WorldWideScience

Sample records for stress-induced anxiety-like behavior

  1. Stress-Induced Recruitment of Bone Marrow-Derived Monocytes to the Brain Promotes Anxiety-Like Behavior

    Science.gov (United States)

    Wohleb, Eric S.; Powell, Nicole D.

    2013-01-01

    Social stress is associated with altered immunity and higher incidence of anxiety-related disorders. Repeated social defeat (RSD) is a murine stressor that primes peripheral myeloid cells, activates microglia, and induces anxiety-like behavior. Here we show that RSD-induced anxiety-like behavior corresponded with an exposure-dependent increase in circulating monocytes (CD11b+/SSClo/Ly6Chi) and brain macrophages (CD11b+/SSClo/CD45hi). Moreover, RSD-induced anxiety-like behavior corresponded with brain region-dependent cytokine and chemokine responses involved with myeloid cell recruitment. Next, LysM-GFP+ and GFP+ bone marrow (BM)-chimeric mice were used to determine the neuroanatomical distribution of peripheral myeloid cells recruited to the brain during RSD. LysM-GFP+ mice showed that RSD increased recruitment of GFP+ macrophages to the brain and increased their presence within the perivascular space (PVS). In addition, RSD promoted recruitment of GFP+ macrophages into the PVS and parenchyma of the prefrontal cortex, amygdala, and hippocampus of GFP+ BM-chimeric mice. Furthermore, mice deficient in chemokine receptors associated with monocyte trafficking [chemokine receptor-2 knockout (CCR2KO) or fractalkine receptor knockout (CX3CR1KO)] failed to recruit macrophages to the brain and did not develop anxiety-like behavior following RSD. Last, RSD-induced macrophage trafficking was prevented in BM-chimeric mice generated with CCR2KO or CX3CR1KO donor cells. These findings indicate that monocyte recruitment to the brain in response to social stress represents a novel cellular mechanism that contributes to the development of anxiety. PMID:23966702

  2. Estrogen and voluntary exercise interact to attenuate stress-induced corticosterone release but not anxiety-like behaviors in female rats.

    Science.gov (United States)

    Jones, Alexis B; Gupton, Rebecca; Curtis, Kathleen S

    2016-09-15

    The beneficial effects of physical exercise to reduce anxiety and depression and to alleviate stress are increasingly supported in research studies. The role of ovarian hormones in interactions between exercise and anxiety/stress has important implications for women's health, given that women are at increased risk of developing anxiety-related disorders, particularly during and after the menopausal transition. In these experiments, we tested the hypothesis that estrogen enhances the positive impact of exercise on stress responses by investigating the combined effects of exercise and estrogen on anxiety-like behaviors and stress hormone levels in female rats after an acute stressor. Ovariectomized female rats with or without estrogen were given access to running wheels for one or three days of voluntary running immediately after or two days prior to being subjected to restraint stress. We found that voluntary running was not effective at reducing anxiety-like behaviors, whether or not rats were subjected to restraint stress. In contrast, stress-induced elevations of stress hormone levels were attenuated by exercise experience in estrogen-treated rats, but were increased in rats without estrogen. These results suggest that voluntary exercise may be more effective at reducing stress hormone levels if estrogen is present. Additionally, exercise experience, or the distance run, may be important in reducing stress. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Vitamin C impacts anxiety-like behavior and stress-induced anorexia relative to social environment in SMP30/GNL knockout mice.

    Science.gov (United States)

    Koizumi, Miwako; Kondo, Yoshitaka; Isaka, Ayumi; Ishigami, Akihito; Suzuki, Emiko

    2016-12-01

    The role of endogenous vitamin C (VC) in emotion and psychiatric measures has long been uncertain. We aimed to investigate how an individual's VC status impacts his or her mental health. Our hypothesis is that body VC levels modulate anxiety, anorexia, and depressive phenotypes under the influence of psychosocial rearing environments and sex. The VC status of senescence marker protein-30/gluconolactonase knockout mice, which lack the ability to synthesize VC, were continuously shifted from adequate (VC+) to depleted (VC-) by providing a water with or without VC. Despite weight loss in both sexes, suppressed feeding was specifically seen in males only during the VC- phase. Anxiety responses in the novelty-suppressed feeding paradigm were worse during the VC-, especially in females. Sensitivity to the forced swim test as determined by the initial latency was significantly shorter in the socially stable animals compared with socially unstable animals during the VC+ condition. The stress coping underlying depressive phenotypes was assessed by immobility duration in a series of forced swim tests. No significant differences were apparent between contrasting VC status. Homeostatic symptoms following stressful behavioral tests consisted of a great loss of appetite during the VC-. It should be noted that anorexia is extremely serious for the females. We conclude that endogenous VC status is critical for determining vulnerability to anxiety and anorexia in a sex-specific manner. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Desacyl Ghrelin Decreases Anxiety-like Behavior in Male Mice.

    Science.gov (United States)

    Mahbod, Parinaz; Smith, Eric P; Fitzgerald, Maureen E; Morano, Rachel L; Packard, Benjamin A; Ghosal, Sriparna; Scheimann, Jessie R; Perez-Tilve, Diego; Herman, James P; Tong, Jenny

    2018-01-01

    Ghrelin is a 28-amino acid polypeptide that regulates feeding, glucose metabolism, and emotionality (stress, anxiety, and depression). Plasma ghrelin circulates as desacyl ghrelin (DAG) or, in an acylated form, acyl ghrelin (AG), through the actions of ghrelin O-acyltransferase (GOAT), exhibiting low or high affinity, respectively, for the growth hormone secretagogue receptor (GHSR) 1a. We investigated the role of endogenous AG, DAG, and GHSR1a signaling on anxiety and stress responses using ghrelin knockout (Ghr KO), GOAT KO, and Ghsr stop-floxed (Ghsr null) mice. Behavioral and hormonal responses were tested in the elevated plus maze and light/dark (LD) box. Mice lacking both AG and DAG (Ghr KO) increased anxiety-like behaviors across tests, whereas anxiety reactions were attenuated in DAG-treated Ghr KO mice and in mice lacking AG (GOAT KO). Notably, loss of GHSR1a (Ghsr null) did not affect anxiety-like behavior in any test. Administration of AG and DAG to Ghr KO mice with lifelong ghrelin deficiency reduced anxiety-like behavior and decreased phospho-extracellular signal-regulated kinase phosphorylation in the Edinger-Westphal nucleus in wild-type mice, a site normally expressing GHSR1a and involved in stress- and anxiety-related behavior. Collectively, our data demonstrate distinct roles for endogenous AG and DAG in regulation of anxiety responses and suggest that the behavioral impact of ghrelin may be context dependent. Copyright © 2018 Endocrine Society.

  5. Activation of protein kinase A in the amygdala modulates anxiety-like behaviors in social defeat exposed mice.

    Science.gov (United States)

    Yang, Liu; Shi, Li-Jun; Yu, Jin; Zhang, Yu-Qiu

    2016-01-08

    Social defeat (SD) stress induces social avoidance and anxiety-like phenotypes. Amygdala is recognized as an emotion-related brain region such as fear, aversion and anxiety. It is conceivable to hypothesize that activation of amygdala is involved in SD-dependent behavioral defects. SD model was established using C57BL/6J mice that were physically defeated by different CD-1 mice for 10 days. Stressed mice exhibited decreased social interaction level in social interaction test and significant anxiety-like behaviors in elevated plus maze and open field tests. Meanwhile, a higher phosphorylation of PKA and CREB with a mutually linear correlation, and increased Fos labeled cells in the basolateral amygdala (BLA) were observed. Activation of PKA in the BLA by 8-Br-cAMP, a PKA activitor, significantly upregulated pCREB and Fos expression. To address the role of PKA activation on SD stress-induced social avoidance and anxiety-like behaviors, 8-Br-cAMP or H-89, a PKA inhibitor, was continuously administered into the bilateral BLA by a micro-osmotic pump system during the 10-day SD period. Neither H-89 nor 8-Br-cAMP affected the social behavior. Differently, 8-Br-cAMP significantly relieved anxiety-like behaviors in both general and moderate SD protocols. H-89 per se did not have anxiogenic effect in naïve mice, but aggravated moderate SD stress-induced anxiety-like behaviors. The antidepressant clomipramine reduced SD-induced anxiety and up-regulated pPKA level in the BLA. These results suggest that SD-driven PKA activation in the basolateral amygdala is actually a compensatory rather than pathogenic response in the homeostasis, and modulating amygdaloid PKA may exhibit potency in the therapy of social derived disorders.

  6. The cognitive architecture of anxiety-like behavioral inhibition.

    Science.gov (United States)

    Bach, Dominik R

    2017-01-01

    The combination of reward and potential threat is termed approach/avoidance conflict and elicits specific behaviors, including passive avoidance and behavioral inhibition (BI). Anxiety-relieving drugs reduce these behaviors, and a rich psychological literature has addressed how personality traits dominated by BI predispose for anxiety disorders. Yet, a formal understanding of the cognitive inference and planning processes underlying anxiety-like BI is lacking. Here, we present and empirically test such formalization in the terminology of reinforcement learning. We capitalize on a human computer game in which participants collect sequentially appearing monetary tokens while under threat of virtual "predation." First, we demonstrate that humans modulate BI according to experienced consequences. This suggests an instrumental implementation of BI generation rather than a Pavlovian mechanism that is agnostic about action outcomes. Second, an internal model that would make BI adaptive is expressed in an independent task that involves no threat. The existence of such internal model is a necessary condition to conclude that BI is under model-based control. These findings relate a plethora of human and nonhuman observations on BI to reinforcement learning theory, and crucially constrain the quest for its neural implementation. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  7. Social exclusion intensifies anxiety-like behavior in adolescent rats.

    Science.gov (United States)

    Lee, Hyunchan; Noh, Jihyun

    2015-05-01

    Social connection reduces the physiological reactivity to stressors, while social exclusion causes emotional distress. Stressful experiences in rats result in the facilitation of aversive memory and induction of anxiety. To determine the effect of social interaction, such as social connection, social exclusion and equality or inequality, on emotional change in adolescent distressed rats, the emotional alteration induced by restraint stress in individual rats following exposure to various social interaction circumstances was examined. Rats were assigned to one of the following groups: all freely moving rats, all rats restrained, rats restrained in the presence of freely moving rats and freely moving rats with a restrained rat. No significant difference in fear-memory and sucrose consumption between all groups was found. Change in body weight significantly increased in freely moving rats with a restrained rat, suggesting that those rats seems to share the stressful experience of the restrained rat. Interestingly, examination of the anxiety-like behavior revealed only rats restrained in the presence of freely moving rats to have a significant increase, suggesting that emotional distress intensifies in positions of social exclusion. These results demonstrate that unequally excluded social interaction circumstances could cause the amplification of distressed status and anxiety-related emotional alteration. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Mefloquine in the nucleus accumbens promotes social avoidance and anxiety-like behavior in mice.

    Science.gov (United States)

    Heshmati, Mitra; Golden, Sam A; Pfau, Madeline L; Christoffel, Daniel J; Seeley, Elena L; Cahill, Michael E; Khibnik, Lena A; Russo, Scott J

    2016-02-01

    Mefloquine continues to be a key drug used for malaria chemoprophylaxis and treatment, despite reports of adverse events like depression and anxiety. It is unknown how mefloquine acts within the central nervous system to cause depression and anxiety or why some individuals are more vulnerable. We show that intraperitoneal injection of mefloquine in mice, when coupled to subthreshold social defeat stress, is sufficient to produce depression-like social avoidance behavior. Direct infusion of mefloquine into the nucleus accumbens (NAc), a key brain reward region, increased stress-induced social avoidance and anxiety behavior. In contrast, infusion into the ventral hippocampus had no effect. Whole cell recordings from NAc medium spiny neurons indicated that mefloquine application increases the frequency of spontaneous excitatory postsynaptic currents, a synaptic adaptation that we have previously shown to be associated with increased susceptibility to social defeat stress. Together, these data demonstrate a role for the NAc in mefloquine-induced depression and anxiety-like behaviors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Bupleurum falcatum prevents depression and anxiety-like behaviors in rats exposed to repeated restraint stress.

    Science.gov (United States)

    Lee, Bombi; Yun, Hye-Yeon; Shim, Insop; Lee, Hyejung; Hahm, Dae-Hyun

    2012-03-01

    Previous studies have demonstrated that repeated restraint stress in rodents produces increases in depression and anxietylike behaviors and alters the expression of corticotrophinreleasing factor (CRF) in the hypothalamus. The current study focused on the impact of Bupleurum falcatum (BF) extract administration on repeated restraint stress-induced behavioral responses using the forced swimming test (FST) and elevated plus maze (EPM) test. Immunohistochemical examinations of tyrosine hydroxylase (TH) expression in rat brain were also conducted. Male rats received daily doses of 20, 50, or 100 mg/kg (i.p.) BF extract for 15 days, 30 min prior to restraint stress (4 h/day). Hypothalamicpituitary- adrenal axis activation in response to repeated restraint stress was confirmed base on serum corticosterone levels and CRF expression in the hypothalamus. Animals that were pre-treated with BF extract displayed significantly reduced immobility in the FST and increased open-arm exploration in the EPM test in comparison with controls. BF also blocked the increase in TH expression in the locus coeruleus of treated rats that experienced restraint stress. Together, these results demonstrate that BF extract administration prior to restraint stress significantly reduces depression and anxiety-like behaviors, possibly through central adrenergic mechanisms, and they suggest a role for BF extract in the treatment of depression and anxiety disorders.

  10. Moderate Maternal Alcohol Exposure on Gestational Day 12 Impacts Anxiety-Like Behavior in Offspring

    OpenAIRE

    Rouzer, Siara K.; Cole, Jesse M.; Johnson, Julia M.; Varlinskaya, Elena I.; Diaz, Marvin R.

    2017-01-01

    Among the numerous consequences of prenatal alcohol exposure (PAE) is an increase in anxiety-like behavior that can prove debilitating to daily functioning. A significant body of literature has linked gestational day 12 (G12) heavy ethanol exposure with social anxiety, evident in adolescent males and females. However, the association between non-social anxiety-like behavior and moderate alcohol exposure, a more common pattern of drinking in pregnant women, is yet unidentified. To model modera...

  11. Moderate Maternal Alcohol Exposure on Gestational Day 12 Impacts Anxiety-Like Behavior in Offspring

    Directory of Open Access Journals (Sweden)

    Siara K. Rouzer

    2017-09-01

    Full Text Available Among the numerous consequences of prenatal alcohol exposure (PAE is an increase in anxiety-like behavior that can prove debilitating to daily functioning. A significant body of literature has linked gestational day 12 (G12 heavy ethanol exposure with social anxiety, evident in adolescent males and females. However, the association between non-social anxiety-like behavior and moderate alcohol exposure, a more common pattern of drinking in pregnant women, is yet unidentified. To model moderate PAE (mPAE, we exposed pregnant Sprague-Dawley rats to either room air or vaporized ethanol for 6 h on G12. Adolescent offspring were then tested on postnatal days (P 41–47 in one of the following four anxiety assays: novelty-induced hypophagia (NIH, elevated plus maze (EPM, light-dark box (LDB and open-field (OF. Our findings revealed significant increases in measures of anxiety-like behavior in male PAE offspring in the NIH, LDB and OF, with no differences observed in females on any test. Additionally, male offspring who demonstrated heightened anxiety-like behavior as adolescents demonstrated decreased anxiety-like behavior in adulthood, as measured by a marble-burying test (MBT, while females continued to be unaffected in adulthood. These results suggest that mPAE leads to dynamic changes in anxiety-like behavior exclusively in male offspring.

  12. Social experiences during adolescence affect anxiety-like behavior but not aggressiveness in male mice.

    Science.gov (United States)

    Meyer, Neele; Jenikejew, Julia; Richter, S Helene; Kaiser, Sylvia; Sachser, Norbert

    2017-05-30

    Adolescence has lately been recognized as a key developmental phase during which an individual's behavior can be shaped. In a recent study with male mice varying in the expression of the serotonin transporter, escapable adverse social experiences during adolescence led to decreased anxiety-like behavior and increased exploratory and aggressive behavior compared to throughout beneficial experiences. Since in this study some behavioral tests took place with a delay of one week after the last social experiences have been made, it was not clear whether the observed effects really reflected the consequences of the experienced different social environments. To test this, the present study focused on the direct effects of beneficial and adverse social experiences on aggressiveness and anxiety-like behavior in C57BL/6J mice. In contrast to the previous study, behavioral testing took place immediately after the last social experiences had been made. Interestingly, whereas individuals from an escapable adverse environment showed significantly lower levels of anxiety-like and higher levels of exploratory behavior than animals from a beneficial environment, aggressive behavior was not affected. From this, we conclude that different social experiences during adolescence exert immediate effects on anxiety-like but not aggressive behavior in male mice. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Estrogen receptor β and oxytocin interact to modulate anxiety-like behavior and neuroendocrine stress reactivity in adult male and female rats.

    Science.gov (United States)

    Kudwa, Andrea E; McGivern, Robert F; Handa, Robert J

    2014-04-22

    The hypothalamic-pituitary-adrenal (HPA) axis is activated in response to stressors and is controlled by neurons residing in the paraventricular nucleus of the hypothalamus (PVN). Although gonadal steroid hormones can influence HPA reactivity to stressors, the exact mechanism of action is not fully understood. It is known, however, that estrogen receptor β (ERβ) inhibits HPA reactivity and decreases anxiety-like behavior in rodents. Since ERβ is co-expressed with oxytocin (OT) in neurons of the PVN, an ERβ-selective agonist was utilized to test the whether ERβ decreases stress-induced HPA reactivity and anxiety-like behaviors via an OTergic pathway. Adult gonadectomized male and female rats were administered diarylpropionitrile, or vehicle, peripherally for 5days. When tested for anxiety-like behavior on the elevated plus maze (EPM), diarylpropionitrile-treated males and females significantly increased time on the open arm of the EPM compared to vehicle controls indicating that ERβ reduces anxiety-like behaviors. One week after behavioral evaluation, rats were subjected to a 20minute restraint stress. Treatment with diarylpropionitrile reduced CORT and ACTH responses in both males and females. Subsequently, another group of animals was implanted with cannulae directed at the lateral ventricle. One week later, rats underwent the same protocol as above but with the additional treatment of intracerebroventricular infusion with an OT antagonist (des Gly-NH2 d(CH2)5 [Tyr(Me)(2), Thr(4)] OVT) or VEH, 20min prior to behavioral evaluation. OT antagonist treatment blocked the effects of diarylpropionitrile on the display of anxiety-like behaviors and plasma CORT levels. These data indicate that ERβ and OT interact to modulate the HPA reactivity and the display of anxiety-like behaviors. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Oxytocin attenuates aversive response to nicotine and anxiety-like behavior in adolescent rats.

    Science.gov (United States)

    Lee, Hyunchan; Jang, Minji; Noh, Jihyun

    2017-02-01

    Initial tobacco use is initiated with rewarding and aversive properties of nicotine and aversive response to nicotine plays a critical role in nicotine dependency. Decrease of nicotine aversion increases the nicotine use that causes behavioral and neuronal changes of animals. Oxytocin influences drug abuse and reciprocally affect vulnerability to drug use. To assess the effect of oxytocin on initial nicotine aversion and anxiety, we examined voluntary oral nicotine intake and anxiety-like behavior following oxytocin treatment in adolescent rats. Sprague-Dawley male rats (4 weeks old) were used. For oxytocin administration, rats were injected subcutaneously with saline or oxytocin (0.01, 0.1 and 1mg/kg) according to the assigned groups. Voluntary oral nicotine consumption test was performed by two bottle free-choice paradigm. To examine anxiety-like behavior in rats, we performed a light/dark box test. Oxytocin not only significantly increased the nicotine intake but also alleviated nicotine aversion after acclimation to nicotine solution in a concentration dependent manner. Meanwhile, oxytocin significantly reduced anxiety-like behavior. We suggest that oxytocin itself mitigates aversive response toward initial nicotine intake and anxiety-like behavior. These results widen the psychophysiological perspective on oxytocin for better understanding of nicotine addiction related behaviors influenced by diverse social factors. Copyright © 2016 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.

  15. Role of beta1-adrenoceptor in the basolateral amygdala of rats with anxiety-like behavior.

    Science.gov (United States)

    Fu, Ailing; Li, Xiaorong; Zhao, Baoquan

    2008-05-23

    There are evidence suggesting that the function of adrenergic receptor is affected in the amygdala of animals with anxiety-like behavior. However, beta-adrenoceptor (beta-AR) subtypes, consisting of three subtypes, exert different effects on anxiety regulation. In order to determine the function of the beta1-AR subtype in anxiety-like behavior, we investigated the change of beta1-AR expression by immunostaining in the basolateral amygdala (BLA) of rats treated by conditional fear training. The results indicated that the level of beta1-AR was significantly increased in the BLA of fear-conditioned animals as compared that of controls. In animal behavioral tests, animals treated with selective beta1-AR antagonist metoprolol before conditional fear training exhibited a significant attenuation of anxiety-like behavior characterized by increased percentage of time spent and percentage of entries in the open arms, and increased number of head-dips in the elevated plus-maze (EPM) test compared with the animals treated with only saline. Furthermore, the rats pretreated with metoprolol in the conditional fear training significantly decreased the freezing behavior in the test compared with the controls. The results suggested that the beta1-AR played an important role in anxiety-like behavior, and inhibition of the beta1-AR in the BLA could produce anxiolytic effect.

  16. Grooming analysis algorithm: use in the relationship between sleep deprivation and anxiety-like behavior.

    Science.gov (United States)

    Pires, Gabriel N; Tufik, Sergio; Andersen, Monica L

    2013-03-05

    Increased anxiety is a classic effect of sleep deprivation. However, results regarding sleep deprivation-induced anxiety-like behavior are contradictory in rodent models. The grooming analysis algorithm is a method developed to examine anxiety-like behavior and stress in rodents, based on grooming characteristics and microstructure. This study evaluated the applicability of the grooming analysis algorithm to distinguish sleep-deprived and control rats in comparison to traditional grooming analysis. Forty-six animals were distributed into three groups: control (n=22), paradoxical sleep-deprived (96 h, n=10) and total sleep deprived (6 h, n=14). Immediately after the sleep deprivation protocol, grooming was evaluated using both the grooming analysis algorithm and traditional measures (grooming latency, frequency and duration). Results showed that both paradoxical sleep-deprived and total sleep-deprived groups displayed grooming in a fragmented framework when compared to control animals. Variables from the grooming analysis algorithm were successful in distinguishing sleep-deprived and normal sleep animals regarding anxiety-like behavior. The grooming analysis algorithm and traditional measures were strongly correlated. In conclusion, the grooming analysis algorithm is a reliable method to assess the relationship between anxiety-like behavior and sleep deprivation. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Elimination of Kalrn Expression in POMC Cells Reduces Anxiety-Like Behavior and Contextual Fear Learning

    Science.gov (United States)

    Mandela, Prashant; Yan, Yan; LaRese, Taylor; Eipper, Betty A.; Mains, Richard E.

    2014-01-01

    Kalirin, a Rho GDP/GTP exchange factor for Rac1 and RhoG, is known to play an essential role in the formation and maintenance of excitatory synapses and in the secretion of neuropeptides. Mice unable to express any of the isoforms of Kalrn in cells that produce POMC at any time during development (POMC cells) exhibited reduced anxiety-like behavior and reduced acquisition of passive avoidance behavior, along with sex-specific alteration in the corticosterone response to restraint stress. Strikingly, lack of Kalrn expression in POMC cells closely mimicked the effects of global Kalrn knockout on anxiety-like behavior and passive avoidance conditioning without causing the other deficits noted in Kalrn knockout mice. Our data suggest that deficits in excitatory inputs onto POMC neurons are responsible for the behavioral phenotypes observed. PMID:25014196

  18. Elimination of Kalrn expression in POMC cells reduces anxiety-like behavior and contextual fear learning.

    Science.gov (United States)

    Mandela, Prashant; Yan, Yan; LaRese, Taylor; Eipper, Betty A; Mains, Richard E

    2014-07-01

    Kalirin, a Rho GDP/GTP exchange factor for Rac1 and RhoG, is known to play an essential role in the formation and maintenance of excitatory synapses and in the secretion of neuropeptides. Mice unable to express any of the isoforms of Kalrn in cells that produce POMC at any time during development (POMC cells) exhibited reduced anxiety-like behavior and reduced acquisition of passive avoidance behavior, along with sex-specific alteration in the corticosterone response to restraint stress. Strikingly, lack of Kalrn expression in POMC cells closely mimicked the effects of global Kalrn knockout on anxiety-like behavior and passive avoidance conditioning without causing the other deficits noted in Kalrn knockout mice. Our data suggest that deficits in excitatory inputs onto POMC neurons are responsible for the behavioral phenotypes observed. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Brain mast cells link the immune system to anxiety-like behavior

    Science.gov (United States)

    Nautiyal, Katherine M.; Ribeiro, Ana C.; Pfaff, Donald W.; Silver, Rae

    2008-01-01

    Mast cells are resident in the brain and contain numerous mediators, including neurotransmitters, cytokines, and chemokines, that are released in response to a variety of natural and pharmacological triggers. The number of mast cells in the brain fluctuates with stress and various behavioral and endocrine states. These properties suggest that mast cells are poised to influence neural systems underlying behavior. Using genetic and pharmacological loss-of-function models we performed a behavioral screen for arousal responses including emotionality, locomotor, and sensory components. We found that mast cell deficient KitW−sh/W−sh (sash−/−) mice had a greater anxiety-like phenotype than WT and heterozygote littermate control animals in the open field arena and elevated plus maze. Second, we show that blockade of brain, but not peripheral, mast cell activation increased anxiety-like behavior. Taken together, the data implicate brain mast cells in the modulation of anxiety-like behavior and provide evidence for the behavioral importance of neuroimmune links. PMID:19004805

  20. Chronic social instability increases anxiety-like behavior and ethanol preference in male Long Evans rats.

    Science.gov (United States)

    Roeckner, Alyssa R; Bowling, Alexandra; Butler, Tracy R

    2017-05-01

    Chronic stress during adolescence is related to increased prevalence of anxiety disorders and alcohol use disorders in humans. This phenotype has been consistently recapitulated in animal models with male subjects, but models using female subjects are fewer. The aim of these studies was to test the hypothesis that chronic social instability (CSI) during adolescence engenders increased anxiety-like behavior, increased corticosterone, and greater ethanol intake and/or preference than control groups in male and female rats. A chronic social instability (CSI) procedure was conducted in separate cohorts of female and male adolescent Long Evans rats. CSI included daily social isolation for 1h, and then pair housing with a novel cage mate for 23h until the next 1h isolation period from PND 30-46. Control groups included social stability (SS), chronic isolation (ISO), and acute social instability (aSI). At PND 49-50, anxiety-like behavior was assessed on the elevated plus maze, and on PND 51 tails bloods were obtained for determination of corticosterone (CORT) levels. This was followed by 4weeks of ethanol drinking in a home cage intermittent access ethanol drinking paradigm (PND 55-81 for males, PND 57-83 for females). Planned contrast testing showed that the male CSI group had greater anxiety-like behavior compared controls, but group differences were not apparent for CORT. CSI males had significantly higher levels of ethanol preference during drinking weeks 2-3 compared to all other groups and compared to SS and ISO groups in week 4. For the female cohort, we did not observe consistent group differences in anxiety-like behavior, CORT levels were unexpectedly lower in the ISO group only compared to the other groups, and group differences were not apparent for ethanol intake/preference. In conclusion, chronic stress during adolescence in the form of social instability increases anxiety-like behavior and ethanol preference in male rats, consistent with other models of

  1. Zfp462 deficiency causes anxiety-like behaviors with excessive self-grooming in mice.

    Science.gov (United States)

    Wang, B; Zheng, Y; Shi, H; Du, X; Zhang, Y; Wei, B; Luo, M; Wang, H; Wu, X; Hua, X; Sun, M; Xu, X

    2017-02-01

    Zfp462 is a newly identified vertebrate-specific zinc finger protein that contains nearly 2500 amino acids and 23 putative C2H2-type zinc finger domains. So far, the functions of Zfp462 remain unclear. In our study, we showed that Zfp462 is expressed predominantly in the developing brain, especially in the cerebral cortex and hippocampus regions from embryonic day 7.5 to early postnatal stage. By using a piggyBac transposon-generated Zfp462 knockout (KO) mouse model, we found that Zfp462 KO mice exhibited prenatal lethality with normal neural tube patterning, whereas heterozygous (Het) Zfp462 KO (Zfp462 +/- ) mice showed developmental delay with low body weight and brain weight. Behavioral studies showed that Zfp462 +/- mice presented anxiety-like behaviors with excessive self-grooming and hair loss, which were similar to the pathological grooming behaviors in Hoxb8 KO mice. Further analysis of grooming microstructure showed the impairment of grooming patterning in Zfp462 +/- mice. In addition, the mRNA levels of Pbx1 (pre-B-cell leukemia homeobox 1, an interacting protein of Zfp462) and Hoxb8 decreased in the brains of Zfp462 +/- mice, which may be the cause of anxiety-like behaviors. Finally, imipramine, a widely used and effective anti-anxiety medicine, rescued anxiety-like behaviors and excessive self-grooming in Zfp462 +/- mice. In conclusion, Zfp462 deficiency causes anxiety-like behaviors with excessive self-grooming in mice. This provides a novel genetic mouse model for anxiety disorders and a useful tool to determine potential therapeutic targets for anxiety disorders and screen anti-anxiety drugs. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  2. Locus coeruleus to basolateral amygdala noradrenergic projections promote anxiety-like behavior.

    Science.gov (United States)

    McCall, Jordan G; Siuda, Edward R; Bhatti, Dionnet L; Lawson, Lamley A; McElligott, Zoe A; Stuber, Garret D; Bruchas, Michael R

    2017-07-14

    Increased tonic activity of locus coeruleus noradrenergic (LC-NE) neurons induces anxiety-like and aversive behavior. While some information is known about the afferent circuitry that endogenously drives this neural activity and behavior, the downstream receptors and anatomical projections that mediate these acute risk aversive behavioral states via the LC-NE system remain unresolved. Here we use a combination of retrograde tracing, fast-scan cyclic voltammetry, electrophysiology, and in vivo optogenetics with localized pharmacology to identify neural substrates downstream of increased tonic LC-NE activity in mice. We demonstrate that photostimulation of LC-NE fibers in the BLA evokes norepinephrine release in the basolateral amygdala (BLA), alters BLA neuronal activity, conditions aversion, and increases anxiety-like behavior. Additionally, we report that β-adrenergic receptors mediate the anxiety-like phenotype of increased NE release in the BLA. These studies begin to illustrate how the complex efferent system of the LC-NE system selectively mediates behavior through distinct receptor and projection-selective mechanisms.

  3. Maternal androgen excess and obesity induce sexually dimorphic anxiety-like behavior in the offspring.

    Science.gov (United States)

    Manti, Maria; Fornes, Romina; Qi, Xiaojuan; Folmerz, Elin; Lindén Hirschberg, Angelica; de Castro Barbosa, Thais; Maliqueo, Manuel; Benrick, Anna; Stener-Victorin, Elisabet

    2018-03-22

    Maternal polycystic ovary syndrome (PCOS), a condition associated with hyperandrogenism, is suggested to increase anxiety-like behavior in the offspring. Because PCOS is closely linked to obesity, we investigated the impact of an adverse hormonal or metabolic maternal environment and offspring obesity on anxiety in the offspring. The obese PCOS phenotype was induced by chronic high-fat-high-sucrose (HFHS) consumption together with prenatal dihydrotestosterone exposure in mouse dams. Anxiety-like behavior was assessed in adult offspring with the elevated-plus maze and open-field tests. The influence of maternal androgens and maternal and offspring diet on genes implicated in anxiety were analyzed in the amygdala and hypothalamus with real-time PCR ( n = 47). Independent of diet, female offspring exposed to maternal androgens were more anxious and displayed up-regulation of adrenoceptor α 1B in the amygdala and up-regulation of hypothalamic corticotropin-releasing hormone ( Crh). By contrast, male offspring exposed to a HFHS maternal diet had increased anxiety-like behavior and showed up-regulation of epigenetic markers in the amygdala and up-regulation of hypothalamic Crh. Overall, there were substantial sex differences in gene expression in the brain. These findings provide novel insight into how maternal androgens and obesity exert sex-specific effects on behavior and gene expression in the offspring of a PCOS mouse model.-Manti, M., Fornes, R., Qi, X., Folmerz, E., Lindén Hirschberg, A., de Castro Barbosa, T., Maliqueo, M., Benrick, A., Stener-Victorin, E. Maternal androgen excess and obesity induce sexually dimorphic anxiety-like behavior in the offspring.

  4. Adolescent Social Stress Increases Anxiety-like Behavior and Alters Synaptic Transmission, Without Influencing Nicotine Responses, in a Sex-Dependent Manner.

    Science.gov (United States)

    Caruso, Michael J; Crowley, Nicole A; Reiss, Dana E; Caulfield, Jasmine I; Luscher, Bernhard; Cavigelli, Sonia A; Kamens, Helen M

    2018-03-01

    Early-life stress is a risk factor for comorbid anxiety and nicotine use. Because little is known about the factors underlying this comorbidity, we investigated the effects of adolescent stress on anxiety-like behavior and nicotine responses within individual animals. Adolescent male and female C57BL/6J mice were exposed to chronic variable social stress (CVSS; repeated cycles of social isolation + social reorganization) or control conditions from postnatal days (PND) 25-59. Anxiety-like behavior and social avoidance were measured in the elevated plus-maze (PND 61-65) and social approach-avoidance test (Experiment 1: PND 140-144; Experiment 2: 95-97), respectively. Acute nicotine-induced locomotor, hypothermic, corticosterone responses, (Experiment 1: PND 56-59; Experiment 2: PND 65-70) and voluntary oral nicotine consumption (Experiment 1: PND 116-135; Experiment 2: 73-92) were also examined. Finally, we assessed prefrontal cortex (PFC) and nucleus accumbens (NAC) synaptic transmission (PND 64-80); brain regions that are implicated in anxiety and addiction. Mice exposed to adolescent CVSS displayed increased anxiety-like behavior relative to controls. Further, CVSS altered synaptic excitability in PFC and NAC neurons in a sex-specific manner. For males, CVSS decreased the amplitude and frequency of spontaneous excitatory postsynaptic currents in the PFC and NAC, respectively. In females, CVSS decreased the amplitude of spontaneous inhibitory postsynaptic currents in the NAC. Adolescent CVSS did not affect social avoidance or nicotine responses and anxiety-like behavior was not reliably associated with nicotine responses within individual animals. Taken together, complex interactions between PFC and NAC function may contribute to adolescent stress-induced anxiety-like behavior without influencing nicotine responses. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. Modulation of cognition and anxiety-like behavior by bone remodeling

    Directory of Open Access Journals (Sweden)

    Lori Khrimian

    2017-12-01

    Full Text Available Objective: That the bone-derived hormone osteocalcin is necessary to promote normal brain development and function, along with its recently described sufficiency in reversing cognitive manifestations of aging, raises novel questions. One of these is to assess whether bone health, which deteriorates rapidly with aging, is a significant determinant of cognition and anxiety-like behavior. Methods: To begin addressing this question, we used mice haploinsufficient for Runx2, the master gene of osteoblast differentiation and the main regulator of Osteocalcin expression. Control and Runx2+/− mice were evaluated for the expression of osteocalcin's target genes in the brain and for behavioral parameters, using two assays each for cognition and anxiety-like behavior. Results: We found that adult Runx2+/− mice had defects in bone resorption, reduced circulating levels of bioactive osteocalcin, and reduced expression of osteocalcin's target genes in the brain. Consequently, they had significant impairment in cognitive function and increased anxiety-like behavior. Conclusions: These results indicate that bone remodeling is a determinant of brain function. Keywords: Runx2, Osteocalcin, Bone remodeling, Cognition

  6. Dim light at night prior to adolescence increases adult anxiety-like behaviors.

    Science.gov (United States)

    Cissé, Yasmine M; Peng, Juan; Nelson, Randy J

    2016-01-01

    Dim light at night (dLAN) disrupts circadian organization and influences adult behavior. We examined early dLAN exposure on adult affective responses. Beginning 3 (juvenile) or 5 weeks (adolescent) of age, mice were maintained in standard light-dark cycles or exposed to nightly dLAN (5 lx) for 5 weeks, then anxiety-like and fear responses were assessed. Hypothalami were collected around the clock to assess core clock genes. Exposure to dLAN at either age increased anxiety-like responses in adults. Clock and Rev-ERB expression were altered by exposure to dLAN. In contrast to adults, dLAN exposure during early life increases anxiety and fear behavior.

  7. Postpartum estrogen withdrawal impairs hippocampal neurogenesis and causes depression- and anxiety-like behaviors in mice.

    Science.gov (United States)

    Zhang, Zhuan; Hong, Juan; Zhang, Suyun; Zhang, Tingting; Sha, Sha; Yang, Rong; Qian, Yanning; Chen, Ling

    2016-04-01

    Postpartum estrogen withdrawal is known to be a particularly vulnerable time for depressive symptoms. Ovariectomized adult mice (OVX-mice) treated with hormone-simulated pregnancy (HSP mice) followed by a subsequent estradiol benzoate (EB) withdrawal (EW mice) exhibited depression- and anxiety-like behaviors, as assessed by forced swim, tail suspension and elevated plus-maze, while HSP mice, OVX mice or EB-treated OVX mice (OVX/EB mice) did not. The survival and neurite growth of newborn neurons in hippocampal dentate gyrus were examined on day 5 after EW. Compared with controls, the numbers of 28-day-old BrdU(+) and BrdU(+)/NeuN(+) cells were increased in HSP mice but significantly decreased in EW mice; the numbers of 10-day-old BrdU(+) cells were increased in HSP mice and OVX/EB mice; and the density of DCX(+) fibers was reduced in EW mice and OVX mice. The phosphorylation of hippocampal NMDA receptor (NMDAr) NR2B subunit or Src was increased in HSP mice but decreased in EW mice. NMDAr agonist NMDA prevented the loss of 28-day-old BrdU(+) cells and the depression- and anxiety-like behaviors in EW mice. NR2B inhibitor Ro25-6981 or Src inhibitor dasatinib caused depression- and anxiety-like behaviors in HSP mice with the reduction of 28-day-old BrdU(+) cells. The hippocampal BDNF levels were reduced in EW mice and OVX mice. TrkB receptor inhibitor K252a reduced the density of DCX(+) fibers in HSP mice without the reduction of 28-day-old BrdU(+) cells, or the production of affective disorder. Collectively, these results indicate that postpartum estrogen withdrawal impairs hippocampal neurogenesis in mice that show depression- and anxiety-like behaviors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Acupuncture Attenuates Anxiety-Like Behavior by Normalizing Amygdaloid Catecholamines during Ethanol Withdrawal in Rats

    Directory of Open Access Journals (Sweden)

    Zheng Lin Zhao

    2011-01-01

    Full Text Available Previously, we demonstrated acupuncture at acupoint HT7 (Shen-Men attenuated ethanol withdrawal syndrome by normalizing the dopamine release in nucleus accumbens shell. In the present study, we investigated the effect of acupuncture on anxiety-like behavior in rats and its relevant mechanism by studying neuro-endocrine parameters during ethanol withdrawal. Rats were treated with 3 g kg−1day−1 of ethanol (20%, w/v or saline by intraperitoneal injections for 28 days. The rats undergoing ethanol withdrawal exhibited anxiety-like behavior 72 h after the last dose of ethanol characterized by the decrease of time spent in the open arms of the elevated plus maze compared with the saline-treated rats (P < .05. Radioimmunoassay exhibited there were notably increased concentrations of plasma corticosterone in ethanol-withdrawn rats compared with saline-treated rats (P < .05. Additionally, high performance liquid chromatography analysis also showed the levels of norepinephrine and 3-methoxy-4-hydroxy-phenylglycol were markedly increased while the levels of dopamine and 3,4-dihydroxyphenylacetic acid were significantly decreased in the central nucleus of the amygdala of ethanol-withdrawn rats compared with saline-treated rats (P < .01. Acupuncture groups were treated with acupuncture at acupoint HT7 or PC6 (Nei-Guan. Acupuncture at HT7 but not PC6 greatly attenuated the anxiety-like behavior during ethanol withdrawal as evidenced by significant increases in the percentage of time spent in open arms (P < .05. In the meantime, acupuncture at HT7 also markedly inhibited the alterations of neuro-endocrine parameters induced by ethanol withdrawal (P < .05. These results suggest that acupuncture may attenuate anxiety-like behavior during ethanol withdrawal through regulation of neuro-endocrine system.

  9. Acute isoproterenol induces anxiety-like behavior in rats and increases plasma content of extracellular vesicles.

    Science.gov (United States)

    Leo, Giuseppina; Guescini, Michele; Genedani, Susanna; Stocchi, Vilberto; Carone, Chiara; Filaferro, Monica; Sisti, Davide; Marcoli, Manuela; Maura, Guido; Cortelli, Pietro; Guidolin, Diego; Fuxe, Kjell; Agnati, Luigi Francesco

    2015-04-01

    Several clinical observations have demonstrated a link between heart rate and anxiety or panic disorders. In these patients, β-adrenergic receptor function was altered. This prompted us to investigate whether the β-adrenergic receptor agonist isoproterenol, at a dose that stimulates peripheral β-adrenergic system but has no effects at the central nervous system, can induce anxiety-like behavior in rats. Moreover, some possible messengers involved in the peripheral to brain communication were investigated. Our results showed that isoproterenol (5 mg kg(-1) i.p.) increased heart rate, evoked anxiety-like behavior, did not result in motor impairments and increased extracellular vesicle content in the blood. Plasma corticosterone level was unmodified as well as vesicular Hsp70 content. Vesicular miR-208 was also unmodified indicating a source of increased extracellular vesicles different from cardiomyocytes. We can hypothesize that peripheral extracellular vesicles might contribute to the β-adrenergic receptor-evoked anxiety-like behavior, acting as peripheral signals in modulating the mental state. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Prototypical anxiolytics do not reduce anxiety-like behavior in the open field in C57BL/6J mice.

    Science.gov (United States)

    Thompson, Trey; Grabowski-Boase, Laura; Tarantino, Lisa M

    2015-06-01

    Understanding and effectively treating anxiety disorders are a challenge for both scientists and clinicians. Despite a variety of available therapies, the efficacy of current treatments is still not optimal and adverse side effects can result in non-compliance. Animal models have been useful for studying the underlying biology of anxiety and assessing the anxiolytic properties of potential therapeutics. The open field (OF) is a commonly used assay of anxiety-like behavior. The OF was developed and validated in rats and then transferred to use in the mouse with only limited validation. The present study tests the efficacy of prototypical benzodiazepine anxiolytics, chlordiazepoxide (CDP) and diazepam (DZ), for increasing center time in the OF in C57BL/6J (B6) mice. Multiple doses of CDP and DZ did not change time spent in the center of the OF. Increasing illumination in the OF did not alter these results. The non-benzodiazepine anxiolytic, buspirone (BUSP) also failed to increase center time in the OF while the anxiogenic meta-chlorophenylpiperazine (mCPP) increased center time. Additional inbred mouse strains, BALB/cJ (BALB) and DBA/2J (D2) did not show any change in center time in response to CDP. Moreover, evaluation of CDP in B6 mice in the elevated plus maze (EPM), elevated zero maze (EZM) and light dark assay (LD) did not reveal changes in anxiety-like behavior while stress-induced hyperthermia (SIH) was decreased by DZ. Pharmacokinetic (PK) studies suggest that adequate CDP is present to induce anxiolysis. We conclude that the measure of center time in the OF does not show predictive validity for anxiolysis in these inbred mouse strains. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Chronic gastrointestinal inflammation induces anxiety-like behavior and alters central nervous system biochemistry in mice.

    Science.gov (United States)

    Bercik, Premysl; Verdu, Elena F; Foster, Jane A; Macri, Joseph; Potter, Murray; Huang, Xiaxing; Malinowski, Paul; Jackson, Wendy; Blennerhassett, Patricia; Neufeld, Karen A; Lu, Jun; Khan, Waliul I; Corthesy-Theulaz, Irene; Cherbut, Christine; Bergonzelli, Gabriela E; Collins, Stephen M

    2010-12-01

    Clinical and preclinical studies have associated gastrointestinal inflammation and infection with altered behavior. We investigated whether chronic gut inflammation alters behavior and brain biochemistry and examined underlying mechanisms. AKR mice were infected with the noninvasive parasite Trichuris muris and given etanercept, budesonide, or specific probiotics. Subdiaphragmatic vagotomy was performed in a subgroup of mice before infection. Gastrointestinal inflammation was assessed by histology and quantification of myeloperoxidase activity. Serum proteins were measured by proteomic analysis, circulating cytokines were measured by fluorescence activated cell sorting array, and serum tryptophan and kynurenine were measured by liquid chromatography. Behavior was assessed using light/dark preference and step-down tests. In situ hybridization was used to assess brain-derived neurotrophic factor (BDNF) expression in the brain. T muris caused mild to moderate colonic inflammation and anxiety-like behavior that was associated with decreased hippocampal BDNF messenger RNA (mRNA). Circulating tumor necrosis factor-α and interferon-γ, as well as the kynurenine and kynurenine/tryptophan ratio, were increased. Proteomic analysis showed altered levels of several proteins related to inflammation and neural function. Administration of etanercept, and to a lesser degree of budesonide, normalized behavior, reduced cytokine and kynurenine levels, but did not influence BDNF expression. The probiotic Bifidobacterium longum normalized behavior and BDNF mRNA but did not affect cytokine or kynurenine levels. Anxiety-like behavior was present in infected mice after vagotomy. Chronic gastrointestinal inflammation induces anxiety-like behavior and alters central nervous system biochemistry, which can be normalized by inflammation-dependent and -independent mechanisms, neither of which requires the integrity of the vagus nerve. Copyright © 2010 AGA Institute. Published by Elsevier Inc

  12. Hydrogen-rich saline attenuates anxiety-like behaviors in morphine-withdrawn mice.

    Science.gov (United States)

    Wen, Di; Zhao, Peng; Hui, Rongji; Wang, Jian; Shen, Qianchao; Gong, Miao; Guo, Hongyan; Cong, Bin; Ma, Chunling

    2017-05-15

    Hydrogen therapy is a new medical approach for a wide range of diseases. The effects of hydrogen on central nervous system-related diseases have recently become increasingly appreciated, but little is known about whether hydrogen affects the morphine withdrawal process. This study aims to investigate the potential effects of hydrogen-rich saline (HRS) administration on naloxone-precipitated withdrawal symptoms and morphine withdrawal-induced anxiety-like behaviors. Mice received gradually increasing doses (25-100 mg/kg, i.p.) of morphine over 3 days. In the naloxone-precipitated withdrawal procedure, the mice were treated with three HRS (20 μg/kg, i.p.) injections, and naloxone (1 mg/kg, i.p.) was given 30 min after HRS administration. Body weight, jumping behavior and wet-dog shakes were immediately assessed. In the spontaneous withdrawal procedure, the mice were treated with HRS (20 μg/kg, i.p.) every 8-h. Mice underwent naloxone-precipitated or spontaneous withdrawal were tested for anxiety-like behaviors in the elevated plus-maze (EPM) and light/dark box (L/D box) paradigm, respectively. In addition, the levels of plasma corticosterone were measured. We found that HRS administration significantly reduced body weight loss, jumping behavior and wet-dog shakes in mice underwent naloxone-precipitated withdrawal, and attenuated anxiety-like behaviors in the EPM and L/D box tests after naloxone-precipitated withdrawal or a 2-day spontaneous withdrawal period. Hypo-activity or motor impairment after HRS administration was not observed in the locomotion tests. Furthermore, HRS administration significantly decreased the levels of corticosterone in morphine-withdrawn mice. These are the first findings to indicate that hydrogen might ameliorate withdrawal symptoms and exert an anxiolytic-like effect in morphine-withdrawal mice. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Early deprivation increases high-leaning behavior, a novel anxiety-like behavior, in the open field test in rats.

    Science.gov (United States)

    Kuniishi, Hiroshi; Ichisaka, Satoshi; Yamamoto, Miki; Ikubo, Natsuko; Matsuda, Sae; Futora, Eri; Harada, Riho; Ishihara, Kohei; Hata, Yoshio

    2017-10-01

    The open field test is one of the most popular ethological tests to assess anxiety-like behavior in rodents. In the present study, we examined the effect of early deprivation (ED), a model of early life stress, on anxiety-like behavior in rats. In ED animals, we failed to find significant changes in the time spent in the center or thigmotaxis area of the open field, the common indexes of anxiety-like behavior. However, we found a significant increase in high-leaning behavior in which animals lean against the wall standing on their hindlimbs while touching the wall with their forepaws at a high position. The high-leaning behavior was decreased by treatment with an anxiolytic, diazepam, and it was increased under intense illumination as observed in the center activity. In addition, we compared the high-leaning behavior and center activity under various illumination intensities and found that the high-leaning behavior is more sensitive to illumination intensity than the center activity in the particular illumination range. These results suggest that the high-leaning behavior is a novel anxiety-like behavior in the open field test that can complement the center activity to assess the anxiety state of rats. Copyright © 2017 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.

  14. Slitrk1-deficient mice display elevated anxiety-like behavior and noradrenergic abnormalities.

    Science.gov (United States)

    Katayama, K; Yamada, K; Ornthanalai, V G; Inoue, T; Ota, M; Murphy, N P; Aruga, J

    2010-02-01

    Mutations in SLITRK1 are found in patients with Tourette's syndrome and trichotillomania. SLITRK1 encodes a transmembrane protein containing leucine-rich repeats that is produced predominantly in the nervous system. However, the role of this protein is largely unknown, except that it can modulate neurite outgrowth in vitro. To clarify the role of Slitrk1 in vivo, we developed Slitrk1-knockout mice and analyzed their behavioral and neurochemical phenotypes. Slitrk1-deficient mice exhibited elevated anxiety-like behavior in the elevated plus-maze test as well as increased immobility time in forced swimming and tail suspension tests. Neurochemical analysis revealed that Slitrk1-knockout mice had increased levels of norepinephrine and its metabolite 3-methoxy-4-hydroxyphenylglycol. Administration of clonidine, an alpha2-adrenergic agonist that is frequently used to treat patients with Tourette's syndrome, attenuated the anxiety-like behavior of Slitrk1-deficient mice in the elevated plus-maze test. These results lead us to conclude that noradrenergic mechanisms are involved in the behavioral abnormalities of Slitrk1-deficient mice. Elevated anxiety due to Slitrk1 dysfunction may contribute to the pathogenesis of neuropsychiatric diseases such as Tourette's syndrome and trichotillomania.

  15. Beneficial effect of honokiol on lipopolysaccharide induced anxiety-like behavior and liver damage in mice.

    Science.gov (United States)

    Sulakhiya, Kunjbihari; Kumar, Parveen; Gurjar, Satendra S; Barua, Chandana C; Hazarika, Naba K

    2015-02-26

    Anxiety disorders are commonly occurring co-morbid neuropsychiatric disorders with chronic inflammatory conditions such as live damage. Numerous studies revealed that peripheral inflammation, oxidative stress and brain derived neurotrophic factor (BDNF) play important roles in the pathophysiology of anxiety disorders. Honokiol (HNK) is a polyphenol, possessing multiple biological activities including antioxidant, anti-inflammatory, anxiolytic, antidepressant and hepatoprotection. The present study was designed to investigate the effect of HNK, in lipopolysaccharide (LPS)-induced anxiety-like behavior and liver damage in mice. Mice (n=6-10/group) were pre-treated with different doses of HNK (2.5 and 5mg/kg; i.p.) for two days, and challenged with saline or LPS (0.83mg/kg; i.p.) on third day. Anxiety-like behavior was monitored using elevated plus maze (EPM) and open field test (OFT). Animals were sacrificed to evaluate various biochemical parameters in plasma and liver. HNK pre-treatment provided significant (P<0.01) protection against LPS-induced reduction in body weight, food and water intake in mice. HNK at higher dose significantly (P<0.05) attenuated LPS-induced anxiety-like behavior by increasing the number of entries and time spent in open arm in EPM test, and by increasing the frequency in central zone in OFT. HNK pre-treatment ameliorated LPS-induced peripheral inflammation by reducing plasma IL-1β, IL-6, TNF-α level, and also improved the plasma BDNF level, prevented liver damage via attenuating transaminases (AST, ALT), liver oxidative stress and TNF-α activity in LPS challenged mice. In conclusion, the current investigation suggests that HNK provided beneficial effect against LPS-induced anxiety-like behavior and liver damage which may be governed by inhibition of cytokines production, oxidative stress and depletion of plasma BDNF level. Our result suggests that HNK could be a therapeutic approach for the treatment of anxiety and other

  16. Elevated prostacyclin biosynthesis in mice impacts memory and anxiety-like behavior.

    Science.gov (United States)

    Vollert, Craig; Ohia, Odochi; Akasaka, Hironari; Berridge, Casey; Ruan, Ke-He; Eriksen, Jason L

    2014-01-01

    Prostacyclin is an endogenous lipid metabolite with properties of vasodilation and anti-platelet aggregation. While the effects of prostacyclin on the vascular protection have been well-documented, the role of this eicosanoid in the central nervous system has not been extensively studied. Recently, a transgenic mouse containing a hybrid enzyme, of cyclooxygenase-1 linked to prostacyclin synthase, was developed that produces elevated levels of prostacyclin in vivo. The goal of this study was to investigate whether increased prostacyclin biosynthesis could affect behavioral phenotypes in mice. Our results uncovered that elevated levels of prostacyclin broadly affect both cognitive and non-cognitive behaviors, including decreased anxiety-like behavior and improved learning in the fear-conditioning memory test. This study demonstrates that prostacyclin plays an important, but previously unrecognized, role in central nervous system function and behavior. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Comparative Analyses of Zebrafish Anxiety-Like Behavior Using Conflict-Based Novelty Tests.

    Science.gov (United States)

    Kysil, Elana V; Meshalkina, Darya A; Frick, Erin E; Echevarria, David J; Rosemberg, Denis B; Maximino, Caio; Lima, Monica Gomes; Abreu, Murilo S; Giacomini, Ana C; Barcellos, Leonardo J G; Song, Cai; Kalueff, Allan V

    2017-06-01

    Modeling of stress and anxiety in adult zebrafish (Danio rerio) is increasingly utilized in neuroscience research and central nervous system (CNS) drug discovery. Representing the most commonly used zebrafish anxiety models, the novel tank test (NTT) focuses on zebrafish diving in response to potentially threatening stimuli, whereas the light-dark test (LDT) is based on fish scototaxis (innate preference for dark vs. bright areas). Here, we systematically evaluate the utility of these two tests, combining meta-analyses of published literature with comparative in vivo behavioral and whole-body endocrine (cortisol) testing. Overall, the NTT and LDT behaviors demonstrate a generally good cross-test correlation in vivo, whereas meta-analyses of published literature show that both tests have similar sensitivity to zebrafish anxiety-like states. Finally, NTT evokes higher levels of cortisol, likely representing a more stressful procedure than LDT. Collectively, our study reappraises NTT and LDT for studying anxiety-like states in zebrafish, and emphasizes their developing utility for neurobehavioral research. These findings can help optimize drug screening procedures by choosing more appropriate models for testing anxiolytic or anxiogenic drugs.

