatinine level, gamma-glutamyl transferase (GGT and lactate dehydrogenase (LDH activities were also measured. Results TCE administration increased the malondiahyde (MDA and NO contents in kidney, urea and creatinine concentrations in serum, total free radical level in blood and GGT and LDH activities in serum, whereas it decreased the glutathione (GSH level in kidney homogenate. KT administration significantly improved lipid peroxidation and oxidative stress induced by TCE. Conclusion The present study indicates that Kombucha may repair damage caused by environmental pollutants such as TCE and may be beneficial to patient suffering from renal impairment.

  5. Comparison between micro- and nanosized copper oxide and water soluble copper chloride: interrelationship between intracellular copper concentrations, oxidative stress and DNA damage response in human lung cells.

    Science.gov (United States)

    Strauch, Bettina Maria; Niemand, Rebecca Katharina; Winkelbeiner, Nicola Lisa; Hartwig, Andrea

    2017-08-01

    Nano- and microscale copper oxide particles (CuO NP, CuO MP) are applied for manifold purposes, enhancing exposure and thus the potential risk of adverse health effects. Based on the pronounced in vitro cytotoxicity of CuO NP, systematic investigations on the mode of action are required. Therefore, the impact of CuO NP, CuO MP and CuCl 2 on the DNA damage response on transcriptional level was investigated by quantitative gene expression profiling via high-throughput RT-qPCR. Cytotoxicity, copper uptake and the impact on the oxidative stress response, cell cycle regulation and apoptosis were further analysed on the functional level. Cytotoxicity of CuO NP was more pronounced when compared to CuO MP and CuCl 2 in human bronchial epithelial BEAS-2B cells. Uptake studies revealed an intracellular copper overload in the soluble fractions of both cytoplasm and nucleus, reaching up to millimolar concentrations in case of CuO NP and considerably lower levels in case of CuO MP and CuCl 2 . Moreover, CuCl 2 caused copper accumulation in the nucleus only at cytotoxic concentrations. Gene expression analysis in BEAS-2B and A549 cells revealed a strong induction of uptake-related metallothionein genes, oxidative stress-sensitive and pro-inflammatory genes, anti-oxidative defense-associated genes as well as those coding for the cell cycle inhibitor p21 and the pro-apoptotic Noxa and DR5. While DNA damage inducible genes were activated, genes coding for distinct DNA repair factors were down-regulated. Modulation of gene expression was most pronounced in case of CuO NP as compared to CuO MP and CuCl 2 and more distinct in BEAS-2B cells. GSH depletion and activation of Nrf2 in HeLa S3 cells confirmed oxidative stress induction, mainly restricted to CuO NP. Also, cell cycle arrest and apoptosis induction were most distinct for CuO NP. The high cytotoxicity and marked impact on gene expression by CuO NP can be ascribed to the strong intracellular copper ion release, with subsequent

  6. Dynamic regulation of cerebral DNA repair genes by psychological stress

    DEFF Research Database (Denmark)

    Forsberg, Kristin; Aalling, Nadia; Wörtwein, Gitta

    2015-01-01

    Neuronal genotoxic insults from oxidative stress constitute a putative molecular link between stress and depression on the one hand, and cognitive dysfunction and dementia risk on the other. Oxidative modifications to DNA are repaired by specific enzymes; a process that plays a critical role...... restraint stress (6h/day) or daily handling (controls), and sacrificed after 1, 7 or 21 stress sessions. The mRNA expression of seven genes (Ogg1, Ape1, Ung1, Neil1, Xrcc1, Ercc1, Nudt1) involved in the repair of oxidatively damaged DNA was determined by quantitative real time polymerase chain reaction...

  7. Effects of a Brussels sprouts extract on oxidative DNA damage and metabolising enzymes in rat liver

    DEFF Research Database (Denmark)

    Sørensen, Mette; Jensen, B.R.; Poulsen, Henrik E.

    2001-01-01

    and catalase activity was also assessed in the kidneys. In order to examine a possible effect of the Brussels sprouts related to oxidative stress, we measured oxidative DNA damage in terms of 7-hydro-8-oxo-2'-deoxyguanosine (8-oxodG) and lipid peroxidation in terms of malondialdehyde (MDA) formation...... on MDA levels were found. The present results support the data obtained in several studies that consumption of cruciferous vegetables is capable of inducing various phase II enzyme systems. However, the observed increase in oxidative DNA damage raises the question of whether greatly increased ingestion...

  8. Oxidative Stress in the Carcinogenicity of Chemical Carcinogens

    Directory of Open Access Journals (Sweden)

    Hideki Wanibuchi

    2013-10-01

    Full Text Available This review highlights several in vivo studies utilizing non-genotoxic and genotoxic chemical carcinogens, and the mechanisms of their high and low dose carcinogenicities with respect to formation of oxidative stress. Here, we survey the examples and discuss possible mechanisms of hormetic effects with cytochrome P450 inducers, such as phenobarbital, a-benzene hexachloride and 1,1-bis(p-chlorophenyl-2,2,2-trichloroethane. Epigenetic processes differentially can be affected by agents that impinge on oxidative DNA damage, repair, apoptosis, cell proliferation, intracellular communication and cell signaling. Non-genotoxic carcinogens may target nuclear receptors and induce post-translational modifications at the protein level, thereby impacting on the stability or activity of key regulatory proteins, including oncoproteins and tumor suppressor proteins. We further discuss role of oxidative stress focusing on the low dose carcinogenicities of several genotoxic carcinogens such as a hepatocarcinogen contained in seared fish and meat, 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline, arsenic and its metabolites, and the kidney carcinogen potassium bromate.

  9. Oxidative Stress Measures of Lipid and DNA Damage in Human Tears.

    Science.gov (United States)

    Haworth, Kristina M; Chandler, Heather L

    2017-05-01

    We evaluate feasibility and repeatability of measures for lipid peroxidation and DNA oxidation in human tears, as well as relationships between outcome variables, and compared our findings to previously reported methods of evaluation for ocular sun exposure. A total of 50 volunteers were seen for 2 visits 14 ± 2 days apart. Tear samples were collected from the inferior tear meniscus using a glass microcapillary tube. Oxidative stress biomarkers were quantified using enzyme-linked immunosorbent assay (ELISA): lipid peroxidation by measurement of hexanoyl-lysine (HEL) expression; DNA oxidation by measurement of 8-oxo-2'-deoxyguinosone (8OHdG) expression. Descriptive statistics were generated. Repeatability estimates were made using Bland-Altman plots with mean differences and 95% limits of agreement were calculated. Linear regression was conducted to evaluate relationships between measures. Mean (±SD) values for tear HEL and 8OHdG expression were 17368.02 (±9878.42) nmol/L and 66.13 (±19.99) ng/mL, respectively. Repeatability was found to be acceptable for both HEL and 8OHdG expression. Univariate linear regression supported tear 8OHdG expression and spring season of collection to be predictors of higher tear HEL expression; tear HEL expression was confirmed as a predictor of higher tear 8OHdG expression. We demonstrate feasibility and repeatability of estimating previously unreported tear 8OHdG expression. Seasonal temperature variation and other factors may influence tear lipid peroxidation. Support is demonstrated to suggest lipid damage and DNA damage occur concurrently on the human ocular surface.

  10. Nitric oxide-induced interstrand cross-links in DNA.

    Science.gov (United States)

    Caulfield, Jennifer L; Wishnok, John S; Tannenbaum, Steven R

    2003-05-01

    The DNA damaging effects of nitrous acid have been extensively studied, and the formation of interstrand cross-links have been observed. The potential for this cross-linking to occur through a common nitrosating intermediate derived from nitric oxide is investigated here. Using a HPLC laser-induced fluorescence (LIF) system, the amount of interstrand cross-link formed on nitric oxide treatment of the 5'-fluorescein-labeled oligomer ATATCGATCGATAT was determined. This self-complimentary sequence contains two 5'-CG sequences, which is the preferred site for nitrous acid-induced cross-linking. Nitric oxide was delivered to an 0.5 mM oligomer solution at 15 nmol/mL/min to give a final nitrite concentration of 652 microM. The resulting concentration of the deamination product, xanthine, in this sample was found to be 211 +/- 39 nM, using GC/MS, and the amount of interstrand cross-link was determined to be 13 +/- 2.5 nM. Therefore, upon nitric oxide treatment, the cross-link is found at approximately 6% of the amount of the deamination product. Using this system, detection of the cross-link is also possible for significantly lower doses of nitric oxide, as demonstrated by treatment of the same oligomer with NO at a rate of 18 nmol/mL/min resulting in a final nitrite concentration of 126 microM. The concentration of interstrand cross-link was determined to be 3.6 +/- 0.1 nM in this sample. Therefore, using the same dose rate, when the total nitric oxide concentration delivered drops by a factor of approximately 5, the concentration of cross-link drops by a factor of about 4-indicating a qausi-linear response. It may now be possible to predict the number of cross-links in a small genome based on the number of CpG sequences and the yield of xanthine derived from nitrosative deamination.

  11. Inhibition of DNA repair by whole body irradiation induced nitric oxide leads to higher radiation sensitivity in lymphocytes

    International Nuclear Information System (INIS)

    Sharma, Deepak; Santosh Kumar, S.; Raghu, Rashmi; Maurya, D.K.; Sainis, K.B.

    2007-01-01

    Full text: It is well accepted that the sensitivity of mammalian cells is better following whole body irradiation (WBI) as compared to that following in vitro irradiation. However, the underlying mechanisms are not well understood. Following WBI, the lipid peroxidation and cell death were significantly higher in lymphocytes as compared to that in vitro irradiated lymphocytes. Further, WBI treatment of tumor bearing mice resulted in a significantly higher inhibition of EL-4 cell proliferation as compared to in vitro irradiation of EL-4 cells. The DNA repair was significantly slower in lymphocytes obtained from WBI treated mice as compared to that in the cells exposed to same dose of radiation in vitro. Generation of nitric oxide following irradiation and also its role in inhibition of DNA repair have been reported, hence, its levels were estimated under both WBI and in vitro irradiation conditions. Nitric oxide levels were significantly elevated in the plasma of WBI treated mice but not in the supernatant of in vitro irradiated cells. Addition of sodium nitroprusside (SNP), a nitric oxide donor to in vitro irradiated cells inhibited the repair of DNA damage and sensitized cells to undergo cell death. It also enhanced the radiation-induced functional impairment of lymphocytes as evinced from suppression of mitogen-induced IL-2, IFN-γ and bcl-2 mRNA expression. Administration of N G -nitro-L-arginine-methyl-ester(L-NAME), a nitric oxide synthase inhibitor, to mice significantly protected lymphocytes against WBI-induced DNA damage and inhibited in vivo radiation-induced production of nitric oxide. Our results indicated that nitric oxide plays a role in the higher radiosensitivity of lymphocytes in vivo by inhibiting repair of DNA damage

  12. Phthalate-induced oxidative stress and association with asthma-related airway inflammation in adolescents

    DEFF Research Database (Denmark)

    Franken, Carmen; Lambrechts, Nathalie; Govarts, Eva

    2017-01-01

    Background In Belgium, around 8.5% of the children have asthmatic symptoms. Increased asthma risk in children has been reported in relation to exposure to phthalate plasticizers but the underlying mechanisms are largely unknown. Aim The aim of this study was to identify if oxidative stress......BP) and mono-ethyl phthalate (MEP). Analysis of 8-OHdG in urine was used as a sensitive biomarker of oxidative stress at the level of DNA. The presence of doctor-diagnosed asthma was elicited by a self-administered questionnaire. Associations were assessed using multiple linear and logistic regression models...

  13. Association between Urinary Excretion of Cortisol and Markers of Oxidatively Damaged DNA and RNA in Humans

    DEFF Research Database (Denmark)

    Joergensen, Anders; Broedbaek, Kasper; Weimann, Allan

    2011-01-01

    Chronic psychological stress is associated with accelerated aging, but the underlying biological mechanisms are not known. Prolonged elevations of the stress hormone cortisol is suspected to play a critical role. Through its actions, cortisol may potentially induce oxidatively generated damage...... to cellular constituents such as DNA and RNA, a phenomenon which has been implicated in aging processes. We investigated the relationship between 24 h excretion of urinary cortisol and markers of oxidatively generated DNA and RNA damage, 8-oxo-7,8-dihydro-2'-deoxyguanosine and 8-oxo-7,8-dihydroguanosine......, in a sample of 220 elderly men and women (age 65 - 83 years). We found a robust association between the excretion of cortisol and the oxidation markers (R(2)¿=¿0.15, P...

  14. L-carnitine mitigates UVA-induced skin tissue injury in rats through downregulation of oxidative stress, p38/c-Fos signaling, and the proinflammatory cytokines.

    Science.gov (United States)

    Salama, Samir A; Arab, Hany H; Omar, Hany A; Gad, Hesham S; Abd-Allah, Gamil M; Maghrabi, Ibrahim A; Al Robaian, Majed M

    2018-04-01

    UVA comprises more than 90% of the solar UV radiation reaching the Earth. Artificial lightening lamps have also been reported to emit significant amounts of UVA. Exposure to UVA has been associated with dermatological disorders including skin cancer. At the molecular level, UVA damages different cellular biomolecules and triggers inflammatory responses. The current study was devoted to investigate the potential protective effect of L-carnitine against UVA-induced skin tissue injury using rats as a mammalian model. Rats were distributed into normal control group (NC), L-carnitine control group (LC), UVA-Exposed group (UVA), and UVA-Exposed and L-carnitine-treated group (UVA-LC). L-carnitine significantly attenuated UVA-induced elevation of the DNA damage markers 8-oxo-2'-deoxyguanosine (8-oxo-dG) and cyclobutane pyrimidine dimers (CPDs) as well as decreased DNA fragmentation and the activity of the apoptotic marker caspase-3. In addition, L-carnitine substantially reduced the levels of lipid peroxidation marker (TBARS) and protein oxidation marker (PCC) and significantly elevated the levels of the total antioxidant capacity (TAC) and the antioxidant reduced glutathione (GSH) in the skin tissues. Interestingly, L-carnitine upregulated the level of the DNA repair protein proliferating cell nuclear antigen (PCNA). Besides it mitigated the UVA-induced activation of the oxidative stress-sensitive signaling protein p38 and its downstream target c-Fos. Moreover, L-carnitine significantly downregulated the levels of the early response proinflammatory cytokines TNF-α, IL-6, and IL-1β. Collectively, our results highlight, for the first time, the potential attenuating effects of L-carnitine on UVA-induced skin tissue injury in rats that is potentially mediated through suppression of UVA-induced oxidative stress and inflammatory responses. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. [Stress-induced cellular adaptive mutagenesis].

    Science.gov (United States)

    Zhu, Linjiang; Li, Qi

    2014-04-01

    The adaptive mutations exist widely in the evolution of cells, such as antibiotic resistance mutations of pathogenic bacteria, adaptive evolution of industrial strains, and cancerization of human somatic cells. However, how these adaptive mutations are generated is still controversial. Based on the mutational analysis models under the nonlethal selection conditions, stress-induced cellular adaptive mutagenesis is proposed as a new evolutionary viewpoint. The hypothetic pathway of stress-induced mutagenesis involves several intracellular physiological responses, including DNA damages caused by accumulation of intracellular toxic chemicals, limitation of DNA MMR (mismatch repair) activity, upregulation of general stress response and activation of SOS response. These responses directly affect the accuracy of DNA replication from a high-fidelity manner to an error-prone one. The state changes of cell physiology significantly increase intracellular mutation rate and recombination activity. In addition, gene transcription under stress condition increases the instability of genome in response to DNA damage, resulting in transcription-associated DNA mutagenesis. In this review, we summarize these two molecular mechanisms of stress-induced mutagenesis and transcription-associated DNA mutagenesis to help better understand the mechanisms of adaptive mutagenesis.

  16. Oxidative stress induced by zearalenone in porcine granulosa cells and its rescue by curcumin in vitro.

    Directory of Open Access Journals (Sweden)

    Xunsi Qin

    Full Text Available Oxidative stress (OS, as a signal of aberrant intracellular mechanisms, plays key roles in maintaining homeostasis for organisms. The occurrence of OS due to the disorder of normal cellular redox balance indicates the overproduction of reactive oxygen species (ROS and/or deficiency of antioxidants. Once the balance is broken down, repression of oxidative stress is one of the most effective ways to alleviate it. Ongoing studies provide remarkable evidence that oxidative stress is involved in reproductive toxicity induced by various stimuli, such as environmental toxicants and food toxicity. Zearalenone (ZEA, as a toxic compound existing in contaminated food products, is found to induce mycotoxicosis that has a significant impact on the reproduction of domestic animals, especially pigs. However, there is no information about how ROS and oxidative stress is involved in the influence of ZEA on porcine granulosa cells, or whether the stress can be rescued by curcumin. In this study, ZEA-induced effect on porcine granulosa cells was investigated at low concentrations (15 μM, 30 μM and 60 μM. In vitro ROS levels, the mRNA level and activity of superoxide dismutase, glutathione peroxidase and catalase were obtained. The results showed that in comparison with negative control, ZEA increased oxidative stress with higher ROS levels, reduced the expression and activity of antioxidative enzymes, increased the intensity of fluorogenic probes 2', 7'-Dichlorodihydrofluorescin diacetate and dihydroethidium in flow cytometry assay and fluorescence microscopy. Meanwhile, the activity of glutathione (GSH did not change obviously following 60 μM ZEA treatment. Furthermore, the underlying protective mechanisms of curcumin on the ZEA-treated porcine granulosa cells were investigated. The data revealed that curcumin pre-treatment significantly suppressed ZEA-induced oxidative stress. Collectively, porcine granulosa cells were sensitive to ZEA, which may induce

  17. Lipids and Oxidative Stress Associated with Ethanol-Induced Neurological Damage

    Directory of Open Access Journals (Sweden)

    José A. Hernández

    2016-01-01

    Full Text Available The excessive intake of alcohol is a serious public health problem, especially given the severe damage provoked by chronic or prenatal exposure to alcohol that affects many physiological processes, such as memory, motor function, and cognitive abilities. This damage is related to the ethanol oxidation in the brain. The metabolism of ethanol to acetaldehyde and then to acetate is associated with the production of reactive oxygen species that accentuate the oxidative state of cells. This metabolism of ethanol can induce the oxidation of the fatty acids in phospholipids, and the bioactive aldehydes produced are known to be associated with neurotoxicity and neurodegeneration. As such, here we will review the role of lipids in the neuronal damage induced by ethanol-related oxidative stress and the role that lipids play in the related compensatory or defense mechanisms.

  18. Possible effects of rosuvastatin on noise-induced oxidative stress in rat brain

    Directory of Open Access Journals (Sweden)

    Alevtina Ersoy

    2014-01-01

    Full Text Available The problem of noise has recently gained more attention as it has become an integral part of our daily lives. However, its influence has yet to be fully elucidated. Other than being an unpleasant stimulus, noise may cause health disorders through annoyance and stress, including oxidative stress. Rosuvastatin, a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, may possess antioxidant properties. Based on rat models, our project investigates the effect of rosuvastatin on noise-induced oxidative stress in the brain tissue. Thirty-two male Wistar albino rats were used. The rats were divided into four groups: Noise exposure plus rosuvastatin usage, only noise exposure, only rosuvastatin usage, and control. After the data had been collected, oxidant and antioxidant parameters were analyzed in the cerebral cortex, brain stem, and cerebellum. Results indicated that superoxide dismutase values were significantly decreased in the cerebral cortex, while malondialdehyde values in the brainstem and cerebellum were significantly increased in the group with only noise exposure. Superoxide dismutase values in the brainstem were significantly increased, but nitric oxide values in the cerebellum and brainstem and malondialdehyde values in the cerebellum and cerebral cortex were significantly decreased in the group where only rosuvastatin was used. During noise exposure, the use of rosuvastatin caused significantly increased superoxide dismutase values in the cerebral cortex and brainstem, but significantly reduced malondialdehyde values in the brain stem. Consequently, our data show that brain tissue was affected by oxidative stress due to continued exposure to noise. This noise-induced stress decreases with rosuvastatin therapy.

  19. Chloride secretion induced by rotavirus is oxidative stress-dependent and inhibited by Saccharomyces boulardii in human enterocytes.

    Science.gov (United States)

    Buccigrossi, Vittoria; Laudiero, Gabriella; Russo, Carla; Miele, Erasmo; Sofia, Morena; Monini, Marina; Ruggeri, Franco Maria; Guarino, Alfredo

    2014-01-01

    Rotavirus (RV) infection causes watery diarrhea via multiple mechanisms, primarily chloride secretion in intestinal epithelial cell. The chloride secretion largely depends on non-structural protein 4 (NSP4) enterotoxic activity in human enterocytes through mechanisms that have not been defined. Redox imbalance is a common event in cells infected by viruses, but the role of oxidative stress in RV infection is unknown. RV SA11 induced chloride secretion in association with an increase in reactive oxygen species (ROS) in Caco-2 cells. The ratio between reduced (GSH) and oxidized (GSSG) glutathione was decreased by RV. The same effects were observed when purified NSP4 was added to Caco-2 cells. N-acetylcysteine (NAC), a potent antioxidant, strongly inhibited the increase in ROS and GSH imbalance. These results suggest a link between oxidative stress and RV-induced diarrhea. Because Saccharomyces boulardii (Sb) has been effectively used to treat RV diarrhea, we tested its effects on RV-infected cells. Sb supernatant prevented RV-induced oxidative stress and strongly inhibited chloride secretion in Caco-2 cells. These results were confirmed in an organ culture model using human intestinal biopsies, demonstrating that chloride secretion induced by RV-NSP4 is oxidative stress-dependent and is inhibited by Sb, which produces soluble metabolites that prevent oxidative stress. The results of this study provide novel insights into RV-induced diarrhea and the efficacy of probiotics.

  20. Halobenzoquinone-Induced Alteration of Gene Expression Associated with Oxidative Stress Signaling Pathways.

    Science.gov (United States)

    Li, Jinhua; Moe, Birget; Liu, Yanming; Li, Xing-Fang

    2018-06-05

    Halobenzoquinones (HBQs) are emerging disinfection byproducts (DBPs) that effectively induce reactive oxygen species and oxidative damage in vitro. However, the impacts of HBQs on oxidative-stress-related gene expression have not been investigated. In this study, we examined alterations in the expression of 44 genes related to oxidative-stress-induced signaling pathways in human uroepithelial cells (SV-HUC-1) upon exposure to six HBQs. The results show the structure-dependent effects of HBQs on the studied gene expression. After 2 h of exposure, the expression levels of 9 to 28 genes were altered, while after 8 h of exposure, the expression levels of 29 to 31 genes were altered. Four genes ( HMOX1, NQO1, PTGS2, and TXNRD1) were significantly upregulated by all six HBQs at both exposure time points. Ingenuity pathway analysis revealed that the Nrf2 pathway was significantly responsive to HBQ exposure. Other canonical pathways responsive to HBQ exposure included GSH redox reductions, superoxide radical degradation, and xenobiotic metabolism signaling. This study has demonstrated that HBQs significantly alter the gene expression of oxidative-stress-related signaling pathways and contributes to the understanding of HBQ-DBP-associated toxicity.

  1. Carboxymethyl chitin-glucan (CM-CG) protects human HepG2 and HeLa cells against oxidative DNA lesions and stimulates DNA repair of lesions induced by alkylating agents.

    Science.gov (United States)

    Slamenová, Darina; Kováciková, Ines; Horváthová, Eva; Wsólová, Ladislava; Navarová, Jana

    2010-10-01

    A large number of functional foods, including those that contain β-d-glucans, have been shown to prevent human DNA against genotoxic effects and associated development of cancer and other chronic diseases. In this paper, carboxymethyl chitin-glucan (CM-CG) isolated from Aspergillus niger was investigated from two standpoints: (1) DNA-protective effects against oxidative DNA damage induced by H(2)O(2) and alkylating DNA damage induced by MMS and MNNG, and (2) a potential effect on rejoining of MMS- and MNNG-induced single strand DNA breaks. The results obtained by the comet assay in human cells cultured in vitro showed that CM-CG reduced significantly the level of oxidative DNA lesions induced by H(2)O(2) but did not change the level of alkylating DNA lesions induced by MMS or MNNG. On the other side, the efficiency of DNA-rejoining of single strand DNA breaks induced by MMS and MNNG was significantly higher in HepG2 cells pre-treated with CM-CG. The antioxidative activity of carboxymethyl chitin-glucan was confirmed by the DPPH assay. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Mechanism of H₂O₂-induced oxidative stress regulating viability and biocontrol ability of Rhodotorula glutinis.

    Science.gov (United States)

    Chen, Jian; Li, Boqiang; Qin, Guozheng; Tian, Shiping

    2015-01-16

    The use of antagonistic yeasts to control postharvest pathogens is a promising alternative to fungicides. The effectiveness of the antagonists against fungal pathogens is greatly dependent on their viability, which is usually mediated by reactive oxygen species (ROS). Here, we investigated the effects of H₂O₂-induced oxidative stress on the viability and biocontrol efficacy of Rhodotorula glutinis and, using flow cytometric analysis, observed the changes of ROS accumulation and apoptosis in the yeast cells with or without H₂O₂ treatment. We found that the viability of R. glutinis decreased in a time- and dose-dependent manner under H₂O₂-induced oxidative stress. Compared to the control, yeast cells exposed to oxidative stress exhibited more accumulation of ROS and higher levels of protein oxidative damage, but showed lower efficacy for biocontrol of Penicillium expansum causing blue mold rot on peach fruit. The results indicate that apoptosis is a main cause of the cell viability loss in R. glutinis, which is attributed to ROS accumulation under oxidative stress. These findings offer a plausible explanation that oxidative stress affects biocontrol efficacy of R. glutinis via regulating its viability and cell apoptosis. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Effect of turmeric and curcumin on oxidative stress and antioxidant enzymes in streptozotocin-induced diabetic rat.

    Science.gov (United States)

    Suryanarayana, Palla; Satyanarayana, Alleboena; Balakrishna, Nagalla; Kumar, Putcha Uday; Reddy, Geereddy Bhanuprakash

    2007-12-01

    There is increasing evidence that complications related to diabetes are associated with increased oxidative stress. Curcumin, an active principle of turmeric, has several biological properties, including antioxidant activity. The protective effect of curcumin and turmeric on streptozotocin (STZ)-induced oxidative stress in various tissues of rats was studied. Three-month-old Wistar-NIN rats were made diabetic by injecting STZ (35 mg/kg body weight) intraperitoneally and fed either only the AIN-93 diet or the AIN-93 diet containing 0.002% or 0.01% curcumin or 0.5% turmeric for a period of eight weeks. After eight weeks the levels of oxidative stress parameters and activity of antioxidant enzymes were determined in various tissues. STZ-induced hyperglycemia resulted in increased lipid peroxidation and protein carbonyls in red blood cells and other tissues and altered antioxidant enzyme activities. Interestingly, feeding curcumin and turmeric to the diabetic rats controlled oxidative stress by inhibiting the increase in TBARS and protein carbonyls and reversing altered antioxidant enzyme activities without altering the hyperglycemic state in most of the tissues. Turmeric and curcumin appear to be beneficial in preventing diabetes-induced oxidative stress in rats despite unaltered hyperglycemic status.

  4. Statins Prevent Dextrose-Induced Endoplasmic Reticulum Stress and Oxidative Stress in Endothelial and HepG2 Cells.

    Science.gov (United States)

    Kojanian, Hagop; Szafran-Swietlik, Anna; Onstead-Haas, Luisa M; Haas, Michael J; Mooradian, Arshag D

    Statins have favorable effects on endothelial function partly because of their capacity to reduce oxidative stress. However, antioxidant vitamins, unlike statins, are not as cardioprotective, and this paradox has been explained by failure of vitamin antioxidants to ameliorate endoplasmic reticulum (ER) stress. To determine whether statins prevent dextrose-induced ER stress in addition to their antioxidative effects, human umbilical vein endothelial cells and HepG2 hepatocytes were treated with 27.5 mM dextrose in the presence of simvastatin (lipophilic statin that is a prodrug) and pravastatin (water-soluble active drug), and oxidative stress, ER stress, and cell death were measured. Superoxide generation was measured using 2-methyl-6-(4-methoxyphenyl)-3,7-dihydroimidazo[1,2-A]pyrazin-3-one hydrochloride. ER stress was measured using the placental alkaline phosphatase assay and Western blot of glucose-regulated protein 75, c-jun-N-terminal kinase, phospho-JNK, eukaryotic initiating factor 2α and phospho-eIF2α, and X-box binding protein 1 mRNA splicing. Cell viability was measured by propidium iodide staining. Superoxide anion production, ER stress, and cell death induced by 27.5 mM dextrose were inhibited by therapeutic concentrations of simvastatin and pravastatin. The salutary effects of statins on endothelial cells in reducing both ER stress and oxidative stress observed with pravastatin and the prodrug simvastatin suggest that the effects may be independent of cholesterol-lowering activity.

  5. A single blueberry (Vaccinium corymbosum) portion does not affect markers of antioxidant defence and oxidative stress in healthy volunteers following cigarette smoking.

    Science.gov (United States)

    Del Bo', Cristian; Porrini, Marisa; Campolo, Jonica; Parolini, Marina; Lanti, Claudia; Klimis-Zacas, Dorothy; Riso, Patrizia

    2016-03-01

    We previously reported that a portion of blueberries reversed endothelial dysfunction induced by acute cigarette smoking. Since smoking-induced endothelial dysfunction is associated with a condition of oxidative stress, we evaluated whether the observed effect was mediated by modulation of markers of oxidative stress and antioxidant defence. Fourteen out of 16 male healthy smokers previously enrolled, participated in a three-armed randomized controlled study with the following experimental conditions: smoking treatment (one cigarette); blueberry treatment (300g of blueberries) + smoking (one cigarette); control treatment (300ml of water with sugar) + smoking (one cigarette). The cigarette was smoked 100min after blueberry/control/water consumption. Each treatment was separated by 1 week of washout period. Plasma vitamin (C, B12 and folate) and aminothiol concentrations, endogenous [formamidopyrimidine-DNA glycosylase (FPG)-sensitive sites] and oxidatively induced DNA damage (resistance to H2O2-induced DNA damage) in peripheral blood mononuclear cells (PBMCs) were measured at baseline and 20, 60, 90, 120min and 24h after smoking. On the whole, analysis of variance did not show a significant effect of treatment on the modulation of markers of oxidative stress and antioxidant defence but revealed an effect of time for plasma concentrations of vitamin C (P = 0.003), B12 (P 0.05) and H2O2-induced DNA damage (P > 0.05) in PBMCs. In conclusion, the consumption of a single blueberry portion failed to modulate markers of oxidative stress and antioxidant defence investigated in our experimental conditions. Further studies are necessary to elucidate this finding and help clarifying the mechanisms of protection of blueberries against smoking-induced endothelial dysfunction. © The Author 2015. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Extremely radioresistant microbe Deinococcus radiodurans does not survive tellurite-mediated oxidative stress: revelation of molecular basis

    International Nuclear Information System (INIS)

    Apte, Shree Kumar; Narasimha, Anaganti; Basu, Bhakti

    2014-01-01

    Deinococcus radiodurans exhibits extraordinary resistance to gamma radiation as well as oxidative stress. Comparison of tellurite stress with gamma irradiation, both of which impart severe oxidative stress, revealed that tellurite induced less ROS and caused less oxidative damage to proteins, but was much more lethal to D. radiodurans than gamma irradiation. The proteomic changes induced by tellurite exposure were mapped by two dimensional protein electrophoresis followed by mass spectrometry. Seventy proteins belonging to major functional categories of oxidative stress alleviation, protein translation/folding and metabolism were identified. Tellurite responsive proteome dynamics displayed (i) up-regulation of proteins involved in tellurite stress resistance and oxidative stress alleviation, dehydrogenases involved in generation of reducing potential, and chaperones (such DnaK), and (ii) down regulation of key glycolysis and TCA cycle enzymes, proteins involved in protein translation/folding and energy production. Tellurite stress also resulted in nearly 50% loss in the cellular reducing potential within 1h of exposure while gamma irradiation had no such effect. The findings provide a better insight into the mechanism of tellurite toxicity, beyond metal mediated oxidative stress, in this extremophile. (author)

  7. Passive smoking reduces and vitamin C increases exercise-induced oxidative stress: does this make passive smoking an anti-oxidant and vitamin C a pro-oxidant stimulus?

    Science.gov (United States)

    Theodorou, Anastasios A; Paschalis, Vassilis; Kyparos, Antonios; Panayiotou, George; Nikolaidis, Michalis G

    2014-11-07

    The current interpretative framework states that, for a certain experimental treatment (usually a chemical substance) to be classified as "anti-oxidant", it must possess the property of reducing (or even nullifying) exercise-induced oxidative stress. The aim of the study was to compare side by side, in the same experimental setup, redox biomarkers responses to an identical acute eccentric exercise session, before and after chronic passive smoking (considered a pro-oxidant stimulus) or vitamin C supplementation (considered an anti-oxidant stimulus). Twenty men were randomly assigned into either passive smoking or vitamin C group. All participants performed two acute eccentric exercise sessions, one before and one after either exposure to passive smoking or vitamin C supplementation for 12 days. Vitamin C, oxidant biomarkers (F2-isoprostanes and protein carbonyls) and the non-enzymatic antioxidant (glutathione) were measured, before and after passive smoking, vitamin C supplementation or exercise. It was found that chronic exposure to passive smoking increased the level of F2-isoprostanes and decreased the level of glutathione at rest, resulting in minimal increase or absence of oxidative stress after exercise. Conversely, chronic supplementation with vitamin C decreased the level of F2-isoprostanes and increased the level of glutathione at rest, resulting in marked exercise-induced oxidative stress. Contrary to the current scientific consensus, our results show that, when a pro-oxidant stimulus is chronically delivered, it is more likely that oxidative stress induced by subsequent exercise is decreased and not increased. Reversely, it is more likely to find greater exercise-induced oxidative stress after previous exposure to an anti-oxidant stimulus. We believe that the proposed framework will be a useful tool to reach more pragmatic explanations of redox biology phenomena. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Menadione-induced DNA fragmentation without 8-oxo-2'-deoxyguanosine formation in isolated rat hepatocytes

    DEFF Research Database (Denmark)

    Fischer-Nielsen, A; Corcoran, G B; Poulsen, H E

    1995-01-01

    Menadione (2-methyl-1,4-naphthoquinone) induces oxidative stress in cells causing perturbations in the cytoplasm as well as nicking of DNA. The mechanisms by which DNA damage occurs are still unclear, but a widely discussed issue is whether menadione-generated reactive oxygen species (ROS) directly...... damage DNA. In the present study, we measured the effect of menadione on formation of 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxodG), an index of oxidative DNA base modifications, and on DNA fragmentation. Isolated hepatocytes from phenobarbital-pretreated rats were exposed to menadione, 25-400 micro......M, for 15, 90 or 180 min with or without prior depletion of reduced glutathione (GSH) by diethyl maleate. Menadione caused profound GSH depletion and internucleosomal DNA fragmentation, which was demonstrated by a prominent fragmentation ladder on agarose gel electrophoresis. We found no oxidative...

  9. Novel oxindole derivatives prevent oxidative stress-induced cell death in mouse hippocampal HT22 cells.

    Science.gov (United States)

    Hirata, Yoko; Yamada, Chika; Ito, Yuki; Yamamoto, Shotaro; Nagase, Haruna; Oh-Hashi, Kentaro; Kiuchi, Kazutoshi; Suzuki, Hiromi; Sawada, Makoto; Furuta, Kyoji

    2018-03-15

    The current medical and surgical therapies for neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease offer symptomatic relief but do not provide a cure. Thus, small synthetic compounds that protect neuronal cells from degeneration are critically needed to prevent and treat these. Oxidative stress has been implicated in various pathophysiological conditions, including neurodegenerative diseases. In a search for neuroprotective agents against oxidative stress using the murine hippocampal HT22 cell line, we found a novel oxindole compound, GIF-0726-r, which prevented oxidative stress-induced cell death, including glutamate-induced oxytosis and erastin-induced ferroptosis. This compound also exerted a protective effect on tunicamycin-induced ER stress to a lesser extent but had no effect on campthothecin-, etoposide- or staurosporine-induced apoptosis. In addition, GIF-0726-r was also found to be effective after the occurrence of oxidative stress. GIF-0726-r was capable of inhibiting reactive oxygen species accumulation and Ca 2+ influx, a presumed executor in cell death, and was capable of activating the antioxidant response element, which is a cis-acting regulatory element in promoter regions of several genes encoding phase II detoxification enzymes and antioxidant proteins. These results suggest that GIF-0726-r is a low-molecular-weight compound that prevents neuronal cell death through attenuation of oxidative stress. Among the more than 200 derivatives of the GIF-0726-r synthesized, we identified the 11 most potent activators of the antioxidant response element and characterized their neuroprotective activity in HT22 cells. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. α-Syntrophin is involved in the survival signaling pathway in myoblasts under menadione-induced oxidative stress.