  18. Increased anxiety-like behavior is associated with the metabolic syndrome in non-stressed rats

    Science.gov (United States)

    Díaz, Daniel; Rico-Rosillo, Guadalupe; Vega-Robledo, Gloria Bertha; Zambrano, Elena

    2017-01-01

    Metabolic syndrome (MS) is a cluster of signs that increases the risk to develop diabetes mellitus type 2 and cardiovascular disease. In the last years, a growing interest to study the relationship between MS and psychiatric disorders, such as depression and anxiety, has emerged obtaining conflicting results. Diet-induced MS rat models have only examined the effects of high-fat or mixed cafeteria diets to a limited extent. We explored whether an anxiety-like behavior was associated with MS in non-stressed rats chronically submitted to a high-sucrose diet (20% sucrose in drinking water) using three different anxiety paradigms: the shock-probe/burying test (SPBT), the elevated plus-maze (EPM) and the open-field test (OFT). Behaviorally, the high-sucrose diet group showed an increase in burying behavior in the SPBT. Also, these animals displayed both avoidance to explore the central part of the arena and a significant increase in freezing behavior in the OFT and lack of effects in the EPM. Also, high-sucrose diet group showed signs of an MS-like condition: significant increases in body weight and body mass index, abdominal obesity, hypertension, hyperglycemia, hyperinsulinemia, and dyslipidemia. Plasma leptin and resistin levels were also increased. No changes in plasma corticosterone levels were found. These results indicate that rats under a 24-weeks high-sucrose diet develop an MS associated with an anxiety-like behavior. Although the mechanisms underlying this behavioral outcome remain to be investigated, the role of leptin is emphasized. PMID:28463967

  19. Microbiota Modulate Anxiety-Like Behavior and Endocrine Abnormalities in Hypothalamic-Pituitary-Adrenal Axis

    Directory of Open Access Journals (Sweden)

    Ran Huo

    2017-11-01

    Full Text Available Intestinal microbes are an important system in the human body, with significant effects on behavior. An increasing body of research indicates that intestinal microbes affect brain function and neurogenesis, including sensitivity to stress. To investigate the effects of microbial colonization on behavior, we examined behavioral changes associated with hormones and hormone receptors in the hypothalamic-pituitary-adrenal (HPA axis under stress. We tested germ-free (GF mice and specific pathogen-free (SPF mice, divided into four groups. A chronic restraint stress (CRS protocol was utilized to induce external pressure in two stress groups by restraining mice in a conical centrifuge tube for 4 h per day for 21 days. After CRS, Initially, GF restraint-stressed mice explored more time than SPF restraint-stressed mice in the center and total distance of the OFT. Moreover, the CRH, ACTH, CORT, and ALD levels in HPA axis of GF restraint-stressed mice exhibited a significantly greater increase than those of SPF restraint-stressed mice. Finally, the Crhr1 mRNA levels of GF CRS mice were increased compared with SPF CRS mice. However, the Nr3c2 mRNA levels of GF CRS mice were decreased compared with SPF CRS mice. All results revealed that SPF mice exhibited more anxiety-like behavior than GF mice under the same external stress. Moreover, we also found that GF mice exhibited significant differences in, hormones, and hormone receptors compared with SPF mice. In conclusion, Imbalances of the HPA axis caused by intestinal microbes could affect the neuroendocrine system in the brain, resulting in an anxiety-like behavioral phenotype. This study suggested that intervention into intestinal microflora may provide a new approach for treating stress-related diseases.

  20. Cohort Removal Induces Changes in Body Temperature, Pain Sensitivity, and Anxiety-Like Behavior

    Science.gov (United States)

    Takao, Keizo; Shoji, Hirotaka; Hattori, Satoko; Miyakawa, Tsuyoshi

    2016-01-01

    Mouse behavior is analyzed to elucidate the effects of various experimental manipulations, including gene mutation and drug administration. When the effect of a factor of interest is assessed, other factors, such as age, sex, temperature, apparatus, and housing, are controlled in experiments by matching, counterbalancing, and/or randomizing. One such factor that has not attracted much attention is the effect of sequential removal of animals from a common cage (cohort removal). Here we evaluated the effects of cohort removal on rectal temperature, pain sensitivity, and anxiety-like behavior by analyzing the combined data of a large number of C57BL/6J mice that we collected using a comprehensive behavioral test battery. Rectal temperature increased in a stepwise manner according to the position of sequential removal from the cage, consistent with previous reports. In the hot plate test, the mice that were removed first from the cage had a significantly longer latency to show the first paw response than the mice removed later. In the elevated plus maze, the mice removed first spent significantly less time on the open arms compared to the mice removed later. The results of the present study demonstrated that cohort removal induces changes in body temperature, pain sensitivity, and anxiety-like behavior in mice. Cohort removal also increased the plasma corticosterone concentration in mice. Thus, the ordinal position in the sequence of removal from the cage should be carefully counterbalanced between groups when the effect of experimental manipulations, including gene manipulation and drug administration, are examined using behavioral tests. PMID:27375443

  1. Cohort removal induces changes in body temperature, pain sensitivity, and anxiety-like behavior

    Directory of Open Access Journals (Sweden)

    Keizo eTakao

    2016-06-01

    Full Text Available Mouse behavior is analyzed to elucidate the effects of various experimental manipulations, including gene mutation and drug administration. When the effect of a factor of interest is assessed, other factors, such as age, sex, temperature, apparatus, and housing, are controlled in experiments by matching, counterbalancing, and/or randomizing. One such factor that has not attracted much attention is the effect of sequential removal of animals from a common cage (cohort removal. Here we evaluated the effects of cohort removal on rectal temperature, pain sensitivity, and anxiety-like behavior by analyzing the combined data of a large number of C57BL/6J mice that we collected using a comprehensive behavioral test battery. Rectal temperature increased in a stepwise manner according to the position of sequential removal from the cage, consistent with previous reports. In the hot plate test, the mice that were removed first from the cage had a significantly longer latency to show the first paw response than the mice removed later. In the elevated plus maze, the mice removed first spent significantly less time on the open arms compared to the mice removed later. The results of the present study demonstrated that cohort removal induces changes in body temperature, pain sensitivity, and anxiety-like behavior in mice. Cohort removal also increased the plasma corticosterone concentration in mice. Thus, the ordinal position in the sequence of removal from the cage should be carefully counterbalanced between groups when the effect of experimental manipulations, including gene manipulation and drug administration, are examined using behavioral tests.

  2. Neuropeptide AF induces anxiety-like and antidepressant-like behavior in mice.

    Science.gov (United States)

    Palotai, Miklós; Telegdy, Gyula; Tanaka, Masaru; Bagosi, Zsolt; Jászberényi, Miklós

    2014-11-01

    Little is known about the action of neuropeptide AF (NPAF) on anxiety and depression. Only our previous study provides evidence that NPAF induces anxiety-like behavior in rats. Therefore, the aim of the present study was to investigate the action of NPAF on depression-like behavior and the underlying neurotransmissions in mice. In order to determine whether there are species differences between rats and mice, we have investigated the action of NPAF on anxiety-like behavior in mice as well. A modified forced swimming test (mFST) and an elevated plus maze test (EPMT) were used to investigate the depression and anxiety-related behaviors, respectively. Mice were treated with NPAF 30min prior to the tests. In the mFST, the animals were pretreated with a non-selective muscarinic acetylcholine receptor antagonist, atropine, a non-selective 5-HT2 serotonergic receptor antagonist, cyproheptadine, a mixed 5-HT1/5-HT2 serotonergic receptor antagonist, methysergide, a D2/D3/D4 dopamine receptor antagonist, haloperidol, a α1/α2β-adrenergic receptor antagonist, prazosin or a non-selective β-adrenergic receptor antagonist, propranolol 30min before the NPAF administration. In the mFST, NPAF decreased the immobility time and increased the climbing and swimming times. This action was reversed completely by methysergide and partially by atropine, whereas cyproheptadine, haloperidol, prazosin and propranolol were ineffective. In the EPMT, NPAF decreased the time spent in the arms (open/open+closed). Our results demonstrate that NPAF induces anti-depressant-like behavior in mice, which is mediated, at least in part, through 5HT2-serotonergic and muscarinic cholinergic neurotransmissions. In addition, the NPAF-induced anxiety is species-independent, since it develops also in mice. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Age-dependent effect of high cholesterol diets on anxiety-like behavior in elevated plus maze test in rats.

    Science.gov (United States)

    Hu, Xu; Wang, Tao; Luo, Jia; Liang, Shan; Li, Wei; Wu, Xiaoli; Jin, Feng; Wang, Li

    2014-09-01

    Cholesterol is an essential component of brain and nerve cells and is essential for maintaining the function of the nervous system. Epidemiological studies showed that patients suffering from anxiety disorders have higher serum cholesterol levels. In this study, we investigated the influence of high cholesterol diet on anxiety-like behavior in elevated plus maze in animal model and explored the relationship between cholesterol and anxiety-like behavior from the aspect of central neurochemical changes. Young (3 weeks old) and adult (20 weeks old) rats were given a high cholesterol diet for 8 weeks. The anxiety-like behavior in elevated plus maze test and changes of central neurochemical implicated in anxiety were measured. In young rats, high cholesterol diet induced anxiolytic-like behavior, decreased serum corticosterone (CORT), increased hippocampal brain-derived neurotrophic factor (BDNF), increased hippocampal mineralocorticoid receptor (MR) and decreased glucocorticoid receptor (GR). In adult rats, high cholesterol diet induced anxiety-like behavior and increase of serum CORT and decrease of hippocampal BDNF comparing with their respective control group that fed the regular diet. High cholesterol diet induced age-dependent effects on anxiety-like behavior and central neurochemical changes. High cholesterol diet might affect the central nervous system (CNS) function differently, and resulting in different behavior performance of anxiety in different age period.

  4. Age-dependent effect of high cholesterol diets on anxiety-like behavior in elevated plus maze test in rats

    Science.gov (United States)

    2014-01-01

    Background Cholesterol is an essential component of brain and nerve cells and is essential for maintaining the function of the nervous system. Epidemiological studies showed that patients suffering from anxiety disorders have higher serum cholesterol levels. In this study, we investigated the influence of high cholesterol diet on anxiety-like behavior in elevated plus maze in animal model and explored the relationship between cholesterol and anxiety-like behavior from the aspect of central neurochemical changes. Methods Young (3 weeks old) and adult (20 weeks old) rats were given a high cholesterol diet for 8 weeks. The anxiety-like behavior in elevated plus maze test and changes of central neurochemical implicated in anxiety were measured. Results In young rats, high cholesterol diet induced anxiolytic-like behavior, decreased serum corticosterone (CORT), increased hippocampal brain-derived neurotrophic factor (BDNF), increased hippocampal mineralocorticoid receptor (MR) and decreased glucocorticoid receptor (GR). In adult rats, high cholesterol diet induced anxiety-like behavior and increase of serum CORT and decrease of hippocampal BDNF comparing with their respective control group that fed the regular diet. Discussion High cholesterol diet induced age-dependent effects on anxiety-like behavior and central neurochemical changes. High cholesterol diet might affect the central nervous system (CNS) function differently, and resulting in different behavior performance of anxiety in different age period. PMID:25179125

  5. Stress responsiveness and anxiety-like behavior: The early social environment differentially shapes stability over time in a small rodent.

    Science.gov (United States)

    Sangenstedt, Susanne; Jaljuli, Iman; Sachser, Norbert; Kaiser, Sylvia

    2017-04-01

    The early social environment can profoundly affect behavioral and physiological phenotypes. We investigated how male wild cavy offspring, whose mothers had either lived in a stable (SE) or an unstable social environment (UE) during pregnancy and lactation, differed in their anxiety-like behavior and stress responsiveness. At two different time points in life, we tested the offspring's anxiety-like behavior in a dark-light test and their endocrine reaction to challenge in a cortisol reactivity test. Furthermore, we analyzed whether individual traits remained stable over time. There was no effect of the early social environment on anxiety-like behavior and stress responsiveness. However, at an individual level, anxiety-like behavior was stable over time in UE- but not in SE-sons. Stress responsiveness, in turn, was rather inconsistent in UE-sons and temporally stable in SE-sons. Conclusively, we showed for the first time that the early social environment differentially shapes the stability of behavioral and endocrine traits. At first glance, these results may be surprising, but they can be explained by the different functions anxiety-like behavior and stress responsiveness have. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. A metabolomic study of fipronil for the anxiety-like behavior in zebrafish larvae at environmentally relevant levels

    International Nuclear Information System (INIS)

    Wang, Cui; Qian, Yi; Zhang, Xiaofeng; Chen, Fang; Zhang, Quan; Li, Zhuoyu; Zhao, Meirong

    2016-01-01

    Field residue of fipronil can interfere with the physiological characters of the domesticated fish; thus, lethal dose test and the general biomarker cannot delineate the low-level situation. Manipulating by video track, we observed an anxiety-like behavior including high speed and abnormal photoperiod accommodation after exposure to fipronil at environmental typical dose in zebrafish larvae. Examining the unbiased metabolomic profiles, we found perturbation in several metabolic pathways, including the increased contents of fatty acids and glycerol and the decreased levels of the glycine, serine, and branched amino acid. We presumed that observed enhanced fatty acid utility was in response to increase energy demands caused by anxiety like behavior. Additionally, the body burden of neurotransmitter such as glycine and L-glutamate may concurrently stimulate the swimming behavior. The insight of this study showed that integral perturbation such as metabolism helps us to further understand the risk to aquatic fish at the environmentally relevant levels. - Highlights: • Fipronil increased the swimming speed at 10 μg/L to zebrafish larvae. • Accommodation to light–dark photoperiod switch was disturbed by fipronil. • Metabolomics indicated an increase energy availability for anxiety-like behavior. • Anxiety-like behavior induced by fipronil may attribute to neurotransmitter changes. - Zebrafish larvae exposed to environmentally relevant concentrations of fipronil display anxiety like behavior that may attribute to observed changes in energy utilization and neurotransmitter disturbances.

  7. Depression, anxiety-like behavior and memory impairment are associated with increased oxidative stress and inflammation in a rat model of social stress.

    Science.gov (United States)

    Patki, Gaurav; Solanki, Naimesh; Atrooz, Fatin; Allam, Farida; Salim, Samina

    2013-11-20

    In the present study, we have examined the behavioral and biochemical effect of induction of psychological stress using a modified version of the resident-intruder model for social stress (social defeat). At the end of the social defeat protocol, body weights, food and water intake were recorded, depression and anxiety-like behaviors as well as memory function was examined. Biochemical analysis including oxidative stress measurement, inflammatory markers and other molecular parameters, critical to behavioral effects were examined. We observed a significant decrease in the body weight in the socially defeated rats as compared to the controls. Furthermore, social defeat increased anxiety-like behavior and caused memory impairment in rats (PSocially defeated rats made significantly more errors in long term memory tests (Psocially defeated rats, when compared to control rats. We suggest that social defeat stress alters ERK1/2, IL-6, GLO1, GSR1, CAMKIV, CREB, and BDNF levels in specific brain areas, leading to oxidative stress-induced anxiety-depression-like behaviors and as well as memory impairment in rats. © 2013 Published by Elsevier B.V.

  8. Effects of comfort food on food intake, anxiety-like behavior and the stress response in rats.

    Science.gov (United States)

    Ortolani, D; Oyama, L M; Ferrari, E M; Melo, L L; Spadari-Bratfisch, R C

    2011-07-06

    It has been suggested that access to high caloric food attenuates stress response. The present paper investigates whether access to commercial chow enriched with glucose and fat, here referred to as comfort food alters behavioral, metabolic, and hormonal parameters of rats submitted to three daily sessions of foot-shock stress. Food intake, anxiety-like behaviors, and serum levels of insulin, leptin, corticosterone, glucose and triglycerides were determined. The rats submitted to stress decreased the intake of commercial chow, but kept unaltered the intake of comfort food. During the elevated plus maze (EPM) test, stressed rats increased the number of head dipping, entries into the open arms, as well as the time spent there, and decreased the number of stretched-attend posture and risk assessment. These effects of stress were independent of the type of food consumed. Non-stressed rats ingesting comfort food decreased risk assessment as well. Stress and comfort food increased time spent in the center of the open field and delayed the first crossing to a new quadrant. Stress increased the plasma level of glucose and insulin, and reduced triglycerides, although consumption of comfort food increases glucose, triglyceride and leptin levels; no effect on leptin level was associated to stress. The stress induced increase in serum corticosterone was attenuated when rats had access to comfort food. It was concluded that foot-shock stress has an anorexigenic effect that is independent of leptin and prevented upon access to comfort food. Foot-shock stress also has an anxiolytic effect that is potentiated by the ingestion of comfort food and that is evidenced by both EPM and open field tests. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Oxytocin in the prelimbic medial prefrontal cortex reduces anxiety-like behavior in female and male rats.

    Science.gov (United States)

    Sabihi, Sara; Durosko, Nicole E; Dong, Shirley M; Leuner, Benedetta

    2014-07-01

    The neuropeptide oxytocin (OT) is anxiolytic in rodents and humans. However, the specific brain regions where OT acts to regulate anxiety requires further investigation. The medial prefrontal cortex (mPFC) has been shown to play a role in the modulation of anxiety-related behavior. In addition, the mPFC contains OT-sensitive neurons, expresses OT receptors, and receives long range axonal projections from OT-producing neurons in the hypothalamus, suggesting that the mPFC may be a target where OT acts to diminish anxiety. To investigate this possibility, female rats were administered OT bilaterally into the prelimbic (PL) region of the mPFC and anxiety-like behavior assessed. In addition, to determine if the effects of OT on anxiety-like behavior are sex dependent and to evaluate the specificity of OT, male and female anxiety-like behavior was tested following delivery of either OT or the closely related neuropeptide arginine vasopressin (AVP) into the PL mPFC. Finally, the importance of endogenous OT in the regulation of anxiety-like behavior was examined in male and female rats that received PL infusions of an OT receptor antagonist (OTR-A). Overall, even though males and females showed some differences in their baseline levels of anxiety-like behavior, OT in the PL region of the mPFC decreased anxiety regardless of sex. In contrast, neither AVP nor an OTR-A affected anxiety-like behavior in males or females. Together, these findings suggest that although endogenous OT in the PL region of the mPFC does not influence anxiety, the PL mPFC is a site where exogenous OT may act to attenuate anxiety-related behavior independent of sex. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Mice with Sort1 deficiency display normal cognition but elevated anxiety-like behavior.

    Science.gov (United States)

    Ruan, Chun-Sheng; Yang, Chun-Rui; Li, Jia-Yi; Luo, Hai-Yun; Bobrovskaya, Larisa; Zhou, Xin-Fu

    2016-07-01

    Exposure to stressful life events plays a central role in the development of mood disorders in vulnerable individuals. However, the mechanisms that link mood disorders to stress are poorly understood. Brain-derived neurotrophic factor (BDNF) has long been implicated in positive regulation of depression and anxiety, while its precursor (proBDNF) recently showed an opposing effect on such mental illnesses. P75(NTR) and sortilin are co-receptors of proBDNF, however, the role of these receptors in mood regulation is not established. Here, we aimed to investigate the role of sortilin in regulating mood-related behaviors and its role in the proBDNF-mediated mood abnormality in mice. We found that sortilin was up-regulated in neocortex (by 78.3%) and hippocampus (by 111%) of chronically stressed mice as assessed by western blot analysis. These changes were associated with decreased mobility in the open field test and increased depression-like behavior in the forced swimming test. We also found that sortilin deficiency in mice resulted in hyperlocomotion in the open field test and increased anxiety-like behavior in both the open field and elevated plus maze tests. No depression-like behavior in the forced swimming test and no deficit in spatial cognition in the Morris water maze test were found in the Sort1-deficient mice. Moreover, the intracellular and extracellular levels of mature BDNF and proBDNF were not changed when sortilin was absent in vivo and in vitro. Finally, we found that both WT and Sort1-deficient mice injected with proBDNF in lateral ventricle displayed increased depression-like behavior in the forced swimming test but not anxiety-like behaviors in the open field and elevated plus maze tests. The present study suggests that sortilin functions as a negative regulator of mood performance and can be a therapeutic target for the treatment of mental illness. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  11. Anxiety-like behavior in transgenic mice with brain expression of neuropeptide Y.

    Science.gov (United States)

    Inui, A; Okita, M; Nakajima, M; Momose, K; Ueno, N; Teranishi, A; Miura, M; Hirosue, Y; Sano, K; Sato, M; Watanabe, M; Sakai, T; Watanabe, T; Ishida, K; Silver, J; Baba, S; Kasuga, M

    1998-01-01

    Neuropeptide Y (NPY), one of the most abundant peptide transmitters in the mammalian brain, is assumed to play an important role in behavior and its disorders. To understand the long-term modulation of neuronal functions by NPY, we raised transgenic mice created with a novel central nervous system (CNS) neuron-specific expression vector of human Thy- gene fragment linked to mouse NPY cDNA. In situ hybridization analysis demonstrated transgene-derived NPY expression in neurons (e.g., in the hippocampus, cerebral cortex, and the arcuate nucleus of the hypothalamus) in the transgenic mice. The modest increase of NPY protein in the brain was demonstrated by semiquantitative immunohistochemical analysis and by radioreceptor assay (115% in transgenic mice compared to control littermates). Double-staining experiments indicated colocalization of the transgene-derived NPY message and NPY protein in the same neurons, such as in the arcuate nucleus. The transgenic mice displayed behavioral signs of anxiety and hypertrophy of adrenal zona fasciculata cells, but no change in food intake was observed. The anxiety-like behavior of transgenic mice was reversed, at least in part, by administration of corticotropin-releasing factor (CRF) antagonists, alpha-helical CRF9-41, into the third cerebral ventricle. These results suggest that NPY has a role in anxiety and behavioral responses to stress partly via the CRF neuronal system. This genetic model may provide a unique opportunity to study human anxiety and emotional disorders.

  12. Enduring increases in anxiety-like behavior and rapid nucleus accumbens dopamine signaling in socially isolated rats.

    Science.gov (United States)

    Yorgason, Jordan T; España, Rodrigo A; Konstantopoulos, Joanne K; Weiner, Jeffrey L; Jones, Sara R

    2013-03-01

    Social isolation (SI) rearing, a model of early life stress, results in profound behavioral alterations, including increased anxiety-like behavior, impaired sensorimotor gating and increased self-administration of addictive substances. These changes are accompanied by alterations in mesolimbic dopamine function, such as increased dopamine and metabolite tissue content, increased dopamine responses to cues and psychostimulants, and increased dopamine neuron burst firing. Using voltammetric techniques, we examined the effects of SI rearing on dopamine transporter activity, vesicular release and dopamine D2-type autoreceptor activity in the nucleus accumbens core. Long-Evans rats were housed in group (GH; 4/cage) or SI (1/cage) conditions from weaning into early adulthood [postnatal day (PD) 28-77]. After this initial housing period, rats were assessed on the elevated plus-maze for an anxiety-like phenotype, and then slice voltammetry experiments were performed. To study the enduring effects of SI rearing on anxiety-like behavior and dopamine terminal function, another cohort of similarly reared rats was isolated for an additional 4 months (until PD 174) and then tested. Our findings demonstrate that SI rearing results in lasting increases in anxiety-like behavior, dopamine release and dopamine transporter activity, but not D2 activity. Interestingly, GH-reared rats that were isolated as adults did not develop the anxiety-like behavior or dopamine changes seen in SI-reared rats. Together, our data suggest that early life stress results in an anxiety-like phenotype, with lasting increases in dopamine terminal function. © 2013 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  13. Hippocampal effects of neuronostatin on memory, anxiety-like behavior and food intake in rats.

    Science.gov (United States)

    Carlini, V P; Ghersi, M; Gabach, L; Schiöth, H B; Pérez, M F; Ramirez, O A; Fiol de Cuneo, M; de Barioglio, S R

    2011-12-01

    A 13-amino acid peptide named neuronostatin (NST) encoded in the somatostatin pro-hormone has been recently reported. It is produced throughout the body, particularly in brain areas that have significant actions over the metabolic and autonomic regulation. The present study was performed in order to elucidate the functional role of NST on memory, anxiety-like behavior and food intake and the hippocampal participation in these effects. When the peptide was intra-hippocampally administered at 3.0 nmol/μl, it impaired memory retention in both, object recognition and step-down test. Also, this dose blocked the hippocampal long-term potentiation (LTP) generation. When NST was intra-hippocampally administered at 0.3 nmol/μl and 3.0 nmol/μl, anxiolytic effects were observed. Also, the administration in the third ventricle at the higher dose (3.0 nmol/μl) induced similar effects, and both doses reduced food intake. The main result of the present study is the relevance of the hippocampal formation in the behavioral effects induced by NST, and these effects could be associated to a reduced hippocampal synaptic plasticity. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. Pathogenesis of depression- and anxiety-like behavior in an animal model of hypertrophic cardiomyopathy.

    Science.gov (United States)

    Dossat, Amanda M; Sanchez-Gonzalez, Marcos A; Koutnik, Andrew P; Leitner, Stefano; Ruiz, Edda L; Griffin, Brittany; Rosenberg, Jens T; Grant, Samuel C; Fincham, Francis D; Pinto, Jose R; Kabbaj, Mohamed

    2017-06-01

    Cardiovascular dysfunction is highly comorbid with mood disorders, such as anxiety and depression. However, the mechanisms linking cardiovascular dysfunction with the core behavioral features of mood disorder remain poorly understood. In this study, we used mice bearing a knock-in sarcomeric mutation, which is exhibited in human hypertrophic cardiomyopathy (HCM), to investigate the influence of HCM over the development of anxiety and depression. We employed behavioral, MRI, and biochemical techniques in young (3-4 mo) and aged adult (7-8 mo) female mice to examine the effects of HCM on the development of anxiety- and depression-like behaviors. We focused on females because in both humans and rodents, they experience a 2-fold increase in mood disorder prevalence vs. males. Our results showed that young and aged HCM mice displayed echocardiographic characteristics of the heart disease condition, yet only aged HCM females displayed anxiety- and depression-like behaviors. Electrocardiographic parameters of sympathetic nervous system activation were increased in aged HCM females vs. controls and correlated with mood disorder-related symptoms. In addition, when compared with controls, aged HCM females exhibited adrenal gland hypertrophy, reduced volume in mood-related brain regions, and reduced hippocampal signaling proteins, such as brain-derived neurotrophic factor and its downstream targets vs. controls. In conclusion, prolonged systemic HCM stress can lead to development of mood disorders, possibly through inducing structural and functional brain changes, and thus, mood disorders in patients with heart disease should not be considered solely a psychologic or situational condition.-Dossat, A. M., Sanchez-Gonzalez, M. A., Koutnik, A. P., Leitner, S., Ruiz, E. L., Griffin, B., Rosenberg, J. T., Grant, S. C., Fincham, F. D., Pinto, J. R. Kabbaj, M. Pathogenesis of depression- and anxiety-like behavior in an animal model of hypertrophic cardiomyopathy. © FASEB.

  15. (+)-Borneol suppresses conditioned fear recall and anxiety-like behaviors in mice.

    Science.gov (United States)

    Cao, Bo; Ni, Huan-Yu; Li, Jun; Zhou, Ying; Bian, Xin-Lan; Tao, Yan; Cai, Cheng-Yun; Qin, Cheng; Wu, Hai-Yin; Chang, Lei; Luo, Chun-Xia; Zhu, Dong-Ya

    2018-01-08

    Fear- and anxiety-related psychiatric disorders have been one of the major chronic diseases afflicting patients for decades, and new compounds for treating such disorders remain to be developed. (+)-Borneol, a bicyclic monoterpene found in several species of Artemisia and Dipterocarpaceae, is widely used for anxiety, pain and anesthesia in Chinese medicine. Meanwhile, it can potentiate GABA (γ-aminobutyric acid) activity directly in recombinant GABAA receptors. The present study was to investigate the effects of (+)-Borneol on both contextual and cued fear recall. Interestingly, microinjection of (+)-Borneol into the dorsal hippocampus inhibited 24 h and 7 d contextual fear, whereas its infusion into ventral hippocampus only reduced 24 h cued fear responses. Moreover, microinjection of (+)-Borneol into dorsal but not ventral hippocampus suppressed anxiety-like behaviors in the open field test, light/dark exploration and the elevated plus maze test. As selective GABA A receptor antagonist bicuculline reversed the effect of (+)-Borneol on contextual fear paradigm and the drug potentiated GABA-evoked currents in acute hippocampus slices, modulation of the GABAergic neurotransmission may explain the effects of (+)-Borneol. Our findings suggest that (+)-Borneol can serve as a new therapeutic in fear- and anxiety-related disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Effect of acupuncture on Lipopolysaccharide-induced anxiety-like behavioral changes: involvement of serotonin system in dorsal Raphe nucleus.

    Science.gov (United States)

    Yang, Tae Young; Jang, Eun Young; Ryu, Yeonhee; Lee, Gyu Won; Lee, Eun Byeol; Chang, Suchan; Lee, Jong Han; Koo, Jin Suk; Yang, Chae Ha; Kim, Hee Young

    2017-12-11

    Acupuncture has been used as a common therapeutic tool in many disorders including anxiety and depression. Serotonin transporter (SERT) plays an important role in the pathology of anxiety and other mood disorders. The aim of this study was to evaluate the effects of acupuncture on lipopolysaccharide (LPS)-induced anxiety-like behaviors and SERT in the dorsal raphe nuclei (DRN). Rats were given acupuncture at ST41 (Jiexi), LI11 (Quchi) or SI3 (Houxi) acupoint in LPS-treated rats. Anxiety-like behaviors of elevated plus maze (EPM) and open field test (OFT) were measured and expressions of SERT and/or c-Fos were also examined in the DRN using immunohistochemistry. The results showed that 1) acupuncture at ST41 acupoint, but neither LI11 nor SI3, significantly attenuated LPS-induced anxiety-like behaviors in EPM and OFT, 2) acupuncture at ST41 decreased SERT expression increased by LPS in the DRN. Our results suggest that acupuncture can ameliorate anxiety-like behaviors, possibly through regulation of SERT in the DRN.

  17. Intrahippocampal administration of an androgen receptor antagonist, flutamide, can increase anxiety-like behavior in intact and DHT-replaced male rats.

    Science.gov (United States)

    Edinger, Kassandra L; Frye, Cheryl A

    2006-08-01

    Testosterone (T) and its 5alpha-reduced metabolite, dihydrotestosterone (DHT), can decrease anxiety-like behavior; however, the mechanisms underlying these effects have not been established. First, we hypothesized that if T reduces anxiety-like behavior through actions of its 5alpha-reduced metabolite, DHT, then gonadectomy (GDX) would increase anxiety-like behavior, an effect which would be reversed by systemic administration of DHT. Second, we hypothesized that if T and DHT reduce anxiety-like behavior in part through actions at intracellular androgen receptors in the hippocampus, then administration of an androgen receptor antagonist, flutamide, directly to the hippocampus should increase anxiety-like behavior of intact and DHT-replaced, but not GDX, male rats. Inserts that were empty or contained flutamide were applied directly to the dorsal hippocampus of intact, GDX, or GDX and DHT-replaced rats 2 h prior to testing in the open field, elevated plus maze, or defensive freezing tasks. GDX rats exhibited significantly more anxiety-like behaviors than intact or DHT-replaced rats. Intact and DHT-replaced rats administered flutamide to the hippocampus showed significantly more anxiety-like behavior than did intact and DHT-replaced controls. However, flutamide alone did not increase anxiety-like behavior of GDX rats. Together, these findings suggest that androgens can decrease anxiety-like behavior of male rats in part through DHT's actions at androgen receptors in the hippocampus.

  18. Acute fasting inhibits central caspase-1 activity reducing anxiety-like behavior and increasing novel object and object location recognition.

    Science.gov (United States)

    Towers, Albert E; Oelschlager, Maci L; Patel, Jay; Gainey, Stephen J; McCusker, Robert H; Freund, Gregory G

    2017-06-01

    Inflammation within the central nervous system (CNS) is frequently comorbid with anxiety. Importantly, the pro-inflammatory cytokine most commonly associated with anxiety is IL-1β. The bioavailability and activity of IL-1β are regulated by caspase-1-dependent proteolysis vis-a-vis the inflammasome. Thus, interventions regulating the activation or activity of caspase-1 should reduce anxiety especially in states that foster IL-1β maturation. Male C57BL/6j, C57BL/6j mice treated with the capase-1 inhibitor biotin-YVAD-cmk, caspase-1 knockout (KO) mice and IL-1R1 KO mice were fasted for 24h or allowed ad libitum access to food. Immediately after fasting, caspase-1 activity was measured in brain region homogenates while activated caspase-1 was localized in the brain by immunohistochemistry. Mouse anxiety-like behavior and cognition were tested using the elevated zero maze and novel object/object location tasks, respectively. A 24h fast in mice reduced the activity of caspase-1 in whole brain and in the prefrontal cortex, amygdala, hippocampus, and hypothalamus by 35%, 25%, 40%, 40%, and 40% respectively. A 24h fast also reduced anxiety-like behavior by 40% and increased novel object and object location recognition by 21% and 31%, respectively. IL-1β protein, however, was not reduced in the brain by fasting. ICV administration of YVAD decreased caspase-1 activity in the prefrontal cortex and amygdala by 55%, respectively leading to a 64% reduction in anxiety like behavior. Importantly, when caspase-1 KO or IL1-R1 KO mice are fasted, no fasting-dependent reduction in anxiety-like behavior was observed. Results indicate that fasting decrease anxiety-like behavior and improves memory by a mechanism tied to reducing caspase-1 activity throughout the brain. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Effect of Early-Life Fluoxetine on Anxiety-Like Behaviors in BDNF Val66Met Mice.

    Science.gov (United States)

    Dincheva, Iva; Yang, Jianmin; Li, Anfei; Marinic, Tina; Freilingsdorf, Helena; Huang, Chienchun; Casey, B J; Hempstead, Barbara; Glatt, Charles E; Lee, Francis S; Bath, Kevin G; Jing, Deqiang

    2017-12-01

    Adolescence is a developmental stage in which the incidence of psychiatric disorders, such as anxiety disorders, peaks. Selective serotonin reuptake inhibitors (SSRIs) are the main class of agents used to treat anxiety disorders. However, the impact of SSRIs on the developing brain during adolescence remains unknown. The authors assessed the impact of developmentally timed SSRI administration in a genetic mouse model displaying elevated anxiety-like behaviors. Knock-in mice containing a common human single-nucleotide polymorphism (Val66Met; rs6265) in brain-derived neurotrophic factor (BDNF), a growth factor implicated in the mechanism of action of SSRIs, were studied based on their established phenotype of increased anxiety-like behavior. Timed administration of fluoxetine was delivered during one of three developmental periods (postnatal days 21-42, 40-61, or 60-81), spanning the transition from childhood to adulthood. Neurochemical and anxiety-like behavioral analyses were performed. We identified a "sensitive period" during periadolescence (postnatal days 21-42) in which developmentally timed fluoxetine administration rescued anxiety-like phenotypes in BDNF Val66Met mice in adulthood. Compared with littermate controls, BDNF Met/Met mice exhibited diminished maturation of serotonergic fibers projecting particularly to the prefrontal cortex, as well as decreased expression of the serotonergic trophic factor S100B in the dorsal raphe. Interestingly, deficient serotonergic innervation, as well as S100B levels, were rescued with fluoxetine administration during periadolescence. These findings suggest that SSRI administration during a "sensitive period" during periadolescence leads to long-lasting anxiolytic effects in a genetic mouse model of elevated anxiety-like behaviors. These persistent effects highlight the role of BDNF in the maturation of the serotonin system and the capacity to enhance its development through a pharmacological intervention.

  20. The nuclear receptor corepressor has organizational effects within the developing amygdala on juvenile social play and anxiety-like behavior.

    Science.gov (United States)

    Jessen, Heather M; Kolodkin, Mira H; Bychowski, Meaghan E; Auger, Catherine J; Auger, Anthony P

    2010-03-01

    Nuclear receptor function on DNA is regulated by the balanced recruitment of coregulatory complexes. Recruited proteins that increase gene expression are called coactivators, and those that decrease gene expression are called corepressors. Little is known about the role of corepressors, such as nuclear receptor corepressor (NCoR), on the organization of behavior. We used real-time PCR to show that NCoR mRNA levels are sexually dimorphic, that females express higher levels of NCoR mRNA within the developing amygdala and hypothalamus, and that NCoR mRNA levels are reduced by estradiol treatment. To investigate the functional role of NCoR on juvenile social behavior, we infused small interfering RNA targeted against NCoR within the developing rat amygdala and assessed the enduring impact on juvenile social play behavior, sociability, and anxiety-like behavior. As expected, control males exhibited higher levels of juvenile social play than control females. Reducing NCoR expression during development further increased juvenile play in males only. Interestingly, decreased NCoR expression within the developing amygdala had lasting effects on increasing juvenile anxiety-like behavior in males and females. These data suggest that the corepressor NCoR functions to blunt sex differences in juvenile play behavior, a sexually dimorphic and hormone-dependent behavior, and appears critical for appropriate anxiety-like behavior in juvenile males and females.

  1. Raphe serotonin neuron-specific oxytocin receptor knockout reduces aggression without affecting anxiety-like behavior in male mice only.

    Science.gov (United States)

    Pagani, J H; Williams Avram, S K; Cui, Z; Song, J; Mezey, É; Senerth, J M; Baumann, M H; Young, W S

    2015-02-01

    Serotonin and oxytocin influence aggressive and anxiety-like behaviors, though it is unclear how the two may interact. That the oxytocin receptor is expressed in the serotonergic raphe nuclei suggests a mechanism by which the two neurotransmitters may cooperatively influence behavior. We hypothesized that oxytocin acts on raphe neurons to influence serotonergically mediated anxiety-like, aggressive and parental care behaviors. We eliminated expression of the oxytocin receptor in raphe neurons by crossing mice expressing Cre recombinase under control of the serotonin transporter promoter (Slc6a4) with our conditional oxytocin receptor knockout line. The knockout mice generated by this cross are normal across a range of behavioral measures: there are no effects for either sex on locomotion in an open-field, olfactory habituation/dishabituation or, surprisingly, anxiety-like behaviors in the elevated O and plus mazes. There was a profound deficit in male aggression: only one of 11 raphe oxytocin receptor knockouts showed any aggressive behavior, compared to 8 of 11 wildtypes. In contrast, female knockouts displayed no deficits in maternal behavior or aggression. Our results show that oxytocin, via its effects on raphe neurons, is a key regulator of resident-intruder aggression in males but not maternal aggression. Furthermore, this reduction in male aggression is quite different from the effects reported previously after forebrain or total elimination of oxytocin receptors. Finally, we conclude that when constitutively eliminated, oxytocin receptors expressed by serotonin cells do not contribute to baseline anxiety-like behaviors or maternal care. © 2015 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  2. Sex-dependent alterations in motor and anxiety-like behavior of aged bacterial peptidoglycan sensing molecule 2 knockout mice.

    Science.gov (United States)

    Arentsen, Tim; Khalid, Roksana; Qian, Yu; Diaz Heijtz, Rochellys

    2018-01-01

    Peptidoglycan recognition proteins (PGRPs) are key sensing-molecules of the innate immune system that specifically detect bacterial peptidoglycan (PGN) and its derivates. PGRPs have recently emerged as potential key regulators of normal brain development and behavior. To test the hypothesis that PGRPs play a role in motor control and anxiety-like behavior in later life, we used 15-month old male and female peptidoglycan recognition protein 2 (Pglyrp2) knockout (KO) mice. Pglyrp2 is an N-acetylmuramyl-l-alanine amidase that hydrolyzes PGN between the sugar backbone and the peptide chain (which is unique among the mammalian PGRPs). Using a battery of behavioral tests, we demonstrate that Pglyrp2 KO male mice display decreased levels of anxiety-like behavior compared with wild type (WT) males. In contrast, Pglyrp2 KO female mice show reduced rearing activity and increased anxiety-like behavior compared to WT females. In the accelerated rotarod test, however, Pglyrp2 KO female mice performed better compared to WT females (i.e., they had longer latency to fall off the rotarod). Further, Pglyrp2 KO male mice exhibited decreased expression levels of synaptophysin, gephyrin, and brain-derived neurotrophic factor in the frontal cortex, but not in the amygdala. Pglyrp2 KO female mice exhibited increased expression levels of spinophilin and alpha-synuclein in the frontal cortex, while exhibiting decreased expression levels of synaptophysin, gephyrin and spinophilin in the amygdala. Our findings suggest a novel role for Pglyrp2asa key regulator of motor and anxiety-like behavior in late life. Copyright © 2017. Published by Elsevier Inc.

  3. Anxiety-like behavior as an early endophenotype in the TgF344-AD rat model of Alzheimer's disease.

    Science.gov (United States)

    Pentkowski, Nathan S; Berkowitz, Laura E; Thompson, Shannon M; Drake, Emma N; Olguin, Carlos R; Clark, Benjamin J

    2018-01-01

    Alzheimer's disease (AD) is characterized by progressive cognitive decline and the presence of aggregates of amyloid beta (plaques) and hyperphosphorylated tau (tangles). Early diagnosis through neuropsychological testing is difficult due to comorbidity of symptoms between AD and other types of dementia. As a result, there is a need to identify the range of behavioral phenotypes expressed in AD. In the present study, we utilized a transgenic rat (TgF344-AD) model that bears the mutated amyloid precursor protein as well as presenilin-1 genes, resulting in progressive plaque and tangle pathogenesis throughout the cortex. We tested young adult male and female TgF344-AD rats in a spatial memory task in the Morris water maze and for anxiety-like behavior in the elevated plus-maze. Results indicated that regardless of sex, TgF344-AD rats exhibited increased anxiety-like behavior in the elevated plus-maze, which occurred without significant deficits in the spatial memory. Together, these results indicate that enhanced anxiety-like behavior represents an early-stage behavioral marker in the TgF344-AD rat model. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Central nervous system-specific knockout of steroidogenic factor 1 results in increased anxiety-like behavior.

    Science.gov (United States)

    Zhao, Liping; Kim, Ki Woo; Ikeda, Yayoi; Anderson, Kimberly K; Beck, Laurel; Chase, Stephanie; Tobet, Stuart A; Parker, Keith L

    2008-06-01

    Steroidogenic factor 1 (SF-1) plays key roles in adrenal and gonadal development, expression of pituitary gonadotropins, and development of the ventromedial hypothalamic nucleus (VMH). If kept alive by adrenal transplants, global knockout (KO) mice lacking SF-1 exhibit delayed-onset obesity and decreased locomotor activity. To define specific roles of SF-1 in the VMH, we used the Cre-loxP system to inactivate SF-1 in a central nervous system (CNS)-specific manner. These mice largely recapitulated the VMH structural defect seen in mice lacking SF-1 in all tissues. In multiple behavioral tests, mice with CNS-specific KO of SF-1 had significantly more anxiety-like behavior than wild-type littermates. The CNS-specific SF-1 KO mice had diminished expression or altered distribution in the mediobasal hypothalamus of several genes whose expression has been linked to stress and anxiety-like behavior, including brain-derived neurotrophic factor, the type 2 receptor for CRH (Crhr2), and Ucn 3. Moreover, transfection and EMSAs support a direct role of SF-1 in Crhr2 regulation. These findings reveal important roles of SF-1 in the hypothalamic expression of key regulators of anxiety-like behavior, providing a plausible molecular basis for the behavioral effect of CNS-specific KO of this nuclear receptor.

  5. Amygdala Lesions Reduce Anxiety-like Behavior in a Human Benzodiazepine-Sensitive Approach-Avoidance Conflict Test.

    Science.gov (United States)

    Korn, Christoph W; Vunder, Johanna; Miró, Júlia; Fuentemilla, Lluís; Hurlemann, Rene; Bach, Dominik R

    2017-10-01

    Rodent approach-avoidance conflict tests are common preclinical models of human anxiety disorder. Their translational validity mainly rests on the observation that anxiolytic drugs reduce rodent anxiety-like behavior. Here, we capitalized on a recently developed approach-avoidance conflict computer game to investigate the impact of benzodiazepines and of amygdala lesions on putative human anxiety-like behavior. In successive epochs of this game, participants collect monetary tokens on a spatial grid while under threat of virtual predation. In a preregistered, randomized, double-blind, placebo-controlled trial, we tested the effect of a single dose (1 mg) of lorazepam (n = 59). We then compared 2 patients with bilateral amygdala lesions due to Urbach-Wiethe syndrome with age- and gender-matched control participants (n = 17). Based on a previous report, the primary outcome measure was the effect of intra-epoch time (i.e., an adaptation to increasing potential loss) on presence in the safe quadrant of the spatial grid. We hypothesized reduced loss adaptation in this measure under lorazepam and in patients with amygdala lesions. Lorazepam and amygdala lesions reduced loss adaptation in the primary outcome measure. We found similar results in several secondary outcome measures. The relative reduction of anxiety-like behavior in patients with amygdala lesions was qualitatively and quantitatively indistinguishable from an impact of anterior hippocampus lesions found in a previous report. Our results establish the translational validity of human approach-avoidance conflict tests in terms of anxiolytic drug action. We identified the amygdala, in addition to the hippocampus, as a critical structure in human anxiety-like behavior. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  6. INCREASES IN ANXIETY-LIKE BEHAVIOR INDUCED BY ACUTE STRESS ARE REVERSED BY ETHANOL IN ADOLESCENT BUT NOT ADULT RATS

    OpenAIRE

    Varlinskaya, Elena I.; Spear, Linda P.

    2011-01-01

    Repeated exposure to stressors has been found to increase anxiety-like behavior in laboratory rodents, with the social anxiety induced by repeated restraint being extremely sensitive to anxiolytic effects of ethanol in both adolescent and adult rats. No studies, however, have compared social anxiogenic effects of acute stress or the capacity of ethanol to reverse this anxiety in adolescent and adult animals. Therefore, the present study was designed to investigate whether adolescent [postnata...

  7. Acute engagement of Gq-mediated signaling in the bed nucleus of the stria terminalis induces anxiety-like behavior.

    Science.gov (United States)

    Mazzone, C M; Pati, D; Michaelides, M; DiBerto, J; Fox, J H; Tipton, G; Anderson, C; Duffy, K; McKlveen, J M; Hardaway, J A; Magness, S T; Falls, W A; Hammack, S E; McElligott, Z A; Hurd, Y L; Kash, T L

    2018-01-01

    The bed nucleus of the stria terminalis (BNST) is a brain region important for regulating anxiety-related behavior in both humans and rodents. Here we used a chemogenetic strategy to investigate how engagement of G protein-coupled receptor (GPCR) signaling cascades in genetically defined GABAergic BNST neurons modulates anxiety-related behavior and downstream circuit function. We saw that stimulation of vesicular γ-aminobutyric acid (GABA) transporter (VGAT)-expressing BNST neurons using hM3Dq, but neither hM4Di nor rM3Ds designer receptors exclusively activated by a designer drug (DREADD), promotes anxiety-like behavior. Further, we identified that activation of hM3Dq receptors in BNST VGAT neurons can induce a long-term depression-like state of glutamatergic synaptic transmission, indicating DREADD-induced changes in synaptic plasticity. Further, we used DREADD-assisted metabolic mapping to profile brain-wide network activity following activation of G q -mediated signaling in BNST VGAT neurons and saw increased activity within ventral midbrain structures, including the ventral tegmental area and hindbrain structures such as the locus coeruleus and parabrachial nucleus. These results highlight that G q -mediated signaling in BNST VGAT neurons can drive downstream network activity that correlates with anxiety-like behavior and points to the importance of identifying endogenous GPCRs within genetically defined cell populations. We next used a microfluidics approach to profile the receptorome of single BNST VGAT neurons. This approach yielded multiple G q -coupled receptors that are associated with anxiety-like behavior and several potential novel candidates for regulation of anxiety-like behavior. From this, we identified that stimulation of the G q -coupled receptor 5-HT 2C R in the BNST is sufficient to elevate anxiety-like behavior in an acoustic startle task. Together, these results provide a novel profile of receptors within genetically defined BNST VGAT

  8. Dexmedetomidine alleviates anxiety-like behaviors and cognitive impairments in a rat model of post-traumatic stress disorder.

    Science.gov (United States)

    Ji, Mu-Huo; Jia, Min; Zhang, Ming-Qiang; Liu, Wen-Xue; Xie, Zhong-Cong; Wang, Zhong-Yun; Yang, Jian-Jun

    2014-10-03

    Post-traumatic stress disorder (PTSD) is a psychiatric disease that has substantial health implications, including high rates of health morbidity and mortality, as well as increased health-related costs. Although many pharmacological agents have proven the effects on the development of PTSD, current pharmacotherapies typically only produce partial improvement of PTSD symptoms. Dexmedetomidine is a selective, short-acting α2-adrenoceptor agonist, which has anxiolytic, sedative, and analgesic effects. We therefore hypothesized that dexmedetomidine possesses the ability to prevent the development of PTSD and alleviate its symptoms. By using the rat model of PTSD induced by five electric foot shocks followed by three weekly exposures to situational reminders, we showed that the stressed rats displayed pronounced anxiety-like behaviors and cognitive impairments compared to the controls. Notably, repeated administration of 20μg/kg dexmedetomidine showed impaired fear conditioning memory, decreased anxiety-like behaviors, and improved spatial cognitive impairments compared to the vehicle-treated stressed rats. These data suggest that dexmedetomidine may exert preventive and protective effects against anxiety-like behaviors and cognitive impairments in the rats with PTSD after repeated administration. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Social isolation mediated anxiety like behavior is associated with enhanced expression and regulation of BDNF in the female mouse brain.

    Science.gov (United States)

    Kumari, Anita; Singh, Padmanabh; Baghel, Meghraj Singh; Thakur, M K

    2016-05-01

    Adverse early life experience is prominent risk factors for numerous psychiatric illnesses, including mood and anxiety disorders. It imposes serious long-term costs on the individual as well as health and social systems. Hence, developing therapies that prevent the long-term consequences of early life stress is of utmost importance, and necessitates a better understanding of the mechanisms by which early life stress triggers long-lasting alterations in gene expression and behavior. Post-weaning isolation rearing of rodents models the behavioral consequences of adverse early life experiences in humans and it is reported to cause anxiety like behavior which is more common in case of females. Therefore, in the present study, we have studied the impact of social isolation of young female mice for 8weeks on the anxiety like behavior and the underlying molecular mechanism. Elevated plus maze and open field test revealed that social isolation caused anxiety like behavior. BDNF, a well-known molecule implicated in the anxiety like behavior, was up-regulated both at the message and protein level in cerebral cortex by social isolation. CREB-1 and CBP, which play a crucial role in BDNF transcription, were up-regulated at mRNA level in cerebral cortex by social isolation. HDAC-2, which negatively regulates BDNF expression, was down-regulated at mRNA and protein level in cerebral cortex by social isolation. Furthermore, BDNF acts in concert with Limk-1, miRNA-132 and miRNA-134 for the regulation of structural and morphological plasticity. Social isolation resulted in up-regulation of Limk-1 mRNA and miRNA-132 expression in the cerebral cortex. MiRNA-134, which inhibits the translation of Limk-1, was decreased in cerebral cortex by social isolation. Taken together, our study suggests that social isolation mediated anxiety like behavior is associated with up-regulation of BDNF expression and concomitant increase in the expression of CBP, CREB-1, Limk-1 and miRNA-132, and decrease

  10. CRF1-R activation of the dynorphin/kappa opioid system in the mouse basolateral amygdala mediates anxiety-like behavior.

    Directory of Open Access Journals (Sweden)

    Michael R Bruchas

    2009-12-01

    Full Text Available Stress is a complex human experience and having both rewarding and aversive motivational properties. The adverse effects of stress are well documented, yet many of underlying mechanisms remain unclear and controversial. Here we report that the anxiogenic properties of stress are encoded by the endogenous opioid peptide dynorphin acting in the basolateral amygdala. Using pharmacological and genetic approaches, we found that the anxiogenic-like effects of Corticotropin Releasing Factor (CRF were triggered by CRF(1-R activation of the dynorphin/kappa opioid receptor (KOR system. Central CRF administration significantly reduced the percent open-arm time in the elevated plus maze (EPM. The reduction in open-arm time was blocked by pretreatment with the KOR antagonist norbinaltorphimine (norBNI, and was not evident in mice lacking the endogenous KOR ligand dynorphin. The CRF(1-R agonist stressin 1 also significantly reduced open-arm time in the EPM, and this decrease was blocked by norBNI. In contrast, the selective CRF(2-R agonist urocortin III did not affect open arm time, and mice lacking CRF(2-R still showed an increase in anxiety-like behavior in response to CRF injection. However, CRF(2-R knockout animals did not develop CRF conditioned place aversion, suggesting that CRF(1-R activation may mediate anxiety and CRF(2-R may encode aversion. Using a phosphoselective antibody (KORp to identify sites of dynorphin action, we found that CRF increased KORp-immunoreactivity in the basolateral amygdala (BLA of wildtype, but not in mice pretreated with the selective CRF(1-R antagonist, antalarmin. Consistent with the concept that acute stress or CRF injection-induced anxiety was mediated by dynorphin release in the BLA, local injection of norBNI blocked the stress or CRF-induced increase in anxiety-like behavior; whereas norBNI injection in a nearby thalamic nucleus did not. The intersection of stress-induced CRF and the dynorphin/KOR system in the BLA was

  11. IL-1 receptor-antagonist (IL-1Ra) knockout mice show anxiety-like behavior by aging.

    Science.gov (United States)

    Wakabayashi, Chisato; Numakawa, Tadahiro; Odaka, Haruki; Ooshima, Yoshiko; Kiyama, Yuji; Manabe, Toshiya; Kunugi, Hiroshi; Iwakura, Yoichiro

    2015-07-10

    Interleukin 1 (IL-1) plays a critical role in stress responses, and its mRNA is induced in the brain by restraint stress. Previously, we reported that IL-1 receptor antagonist (IL-1Ra) knockout (KO) mice, which lacked IL-1Ra molecules that antagonize the IL-1 receptor, showed anti-depression-like behavior via adrenergic modulation at the age of 8 weeks. Here, we report that IL-1Ra KO mice display an anxiety-like phenotype that is induced spontaneously by aging in the elevated plus-maze (EPM) test. This anxiety-like phenotype was improved by the administration of diazepam. The expression of the anxiety-related molecule glucocorticoid receptor (GR) was significantly reduced in 20-week-old but not in 11-week-old IL-1Ra KO mice compared to wild-type (WT) littermates. The expression of the mineralocorticoid receptor (MR) was not altered between IL-1Ra KO mice and WT littermates at either 11 or 20 weeks old. Analysis of monoamine concentration in the hippocampus revealed that tryptophan, the serotonin metabolite 5-hydroxyindole acetic acid (5-HIAA), and the dopamine metabolite homovanillic acid (HVA) were significantly increased in 20-week-old IL-1Ra KO mice compared to littermate WT mice. These findings strongly suggest that the anxiety-like behavior observed in older mice was caused by the complicated alteration of monoamine metabolism and/or GR expression in the hippocampus. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Transgenic up-regulation of alpha-CaMKII in forebrain leads to increased anxiety-like behaviors and aggression

    Directory of Open Access Journals (Sweden)

    Hasegawa Shunsuke

    2009-03-01

    Full Text Available Abstract Background Previous studies have demonstrated essential roles for alpha-calcium/calmodulin-dependent protein kinase II (alpha-CaMKII in learning, memory and long-term potentiation (LTP. However, previous studies have also shown that alpha-CaMKII (+/- heterozygous knockout mice display a dramatic decrease in anxiety-like and fearful behaviors, and an increase in defensive aggression. These findings indicated that alpha-CaMKII is important not only for learning and memory but also for emotional behaviors. In this study, to understand the roles of alpha-CaMKII in emotional behavior, we generated transgenic mice overexpressing alpha-CaMKII in the forebrain and analyzed their behavioral phenotypes. Results We generated transgenic mice overexpressing alpha-CaMKII in the forebrain under the control of the alpha-CaMKII promoter. In contrast to alpha-CaMKII (+/- heterozygous knockout mice, alpha-CaMKII overexpressing mice display an increase in anxiety-like behaviors in open field, elevated zero maze, light-dark transition and social interaction tests, and a decrease in locomotor activity in their home cages and novel environments; these phenotypes were the opposite to those observed in alpha-CaMKII (+/- heterozygous knockout mice. In addition, similarly with alpha-CaMKII (+/- heterozygous knockout mice, alpha-CaMKII overexpressing mice display an increase in aggression. However, in contrast to the increase in defensive aggression observed in alpha-CaMKII (+/- heterozygous knockout mice, alpha-CaMKII overexpressing mice display an increase in offensive aggression. Conclusion Up-regulation of alpha-CaMKII expression in the forebrain leads to an increase in anxiety-like behaviors and offensive aggression. From the comparisons with previous findings, we suggest that the expression levels of alpha-CaMKII are associated with the state of emotion; the expression level of alpha-CaMKII positively correlates with the anxiety state and strongly affects

  13. Overexpression of CRF in the BNST diminishes dysphoria but not anxiety-like behavior in nicotine withdrawing rats.

    Science.gov (United States)

    Qi, Xiaoli; Guzhva, Lidia; Yang, Zhihui; Febo, Marcelo; Shan, Zhiying; Wang, Kevin K W; Bruijnzeel, Adriaan W

    2016-09-01

    Smoking cessation leads to dysphoria and anxiety, which both increase the risk for relapse. This negative affective state is partly mediated by an increase in activity in brain stress systems. Recent studies indicate that prolonged viral vector-mediated overexpression of stress peptides diminishes stress sensitivity. Here we investigated whether the overexpression of corticotropin-releasing factor (CRF) in the bed nucleus of the stria terminalis (BNST) diminishes nicotine withdrawal symptoms in rats. The effect of nicotine withdrawal on brain reward function was investigated with an intracranial self-stimulation (ICSS) procedure. Anxiety-like behavior was investigated in the elevated plus maze test and a large open field. An adeno-associated virus (AAV) pseudotype 2/5 vector was used to overexpress CRF in the lateral BNST and nicotine dependence was induced using minipumps. Administration of the nicotinic receptor antagonist mecamylamine and cessation of nicotine administration led to a dysphoria-like state, which was prevented by the overexpression of CRF in the BNST. Nicotine withdrawal also increased anxiety-like behavior in the elevated plus maze test and large open field test and slightly decreased locomotor activity in the open field. The overexpression of CRF in the BNST did not prevent the increase in anxiety-like behavior or decrease in locomotor activity. The overexpression of CRF increased CRF1 and CRF2 receptor gene expression and increased the CRF2/CRF1 receptor ratio. In conclusion, the overexpression of CRF in the BNST prevents the dysphoria-like state associated with nicotine withdrawal and increases the CRF2/CRF1 receptor ratio, which may diminish the negative effects of CRF on mood. Published by Elsevier B.V.