    Science.gov (United States)

    Lim, Jeong-A; Choi, Su Jin; Moon, Jae Yun; Kim, Hye Sun

    2016-05-15

    Dystrophin-deficient muscle is known to be more vulnerable to oxidative stress, but not much is known about the signaling pathway(s) responsible for this phenomenon. α-Syntrophin, a component of the dystrophin-glycoprotein complex, can function as a scaffold protein because of its multiple protein interaction domains. In this study, we investigated the role of α-syntrophin in C2 myoblasts under menadione-induced oxidative stress. We found that the protein level of α-syntrophin was elevated when cells were exposed to menadione. To investigate the function of α-syntrophin during oxidative stress, we established α-syntrophin-overexpressing and knockdown cell lines. The α-syntrophin-overexpressing cells were resistant to the menadione-induced oxidative stress. In addition, survival signalings such as protein kinase B (Akt) phosphorylation and the Bcl-2/BAX ratio were increased in these cells. On the other hand, apoptotic signals such as cleavage of caspase-3 and poly ADP ribose polymerase (PARP) were increased in the α-syntrophin knockdown cells. Furthermore, Ca(2+)influx, which is known to increase when cells are exposed to oxidative stress, decreased in the α-syntrophin-overexpressing cells, but increased in the knockdown cells. These results suggest that α-syntrophin plays a pivotal role in the survival pathway triggered by menadione-induced oxidative stress in cultured myoblasts. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Catalase therapy corrects oxidative stress-induced pathophysiology in incipient diabetic retinopathy.

    Science.gov (United States)

    Giordano, Courtney R; Roberts, Robin; Krentz, Kendra A; Bissig, David; Talreja, Deepa; Kumar, Ashok; Terlecky, Stanley R; Berkowitz, Bruce A

    2015-05-01

    Preclinical studies have highlighted retinal oxidative stress in the pathogenesis of diabetic retinopathy. We evaluated whether a treatment designed to enhance cellular catalase reduces oxidative stress in retinal cells cultured in high glucose and in diabetic mice corrects an imaging biomarker responsive to antioxidant therapy (manganese-enhanced magnetic resonance imaging [MEMRI]). Human retinal Müller and pigment epithelial cells were chronically exposed to normal or high glucose levels and treated with a cell-penetrating derivative of the peroxisomal enzyme catalase (called CAT-SKL). Hydrogen peroxide (H2O2) levels were measured using a quantitative fluorescence-based assay. For in vivo studies, streptozotocin (STZ)-induced diabetic C57Bl/6 mice were treated subcutaneously once a week for 3 to 4 months with CAT-SKL; untreated age-matched nondiabetic controls and untreated diabetic mice also were studied. MEMRI was used to analytically assess the efficacy of CAT-SKL treatment on diabetes-evoked oxidative stress-related pathophysiology in vivo. Similar analyses were performed with difluoromethylornithine (DFMO), an irreversible inhibitor of ornithine decarboxylase. After catalase transduction, high glucose-induced peroxide production was significantly lowered in both human retinal cell lines. In diabetic mice in vivo, subnormal intraretinal uptake of manganese was significantly improved by catalase supplementation. In addition, in the peroxisome-rich liver of treated mice catalase enzyme activity increased and oxidative damage (as measured by lipid peroxidation) declined. On the other hand, DFMO was largely without effect in these in vitro or in vivo assays. This proof-of-concept study raises the possibility that augmentation of catalase is a therapy for treating the retinal oxidative stress associated with diabetic retinopathy.

  12. Mechanisms of Action Involved in Ozone Therapy: Is healing induced via a mild oxidative stress?

    Directory of Open Access Journals (Sweden)

    Sagai Masaru

    2011-12-01

    Full Text Available Abstract The potential mechanisms of action of ozone therapy are reviewed in this paper. The therapeutic efficacy of ozone therapy may be partly due the controlled and moderate oxidative stress produced by the reactions of ozone with several biological components. The line between effectiveness and toxicity of ozone may be dependent on the strength of the oxidative stress. As with exercise, it is well known that moderate exercise is good for health, whereas excessive exercise is not. Severe oxidative stress activates nuclear transcriptional factor kappa B (NFκB, resulting in an inflammatory response and tissue injury via the production of COX2, PGE2, and cytokines. However, moderate oxidative stress activates another nuclear transcriptional factor, nuclear factor-erythroid 2-related factor 2 (Nrf2. Nrf2 then induces the transcription of antioxidant response elements (ARE. Transcription of ARE results in the production of numerous antioxidant enzymes, such as SOD, GPx, glutathione-s-transferase(GSTr, catalase (CAT, heme-oxygenase-1 (HO-1, NADPH-quinone-oxidoreductase (NQO-1, phase II enzymes of drug metabolism and heat shock proteins (HSP. Both free antioxidants and anti-oxidative enzymes not only protect cells from oxidation and inflammation but they may be able to reverse the chronic oxidative stress. Based on these observations, ozone therapy may also activate Nrf2 via moderate oxidative stress, and suppress NFκB and inflammatory responses. Furthermore, activation of Nrf2 results in protection against neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. Mild immune responses are induced via other nuclear transcriptional factors, such as nuclear factor of activated T-cells (NFAT and activated protein-1 (AP-1. Additionally, the effectiveness of ozone therapy in vascular diseases may also be explained by the activation of another nuclear transcriptional factor, hypoxia inducible factor-1α (HIF-1a, which is also induced via

  13. Carnosol promotes endothelial differentiation under H2O2-induced oxidative stress

    Directory of Open Access Journals (Sweden)

    Ou Shulin

    2017-01-01

    Full Text Available Oxidative stress causes deregulation of endothelial cell differentiation. Carnosol is a potent antioxidant and antiinflammatory compound. In the present study, we examined whether the antioxidant effect of carnosol might protect bone marrow stem cells against H2O2-induced oxidative stress and promote endothelial differentiation. We examined cell viability by the MTT assay; oxidative stress and apoptosis were analyzed through changes in ROS levels, apoptotic ratio and caspase-3 activity; changes in protein expression of OCT-4, Flk-1, CD31 and Nrf-2 were assessed by Western blot analysis. H2O2 treatment increased oxidative stress and reduced cell viability, while the stem cell marker OCT-4 and endothelial markers Flk-1, CD31 were significantly downregulated as a result of the treatment with H2O2. Treatment with carnosol improved the antioxidant status, increased OCT-4 expression and promoted endothelial differentiation. This study provides evidence that carnosol could increase the antioxidant defense mechanism and promote endothelial differentiation.

  14. Silibinin attenuates sulfur mustard analog-induced skin injury by targeting multiple pathways connecting oxidative stress and inflammation.

    Directory of Open Access Journals (Sweden)

    Neera Tewari-Singh

    Full Text Available Chemical warfare agent sulfur mustard (HD inflicts delayed blistering and incapacitating skin injuries. To identify effective countermeasures against HD-induced skin injuries, efficacy studies were carried out employing HD analog 2-chloroethyl ethyl sulfide (CEES-induced injury biomarkers in skin cells and SKH-1 hairless mouse skin. The data demonstrate strong therapeutic efficacy of silibinin, a natural flavanone, in attenuating CEES-induced skin injury and oxidative stress. In skin cells, silibinin (10 µM treatment 30 min after 0.35/0.5 mM CEES exposure caused a significant (p90%, and activation of transcription factors NF-κB and AP-1 (complete reversal. Similarly, silibinin treatment was also effective in attenuating CEES-induced oxidative stress measured by 4-hydroxynonenal and 5,5-dimethyl-2-(8-octanoic acid-1-pyrolline N-oxide protein adduct formation, and 8-oxo-2-deoxyguanosine levels. Since our previous studies implicated oxidative stress, in part, in CEES-induced toxic responses, the reversal of CEES-induced oxidative stress and other toxic effects by silibinin in this study indicate its pleiotropic therapeutic efficacy. Together, these findings support further optimization of silibinin in HD skin toxicity model to develop a novel effective therapy for skin injuries by vesicants.

  15. Light-induced oxidative stress, N-formylkynurenine, and oxygenic photosynthesis.

    Directory of Open Access Journals (Sweden)

    Tina M Dreaden Kasson

    Full Text Available Light stress in plants results in damage to the water oxidizing reaction center, photosystem II (PSII. Redox signaling, through oxidative modification of amino acid side chains, has been proposed to participate in this process, but the oxidative signals have not yet been identified. Previously, we described an oxidative modification, N-formylkynurenine (NFK, of W365 in the CP43 subunit. The yield of this modification increases under light stress conditions, in parallel with the decrease in oxygen evolving activity. In this work, we show that this modification, NFK365-CP43, is present in thylakoid membranes and may be formed by reactive oxygen species produced at the Mn(4CaO(5 cluster in the oxygen-evolving complex. NFK accumulation correlates with the extent of photoinhibition in PSII and thylakoid membranes. A modest increase in ionic strength inhibits NFK365-CP43 formation, and leads to accumulation of a new, light-induced NFK modification (NFK317 in the D1 polypeptide. Western analysis shows that D1 degradation and oligomerization occur under both sets of conditions. The NFK modifications in CP43 and D1 are found 17 and 14 Angstrom from the Mn(4CaO(5 cluster, respectively. Based on these results, we propose that NFK is an oxidative modification that signals for damage and repair in PSII. The data suggest a two pathway model for light stress responses. These pathways involve differential, specific, oxidative modification of the CP43 or D1 polypeptides.

  16. Aniline Induces Oxidative Stress and Apoptosis of Primary Cultured Hepatocytes

    Directory of Open Access Journals (Sweden)

    Yue Wang

    2016-11-01

    Full Text Available The toxicity and carcinogenicity of aniline in humans and animals have been well documented. However, the molecular mechanism involved in aniline-induced liver toxicity and carcinogenesis remains unclear. In our research, primary cultured hepatocytes were exposed to aniline (0, 1.25, 2.50, 5.0 and 10.0 μg/mL for 24 h in the presence or absence of N-acetyl-l-cysteine (NAC. Levels of reactive oxygen species (ROS, malondialdehyde (MDA, and glutathione (GSH, activities of superoxide dismutase (SOD and catalase (CAT, mitochondrial membrane potential, DNA damage, cell viability, and apoptosis were detected. Levels of ROS and MDA were significantly increased and levels of GSH and CAT, activity of SOD, and mitochondrial membrane potential in hepatocytes were significantly decreased by aniline compared with the negative control group. The tail moment and DNA content of the tail in exposed groups were significantly higher than those in the negative control group. Cell viability was reduced and apoptotic death was induced by aniline in a concentration-dependent manner. The phenomena of ROS generation, oxidative damage, loss of mitochondrial membrane potential, DNA damage and apoptosis could be prevented if ROS inhibitor NAC was added. ROS generation is involved in the loss of mitochondrial membrane potential and DNA injury, which may play a role in aniline-induced apoptosis in hepatocytes. Our study provides insight into the mechanism of aniline-induced toxicity and apoptosis of hepatocytes.

  17. Autophagy and senescence, stress responses induced by the DNA-damaging mycotoxin alternariol

    International Nuclear Information System (INIS)

    Solhaug, A.; Torgersen, M.L.; Holme, J.A.; Lagadic-Gossmann, D.; Eriksen, G.S.

    2014-01-01

    Highlights: • AOH induces autophagy, lamellar bodies and senescence in RAW264.7 macrophages. • DNA damage is suggested as a triggering signal. • The Sestrin2-AMPK-mTOR-S6K pathway is proposed to link DNA damage to autophagy. - Abstract: The mycotoxin alternariol (AOH), a frequent contaminant in fruit and grain, is known to induce cellular stress responses such as reactive oxygen production, DNA damage and cell cycle arrest. Cellular stress is often connected to autophagy, and we employed the RAW264.7 macrophage model to test the hypothesis that AOH induces autophagy. Indeed, AOH treatment led to a massive increase in acidic vacuoles often observed upon autophagy induction. Moreover, expression of the autophagy marker LC3 was markedly increased and there was a strong accumulation of LC3-positive puncta. Increased autophagic activity was verified biochemically by measuring the degradation rate of long-lived proteins. Furthermore, AOH induced expression of Sestrin2 and phosphorylation of AMPK as well as reduced phosphorylation of mTOR and S6 kinase, common mediators of signaling pathways involved in autophagy. Transmission electron microscopy analyzes of AOH treated cells not only clearly displayed structures associated with autophagy such as autophagosomes and autolysosomes, but also the appearance of lamellar bodies. Prolonged AOH treatment resulted in changed cell morphology from round into more star-shaped as well as increased β-galactosidase activity. This suggests that the cells eventually entered senescence. In conclusion, our data identify here AOH as an inducer of both autophagy and senescence. These effects are suggested to be to be linked to AOH-induced DSB (via a reported effect on topoisomerase activity), resulting in an activation of p53 and the Sestrin2-AMPK-mTOR-S6K signaling pathway

  18. Chronic lead exposure induces cochlear oxidative stress and potentiates noise-induced hearing loss.

    Science.gov (United States)

    Jamesdaniel, Samson; Rosati, Rita; Westrick, Judy; Ruden, Douglas M

    2018-08-01

    Acquired hearing loss is caused by complex interactions of multiple environmental risk factors, such as elevated levels of lead and noise, which are prevalent in urban communities. This study delineates the mechanism underlying lead-induced auditory dysfunction and its potential interaction with noise exposure. Young-adult C57BL/6 mice were exposed to: 1) control conditions; 2) 2 mM lead acetate in drinking water for 28 days; 3) 90 dB broadband noise 2 h/day for two weeks; and 4) both lead and noise. Blood lead levels were measured by inductively coupled plasma mass spectrometry analysis (ICP-MS) lead-induced cochlear oxidative stress signaling was assessed using targeted gene arrays, and the hearing thresholds were assessed by recording auditory brainstem responses. Chronic lead exposure downregulated cochlear Sod1, Gpx1, and Gstk1, which encode critical antioxidant enzymes, and upregulated ApoE, Hspa1a, Ercc2, Prnp, Ccl5, and Sqstm1, which are indicative of cellular apoptosis. Isolated exposure to lead or noise induced 8-12 dB and 11-25 dB shifts in hearing thresholds, respectively. Combined exposure induced 18-30 dB shifts, which was significantly higher than that observed with isolated exposures. This study suggests that chronic exposure to lead induces cochlear oxidative stress and potentiates noise-induced hearing impairment, possibly through parallel pathways. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Ellipticine induces apoptosis in T-cell lymphoma via oxidative DNA damage

    DEFF Research Database (Denmark)

    Savorani, Cecilia; Manfé, Valentina; Biskup, Edyta

    2015-01-01

    (CTCL), a disease that is progressive, chemoresistant and refractory to treatment. We tested the effect of ellipticine in three cell lines with different p53 status: MyLa2000 (p53(wt/wt)), SeAx ((G245S)p53) and Hut-78 ((R196Stop)p53). Ellipticine caused apoptosis in MyLa2000 and SeAx and restored...... the transcriptional activity of (G245S)p53 in SeAx. However, p53 siRNA knockdown experiments revealed that p53 was not required for ellipticine-induced apoptosis in CTCL. The lipophilic antioxidant α-tocopherol inhibited ellipticine-dependent apoptosis and we linked the apoptotic response to the oxidative DNA damage....... Our results provide evidence that ellipticine-induced apoptosis is exerted through DNA damage and does not require p53 activation in T-cell lymphoma....

  20. Part of the oxidative stress in the development of radio-induced cell effects at cutaneous level: application to accidental localised irradiations

    International Nuclear Information System (INIS)

    Carine, Laurent

    2005-10-01

    The objective of our study was to answer to the following questions: does the initial radio-induced oxidative stress lead to the accumulation of DNA damages in the low renewal cells (fibroblasts, endothelial cells) that could be responsible of delayed effects; does it exist delayed oxidative phenomena and era they implied in the delayed effects arising; does it exist a phenomenon of premature senescence; does it exist a premature senescence phenomenon that could lead to an accumulation of damages before the cell death; what are the action mechanisms of the association pentoxifylline/α-tocopherol. (N.C.)

  1. Chloride secretion induced by rotavirus is oxidative stress-dependent and inhibited by Saccharomyces boulardii in human enterocytes.

    Directory of Open Access Journals (Sweden)

    Vittoria Buccigrossi

    Full Text Available Rotavirus (RV infection causes watery diarrhea via multiple mechanisms, primarily chloride secretion in intestinal epithelial cell. The chloride secretion largely depends on non-structural protein 4 (NSP4 enterotoxic activity in human enterocytes through mechanisms that have not been defined. Redox imbalance is a common event in cells infected by viruses, but the role of oxidative stress in RV infection is unknown. RV SA11 induced chloride secretion in association with an increase in reactive oxygen species (ROS in Caco-2 cells. The ratio between reduced (GSH and oxidized (GSSG glutathione was decreased by RV. The same effects were observed when purified NSP4 was added to Caco-2 cells. N-acetylcysteine (NAC, a potent antioxidant, strongly inhibited the increase in ROS and GSH imbalance. These results suggest a link between oxidative stress and RV-induced diarrhea. Because Saccharomyces boulardii (Sb has been effectively used to treat RV diarrhea, we tested its effects on RV-infected cells. Sb supernatant prevented RV-induced oxidative stress and strongly inhibited chloride secretion in Caco-2 cells. These results were confirmed in an organ culture model using human intestinal biopsies, demonstrating that chloride secretion induced by RV-NSP4 is oxidative stress-dependent and is inhibited by Sb, which produces soluble metabolites that prevent oxidative stress. The results of this study provide novel insights into RV-induced diarrhea and the efficacy of probiotics.

  2. Study on radioprotective efficacy of indazolone derivative on γ-radiation induced oxidative stress

    International Nuclear Information System (INIS)

    Mohan, B.J.; Sarojini, B.K.; Narayana, B.; Sanjeev, Ganesh

    2014-01-01

    The present study describes the potency of 6-(4-bromophenyl)-4-(4-fluorophenyl)-1,2,4,5-tetrahydro-3H-indazol-3-one (IND) as radioprotective agent. Drosophila melanogaster was used as a model organism for the study. Oxidative stress was induced by irradiating the flies with 6 Gy γ-radiation.The control and irradiated flies were assayed for oxidative stress markers namely, lipid peroxidation (MDA), SOD and CATenzyme. (author)

  3. Mulberry Fruit Extract Affords Protection against Ethyl Carbamate-Induced Cytotoxicity and Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Wei Chen

    2017-01-01

    Full Text Available Ethyl carbamate (EC is a food and environmental toxicant and is a cause of concern for human exposure. Several studies indicated that EC-induced toxicity was associated with oxidative stress. Mulberry fruits are reported to have a wide range of bioactive compounds and pharmacological activities. The present study was therefore aimed to investigate the protective property of mulberry fruit extract (MFE on EC-induced cytotoxicity and oxidative stress. Chemical composition analysis showed that total phenolic content and total flavonoid content in MFE were 502.43 ± 5.10 and 219.12 ± 4.45 mg QE/100 g FW. Cyanidin-3-O-glucoside and cyanidin-3-O-rutinoside were the major anthocyanins in MFE. In vitro antioxidant studies (DPPH, ABTS, and FRAP assays jointly exhibited the potent antioxidant capacity of MFE. Further study indicated that MFE protected human liver HepG2 cells from EC-induced cytotoxicity by scavenging overproduced cellular ROS. EC treatment promoted intracellular glutathione (GSH depletion and caused mitochondrial membrane potential (MMP collapse, as well as mitochondrial membrane lipid peroxidation, whereas MFE pretreatment significantly inhibited GSH depletion and restored the mitochondrial membrane function. Overall, our study suggested that polyphenolic-rich MFE could afford a potent protection against EC-induced cytotoxicity and oxidative stress.

  4. Hesperidin, a citrus bioflavonoid, alleviates trichloroethylene-induced oxidative stress in Drosophila melanogaster.

    Science.gov (United States)

    Abolaji, Amos Olalekan; Babalola, Oluwatoyin Victoria; Adegoke, Abimbola Kehinde; Farombi, Ebenezer Olatunde

    2017-10-01

    Trichloroethylene (TCE) is a chlorinated organic pollutant of groundwater with diverse toxic effects in animals and humans. Here, we investigated the ameliorative role of hesperidin, a citrus bioflavonoid on TCE-induced toxicity in Drosophila melanogaster. Four groups of D. melanogaster (50 flies/vial, with 5 vials/group) were exposed to ethanol (2.5%, control), HSP (400mg/10g diet), TCE (10μM/10g diet) and TCE (10μM/10g diet)+HSP (400mg/10g diet) respectively in the diet for 5days. Then, selected oxidative stress and antioxidant markers were evaluated. The results showed that TCE significantly increased the level of reactive oxygen species (ROS) and inhibited catalase, glutathione S-transferase and acetylcholinesterase (AChE) activities with concurrent depletion of total thiol level. However, co-administration of TCE and hesperidin mitigated TCE-induced depletion of antioxidants, and restored ROS level and AChE activity in the flies (p<0.05). Overall, hesperidin offered protective potency on TCE-induced oxidative stress in the flies via anti-oxidative mechanism. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Genotoxicity and oxidative stress of microwave radiation role of ascorbic acid

    International Nuclear Information System (INIS)

    Desouky, O.S.; Abdel Karim, M.A.; Deiaa El Deen, D.A.; Nayal, N.A.

    2005-01-01

    Radiofrequency fields and especially microwaves are very important part of electromagnetic spectrum that can produce generations of reactive oxygen species, and thus can affect DNA and cause chromosomal aberrations. So this effect can be diminished by the supplement of an antioxidant such as ascorbic acid. In this study, the proposed protective role of ascorbic acid was tested against the EMF induced chromosomal aberrations and lipid peroxidation. The present study proved that EMF had a clastogenic effect on the bone marrow cells of mice, either with the exposure to EMF; 950 MHz or frequency EMF; 2450 MHz. This effect was evidenced by structural and numerical chromosomal aberrations. The study also proved that EMF had an effect on oxidative stress, evidenced by increase in the level of lipid peroxide, in a dose dependent manner. So, the mechanism of EMF induced chromosomal aberrations can be explained by this oxidative stress induced by EMF exposure. The present study showed that ascorbic acid had a protective effect against both EMF induced chromosomal aberrations and oxidative stress, when it is applied concomitantly with EMF exposure either at frequency of 950 MHz or 2450 MHz. this is evident by decreases in the level of lipid peroxide and decrease in chromosomal aberrations

  6. Ochratoxin A induces rat renal carcinogenicity with limited induction of oxidative stress responses

    International Nuclear Information System (INIS)

    Qi, Xiaozhe; Yu, Tao; Zhu, Liye; Gao, Jing; He, Xiaoyun; Huang, Kunlun; Luo, Yunbo; Xu, Wentao

    2014-01-01

    Ochratoxin A (OTA) has displayed nephrotoxicity and renal carcinogenicity in mammals, however, no clear mechanisms have been identified detailing the relationship between oxidative stress and these toxicities. This study was performed to clarify the relationship between oxidative stress and the renal carcinogenicity induced by OTA. Rats were treated with 70 or 210 μg/kg b.w. OTA for 4 or 13 weeks. In the rats administrated with OTA for 13 weeks, the kidney was damaged seriously. Cytoplasmic vacuolization was observed in the outer stripe of the outer medulla. Karyomegaly was prominent in the tubular epithelium. Kidney injury molecule-1 (Kim-1) was detected in the outer stripe of the outer medulla in both low- and high-dose groups. OTA increased the mRNA levels of clusterin in rat kidneys. Interestingly, OTA did not significantly alter the oxidative stress level in rat liver and kidney. Yet, some indications related to proliferation and carcinogenicity were observed. A dose-related increase in proliferating cell nuclear antigen (PCNA) was observed at 4 weeks in both liver and kidney, but at 13 weeks, only in the kidney. OTA down-regulated reactive oxygen species (ROS) and up-regulated vimentin and lipocalin 2 in rat kidney at 13 weeks. The p53 gene was decreased in both liver and kidney at 13 weeks. These results suggest that OTA caused apparent kidney damage within 13 weeks but exerted limited effect on oxidative stress parameters. It implies that cell proliferation is the proposed mode of action for OTA-induced renal carcinogenicity. - Highlights: • We studied OTA toxicities in both the rat liver and kidney for 13 weeks. • OTA exerts limited effects on oxidative stress in the rat liver and kidney. • OTA induced renal carcinogenicity resulting from cell proliferation

  7. Ochratoxin A induces rat renal carcinogenicity with limited induction of oxidative stress responses

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Xiaozhe; Yu, Tao; Zhu, Liye; Gao, Jing [College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China); He, Xiaoyun; Huang, Kunlun; Luo, Yunbo [College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China); The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083 (China); Xu, Wentao, E-mail: xuwentao@cau.edu.cn [College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China); The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083 (China)

    2014-11-01

    Ochratoxin A (OTA) has displayed nephrotoxicity and renal carcinogenicity in mammals, however, no clear mechanisms have been identified detailing the relationship between oxidative stress and these toxicities. This study was performed to clarify the relationship between oxidative stress and the renal carcinogenicity induced by OTA. Rats were treated with 70 or 210 μg/kg b.w. OTA for 4 or 13 weeks. In the rats administrated with OTA for 13 weeks, the kidney was damaged seriously. Cytoplasmic vacuolization was observed in the outer stripe of the outer medulla. Karyomegaly was prominent in the tubular epithelium. Kidney injury molecule-1 (Kim-1) was detected in the outer stripe of the outer medulla in both low- and high-dose groups. OTA increased the mRNA levels of clusterin in rat kidneys. Interestingly, OTA did not significantly alter the oxidative stress level in rat liver and kidney. Yet, some indications related to proliferation and carcinogenicity were observed. A dose-related increase in proliferating cell nuclear antigen (PCNA) was observed at 4 weeks in both liver and kidney, but at 13 weeks, only in the kidney. OTA down-regulated reactive oxygen species (ROS) and up-regulated vimentin and lipocalin 2 in rat kidney at 13 weeks. The p53 gene was decreased in both liver and kidney at 13 weeks. These results suggest that OTA caused apparent kidney damage within 13 weeks but exerted limited effect on oxidative stress parameters. It implies that cell proliferation is the proposed mode of action for OTA-induced renal carcinogenicity. - Highlights: • We studied OTA toxicities in both the rat liver and kidney for 13 weeks. • OTA exerts limited effects on oxidative stress in the rat liver and kidney. • OTA induced renal carcinogenicity resulting from cell proliferation.

  8. Palm kernel cake extract exerts hepatoprotective activity in heat-induced oxidative stress in chicken hepatocytes.

    Science.gov (United States)

    Oskoueian, Ehsan; Abdullah, Norhani; Idrus, Zulkifli; Ebrahimi, Mahdi; Goh, Yong Meng; Shakeri, Majid; Oskoueian, Armin

    2014-10-02

    Palm kernel cake (PKC), the most abundant by-product of oil palm industry is believed to contain bioactive compounds with hepatoprotective potential. These compounds may serve as hepatoprotective agents which could help the poultry industry to alleviate adverse effects of heat stress on liver function in chickens. This study was performed to evaluate the hepatoprotective potential of PKC extract in heat-induced oxidative stress in chicken hepatocytes. The nature of the active metabolites and elucidation of the possible mechanism involved were also investigated. The PKC extract possessed free radical scavenging activity with values significantly (p < 0.05) lower than silymarin as the reference antioxidant. Heat-induced oxidative stress in chicken hepatocyte impaired the total protein, lipid peroxidation and antioxidant enzymes activity significantly (p < 0.05). Treatment of heat-induced hepatocytes with PKC extract (125 μg/ml) and silymarin as positive control increased these values significantly (p < 0.05). The real time PCR and western blot analyses revealed the significant (p < 0.05) up-regulation of oxidative stress biomarkers including TNF-like, IFN-γ and IL-1β genes; NF-κB, COX-2, iNOS and Hsp70 proteins expression upon heat stress in chicken hepatocytes. The PKC extract and silymarin were able to alleviate the expression of all of these biomarkers in heat-induced chicken hepatocytes. The gas chromatography-mass spectrometry analysis of PKC extract showed the presence of fatty acids, phenolic compounds, sugar derivatives and other organic compounds such as furfural which could be responsible for the observed hepatoprotective activity. Palm kernel cake extract could be a potential agent to protect hepatocytes function under heat induced oxidative stress.

  9. Protective property of mulberry digest against oxidative stress - A potential approach to ameliorate dietary acrylamide-induced cytotoxicity.

    Science.gov (United States)

    Zhang, Linxia; Xu, Yang; Li, Yuting; Bao, Tao; Gowd, Vemana; Chen, Wei

    2017-09-01

    The aim of this study was investigating the protective effect of mulberry digest (MBD) on acrylamide-induced oxidative stress. Composition analysis of MBD revealed that it contained six major phenolic compounds (quercetin-3-O-rutinoside, quercetin hexoside, quercetin rhamnosylhexoside hexoside, kaempferol rhamnosylhexoside, cyanidin-3-O-glucoside and cyanidin-3-O-rutinoside). After in vitro digestion, the contents of two anthocyanins were both decreased significantly, while the contents of four flavonoid glycosides were all increased. In addition, MBD was found to successfully suppress acrylamide-induced ROS overproduction, restore the mitochondrial membrane potential, and inhibit the mitochondrial membrane lipid peroxidation and glutathione depletion. More interestingly, the protective effect of MBD against acrylamide-induced oxidative damage was enhanced compared with mulberry fruits without digestion (MBE). Further study revealed that MBD enhanced the cell resistance capacity to acrylamide-induced oxidative stress, rather than its direct reaction with acrylamide. Overall, our results indicate that MBD provides a potent protection against acrylamide-induced oxidative stress. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Paracetamol: overdose-induced oxidative stress toxicity, metabolism, and protective effects of various compounds in vivo and in vitro.

    Science.gov (United States)

    Wang, Xu; Wu, Qinghua; Liu, Aimei; Anadón, Arturo; Rodríguez, José-Luis; Martínez-Larrañaga, María-Rosa; Yuan, Zonghui; Martínez, María-Aránzazu

    2017-11-01

    Paracetamol (APAP) is one of the most widely used and popular over-the-counter analgesic and antipyretic drugs in the world when used at therapeutic doses. APAP overdose can cause severe liver injury, liver necrosis and kidney damage in human beings and animals. Many studies indicate that oxidative stress is involved in the various toxicities associated with APAP, and various antioxidants were evaluated to investigate their protective roles against APAP-induced liver and kidney toxicities. To date, almost no review has addressed the APAP toxicity in relation to oxidative stress. This review updates the research conducted over the past decades into the production of reactive oxygen species (ROS), reactive nitrogen species (RNS), and oxidative stress as a result of APAP treatments, and ultimately their correlation with the toxicity and metabolism of APAP. The metabolism of APAP involves various CYP450 enzymes, through which oxidative stress might occur, and such metabolic factors are reviewed within. The therapeutics of a variety of compounds against APAP-induced organ damage based on their anti-oxidative effects is also discussed, in order to further understand the role of oxidative stress in APAP-induced toxicity. This review will throw new light on the critical roles of oxidative stress in APAP-induced toxicity, as well as on the contradictions and blind spots that still exist in the understanding of APAP toxicity, the cellular effects in terms of organ injury and cell signaling pathways, and finally strategies to help remedy such against oxidative damage.

  11. The NADPH oxidase inhibitor apocynin (acetovanillone) induces oxidative stress

    International Nuclear Information System (INIS)

    Riganti, Chiara; Costamagna, Costanzo; Bosia, Amalia; Ghigo, Dario

    2006-01-01

    Apocynin (acetovanillone) is often used as a specific inhibitor of NADPH oxidase. In N11 glial cells, apocynin induced, in a dose-dependent way, a significant increase of both malonyldialdehyde level (index of lipid peroxidation) and lactate dehydrogenase release (index of a cytotoxic effect). Apocynin evoked also, in a significant way, an increase of H 2 O 2 concentration and a decrease of the intracellular glutathione/glutathione disulfide ratio, accompanied by augmented efflux of glutathione and glutathione disulfide. Apocynin induced the activation of both pentose phosphate pathway and tricarboxylic acid cycle, which was blocked when the cells were incubated with glutathione together with apocynin. The cell incubation with glutathione prevented also the apocynin-induced increase of malonyldialdehyde generation and lactate dehydrogenase leakage. Apocynin exerted an oxidant effect also in a cell-free system: indeed, in aqueous solution, it evoked a faster oxidation of the thiols glutathione and dithiothreitol, and elicited the generation of reactive oxygen species, mainly superoxide anions. Our results suggest that apocynin per se can induce an oxidative stress and exert a cytotoxic effect in N11 cells and other cell types, and that some effects of apocynin in in vitro and in vivo experimental models should be interpreted with caution

  12. Oxidative stress and inflammation in liver carcinogenesis

    Directory of Open Access Journals (Sweden)

    Natalia Olaya

    2007-02-01

    Full Text Available

    Inflammation is a common response in the human liver. It is involved in chronic hepatitis, cirrhosis, steatosis, ischemiareperfusion damage, hepatocarcinomas and in the development of metastasis. Reactive oxygen species (ROS production is part of the inflammatory processes. It is implicated in many physiological and pathological situations and can induce mutations in key cancer genes. Normally, this process is prevented by DNA repair enzymatic systems that maintain sequence fidelity during DNA replication. However, overproduction of free radicals in chronic inflammatory diseases is thought to saturate the ability of the cell to repair DNA damage prior to replications. Inflammation-induced genetic damage is not unique to the liver, and it might contribute to the development of mutations in several organs. An example is the chronic inflammatory response in ulcerative colitis that ultimately could lead to neoplasia.

    There is compelling evidence to suggest that most known environmental risk factors for HCC development lead to generation of reactive oxygen species (ROS. Indeed, hepatitis C virus (HCV, alcohol and hepatitis B virus (HBV have all been associated with oxidative stress. Direct production of oxidative stress by HCV core protein has been shown. A link between oxidative stress and liver pathogenesis is also supported by the successful use of antioxidant therapy to treat liver injury caused by chronic HCV infection, although it is not currently used for effective therapy. Ethanol metabolism via the alcohol dehydrogenase pathway and microsomal ethanol oxidizing system contribute substantially to the production of acetaldehyde and generation of ROS. HBx via its association with mitochondria has been shown to induce oxidative stress which in turn leads to activation of a

  13. Mitochondrial DNA alteration in obstructive sleep apnea.

    Science.gov (United States)

    Lacedonia, Donato; Carpagnano, Giovanna E; Crisetti, Elisabetta; Cotugno, Grazia; Palladino, Grazia P; Patricelli, Giulia; Sabato, Roberto; Foschino Barbaro, Maria P

    2015-04-07

    Obstructive Sleep Apnea (OSAS) is a disease associated with the increase of cardiovascular risk and it is characterized by repeated episodes of Intermittent Hypoxia (IH) which inducing oxidative stress and systemic inflammation. Mitochondria are cell organelles involved in the respiratory that have their own DNA (MtDNA). The aim of this study was to investigate if the increase of oxidative stress in OSAS patients can induce also MtDNA alterations. 46 OSAS patients (age 59.27 ± 11.38; BMI 30.84 ± 3.64; AHI 36.63 ± 24.18) were compared with 36 control subjects (age 54.42 ± 6.63; BMI 29.06 ± 4.7; AHI 3.8 ± 1.10). In blood cells Content of MtDNA and nuclear DNA (nDNA) was measured in OSAS patients by Real Time PCR. The ratio between MtDNA/nDNA was then calculated. Presence of oxidative stress was evaluated by levels of Reactive Oxygen Metabolites (ROMs), measured by diacron reactive oxygen metabolite test (d-ROM test). MtDNA/nDNA was higher in patients with OSAS than in the control group (150.94 ± 49.14 vs 128.96 ± 45.8; p = 0.04), the levels of ROMs were also higher in OSAS subjects (329.71 ± 70.17 vs 226 ± 36.76; p = 0.04) and they were positively correlated with MtDNA/nDNA (R = 0.5, p DNA damage induced by the increase of oxidative stress. Intermittent hypoxia seems to be the main mechanism which leads to this process.

  14. Learning tasks as a possible treatment for DNA lesions induced by oxidative stress in hippocampal neurons

    Institute of Scientific and Technical Information of China (English)

    DragoCrneci; Radu Silaghi-Dumitrescu

    2013-01-01

    Reactive oxygen species have been implicated in conditions ranging from cardiovascular dysfunc-tion, arthritis, cancer, to aging and age-related disorders. The organism developed several path-ways to counteract these effects, with base excision repair being responsible for repairing one of the major base lesions (8-oxoG) in al organisms. Epidemiological evidence suggests that cognitive stimulation makes the brain more resilient to damage or degeneration. Recent studies have linked enriched environment to reduction of oxidative stressin neurons of mice with Alzheimer’s dis-ease-like disease, but given its complexity it is not clear what specific aspect of enriched environ-ment has therapeutic effects. Studies from molecular biology have shown that the protein p300, which is a transcription co-activator required for consolidation of memories during specific learning tasks, is at the same time involved in DNA replication and repair, playing a central role in the long-patch pathway of base excision repair. Based on the evidence, we propose that learning tasks such as novel object recognition could be tested as possible methods of base excision repair faci-litation, hence inducing DNA repair in the hippocampal neurons. If this method proves to be effective, it could be the start for designing similar tasks for humans, as a behavioral therapeutic complement to the classical drug-based therapy in treating neurodegenerative disorders. This review presents the current status of therapeutic methods used in treating neurodegenerative diseases induced by reactive oxygen species and proposes a new approach based on existing data.

  15. Protective properties of artichoke (Cynara scolymus) against oxidative stress induced in cultured endothelial cells and monocytes.

    Science.gov (United States)

    Zapolska-Downar, Danuta; Zapolski-Downar, Andrzej; Naruszewicz, Marek; Siennicka, Aldona; Krasnodebska, Barbara; Kołdziej, Blanka

    2002-11-01

    It is currently believed that oxidative stress and inflammation play a significant role in atherogenesis. Artichoke extract exhibits hypolipemic properties and contains numerous active substances with antioxidant properties in vitro. We have studied the influence of aqueous and ethanolic extracts from artichoke on intracellular oxidative stress stimulated by inflammatory mediators (TNFalpha and LPS) and ox-LDL in endothelial cells and monocytes. Oxidative stress which reflects the intracellular production of reactive oxygen species (ROS) was followed by measuring the oxidation of 2', 7'-dichlorofluorescin (DCFH) to 2', 7'-dichlorofluorescein (DCF). Agueous and ethanolic extracts from artichoke were found to inhibit basal and stimulated ROS production in endothelial cells and monocytes in dose dependent manner. In endothelial cells, the ethanolic extract (50 microg/ml) reduced ox-LDL-induced intracellular ROS production by 60% (partichoke extracts have marked protective properties against oxidative stress induced by inflammatory mediators and ox-LDL in cultured endothelial cells and monocytes.

  16. Using of Coffee and Cardamom Mixture to Ameliorate Oxidative Stress Induced in irradiated Rats

    International Nuclear Information System (INIS)

    Hamza, R.G.; Osman, N.N.

    2013-01-01

    Human exposure to ionizing radiation induced overproduction of free radicals leading to oxidative stress. This study aimed to evaluate the possibility of using of coffee and cardamom mixture; as natural antioxidant compounds ; to ameliorate oxidative stress in rats induced by exposure to ionizing radiation. Phenolic contents in coffee and essential oils in cardamom were identified by using HPLC chromatography and GC/MS analysis. Four groups of adult male rats were used; the control group (A), the second group (B) received orally the mixture extract of coffee and cardamom (60 mg/100g body weight) for 8 weeks, the third group (C) irradiated (6 Gy) and the fourth group (D) received orally the mixture extract for 8 weeks and exposed to radiation at the 4th week. The results revealed that the administration of mixture extract of coffee and cardamom to rats significantly reduced the damage effect induced by irradiation via the adjustment of the antioxidant status, decreasing of malondialdehyde content and the subsequent amending of different biochemical parameters as well as some hormones. Accordingly, it is possible to indicate that coffee-cardamom reduced the radiation exposure induced oxidative stress.

  17. Aging and oxidatively damaged nuclear DNA in animal organs

    DEFF Research Database (Denmark)

    Møller, Peter; Løhr, Mille; Folkmann, Janne K

    2010-01-01

    Oxidative stress is considered to contribute to aging and is associated with the generation of oxidatively damaged DNA, including 8-oxo-7,8-dihydroguanine. We have identified 69 studies that have measured the level of oxidatively damaged DNA in organs of animals at various ages. In general, organs...... with limited cell proliferation, i.e., liver, kidney, brain, heart, pancreas, and muscle, tended to show accumulation of DNA damage with age, whereas organs with highly proliferating cells, such as intestine, spleen, and testis, showed more equivocal or no effect of age. A restricted analysis of studies...... evidence for aging-associated accumulation of oxidatively damaged DNA in organs with limited cell proliferation....

  18. Protection against radiation-induced oxidative stress in cultured human epithelial cells by treatment with antioxidant agents

    International Nuclear Information System (INIS)

    Wan, X. Steven; Ware, Jeffrey H.; Zhou, Zhaozong; Donahue, Jeremiah J.; Guan, Jun; Kennedy, Ann R.

    2006-01-01

    Purpose: To evaluate the protective effects of antioxidant agents against space radiation-induced oxidative stress in cultured human epithelial cells. Methods and Materials: The effects of selected concentrations of N-acetylcysteine, ascorbic acid, sodium ascorbate, co-enzyme Q10, α-lipoic acid, L-selenomethionine, and vitamin E succinate on radiation-induced oxidative stress were evaluated in MCF10 human breast epithelial cells exposed to radiation with X-rays, γ-rays, protons, or high mass, high atomic number, and high energy particles using a dichlorofluorescein assay. Results: The results demonstrated that these antioxidants are effective in protecting against radiation-induced oxidative stress and complete or nearly complete protection was achieved by treating the cells with a combination of these agents before and during the radiation exposure. Conclusion: The combination of antioxidants evaluated in this study is likely be a promising countermeasure for protection against space radiation-induced adverse biologic effects

  19. Copper induces hepatocyte injury due to the endoplasmic reticulum stress in cultured cells and patients with Wilson disease

    International Nuclear Information System (INIS)

    Oe, Shinji; Miyagawa, Koichiro; Honma, Yuichi; Harada, Masaru

    2016-01-01

    Copper is an essential trace element, however, excess copper is harmful to human health. Excess copper-derived oxidants contribute to the progression of Wilson disease, and oxidative stress induces accumulation of abnormal proteins. It is known that the endoplasmic reticulum (ER) plays an important role in proper protein folding, and that accumulation of misfolded proteins disturbs ER homeostasis resulting in ER stress. However, copper-induced ER homeostasis disturbance has not been fully clarified. We treated human hepatoma cell line (Huh7) and immortalized-human hepatocyte cell line (OUMS29) with copper and chemical chaperones, including 4-phenylbutyrate and ursodeoxycholic acid. We examined copper-induced oxidative stress, ER stress and apoptosis by immunofluorescence microscopy and immunoblot analyses. Furthermore, we examined the effects of copper on carcinogenesis. Excess copper induced not only oxidative stress but also ER stress. Furthermore, excess copper induced DNA damage and reduced cell proliferation. Chemical chaperones reduced this copper-induced hepatotoxicity. Excess copper induced hepatotoxicity via ER stress. We also confirmed the abnormality of ultra-structure of the ER of hepatocytes in patients with Wilson disease. These findings show that ER stress plays a pivotal role in Wilson disease, and suggests that chemical chaperones may have beneficial effects in the treatment of Wilson disease.

  20. Copper induces hepatocyte injury due to the endoplasmic reticulum stress in cultured cells and patients with Wilson disease

    Energy Technology Data Exchange (ETDEWEB)

    Oe, Shinji, E-mail: ooes@med.uoeh-u.ac.jp; Miyagawa, Koichiro, E-mail: koichiro@med.uoeh-u.ac.jp; Honma, Yuichi, E-mail: y-homma@med.uoeh-u.ac.jp; Harada, Masaru, E-mail: msrharada@med.uoeh-u.ac.jp

    2016-09-10

    Copper is an essential trace element, however, excess copper is harmful to human health. Excess copper-derived oxidants contribute to the progression of Wilson disease, and oxidative stress induces accumulation of abnormal proteins. It is known that the endoplasmic reticulum (ER) plays an important role in proper protein folding, and that accumulation of misfolded proteins disturbs ER homeostasis resulting in ER stress. However, copper-induced ER homeostasis disturbance has not been fully clarified. We treated human hepatoma cell line (Huh7) and immortalized-human hepatocyte cell line (OUMS29) with copper and chemical chaperones, including 4-phenylbutyrate and ursodeoxycholic acid. We examined copper-induced oxidative stress, ER stress and apoptosis by immunofluorescence microscopy and immunoblot analyses. Furthermore, we examined the effects of copper on carcinogenesis. Excess copper induced not only oxidative stress but also ER stress. Furthermore, excess copper induced DNA damage and reduced cell proliferation. Chemical chaperones reduced this copper-induced hepatotoxicity. Excess copper induced hepatotoxicity via ER stress. We also confirmed the abnormality of ultra-structure of the ER of hepatocytes in patients with Wilson disease. These findings show that ER stress plays a pivotal role in Wilson disease, and suggests that chemical chaperones may have beneficial effects in the treatment of Wilson disease.

  1. Piroxicam attenuates 3-nitropropionic acid-induced brain oxidative stress and behavioral alteration in mice.

    Science.gov (United States)

    C, Jadiswami; H M, Megha; Dhadde, Shivsharan B; Durg, Sharanbasappa; Potadar, Pandharinath P; B S, Thippeswamy; V P, Veerapur

    2014-12-01

    3-Nitropropionic acid (3-NP) is a fungal toxin that produces Huntington's disease like symptoms in both animals and humans. Piroxicam, a non-selective cyclooxygenase (COX) inhibitor, used as anti-inflammatory agent and also known to decrease free oxygen radical production. In this study, the effect of piroxicam was evaluated against 3-NP-induced brain oxidative stress and behavioral alteration in mice. Adult male Swiss albino mice were injected with vehicle/piroxicam (10 and 20 mg/kg, i.p.) 30 min before 3-NP challenge (15 mg/kg, i.p.) regularly for 14 days. Body weights of the mice were measured on alternative days of the experiment. At the end of the treatment schedule, mice were evaluated for behavioral alterations (movement analysis, locomotor test, beam walking test and hanging wire test) and brain homogenates were used for the estimation of oxidative stress markers (lipid peroxidation, reduced glutathione and catalase). Administration of 3-NP significantly altered the behavioral activities and brain antioxidant status in mice. Piroxicam, at both the tested doses, caused a significant reversal of 3-NP-induced behavioral alterations and oxidative stress in mice. These findings suggest piroxicam protects the mice against 3-NP-induced brain oxidative stress and behavioral alteration. The antioxidant properties of piroxicam may be responsible for the observed beneficial actions.

  2. Effects of curcumin on angiotensin-converting enzyme gene expression, oxidative stress and anti-oxidant status in thioacetamide-induced hepatotoxicity.

    Science.gov (United States)

    Fazal, Yumna; Fatima, Syeda Nuzhat; Shahid, Syed Muhammad; Mahboob, Tabassum

    2015-12-01

    This study aimed to evaluate the protective effects of curcumin on angiotensin-converting enzyme (ACE) gene expression, oxidative stress and anti-oxidant status in thioacetamide (TAA)-induced hepatotoxicity in rats. Total 32 albino Wistar rats (male, 200-250 g) were divided into six groups (n=8). Group 1: untreated controls; Group 2: received TAA (200 mg/kg body weight (b.w.); i.p.) for 12 weeks; Group 3: received curcumin (75 mg/kg b.w.) for 24 weeks; Group 4: received TAA (200 mg/kg b.w.; i.p.) for 12 weeks+curcumin (75 mg/kg b.w.) for 12 weeks. A significantly higher ACE gene expression was observed in TAA-induced groups as compared with control, indicating more synthesis of ACE proteins. Treatment with curcumin suppressed ACE expression in TAA liver and reversed the toxicity produced. TAA treatment results in higher lipid peroxidation and lower GSH, SOD and CAT than the normal, and this produces oxidative stress in the liver. Cirrhotic conditions were confirmed by serum enzymes (ALT, AST and ALP) as well as histopathological observations. Curcumin treatment reduced oxidative stress in animals by scavenging reactive oxygen species, protecting the anti-oxidant enzymes from being denatured and reducing the oxidative stress marker lipid peroxidation. Curcumin treatment restores hepatocytes, damaged by TAA, and protects liver tissue approaching cirrhosis. © The Author(s) 2014.

  3. Cadmium-induced oxidative stress and apoptosis in the testes of frog Rana limnocharis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Hangjun; Cai Chenchen; Shi Cailei; Cao Hui; Han Ziliu [Department of Environmental Sciences, Hangzhou Normal University, Xuelin Road 16, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province, 310036 (China); Jia Xiuying, E-mail: hznujiaxiuying@126.com [Department of Environmental Sciences, Hangzhou Normal University, Xuelin Road 16, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province, 310036 (China)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Cd can cause vacuoles and deformity of the spermatogenic cells in the frog testes. Black-Right-Pointing-Pointer Cd can result in oxidative stress in the frog testes. Black-Right-Pointing-Pointer Cd can induce significantly increase of ROS contents triggered DNA damages in the frog testes. Black-Right-Pointing-Pointer Cd can cause apoptosis in the testes of male R. limnocharis. Black-Right-Pointing-Pointer Apoptosis by Cd in the frog testes is related to Caspase-3, Bax and Bcl-2 genes. - Abstract: This study explored the genetic damage induced by cadmium exposure in the testes of Rana limnocharis. Healthy adult frogs were exposed to 2.5, 5, 7.5, or 10 mg/L of cadmium solution for 14 days. The results showed that exposure to these concentrations increased the levels of reactive oxygen species and malondialdehyde content in the testes, clearly indicating a dose-effect relationship. Moreover, the same dosages of Cd{sup 2+} solution increased glutathione (reduced) content, with the values being significantly different from those observed in the control group (P < 0.01). The comet assay results demonstrated that the DNA damage rate, tail length, and tail moment of samples obtained from frogs exposed to 2.5-7.5 mg/L of cadmium solution significantly increased compared with those of samples obtained from the control group (P < 0.01). These findings suggest that cadmium can induce free radical generation, followed by lipid peroxidation and DNA damage. Ultrastructural observation revealed vacuoles in the spermatogenic cells, cell dispersion, incomplete cell structures, and deformed nucleoli. Moreover, cadmium exposure induced significant down-regulation of Bcl-2 expression and up-regulation of Bax and caspase-3 expressions. Taken together, these data indicate that cadmium can induce testicular cell apoptosis in R. limnocharis. Exploring the effects of cadmium on the mechanism of reproductive toxicity in amphibians will help provide a

  4. Cadmium-induced oxidative stress and apoptosis in the testes of frog Rana limnocharis

    International Nuclear Information System (INIS)

    Zhang Hangjun; Cai Chenchen; Shi Cailei; Cao Hui; Han Ziliu; Jia Xiuying

    2012-01-01

    Highlights: ► Cd can cause vacuoles and deformity of the spermatogenic cells in the frog testes. ► Cd can result in oxidative stress in the frog testes. ► Cd can induce significantly increase of ROS contents triggered DNA damages in the frog testes. ► Cd can cause apoptosis in the testes of male R. limnocharis. ► Apoptosis by Cd in the frog testes is related to Caspase-3, Bax and Bcl-2 genes. - Abstract: This study explored the genetic damage induced by cadmium exposure in the testes of Rana limnocharis. Healthy adult frogs were exposed to 2.5, 5, 7.5, or 10 mg/L of cadmium solution for 14 days. The results showed that exposure to these concentrations increased the levels of reactive oxygen species and malondialdehyde content in the testes, clearly indicating a dose–effect relationship. Moreover, the same dosages of Cd 2+ solution increased glutathione (reduced) content, with the values being significantly different from those observed in the control group (P < 0.01). The comet assay results demonstrated that the DNA damage rate, tail length, and tail moment of samples obtained from frogs exposed to 2.5–7.5 mg/L of cadmium solution significantly increased compared with those of samples obtained from the control group (P < 0.01). These findings suggest that cadmium can induce free radical generation, followed by lipid peroxidation and DNA damage. Ultrastructural observation revealed vacuoles in the spermatogenic cells, cell dispersion, incomplete cell structures, and deformed nucleoli. Moreover, cadmium exposure induced significant down-regulation of Bcl-2 expression and up-regulation of Bax and caspase-3 expressions. Taken together, these data indicate that cadmium can induce testicular cell apoptosis in R. limnocharis. Exploring the effects of cadmium on the mechanism of reproductive toxicity in amphibians will help provide a scientific basis accounting for the global population decline in amphibian species.

  5. Genome-wide association analysis of oxidative stress resistance in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Allison L Weber

    Full Text Available Aerobic organisms are susceptible to damage by reactive oxygen species. Oxidative stress resistance is a quantitative trait with population variation attributable to the interplay between genetic and environmental factors. Drosophila melanogaster provides an ideal system to study the genetics of variation for resistance to oxidative stress.We used 167 wild-derived inbred lines of the Drosophila Genetic Reference Panel for a genome-wide association study of acute oxidative stress resistance to two oxidizing agents, paraquat and menadione sodium bisulfite. We found significant genetic variation for both stressors. Single nucleotide polymorphisms (SNPs associated with variation in oxidative stress resistance were often sex-specific and agent-dependent, with a small subset common for both sexes or treatments. Associated SNPs had moderately large effects, with an inverse relationship between effect size and allele frequency. Linear models with up to 12 SNPs explained 67-79% and 56-66% of the phenotypic variance for resistance to paraquat and menadione sodium bisulfite, respectively. Many genes implicated were novel with no known role in oxidative stress resistance. Bioinformatics analyses revealed a cellular network comprising DNA metabolism and neuronal development, consistent with targets of oxidative stress-inducing agents. We confirmed associations of seven candidate genes associated with natural variation in oxidative stress resistance through mutational analysis.We identified novel candidate genes associated with variation in resistance to oxidative stress that have context-dependent effects. These results form the basis for future translational studies to identify oxidative stress susceptibility/resistance genes that are evolutionary conserved and might play a role in human disease.

  6. Measurement of exercise-induced oxidative stress in lymphocytes.

    Science.gov (United States)

    Turner, James E; Bosch, Jos A; Aldred, Sarah

    2011-10-01

    Vigorous exercise is associated with oxidative stress, a state that involves modifications to bodily molecules due to release of pro-oxidant species. Assessment of such modifications provides non-specific measures of oxidative stress in human tissues and blood, including circulating lymphocytes. Lymphocytes are a very heterogeneous group of white blood cells, consisting of subtypes that have different functions in immunity. Importantly, exercise drastically changes the lymphocyte composition in blood by increasing the numbers of some subsets, while leaving other cells unaffected. This fact may imply that observed changes in oxidative stress markers are confounded by changes in lymphocyte composition. For example, lymphocyte subsets may differ in exposure to oxidative stress because of subset differences in cell division and the acquisition of cytotoxic effector functions. The aim of the present review is to raise awareness of interpretational issues related to the assessment of oxidative stress in lymphocytes with exercise and to address the relevance of lymphocyte subset phenotyping in these contexts.

  7. Glyceraldehyde-3-phosphate dehydrogenase aggregation inhibitor peptide: A potential therapeutic strategy against oxidative stress-induced cell death.

    Science.gov (United States)

    Itakura, Masanori; Nakajima, Hidemitsu; Semi, Yuko; Higashida, Shusaku; Azuma, Yasu-Taka; Takeuchi, Tadayoshi

    2015-11-13

    The glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has multiple functions, including mediating oxidative stress-induced neuronal cell death. This process is associated with disulfide-bonded GAPDH aggregation. Some reports suggest a link between GAPDH and the pathogenesis of several oxidative stress-related diseases. However, the pathological significance of GAPDH aggregation in disease pathogenesis remains unclear due to the lack of an effective GAPDH aggregation inhibitor. In this study, we identified a GAPDH aggregation inhibitor (GAI) peptide and evaluated its biological profile. The decapeptide GAI specifically inhibited GAPDH aggregation in a concentration-dependent manner. Additionally, the GAI peptide did not affect GAPDH glycolytic activity or cell viability. The GAI peptide also exerted a protective effect against oxidative stress-induced cell death in SH-SY5Y cells. This peptide could potentially serve as a tool to investigate GAPDH aggregation-related neurodegenerative and neuropsychiatric disorders and as a possible therapy for diseases associated with oxidative stress-induced cell death. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Melatonin protects against taurolithocholic-induced oxidative stress in rat liver.

    Science.gov (United States)

    Fuentes-Broto, Lorena; Miana-Mena, Francisco J; Piedrafita, Eduardo; Berzosa, César; Martínez-Ballarín, Enrique; García-Gil, Francisco A; Reiter, Russel J; García, Joaquín J

    2010-08-01

    Cholestasis, encountered in a variety of clinical disorders, is characterized by intracellular accumulation of toxic bile acids in the liver. Furthermore, oxidative stress plays an important role in the pathogenesis of bile acids. Taurolithocholic acid (TLC) was revealed in previous studies as the most pro-oxidative bile acid. Melatonin, a well-known antioxidant, is a safe and widely used therapeutic agent. Herein, we investigated the hepatoprotective role of melatonin on lipid and protein oxidation induced by TLC alone and in combination with FeCl(3) and ascorbic acid in rat liver homogenates and hepatic membranes. The lipid peroxidation products, malondialdehyde and 4-hydroxyalkenals (MDA + 4-HDA), and carbonyl levels were quantified as indices of oxidative damage to hepatic lipids and proteins, respectively. In the current study, the rise in MDA + 4-HDA levels induced by TLC was inhibited by melatonin in a concentration-dependent manner in both liver homogenates and in hepatic membranes. Melatonin also had protective effects against structural damage to proteins induced by TLC in membranes. These results suggest that the indoleamine melatonin may potentially act as a protective agent in the therapy of those diseases that involve bile acid toxicity. Published 2010 Wiley-Liss, Inc.

  9. Oxidative stress induces macroautophagy of amyloid beta-protein and ensuing apoptosis

    DEFF Research Database (Denmark)

    Zheng, Lin; Kågedal, Katarina; Dehvari, Nodi

    2009-01-01

    to intralysosomal accumulation of Abeta in cultured neuroblastoma cells. We hypothesized that oxidative stress promotes AD by stimulating macroautophagy of Abeta that further may induce cell death by destabilizing lysosomal membranes. To investigate such possibility, we compared the effects of hyperoxia (40...

  10. Prenatal irradiation: nitric oxide and oxidative stress roles in radiation-induced apoptosis of the developing central nervous system

    International Nuclear Information System (INIS)

    Sanjurjo, Julieta

    2001-01-01

    oxidative stress has a central role in neuronal apoptosis, as evidenced by cortical cultures apoptotic death decrease due to treatment with oxidative stress modulators such as NAC, Trolox and Manitol. These results demonstrate the type of radiation-induced damage involved in apoptosis and they indicate moreover, that lipid peroxidation and membrane damage (aside from primary damage to DNA) could be one of the causes of the radiation-induced apoptosis of cortical cells in the developing CNS. (author)

  11. Radiation induced degradation of DNA in photodynamic therapy of cancer

    International Nuclear Information System (INIS)

    Ion, Rodica; Scarlat, F.; Niculescu, V.I.R.; Scarlat, Fl.; Gunaydin, Keriman

    2001-01-01

    DNA is a critical cellular target for oxidative processes induced by physical and chemical stresses. It is known that the direct effect of ionizing radiation on DNA results mainly in base ionization and may lead to mutation, carcinogenesis and cell death. The degradation of DNA induced by laser and ionizing radiation (electron and photon beam) is analyzed in this paper. The ionizing radiation degradation of DNA is a radical process. A series of lesions among the major base degradation product has been measured in isolated DNA exposed to gamma radiation in aerated aqueous solution. Degradation can be accounted for by the formation of hydroxyl radicals upon radiolysis of water (indirect effect). The production of DNA damage by ionizing radiation involves two mechanisms, direct and indirect effects. Direct effect leads to ionization and excitation of DNA molecules, while indirect effect is due to the interaction of reactive species, in particular of OH radicals produced by water radiolysis, with targets in DNA. The relative contribution of the two mechanisms in damaging DNA depends on the type of radiation. Single strand breaks and base damage seem to be mainly produced by the attack of hydroxyl radicals on DNA, whereas double strand breaks result predominantly of direct energy deposition. The four bases are degraded in high yield. Direct effect has been mimicked by photo-induced electron abstraction from the bases producing their radical cation. The base damage may also occur from the formation of radical cation of purine and pyrimidine components. When DNA is irradiated in solution, single strand breaks are mainly due to the abstraction of an H atom from the 4 ' position of 2 ' -deoxyribose by the attack of OH radicals produced by water radiolysis. Quantification of the modified bases showed the guanine is the preferential target. Ionizing radiation induces several types of DNA modifications, including chain breaks, DNA-protein cross-links, oxidized DNA bases

  12. Macrophage Migration Inhibitory Factor Secretion Is Induced by Ionizing Radiation and Oxidative Stress in Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Yashi Gupta

    Full Text Available The macrophage migration inhibitory factor (MIF has been increasingly implicated in cancer development and progression by promoting inflammation, angiogenesis, tumor cell survival and immune suppression. MIF is overexpressed in a variety of solid tumor types in part due to its responsiveness to hypoxia inducible factor (HIF driven transcriptional activation. MIF secretion, however, is a poorly understood process owing to the fact that MIF is a leaderless polypeptide that follows a non-classical secretory pathway. Better understanding of MIF processing and release could have therapeutic implications. Here, we have discovered that ionizing radiation (IR and other DNA damaging stresses can induce robust MIF secretion in several cancer cell lines. MIF secretion by IR appears independent of ABCA1, a cholesterol efflux pump that has been implicated previously in MIF secretion. However, MIF secretion is robustly induced by oxidative stress. Importantly, MIF secretion can be observed both in cell culture models as well as in tumors in mice in vivo. Rapid depletion of MIF from tumor cells observed immunohistochemically is coincident with elevated circulating MIF detected in the blood sera of irradiated mice. Given the robust tumor promoting activities of MIF, our results suggest that an innate host response to genotoxic stress may mitigate the beneficial effects of cancer therapy, and that MIF inhibition may improve therapeutic responses.

  13. Metabolic enhancer piracetam attenuates rotenone induced oxidative stress: a study in different rat brain regions.

    Science.gov (United States)

    Verma, Dinesh Kumar; Joshi, Neeraj; Raju, Kunumuri Sivarama; Wahajuddin, Muhammad; Singh, Rama Kant; Singh, Sarika

    2015-01-01

    Piracetam is clinically being used nootropic drug but the details of its neuroprotective mechanism are not well studied. The present study was conducted to assess the effects of piracetam on rotenone induced oxidative stress by using both ex vivo and in vivo test systems. Rats were treated with piracetam (600 mg/kg b.w. oral) for seven constitutive days prior to rotenone administration (intracerebroventricular, 12 µg) in rat brain. Rotenone induced oxidative stress was assessed after 1 h and 24 h of rotenone administration. Ex vivo estimations were performed by using two experimental designs. In one experimental design the rat brain homogenate was treated with rotenone (1 mM, 2 mM and 4 mM) and rotenone+piracetam (10 mM) for 1 h. While in second experimental design the rats were pretreated with piracetam for seven consecutive days. On eighth day the rats were sacrificed, brain homogenate was prepared and treated with rotenone (1 mM, 2 mM and 4mM) for 1h. After treatment the glutathione (GSH) and malondialdehyde (MDA) levels were estimated in brain homogenate. In vivo study showed that pretreatment of piracetam offered significant protection against rotenone induced decreased GSH and increased MDA level though the protection was region specific. But the co-treatment of piracetam with rotenone did not offer significant protection against rotenone induced oxidative stress in ex vivo study. Whereas ex vivo experiments in rat brain homogenate of piracetam pretreated rats, showed the significant protection against rotenone induced oxidative stress. Findings indicated that pretreatment of piracetam significantly attenuated the rotenone induced oxidative stress though the protection was region specific. Piracetam treatment to rats led to its absorption and accumulation in different brain regions as assessed by liquid chromatography mass spectrometry/mass spectrometry. In conclusion, study indicates the piracetam is able to enhance the antioxidant capacity in brain cells

  14. In Vivo Cytogenotoxicity and Oxidative Stress Induced by Electronic Waste Leachate and Contaminated Well Water

    Directory of Open Access Journals (Sweden)

    Adeyinka M. Gbadebo

    2013-07-01

    Full Text Available Environmental, plant and animal exposure to hazardous substances from electronic wastes (e-wastes in Nigeria is increasing. In this study, the potential cytogenotoxicity of e-wastes leachate and contaminated well water samples obtained from Alaba International Electronic Market in Lagos, Nigeria, using induction of chromosome and root growth anomalies in Allium cepa, and micronucleus (MN in peripheral erythrocytes of Clarias gariepinus, was evaluated. The possible cause of DNA damage via the assessments of liver malondialdehyde (MDA, catalase (CAT, reduced glutathione (GSH and superoxide dismutase (SOD as indicators of oxidative stress in mice was also investigated. There was significant (p < 0.05 inhibition of root growth and mitosis in A. cepa. Cytological aberrations such as spindle disturbance, C-mitosis and binucleated cells, and morphological alterations like tumor and twisting roots were also induced. There was concentration-dependent, significant (p < 0.05 induction of micronucleated erythrocytes and nuclear abnormalities such as blebbed nuclei and binucleated erythrocytes in C. gariepinus. A significant increase (p < 0.001 in CAT, GSH and MDA with concomitant decrease in SOD concentrations were observed in the treated mice. Pb, As, Cu, Cr, and Cd analyzed in the tested samples contributed significantly to these observations. This shows that the well water samples and leachate contained substances capable of inducing somatic mutation and oxidative stress in living cells; and this is of health importance in countries with risk of e-wastes exposure.

  15. Neuroprotective effects of bee venom acupuncture therapy against rotenone-induced oxidative stress and apoptosis.

    Science.gov (United States)

    Khalil, Wagdy K B; Assaf, Naglaa; ElShebiney, Shaimaa A; Salem, Neveen A

    2015-01-01

    Parkinson's disease (PD), the most common neurodegenerative movement disorder, is characterized by dopaminergic neurodegeneration, mitochondrial impairment, and oxidative stress. Exposure of animals to rotenone induces a range of responses characteristic of PD, including reactive oxygen species production and dopaminergic cell death. Although l-dopa is the drug of choice for improving core symptoms of PD, it is associated with involuntary movements. The current study was directed to evaluate the neuroprotective effect of bee venom acupuncture therapy (BVA) against rotenone-induced oxidative stress, neuroinflammation, and apoptosis in PD mouse model. Forty male Swiss mice were divided into four groups: (1) received saline solution orally and served as normal control, (2) received rotenone (1.5 mg/kg, s.c. every other day for 6 doses), (3) received rotenone concomitantly with l-dopa (25 mg/kg, daily, p.o. for 6 days), and finally (4) received rotenone concomitantly with BVA (0.02 ml once every 3 days for two weeks). Rotenone-treated mice showed impairment in locomotor behavior and a significant reduction in brain dopamine, serotonin, norepinephrine, GSH levels, and paraoxonase activity, whereas a significant increase was observed in brain malondialdehyde, tumor necrosis factor-α, interleukin-β levels besides DNA damage, and over-expression of caspase-3, Bax, and Bcl-2 genes. Significant improvement of the aforementioned parameters was demonstrated after BVA compared to l-dopa therapy. In conclusion, bee venom normalized all the neuroinflammatory and apoptotic markers and restored brain neurochemistry after rotenone injury. Therefore, BVA is a promising neuroprotective therapy for PD. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Grapevine fruit extract protects against radiation-induced oxidative stress and apoptosis in human lymphocyte

    International Nuclear Information System (INIS)

    Singha, Indrani; Das, Subir Kumar

    2015-01-01

    Ionizing radiation (IR) causes oxidative stress through overwhelming generation of reactive oxygen species (ROS) in the living cells leading the oxidative damage further to biomolecules. Grapevine (Vitis vinifera L.) posses several bioactive phytochemicals and is the richest source of antioxidants. In this study, we investigated V. vinifera for its phytochemical content, enzymes profile and, ROS-and oxidant-scavenging activities. We have also studied the fruit extract of four different grapevine viz., Thompson seedless, Flame seedless, Kishmish chorni and Red globe for their radioprotective actions in human lymphocytes. The activities of ascorbic acid oxidase and catalase significantly (P < 0.01) differed among extracts within the same cultivar, while that of peroxidase and polyphenol oxidase did not differ significantly. The superoxide radical-scavenging activity was higher in the seed as compared to the skin or pulp of the same cultivar. Pretreatment with grape extracts attenuated the oxidative stress induced by 4 Gy γ-radiation in human lymphocytes in vitro. Further, γ-radiation-induced increase in caspase 3/7 activity was significantly attenuated by grape extracts. These results suggest that grape extract serve as a potential source of natural antioxidants against the IR-induced oxidative stress and also inhibit apoptosis. Furthermore, the protective action of grape depends on the source of extract (seed, skin or pulp) and type of the cultivars. (author)

  17. Umbelliferone arrest cell cycle at G0/G1 phase and induces apoptosis in human oral carcinoma (KB) cells possibly via oxidative DNA damage.

    Science.gov (United States)

    Vijayalakshmi, Annamalai; Sindhu, Ganapathy

    2017-08-01

    Umbelliferone (UMB) has widespread pharmacological activity, comprising anti-inflammatory, anti-oxidant, anti-genotoxic and anti-immunomodulatory but the anticancer activity remains unknown in human oral carcinoma (HOC) KB cells. MTT assay determinations was revealed that treatment of KB cells with UMB, prevent and reduce the cell proliferation with the IC 50 - 200μM as well as induces loss of cell viability, morphology change and internucleosomal DNA fragmentation in a concentration dependent manner. Acridine orange and ethidium bromide dual staining assay established that UMB induced apoptosis in KB cells in a dose dependent manner. Alkaline comet assay determination revealed UMB has the potential to increase oxidative DNA damage in KB cells through DNA tail formation significantly (pKB cells. Similarly, we observed increased DNA damage stimulated apoptotic morphological changes in UMB treated cells. Taken together, the present study suggests that UMB exhibits anticancer effect on KB cell line with the increased generation of intracellular ROS, triggered oxidative stress mediated depolarization of mitochondria, which contributes cell death via DNA damage as well as cell cycle arrest at G0/G1 phase. The results have also provided us insight in the pharmacological backgrounds for the potential use of UMB, to target divergent pathways of cell survival and cell death. To conclude UMB could develop as a novel candidate for cancer chemoprevention and therapy, which is our future focus and to develop a connectivity map between in vivo and in vitro activity. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. Adaptive stress response to menadione-induced oxidative stress in Saccharomyces cerevisiae KNU5377.

    Science.gov (United States)

    Kim, Il-Sup; Sohn, Ho-Yong; Jin, Ingnyol

    2011-10-01

    The molecular mechanisms involved in the ability of yeast cells to adapt and respond to oxidative stress are of great interest to the pharmaceutical, medical, food, and fermentation industries. In this study, we investigated the time-dependent, cellular redox homeostasis ability to adapt to menadione-induced oxidative stress, using biochemical and proteomic approaches in Saccharomyces cerevisiae KNU5377. Time-dependent cell viability was inversely proportional to endogenous amounts of ROS measured by a fluorescence assay with 2',7'-dichlorofluorescin diacetate (DCFHDA), and was hypersensitive when cells were exposed to the compound for 60 min. Morphological changes, protein oxidation and lipid peroxidation were also observed. To overcome the unfavorable conditions due to the presence of menadione, yeast cells activated a variety of cell rescue proteins including antioxidant enzymes, molecular chaperones, energy-generating metabolic enzymes, and antioxidant molecules such as trehalose. Thus, these results show that menadione causes ROS generation and high accumulation of cellular ROS levels, which affects cell viability and cell morphology and there is a correlation between resistance to menadione and the high induction of cell rescue proteins after cells enter into this physiological state, which provides a clue about the complex and dynamic stress response in yeast cells.

  19. Effects of exercise training on stress-induced vascular reactivity alterations: role of nitric oxide and prostanoids

    Directory of Open Access Journals (Sweden)

    Thiago Bruder-Nascimento

    2015-06-01

    Full Text Available Background: Physical exercise may modify biologic stress responses. Objective: To investigate the impact of exercise training on vascular alterations induced by acute stress, focusing on nitric oxide and cyclooxygenase pathways. Method: Wistar rats were separated into: sedentary, trained (60-min swimming, 5 days/week during 8 weeks, carrying a 5% body-weight load, stressed (2 h-immobilization, and trained/stressed. Response curves for noradrenaline, in the absence and presence of L-NAME or indomethacin, were obtained in intact and denuded aortas (n=7-10. Results: None of the procedures altered the denuded aorta reactivity. Intact aortas from stressed, trained, and trained/stressed rats showed similar reduction in noradrenaline maximal responses (sedentary 3.54±0.15, stressed 2.80±0.10*, trained 2.82±0.11*, trained/stressed 2.97± 0.21*, *P<0.05 relate to sedentary. Endothelium removal and L-NAME abolished this hyporeactivity in all experimental groups, except in trained/stressed rats that showed a partial aorta reactivity recovery in L-NAME presence (L-NAME: sedentary 5.23±0,26#, stressed 5.55±0.38#, trained 5.28±0.30#, trained/stressed 4.42±0.41, #P<0.05 related to trained/stressed. Indomethacin determined a decrease in sensitivity (EC50 in intact aortas of trained rats without abolishing the aortal hyporeactivity in trained, stressed, and trained/stressed rats. Conclusions: Exercise-induced vascular adaptive response involved an increase in endothelial vasodilator prostaglandins and nitric oxide. Stress-induced vascular adaptive response involved an increase in endothelial nitric oxide. Beside the involvement of the endothelial nitric oxide pathway, the vascular response of trained/stressed rats involved an additional mechanism yet to be elucidated. These findings advance on the understanding of the vascular processes after exercise and stress alone and in combination.

  20. Cardioprotective effect of amlodipine in oxidative stress induced by experimental myocardial infarction in rats

    Directory of Open Access Journals (Sweden)

    Sudhira Begum

    2007-12-01

    Full Text Available The present study investigated whether the administration of amlodipine ameliorates oxidative stress induced by experimental myocardial infarction in rats. Adrenaline was administered and myocardial damage was evaluated biochemically [significantly increased serum aspertate aminotransferase (AST, lactate dehydrogenase (LDH and malondialdehyde (MDA levels of myocardial tissue] and histologically (morphological changes of myocardium. Amlodipine was administered as pretreatment for 14 days in adrenaline treated rats. Statistically significant amelioration in all the biochemical parameters supported by significantly improved myocardial morphology was observed in amlodipine pretreatment. It was concluded that amlodipine afforded cardioprotection by reducing oxidative stress induced in experimental myocardial infarction of catecholamine assault.

  1. Activation of ATP-sensitive potassium channel by iptakalim normalizes stress-induced HPA axis disorder and depressive behaviour by alleviating inflammation and oxidative stress in mouse hypothalamus.