  14. β-Adrenergic receptor antagonism prevents anxiety-like behavior and microglial reactivity induced by repeated social defeat.

    Science.gov (United States)

    Wohleb, Eric S; Hanke, Mark L; Corona, Angela W; Powell, Nicole D; Stiner, La'Tonia M; Bailey, Michael T; Nelson, Randy J; Godbout, Jonathan P; Sheridan, John F

    2011-04-27

    Psychosocial stress is associated with altered immune function and development of psychological disorders including anxiety and depression. Here we show that repeated social defeat in mice increased c-Fos staining in brain regions associated with fear and threat appraisal and promoted anxiety-like behavior in a β-adrenergic receptor-dependent manner. Repeated social defeat also significantly increased the number of CD11b(+)/CD45(high)/Ly6C(high) macrophages that trafficked to the brain. In addition, several inflammatory markers were increased on the surface of microglia (CD14, CD86, and TLR4) and macrophages (CD14 and CD86) after social defeat. Repeated social defeat also increased the presence of deramified microglia in the medial amygdala, prefrontal cortex, and hippocampus. Moreover, mRNA analysis of microglia indicated that repeated social defeat increased levels of interleukin (IL)-1β and reduced levels of glucocorticoid responsive genes [glucocorticoid-induced leucine zipper (GILZ) and FK506 binding protein-51 (FKBP51)]. The stress-dependent changes in microglia and macrophages were prevented by propranolol, a β-adrenergic receptor antagonist. Microglia isolated from socially defeated mice and cultured ex vivo produced markedly higher levels of IL-6, tumor necrosis factor-α, and monocyte chemoattractant protein-1 after stimulation with lipopolysaccharide compared with microglia from control mice. Last, repeated social defeat increased c-Fos activation in IL-1 receptor type-1-deficient mice, but did not promote anxiety-like behavior or microglia activation in the absence of functional IL-1 receptor type-1. These findings indicate that repeated social defeat-induced anxiety-like behavior and enhanced reactivity of microglia was dependent on activation of β-adrenergic and IL-1 receptors.

  15. Increasing brain angiotensin converting enzyme 2 activity decreases anxiety-like behavior in male mice by activating central Mas receptors.

    Science.gov (United States)

    Wang, Lei; de Kloet, Annette D; Pati, Dipanwita; Hiller, Helmut; Smith, Justin A; Pioquinto, David J; Ludin, Jacob A; Oh, S Paul; Katovich, Michael J; Frazier, Charles J; Raizada, Mohan K; Krause, Eric G

    2016-06-01

    Over-activation of the brain renin-angiotensin system (RAS) has been implicated in the etiology of anxiety disorders. Angiotensin converting enzyme 2 (ACE2) inhibits RAS activity by converting angiotensin-II, the effector peptide of RAS, to angiotensin-(1-7), which activates the Mas receptor (MasR). Whether increasing brain ACE2 activity reduces anxiety by stimulating central MasR is unknown. To test the hypothesis that increasing brain ACE2 activity reduces anxiety-like behavior via central MasR stimulation, we generated male mice overexpressing ACE2 (ACE2 KI mice) and wild type littermate controls (WT). ACE2 KI mice explored the open arms of the elevated plus maze (EPM) significantly more than WT, suggesting increasing ACE2 activity is anxiolytic. Central delivery of diminazene aceturate, an ACE2 activator, to C57BL/6 mice also reduced anxiety-like behavior in the EPM, but centrally administering ACE2 KI mice A-779, a MasR antagonist, abolished their anxiolytic phenotype, suggesting that ACE2 reduces anxiety-like behavior by activating central MasR. To identify the brain circuits mediating these effects, we measured Fos, a marker of neuronal activation, subsequent to EPM exposure and found that ACE2 KI mice had decreased Fos in the bed nucleus of stria terminalis but had increased Fos in the basolateral amygdala (BLA). Within the BLA, we determined that ∼62% of GABAergic neurons contained MasR mRNA and expression of MasR mRNA was upregulated by ACE2 overexpression, suggesting that ACE2 may influence GABA neurotransmission within the BLA via MasR activation. Indeed, ACE2 overexpression was associated with increased frequency of spontaneous inhibitory postsynaptic currents (indicative of presynaptic release of GABA) onto BLA pyramidal neurons and central infusion of A-779 eliminated this effect. Collectively, these results suggest that ACE2 may reduce anxiety-like behavior by activating central MasR that facilitate GABA release onto pyramidal neurons within the

  16. The Effect of Electroacupuncture on PKMzeta in the ACC in Regulating Anxiety-Like Behaviors in Rats Experiencing Chronic Inflammatory Pain

    Directory of Open Access Journals (Sweden)

    Junying Du

    2017-01-01

    Full Text Available Chronic inflammatory pain can induce emotional diseases. Electroacupuncture (EA has effects on chronic pain and pain-related anxiety. Protein kinase Mzeta (PKMzeta has been proposed to be essential for the maintenance of pain and may interact with GluR1 to maintain CNS plasticity in the anterior cingulate cortex (ACC. We hypothesized that the PKMzeta-GluR1 pathway in the ACC may be involved in anxiety-like behaviors of chronic inflammatory pain and that the mechanism of EA regulation of pain emotion may involve the PKMzeta pathway in the ACC. Our results showed that chronic inflammatory pain model decreased the paw withdrawal threshold (PWT and increased anxiety-like behaviors. The protein expression of PKCzeta, p-PKCzeta (T560, PKMzeta, p-PKMzeta (T560, and GluR1 in the ACC of the model group were remarkably enhanced. EA increased PWT and alleviated anxiety-like behaviors. EA significantly inhibited the protein expression of p-PKMzeta (T560 in the ACC, and only a downward trend effect for other substances. Further, the microinjection of ZIP remarkably reversed PWT and anxiety-like behaviors. The present study provides direct evidence that the PKCzeta/PKMzeta-GluR1 pathway is related to pain and pain-induced anxiety-like behaviors. EA treatment both increases pain-related somatosensory behavior and decreases pain-induced anxiety-like behaviors by suppressing PKMzeta activity in the ACC.

  17. Effects of experimental sleep deprivation on anxiety-like behavior in animal research: Systematic review and meta-analysis.

    Science.gov (United States)

    Pires, Gabriel Natan; Bezerra, Andréia Gomes; Tufik, Sergio; Andersen, Monica Levy

    2016-09-01

    Increased acute anxiety is a commonly reported behavioral consequence of sleep deprivation in humans. However, rodent studies conducted so far produced inconsistent results, failing to reproduce the same sleep deprivation induced-anxiety observed in clinical experiments. While some presented anxiogenesis as result of sleep deprivation, others reported anxiolysis. In face of such inconsistencies, this article explores the effects of experimental sleep deprivation on anxiety-like behavior in animal research through a systematic review and a series of meta-analyses. A total of 50 of articles met our inclusion criteria, 30 on mice, 19 on rats and one on Zebrafish. Our review shows that sleep deprivation induces a decrease in anxiety-like behavior in preclinical models, which is opposite to results observed in human settings. These results were corroborated in stratified analyses according to species, sleep deprivation method and anxiety measurement technique. In conclusion, the use of animal models for the evaluation of the relationship between sleep deprivation lacks translational applicability and new experimental tools are needed to properly evaluate sleep deprivation-induced anxiogenesis in rodents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. GABAergic Signaling within a Limbic-Hypothalamic Circuit Integrates Social and Anxiety-Like Behavior with Stress Reactivity.

    Science.gov (United States)

    Myers, Brent; Carvalho-Netto, Eduardo; Wick-Carlson, Dayna; Wu, Christine; Naser, Sam; Solomon, Matia B; Ulrich-Lai, Yvonne M; Herman, James P

    2016-05-01

    The posterior hypothalamic nucleus (PH) stimulates autonomic stress responses. However, the role of the PH in behavioral correlates of psychiatric illness, such as social and anxiety-like behavior, is largely unexplored, as is the neurochemistry of PH connectivity with limbic and neuroendocrine systems. Thus, the current study tested the hypothesis that GABAergic signaling within the PH is a critical link between forebrain behavior-regulatory nuclei and the neuroendocrine hypothalamus, integrating social and anxiety-related behaviors with physiological stress reactivity. To address this hypothesis, GABAA receptor pharmacology was used to locally inhibit or disinhibit the PH immediately before behavioral measures of social and anxiety-like behavior in rats. Limbic connectivity of the PH was then established by simultaneous co-injection of anterograde and retrograde tracers. Further, the role of PH GABAergic signaling in neuroendocrine stress responses was tested via inhibition/disinhibition of the PH. These studies determined a prominent role for the PH in the expression of anxiety-related behaviors and social withdrawal. Histological analyses revealed divergent stress-activated limbic input to the PH, emanating predominantly from the prefrontal cortex, lateral septum, and amygdala. PH projections also targeted both parvicellular and magnocellular peptidergic neurons in the paraventricular and supraoptic hypothalamus. Further, GABAA receptor pharmacology determined an excitatory effect of the PH on neuroendocrine responses to stress. These data indicate that the PH represents an important stress-integrative center, regulating behavioral processes and connecting the limbic forebrain with neuroendocrine systems. Moreover, the PH appears to be uniquely situated to have a role in stress-related pathologies associated with limbic-hypothalamic dysfunction.

  19. Environmental enrichment reduces chronic psychosocial stress-induced anxiety and ethanol-related behaviors in mice.

    Science.gov (United States)

    Bahi, Amine

    2017-07-03

    Previous research from our laboratory has shown that exposure to chronic psychosocial stress increased voluntary ethanol consumption and preference as well as acquisition of ethanol-induced conditioned place preference (CPP) in mice. This study was done to determine whether an enriched environment could have "curative" effects on chronic psychosocial stress-induced ethanol intake and CPP. For this purpose, experimental mice "intruders" were exposed to the chronic subordinate colony (CSC) housing for 19 consecutive days in the presence of an aggressive "resident" mouse. At the end of that period, mice were tested for their anxiety-like behavior using the elevated plus maze (EPM) test then housed in a standard or enriched environment (SE or EE respectively). Anxiety and ethanol-related behaviors were investigated using the open field (OF) test, a standard two-bottle choice drinking paradigm, and the CPP procedure. As expected, CSC exposure increased anxiety-like behavior and reduced weight gain as compared to single housed colony (SHC) controls. In addition, CSC exposure increased voluntary ethanol intake and ethanol-CPP. Interestingly, we found that EE significantly and consistently reduced anxiety and ethanol consumption and preference. However, neither tastants' (saccharin and quinine) intake nor blood ethanol metabolism were affected by EE. Finally, and most importantly, EE reduced the acquisition of CPP induced by 1.5g/kg ethanol. Taken together, these results support the hypothesis that EE can reduce voluntary ethanol intake and ethanol-induced conditioned reward and seems to be one of the strategies to reduce the behavioral deficits and the risk of anxiety-induced alcohol abuse. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Genetic Disruption of Circadian Rhythms in the Suprachiasmatic Nucleus Causes Helplessness, Behavioral Despair, and Anxiety-like Behavior in Mice

    Science.gov (United States)

    Landgraf, Dominic; Long, Jaimie E.; Proulx, Christophe D.; Barandas, Rita; Malinow, Roberto; Welsh, David K.

    2016-01-01

    Background Major depressive disorder is associated with disturbed circadian rhythms. To investigate the causal relationship between mood disorders and circadian clock disruption, previous studies in animal models have employed light/dark manipulations, global mutations of clock genes, or brain area lesions. However, light can impact mood by noncircadian mechanisms; clock genes have pleiotropic, clock-independent functions; and brain lesions not only disrupt cellular circadian rhythms but also destroy cells and eliminate important neuronal connections, including light reception pathways. Thus, a definitive causal role for functioning circadian clocks in mood regulation has not been established. Methods We stereotactically injected viral vectors encoding short hairpin RNA to knock down expression of the essential clock gene Bmal1 into the brain's master circadian pacemaker, the suprachiasmatic nucleus (SCN). Results In these SCN-specific Bmal1-knockdown (SCN-Bmal1-KD) mice, circadian rhythms were greatly attenuated in the SCN, while the mice were maintained in a standard light/dark cycle, SCN neurons remained intact, and neuronal connections were undisturbed, including photic inputs. In the learned helplessness paradigm, the SCN-Bmal1-KD mice were slower to escape, even before exposure to inescapable stress. They also spent more time immobile in the tail suspension test and less time in the lighted section of a light/dark box. The SCN-Bmal1-KD mice also showed greater weight gain, an abnormal circadian pattern of corticosterone, and an attenuated increase of corticosterone in response to stress. Conclusions Disrupting SCN circadian rhythms is sufficient to cause helplessness, behavioral despair, and anxiety-like behavior in mice, establishing SCN-Bmal1-KD mice as a new animal model of depression. PMID:27113500

  1. Genetic Disruption of Circadian Rhythms in the Suprachiasmatic Nucleus Causes Helplessness, Behavioral Despair, and Anxiety-like Behavior in Mice.

    Science.gov (United States)

    Landgraf, Dominic; Long, Jaimie E; Proulx, Christophe D; Barandas, Rita; Malinow, Roberto; Welsh, David K

    2016-12-01

    Major depressive disorder is associated with disturbed circadian rhythms. To investigate the causal relationship between mood disorders and circadian clock disruption, previous studies in animal models have employed light/dark manipulations, global mutations of clock genes, or brain area lesions. However, light can impact mood by noncircadian mechanisms; clock genes have pleiotropic, clock-independent functions; and brain lesions not only disrupt cellular circadian rhythms but also destroy cells and eliminate important neuronal connections, including light reception pathways. Thus, a definitive causal role for functioning circadian clocks in mood regulation has not been established. We stereotactically injected viral vectors encoding short hairpin RNA to knock down expression of the essential clock gene Bmal1 into the brain's master circadian pacemaker, the suprachiasmatic nucleus (SCN). In these SCN-specific Bmal1-knockdown (SCN-Bmal1-KD) mice, circadian rhythms were greatly attenuated in the SCN, while the mice were maintained in a standard light/dark cycle, SCN neurons remained intact, and neuronal connections were undisturbed, including photic inputs. In the learned helplessness paradigm, the SCN-Bmal1-KD mice were slower to escape, even before exposure to inescapable stress. They also spent more time immobile in the tail suspension test and less time in the lighted section of a light/dark box. The SCN-Bmal1-KD mice also showed greater weight gain, an abnormal circadian pattern of corticosterone, and an attenuated increase of corticosterone in response to stress. Disrupting SCN circadian rhythms is sufficient to cause helplessness, behavioral despair, and anxiety-like behavior in mice, establishing SCN-Bmal1-KD mice as a new animal model of depression. Copyright © 2016 Society of Biological Psychiatry. All rights reserved.

  2. Use of a platform in an automated open-field to enhance assessment of anxiety-like behaviors in mice.

    Science.gov (United States)

    Pogorelov, Vladimir M; Lanthorn, Thomas H; Savelieva, Katerina V

    2007-05-15

    The present report describes a setup for simultaneously measuring anxiety-like behaviors and locomotor activity in mice. Animals are placed in a brightly lit, standard automated open-field (OF) in which a rectangular ceramic platform 8 cm high covers one quadrant of the floor. Mice preferred to stay under the platform, avoiding the area with bright illumination. Activities under and outside the platform were measured for 5 min. Chlordiazepoxide and buspirone dose-dependently increased time spent outside the platform (L-Time) and the light distance to total OF distance ratio (L:T-TD) in both genders without changing total OF distance. By contrast, amphetamine decreased L-Time and L:T-TD in males, thus displaying an anxiogenic effect. Imipramine was without selective effect on L-Time or L:T-TD, but decreased total OF distance at the highest dose indicative of a sedative effect. Drug effects were also evaluated in the OF without platform using conventional anxiety measures. Introduction of the platform into the OF apparatus strongly enhanced the sensitivity to anxiolytics. Comparison of strains differing in activity or anxiety levels showed that L-Time and L:T-TD can be used as measures of anxiety-like behavior independent of locomotor activity. Changes in motor activity are reflected in the total distance traveled under and outside the platform. Therefore, the platform test is fully automated, sensitive to both anxiolytic and anxiogenic effects of drugs and genetic phenotypes with little evidence of gender-specific responses, and can be easily utilized by most laboratories measuring behavior.

  3. N-acetylcysteine prevents stress-induced anxiety behavior in zebrafish.

    Science.gov (United States)

    Mocelin, Ricieri; Herrmann, Ana P; Marcon, Matheus; Rambo, Cassiano L; Rohden, Aline; Bevilaqua, Fernanda; de Abreu, Murilo Sander; Zanatta, Leila; Elisabetsky, Elaine; Barcellos, Leonardo J G; Lara, Diogo R; Piato, Angelo L

    2015-12-01

    Despite the recent advances in understanding the pathophysiology of anxiety disorders, the pharmacological treatments currently available are limited in efficacy and induce serious side effects. A possible strategy to achieve clinical benefits is drug repurposing, i.e., discovery of novel applications for old drugs, bringing new treatment options to the market and to the patients who need them. N-acetylcysteine (NAC), a commonly used mucolytic and paracetamol antidote, has emerged as a promising molecule for the treatment of several neuropsychiatric disorders. The mechanism of action of this drug is complex, and involves modulation of antioxidant, inflammatory, neurotrophic and glutamate pathways. Here we evaluated the effects of NAC on behavioral parameters relevant to anxiety in zebrafish. NAC did not alter behavioral parameters in the novel tank test, prevented the anxiety-like behaviors induced by an acute stressor (net chasing), and increased the time zebrafish spent in the lit side in the light/dark test. These data may indicate that NAC presents an anti-stress effect, with the potential to prevent stress-induced psychiatric disorders such as anxiety and depression. The considerable homology between mammalian and zebrafish genomes invests the current data with translational validity for the further clinical trials needed to substantiate the use of NAC in anxiety disorders. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Use of the Open Field Maze to measure locomotor and anxiety-like behavior in mice.

    Science.gov (United States)

    Seibenhener, Michael L; Wooten, Michael C

    2015-02-06

    Animal models have proven to be invaluable to researchers trying to answer questions regarding the mechanisms of behavior. The Open Field Maze is one of the most commonly used platforms to measure behaviors in animal models. It is a fast and relatively easy test that provides a variety of behavioral information ranging from general ambulatory ability to data regarding the emotionality of the subject animal. As it relates to rodent models, the procedure allows the study of different strains of mice or rats both laboratory bred and wild-captured. The technique also readily lends itself to the investigation of different pharmacological compounds for anxiolytic or anxiogenic effects. Here, a protocol for use of the open field maze to describe mouse behaviors is detailed and a simple analysis of general locomotor ability and anxiety-related emotional behaviors between two strains of C57BL/6 mice is performed. Briefly, using the described protocol we show Wild Type mice exhibited significantly less anxiety related behaviors than did age-matched Knock Out mice while both strains exhibited similar ambulatory ability.

  5. Reduced anxiety-like behavior and altered hippocampal morphology in female p75NTR exon IV-/- mice.

    Directory of Open Access Journals (Sweden)

    Zoe ePuschban

    2016-06-01

    Full Text Available The presence of the neurotrophin receptor p75NTR in adult basal forebrain cholinergic neurons, precursor cells in the subventricular cell layer and the subgranular cell layer of the hippocampus has been linked to alterations in learning as well as anxiety- and depression- related behaviors. In contrast to previous studies performed in a p75NTR exonIII-/- model still expressing the short isoform of the p75NTR, we focused on locomotor and anxiety–associated behavior in p75NTR exonIV-/- mice lacking both p75NTR isoforms. Comparing p75NTR exonIV-/- and wildtype mice for both male and female animals showed an anxiolytic-like behavior as evidenced by increased central activities in the open field paradigm and flex field activity system as well as higher numbers of open arm entries in the elevated plus maze test in female p75NTR knockout mice.Morphometrical analyses of dorsal and ventral hippocampus revealed a reduction of width of the dentate gyrus and the granular cell layer in the dorsal but not ventral hippocampus in male and female p75NTR exonIV -/- mice. We conclude that germ-line deletion of p75NTR seems to differentially affect morphometry of dorsal and ventral dentate gyrus and that p75NTR may play a role in anxiety-like behavior, specifically in female mice.

  6. Chlorpyrifos induces anxiety-like behavior in offspring rats exposed during pregnancy.

    Science.gov (United States)

    Silva, Jonas G; Boareto, Ana C; Schreiber, Anne K; Redivo, Daiany D B; Gambeta, Eder; Vergara, Fernanda; Morais, Helen; Zanoveli, Janaína M; Dalsenter, Paulo R

    2017-02-22

    Chlorpyrifos is a pesticide, member of the organophosphate class, widely used in several countries to manage insect pests on many agricultural crops. Currently, chlorpyrifos health risks are being reevaluated due to possible adverse effects, especially on the central nervous system. The aim of this study was to investigate the possible action of this pesticide on the behaviors related to anxiety and depression of offspring rats exposed during pregnancy. Wistar rats were treated orally with chlorpyrifos (0.01, 0.1, 1 and 10mg/kg/day) on gestational days 14-20. Male offspring behavior was evaluated on post-natal days 21 and 70 by the elevated plus-maze test, open field test and forced swimming test. The results demonstrated that exposure to 0.1, 1 or 10mg/kg/day of chlorpyrifos could induce anxiogenic-like, but not depressive-like behavior at post-natal day 21, without causing fetal toxicity. This effect was reversed on post-natal day 70. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Modulatory effects of caffeine on oxidative stress and anxiety-like behavior in ovariectomized rats.

    Science.gov (United States)

    Caravan, Ionut; Sevastre Berghian, Alexandra; Moldovan, Remus; Decea, Nicoleta; Orasan, Remus; Filip, Gabriela Adriana

    2016-09-01

    Menopause is accompanied by enhanced oxidative stress and behavioral changes, effects attenuated by antioxidants. The aim of this study was to evaluate the effects of caffeine on behavior and oxidative stress in an experimental model of menopause. Female rats were divided into the following groups: sham-operated (CON), sham-operated and caffeine-treated (CAF), ovariectomized (OVX), ovariectomized and caffeine-treated (OVX+CAF). Caffeine (6 mg/kg) and vehicle were administered for 21 days (subchronic) and 42 days (chronic), using 2 experimental subsets. Behavioral tests and oxidative stress parameters in the blood, whole brain, and hippocampus were assessed. The subchronic administration of caffeine decreased the lipid peroxidation and improved the antioxidant defense in the blood and brain. The GSH/GGSG ratio in the brain was improved by chronic administration, with reduced activities of antioxidant enzymes and enhanced nitric oxide and malondialdehyde levels. In particular, the lipid peroxidation in the hippocampus decreased in both experiments. The rats became hyperactive after 21 days of treatment, but no effect was observed after chronic administration. In both experimental subsets, caffeine had anxiolytic effects as tested in elevated plus maze. The administration of low doses of caffeine, for a short period of time, may be a new therapeutic approach to modulating the oxidative stress and anxiety in menopause.

  8. Effects of the BDNF Val66Met Polymorphism on Anxiety-Like Behavior Following Nicotine Withdrawal in Mice.

    Science.gov (United States)

    Lee, Bridgin G; Anastasia, Agustin; Hempstead, Barbara L; Lee, Francis S; Blendy, Julie A

    2015-12-01

    Nicotine withdrawal is characterized by both affective and cognitive symptoms. Identifying genetic polymorphisms that could affect the symptoms associated with nicotine withdrawal are important in predicting withdrawal sensitivity and identifying personalized cessation therapies. In the current study we used a mouse model of a non-synonymous single nucleotide polymorphism in the translated region of the brain-derived neurotrophic factor (BDNF) gene that substitutes a valine (Val) for a methionine (Met) amino acid (Val66Met) to examine the relationship between the Val66Met single nucleotide polymorphism and nicotine dependence. This study measured proBDNF and the BDNF prodomain levels following nicotine and nicotine withdrawal and examined a mouse model of a common polymorphism in this protein (BDNF(Met/Met)) in three behavioral paradigms: novelty-induced hypophagia, marble burying, and the open-field test. Using the BDNF knock-in mouse containing the BDNF Val66Met polymorphism we found: (1) blunted anxiety-like behavior in BDNF(Met/Met) mice following withdrawal in three behavioral paradigms: novelty-induced hypophagia, marble burying, and the open-field test; (2) the anxiolytic effects of chronic nicotine are absent in BDNF(Met/Met) mice; and (3) an increase in BDNF prodomain in BDNF(Met/Met) mice following nicotine withdrawal. Our study is the first to examine the effect of the BDNF Val66Met polymorphism on the affective symptoms of withdrawal from nicotine in mice. In these mice, a single-nucleotide polymorphism in the translated region of the BDNF gene can result in a blunted withdrawal, as measured by decreased anxiety-like behavior. The significant increase in the BDNF prodomain in BDNF(Met/Met) mice following nicotine cessation suggests a possible role of this ligand in the circuitry remodeling after withdrawal. © The Author 2015. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For

  9. Effects of methamphetamine exposure on anxiety-like behavior in the open field test, corticosterone, and hippocampal tyrosine hydroxylase in adolescent and adult mice.

    Science.gov (United States)

    Struntz, Katelyn H; Siegel, Jessica A

    2018-08-01

    Methamphetamine (MA) is a psychomotor stimulant drug that can alter behavior, the stress response system, and the dopaminergic system. The effects of MA can be modulated by age, however relatively little research has examined the acute effects of MA in adolescents and how the effects compare to those found in adults. The hippocampal dopamine system is altered by MA exposure and can modulate anxiety-like behavior, but the effects of MA on the hippocampal dopamine system have not been well studied, especially in adolescent animals. In order to assess potential age differences in the effects of MA exposure, this research examined the effects of acute MA exposure on locomotor and anxiety-like behavior in the open field test, plasma corticosterone levels, and hippocampal total tyrosine hydroxylase and phosphorylated tyrosine hydroxylase levels in adolescent and adult male C57BL/6 J mice. Tyrosine hydroxylase is the rate limiting enzyme in the synthesis of dopamine and was used as a marker of the hippocampal dopaminergic system. Mice were exposed to saline or 4 mg/kg MA and locomotor and anxiety-like behavior were measured in the open field test. Serum and brains were collected immediately after testing and plasma corticosterone and hippocampal total tyrosine hydroxylase and phosphorylated tyrosine hydroxylase levels measured. MA-exposed mice showed increased locomotor activity and anxiety-like behavior in the open field test compared with saline controls, regardless of age. There was no effect of MA on plasma corticosterone levels or hippocampal total tyrosine hydroxylase or phosphorylated tyrosine hydroxylase levels in either adolescent or adult mice. These data suggest that acute MA exposure during adolescence and adulthood increases locomotor activity and anxiety-like behavior but does not alter plasma corticosterone levels or hippocampal total tyrosine hydroxylase or phosphorylated tyrosine hydroxylase levels, and that these effects are not modulated by age

  10. Subchronic Arsenic Exposure Induces Anxiety-Like Behaviors in Normal Mice and Enhances Depression-Like Behaviors in the Chemically Induced Mouse Model of Depression

    Directory of Open Access Journals (Sweden)

    Chia-Yu Chang

    2015-01-01

    Full Text Available Accumulating evidence implicates that subchronic arsenic exposure causes cerebral neurodegeneration leading to behavioral disturbances relevant to psychiatric disorders. However, there is still little information regarding the influence of subchronic exposure to arsenic-contaminated drinking water on mood disorders and its underlying mechanisms in the cerebral prefrontal cortex. The aim of this study is to assess the effects of subchronic arsenic exposure (10 mg/LAs2O3 in drinking water on the anxiety- and depression-like behaviors in normal mice and in the chemically induced mouse model of depression by reserpine pretreatment. Our findings demonstrated that 4 weeks of arsenic exposure enhance anxiety-like behaviors on elevated plus maze (EPM and open field test (OFT in normal mice, and 8 weeks of arsenic exposure augment depression-like behaviors on tail suspension test (TST and forced swimming test (FST in the reserpine pretreated mice. In summary, in this present study, we demonstrated that subchronic arsenic exposure induces only the anxiety-like behaviors in normal mice and enhances the depression-like behaviors in the reserpine induced mouse model of depression, in which the cerebral prefrontal cortex BDNF-TrkB signaling pathway is involved. We also found that eight weeks of subchronic arsenic exposure are needed to enhance the depression-like behaviors in the mouse model of depression. These findings imply that arsenic could be an enhancer of depressive symptoms for those patients who already had the attribute of depression.

  11. Chronic Anabolic Androgenic Steroid Exposure Alters Corticotropin Releasing Factor Expression and Anxiety-Like Behaviors in the Female Mouse

    Science.gov (United States)

    Costine, Beth A; Oberlander, Joseph G; Davis, Matthew C; Penatti, Carlos A A; Porter, Donna M; Leaton, Robert N; Henderson, Leslie P

    2010-01-01

    Summary In the past several decades, the therapeutic use of anabolic androgenic steroids (AAS) has been overshadowed by illicit use of these drugs by elite athletes and a growing number of adolescents to enhance performance and body image. As with adults, AAS use by adolescents is associated with a range of behavioral effects, including increased anxiety and altered responses to stress. It has been suggested that adolescents, especially adolescent females, may be particularly susceptible to the effects of these steroids, but few experiments in animal models have been performed to test this assertion. Here we show that chronic exposure of adolescent female mice to a mixture of three commonly abused AAS (testosterone cypionate, nandrolone decanoate and methandrostenolone; 7.5 mg/kg/day for 5 days) significantly enhanced anxiety-like behavior as assessed by the acoustic startle response (ASR), but did not augment the fear-potentiated startle response (FPS) or alter sensorimotor gating as assessed by prepulse inhibition of the acoustic startle response (PPI). AAS treatment also significantly increased the levels of corticotropin releasing factor (CRF) mRNA and somal-associated CRF immunoreactivity in the central amygdala (CeA), as well as neuropil-associated immunoreactivity in the dorsal aspect of the anterolateral division of the bed nucleus of the stria terminalis (dBnST). AAS treatment did not alter CRF receptor 1 or 2 mRNA in either the CeA or the dBnST; CRF immunoreactivity in the ventral BNST, the paraventricular nucleus (PVN) or the median eminence (ME); or peripheral levels of corticosterone. These results suggest that chronic AAS treatment of adolescent female mice may enhance generalized anxiety, but not sensorimotor gating or learned fear, via a mechanism that involves increased CRF-mediated signaling from CeA neurons projecting to the dBnST. PMID:20537804

  12. Increases in anxiety-like behavior induced by acute stress are reversed by ethanol in adolescent but not adult rats.

    Science.gov (United States)

    Varlinskaya, Elena I; Spear, Linda P

    2012-01-01

    Repeated exposure to stressors has been found to increase anxiety-like behavior in laboratory rodents, with the social anxiety induced by repeated restraint being extremely sensitive to anxiolytic effects of ethanol in both adolescent and adult rats. No studies, however, have compared social anxiogenic effects of acute stress or the capacity of ethanol to reverse this anxiety in adolescent and adult animals. Therefore, the present study was designed to investigate whether adolescent [postnatal day (P35)] Sprague-Dawley rats differ from their adult counterparts (P70) in the impact of acute restraint stress on social anxiety and in their sensitivity to the social anxiolytic effects of ethanol. Animals were restrained for 90 min, followed by examination of stress- and ethanol-induced (0, 0.25, 0.5, 0.75, and 1 g/kg) alterations in social behavior using a modified social interaction test in a familiar environment. Acute restraint stress increased anxiety, as indexed by reduced levels of social investigation at both ages, and decreased social preference among adolescents. These increases in anxiety were dramatically reversed among adolescents by acute ethanol. No anxiolytic-like effects of ethanol emerged following restraint stress in adults. The social suppression seen in response to higher doses of ethanol was reversed by restraint stress in animals of both ages. To the extent that these data are applicable to humans, the results of the present study provide some experimental evidence that stressful life events may increase the attractiveness of alcohol as an anxiolytic agent for adolescents. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Variation in maternal and anxiety-like behavior associated with discrete patterns of oxytocin and vasopressin 1a receptor density in the lateral septum

    Science.gov (United States)

    Curley, JP; Jensen, CL; Franks, B; Champagne, FA

    2012-01-01

    The relationship between anxiety and maternal behavior has been explored across species using a variety of approaches, yet there is no clear consensus on the nature or direction of this relationship. In the current study, we have assessed stable individual differences in anxiety-like behavior in a large cohort (n=57) of female F2 hybrid mice. Using open-field behavior as a continuous and categorical (high vs. low) measure we examined the relationship between the anxiety-like behavior of virgin F2 females and the subsequent maternal behavior of these females. In addition, we quantified oxytocin (OTR) and vasopressin (V1a) receptor density within the lateral septum to determine the possible correlation with anxiety-like and maternal behavior. We find that, though activity levels within the open-field do predict latency to engage in pup retrieval, anxiety-like measures on this test are otherwise not associated with subsequent maternal behavior. OTR density in the dorsal lateral septum was found to be negatively correlated with activity levels in the open-field and positively correlated with frequency of nursing behavior. V1a receptor density was significantly correlated with postpartum licking/grooming of pups. Though we do not find support for the hypothesis that individual differences in trait anxiety predict variation in maternal behavior, we do find evidence for the role of OTR and V1a receptors in predicting maternal behavior in mice and suggest possible methodological issues (such as distinguishing between trait and state anxiety) that will be a critical consideration for subsequent studies of the anxiety-maternal behavior relationship. PMID:22300676

  14. Acute prenatal exposure to ethanol on gestational day 12 elicits opposing deficits in social behaviors and anxiety-like behaviors in Sprague Dawley rats.

    Science.gov (United States)

    Diaz, Marvin R; Mooney, Sandra M; Varlinskaya, Elena I

    2016-09-01

    Our previous research has shown that in Long Evans rats acute prenatal exposure to a high dose of ethanol on gestational day (G) 12 produces social deficits in male offspring and elicits substantial decreases in social preference relative to controls, in late adolescents and adults regardless of sex. In order to generalize the observed detrimental effects of ethanol exposure on G12, pregnant female Sprague Dawley rats were exposed to ethanol or saline and their offspring were assessed in a modified social interaction (SI) test as early adolescents, late adolescents, or young adults. Anxiety-like behavior was also assessed in adults using the elevated plus maze (EPM) or the light/dark box (LDB) test. Age- and sex-dependent social alterations were evident in ethanol-exposed animals. Ethanol-exposed males showed deficits in social investigation at all ages and age-dependent alterations in social preference. Play fighting was not affected in males. In contrast, ethanol-exposed early adolescent females showed no changes in social interactions, whereas older females demonstrated social deficits and social indifference. In adulthood, anxiety-like behavior was decreased in males and females prenatally exposed to ethanol in the EPM, but not the LDB. These findings suggest that social alterations associated with acute exposure to ethanol on G12 are not strain-specific, although they are more pronounced in Long Evans males and Sprague Dawley females. Furthermore, given that anxiety-like behaviors were attenuated in a test-specific manner, this study indicates that early ethanol exposure can have differential effects on different forms of anxiety. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Grape powder intake prevents ovariectomy-induced anxiety-like behavior, memory impairment and high blood pressure in female Wistar rats.

    Directory of Open Access Journals (Sweden)

    Gaurav Patki

    Full Text Available Diminished estrogen influence at menopause is reported to be associated with cognitive decline, heightened anxiety and hypertension. While estrogen therapy is often prescribed to overcome these behavioral and physiological deficits, antioxidants which have been shown beneficial are gaining nutritional intervention and popularity. Therefore, in the present study, utilizing the antioxidant properties of grapes, we have examined effect of 3 weeks of grape powder (GP; 15 g/L dissolved in tap water treatment on anxiety-like behavior, learning-memory impairment and high blood pressure in ovariectomized (OVX rats. Four groups of female Wistar rats were used; sham control, sham-GP treated, OVX and OVX+GP treated. We observed a significant increase in systolic and diastolic blood pressure in OVX rats as compared to sham-controls. Furthermore, ovariectomy increased anxiety-like behavior and caused learning and memory impairment in rats as compared to sham-controls. Interestingly, providing grape powder treated water to OVX rats restored both systolic and diastolic blood pressure, decreased anxiety-like behavior and improved memory function. Moreover, OVX rats exhibited an impaired long term potentiation which was restored with grape powder treatment. Furthermore, ovariectomy increased oxidative stress in the brain, serum and urine, selectively decreasing antioxidant enzyme, glyoxalase-1 protein expression in the hippocampus but not in the cortex and amygdala of OVX rats, while grape powder treatment reversed these effects. Other antioxidant enzyme levels, including manganese superoxide dismutase (SOD and Cu/Zn SOD remained unchanged. We suggest that grape powder by regulating oxidative stress mechanisms exerts its protective effect on blood pressure, learning-memory and anxiety-like behavior. Our study is the first to examine behavioral, biochemical, physiological and electrophysiological outcome of estrogen depletion in rats and to test protective role

  16. Ethanol during adolescence decreased the BDNF levels in the hippocampus in adult male Wistar rats, but did not alter aggressive and anxiety-like behaviors

    Directory of Open Access Journals (Sweden)

    Letícia Scheidt

    2015-09-01

    Full Text Available Objective:To investigate the effects of ethanol exposure in adolescent rats during adulthood by assesssing aggression and anxiety-like behaviors and measuring the levels of inflammatory markers.Methods:Groups of male Wistar rats (mean weight 81.4 g, n = 36 were housed in groups of four until postnatal day (PND 60. From PNDs 30 to 46, rats received one of three treatments: 3 g/kg of ethanol (15% w/v, orally, n = 16, 1.5 g/kg of ethanol (12.5% w/v, PO, n = 12, or water (n = 12 every 48 hours. Animals were assessed for aggressive behavior (resident x intruder test and anxiety-like behaviors (elevated plus maze during adulthood.Results:Animals that received low doses of alcohol showed reduced levels of brain-derived neurotrophic factor (BDNF in the hippocampus as compared to the control group. No significant difference was found in prefrontal cortex.Conclusions:Intermittent exposure to alcohol during adolescence is associated with lower levels of BDNF in the hippocampus, probably due the episodic administration of alcohol, but alcohol use did not alter the level agression toward a male intruder or anxiety-like behaviors during the adult phase.

  17. Dansyl-PQRamide, a putative antagonist of NPFF receptors, reduces anxiety-like behavior of ethanol withdrawal in a plus-maze test in rats.

    Science.gov (United States)

    Kotlinska, Jolanta; Pachuta, Agnieszka; Bochenski, Marcin; Silberring, Jerzy

    2009-06-01

    Much evidence indicates that endogenous opioid peptides are involved in effects caused by ethanol. The aim of the present study was to determine whether dansyl-PQR amide, a putative antagonist of receptors for an anti-opioid peptide-neuropeptide FF (NPFF) could affect anxiety-like behavior measured during withdrawal from acute-, and chronic ethanol administration in the elevated plus maze test in rats. Our study indicated that intracerebroventricular (i.c.v.) administration of dansyl-PQRamide (2.4 and 4.8 nmol) reversed anxiety-like behavior measured as a percent time spent in the open arms, and a percent open arm entries onto the open arms in the elevated plus-maze test in rats. These effects were inhibited by NPFF (10 and/or 20 nmol, i.c.v.) in the experiments performed during withdrawal from acute- and chronic ethanol administration. During withdrawal from acute ethanol, naloxone (1mg/kg, i.p.), a nonselective opioid receptor antagonist, attenuated only an increased percent time spent in the open arms induced by dansyl-PQR amide (4.8 nmol). Dansyl-PQR amide, NPFF and naloxone given alone to naive rats did not have influence on spontaneous locomotor activity of animals. Furthermore, NPFF potentiated anxiety-like behavior during withdrawal from chronic, but not acute, ethanol administration in rats. Our data suggest that NPFF system is involved in regulation of affective symptoms of ethanol withdrawal. It seems that involvement of the NPFF system in ethanol withdrawal anxiety-like behavior is associated with regulation of the opioid system activity.

  18. The Protective Effect of Quince (Cydonia oblonga Miller Leaf Extract on Locomotor Activity and Anxiety-Like Behaviors in a Ketamine Model of Schizophrenia

    Directory of Open Access Journals (Sweden)

    Akbar Hajizadeh Moghaddam

    2016-08-01

    Full Text Available Abstract Background: Schizophrenia is a chronic debilitating psychiatric disorder affecting 1% of the population worldwide. As for key role of free radicals in the development of this disease and that Quince leaf is a natural source of antioxidant substances, this study was aimed to evaluate the protective effects of Quince leaf extract on locomotor activity and anxiety-like behaviors by an intraperitoneal injection of ketamine in male mice in a ketamine model of schizophrenia. Materials and Methods: In the experimental research, male adult mice were divided into six groups including: control, Sham (received water orally and saline intraperitoneally, psychosis group (received 10 mg/kg/day ketamine i.p. for 10 days and treated psychosis groups (received 50, 100 and 150 mg/kg/day. Treated groups received hydroalcoholic Quince leaf extract orally for 3 weeks before injection of ketamine. Extract gavages continue for 5 days after the last ketamine injection. Locomotor activity and anxiety-like behavioral changes were measured in the open-field test. Results: The results showed that chronic administration of ketamine increases horizontal locomotor activity and anxiety like behaviors (p≤0.001 and pretreatment of Quince leaf extract effectively decreases horizontal locomotor activity (p<0.001 and increases duration that spends in middle area of Open field (p<0.01 and vertical ocomotor activity(p<0.001. Conclusion: The results of this research showed that chronic administration of Quince leaf extract improves locomotor disorder and induced anxiety-like behaviors by having antioxidant properties in a ketamine model of schizophrenia.

  19. Chronic treatment with prazosin or duloxetine lessens concurrent anxiety-like behavior and alcohol intake: evidence of disrupted noradrenergic signaling in anxiety-related alcohol use.

    Science.gov (United States)

    Skelly, Mary J; Weiner, Jeff L

    2014-07-01

    Alcohol use disorders have been linked to increased anxiety, and enhanced central noradrenergic signaling may partly explain this relationship. Pharmacological interventions believed to reduce the excitatory effects of norepinephrine have proven effective in attenuating ethanol intake in alcoholics as well as in rodent models of ethanol dependence. However, most preclinical investigations into the effectiveness of these drugs in decreasing ethanol intake have been limited to acute observations, and none have concurrently assessed their anxiolytic effects. The purpose of these studies was to examine the long-term effectiveness of pharmacological interventions presumed to decrease norepinephrine signaling on concomitant ethanol self-administration and anxiety-like behavior in adult rats with relatively high levels of antecedent anxiety-like behavior. Adult male Long-Evans rats self-administered ethanol on an intermittent access schedule for eight to ten weeks prior to being implanted with osmotic minipumps containing either an a1-adrenoreceptor antagonist (prazosin, 1.5 mg/kg/day), a β1/2-adrenoreceptor antagonist (propranolol, 2.5 mg/kg/day), a serotonin/norepinephrine reuptake inhibitor (duloxetine, 1.5 mg/kg/day) or vehicle (10% dimethyl sulfoxide). These drugs were continuously delivered across four weeks, during which animals continued to have intermittent access to ethanol. Anxiety-like behavior was assessed on the elevated plus maze before treatment and again near the end of the drug delivery period. Our results indicate that chronic treatment with a low dose of prazosin or duloxetine significantly decreases ethanol self-administration (P chronic treatment with putative inhibitors of central noradrenergic signaling may attenuate ethanol intake via a reduction in anxiety-like behavior.

  20. Minimal traumatic brain injury causes persistent changes in DNA methylation at BDNF gene promoters in rat amygdala: A possible role in anxiety-like behaviors.

    Science.gov (United States)

    Sagarkar, Sneha; Bhamburkar, Tanmayi; Shelkar, Gajanan; Choudhary, Amit; Kokare, Dadasaheb M; Sakharkar, Amul J

    2017-10-01

    Minimal traumatic brain injury (MTBI) often transforms into chronic neuropsychiatric conditions including anxiety, the underlying mechanisms of which are largely unknown. In the present study, we employed the closed-head injury paradigm to induce MTBI in rats and examined whether DNA methylation can explain long-term changes in the expression of the brain-derived neurotrophic factor (BDNF) in the amygdala as well as trauma-induced anxiety-like behaviors. The MTBI caused anxiety-like behaviors and altered the expression of DNA methyltransferase (DNMT) isoforms (DNMT1, DNMT3a, and DNMT3b) and factors involved in DNA demethylation such as the growth arrest and DNA damage 45 (GADD45a and GADD45b). After 30days of MTBI, the over-expression of DNMT3a and DNMT3b corresponded to heightened DNMT activity, whereas the mRNA levels of GADD45a and GADD45b were declined. The methylated cytosine levels at the BDNF promoters (Ip, IVp and IXp) were increased in the amygdala of the trauma-induced animals; these coincided negatively with the mRNA levels of exon IV and IXa, but not of exon I. Interestingly, treatment with 5-azacytidine, a pan DNMT inhibitor, normalized the MTBI-induced DNMT activity and DNA hypermethylation at exon IVp and IXp. Furthermore, 5-azacytidine also corrected the deficits in the expression of exons IV and IXa and reduced the anxiety-like behaviors. These results suggest that the DNMT-mediated DNA methylation at the BDNF IVp and IXp might be involved in the regulation of BDNF gene expression in the amygdala. Further, it could also be related to MTBI-induced anxiety-like behaviors via the regulation of synaptic plasticity. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Ethanol intake under social circumstances or alone in sprague-dawley rats: impact of age, sex, social activity, and social anxiety-like behavior.

    Science.gov (United States)

    Varlinskaya, Elena I; Truxell, Eric M; Spear, Linda P

    2015-01-01

    In human adolescents, heavy drinking is often predicted by high sociability in males and high social anxiety in females. This study assessed the impact of baseline levels of social activity and social anxiety-like behavior in group-housed adolescent and adult male and female Sprague-Dawley rats on ethanol (EtOH) intake when drinking alone or in a social group. Social activity and anxiety-like behavior initially were assessed in a modified social interaction test, followed by 6 drinking sessions that occurred every other day in animals given ad libitum food and water. Sessions consisted of 30-minute access to 10% EtOH in a "supersac" (3% sucrose + 0.1% saccharin) solution given alone as well as in groups of 5 same-sex littermates, with order of the alternating session types counterbalanced across animals. Adolescent males and adults of both sexes overall consumed more EtOH under social than alone circumstances, whereas adolescent females ingested more EtOH when alone. Highly socially active adolescent males demonstrated elevated levels of EtOH intake relative to their low and medium socially active counterparts when drinking in groups, but not when tested alone. Adolescent females with high levels of social anxiety-like behavior demonstrated the highest EtOH intake under social, but not alone circumstances. Among adults, baseline levels of social anxiety-like behavior did not contribute to individual differences in EtOH intake in either sex. The results clearly demonstrate that in adolescent rats, but not their adult counterparts, responsiveness to a social peer predicts EtOH intake in a social setting-circumstances under which drinking typically occurs in human adolescents. High levels of social activity in males and high levels of social anxiety-like behavior in females were associated with elevated social drinking, suggesting that males ingest EtOH for its socially enhancing properties, whereas females ingest EtOH for its socially anxiolytic effects. Copyright

  2. Dissociating the effects of habituation, black walls, buspirone and ethanol on anxiety-like behavioral responses in shoaling zebrafish. A 3D approach to social behavior.

    Science.gov (United States)

    Maaswinkel, Hans; Le, Xi; He, Lucy; Zhu, Liqun; Weng, Wei

    2013-07-01

    Understanding the different patterns of anxiety-like behavioral responses is of great interest for pharmacological and genetic research. Here we report the effects of 3.5-hr habituation, buspirone and ethanol on those responses in shoaling zebrafish (Danio rerio). Since in these experiments we used a container with white walls, the effects of black-vs.-white walls were tested in a separate experiment. An important objective was to determine whether factors unrelated to anxiety played a role in modulating the responses. The anxiety-like behavioral responses studied here are social cohesion, distance from bottom and bottom-dwell time, radial distribution (to study thigmotaxis), transparent-wall preference (to study escape responses), locomotion and freezing. The experimental conditions yielded distinctly different response patterns. Thigmotaxis was the most obvious response to white walls and it was significantly reduced after 3.5-hr habituation. It was not affected by any of the drugs. The reduction of social cohesion after 3.5-hr habituation and in the 0.5% ethanol group was probably the most interesting effect seen in this study. A role of anxiety herein was suggested but could not be established with certainty. Other hypotheses were also discussed. The large increase of distance-from-bottom resulting in swimming close to the water surface, which occurred in both buspirone groups and in the 0.5%-ethanol group, is most likely not an anxiolytic response, because of the discrepancy with the in the literature well-established time-course and the absence of any effect of 3.5-hr habituation or black walls on vertical measures. Finally, locomotion and duration freezing could not be specifically taken as indicators for the state of anxiety and the results concerning transparent-wall preference were not sufficient clear. We conclude that the neuronal and ethological mechanisms underlying the effects of habituation, white-aversion, buspirone and ethanol on anxiety-like

  3. GABA-BZD Receptor Modulating Mechanism of Panax quinquefolius against 72-h Sleep Deprivation Induced Anxiety like Behavior: Possible Roles of Oxidative Stress, Mitochondrial Dysfunction and Neuroinflammation

    Science.gov (United States)

    Chanana, Priyanka; Kumar, Anil

    2016-01-01

    Rationale: Panax quinquefolius (American Ginseng) is known for its therapeutic potential against various neurological disorders, but its plausible mechanism of action still remains undeciphered. GABA (Gamma Amino Butyric Acid) plays an important role in sleep wake cycle homeostasis. Thus, there exists rationale in exploring the GABA-ergic potential of Panax quinquefolius as neuroprotective strategy in sleep deprivation induced secondary neurological problems. Objective: The present study was designed to explore the possible GABA-ergic mechanism in the neuro-protective effect of Panax quinquefolius against 72-h sleep deprivation induced anxiety like behavior, oxidative stress, mitochondrial dysfunction, HPA-axis activation and neuroinflammation. Materials and Methods: Male laca mice were sleep deprived for 72-h by using Grid suspended over water method. Panax quinquefolius (American Ginseng 50, 100, and 200 mg/kg) was administered alone and in combination with GABA modulators (GABA Cl− channel inhibitor, GABA-benzodiazepine receptor inhibitor and GABAA agonist) for 8 days, starting 5 days prior to 72-h sleep deprivation period. Various behavioral (locomotor activity, mirror chamber test), biochemical (lipid peroxidation, reduced glutathione, catalase, nitrite levels), mitochondrial complexes, neuroinflammation marker (Tumor Necrosis Factor, TNF-alpha), serum corticosterone, and histopathological sections of brains were assessed. Results: Seventy two hours sleep deprivation significantly impaired locomotor activity, caused anxiety-like behavior, conditions of oxidative stress, alterations in mitochondrial enzyme complex activities, raised serum corticosterone levels, brain TNFα levels and led to neuroinflammation like signs in discrete brain areas as compared to naive group. Panax quinquefolius (100 and 200 mg/kg) treatment restored the behavioral, biochemical, mitochondrial, molecular and histopathological alterations. Pre-treatment of GABA Cl− channel

  4. Adolescent social isolation increases anxiety-like behavior and ethanol intake and impairs fear extinction in adulthood: Possible role of disrupted noradrenergic signaling.

    Science.gov (United States)

    Skelly, M J; Chappell, A E; Carter, E; Weiner, J L

    2015-10-01

    Alcohol use disorder, anxiety disorders, and post-traumatic stress disorder (PTSD) are highly comorbid, and exposure to chronic stress during adolescence may increase the incidence of these conditions in adulthood. Efforts to identify the common stress-related mechanisms driving these disorders have been hampered, in part, by a lack of reliable preclinical models that replicate their comorbid symptomatology. Prior work by us, and others, has shown that adolescent social isolation increases anxiety-like behaviors and voluntary ethanol consumption in adult male Long-Evans rats. Here we examined whether social isolation also produces deficiencies in extinction of conditioned fear, a hallmark symptom of PTSD. Additionally, as disrupted noradrenergic signaling may contribute to alcoholism, we examined the effect of anxiolytic medications that target noradrenergic signaling on ethanol intake following adolescent social isolation. Our results confirm and extend previous findings that adolescent social isolation increases anxiety-like behavior and enhances ethanol intake and preference in adulthood. Additionally, social isolation is associated with a significant deficit in the extinction of conditioned fear and a marked increase in the ability of noradrenergic therapeutics to decrease ethanol intake. These results suggest that adolescent social isolation not only leads to persistent increases in anxiety-like behaviors and ethanol consumption, but also disrupts fear extinction, and as such may be a useful preclinical model of stress-related psychopathology. Our data also suggest that disrupted noradrenergic signaling may contribute to escalated ethanol drinking following social isolation, thus further highlighting the potential utility of noradrenergic therapeutics in treating the deleterious behavioral sequelae associated with early life stress. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Rearing in enriched environment increases parvalbumin-positive small neurons in the amygdala and decreases anxiety-like behavior of male rats.

    Science.gov (United States)

    Urakawa, Susumu; Takamoto, Kouich; Hori, Etsuro; Sakai, Natsuko; Ono, Taketoshi; Nishijo, Hisao

    2013-01-25

    Early life experiences including physical exercise, sensory stimulation, and social interaction can modulate development of the inhibitory neuronal network and modify various behaviors. In particular, alteration of parvalbumin-expressing neurons, a gamma-aminobutyric acid (GABA)ergic neuronal subpopulation, has been suggested to be associated with psychiatric disorders. Here we investigated whether rearing in enriched environment could modify the expression of parvalbumin-positive neurons in the basolateral amygdala and anxiety-like behavior. Three-week-old male rats were divided into two groups: those reared in an enriched environment (EE rats) and those reared in standard cages (SE rats). After 5 weeks of rearing, the EE rats showed decreased anxiety-like behavior in an open field than the SE rats. Under another anxiogenic situation, in a beam walking test, the EE rats more quickly traversed an elevated narrow beam. Anxiety-like behavior in the open field was significantly and negatively correlated with walking time in the beam-walking test. Immunohistochemical tests revealed that the number of parvalbumin-positive neurons significantly increased in the basolateral amygdala of the EE rats than that of the SE rats, while the number of calbindin-D28k-positive neurons did not change. These parvalbumin-positive neurons had small, rounded soma and co-expressed the glutamate decarboxylase (GAD67). Furthermore, the number of parvalbumin-positive small cells in the basolateral amygdala tended to positively correlate with emergence in the center arena of the open field and negatively correlated with walking time in the beam walking test. Rearing in the enriched environment augmented the number of parvalbumin-containing specific inhibitory neuron in the basolateral amygdala, but not that of calbindin-containing neuronal phenotype. Furthermore, the number of parvalbumin-positive small neurons in the basolateral amygdala was negatively correlated with walking time in the

  6. Xiaochaihutang attenuates depressive/anxiety-like behaviors of social isolation-reared mice by regulating monoaminergic system, neurogenesis and BDNF expression.

    Science.gov (United States)

    Ma, Jie; Wang, Fang; Yang, Jingyu; Dong, Yingxu; Su, Guangyue; Zhang, Kuo; Pan, Xing; Ma, Ping; Zhou, Tingshuo; Wu, Chunfu

    2017-08-17

    Xiaochaihutang (XCHT), as a classical herbal formula for the treatment of "Shaoyang syndrome" has been demonstrated to exert an antidepressant effect in multiple animal models of depression as shown in our previous studies. However, the effects of XCHT on social isolation (SI)-reared mice have not been investigated. This study aims to explore the effects of XCHT on depressive/anxiety-like behaviors of SI-reared mice, and its implicated mechanisms, including alterations in the monoaminergic system, neurogenesis and neurotrophin expression. Male C57 BL/6J mice (aged 4 weeks after weaning) were reared isolatedly for 8 weeks and XCHT (0.8, 2.3, 7.0g/kg) were given by gavage once a day. Forced swimming test (FST), tail suspension test (TST), open field test (OFT), elevated-plus maze test (EPM) and intruder-induced aggression test were used to explore the effects of XCHT on depressive/anxiety-like behaviors of SI-reared mice after administration of XCHT for 6 weeks. HPLC-MS/MS was performed to quantify the levels of neurotransmitters in the hippocampus by in vivo microdialysis, while western immunoblotting was used to evaluate the action of XCHT on the synthesis, transport and degradation of monoamine neurotransmitters. Immunofluorescence was used to study the effects of XCHT on neurogenesis and neurotrophin expression, including Ki-67, DCX, BrdU and BDNF. Our results showed that administration of XCHT (0.8, 2.3 and 7.0g/kg) for 6 weeks significantly attenuated the increase in immobility time in TST and FST, improved the anxiety-like behaviors in OFT and EPM, and improved the aggressive behaviors of SI-reared mice. XCHT significantly elevated monoamine neurotransmitters levels and inhibited 5-HT turnover (5-HIAA/5-HT) in hippocampal microdialysates of SI-reared mice. In addition, we found XCHT enhanced monoamine neurotransmitter synthesis enzymes (TPH2 and TH) expressions, inhibited serotonin transporter (SERT) expression and decreased monoamine neurotransmitter

  7. Escitalopram or novel herbal mixture treatments during or following exposure to stress reduce anxiety-like behavior through corticosterone and BDNF modifications.

    Directory of Open Access Journals (Sweden)

    Ravid Doron

    Full Text Available Anxiety disorders are a major public health concern worldwide. Studies indicate that repeated exposure to adverse experiences early in life can lead to anxiety disorders in adulthood. Current treatments for anxiety disorders are characterized by a low success rate and are associated with a wide variety of side effects. The aim of the present study was to evaluate the anxiolytic effects of a novel herbal treatment, in comparison to treatment with the selective serotonin reuptake inhibitor escitalopram. We recently demonstrated the anxiolytic effects of these treatments in BALB mice previously exposed to one week of stress. In the present study, ICR mice were exposed to post natal maternal separation and to 4 weeks of unpredictable chronic mild stress in adolescence, and treated during or following exposure to stress with the novel herbal treatment or with escitalopram. Anxiety-like behavior was evaluated in the elevated plus maze. Blood corticosterone levels were evaluated using radioimmunoassay. Brain derived neurotrophic factor levels in the hippocampus were evaluated using enzyme-linked immunosorbent assay. We found that (1 exposure to stress in childhood and adolescence increased anxiety-like behavior in adulthood; (2 the herbal treatment reduced anxiety-like behavior, both when treated during or following exposure to stress; (3 blood corticosterone levels were reduced following treatment with the herbal treatment or escitalopram, when treated during or following exposure to stress; (4 brain derived neurotrophic factor levels in the hippocampus of mice treated with the herbal treatment or escitalopram were increased, when treated either during or following exposure to stress. This study expands our previous findings and further points to the proposed herbal compound's potential to be highly efficacious in treating anxiety disorders in humans.

  8. Hypoxic-ischemic injury decreases anxiety-like behavior in rats when associated with loss of tyrosine-hydroxylase immunoreactive neurons of the substantia nigra

    International Nuclear Information System (INIS)

    Hei, Ming-Yan; Luo, Ya-Li; Zhang, Xiao-Chun; Liu, Hong; Gao, Ru; Wu, Jing-Jiang

    2011-01-01

    Neonatal Sprague-Dawley rats were randomly divided into normal control, mild hypoxia-ischemia (HI), and severe HI groups (N = 10 in each group at each time) on postnatal day 7 (P7) to study the effect of mild and severe HI on anxiety-like behavior and the expression of tyrosine hydroxylase (TH) in the substantia nigra (SN). The mild and severe HI groups were exposed to hypoxia (8% O 2 /92% N 2 ) for 90 and 150 min, respectively. The elevated plus-maze (EPM) test was performed to assess anxiety-like behavior by measuring time spent in the open arms (OAT) and OAT%, and immunohistochemistry was used to determine the expression of TH in the SN at P14, P21, and P28. OAT and OAT% in the EPM were significantly increased in both the mild (1.88-, 1.99-, and 2.04-fold, and 1.94-, 1.51-, and 1.46-fold) and severe HI groups (1.69-, 1.68-, and 1.87-fold, and 1.83-, 1.43-, and 1.39-fold, respectively; P < 0.05). The percent of TH-positive cells occupying the SN area was significantly and similarly decreased in both the mild (17.7, 40.2, and 47.2%) and severe HI groups (16.3, 32.2, and 43.8%, respectively; P < 0.05). The decrease in the number of TH-positive cells in the SN and the level of protein expression were closely associated (Pearson correlation analysis: r = 0.991, P = 0.000 in the mild HI group and r = 0.974, P = 0.000 in the severe HI group) with the impaired anxiety-like behaviors. We conclude that neonatal HI results in decreased anxiety-like behavior during the juvenile period of Sprague-Dawley rats, which is associated with the decreased activity of TH in the SN. The impairment of anxiety and the expression of TH are not likely to be dependent on the severity of HI

  9. Hypoxic-ischemic injury decreases anxiety-like behavior in rats when associated with loss of tyrosine-hydroxylase immunoreactive neurons of the substantia nigra

    Directory of Open Access Journals (Sweden)

    Hei Ming-Yan

    2012-01-01

    Full Text Available Neonatal Sprague-Dawley rats were randomly divided into normal control, mild hypoxia-ischemia (HI, and severe HI groups (N = 10 in each group at each time on postnatal day 7 (P7 to study the effect of mild and severe HI on anxiety-like behavior and the expression of tyrosine hydroxylase (TH in the substantia nigra (SN. The mild and severe HI groups were exposed to hypoxia (8% O2/92% N2 for 90 and 150 min, respectively. The elevated plus-maze (EPM test was performed to assess anxiety-like behavior by measuring time spent in the open arms (OAT and OAT%, and immunohistochemistry was used to determine the expression of TH in the SN at P14, P21, and P28. OAT and OAT% in the EPM were significantly increased in both the mild (1.88-, 1.99-, and 2.04-fold, and 1.94-, 1.51-, and 1.46-fold and severe HI groups (1.69-, 1.68-, and 1.87-fold, and 1.83-, 1.43-, and 1.39-fold, respectively; P < 0.05. The percent of TH-positive cells occupying the SN area was significantly and similarly decreased in both the mild (17.7, 40.2, and 47.2% and severe HI groups (16.3, 32.2, and 43.8%, respectively; P < 0.05. The decrease in the number of TH-positive cells in the SN and the level of protein expression were closely associated (Pearson correlation analysis: r = 0.991, P = 0.000 in the mild HI group and r = 0.974, P = 0.000 in the severe HI group with the impaired anxiety-like behaviors. We conclude that neonatal HI results in decreased anxiety-like behavior during the juvenile period of Sprague-Dawley rats, which is associated with the decreased activity of TH in the SN. The impairment of anxiety and the expression of TH are not likely to be dependent on the severity of HI.

  10. The influence of chronic stress on anxiety-like behavior and cognitive function in different human GFAP-ApoE transgenic adult male mice.

    Science.gov (United States)

    Meng, Fan-Tao; Zhao, Jun; Fang, Hui; Liu, Ya-Jing

    2015-01-01

    The apolipoprotein E (ApoE) ɛ4 allele (ApoE4) is an important genetic risk factor for the pathogenesis of Alzheimer's disease (AD). In addition to genetic factors, environmental factors such as stress may play a critical role in AD pathogenesis. This study was designed to investigate the anxiety-like behavioral and cognitive changes in different human glial fibrillary acidic protein (GFAP)-ApoE transgenic adult male mice under chronic stress conditions. On the open field test, anxiety-like behavior was increased in the non-stressed GFAP-ApoE4 transgenic mice relative to the corresponding GFAP-ApoE3 (ApoE ɛ3 allele) mice. Anxiety-like behavior was increased in the stressed GFAP-ApoE3 mice relative to non-stressed GFAP-ApoE3 mice, but was unexpectedly decreased in the stressed GFAP-ApoE4 mice relative to non-stressed GFAP-ApoE4 mice. On the novel object recognition task, both GFAP-ApoE4 and GFAP-ApoE3 mice exhibited long-term non-spatial memory impairment after chronic stress. Interestingly, short-term non-spatial memory impairment (based on the novel object recognition task) was observed only in the stressed GFAP-ApoE4 male mice relative to non-stressed GFAP-ApoE4 transgenic mice. In addition, short-term spatial memory impairment was observed in the stressed GFAP-ApoE3 transgenic male mice relative to non-stressed GFAP-ApoE3 transgenic male mice; however, short-term spatial memory performance of GFAP-ApoE4 transgenic male mice was not reduced compared to non-stressed control mice based on the Y-maze task. In conclusion, our findings suggested that chronic stress affects anxiety-like behavior and spatial and non-spatial memory in GFAP-ApoE transgenic mice in an ApoE isoform-dependent manner.

  11. Effects of Chronic Vitamin D3 Hormone Administration on Anxiety-Like Behavior in Adult Female Rats after Long-Term Ovariectomy

    Directory of Open Access Journals (Sweden)

    Julia Fedotova

    2017-01-01

    Full Text Available The present preclinical study was created to determine the therapeutic effects of vitamin D hormone treatment as an adjunctive therapy alone or in a combination with low dose of 17β-estradiol (17β-E2 on anxiety-like behavior in female rats with long-term absence of estrogen. Accordingly, the aim of the current study was to examine the effects of chronic cholecalciferol administration (1.0, 2.5 or 5.0 mg/kg subcutaneously, SC, once daily, for 14 days on the anxiety-like state after long-term ovariectomy in female rats. Twelve weeks postovariectomy, cholecalciferol was administered to ovariectomized (OVX rats and OVX rats treated with 17β-E2 (0.5 µg/rat SC, once daily, for 14 days. Anxiety-like behavior was assessed in the elevated plus maze (EPM and the light/dark test (LDT, and locomotor and grooming activities were tested in the open field test (OFT. Cholecalciferol at two doses of 1.0 and 2.5 mg/kg alone or in combination with 17β-E2 produced anxiolytic-like effects in OVX rats as evidenced in the EPM and the LDT, as well as increased grooming activity in the OFT. Our results indicate that cholecalciferol, at two doses of 1.0 and 2.5 mg/kg, has a profound anxiolytic-like effects in the experimental rat model of long-term estrogen deficiency.

  12. Orexin A-induced anxiety-like behavior is mediated through GABA-ergic, α- and β-adrenergic neurotransmissions in mice.

    Science.gov (United States)

    Palotai, Miklós; Telegdy, Gyula; Jászberényi, Miklós

    2014-07-01

    Orexins are hypothalamic neuropeptides, which are involved in several physiological functions of the central nervous system, including anxiety and stress. Several studies provide biochemical and behavioral evidence about the anxiogenic action of orexin A. However, we have little evidence about the underlying neuromodulation. Therefore, the aim of the present study was to investigate the involvement of neurotransmitters in the orexin A-induced anxiety-like behavior in elevated plus maze (EPM) test in mice. Accordingly, mice were pretreated with a non-selective muscarinic cholinergic antagonist, atropine; a γ-aminobutyric acid subunit A (GABA-A) receptor antagonist, bicuculline; a D2, D3, D4 dopamine receptor antagonist, haloperidol; a non-specific nitric oxide synthase (NOS) inhibitor, nitro-l-arginine; a nonselective α-adrenergic receptor antagonist, phenoxybenzamine and a β-adrenergic receptor antagonist, propranolol 30min prior to the intracerebroventricular administration of orexin A. The EPM test started 30min after the i.c.v. injection of the neuropeptide. Our results show that orexin A decreases significantly the time spent in the arms (open/open+closed) and this action is reversed by bicuculline, phenoxybenzamine and propranolol, but not by atropine, haloperidol or nitro-l-arginine. Our results provide evidence for the first time that the orexin A-induced anxiety-like behavior is mediated through GABA-A-ergic, α- and β-adrenergic neurotransmissions, whereas muscarinic cholinergic, dopaminergic and nitrergic neurotransmissions may not be implicated. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Assessment of mouse anxiety-like behavior in the light-dark box and open-field arena: role of equipment and procedure.

    Science.gov (United States)

    Kulesskaya, Natalia; Voikar, Vootele

    2014-06-22

    Light-dark box and open field are conventional tests for assessment of anxiety-like behavior in the laboratory mice, based on approach-avoidance conflict. However, except the basic principles, variations in the equipment and procedures are very common. Therefore, contribution of certain methodological issues in different settings was investigated. Three inbred strains (C57BL/6, 129/Sv, DBA/2) and one outbred stock (ICR) of mice were used in the experiments. An effect of initial placement of mice either in the light or dark compartment was studied in the light-dark test. Moreover, two tracking systems were applied - position of the animals was detected either by infrared sensors in square box (1/2 dark) or by videotracking in rectangular box (1/3 dark). Both approaches revealed robust and consistent strain differences in the exploratory behavior. In general, C57BL/6 and ICR mice showed reduced anxiety-like behavior as compared to 129/Sv and DBA/2 strains. However, the latter two strains differed markedly in their behavior. DBA/2 mice displayed high avoidance of the light compartment accompanied by thigmotaxis, whereas the hypoactive 129 mice spent a significant proportion of time in risk-assessment behavior at the opening between two compartments. Starting from the light side increased the time spent in the light compartment and reduced the latency to the first transition. In the open field arena, black floor promoted exploratory behavior - increased time and distance in the center and increased rearing compared to white floor. In conclusion, modifications of the apparatus and procedure had significant effects on approach-avoidance behavior in general whereas the strain rankings remained unaffected. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Duloxetine prevents the effects of prenatal stress on depressive-like and anxiety-like behavior and hippocampal expression of pro-inflammatory cytokines in adult male offspring rats.

    Science.gov (United States)

    Zhang, Xiaosong; Wang, Qi; Wang, Yan; Hu, Jingmin; Jiang, Han; Cheng, Wenwen; Ma, Yuchao; Liu, Mengxi; Sun, Anji; Zhang, Xinxin; Li, Xiaobai

    2016-12-01

    Stress during pregnancy may cause neurodevelopmental and psychiatric disorders. However, the mechanisms are largely unknown. Currently, pro-inflammatory cytokines have been identified as a risk factor for depression and anxiety disorder. Unfortunately, there is very little research on the long-term effects of prenatal stress on the neuroinflammatory system of offspring. Moreover, the relationship between antidepressant treatment and cytokines in the central nervous system, especially in the hippocampus, an important emotion modulation center, is unclear. Therefore, the aim of this study was to determine the effects of prenatal chronic mild stress during development on affective-like behaviors and hippocampal cytokines in adult offspring, and to verify whether antidepressant (duloxetine) administration from early adulthood could prevent the harmful consequences. To do so, prenatally stressed and non-stressed Sprague-Dawley rats were treated with either duloxetine (10mg/kg/day) or vehicle from postnatal day 60 for 21days. Adult offspring were divided into four groups: 1) prenatal stress+duloxetine treatment, 2) prenatal stress+vehicle, 3) duloxetine treatment alone, and 4) vehicle alone. Adult offspring were assessed for anxiety-like behavior using the open field test and depression-like behavior using the forced swim test. Brains were analyzed for pro-inflammatory cytokine markers in the hippocampus via real-time PCR. Results demonstrate that prenatal stress-induced anxiety- and depression-like behaviors are associated with an increase in hippocampal inflammatory mediators, and duloxetine administration prevents the increased hippocampal pro-inflammatory cytokine interleukin-6 and anxiety- and depression-like behavior in prenatally stressed adult offspring. This research provides important evidence on the long-term effect of PNS exposure during development in a model of maternal adversity to study the pathogenesis of depression and its therapeutic interventions

  15. Music therapy inhibits morphine-seeking behavior via GABA receptor and attenuates anxiety-like behavior induced by extinction from chronic morphine use.

    Science.gov (United States)

    Kim, Ki Jin; Lee, Sang Nam; Lee, Bong Hyo

    2018-05-01

    Morphine is a representative pain killer. However, repeated use tends to induce addiction. Music therapy has been gaining interest as a useful type of therapy for neuropsychiatric diseases. The present study examined whether Korean traditional music (KT) could suppress morphine-seeking behavior and anxiety-like behavior induced by extinction from chronic morphine use and additionally investigated a possible neuronal mechanism. Male Sprague-Dawley rats were trained to intravenously self-administer morphine hydrochloride (1.0 mg/kg) using a fixed ratio 1 schedule in daily 2 h session during 3 weeks. After training, rats who established baseline (variation less than 20% of the mean of infusion for 3 consecutive days) underwent extinction. Music was played twice a day during extinction. In the second experiment, the selective antagonists of GABA A and GABA B receptors were treated before the last playing to investigate the neuronal mechanism focusing on the GABA receptor pathway. Another experiment of elevated plus maze was performed to investigate whether music therapy has an anxiolytic effect at the extinction phase. KT but not other music (Indian road or rock music) reduced morphine-seeking behavior induced by a priming challenge with morphine. And, this effect was blocked by the GABA receptor antagonists. In addition, KT showed anxiolytic effects against withdrawal from morphine. Results of this study suggest that KT suppresses morphine-seeking behavior via GABA receptor pathway. In addition, KT showed to have anxiolytic effects, suggesting it has bi-directional effects on morphine. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Age-related differences in anxiety-like behavior and amygdalar CCL2 responsiveness to stress following alcohol withdrawal in male Wistar rats.

    Science.gov (United States)

    Harper, Kathryn M; Knapp, Darin J; Park, Meredith A; Breese, George R

    2017-01-01

    Behavioral and neuroimmune vulnerability to withdrawal from chronic alcohol varies with age. The relation of anxiety-like behavior to amygdalar CCL2 responses following stress after withdrawal from chronic intermittent alcohol (CIA) was investigated in adolescent and adult rats. Adolescent and adult Wistar rats were exposed to CIA (three 5-day blocks of dietary alcohol separated by 2 days of withdrawal) at concentrations that created similar blood alcohol levels across age. Twenty-four hours into the final withdrawal, half of the rats were exposed to 1 h of restraint stress. Four hours post-stress, rats were used for behavior or tissue assays. Anxiety-like behavior was increased versus controls by CIA in adolescents and by CIA + stress in adults. CCL2 mRNA was increased versus controls by CIA in adolescents and by CIA and CIA + stress in adults. CCL2 co-localization with neuronal marker NeuN was decreased versus controls by CIA in adolescents and by CIA + stress in adults. CCL2 co-localization with astrocytic marker GFAP was decreased versus controls by CIA and CIA + stress in adolescents, but experimental groups did not differ from controls in adults. CCL2 co-localization with microglial marker Iba1 was decreased versus controls by stress alone in adolescents and by CIA + stress in adults. Changes in CCL2 protein might control behavior at either age but are particularly associated with CIA alone in adolescents and with CIA + stress in adults. That the number of CeA neurons expressing CCL2 was altered after CIA and stress is consistent with CCL2 involvement in neural function.

  17. Exposure to social defeat stress in adolescence improves the working memory and anxiety-like behavior of adult female rats with intrauterine growth restriction, independently of hippocampal neurogenesis.

    Science.gov (United States)

    Furuta, Miyako; Ninomiya-Baba, Midori; Chiba, Shuichi; Funabashi, Toshiya; Akema, Tatsuo; Kunugi, Hiroshi

    2015-04-01

    Intrauterine growth restriction (IUGR) is a risk factor for memory impairment and emotional disturbance during growth and adulthood. However, this risk might be modulated by environmental factors during development. Here we examined whether exposing adolescent male and female rats with thromboxane A2-induced IUGR to social defeat stress (SDS) affected their working memory and anxiety-like behavior in adulthood. We also used BrdU staining to investigate hippocampal cellular proliferation and BrdU and NeuN double staining to investigate neural differentiation in female IUGR rats. In the absence of adolescent stress, IUGR female rats, but not male rats, scored significantly lower in the T-maze test of working memory and exhibited higher anxiety-like behavior in the elevated-plus maze test compared with controls. Adolescent exposure to SDS abolished these behavioral impairments in IUGR females. In the absence of adolescent stress, hippocampal cellular proliferation was significantly higher in IUGR females than in non-IUGR female controls and was not influenced by adolescent exposure to SDS. Hippocampal neural differentiation was equivalent in non-stressed control and IUGR females. Neural differentiation was significantly increased by adolescent exposure to SDS in controls but not in IUGR females. There was no significant difference in the serum corticosterone concentrations between non-stressed control and IUGR females; however, adolescent exposure to SDS significantly increased serum corticosterone concentration in control females but not in IUGR females. These results demonstrate that adolescent exposure to SDS improves behavioral impairment independent of hippocampal neurogenesis in adult rats with IUGR. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Effects of environmental enrichment on anxiety-like behavior, sociability, sensory gating, and spatial learning in male and female C57BL/6J mice.

    Science.gov (United States)

    Hendershott, Taylor R; Cronin, Marie E; Langella, Stephanie; McGuinness, Patrick S; Basu, Alo C

    2016-11-01

    The influence of housing on cognition and emotional regulation in mice presents a problem for the study of genetic and environmental risk factors for neuropsychiatric disorders: standard laboratory housing may result in low levels of cognitive function or altered levels of anxiety that leave little room for assessment of deleterious effects of experimental manipulations. The use of enriched environment (EE) may allow for the measurement of a wider range of performance in cognitive domains. Cognitive and behavioral effects of EE in male mice have not been widely reproduced, perhaps due to variability in the application of enrichment protocols, and the effects of EE in female mice have not been widely studied. We have developed an EE protocol using common laboratory equipment that, without a running wheel for exercise, results in significant cognitive and behavioral effects relative to standard laboratory housing conditions. We compared male and female wild-type C57BL/6J mice reared from weaning age in an EE to those reared in a standard environment (SE), using common measures of anxiety-like behavior, sensory gating, sociability, and spatial learning and memory. Sex was a significant factor in relevant elevated plus maze (EPM) measures, and bordered on significance in a social interaction (SI) assay. Effects of EE on anxiety-like behavior and sociability were indicative of a general increase in exploratory activity. In male and female mice, EE resulted in reduced prepulse inhibition (PPI) of the acoustic startle response, and enhanced spatial learning and use of spatially precise strategies in a Morris water maze task. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Maternal postpartum corticosterone and fluoxetine differentially affect adult male and female offspring on anxiety-like behavior, stress reactivity, and hippocampal neurogenesis.

    Science.gov (United States)

    Gobinath, Aarthi R; Workman, Joanna L; Chow, Carmen; Lieblich, Stephanie E; Galea, Liisa A M

    2016-02-01

    Postpartum depression (PPD) affects approximately 15% of mothers, disrupts maternal care, and can represent a form of early life adversity for the developing offspring. Intriguingly, male and female offspring are differentially vulnerable to the effects of PPD. Antidepressants, such as fluoxetine, are commonly prescribed for treating PPD. However, fluoxetine can reach offspring via breast milk, raising serious concerns regarding the long-term consequences of infant exposure to fluoxetine. The goal of this study was to examine the long-term effects of maternal postpartum corticosterone (CORT, a model of postpartum stress/depression) and concurrent maternal postpartum fluoxetine on behavioral, endocrine, and neural measures in adult male and female offspring. Female Sprague-Dawley dams were treated daily with either CORT or oil and fluoxetine or saline from postnatal days 2-23, and offspring were weaned and left undisturbed until adulthood. Here we show that maternal postpartum fluoxetine increased anxiety-like behavior and impaired hypothalamic-pituitary-adrenal (HPA) axis negative feedback in adult male, but not female, offspring. Furthermore, maternal postpartum fluoxetine increased the density of immature neurons (doublecortin-expressing) in the hippocampus of adult male offspring but decreased the density of immature neurons in adult female offspring. Maternal postpartum CORT blunted HPA axis negative feedback in males and tended to increase density of immature neurons in males but decreased it in females. These results indicate that maternal postpartum CORT and fluoxetine can have long-lasting effects on anxiety-like behavior, HPA axis negative feedback, and adult hippocampal neurogenesis and that adult male and female offspring are differentially affected by these maternal manipulations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Comparison of the effects of the GABAB receptor positive modulator BHF177 and the GABAB receptor agonist baclofen on anxiety-like behavior, learning, and memory in mice.

    Science.gov (United States)

    Li, Xia; Risbrough, Victoria B; Cates-Gatto, Chelsea; Kaczanowska, Katarzyna; Finn, M G; Roberts, Amanda J; Markou, Athina

    2013-07-01

    γ-Aminobutyric acid B (GABAB) receptor activation is a potential therapeutic approach for the treatment of drug addiction, pain, anxiety, and depression. However, full agonists of this receptor induce side-effects, such as sedation, muscle relaxation, tolerance, and cognitive disruption. Positive allosteric modulators (PAMs) of the GABAB receptor may have similar therapeutic effects as agonists with superior side-effect profiles. The present study behaviorally characterized N-([1R,2R,4S]-bicyclo[2.2.1]hept-2-yl)-2-methyl-5-(4-[trifluoromethyl]phenyl)-4-pyrimidinamine (BHF177), a GABAB receptor PAM, in mouse models of anxiety-like behavior, learning and memory. In addition, the effects of BHF177 were compared with the agonist baclofen. Unlike the anxiolytic chlordiazepoxide, baclofen (0.5, 1.5, and 2.5 mg/kg, intraperitoneally) and BHF177 (10, 20, and 40 mg/kg, orally) had no effect on anxiety-like behavior in the elevated plus maze, light/dark box, or Vogel conflict test. Baclofen increased punished drinking in the Vogel conflict test, but this effect may be attributable to the analgesic actions of baclofen. At the highest dose tested (2.5 mg/kg), baclofen-treated mice exhibited sedation-like effects (i.e., reduced locomotor activity) across many of the tests, whereas BHF177-treated mice exhibited no sedation-like effects. BHF177 exhibited pro-convulsion properties only in mice, but not in rats, indicating that this effect may be species-specific. At doses that were not sedative or pro-convulsant, baclofen and BHF177 had no selective effects on fear memory retrieval in contextual and cued fear conditioning or spatial learning and memory in the Barnes maze. These data suggest that BHF177 has little sedative activity, no anxiolytic-like profile, and minimal impairment of learning and memory in mice. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Effects of substance P and Sar-Met-SP, a NK1 agonist, in distinct amygdaloid nuclei on anxiety-like behavior in rats.

    Science.gov (United States)

    Bassi, Gabriel Shimizu; de Carvalho, Milene Cristina; Brandão, Marcus Lira

    2014-05-21

    The amygdala, together with the dorsal periaqueductal gray (dPAG), medial hypothalamus, and deep layers of the superior and inferior colliculi, constitutes the encephalic aversion system, which has been considered the main neural substrate for the organization of fear and anxiety. The basolateral nucleus of the amygdala (BLA) acts as a filter for aversive stimuli to higher structures while the central (CeA) and the medial (MeA) nuclei constitute the output for the autonomic and somatic components of the emotional reaction through major projections to the limbic and brainstem regions. Although some findings point to the distinct participation of the substance P (SP) and the NK1 receptors system in the different nuclei of the amygdala on the expression of emotional behaviors, it is not clear if this system modulates anxiety-like responses in the distinct nuclei of the amygdala as well as the dPAG. Thus, it was investigated if the injection of SP into the BLA, CeA, or MeA affects the expression of anxiety-like responses of rats submitted to the elevated plus-maze (EPM) test and, if the effects are mediated by NK1 receptors. The results showed that SP and Sar-Met-SP (NK1 receptor selective agonist) injected into the CeA and MeA, but not into the BLA, caused anxiogenic-like effects in the EPM. Altogether, the data indicates that the SP may mimic the effects of anxiogenic stimuli via NK1 receptor activation only in the CeA and MeA (amygdala's nuclei output) and may activate the neural mechanisms involved in the defensive reaction genesis. The SP/NK1 receptors system activation may be phasically involved in very specific aspects of anxiety behaviors. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. Angiotensin type 1a receptors in the paraventricular nucleus of the hypothalamus control cardiovascular reactivity and anxiety-like behavior in male mice.

    Science.gov (United States)

    Wang, Lei; Hiller, Helmut; Smith, Justin A; de Kloet, Annette D; Krause, Eric G

    2016-09-01

    This study tested the hypothesis that deletion of angiotensin type 1a receptors (AT1a) from the paraventricular nucleus of hypothalamus (PVN) attenuates anxiety-like behavior, hypothalamic-pituitary-adrenal (HPA) axis activity, and cardiovascular reactivity. We used the Cre/LoxP system to generate male mice with AT1a specifically deleted from the PVN. Deletion of the AT1a from the PVN reduced anxiety-like behavior as indicated by increased time spent in the open arms of the elevated plus maze. In contrast, PVN AT1a deletion had no effect on HPA axis activation subsequent to an acute restraint challenge but did reduce hypothalamic mRNA expression for corticotropin-releasing hormone (CRH). To determine whether PVN AT1a deletion inhibits cardiovascular reactivity, we measured systolic blood pressure, heart rate, and heart rate variability (HRV) using telemetry and found that PVN AT1a deletion attenuated restraint-induced elevations in systolic blood pressure and elicited changes in HRV indicative of reduced sympathetic nervous activity. Consistent with the decreased HRV, PVN AT1a deletion also decreased adrenal weight, suggestive of decreased adrenal sympathetic outflow. Interestingly, the altered stress responsivity of mice with AT1a deleted from the PVN was associated with decreased hypothalamic microglia and proinflammatory cytokine expression. Collectively, these results suggest that deletion of AT1a from the PVN attenuates anxiety, CRH gene transcription, and cardiovascular reactivity and reduced brain inflammation may contribute to these effects. Copyright © 2016 the American Physiological Society.

  3. Effects of Early-Life Stress on Social and Anxiety-Like Behaviors in Adult Mice: Sex-Specific Effects

    Directory of Open Access Journals (Sweden)

    Natalya P. Bondar

    2018-01-01

    Full Text Available Stressful events in an early postnatal period have critical implications for the individual’s life and can increase later risk for psychiatric disorders. The aim of this study was to investigate the influence of early-life stress on the social behavior of adult male and female mice. C57Bl/6 mice were exposed to maternal separation (MS, 3 h once a day or handling (HD, 15 min once a day on postnatal day 2 through 14. Adult male and female mice were tested for social behavior in the social interaction test and for individual behavior in the plus-maze and open-field tests. Female mice exposed to maternal separation had increased social behavior and increased anxiety. MS male mice had no changes in social behavior but had significantly disrupted individual behavior, including locomotor and exploratory activity. Handling had positive effects on social behavior in males and females and decreased anxiety in males. Our results support the hypothesis that brief separation of pups from their mothers (handling, which can be considered as moderate stress, may result in future positive changes in behavior. Maternal separation has deleterious effects on individual behavior and significant sex-specific effects on social behavior.

  4. Adolescent social isolation does not lead to persistent increases in anxiety- like behavior or ethanol intake in female long-evans rats.

    Science.gov (United States)

    Butler, Tracy R; Carter, Eugenia; Weiner, Jeffrey L

    2014-08-01

    Clinically, early life stress and anxiety disorders are associated with increased vulnerability for alcohol use disorders. In male rats, early life stress, imparted by adolescent social isolation, results in long-lasting increases in a number of behavioral risk factors for alcoholism, including greater anxiety-like behaviors and ethanol (EtOH) intake. Several recent studies have begun to use this model to gain insight into the relationships among anxiety measures, stress, EtOH intake, and neurobiological correlates driving these behaviors. As prior research has noted significant sex differences in the impact of adolescent stress on anxiety measures and EtOH drinking, the current study was conducted to determine if this same model produces an "addiction vulnerable" phenotype in female rodents. Female Long Evans rats were socially isolated (SI; 1/cage) or group housed (GH; 4/cage) for 6 weeks during adolescence. After this housing manipulation, behavioral assessment was conducted using the elevated plus maze, response to novelty in an open field environment, and the light/dark box. After behavioral testing, home cage EtOH drinking was assessed across an 8-week period. No group differences were detected in any of the behavioral measures of unconditioned anxiety-like behavior. Greater EtOH intake and preference were observed in SI females but these differences did not persist. The SI/GH model, which results in robust and enduring increases in anxiety measures and EtOH self-administration in male Long Evans rats, did not result in similar behavioral changes in female rats. These data, and that of others, suggest that adolescent social isolation is not a useful model with which to study neurobiological substrates linking antecedent anxiety and addiction vulnerability in female rats. Given the compelling epidemiological evidence that the relationship between chronic adolescent stress and alcohol addiction is particularly strong in women, there is clearly an urgent need

  5. Ghrelin mediates stress-induced food-reward behavior in mice.

    Science.gov (United States)

    Chuang, Jen-Chieh; Perello, Mario; Sakata, Ichiro; Osborne-Lawrence, Sherri; Savitt, Joseph M; Lutter, Michael; Zigman, Jeffrey M

    2011-07-01

    The popular media and personal anecdotes are rich with examples of stress-induced eating of calorically dense "comfort foods." Such behavioral reactions likely contribute to the increased prevalence of obesity in humans experiencing chronic stress or atypical depression. However, the molecular substrates and neurocircuits controlling the complex behaviors responsible for stress-based eating remain mostly unknown, and few animal models have been described for probing the mechanisms orchestrating this response. Here, we describe a system in which food-reward behavior, assessed using a conditioned place preference (CPP) task, is monitored in mice after exposure to chronic social defeat stress (CSDS), a model of prolonged psychosocial stress, featuring aspects of major depression and posttraumatic stress disorder. Under this regime, CSDS increased both CPP for and intake of high-fat diet, and stress-induced food-reward behavior was dependent on signaling by the peptide hormone ghrelin. Also, signaling specifically in catecholaminergic neurons mediated not only ghrelin's orexigenic, antidepressant-like, and food-reward behavioral effects, but also was sufficient to mediate stress-induced food-reward behavior. Thus, this mouse model has allowed us to ascribe a role for ghrelin-engaged catecholaminergic neurons in stress-induced eating.

  6. Neonatal Stress Has a Long-Lasting Sex-Dependent Effect on Anxiety-Like Behavior and Neuronal Morphology in the Prefrontal Cortex and Hippocampus.

    Science.gov (United States)

    de Melo, Silvana Regina; de David Antoniazzi, Caren Tatiane; Hossain, Shakhawat; Kolb, Bryan

    2018-01-01

    The long-lasting effects of early stress on brain development have been well studied. Recent evidence indicates that males and females respond differently to the same stressor. We examined the chronic effects of daily maternal separation (MS) on behavior and cerebral morphology in both male and female rats. Cognitive and anxiety-like behaviors were evaluated, and neuroplastic changes in 2 subregions of the prefrontal cortex (dorsal agranular insular cortex [AID] and cingulate cortex [Cg3]) and hippocampus (CA1 and dentate gyrus) were measured in adult male and female rats. The animals were subjected to MS on postnatal day (P) 3-14 for 3 h per day. Cognitive and emotional behaviors were assessed in the object/context mismatch task, elevated plus maze, and locomotor activity test in early adulthood (P87-P95). Anatomical assessments were performed in the prefrontal cortex (i.e., cortical thickness and spine density) and hippocampus (i.e., spine density). Sex-dependent effects were observed. MS increased anxiety-related behavior only in males, whereas locomotor activity was higher in females, with no effects on cognition. MS decreased spine density in the AID and increased spine density in the CA1 area in males. Females exhibited an increase in spine density in the Cg3. Our findings confirm previous work that found that MS causes long-term behavioral and anatomical effects, and these effects were dependent on sex and the duration of MS stress. © 2018 S. Karger AG, Basel.

  7. The effects of the administration of two different doses of manganese on short-term spatial memory and anxiety-like behavior in rats

    Directory of Open Access Journals (Sweden)

    Hogas M.

    2011-01-01

    Full Text Available Manganese is a very well known neurotoxic agent. It has been mainly linked to impaired motor skills and disturbed psychomotor development. However, very few aspects are known about the cognitive deficits and behavioral consequences of chronic manganese exposure. In this context, we report herein our findings regarding short-term spatial memory, motor and anxiety-like behavior assessments in male Wistar rats exposed for 45 days to two different doses (3 mg/kg b.w., i.p. and 10 mg/kg b.w., i.p. of manganese. Behavior testing (Y-maze task and elevated plus maze was performed after 45 days of manganese administration. Chronic manganese exposure in Wistar rats led to behavioral alterations consisting of cognitive deficiencies in the Y-maze task and anxiety/compulsive-like behaviors in the elevated plus maze, but no motor disturbances as tested by the number of arm entries in the Y-maze. Additional work is necessary to understand the longterm effects of different doses and dosing regimens of manganese on cognitive/affective and motor functioning.

  8. Neonatal taurine and alanine modulate anxiety-like behavior and decelerate cortical spreading depression in rats previously suckled under different litter sizes.

    Science.gov (United States)

    Francisco, Elian da Silva; Guedes, Rubem Carlos Araújo

    2015-11-01

    The amino acids taurine and alanine play a role in several physiological processes, including behavior and the electrical activity of the brain. In this study, we investigated the effect of treatment with taurine or alanine on anxiety-like behavior and the excitability-dependent phenomenon known as cortical spreading depression (CSD), using rats suckled in litters with 9 and 15 pups (groups L9 and L15). From postnatal days 7 to 27, the animals received per gavage 300 mg/kg/day of taurine or alanine or both. At 28 days, we tested the animals in the elevated plus maze, and at 33-35 days, we recorded CSD and analyzed its velocity of propagation, amplitude, and duration. Compared with water-treated controls, the L9 groups treated with taurine or alanine displayed anxiolytic behavior (higher number of entries in the open arms; p taurine, alanine, or both) treated at adulthood (90-110 days). The L15 condition resulted in smaller durations and higher CSD velocities compared with the L9 condition. Besides reinforcing previous evidence of behavioral modulation by taurine and alanine, our data are the first confirmation that treatment with these amino acids decelerates CSD regardless of lactation conditions (normal versus unfavorable lactation) or age at amino acid administration (young versus adult). The results suggest a modulating role for both amino acids on anxiety behavior and neuronal electrical activity.

  9. ENU-mutagenesis mice with a non-synonymous mutation in Grin1 exhibit abnormal anxiety-like behaviors, impaired fear memory, and decreased acoustic startle response

    Science.gov (United States)

    2013-01-01

    Background The Grin1 (glutamate receptor, ionotropic, NMDA1) gene expresses a subunit of N-methyl-D-aspartate (NMDA) receptors that is considered to play an important role in excitatory neurotransmission, synaptic plasticity, and brain development. Grin1 is a candidate susceptibility gene for neuropsychiatric disorders, including schizophrenia, bipolar disorder, and attention deficit/hyperactivity disorder (ADHD). In our previous study, we examined an N-ethyl-N-nitrosourea (ENU)-generated mutant mouse strain (Grin1Rgsc174/Grin1+) that has a non-synonymous mutation in Grin1. These mutant mice showed hyperactivity, increased novelty-seeking to objects, and abnormal social interactions. Therefore, Grin1Rgsc174/Grin1+ mice may serve as a potential animal model of neuropsychiatric disorders. However, other behavioral characteristics related to these disorders, such as working memory function and sensorimotor gating, have not been fully explored in these mutant mice. In this study, to further investigate the behavioral phenotypes of Grin1Rgsc174/Grin1+ mice, we subjected them to a comprehensive battery of behavioral tests. Results There was no significant difference in nociception between Grin1Rgsc174/Grin1+ and wild-type mice. The mutants did not display any abnormalities in the Porsolt forced swim and tail suspension tests. We confirmed the previous observations that the locomotor activity of these mutant mice increased in the open field and home cage activity tests. They displayed abnormal anxiety-like behaviors in the light/dark transition and the elevated plus maze tests. Both contextual and cued fear memory were severely deficient in the fear conditioning test. The mutant mice exhibited slightly impaired working memory in the eight-arm radial maze test. The startle amplitude was markedly decreased in Grin1Rgsc174/Grin1+ mice, whereas no significant differences between genotypes were detected in the prepulse inhibition (PPI) test. The mutant mice showed no obvious

  10. Differential behavioral outcomes of 3,4-methylenedioxymethamphetamine (MDMA-ecstasy in anxiety-like responses in mice

    Directory of Open Access Journals (Sweden)

    V. Ferraz-de-Paula

    2011-05-01

    Full Text Available Anxiolytic and anxiogenic-like behavioral outcomes have been reported for methylenedioxymethamphetamine (MDMA or ecstasy in rodents. In the present experiment, we attempted to identify behavioral, hormonal and neurochemical outcomes of MDMA treatment to clarify its effects on anxiety-related responses in 2-month-old Balb/c male mice (25-35 g; N = 7-10 mice/group. The behavioral tests used were open field, elevated plus maze, hole board, and defensive behavior against predator odor. Moreover, we also determined striatal dopamine and dopamine turnover, and serum corticosterone levels. MDMA was injected ip at 0.2, 1.0, 5.0, 8.0, 10, or 20 mg/kg. MDMA at 10 mg/kg induced the following significant (P < 0.05 effects: a a dose-dependent increase in the distance traveled and in the time spent moving in the open field; b decreased exploratory activity in the hole board as measured by number of head dips and time spent in head dipping; c increased number of open arm entries and increased time spent in open arm exploration in the elevated plus maze; d increased time spent away from an aversive stimulus and decreased number of risk assessments in an aversive odor chamber; e increased serum corticosterone levels, and f increased striatal dopamine level and turnover. Taken together, these data suggest an anxiogenic-like effect of acute MDMA treatment, despite the fact that behavioral anxiety expression was impaired in some of the behavioral tests used as a consequence of the motor stimulating effects of MDMA.

  11. Oxytocin reduces amygdala activity, increases social interactions, and reduces anxiety-like behavior irrespective of NMDAR antagonism.

    Science.gov (United States)

    Sobota, Rosanna; Mihara, Takuma; Forrest, Alexandra; Featherstone, Robert E; Siegel, Steven J

    2015-08-01

    Standard dopamine therapies for schizophrenia are not efficacious for negative symptoms of the disease, including asociality. This reduced social behavior may be due to glutamatergic dysfunction within the amygdala, leading to increased fear and social anxiety. Several studies have demonstrated the prosocial effects of oxytocin in schizophrenia patients. Therefore, this study evaluates the effect of subchronic oxytocin on EEG activity in amygdala of mice during performance of the three-chamber social choice and open field tests following acute ketamine as a model of glutamatergic dysfunction. Oxytocin did not restore social deficits introduced by ketamine but did significantly increase sociality in comparison to the control group. Ketamine had no effect on time spent in the center during the open field trials, whereas oxytocin increased overall center time across all groups, suggesting a reduction in anxiety. Amygdala activity was consistent across all drug groups during social and nonsocial behavioral trials. However, oxytocin reduced overall amygdala EEG power during the two behavioral tasks. Alternatively, ketamine did not significantly affect EEG power throughout the tasks. Decreased EEG power in the amygdala, as caused by oxytocin, may be related to both reduced anxiety and increased social behaviors. Data suggest that separate prosocial and social anxiety pathways may mediate social preference. (c) 2015 APA, all rights reserved).

  12. Cox-2 Plays a Vital Role in the Impaired Anxiety Like Behavior in Colchicine Induced Rat Model of Alzheimer Disease

    Directory of Open Access Journals (Sweden)

    Susmita Sil

    2016-01-01

    Full Text Available The anxiety status is changed along with memory impairments in intracerebroventricular colchicine injected rat model of Alzheimer Disease (cAD due to neurodegeneration, which has been indicated to be mediated by inflammation. Inducible cox-2, involved in inflammation, may have important role in the colchicine induced alteration of anxiety status. Therefore, the present study was designed to investigate the role of cox-2 on the anxiety behavior (response to novelty in an elevated open field space of cAD by inhibiting it with three different doses (10, 20, and 30 mg of etoricoxib (a cox-2 blocker in two time points (14 and 21 days. The results showed anxiolytic behavior in cAD along with lower serum corticosterone level, both of which were recovered at all the doses of etoricoxib on day 21. On day 14 all of the anxiety parameters showed similar results to that of day 21 at high doses but not at 10 mg/kg body weight. Results indicate that the parameters of anxiety were dependent on neuronal circuitries that were probably sensitive to etoricoxib induced blocking of neurodegeneration. The present study showed that anxiolytic behavior in cADr is predominantly due to cox-2 mediated neuroinflammation induced neurodegeneration in the brain.

  13. Fear but not fright: re-evaluating traumatic experience attenuates anxiety-like behaviors after fear conditioning

    Directory of Open Access Journals (Sweden)

    Marco eCostanzi

    2014-08-01

    Full Text Available Fear allows organisms to cope with dangerous situations and remembering these situations has an adaptive role preserving individuals from injury and death. However, recalling traumatic memories can induce re-experiencing the trauma, thus resulting in a maladaptive fear. A failure to properly regulate fear responses has been associated with anxiety disorders, like Posttraumatic Stress Disorder (PTSD. Thus, re-establishing the capability to regulate fear has an important role for its adaptive and clinical relevance. Strategies aimed at erasing fear memories have been proposed, although there are limits about their efficiency in treating anxiety disorders. To re-establish fear regulation, here we propose a new approach, based on the re-evaluation of the aversive value of traumatic experience. Mice were submitted to a contextual-fear-conditioning paradigm in which a neutral context was paired with an intense electric footshock. Three weeks after acquisition, conditioned mice were treated with a less intense footshock (pain threshold. The effectiveness of this procedure in reducing fear expression was assessed in terms of behavioral outcomes related to PTSD (e.g. hyper-reactivity to a neutral tone, anxiety levels in a plus maze task, social avoidance, and learning deficits in a spatial water maze and of amygdala activity by evaluating c-fos expression. Furthermore, a possible role of lateral orbitofrontal cortex (lOFC in mediating the behavioral effects induced by the re-evaluation procedure was investigated. We observed that this treatment (i significantly mitigates the abnormal behavioral outcomes induced by trauma, (ii persistently attenuates fear expression without erasing contextual memory, (iii prevents fear reinstatement, (iv reduces amygdala activity and (v requires an intact lOFC to be effective.The results suggest that an effective strategy to treat pathological anxiety should address cognitive re-evaluation of traumatic experiences

  14. Social crowding in the night-time reduces an anxiety-like behavior and increases social interaction in adolescent mice.

    Science.gov (United States)

    Ago, Yukio; Tanaka, Tatsunori; Ota, Yuki; Kitamoto, Mari; Imoto, Emina; Takuma, Kazuhiro; Matsuda, Toshio

    2014-08-15

    Rearing in crowded conditions is a psychosocial stressor that affects biological functions. The effects of continuous crowding for many days have been studied, but those of crowding over a limited time have not. In this study, we examined the effects of night-time or daytime crowding over 2 weeks on behavior in adolescent and adult mice. Crowding (20 mice/cage) in either the night-time or daytime did not affect locomotor activity in the open field test or cognitive function in the fear conditioning test. In contrast, night-time crowding, but not daytime crowding, had an anxiolytic effect in the elevated plus-maze test and increased social interaction in adolescent mice, but not in adult mice. The first night-time, but not daytime, crowding increased plasma corticosterone levels in adolescent mice, although night-time crowding over 2 weeks did not affect the corticosterone levels. Furthermore, no significant effects of the first crowding were observed in adult mice. In a second crowding condition (six mice/small cage), the anxiolytic-like effects of night-time crowding and the change in plasma corticosterone levels were not observed, suggesting that the density of mice is not important for the behavioral consequences of crowding. Night-time crowding did not affect neurotrophic/growth factor levels and hippocampal neurogenesis in adolescent mice. These findings suggest that night-time crowding leads to anxiolytic-like behaviors in adolescent mice, and imply that night-time crowding stress in adolescence may be beneficial to brain functions. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Neonatal L-glutamine modulates anxiety-like behavior, cortical spreading depression, and microglial immunoreactivity: analysis in developing rats suckled on normal size- and large size litters.

    Science.gov (United States)

    de Lima, Denise Sandrelly Cavalcanti; Francisco, Elian da Silva; Lima, Cássia Borges; Guedes, Rubem Carlos Araújo

    2017-02-01

    In mammals, L-glutamine (Gln) can alter the glutamate-Gln cycle and consequently brain excitability. Here, we investigated in developing rats the effect of treatment with different doses of Gln on anxiety-like behavior, cortical spreading depression (CSD), and microglial activation expressed as Iba1-immunoreactivity. Wistar rats were suckled in litters with 9 and 15 pups (groups L 9 and L 15 ; respectively, normal size- and large size litters). From postnatal days (P) 7-27, the animals received Gln per gavage (250, 500 or 750 mg/kg/day), or vehicle (water), or no treatment (naive). At P28 and P30, we tested the animals, respectively, in the elevated plus maze and open field. At P30-35, we measured CSD parameters (velocity of propagation, amplitude, and duration). Fixative-perfused brains were processed for microglial immunolabeling with anti-IBA-1 antibodies to analyze cortical microglia. Rats treated with Gln presented an anxiolytic behavior and accelerated CSD propagation when compared to the water- and naive control groups. Furthermore, CSD velocity was higher (p litter sizes, and for microglial activation in the L 15 groups. Besides confirming previous electrophysiological findings (CSD acceleration after Gln), our data demonstrate for the first time a behavioral and microglial activation that is associated with early Gln treatment in developing animals, and that is possibly operated via changes in brain excitability.

  16. Genistein alleviates anxiety-like behaviors in post-traumatic stress disorder model through enhancing serotonergic transmission in the amygdala.

    Science.gov (United States)

    Wu, Zhong-Min; Ni, Gui-Lian; Shao, Ai-Min; Cui, Rong

    2017-09-01

    Post-traumatic stress disorder (PTSD) is a chronic psychiatric disorder, characterized by intense fear, and increased arousal and avoidance of traumatic events. The current available treatments for PTSD have limited therapeutic value. Genistein, a natural isoflavone, modulates a variety of cell functions. In this study, we tested anti-anxiety activity and underlying mechanisms of genistein in a PTSD rat model. The rats were trained to associate a tone with foot shock delivery on day 0, then fear conditioning was performed on day 7, 14 and 21. Genistein (2-8mg/kg) was injected intraperitoneally daily for 7 days. The anti-anxiety effects of genistein were measured by contextual freezing behavior and elevated plus maze. By the end of the experiments, the amygdala was extracted and subject to neurochemistry analysis. Genistein alleviated contextual freezing behavior and improved performance in elevated plus maze dose-dependently in PTSD rats. Furthermore, in these rats, genistein enhanced serotonergic transmission in the amygdala, including upregulation of tryptophan hydroxylase, serotonin, and phosphorylated (p)-CaMKII and p-CREB, as well. Genistein exerts anti-anxiety effects on a PTSD model probably through enhancing serotonergic system and CaMKII/CREB signaling pathway in the amygdala. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  17. Betaxolol, a selective beta(1)-adrenergic receptor antagonist, diminishes anxiety-like behavior during early withdrawal from chronic cocaine administration in rats.

    Science.gov (United States)

    Rudoy, C A; Van Bockstaele, E J

    2007-06-30

    Anxiety has been indicated as one of the main symptoms of the cocaine withdrawal syndrome in human addicts and severe anxiety during withdrawal may potentially contribute to relapse. As alterations in noradrenergic transmission in limbic areas underlie withdrawal symptomatology for many drugs of abuse, the present study sought to determine the effect of cocaine withdrawal on beta-adrenergic receptor (beta(1) and beta(2)) expression in the amygdala. Male Sprague Dawley rats were administered intraperitoneal (i.p.) injections of cocaine (20 mg/kg) once daily for 14 days. Two days following the last cocaine injection, amygdala brain regions were micro-dissected and processed for Western blot analysis. Results showed that beta(1)-adrenergic receptor, but not beta(2)-adrenergic receptor expression was significantly increased in amygdala extracts of cocaine-withdrawn animals as compared to controls. This finding motivated further studies aimed at determining whether treatment with betaxolol, a highly selective beta(1)-adrenergic receptor antagonist, could ameliorate cocaine withdrawal-induced anxiety. In these studies, betaxolol (5 mg/kg via i.p. injection) was administered at 24 and then 44 h following the final chronic cocaine administration. Anxiety-like behavior was evaluated using the elevated plus maze test approximately 2 h following the last betaxolol injection. Following behavioral testing, betaxolol effects on beta(1)-adrenergic receptor protein expression were examined by Western blotting in amygdala extracts from rats undergoing cocaine withdrawal. Animals treated with betaxolol during cocaine withdrawal exhibited a significant attenuation of anxiety-like behavior characterized by increased time spent in the open arms and increased entries into the open arms compared to animals treated with only saline during cocaine withdrawal. In contrast, betaxolol did not produce anxiolytic-like effects in control animals treated chronically with saline. Furthermore

  18. Betaxolol, a selective β1-adrenergic receptor antagonist, diminishes anxiety-like behavior during early withdrawal from chronic cocaine administration in rats

    Science.gov (United States)

    Rudoy, C.A.; Van Bockstaele, E.J.

    2007-01-01

    Background Anxiety has been indicated as one of the main symptoms of the cocaine withdrawal syndrome in human addicts and severe anxiety during withdrawal may potentially contribute to relapse. As alterations in noradrenergic transmission in limbic areas underlie withdrawal symptomatology for many drugs of abuse, the present study sought to determine the effect of cocaine withdrawal on β-adrenergic receptor (β1 and β2) expression in the amygdala. Methods Male Sprague Dawley rats were administered intraperitoneal (i.p.) injections of cocaine (20 mg/kg) once daily for 14 days. Two days following the last cocaine injection, amygdala brain regions were micro-dissected and processed for Western blot analysis. Results showed that β1–adrenergic receptor, but not β2–adrenergic receptor expression was significantly increased in amygdala extracts of cocaine-withdrawn animals as compared to controls. This finding motivated further studies aimed at determining whether treatment with betaxolol, a highly selective β1–adrenergic receptor antagonist, could ameliorate cocaine withdrawal-induced anxiety. In these studies, betaxolol (5 mg/kg via i.p. injection) was administered at 24 and then 44 hours following the final chronic cocaine administration. Anxiety-like behavior was evaluated using the elevated plus maze test approximately 2 hours following the last betaxolol injection. Following behavioral testing, betaxolol effects on β1-adrenergic receptor protein expression were examined by Western blotting in amygdala extracts from rats undergoing cocaine withdrawal. Results Animals treated with betaxolol during cocaine withdrawal exhibited a significant attenuation of anxiety-like behavior characterized by increased time spent in the open arms and increased entries into the open arms compared to animals treated with only saline during cocaine withdrawal. In contrast, betaxolol did not produce anxiolytic-like effects in control animals treated chronically with saline

  19. cGMP-dependent protein kinase type II knockout mice exhibit working memory impairments, decreased repetitive behavior, and increased anxiety-like traits.

    Science.gov (United States)

    Wincott, Charlotte M; Abera, Sinedu; Vunck, Sarah A; Tirko, Natasha; Choi, Yoon; Titcombe, Roseann F; Antoine, Shannon O; Tukey, David S; DeVito, Loren M; Hofmann, Franz; Hoeffer, Charles A; Ziff, Edward B

    2014-10-01

    Neuronal activity regulates AMPA receptor trafficking, a process that mediates changes in synaptic strength, a key component of learning and memory. This form of plasticity may be induced by stimulation of the NMDA receptor which, among its activities, increases cyclic guanosine monophosphate (cGMP) through the nitric oxide synthase pathway. cGMP-dependent protein kinase type II (cGKII) is ultimately activated via this mechanism and AMPA receptor subunit GluA1 is phosphorylated at serine 845. This phosphorylation contributes to the delivery of GluA1 to the synapse, a step that increases synaptic strength. Previous studies have shown that cGKII-deficient mice display striking spatial learning deficits in the Morris Water Maze compared to wild-type littermates as well as lowered GluA1 phosphorylation in the postsynaptic density of the prefrontal cortex (Serulle et al., 2007; Wincott et al., 2013). In the current study, we show that cGKII knockout mice exhibit impaired working memory as determined using the prefrontal cortex-dependent Radial Arm Maze (RAM). Additionally, we report reduced repetitive behavior in the Marble Burying task (MB), and heightened anxiety-like traits in the Novelty Suppressed Feeding Test (NSFT). These data suggest that cGKII may play a role in the integration of information that conveys both anxiety-provoking stimuli as well as the spatial and environmental cues that facilitate functional memory processes and appropriate behavioral response. Published by Elsevier Inc.

  20. The orexin-1 receptor antagonist SB-334867 decreases anxiety-like behavior and c-Fos expression in the hypothalamus of rats exposed to cat odor.

    Science.gov (United States)

    Vanderhaven, M W; Cornish, J L; Staples, L G

    2015-02-01

    Increasing evidence suggests that the orexin system is involved in modulating anxiety, and we have recently shown that cat odor-induced anxiety in rats is attenuated by the orexin receptor antagonist SB-334867. In the current experiment, c-Fos expression was used to map changes in neuronal activation following SB-334867 administration in the cat odor anxiety model. Male Wistar rats were exposed to cat odor with or without SB-334867 pre-treatment (10 mg/kg, i.p.). A naïve control group not exposed to cat odor was also used. Following cat odor exposure, brains were processed for c-Fos expression. Vehicle-treated rats showed an increase in anxiety-like behaviors (increased hiding and decreased approach toward the cat odor), and increased c-Fos expression in the posteroventral medial amygdala (MePV), paraventricular hypothalamus (PVN) and dorsal premammillary nucleus (PMd). In rats pretreated with SB-334867, approach scores increased and c-Fos expression decreased in the PVN and PMd. These results provide both behavioral and neuroanatomical evidence for the attenuation of cat odor-induced anxiety in rats via the orexin system. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  1. Sex and Exercise Interact to Alter the Expression of Anabolic Androgenic Steroid-Induced Anxiety-Like Behaviors in the Mouse

    Science.gov (United States)

    Onakomaiya, Marie M.; Porter, Donna M.; Oberlander, Joseph G.; Henderson, Leslie P.