    Science.gov (United States)

    Zhao, Xiao-Jie; Zhao, Zhan; Yang, Dan-Dan; Cao, Lu-Lu; Zhang, Ling; Ji, Juan; Gu, Jun; Huang, Ji-Ye; Sun, Xiu-Lan

    2017-04-01

    Stress-induced disturbance of the hypothalamic-pituitary-adrenal (HPA) axis is strongly implicated in incidence of mood disorders. A heightened neuroinflammatory response and oxidative stress play a fundamental role in the dysfunction of the HPA axis. We have previously demonstrated that iptakalim (Ipt), a new ATP-sensitive potassium (K-ATP) channel opener, could prevent oxidative injury and neuroinflammation against multiple stimuli-induced brain injury. The present study was to demonstrate the impacts of Ipt in stress-induced HPA axis disorder and depressive behavior. We employed 2 stress paradigms: 8 weeks of continuous restraint stress (chronic restraint stress, CRS) and 2h of restraint stress (acute restraint stress, ARS), to mimic both chronic stress and severe acute stress. Prolonged (4 weeks) and short-term (a single injection) Ipt treatment was administered 30min before each stress paradigm. We found that HPA axis was altered after stress, with different responses to CRS (lower ACTH and CORT, higher AVP, but normal CRH) and ARS (higher CRH, ACTH and CORT, but normal AVP). Both prolonged and short-term Ipt treatment normalized stress-induced HPA axis disorders and abnormal behaviors in mice. CRS and ARS up-regulated mRNA levels of inflammation-related molecules (TNFα, IL-1β, IL-6 and TLR4) and oxidative stress molecules (gp91phox, iNOS and Nrf2) in the mouse hypothalamus. Double immunofluorescence showed CRS and ARS increased microglia activation (CD11b and TNFα) and oxidative stress in neurons (NeuN and gp91phox), which were alleviated by Ipt. Therefore, the present study reveals that Ipt could prevent against stress-induced HPA axis disorders and depressive behavior by alleviating inflammation and oxidative stress in the hypothalamus. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Adiponectin is protective against oxidative stress induced cytotoxicity in amyloid-beta neurotoxicity.

    Directory of Open Access Journals (Sweden)

    Koon-Ho Chan

    Full Text Available Beta-amyloid (Aβ neurotoxicity is important in Alzheimer's disease (AD pathogenesis. Aβ neurotoxicity causes oxidative stress, inflammation and mitochondrial damage resulting in neuronal degeneration and death. Oxidative stress, inflammation and mitochondrial failure are also pathophysiological mechanisms of type 2 diabetes (T(2DM which is characterized by insulin resistance. Interestingly, T(2DM increases risk to develop AD which is associated with reduced neuronal insulin sensitivity (central insulin resistance. We studied the potential protective effect of adiponectin (an adipokine with insulin-sensitizing, anti-inflammatory and anti-oxidant properties against Aβ neurotoxicity in human neuroblastoma cells (SH-SY5Y transfected with the Swedish amyloid precursor protein (Sw-APP mutant, which overproduced Aβ with abnormal intracellular Aβ accumulation. Cytotoxicity was measured by assay for lactate dehydrogenase (LDH released upon cell death and lysis. Our results revealed that Sw-APP transfected SH-SY5Y cells expressed both adiponectin receptor 1 and 2, and had increased AMP-activated protein kinase (AMPK activation and enhanced nuclear factor-kappa B (NF-κB activation compared to control empty-vector transfected SH-SY5Y cells. Importantly, adiponectin at physiological concentration of 10 µg/ml protected Sw-APP transfected SH-SY5Y cells against cytotoxicity under oxidative stress induced by hydrogen peroxide. This neuroprotective action of adiponectin against Aβ neurotoxicity-induced cytotoxicity under oxidative stress involved 1 AMPK activation mediated via the endosomal adaptor protein APPL1 (adaptor protein with phosphotyrosine binding, pleckstrin homology domains and leucine zipper motif and possibly 2 suppression of NF-κB activation. This raises the possibility of novel therapies for AD such as adiponectin receptor agonists.

  3. Curcumin attenuates oxidative stress induced NFκB mediated inflammation and endoplasmic reticulum dependent apoptosis of splenocytes in diabetes.

    Science.gov (United States)

    Rashid, Kahkashan; Chowdhury, Sayantani; Ghosh, Sumit; Sil, Parames C

    2017-11-01

    The present study was aimed to determine the curative role of curcumin against diabetes induced oxidative stress and its associated splenic complications. Diabetes was induced in the experimental rats via the intraperitoneal administration of a single dose of STZ (65mgkg -1 body weight). Increased blood glucose and intracellular ROS levels along with decreased body weight, the activity of cellular antioxidant enzymes and GSH/GSSG ratio were observed in the diabetic animals. Histological assessment showed white pulp depletion and damaged spleen anatomy in these animals. Oral administration of curcumin at a dose of 100mgkg -1 body weight daily for 8weeks, however, restored these alterations. Investigation of the mechanism of hyperglycemia induced oxidative stress mediated inflammation showed upregulation of inflammatory cytokines, chemokines, adhesion molecules and increased translocation of NFκB into the nucleus. Moreover, ER stress dependent cell death showed induction of eIF2α and CHOP mediated signalling pathways as well as increment in the expression of GRP78, Caspase-12, Calpain-1, phospho JNK, phospho p38 and phospho p53 in the diabetic group. Alteration of Bax/Bcl-2 ratio; disruption of mitochondrial membrane potential, release of cytochrome-C from mitochondria and upregulation of caspase 3 along with the formation of characteristic DNA ladder in the diabetic animals suggest the involvement of mitochondria dependent apoptotic pathway in the splenic cells. Treatment with curcumin could, however, protect cells from inflammatory damage and ER as well as mitochondrial apoptotic death by restoring the alterations of these parameters. Our results suggest that curcumin has the potential to act as an anti-diabetic, anti-oxidant, anti-inflammatory and anti-apoptotic therapeutic against diabetes mediated splenic damage. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Molecular basis for arsenic-Induced alteration in nitric oxide production and oxidative stress: implication of endothelial dysfunction

    International Nuclear Information System (INIS)

    Kumagai, Yoshito; Pi Jingbo

    2004-01-01

    Accumulated epidemiological studies have suggested that prolonged exposure of humans to arsenic in drinking water is associated with vascular diseases. The exact mechanism of how this occurs currently unknown. Nitric oxide (NO), formed by endothelial NO synthase (eNOS), plays a crucial role in the vascular system. Decreased availability of biologically active NO in the endothelium is implicated in the pathophysiology of several vascular diseases and inhibition of eNOS by arsenic is one of the proposed mechanism s for arsenic-induced vascular diseases. In addition, during exposure to arsenic, overproduction of reactive oxygen species (ROS) can occur, resulting in oxidative stress, which is another major risk factor for vascular dysfunction. The molecular basis for decreased NO levels and increased oxidative stress during arsenic exposure is poorly understood. In this article, evidence for arsenic-mediated alteration in NO production and oxidative stress is reviewed. The results of a cross-sectional study in an endemic area of chronic arsenic poisoning and experimental animal studies to elucidate a potential mechanism for the impairment of NO formation and oxidative stress caused by prolonged exposure to arsenate in the drinking water are also reviewed

  5. 8-oxo-7,8-dihydroguanine level - the DNA oxidative stress marker - recognized by fluorescence image analysis in sporadic uterine adenocarcinomas in women.

    Science.gov (United States)

    Postawski, Krzysztof; Przadka-Rabaniuk, Dorota; Piersiak, Tomasz

    2013-01-01

    In the case of carcinogenesis in human endometrium no information exists on tissue concentration of 8-oxo-7,8-dihydroguanine, the DNA oxidative stress marker This was the main reason to undertake the investigation of this DNA modification in human uterine estrogen-dependent tissue cancers. In order to estimate the level of oxidative damage, 8-oxo-7,8-dihydroguanine was determined directly in cells of tissue microscope slides using OxyDNA Assay Kit, Fluorometric. Cells were investigated under confocal microscope. Images of individual cells were captured by computer-interfaced digital photography and analyzed for fluorescence intensities (continuous inverted 8-bit gray-scale = 0 [black]-255 [white]). Fluorescence scores were calculated for each of 13 normal endometrial samples and 31 uterine adenocarcinoma specimens. Finally the level of the oxidative stress marker was also analyzed according to histological and clinical features of the neoplasms. The obtained data revealed that: 8-oxo-7,8-dihydroguanine levels were higher in uterine adenocarcinomas than in normal endometrial samples (48,32 vs. 38,64; p<0,001); in contrast to normal endometrium there was no correlation between age and DNA oxidative modification content in uterine cancer; highest mean fluorescence intensity was recognized in G2 endometrial adenocarcinomas; level of 8-oxo-7,8-dihydroguanine does not depend on Body Mass Index (BMI) and cancer uterine wall infiltration or tumor FIGO stage. Our study indicates that accumulation of the oxidized DNA base may contribute to the development of endometrial neoplasia, however oxidative DNA damage does not seem to increase with tumor progression.

  6. Hyperglycemia-induced diaphragm weakness is mediated by oxidative stress

    Science.gov (United States)

    2014-01-01

    Introduction A major consequence of ICU-acquired weakness (ICUAW) is diaphragm weakness, which prolongs the duration of mechanical ventilation. Hyperglycemia (HG) is a risk factor for ICUAW. However, the mechanisms underlying HG-induced respiratory muscle weakness are not known. Excessive reactive oxygen species (ROS) injure multiple tissues during HG, but only one study suggests that excessive ROS generation may be linked to HG-induced diaphragm weakness. We hypothesized that HG-induced diaphragm dysfunction is mediated by excessive superoxide generation and that administration of a specific superoxide scavenger, polyethylene glycol superoxide dismutase (PEG-SOD), would ameliorate these effects. Methods HG was induced in rats using streptozotocin (60 mg/kg intravenously) and the following groups assessed at two weeks: controls, HG, HG + PEG-SOD (2,000U/kg/d intraperitoneally for seven days), and HG + denatured (dn)PEG-SOD (2000U/kg/d intraperitoneally for seven days). PEG-SOD and dnPEG-SOD were administered on day 8, we measured diaphragm specific force generation in muscle strips, force-pCa relationships in single permeabilized fibers, contractile protein content and indices of oxidative stress. Results HG reduced diaphragm specific force generation, altered single fiber force-pCa relationships, depleted troponin T, and increased oxidative stress. PEG-SOD prevented HG-induced reductions in diaphragm specific force generation (for example 80 Hz force was 26.4 ± 0.9, 15.4 ± 0.9, 24.0 ± 1.5 and 14.9 ± 0.9 N/cm2 for control, HG, HG + PEG-SOD, and HG + dnPEG-SOD groups, respectively, P hyperglycemia-induced diaphragm dysfunction. This new mechanistic information could explain how HG alters diaphragm function during critical illness. PMID:24886999

  7. Mequindox-Induced Kidney Toxicity Is Associated With Oxidative Stress and Apoptosis in the Mouse

    Directory of Open Access Journals (Sweden)

    Qianying Liu

    2018-05-01

    Full Text Available Mequindox (MEQ, belonging to quinoxaline-di-N-oxides (QdNOs, is a synthetic antimicrobial agent widely used in China. Previous studies found that the kidney was one of the main toxic target organs of the QdNOs. However, the mechanisms underlying the kidney toxicity caused by QdNOs in vivo still remains unclear. The present study aimed to explore the molecular mechanism of kidney toxicity in mice after chronic exposure to MEQ. MEQ led to the oxidative stress, apoptosis, and mitochondrial damage in the kidney of mice. Meanwhile, MEQ upregulated Bax/Bcl-2 ratio, disrupted mitochondrial permeability transition pores, caused cytochrome c release, and a cascade activation of caspase, eventually induced apoptosis. The oxidative stress mediated by MEQ might led to mitochondria damage and apoptosis in a mitochondrial-dependent apoptotic pathway. Furthermore, upregulation of the Nrf2-Keap1 signaling pathway was also observed. Our findings revealed that the oxidative stress, mitochondrial dysfunction, and the Nrf2-Keap1 signaling pathway were associated with the kidney apoptosis induced by MEQ in vivo.

  8. Hyperglycaemia exacerbates choroidal neovascularisation in mice via the oxidative stress-induced activation of STAT3 signalling in RPE cells.

    Directory of Open Access Journals (Sweden)

    Xia Li

    Full Text Available Choroidal neovascularisation (CNV that occurs as a result of age-related macular degeneration (AMD causes severe vision loss among elderly patients. The relationship between diabetes and CNV remains controversial. However, oxidative stress plays a critical role in the pathogenesis of both AMD and diabetes. In the present study, we investigated the influence of diabetes on experimentally induced CNV and on the underlying molecular mechanisms of CNV. CNV was induced via photocoagulation in the ocular fundi of mice with streptozotocin-induced diabetes. The effect of diabetes on the severity of CNV was measured. An immunofluorescence technique was used to determine the levels of oxidative DNA damage by anti-8-hydroxy-2-deoxyguanosine (8-OHdG antibody, the protein expression of phosphorylated signal transducer and activator of transcription 3 (p-STAT3 and vascular endothelial growth factor (VEGF, in mice with CNV. The production of reactive oxygen species (ROS in retinal pigment epithelial (RPE cells that had been cultured under high glucose was quantitated using the 2',7'-dichlorofluorescein diacetate (DCFH-DA method. p-STAT3 expression was examined using Western blot analysis. RT-PCR and ELISA processes were used to detect VEGF expression. Hyperglycaemia exacerbated the development of CNV in mice. Oxidative stress levels and the expression of p-STAT3 and VEGF were highly elevated both in mice and in cultured RPE cells. Treatment with the antioxidant compound N-acetyl-cysteine (NAC rescued the severity of CNV in diabetic mice. NAC also inhibited the overexpression of p-STAT3 and VEGF in CNV and in RPE cells. The JAK-2/STAT3 pathway inhibitor AG490 blocked VEGF expression but had no effect on the production of ROS in vitro. These results suggest that hyperglycaemia promotes the development of CNV by inducing oxidative stress, which in turn activates STAT3 signalling in RPE cells. Antioxidant supplementation helped attenuate the development of CNV

  9. Role of Mitochondrial Oxidative Stress in Spaceflight-Induced Tissue Degeneration

    Science.gov (United States)

    Torres, Samantha M.; Schreurs, Ann-Sofie; Truong, Tiffany A.; Tahimic, Candice; Globus, Ruth

    2017-01-01

    Microgravity and ionizing radiation in the spaceflight environment poses multiple challenges to homeostasis and may contribute to cellular stress. Effects may include increased generation of reactive oxygen species (ROS), DNA damage and repair error, cell cycle arrest, cell senescence or death. Our central hypothesis is that prolonged exposure to the spaceflight environment leads to the excess production of ROS and oxidative damage, culminating in accelerated tissue degeneration. The main goal of this project is to determine the importance of cellular redox defense for physiological adaptations and tissue degeneration in the space environment.

  10. Oxidative stress activates the TRPM2-Ca2+-CaMKII-ROS signaling loop to induce cell death in cancer cells.

    Science.gov (United States)

    Wang, Qian; Huang, Lihong; Yue, Jianbo

    2017-06-01

    High intracellular levels of reactive oxygen species (ROS) cause oxidative stress that results in numerous pathologies, including cell death. Transient potential receptor melastatin-2 (TRPM2), a Ca 2+ -permeable cation channel, is mainly activated by intracellular adenosine diphosphate ribose (ADPR) in response to oxidative stress. Here we studied the role and mechanisms of TRPM2-mediated Ca 2+ influx on oxidative stress-induced cell death in cancer cells. We found that oxidative stress activated the TRPM2-Ca 2+ -CaMKII cascade to inhibit early autophagy induction, which ultimately led to cell death in TRPM2 expressing cancer cells. On the other hand, TRPM2 knockdown switched cells from cell death to autophagy for survival in response to oxidative stress. Moreover, we found that oxidative stress activated the TRPM2-CaMKII cascade to further induce intracellular ROS production, which led to mitochondria fragmentation and loss of mitochondrial membrane potential. In summary, our data demonstrated that oxidative stress activates the TRPM2-Ca 2+ -CaMKII-ROS signal loop to inhibit autophagy and induce cell death. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Hepatic oxidative stress, genotoxicity and vascular dysfunction in lean or obese zucker rats

    DEFF Research Database (Denmark)

    Løhr, Mille; Folkmann, Janne Kjærsgaard; Sheykhzade, Majid

    2015-01-01

    Metabolic syndrome is associated with increased risk of cardiovascular disease, which could be related to oxidative stress. Here, we investigated the associations between hepatic oxidative stress and vascular function in pressurized mesenteric arteries from lean and obese Zucker rats at 14, 24 an......-generated DNA damage despite substantial hepatic steatosis.......Metabolic syndrome is associated with increased risk of cardiovascular disease, which could be related to oxidative stress. Here, we investigated the associations between hepatic oxidative stress and vascular function in pressurized mesenteric arteries from lean and obese Zucker rats at 14, 24...... and 37 weeks of age. Obese Zucker rats had more hepatic fat accumulation than their lean counterparts. Nevertheless, the obese rats had unaltered age-related level of hepatic oxidatively damaged DNA in terms of formamidopyrimidine DNA glycosylase (FPG) or human oxoguanine DNA glycosylase (hOGG1...

  12. Tat-PRAS40 prevent hippocampal HT-22 cell death and oxidative stress induced animal brain ischemic insults.

    Science.gov (United States)

    Shin, Min Jea; Kim, Dae Won; Jo, Hyo Sang; Cho, Su Bin; Park, Jung Hwan; Lee, Chi Hern; Yeo, Eun Ji; Choi, Yeon Joo; Kim, Ji An; Hwang, Jung Soon; Sohn, Eun Jeong; Jeong, Ji-Heon; Kim, Duk-Soo; Kwon, Hyeok Yil; Cho, Yong-Jun; Lee, Keunwook; Han, Kyu Hyung; Park, Jinseu; Eum, Won Sik; Choi, Soo Young

    2016-08-01

    Proline rich Akt substrate (PRAS40) is a component of mammalian target of rapamycin complex 1 (mTORC1) and is known to play an important role against reactive oxygen species-induced cell death. However, the precise function of PRAS40 in ischemia remains unclear. Thus, we investigated whether Tat-PRAS40, a cell-permeable fusion protein, has a protective function against oxidative stress-induced hippocampal neuronal (HT-22) cell death in an animal model of ischemia. We showed that Tat-PRAS40 transduced into HT-22 cells, and significantly protected against cell death by reducing the levels of H2O2 and derived reactive species, and DNA fragmentation as well as via the regulation of Bcl-2, Bax, and caspase 3 expression levels in H2O2 treated cells. Also, we showed that transduced Tat-PARS40 protein markedly increased phosphorylated RRAS40 expression levels and 14-3-3σ complex via the Akt signaling pathway. In an animal ischemia model, Tat-PRAS40 effectively transduced into the hippocampus in animal brain and significantly protected against neuronal cell death in the CA1 region. We showed that Tat-PRAS40 protein effectively transduced into hippocampal neuronal cells and markedly protected against neuronal cell damage. Therefore, we suggest that Tat-PRAS40 protein may be used as a therapeutic protein for ischemia and oxidative stress-induced brain disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Gene polymorphisms against DNA damage induced by hydrogen peroxide in leukocytes of healthy humans through comet assay: a quasi-experimental study

    Directory of Open Access Journals (Sweden)

    Klautau-Guimarães Maria N

    2010-05-01

    Full Text Available Abstract Background Normal cellular metabolism is well established as the source of endogenous reactive oxygen species which account for the background levels of oxidative DNA damage detected in normal tissue. Hydrogen peroxide imposes an oxidative stress condition on cells that can result in DNA damage, leading to mutagenesis and cell death. Several potentially significant genetic variants related to oxidative stress have already been identified, and angiotensin I-converting enzyme (ACE inhibitors have been reported as possible antioxidant agents that can reduce vascular oxidative stress in cardiovascular events. Methods We investigate the influences of haptoglobin, manganese superoxide dismutase (MnSOD Val9Ala, catalase (CAT -21A/T, glutathione peroxidase 1 (GPx-1 Pro198Leu, ACE (I/D and gluthatione S-transferases GSTM1 and GSTT1 gene polymorphisms against DNA damage and oxidative stress. These were induced by exposing leukocytes from peripheral blood of healthy humans (N = 135 to hydrogen peroxide (H2O2, and the effects were tested by comet assay. Blood samples were submitted to genotyping and comet assay (before and after treatment with H2O2 at 250 μM and 1 mM. Results After treatment with H2O2 at 250 μM, the GPx-1 polymorphism significantly influenced results of comet assay and a possible association of the Pro/Leu genotype with higher DNA damage was found. The highest or lowest DNA damage also depended on interaction between GPX-1/ACE and Hp/GSTM1T1 polymorphisms when hydrogen peroxide treatment increased oxidative stress. Conclusions The GPx-1 polymorphism and the interactions between GPX-1/ACE and Hp/GSTM1T1 can be determining factors for DNA oxidation provoked by hydrogen peroxide, and thus for higher susceptibility to or protection against oxidative stress suffered by healthy individuals.

  14. Oxidative stress-induced overexpression of miR-25: the mechanism underlying the degeneration of melanocytes in vitiligo

    Science.gov (United States)

    Shi, Q; Zhang, W; Guo, S; Jian, Z; Li, S; Li, K; Ge, R; Dai, W; Wang, G; Gao, T; Li, C

    2016-01-01

    Oxidative stress has a critical role in the pathogenesis of vitiligo. However, the specific molecular mechanism involved in oxidative stress-induced melanocyte death is not well characterized. Given the powerful role of microRNAs (miRNAs) in the regulation of cell survival as well as the fact that the generation of miRNAs can be affected by oxidative stress, we hypothesized that miRNAs may participate in vitiligo pathogenesis by modulating the expression of vital genes in melanocytes. In the present study, we initially found that miR-25 was increased in both serum and lesion samples from vitiligo patients, and its serum level was correlated with the activity of vitiligo. Moreover, restoration of miR-25 promoted the H2O2-induced melanocyte destruction and led to the dysfunction of melanocytes. Further experiments proved that MITF, a master regulator in melanocyte survival and function, accounted for the miR-25-caused damaging impact on melanocytes. Notably, other than the direct role on melanocytes, we observed that miR-25 inhibited the production and secretion of SCF and bFGF from keratinocytes, thus impairing their paracrine protective effect on the survival of melanocytes under oxidative stress. At last, we verified that oxidative stress could induce the overexpression of miR-25 in both melanocytes and keratinocytes possibly by demethylating the promoter region of miR-25. Taken together, our study demonstrates that oxidative stress-induced overexpression of miR-25 in vitiligo has a crucial role in promoting the degeneration of melanocytes by not only suppressing MITF in melanocytes but also impairing the paracrine protective effect of keratinocytes. Therefore, it is worthy to investigate the possibility of miR-25 as a potential drug target for anti-oxidative therapy in vitiligo. PMID:26315342

  15. Protective effect of nicotinamide adenine dinucleotide (NAD+) against spinal cord ischemia-reperfusion injury via reducing oxidative stress-induced neuronal apoptosis.

    Science.gov (United States)

    Xie, Lei; Wang, Zhenfei; Li, Changwei; Yang, Kai; Liang, Yu

    2017-02-01

    As previous studies demonstrate that oxidative stress and apoptosis play crucial roles in ischemic pathogenesis and nicotinamide adenine dinucleotide (NAD + ) treatment attenuates oxidative stress-induced cell death among primary neurons and astrocytes as well as significantly reduce cerebral ischemic injury in rats. We used a spinal cord ischemia injury (SCII) model in rats to verify our hypothesis that NAD + could ameliorate oxidative stress-induced neuronal apoptosis. Adult male rats were subjected to transient spinal cord ischemia for 60min, and different doses of NAD + were administered intraperitoneally immediately after the start of reperfusion. Neurological function was determined by Basso, Beattie, Bresnahan (BBB) scores. The oxidative stress level was assessed by superoxide dismutase (SOD) activity and malondialdehyde (MDA) content. The degree of apoptosis was analyzed by deoxyuridinetriphosphate nick-end labeling (TUNEL) staining and protein levels of cleaved caspase-3 and AIF (apoptosis inducing factor). The results showed that NAD + at 50 or 100mg/kg significantly decreased the oxidative stress level and neuronal apoptosis in the spinal cord of ischemia-reperfusion rats compared with saline, as accompanied with the decreased oxidative stress, NAD + administration significantly restrained the neuronal apoptosis after ischemia injury while improved the neurological and motor function. These findings suggested that NAD + might protect against spinal cord ischemia-reperfusion via reducing oxidative stress-induced neuronal apoptosis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Reduction of DNA damage induced by titanium dioxide nanoparticles through Nrf2 in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Zhiqin [Department of Toxicology, Hebei Medical University, Shijiazhuang (China); Department of Laboratory Diagnosis, Hebei Medical University, Shijiazhuang (China); Niu, Yujie [Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang (China); Wang, Qian [Department of Toxicology, Hebei Medical University, Shijiazhuang (China); Shi, Lei [Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang (China); Guo, Huicai; Liu, Yi; Zhu, Yue [Department of Toxicology, Hebei Medical University, Shijiazhuang (China); Liu, Shufeng; Liu, Chao [Hebei Keylab of Laboratory Animal Science, Shijiazhuang (China); Chen, Xin [Xiumen Community Health Service Centre, Shijiazhuang (China); Zhang, Rong, E-mail: rongzhang@hebmu.edu.cn [Department of Toxicology, Hebei Medical University, Shijiazhuang (China); Hebei Keylab of Laboratory Animal Science, Shijiazhuang (China)

    2015-11-15

    Highlights: • Nrf2 signals were partly responsible for the DNA damage induced by Nano-TiO{sub 2}. • Nrf2 loss could aggravate the DNA damage induced by Nano-TiO{sub 2}. • Acquired Nrf2 decreased the susceptibility to DNA damage induced by Nano-TiO{sub 2}. - Abstract: Titanium dioxide nanoparticles (Nano-TiO{sub 2}) are widely used to additives in cosmetics, pharmaceutical, paints and foods. Recent studies have demonstrated that Nano-TiO{sub 2} induces DNA damage and increased the risk of cancer and the mechanism might relate with oxidative stress. The aim of this study was to evaluate the effects of Nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2), an anti-oxidative mediator, on DNA damage induced by Nano-TiO{sub 2}. Wildtype, Nrf2 knockout (Nrf2(-/-)) and tert-butylhydroquinone (tBHQ) pre-treated HepG2 cells and mice were treated with Nano-TiO{sub 2}. And then the oxidative stress and DNA damage were evaluated. Our data showed that DNA damage, reactive oxygen species (ROS) generation and MDA content in Nano-TiO{sub 2} exposed cells were significantly increased than those of control in dose dependent manners. Nrf2/ARE droved the downstream genes including NAD(P)H dehydrogenase [quinine] 1(NQO1), heme oxygenase 1 (HO-1) and glutamate-cysteine ligase catalytic subunit (GCLC) expression were significantly higher in wildtype HepG2 cells after Nano-TiO{sub 2} treatment. After treatment with Nano-TiO{sub 2}, the DNA damages were significantly increased in Nrf(-/-) cells and mice whereas significantly decreased in tBHQ pre-treatment cells and mice, compared with the wildtype HepG2 cells and mice, respectively. Our results indicated that the acquired of Nrf2 leads to a decreased susceptibility to DNA damages induction by Nano-TiO{sub 2} and decreasing of risk of cancer which would provide a strategy for a more efficacious sensitization of against of Nano-TiO{sub 2} toxication.

  17. Transgenerational inheritance of modified DNA methylation patterns and enhanced tolerance induced by heavy metal stress in rice (Oryza sativa L.).

    Science.gov (United States)

    Ou, Xiufang; Zhang, Yunhong; Xu, Chunming; Lin, Xiuyun; Zang, Qi; Zhuang, Tingting; Jiang, Lili; von Wettstein, Diter; Liu, Bao

    2012-01-01

    DNA methylation is sensitive and responsive to stressful environmental conditions. Nonetheless, the extent to which condition-induced somatic methylation modifications can impose transgenerational effects remains to be fully understood. Even less is known about the biological relevance of the induced epigenetic changes for potentially altered well-being of the organismal progenies regarding adaptation to the specific condition their progenitors experienced. We analyzed DNA methylation pattern by gel-blotting at genomic loci representing transposable elements and protein-coding genes in leaf-tissue of heavy metal-treated rice (Oryza sativa) plants (S0), and its three successive organismal generations. We assessed expression of putative genes involved in establishing and/or maintaining DNA methylation patterns by reverse transcription (RT)-PCR. We measured growth of the stressed plants and their unstressed progenies vs. the control plants. We found (1) relative to control, DNA methylation patterns were modified in leaf-tissue of the immediately treated plants, and the modifications were exclusively confined to CHG hypomethylation; (2) the CHG-demethylated states were heritable via both maternal and paternal germline, albeit often accompanying further hypomethylation; (3) altered expression of genes encoding for DNA methyltransferases, DNA glycosylase and SWI/SNF chromatin remodeling factor (DDM1) were induced by the stress; (4) progenies of the stressed plants exhibited enhanced tolerance to the same stress their progenitor experienced, and this transgenerational inheritance of the effect of condition accompanying heritability of modified methylation patterns. Our findings suggest that stressful environmental condition can produce transgenerational epigenetic modifications. Progenies of stressed plants may develop enhanced adaptability to the condition, and this acquired trait is inheritable and accord with transmission of the epigenetic modifications. We suggest

  18. Association of Oxidative Stress with Psychiatric Disorders.

    Science.gov (United States)

    Hassan, Waseem; Noreen, Hamsa; Castro-Gomes, Vitor; Mohammadzai, Imdadullah; da Rocha, Joao Batista Teixeira; Landeira-Fernandez, J

    2016-01-01

    When concentrations of both reactive oxygen species and reactive nitrogen species exceed the antioxidative capability of an organism, the cells undergo oxidative impairment. Impairments in membrane integrity and lipid and protein oxidation, protein mutilation, DNA damage, and neuronal dysfunction are some of the fundamental consequences of oxidative stress. The purpose of this work was to review the associations between oxidative stress and psychological disorders. The search terms were the following: "oxidative stress and affective disorders," "free radicals and neurodegenerative disorders," "oxidative stress and psychological disorders," "oxidative stress, free radicals, and psychiatric disorders," and "association of oxidative stress." These search terms were used in conjunction with each of the diagnostic categories of the American Psychiatric Association's Diagnostic and Statistical Manual of Mental Disorders and World Health Organization's International Statistical Classification of Diseases and Related Health Problems. Genetic, pharmacological, biochemical, and preclinical therapeutic studies, case reports, and clinical trials were selected to explore the molecular aspects of psychological disorders that are associated with oxidative stress. We identified a broad spectrum of 83 degenerative syndromes and psychiatric disorders that were associated with oxidative stress. The multi-dimensional information identified herein supports the role of oxidative stress in various psychiatric disorders. We discuss the results from the perspective of developing novel therapeutic interventions.

  19. Taurine and pioglitazone attenuate diabetes-induced testicular damage by abrogation of oxidative stress and up-regulation of the pituitary-gonadal axis.

    Science.gov (United States)

    Abd El-Twab, Sanaa M; Mohamed, Hanaa M; Mahmoud, Ayman M

    2016-06-01

    Chronic hyperglycemia is associated with impairment of testicular function. The current study aimed to investigate the protective effects and the possible mechanisms of taurine and pioglitazone against diabetes-induced testicular dysfunction in rats. Diabetes was induced by streptozotocin injection. Both normal and diabetic rats received taurine (100 mg/kg) or pioglitazone (10 mg/kg) orally and daily for 6 weeks. Diabetic rats showed a significant (P Taurine and pioglitazone alleviated hyperglycemia, decreased pro-inflammatory cytokines, and increased circulating levels of insulin, testosterone, LH, and FSH. Gene and protein expression of LH and FSH receptors and cytochrome P450 17α-hydroxylase (CYP17) was significantly (P taurine and pioglitazone. In addition, taurine and pioglitazone significantly decreased lipid peroxidation and DNA damage, and enhanced activity of the antioxidant enzymes in testes of diabetic rats. In conclusion, taurine and pioglitazone exerted protective effects against diabetes-induced testicular damage through attenuation of hyperglycemia, inflammation, oxidative stress and DNA damage, and up-regulation of the pituitary/gonadal axis.

  20. Beneficial Effect of Jojoba Seed Extracts on Hyperglycemia-Induced Oxidative Stress in RINm5f Beta Cells.

    Science.gov (United States)

    Belhadj, Sahla; Hentati, Olfa; Hamdaoui, Ghaith; Fakhreddine, Khaskhoussi; Maillard, Elisa; Dal, Stéphanie; Sigrist, Séverine

    2018-03-20

    Hyperglycemia occurs during diabetes and insulin resistance. It causes oxidative stress by increasing reactive oxygen species (ROS) levels, leading to cellular damage. Polyphenols play a central role in defense against oxidative stress. In our study, we investigated the antioxidant properties of simmondsin, a pure molecule present in jojoba seeds, and of the aqueous extract of jojoba seeds on fructose-induced oxidative stress in RINm5f beta cells. The exposure of RINm5f beta cells to fructose triggered the loss of cell viability (-48%, p jojoba seed extract makes jojoba a powerful agent to prevent the destruction of RINm5f beta cells induced by hyperglycemia.

  1. Arsenite and monomethylarsonous acid generate oxidative stress response in human bladder cell culture

    International Nuclear Information System (INIS)

    Eblin, K.E.; Bowen, M.E.; Cromey, D.W.; Bredfeldt, T.G.; Mash, E.A.; Lau, S.S.; Gandolfi, A.J.

    2006-01-01

    Arsenicals have commonly been seen to induce reactive oxygen species (ROS) which can lead to DNA damage and oxidative stress. At low levels, arsenicals still induce the formation of ROS, leading to DNA damage and protein alterations. UROtsa cells, an immortalized human urothelial cell line, were used to study the effects of arsenicals on the human bladder, a site of arsenical bioconcentration and carcinogenesis. Biotransformation of As(III) by UROtsa cells has been shown to produce methylated species, namely monomethylarsonous acid [MMA(III)], which has been shown to be 20 times more cytotoxic. Confocal fluorescence images of UROtsa cells treated with arsenicals and the ROS sensing probe, DCFDA, showed an increase of intracellular ROS within five min after 1 μM and 10 μM As(III) treatments. In contrast, 50 and 500 nM MMA(III) required pretreatment for 30 min before inducing ROS. The increase in ROS was ameliorated by preincubation with either SOD or catalase. An interesting aspect of these ROS detection studies is the noticeable difference between concentrations of As(III) and MMA(III) used, further supporting the increased cytotoxicity of MMA(III), as well as the increased amount of time required for MMA(III) to cause oxidative stress. These arsenical-induced ROS produced oxidative DNA damage as evidenced by an increase in 8-hydroxyl-2'-deoxyguanosine (8-oxo-dG) with either 50 nM or 5 μM MMA(III) exposure. These findings provide support that MMA(III) cause a genotoxic response upon generation of ROS. Both As(III) and MMA(III) were also able to induce Hsp70 and MT protein levels above control, showing that the cells recognize the ROS and respond. As(III) rapidly induces the formation of ROS, possibly through it oxidation to As(V) and further metabolism to MMA(III)/(V). These studies provide evidence for a different mechanism of MMA(III) toxicity, one that MMA(III) first interacts with cellular components before an ROS response is generated, taking longer to

  2. Xanthine Oxidase Inhibitor, Allopurinol, Prevented Oxidative Stress, Fibrosis, and Myocardial Damage in Isoproterenol Induced Aged Rats.

    Science.gov (United States)

    Sagor, Md Abu Taher; Tabassum, Nabila; Potol, Md Abdullah; Alam, Md Ashraful

    2015-01-01

    We evaluated the preventive effect of allopurinol on isoproterenol (ISO) induced myocardial infarction in aged rats. Twelve- to fourteen-month-old male Long Evans rats were divided into three groups: control, ISO, and ISO + allopurinol. At the end of the study, all rats were sacrificed for blood and organ sample collection to evaluate biochemical parameters and oxidative stress markers analyses. Histopathological examinations were also conducted to assess inflammatory cell infiltration and fibrosis in heart and kidneys. Our investigation revealed that the levels of oxidative stress markers were significantly increased while the level of cellular antioxidants, catalase activity, and glutathione concentration in ISO induced rats decreased. Treatment with allopurinol to ISO induced rats prevented the elevated activities of AST, ALT, and ALP enzymes, and the levels of lipid peroxidation products and increased reduced glutathione concentration. ISO induced rats also showed massive inflammatory cells infiltration and fibrosis in heart and kidneys. Furthermore, allopurinol treatment prevented the inflammatory cells infiltration and fibrosis in ISO induced rats. In conclusion, the results of our study suggest that allopurinol treatment is capable of protecting heart of ISO induced myocardial infarction in rats probably by preventing oxidative stress, inflammation, and fibrosis.

  3. Secoisolariciresinol diglucoside abrogates oxidative stress-induced damage in cardiac iron overload condition.

    Directory of Open Access Journals (Sweden)

    Stephanie Puukila

    Full Text Available Cardiac iron overload is directly associated with cardiac dysfunction and can ultimately lead to heart failure. This study examined the effect of secoisolariciresinol diglucoside (SDG, a component of flaxseed, on iron overload induced cardiac damage by evaluating oxidative stress, inflammation and apoptosis in H9c2 cardiomyocytes. Cells were incubated with 50 μ5M iron for 24 hours and/or a 24 hour pre-treatment of 500 μ M SDG. Cardiac iron overload resulted in increased oxidative stress and gene expression of the inflammatory mediators tumor necrosis factor-α, interleukin-10 and interferon γ, as well as matrix metalloproteinases-2 and -9. Increased apoptosis was evident by increased active caspase 3/7 activity and increased protein expression of Forkhead box O3a, caspase 3 and Bax. Cardiac iron overload also resulted in increased protein expression of p70S6 Kinase 1 and decreased expression of AMP-activated protein kinase. Pre-treatment with SDG abrogated the iron-induced increases in oxidative stress, inflammation and apoptosis, as well as the increased p70S6 Kinase 1 and decreased AMP-activated protein kinase expression. The decrease in superoxide dismutase activity by iron treatment was prevented by pre-treatment with SDG in the presence of iron. Based on these findings we conclude that SDG was cytoprotective in an in vitro model of iron overload induced redox-inflammatory damage, suggesting a novel potential role for SDG in cardiac iron overload.