    2014-01-01

    Anabolic androgenic steroids (AAS) are taken by both sexes to enhance athletic performance and body image, nearly always in conjunction with an exercise regime. Although taken to improve physical attributes, chronic AAS use can promote negative behavior, including anxiety. Few studies have directly compared the impact of AAS use in males versus females or assessed the interaction of exercise and AAS. We show that AAS increase anxiety-like behaviors in female but not male mice and that voluntary exercise accentuates these sex-specific differences. We also show that levels of the anxiogenic peptide corticotrophin releasing factor (CRF) are significantly greater in males, but that AAS selectively increase CRF levels in females, thus abrogating this sex-specific difference. Exercise did not ameliorate AAS-induced anxiety or alter CRF levels in females. Exercise was anxiolytic in males, but this behavioral outcome did not correlate with CRF levels. Brain-derived neurotrophic factor (BDNF) has also been implicated in the expression of anxiety. As with CRF, levels of hippocampal BDNF mRNA were significantly greater in males than females. AAS and exercise were without effect on BDNF mRNA in females. In males, anxiolytic effects of exercise correlated with increased BDNF mRNA, however AAS-induced changes in BDNF mRNA and anxiety did not. In sum, we find that AAS elicit sex-specific differences in anxiety and that voluntary exercise accentuates these differences. In addition, our data suggest that these behavioral outcomes may reflect convergent actions of AAS and exercise on a sexually differentiated CRF signaling system within the extended amygdala. PMID:24768711

  2. Chronic Administration of Benzo(apyrene Induces Memory Impairment and Anxiety-Like Behavior and Increases of NR2B DNA Methylation.

    Directory of Open Access Journals (Sweden)

    Wenping Zhang

    Full Text Available Recently, an increasing number of human and animal studies have reported that exposure to benzo(apyrene (BaP induces neurological abnormalities and is also associated with adverse effects, such as tumor formation, immunosuppression, teratogenicity, and hormonal disorders. However, the exact mechanisms underlying BaP-induced impairment of neurological function remain unclear. The aim of this study was to examine the regulating mechanisms underlying the impact of chronic BaP exposure on neurobehavioral performance.C57BL mice received either BaP in different doses (1.0, 2.5, 6.25 mg/kg or olive oil twice a week for 90 days. Memory and emotional behaviors were evaluated using Y-maze and open-field tests, respectively. Furthermore, levels of mRNA expression were measured by using qPCR, and DNA methylation of NMDA receptor 2B subunit (NR2B was examined using bisulfate pyrosequencing in the prefrontal cortex and hippocampus.Compared to controls, mice that received BaP (2.5, 6.25 mg/kg showed deficits in short-term memory and an anxiety-like behavior. These behavioral alterations were associated with a down-regulation of the NR2B gene and a concomitant increase in the level of DNA methylation in the NR2B promoter in the two brain regions.Chronic BaP exposure induces an increase in DNA methylation in the NR2B gene promoter and down-regulates NR2B expression, which may contribute to its neurotoxic effects on behavioral performance. The results suggest that NR2B vulnerability represents a target for environmental toxicants in the brain.

  3. Interaction between Cannabinoidergic System and H2 Receptors in CA1 Region upon Anxiety-like Behaviors in Hole-Board Test

    Directory of Open Access Journals (Sweden)

    M Nasehi

    2012-05-01

    Full Text Available

    Background and Objectives: Cannabinoids produce a wide array of effects on different species and interact with different neurotransmitter systems in the brain. In the present study, the effects of histaminergic and cannabinoidregic systems as well as their interactions on anxiety-related behaviors were examined on mice. Methods: In this study, at first mice were anesthetized with intra-peritoneal injection of ketamine hydrochloride and xylazine. They were then placed in a stereotaxic apparatus. Two stainless-steel cannuale were placed one mm above CA1 regions of the dorsal hippocampus. After that, seventeen groups of animals were tested with hole board apparatus for measuring anxiety behavior. For the statistical analysis, One-way analysis of variance (ANOVA and Dunnett's test were used. Results: Intra-CA1 injection of WIN55,212-2 (0.1, 0.5µg/mice did not modify anxiety-related behaviors in mice. But administration of AM251 (25 and 50ng/mice, histamine or ranitidine (5µg/mice induced anxiogenic-like response. Also, co-administration of WIN55, 212-2 with histaminergic agents, decreased the anxiogenic-like response of histamine, but not that of ranitidine. Co-administration of an ineffective dose of AM251 with histaminergic drugs did not alter the response induced by these drugs. In all the experiments, locomotor activity was not significantly changed. Conclusion: These results showed that there may be a partial interaction between the cannabinoidergic and the histaminergic systems of the dorsal hippocampus on anxiety-like behaviors.

  4. Protective effects of phosphodiesterase 2 inhibitor on depression- and anxiety-like behaviors: involvement of antioxidant and anti-apoptotic mechanisms.

    Science.gov (United States)

    Ding, Lianshu; Zhang, Chong; Masood, Anbrin; Li, Jianxin; Sun, Jiao; Nadeem, Ahmed; Zhang, Han-Ting; O' Donnell, James M; Xu, Ying

    2014-07-15

    Stress occurs in everyday life, but the relationship between stress and the onset or development of depression/anxiety remains unknown. Increasing evidence suggests that the impairment of antioxidant defense and the neuronal cell death are important in the process of emotional disorders. Chronic stress impairs the homeostasis of antioxidants/oxidation, which results in the aberrant stimulation of the cell cycle proteins where cGMP-PKG signaling is thought to have an inhibitory role. Phosphodiesterase 2 (PDE2) is linked to cGMP-PKG signaling and highly expressed in the limbic brain regions including hippocampus and amygdala, which may play important roles in the treatment of depression and anxiety. To address the possible effects of PDE2 inhibitors on depression-/anxiety-like behaviors and the underlying mechanisms, Bay 60-7550 (0.75, 1.5 and 3 mg/kg, i.p.) was administered 30 min before chronic stress. The results suggested that Bay 60-7550 not only restored the behavioral changes but also regulated Cu/Zn superoxide dismutase (SOD) levels differentially in hippocampus and amygdala, which were increased in the hippocampus while decreased in the amygdala. It was also significant that Bay 60-7550 regulated the abnormalities of pro- and anti-apoptotic components, such as Bax, Caspase 3 and Bcl-2, and the indicator of PKG signaling characterized by pVASP(ser239), in these two brain regions. The results suggested that Bay 60-7550 is able to alleviate oxidative stress and mediate part of the apoptotic machinery in neuronal cells possibly through SOD-cGMP/PKG-anti-apoptosis signaling and that inhibition of PDE2 may represent a novel therapeutic target for psychiatric disorders, such as depression and anxiety. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Tet1 overexpression leads to anxiety-like behavior and enhanced fear memories via the activation of calcium-dependent cascade through Egr1 expression in mice.

    Science.gov (United States)

    Kwon, Wookbong; Kim, Hyeng-Soo; Jeong, Jain; Sung, Yonghun; Choi, Minjee; Park, Song; Lee, Jinhee; Jang, Soyoung; Kim, Sung Hyun; Lee, Sanggyu; Kim, Myoung Ok; Ryoo, Zae Young

    2018-01-01

    Ten-eleven translocation methylcytosine dioxygenase 1 ( Tet1 ) initiates DNA demethylation by converting 5-methylcytosine (5-mC) to 5-hydroxymethylcytosine (5-hmC) at CpG-rich regions of genes, which have key roles in adult neurogenesis and memory. In addition, the overexpression of Tet1 with 5-hmC alteration in patients with psychosis has also been reported, for instance in schizophrenia and bipolar disorders. The mechanism underlying Tet1 overexpression in the brain; however, is still elusive. In the present study, we found that Tet1-transgenic (Tet1-TG) mice displayed abnormal behaviors involving elevated anxiety and enhanced fear memories. We confirmed that Tet1 overexpression affected adult neurogenesis with oligodendrocyte differentiation in the hippocampal dentate gyrus of Tet1-TG mice. In addition, Tet1 overexpression induced the elevated expression of immediate early genes, such as Egr1 , c-fos , Arc , and Bdnf , followed by the activation of intracellular calcium signals ( i.e. , CamKII, ERK, and CREB) in prefrontal and hippocampal neurons. The expression of GABA receptor subunits ( Gabra2 and Gabra4 ) fluctuated in the prefrontal cortex and hippocampus. We evaluated the effects of Tet1 overexpression on intracellular calcium-dependent cascades by activating the Egr1 promoter in vitro Tet1 enhanced Egr1 expression, which may have led to alterations in Gabra2 and Gabra4 expression in neurons. Taken together, we suggest that the Tet1 overexpression in our Tet1-TG mice can be applied as an effective model for studying various stress-related diseases that show hyperactivation of intracellular calcium-dependent cascades in the brain.-Kwon, W., Kim, H.-S., Jeong, J., Sung, Y., Choi, M., Park, S., Lee, J., Jang, S., Kim, S. H., Lee, S., Kim, M. O., Ryoo, Z. Y. Tet1 overexpression leads to anxiety-like behavior and enhanced fear memories via the activation of calcium-dependent cascade through Egr1 expression in mice. © FASEB.

  6. Highly Palatable Food during Adolescence Improves Anxiety-Like Behaviors and Hypothalamic-Pituitary-Adrenal Axis Dysfunction in Rats that Experienced Neonatal Maternal Separation

    Directory of Open Access Journals (Sweden)

    Jong-Ho Lee

    2014-06-01

    Full Text Available BackgroundThis study was conducted to examine the effects of ad libitum consumption of highly palatable food (HPF during adolescence on the adverse behavioral outcome of neonatal maternal separation.MethodsMale Sprague-Dawley pups were separated from dam for 3 hours daily during the first 2 weeks of birth (maternal separation, MS or left undisturbed (nonhandled, NH. Half of MS pups received free access to chocolate cookies in addition to ad libitum chow from postnatal day 28 (MS+HPF. Pups were subjected to behavioral tests during young adulthood. The plasma corticosterone response to stress challenge was analyzed by radioimmunoassay.ResultsDaily caloric intake and body weight gain did not differ among the experimental groups. Ambulatory activities were decreased defecation activity and rostral grooming were increased in MS controls (fed with chow only compared with NH rats. MS controls spent less time in open arms, and more time in closed arms during the elevated plus maze test, than NH rats. Immobility duration during the forced swim test was increased in MS controls compared with NH rats. Cookie access normalized the behavioral scores of ambulatory and defecation activities and grooming, but not the scores during the elevated plus maze and swim tests in MS rats. Stress-induced corticosterone increase was blunted in MS rats fed with chow only, and cookie access normalized it.ConclusionProlonged access to HPF during adolescence and youth partly improves anxiety-related, but not depressive, symptoms in rats that experienced neonatal maternal separation, possibly in relation with improved function of the hypothalamic-pituitary-adrenal (HPA axis.

  7. Basolateral amygdala and stress-induced hyperexcitability affect motivated behaviors and addiction.

    Science.gov (United States)

    Sharp, B M

    2017-08-08

    The amygdala integrates and processes incoming information pertinent to reward and to emotions such as fear and anxiety that promote survival by warning of potential danger. Basolateral amygdala (BLA) communicates bi-directionally with brain regions affecting cognition, motivation and stress responses including prefrontal cortex, hippocampus, nucleus accumbens and hindbrain regions that trigger norepinephrine-mediated stress responses. Disruption of intrinsic amygdala and BLA regulatory neurocircuits is often caused by dysfunctional neuroplasticity frequently due to molecular alterations in local GABAergic circuits and principal glutamatergic output neurons. Changes in local regulation of BLA excitability underlie behavioral disturbances characteristic of disorders including post-traumatic stress syndrome (PTSD), autism, attention-deficit hyperactivity disorder (ADHD) and stress-induced relapse to drug use. In this Review, we discuss molecular mechanisms and neural circuits that regulate physiological and stress-induced dysfunction of BLA/amygdala and its principal output neurons. We consider effects of stress on motivated behaviors that depend on BLA; these include drug taking and drug seeking, with emphasis on nicotine-dependent behaviors. Throughout, we take a translational approach by integrating decades of addiction research on animal models and human trials. We show that changes in BLA function identified in animal addiction models illuminate human brain imaging and behavioral studies by more precisely delineating BLA mechanisms. In summary, BLA is required to promote responding for natural reward and respond to second-order drug-conditioned cues; reinstate cue-dependent drug seeking; express stress-enhanced reacquisition of nicotine intake; and drive anxiety and fear. Converging evidence indicates that chronic stress causes BLA principal output neurons to become hyperexcitable.

  8. GABA-BZD Receptor Modulating Mechanism of Panax quinquefolius against 72-hours Sleep Deprivation Induced Anxiety like Behavior: Possible Roles of Oxidative Stress, Mitochondrial Dysfunction and Neuroinflammation

    Directory of Open Access Journals (Sweden)

    Priyanka eChanana

    2016-03-01

    Full Text Available ABSTRACTRationale- Panax quinquefolius (American Ginseng is known for its therapeutic potential against various neurological disorders, but its plausible mechanism of action still remains undeciphered. GABA (Gamma Amino Butyric Acid plays an important role in sleep wake cycle homeostasis. Thus there exists rationale in exploring the GABA-ergic potential of Panax quinquefolius as neuroprotective strategy in sleep deprivation induced secondary neurological problems.Objective- The present study was designed to explore the possible GABA-ergic mechanism in the neuro-protective effect of Panax quinquefolius against 72-hours sleep deprivation induced anxiety like behaviour, oxidative stress, mitochondrial dysfunction, HPA-axis activation and neuroinflammation.Materials and Methods- Male laca mice were sleep deprived for 72-hours by using Grid suspended over water method. Panax quinquefolius (American Ginseng 50, 100 and 200 mg/kg was administered alone and in combination with GABA modulators (GABA Cl- channel inhibitor, GABA-benzodiazepine receptor inhibitor and GABAA agonist for 8 days, starting five days prior to 72-hours sleep deprivation period. Various behavioural (locomotor activity, mirror chamber test, biochemical (lipid peroxidation, reduced glutathione, catalase, nitrite levels, mitochondrial complexes, neuroinflammation marker (Tumour Necrosis Factor, TNF-alpha, serum corticosterone, and histopathological sections of brains were assessed. Results- 72-hours sleep deprivation significantly impaired locomotor activity, caused anxiety-like behaviour, conditions of oxidative stress, alterations in mitochondrial enzyme complex activities, raised serum corticosterone levels, brain TNFα levels and led to neuroinflammation like signs in discrete brain areas as compared to naive group. Panax quinquefolius (100 and 200 mg/kg treatment restored the behavioural, biochemical, mitochondrial, molecular and histopathological alterations. Pre-treatment of

  9. Effects of Gladiolus dalenii on the Stress-Induced Behavioral, Neurochemical, and Reproductive Changes in Rats

    Directory of Open Access Journals (Sweden)

    David Fotsing

    2017-09-01

    Full Text Available Gladiolus dalenii is a plant commonly used in many regions of Cameroon as a cure for various diseases like headaches, epilepsy, schizophrenia, and mood disorders. Recent studies have revealed that the aqueous extract of G. dalenii (AEGD exhibited antidepressant-like properties in rats. Therefore, we hypothesized that the AEGD could protect from the stress-induced behavioral, neurochemical, and reproductive changes in rats. The objective of the present study was to elucidate the effect of the AEGD on behavioral, neurochemical, and reproductive characteristics, using female rats subjected to chronic immobilization stress. The chronic immobilization stress (3 h per day for 28 days was applied to induce female reproductive and behavioral impairments in rats. The immobilization stress was provoked in rats by putting them separately inside cylindrical restrainers with ventilated doors at ambient temperature. The plant extract was given to rats orally everyday during 28 days, 5 min before induction of stress. On a daily basis, a vaginal smear was made to assess the duration of the different phases of the estrous cycle and at the end of the 28 days of chronic immobilization stress, the rat’s behavior was assessed in the elevated plus maze. They were sacrificed by cervical disruption. The organs were weighed, the ovary histology done, and the biochemical parameters assessed. The findings of this research revealed that G. dalenii increased the entries and the time of open arm exploration in the elevated plus maze. Evaluation of the biochemical parameters levels indicated that there was a significant reduction in the corticosterone, progesterone, and prolactin levels in the G. dalenii aqueous extract treated rats compared to stressed rats whereas the levels of serotonin, triglycerides, adrenaline, cholesterol, glucose estradiol, follicle stimulating hormone and luteinizing hormone were significantly increased in the stressed rats treated with, G. dalenii

  10. Critical neuropsychobiological analysis of panic attack- and anticipatory anxiety-like behaviors in rodents confronted with snakes in polygonal arenas and complex labyrinths: a comparison to the elevated plus- and T-maze behavioral tests

    Directory of Open Access Journals (Sweden)

    Norberto C. Coimbra

    Full Text Available Objective: To compare prey and snake paradigms performed in complex environments to the elevated plus-maze (EPM and T-maze (ETM tests for the study of panic attack- and anticipatory anxiety-like behaviors in rodents. Methods: PubMed was reviewed in search of articles focusing on the plus maze test, EPM, and ETM, as well as on defensive behaviors displayed by threatened rodents. In addition, the authors’ research with polygonal arenas and complex labyrinth (designed by the first author for confrontation between snakes and small rodents was examined. Results: The EPM and ETM tests evoke anxiety/fear-related defensive responses that are pharmacologically validated, whereas the confrontation between rodents and snakes in polygonal arenas with or without shelters or in the complex labyrinth offers ethological conditions for studying more complex defensive behaviors and the effects of anxiolytic and panicolytic drugs. Prey vs. predator paradigms also allow discrimination between non-oriented and oriented escape behavior. Conclusions: Both EPM and ETM simple labyrinths are excellent apparatuses for the study of anxiety- and instinctive fear-related responses, respectively. The confrontation between rodents and snakes in polygonal arenas, however, offers a more ethological environment for addressing both unconditioned and conditioned fear-induced behaviors and the effects of anxiolytic and panicolytic drugs.

  11. Critical neuropsychobiological analysis of panic attack- and anticipatory anxiety-like behaviors in rodents confronted with snakes in polygonal arenas and complex labyrinths: a comparison to the elevated plus- and T-maze behavioral tests.

    Science.gov (United States)

    Coimbra, Norberto C; Paschoalin-Maurin, Tatiana; Bassi, Gabriel S; Kanashiro, Alexandre; Biagioni, Audrey F; Felippotti, Tatiana T; Elias-Filho, Daoud H; Mendes-Gomes, Joyce; Cysne-Coimbra, Jade P; Almada, Rafael C; Lobão-Soares, Bruno

    2017-01-01

    To compare prey and snake paradigms performed in complex environments to the elevated plus-maze (EPM) and T-maze (ETM) tests for the study of panic attack- and anticipatory anxiety-like behaviors in rodents. PubMed was reviewed in search of articles focusing on the plus maze test, EPM, and ETM, as well as on defensive behaviors displayed by threatened rodents. In addition, the authors' research with polygonal arenas and complex labyrinth (designed by the first author for confrontation between snakes and small rodents) was examined. The EPM and ETM tests evoke anxiety/fear-related defensive responses that are pharmacologically validated, whereas the confrontation between rodents and snakes in polygonal arenas with or without shelters or in the complex labyrinth offers ethological conditions for studying more complex defensive behaviors and the effects of anxiolytic and panicolytic drugs. Prey vs. predator paradigms also allow discrimination between non-oriented and oriented escape behavior. Both EPM and ETM simple labyrinths are excellent apparatuses for the study of anxiety- and instinctive fear-related responses, respectively. The confrontation between rodents and snakes in polygonal arenas, however, offers a more ethological environment for addressing both unconditioned and conditioned fear-induced behaviors and the effects of anxiolytic and panicolytic drugs.

  12. Effect of loading speed on the stress-induced magnetic behavior of ferromagnetic steel

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Sheng, E-mail: longtubao@zju.edu.cn; Gu, Yibin; Fu, Meili; Zhang, Da; Hu, Shengnan

    2017-02-01

    The primary goal of this research is to investigate the effect of loading speed on the stress-induced magnetic behavior of a ferromagnetic steel. Uniaxial tension tests on Q235 steel were carried out with various stress levels under different loading speeds. The variation of the magnetic signals surrounding the tested specimen was detected by a fluxgate magnetometer. The results indicated that the magnetic signal variations depended not only on the tensile load level but on the loading speed during the test. The magnetic field amplitude seemed to decrease gradually with the increase in loading speed at the same tensile load level. Furthermore, the evolution of the magnetic reversals is also related to the loading speed. Accordingly, the loading speed should be considered as one of the influencing variables in the Jies-Atherton model theory of the magnetomechanical effect. - Highlights: • Magnetic behaviors induced by different loading speeds were investigated. • Loading speed imposes strong impact on the variation of the magnetic field signals. • The magnetic field amplitude reduces gradually with the increasing loading speed. • The Jies-Atherton model theory should consider the effect of loading speed.

  13. Effect of loading speed on the stress-induced magnetic behavior of ferromagnetic steel

    International Nuclear Information System (INIS)

    Bao, Sheng; Gu, Yibin; Fu, Meili; Zhang, Da; Hu, Shengnan

    2017-01-01

    The primary goal of this research is to investigate the effect of loading speed on the stress-induced magnetic behavior of a ferromagnetic steel. Uniaxial tension tests on Q235 steel were carried out with various stress levels under different loading speeds. The variation of the magnetic signals surrounding the tested specimen was detected by a fluxgate magnetometer. The results indicated that the magnetic signal variations depended not only on the tensile load level but on the loading speed during the test. The magnetic field amplitude seemed to decrease gradually with the increase in loading speed at the same tensile load level. Furthermore, the evolution of the magnetic reversals is also related to the loading speed. Accordingly, the loading speed should be considered as one of the influencing variables in the Jies-Atherton model theory of the magnetomechanical effect. - Highlights: • Magnetic behaviors induced by different loading speeds were investigated. • Loading speed imposes strong impact on the variation of the magnetic field signals. • The magnetic field amplitude reduces gradually with the increasing loading speed. • The Jies-Atherton model theory should consider the effect of loading speed.

  14. Agmatine attenuates chronic unpredictable mild stress induced behavioral alteration in mice.

    Science.gov (United States)

    Taksande, Brijesh G; Faldu, Dharmesh S; Dixit, Madhura P; Sakaria, Jay N; Aglawe, Manish M; Umekar, Milind J; Kotagale, Nandkishor R

    2013-11-15

    Chronic stress exposure and resulting dysregulation of the hypothalamic pituitary adrenal axis develops susceptibility to variety of neurological and psychiatric disorders. Agmatine, a putative neurotransmitter has been reported to be released in response to various stressful stimuli to maintain the homeostasis. Present study investigated the role of agmatine on chronic unpredictable mild stress (CUMS) induced behavioral and biochemical alteration in mice. Exposure of mice to CUMS protocol for 28 days resulted in diminished performance in sucrose preference test, splash test, forced swim test and marked elevation in plasma corticosterone levels. Chronic agmatine (5 and 10 mg/kg, ip, once daily) treatment started on day-15 and continued till the end of the CUMS protocol significantly increased sucrose preference, improved self-care and motivational behavior in the splash test and decreased duration of immobility in the forced swim test. Agmatine treatment also normalized the elevated corticosterone levels and prevented the body weight changes in chronically stressed animals. The pharmacological effect of agmatine was comparable to selective serotonin reuptake inhibitor, fluoxetine (10mg/kg, ip). Results of present study clearly demonstrated the anti-depressant like effect of agmatine in chronic unpredictable mild stress induced depression in mice. Thus the development of drugs based on brain agmatinergic modulation may represent a new potential approach for the treatment of stress related mood disorders like depression. © 2013 Published by Elsevier B.V.

  15. Gestational stress induces persistent depressive-like behavior and structural modifications within the postpartum nucleus accumbens

    Science.gov (United States)

    Haim, Achikam; Sherer, Morgan; Leuner, Benedetta

    2015-01-01

    Postpartum depression (PPD) is a common complication following childbirth experienced by one in every five new mothers. Pregnancy stress enhances vulnerability to PPD and has also been shown to increase depressive-like behavior in postpartum rats. Thus, gestational stress may be an important translational risk factor that can be used to investigate the neurobiological mechanisms underlying PPD. Here we examined the effects of gestational stress on depressive-like behavior during the early/mid and late postpartum periods and evaluated whether this was accompanied by altered structural plasticity in the nucleus accumbens (NAc), a brain region that has been linked to PPD. We show that early/mid (PD8) postpartum female rats exhibited more depressive-like behavior in the forced swim test as compared to late postpartum females (PD22). However, two weeks of restraint stress during pregnancy increased depressive-like behavior regardless of postpartum timepoint. In addition, dendritic length, branching, and spine density on medium spiny neurons in the NAc shell were diminished in postpartum rats that experienced gestational stress although stress-induced reductions in spine density were evident only in early/mid postpartum females. In the NAc core, structural plasticity was not affected by gestational stress but late postpartum females exhibited lower spine density and reduced dendritic length. Overall, these data not only demonstrate structural changes in the NAc across the postpartum period, they also show that postpartum depressive-like behavior following exposure to gestational stress is associated with compromised structural plasticity in the NAc and thus may provide insight into the neural changes that could contribute to PPD. PMID:25359225

  16. TRH and TRH receptor system in the basolateral amygdala mediate stress-induced depression-like behaviors.

    Science.gov (United States)

    Choi, Juli; Kim, Ji-eun; Kim, Tae-Kyung; Park, Jin-Young; Lee, Jung-Eun; Kim, Hannah; Lee, Eun-Hwa; Han, Pyung-Lim

    2015-10-01

    Chronic stress is a potent risk factor for depression, but the mechanism by which stress causes depression is not fully understood. To investigate the molecular mechanism underlying stress-induced depression, C57BL/6 inbred mice were treated with repeated restraint to induce lasting depressive behavioral changes. Behavioral states of individual animals were evaluated using the forced swim test, which measures psychomotor withdrawals, and the U-field test, which measures sociability. From these behavioral analyses, individual mice that showed depression-like behaviors in both psychomotor withdrawal and sociability tests, and individuals that showed a resiliency to stress-induced depression in both tests were selected. Among the neuropeptides expressed in the amygdala, thyrotropin-releasing hormone (TRH) was identified as being persistently up-regulated in the basolateral amygdala (BLA) in individuals exhibiting severe depressive behaviors in the two behavior tests, but not in individuals displaying a stress resiliency. Activation of TRH receptors by local injection of TRH in the BLA in normal mice produced depressive behaviors, mimicking chronic stress effects, whereas siRNA-mediated suppression of either TRH or TRHR1 in the BLA completely blocked stress-induced depressive symptoms. The TRHR1 agonist, taltirelin, injection in the BLA increased the level of p-ERK, which mimicked the increased p-ERK level in the BLA that was induced by treatment with repeated stress. Stereotaxic injection of U0126, a potent inhibitor of the ERK pathway, within the BLA blocked stress-induced behavioral depression. These results suggest that repeated stress produces lasting depression-like behaviors via the up-regulation of TRH and TRH receptors in the BLA. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Structure-dependent behavior of stress-induced voiding in Cu interconnects

    International Nuclear Information System (INIS)

    Wu Zhenyu; Yang Yintang; Chai Changchun; Li Yuejin; Wang Jiayou; Li Bin; Liu Jing

    2010-01-01

    Stress modeling and cross-section failure analysis by focused-ion-beam have been used to investigate stress-induced voiding phenomena in Cu interconnects. The voiding mechanism and the effect of the interconnect structure on the stress migration have been studied. The results show that the most concentrated tensile stress appears and voids form at corners of vias on top surfaces of Cu M1 lines. A simple model of stress induced voiding in which vacancies arise due to the increase of the chemical potential under tensile stress and diffuse under the force of stress gradient along the main diffusing path indicates that stress gradient rather than stress itself determines the voiding rate. Cu interconnects with larger vias show less resistance to stress-induced voiding due to larger stress gradient at corners of vias.

  18. Antistress Effects of Rosa rugosa Thunb. on Total Sleep Deprivation-Induced Anxiety-Like Behavior and Cognitive Dysfunction in Rat: Possible Mechanism of Action of 5-HT6 Receptor Antagonist.

    Science.gov (United States)

    Na, Ju-Ryun; Oh, Dool-Ri; Han, SeulHee; Kim, Yu-Jin; Choi, EunJin; Bae, Donghyuck; Oh, Dong Hwan; Lee, Yoo-Hyun; Kim, Sunoh; Jun, Woojin

    2016-09-01

    Our previous results suggest that the Rosa rugosa Thunb. (family Rosaceae) alleviates endurance exercise-induced stress by decreasing oxidative stress levels. This study aimed to screen and identify the physiological antistress effects of an extract of R. rugosa (RO) on sleep deprivation-induced anxiety-like behavior and cognitive tests (in vivo) and tested for hippocampal CORT and monoamine levels (ex vivo), corticosterone (CORT)-induced injury, N-methyl-d-aspartate (NMDA) receptor, and serotonin 6 (5-hydroxytryptamine 6, 5-HT6) receptor activities (in vitro) in search of active principles and underlying mechanisms of action. We confirmed the antistress effects of RO in a sleep-deprived stress model in rat and explored the underlying mechanisms of its action. In conclusion, an R. rugosa extract showed efficacy and potential for use as an antistress therapy to treat sleep deprivation through its antagonism of the 5-HT6 receptor and resulting inhibition of cAMP activity.

  19. Repeated Short-term (2h×14d) Emotional Stress Induces Lasting Depression-like Behavior in Mice.

    Science.gov (United States)

    Kim, Kyoung-Shim; Kwon, Hye-Joo; Baek, In-Sun; Han, Pyung-Lim

    2012-03-01

    Chronic behavioral stress is a risk factor for depression. To understand chronic stress effects and the mechanism underlying stress-induced emotional changes, various animals model have been developed. We recently reported that mice treated with restraints for 2 h daily for 14 consecutive days (2h-14d or 2h×14d) show lasting depression-like behavior. Restraint provokes emotional stress in the body, but the nature of stress induced by restraints is presumably more complex than emotional stress. So a question remains unsolved whether a similar procedure with "emotional" stress is sufficient to cause depression-like behavior. To address this, we examined whether "emotional" constraints in mice treated for 2h×14d by enforcing them to individually stand on a small stepping platform placed in a water bucket with a quarter full of water, and the stress evoked by this procedure was termed "water-bucket stress". The water-bucket stress activated the hypothalamus-pituitary-adrenal gland (HPA) system in a manner similar to restraint as evidenced by elevation of serum glucocorticoids. After the 2h×14d water-bucket stress, mice showed behavioral changes that were attributed to depression-like behavior, which was stably detected >3 weeks after last water-bucket stress endorsement. Administration of the anti-depressant, imipramine, for 20 days from time after the last emotional constraint completely reversed the stress-induced depression-like behavior. These results suggest that emotional stress evokes for 2h×14d in mice stably induces depression-like behavior in mice, as does the 2h×14d restraint.

  20. Neonatal tactile stimulation reverses the effect of neonatal isolation on open-field and anxiety-like behavior, and pain sensitivity in male and female adult Sprague-Dawley rats.

    Science.gov (United States)

    Imanaka, A; Morinobu, S; Toki, S; Yamamoto, S; Matsuki, A; Kozuru, T; Yamawaki, S

    2008-01-10

    It is well known that early life events induce long-lasting psychophysiological and psychobiological influences in later life. In rodent studies, environmental enrichment after weaning prevents the adulthood behavioral and emotional disturbances in response to early adversities. We compared the behavioral effect of neonatal isolation (NI) with the effect of NI accompanied by tactile stimulation (NTS) to determine whether NTS could reverse or prevent the effects of NI on the adulthood behavioral and emotional responses to environmental stimuli. In addition, we also examined the sex difference of the NTS effect. Measurements of body weights, an open-field locomotor test, an elevated plus maze test, a hot-plate test, and a contextual fear-conditioning test were performed on postnatal day 60. As compared with rats subjected to NI, rats subjected to NTS showed significantly higher activity and exploration in the open-field locomotor test, lower anxiety-like behavior in the elevated plus maze test, and significantly prolonged latencies in the hot-plate test, and this effect was equal among males and females. In the contextual fear-conditioning test, whereas NTS significantly reduced the enhanced freezing time due to NI in females, no significant difference in the freezing time between NI and NTS was found in males. These findings indicate that adequate tactile stimulation in early life plays an important role in the prevention of disturbances in the behavioral and emotional responses to environmental stimuli in adulthood induced by early adverse experiences.

  1. Cav1.2 channels mediate persistent chronic stress-induced behavioral deficits that are associated with prefrontal cortex activation of the p25/Cdk5-glucocorticoid receptor pathway

    Directory of Open Access Journals (Sweden)

    Charlotte C. Bavley

    2017-12-01

    Full Text Available Chronic stress is known to precipitate and exacerbate neuropsychiatric symptoms, and exposure to stress is particularly pathological in individuals with certain genetic predispositions. Recent genome wide association studies have identified single nucleotide polymorphisms (SNPs in the gene CACNA1C, which codes for the Cav1.2 subunit of the L-type calcium channel (LTCC, as a common risk variant for multiple neuropsychiatric conditions. Cav1.2 channels mediate experience-dependent changes in gene expression and long-term synaptic plasticity through activation of downstream calcium signaling pathways. Previous studies have found an association between stress and altered Cav1.2 expression in the brain, however the contribution of Cav1.2 channels to chronic stress-induced behaviors, and the precise Cav1.2 signaling mechanisms activated are currently unknown. Here we report that chronic stress leads to a delayed increase in Cav1.2 expression selectively within the prefrontal cortex (PFC, but not in other stress-sensitive brain regions such as the hippocampus or amygdala. Further, we demonstrate that while Cav1.2 heterozygous (Cav1.2+/− mice show chronic stress-induced depressive-like behavior, anxiety-like behavior, and deficits in working memory 1–2 days following stress, they are resilient to the effects of chronic stress when tested 5–7 days later. Lastly, molecular studies find a delayed upregulation of the p25/Cdk5-glucocorticoid receptor (GR pathway in the PFC when examined 8 days post-stress that is absent in Cav1.2+/− mice. Our findings reveal a novel Cav1.2-mediated molecular mechanism associated with the persistent behavioral effects of chronic stress and provide new insight into potential Cav1.2 channel mechanisms that may contribute to CACNA1C-linked neuropsychiatric phenotypes.

  2. Grainyhead-like 3 (Grhl3) deficiency in brain leads to altered locomotor activity and decreased anxiety-like behaviors in aged mice.

    Science.gov (United States)

    Dworkin, Sebastian; Auden, Alana; Partridge, Darren D; Daglas, Maria; Medcalf, Robert L; Mantamadiotis, Theo; Georgy, Smitha R; Darido, Charbel; Jane, Stephen M; Ting, Stephen B

    2017-06-01

    The highly conserved Grainyhead-like (Grhl) family of transcription factors, comprising three members in vertebrates (Grhl1-3), play critical regulatory roles during embryonic development, cellular proliferation, and apoptosis. Although loss of Grhl function leads to multiple neural abnormalities in numerous animal models, a comprehensive analysis of Grhl expression and function in the mammalian brain has not been reported. Here they show that only Grhl3 expression is detectable in the embryonic mouse brain; particularly within the habenula, an organ known to modulate repressive behaviors. Using both Grhl3-knockout mice (Grhl3 -/- ), and brain-specific conditional deletion of Grhl3 in adult mice (Nestin-Cre/Grhl3 flox/flox ), they performed histological expression analyses and behavioral tests to assess long-term effects of Grhl3 loss on motor co-ordination, spatial memory, anxiety, and stress. They found that complete deletion of Grhl3 did not lead to noticeable structural or cell-intrinsic defects in the embryonic brain; however, aged Grhl3 conditional knockout (cKO) mice showed enlarged lateral ventricles and displayed marked changes in motor function and behaviors suggestive of decreased fear and anxiety. They conclude that loss of Grhl3 in the brain leads to significant alterations in locomotor activity and decreased self-inhibition, and as such, these mice may serve as a novel model of human conditions of impulsive behavior or hyperactivity. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 775-788, 2017. © 2017 Wiley Periodicals, Inc.

  3. Cannabinoid type 1 receptor ligands WIN 55,212-2 and AM 251 alter anxiety-like behaviors of marmoset monkeys in an open-field test.

    Science.gov (United States)

    Cagni, Priscila; Barros, Marilia

    2013-03-01

    Cannabinoid type 1 receptors (CB1r) are an important modulatory site for emotional behavior. However, little is known on the effects of CB1r ligands on emotionality aspects of primates, even with their highly similar behavioral response and receptor density/distribution as humans. Thus, we analyzed the effects of the CB1r agonist WIN 55,212-2 (WIN; 1mg/kg) and the antagonist AM 251 (AM; 2mg/kg), systemically administered prior to a single brief (15 min) exposure to a novel open-field (OF) environment, on the behavior of individually tested adult black tufted-ear marmosets. Both WIN- and AM-treated subjects, compared to vehicle controls, had significantly lower rates of long (contact) calls and exploration, while higher levels of vigilance-related behaviors (scan/glance); these are indicators of anxiolysis in this setup. Changes in locomotion were not detected. However, in the vehicle and AM-groups, sojourn in the peripheral zone of the OF was significantly higher than in its central region. WIN-treated marmosets spent an equivalent amount of time in both zones. Therefore, activation or blockade CB1r function prior to a short and individual exposure to an unfamiliar environment exerted a significant and complex influence on different behavioral indicators of anxiety in these monkeys (i.e., a partially overlapping anxiolytic-like profile). AM 251, however, has no anxiolytic effect when the time spent in the center of the OF is considered. This is a major difference when compared to the WIN-treated group. Data were compared to the response profile reported in other pre-clinical (rodent) and clinical studies. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Rearing in enriched environment increases parvalbumin-positive small neurons in the amygdala and decreases anxiety-like behavior of male rats

    OpenAIRE

    Urakawa, Susumu; Takamoto, Kouich; Hori, Etsuro; Sakai, Natsuko; Ono, Taketoshi; Nishijo, Hisao

    2013-01-01

    Background Early life experiences including physical exercise, sensory stimulation, and social interaction can modulate development of the inhibitory neuronal network and modify various behaviors. In particular, alteration of parvalbumin-expressing neurons, a gamma-aminobutyric acid (GABA)ergic neuronal subpopulation, has been suggested to be associated with psychiatric disorders. Here we investigated whether rearing in enriched environment could modify the expression of parvalbumin-positive ...

  5. Suckling in litters with different sizes, and early and late swimming exercise differentially modulates anxiety-like behavior, memory and electrocorticogram potentiation after spreading depression in rats.

    Science.gov (United States)

    E Silva-Gondim, Mariana Barros; de Souza, Thays Kallyne Marinho; Rodrigues, Marcelo Cairrão Araújo; Guedes, Rubem Carlos Araújo

    2017-11-28

    Analyze the hypothesis that swimming exercise, in rats suckled under distinct litter sizes, alters behavioral parameters suggestive of anxiety and recognition memory, and the electrocorticogram potentiation that occurs after the excitability-related phenomenon that is known as cortical spreading depression (CSD). Male Wistar rats were suckled in litters with six or 12 pups (L 6 and L 12 groups). Animals swam at postnatal days (P) 8-23, or P60-P75 (early-exercised or late-exercised groups, respectively), or remained no-exercised. Behavioral tests (open field - OF and object recognition - OR) were conducted between P77 and P80. Between P90 and P120, ECoG was recorded for 2 hours. After this 'baseline' recording, CSD was elicited every 30 minutes over the course of 2 hours. Early swimming enhanced the number of entries and the percentage of time in the OF-center (P < 0.05). In animals that swam later, this effect occurred in the L6 group only. Compared to the corresponding sedentary groups, OR-test showed a better memory in the L6 early exercised rats, and a worse memory in all other groups (P < 0.05). In comparison to baseline values, ECoG amplitudes after CSD increased 14-43% for all groups (P < 0.05). In the L 6 condition, early swimming and late swimming, respectively, reduced and enhanced the magnitude of the post-CSD ECoG potentiation in comparison with the corresponding L 6 no-exercised groups (P < 0.05). Our data suggest a differential effect of early- and late-exercise on the behavioral and electrophysiological parameters, suggesting an interaction between the age of exercise and the nutritional status during lactation.

  6. Activation of Sigma-1 receptor ameliorates anxiety-like behavior and cognitive impairments in a rat model of post-traumatic stress disorder.

    Science.gov (United States)

    Ji, Li-Li; Peng, Jun-Bo; Fu, Chang-Hai; Cao, Dong; Li, Dan; Tong, Lei; Wang, Zhen-Yu

    2016-09-15

    Among learning and memory processes, fear memories are crucial in some psychiatric disorders like post-traumatic stress disorder (PTSD). Accumulating evidence shows that the sigma-1 receptor (Sig-1R) has comprehensive involvement in cognitive impairment and neuroprotective effects. It has also been reported that BDNF appears to enhance extinction of fear in anxiety disorders via the MAPK signaling cascade. However, it remains unclear whether BDNF-TrkB-MAPK pathway may be mechanistically involved in the therapeutic effect of sigma-1 receptor in the development of PTSD. To address this question, rats were subjected to a classical single-prolonged stress procedure (SPS) and kept undisturbed for 7 days. After that, rats were re-stressed by re-exposure to the forced swim component of SPS (RSPS). Behavior tests were subsequently performed to assess anxiety and cognitive impairments. Furthermore, we analyzed the expression of BDNF and the phosphorylation of TrkB and three MAPK pathways, namely, the ERK, JNK and p38. We found that the levels of BDNF and p-TrkB were increased following the RSPS procedure, which were reversed by the administration of PRE-084. Meanwhile, among the three MAPK signaling pathways, only the p-ERK expression was increased following the RSPS procedure. Collectively, our results indicate that BDNF-TrkB-ERK signaling pathway may be involved in the activation of sigma-1 receptor to yield therapeutic benefits for PTSD. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Diphenyl diselenide ameliorates monosodium glutamate induced anxiety-like behavior in rats by modulating hippocampal BDNF-Akt pathway and uptake of GABA and serotonin neurotransmitters.

    Science.gov (United States)

    Rosa, Suzan Gonçalves; Quines, Caroline Brandão; Stangherlin, Eluza Curte; Nogueira, Cristina Wayne

    2016-03-01

    Monosodium glutamate (MSG), a flavor enhancer used in food, administered to neonatal rats causes neuronal lesions and leads to anxiety when adulthood. We investigated the anxiolytic-like effect of diphenyl diselenide (PhSe)2 and its mechanisms on anxiety induced by MSG. Neonatal male and female Wistar rats received a subcutaneous injection of saline (0.9%) or MSG (4 g/kg/day) from the 1st to 10th postnatal day. At 60 days of life, the rats received (PhSe)2 (1mg/kg/day) or vehicle by the intragastric route for 7 days. The spontaneous locomotor activity (LAM), elevated plus maze test (EPM) and contextual fear conditioning test (CFC) as well as neurochemical ([(3)H]GABA and [(3)H]5-HT uptake) and molecular analyses (Akt and p-Akt and BDNF levels) were carried out after treatment with (PhSe)2. Neonatal exposure to MSG increased all anxiogenic parameters in LAM, EPM and CFC tests. MSG increased GABA and 5-HT uptake in hippocampus of rats, without changing uptake in cerebral cortex. The levels of BDNF and p-Akt were reduced in hippocampus of rats treated with MSG. The administration of (PhSe)2 to rats reversed all behavioral anxiogenic parameters altered by MSG. The increase in hippocampal GABA and 5-HT uptake induced by MSG was reversed by (PhSe)2. (PhSe)2 reversed the reduction in hippocampal BDNF and p-Akt levels induced by MSG. In conclusion, the anxiolytic-like action of (PhSe)2 in rats exposed to MSG during their neonatal period is related to its modulation of hippocampal GABA and 5-HT uptake as well as the BDNF-Akt pathway. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Chewing Prevents Stress-Induced Hippocampal LTD Formation and Anxiety-Related Behaviors: A Possible Role of the Dopaminergic System

    Science.gov (United States)

    Koizumi, So; Onozuka, Minoru

    2015-01-01

    The present study examined the effects of chewing on stress-induced long-term depression (LTD) and anxiogenic behavior. Experiments were performed in adult male rats under three conditions: restraint stress condition, voluntary chewing condition during stress, and control condition without any treatments except handling. Chewing ameliorated LTD development in the hippocampal CA1 region. It also counteracted the stress-suppressed number of entries to the center region of the open field when they were tested immediately, 30 min, or 60 min after restraint. At the latter two poststress time periods, chewing during restraint significantly increased the number of times of open arm entries in the elevated plus maze, when compared with those without chewing. The in vivo microdialysis further revealed that extracellular dopamine concentration in the ventral hippocampus, which is involved in anxiety-related behavior, was significantly greater in chewing rats than in those without chewing from 30 to 105 min after stress exposure. Development of LTD and anxiolytic effects ameliorated by chewing were counteracted by administering the D1 dopamine receptor antagonist SCH23390, which suggested that chewing may activate the dopaminergic system in the ventral hippocampus to suppress stress-induced anxiogenic behavior. PMID:26075223

  9. Chewing prevents stress-induced hippocampal LTD formation and anxiety-related behaviors: a possible role of the dopaminergic system.

    Science.gov (United States)

    Ono, Yumie; Koizumi, So; Onozuka, Minoru

    2015-01-01

    The present study examined the effects of chewing on stress-induced long-term depression (LTD) and anxiogenic behavior. Experiments were performed in adult male rats under three conditions: restraint stress condition, voluntary chewing condition during stress, and control condition without any treatments except handling. Chewing ameliorated LTD development in the hippocampal CA1 region. It also counteracted the stress-suppressed number of entries to the center region of the open field when they were tested immediately, 30 min, or 60 min after restraint. At the latter two poststress time periods, chewing during restraint significantly increased the number of times of open arm entries in the elevated plus maze, when compared with those without chewing. The in vivo microdialysis further revealed that extracellular dopamine concentration in the ventral hippocampus, which is involved in anxiety-related behavior, was significantly greater in chewing rats than in those without chewing from 30 to 105 min after stress exposure. Development of LTD and anxiolytic effects ameliorated by chewing were counteracted by administering the D1 dopamine receptor antagonist SCH23390, which suggested that chewing may activate the dopaminergic system in the ventral hippocampus to suppress stress-induced anxiogenic behavior.

  10. Chewing Prevents Stress-Induced Hippocampal LTD Formation and Anxiety-Related Behaviors: A Possible Role of the Dopaminergic System

    Directory of Open Access Journals (Sweden)

    Yumie Ono

    2015-01-01

    Full Text Available The present study examined the effects of chewing on stress-induced long-term depression (LTD and anxiogenic behavior. Experiments were performed in adult male rats under three conditions: restraint stress condition, voluntary chewing condition during stress, and control condition without any treatments except handling. Chewing ameliorated LTD development in the hippocampal CA1 region. It also counteracted the stress-suppressed number of entries to the center region of the open field when they were tested immediately, 30 min, or 60 min after restraint. At the latter two poststress time periods, chewing during restraint significantly increased the number of times of open arm entries in the elevated plus maze, when compared with those without chewing. The in vivo microdialysis further revealed that extracellular dopamine concentration in the ventral hippocampus, which is involved in anxiety-related behavior, was significantly greater in chewing rats than in those without chewing from 30 to 105 min after stress exposure. Development of LTD and anxiolytic effects ameliorated by chewing were counteracted by administering the D1 dopamine receptor antagonist SCH23390, which suggested that chewing may activate the dopaminergic system in the ventral hippocampus to suppress stress-induced anxiogenic behavior.

  11. Stress-induced neuroinflammation is mediated by GSK3-dependent TLR4 signaling that promotes susceptibility to depression-like behavior

    OpenAIRE

    Cheng, Yuyan; Pardo, Marta; de Souza Armini, Rubia; Martinez, Ana; Mouhsine, Hadley; Zagury, Jean-Francois; Jope, Richard S.; Beurel, Eleonore

    2016-01-01

    Most psychiatric and neurological diseases are exacerbated by stress. Because this may partially result from stress-induced inflammation, we examined factors involved in this stress response. After a paradigm of inescapable foot shock stress that causes learned helplessness depression-like behavior, eighteen cytokines and chemokines increased in mouse hippocampus, peaking 6 to 12 hr after stress. A 24 hr prior pre-conditioning stress accelerated the rate of stress-induced hippocampal cytokine...

  12. Exposure to a highly caloric palatable diet during pregestational and gestational periods affects hypothalamic and hippocampal endocannabinoid levels at birth and induces adiposity and anxiety-like behaviors in male rat offspring

    Directory of Open Access Journals (Sweden)

    Maria Teresa eRamírez-López

    2016-01-01

    Full Text Available Exposure to unbalanced diets during pre-gestational and gestational periods may result in long-term alterations in metabolism and behavior. The contribution of the endocannabinoid system to these long-term adaptive responses is unknown. In the present study, we investigated the impact of female rat exposure to a hypercaloric-hypoproteic palatable diet during pre-gestational, gestational and lactational periods on the development of male offspring. In addition, the hypothalamic and hippocampal endocannabinoid contents at birth and the behavioral performance in adulthood were investigated. Exposure to a palatable diet resulted in low weight offspring who exhibited low hypothalamic contents of arachidonic acid and the two major endocannabinoids (anandamide and 2-arachidonoylglycerol at birth. Palmitoylethanolamide, but not oleoylethanolamide, also decreased. Additionally, pups from palatable diet-fed dams displayed lower levels of anandamide and palmitoylethanolamide in the hippocampus. The low-weight male offspring, born from palatable diet exposed mothers, gained less weight during lactation and, although they recovered weight during the post-weaning period, they developed abdominal adiposity in adulthood. These animals exhibited anxiety-like behavior in the elevated plus-maze and open field test and a low preference for a chocolate diet in a food preference test, indicating that maternal exposure to a hypercaloric diet induces long-term behavioral alterations in male offspring. These results suggest that maternal diet alterations in the function of the endogenous cannabinoid system can mediate the observed phenotype of the offspring, since both hypothalamic and hippocampal endocannabinoids regulate feeding, metabolic adaptions to caloric diets, learning, memory and emotions.

  13. Evidence that NMDA-dependent limbic neural plasticity in the right hemisphere mediates pharmacological stressor (FG-7142)-induced lasting increases in anxiety-like behavior. Study 1--Role of NMDA receptors in efferent transmission from the cat amygdala.

    Science.gov (United States)

    Adamec, R E

    1998-01-01

    The anxiogenic beta-carboline, FG-7142, produces intense anxiety in humans and anxiety-like behavior in animals. FG-7142 also mimics the effects of exogenous stressors. In cats, FG-7142 lastingly changes defensive and aggressive behavior. Long-term potentiation (LTP) of neural transmission between limbic structures known to modulate feline defensive response to threat accompany behavioral changes. A series of three reports describes experiments designed to test the hypothesis that behavioral changes depend upon an N-methyl-D-aspartate (NMDA) receptor-based LTP of efferent transmission from the amygdala. This first study characterizes the dose and time effects of injection of the NMDA receptor blocker 7-amino-phosphono-heptanoic acid (AP7) on efferent transmission from the cat amygdala to the ventromedial hypothalamus (VMH). Effects of doses of 0.5-10mg/kg (i.v.) of AP7 on potentials evoked in the VMH by single pulse stimulation of the basal amygdala were examined. In order to localize the action of the drug, concurrent measurements were taken of potentials evoked in the VMH by stimulation of the efferent fibers from the amygdala to the VMH (ventral amygdalofugal pathway, VAF). There was a dose-dependent reduction in the amygdalo-VMH evoked potential. The greatest reduction occurred at 5 mg/kg. Effects peaked at 10 min, and persisted for at least 1 h after injection. In contrast, AP7 increased the VAF-VMH-evoked potential at 10 min after injection, with a maximal increase at 5mg/kg. The data suggest that NMDA receptors intrinsic to the amygdala modulate excitatory efferent transmission from amygdala to VMH in the cat. It is speculated that a glutamatergic projection to gamma-aminobutyric acid tonic inhibitory systems in the VMH accounts for the VAF-VMH results.

  14. Estrogen Receptor β Agonist Attenuates Endoplasmic Reticulum Stress-Induced Changes in Social Behavior and Brain Connectivity in Mice.

    Science.gov (United States)

    Crider, Amanda; Nelson, Tyler; Davis, Talisha; Fagan, Kiley; Vaibhav, Kumar; Luo, Matthew; Kamalasanan, Sunay; Terry, Alvin V; Pillai, Anilkumar

    2018-02-12

    Impaired social interaction is a key feature of several major psychiatric disorders including depression, autism, and schizophrenia. While, anatomically, the prefrontal cortex (PFC) is known as a key regulator of social behavior, little is known about the cellular mechanisms that underlie impairments of social interaction. One etiological mechanism implicated in the pathophysiology of the aforementioned psychiatric disorders is cellular stress and consequent adaptive responses in the endoplasmic reticulum (ER) that can result from a variety of environmental and physical factors. The ER is an organelle that serves essential roles in protein modification, folding, and maturation of proteins; however, the specific role of ER stress in altered social behavior is unknown. In this study, treatment with tunicamycin, an ER stress inducer, enhanced the phosphorylation level of inositol-requiring ER-to-nucleus signal kinase 1 (IRE1) and increased X-box-binding protein 1 (XBP1) mRNA splicing activity in the mouse PFC, whereas inhibition of IRE1/XBP1 pathway in PFC by a viral particle approach attenuated social behavioral deficits caused by tunicamycin treatment. Reduced estrogen receptor beta (ERβ) protein levels were found in the PFC of male mice following tunicamycin treatment. Pretreatment with an ERβ specific agonist, ERB-041 significantly attenuated tunicamycin-induced deficits in social behavior, and activation of IRE1/XBP1 pathway in mouse PFC. Moreover, ERB-041 inhibited tunicamycin-induced increases in functional connectivity between PFC and hippocampus in male mice. Together, these results show that ERβ agonist attenuates ER stress-induced deficits in social behavior through the IRE-1/XBP1 pathway.

  15. Persistent Increase in Microglial RAGE Contributes to Chronic Stress-Induced Priming of Depressive-like Behavior.

    Science.gov (United States)

    Franklin, Tina C; Wohleb, Eric S; Zhang, Yi; Fogaça, Manoela; Hare, Brendan; Duman, Ronald S

    2018-01-01

    Chronic stress-induced inflammatory responses occur in part via danger-associated molecular pattern (DAMP) molecules, such as high mobility group box 1 protein (HMGB1), but the receptor(s) underlying DAMP signaling have not been identified. Microglia morphology and DAMP signaling in enriched rat hippocampal microglia were examined during the development and expression of chronic unpredictable stress (CUS)-induced behavioral deficits, including long-term, persistent changes after CUS. The results show that CUS promotes significant morphological changes and causes robust upregulation of HMGB1 messenger RNA in enriched hippocampal microglia, an effect that persists for up to 6 weeks after CUS exposure. This coincides with robust and persistent upregulation of receptor for advanced glycation end products (RAGE) messenger RNA, but not toll-like receptor 4 in hippocampal microglia. CUS also increased surface expression of RAGE protein on hippocampal microglia as determined by flow cytometry and returned to basal levels 5 weeks after CUS. Importantly, exposure to short-term stress was sufficient to increase RAGE surface expression as well as anhedonic behavior, reflecting a primed state that results from a persistent increase in RAGE messenger RNA expression. Further evidence for DAMP signaling in behavioral responses is provided by evidence that HMGB1 infusion into the hippocampus was sufficient to cause anhedonic behavior and by evidence that RAGE knockout mice were resilient to stress-induced anhedonia. Together, the results provide evidence of persistent microglial HMGB1-RAGE expression that increases vulnerability to depressive-like behaviors long after chronic stress exposure. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  16. Possible GABAergic modulation in the protective effect of zolpidem in acute hypoxic stress-induced behavior alterations and oxidative damage.