  4. Bisphenol a promotes cell survival following oxidative DNA damage in mouse fibroblasts.

    Directory of Open Access Journals (Sweden)

    Natalie R Gassman

    Full Text Available Bisphenol A (BPA is a biologically active industrial chemical used in production of consumer products. BPA has become a target of intense public scrutiny following concerns about its association with human diseases such as obesity, diabetes, reproductive disorders, and cancer. Recent studies link BPA with the generation of reactive oxygen species, and base excision repair (BER is responsible for removing oxidatively induced DNA lesions. Yet, the relationship between BPA and BER has yet to be examined. Further, the ubiquitous nature of BPA allows continuous exposure of the human genome concurrent with the normal endogenous and exogenous insults to the genome, and this co-exposure may impact the DNA damage response and repair. To determine the effect of BPA exposure on base excision repair of oxidatively induced DNA damage, cells compromised in double-strand break repair were treated with BPA alone or co-exposed with either potassium bromate (KBrO3 or laser irradiation as oxidative damaging agents. In experiments with KBrO3, co-treatment with BPA partially reversed the KBrO3-induced cytotoxicity observed in these cells, and this was coincident with an increase in guanine base lesions in genomic DNA. The improvement in cell survival and the increase in oxidatively induced DNA base lesions were reminiscent of previous results with alkyl adenine DNA glycosylase-deficient cells, suggesting that BPA may prevent initiation of repair of oxidized base lesions. With laser irradiation-induced DNA damage, treatment with BPA suppressed DNA repair as revealed by several indicators. These results are consistent with the hypothesis that BPA can induce a suppression of oxidized base lesion DNA repair by the base excision repair pathway.

  5. Cadmium induced oxidative stress in Dunaliella salina | Moradshahi ...

    African Journals Online (AJOL)

    The unicellular green algae Dunaliella salina contains various antioxidants which protect the cell from oxidative damage due to environmental stresses such as heavy metal stress. In the present study, the response of D. salina at the stationary growth phase to oxidative stress generated by cadmium chloride was ...

  6. Oxidative stress in a rat model of cotton smoke inhalation-induced ...

    African Journals Online (AJOL)

    Background: Smoke inhalation injury refers to airway and lung parenchyma injury and general chemical damage caused by inhaling toxic gases and substances. The aim of this study was to explore the oxidative stress mechanism of cotton smoke inhalation-induced pulmonary injury in a rat model. Materials and Methods: ...

  7. Oxidative DNA damage and its repair in rat spleen following subchronic exposure to aniline

    International Nuclear Information System (INIS)

    Ma Huaxian; Wang Jianling; Abdel-Rahman, Sherif Z.; Boor, Paul J.; Khan, M. Firoze

    2008-01-01

    The mechanisms by which aniline exposure elicits splenotoxic response, especially the tumorigenic response, are not well-understood. Splenotoxicity of aniline is associated with iron overload and generation of reactive oxygen species (ROS) which can cause oxidative damage to DNA, proteins and lipids (oxidative stress). 8-Hydroxy-2'-deoxyguanosine (8-OHdG) is one of the most abundant oxidative DNA lesions resulting from ROS, and 8-oxoguanine glycosylase 1 (OGG1), a specific DNA glycosylase/lyase enzyme, plays a key role in the removal of 8-OHdG adducts. This study focused on examining DNA damage (8-OHdG) and repair (OGG1) in the spleen in an experimental condition preceding a tumorigenic response. To achieve that, male Sprague-Dawley rats were subchronically exposed to aniline (0.5 mmol/kg/day via drinking water for 30 days), while controls received drinking water only. Aniline treatment led to a significant increase in splenic oxidative DNA damage, manifested as a 2.8-fold increase in 8-OHdG levels. DNA repair activity, measured as OGG1 base excision repair (BER) activity, increased by ∼ 1.3 fold in the nuclear protein extracts (NE) and ∼ 1.2 fold in the mitochondrial protein extracts (ME) of spleens from aniline-treated rats as compared to the controls. Real-time PCR analysis for OGG1 mRNA expression in the spleen revealed a 2-fold increase in expression in aniline-treated rats than the controls. Likewise, OGG1 protein expression in the NEs of spleens from aniline-treated rats was ∼ 1.5 fold higher, whereas in the MEs it was ∼ 1.3 fold higher than the controls. Aniline treatment also led to stronger immunostaining for both 8-OHdG and OGG1 in the spleens, confined to the red pulp areas. It is thus evident from our studies that aniline-induced oxidative stress is associated with increased oxidative DNA damage. The BER pathway was also activated, but not enough to prevent the accumulation of oxidative DNA damage (8-OHdG). Accumulation of mutagenic oxidative

  8. Counteraction of Oxidative Stress by Vitamin E Affects Epigenetic Regulation by Increasing Global Methylation and Gene Expression of MLH1 and DNMT1 Dose Dependently in Caco-2 Cells

    Directory of Open Access Journals (Sweden)

    Katja Zappe

    2018-01-01

    Full Text Available Obesity- or diabetes-induced oxidative stress is discussed as a major risk factor for DNA damage. Vitamin E and many polyphenols exhibit antioxidative activities with consequences on epigenetic regulation of inflammation and DNA repair. The present study investigated the counteraction of oxidative stress by vitamin E in the colorectal cancer cell line Caco-2 under normal (1 g/l and high (4.5 g/l glucose cell culture condition. Malondialdehyde (MDA as a surrogate marker of lipid peroxidation and reactive oxygen species (ROS was analyzed. Gene expression and promoter methylation of the DNA repair gene MutL homolog 1 (MLH1 and the DNA methyltransferase 1 (DNMT1 as well as global methylation by LINE-1 were investigated. Results revealed a dose-dependent counteracting effect of vitamin E on H2O2-induced oxidative stress. Thereby, 10 μM vitamin E proved to be more efficient than did 50 μM in reducing MDA. Further, an induction of MLH1 and DNMT1 gene expression was noticed, accompanied by an increase in global methylation. Whether LINE-1 hypomethylation is a cause or effect of oxidative stress is still unclear. In conclusion, supplementation of exogenous antioxidants like vitamin E in vitro exhibits beneficial effects concerning oxidative stress as well as epigenetic regulation involved in DNA repair.

  9. Is There Still Any Role for Oxidative Stress in Mitochondrial DNA-Dependent Aging?

    Directory of Open Access Journals (Sweden)

    Gábor Zsurka

    2018-03-01

    Full Text Available Recent deep sequencing data has provided compelling evidence that the spectrum of somatic point mutations in mitochondrial DNA (mtDNA in aging tissues lacks G > T transversion mutations. This fact cannot, however, be used as an argument for the missing contribution of reactive oxygen species (ROS to mitochondria-related aging because it is probably caused by the nucleotide selectivity of mitochondrial DNA polymerase γ (POLG. In contrast to point mutations, the age-dependent accumulation of mitochondrial DNA deletions is, in light of recent experimental data, still explainable by the segregation of mutant molecules generated by the direct mutagenic effects of ROS (in particular, of HO· radicals formed from H2O2 by a Fenton reaction. The source of ROS remains controversial, because the mitochondrial contribution to tissue ROS production is probably lower than previously thought. Importantly, in the discussion about the potential role of oxidative stress in mitochondria-dependent aging, ROS generated by inflammation-linked processes and the distribution of free iron also require careful consideration.

  10. Oxaliplatin-induced Oxidative Stress Provokes Toxicity in Isolated Rat Liver Mitochondria.

    Science.gov (United States)

    Tabassum, Heena; Waseem, Mohammad; Parvez, Suhel; Qureshi, M Irfan

    2015-11-01

    Oxaliplatin is a widely employed platinum-derived chemotherapeutic agent commonly used for the treatment of colorectal cancer. Unfortunately, the benefit of this important drug is compromised by severe side effects such as neuropathy, ototoxicity, gastrointestinal toxicity, and hematological toxicity. Recently, few studies have also suggested the occurrence of hepatotoxicity in oxaliplatin-treated patients. Mitochondria have emerged as targets for anticancer drugs in various kinds of toxicity including hepatotoxicity that can lead to neoplastic disease. Oxidative stress is a well-established biomarker of mitochondrial toxicity. The purpose of this study was to investigate the dose-dependent damage caused by oxaliplatin on isolated liver mitochondria under in vitro conditions. The study was conducted in mitochondria isolated from liver of Wistar rats. Oxaliplatin was incubated with mitochondria in a dose-dependent manner under in vitro conditions. Oxidative stress indexes, non-enzymatic and enzymatic antioxidants were evaluated, looking at the overall armamentarium against the toxicity induced by oxaliplatin. Oxaliplatin caused a significant rise in the mitochondrial oxidative stress indexes lipid peroxidation and protein carbonyl. Alterations in the levels of non-enzymatic antioxidants and activities of enzymatic antioxidants were also observed. Oxidative stress plays an important role in the mitochondrial toxicity of oxaliplatin. The integrity of the hepatic tissue is compromised by the reactive oxygen species-mediated lipid peroxidation and protein carbonyl formation. Copyright © 2015 IMSS. Published by Elsevier Inc. All rights reserved.

  11. Omega-3 Polyunsaturated Fatty Acids Attenuate Radiation-induced Oxidative Stress and Organ Dysfunctions in Rats

    International Nuclear Information System (INIS)

    Abdel Aziz, N.; Yacoub, S.F.

    2013-01-01

    The Aim of the present study was to determine the possible protective effect of omega-3 polyunsaturated fatty acids (omega-3 PUFA) against radiation-induced oxidative stress associated with organ dysfunctions. Omega-3 PUFA was administered by oral gavages to male albino rats at a dose of 0.4 g/ kg body wt daily for 4 weeks before whole body γ-irradiation with 4Gy. Significant increase of serum lipid peroxidation end product as malondialdehyde (MDA) along with the reduction in blood glutathione (GSH) content, superoxide dismutase (SOD) and glutathione peroxidase (GPX) enzyme activities were recorded on 3rd and 8th days post-irradiation. Oxidative stress was associated with a significant increase in lactate dehydrogenase (LDH) and creatine phosphokinase (CPK) enzyme activities, markers of heart damage, significant increases in uric acid, urea and creatinine levels, markers of kidney damage, significant increases of alkaline phosphatase (ALP) and transaminases (ALT and AST) activities, markers of liver damage. Moreover significant increases in total cholesterol and triglycerides levels were recorded. Omega-3 PUFA administration pre-irradiation significantly attenuated the radiation-induced oxidative stress and organ dysfunctions tested in this study. It could be concluded that oral supplementation of omega-3 PUFA before irradiation may afford protection against radiation-induced oxidative stress and might preserve the integrity of tissue functions of the organs under investigations.

  12. Oxidative stress induced by cerium oxide nanoparticles in cultured BEAS-2B cells

    International Nuclear Information System (INIS)

    Park, Eun-Jung; Choi, Jinhee; Park, Young-Kwon; Park, Kwangsik

    2008-01-01

    Cerium oxide nanoparticles of different sizes (15, 25, 30, 45 nm) were prepared by the supercritical synthesis method, and cytotoxicity was evaluated using cultured human lung epithelial cells (BEAS-2B). Exposure of the cultured cells to nanoparticles (5, 10, 20, 40 μg/ml) led to cell death, ROS increase, GSH decrease, and the inductions of oxidative stress-related genes such as heme oxygenase-1, catalase, glutathione S-transferase, and thioredoxin reductase. The increased ROS by cerium oxide nanoparticles triggered the activation of cytosolic caspase-3 and chromatin condensation, which means that cerium oxide nanoparticles exert cytotoxicity by an apoptotic process. Uptake of the nanoparticles to the cultured cells was also tested. It was observed that cerium oxide nanoparticles penetrated into the cytoplasm and located in the peri-region of the nucleus as aggregated particles, which may induce the direct interaction between nanoparticles and cellular molecules to cause adverse cellular responses

  13. Genotoxicity and oxidative stress in chromium-exposed tannery workers in North India.

    Science.gov (United States)

    Ambreen, Khushboo; Khan, Faizan Haider; Bhadauria, Smrati; Kumar, Sudhir

    2014-06-01

    Trivalent chromium (Cr) is an environmental contaminant, which is extensively used in tanning industries throughout the world and causes various forms of health hazards in tannery workers. Therefore, a cross-sectional study design was used to evaluate the DNA damage and oxidative stress condition in tannery workers exposed to Cr in North India. The study population comprised 100 male tanners in the exposed group and 100 healthy males (no history of Cr exposure) in the comparable control group. Baseline characteristics including age, smoking, alcohol consumption habits and duration of exposure were recorded via interviewing the subjects. Blood Cr level (measured by atomic absorption spectrophotometry), DNA damage (measured by comet assay) and oxidative stress parameters (malondialdehyde (MDA), glutathione (GSH) and superoxide dismutase (SOD)) were estimated in both the groups. As a result of statistical analysis, exposed group showed significantly higher level of Cr (p  0.05) on DNA damage and oxidative stress parameters in both the groups. In simple and multiple correlation analysis, DNA damage and oxidative stress parameters showed significant correlation with Cr level and duration of exposure in exposed group. The findings of the present study revealed that chronic occupational exposure to trivalent Cr may cause DNA damage and oxidative stress in tannery workers. © The Author(s) 2012.

  14. Protective effect of cinnamaldehyde against glutamate-induced oxidative stress and apoptosis in PC12 cells.

    Science.gov (United States)

    Lv, Chao; Yuan, Xing; Zeng, Hua-Wu; Liu, Run-Hui; Zhang, Wei-Dong

    2017-11-15

    Cinnamaldehyde is a main ingredient of cinnamon oils from the stem bark of Cinnamomum cassia, which has been widely used in food and traditional herbal medicine in Asia. In the present study, the neuroprotective effects and the potential mechanisms of cinnamaldehyde against glutamate-induced oxidative stress in PC12 cells were investigated. Exposure to 4mM glutamate altered the GSH, MDA levels and SOD activity, caused the generation of reactive oxygen species, resulted in the induction of oxidative stress in PC12 cell, ultimately induced cell death. However, pretreatment with cinnamaldehyde at 5, 10 and 20μM significantly attenuated cell viability loss, reduced the generation of reactive oxygen species, stabilised mitochondrial membrane potential (MMP), decreased the release of cytochrome c and limited the activities of caspase-9 and -3. In addition, cinnamaldehyde also markedly increased Bcl-2 while inhibiting Bax expression,and decreased the LC3-II/LC3-I ratio. These results indicate that cinnamaldehyde exists a potential protective effect against glutamate-induced oxidative stress and apoptosis in PC12 cells. Copyright © 2017. Published by Elsevier B.V.

  15. Measurement and Clinical Significance of Biomarkers of Oxidative Stress in Humans

    Directory of Open Access Journals (Sweden)

    Ilaria Marrocco

    2017-01-01

    Full Text Available Oxidative stress is the result of the imbalance between reactive oxygen species (ROS formation and enzymatic and nonenzymatic antioxidants. Biomarkers of oxidative stress are relevant in the evaluation of the disease status and of the health-enhancing effects of antioxidants. We aim to discuss the major methodological bias of methods used for the evaluation of oxidative stress in humans. There is a lack of consensus concerning the validation, standardization, and reproducibility of methods for the measurement of the following: (1 ROS in leukocytes and platelets by flow cytometry, (2 markers based on ROS-induced modifications of lipids, DNA, and proteins, (3 enzymatic players of redox status, and (4 total antioxidant capacity of human body fluids. It has been suggested that the bias of each method could be overcome by using indexes of oxidative stress that include more than one marker. However, the choice of the markers considered in the global index should be dictated by the aim of the study and its design, as well as by the clinical relevance in the selected subjects. In conclusion, the clinical significance of biomarkers of oxidative stress in humans must come from a critical analysis of the markers that should give an overall index of redox status in particular conditions.

  16. Beta Blockers Suppress Dextrose-Induced Endoplasmic Reticulum Stress, Oxidative Stress, and Apoptosis in Human Coronary Artery Endothelial Cells.

    Science.gov (United States)

    Haas, Michael J; Kurban, William; Shah, Harshit; Onstead-Haas, Luisa; Mooradian, Arshag D

    Beta blockers are known to have favorable effects on endothelial function partly because of their capacity to reduce oxidative stress. To determine whether beta blockers can also prevent dextrose-induced endoplasmic reticulum (ER) stress in addition to their antioxidative effects, human coronary artery endothelial cells and hepatocyte-derived HepG2 cells were treated with 27.5 mM dextrose for 24 hours in the presence of carvedilol (a lipophilic beta blockers with alpha blocking activity), propranolol (a lipophilic nonselective beta blockers), and atenolol (a water-soluble selective beta blockers), and ER stress, oxidative, stress and cell death were measured. ER stress was measured using the placental alkaline phosphatase assay and Western blot analysis of glucose regulated protein 78, c-Jun-N-terminal kinase (JNK), phospho-JNK, eukaryotic initiating factor 2α (eIF2α), and phospho-eIF2α and measurement of X-box binding protein 1 (XBP1) mRNA splicing using reverse transcriptase-polymerase chain reaction. Superoxide (SO) generation was measured using the superoxide-reactive probe 2-methyl-6-(4-methoxyphenyl)-3,7-dihydroimidazo[1,2-A]pyrazin-3-one hydrochloride (MCLA) chemiluminescence. Cell viability was measured by propidium iodide staining method. The ER stress, SO production, and cell death induced by 27.5 mM dextrose were inhibited by all 3 beta blockers tested. The antioxidative and ER stress reducing effects of beta blockers were also observed in HepG2 cells. The salutary effects of beta blockers on endothelial cells in reducing both ER stress and oxidative stress may contribute to the cardioprotective effects of these agents.

  17. Oxidative and nitrosative stress in trichloroethene-mediated autoimmune response

    International Nuclear Information System (INIS)

    Wang Gangduo; Cai Ping; Ansari, G.A.S.; Khan, M. Firoze

    2007-01-01

    Reactive oxygen and nitrogen species (RONS) are implicated in the pathogenesis of several autoimmune diseases. Also, increased lipid peroxidation and protein nitration are reported in systemic autoimmune diseases. Lipid peroxidation-derived aldehydes (LPDAs) such as malondialdehyde (MDA) and 4-hydroxynonenal (HNE) are highly reactive and bind proteins covalently, but their potential to elicit an autoimmune response and contribution to disease pathogenesis remain unclear. Similarly, nitration of protein could also contribute to disease pathogenesis. To assess the status of lipid peroxidation and/or RONS, autoimmune-prone female MRL+/+ mice (5-week old) were treated with trichloroethene (TCE), an environmental contaminant known to induce autoimmune response, for 48 weeks (0.5 mg/ml via drinking water), and formation of antibodies to LPDA-protein adducts was followed in the sera of control and TCE-treated mice. TCE treatment led to greater formation of both anti-MDA- and -HNE-protein adduct antibodies and higher serum iNOS and nitrotyrosine levels. The increase in TCE-induced oxidative stress was associated with increases in anti-nuclear-, anti-ssDNA- and anti-dsDNA-antibodies. These findings suggest that TCE exposure not only leads to oxidative/nitrosative stress, but is also associated with induction/exacerbation of autoimmune response in MRL+/+ mice. Further interventional studies are needed to establish a causal role of RONS in TCE-mediated autoimmunity

  18. Chemotherapeutic-Induced Cardiovascular Dysfunction: Physiological Effects, Early Detection—The Role of Telomerase to Counteract Mitochondrial Defects and Oxidative Stress

    Science.gov (United States)

    Quryshi, Nabeel; Norwood Toro, Laura E.; Ait-Aissa, Karima; Kong, Amanda; Beyer, Andreas M.

    2018-01-01

    Although chemotherapeutics can be highly effective at targeting malignancies, their ability to trigger cardiovascular morbidity is clinically significant. Chemotherapy can adversely affect cardiovascular physiology, resulting in the development of cardiomyopathy, heart failure and microvascular defects. Specifically, anthracyclines are known to cause an excessive buildup of free radical species and mitochondrial DNA damage (mtDNA) that can lead to oxidative stress-induced cardiovascular apoptosis. Therefore, oncologists and cardiologists maintain a network of communication when dealing with patients during treatment in order to treat and prevent chemotherapy-induced cardiovascular damage; however, there is a need to discover more accurate biomarkers and therapeutics to combat and predict the onset of cardiovascular side effects. Telomerase, originally discovered to promote cellular proliferation, has recently emerged as a potential mechanism to counteract mitochondrial defects and restore healthy mitochondrial vascular phenotypes. This review details mechanisms currently used to assess cardiovascular damage, such as C-reactive protein (CRP) and troponin levels, while also unearthing recently researched biomarkers, including circulating mtDNA, telomere length and telomerase activity. Further, we explore a potential role of telomerase in the mitigation of mitochondrial reactive oxygen species and maintenance of mtDNA integrity. Telomerase activity presents a promising indicator for the early detection and treatment of chemotherapy-derived cardiac damage. PMID:29534446

  19. Chlorobenzene induces oxidative stress in human lung epithelial cells in vitro

    International Nuclear Information System (INIS)

    Feltens, Ralph; Moegel, Iljana; Roeder-Stolinski, Carmen; Simon, Jan-Christoph; Herberth, Gunda; Lehmann, Irina

    2010-01-01

    Chlorobenzene is a volatile organic compound (VOC) that is widely used as a solvent, degreasing agent and chemical intermediate in many industrial settings. Occupational studies have shown that acute and chronic exposure to chlorobenzene can cause irritation of the mucosa of the upper respiratory tract and eyes. Using in vitro assays, we have shown in a previous study that human bronchial epithelial cells release inflammatory mediators such as the cytokine monocyte chemoattractant protein-1 (MCP-1) in response to chlorobenzene. This response is mediated through the NF-κB signaling pathway. Here, we investigated the effects of monochlorobenzene on human lung cells, with emphasis on potential alterations of the redox equilibrium to clarify whether the chlorobenzene-induced inflammatory response in lung epithelial cells is caused via an oxidative stress-dependent mechanism. We found that expression of cellular markers for oxidative stress, such as heme oxygenase 1 (HO-1), glutathione S-transferase π1 (GSTP1), superoxide dismutase 1 (SOD1), prostaglandin-endoperoxide synthase 2 (PTGS2) and dual specificity phosphatase 1 (DUSP1), were elevated in the presence of monochlorobenzene. Likewise, intracellular reactive oxygen species (ROS) were increased in response to exposure. However, in the presence of the antioxidants N-(2-mercaptopropionyl)-glycine (MPG) or bucillamine, chlorobenzene-induced upregulation of marker proteins and release of the inflammatory mediator MCP-1 are suppressed. These results complement our previous findings and point to an oxidative stress-mediated inflammatory response following chlorobenzene exposure.

  20. Gallic acid prevents nonsteroidal anti-inflammatory drug-induced gastropathy in rat by blocking oxidative stress and apoptosis.

    Science.gov (United States)

    Pal, Chinmay; Bindu, Samik; Dey, Sumanta; Alam, Athar; Goyal, Manish; Iqbal, Mohd Shameel; Maity, Pallab; Adhikari, Susanta S; Bandyopadhyay, Uday

    2010-07-15

    Nonsteroidal anti-inflammatory drug (NSAID)-induced oxidative stress plays a critical role in gastric mucosal cell apoptosis and gastropathy. NSAIDs induce the generation of hydroxyl radical ((*)OH) through the release of free iron, which plays an important role in developing gastropathy. Thus, molecules having both iron-chelating and antiapoptotic properties will be beneficial in preventing NSAID-induced gastropathy. Gallic acid (GA), a polyphenolic natural product, has the capacity to chelate free iron. Here, we report that GA significantly prevents, as well as heals, NSAID-induced gastropathy. In vivo, GA blocks NSAID-mediated mitochondrial oxidative stress by preventing mitochondrial protein carbonyl formation, lipid peroxidation, and thiol depletion. In vitro, GA scavenges free radicals and blocks (*)OH-mediated oxidative damage. GA also attenuates gastric mucosal cell apoptosis in vivo as well as in vitro in cultured gastric mucosal cells as evident from the TUNEL assay. GA prevents NSAID-induced activation of caspase-9, a marker for the mitochondrial pathway of apoptosis, and restores NSAID-mediated collapse of the mitochondrial transmembrane potential and dehydrogenase activity. Thus, the inhibition of mitochondrial oxidative stress by GA is associated with the inhibition of NSAID-induced mitochondrial dysfunction and activation of apoptosis in gastric mucosal cells, which are responsible for gastric injury or gastropathy. Copyright 2010 Elsevier Inc. All rights reserved.

  1. The Protective and Therapeutic Roles of Hexamethylenetetramine and N-Acetyl-Cysteine on Sulfur Mustard-Induced Oxidative Stress in Rat Serum

    Directory of Open Access Journals (Sweden)

    M Jafari

    2016-04-01

    Conclusion: The study findings revealed that SM induces oxidative stress in rat serum. HMT and NAC can ameliorate SM-induced oxidative stress by altering antioxidant defense system in serum. The protective effect of HMT against the toxicity of SM is higher than NAC.

  2. A systematic review of p53 regulation of oxidative stress in skeletal muscle.

    Science.gov (United States)

    Beyfuss, Kaitlyn; Hood, David A

    2018-12-01

    p53 is a tumor suppressor protein involved in regulating a wide array of signaling pathways. The role of p53 in the cell is determined by the type of imposed oxidative stress, its intensity and duration. The last decade of research has unravelled a dual nature in the function of p53 in mediating the oxidative stress burden. However, this is dependent on the specific properties of the applied stress and thus requires further analysis. A systematic review was performed following an electronic search of Pubmed, Google Scholar, and ScienceDirect databases. Articles published in the English language between January 1, 1990 and March 1, 2017 were identified and isolated based on the analysis of p53 in skeletal muscle in both animal and cell culture models. Literature was categorized according to the modality of imposed oxidative stress including exercise, diet modification, exogenous oxidizing agents, tissue manipulation, irradiation, and hypoxia. With low to moderate levels of oxidative stress, p53 is involved in activating pathways that increase time for cell repair, such as cell cycle arrest and autophagy, to enhance cell survival. However, with greater levels of stress intensity and duration, such as with irradiation, hypoxia, and oxidizing agents, the role of p53 switches to facilitate increased cellular stress levels by initiating DNA fragmentation to induce apoptosis, thereby preventing aberrant cell proliferation. Current evidence confirms that p53 acts as a threshold regulator of cellular homeostasis. Therefore, within each modality, the intensity and duration are parameters of the oxidative stressor that must be analyzed to determine the role p53 plays in regulating signaling pathways to maintain cellular health and function in skeletal muscle. Acadl: acyl-CoA dehydrogenase, long chain; Acadm: acyl-CoA dehydrogenase, C-4 to C-12 straight chain; AIF: apoptosis-inducing factor; Akt: protein kinase B (PKB); AMPK: AMP-activated protein kinase; ATF-4: activating

  3. Protective role of integrin-linked kinase against oxidative stress and in maintenance of genomic integrity.

    Science.gov (United States)

    Im, Michelle; Dagnino, Lina

    2018-03-02

    The balance between the production of reactive oxygen species and activation of antioxidant pathways is essential to maintain a normal redox state in all tissues. Oxidative stress caused by excessive oxidant species generation can cause damage to DNA and other macromolecules, affecting cell function and viability. Here we show that integrin-linked kinase (ILK) plays a key role in eliciting a protective response to oxidative damage in epidermal cells. Inactivation of the Ilk gene causes elevated levels of intracellular oxidant species (IOS) and DNA damage in the absence of exogenous oxidative insults. In ILK-deficient cells, excessive IOS production can be prevented through inhibition of NADPH oxidase activity, with a concomitant reduction in DNA damage. Additionally, ILK is necessary for DNA repair processes following UVB-induced damage, as ILK-deficient cells show a significantly impaired ability to remove cyclobutane pyrimidine dimers following irradiation. Thus, ILK is essential to maintain cellular redox balance and, in its absence, epidermal cells become more susceptible to oxidative damage through mechanisms that involve IOS production by NADPH oxidase activity.

  4. Oxidative Stress Facilitates IFN-γ-Induced Mimic Extracellular Trap Cell Death in A549 Lung Epithelial Cancer Cells.

    Science.gov (United States)

    Lin, Chiou-Feng; Chen, Chia-Ling; Chien, Shun-Yi; Tseng, Po-Chun; Wang, Yu-Chih; Tsai, Tsung-Ting

    2016-01-01

    We previously demonstrated that IFN-γ induces an autophagy-regulated mimic extracellular trap cell death (ETosis) in A549 human lung cancer cells. Regarding reactive oxygen species (ROS) are involved in ETosis, this study investigated the role of oxidative stress. After IFN-γ stimulation, a necrosis-like cell death mimic ETosis occurred accompanied by the inhibition of cell growth, aberrant nuclear staining, and nucleosome release. ROS were generated in a time-dependent manner with an increase in NADPH oxidase component protein expression. STAT1-mediated IFN regulatory factor-1 activation was essential for upregulating ROS production. By genetically silencing p47phox, IFN-γ-induced ROS and mimic ETosis were significantly attenuated. This mechanistic study indicated that ROS may mediate DNA damage followed by histone H3 citrullination. Furthermore, ROS promoted IFN-γ-induced mimic ETosis in cooperation with autophagy. These findings further demonstrate that ROS regulates IFN-γ-induced mimic ETosis in lung epithelial malignancy.

  5. Natural resistance to ascorbic acid induced oxidative stress is mainly mediated by catalase activity in human cancer cells and catalase-silencing sensitizes to oxidative stress

    Directory of Open Access Journals (Sweden)

    Klingelhoeffer Christoph

    2012-05-01

    Full Text Available Abstract Background Ascorbic acid demonstrates a cytotoxic effect by generating hydrogen peroxide, a reactive oxygen species (ROS involved in oxidative cell stress. A panel of eleven human cancer cell lines, glioblastoma and carcinoma, were exposed to serial dilutions of ascorbic acid (5-100 mmol/L. The purpose of this study was to analyse the impact of catalase, an important hydrogen peroxide-detoxifying enzyme, on the resistance of cancer cells to ascorbic acid mediated oxidative stress. Methods Effective concentration (EC50 values, which indicate the concentration of ascorbic acid that reduced the number of viable cells by 50%, were detected with the crystal violet assay. The level of intracellular catalase protein and enzyme activity was determined. Expression of catalase was silenced by catalase-specific short hairpin RNA (sh-RNA in BT-20 breast carcinoma cells. Oxidative cell stress induced apoptosis was measured by a caspase luminescent assay. Results The tested human cancer cell lines demonstrated obvious differences in their resistance to ascorbic acid mediated oxidative cell stress. Forty-five percent of the cell lines had an EC50 > 20 mmol/L and fifty-five percent had an EC50 50 of 2.6–5.5 mmol/L, glioblastoma cells were the most susceptible cancer cell lines analysed in this study. A correlation between catalase activity and the susceptibility to ascorbic acid was observed. To study the possible protective role of catalase on the resistance of cancer cells to oxidative cell stress, the expression of catalase in the breast carcinoma cell line BT-20, which cells were highly resistant to the exposure to ascorbic acid (EC50: 94,9 mmol/L, was silenced with specific sh-RNA. The effect was that catalase-silenced BT-20 cells (BT-20 KD-CAT became more susceptible to high concentrations of ascorbic acid (50 and 100 mmol/L. Conclusions Fifty-five percent of the human cancer cell lines tested were unable to protect themselves

  6. C-X-C Chemokine Receptor Type 4 Plays a Crucial Role in Mediating Oxidative Stress-Induced Podocyte Injury.

    Science.gov (United States)

    Mo, Hongyan; Wu, Qinyu; Miao, Jinhua; Luo, Congwei; Hong, Xue; Wang, Yongping; Tang, Lan; Hou, Fan Fan; Liu, Youhua; Zhou, Lili

    2017-08-20

    Oxidative stress plays a role in mediating podocyte injury and proteinuria. However, the underlying mechanism remains poorly understood. In this study, we investigated the potential role of C-X-C chemokine receptor type 4 (CXCR4), the receptor for stromal cell-derived factor 1α (SDF-1α), in mediating oxidative stress-induced podocyte injury. In mouse model of adriamycin nephropathy (ADR), CXCR4 expression was significantly induced in podocytes as early as 3 days. This was accompanied by an increased upregulation of oxidative stress in podocyte, as demonstrated by malondialdehyde assay, nitrotyrosine staining and secretion of 8-hydroxy-2'-deoxyguanosine in urine, and induction of NOX2 and NOX4, major subunits of NADPH oxidase. CXCR4 was also induced in human kidney biopsies with proteinuric kidney diseases and colocalized with advanced oxidation protein products (AOPPs), an established oxidative stress trigger. Using cultured podocytes and mouse model, we found that AOPPs induced significant loss of podocyte marker Wilms tumor 1 (WT1), nephrin, and podocalyxin, accompanied by upregulation of desmin both in vitro and in vivo. Furthermore, AOPPs worsened proteinuria and aggravated glomerulosclerosis in ADR. These effects were associated with marked activation of SDF-1α/CXCR4 axis in podocytes. Administration of AMD3100, a specific inhibitor of CXCR4, reduced proteinuria and ameliorated podocyte dysfunction and renal fibrosis triggered by AOPPs in mice. In glomerular miniorgan culture, AOPPs also induced CXCR4 expression and downregulated nephrin and WT1. Innovation and Conclusion: These results suggest that chemokine receptor CXCR4 plays a crucial role in mediating oxidative stress-induced podocyte injury, proteinuria, and renal fibrosis. CXCR4 could be a new target for mitigating podocyte injury, proteinuria, and glomerular sclerosis in proteinuric chronic kidney disease. Antioxid. Redox Signal. 27, 345-362.

  7. Inflammation, gene mutation and photoimmunosuppression in response to UVR-induced oxidative damage contributes to photocarcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Halliday, Gary M. [Dermatology Research Laboratories, Division of Medicine, Melanoma and Skin Cancer Research Institute, Royal Prince Alfred Hospital at the University of Sydney, Sydney, NSW (Australia)]. E-mail: garyh@med.usyd.edu.au

    2005-04-01

    Ultraviolet (UV) radiation causes inflammation, gene mutation and immunosuppression in the skin. These biological changes are responsible for photocarcinogenesis. UV radiation in sunlight is divided into two wavebands, UVB and UVA, both of which contribute to these biological changes, and therefore probably to skin cancer in humans and animal models. Oxidative damage caused by UV contributes to inflammation, gene mutation and immunosuppression. This article reviews evidence for the hypothesis that UV oxidative damage to these processes contributes to photocarcinogenesis. UVA makes a larger impact on oxidative stress in the skin than UVB by inducing reactive oxygen and nitrogen species which damage DNA, protein and lipids and which also lead to NAD+ depletion, and therefore energy loss from the cell. Lipid peroxidation induces prostaglandin production that in association with UV-induced nitric oxide production causes inflammation. Inflammation drives benign human solar keratosis (SK) to undergo malignant conversion into squamous cell carcinoma (SCC) probably because the inflammatory cells produce reactive oxygen species, thus increasing oxidative damage to DNA and the immune system. Reactive oxygen or nitrogen appears to cause the increase in mutational burden as SK progress into SCC in humans. UVA is particularly important in causing immunosuppression in both humans and mice, and UV lipid peroxidation induced prostaglandin production and UV activation of nitric oxide synthase is important mediators of this event. Other immunosuppressive events are likely to be initiated by UV oxidative stress. Antioxidants have also been shown to reduce photocarcinogenesis. While most of this evidence comes from studies in mice, there is supporting evidence in humans that UV-induced oxidative damage contributes to inflammation, gene mutation and immunosuppression. Available evidence implicates oxidative damage as an important contributor to sunlight-induced carcinogenesis in humans.

  8. Inflammation, gene mutation and photoimmunosuppression in response to UVR-induced oxidative damage contributes to photocarcinogenesis

    International Nuclear Information System (INIS)

    Halliday, Gary M.

    2005-01-01

    Ultraviolet (UV) radiation causes inflammation, gene mutation and immunosuppression in the skin. These biological changes are responsible for photocarcinogenesis. UV radiation in sunlight is divided into two wavebands, UVB and UVA, both of which contribute to these biological changes, and therefore probably to skin cancer in humans and animal models. Oxidative damage caused by UV contributes to inflammation, gene mutation and immunosuppression. This article reviews evidence for the hypothesis that UV oxidative damage to these processes contributes to photocarcinogenesis. UVA makes a larger impact on oxidative stress in the skin than UVB by inducing reactive oxygen and nitrogen species which damage DNA, protein and lipids and which also lead to NAD+ depletion, and therefore energy loss from the cell. Lipid peroxidation induces prostaglandin production that in association with UV-induced nitric oxide production causes inflammation. Inflammation drives benign human solar keratosis (SK) to undergo malignant conversion into squamous cell carcinoma (SCC) probably because the inflammatory cells produce reactive oxygen species, thus increasing oxidative damage to DNA and the immune system. Reactive oxygen or nitrogen appears to cause the increase in mutational burden as SK progress into SCC in humans. UVA is particularly important in causing immunosuppression in both humans and mice, and UV lipid peroxidation induced prostaglandin production and UV activation of nitric oxide synthase is important mediators of this event. Other immunosuppressive events are likely to be initiated by UV oxidative stress. Antioxidants have also been shown to reduce photocarcinogenesis. While most of this evidence comes from studies in mice, there is supporting evidence in humans that UV-induced oxidative damage contributes to inflammation, gene mutation and immunosuppression. Available evidence implicates oxidative damage as an important contributor to sunlight-induced carcinogenesis in humans

  9. Nontypeable Haemophilus influenzae induces sustained lung oxidative stress and protease expression.

    Directory of Open Access Journals (Sweden)

    Paul T King

    Full Text Available Nontypeable Haemophilus influenzae (NTHi is a prevalent bacterium found in a variety of chronic respiratory diseases. The role of this bacterium in the pathogenesis of lung inflammation is not well defined. In this study we examined the effect of NTHi on two important lung inflammatory processes 1, oxidative stress and 2, protease expression. Bronchoalveolar macrophages were obtained from 121 human subjects, blood neutrophils from 15 subjects, and human-lung fibroblast and epithelial cell lines from 16 subjects. Cells were stimulated with NTHi to measure the effect on reactive oxygen species (ROS production and extracellular trap formation. We also measured the production of the oxidant, 3-nitrotyrosine (3-NT in the lungs of mice infected with this bacterium. NTHi induced widespread production of 3-NT in mouse lungs. This bacterium induced significantly increased ROS production in human fibroblasts, epithelial cells, macrophages and neutrophils; with the highest levels in the phagocytic cells. In human macrophages NTHi caused a sustained, extracellular production of ROS that increased over time. The production of ROS was associated with the formation of macrophage extracellular trap-like structures which co-expressed the protease metalloproteinase-12. The formation of the macrophage extracellular trap-like structures was markedly inhibited by the addition of DNase. In this study we have demonstrated that NTHi induces lung oxidative stress with macrophage extracellular trap formation and associated protease expression. DNase inhibited the formation of extracellular traps.

  10. Acute Ethanol Gavage Attenuates Hemorrhage/Resuscitation-Induced Hepatic Oxidative Stress in Rats

    Directory of Open Access Journals (Sweden)

    B. Relja

    2012-01-01

    Full Text Available Acute ethanol intoxication increases the production of reactive oxygen species (ROS. Hemorrhagic shock with subsequent resuscitation (H/R also induces ROS resulting in cellular and hepatic damage in vivo. We examined the role of acute ethanol intoxication upon oxidative stress and subsequent hepatic cell death after H/R. 14 h before H/R, rats were gavaged with single dose of ethanol or saline (5 g/kg, EtOH and ctrl; H/R_EtOH or H/R_ctrl, resp.. Then, rats were hemorrhaged to a mean arterial blood pressure of 30±2 mmHg for 60 min and resuscitated. Two control groups underwent surgical procedures without H/R (sham_ctrl and sham_EtOH, resp.. Liver tissues were harvested at 2, 24, and 72 h after resuscitation. EtOH-gavage induced histological picture of acute fatty liver. Hepatic oxidative (4-hydroxynonenal, 4-HNE and nitrosative (3-nitrotyrosine, 3-NT stress were significantly reduced in EtOH-gavaged rats compared to controls after H/R. Proapoptotic caspase-8 and Bax expressions were markedly diminished in EtOH-gavaged animals compared with controls 2 h after resuscitation. EtOH-gavage increased antiapoptotic Bcl-2 gene expression compared with controls 2 h after resuscitation. iNOS protein expression increased following H/R but was attenuated in EtOH-gavaged animals after H/R. Taken together, the data suggest that acute EtOH-gavage may attenuate H/R-induced oxidative stress thereby reducing cellular injury in rat liver.

  11. 3-Keto-1,5-bisphosphonates Alleviate Serum-Oxidative Stress in the High-fat Diet Induced Obesity in Rats.

    Science.gov (United States)

    Lahbib, Karima; Aouani, Iyadh; Cavalier, Jean-François; Touil, Soufiane

    2015-09-01

    Obesity has become a leading global health problem owing to its strong association with a high incidence of oxidative stress. Many epidemiologic studies showed that an antioxidant supplementation decreases the state of oxidative stress. In the present work, a HFD-induced rat obesity and oxidative stress were used to investigate the link between fat deposition and serum-oxidative stress markers. We also studied the effect of a chronic administration of 3-keto-1,5-bisphosphonates 1 (a & b) (40 μg/kg/8 weeks/i.p.). Exposure of rats to HFD during 16 weeks induced fat deposition, weight gain and metabolic disruption characterized by an increase in cholesterol, triglyceride and glycemia levels, and a decrease in ionizable calcium and free iron concentrations. HFD also induced serum-oxidative stress status vocalized by an increase in ROS (H2 O2 ), MDA and PC levels, with a decrease in antioxidant enzyme activity (CAT, GPx, SOD). Importantly, 3-keto-1,5-bisphosphonates corrected all the deleterious effects of HFD treatment in vivo, but it failed to inhibit lipases in vitro and in vivo. These studies suggest that 3-keto-1,5-bisphosphonates 1 could be considered as safe antioxidant agents that should also find other potential biological applications. © 2014 John Wiley & Sons A/S.

  12. Fisetin and luteolin protect human retinal pigment epithelial cells from oxidative stress-induced cell death and regulate inflammation

    Science.gov (United States)

    Hytti, Maria; Piippo, Niina; Korhonen, Eveliina; Honkakoski, Paavo; Kaarniranta, Kai; Kauppinen, Anu

    2015-01-01

    Degeneration of retinal pigment epithelial (RPE) cells is a clinical hallmark of age-related macular degeneration (AMD), the leading cause of blindness among aged people in the Western world. Both inflammation and oxidative stress are known to play vital roles in the development of this disease. Here, we assess the ability of fisetin and luteolin, to protect ARPE-19 cells from oxidative stress-induced cell death and to decrease intracellular inflammation. We also compare the growth and reactivity of human ARPE-19 cells in serum-free and serum-containing conditions. The absence of serum in the culture medium did not prevent ARPE-19 cells from reaching full confluency but caused an increased sensitivity to oxidative stress-induced cell death. Both fisetin and luteolin protected ARPE-19 cells from oxidative stress-induced cell death. They also significantly decreased the release of pro-inflammatory cytokines into the culture medium. The decrease in inflammation was associated with reduced activation of MAPKs and CREB, but was not linked to NF- κB or SIRT1. The ability of fisetin and luteolin to protect and repair stressed RPE cells even after the oxidative insult make them attractive in the search for treatments for AMD. PMID:26619957

  13. Cyclic AMP Regulates Bacterial Persistence through Repression of the Oxidative Stress Response and SOS-Dependent DNA Repair in Uropathogenic Escherichia coli.

    Science.gov (United States)

    Molina-Quiroz, Roberto C; Silva-Valenzuela, Cecilia; Brewster, Jennifer; Castro-Nallar, Eduardo; Levy, Stuart B; Camilli, Andrew

    2018-01-09

    Bacterial persistence is a transient, nonheritable physiological state that provides tolerance to bactericidal antibiotics. The stringent response, toxin-antitoxin modules, and stochastic processes, among other mechanisms, play roles in this phenomenon. How persistence is regulated is relatively ill defined. Here we show that cyclic AMP, a global regulator of carbon catabolism and other core processes, is a negative regulator of bacterial persistence in uropathogenic Escherichia coli , as measured by survival after exposure to a β-lactam antibiotic. This phenotype is regulated by a set of genes leading to an oxidative stress response and SOS-dependent DNA repair. Thus, persister cells tolerant to cell wall-acting antibiotics must cope with oxidative stress and DNA damage and these processes are regulated by cyclic AMP in uropathogenic E. coli IMPORTANCE Bacterial persister cells are important in relapsing infections in patients treated with antibiotics and also in the emergence of antibiotic resistance. Our results show that in uropathogenic E. coli , the second messenger cyclic AMP negatively regulates persister cell formation, since in its absence much more persister cells form that are tolerant to β-lactams antibiotics. We reveal the mechanism to be decreased levels of reactive oxygen species, specifically hydroxyl radicals, and SOS-dependent DNA repair. Our findings suggest that the oxidative stress response and DNA repair are relevant pathways to target in the design of persister-specific antibiotic compounds. Copyright © 2018 Molina-Quiroz et al.

  14. Nivalenol induces oxidative stress and increases deoxynivalenol pro-oxidant effect in intestinal epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Del Regno, Marisanta; Adesso, Simona; Popolo, Ada [Department of Pharmacy, School of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132–84084 Fisciano, Salerno (Italy); Quaroni, Andrea [Department of Biomedical Sciences, Cornell University, Veterinary Research Tower, Cornell University, Ithaca, NY 14853–6401 (United States); Autore, Giuseppina [Department of Pharmacy, School of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132–84084 Fisciano, Salerno (Italy); Severino, Lorella [Department of Pathology and Animal Health, Division of Toxicology, School of Veterinary Medicine, University of Naples “Federico II”, Via Delpino 1, 80137 Naples (Italy); Marzocco, Stefania, E-mail: smarzocco@unisa.it [Department of Pharmacy, School of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132–84084 Fisciano, Salerno (Italy)

    2015-06-01

    Mycotoxins are secondary fungal metabolites often found as contaminants in almost all agricultural commodities worldwide, and the consumption of food or feed contaminated by mycotoxins represents a major risk for human and animal health. Reactive oxygen species are normal products of cellular metabolism. However, disproportionate generation of reactive oxygen species poses a serious problem to bodily homeostasis and causes oxidative tissue damage. In this study we analyzed the effect of two trichothecenes mycotoxins: nivalenol and deoxynivalenol, alone and in combination, on oxidative stress in the non-tumorigenic intestinal epithelial cell line IEC-6. Our results indicate the pro-oxidant nivalenol effect in IEC-6, the stronger pro-oxidant effect of nivalenol when compared to deoxynivalenol and, interestingly, that nivalenol increases deoxynivalenol pro-oxidative effects. Mechanistic studies indicate that the observed effects were mediated by NADPH oxidase, calcium homeostasis alteration, NF-kB and Nrf2 pathways activation and by iNOS and nitrotyrosine formation. The toxicological interaction by nivalenol and deoxynivalenol reported in this study in IEC-6, points out the importance of the toxic effect of these mycotoxins, mostly in combination, further highlighting the risk assessment process of these toxins that are of growing concern. - Highlights: • Nivalenol induces oxidative stress in intestinal epithelial cells (IECs). • Nivalenol increases deoxynivalenol pro-oxidant effects in IECs. • Nivalenol and deoxynivalenol trigger antioxidant response IECs. • These results indicate the importance of mycotoxins co-contamination.

  15. Induction of Inducible Nitric Oxide Synthase by Lipopolysaccharide and the Influences of Cell Volume Changes, Stress Hormones and Oxidative Stress on Nitric Oxide Efflux from the Perfused Liver of Air-Breathing Catfish, Heteropneustes fossilis.

    Directory of Open Access Journals (Sweden)

    Mahua G Choudhury

    Full Text Available The air-breathing singhi catfish (Heteropneustes fossilis is frequently being challenged by bacterial contaminants, and different environmental insults like osmotic, hyper-ammonia, dehydration and oxidative stresses in its natural habitats throughout the year. The main objectives of the present investigation were to determine (a the possible induction of inducible nitric oxide synthase (iNOS gene with enhanced production of nitric oxide (NO by intra-peritoneal injection of lipopolysaccharide (LPS (a bacterial endotoxin, and (b to determine the effects of hepatic cell volume changes due to anisotonicity or by infusion of certain metabolites, stress hormones and by induction of oxidative stress on production of NO from the iNOS-induced perfused liver of singhi catfish. Intra-peritoneal injection of LPS led to induction of iNOS gene and localized tissue specific expression of iNOS enzyme with more production and accumulation of NO in different tissues of singhi catfish. Further, changes of hydration status/cell volume, caused either by anisotonicity or by infusion of certain metabolites such as glutamine plus glycine and adenosine, affected the NO production from the perfused liver of iNOS-induced singhi catfish. In general, increase of hydration status/cell swelling due to hypotonicity caused decrease, and decrease of hydration status/cell shrinkage due to hypertonicity caused increase of NO efflux from the perfused liver, thus suggesting that changes in hydration status/cell volume of hepatic cells serve as a potent modulator for regulating the NO production. Significant increase of NO efflux from the perfused liver was also observed while infusing the liver with stress hormones like epinephrine and norepinephrine, accompanied with decrease of hydration status/cell volume of hepatic cells. Further, oxidative stress, caused due to infusion of t-butyl hydroperoxide and hydrogen peroxide separately, in the perfused liver of singhi catfish, resulted

  16. HeLa Cells Containing a Truncated Form of DNA Polymerase Beta are More Sensitized to Alkylating Agents than to Agents Inducing Oxidative Stress.

    Science.gov (United States)

    Khanra, Kalyani; Chakraborty, Anindita; Bhattacharyya, Nandan

    2015-01-01

    The present study was aimed at determining the effects of alkylating and oxidative stress inducing agents on a newly identified variant of DNA polymerase beta (polβ Δ208-304) specific for ovarian cancer. Pol β Δ208-304 has a deletion of exons 11-13 which lie in the catalytic part of enzyme. We compared the effect of these chemicals on HeLa cells and HeLa cells stably transfected with this variant cloned into in pcDNAI/neo vector by MTT, colony forming and apoptosis assays. Polβ Δ208-304 cells exhibited greater sensitivity to an alkylating agent and less sensitivity towards H2O2 and UV when compared with HeLa cells alone. It has been shown that cell death in Pol β Δ208-304 transfected HeLa cells is mediated by the caspase 9 cascade. Exon 11 has nucleotidyl selection activity, while exons 12 and 13 have dNTP selection activity. Hence deletion of this part may affect polymerizing activity although single strand binding and double strand binding activity may remain same. The lack of this part may adversely affect catalytic activity of DNA polymerase beta so that the variant may act as a dominant negative mutant. This would represent clinical significance if translated into a clinical setting because resistance to radiation or chemotherapy during the relapse of the disease could be potentially overcome by this approach.

  17. Human gastric signet ring carcinoma (KATO-III) cell apoptosis induced by Vitex agnus-castus fruit extract through intracellular oxidative stress.

    Science.gov (United States)

    Ohyama, Kunio; Akaike, Takenori; Imai, Masahiko; Toyoda, Hiroo; Hirobe, Chieko; Bessho, Toshio

    2005-07-01

    We have previously reported that an ethanol extract of the dried ripe fruit of Vitex agnus-castus (Vitex) displays cytotoxic activity against certain kinds of human cancer cell line resulting in the induction of apoptosis. In this paper, we investigate the molecular mechanism of apoptosis induced by Vitex using a human gastric signet ring carcinoma cell line, KATO-III. DNA fragmentation was observed in Vitex-treated KATO-III cells in a time- and dose-dependent manner. DNA fragmentation was accompanied by the following phenomena: elevation in the level of hemeoxygenase-1 protein and thioredoxin reductase mRNA; repression of Mn-superoxide dismutase and catalase mRNAs; release of cytochrome c from mitochondria into the cytosol; activation of caspases-8, -9 and -3; decrease in the level of Bcl-2, Bcl-XL and Bid protein; increase in the level of Bad protein. The intracellular oxidized state, measured using 2',7'-dichlorofluorescin diacetate, increased after Vitex treatment. While the amount of intracellular GSH decreased significantly after treatment with Vitex, the level of GSSG was unaffected. Furthermore, no significant perturbation in the amount of proteins/mRNAs related to glutathione metabolism could be detected. These apoptotic alterations induced by exposure to Vitex were blocked by the presence of an anti-oxidative reagent, N-acetyl-l-cysteine, or the addition of exogenous GSH. Our results demonstrate that intracellular oxidative stress and mitochondrial membrane damage is responsible for Vitex-induced apoptosis, which may be mediated by a diminution of reduced type glutathione within the cell.

  18. The glutathione mimic ebselen inhibits oxidative stress but not endoplasmic reticulum stress in endothelial cells.

    Science.gov (United States)

    Ahwach, Salma Makhoul; Thomas, Melanie; Onstead-Haas, Luisa; Mooradian, Arshag D; Haas, Michael J

    2015-08-01

    Reactive oxygen species are associated with cardiovascular disease, diabetes, and atherosclerosis, yet the use of antioxidants in clinical trials has been ineffective at improving outcomes. In endothelial cells, high-dextrose-induced oxidative stress and endoplasmic reticulum stress promote endothelial dysfunction leading to the recruitment and activation of peripheral blood lymphocytes and the breakdown of barrier function. Ebselen, a glutathione peroxidase 1 (GPX1) mimic, has been shown to improve β-cell function in diabetes and prevent atherosclerosis. To determine if ebselen inhibits both oxidative stress and endoplasmic reticulum (ER) stress in endothelial cells, we examined its effects in human umbilical vein endothelial cells (HUVEC) and human coronary artery endothelial cells (HCAEC) with and without high-dextrose. Oxidative stress and ER stress were measured by 2-methyl-6-(4-methoxyphenyl)-3,7-dihydroimidazo[1,2-A]pyrazin-3-one hydrochloride chemiluminescence and ER stress alkaline phosphatase assays, respectively. GPX1 over-expression and knockdown were performed by transfecting cells with a GPX1 expression construct or a GPX1-specific siRNA, respectively. Ebselen inhibited dextrose-induced oxidative stress but not ER stress in both HUVEC and HCAEC. Ebselen also had no effect on tunicamycin-induced ER stress in HCAEC. Furthermore, augmentation of GPX1 activity directly by sodium selenite supplementation or transfection of a GPX1 expression plasmid decreased dextrose-induced oxidative stress but not ER stress, while GPX1 knockout enhanced oxidative stress but had no effect on ER stress. These results suggest that ebselen targets only oxidative stress but not ER stress. Copyright © 2015. Published by Elsevier Inc.

  19. Nox1 oxidase suppresses influenza a virus-induced lung inflammation and oxidative stress.

    Directory of Open Access Journals (Sweden)

    Stavros Selemidis

    Full Text Available Influenza A virus infection is an ongoing clinical problem and thus, there is an urgent need to understand the mechanisms that regulate the lung inflammation in order to unravel novel generic pharmacological strategies. Evidence indicates that the Nox2-containing NADPH oxidase enzyme promotes influenza A virus-induced lung oxidative stress, inflammation and dysfunction via ROS generation. In addition, lung epithelial and endothelial cells express the Nox1 isoform of NADPH oxidase, placing this enzyme at key sites to regulate influenza A virus-induced lung inflammation. The aim of this study was to investigate whether Nox1 oxidase regulates the inflammatory response and the oxidative stress to influenza infection in vivo in mice. Male WT and Nox1-deficient (Nox1(-/y mice were infected with the moderately pathogenic HkX-31 (H3N2, 1×10(4 PFU influenza A virus for analysis of bodyweight, airways inflammation, oxidative stress, viral titre, lung histopathology, and cytokine/chemokine expression at 3 and 7 days post infection. HkX-31 virus infection of Nox1(-/y mice resulted in significantly greater: loss of bodyweight (Day 3; BALF neutrophilia, peri-bronchial, peri-vascular and alveolar inflammation; Nox2-dependent inflammatory cell ROS production and peri-bronchial, epithelial and endothelial oxidative stress. The expression of pro-inflammatory cytokines including CCL2, CCL3, CXCL2, IL-1β, IL-6, GM-CSF and TNF-α was higher in Nox1(-/y lungs compared to WT mice at Day 3, however, the expression of CCL2, CCL3, CXCL2, IFN-γ and the anti-inflammatory cytokine IL-10 were lower in lungs of Nox1(-/y mice vs. WT mice at Day 7. Lung viral titre, and airways infiltration of active CD8(+ and CD4(+ T lymphocytes, and of Tregs were similar between WT and Nox1(-/y mice. In conclusion, Nox1 oxidase suppresses influenza A virus induced lung inflammation and oxidative stress in mice particularly at the early phases of the infection. Nox1 and Nox2 oxidases appear

  20. A Nucleocytoplasmic Shuttling Protein in Oxidative Stress Tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Ow, David W.; Song, Wen

    2003-03-26

    Plants for effective extraction of toxic metals and radionuclides must tolerate oxidative stress. To identify genes that enhance oxidative stress tolerance, an S. pombe cDNA expression plasmid library was screened for the ability to yield hypertolerant colonies. Here, we report on the properties of one gene that confers hypertolerance to cadmium and oxidizing chemicals. This gene appears to be conserved in other organisms as homologous genes are found in human, mouse, fruitfly and Arabidopsis. The fruitfly and Arabidopsis genes likewise enhance oxidative stress tolerance in fission yeast. During oxidative stress, the amount of mRNA does not change, but protein fusions to GFP relocate from the cytoplasm to the nucleus. The same pattern is observed with the Arabidopsis homologue-GFP fusion protein. This behavior suggests a signaling role in oxidative stress tolerance and these conserved proteins may be targets for engineering stress tolerant plants for phytoremediation.

  1. Synergism effects of pioglitazone and Urtica dioica extract in streptozotocin-induced nephropathy via attenuation of oxidative stress

    Directory of Open Access Journals (Sweden)

    Mohammad Shokrzadeh

    2017-05-01

    Full Text Available Objective(s: Hyperglycemia promotes oxidative stress that plays a crucial role in the pathogenesis of Diabetic nephropathy (DN. In this study, we investigated the synergism effects of hydroalcoholic extract of Urtica dioica and pioglitazone (PIO on the prevention of DN in streptozotocin induced-diabetic mice. Materials and Methods: Forty-two mice were divided into six groups as follows: non-diabetic control group, DMSO group (as solvent, diabetic group and four treatment groups which received U. dioica, pioglitazone, U. dioica plus pioglitazone and vitE. Diabetes was induced by a single dose of streptozotocin (STZ (200 mg/kg body wt, IP diluted in citrate buffer (pH= 4.6. After 4 weeks treatment, all animals were anaesthetized and blood was collected for serum urea and creatinine levels assessment in plasma and kidney tissue were excised for evaluation of oxidative stress markers. Results: Treatment with U. dioica significantly inhibited increase in serum urea and creatinine in plasma that were observed in diabetic mice. Furthermore, the elevated level of oxidative stress markers (glutathione oxidation, lipid peroxidation (LPO, protein carbonyl in renal supernatant of diabetic mice was inhibited by U. dioica treatment.  Interestingly, U. dioica promoted beneficial effects of PIO in reducing STZ-induced hyperglycemia, renal damage and oxidative stress markers. Conclusion: Our findings showed that PIO plus U. dioica have synergism protective effects against STZ-induced nephropathy that can be a candidate as a therapeutic approach in order to treatment of DN.

  2. Synergism effects of pioglitazone and Urtica dioica extract in streptozotocin-induced nephropathy via attenuation of oxidative stress.

    Science.gov (United States)

    Shokrzadeh, Mohammad; Sadat-Hosseini, Sara; Fallah, Marjan; Shaki, Fatemeh

    2017-05-01

    Hyperglycemia promotes oxidative stress that plays a crucial role in the pathogenesis of Diabetic nephropathy (DN). In this study, we investigated the synergism effects of hydroalcoholic extract of Urtica dioica and pioglitazone (PIO) on the prevention of DN in streptozotocin induced-diabetic mice. Forty-two mice were divided into six groups as follows: non-diabetic control group, DMSO group (as solvent), diabetic group and four treatment groups which received U. dioica , pioglitazone, U. dioica plus pioglitazone and vitE. Diabetes was induced by a single dose of streptozotocin (STZ) (200 mg/kg body wt, IP) diluted in citrate buffer (pH= 4.6). After 4 weeks treatment, all animals were anaesthetized and blood was collected for serum urea and creatinine levels assessment in plasma and kidney tissue were excised for evaluation of oxidative stress markers. Treatment with U. dioica significantly inhibited increase in serum urea and creatinine in plasma that were observed in diabetic mice. Furthermore, the elevated level of oxidative stress markers (glutathione oxidation, lipid peroxidation (LPO), protein carbonyl) in renal supernatant of diabetic mice was inhibited by U. dioica treatment. Interestingly, U. dioica promoted beneficial effects of PIO in reducing STZ-induced hyperglycemia, renal damage and oxidative stress markers. Our findings showed that PIO plus U. dioica have synergism protective effects against STZ-induced nephropathy that can be a candidate as a therapeutic approach in order to treatment of DN.

  3. Transgenerational variations in DNA methylation induced by drought stress in two rice varieties with distinguished difference to drought resistance.

    Directory of Open Access Journals (Sweden)

    Xiaoguo Zheng

    Full Text Available Adverse environmental conditions have large impacts on plant growth and crop production. One of the crucial mechanisms that plants use in variable and stressful natural environments is gene expression modulation through epigenetic modification. In this study, two rice varieties with different drought resistance levels were cultivated under drought stress from tilling stage to seed filling stage for six successive generations. The variations in DNA methylation of the original generation (G0 and the sixth generation (G6 of these two varieties in normal condition (CK and under drought stress (DT at seedling stage were assessed by using Methylation Sensitive Amplification Polymorphism (MSAP method. The results revealed that drought stress had a cumulative effect on the DNA methylation pattern of both varieties, but these two varieties had different responses to drought stress in DNA methylation. The DNA methylation levels of II-32B (sensitive and Huhan-3 (resistant were around 39% and 32%, respectively. Genome-wide DNA methylation variations among generations or treatments accounted for around 13.1% of total MSAP loci in II-32B, but was only approximately 1.3% in Huhan-3. In II-32B, 27.6% of total differentially methylated loci (DML were directly induced by drought stress and 3.2% of total DML stably transmitted their changed DNA methylation status to the next generation. In Huhan-3, the numbers were 48.8% and 29.8%, respectively. Therefore, entrainment had greater effect on Huhan-3 than on II-32B. Sequence analysis revealed that the DML were widely distributed on all 12 rice chromosomes and that it mainly occurred on the gene's promoter and exon region. Some genes with DML respond to environmental stresses. The inheritance of epigenetic variations induced by drought stress may provide a new way to develop drought resistant rice varieties.

  4. Carbon monoxide alleviates ethanol-induced oxidative damage and inflammatory stress through activating p38 MAPK pathway

    International Nuclear Information System (INIS)

    Li, Yanyan; Gao, Chao; Shi, Yanru; Tang, Yuhan; Liu, Liang; Xiong, Ting; Du, Min; Xing, Mingyou; Liu, Liegang; Yao, Ping

    2013-01-01

    Stress-inducible protein heme oxygenase-1(HO-1) is well-appreciative to counteract oxidative damage and inflammatory stress involving the pathogenesis of alcoholic liver diseases (ALD). The potential role and signaling pathways of HO-1 metabolite carbon monoxide (CO), however, still remained unclear. To explore the precise mechanisms, ethanol-dosed adult male Balb/c mice (5.0 g/kg.bw.) or ethanol-incubated primary rat hepatocytes (100 mmol/L) were pretreated by tricarbonyldichlororuthenium (II) dimmer (CORM-2, 8 mg/kg for mice or 20 μmol/L for hepatocytes), as well as other pharmacological reagents. Our data showed that CO released from HO-1 induction by quercetin prevented ethanol-derived oxidative injury, which was abolished by CO scavenger hemoglobin. The protection was mimicked by CORM-2 with the attenuation of GSH depletion, SOD inactivation, MDA overproduction, and the leakage of AST, ALT or LDH in serum and culture medium induced by ethanol. Moreover, CORM-2 injection or incubation stimulated p38 phosphorylation and suppressed abnormal Tnfa and IL-6, accompanying the alleviation of redox imbalance induced by ethanol and aggravated by inflammatory factors. The protective role of CORM-2 was abolished by SB203580 (p38 inhibitor) but not by PD98059 (ERK inhibitor) or SP600125 (JNK inhibitor). Thus, HO-1 released CO prevented ethanol-elicited hepatic oxidative damage and inflammatory stress through activating p38 MAPK pathway, suggesting a potential therapeutic role of gaseous signal molecule on ALD induced by naturally occurring phytochemicals. - Highlights: • CO alleviated ethanol-derived liver oxidative and inflammatory stress in mice. • CO eased ethanol and inflammatory factor-induced oxidative damage in hepatocytes. • The p38 MAPK is a key signaling mechanism for the protective function of CO in ALD

  5. Carbon monoxide alleviates ethanol-induced oxidative damage and inflammatory stress through activating p38 MAPK pathway

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yanyan; Gao, Chao; Shi, Yanru; Tang, Yuhan; Liu, Liang; Xiong, Ting; Du, Min [Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030 (China); Ministry of Education Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030 (China); Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030 (China); Xing, Mingyou [Department of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030 (China); Liu, Liegang [Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030 (China); Ministry of Education Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030 (China); Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030 (China); Yao, Ping, E-mail: yaoping@mails.tjmu.edu.cn [Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030 (China); Ministry of Education Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030 (China); Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030 (China)

    2013-11-15

    Stress-inducible protein heme oxygenase-1(HO-1) is well-appreciative to counteract oxidative damage and inflammatory stress involving the pathogenesis of alcoholic liver diseases (ALD). The potential role and signaling pathways of HO-1 metabolite carbon monoxide (CO), however, still remained unclear. To explore the precise mechanisms, ethanol-dosed adult male Balb/c mice (5.0 g/kg.bw.) or ethanol-incubated primary rat hepatocytes (100 mmol/L) were pretreated by tricarbonyldichlororuthenium (II) dimmer (CORM-2, 8 mg/kg for mice or 20 μmol/L for hepatocytes), as well as other pharmacological reagents. Our data showed that CO released from HO-1 induction by quercetin prevented ethanol-derived oxidative injury, which was abolished by CO scavenger hemoglobin. The protection was mimicked by CORM-2 with the attenuation of GSH depletion, SOD inactivation, MDA overproduction, and the leakage of AST, ALT or LDH in serum and culture medium induced by ethanol. Moreover, CORM-2 injection or incubation stimulated p38 phosphorylation and suppressed abnormal Tnfa and IL-6, accompanying the alleviation of redox imbalance induced by ethanol and aggravated by inflammatory factors. The protective role of CORM-2 was abolished by SB203580 (p38 inhibitor) but not by PD98059 (ERK inhibitor) or SP600125 (JNK inhibitor). Thus, HO-1 released CO prevented ethanol-elicited hepatic oxidative damage and inflammatory stress through activating p38 MAPK pathway, suggesting a potential therapeutic role of gaseous signal molecule on ALD induced by naturally occurring phytochemicals. - Highlights: • CO alleviated ethanol-derived liver oxidative and inflammatory stress in mice. • CO eased ethanol and inflammatory factor-induced oxidative damage in hepatocytes. • The p38 MAPK is a key signaling mechanism for the protective function of CO in ALD.

  6. The Toxicological Mechanisms of Environmental Soot (Black Carbon and Carbon Black: Focus on Oxidative Stress and Inflammatory Pathways

    Directory of Open Access Journals (Sweden)

    Rituraj Niranjan

    2017-06-01

    Full Text Available The environmental soot and carbon blacks (CBs cause many diseases in humans, but their underlying mechanisms of toxicity are still poorly understood. Both are formed after the incomplete combustion of hydrocarbons but differ in their constituents and percent carbon contents. For the first time, “Sir Percival Pott” described soot as a carcinogen, which was subsequently confirmed by many others. The existing data suggest three main types of diseases due to soot and CB exposures: cancer, respiratory diseases, and cardiovascular dysfunctions. Experimental models revealed the involvement of oxidative stress, DNA methylation, formation of DNA adducts, and Aryl hydrocarbon receptor activation as the key mechanisms of soot- and CB-induced cancers. Metals including Si, Fe, Mn, Ti, and Co in soot also contribute in the reactive oxygen species (ROS-mediated DNA damage. Mechanistically, ROS-induced DNA damage is further enhanced by eosinophils and neutrophils via halide (Cl− and Br− dependent DNA adducts formation. The activation of pulmonary dendritic cells, T helper type 2 cells, and mast cells is crucial mediators in the pathology of soot- or CB-induced respiratory disease. Polyunsaturated fatty acids (PUFAs were also found to modulate T cells functions in respiratory diseases. Particularly, telomerase reverse transcriptase was found to play the critical role in soot- and CB-induced cardiovascular dysfunctions. In this review, we propose integrated mechanisms of soot- and CB-induced toxicity emphasizing the role of inflammatory mediators and oxidative stress. We also suggest use of antioxidants and PUFAs as protective strategies against soot- and CB-induced disorders.

  7. Role of Oxidative Stress in Thyroid Hormone-Induced Cardiomyocyte Hypertrophy and Associated Cardiac Dysfunction: An Undisclosed Story

    Directory of Open Access Journals (Sweden)

    Mohammad T. Elnakish

    2015-01-01

    Full Text Available Cardiac hypertrophy is the most documented cardiomyopathy following hyperthyroidism in experimental animals. Thyroid hormone-induced cardiac hypertrophy is described as a relative ventricular hypertrophy that encompasses the whole heart and is linked with contractile abnormalities in both right and left ventricles. The increase in oxidative stress that takes place in experimental hyperthyroidism proposes that reactive oxygen species are key players in the cardiomyopathy frequently reported in this endocrine disorder. The goal of this review is to shed light on the effects of thyroid hormones on the development of oxidative stress in the heart along with the subsequent cellular and molecular changes. In particular, we will review the role of thyroid hormone-induced oxidative stress in the development of cardiomyocyte hypertrophy and associated cardiac dysfunction, as well as the potential effectiveness of antioxidant treatments in attenuating these hyperthyroidism-induced abnormalities in experimental animal models.

  8. Amelioration of azoxymethane induced-carcinogenesis by reducing oxidative stress in rat colon by natural extracts.

    Science.gov (United States)

    Waly, Mostafa I; Al-Rawahi, Amani S; Al Riyami, Marwa; Al-Kindi, Mohamed A; Al-Issaei, Halima K; Farooq, Sardar A; Al-Alawi, Ahmed; Rahman, Mohammad S

    2014-02-18

    Azoxymethane (AOM) is a potent carcinogenic agent commonly used to induce colon cancer in rats; the cytotoxicity of AOM is considered to mediate oxidative stress. This study investigated the chemopreventive effect of three natural extracts [pomegranate peel extract (PomPE), papaya peel extract (PapPE) and seaweed extract (SE)] against AOM-induced oxidative stress and carcinogenesis in rat colon. Eighty Sprague-Dawley rats (aged 4 weeks) were randomly divided into 8 groups (10 rats/group). Control group was fed a basal diet; AOM-treated group was fed a basal diet and received AOM intraperitonial injections for two weeks at a dose of 15 mg/kg bodyweight, whereas the other six groups were received oral supplementation of PomPE, PapPE or SE, in the presence or absence of AOM injection. All animals were continuously fed ad-libitum until aged 16 weeks, then all rats were sacrificed and the colon tissues were examined microscopically for pathological changes and aberrant crypt foci (ACF) development, genotoxicity (induced micronuclei (MN) cells enumeration), and glutathione and lipid peroxidation. Our results showed that AOM-induced ACF development and pathological changes in the colonic mucosal tissues, increased bone marrow MN cells and oxidative stress (glutathione depletion, lipid peroxidation) in rat colonic cells. The concomitant treatment of AOM with PomPE, PapPE or SE significantly ameliorated the cytotoxic effects of AOM. The results of this study provide in-vivo evidence that PomPE, PapPE and SE reduced the AOM-induced colon cancer in rats, through their potent anti-oxidant activities.

  9. Good stress, bad stress and oxidative stress: insights from anticipatory cortisol reactivity.

    Science.gov (United States)

    Aschbacher, Kirstin; O'Donovan, Aoife; Wolkowitz, Owen M; Dhabhar, Firdaus S; Su, Yali; Epel, Elissa

    2013-09-01

    Chronic psychological stress appears to accelerate biological aging, and oxidative damage is an important potential mediator of this process. However, the mechanisms by which psychological stress promotes oxidative damage are poorly understood. This study investigates the theory that cortisol increases in response to an acutely stressful event have the potential to either enhance or undermine psychobiological resilience to oxidative damage, depending on the body's prior exposure to chronic psychological stress. In order to achieve a range of chronic stress exposure, forty-eight post-menopausal women were recruited in a case-control design that matched women caring for spouses with dementia (a chronic stress model) with similarly aged control women whose spouses were healthy. Participants completed a questionnaire assessing perceived stress over the previous month and provided fasting blood. Three markers of oxidative damage were assessed: 8-iso-prostaglandin F(2α) (IsoP), lipid peroxidation, 8-hydroxyguanosine (8-oxoG) and 8-hydroxy-2'-deoxyguanosine (8-OHdG), reflecting oxidative damage to RNA/DNA respectively. Within approximately one week, participants completed a standardized acute laboratory stress task while salivary cortisol responses were measured. The increase from 0 to 30 min was defined as "peak" cortisol reactivity, while the increase from 0 to 15 min was defined as "anticipatory" cortisol reactivity, representing a cortisol response that began while preparing for the stress task. Women under chronic stress had higher 8-oxoG, oxidative damage to RNA (pstress and elevated oxidative stress damage, but only among women under chronic stress. Consistent with this model, bootstrapped path analysis found significant indirect paths from perceived stress to 8-oxoG and IsoP (but not 8-OHdG) via anticipatory cortisol reactivity, showing the expected relations among chronically stressed participants (p≤.01) Intriguingly, among those with low chronic stress

  10. MTH1 deficiency selectively increases non-cytotoxic oxidative DNA damage in lung cancer cells: more bad news than good?