    Science.gov (United States)

    Kumar, Anil; Goyal, Richa

    2008-03-01

    Hypoxia is an environmental stressor that is known to elicit alterations in both the autonomic nervous system and endocrine functions. The free radical or oxidative stress theory holds that oxidative reactions are mainly underlying neurodegenerative disorders. In fact among complex metabolic reactions occurring during hypoxia, many could be related to the formation of oxygen derived free radicals, causing a wide spectrum of cell damage. In present study, we investigated possible involvement of GABAergic mechanism in the protective effect of zolpidem against acute hypoxia-induced behavioral modification and biochemical alterations in mice. Mice were subjected to acute hypoxic stress for a period of 2 h. Acute hypoxic stress for 2 h caused significant impairment in locomotor activity, anxiety-like behavior, and antinocioceptive effect in mice. Biochemical analysis revealed a significant increased malondialdehyde, nitrite concentrations and depleted reduced glutathione and catalase levels. Pretreatment with zolpidem (5 and 10 mg/kg, i.p.) significantly improved locomotor activity, anti-anxiety effect, reduced tail flick latency and attenuated oxidative damage (reduced malondialdehyde, nitrite concentration, and restoration of reduced glutathione and catalase levels) as compared to stressed control (hypoxia) (P zolpidem (5 mg/kg) was blocked significantly by picrotoxin (1.0 mg/kg) or flumazenil (2 mg/kg) and potentiated by muscimol (0.05 mg/kg) in hypoxic animals (P zolpidem (5 mg/kg) per se (P zolpidem against hypoxic stress.

  17. Quercetin prevents chronic unpredictable stress induced behavioral dysfunction in mice by alleviating hippocampal oxidative and inflammatory stress.

    Science.gov (United States)

    Mehta, Vineet; Parashar, Arun; Udayabanu, Malairaman

    2017-03-15

    It is now evident that chronic stress is associated with anxiety, depression and cognitive dysfunction and very few studies have focused on identifying possible methods to prevent these stress-induced disorders. Previously, we identified abundance of quercetin in Urtica dioica extract, which efficiently attenuated stress related complications. Therefore, current study was designed to investigate the effect of quercetin on chronic unpredicted stress (CUS) induced behavioral dysfunction, oxidative stress and neuroinflammation in the mouse hippocampus. Animals were subjected to unpredicted stress for 21days, during which 30mg/kg quercetin was orally administered to them. Effect of CUS and quercetin treatment on animal behavior was assessed between day 22-26. Afterward, the hippocampus was processed to evaluate neuronal damage, oxidative and inflammatory stress. Results revealed that stressed animals were highly anxious (Elevated Plus Maze and Open Field), showed depressive-like behavior (sucrose preference task), performed poorly in short-term and long-term associative memory task (passive avoidance step-through task) and displayed reduced locomotion (open field). Quercetin alleviated behavioral dysfunction in chronically stressed animals. Compared to CUS, quercetin treatment significantly reduced anxiety, attenuated depression, improved cognitive dysfunction and normalized locomotor activity. Further, CUS elevated the levels of oxidative stress markers (TBARS, nitric oxide), lowered antioxidants (total thiol, catalase), enhanced expression of pro-inflammatory cytokines (IL-6, TNF-α, IL-1β and COX-2) in the hippocampus and damaged hippocampal neurons. Quercetin treatment significantly lowered oxidative and inflammatory stress and prevented neural damage. In conclusion, quercetin can efficiently prevent stress induced neurological complications by rescuing brain from oxidative and inflammatory stress. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Short-term exposure to enriched environment rescues chronic stress-induced impaired hippocampal synaptic plasticity, anxiety, and memory deficits.

    Science.gov (United States)

    Bhagya, Venkanna Rao; Srikumar, Bettadapura N; Veena, Jayagopalan; Shankaranarayana Rao, Byrathnahalli S

    2017-08-01

    Exposure to prolonged stress results in structural and functional alterations in the hippocampus including reduced long-term potentiation (LTP), neurogenesis, spatial learning and working memory impairments, and enhanced anxiety-like behavior. On the other hand, enriched environment (EE) has beneficial effects on hippocampal structure and function, such as improved memory, increased hippocampal neurogenesis, and progressive synaptic plasticity. It is unclear whether exposure to short-term EE for 10 days can overcome restraint stress-induced cognitive deficits and impaired hippocampal plasticity. Consequently, the present study explored the beneficial effects of short-term EE on chronic stress-induced impaired LTP, working memory, and anxiety-like behavior. Male Wistar rats were subjected to chronic restraint stress (6 hr/day) over a period of 21 days, and then they were exposed to EE (6 hr/day) for 10 days. Restraint stress reduced hippocampal CA1-LTP, increased anxiety-like symptoms in elevated plus maze, and impaired working memory in T-maze task. Remarkably, EE facilitated hippocampal LTP, improved working memory performance, and completely overcame the effect of chronic stress on anxiety behavior. In conclusion, exposure to EE can bring out positive effects on synaptic plasticity in the hippocampus and thereby elicit its beneficial effects on cognitive functions. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Stress-induced neuroinflammation is mediated by GSK3-dependent TLR4 signaling that promotes susceptibility to depression-like behavior

    Science.gov (United States)

    Cheng, Yuyan; Pardo, Marta; de Souza Armini, Rubia; Martinez, Ana; Mouhsine, Hadley; Zagury, Jean-Francois; Jope, Richard S.; Beurel, Eleonore

    2016-01-01

    Most psychiatric and neurological diseases are exacerbated by stress. Because this may partially result from stress-induced inflammation, we examined factors involved in this stress response. After a paradigm of inescapable foot shock stress that causes learned helplessness depression-like behavior, eighteen cytokines and chemokines increased in mouse hippocampus, peaking 6 to 12 hr after stress. A 24 hr prior pre-conditioning stress accelerated the rate of stress-induced hippocampal cytokine and chemokine increases, with most reaching peak levels after 1 to 3 hr, often without altering the maximal levels. Toll-like receptor 4 (TLR4) was involved in this response because most stress-induced hippocampal cytokines and chemokines were attenuated in TLR4 knockout mice. Stress activated glycogen synthase kinase-3 (GSK3) in wild-type mouse hippocampus, but not in TLR4 knockout mice. Administration of the antidepressant fluoxetine or the GSK3 inhibitor TDZD-8 reduced the stress-induced increases of most hippocampal cytokines and chemokines. Stress increased hippocampal levels of the danger-associated molecular pattern (DAMP) protein high mobility group box 1 (HMGB1), activated the inflammatory transcription factor NF-κB, and the NLRP3 inflammasome. Knockdown of HMGB1 blocked the acceleration of cytokine and chemokine increases in the hippocampus caused by two successive stresses. Fluoxetine treatment blocked stress-induced up-regulation of HMGB1 and subsequent NF-κB activation, whereas TDZD-8 administration attenuated NF-κB activation downstream of HMGB1. To test if stress-induced cytokines and chemokines contribute to depression-like behavior, the learned helplessness model was assessed. Antagonism of TNFα modestly reduced susceptibility to learned helplessness induction, whereas TLR4 knockout mice were resistant to learned helplessness. Thus, stress-induces a broad inflammatory response in mouse hippocampus that involves TLR4, GSK3, and downstream inflammatory

  20. Potential role of licofelone, minocycline and their combination against chronic fatigue stress induced behavioral, biochemical and mitochondrial alterations in mice.

    Science.gov (United States)

    Kumar, Anil; Vashist, Aditi; Kumar, Puneet; Kalonia, Harikesh; Mishra, Jitendriya

    2012-01-01

    Chronic fatigue stress (CFS) is a common complaint among general population. Persistent and debilitating fatigue severely impairs daily functioning and is usually accompanied by combination of several physical and psychiatric problems. It is now well established fact that oxidative stress and neuroinflammation are involved in the pathophysiology of chronic fatigue and related disorders. Targeting both COX (cyclooxygenase) and 5-LOX (lipoxygenase) pathways have been proposed to be involved in neuroprotective effect. In the present study, mice were put on the running wheel apparatus for 6 min test session daily for 21 days, what produced fatigue like condition. The locomotor activity and anxiety like behavior were measured on 0, 8(th), 15(th) and 22(nd) day. The brains were isolated on 22(nd) day immediately after the behavioral assessments for the estimation of oxidative stress parameters and mitochondrial enzyme complexes activity. Pre-treatment with licofelone (2.5, 5 and 10 mg/kg, po) and minocycline (50 and 100 mg/kg, po) for 21 days, significantly attenuated fatigue like behavior as compared to the control (rotating wheel activity test session, RWATS) group. Further, licofelone (5 and 10 mg/kg, po) and minocycline (50 and 100 mg/kg, po) drug treatments for 21 days significantly attenuated behavioral alterations, oxidative damage and restored mitochondrial enzyme complex activities (I, II, III and IV) as compared to control, whereas combination of licofelone (5 mg/kg) with minocycline (50 mg/kg) significantly potentiated their protective effect which was significant as compared to their effect per se. The present study highlights the therapeutic potential of licofelone, minocycline and their combination against CFS in mice.

  1. Neonatal stress-induced affective changes in adolescent Wistar rats: early signs of schizophrenia-like behavior

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo Neves Girardi

    2014-09-01

    Full Text Available Psychiatric disorders are multifactorial diseases with etiology that may involve genetic factors, early life environment and stressful life events. The neurodevelopmental hypothesis of schizophrenia is based on a wealth of data on increased vulnerability in individuals exposed to insults during the perinatal period. Maternal deprivation disinhibits the adrenocortical response to stress in neonatal rats and has been used as an animal model of schizophrenia. To test if long-term affective consequences of early life stress were influenced by maternal presence, we submitted 10-day old rats, either deprived (for 22 h or not from their dams, to a stress challenge (i.p. saline injection. Corticosterone plasma levels were measured 2 h after the challenge, whereas another subgroup was assessed for behavior in the open field, elevated plus maze, social investigation and the negative contrast sucrose consumption test in adolescence (postnatal day 45. Maternally deprived rats exhibited increased plasma corticosterone levels which were higher in maternally deprived and stress challenged pups. Social investigation was impaired in maternally deprived rats only, while saline injection, independently of maternal deprivation, was associated with increased anxiety-like behavior in the elevated plus maze and an impaired intake decrement in the negative sucrose contrast. In the open field, center exploration was reduced in all maternally-deprived adolescents and in control rats challenged with saline injection. The most striking finding was that exposure to a stressful stimulus per se, regardless of maternal deprivation, was linked to differential emotional consequences. We therefore propose that besides being a well-known and validated model of schizophrenia in adult rats, the maternal deprivation paradigm could be extended to model early signs of psychiatric dysfunction, and would particularly be a useful tool to detect early signs that resemble schizophrenia.

  2. Stress-Induced Elevation of Oxytocin in Maltreated Children: Evolution, Neurodevelopment, and Social Behavior

    Science.gov (United States)

    Seltzer, Leslie J.; Ziegler, Toni; Connolly, Michael J.; Prososki, Ashley R.; Pollak, Seth D.

    2014-01-01

    Child maltreatment often has a negative impact on the development of social behavior and health. The biobehavioral mechanisms through which these adverse outcomes emerge, however, are not clear. To better understand the ways in which early life adversity affects subsequent social behavior, changes in the neuropeptide oxytocin (OT) in children…

  3. Agmatine abolishes restraint stress-induced depressive-like behavior and hippocampal antioxidant imbalance in mice.

    Science.gov (United States)

    Freitas, Andiara E; Bettio, Luis E B; Neis, Vivian B; Santos, Danúbia B; Ribeiro, Camille M; Rosa, Priscila B; Farina, Marcelo; Rodrigues, Ana Lúcia S

    2014-04-03

    Agmatine has been recently emerged as a novel candidate to assist the conventional pharmacotherapy of depression. The acute restraint stress (ARS) is an unavoidable stress situation that may cause depressive-like behavior in rodents. In this study, we investigated the potential antidepressant-like effect of agmatine (10mg/kg, administered acutely by oral route) in the forced swimming test (FST) in non-stressed mice, as well as its ability to abolish the depressive-like behavior and hippocampal antioxidant imbalance induced by ARS. Agmatine reduced the immobility time in the mouse FST (1-100mg/kg) in non-stressed mice. ARS caused an increase in the immobility time in the FST, indicative of a depressive-like behavior, as well as hippocampal lipid peroxidation, and an increase in the activity of hippocampal superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione reductase (GR) activities, reduced catalase (CAT) activity and increased SOD/CAT ratio, an index of pro-oxidative conditions. Agmatine was effective to abolish the depressive-like behavior induced by ARS and to prevent the ARS-induced lipid peroxidation and changes in SOD, GR and CAT activities and in SOD/CAT activity ratio. Hippocampal levels of reduced glutathione (GSH) were not altered by any experimental condition. In conclusion, the present study shows that agmatine was able to abrogate the ARS-induced depressive-like behavior and the associated redox hippocampal imbalance observed in stressed restraint mice, suggesting that its antidepressant-like effect may be dependent on its ability to maintain the pro-/anti-oxidative homeostasis in the hippocampus. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Glucocorticoid receptors in the basolateral amygdala mediated the restraint stress-induced reinstatement of methamphetamine-seeking behaviors in rats.

    Science.gov (United States)

    Taslimi, Zahra; Sarihi, Abdolrahman; Haghparast, Abbas

    2018-04-21

    Methamphetamine (METH) addiction is a growing epidemic worldwide. It is a common psychiatric disease and stress has an important role in the drug seeking and relapse behaviors. The involvement of the basolateral amygdala (BLA) in effects of stress on the reward pathway has been discussed in several studies. In this study, we tried to find out the involvement of glucocorticoid receptors (GRs) in the BLA in stress-induced reinstatement of the extinguished METH-induced conditioned place preference (CPP) in rats. The CPP paradigm was done in eighty-one adult male Wistar rats weighing 220-250 g. The animals received a daily injection of methamphetamine (0.5 mg/kg), during the conditioning phase. In extinction phase, the rats were put in the CPP box for 30 min per day for 8 days. After the extinction, the animals were exposed to acute restraint stress (ARS), 3 h before subcutaneous administration of sub-threshold dose of methamphetamine (0.125 mg/kg), based on our previous study, in reinstatement phase. In separated groups, the rats were exposed to chronic restraint stress (CRS) for 1 h each day during the extinction phase. To block the GRs in BLA, the animals unilaterally received RU38486 as GRs antagonist (10, 30 and 90 ng/0.3 μl DMSO) in all ARS groups on reinstatement day. In separated experiments, RU38486 (3, 10 and 30 ng/0.3 μl DMSO) was microinjected into the BLA in CRS groups prior to exposure to stress every day in extinction phase. The results revealed that intra-BLA RU38486 in ARS (90 ng) and CRS (10 and 30 ng) groups significantly prevented the stress-induced reinstatement. It can be proposed that stress partially exerts its effect on the reward pathway via GRs in the BLA. This effect was not quite similar in acute and chronic stress conditions. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Stress-induced neuroinflammation is mediated by GSK3-dependent TLR4 signaling that promotes susceptibility to depression-like behavior.

    Science.gov (United States)

    Cheng, Yuyan; Pardo, Marta; Armini, Rubia de Souza; Martinez, Ana; Mouhsine, Hadley; Zagury, Jean-Francois; Jope, Richard S; Beurel, Eleonore

    2016-03-01

    Most psychiatric and neurological diseases are exacerbated by stress. Because this may partially result from stress-induced inflammation, we examined factors involved in this stress response. After a paradigm of inescapable foot shock stress that causes learned helplessness depression-like behavior, eighteen cytokines and chemokines increased in mouse hippocampus, peaking 6-12h after stress. A 24h prior pre-conditioning stress accelerated the rate of stress-induced hippocampal cytokine and chemokine increases, with most reaching peak levels after 1-3h, often without altering the maximal levels. Toll-like receptor 4 (TLR4) was involved in this response because most stress-induced hippocampal cytokines and chemokines were attenuated in TLR4 knockout mice. Stress activated glycogen synthase kinase-3 (GSK3) in wild-type mouse hippocampus, but not in TLR4 knockout mice. Administration of the antidepressant fluoxetine or the GSK3 inhibitor TDZD-8 reduced the stress-induced increases of most hippocampal cytokines and chemokines. Stress increased hippocampal levels of the danger-associated molecular pattern (DAMP) protein high mobility group box 1 (HMGB1), activated the inflammatory transcription factor NF-κB, and the NLRP3 inflammasome. Knockdown of HMGB1 blocked the acceleration of cytokine and chemokine increases in the hippocampus caused by two successive stresses. Fluoxetine treatment blocked stress-induced up-regulation of HMGB1 and subsequent NF-κB activation, whereas TDZD-8 administration attenuated NF-κB activation downstream of HMGB1. To test if stress-induced cytokines and chemokines contribute to depression-like behavior, the learned helplessness model was assessed. Antagonism of TNFα modestly reduced susceptibility to learned helplessness induction, whereas TLR4 knockout mice were resistant to learned helplessness. Thus, stress-induces a broad inflammatory response in mouse hippocampus that involves TLR4, GSK3, and downstream inflammatory signaling, and

  6. Social defeat stress induces depression-like behavior and alters spine morphology in the hippocampus of adolescent male C57BL/6 mice

    OpenAIRE

    I?iguez, Sergio D.; Aubry, Antonio; Riggs, Lace M.; Alipio, Jason B.; Zanca, Roseanna M.; Flores-Ramirez, Francisco J.; Hernandez, Mirella A.; Nieto, Steven J.; Musheyev, David; Serrano, Peter A.

    2016-01-01

    Social stress, including bullying during adolescence, is a risk factor for common psychopathologies such as depression. To investigate the neural mechanisms associated with juvenile social stress-induced mood-related endophenotypes, we examined the behavioral, morphological, and biochemical effects of the social defeat stress model of depression on hippocampal dendritic spines within the CA1 stratum radiatum. Adolescent (postnatal day 35) male C57BL/6 mice were subjected to defeat episodes fo...

  7. Beneficial effects of benzodiazepine diazepam on chronic stress-induced impairment of hippocampal structural plasticity and depression-like behavior in mice.

    Science.gov (United States)

    Zhao, Yunan; Wang, Zhongli; Dai, Jianguo; Chen, Lin; Huang, Yufang; Zhan, Zhen

    2012-03-17

    Whether benzodiazepines (BZDs) have beneficial effects on the progress of chronic stress-induced impairment of hippocampal structural plasticity and major depression is uncertain. The present study designed four preclinical experiments to determine the effects of BZDs using chronic unpredictable stress model. In Experiment 1, several time course studies on behavior and hippocampus response to stress were conducted using the forced swim and tail suspension tests (FST and TST) as well as hippocampal structural plasticity markers. Chronic stress induced depression-like behavior in the FST and TST as well as decreased hippocampal structural plasticity that returned to normal within 3 wk. In Experiment 2, mice received p.o. administration of three diazepam dosages prior to each variate stress session for 4 wk. This treatment significantly antagonized the elevation of stress-induced corticosterone levels. Only low- (0.5mg/kg) and medium-dose (1mg/kg) diazepam blocked the detrimental effects of chronic stress. In Experiment 3, after 7 wk of stress sessions, daily p.o. diazepam administration during 1 wk recovery phase dose-dependently accelerated the recovery of stressed mice. In Experiment 4, 1 wk diazepam administration to control mice enhanced significantly hippocampal structural plasticity and induced an antidepressant-like behavioral effect, whereas 4 wk diazepam administration produced opposite effects. Hence, diazepam can slow the progress of chronic stress-induced detrimental consequences by normalizing glucocorticoid hormones. Considering the adverse effect of long-term diazepam administration on hippocampal plasticity, the preventive effects of diazepam may depend on the proper dose. Short-term diazepam treatment enhances hippocampal structural plasticity and is beneficial to recovery following chronic stress. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. [Establishment of Social Stress Induced Depression-like Animal Model in Mice of C57BL/6 Strain and Behavioral Assessments].

    Science.gov (United States)

    Li, Mi-hui; Wu, Xiao; Wei Ying; Dong, Jing-cheng

    2016-02-01

    To establish social stress induced depression-like model in mice of C57BL/6 strain, and to assess its reliability using differenf behavioral methods. Totally 20 male mice of C57BL/6 strain were divided into the normal group and the stress model group by random digit table,10 in each group. Another 10 CD1 mice were subjected to social stress. Mice in the normal control group received no stress, while those in the model group received social stress for 10 successive days. Behavioral assessment was performed using social interaction test (SIT), the elevated plus-maze (EPM) test, tail suspension test (TST), respectively. Serum cortisol level was detected by ELISA to assess the reliability of the model. In the social interaction test when the social target (CDI mice) was inexistent, mice in the normal control group spent longer time in the social interaction zone and less time in the corner zone (P stress induced depression-like animal model in mice of C57BL/6 straineasquite reliable and possibly suitable to be used in integrative medicine research of combination of disease and syndrome model.

  9. Effect of chronic mild stress on hippocampal transcriptome in mice selected for high and low stress-induced analgesia and displaying different emotional behaviors.

    Science.gov (United States)

    Lisowski, Pawel; Juszczak, Grzegorz R; Goscik, Joanna; Wieczorek, Marek; Zwierzchowski, Lech; Swiergiel, Artur H

    2011-01-01

    There is increasing evidence that mood disorders may derive from the impact of environmental pressure on genetically susceptible individuals. Stress-induced hippocampal plasticity has been implicated in depression. We studied hippocampal transcriptomes in strains of mice that display high (HA) and low (LA) swim stress-induced analgesia and that differ in emotional behaviors and responses to different classes of antidepressants. Chronic mild stress (CMS) affected expression of a number of genes common for both strains. CMS also produced strain specific changes in expression suggesting that hippocampal responses to stress depend on genotype. Considerably larger number of genes, biological processes, molecular functions, biochemical pathways, and gene networks were affected by CMS in LA than in HA mice. The results suggest that potential drug targets against detrimental effects of stress include glutamate transporters, and cholinergic, cholecystokinin (CCK), glucocorticoids, and thyroid hormones receptors. Furthermore, some biological processes evoked by stress and different between the strains, such as apoptosis, neurogenesis and chromatin modifications, may be responsible for the long-term, irreversible effects of stress and suggest a role for epigenetic regulation of mood related stress responses. Copyright © 2010 Elsevier B.V. and ECNP. All rights reserved.

  10. Chronic subordination stress induces hyperphagia and disrupts eating behavior in mice modeling binge-eating-like disorder

    Directory of Open Access Journals (Sweden)

    Maria eRazzoli

    2015-01-01

    Full Text Available Background: Eating disorders are associated with physical morbidity and appear to have causal factors like stressful life events and negative affect. Binge eating disorder (BED is characterized by eating in a discrete period of time a larger than normal amount of food, a sense of lack of control over eating, and marked distress. There are still unmet needs for the identification of mechanisms regulating excessive eating, which is in part due to the lack of appropriate animal models. We developed a naturalistic murine model of subordination stress induced hyperphagia associated with the development of obesity. Here we tested the hypotheses that the eating responses of subordinate mice recapitulate the BED and that limiting hyperphagia could prevent stress-associated metabolic changes. Methods: Adult male mice were exposed to a model of chronic subordination stress associated with the automated acquisition of food intake and we performed a detailed meal pattern analysis. Additionally, using a pair-feeding protocol was test the hypothesis that the manifestation of obesity and the metabolic syndrome could be prevented by limiting hyperphagia. Results: The architecture of feeding of subordinate mice was disrupted during the stress protocol due to disproportionate amount of food ingested at higher rate and with shorter satiety ratio than control mice. Subordinate mice hyperphagia was further exacerbated in response to either hunger or to the acute application of a social defeat. Notably, the obese phenotype but not the fasting hyperglycemia of subordinate mice was abrogated by preventing hyperphagia in a pair feeding paradigm. Conclusion: Overall these results support the validity of our chronic subordination stress to model binge eating disorder allowing for the determination of the underlying molecular mechanisms and the generation of testable predictions for innovative therapies, based on the understanding of the regulation and the control of food

  11. Progesterone protects normative anxiety-like responding among ovariectomized female mice that conditionally express the HIV-1 regulatory protein, Tat, in the CNS.

    Science.gov (United States)

    Paris, Jason J; Fenwick, Jason; McLaughlin, Jay P

    2014-05-01

    Increased anxiety is co-morbid with human immunodeficiency virus (HIV) infection. Actions of the neurotoxic HIV-1 regulatory protein, Tat, may contribute to affective dysfunction. We hypothesized that Tat expression would increase anxiety-like behavior of female GT-tg bigenic mice that express HIV-1 Tat protein in the brain in a doxycycline-dependent manner. Furthermore, given reports that HIV-induced anxiety may occur at lower rates among women, and that the neurotoxic effects of Tat are ameliorated by sex steroids in vitro, we hypothesized that 17β-estradiol and/or progesterone would ameliorate Tat-induced anxiety-like effects. Among naturally-cycling proestrous and diestrous mice, Tat-induction via 7days of doxycycline treatment significantly increased anxiety-like responding in an open field, elevated plus maze and a marble-burying task, compared to treatment with saline. Proestrous mice demonstrated less anxiety-like behavior than diestrous mice in the open field and elevated plus maze, but these effects did not significantly interact with Tat-induction. Among ovariectomized mice, doxycycline-induced Tat protein significantly increased anxiety-like behavior in an elevated plus maze and a marble burying task compared to saline-treated mice, but not an open field (where anxiety-like responding was already maximal). Co-administration of progesterone (4mg/kg), but not 17β-estradiol (0.09mg/kg), with doxycycline significantly ameliorated anxiety-like responding in the elevated plus maze and marble burying tasks. When administered together, 17β-estradiol partially antagonized the protective effects of progesterone on Tat-induced anxiety-like behavior. These findings support evidence of steroid-protection over HIV-1 proteins, and extend them by demonstrating the protective capacity of progesterone on Tat-induced anxiety-like behavior of ovariectomized female mice. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Stress-induced activation of the brainstem Bcl-xL gene expression in rats treated with fluoxetine: correlations with serotonin metabolism and depressive-like behavior.

    Science.gov (United States)

    Shishkina, Galina T; Kalinina, Tatyana S; Berezova, Inna V; Dygalo, Nikolay N

    2012-01-01

    Mechanisms underlying stress-induced depression and antidepressant drug action were shown to involve alterations in serotonergic (5-HT) neurotransmission and expression of genes coding for proteins associated with neurotrophic signaling pathways and cell-survival in the hippocampus and cortex. Expression of these genes in the brainstem containing 5-HT neurons may also be related to vulnerability or resilience to stress-related psychopathology. Here we investigated 5-HT markers and expression of genes for Brain-Derived Neurotrophic Factor (BDNF) and apoptotic proteins in the brainstem in relation to swim stress-induced behavioral despair. We found that anti-apoptotic Bcl-xL gene is sensitive to stress during the course of fluoxetine administration. Responsiveness of this gene to stress appeared concomitantly with an antidepressant-like effect of fluoxetine in the forced swim test. Bcl-xL transcript levels showed negative correlations with duration of immobility in the test and 5-HT turnover in the brainstem. In contrast, BDNF and pro-apoptotic protein Bax mRNA levels were unchanged by either fluoxetine or stress, suggesting specificity of Bcl-xL gene responses to these treatments. We also found that the levels of mRNAs for tryptophan hydroxylase-2 (TPH2) and 5-HT transporter (5-HTT) were significantly down-regulated following prolonged treatment with fluoxetine, but were not affected by stress. Unlike TPH2 and 5-HTT, 5-HT1A receptor mRNA levels were not altered by fluoxetine but significantly increased in response to swim stress. These data show that long-term fluoxetine treatment leads to changes in 5-HT and Bcl-xL responses to stress associated with antidepressant-like effects of the drug. This article is part of a Special Issue entitled 'Anxiety and Depression'. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Persistent effect of incubation temperature on stress-induced behavior in the Yucatan banded gecko (Coleonyx elegans)

    Czech Academy of Sciences Publication Activity Database

    Trnik, M.; Albrechtová, Jana; Kratochvíl, L.

    2011-01-01

    Roč. 125, č. 1 (2011), s. 22-30 ISSN 0735-7036 Institutional research plan: CEZ:AV0Z60930519 Keywords : behavioral syndrome * open-field test * antipredator behavior * personality * phenotypic plasticity Subject RIV: EG - Zoology Impact factor: 1.725, year: 2011

  14. Prenatal chronic mild stress induces depression-like behavior and sex-specific changes in regional glutamate receptor expression patterns in adult rats.

    Science.gov (United States)

    Wang, Y; Ma, Y; Hu, J; Cheng, W; Jiang, H; Zhang, X; Li, M; Ren, J; Li, X

    2015-08-20

    Chronic stress during critical periods of human fetal brain development is associated with cognitive, behavioral, and mood disorders in later life. Altered glutamate receptor (GluR) expression has been implicated in the pathogenesis of stress-dependent disorders. To test whether prenatal chronic mild stress (PCMS) enhances offspring's vulnerability to stress-induced behavioral and neurobiological abnormalities and if this enhanced vulnerability is sex-dependent, we measured depression-like behavior in the forced swimming test (FST) and regional changes in GluR subunit expression in PCMS-exposed adult male and female rats. Both male and female PCMS-exposed rats exhibited stronger depression-like behavior than controls. Males and females exhibited unique regional changes in GluR expression in response to PCMS alone, FST alone (CON-FST), and PCMS with FST (PCMS-FST). In females, PCMS alone did not alter N-methyl-d-aspartate receptor (NMDAR) or metabotropic glutamate receptor (mGluR) expression, while in PCMS males, higher mGluR2/3, mGluR5, and NR1 expression levels were observed in the prefrontal cortex. In addition, PCMS altered the change in GluR expression induced by acute stress (the FST test), and this too was sex-specific. Male PCMS-FST rats expressed significantly lower mGluR5 levels in the hippocampus, lower mGluR5, NR1, postsynaptic density protein (PSD)95, and higher mGluR2/3 in the prefrontal cortex, and higher mGluR5 and PSD95 in the amygdala than male CON-FST rats. Female PCMS-FST rats expressed lower NR1 in the hippocampus, lower NR2B and PSD95 in the prefrontal cortex, lower mGluR2/3 in the amygdala, and higher PSD95 in the amygdala than female CON-FST rats. PCMS may increase the offspring's vulnerability to depression by altering sex-specific stress-induced changes in glutamatergic signaling. Copyright © 2015. Published by Elsevier Ltd.

  15. Repeated exposure of adult rats to transient oxidative stress induces various long-lasting alterations in cognitive and behavioral functions.

    Directory of Open Access Journals (Sweden)

    Yoshio Iguchi

    Full Text Available Exposure of neonates to oxidative stress may increase the risk of psychiatric disorders such as schizophrenia in adulthood. However, the effects of moderate oxidative stress on the adult brain are not completely understood. To address this issue, we systemically administrated 2-cyclohexen-1-one (CHX to adult rats to transiently reduce glutathione levels. Repeated administration of CHX did not affect the acquisition or motivation of an appetitive instrumental behavior (lever pressing rewarded by a food outcome under a progressive ratio schedule. In addition, response discrimination and reversal learning were not affected. However, acute CHX administration blunted the sensitivity of the instrumental performance to outcome devaluation, and this effect was prolonged in rats with a history of repeated CHX exposure, representing pro-depression-like phenotypes. On the other hand, repeated CHX administration reduced immobility in forced swimming tests and blunted acute cocaine-induced behaviors, implicating antidepressant-like effects. Multivariate analyses segregated a characteristic group of behavioral variables influenced by repeated CHX administration. Taken together, these findings suggest that repeated administration of CHX to adult rats did not cause a specific mental disorder, but it induced long-term alterations in behavioral and cognitive functions, possibly related to specific neural correlates.

  16. Surface stress-induced change in overall elastic behavior and self-bending of ultrathin cantilever plates

    NARCIS (Netherlands)

    Sadeghian, H.; Goosen, J.F.L.; Bossche, A.; Van Keulen, F.

    2009-01-01

    In this letter, the dominant role of surface stress and surface elasticity on the overall elastic behavior of ultrathin cantilever plates is studied. A general framework based on two-dimensional plane-stress analysis is presented. Because of either surface reconstruction or molecular adsorption,

  17. Social Isolation Stress Induces Anxious-Depressive-Like Behavior and Alterations of Neuroplasticity-Related Genes in Adult Male Mice

    Directory of Open Access Journals (Sweden)

    Alessandro Ieraci

    2016-01-01

    Full Text Available Stress is a major risk factor in the onset of several neuropsychiatric disorders including anxiety and depression. Although several studies have shown that social isolation stress during postweaning period induces behavioral and brain molecular changes, the effects of social isolation on behavior during adulthood have been less characterized. Aim of this work was to investigate the relationship between the behavioral alterations and brain molecular changes induced by chronic social isolation stress in adult male mice. Plasma corticosterone levels and adrenal glands weight were also analyzed. Socially isolated (SI mice showed higher locomotor activity, spent less time in the open field center, and displayed higher immobility time in the tail suspension test compared to group-housed (GH mice. SI mice exhibited reduced plasma corticosterone levels and reduced difference between right and left adrenal glands. SI showed lower mRNA levels of the BDNF-7 splice variant, c-Fos, Arc, and Egr-1 in both hippocampus and prefrontal cortex compared to GH mice. Finally, SI mice exhibited selectively reduced mGluR1 and mGluR2 levels in the prefrontal cortex. Altogether, these results suggest that anxious- and depressive-like behavior induced by social isolation stress correlates with reduction of several neuroplasticity-related genes in the hippocampus and prefrontal cortex of adult male mice.

  18. Social defeat stress induces depression-like behavior and alters spine morphology in the hippocampus of adolescent male C57BL/6 mice.

    Science.gov (United States)

    Iñiguez, Sergio D; Aubry, Antonio; Riggs, Lace M; Alipio, Jason B; Zanca, Roseanna M; Flores-Ramirez, Francisco J; Hernandez, Mirella A; Nieto, Steven J; Musheyev, David; Serrano, Peter A

    2016-12-01

    Social stress, including bullying during adolescence, is a risk factor for common psychopathologies such as depression. To investigate the neural mechanisms associated with juvenile social stress-induced mood-related endophenotypes, we examined the behavioral, morphological, and biochemical effects of the social defeat stress model of depression on hippocampal dendritic spines within the CA1 stratum radiatum. Adolescent (postnatal day 35) male C57BL/6 mice were subjected to defeat episodes for 10 consecutive days. Twenty-four h later, separate groups of mice were tested on the social interaction and tail suspension tests. Hippocampi were then dissected and Western blots were conducted to quantify protein levels for various markers important for synaptic plasticity including protein kinase M zeta (PKMζ), protein kinase C zeta (PKCζ), the dopamine-1 (D1) receptor, tyrosine hydroxylase (TH), and the dopamine transporter (DAT). Furthermore, we examined the presence of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-receptor subunit GluA2 as well as colocalization with the post-synaptic density 95 (PSD95) protein, within different spine subtypes (filopodia, stubby, long-thin, mushroom) using an immunohistochemistry and Golgi-Cox staining technique. The results revealed that social defeat induced a depression-like behavioral profile, as inferred from decreased social interaction levels, increased immobility on the tail suspension test, and decreases in body weight. Whole hippocampal immunoblots revealed decreases in GluA2, with a concomitant increase in DAT and TH levels in the stressed group. Spine morphology analyses further showed that defeated mice displayed a significant decrease in stubby spines, and an increase in long-thin spines within the CA1 stratum radiatum. Further evaluation of GluA2/PSD95 containing-spines demonstrated a decrease of these markers within long-thin and mushroom spine types. Together, these results indicate that juvenile

  19. Quercetin ameliorates chronic unpredicted stress-induced behavioral dysfunction in male Swiss albino mice by modulating hippocampal insulin signaling pathway.

    Science.gov (United States)

    Mehta, Vineet; Singh, Tiratha Raj; Udayabanu, Malairaman

    2017-12-01

    Chronic stress is associated with impaired neurogenesis, neurodegeneration and behavioral dysfunction, whereas the mechanism underlying stress-mediated neurological complications is still not clear. In the present study, we aimed to investigate whether chronic unpredicted stress (CUS) mediated neurological alterations are associated with impaired hippocampal insulin signaling or not, and studied the effect of quercetin in this scenario. Male Swiss albino mice were subjected to 21day CUS, during which 30mg/kg quercetin treatment was given orally. After 21days, behavioral functions were evaluated in terms of locomotor activity (Actophotometer), muscle coordination (Rota-rod), depression (Tail Suspension Test (TST), Forced Swim Test (FST)) and memory performance (Passive-avoidance step-down task (PASD)). Further, hippocampal insulin signaling was evaluated in terms of protein expression of insulin, insulin receptor (IR) and glucose transporter 4 (GLUT-4) and neurogenesis was evaluated in terms of doublecortin (DCX) expression. 21day CUS significantly impaired locomotion and had no effect on muscle coordination. Stressed animals were depressed and showed markedly impaired memory functions. Quercetin treatment significantly improvement stress-mediated behavior dysfunction as indicated by improved locomotion, lesser immobility time and greater frequency of upward turning in TST and FST and increased transfer latency on the day 2 (short-term memory) and day 5 (long-term memory) in PASD test. We observed significantly higher IR expression and significantly lower GLUT-4 expression in the hippocampus of stressed animals, despite of nonsignificant difference in insulin levels. Further, chronic stress impaired hippocampal neurogenesis, as indicated by the significantly reduced levels of hippocampal DCX expression. Quercetin treatment significantly lowered insulin and IR expression and significantly enhanced GLUT-4 and DCX expression in the hippocampus, when compared to CUS. In

  20. Stress-induced gene expression and behavior are controlled by DNA methylation and methyl donor availability in the dentate gyrus

    Science.gov (United States)

    Saunderson, Emily A.; Spiers, Helen; Gutierrez-Mecinas, Maria; Trollope, Alexandra F.; Shaikh, Abeera; Mill, Jonathan; Reul, Johannes M. H. M.

    2016-01-01

    Stressful events evoke long-term changes in behavioral responses; however, the underlying mechanisms in the brain are not well understood. Previous work has shown that epigenetic changes and immediate-early gene (IEG) induction in stress-activated dentate gyrus (DG) granule neurons play a crucial role in these behavioral responses. Here, we show that an acute stressful challenge [i.e., forced swimming (FS)] results in DNA demethylation at specific CpG (5′-cytosine–phosphate–guanine-3′) sites close to the c-Fos (FBJ murine osteosarcoma viral oncogene homolog) transcriptional start site and within the gene promoter region of Egr-1 (early growth response protein 1) specifically in the DG. Administration of the (endogenous) methyl donor S-adenosyl methionine (SAM) did not affect CpG methylation and IEG gene expression at baseline. However, administration of SAM before the FS challenge resulted in an enhanced CpG methylation at the IEG loci and suppression of IEG induction specifically in the DG and an impaired behavioral immobility response 24 h later. The stressor also specifically increased the expression of the de novo DNA methyltransferase Dnmt3a [DNA (cytosine-5-)-methyltransferase 3 alpha] in this hippocampus region. Moreover, stress resulted in an increased association of Dnmt3a enzyme with the affected CpG loci within the IEG genes. No effects of SAM were observed on stress-evoked histone modifications, including H3S10p-K14ac (histone H3, phosphorylated serine 10 and acetylated lysine-14), H3K4me3 (histone H3, trimethylated lysine-4), H3K9me3 (histone H3, trimethylated lysine-9), and H3K27me3 (histone H3, trimethylated lysine-27). We conclude that the DNA methylation status of IEGs plays a crucial role in FS-induced IEG induction in DG granule neurons and associated behavioral responses. In addition, the concentration of available methyl donor, possibly in conjunction with Dnmt3a, is critical for the responsiveness of dentate neurons to environmental

  1. Sodium Phenylbutyrate and Edaravone Abrogate Chronic Restraint Stress-Induced Behavioral Deficits: Implication of Oxido-Nitrosative, Endoplasmic Reticulum Stress Cascade, and Neuroinflammation.

    Science.gov (United States)

    Jangra, Ashok; Sriram, Chandra Shaker; Dwivedi, Shubham; Gurjar, Satendra Singh; Hussain, Md Iftikar; Borah, Probodh; Lahkar, Mangala

    2017-01-01

    Chronic stress exposure can produce deleterious effects on the hippocampus (HC) which eventually leads to cognitive impairment and depression. Endoplasmic reticulum (ER) stress has been reported as one of the major culprits in the development of stress-induced cognitive impairment and depression. We investigated the neuroprotective efficacy of sodium phenylbutyrate (SPB), an ER stress inhibitor, and edaravone, a free radical scavenger, against chronic restraint stress (CRS)-induced cognitive deficits and anxiety- and depressive-like behavior in mice. Adult male Swiss albino mice were restrained for 6 h/day for 28 days and injected (i.p.) with SPB (40 and 120 mg/kg) or edaravone (3 and 10 mg/kg) for the last seven days. After stress cessation, the anxiety- and depressive-like behavior along with spatial learning and memory were examined. Furthermore, oxido-nitrosative stress, proinflammatory cytokines, and gene expression level of ER stress-related genes were assessed in HC and prefrontal cortex (PFC). CRS-exposed mice showed anxiety- and depressive-like behavior, which was significantly improved by SPB and edaravone treatment. In addition, SPB and edaravone treatment significantly alleviated CRS-induced spatial learning and memory impairment. Furthermore, CRS-evoked oxido-nitrosative stress, neuroinflammation, and depletion of Brain-derived neurotrophic factor were significantly ameliorated by SPB and edaravone treatment. We found significant up-regulation of ER stress-related genes in both HC and PFC regions, which were suppressed by SPB and edaravone treatment in CRS mice. Our study provides evidence that SPB and edaravone exerted neuroprotective effects on CRS-induced cognitive deficits and anxiety- and depressive-like behavior, which is possibly coupled with inhibition of oxido-nitrosative stress, neuroinflammation, and ER stress cascade.

  2. Social defeat stress induces depression-like behavior and alters spine morphology in the hippocampus of adolescent male C57BL/6 mice

    Directory of Open Access Journals (Sweden)

    Sergio D. Iñiguez

    2016-12-01

    Hippocampi were then dissected and Western blots were conducted to quantify protein levels for various markers important for synaptic plasticity including protein kinase M zeta (PKMζ, protein kinase C zeta (PKCζ, the dopamine-1 (D1 receptor, tyrosine hydroxylase (TH, and the dopamine transporter (DAT. Furthermore, we examined the presence of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA-receptor subunit GluA2 as well as colocalization with the post-synaptic density 95 (PSD95 protein, within different spine subtypes (filopodia, stubby, long-thin, mushroom using an immunohistochemistry and Golgi-Cox staining technique. The results revealed that social defeat induced a depression-like behavioral profile, as inferred from decreased social interaction levels, increased immobility on the tail suspension test, and decreases in body weight. Whole hippocampal immunoblots revealed decreases in GluA2, with a concomitant increase in DAT and TH levels in the stressed group. Spine morphology analyses further showed that defeated mice displayed a significant decrease in stubby spines, and an increase in long-thin spines within the CA1 stratum radiatum. Further evaluation of GluA2/PSD95 containing-spines demonstrated a decrease of these markers within long-thin and mushroom spine types. Together, these results indicate that juvenile social stress induces GluA2- and dopamine-associated dysregulation in the hippocampus – a neurobiological mechanism potentially underlying the development of mood-related syndromes as a consequence of adolescent bullying.

  3. Personality traits in rats predict vulnerability and resilience to developing stress-induced depression-like behaviors, HPA axis hyper-reactivity and brain changes in pERK1/2 activity

    DEFF Research Database (Denmark)

    Castro, Jorge E; Diessler, Shanaz; Varea, Emilio

    2012-01-01

    Emerging evidence indicates that certain behavioral traits, such as anxiety, are associated with the development of depression-like behaviors after exposure to chronic stress. However, single traits do not explain the wide variability in vulnerability to stress observed in outbred populations. We...... hypothesized that a combination of behavioral traits might provide a better characterization of an individual's vulnerability to prolonged stress. Here, we sought to determine whether the characterization of relevant behavioral traits in rats could aid in identifying individuals with different vulnerabilities...... to developing stress-induced depression-like behavioral alterations. We also investigated whether behavioral traits would be related to the development of alterations in the hypothalamic-pituitary-adrenal axis and in brain activity - as measured through phosphorylation of extracellular signal-regulated kinase 1...

  4. Modafinil decreases anxiety-like behaviour in zebrafish

    Directory of Open Access Journals (Sweden)

    Adrian Johnson

    2017-02-01

    Full Text Available Modafinil (2-((diphenylmethylsulfinylacetamide, a selective dopamine and norepinephrine transporter inhibitor, is most commonly prescribed for narcolepsy but has gained recent interest for treating a variety of disorders. Zebrafish (Danio rerio are becoming a model of choice for pharmacological and behavioural research. To investigate the behavioural effects of modafinil on anxiety, we administered doses of 0, 2, 20, and 200 mg/L for 30 minutes then tested zebrafish in the novel approach test. In this test, the fish was placed into a circular arena with a novel object in the center and motion-tracking software was used to quantify the time the fish spent in the outer area of the arena (thigmotaxis zone, middle third of the arena (transition zone and center of the arena, as well as total distance traveled, immobility and meandering. Modafinil caused a decrease in time spent in the thigmotaxis zone and increased time spent in the transition zone across all doses. Modafinil did not significantly alter the time spent in the center zone (near the novel object, the distance moved, meandering, or the duration of time spent immobile. We also validated this test as a measure of anxiety with the administration of ethanol (1% which decreased time spent in the thigmotaxis zone and increased time spent in the transition zone. These results suggest that modafinil decreases anxiety-like behaviour in zebrafish.

  5. Bergamot Essential Oil Attenuates Anxiety-Like Behaviour in Rats.

    Science.gov (United States)

    Rombolà, Laura; Tridico, Laura; Scuteri, Damiana; Sakurada, Tsukasa; Sakurada, Shinobu; Mizoguchi, Hirokazu; Avato, Pinarosa; Corasaniti, Maria Tiziana; Bagetta, Giacinto; Morrone, Luigi Antonio

    2017-04-11

    Preclinical studies have recently highlighted that bergamot essential oil (BEO) is endowed with remarkable neurobiolological effects. BEO can affect synaptic transmission, modulate electroencephalographic activity and it showed neuroprotective and analgesic properties. The phytocomplex, along with other essential oils, is also widely used in aromatherapy to minimize symptoms of stress-induced anxiety and mild mood disorders. However, only limited preclinical evidences are actually available. This study examined the anxiolytic/sedative-like effects of BEO using an open field task (OFT), an elevated plus-maze task (EPM), and a forced swimming task (FST) in rats. This study further compared behavioural effects of BEO to those of the benzodiazepine diazepam. Analysis of data suggests that BEO induces anxiolytic-like/relaxant effects in animal behavioural tasks not superimposable to those of the DZP. The present observations provide further insight to the pharmacological profile of BEO and support its rational use in aromatherapy.

  6. Dietary magnesium deficiency affects gut microbiota and anxiety-like behaviour in C57BL/6N mice.

    Science.gov (United States)

    Pyndt Jørgensen, Bettina; Winther, Gudrun; Kihl, Pernille; Nielsen, Dennis S; Wegener, Gregers; Hansen, Axel K; Sørensen, Dorte B

    2015-10-01

    Magnesium deficiency has been associated with anxiety in humans, and rodent studies have demonstrated the gut microbiota to impact behaviour. We investigated the impact of 6 weeks of dietary magnesium deficiency on gut microbiota composition and anxiety-like behaviour and whether there was a link between the two. A total of 20 C57BL/6 mice, fed either a standard diet or a magnesium-deficient diet for 6 weeks, were tested using the light-dark box anxiety test. Gut microbiota composition was analysed by denaturation gradient gel electrophoresis. We demonstrated that the gut microbiota composition correlated significantly with the behaviour of dietary unchallenged mice. A magnesium-deficient diet altered the gut microbiota, and was associated with altered anxiety-like behaviour, measured by decreased latency to enter the light box. Magnesium deficiency altered behavior. The duration of magnesium deficiency is suggested to influence behaviour in the evaluated test.

  7. Chronic intermittent ethanol exposure during adolescence: Effects on stress-induced social alterations and social drinking in adulthood.

    Science.gov (United States)

    Varlinskaya, Elena I; Kim, Esther U; Spear, Linda P

    2017-01-01

    We previously observed lasting and sex-specific detrimental consequences of early adolescent intermittent ethanol exposure (AIE), with male, but not female, rats showing social anxiety-like alterations when tested as adults. The present study used Sprague Dawley rats to assess whether social alterations induced by AIE (3.5g/kg, intragastrically, every other day, between postnatal days [P] 25-45) are further exacerbated by stressors later in life. Another aim was to determine whether AIE alone or in combination with stress influenced intake of a sweetened ethanol solution (Experiment 1) or a sweetened solution ("supersac") alone (Experiment 2) under social circumstances. Animals were exposed to restraint on P66-P70 (90min/day) or left nonstressed, with corticosterone (CORT) levels assessed on day 1 and day 5 in Experiment 2. Social anxiety-like behavior emerged after AIE in non-stressed males, but not females, whereas stress-induced social anxiety was evident only in water-exposed males and females. Adult-typical habituation of the CORT response to repeated restraint was not evident in adult animals after AIE, a lack of habituation reminiscent of that normally evident in adolescents. Neither AIE nor stress affected ethanol intake under social circumstances, although AIE and restraint independently increased adolescent-typical play fighting in males during social drinking. Among males, the combination of AIE and restraint suppressed "supersac" intake; this index of depression-like behavior was not seen in females. The results provide experimental evidence associating adolescent alcohol exposure, later stress, anxiety, and depression, with young adolescent males being particularly vulnerable to long-lasting adverse effects of repeated ethanol. This article is part of a Special Issue entitled SI: Adolescent plasticity. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Stress-induced metallic behavior under magnetic field in Pr1-xCaxMnO3 (x=0.5 and 0.4) thin films (invited)

    International Nuclear Information System (INIS)

    Prellier, W.; Simon, Ch.; Mercey, B.; Hervieu, M.; Haghiri-Gosnet, A. M.; Saurel, D.; Lecoeur, Ph.; Raveau, B.

    2001-01-01

    We have investigated the role of the stress induced by the presence of the substrate in thin films of colossal magnetoresistive manganites on structural, resistive, and magnetic properties. Because of the strong coupling between the small structural distortions related to the charge ordering (CO) and the resistive properties, the presence of the substrate prevents the full development of the charge ordering in Pr 0.5 Ca 0.5 MnO 3 , especially in the very thin films. For thicker films, the CO state exists, but is not fully developed. Correlatively, the magnetic field which is necessary to suppress the CO is decreased drastically from 25 T to about 5 T on SrTiO 3 substrates. We have also investigated the influence of the doping level by studying the case of Pr 0.6 Ca 0.4 MnO 3 . [copyright] 2001 American Institute of Physics

  9. Exposure to dim light at night during early development increases adult anxiety-like responses.

    Science.gov (United States)

    Borniger, Jeremy C; McHenry, Zachary D; Abi Salloum, Bachir A; Nelson, Randy J

    2014-06-22

    Early experiences produce effects that may persist throughout life. Therefore, to understand adult phenotype, it is important to investigate the role of early environmental stimuli in adult behavior and health. Artificial light at night (LAN) is an increasingly common phenomenon throughout the world. However, animals, including humans, evolved under dark night conditions. Many studies have revealed affective, immune, and metabolic alterations provoked by aberrant light exposure and subsequent circadian disruption. Pups are receptive to entraining cues from the mother and then light early during development, raising the possibility that the early life light environment may influence subsequent behavior. Thus, to investigate potential influences of early life exposure to LAN on adult phenotype, we exposed mice to dim (~5 lux; full spectrum white light) or dark (~0 lux) nights pre- and/or postnatally. After weaning at 3 weeks of age, all mice were maintained in dark nights until adulthood (9 weeks of age) when behavior was assessed. Mice exposed to dim light in early life increased anxiety-like behavior and fearful responses on the elevated plus maze and passive avoidance tests. These mice also displayed reduced growth rates, which ultimately normalized during adolescence. mRNA expression of brain derived neurotrophic factor (BDNF), a neurotrophin previously linked to early life environment and adult phenotype, was not altered in the prefrontal cortex or hippocampus by early life LAN exposure. Serum corticosterone concentrations were similar between groups at weaning, suggesting that early life LAN does not elicit a long-term physiologic stress response. Dim light exposure did not influence behavior on the open field, novel object, sucrose anhedonia, or forced swim tests. Our data highlight the potential deleterious consequences of low levels of light during early life to development and subsequent behavior. Whether these changes are due to altered maternal behavior

  10. Social defeat stress induces a depression-like phenotype in adolescent male c57BL/6 mice.

    Science.gov (United States)

    Iñiguez, Sergio D; Riggs, Lace M; Nieto, Steven J; Dayrit, Genesis; Zamora, Norma N; Shawhan, Kristi L; Cruz, Bryan; Warren, Brandon L

    2014-05-01

    Abstract Exposure to stress is highly correlated with the emergence of mood-related illnesses. Because major depressive disorder often emerges in adolescence, we assessed the effects of social defeat stress on responses to depressive-like behaviors in juvenile mice. To do this, postnatal day (PD) 35 male c57BL/6 mice were exposed to 10 days of social defeat stress (PD35-44), while control mice were handled daily. Twenty-four hours after the last episode of defeat (PD45), separate groups of mice were tested in the social interaction, forced swimming, sucrose preference, and elevated plus-maze behavioral assays (n = 7-12 per group). Also, we examined body weight gain across days of social defeat and levels of blood serum corticosterone 40 min after the last episode of defeat stress. Our data indicates that defeated mice exhibited a depressive-like phenotype as inferred from increased social avoidance, increased immobility in the forced swim test, and reduced sucrose preference (a measure of anhedonia), when compared to non-defeated controls. Defeated mice also displayed an anxiogenic-like phenotype when tested on the elevated plus-maze. Lastly, stressed mice displayed lower body weight gain, along with increased blood serum corticosterone levels, when compared to non-stressed controls. Overall, we show that in adolescent male c57BL/6 mice, social defeat stress induces a depression- and anxiety-like phenotype 24 h after the last episode of stress. These data suggest that the social defeat paradigm may be used to examine the etiology of stress-induced mood-related disorders during adolescence.

  11. Personality traits in rats predict vulnerability and resilience to developing stress-induced depression-like behaviors, HPA axis hyper-reactivity and brain changes in pERK1/2 activity.

    Science.gov (United States)

    Castro, Jorge E; Diessler, Shanaz; Varea, Emilio; Márquez, Cristina; Larsen, Marianne H; Cordero, M Isabel; Sandi, Carmen

    2012-08-01

    Emerging evidence indicates that certain behavioral traits, such as anxiety, are associated with the development of depression-like behaviors after exposure to chronic stress. However, single traits do not explain the wide variability in vulnerability to stress observed in outbred populations. We hypothesized that a combination of behavioral traits might provide a better characterization of an individual's vulnerability to prolonged stress. Here, we sought to determine whether the characterization of relevant behavioral traits in rats could aid in identifying individuals with different vulnerabilities to developing stress-induced depression-like behavioral alterations. We also investigated whether behavioral traits would be related to the development of alterations in the hypothalamic-pituitary-adrenal axis and in brain activity - as measured through phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2)--in response to an acute stressor following either sub-chronic (2 weeks) or chronic (4 weeks) unpredictable stress (CUS). Sprague-Dawley rats were characterized using a battery of behavioral tasks, and three principal traits were identified: anxiety, exploration and activity. When combined, the first two traits were found to explain the variability in the stress responses. Our findings confirm the increased risk of animals with high anxiety developing certain depression-like behaviors (e.g., increased floating time in the forced swim test) when progressively exposed to stress. In contrast, the behavioral profile based on combined low anxiety and low exploration was resistant to alterations related to social behaviors, while the high anxiety and low exploration profile displayed a particularly vulnerable pattern of physiological and neurobiological responses after sub-chronic stress exposure. Our findings indicate important differences in animals' vulnerability and/or resilience to the effects of repeated stress, particularly during initial or

  12. The effect of music exposure in juvenile stage on anxiety-like behavior and fear extinction in adult rat%幼龄期音乐暴露对大鼠成年后焦虑行为和恐惧记忆消退的影响

    Institute of Scientific and Technical Information of China (English)

    梁拓; 王超; 曹烨; 王非一凡; 陈锶; 郑梅; 李昌琪

    2012-01-01

    Objective To study the effect of music exposure in juvenile stage on anxiety-like behavior and fear extinction in adult rats.Methods 4 broods of two-week-old healthy Sprague-Dawleyda rats were separated into two groups randomly.The music groups were exposed to music from 20:00 to 22:00 for 21 consecutive days.When the rats were 5 weeks old,they were caged by sex,with 8 male rats and 6 female rats in each group.When the rats were 8 weeks old,the two groups were assessed in the elevated-plus maze test,the open-field test,trained and assessed by the conditional fear training and fear extinction training.Results In the elevated-plus maze test:Prior to the foot shock,the percent of time spent in the open arms in the music group (female(7.07 ± 1.14)%,male (5.12 ± 1.95 ) % ) exhibited no significant difference (P> 0.05 ) comparing with the rats in the control group (female (4.65 ± 0.86 ) %,male ( 4.86 ± 1.95 ) % ).After the foot shock,the percent of time spent in the open arms in the music group ( female ( 8.63 ± 3.35 ) %,male ( 7.79 ± 2.49 ) % ) increased comparing to the control group (female(1.48 ±0.11)%,male(4.29 ± 1.68)%) (P<0.01). In the open-field test:prior to the foot shock,the percent of time spent in the center zone of the music group ( female (6.16 ± 2.17 ) %,male (6.25 ±3.47) % ) exhibited no significant difference (P> 0.05) comparing with the rats in control group (female(5.27 ±1.95 )%,male (6.22 ± 3.13 )% ).After the foot shock,the percent of time spent in the center zone in the music group (female(8.52 ± 1.93) %,male (6.95 ± 2.46 ) % ) was larger than the control group ( female ( 3.47 ±0.93 ) %,male (4.36 ± 2.22 ) % ) (P < 0.05 ).The fear extinction training showed that the percent of freezing time exhibited no significant difference between the male and female rats of the music group and control group in the first block of the first extinction training day and the percentage of freezing time of

  13. Mastication as a Stress-Coping Behavior.

    Science.gov (United States)

    Kubo, Kin-ya; Iinuma, Mitsuo; Chen, Huayue

    2015-01-01

    Exposure to chronic stress induces various physical and mental effects that may ultimately lead to disease. Stress-related disease has become a global health problem. Mastication (chewing) is an effective behavior for coping with stress, likely due to the alterations chewing causes in the activity of the hypothalamic-pituitary-adrenal axis and autonomic nervous system. Mastication under stressful conditions attenuates stress-induced increases in plasma corticosterone and catecholamines, as well as the expression of stress-related substances, such as neurotrophic factors and nitric oxide. Further, chewing reduces stress-induced changes in central nervous system morphology, especially in the hippocampus and hypothalamus. In rodents, chewing or biting on wooden sticks during exposure to various stressors reduces stress-induced gastric ulcer formation and attenuates spatial cognitive dysfunction, anxiety-like behavior, and bone loss. In humans, some studies demonstrate that chewing gum during exposure to stress decreases plasma and salivary cortisol levels and reduces mental stress, although other studies report no such effect. Here, we discuss the neuronal mechanisms that underline the interactions between masticatory function and stress-coping behaviors in animals and humans.