    Science.gov (United States)

    Abbas, Hussein H K; Alhamoudi, Kheloud M H; Evans, Mark D; Jones, George D D; Foster, Steven S

    2018-04-16

    Targeted therapies are based on exploiting cancer-cell-specific genetic features or phenotypic traits to selectively kill cancer cells while leaving normal cells unaffected. Oxidative stress is a cancer hallmark phenotype. Given that free nucleotide pools are particularly vulnerable to oxidation, the nucleotide pool sanitising enzyme, MTH1, is potentially conditionally essential in cancer cells. However, findings from previous MTH1 studies have been contradictory, meaning the relevance of MTH1 in cancer is still to be determined. Here we ascertained the role of MTH1 specifically in lung cancer cell maintenance, and the potential of MTH1 inhibition as a targeted therapy strategy to improve lung cancer treatments. Using siRNA-mediated knockdown or small-molecule inhibition, we tested the genotoxic and cytotoxic effects of MTH1 deficiency on H23 (p53-mutated), H522 (p53-mutated) and A549 (wildtype p53) non-small cell lung cancer cell lines relative to normal MRC-5 lung fibroblasts. We also assessed if MTH1 inhibition augments current therapies. MTH1 knockdown increased levels of oxidatively damaged DNA and DNA damage signaling alterations in all lung cancer cell lines but not normal fibroblasts, despite no detectable differences in reactive oxygen species levels between any cell lines. Furthermore, MTH1 knockdown reduced H23 cell proliferation. However, unexpectedly, it did not induce apoptosis in any cell line or enhance the effects of gemcitabine, cisplatin or radiation in combination treatments. Contrastingly, TH287 and TH588 MTH1 inhibitors induced apoptosis in H23 and H522 cells, but only increased oxidative DNA damage levels in H23, indicating that they kill cells independently of DNA oxidation and seemingly via MTH1-distinct mechanisms. MTH1 has a NSCLC-specific p53-independent role for suppressing DNA oxidation and genomic instability, though surprisingly the basis of this may not be reactive-oxygen-species-associated oxidative stress. Despite this, overall

  11. Role of Cardamom (Elettaria cardamomum) in Ameliorating Radiation Induced Oxidative Stress In Rats

    International Nuclear Information System (INIS)

    Darwish, M.M.; Abd El Azime, A. Sh.

    2013-01-01

    Radiation is one of the most widespread sources of environmental stress in living environment which cause oxidative stress and metabolic changes. The present study aims to evaluate the antioxidant effect of Cardamom (Elettaria cardamomum) on gamma radiation-induced oxidative damage in liver and heart tis sues. The study was conducted on forty (40) rats which were classified into four equal groups. Group1: Control group, Group. 2: rats given cardamom in basal diet.Group3: Irradiated rats, rats were subjected to whole body gamma irradiation at 6 Gy delivere d as single exposure dose. Group 4: irradiated +cardamom: rats receiving cardamom for 4 weeks and irradiated. The animals were scarified 24h after irradiation. Irradiated animals had significant increase in oxidative stress markers in liver and heart tissues expressed by significant increase of malondialdehyde (MDA) content associated to significant depletion of superoxide dismutase (SOD) , catalase (CAT) activities, and reduced glutathione (GSH) content . Hepatic and cardiac changes included significant increases of serum alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP), lactate dehydrogenase (LDH) , total cholesterol(TC), triacylglycerol(TAG), low-density lipoprotein cholesterol(LDL-C), and iron concentration. While, a significant decre ase in high-density lipoprotein-cholesterol (HDL-C), manganese and copper were observed. Addition of cardamom to the basal diet prior to gamma radiation, improved the tested parameters . So it is a therapeutic alternative for oxidative stress, hyperlipidaemia and trace elements changes. . The data obtained in this study suggest that cardamom may prevent liver and heart from radiation-induced damage.

  12. DNA damage and oxidative stress induced by imidacloprid exposure in the earthworm Eisenia fetida.

    Science.gov (United States)

    Wang, Juan; Wang, Jinhua; Wang, Guangchi; Zhu, Lusheng; Wang, Jun

    2016-02-01

    To investigate the soil ecological effect of imidacloprid, earthworm Eisenia fetida was exposed to various concentrations of imidacloprid (0.10, 0.50, and 1.00 mg kg(-1) soil) respectively after 7, 14, 21, and 28 d. The effect of imidacloprid on reactive oxygen species (ROS) generation, antioxidant enzymes activity [superoxide dismutase (SOD) and catalase (CAT), glutathione S-transferase enzyme (GST)], malondialdehyde (MDA) content and DNA damage of the E. fetida was investigated. Significant increase of the ROS level was observed. The SOD and GST activity were significantly induced at most exposure intervals. CAT activity was inhibited and reflected a dose-dependent relationship on days 7, 14 and 21. High MDA levels were observed and the olive tail moment (OTM) as well as the percentage of DNA in the comet tail (tail DNA%) in comet assay declined with increasing concentrations and exposure time after 7 d. Our results suggested that the sub-chronic exposure of imidacloprid caused DNA damage and lipid peroxidation (LPO) leading to antioxidant responses in earthworm E. fetida. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. A Salt-Inducible Mn-Catalase (KatB) Protects Cyanobacterium from Oxidative Stress.

    Science.gov (United States)

    Chakravarty, Dhiman; Banerjee, Manisha; Bihani, Subhash C; Ballal, Anand

    2016-02-01

    Catalases, enzymes that detoxify H2O2, are widely distributed in all phyla, including cyanobacteria. Unlike the heme-containing catalases, the physiological roles of Mn-catalases remain inadequately characterized. In the cyanobacterium Anabaena, pretreatment of cells with NaCl resulted in unusually enhanced tolerance to oxidative stress. On exposure to H2O2, the NaCl-treated Anabaena showed reduced formation of reactive oxygen species, peroxides, and oxidized proteins than the control cells (i.e. not treated with NaCl) exposed to H2O2. This protective effect correlated well with the substantial increase in production of KatB, a Mn-catalase. Addition of NaCl did not safeguard the katB mutant from H2O2, suggesting that KatB was indeed responsible for detoxifying the externally added H2O2. Moreover, Anabaena deficient in KatB was susceptible to oxidative effects of salinity stress. The katB gene was strongly induced in response to osmotic stress or desiccation. Promoter-gfp analysis showed katB to be expressed only in the vegetative cells but not in heterocysts. Biochemically, KatB was an efficient, robust catalase that remained active in the presence of high concentrations of NaCl. Our findings unravel the role of Mn-catalase in acclimatization to salt/oxidative stress and demonstrate that the oxidative stress resistance of an organism can be enhanced by a simple compound such as NaCl. © 2016 American Society of Plant Biologists. All Rights Reserved.

  14. Radiation induced leakage current and stress induced leakage current in ultra-thin gate oxides

    International Nuclear Information System (INIS)

    Ceschia, M.; Paccagnella, A.; Cester, A.; Scarpa, A.

    1998-01-01

    Low-field leakage current has been measured in thin oxides after exposure to ionizing radiation. This Radiation Induced Leakage Current (RILC) can be described as an inelastic tunneling process mediated by neutral traps in the oxide, with an energy loss of about 1 eV. The neutral trap distribution is influenced by the oxide field applied during irradiation, thus indicating that the precursors of the neutral defects are charged, likely being defects associated to trapped holes. The maximum leakage current is found under zero-field condition during irradiation, and it rapidly decreases as the field is enhanced, due to a displacement of the defect distribution across the oxide towards the cathodic interface. The RILC kinetics are linear with the cumulative dose, in contrast with the power law found on electrically stressed devices

  15. Dietary phenolic acids reverse insulin resistance, hyperglycaemia, dyslipidaemia, inflammation and oxidative stress in high-fructose diet-induced metabolic syndrome rats.

    Science.gov (United States)

    Ibitoye, Oluwayemisi B; Ajiboye, Taofeek O

    2017-12-20

    This study investigated the influence of caffeic, ferulic, gallic and protocatechuic acids on high-fructose diet-induced metabolic syndrome in rats. Oral administration of the phenolic acids significantly reversed high-fructose diet-mediated increase in body mass index and blood glucose. Furthermore, phenolic acids restored high-fructose diet-mediated alterations in metabolic hormones (insulin, leptin and adiponectin). Similarly, elevated tumour necrosis factor-α, interleukin-6 and -8 were significantly lowered. Administration of phenolic acids restored High-fructose diet-mediated increase in the levels of lipid parameters and indices of atherosclerosis, cardiac and cardiovascular diseases. High-fructose diet-mediated decrease in activities of antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and glucose 6-phosphate dehydrogenase) and increase in oxidative stress biomarkers (reduced glutathione, lipid peroxidation products, protein oxidation and fragmented DNA) were significantly restored by the phenolic acids. The result of this study shows protective influence of caffeic acid, ferulic acid, gallic acid and protocatechuic acid in high-fructose diet-induced metabolic syndrome.

  16. Chlorpyrifos induces oxidative stress in oligodendrocyte progenitor cells

    International Nuclear Information System (INIS)

    Saulsbury, Marilyn D.; Heyliger, Simone O.; Wang, Kaiyu; Johnson, Deadre J.

    2009-01-01

    There are increasing concerns regarding the relative safety of chlorpyrifos (CPF) to various facets of the environment. Although published works suggest that CPF is relatively safe in adult animals, recent evidence indicates that juveniles, both animals and humans, may be more sensitive to CPF toxicity than adults. In young animals, CPF is neurotoxic and mechanistically interferes with cellular replication and cellular differentiation, which culminates in the alteration of synaptic neurotransmission in neurons. However, the effects of CPF on glial cells are not fully elucidated. Here we report that chlorpyrifos is toxic to oligodendrocyte progenitors. In addition, CPF produced dose-dependent increases in 2',7'-dichlorodihydrofluorescein diacetate (H 2 DCF-DA) and dihydroethidium (DHE) fluorescence intensities relative to the vehicle control. Moreover, CPF toxicity is associated with nuclear condensation and elevation of caspase 3/7 activity and Heme oxygenase-1 mRNA expression. Pan-caspase inhibitor QVDOPh and cholinergic receptor antagonists' atropine and mecamylamine failed to protect oligodendrocyte progenitors from CPF-induced injury. Finally, glutathione (GSH) depletion enhanced CPF-induced toxicity whereas nitric oxide synthetase inhibitor L-NAME partially protected progenitors and the non-specific antioxidant vitamin E (alpha-tocopherol) completely spared cells from injury. Collectively, this data suggests that CPF induced toxicity is independent of cholinergic stimulation and is most likely caused by the induction of oxidative stress.

  17. Crocin reduced acrylamide-induced neurotoxicity in Wistar rat through inhibition of oxidative stress

    Directory of Open Access Journals (Sweden)

    Soghra Mehri

    2015-09-01

    Conclusion: The administration of crocin markedly improved behavioral and histopathological damages in Wistar rats exposed to ACR. Reduction of oxidative stress can be considered as an important mechanism of neuroprotective effects of crocin against ACR-induced toxicity.

  18. Mechanisms involved in the development of diabetic retinopathy induced by oxidative stress.

    Science.gov (United States)

    Guzman, David Calderón; Olguín, Hugo Juárez; García, Ernestina Hernández; Peraza, Armando Valenzuela; de la Cruz, Diego Zamora; Soto, Monica Punzo

    2017-01-01

    Diabetic retinopathy (DR) is one of the main complications in patients with diabetes and has been the leading cause of visual loss since 1990. Oxidative stress is a biological process resulting from excessive production of reactive oxygen species (ROS). This process contributes to the development of many diseases and disease complications. ROS interact with various cellular components to induce cell injury. Fortunately, there is an antioxidan t system that protects organisms against ROS. Indeed, when ROS exceed antioxidant capacity, the resulting cell injury can cause diverse physiological and pathological changes that could lead to a disease like DR. This paper reviews the possible mechanisms of common and novel biomarkers involved in the development of DR and explores how these biomarkers could be used to monitor the damage induced by oxidative stress in DR, which is a significant complication in people with diabetes. The poor control of glucemy in pacients with DB has been shown contribute to the development of complications in eyes as DR.

  19. Clustered DNA damages induced in isolated DNA and in human cells by low doses of ionizing radiation

    Science.gov (United States)

    Sutherland, B. M.; Bennett, P. V.; Sidorkina, O.; Laval, J.; Lowenstein, D. I. (Principal Investigator)

    2000-01-01

    Clustered DNA damages-two or more closely spaced damages (strand breaks, abasic sites, or oxidized bases) on opposing strands-are suspects as critical lesions producing lethal and mutagenic effects of ionizing radiation. However, as a result of the lack of methods for measuring damage clusters induced by ionizing radiation in genomic DNA, neither the frequencies of their production by physiological doses of radiation, nor their repairability, nor their biological effects are known. On the basis of methods that we developed for quantitating damages in large DNAs, we have devised and validated a way of measuring ionizing radiation-induced clustered lesions in genomic DNA, including DNA from human cells. DNA is treated with an endonuclease that induces a single-strand cleavage at an oxidized base or abasic site. If there are two closely spaced damages on opposing strands, such cleavage will reduce the size of the DNA on a nondenaturing gel. We show that ionizing radiation does induce clustered DNA damages containing abasic sites, oxidized purines, or oxidized pyrimidines. Further, the frequency of each of these cluster classes is comparable to that of frank double-strand breaks; among all complex damages induced by ionizing radiation, double-strand breaks are only about 20%, with other clustered damage constituting some 80%. We also show that even low doses (0.1-1 Gy) of high linear energy transfer ionizing radiation induce clustered damages in human cells.

  20. Mitochondrial Modulation by Epigallocatechin 3-Gallate Ameliorates Cisplatin Induced Renal Injury through Decreasing Oxidative/Nitrative Stress, Inflammation and NF-kB in Mice

    Science.gov (United States)

    Wang, Xueping; Wang, Ping; Fu, Guanghou; Meng, Hongzhou; Wang, Yimin; Jin, Baiye

    2015-01-01

    Cancer chemotherapy drug cisplatin is known for its nephrotoxicity. The aim of this study is to investigate whether Epigallocatechin 3-Gallate (EGCG) can reduce cisplatin mediated side effect in kidney and to understand its mechanism of protection against tissue injury. We used a well-established 3-day cisplatin induced nephrotoxicity mice model where EGCG were administered. EGCG is a major active compound in Green Tea and have strong anti-oxidant and anti-inflammatory properties. EGCG protected against cisplatin induced renal dysfunction as measured by serum creatinine and blood urea nitrogen (BUN). EGCG improved cisplatin induced kidney structural damages such as tubular dilatation, cast formation, granulovaculoar degeneration and tubular cell necrosis as evident by PAS staining. Cisplatin induced kidney specific mitochondrial oxidative stress, impaired activities of mitochondrial electron transport chain enzyme complexes, impaired anti-oxidant defense enzyme activities such as glutathione peroxidase (GPX) and manganese superoxide dismutase (MnSOD) in mitochondria, inflammation (tumor necrosis factor α and interleukin 1β), increased accumulation of NF-κB in nuclear fraction, p53 induction, and apoptotic cell death (caspase 3 activity and DNA fragmentation). Treatment of mice with EGCG markedly attenuated cisplatin induced mitochondrial oxidative/nitrative stress, mitochondrial damages to electron transport chain activities and antioxidant defense enzyme activities in mitochondria. These mitochondrial modulations by EGCG led to protection mechanism against cisplatin induced inflammation and apoptotic cell death in mice kidney. As a result, EGCG improved renal function in cisplatin mediated kidney damage. In addition to that, EGCG attenuated cisplatin induced apoptotic cell death and mitochondrial reactive oxygen species (ROS) generation in human kidney tubular cell line HK-2. Thus, our data suggest that EGCG may represent new promising adjunct candidate for

  1. Raphanus sativus extract protects against Zearalenone induced reproductive toxicity, oxidative stress and mutagenic alterations in male Balb/c mice.

    Science.gov (United States)

    Ben Salah-Abbès, Jalila; Abbès, Samir; Abdel-Wahhab, Mosaad A; Oueslati, Ridha

    2009-04-01

    Zearalenone (ZEN) is a non-steroidal estrogenic mycotoxin produced by several species of Fusarium in cereals and agricultural products. It has been implicated in several mycotoxicosis in farm animals and in humans. There is unequivocal evidence of reproductive toxicity of ZEN in male mice although the mechanism of action is unknown. Several reports suggest that exposure to ZEN resulted in oxidative stress, genotoxicity and perturbation of reproductive parameters. Therefore, the aim of the current study was to evaluate the protective effects of aqueous extract of Raphanus sativus growing in Tunisia against ZEN-induced reproductive toxicity and oxidative stress. Fifty male Balb/c mice were divided into five groups and treated for 28 days as follows: the control group, olive oil-treated groups, another treated with ZEN (40 mg/kg b.w), the last one treated with R. sativus extract alone (15 mg/kg b.w) and the other with ZEN + R. sativus extract. Testis samples were collected for the epididymal sperm count, testosterone concentration, and MDA level, GPx, CAT and SOD activities. Blood samples were collected for different biochemical analyses. Also, RAPD-PCR method was performed to assess the antigenotoxic effect of the extract in germ cells. The results indicated that ZEN-induced toxicological effects in accordance to those reported in the literature: decreasing in the sperm number, testosterone level and antioxidant enzyme status. The RAPD-PCR analysis revealed an alteration in the DNA bands patterns between control and ZEN-treated mice. The extract alone, rich in many antioxidant compounds, was safe and succeeded in counteracting the oxidative stress and protect against the toxicity resulting from ZEN.

  2. Role of oxidative stress in methamphetamine-induced dopaminergic toxicity mediated by protein kinase Cδ.

    Science.gov (United States)

    Shin, Eun-Joo; Duong, Chu Xuan; Nguyen, Xuan-Khanh Thi; Li, Zhengyi; Bing, Guoying; Bach, Jae-Hyung; Park, Dae Hun; Nakayama, Keiichi; Ali, Syed F; Kanthasamy, Anumantha G; Cadet, Jean Lud; Nabeshima, Toshitaka; Kim, Hyoung-Chun

    2012-06-15

    This study examined the role of protein kinase C (PKC) isozymes in methamphetamine (MA)-induced dopaminergic toxicity. Multiple-dose administration of MA did not significantly alter PKCα, PKCβI, PKCβII, or PKCζ expression in the striatum, but did significantly increase PKCδ expression. Gö6976 (a co-inhibitor of PKCα and -β), hispidin (PKCβ inhibitor), and PKCζ pseudosubstrate inhibitor (PKCζ inhibitor) did not significantly alter MA-induced behavioral impairments. However, rottlerin (PKCδ inhibitor) significantly attenuated behavioral impairments in a dose-dependent manner. In addition, MA-induced behavioral impairments were not apparent in PKCδ knockout (-/-) mice. MA-induced oxidative stress (i.e., lipid peroxidation and protein oxidation) was significantly attenuated in rottlerin-treated mice and was not apparent in PKCδ (-/-) mice. Consistent with this, MA-induced apoptosis (i.e., terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling-positive apoptotic cells) was significantly attenuated in rottlerin-treated mice. Furthermore, MA-induced increases in the dopamine (DA) turnover rate and decreases in tyrosine hydroxylase (TH) activity and the expression of TH, dopamine transporter (DAT), and vesicular monoamine transporter 2 (VMAT2) were not significantly observed in rottlerin-treated or PKCδ (-/-) mice. Our results suggest that PKCδ gene expression is a key mediator of oxidative stress and dopaminergic damage induced by MA. Thus, inhibition of PKCδ may be a useful target for protection against MA-induced neurotoxicity. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. UV and ionizing radiations induced DNA damage, differences and similarities

    Science.gov (United States)

    Ravanat, Jean-Luc; Douki, Thierry

    2016-11-01

    Both UV and ionizing radiations damage DNA. Two main mechanisms, so-called direct and indirect pathways, are involved in the degradation of DNA induced by ionizing radiations. The direct effect of radiation corresponds to direct ionization of DNA (one electron ejection) whereas indirect effects are produced by reactive oxygen species generated through water radiolysis, including the highly reactive hydroxyl radicals, which damage DNA. UV (and visible) light damages DNA by again two distinct mechanisms. UVC and to a lesser extend UVB photons are directly absorbed by DNA bases, generating their excited states that are at the origin of the formation of pyrimidine dimers. UVA (and visible) light by interaction with endogenous or exogenous photosensitizers induce the formation of DNA damage through photosensitization reactions. The excited photosensitizer is able to induce either a one-electron oxidation of DNA (type I) or to produce singlet oxygen (type II) that reacts with DNA. In addition, through an energy transfer from the excited photosensitizer to DNA bases (sometime called type III mechanism) formation of pyrimidine dimers could be produced. Interestingly it has been shown recently that pyrimidine dimers are also produced by direct absorption of UVA light by DNA, even if absorption of DNA bases at these wavelengths is very low. It should be stressed that some excited photosensitizers (such as psoralens) could add directly to DNA bases to generate adducts. The review will described the differences and similarities in terms of damage formation (structure and mechanisms) between these two physical genotoxic agents.

  4. Is rosuvastatin protective against on noise-induced oxidative stress in rat serum?

    Directory of Open Access Journals (Sweden)

    Emine Rabia Koc

    2015-01-01

    Full Text Available Noise, one of the main components of modern society, has become an important environmental problem. Noise is not only an irritating sound, but also a stress factor leading to serious health problems. In this study, we have investigated possible effects of rosuvastatin, a 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitor, thought to have an antioxidant effect, on noise-induced oxidative stress in the serum of rat models. Thirty-two male Wistar albino rats were used. In order to ease their adaptation, 2 weeks before the experiment, the rats were divided into four groups (with eight rats per each group: Noise exposure plus rosuvastatin usage, only noise exposure, only rosuvastatin usage and control. After the data had been collected, oxidant (Malondialdehyde, nitric oxide [NO], protein carbonyl [PC] and antioxidant (superoxide dismutase [SOD], glutathione peroxidase [GSH-PX], catalase [CAT] parameters were analyzed in the serum. Results indicated that SOD values were found to be significantly lower, while PC values in serum were remarkably higher in the group that was exposed to only noise. GSH-Px values in serum dramatically increased in the group on which only rosuvastatin was used. During noise exposure, the use of rosuvastatin caused significantly increased CAT values, whereas it resulted in reduced PC and NO values in serum. In conclusion, our data show that noise exposure leads to oxidative stress in rat serum; however, rosuvastatin therapy decreases the oxidative stress caused by noise exposure.

  5. The Yeast Environmental Stress Response Regulates Mutagenesis Induced by Proteotoxic Stress

    Science.gov (United States)

    Shor, Erika; Fox, Catherine A.; Broach, James R.

    2013-01-01

    Conditions of chronic stress are associated with genetic instability in many organisms, but the roles of stress responses in mutagenesis have so far been elucidated only in bacteria. Here, we present data demonstrating that the environmental stress response (ESR) in yeast functions in mutagenesis induced by proteotoxic stress. We show that the drug canavanine causes proteotoxic stress, activates the ESR, and induces mutagenesis at several loci in an ESR-dependent manner. Canavanine-induced mutagenesis also involves translesion DNA polymerases Rev1 and Polζ and non-homologous end joining factor Ku. Furthermore, under conditions of chronic sub-lethal canavanine stress, deletions of Rev1, Polζ, and Ku-encoding genes exhibit genetic interactions with ESR mutants indicative of ESR regulating these mutagenic DNA repair processes. Analyses of mutagenesis induced by several different stresses showed that the ESR specifically modulates mutagenesis induced by proteotoxic stress. Together, these results document the first known example of an involvement of a eukaryotic stress response pathway in mutagenesis and have important implications for mechanisms of evolution, carcinogenesis, and emergence of drug-resistant pathogens and chemotherapy-resistant tumors. PMID:23935537

  6. Role of oxidative stress in cadmium toxicity and carcinogenesis

    International Nuclear Information System (INIS)

    Liu Jie; Qu Wei; Kadiiska, Maria B.

    2009-01-01

    Cadmium (Cd) is a toxic metal, targeting the lung, liver, kidney, and testes following acute intoxication, and causing nephrotoxicity, immunotoxicity, osteotoxicity and tumors after prolonged exposures. Reactive oxygen species (ROS) are often implicated in Cd toxicology. This minireview focused on direct evidence for the generation of free radicals in intact animals following acute Cd overload and discussed the association of ROS in chronic Cd toxicity and carcinogenesis. Cd-generated superoxide anion, hydrogen peroxide, and hydroxyl radicals in vivo have been detected by the electron spin resonance spectra, which are often accompanied by activation of redox sensitive transcription factors (e.g., NF-κB, AP-1 and Nrf2) and alteration of ROS-related gene expression. It is generally agreed upon that oxidative stress plays important roles in acute Cd poisoning. However, following long-term Cd exposure at environmentally-relevant low levels, direct evidence for oxidative stress is often obscure. Alterations in ROS-related gene expression during chronic exposures are also less significant compared to acute Cd poisoning. This is probably due to induced adaptation mechanisms (e.g., metallothionein and glutathione) following chronic Cd exposures, which in turn diminish Cd-induced oxidative stress. In chronic Cd-transformed cells, less ROS signals are detected with fluorescence probes. Acquired apoptotic tolerance renders damaged cells to proliferate with inherent oxidative DNA lesions, potentially leading to tumorigenesis. Thus, ROS are generated following acute Cd overload and play important roles in tissue damage. Adaptation to chronic Cd exposure reduces ROS production, but acquired Cd tolerance with aberrant gene expression plays important roles in chronic Cd toxicity and carcinogenesis.

  7. Replication stress and oxidative damage contribute to aberrant constitutive activation of DNA damage signalling in human gliomas

    DEFF Research Database (Denmark)

    Bartkova, J; Hamerlik, P; Stockhausen, Marie

    2010-01-01

    damage signalling in low- and high-grade human gliomas, and analyze the sources of such endogenous genotoxic stress. Based on analyses of human glioblastoma multiforme (GBM) cell lines, normal astrocytes and clinical specimens from grade II astrocytomas (n=41) and grade IV GBM (n=60), we conclude...... that the DDR machinery is constitutively activated in gliomas, as documented by phosphorylated histone H2AX (gammaH2AX), activation of the ATM-Chk2-p53 pathway, 53BP1 foci and other markers. Oxidative DNA damage (8-oxoguanine) was high in some GBM cell lines and many GBM tumors, while it was low in normal...... brain and grade II astrocytomas, despite the degree of DDR activation was higher in grade II tumors. Markers indicative of ongoing DNA replication stress (Chk1 activation, Rad17 phosphorylation, replication protein A foci and single-stranded DNA) were present in GBM cells under high- or low...

  8. Antioxidant Activity of Lawsonia inermis Extracts Inhibits Chromium(VI-Induced Cellular and DNA Toxicity

    Directory of Open Access Journals (Sweden)

    Gunjan Guha

    2011-01-01

    Full Text Available Hexavalent chromium Cr(VI is a very strong oxidant which consequently causes high cytotoxicity through oxidative stress. Prevention of Cr(VI-induced cellular damage has been sought in this study in aqueous and methanolic extracts of Lawsonia inermis Linn. (Lythraceae, commonly known as Henna. The extracts showed significant (P < .05 potential in scavenging free radicals (DPPH• and ABTS•+ and Fe3+, and in inhibiting lipid peroxidation. DNA damage caused by exposure of pBR322 to Cr(VI-UV is markedly inhibited by both extracts in varying degrees. A distinct decline in Cr(VI-induced cytotoxicity was noticed in MDA-MB-435S (human breast carcinoma cells with an increase in dosage of both extracts individually. Furthermore, both extracts proved to contain a high content of phenolic compounds which were found to have a strong and significant (P < .05 positive correlation to the radical scavenging potential, lipid peroxidation inhibition capacity and cyto-protective efficiency against Cr(VI-induced oxidative cellular damage. HPLC analysis identified some of the major phenolic compounds in both extracts, which might be responsible for the antioxidant potential and the properties of DNA and cyto-protection. This study contributes to the search for natural resources that might yield potent therapeutic drugs against Cr(VI-induced oxidative cell damage.

  9. Oxidative Stress and Antioxidant System in Periodontitis

    Science.gov (United States)

    Wang, Yue; Andrukhov, Oleh; Rausch-Fan, Xiaohui

    2017-01-01

    Periodontitis is a common inflammatory disease, which is initiated by bacterial infection and subsequently progressed by aberrant host response. It can result in the destruction of teeth supporting tissues and have an influence on systemic health. When periodontitis occurs, reactive oxygen species, which are overproduced mostly by hyperactive neutrophils, could not be balanced by antioxidant defense system and cause tissues damage. This is characterized by increased metabolites of lipid peroxidation, DNA damage and protein damage. Local and systemic activities of antioxidants can also be influenced by periodontitis. Total antioxidant capacity, total oxidant status and oxidative stress index have been used to evaluate the oxidative stress associated with periodontitis. Studies have confirmed that inflammatory response in periodontitis is associated with an increased local and systemic oxidative stress and compromised antioxidant capacity. Our review focuses on increased oxidative stress in periodontal disease, specifically, on the relationship between the local and systemic biomarkers of oxidative stress and periodontitis and their association with the pathogenesis of periodontitis. Also, the relationship between periodontitis and systemic inflammation, and the effects of periodontal therapy on oxidative stress parameters will be discussed. PMID:29180965

  10. Accumulation of small heat shock proteins, including mitochondrial HSP22, induced by oxidative stress and adaptive response in tomato cells

    International Nuclear Information System (INIS)

    Banzet, N.; Richaud, C.; Deveaux, Y.; Kazmaier, M.; Gagnon, J.; Triantaphylides, C.

    1998-01-01

    Changes in gene expression, by application of H2O2, O2.- generating agents (methyl viologen, digitonin) and gamma irradiation to tomato suspension cultures, were investigated and compared to the well-described heat shock response. Two-dimensional gel protein mapping analyses gave the first indication that at least small heat shock proteins (smHSP) accumulated in response to application of H2O2 and gamma irradiation, but not to O2.- generating agents. While some proteins seemed to be induced specifically by each treatment, only part of the heat shock response was observed. On the basis of Northern hybridization experiments performed with four heterologous cDNA, corresponding to classes I-IV of pea smHSP, it could be concluded that significant amounts of class I and II smHSP mRNA are induced by H2O2 and by irradiation. Taken together, these results demonstrate that in plants some HSP genes are inducible by oxidative stresses, as in micro-organisms and other eukaryotic cells. HSP22, the main stress protein that accumulates following H2O2 action or gamma irradiation, was also purified. Sequence homology of amino terminal and internal sequences, and immunoreactivity with Chenopodium rubrum mitochondrial smHSP antibody, indicated that the protein belongs to the recently discovered class of plant mitochondrial smHSP. Heat shock or a mild H2O2 pretreatment was also shown to lead to plant cell protection against oxidative injury. Therefore, the synthesis of these stress proteins can be considered as an adaptive mechanism in which mitochondrial protection could be essential

  11. Menadione-Induced Oxidative Stress Re-Shapes the Oxylipin Profile of Aspergillus flavus and Its Lifestyle.

    Science.gov (United States)

    Zaccaria, Marco; Ludovici, Matteo; Sanzani, Simona Marianna; Ippolito, Antonio; Cigliano, Riccardo Aiese; Sanseverino, Walter; Scarpari, Marzia; Scala, Valeria; Fanelli, Corrado; Reverberi, Massimo

    2015-10-23

    Aspergillus flavus is an efficient producer of mycotoxins, particularly aflatoxin B₁, probably the most hepatocarcinogenic naturally-occurring compound. Although the inducing agents of toxin synthesis are not unanimously identified, there is evidence that oxidative stress is one of the main actors in play. In our study, we use menadione, a quinone extensively implemented in studies on ROS response in animal cells, for causing stress to A. flavus. For uncovering the molecular determinants that drive A. flavus in challenging oxidative stress conditions, we have evaluated a wide spectrum of several different parameters, ranging from metabolic (ROS and oxylipin profile) to transcriptional analysis (RNA-seq). There emerges a scenario in which A. flavus activates several metabolic processes under oxidative stress conditions for limiting the ROS-associated detrimental effects, as well as for triggering adaptive and escape strategies.

  12. Hepatoprotective properties of kombucha tea against TBHP-induced oxidative stress via suppression of mitochondria dependent apoptosis.

    Science.gov (United States)

    Bhattacharya, Semantee; Gachhui, Ratan; Sil, Parames C

    2011-06-01

    Kombucha, a fermented tea (KT) is claimed to possess many beneficial properties. Recent studies have suggested that KT prevents paracetamol and carbon tetrachloride-induced hepatotoxicity. We investigated the beneficial role of KT was against tertiary butyl hydroperoxide (TBHP) induced cytotoxicity and cell death in murine hepatocytes. TBHP is a well known reactive oxygen species (ROS) inducer, and it induces oxidative stress in organ pathophysiology. In our experiments, TBHP caused a reduction in cell viability, enhanced the membrane leakage and disturbed the intra-cellular antioxidant machineries while simultaneous treatment of the cells with KT and this ROS inducer maintained membrane integrity and prevented the alterations in the cellular antioxidant status. These findings led us to explore the detailed molecular mechanisms involved in the protective effect of KT. TBHP introduced apoptosis as the primary phenomena of cell death as evidenced by flow cytometric analyses. In addition, ROS generation, changes in the mitochondrial membrane potential, cytochrome c release, activation of caspases (3 and 9) and Apaf-1 were detected confirming involvement of mitochondrial pathway in this pathophysiology. Simultaneous treatment of KT with TBHP, on the other hand, protected the cells against oxidative injury and maintained their normal physiology. In conclusion, KT was found to modulate the oxidative stress induced apoptosis in murine hepatocytes probably due to its antioxidant activity and functioning via mitochondria dependent pathways and could be beneficial against liver diseases, where oxidative stress is known to play a crucial role. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  13. Ciprofloxacin induces oxidative stress in duckweed (Lemna minor L.): Implications for energy metabolism and antibiotic-uptake ability.

    Science.gov (United States)

    Gomes, Marcelo Pedrosa; Gonçalves, Cíntia Almeida; de Brito, Júlio César Moreira; Souza, Amanda Miranda; da Silva Cruz, Fernanda Vieira; Bicalho, Elisa Monteze; Figueredo, Cleber Cunha; Garcia, Queila Souza

    2017-04-15

    We investigate the physiological responses and antibiotic-uptake capacity of Lemna minor exposed to ciprofloxacin. Ciprofloxacin (Cipro) induced toxic effects and hormesis in plants by significantly modifying photosynthesis and respiration pathways. A toxic effect was induced by a concentration ≥1.05mg ciprofloxacin l -1 while hormesis occurs at the lowest concentration studied (0.75mg ciprofloxacin l -1 ). By impairing normal electron flow in the respiratory electron transport chain, ciprofloxacin induces hydrogen peroxide (H 2 O 2 ) production. The ability of plants to cope with H 2 O 2 accumulation using antioxidant systems resulted in stimulation/deleterious effects to photosynthesis by Cipro. Cipro-induced oxidative stress was also associated with the ability of L. minor plants to uptake the antibiotic and, therefore, with plant-uptake capacity. Our results indicate that instead of being a photosystem II binding molecule, Cipro induces oxidative stress by targeting the mitochondrial ETC, which would explain the observed effects of the antibiotic on non-target eukaryotic organisms. The selection of plants species with a high capacity to tolerate oxidative stress may constitute a strategy to be used in Cipro-remediation programs. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Oxidative stress and sodium methyldithiocarbamate-induced modulation of the macrophage response to lipopolysaccharide in vivo.

    Science.gov (United States)

    Pruett, Stephen B; Cheng, Bing; Fan, Ruping; Tan, Wei; Sebastian, Thomas

    2009-06-01

    Sodium methyldithiocarbamate (SMD) is the third most abundantly used conventional pesticide in the United States, and hundreds of thousands of persons are exposed to this compound or its major breakdown product, methylisothiocyanate, at levels greater than recommended by the Environmental Protection Agency. A previous study suggests three mechanisms of action involved to some degree in the inhibition of inflammation and decreased resistance to infection caused by exposure of mice to the compound. One of these mechanisms is oxidative stress. The purpose of the present study was to confirm that this mechanism is involved in the effects of SMD on cytokine production by peritoneal macrophages and to further characterize its role in altered cytokine production. Results indicated that SMD significantly decreased the intracellular concentration of reduced glutathione (GSH), suggesting oxidative stress. This was further indicated by the upregulation of genes involved in the "response to oxidative stress" as determined by microarray analysis. These effects were associated with the inhibition of lipopolysaccharide (LPS)-induced production of several proinflammatory cytokines. Experimental depletion of GSH with buthionine sulfoximine (BSO) partially prevented the decrease in LPS-induced interleukin (IL)-6 production caused by SMD and completely prevented the decrease in IL-12. In contrast, BSO plus SMD substantially enhanced the production of IL-10. These results along with results from a previous study are consistent with the hypothesis that SMD causes oxidative stress, which contributes to modulation of cytokine production. However, oxidative stress alone cannot explain the increased IL-10 production caused by SMD.

  15. Simvastatin and oxidative stress in humans

    DEFF Research Database (Denmark)

    Rasmussen, Sanne Tofte; Andersen, Jon Thor Trærup; Nielsen, Torben Kjær

    2016-01-01

    in mitochondrial respiratory complexes I and II and might thereby reduce the formation of reactive oxygen species, which have been implicated in the pathogenesis of arteriosclerosis. Therefore, we hypothesized that simvastatin may reduce oxidative stress in humans in vivo. We conducted a randomized, double......-blinded, placebo-controlled study in which subjects were treated with either 40 mg of simvastatin or placebo for 14 days. The endpoints were six biomarkers for oxidative stress, which represent intracellular oxidative stress to nucleic acids, lipid peroxidation and plasma antioxidants, that were measured in urine.......1% in the placebo group for DNA oxidation and 7.3% in the simvastatin group compared to 3.4% in the placebo group. The differences in biomarkers related to plasma were not statistically significant between the treatments groups, with the exception of total vitamin E levels, which, as expected, were reduced...

  16. Endoplasmic reticulum stress is involved in arsenite-induced oxidative injury in rat brain

    International Nuclear Information System (INIS)

    Lin, Anya M.Y.; Chao, P.L.; Fang, S.F.; Chi, C.W.; Yang, C.H.