  14. Mastication as a Stress-Coping Behavior

    Directory of Open Access Journals (Sweden)

    Kin-ya Kubo

    2015-01-01

    Full Text Available Exposure to chronic stress induces various physical and mental effects that may ultimately lead to disease. Stress-related disease has become a global health problem. Mastication (chewing is an effective behavior for coping with stress, likely due to the alterations chewing causes in the activity of the hypothalamic-pituitary-adrenal axis and autonomic nervous system. Mastication under stressful conditions attenuates stress-induced increases in plasma corticosterone and catecholamines, as well as the expression of stress-related substances, such as neurotrophic factors and nitric oxide. Further, chewing reduces stress-induced changes in central nervous system morphology, especially in the hippocampus and hypothalamus. In rodents, chewing or biting on wooden sticks during exposure to various stressors reduces stress-induced gastric ulcer formation and attenuates spatial cognitive dysfunction, anxiety-like behavior, and bone loss. In humans, some studies demonstrate that chewing gum during exposure to stress decreases plasma and salivary cortisol levels and reduces mental stress, although other studies report no such effect. Here, we discuss the neuronal mechanisms that underline the interactions between masticatory function and stress-coping behaviors in animals and humans.

  15. Evidence that NMDA-dependent limbic neural plasticity in the right hemisphere mediates pharmacological stressor (FG-7142)-induced lasting increases in anxiety-like behavior. Study 2--The effects on behavior of block of NMDA receptors prior to injection of FG-7142.

    Science.gov (United States)

    Adamec, R E

    1998-01-01

    The hypothesis that N-methyl-D-aspartate (NMDA) receptors mediate initiation of lasting behavioral changes induced by the anxiogenic beta-carboline, FG-7142, was supported in this study. Behavioral changes normally induced by FG-7142 were blocked when the competitive NMDA receptor blocker, 7-amino-phosphono-heptanoic acid, was given prior to administration of FG-7142. When cats were subsequently given FG-7142 alone, the drug produced lasting behavioral changes like those reported previously. Flumazenil, a benzodiazepine receptor antagonist, reversed an increase in defensiveness produced by FG-7142 alone, replicating previous findings. The data are consistent with the hypothesis that NMDA-dependent long-term potentiation in limbic pathways subserving defensive response to threat mediates lasting increases in defensiveness produced by FG-7142.

  16. Evidence that NMDA-dependent limbic neural plasticity in the right hemisphere mediates pharmacological stressor (FG-7142)-induced lasting increases in anxiety-like behavior: study 3--the effects on amygdala efferent physiology of block of NMDA receptors prior to injection of FG-7142 and its relationship to behavioral change.

    Science.gov (United States)

    Adamec, R E

    1998-01-01

    The findings of this study support the hypothesis that N-methyl-D-aspartate (NMDA) receptors mediate the initiation of long-term potentiation (LTP) and behavioral changes induced by the anxiogenic beta-carboline, FG-7142. Unlike previous work, this study examined the effects of FG-7142 on LTP of amygdala efferents in both hemispheres. 7-amino-phosphono-heptanoic acid (AP7), a competitive NMDA receptor blocker, given prior to administration of FG-7142, prevented LTP in amygdala efferent transmission to the medial hypothalamus and periacqueductal gray (PAG). When given FG-7142 alone, cats showed lasting behavioral changes accompanied by LTP in all pathways studied. Duration of LTP, and its relationship to behavioral change, depended on the pathway and the hemisphere of the pathway. Correlation and covariance analyses indicate that LTP in the left amygdalo-ventromedial hypothalamic pathway mediates initiation, but not maintenance, of increased defensiveness. This finding replicates previous work. A new finding is that increased local excitability in the right basal amygdala (reduced threshold for evoked response), and LTP in the right amygdalo-PAG pathway, may be important for maintenance of increases in defensive behavior. Furthermore, the effects of flumazenil, a benzodiazepine receptor antagonist, on behavior and physiology single out the importance of right amygdalo-PAG LTP as a critical mediator of increased defensiveness. Flumazenil reversed the increase in defensiveness produced by FG-7142 in a drug-dependent manner as described in Adamec (1998a). Moreover, flumazenil reversed LTP only in the right amygdalo-PAG pathway. The findings of the present study suggest that response to FG-7142 may be a useful model of the effects of traumatic stressors on limbic system function in anxiety, especially in view of the recent data in humans implicating right hemispheric function in persisting negative affective states.

  17. Early life stress induces attention-deficit hyperactivity disorder (ADHD)-like behavioral and brain metabolic dysfunctions: functional imaging of methylphenidate treatment in a novel rodent model.

    Science.gov (United States)

    Bock, J; Breuer, S; Poeggel, G; Braun, K

    2017-03-01

    In a novel animal model Octodon degus we tested the hypothesis that, in addition to genetic predisposition, early life stress (ELS) contributes to the etiology of attention-deficit hyperactivity disorder-like behavioral symptoms and the associated brain functional deficits. Since previous neurochemical observations revealed that early life stress impairs dopaminergic functions, we predicted that these symptoms can be normalized by treatment with methylphenidate. In line with our hypothesis, the behavioral analysis revealed that repeated ELS induced locomotor hyperactivity and reduced attention towards an emotionally relevant acoustic stimulus. Functional imaging using ( 14 C)-2-fluoro-deoxyglucose-autoradiography revealed that the behavioral symptoms are paralleled by metabolic hypoactivity of prefrontal, mesolimbic and subcortical brain areas. Finally, the pharmacological intervention provided further evidence that the behavioral and metabolic dysfunctions are due to impaired dopaminergic neurotransmission. Elevating dopamine in ELS animals by methylphenidate normalized locomotor hyperactivity and attention-deficit and ameliorated brain metabolic hypoactivity in a dose-dependent manner.

  18. Emodin opposes chronic unpredictable mild stress induced depressive-like behavior in mice by upregulating the levels of hippocampal glucocorticoid receptor and brain-derived neurotrophic factor.

    Science.gov (United States)

    Li, Meng; Fu, Qiang; Li, Ying; Li, Shanshan; Xue, Jinsong; Ma, Shiping

    2014-10-01

    Emodin, the major active component of Rhubarb, has shown neuroprotective activity. This study is attempted to investigate whether emodin possesses beneficial effects on chronic unpredictable mild stress (CUMS)-induced behavioral deficits (depression-like behaviors) and explore the possible mechanisms. ICR mice were subjected to chronic unpredictable mild stress for 42 consecutive days. Then, emodin and fluoxetine (positive control drug) were administered for 21 consecutive days at the last three weeks of CUMS procedure. The classical behavioral tests: open field test (OFT), sucrose preference test (SPT), tail suspension test (TST) and forced swimming test (FST) were applied to evaluate the antidepressant effects of emodin. Then plasma corticosterone concentration, hippocampal glucocorticoid receptor (GR) and brain-derived neurotrophic factor (BDNF) levels were tested to probe the mechanisms. Our results indicated that 6 weeks of CUMS exposure induced significant depression-like behavior, with high, plasma corticosterone concentration and low hippocampal GR and BDNF expression levels. Whereas, chronic emodin (20, 40 and 80 mg/kg) treatments reversed the behavioral deficiency induced by CUMS exposure. Treatment with emodin normalized the change of plasma corticosterone level, which demonstrated that emodin could partially restore CUMS-induced HPA axis impairments. Besides, hippocampal GR (mRNA and protein) and BDNF (mRNA) expressions were also up-regulated after emodin treatments. In conclusion, emodin remarkably improved depression-like behavior in CUMS mice and its antidepressant activity is mediated, at least in part, by the up-regulating GR and BDNF levels in hippocampus. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. The Glt1 glutamate receptor mediates the establishment and perpetuation of chronic visceral pain in an animal model of stress-induced bladder hyperalgesia.

    Science.gov (United States)

    Ackerman, A Lenore; Jellison, Forrest C; Lee, Una J; Bradesi, Sylvie; Rodríguez, Larissa V

    2016-04-01

    Psychological stress exacerbates interstitial cystitis/bladder pain syndrome (IC/BPS), a lower urinary tract pain disorder characterized by increased urinary frequency and bladder pain. Glutamate (Glu) is the primary excitatory neurotransmitter modulating nociceptive networks. Glt1, an astrocytic transporter responsible for Glu clearance, is critical in pain signaling termination. We sought to examine the role of Glt1 in stress-induced bladder hyperalgesia and urinary frequency. In a model of stress-induced bladder hyperalgesia with high construct validity to human IC/BPS, female Wistar-Kyoto (WKY) rats were subjected to 10-day water avoidance stress (WAS). Referred hyperalgesia and tactile allodynia were assessed after WAS with von Frey filaments. After behavioral testing, we assessed Glt1 expression in the spinal cord by immunoblotting. We also examined the influence of dihydrokainate (DHK) and ceftriaxone (CTX), which downregulate and upregulate Glt1, respectively, on pain development. Rats exposed to WAS demonstrated increased voiding frequency, increased colonic motility, anxiety-like behaviors, and enhanced visceral hyperalgesia and tactile allodynia. This behavioral phenotype correlated with decreases in spinal Glt1 expression. Exogenous Glt1 downregulation by DHK resulted in hyperalgesia similar to that following WAS. Exogenous Glt1 upregulation via intraperitoneal CTX injection inhibited the development of and reversed preexisting pain and voiding dysfunction induced by WAS. Repeated psychological stress results in voiding dysfunction and hyperalgesia that correlate with altered central nervous system glutamate processing. Manipulation of Glu handling altered the allodynia developing after psychological stress, implicating Glu neurotransmission in the pathophysiology of bladder hyperalgesia in the WAS model of IC/BPS. Copyright © 2016 the American Physiological Society.

  20. Thiamine and benfotiamine prevent stress-induced suppression of hippocampal neurogenesis in mice exposed to predation without affecting brain thiamine diphosphate levels.

    Science.gov (United States)

    Vignisse, Julie; Sambon, Margaux; Gorlova, Anna; Pavlov, Dmitrii; Caron, Nicolas; Malgrange, Brigitte; Shevtsova, Elena; Svistunov, Andrey; Anthony, Daniel C; Markova, Natalyia; Bazhenova, Natalyia; Coumans, Bernard; Lakaye, Bernard; Wins, Pierre; Strekalova, Tatyana; Bettendorff, Lucien

    2017-07-01

    Thiamine is essential for normal brain function and its deficiency causes metabolic impairment, specific lesions, oxidative damage and reduced adult hippocampal neurogenesis (AHN). Thiamine precursors with increased bioavailability, especially benfotiamine, exert neuroprotective effects not only for thiamine deficiency (TD), but also in mouse models of neurodegeneration. As it is known that AHN is impaired by stress in rodents, we exposed C57BL6/J mice to predator stress for 5 consecutive nights and studied the proliferation (number of Ki67-positive cells) and survival (number of BrdU-positive cells) of newborn immature neurons in the subgranular zone of the dentate gyrus. In stressed mice, the number of Ki67- and BrdU-positive cells was reduced compared to non-stressed animals. This reduction was prevented when the mice were treated (200mg/kg/day in drinking water for 20days) with thiamine or benfotiamine, that were recently found to prevent stress-induced behavioral changes and glycogen synthase kinase-3β (GSK-3β) upregulation in the CNS. Moreover, we show that thiamine and benfotiamine counteract stress-induced bodyweight loss and suppress stress-induced anxiety-like behavior. Both treatments induced a modest increase in the brain content of free thiamine while the level of thiamine diphosphate (ThDP) remained unchanged, suggesting that the beneficial effects observed are not linked to the role of this coenzyme in energy metabolism. Predator stress increased hippocampal protein carbonylation, an indicator of oxidative stress. This effect was antagonized by both thiamine and benfotiamine. Moreover, using cultured mouse neuroblastoma cells, we show that in particular benfotiamine protects against paraquat-induced oxidative stress. We therefore hypothesize that thiamine compounds may act by boosting anti-oxidant cellular defenses, by a mechanism that still remains to be unveiled. Our study demonstrates, for the first time, that thiamine and benfotiamine prevent

  1. Isolation stress and chronic mild stress induced immobility in the defensive burying behavior and a transient increased ethanol intake in Wistar rats.

    Science.gov (United States)

    Vázquez-León, Priscila; Martínez-Mota, Lucía; Quevedo-Corona, Lucía; Miranda-Páez, Abraham

    2017-09-01

    Stress can be experienced with or without adverse effects, of which anxiety and depression are two of the most important due to the frequent comorbidity with alcohol abuse in humans. Historically, stress has been considered a cause of drug use, particularly alcohol abuse due to its anxiolytic effects. In the present work we exposed male Wistar rats to two different stress conditions: single housing (social isolation, SI), and chronic mild stress (CMS). We compared both stressed groups to group-housed rats and rats without CMS (GH) to allow the determination of a clear behavioral response profile related to their respective endocrine stress response and alcohol intake pattern. We found that SI and CMS, to a greater extent, induced short-lasting increased sucrose consumption, a transient increase in serum corticosterone level, high latency/immobility, and low burying behavior in the defensive burying behavior (DBB) test, and a transient increase in alcohol intake. Thus, the main conclusion was that stress caused by both SI and CMS induced immobility in the DBB test and, subsequently, induced a transient increased voluntary ethanol intake in Wistar rats with a free-choice home-cage drinking paradigm. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Long-term treatment with peony glycosides reverses chronic unpredictable mild stress-induced depressive-like behavior via increasing expression of neurotrophins in rat brain.

    Science.gov (United States)

    Mao, Qing-Qiu; Xian, Yan-Fang; Ip, Siu-Po; Tsai, Sam-Hip; Che, Chun-Tao

    2010-07-11

    The root part of Paeonia lactiflora Pall., commonly known as peony, is a commonly used Chinese herb for the treatment of depression-like disorders. Previous studies in our laboratory have showed that total glycosides of peony (TGP) produced antidepressant-like action in various mouse models of behavioral despair. The present study aimed to investigate the mechanism(s) underlying the antidepressant-like action of TGP by measuring neurotrophins including brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in non-stressed and chronic unpredictable mild stress (CUMS)-treated rats. TGP (80 or 160 mg/kg/day) was administered by oral gavage to the animals for 5 weeks. The results showed that CUMS caused depression-like behavior in rats, as indicated by the significant decreases in sucrose consumption and locomotor activity (assessed by open-field test). In addition, it was found that BDNF contents in the hippocampus and frontal cortex were significantly decreased in CUMS-treated rats. CUMS treatment also significantly decreased the level of NGF in the frontal cortex of the animals. Daily intragastric administration of TGP (80 or 160 mg/kg/day) during the five weeks of CUMS significantly suppressed behavioral and biochemical changes induced by CUMS. Treating non-stressed animals with TGP (160 mg/kg) for 5 weeks also significantly increased BDNF contents in the hippocampus and frontal cortex, and NGF contents in the frontal cortex. The results suggest that the antidepressant-like action of TGP is mediated, at least in part, by increasing the expression of BDNF and NGF in selective brain tissues. Copyright 2010 Elsevier B.V. All rights reserved.

  3. Paecilomyces tenuipes extract prevents depression-like behaviors in chronic unpredictable mild stress-induced rat model via modulation of neurotransmitters.

    Science.gov (United States)

    Liu, Chungang; Wang, Juan; Xu, Shiqi; An, Shengshu; Tang, Siying; He, Jian; Liu, Yang; Lee, Robert J; Wang, Di

    2017-08-01

    The medicinal fungus Paecilomyces tenuipes exhibits a variety of pharmacological effects, including antidepressive effects. The chronic unpredictable mild stress (CUMS)‑induced rat model has served an important role in studies involving antidepressants screening. The aim of the present study was to evaluate the antidepressant‑like activity of P. tenuipes N45 aqueous extract (PTNE) in a CUMS‑induced rat model of behavioral despair depression. Following 4 weeks of PTNE treatment, behavioral tests were conducted to investigate the antidepressant‑like activities, and the levels of neurotransmitters and hormones in blood and hypothalamus were measured. The results demonstrated that PTNE treatment significantly increased movement in the forced running test, whereas the immobility time was reduced in the hotplate test and the forced swim test in depression‑model rats. PTNE treatment was able to normalize the levels of hormones and neurotransmitters in serum and hypothalamus of CUMS rats. The data demonstrated that PTNE treatment may be a potential pharmaceutical agent in treatment‑resistant depression, and the effects of PTNE may be partly mediated through normalizing the levels of neurotransmitters.

  4. Salubrious effects of oxytocin on social stress-induced deficits

    Science.gov (United States)

    Smith, Adam S.; Wang, Zuoxin

    2012-01-01

    Social relationships are a fundamental aspect of life, affecting social, psychological, physiological, and behavioral functions. While social interactions can attenuate stress and promote health, disruption, confrontations, isolation, or neglect in the social environment can each be major stressors. Social stress can impair the basal function and stress-induced activation of the hypothalamic-pituitary-adrenal (HPA) axis, impairing function of multiple biological systems and posing a risk to mental and physical health. In contrast, social support can ameliorate stress-induced physiological and immunological deficits, reducing the risk of subsequent psychological distress and improving an individual's overall well-being. For better clinical treatment of these physiological and mental pathologies, it is necessary to understand the regulatory mechanisms of stress-induced pathologies as well as determine the underlying biological mechanisms that regulate social buffering of the stress system. A number of ethologically relevant animal models of social stress and species that form strong adult social bonds have been utilized to study the etiology, treatment, and prevention of stress-related disorders. While undoubtedly a number of biological pathways contribute to the social buffering of the stress response, the convergence of evidence denotes the regulatory effects of oxytocin in facilitating social bond-promoting behaviors and their effect on the stress response. Thus, oxytocin may be perceived as a common regulatory element of the social environment, stress response, and stress-induced risks on mental and physical health. PMID:22178036

  5. Saikosaponin D relieves unpredictable chronic mild stress induced depressive-like behavior in rats: involvement of HPA axis and hippocampal neurogenesis.

    Science.gov (United States)

    Li, Hong-Yan; Zhao, Ying-Hua; Zeng, Min-Jie; Fang, Fang; Li, Min; Qin, Ting-Ting; Ye, Lu-Yu; Li, Hong-Wei; Qu, Rong; Ma, Shi-Ping

    2017-11-01

    Saikosaponin D (SSD), a major bioactive component isolated from Radix Bupleuri, has been reported to exert neuroprotective properties. The present study was designed to investigate the anti-depressant-like effects and the potential mechanisms of SSD. Behavioural tests including sucrose preference test (SPT), open field test (OFT) and forced swim test (FST) were performed to study the antidepressant-like effects of SSD. In addition, we examined corticosterone and glucocorticoid receptor (GR) levels to evaluate hypothalamic-pituitary-adrenal (HPA) axis function. Furthermore, hippocampal neurogenesis was assessed by testing doublecortin (DCX) levels, and neurotrophic molecule levels were also investigated in the hippocampus of rats. We found that unpredictable chronic mild stress (UCMS) rats displayed lost body weight, decreased sucrose consumption in SPT, reduced locomotive activity in OFT, and increased immobility time in FST. Chronic treatment with SSD (0.75, 1.50 mg/kg) remarkably ameliorated the behavioral deficiency induced by UCMS procedure. SSD administration downregulated elevated serum corticosterone levels, as well as alleviated the suppression of GR expression and nuclear translocation caused by UCMS, suggesting that SSD is able to remit the dysfunction of HPA axis. In addition, Western blot and immunohistochemistry analysis showed that SSD treatment significantly increased the generation of neurons in the hippocampus of UCMS rats indicated by elevated DCX levels. Moreover, hippocampal neurotrophic molecule levels of UCMS rats such as phosphorylated cAMP response element binding protein (p-CREB) and brain-derived neurotrophic factor (BDNF) were raised after SSD treatment. Together, Our results suggest that SSD opposed UCMS-induced depressive behaviors in rats, which was mediated, partially, by the enhancement of HPA axis function and consolidation of hippocampal neurogenesis.

  6. Chemogenetic and Optogenetic Activation of Gαs Signaling in the Basolateral Amygdala Induces Acute and Social Anxiety-Like States.

    Science.gov (United States)

    Siuda, Edward R; Al-Hasani, Ream; McCall, Jordan G; Bhatti, Dionnet L; Bruchas, Michael R

    2016-07-01

    Anxiety disorders are debilitating psychiatric illnesses with detrimental effects on human health. These heightened states of arousal are often in the absence of obvious threatening cues and are difficult to treat owing to a lack of understanding of the neural circuitry and cellular machinery mediating these conditions. Activation of noradrenergic circuitry in the basolateral amygdala is thought to have a role in stress, fear, and anxiety, and the specific cell and receptor types responsible is an active area of investigation. Here we take advantage of two novel cellular approaches to dissect the contributions of G-protein signaling in acute and social anxiety-like states. We used a chemogenetic approach utilizing the Gαs DREADD (rM3Ds) receptor and show that selective activation of generic Gαs signaling is sufficient to induce acute and social anxiety-like behavioral states in mice. Second, we use a recently characterized chimeric receptor composed of rhodopsin and the β2-adrenergic receptor (Opto-β2AR) with in vivo optogenetic techniques to selectively activate Gαs β-adrenergic signaling exclusively within excitatory neurons of the basolateral amygdala. We found that optogenetic induction of β-adrenergic signaling in the basolateral amygdala is sufficient to induce acute and social anxiety-like behavior. These findings support the conclusion that activation of Gαs signaling in the basolateral amygdala has a role in anxiety. These data also suggest that acute and social anxiety-like states may be mediated through signaling pathways identical to β-adrenergic receptors, thus providing support that inhibition of this system may be an effective anxiolytic therapy.

  7. Resveratrol ameliorates chronic unpredictable mild stress-induced depression-like behavior: involvement of the HPA axis, inflammatory markers, BDNF, and Wnt/β-catenin pathway in rats

    Directory of Open Access Journals (Sweden)

    Yang X

    2017-10-01

    Full Text Available Xin-Hua Yang,1 Su-Qi Song,2 Yun Xu3 1Department of Pharmacy, Hefei Eighth People’s Hospital, Hefei, 2Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei, 3Faculty of Pharmacy, Anhui Medical University, Hefei, China Abstract: Classic antidepressant drugs are modestly effective across the population and most are associated with intolerable side effects. Recently, numerous lines of evidence suggest that resveratrol (RES, a natural polyphenol, possesses beneficial therapeutic activity for depression. The aim of the present study was to explore whether RES exhibits an antidepressant-like effect in a depression model and to explore the possible mechanism. A depression model was established via chronic unpredictable mild stress (CUMS, after which the model rats in the RES and fluoxetine groups received a daily injection of RES or fluoxetine, respectively. The sucrose preference test, open field test, and forced swimming test were used to explore the antidepressant-like effects of RES. The activity of the hypothalamic–pituitary–adrenal (HPA axis was evaluated by detecting the plasma corticosterone concentration and hypothalamic mRNA expression of corticotrophin-releasing hormone. The plasma interleukin-6 (IL-6, C-reactive protein (CRP, and tumor necrosis factor-α (TNF-α concentrations were measured by enzyme-linked immunosorbent assay. Hippocampal protein expression of brain-derived neurotrophic factor (BDNF and the Wnt/β-catenin pathway were analyzed by western blot. The results showed that RES relieved depression-like behavior of CUMS rats, as indicated by the increased sucrose preference and the decreased immobile time. Rats that received RES treatment exhibited reduced plasma corticosterone levels and corticotrophin-releasing hormone mRNA expression in the hypothalamus, suggesting that the hyperactivity of the HPA axis in CUMS rats was reversed by RES. Moreover, after RES treatment, the rats exhibited increased

  8. Resveratrol ameliorates chronic unpredictable mild stress-induced depression-like behavior: involvement of the HPA axis, inflammatory markers, BDNF, and Wnt/β-catenin pathway in rats.

    Science.gov (United States)

    Yang, Xin-Hua; Song, Su-Qi; Xu, Yun

    2017-01-01

    Classic antidepressant drugs are modestly effective across the population and most are associated with intolerable side effects. Recently, numerous lines of evidence suggest that resveratrol (RES), a natural polyphenol, possesses beneficial therapeutic activity for depression. The aim of the present study was to explore whether RES exhibits an antidepressant-like effect in a depression model and to explore the possible mechanism. A depression model was established via chronic unpredictable mild stress (CUMS), after which the model rats in the RES and fluoxetine groups received a daily injection of RES or fluoxetine, respectively. The sucrose preference test, open field test, and forced swimming test were used to explore the antidepressant-like effects of RES. The activity of the hypothalamic-pituitary-adrenal (HPA) axis was evaluated by detecting the plasma corticosterone concentration and hypothalamic mRNA expression of corticotrophin-releasing hormone. The plasma interleukin-6 (IL-6), C-reactive protein (CRP), and tumor necrosis factor-α (TNF-α) concentrations were measured by enzyme-linked immunosorbent assay. Hippocampal protein expression of brain-derived neurotrophic factor (BDNF) and the Wnt/β-catenin pathway were analyzed by western blot. The results showed that RES relieved depression-like behavior of CUMS rats, as indicated by the increased sucrose preference and the decreased immobile time. Rats that received RES treatment exhibited reduced plasma corticosterone levels and corticotrophin-releasing hormone mRNA expression in the hypothalamus, suggesting that the hyperactivity of the HPA axis in CUMS rats was reversed by RES. Moreover, after RES treatment, the rats exhibited increased plasma IL-6, CRP, and TNF-α concentrations. Furthermore, RES treatment upregulated the hippocampal protein levels of BDNF and the relative ratio of p-β-catenin/β-catenin while downregulating the relative ratio of p-GSK-3β/GSK-3β. Our findings suggest that RES improved

  9. Perinatal exposure to lead and cadmium affects anxiety-like behaviour

    International Nuclear Information System (INIS)

    Leret, M.Luisa; Millan, Jose Antonio San; Antonio, M.Teresa

    2003-01-01

    The present study examines the effects of early simultaneous exposure to low level of lead and cadmium on anxiety-like behaviour in the rat, and on monoamine levels in the hypothalamus and hippocampus at weaning and adult animals. Rats were intoxicated with cadmium acetate (10 mg/l) and lead acetate (300 mg/l) in drinking water from the beginning of pregnancy until weaning. Maternal co-exposure to lead and cadmium produced mainly alterations in dopaminergic and serotoninergic systems of hippocampus in both age studied, while noradrenaline content in hypothalamus and hippocampus remained unchanged at 75 days of age. The intoxicated rats showed an increased on indices of anxiety on the elevated plus-maze. These long-term changes in anxiety-like behaviour can be related to dopaminergic and serotoninergic alterations detected in hippocampus

  10. Anxiety-like behaviour increases safety from fish predation in an amphipod crustacea.

    Science.gov (United States)

    Perrot-Minnot, Marie-Jeanne; Banchetry, Loan; Cézilly, Frank

    2017-12-01

    Anxiety is an emotional state generally expressed as sustained apprehension of the environment and elevated vigilance. It has been widely reported in vertebrates and, more recently, in a few invertebrate species. However, its fitness value remains elusive. We investigated anxiety-like behaviour and its consequences in an amphipod crustacean, using electric shock as aversive stimuli, and pharmacological assays. An anxiety-like state induced by electric shocks in Gammarus fossarum was expressed through increased sheltering behaviour in the absence of predation risk, thereby showing the pervasive nature of such behavioural response. Increasing the number of electric shocks both increased refuge use and delayed behavioural recovery. The behavioural effect of electric shock was mitigated by pre-treatment with LY354740, a metabotropic glutamate receptor group II/III agonist. Importantly, we found that this modulation of decision-making under an anxiety-like state resulted in an increased survival to predation in microcosm experiments. This study confirms the interest in taking an evolutionary view to the study of anxiety and calls for further investigation on the costs counterbalancing the survival benefit of an elevated anxiety level evidenced here.

  11. Salubrious effects of oxytocin on social stress-induced deficits

    OpenAIRE

    Smith, Adam S.; Wang, Zuoxin

    2011-01-01

    Social relationships are a fundamental aspect of life, affecting social, psychological, physiological, and behavioral functions. While social interactions can attenuate stress and promote health, disruption, confrontations, isolation, or neglect in the social environment can each be major stressors. Social stress can impair the basal function and stress-induced activation of the hypothalamic-pituitary-adrenal (HPA) axis, impairing function of multiple biological systems and posing a risk to m...

  12. Chronic exercise improves repeated restraint stress-induced anxiety and depression through 5HT1A receptor and cAMP signaling in hippocampus.

    Science.gov (United States)

    Kim, Mun Hee; Leem, Yea Hyun

    2014-03-01

    Mood disorders such as anxiety and depression are prevalent psychiatric illness, but the role of 5HT1A in the anti-depressive effects of exercise has been rarely known yet. We investigated whether long-term exercise affected a depressive-like behavior and a hippocampal 5HT1A receptor-mediated cAMP/PKA/CREB signaling in depression mice model. To induce depressive behaviors, mice were subjected to 14 consecutive days of restraint stress (2 hours/day). Depression-like behaviors were measured by forced swimming test (TST), and anxiety-like behavior was assessed by elevated plus maze (EPM). Treadmill exercise was performed with 19 m/min for 60 min/day, 5 days/week from weeks 0 to 8. Restraint stress was started at week 6 week and ended at week 8. To elucidate the role of 5HT1A in depression, the immunoreactivities of 5HT1A were detected in hippocampus using immunohistochemical technique. Chronic/repeated restraint stress induced behavioral anxiety and depression, such as reduced time and entries in open arms in EPM and enhanced immobility time in FST. These anxiety and depressive behaviors were ameliorated by chronic exercise. Also, these behavioral changes were concurrent with the deficit of 5HT1A and cAMP/PKA/CREB cascade in hippocampus, which was coped with chronic exercise. These results suggest that chronic exercise may improve the disturbance of hippocampal 5HT1A-regulated cAMP/PKA/CREB signaling in a depressed brain, thereby exerting an antidepressive action.

  13. β3-Adrenergic receptors, adipokines and neuroendocrine activation during stress induced by repeated immune challenge in male and female rats.

    Science.gov (United States)

    Csanova, Agnesa; Hlavacova, Natasa; Hasiec, Malgorzata; Pokusa, Michal; Prokopova, Barbora; Jezova, Daniela

    2017-05-01

    The main hypothesis of the study is that stress associated with repeated immune challenge has an impact on β 3 -adrenergic receptor gene expression in the brain. Sprague-Dawley rats were intraperitoneally injected with increasing doses of lipopolysaccharide (LPS) for five consecutive days. LPS treatment was associated with body weight loss and increased anxiety-like behavior. In LPS-treated animals of both sexes, β 3 -receptor gene expression was increased in the prefrontal cortex but not the hippocampus. LPS treatment decreased β 3 -receptor gene expression in white adipose tissue with higher values in males compared to females. In the adipose tissue, LPS reduced peroxisome proliferator-activated receptor-gamma, leptin and adiponectin gene expression, but increased interleukin-6 expression, irrespective of sex. Repeated immune challenge resulted in increased concentrations of plasma aldosterone and corticosterone with higher values of corticosterone in females compared to males. Concentrations of dehydroepiandrosterone (DHEA) in plasma were unaffected by LPS, while DHEA levels in the frontal cortex were lower in the LPS-treated animals compared to the controls. Thus, changes of DHEA levels in the brain take place irrespective of the changes of this neurosteroid in plasma. We have provided the first evidence on stress-induced increase in β 3 -adrenergic receptor gene expression in the brain. Greater reduction of β 3 -adrenergic receptor expression in the adipose tissue and of the body weight gain by repeated immune challenge in male than in female rats suggests sex differences in the role of β 3 -adrenergic receptors in the metabolic functions. LPS-induced changes in adipose tissue regulatory factors and hormone concentrations might be important for coping with chronic infections.

  14. Sodium benzoate induced developmental defects, oxidative stress and anxiety-like behaviour in zebrafish larva.

    Science.gov (United States)

    Gaur, Himanshu; Purushothaman, Srinithi; Pullaguri, Narasimha; Bhargava, Yogesh; Bhargava, Anamika

    2018-05-28

    Sodium benzoate (SB) is a common food preservative. Its FDA described safety limit is 1000 ppm. Lately, increased use of SB has prompted investigations regarding its effects on biological systems. Data regarding toxicity of SB is divergent and controversial with studies reporting both harmful and beneficial effects. Therefore, we did a systematic dose dependent toxicity study of SB using zebrafish vertebrate animal model. We also investigated oxidative stress and anxiety-like behaviour in zebrafish larva treated with SB. Our results indicate that SB induced developmental (delayed hatching), morphological (pericardial edema, yolk sac edema and tail bending), biochemical (oxidative stress) and behavioural (anxiety-like behaviour) abnormalities in developing zebrafish larva. LC 50 of SB induced toxicity was approximately 400 ppm after 48 h of SB exposure. Our study strongly supports its harmful effects on vertebrates at increasing doses. Thus, we suggest caution in the excessive use of this preservative in processed and convenience foods. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Effects of repeated asenapine in a battery of tests for anxiety-like behaviours in mice.

    Science.gov (United States)

    Ene, Hila M; Kara, Nirit Z; Barak, Noa; Reshef Ben-Mordechai, Tal; Einat, Haim

    2016-04-01

    A number of atypical antipsychotic drugs were demonstrated to have anxiolytic effects in patients and in animal models. These effects were mostly suggested to be the consequence of the drugs' affinity to the serotonin system and its receptors. Asenapine is a relatively new atypical antipsychotic that is prescribed for schizophrenia and for bipolar mania. Asenapine has a broad pharmacological profile with significant effects on serotonergic receptors, hence it is reasonable to expect that asenapine may have some anxiolytic effects. The present study was therefore designed to examine possible effects of asenapine on anxiety-like behaviour of mice. Male ICR mice were repeatedly treated with 0.1 or 0.3 mg/kg injections of asenapine and then tested in a battery of behavioural tests related to anxiety including the open-field test, elevated plus-maze (EPM), defensive marble burying and hyponeophagia tests. In an adjunct experiment, we tested the effects of acute diazepam in the same test battery. The results show that diazepam reduced anxiety-like behaviour in the EPM, the defensive marble burying test and the hyponeophagia test but not in the open field. Asenapine has anxiolytic-like effects in the EPM and the defensive marble burying tests but had no effects in the open-field or the hyponeophagia tests. Asenapine had no effects on locomotor activity. The results suggest that asenapine may have anxiolytic-like properties and recommends that clinical trials examining such effects should be performed.

  16. Stress induced reorientation of vanadium hydride

    International Nuclear Information System (INIS)

    Beardsley, M.B.

    1977-10-01

    The critical stress for the reorientation of vanadium hydride was determined for the temperature range 180 0 to 280 0 K using flat tensile samples containing 50 to 500 ppM hydrogen by weight. The critical stress was observed to vary from a half to a third of the macroscopic yield stress of pure vanadium over the temperature range. The vanadium hydride could not be stress induced to precipitate above its stress-free precipitation temperature by uniaxial tensile stresses or triaxial tensile stresses induced by a notch

  17. Cholinergic Modulation of Restraint Stress Induced Neurobehavioral ...

    African Journals Online (AJOL)

    The involvement of the cholinergic system in restraint stress induced neurobehavioral alterations was investigated in rodents using the hole board, elevated plus maze, the open field and the light and dark box tests. Restraint stress (3h) reduced significantly (p<0.05) the number of entries and time spent in the open arm, ...

  18. Activation of the sympathetic nervous system mediates hypophagic and anxiety-like effects of CB₁ receptor blockade.

    Science.gov (United States)

    Bellocchio, Luigi; Soria-Gómez, Edgar; Quarta, Carmelo; Metna-Laurent, Mathilde; Cardinal, Pierre; Binder, Elke; Cannich, Astrid; Delamarre, Anna; Häring, Martin; Martín-Fontecha, Mar; Vega, David; Leste-Lasserre, Thierry; Bartsch, Dusan; Monory, Krisztina; Lutz, Beat; Chaouloff, Francis; Pagotto, Uberto; Guzman, Manuel; Cota, Daniela; Marsicano, Giovanni

    2013-03-19

    Complex interactions between periphery and the brain regulate food intake in mammals. Cannabinoid type-1 (CB1) receptor antagonists are potent hypophagic agents, but the sites where this acute action is exerted and the underlying mechanisms are not fully elucidated. To dissect the mechanisms underlying the hypophagic effect of CB1 receptor blockade, we combined the acute injection of the CB1 receptor antagonist rimonabant with the use of conditional CB1-knockout mice, as well as with pharmacological modulation of different central and peripheral circuits. Fasting/refeeding experiments revealed that CB1 receptor signaling in many specific brain neurons is dispensable for the acute hypophagic effects of rimonabant. CB1 receptor antagonist-induced hypophagia was fully abolished by peripheral blockade of β-adrenergic transmission, suggesting that this effect is mediated by increased activity of the sympathetic nervous system. Consistently, we found that rimonabant increases gastrointestinal metabolism via increased peripheral β-adrenergic receptor signaling in peripheral organs, including the gastrointestinal tract. Blockade of both visceral afferents and glutamatergic transmission in the nucleus tractus solitarii abolished rimonabant-induced hypophagia. Importantly, these mechanisms were specifically triggered by lipid-deprivation, revealing a nutrient-specific component acutely regulated by CB1 receptor blockade. Finally, peripheral blockade of sympathetic neurotransmission also blunted central effects of CB1 receptor blockade, such as fear responses and anxiety-like behaviors. These data demonstrate that, independently of their site of origin, important effects of CB1 receptor blockade are expressed via activation of peripheral sympathetic activity. Thus, CB1 receptors modulate bidirectional circuits between the periphery and the brain to regulate feeding and other behaviors.

  19. Activation of the sympathetic nervous system mediates hypophagic and anxiety-like effects of CB1 receptor blockade

    Science.gov (United States)

    Bellocchio, Luigi; Soria-Gómez, Edgar; Quarta, Carmelo; Metna-Laurent, Mathilde; Cardinal, Pierre; Binder, Elke; Cannich, Astrid; Delamarre, Anna; Häring, Martin; Martín-Fontecha, Mar; Vega, David; Leste-Lasserre, Thierry; Bartsch, Dusan; Monory, Krisztina; Lutz, Beat; Chaouloff, Francis; Pagotto, Uberto; Guzman, Manuel; Cota, Daniela; Marsicano, Giovanni

    2013-01-01

    Complex interactions between periphery and the brain regulate food intake in mammals. Cannabinoid type-1 (CB1) receptor antagonists are potent hypophagic agents, but the sites where this acute action is exerted and the underlying mechanisms are not fully elucidated. To dissect the mechanisms underlying the hypophagic effect of CB1 receptor blockade, we combined the acute injection of the CB1 receptor antagonist rimonabant with the use of conditional CB1-knockout mice, as well as with pharmacological modulation of different central and peripheral circuits. Fasting/refeeding experiments revealed that CB1 receptor signaling in many specific brain neurons is dispensable for the acute hypophagic effects of rimonabant. CB1 receptor antagonist-induced hypophagia was fully abolished by peripheral blockade of β-adrenergic transmission, suggesting that this effect is mediated by increased activity of the sympathetic nervous system. Consistently, we found that rimonabant increases gastrointestinal metabolism via increased peripheral β-adrenergic receptor signaling in peripheral organs, including the gastrointestinal tract. Blockade of both visceral afferents and glutamatergic transmission in the nucleus tractus solitarii abolished rimonabant-induced hypophagia. Importantly, these mechanisms were specifically triggered by lipid-deprivation, revealing a nutrient-specific component acutely regulated by CB1 receptor blockade. Finally, peripheral blockade of sympathetic neurotransmission also blunted central effects of CB1 receptor blockade, such as fear responses and anxiety-like behaviors. These data demonstrate that, independently of their site of origin, important effects of CB1 receptor blockade are expressed via activation of peripheral sympathetic activity. Thus, CB1 receptors modulate bidirectional circuits between the periphery and the brain to regulate feeding and other behaviors. PMID:23487769

  20. Exposure to mobile phone electromagnetic field radiation, ringtone and vibration affects anxiety-like behaviour and oxidative stress biomarkers in albino wistar rats.

    Science.gov (United States)

    Shehu, Abubakar; Mohammed, Aliyu; Magaji, Rabiu Abdussalam; Muhammad, Mustapha Shehu

    2016-04-01

    Research on the effects of Mobile phone radio frequency emissions on biological systems has been focused on noise and vibrations as auditory stressors. This study investigated the potential effects of exposure to mobile phone electromagnetic field radiation, ringtone and vibration on anxiety-like behaviour and oxidative stress biomarkers in albino wistar rats. Twenty five male wistar rats were randomly divided into five groups of 5 animals each: group I: exposed to mobile phone in switched off mode (control), group II: exposed to mobile phone in silent mode, group III: exposed to mobile phone in vibration mode, group IV: exposed to mobile phone in ringtone mode, group V: exposed to mobile phone in vibration and ringtone mode. The animals in group II to V were exposed to 10 min call (30 missed calls for 20 s each) per day for 4 weeks. Neurobehavioural studies for assessing anxiety were carried out 24 h after the last exposure and the animals were sacrificed. Brain samples were collected for biochemical evaluation immediately. Results obtained showed a significant decrease (P < 0.05) in open arm duration in all the experimental groups when compared to the control. A significant decrease (P < 0.05) was also observed in catalase activity in group IV and V when compared to the control. In conclusion, the results of the present study indicates that 4 weeks exposure to electromagnetic radiation, vibration, ringtone or both produced a significant effect on anxiety-like behavior and oxidative stress in young wistar rats.

  1. [Stress-induced cellular adaptive mutagenesis].

    Science.gov (United States)

    Zhu, Linjiang; Li, Qi

    2014-04-01

    The adaptive mutations exist widely in the evolution of cells, such as antibiotic resistance mutations of pathogenic bacteria, adaptive evolution of industrial strains, and cancerization of human somatic cells. However, how these adaptive mutations are generated is still controversial. Based on the mutational analysis models under the nonlethal selection conditions, stress-induced cellular adaptive mutagenesis is proposed as a new evolutionary viewpoint. The hypothetic pathway of stress-induced mutagenesis involves several intracellular physiological responses, including DNA damages caused by accumulation of intracellular toxic chemicals, limitation of DNA MMR (mismatch repair) activity, upregulation of general stress response and activation of SOS response. These responses directly affect the accuracy of DNA replication from a high-fidelity manner to an error-prone one. The state changes of cell physiology significantly increase intracellular mutation rate and recombination activity. In addition, gene transcription under stress condition increases the instability of genome in response to DNA damage, resulting in transcription-associated DNA mutagenesis. In this review, we summarize these two molecular mechanisms of stress-induced mutagenesis and transcription-associated DNA mutagenesis to help better understand the mechanisms of adaptive mutagenesis.

  2. Vulnerability imposed by diet and brain trauma for anxiety-like phenotype: implications for post-traumatic stress disorders.

    Science.gov (United States)

    Tyagi, Ethika; Agrawal, Rahul; Zhuang, Yumei; Abad, Catalina; Waschek, James A; Gomez-Pinilla, Fernando

    2013-01-01

    Mild traumatic brain injury (mTBI, cerebral concussion) is a risk factor for the development of psychiatric illness such as posttraumatic stress disorder (PTSD). We sought to evaluate how omega-3 fatty acids during brain maturation can influence challenges incurred during adulthood (transitioning to unhealthy diet and mTBI) and predispose the brain to a PTSD-like pathobiology. Rats exposed to diets enriched or deficient in omega-3 fatty acids (n-3) during their brain maturation period, were transitioned to a western diet (WD) when becoming adult and then subjected to mTBI. TBI resulted in an increase in anxiety-like behavior and its molecular counterpart NPY1R, a hallmark of PTSD, but these effects were more pronounced in the animals exposed to n-3 deficient diet and switched to WD. The n-3 deficiency followed by WD disrupted BDNF signaling and the activation of elements of BDNF signaling pathway (TrkB, CaMKII, Akt and CREB) in frontal cortex. TBI worsened these effects and more prominently in combination with the n-3 deficiency condition. Moreover, the n-3 deficiency primed the immune system to the challenges imposed by the WD and brain trauma as evidenced by results showing that the WD or mTBI affected brain IL1β levels and peripheral Th17 and Treg subsets only in animals previously conditioned to the n-3 deficient diet. These results provide novel evidence for the capacity of maladaptive dietary habits to lower the threshold for neurological disorders in response to challenges.

  3. Neonatal blockade of GABA-A receptors alters behavioral and physiological phenotypes in adult mice.

    Science.gov (United States)

    Salari, Ali-Akbar; Amani, Mohammad

    2017-04-01

    Gamma-aminobutyric acid (GABA) plays an inhibitory role in the mature brain, and has a complex and bidirectional effect in different parts of the immature brain which affects proliferation, migration and differentiation of neurons during development. There is also increasing evidence suggesting that activation or blockade of the GABA-A receptors during early life can induce brain and behavioral abnormalities in adulthood. We investigated whether neonatal blockade of the GABA-A receptors by bicuculline can alter anxiety- and depression-like behaviors, body weight, food intake, corticosterone and testosterone levels in adult mice (postnatal days 80-95). To this end, neonatal mice were treated with either DMSO or bicuculline (70, 150 and 300μg/kg) during postnatal days 7, 9 and 11. When grown to adulthood, mice were exposed to behavioral tests to measure anxiety- (elevated plus-maze and light-dark box) and depression-like behaviors (tail suspension test and forced swim test). Stress-induced serum corticosterone and testosterone levels, body weight and food intake were also evaluated. Neonatal bicuculline exposure at dose of 300μg/kg decreased anxiety-like behavior, stress-induced corticosterone levels and increased testosterone levels, body weight and food intake, without significantly influencing depression-like behavior in adult male mice. However, no significant changes in these parameters were observed in adult females. These findings suggest that neonatal blockade of GABA-A receptors affects anxiety-like behavior, physiological and hormonal parameters in a sex-dependent manner in mice. Taken together, these data corroborate the concept that GABA-A receptors during early life have an important role in programming neurobehavioral phenotypes in adulthood. Copyright © 2017 ISDN. Published by Elsevier Ltd. All rights reserved.

  4. Neuromodulator and Emotion Biomarker for Stress Induced Mental Disorders.

    Science.gov (United States)

    Gu, Simeng; Wang, Wei; Wang, Fushun; Huang, Jason H

    2016-01-01

    Affective disorders are a leading cause of disabilities worldwide, and the etiology of these many affective disorders such as depression and posttraumatic stress disorder is due to hormone changes, which includes hypothalamus-pituitary-adrenal axis in the peripheral nervous system and neuromodulators in the central nervous system. Consistent with pharmacological studies indicating that medical treatment acts by increasing the concentration of catecholamine, the locus coeruleus (LC)/norepinephrine (NE) system is regarded as a critical part of the central "stress circuitry," whose major function is to induce "fight or flight" behavior and fear and anger emotion. Despite the intensive studies, there is still controversy about NE with fear and anger. For example, the rats with LC ablation were more reluctant to leave a familiar place and took longer to consume the food pellets in an unfamiliar place (neophobia, i.e., fear in response to novelty). The reason for this discrepancy might be that NE is not only for flight (fear), but also for fight (anger). Here, we try to review recent literatures about NE with stress induced emotions and their relations with mental disorders. We propose that stress induced NE release can induce both fear and anger. "Adrenaline rush or norepinephrine rush" and fear and anger emotion might act as biomarkers for mental disorders.

  5. Neuromodulator and Emotion Biomarker for Stress Induced Mental Disorders

    Directory of Open Access Journals (Sweden)

    Simeng Gu

    2016-01-01

    Full Text Available Affective disorders are a leading cause of disabilities worldwide, and the etiology of these many affective disorders such as depression and posttraumatic stress disorder is due to hormone changes, which includes hypothalamus-pituitary-adrenal axis in the peripheral nervous system and neuromodulators in the central nervous system. Consistent with pharmacological studies indicating that medical treatment acts by increasing the concentration of catecholamine, the locus coeruleus (LC/norepinephrine (NE system is regarded as a critical part of the central “stress circuitry,” whose major function is to induce “fight or flight” behavior and fear and anger emotion. Despite the intensive studies, there is still controversy about NE with fear and anger. For example, the rats with LC ablation were more reluctant to leave a familiar place and took longer to consume the food pellets in an unfamiliar place (neophobia, i.e., fear in response to novelty. The reason for this discrepancy might be that NE is not only for flight (fear, but also for fight (anger. Here, we try to review recent literatures about NE with stress induced emotions and their relations with mental disorders. We propose that stress induced NE release can induce both fear and anger. “Adrenaline rush or norepinephrine rush” and fear and anger emotion might act as biomarkers for mental disorders.

  6. Central mechanisms of stress-induced headache.

    Science.gov (United States)

    Cathcart, S; Petkov, J; Winefield, A H; Lushington, K; Rolan, P

    2010-03-01

    Stress is the most commonly reported trigger of an episode of chronic tension-type headache (CTTH); however, the causal significance has not been experimentally demonstrated to date. Stress may trigger CTTH through hyperalgesic effects on already sensitized pain pathways in CTTH sufferers. This hypothesis could be partially tested by examining pain sensitivity in an experimental model of stress-induced headache in CTTH sufferers. Such examinations have not been reported to date. We measured pericranial muscle tenderness and pain thresholds at the finger, head and shoulder in 23 CTTH sufferers (CTH-S) and 25 healthy control subjects (CNT) exposed to an hour-long stressful mental task, and in 23 CTTH sufferers exposed to an hour-long neutral condition (CTH-N). Headache developed in 91% of CTH-S, 4% of CNT, and 17% of CTH-N subjects. Headache sufferers had increased muscle tenderness and reduced pain thresholds compared with healthy controls. During the task, muscle tenderness increased and pain thresholds decreased in the CTH-S group compared with CTH-N and CNT groups. Pre-task muscle tenderness and reduction in pain threshold during task were predictive of the development and intensity of headache following task. The main findings are that stress induced a headache in CTTH sufferers, and this was associated with pre-task muscle tenderness and stress-induced reduction in pain thresholds. The results support the hypothesis that stress triggers CTTH through hyperalgesic effects on already increased pain sensitivity in CTTH sufferers, reducing the threshold to noxious input from pericranial structures.

  7. Prazosin Prevents Increased Anxiety Behavior That Occurs in Response to Stress During Alcohol Deprivations.

    Science.gov (United States)

    Rasmussen, Dennis D; Kincaid, Carrie L; Froehlich, Janice C

    2017-01-01

    Stress-induced anxiety is a risk factor for relapse to alcohol drinking. The aim of this study was to test the hypothesis that the central nervous system (CNS)-active α 1 -adrenergic receptor antagonist, prazosin, would block the stress-induced increase in anxiety that occurs during alcohol deprivations. Selectively bred male alcohol-preferring (P) rats were given three cycles of 5 days of ad libitum voluntary alcohol drinking interrupted by 2 days of alcohol deprivation, with or without 1 h of restraint stress 4 h after the start of each of the first two alcohol deprivation cycles. Prazosin (1.0 or 1.5 mg/kg, IP) or vehicle was administered before each restraint stress. Anxiety-like behavior during alcohol deprivation following the third 5-day cycle of alcohol drinking (7 days after the most recent restraint stress ± prazosin treatment) was measured by performance in an elevated plus-maze and in social approach/avoidance testing. Rats that received constant alcohol access, or alcohol access and deprivations without stress or prazosin treatments in the first two alcohol deprivations did not exhibit augmented anxiety-like behavior during the third deprivation. In contrast, rats that had been stressed during the first two alcohol deprivations exhibited increased anxiety-like behavior (compared with control rats) in both anxiety tests during the third deprivation. Prazosin given before stresses in the first two cycles of alcohol withdrawal prevented increased anxiety-like behavior during the third alcohol deprivation. Prazosin treatment before stresses experienced during alcohol deprivations may prevent the increased anxiety during subsequent deprivation/abstinence that is a risk factor for relapse to alcohol drinking. Administration of prazosin before stresses during repetitive alcohol deprivations in male alcohol-preferring (P) rats prevents increased anxiety during a subsequent deprivation without further prazosin treatment. Prazosin treatment during repeated

  8. 5HT-1A receptors and anxiety-like behaviours: studies in rats with constitutionally upregulated/downregulated serotonin transporter.

    Science.gov (United States)

    Bordukalo-Niksic, Tatjana; Mokrovic, Gordana; Stefulj, Jasminka; Zivin, Marko; Jernej, Branimir; Cicin-Sain, Lipa

    2010-12-01

    Altered activity of brain serotonergic (5HT) system has been implicated in a wide range of behaviours and behavioural disorders, including anxiety. Functioning of 5HT-1A receptor has been suggested as a modulator of emotional balance in both, normal and pathological forms of anxiety. Here, we studied serotonergic modulation of anxiety-like behaviour using a genetic rat model with constitutional differences in 5HT homeostasis, named Wistar-Zagreb 5HT (WZ-5HT) rats. The model, consisting of high-5HT and low-5HT sublines, was developed by selective breeding of animals for extreme activities of peripheral (platelet) 5HT transporter, but selection process had affected also central 5HT homeostasis, as evidenced from neurochemical and behavioural studies. Anxiety-like behaviour in WZ-5HT rats was evaluated by two commonly used paradigms: open field and elevated-plus maze. The involvement of 5HT-1A receptors in behavioural response was assessed by measuring mRNA expression in cell bodies (raphe nuclei) and projection regions (frontal cortex, hippocampus) by use of RT-PCR and in situ hybridization, and by measuring functionality of cortical 5HT-1A receptors by use of [(3)H]8-OH-DPAT radioligand binding. Animals from the high-5HT subline exhibit increased anxiety-like behaviour and decreased exploratory activity when exposed to novel environment. No measurable differences in constitutional (baseline) functionality or expression of 5HT-1A receptors between sublines were found. The results support contribution of increased serotonergic functioning to the anxiety-like behaviour. They also validate the high-5HT subline of WZ-5HT rats as a potential model to study mechanisms of anxiety, especially of its nonpathological form, while the low-5HT subline may be useful to model sensation seeking phenotype. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  9. Cold stress induces lower urinary tract symptoms.

    Science.gov (United States)

    Imamura, Tetsuya; Ishizuka, Osamu; Nishizawa, Osamu

    2013-07-01

    Cold stress as a result of whole-body cooling at low environmental temperatures exacerbates lower urinary tract symptoms, such as urinary urgency, nocturia and residual urine. We established a model system using healthy conscious rats to explore the mechanisms of cold stress-induced detrusor overactivity. In this review, we summarize the basic findings shown by this model. Rats that were quickly transferred from room temperature (27 ± 2°C) to low temperature (4 ± 2°C) showed detrusor overactivity including increased basal pressure and decreased voiding interval, micturition volume, and bladder capacity. The cold stress-induced detrusor overactivity is mediated through a resiniferatoxin-sensitve C-fiber sensory nerve pathway involving α1-adrenergic receptors. Transient receptor potential melastatin 8 channels, which are sensitive to thermal changes below 25-28°C, also play an important role in mediating the cold stress responses. Additionally, the sympathetic nervous system is associated with transient hypertension and decreases of skin surface temperature that are closely correlated with the detrusor overactivity. With this cold stress model, we showed that α1-adrenergic receptor antagonists have the potential to treat cold stress-exacerbated lower urinary tract symptoms. In addition, we showed that traditional Japanese herbal mixtures composed of Hachimijiogan act, in part, by increasing skin temperature and reducing the number of cold sensitive transient receptor potential melastatin channels in the skin. The effects of herbal mixtures have the potential to treat and/or prevent the exacerbation of lower urinary tract symptoms by providing resistance to the cold stress responses. Our model provides new opportunities for utilizing animal disease models with altered lower urinary tract functions to explore the effects of novel therapeutic drugs. © 2013 The Japanese Urological Association.