    2007-01-01

    The mechanism underlying sodium arsenite (arsenite)-induced neurotoxicity was investigated in rat brain. Arsenite was locally infused in the substantia nigra (SN) of anesthetized rat. Seven days after infusion, lipid peroxidation in the infused SN was elevated and dopamine level in the ipsilateral striatum was reduced in a concentration-dependent manner (0.3-5 nmol). Furthermore, local infusion of arsenite (5 nmol) decreased GSH content and increased expression of heat shock protein 70 and heme oxygenase-1 in the infused SN. Aggregation of α-synuclein, a putative pathological protein involved in several CNS neurodegenerative diseases, was elevated in the arsenite-infused SN. From the breakdown pattern of α-spectrin, both necrosis and apoptosis were involved in the arsenite-induced neurotoxicity. Pyknotic nuclei, cellular shrinkage and cytoplasmic disintegration, indicating necrosis, and TUNEL-positive cells and DNA ladder, indicating apoptosis was observed in the arsenite-infused SN. Arsenite-induced apoptosis was mediated via two different organelle pathways, mitochondria and endoplasmic reticulum (ER). For mitochondrial activation, cytosolic cytochrome c and caspase-3 levels were elevated in the arsenite-infused SN. In ER pathway, arsenite increased activating transcription factor-4, X-box binding protein 1, C/EBP homologues protein (CHOP) and cytosolic immunoglobulin binding protein levels. Moreover, arsenite reduced procaspase 12 levels, an ER-specific enzyme in the infused SN. Taken together, our study suggests that arsenite is capable of inducing oxidative injury in CNS. In addition to mitochondria, ER stress was involved in the arsenite-induced apoptosis. Arsenite-induced neurotoxicity clinically implies a pathophysiological role of arsenite in CNS neurodegeneration

  17. Blue light irradiation-induced oxidative stress in vivo via ROS generation in rat gingival tissue.

    Science.gov (United States)

    Yoshida, Ayaka; Shiotsu-Ogura, Yukako; Wada-Takahashi, Satoko; Takahashi, Shun-suke; Toyama, Toshizo; Yoshino, Fumihiko

    2015-10-01

    It has been reported that oxidative stress with reactive oxygen species (ROS) generation is induced by blue light irradiation to a living body. Only limited research has been reported in dental field on the dangers of blue light, mostly focusing on cytotoxicity associated with heat injury of dental pulp. We thus performed an in vivo study on oral tissue exposed to blue light. ROS generated upon blue light irradiation of flavin adenine dinucleotide were measured by electron spin resonance spectroscopy. After blue light irradiation, the palatal gingiva of Wistar rats were isolated. Collected samples were subjected to biochemical analysis of lipid peroxidation and glutathione. Singlet oxygen was generated by blue light irradiation, but was significantly quenched in an N-acetyl-L-cysteine (NAC) concentration-dependent manner. Blue light significantly accelerated oxidative stress and increased the oxidized glutathione levels in gingival tissue. These effects were also inhibited by NAC pre-administration. The results suggest that blue light irradiation at clinical levels of tooth bleaching treatment may enhance lipid peroxidation by the induction of oxidative stress and the consumption of a significant amount of intracellular glutathione. In addition, NAC might be an effective supplement for the protection of oral tissues against blue light irradiation-induced oxidative damage. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Genetic polymorphisms in DNA repair and oxidative stress pathways may modify the association between body size and postmenopausal breast cancer

    Czech Academy of Sciences Publication Activity Database

    McCullough, L. E.; Eng, S. M.; Bradshaw, P. T.; Cleveland, R. J.; Steck, S. E.; Terry, M. B.; Shen, J.; Crew, K.D.; Rössner ml., Pavel; Ahn, J.; Ambrosone, Ch.B.; Teitelbaum, S. L.; Neugut, A. I.; Santella, R. M.; Gammon, M. D.

    2015-01-01

    Roč. 25, č. 4 (2015), s. 263-269 ISSN 1047-2797 Institutional support: RVO:68378041 Keywords : breast cancer * body mass index * oxidative stress * DNA repair * Epidemiology Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.335, year: 2015

  19. Evaluation of the Potential of Brazilian Propolis against UV-Induced Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Yris Maria Fonseca

    2011-01-01

    Full Text Available This study investigated the potential use of topically and orally administered propolis extracts to prevent UV irradiation-induced oxidative stress in skin. The results illustrated that green propolis extract (GPE contained greater amounts of polyphenols, coumaric acid, drupanin, baccharin and artepillin C than did brown propolis extract (BPE. GPE showed higher antioxidant activity than BPE when the IC50 (concentration that caused 50% inhibition values were compared. Interesting, the oral treatment of hairless mice demonstrated a recovery of 30.0% for GPE and 22.8% for BPE with respect to UV irradiation-induced GSH depletion. The topical pretreatment of animals with both propolis extract solutions recovered around 14.0% of the depleted GSH. However, the employed treatments did not inhibit the increase of cutaneous proteinase secretion/activity caused by irradiation. These findings indicate that despite differences in composition and antioxidant properties, GPE and BPE both successfully prevent UV-induced GSH depletion in vivo and are both promising antioxidant systems against oxidative stress in skin. Based on these findings, complementary studies should be performed to enhance our understanding of the protective effects of propolis extracts in skin.

  20. Oxidative DNA damage causes mitochondrial genomic instability in Saccharomyces cerevisiae.

    Science.gov (United States)

    Doudican, Nicole A; Song, Binwei; Shadel, Gerald S; Doetsch, Paul W

    2005-06-01

    Mitochondria contain their own genome, the integrity of which is required for normal cellular energy metabolism. Reactive oxygen species (ROS) produced by normal mitochondrial respiration can damage cellular macromolecules, including mitochondrial DNA (mtDNA), and have been implicated in degenerative diseases, cancer, and aging. We developed strategies to elevate mitochondrial oxidative stress by exposure to antimycin and H(2)O(2) or utilizing mutants lacking mitochondrial superoxide dismutase (sod2Delta). Experiments were conducted with strains compromised in mitochondrial base excision repair (ntg1Delta) and oxidative damage resistance (pif1Delta) in order to delineate the relationship between these pathways. We observed enhanced ROS production, resulting in a direct increase in oxidative mtDNA damage and mutagenesis. Repair-deficient mutants exposed to oxidative stress conditions exhibited profound genomic instability. Elimination of Ntg1p and Pif1p resulted in a synergistic corruption of respiratory competency upon exposure to antimycin and H(2)O(2). Mitochondrial genomic integrity was substantially compromised in ntg1Delta pif1Delta sod2Delta strains, since these cells exhibit a total loss of mtDNA. A stable respiration-defective strain, possessing a normal complement of mtDNA damage resistance pathways, exhibited a complete loss of mtDNA upon exposure to antimycin and H(2)O(2). This loss was preventable by Sod2p overexpression. These results provide direct evidence that oxidative mtDNA damage can be a major contributor to mitochondrial genomic instability and demonstrate cooperation of Ntg1p and Pif1p to resist the introduction of lesions into the mitochondrial genome.

  1. Protective effect of Rhus coriaria fruit extracts against hydrogen peroxide-induced oxidative stress in muscle progenitors and zebrafish embryos

    Directory of Open Access Journals (Sweden)

    Fadia Najjar

    2017-12-01

    Full Text Available Background and Purpose Oxidative stress is involved in normal and pathological functioning of skeletal muscle. Protection of myoblasts from oxidative stress may improve muscle contraction and delay aging. Here we studied the effect of R. coriaria sumac fruit extract on human myoblasts and zebrafish embryos in conditions of hydrogen peroxide-induced oxidative stress. Study Design and Methods Crude ethanolic 70% extract (CE and its fractions was obtained from sumac fruits. The composition of sumac ethyl acetate EtOAc fraction was studied by 1H NMR. The viability of human myoblasts treated with CE and the EtOAc fraction was determined by trypan blue exclusion test. Oxidative stress, cell cycle and adhesion were analyzed by flow cytometry and microscopy. Gene expression was analyzed by qPCR. Results The EtOAc fraction (IC50 2.57 µg/mL had the highest antioxidant activity and exhibited the best protective effect against hydrogen peroxide-induced oxidative stress. It also restored cell adhesion. This effect was mediated by superoxide dismutase 2 and catalase. Pre-treatment of zebrafish embryos with low concentrations of the EtOAc fraction protected them from hydrogen peroxide-induced death in vivo. 1H NMR analysis revealed the presence of gallic acid in this fraction. Conclusion Rhus coriaria extracts inhibited or slowed down the progress of skeletal muscle atrophy by decreasing oxidative stress via superoxide dismutase 2 and catalase-dependent mechanisms.

  2. Cofilin Knockdown Attenuates Hemorrhagic Brain Injury-induced Oxidative Stress and Microglial Activation in Mice.

    Science.gov (United States)

    Alhadidi, Qasim; Nash, Kevin M; Alaqel, Saleh; Sayeed, Muhammad Shahdaat Bin; Shah, Zahoor A

    2018-05-08

    Intracerebral hemorrhage (ICH) resulting from the rupture of the blood vessels in the brain is associated with significantly higher mortality and morbidity. Clinical studies focused on alleviating the primary injury, hematoma formation and expansion, were largely ineffective, suggesting that secondary injury-induced inflammation and the formation of reactive species also contribute to the overall injury process. In this study, we explored the effects of cofilin knockdown in a mouse model of ICH. Animals given stereotaxic injections of cofilin siRNA, 72-h prior to induction of ICH by collagenase injection within the area of siRNA administration showed significantly decreased cofilin expression levels and lower hemorrhage volume and edema, and the animals performed significantly better in neurobehavioral tasks i.e., rotarod, grip strength and neurologic deficit scores. Cofilin siRNA knocked-down mice had reduced ICH-induced DNA fragmentation, blood-brain barrier disruption and microglial activation, with a concomitant increase in astrocyte activation. Increased expression of pro-survival proteins and decreased markers of oxidative stress were also observed in cofilin siRNA-treated mice possibly due to the reduced levels of cofilin. Our results suggest that cofilin plays a major role in ICH-induced secondary injury, and could become a potential therapeutic target. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. Induction of oxidative stress in rat epididymal sperm after exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin

    Energy Technology Data Exchange (ETDEWEB)

    Latchoumycandane, C.; Chitra, K.C.; Mathur, P.P. [School of Life Sciences, Pondicherry University (India)

    2002-03-01

    The ability of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) to induce oxidative stress in various tissues of animals has been reported. The nature and mechanism of action of TCDD on the antioxidant system of sperm has not been studied. In the present study we have sought to investigate whether TCDD induces oxidative stress in the epididymal sperm of rats. Subchronic doses of TCDD (1, 10, and 100 ng/kg body weight per day) were administered orally to male Wistar strain rats for 45 days. After 24 h of the last treatment the rats were killed using diethyl ether. The epididymides were removed and cleared from the adhering tissues. Epididymal sperm were collected by cutting the epididymides into small pieces in Ham's F12 medium, and counted using a hemocytometer. The epididymal sperm counts in the TCDD-treated groups decreased in a dose-dependent manner from the control value of 8.2{+-}0.14 x 10{sup 8} to 5.31{+-}0.15 x 10{sup 8}. Since a positive correlation (r=0.95; n=24) was observed between sperm count and DNA content of the epididymal sperm, DNA content was routinely used as an indicator of sperm count, and the results were expressed in terms of both protein and DNA. There was a significant decline in the activities of superoxide dismutase (40{+-}2.17 to 27.1{+-}0.76/mg protein and 32.41 to 18.07{+-}0.76/mg DNA), catalase (2.49{+-}0.13 to 2.03{+-}0.05/mg protein and 2.01{+-}0.05 to 1.35{+-}0.05/mg DNA), glutathione reductase (71.2{+-}3.87 to 48{+-}1.79/mg protein and 57.58{+-}1.52 to 31.94/mg DNA) and glutathione peroxidase (22.4{+-}1.43 to 16.9{+-}1.57/mg protein and 18.08{+-}0.61 to 11.38{+-}1.22/mg DNA) while there were increases in the levels of hydrogen peroxide (20.8{+-}1.96 to 55.3{+-}0.88/ mg protein and 16.18{+-}1.88 to 36.87{+-}0.88/ mg DNA) and lipid peroxidation (2.17{+-}0.2 to 6.08/mg protein and 1.75{+-}0.12 to 4.05{+-}0.12/mg DNA) in the epididymal sperm. The results suggest that graded doses of TCDD elicit depletion of antioxidant defense system

  4. Prototheca zopfii isolated from bovine mastitis induced oxidative stress and apoptosis in bovine mammary epithelial cells.

    Science.gov (United States)

    Shahid, Muhammad; Gao, Jian; Zhou, Yanan; Liu, Gang; Ali, Tariq; Deng, Youtian; Sabir, Naveed; Su, Jingliang; Han, Bo

    2017-05-09

    Bovine protothecal mastitis results in considerable economic losses worldwide. However, Prototheca zopfii induced morphological alterations and oxidative stress in bovine mammary epithelial cells (bMECs) is not comprehensively studied yet. Therefore, the aim of this current study was to investigate the P. zopfii induced pathomorphological changes, oxidative stress and apoptosis in bMECs. Oxidative stress was assessed by evaluating catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), malondialdehyde (MDA) contents and lactate dehydrogenase (LDH) activity, while ROS generation and apoptosis was measured by confocal laser scanning microscopy. The results revealed that infection of P. zopfii genotype II (GTII) significantly changed bMECs morphology, increased apoptotic rate and MDA contents at 12 h (p < 0.05) and 24 h (p < 0.01) in comparison with control group, in time-dependent manner. LDH activity and ROS generation was also increased (p < 0.01) at 12 h and 24 h. However, SOD and CAT contents in bMECs infected with GTII were decreased (p < 0.05) at 12 h, while GPx (p < 0.01), SOD (p < 0.05) and CAT (p < 0.01) levels were reduced at 24 h. In case of GTI, only CAT and GPx activities were significantly decreased when the duration prolonged to 24 h but lesser than GTII. This suggested that GTII has more devastating pathogenic effects in bMECs, and the findings of this study concluded that GTII induced apoptosis and oxidative stress in bMECs via the imbalance of oxidant and antioxidant defenses as well as the production of intracellular ROS.

  5. Curcumin targeting the thioredoxin system elevates oxidative stress in HeLa cells

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Wenqing; Zhang, Baoxin; Duan, Dongzhu [State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000 (China); Wu, Jincai [College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000 (China); Fang, Jianguo, E-mail: fangjg@lzu.edu.cn [State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000 (China); College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000 (China)

    2012-08-01

    The thioredoxin system, composed of thioredoxin reductase (TrxR), thioredoxin (Trx), and NADPH, is ubiquitous in all cells and involved in many redox-dependent signaling pathways. Curcumin, a naturally occurring pigment that gives a specific yellow color in curry food, is consumed in normal diet up to 100 mg per day. This molecule has also been used in traditional medicine for the treatment of a variety of diseases. Curcumin has numerous biological functions, and many of these functions are related to induction of oxidative stress. However, how curcumin elicits oxidative stress in cells is unclear. Our previous work has demonstrated the way by which curcumin interacts with recombinant TrxR1 and alters the antioxidant enzyme into a reactive oxygen species (ROS) generator in vitro. Herein we reported that curcumin can target the cytosolic/nuclear thioredoxin system to eventually elevate oxidative stress in HeLa cells. Curcumin-modified TrxR1 dose-dependently and quantitatively transfers electrons from NADPH to oxygen with the production of ROS. Also, curcumin can drastically down-regulate Trx1 protein level as well as its enzyme activity in HeLa cells, which in turn remarkably decreases intracellular free thiols, shifting the intracellular redox balance to a more oxidative state, and subsequently induces DNA oxidative damage. Furthermore, curcumin-pretreated HeLa cells are more sensitive to oxidative stress. Knockdown of TrxR1 sensitizes HeLa cells to curcumin cytotoxicity, highlighting the physiological significance of targeting TrxR1 by curcumin. Taken together, our data disclose a previously unrecognized prooxidant mechanism of curcumin in cells, and provide a deep insight in understanding how curcumin works in vivo. -- Highlights: ► Curcumin induces oxidative stress by targeting the thioredoxin system. ► Curcumin-modified TrxR quantitatively oxidizes NADPH to generate ROS. ► Knockdown of TrxR1 augments curcumin's cytotoxicity in HeLa cells.

  6. Curcumin targeting the thioredoxin system elevates oxidative stress in HeLa cells

    International Nuclear Information System (INIS)

    Cai, Wenqing; Zhang, Baoxin; Duan, Dongzhu; Wu, Jincai; Fang, Jianguo

    2012-01-01

    The thioredoxin system, composed of thioredoxin reductase (TrxR), thioredoxin (Trx), and NADPH, is ubiquitous in all cells and involved in many redox-dependent signaling pathways. Curcumin, a naturally occurring pigment that gives a specific yellow color in curry food, is consumed in normal diet up to 100 mg per day. This molecule has also been used in traditional medicine for the treatment of a variety of diseases. Curcumin has numerous biological functions, and many of these functions are related to induction of oxidative stress. However, how curcumin elicits oxidative stress in cells is unclear. Our previous work has demonstrated the way by which curcumin interacts with recombinant TrxR1 and alters the antioxidant enzyme into a reactive oxygen species (ROS) generator in vitro. Herein we reported that curcumin can target the cytosolic/nuclear thioredoxin system to eventually elevate oxidative stress in HeLa cells. Curcumin-modified TrxR1 dose-dependently and quantitatively transfers electrons from NADPH to oxygen with the production of ROS. Also, curcumin can drastically down-regulate Trx1 protein level as well as its enzyme activity in HeLa cells, which in turn remarkably decreases intracellular free thiols, shifting the intracellular redox balance to a more oxidative state, and subsequently induces DNA oxidative damage. Furthermore, curcumin-pretreated HeLa cells are more sensitive to oxidative stress. Knockdown of TrxR1 sensitizes HeLa cells to curcumin cytotoxicity, highlighting the physiological significance of targeting TrxR1 by curcumin. Taken together, our data disclose a previously unrecognized prooxidant mechanism of curcumin in cells, and provide a deep insight in understanding how curcumin works in vivo. -- Highlights: ► Curcumin induces oxidative stress by targeting the thioredoxin system. ► Curcumin-modified TrxR quantitatively oxidizes NADPH to generate ROS. ► Knockdown of TrxR1 augments curcumin's cytotoxicity in HeLa cells. ► Curcumin

  7. Low voltage stress-induced leakage current and traps in ultrathin oxide (1.2 2.5 nm) after constant voltage stresses

    Science.gov (United States)

    Petit, C.; Zander, D.

    2007-10-01

    It has been shown that the low voltage gate current in ultrathin oxide metal-oxide-semiconductor devices is very sensitive to electrical stresses. Therefore, it can be used as a reliability monitor when the oxide thickness becomes too small for traditional electrical measurements to be used. In this work, we present a study on n-MOSCAP devices at negative gate bias in the direct tunneling (DT) regime. If the low voltage stress-induced leakage current (LVSILC) depends strongly on the low sense voltages, it also depends strongly on the stress voltage magnitude. We show that two LVSILC peaks appear as a function of the sense voltage in the LVSILC region and that their magnitude, one compared to the other, depends strongly on the stress voltage magnitude. One is larger than the other at low stress voltage and smaller at high stress voltage. From our experimental results, different conduction mechanisms are analyzed. To explain LVSILC variations, we propose a model of the conduction through the ultrathin gate oxide based on two distinctly different trap-assisted tunneling mechanisms: inelastic of gate electron (INE) and trap-assisted electron (ETAT).

  8. Heavy metals induce oxidative stress and trigger oxidative stress-mediated heat shock protein (hsp) modulation in the intertidal copepod Tigriopus japonicus.

    Science.gov (United States)

    Kim, Bo-Mi; Rhee, Jae-Sung; Jeong, Chang-Bum; Seo, Jung Soo; Park, Gyung Soo; Lee, Young-Mi; Lee, Jae-Seong

    2014-11-01

    Heat shock proteins (hsps) are induced by a wide range of environmental stressors including heavy metals in aquatic organisms. However, the effect of heavy metals on zooplankton at the molecular level remains still unclear. In this study, we measured the intracellular reactive oxygen species (ROS) level and the antioxidant enzyme activities for 96 h after exposure to five heavy metals: arsenic (As), cadmium (Cd), copper (Cu), silver (Ag), and zinc (Zn) in the intertidal copepod Tigriopus japonicus. Activities of the antioxidant enzymes were highly elevated in metal-exposed copepods, indicating that heavy metals can induce oxidative stress by generating ROS, and stimulate the involvement of antioxidant enzymes as cellular defense mechanisms. Subsequently, transcriptional changes in hsp gene families were further investigated in the metal-exposed groups for 96 h. The ROS level and glutathione (GSH) content were significantly increased in Ag-, As-, and Cu-exposed copepods, while they were only slightly elevated in Cd- and Zn-exposed groups. Based on the numbers of significantly modulated hsp genes and their expression levels for 96 h, we measured the effect of heavy metals to stress genes of T. japonicus in the following order: Cu > Zn > Ag > As > Cd, implying that Cu acts as a stronger oxidative stress inducer than other heavy metals. Of them, the expression of hsp20 and hsp70 genes was substantially modulated by exposure to heavy metals, indicating that these genes would provide a sensitive molecular biomarker for aquatic monitoring of heavy metal pollution. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. 17-beta estradiol inhibits oxidative stress-induced accumulation of AIF into nucleolus and PARP1-dependent cell death via estrogen receptor alpha.

    Science.gov (United States)

    Batnasan, Enkhzaya; Wang, Ruoxi; Wen, Jitao; Ke, Yueshuang; Li, Xiaoxue; Bohio, Ameer Ali; Zeng, Xianlu; Huo, Hongliang; Han, Liping; Boldogh, Istvan; Ba, Xueqing

    2015-01-05

    Oxidative stress-induced DNA damage results in over-activation of poly(ADP-ribose) polymerase 1 (PARP1), leading to parthanatos, a newly discovered cell elimination pathway. Inhibition of PARP1-dependent cell death has shown to improve the outcome of diseases, including stroke, heart ischemia, and neurodegenerative diseases. In the present study we aimed to detect whether estrogen plays a protective role in inhibiting parthanatos. We utilized human mammary adenocarcinoma cells (MCF7) that abundantly express the estrogen receptor alpha and beta (ERα and ERβ). Parthanatos was induced by challenging the cells with hydrogen peroxide (H2O2). Microscopic imaging and molecular biological techniques, such as Western blot analysis and RNA interference, were performed. The results showed 17β estradiol (E2) protected MCF7 cells from PARP1-dependent cell death by decreasing protein PARylation, and AIF translocation into nuclei/nucleoli. Down-regulation of ERα expression by siRNA before E2 addition resulted in the failure of the E2-mediated inhibition of H2O2-induced protein PARylation and AIF nucleolar translocation. Together these data suggest that estrogen via its alpha-type receptor inhibits oxidative stress-induced, PARP1-dependent cell death. The present study provided us insight into how to apply hormone therapy in intervention of parthanatos-implicated ischemic and degenerative diseases. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Protective Effect against Oxidative Stress in Medicinal Plant Extracts

    International Nuclear Information System (INIS)

    Kim, Jeong Hee; Lee, Eun Ju; Shin, Dong O; Hong, Sung Eun; Kim, Jin Kyu

    2000-01-01

    Protective effect of medicinal plant extracts against oxidative stress were screened in this study. Methanol extracts from 48 medicinal plants, which were reported to have antioxidative or anti-inflammatory effect were prepared and screened for their protective activity against chemically-induced and radiation-induced oxidative stress by using MTT assay. Thirty three samples showed protective activity against chemically-induced oxidative stress in various extent. Among those samples, extract of Glycyrrhiza uralensis revealed the strongest activity (25.9% at 100 μg/ml) with relatively lower cytotoxicity. Seven other samples showed higher than 20% protection at 100 μg/ml. These samples were tested for protection activity against radiation-induced oxidative stress. Methanol extract of Alpina officinarum showed the highest activity (17.8% at 20 μg/ml). Five fractions were prepared from the each 10 methanol extracts which showed high protective activity against oxidative stress. Among those fraction samples butanol fractions of Areca catechu var. dulcissima and Spirodela polyrrhiza showed the highest protective activities (78.8% and 77.2%, respectively, at 20 μg/ml)

  11. Mercury induced oxidative stress, DNA damage, and activation of antioxidative system and Hsp70 induction in duckweed (Lemna minor).

    Science.gov (United States)

    Zhang, Tingting; Lu, Qianqian; Su, Chunlei; Yang, Yaru; Hu, Dan; Xu, Qinsong

    2017-09-01

    Mercury uptake and its effects on physiology, biochemistry and genomic stability were investigated in Lemna minor after 2 and 6d of exposure to 0-30μM Hg. The accumulation of Hg increased in a concentration- and duration-dependent manner, and was positively correlated with the leaf damage. Oxidative stress after Hg exposure was evidenced in L. minor by a significant decrease in photosynthetic pigments, an increase in malondialdehyde and lipoxygenase activities (total enzyme activity and isoenzymes activity). Fronds of L. minor exposed to Hg showed an induction of peroxidase, catalase, and ascorbate peroxidase activities (total enzyme activity and some isoenzymes activities). Exposure of L. minor to Hg reduced the activity (total enzyme activity and some isoenzymes activities) of glutathione reductase, and superoxide dismutase. Exposure to Hg produced a transient increase in the content of glutathione and ascorbic acid. The content of dehydroascorbate and oxidized glutathione in L. minor were high during the entire exposure period. Exposure of L. minor to Hg also caused the accumulation of proline and soluble sugars. The amplification of new bands and the absence of normal DNA amplicons in treated plants in the random amplified polymorphic DNA (RAPD) profile indicated that genomic template stability (GTS) was affected by Hg treatment. The accumulation of Hsp70 indicated the occurrence of a heat shock response at all Hg concentrations. These results suggest that L. minor plants were able to cope with Hg toxicity through the activation of various mechanisms involving enzymatic and non-enzymatic antioxidants, up-regulation of proline, and induction of Hsp70. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. High fat diet aggravates arsenic induced oxidative stress in rat heart and liver.

    Science.gov (United States)

    Dutta, Mousumi; Ghosh, Debosree; Ghosh, Arnab Kumar; Bose, Gargi; Chattopadhyay, Aindrila; Rudra, Smita; Dey, Monalisa; Bandyopadhyay, Arkita; Pattari, Sanjib K; Mallick, Sanjaya; Bandyopadhyay, Debasish

    2014-04-01

    Arsenic is a well known global groundwater contaminant. Exposure of human body to arsenic causes various hazardous effects via oxidative stress. Nutrition is an important susceptible factor which can affect arsenic toxicity by several plausible mechanisms. Development of modern civilization led to alteration in the lifestyle as well as food habits of the people both in urban and rural areas which led to increased use of junk food containing high level of fat. The present study was aimed at investigating the effect of high fat diet on heart and liver tissues of rats when they were co-treated with arsenic. This study was established by elucidating heart weight to body weight ratio as well as analysis of the various functional markers, oxidative stress biomarkers and also the activity of the antioxidant enzymes. Histological analysis confirmed the biochemical investigations. From this study it can be concluded that high fat diet increased arsenic induced oxidative stress. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Oxidative stress in immature brain following experimentally-induced seizures

    Czech Academy of Sciences Publication Activity Database

    Folbergrová, Jaroslava

    2013-01-01

    Roč. 62, Suppl.1 (2013), S39-S48 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GA309/05/2015; GA ČR(CZ) GA309/08/0292; GA ČR(CZ) GAP303/10/0999; GA ČR(CZ) GAP302/10/0971; GA MŠk(CZ) LL1204 Institutional research plan: CEZ:AV0Z50110509 Institutional support: RVO:67985823 Keywords : immature rats * experimentally-induced seizures * oxidative stress * mitochondrial dysfunction * antioxidant defense Subject RIV: FH - Neurology Impact factor: 1.487, year: 2013

  14. Perfluoroalkylated substances (PFAS) affect oxidative stress biomarkers in vitro

    DEFF Research Database (Denmark)

    Wielsøe, Maria; Long, Manhai; Ghisari, Mandana

    2015-01-01

    Perfluoroalkylated substances (PFAS) have been widely used since 1950s and humans are exposed through food, drinking water, consumer products, dust, etc. The long-chained PFAS are persistent in the environment and accumulate in wildlife and humans. They are suspected carcinogens and a potential...... mode of action is through generation of oxidative stress. Seven long-chained PFAS found in human serum were investigated for the potential to generate reactive oxygen species (ROS), induce DNA damage and disturb the total antioxidant capacity (TAC). The tested PFAS were perfluorohexane sulfonate (PFHx...

  15. Inflammation, oxidative DNA damage, and carcinogenesis

    International Nuclear Information System (INIS)

    Lewis, J.G.; Adams, D.O.

    1987-01-01

    Inflammation has long been associated with carcinogenesis, especially in the promotion phase. The mechanism of action of the potent inflammatory agent and skin promoter 12-tetradecanoyl phorbol-13-acetate (TPA) is unknown. It is though that TPA selectively enhances the growth of initiated cells, and during this process, initiated cells progress to the preneoplastic state and eventually to the malignant phenotype. The authors and others have proposed that TPA may work, in part, by inciting inflammation and stimulating inflammatory cells to release powerful oxidants which then induce DNA damage in epidermal cells. Macrophages cocultured with target cells and TPA induce oxidized thymine bases in the target cells. This process is inhibited by both catalase and inhibitors of lipoxygenases, suggesting the involvement of both H 2 O 2 and oxidized lipid products. In vivo studies demonstrated that SENCAR mice, which are sensitive to promotion by TPA, have a more intense inflammatory reaction in skin that C57LB/6 mice, which are resistant to promotion by TPA. In addition, macrophages from SENCAR mice release more H 2 O 2 and metabolites of AA, and induce more oxidative DNA damage in cocultured cells than macrophages from C57LB/6 mice. These data support the hypothesis that inflammation and the release of genotoxic oxidants may be one mechanism whereby initiated cells receive further genetic insults. They also further complicate risk assessment by suggesting that some environmental agents may work indirectly by subverting host systems to induce damage rather than maintaining homeostasis

  16. Ganoderma Triterpenoids Exert Antiatherogenic Effects in Mice by Alleviating Disturbed Flow-Induced Oxidative Stress and Inflammation

    Directory of Open Access Journals (Sweden)

    Pei-Ling Hsu

    2018-01-01

    Full Text Available Ganoderma mushrooms, used in traditional Chinese medicine to promote health and longevity, have become widely accepted as herbal supplements. Ganoderma lucidum (GL, a commonly seen ganoderma species, is commercially cultivated under controlled conditions for more consistent chemical composition. The medicinal properties of GL are attributable to its antioxidant and anti-inflammatory activities. We intended to assess the effect of GL in atherosclerosis, an arterial condition associated with chronic oxidative stress and inflammation, using a carotid-artery-ligation mouse model. Flow turbulence created in the ligated artery induces oxidative stress and neointimal hyperplasia, a feature of early atherogenesis. Daily oral GL prevented neointimal thickening 2 weeks after ligation. Moreover, the ganoderma triterpenoid (GT crude extract isolated from GL abolished ligation-induced neointima formation. Mechanistically, endothelial dysfunction was observed 3 days after ligation before any structural changes could be detected. GTs alleviated the oxidative stress and restored the atheroresistent status of endothelium by inhibiting the induction of a series of atherogenic factors, including endothelin-1, von Willebrand factor, and monocyte chemoattractant protein-1 after 3-day ligation. The anti-inflammatory activity of GTs was tested in cultured human umbilical vein endothelial cells (HUVECs exposed to disturbed flow in an in vitro perfusion system. GTs abolished the induction of proinflammatory VCAM-1, TNF-α, and IL-6 by oscillatory shear stress. Moreover, the antioxidant activity of GTs was tested in HUVECs against the insult of H2O2. GTs dissipated the cellular superoxide accumulation imposed by H2O2, thereby mitigating H2O2-induced cell damage and proatherogenic response. Our results revealed the atheroprotective properties of ganoderma mushrooms and identified triterpenoids as the critical constituents for those effects. GTs prevent atherogenesis by

  17. The metabolic enhancer piracetam attenuates mitochondrion-specific endonuclease G translocation and oxidative DNA fragmentation.

    Science.gov (United States)

    Gupta, Sonam; Verma, Dinesh Kumar; Biswas, Joyshree; Rama Raju, K Siva; Joshi, Neeraj; Wahajuddin; Singh, Sarika

    2014-08-01

    This study was performed to investigate the involvement of mitochondrion-specific endonuclease G in piracetam (P)-induced protective mechanisms. Studies have shown the antiapoptotic effects of piracetam but the mechanism of action of piracetam is still an enigma. To assess the involvement of endonuclease G in piracetam-induced protective effects, astrocyte glial cells were treated with lipopolysaccharide (LPS) and piracetam. LPS treatment caused significantly decreased viability, mitochondrial activity, oxidative stress, chromatin condensation, and DNA fragmentation, which were attenuated by piracetam cotreatment. Cotreatment of astrocytes with piracetam showed its significantly time-dependent absorption as observed with high-performance liquid chromatography. Astrocytes treated with piracetam alone showed enhanced mitochondrial membrane potential (MMP) in comparison to control astrocytes. However, in LPS-treated cells no significant alteration in MMP was observed in comparison to control cells. Protein and mRNA levels of the terminal executor of the caspase-mediated pathway, caspase-3, were not altered significantly in LPS or LPS + piracetam-treated astrocytes, whereas endonuclease G was significantly translocated to the nucleus in LPS-treated astrocytes. Piracetam cotreatment attenuated the LPS-induced endonuclease G translocation. In conclusion this study indicates that LPS treatment of astrocytes caused decreased viability, oxidative stress, mitochondrial dysfunction, chromatin condensation, DNA damage, and translocation of endonuclease G to the nucleus, which was inhibited by piracetam cotreatment, confirming that the mitochondrion-specific endonuclease G is one of the factors involved in piracetam-induced protective mechanisms. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. A study of oxidative stress induced by non-thermal plasma-activated water for bacterial damage

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qian; Ma, Ruonan; Tian, Ying [Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Liang, Yongdong; Feng, Hongqing [College of Engineering, Peking University, Beijing 100871 (China); Zhang, Jue; Fang, Jing [Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); College of Engineering, Peking University, Beijing 100871 (China)

    2013-05-20

    Ar/O{sub 2} (2%) cold plasma microjet was used to create plasma-activated water (PAW). The disinfection efficacy of PAW against Staphylococcus aureus showed that PAW can effectively disinfect bacteria. Optical emission spectra and oxidation reduction potential results demonstrated the inactivation is attributed to oxidative stress induced by reactive oxygen species in PAW. Moreover, the results of X-ray photoelectron spectroscopy, atomic absorption spectrometry, and transmission electron microscopy suggested that the chemical state of cell surface, the integrity of cell membrane, as well as the cell internal components and structure were damaged by the oxidative stress.

  19. A study of oxidative stress induced by non-thermal plasma-activated water for bacterial damage

    International Nuclear Information System (INIS)

    Zhang, Qian; Ma, Ruonan; Tian, Ying; Liang, Yongdong; Feng, Hongqing; Zhang, Jue; Fang, Jing

    2013-01-01

    Ar/O 2 (2%) cold plasma microjet was used to create plasma-activated water (PAW). The disinfection efficacy of PAW against Staphylococcus aureus showed that PAW can effectively disinfect bacteria. Optical emission spectra and oxidation reduction potential results demonstrated the inactivation is attributed to oxidative stress induced by reactive oxygen species in PAW. Moreover, the results of X-ray photoelectron spectroscopy, atomic absorption spectrometry, and transmission electron microscopy suggested that the chemical state of cell surface, the integrity of cell membrane, as well as the cell internal components and structure were damaged by the oxidative stress.

  20. Susceptibility patterns and the role of extracellular DNA in Staphylococcus epidermidis biofilm resistance to physico-chemical stress exposure.

    Science.gov (United States)

    Olwal, Charles Ochieng'; Ang'ienda, Paul Oyieng'; Onyango, David Miruka; Ochiel, Daniel Otieno

    2018-05-02

    Over 65% of human infections are ascribed to bacterial biofilms that are often highly resistant to antibiotics and host immunity. Staphylococcus epidermidis is the predominant cause of recurrent nosocomial and biofilm-related infections. However, the susceptibility patterns of S. epidermidis biofilms to physico-chemical stress induced by commonly recommended disinfectants [(heat, sodium chloride (NaCl), sodium hypochlorite (NaOCl) and hydrogen peroxide (H 2 O 2 )] in domestic and human healthcare settings remains largely unknown. Further, the molecular mechanisms of bacterial biofilms resistance to the physico-chemical stresses remain unclear. Growing evidence demonstrates that extracellular DNA (eDNA) protects bacterial biofilms against antibiotics. However, the role of eDNA as a potential mechanism underlying S. epidermidis biofilms resistance to physico-chemical stress exposure is yet to be understood. Therefore, this study aimed to evaluate the susceptibility patterns of and eDNA release by S. epidermidis biofilm and planktonic cells to physico-chemical stress exposure. S. epidermidis biofilms exposed to physico-chemical stress conditions commonly recommended for disinfection [heat (60 °C), 1.72 M NaCl, solution containing 150 μL of waterguard (0.178 M NaOCl) in 1 L of water or 1.77 M H 2 O 2 ] for 30 and 60 min exhibited lower log reductions of CFU/mL than the corresponding planktonic cells (p chemical stress induced by the four commonly recommended disinfectants than the analogous planktonic cells. Further, S. epidermidis biofilms enhanced eDNA release in response to the sub-lethal heat and oxidative stress exposure than the corresponding planktonic cells suggesting a role of eDNA in biofilms resistance to the physico-chemical stresses.