  10. C. elegans Stress-Induced Sleep Emerges from the Collective Action of Multiple Neuropeptides.

    Science.gov (United States)

    Nath, Ravi D; Chow, Elly S; Wang, Han; Schwarz, Erich M; Sternberg, Paul W

    2016-09-26

    The genetic basis of sleep regulation remains poorly understood. In C. elegans, cellular stress induces sleep through epidermal growth factor (EGF)-dependent activation of the EGF receptor in the ALA neuron. The downstream mechanism by which this neuron promotes sleep is unknown. Single-cell RNA sequencing of ALA reveals that the most highly expressed, ALA-enriched genes encode neuropeptides. Here we have systematically investigated the four most highly enriched neuropeptides: flp-7, nlp-8, flp-24, and flp-13. When individually removed by null mutation, these peptides had little or no effect on stress-induced sleep. However, stress-induced sleep was abolished in nlp-8; flp-24; flp-13 triple-mutant animals, indicating that these neuropeptides work collectively in controlling stress-induced sleep. We tested the effect of overexpression of these neuropeptide genes on five behaviors modulated during sleep-pharyngeal pumping, defecation, locomotion, head movement, and avoidance response to an aversive stimulus-and we found that, if individually overexpressed, each of three neuropeptides (nlp-8, flp-24, or flp-13) induced a different suite of sleep-associated behaviors. These overexpression results raise the possibility that individual components of sleep might be specified by individual neuropeptides or combinations of neuropeptides. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. STRESS INDUCED OBESITY: LESSONS FROM RODENT MODELS OF STRESS

    Directory of Open Access Journals (Sweden)

    Zachary Robert Patterson

    2013-07-01

    Full Text Available Stress is defined as the behavioral and physiological responses generated in the face of, or in anticipation of, a perceived threat. The stress response involves activation of the sympathetic nervous system and recruitment of the hypothalamic-pituitary-adrenal (HPA axis. When an organism encounters a stressor (social, physical, etc., these endogenous stress systems are stimulated in order to generate a fight-or-flight response, and manage the stressful situation. As such, an organism is forced to liberate energy resources in attempt to meet the energetic demands posed by the stressor. A change in the energy homeostatic balance is thus required to exploit an appropriate resource and deliver useable energy to the target muscles and tissues involved in the stress response. Acutely, this change in energy homeostasis and the liberation of energy is considered advantageous, as it is required for the survival of the organism. However, when an organism is subjected to a prolonged stressor, as is the case during chronic stress, a continuous irregularity in energy homeostasis is considered detrimental and may lead to the development of metabolic disturbances such as cardiovascular disease, type II diabetes mellitus and obesity. This concept has been studied extensively using animal models, and the neurobiological underpinnings of stress induced metabolic disorders are beginning to surface. However, different animal models of stress continue to produce divergent metabolic phenotypes wherein some animals become anorexic and loose body mass while others increase food intake and body mass and become vulnerable to the development of metabolic disturbances. It remains unclear exactly what factors associated with stress models can be used to predict the metabolic outcome of the organism. This review will explore a variety of rodent stress models and discuss the elements that influence the metabolic outcome in order to further our understanding of stress-induced

  12. Postnatal Treadmill Exercise Alleviates Prenatal Stress-Induced Anxiety in Offspring Rats by Enhancing Cell Proliferation Through 5-Hydroxytryptamine 1A Receptor Activation

    Directory of Open Access Journals (Sweden)

    Sam Jun Lee

    2016-05-01

    Full Text Available Purpose: Stress during pregnancy is a risk factor for the development of anxiety-related disorders in offspring later in life. The effects of treadmill exercise on anxiety-like behaviors and hippocampal cell proliferation were investigated using rats exposed to prenatal stress. Methods: Exposure of pregnant rats to a hunting dog in an enclosed room was used to induce stress. Anxiety-like behaviors of offspring were evaluated using the elevated plus maze test. Immunohistochemistry for the detection of 5-bromo-2ʹ- deoxyuridine and doublecortin (DCX in the hippocampal dentate gyrus and 5-hydroxytryptamine 1A receptors (5-HT1A in the dorsal raphe was conducted. Brain-derived neurotrophic factor (BDNF and tyrosine kinase B (TrkB levels in the hippocampus were evaluated by western blot analysis. Results: Offspring of maternal rats exposed to stress during pregnancy showed anxiety-like behaviors. Offspring also showed reduced expression of BDNF, TrkB, and DCX in the dentate gyrus, decreased cell proliferation in the hippocampus, and reduced 5-HT1A expression in the dorsal raphe. Postnatal treadmill exercise by offspring, but not maternal exercise during pregnancy, enhanced cell proliferation and expression of these proteins. Conclusions: Postnatal treadmill exercise ameliorated anxiety-like behaviors in offspring of stressed pregnant rats, and the alleviating effect of exercise on these behaviors is hypothesized to result from enhancement of cell proliferation through 5-HT1A activation in offspring rats.

  13. Stress-induced anhedonia in mice is associated with deficits in forced swimming and exploration.

    Science.gov (United States)

    Strekalova, Tatyana; Spanagel, Rainer; Bartsch, Dusan; Henn, Fritz A; Gass, Peter

    2004-11-01

    In order to develop a model for a depression-like syndrome in mice, we subjected male C57BL/6 mice to a 4-week-long chronic stress procedure, consisting of rat exposure, restraint stress, and tail suspension. This protocol resulted in a strong decrease in sucrose preference, a putative indicator of anhedonia in rodents. Interestingly, predisposition for stress-induced anhedonia was indicated by submissive behavior in a resident-intruder test. In contrast, most mice with nonsubmissive behavior did not develop a decrease in sucrose preference and were regarded as nonanhedonic. These animals were used as an internal control for stress-induced behavioral features not associated with the anhedonic state, since they were exposed to the same stressors as the anhedonic mice. Using a battery of behavioral tests after termination of the stress procedure, we found that anhedonia, but not chronic stress per se, is associated with key analogues of depressive symptoms, such as increased floating during forced swimming and decreased exploration of novelty. On the other hand, increased anxiety, altered locomotor activity, and loss of body weight were consequences of chronic stress, which occurred independently from anhedonia. Thus, behavioral correlates of stress-induced anhedonia and of chronic stress alone can be separated in the present model.

  14. Anxiety-like behaviour and associated neurochemical and endocrinological alterations in male pups exposed to prenatal stress.

    Science.gov (United States)

    Laloux, Charlotte; Mairesse, Jérôme; Van Camp, Gilles; Giovine, Angela; Branchi, Igor; Bouret, Sebastien; Morley-Fletcher, Sara; Bergonzelli, Gabriela; Malagodi, Marithé; Gradini, Roberto; Nicoletti, Ferdinando; Darnaudéry, Muriel; Maccari, Stefania

    2012-10-01

    Epidemiological studies suggest that emotional liability in infancy could be a predictor of anxiety-related disorders in the adulthood. Rats exposed to prenatal restraint stress ("PRS rats") represent a valuable model for the study of the interplay between environmental triggers and neurodevelopment in the pathogenesis of anxious/depressive like behaviours. Repeated episodes of restraint stress were delivered to female Sprague-Dawley rats during pregnancy and male offspring were studied. Ultrasonic vocalization (USV) was assessed in pups under different behavioural paradigms. After weaning, anxiety was measured by conventional tests. Expression of GABA(A) receptor subunits and metabotropic glutamate (mGlu) receptors was assessed by immunoblotting. Plasma leptin levels were measured using a LINCOplex bead assay kit. The offspring of stressed dams emitted more USVs in response to isolation from their mothers and showed a later suppression of USV production when exposed to an unfamiliar male odour, indicating a pronounced anxiety-like profile. Anxiety like behaviour in PRS pups persisted one day after weaning. PRS pups did not show the plasma peak in leptin levels that is otherwise seen at PND14. In addition, PRS pups showed a reduced expression of the γ2 subunit of GABA(A) receptors in the amygdala at PND14 and PND22, an increased expression of mGlu5 receptors in the amygdala at PND22, a reduced expression of mGlu5 receptors in the hippocampus at PND14 and PND22, and a reduced expression of mGlu2/3 receptors in the hippocampus at PND22. These data offer a clear-cut demonstration that the early programming triggered by PRS could be already translated into anxiety-like behaviour during early postnatal life. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Photostress analysis of stress-induced martensite phase transformation in superelastic NiTi

    International Nuclear Information System (INIS)

    Katanchi, B.; Choupani, N.; Khalil-Allafi, J.; Baghani, M.

    2017-01-01

    Phase transformation in shape memory alloys is the most important factor in their unique behavior. In this paper, the formation of stress induced martensite phase transformation in a superelastic NiTi (50.8% Ni) shape memory alloy was investigated by using the photo-stress method. First, the material's fabrication procedure has been described and then the material was studied using the metallurgical tests such as differential scanning calorimetry and X-ray diffraction to characterize the material features and the mechanical tensile test to investigate the superelastic behavior. As a new method in observation of the phase transformation, photo-stress pictures showed the formation of stress induced martensite in a superelastic dog-bone specimen during loading and subsequently it's disappearing during unloading. Finally, finite element analysis was implemented using the constitutive equations derived based on the Boyd-Lagoudas phenomenological model.

  16. Photostress analysis of stress-induced martensite phase transformation in superelastic NiTi

    Energy Technology Data Exchange (ETDEWEB)

    Katanchi, B. [Mechanical Engineering Faculty, Sahand University of Technology, Tabriz (Iran, Islamic Republic of); Choupani, N., E-mail: choupani@sut.ac.ir [Mechanical Engineering Faculty, Sahand University of Technology, Tabriz (Iran, Islamic Republic of); Khalil-Allafi, J. [Research Center for Advance Materials, Faculty of Materials Engineering, Sahand University of Technology, Tabriz (Iran, Islamic Republic of); Baghani, M. [School of Mechanical Engineering, College of Engineering, University of Tehran (Iran, Islamic Republic of)

    2017-03-14

    Phase transformation in shape memory alloys is the most important factor in their unique behavior. In this paper, the formation of stress induced martensite phase transformation in a superelastic NiTi (50.8% Ni) shape memory alloy was investigated by using the photo-stress method. First, the material's fabrication procedure has been described and then the material was studied using the metallurgical tests such as differential scanning calorimetry and X-ray diffraction to characterize the material features and the mechanical tensile test to investigate the superelastic behavior. As a new method in observation of the phase transformation, photo-stress pictures showed the formation of stress induced martensite in a superelastic dog-bone specimen during loading and subsequently it's disappearing during unloading. Finally, finite element analysis was implemented using the constitutive equations derived based on the Boyd-Lagoudas phenomenological model.

  17. Finite element calculation of stress induced heating of superconductors

    International Nuclear Information System (INIS)

    Akin, J.E.; Moazed, A.

    1976-01-01

    This research is concerned with the calculation of the amount of heat generated due to the development of mechanical stresses in superconducting composites. An emperical equation is used to define the amount of stress-induced heat generation per unit volume. The equation relates the maximum applied stress and the experimental measured hysteresis loop of the composite stress-strain diagram. It is utilized in a finite element program to calculate the total stress-induced heat generation for the superconductor. An example analysis of a solenoid indicates that the stress-induced heating can be of the same order of magnitude as eddy current effects

  18. Low dose prenatal ethanol exposure induces anxiety-like behaviour and alters dendritic morphology in the basolateral amygdala of rat offspring.

    Directory of Open Access Journals (Sweden)

    Carlie L Cullen

    Full Text Available Prenatal exposure to high levels of alcohol is strongly associated with poor cognitive outcomes particularly in relation to learning and memory. It is also becoming more evident that anxiety disorders and anxiety-like behaviour can be associated with prenatal alcohol exposure. This study used a rat model to determine if prenatal exposure to a relatively small amount of alcohol would result in anxiety-like behaviour and to determine if this was associated with morphological changes in the basolateral amygdala. Pregnant Sprague Dawley rats were fed a liquid diet containing either no alcohol (Control or 6% (vol/vol ethanol (EtOH throughout gestation. Male and Female offspring underwent behavioural testing at 8 months (Adult or 15 months (Aged of age. Rats were perfusion fixed and brains were collected at the end of behavioural testing for morphological analysis of pyramidal neuron number and dendritic morphology within the basolateral amygdala. EtOH exposed offspring displayed anxiety-like behaviour in the elevated plus maze, holeboard and emergence tests. Although sexually dimorphic behaviour was apparent, sex did not impact anxiety-like behaviour induced by prenatal alcohol exposure. This increase in anxiety - like behaviour could not be attributed to a change in pyramidal cell number within the BLA but rather was associated with an increase in dendritic spines along the apical dendrite which is indicative of an increase in synaptic connectivity and activity within these neurons. This study is the first to link increases in anxiety like behaviour to structural changes within the basolateral amygdala in a model of prenatal ethanol exposure. In addition, this study has shown that exposure to even a relatively small amount of alcohol during development leads to long term alterations in anxiety-like behaviour.

  19. Liquiritigenin reverses depression-like behavior in unpredictable chronic mild stress-induced mice by regulating PI3K/Akt/mTOR mediated BDNF/TrkB pathway.

    Science.gov (United States)

    Tao, Weiwei; Dong, Yu; Su, Qiang; Wang, Hanqing; Chen, Yanyan; Xue, Wenda; Chen, Chang; Xia, Baomei; Duan, Jinao; Chen, Gang

    2016-07-15

    Major depression is a common long-lasting or recurrent psychiatric disease with high lifetime prevalence and high incidence of suicide. The main purpose of the current study was to verify whether liquiritigenin conferred an antidepressant-like effect on the depressive mouse model established by unpredictable chronic mild stress (UCMS) and explore its possible mechanism. The results of depression-related behaviors including sucrose preference test (SPT), open field test (OFT), forced swimming test (FST) and tail suspension test (TST) indicated that both liquiritigenin (7.5mg/kg, 15mg/kg) and fluoxetine (20mg/kg) dramatically improved the depression symptoms. Enzyme-linked immunosorbent assay (ELISA) revealed that treatment with liquiritigenin significantly reduced the concentrations of pro-inflammatory cytokines including interleukin (IL)-6, IL-1β and tumor necrosis factor (TNF)-α in serum and hippocampus. Compared with the UCMS group, the administrations of liquiritigenin, increased levels of superoxide dismutase (SOD), glutathione (GSH), catalase (CAT), and decreased Malondialdehyde (MDA) content. Meanwhile, glucocorticoids (GC) content was reduced in the liquiritigenin group, which suggested that liquiritigenin exhibiting the ameliorative effect on activated hypothalamic-pituitary-adrenal (HPA) axis stimulated with UCMS. Mice treated with liquiritigenin showed restored levels of neurotransmitter norepinephrine (NE) and serotonin (5-HT). Western blot analysis displayed up-regulated expressions of p-phosphatidylinositol 3-kinase (PI3K), p-Akt, p- mammalian target of rapamycin (mTOR), p-tropomyosin-related kinase B (TrkB), brain-derived neurotrophic factor (BDNF). Thus, it was supposed that liquiritigenin might be useful for the treatment of chronic depression possibly through PI3K/Akt/mTOR mediated BDNF/TrkB pathway. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Sucrose or sucrose and caffeine differentially impact memory and anxiety-like behaviours, and alter hippocampal parvalbumin and doublecortin.

    Science.gov (United States)

    Xu, Tanya J; Reichelt, Amy C

    2018-04-11

    Caffeinated sugar-sweetened "energy" drinks are a subset of soft drinks that are popular among young people worldwide. High sucrose diets impair cognition and alter aspects of emotional behaviour in rats, however, little is known about sucrose combined with caffeine. Rats were allocated to 2 h/day 10% sucrose (Suc), 10% sucrose plus 0.04% caffeine (CafSuc) or control (water) conditions. The addition of caffeine to sucrose appeared to increase the rewarding aspect of sucrose, as the CafSuc group consumed more solution than the Suc group. After 14 days of intermittent Suc or CafSuc access, anxiety was assessed in the elevated plus maze (EPM) prior to their daily solution access, whereby CafSuc and Suc rats spent more time in the closed arms, indicative of increased anxiety. Following daily solution access, CafSuc, but not Suc, rats showed reduced anxiety-like behaviour in the open-field. Control and CafSuc rats displayed intact place and long-term object memory, while Suc showed impaired memory performance. Sucrose reduced parvalbumin immunoreactivity in the hippocampus, but no differences were observed between Control and CafSuc conditions. Parvalbumin reactivity in the basolateral amygdala did not differ between conditions. Reduced doublecortin immunoreactivity in the dentate gyrus relative to controls was seen in the CafSuc, but not Suc, treatment conditions. These findings indicate that the addition of caffeine to sucrose attenuated cognitive deficits. However, the addition of caffeine to sucrose evoked anxiety-like responses under certain testing conditions, suggesting that frequent consumption of caffeinated energy drinks may promote emotional alterations and brain changes compared to standard soft drinks. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Agomelatine, venlafaxine, and running exercise effectively prevent anxiety- and depression-like behaviors and memory impairment in restraint stressed rats.

    Directory of Open Access Journals (Sweden)

    Sarawut Lapmanee

    Full Text Available Several severe stressful situations, e.g., natural disaster, infectious disease out break, and mass casualty, are known to cause anxiety, depression and cognitive impairment, and preventive intervention for these stress complications is worth exploring. We have previously reported that the serotonin-norepinephrine-dopamine reuptake inhibitor, venlafaxine, as well as voluntary wheel running are effective in the treatment of anxiety- and depression-like behaviors in stressed rats. But whether they are able to prevent deleterious consequences of restraint stress in rats, such as anxiety/depression-like behaviors and memory impairment that occur afterward, was not known. Herein, male Wistar rats were pre-treated for 4 weeks with anti-anxiety/anti-depressive drugs, agomelatine and venlafaxine, or voluntary wheel running, followed by 4 weeks of restraint-induced stress. During the stress period, rats received neither drug nor exercise intervention. Our results showed that restraint stress induced mixed anxiety- and depression-like behaviors, and memory impairment as determined by elevated plus-maze, elevated T-maze, open field test (OFT, forced swimming test (FST, and Morris water maze (MWM. Both pharmacological pre-treatments and running successfully prevented the anxiety-like behavior, especially learned fear, in stressed rats. MWM test suggested that agomelatine, venlafaxine, and running could prevent stress-induced memory impairment, but only pharmacological treatments led to better novel object recognition behavior and positive outcome in FST. Moreover, western blot analysis demonstrated that venlafaxine and running exercise upregulated brain-derived neurotrophic factor (BDNF expression in the hippocampus. In conclusion, agomelatine, venlafaxine as well as voluntary wheel running had beneficial effects, i.e., preventing the restraint stress-induced anxiety/depression-like behaviors and memory impairment.

  2. Stress-induced alterations in estradiol sensitivity increase risk for obesity in women.

    Science.gov (United States)

    Michopoulos, Vasiliki

    2016-11-01

    The prevalence of obesity in the United States continues to rise, increasing individual vulnerability to an array of adverse health outcomes. One factor that has been implicated causally in the increased accumulation of fat and excess food intake is the activity of the limbic-hypothalamic-pituitary-adrenal (LHPA) axis in the face of relentless stressor exposure. However, translational and clinical research continues to understudy the effects sex and gonadal hormones and LHPA axis dysfunction in the etiology of obesity even though women continue to be at greater risk than men for stress-induced disorders, including depression, emotional feeding and obesity. The current review will emphasize the need for sex-specific evaluation of the relationship between stress exposure and LHPA axis activity on individual risk for obesity by summarizing data generated by animal models currently being leveraged to determine the etiology of stress-induced alterations in feeding behavior and metabolism. There exists a clear lack of translational models that have been used to study female-specific risk. One translational model of psychosocial stress exposure that has proven fruitful in elucidating potential mechanisms by which females are at increased risk for stress-induced adverse health outcomes is that of social subordination in socially housed female macaque monkeys. Data from subordinate female monkeys suggest that increased risk for emotional eating and the development of obesity in females may be due to LHPA axis-induced changes in the behavioral and physiological sensitivity of estradiol. The lack in understanding of the mechanisms underlying these alterations necessitate the need to account for the effects of sex and gonadal hormones in the rationale, design, implementation, analysis and interpretation of results in our studies of stress axis function in obesity. Doing so may lead to the identification of novel therapeutic targets with which to combat stress-induced obesity

  3. Negative Energy Balance Blocks Neural and Behavioral Responses to Acute Stress by "Silencing" Central Glucagon-Like Peptide 1 Signaling in Rats.

    Science.gov (United States)

    Maniscalco, James W; Zheng, Huiyuan; Gordon, Patrick J; Rinaman, Linda

    2015-07-29

    Previous reports indicate that caloric restriction attenuates anxiety and other behavioral responses to acute stress, and blunts the ability of stress to increase anterior pituitary release of adrenocorticotropic hormone. Since hindbrain glucagon-like peptide-1 (GLP-1) neurons and noradrenergic prolactin-releasing peptide (PrRP) neurons participate in behavioral and endocrine stress responses, and are sensitive to the metabolic state, we examined whether overnight food deprivation blunts stress-induced recruitment of these neurons and their downstream hypothalamic and limbic forebrain targets. A single overnight fast reduced anxiety-like behavior assessed in the elevated-plus maze and acoustic startle test, including marked attenuation of light-enhanced startle. Acute stress [i.e., 30 min restraint (RES) or 5 min elevated platform exposure] robustly activated c-Fos in GLP-1 and PrRP neurons in fed rats, but not in fasted rats. Fasting also significantly blunted the ability of acute stress to activate c-Fos expression within the anterior ventrolateral bed nucleus of the stria terminalis (vlBST). Acute RES stress suppressed dark-onset food intake in rats that were fed ad libitum, whereas central infusion of a GLP-1 receptor antagonist blocked RES-induced hypophagia, and reduced the ability of RES to activate PrRP and anterior vlBST neurons in ad libitum-fed rats. Thus, an overnight fast "silences" GLP-1 and PrRP neurons, and reduces both anxiety-like and hypophagic responses to acute stress. The partial mimicking of these fasting-induced effects in ad libitum-fed rats after GLP-1 receptor antagonism suggests a potential mechanism by which short-term negative energy balance attenuates neuroendocrine and behavioral responses to acute stress. The results from this study reveal a potential central mechanism for the "metabolic tuning" of stress responsiveness. A single overnight fast, which markedly reduces anxiety-like behavior in rats, reduces or blocks the ability of

  4. Isotretinoin (13-cis-retinoic acid) alters learning and memory, but not anxiety-like behavior, in the adult rat.

    Science.gov (United States)

    Dopheide, Marsha M; Morgan, Russell E

    2008-12-01

    Isotretinoin (ISO, 13-cis-retinoic acid) is commonly prescribed as Accutane for the treatment of acne. ISO is a known teratogen and the physical side effects of the drug have been well documented. However, possible psychological risks associated with the drug have yet to be determined. Retinoid receptors are abundant in the striatum and hippocampus, brain structures involved in implicit and explicit memory processes, respectively. The current study examined whether ISO influenced implicit or explicit memory processes using a two-stage radial-arm maze (RAM) task. The two stages were identical, except for the method of presenting arm choices to the rats: one at a time (Stage 1) or in pairs (Stage 2). Male rats (n=12/group) were tested on both stages of the RAM during chronic oral treatment with ISO (0, 5, 10, or 15 mg/kg/day). Performance indicated that ISO impaired explicit memory in Stage 2, but retention tests one month after ISO exposure ended, indicated recovery from this explicit memory impairment and evidence of enhanced implicit memory in the 10 mg and 15 mg ISO rats. These data indicate extensive, enduring memory effects from oral ISO treatment at doses likely to produce serum levels within the range typically used to treat acne in humans.

  5. Serotonergic involvement in stress-induced vasopressin and oxytocin secretion

    DEFF Research Database (Denmark)

    Jørgensen, Henrik; Knigge, Ulrich; Kjaer, Andreas

    2002-01-01

    OBJECTIVE: To investigate the involvement of serotonin (5-hydroxytryptamine - 5-HT) receptors in mediation of stress-induced arginine vasopressin (AVP) and oxytocin (OT) secretion in male rats. DESIGN: Experiments on laboratory rats with control groups. METHODS: Different stress paradigms were...... the swim stress-induced OT response. CONCLUSION: 5-HT(2A), 5-HT(2C) and possibly 5-HT(3) and 5-HT(4) receptors, but not 5-HT(1A) receptors, are involved in the restraint stress-induced AVP secretion. 5-HT does not seem to be involved in the dehydration- or hemorrhage-induced AVP response. The restraint...... stress-induced OT response seems to be mediated via 5-HT(1A), 5-HT(2A) and 5-HT(2C) receptors. The dehydration and hemorrhage-induced OT responses are at least mediated by the 5-HT(2A) and 5-HT(2C) receptors. The 5-HT(3) and 5-HT(4) receptors are not involved in stress-induced OT secretion....

  6. Adolescent chronic variable social stress influences exploratory behavior and nicotine responses in male, but not female, BALB/cJ mice.

    Science.gov (United States)

    Caruso, M J; Reiss, D E; Caulfield, J I; Thomas, J L; Baker, A N; Cavigelli, S A; Kamens, H M

    2018-04-01

    Anxiety disorders and nicotine use are significant contributors to global morbidity and mortality as independent and comorbid diseases. Early-life stress, potentially via stress-induced hypothalamic-pituitary-adrenal axis (HPA) dysregulation, can exacerbate both. However, little is known about the factors that predispose individuals to the development of both anxiety disorders and nicotine use. Here, we examined the relationship between anxiety-like behaviors and nicotine responses following adolescent stress. Adolescent male and female BALB/cJ mice were exposed to either chronic variable social stress (CVSS) or control conditions. CVSS consisted of repeated cycles of social isolation and social reorganization. In adulthood, anxiety-like behavior and social avoidance were measured using the elevated plus-maze (EPM) and social approach-avoidance test, respectively. Nicotine responses were assessed with acute effects on body temperature, corticosterone production, locomotor activity, and voluntary oral nicotine consumption. Adolescent stress had sex-dependent effects on nicotine responses and exploratory behavior, but did not affect anxiety-like behavior or social avoidance in males or females. Adult CVSS males exhibited less exploratory behavior, as indicated by reduced exploratory locomotion in the EPM and social approach-avoidance test, compared to controls. Adolescent stress did not affect nicotine-induced hypothermia in either sex, but CVSS males exhibited augmented nicotine-induced locomotion during late adolescence and voluntarily consumed less nicotine during adulthood. Stress effects on male nicotine-induced locomotion were associated with individual differences in exploratory locomotion in the EPM and social approach-avoidance test. Relative to controls, adult CVSS males and females also exhibited reduced corticosterone levels at baseline and adult male CVSS mice exhibited increased corticosterone levels following an acute nicotine injection. Results

  7. DBI/ACBP loss-of-function does not affect anxiety-like behaviour but reduces anxiolytic responses to diazepam in mice

    DEFF Research Database (Denmark)

    Budry, Lionel; Bouyakdan, Khalil; Tobin, Stephanie

    2016-01-01

    . Male and female ACBP(GFAP) KO and ACBP KO mice do not show significant changes in anxiety-like behaviour compared to control littermates during elevated plus maze (EPM) and open field (OF) tests. Surprisingly, ACBP(GFAP) KO and ACBP KO mice were unresponsive to the anxiolytic effect of a low dose...... of diazepam during EPM tests. In conclusion, our experiments using genetic ACBP loss-of-function models suggest that endozepines deficiency does not affect anxiety-like behaviour in mice and impairs the anxiolytic action of diazepam....

  8. Quantification of stress-induced damage and post-fire response of 5083 aluminum alloy

    International Nuclear Information System (INIS)

    Chen, Y.; Puplampu, S.B.; Summers, P.T.; Lattimer, B.Y.; Penumadu, D.; Case, S.W.

    2015-01-01

    One of the major concerns regarding the use of lightweight materials in ship construction is the response of those materials to fire scenarios, including the residual structural performance after a fire event. This paper presents a study on creep damage evolution in 5083 marine-grade aluminum alloy and its impact on residual mechanical behavior. Tests conducted at 400 °C and pre-selected tensile stress levels were interrupted at target amplitudes of accumulated engineering creep strains to investigate the stress-induced damage using ex-situ characterization. Two-dimensional optical and electron microscopy and three-dimensional X-ray tomography were utilized on samples extracted from these test specimens to characterize the external and internal creep damage. The stress-induced damage is primarily manifested as cavitation and dynamic microstructural evolution. Cavitation morphology, orientation and grain structure evolution were investigated on three perpendicular sample surfaces. A 3D examination of the damage state provided consistent damage information to that obtained from the 2D analysis. The post-fire mechanical properties were also evaluated and linked to the microstructural change. The competing processes of cavitation and grain structure evolution were investigated to develop an understanding of the stress-induced damage associated with high temperature creep

  9. Quantification of stress-induced damage and post-fire response of 5083 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y., E-mail: yanyun@vt.edu [Department of Engineering Science & Mechanics, Virginia Tech, Blacksburg, VA 24061 (United States); Puplampu, S.B. [Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Summers, P.T.; Lattimer, B.Y. [Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061 (United States); Penumadu, D. [Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Case, S.W. [Department of Engineering Science & Mechanics, Virginia Tech, Blacksburg, VA 24061 (United States)

    2015-08-12

    One of the major concerns regarding the use of lightweight materials in ship construction is the response of those materials to fire scenarios, including the residual structural performance after a fire event. This paper presents a study on creep damage evolution in 5083 marine-grade aluminum alloy and its impact on residual mechanical behavior. Tests conducted at 400 °C and pre-selected tensile stress levels were interrupted at target amplitudes of accumulated engineering creep strains to investigate the stress-induced damage using ex-situ characterization. Two-dimensional optical and electron microscopy and three-dimensional X-ray tomography were utilized on samples extracted from these test specimens to characterize the external and internal creep damage. The stress-induced damage is primarily manifested as cavitation and dynamic microstructural evolution. Cavitation morphology, orientation and grain structure evolution were investigated on three perpendicular sample surfaces. A 3D examination of the damage state provided consistent damage information to that obtained from the 2D analysis. The post-fire mechanical properties were also evaluated and linked to the microstructural change. The competing processes of cavitation and grain structure evolution were investigated to develop an understanding of the stress-induced damage associated with high temperature creep.

  10. Ventrolateral periaqueductal gray lesion attenuates nociception but does not change anxiety-like indices or fear-induced antinociception in mice.

    Science.gov (United States)

    Mendes-Gomes, Joyce; Amaral, Vanessa Cristiane Santana; Nunes-de-Souza, Ricardo Luiz

    2011-06-01

    The exposure of rodents to an open elevated plus-maze (oEPM: four open arms raised from the floor) elicits naloxone-insensitive antinociception. Midazolam infusion into the dorsal portion of the periaqueductal gray (dPAG), a structure of the descending inhibitory system of pain, failed to alter oEPM-induced antinociception. Chemical lesion of dorsomedial and dorsolateral PAG attenuated defensive behavior in the standard EPM (sEPM), an animal model of anxiety, but failed to change oEPM-induced antinociception. The present study investigated the effects of bilateral lesion, with the injection of NMDA (N-methyl-D-aspartic acid), of the ventrolateral column of PAG (vlPAG) (i) on nociceptive response induced by 2.5% formalin injected into the right hind paw (nociception test) in mice exposed to the enclosed EPM (eEPM: four enclosed arms - a non-aversive situation) or to the oEPM and (ii) on anxiety indices in mice exposed to the sEPM without prior formalin injection. Results showed that oEPM-induced antinociception was not altered by lesion of vlPAG. Nevertheless, the lesion reduced the nociceptive response in mice exposed to the eEPM and increased general locomotor activity during the eEPM and oEPM exposure. Furthermore, vlPAG lesion did not alter anxiety-like indices in mice exposed to the sEPM. The results suggest that vlPAG does not play a role in oEPM-induced antinociception or in defensive reactions assessed in the sEPM. Moreover, vlPAG inactivation induces pain inhibition in mice not exposed to an aversive situation and seems to increase general activity. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Depression- and anxiety-like behaviour is related to BDNF/TrkB signalling in a mouse model of psoriasis.

    Science.gov (United States)

    JiaWen, W; Hong, S; ShengXiang, X; Jing, L

    2018-04-01

    The prevalence of anxiety and depression is significantly higher in individuals with psoriasis than in the general population. Clinical data also show that anti-anxiety and antidepression drugs can reduce skin lesions in patients with psoriasis, but the actual mechanism is still poorly understood. To investigate whether brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrKB) signalling plays a role in the mechanism underlying psoriasis with depression and anxiety behaviours. Expression of BDNF and tropomyosin receptor kinase B (TrKB) in the K5.Stat3C mouse, an animal model of psoriasis, were investigated by reverse transcription PCR and Western blotting. Anxiety-like behaviours in the elevated-plus maze test and changes in BDNF/TrkB that have been implicated in depression and anxiety behaviours were measured. Skin lesions induced by 12-O-tetradecanoyl phorbol-13-acetate (TPA) were also measured when the mice were administered fluoxetine and K252a, an antagonist of TrkB. The antidepression and anti-anxiety drug fluoxetine reduced TPA-induced skin lesions and increased expression of BDNF and TrkB in K5.Stat3C mice. More importantly, the effects of fluoxetine were reversed by the TrkB antagonist K252a. BDNF/TrkB signalling participates in the pathological mechanism of depression and anxiety behaviours in psoriasis. Our findings provide a new therapeutic strategy for the treatment of skin lesions in psoriasis. © 2018 British Association of Dermatologists.

  12. Intranasal cotinine improves memory, and reduces depressive-like behavior, and GFAP+ cells loss induced by restraint stress in mice.

    Science.gov (United States)

    Perez-Urrutia, Nelson; Mendoza, Cristhian; Alvarez-Ricartes, Nathalie; Oliveros-Matus, Patricia; Echeverria, Florencia; Grizzell, J Alex; Barreto, George E; Iarkov, Alexandre; Echeverria, Valentina

    2017-09-01

    Posttraumatic stress disorder (PTSD), chronic psychological stress, and major depressive disorder have been found to be associated with a significant decrease in glial fibrillary acidic protein (GFAP) immunoreactivity in the hippocampus of rodents. Cotinine is an alkaloid that prevents memory impairment, depressive-like behavior and synaptic loss when co-administered during restraint stress, a model of PTSD and stress-induced depression, in mice. Here, we investigated the effects of post-treatment with intranasal cotinine on depressive- and anxiety-like behaviors, visual recognition memory as well as the number and morphology of GFAP+ immunoreactive cells, in the hippocampus and frontal cortex of mice subjected to prolonged restraint stress. The results revealed that in addition to the mood and cognitive impairments, restraint stress induced a significant decrease in the number and arborization of GFAP+ cells in the brain of mice. Intranasal cotinine prevented these stress-derived symptoms and the morphological abnormalities GFAP+ cells in both of these brain regions which are critical to resilience to stress. The significance of these findings for the therapy of PTSD and depression is discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Salt stress induced ion accumulation, ion homeostasis, membrane ...

    African Journals Online (AJOL)

    Salt stress induced ion accumulation, ion homeostasis, membrane injury and sugar contents in salt-sensitive rice ( Oryza sativa L. spp. indica ) roots under isoosmotic conditions. ... The accumulation of sugars in PT1 roots may be a primary salt-defense mechanism and may function as an osmotic control. Key words: ...

  14. Implication of snail in metabolic stress-induced necrosis.

    Directory of Open Access Journals (Sweden)

    Cho Hee Kim

    2011-03-01

    Full Text Available Necrosis, a type of cell death accompanied by the rupture of the plasma membrane, promotes tumor progression and aggressiveness by releasing the pro-inflammatory and angiogenic cytokine high mobility group box 1. It is commonly found in the core region of solid tumors due to hypoxia and glucose depletion (GD resulting from insufficient vascularization. Thus, metabolic stress-induced necrosis has important clinical implications for tumor development; however, its regulatory mechanisms have been poorly investigated.Here, we show that the transcription factor Snail, a key regulator of epithelial-mesenchymal transition, is induced in a reactive oxygen species (ROS-dependent manner in both two-dimensional culture of cancer cells, including A549, HepG2, and MDA-MB-231, in response to GD and the inner regions of a multicellular tumor spheroid system, an in vitro model of solid tumors and of human tumors. Snail short hairpin (sh RNA inhibited metabolic stress-induced necrosis in two-dimensional cell culture and in multicellular tumor spheroid system. Snail shRNA-mediated necrosis inhibition appeared to be linked to its ability to suppress metabolic stress-induced mitochondrial ROS production, loss of mitochondrial membrane potential, and mitochondrial permeability transition, which are the primary events that trigger necrosis.Taken together, our findings demonstrate that Snail is implicated in metabolic stress-induced necrosis, providing a new function for Snail in tumor progression.

  15. Stress-induced hyperthermia in translational stress research

    NARCIS (Netherlands)

    Vinkers, C.H.; Penning, R.; Ebbens, M.M.; Helhammer, J.; Verster, J.C.; Kalkman, C.J.; Olivier, B.

    2010-01-01

    The stress-induced hyperthermia (SIH) response is the transient change in body temperature in response to acute stress. This body temperature response is part of the autonomic stress response which also results in tachycardia and an increased blood pressure. So far, a SIH response has been found in

  16. Water stress induced changes in antioxidant enzymes, membrane ...

    African Journals Online (AJOL)

    Water stress induced changes in antioxidant enzymes membrane stablity index and seed protein profiling of four different wheat (Triticum aestivum L.) accessions (011251, 011417, 011320 and 011393) were determined in a pot study under natural condition during the wheat-growing season 2005 and 2006. Sampling was ...

  17. Identification of salt-stress induced differentially expressed genes in ...

    African Journals Online (AJOL)

    Identification of salt-stress induced differentially expressed genes in barley leaves using the annealingcontrol- primer-based GeneFishing technique. S Lee, K Lee, K Kim, GJ Choi, SH Yoon, HC Ji, S Seo, YC Lim, N Ahsan ...

  18. Inflammasome signaling affects anxiety- and depressive-like behavior and gut microbiome composition.

    Science.gov (United States)

    Wong, M-L; Inserra, A; Lewis, M D; Mastronardi, C A; Leong, L; Choo, J; Kentish, S; Xie, P; Morrison, M; Wesselingh, S L; Rogers, G B; Licinio, J

    2016-06-01

    The inflammasome is hypothesized to be a key mediator of the response to physiological and psychological stressors, and its dysregulation may be implicated in major depressive disorder. Inflammasome activation causes the maturation of caspase-1 and activation of interleukin (IL)-1β and IL-18, two proinflammatory cytokines involved in neuroimmunomodulation, neuroinflammation and neurodegeneration. In this study, C57BL/6 mice with genetic deficiency or pharmacological inhibition of caspase-1 were screened for anxiety- and depressive-like behaviors, and locomotion at baseline and after chronic stress. We found that genetic deficiency of caspase-1 decreased depressive- and anxiety-like behaviors, and conversely increased locomotor activity and skills. Caspase-1 deficiency also prevented the exacerbation of depressive-like behaviors following chronic stress. Furthermore, pharmacological caspase-1 antagonism with minocycline ameliorated stress-induced depressive-like behavior in wild-type mice. Interestingly, chronic stress or pharmacological inhibition of caspase-1 per se altered the fecal microbiome in a very similar manner. When stressed mice were treated with minocycline, the observed gut microbiota changes included increase in relative abundance of Akkermansia spp. and Blautia spp., which are compatible with beneficial effects of attenuated inflammation and rebalance of gut microbiota, respectively, and the increment in Lachnospiracea abundance was consistent with microbiota changes of caspase-1 deficiency. Our results suggest that the protective effect of caspase-1 inhibition involves the modulation of the relationship between stress and gut microbiota composition, and establishes the basis for a gut microbiota-inflammasome-brain axis, whereby the gut microbiota via inflammasome signaling modulate pathways that will alter brain function, and affect depressive- and anxiety-like behaviors. Our data also suggest that further elucidation of the gut microbiota

  19. Stress Induced Charge-Ordering Process in LiMn_2O_4

    International Nuclear Information System (INIS)

    Chen, Yan; Yu, Dunji; An, Ke

    2016-01-01

    In this letter we report the stress-induced Mn charge-ordering process in the LiMn_2O_4 spinel, evidenced by the lattice strain evolutions due to the Jahn–Teller effects. In situ neutron diffraction reveals the initial stage of this process at low stress, indicating the eg electron localization at the preferential Mn sites during the early phase transition as an underlying charge-ordering mechanism in the charge-frustrated LiMn_2O_4. The initial stage of this transition exhibits as a progressive lattice and charge evolution, without showing a first-order behavior.

  20. Impaired Functional Connectivity in the Prefrontal Cortex: A Mechanism for Chronic Stress-Induced Neuropsychiatric Disorders

    Directory of Open Access Journals (Sweden)

    Ignacio Negrón-Oyarzo

    2016-01-01

    Full Text Available Chronic stress-related psychiatric diseases, such as major depression, posttraumatic stress disorder, and schizophrenia, are characterized by a maladaptive organization of behavioral responses that strongly affect the well-being of patients. Current evidence suggests that a functional impairment of the prefrontal cortex (PFC is implicated in the pathophysiology of these diseases. Therefore, chronic stress may impair PFC functions required for the adaptive orchestration of behavioral responses. In the present review, we integrate evidence obtained from cognitive neuroscience with neurophysiological research with animal models, to put forward a hypothesis that addresses stress-induced behavioral dysfunctions observed in stress-related neuropsychiatric disorders. We propose that chronic stress impairs mechanisms involved in neuronal functional connectivity in the PFC that are required for the formation of adaptive representations for the execution of adaptive behavioral responses. These considerations could be particularly relevant for understanding the pathophysiology of chronic stress-related neuropsychiatric disorders.

  1. Genetic predisposition to obesity affects behavioural traits including food reward and anxiety-like behaviour in rats.

    Science.gov (United States)

    Vogel, Heike; Kraemer, Maria; Rabasa, Cristina; Askevik, Kaisa; Adan, Roger A H; Dickson, Suzanne L

    2017-06-15

    Here we sought to define behavioural traits linked to anxiety, reward, and exploration in different strains of rats commonly used in obesity research. We hypothesized that genetic variance may contribute not only to their metabolic phenotype (that is well documented) but also to the expression of these behavioural traits. Rat strains that differ in their susceptibility to develop an obese phenotype (Sprague-Dawley, Obese Prone, Obese Resistant, and Zucker rats) were exposed to a number of behavioural tests starting at the age of 8 weeks. We found a similar phenotype in the obesity susceptible models, Obese Prone and Zucker rats, with a lower locomotor activity, exploratory activity, and higher level of anxiety-like behaviour in comparison to the leaner Obese Resistant strain. We did not find evidence that rat strains with a genetic predisposition to obesity differed in their ability to experience reward from chocolate (in a condition place preference task). However, Zucker rats show higher motivated behaviour for sucrose compared to Obese Resistant rats when the effort required to obtain palatable food is relatively low. Together our data demonstrate that rat strains that differ in their genetic predisposition to develop obesity also differ in their performance in behavioural tests linked to anxiety, exploration, and reward and that these differences are independent of body weight. We conclude that genetic variations which determine body weight and the aforementioned behaviours co-exist but that future studies are required to identify whether (and which) common genes are involved. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Effects of the mGluR5 antagonist MPEP on ethanol withdrawal induced anxiety-like syndrome in rats.

    Science.gov (United States)

    Kumar, Jaya; Hapidin, Hermizi; Bee, Yvonne-Tee Get; Ismail, Zalina

    2013-11-26

    Abstinence from chronic ethanol consumption leads to the manifestation of a variety of symptoms attributed to central nervous system hyperexcitability, such as increased irritability, anxiety, and restlessness. Recent studies have demonstrated the importance of metabotropic glutamate receptor 5 (mGluR5) in addictive behaviours. This study investigates the effects of the mGluR5 antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP) on ethanol withdrawal induced anxiety using two behavioural paradigms. Male Wistar rats were fed a Modified Liquid Diet (MLD) containing low fat cow milk, sucrose, and maltodextrin with a gradual introduction of 2.4%, 4.8% and 7.2% ethanol for 20 days. Six hours into ethanol withdrawal, the rats were intraperitoneally injected with normal saline and MPEP (2.5, 5.0, 10, 20, 30 mg/kg) and were assessed for ethanol withdrawal induced anxiety-like syndrome using an automated elevated plus maze and an open field. MPEP at 10 mg/kg significantly attenuated ethanol withdrawal induced anxiety without any compromising effects on locomotor activities. Despite reversing several indices of ethanol withdrawal induced anxiety in both the elevated plus maze and the open field, low doses of MPEP (2.5, 5 mg/kg) significantly compromised the locomotor activities of ethanol withdrawn rats. High doses of MPEP (20 and 30 mg/kg) significantly attenuated withdrawal anxiety when tested in the elevated plus maze but not in the open field. Administration of MPEP (2.5, 5, 10, 20, 30 mg/kg) has no significant compromising effect on the locomotor activities of ethanol naïve rats. Despite significantly reducing withdrawal anxiety in both behavioural paradigms at 10 mg/kg, the compromising effects of low and high doses of MPEP must be further explored along with the therapeutic efficiency of this drug for relieving withdrawal induced anxiety.

  3. A single exposure to immobilization causes long-lasting pituitary-adrenal and behavioral sensitization to mild stressors.

    Science.gov (United States)

    Belda, Xavier; Fuentes, Silvia; Nadal, Roser; Armario, Antonio

    2008-11-01

    We have previously reported that a single exposure to immobilization (IMO) in rats causes a long-term desensitization of the hypothalamic-pituitary-adrenal (HPA) response to the same (homotypic) stressor. Since there are reports showing that a single exposure to other stressors causes sensitization of the HPA response to heterotypic stressors and increases anxiety-like behavior, we studied in the present work the long-term effects of IMO on behavioral and HPA response to mild superimposed stressors. In Experiments 1 and 2, adult male Sprague-Dawley rats were subjected to 2 h of IMO and then exposed for 5 min to the elevated plus-maze (EPM) at 1, 3 or 7 days after IMO. Blood samples were taken at 15 min after initial exposure to the EPM. Increases in anxiety-like behavior and HPA responsiveness to the EPM were found at all times post-IMO. Changes in the resting levels of HPA hormones did not explain the enhanced HPA responsiveness to the EPM (Experiment 3). In Experiments 4 and 5, we studied the effects of a single exposure to a shorter session of IMO (1 h) on behavioral and HPA responses to a brief and mild session of foot-shocks done 10 days after IMO. Neither previous IMO nor exposure to shocks in control rats modified behavior in the EPM. However, a brief session of shocks in previously IMO-exposed rats dramatically increased anxiety in the EPM. HPA and freezing responses to shocks were similar in control and previous IMO groups. Therefore, a single exposure to IMO appears to induce long-lasting HPA and behavioral sensitization to mild superimposed stressors, although the two responses are likely to be at least partially independent. Long-term effects of IMO on the susceptibility to stress-induced endocrine and emotional disturbances may be relevant to the characterization of animal models of post-traumatic stress.

  4. GAD65 haplodeficiency conveys resilience in animal models of stress-induced psychopathology

    Directory of Open Access Journals (Sweden)

    Iris eMüller

    2014-08-01

    Full Text Available GABAergic mechanisms are critically involved in the control of fear and anxiety, but their role in the development of stress-induced psychopathologies, including post-traumatic stress disorder (PTSD and mood disorders is not sufficiently understood. We studied these functions in two established mouse models of risk factors for stress-induced psychopathologies employing variable juvenile stress and/or social isolation. A battery of emotional tests in adulthood revealed the induction of contextually generalized fear, anxiety, hyperarousal and depression-like symptoms in these paradigms. These reflect the multitude and complexity of stress effects in human PTSD patients. With factor analysis we were able to identify parameters that reflect these different behavioral domains in stressed animals and thus provide a basis for an integrated scoring of affectedness more closely resembling the clinical situation than isolated parameters. To test the applicability of these models to genetic approaches we further tested the role of GABA using heterozygous mice with targeted mutation of the GABA synthesizing enzyme GAD65 (GAD65+/- mice, which show a delayed postnatal increase in tissue GABA content in limbic and cortical brain areas. Unexpectedly, GAD65(+/- mice did not show changes in exploratory activity regardless of the stressor type and were after the variable juvenile stress procedure protected from the development of contextual generalization in an auditory fear conditioning experiment. Our data demonstrate the complex nature of behavioral alterations in rodent models of stress-related psychopathologies and suggest that GAD65 haplodeficiency, likely through its effect on the postnatal maturation of GABAergic transmission, conveys resilience to some of these stress-induced effects.

  5. Analyzing the experiences of adolescent control rats: Effects of the absence of physical or social stimulation on anxiety-like behaviour are dependent on the test.

    Science.gov (United States)

    Joshi, Namrata; Leslie, Ronald A; Perrot, Tara S

    2017-10-01

    The present study was designed to systematically assess the control experience routinely used in our laboratory as part of studies on predator odour stress. Specifically, we examined effects of the physical and social components of this control experience on measures of anxiety-like behaviour in adolescent rats. Adolescent animals are at increased susceptibility to environmental perturbations and have been used for such studies much less often. Long-Evans rats of both sexes were subjected to physical stimulation (Exposed or Unexposed) and social stimulation (Single-Housed or Pair-Housed), resulting in four groups. Exposed rats received six 30-min exposures to an enclosed arena containing an unscented piece of cat collar occurring between adolescence and early adulthood, while Unexposed remained in the home cage. Groups of Exposed and Unexposed animals were housed singly (Single-Housed) from early adolescence to early adulthood or Pair-Housed during this time. Experimental procedures began in adolescence and involved repeated assessment of startle amplitude (measure of anxiety-like behaviour) and prepulse inhibition (PPI; a measure of sensorimotor gating) to gauge the short-term impact of social and/or physical stimulation. All animals were re-paired in adulthood prior to a final startle/PPI session to assess if isolation limited to adolescence could impose long-term effects that were not reversible. We also measured anxiety-like behaviour in adulthood using an extended open field test (EOFT; addition of novel objects to the open field on later days), and the elevated plus maze task (EPM), as well as a sucrose preference test (SPT) to measure anhedonia. An absence of social or physical stimulation resulted in increased startle amplitude and some measures of anxiety-like behaviour in the EOFT, but a reduction in such anxiety-like behaviour in the EPM task. These results suggest common neural substrates for the physical and social experiences. Performance in the SPT

  6. Identification of 30 protein species involved in replicative senescence and stress-induced premature senescence

    DEFF Research Database (Denmark)

    Dierick, Jean François; Kalume, Dário E; Wenders, Frédéric

    2002-01-01

    Exposure of human proliferative cells to subcytotoxic stress triggers stress-induced premature senescence (SIPS) which is characterized by many biomarkers of replicative senescence. Proteomic comparison of replicative senescence and stress-induced premature senescence indicates that, at the level...

  7. Social factors modulate restraint stress induced hyperthermia in mice.

    Science.gov (United States)

    Watanabe, Shigeru

    2015-10-22

    Stress-induced hyperthermia (SIH) was examined in three different social conditions in mice by thermographic measurement of the body surface temperature. Placing animals in cylindrical holders induced restraint stress. I examined the effect of the social factors in SIH using the thermograph (body surface temperature). Mice restrained in the holders alone showed SIH. Mice restrained in the holders at the same time as other similarly restrained cage mates (social equality condition) showed less hyperthermia. Interestingly, restrained mice with free moving cage mates (social inequality condition) showed the highest hyperthermia. These results are consistent with a previous experiment measuring the memory-enhancing effects of stress and the stress-induced elevation of corticosterone, and suggest that social inequality enhances stress. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Thermal Stress-Induced Depolarization Loss in Conventional and Panda-Shaped Photonic Crystal Fiber Lasers

    Science.gov (United States)

    Mousavi, Seyedeh Laleh; Sabaeian, Mohammad

    2016-10-01

    We report on the modeling of the depolarization loss in the conventional and panda-shaped photonic crystal fiber lasers (PCFLs) due to the self-heating of the fiber, which we call it thermal stress-induced depolarization loss (TSIDL). We first calculated the temperature distribution over the fiber cross sections and then calculated the thermal stresses/strains as a function of heat load per meter. Thermal stress-induced birefringence (TSIB), which is defined as | n x - n y |, in the core and cladding regions was calculated. Finally, TSIDL was calculated for the conventional and panda-shaped PCFLs as a function of fiber length and, respectively, saturated values of 22 and 25 % were obtained which were independent of heat load per meter. For panda-shaped PCFLs, prior to being saturated, an oscillating and damping behavior against the fiber length was seen where in some lengths reached 35 %. The results are close to an experimental value of 30 % reported for a pulsed PCFL (Limpert et al., Opt Express 12:1313-1319, 2004) where the authors reported a degree of polarization of 70 % (i.e., a depolarization of 30 %). The most important result of this work is a saturation behavior of TSIDL at long-enough lengths of the fiber laser which is independent of heat load per meter. To our knowledge, this the first report of TSIBL for PCFLs.

  9. Environmental stress induces trinucleotide repeat mutagenesis in human cells.

    Science.gov (United States)

    Chatterjee, Nimrat; Lin, Yunfu; Santillan, Beatriz A; Yotnda, Patricia; Wilson, John H

    2015-03-24

    The dynamic mutability of microsatellite repeats is implicated in the modification of gene function and disease phenotype. Studies of the enhanced instability of long trinucleotide repeats (TNRs)-the cause of multiple human diseases-have revealed a remarkable complexity of mutagenic mechanisms. Here, we show that cold, heat, hypoxic, and oxidative stresses induce mutagenesis of a long CAG repeat tract in human cells. We show that stress-response factors mediate the stress-induced mutagenesis (SIM) of CAG repeats. We show further that SIM of CAG repeats does not involve mismatch repair, nucleotide excision repair, or transcription, processes that are known to promote TNR mutagenesis in other pathways of instability. Instead, we find that these stresses stimulate DNA rereplication, increasing the proportion of cells with >4 C-value (C) DNA content. Knockdown of the replication origin-licensing factor CDT1 eliminates both stress-induced rereplication and CAG repeat mutagenesis. In addition, direct induction of rereplication in the absence of stress also increases the proportion of cells with >4C DNA content and promotes repeat mutagenesis. Thus, environmental stress triggers a unique pathway for TNR mutagenesis that likely is mediated by DNA rereplication. This pathway may impact normal cells as they encounter stresses in their environment or during development or abnormal cells as they evolve metastatic potential.

  10. Histone deacetylase inhibition abolishes stress-induced spatial memory impairment.

    Science.gov (United States)

    Vargas-López, Viviana; Lamprea, Marisol R; Múnera, Alejandro

    2016-10-01

    Acute stress induced before spatial training impairs memory consolidation. Although non-epigenetic underpinning of such effect has been described, the epigenetic mechanisms involved have not yet been studied. Since spatial training and intense stress have opposite effects on histone acetylation balance, it is conceivable that disruption of such balance may underlie acute stress-induced spatial memory consolidation impairment and that inhibiting histone deacetylases prevents such effect. Trichostatin-A (TSA, a histone deacetylase inhibitor) was used to test its effectiveness in preventing stress' deleterious effect on memory. Male Wistar rats were trained in a spatial task in the Barnes maze; 1-h movement restraint was applied to half of them before training. Immediately after training, stressed and non-stressed animals were randomly assigned to receive either TSA (1mg/kg) or vehicle intraperitoneal injection. Twenty-four hours after training, long-term spatial memory was tested; plasma and brain tissue were collected immediately after the memory test to evaluate corticosterone levels and histone H3 acetylation in several brain areas. Stressed animals receiving vehicle displayed memory impairment, increased plasma corticosterone levels and markedly reduced histone H3 acetylation in prelimbic cortex and hippocampus. Such effects did not occur in stressed animals treated with TSA. The aforementioned results support the hypothesis that acute stress induced-memory impairment is related to histone deacetylation. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. The effects of aerobic exercise on depression-like, anxiety-like, and cognition-like behaviours over the healthy adult lifespan of C57BL/6 mice.

    Science.gov (United States)

    Morgan, Julie A; Singhal, Gaurav; Corrigan, Frances; Jaehne, Emily J; Jawahar, Magdalene C; Baune, Bernhard T

    2018-01-30

    Preclinical studies have demonstrated exercise improves various types of behaviours such as anxiety-like, depression-like, and cognition-like behaviours. However, these findings were largely conducted in studies utilising short-term exercise protocols, and the effects of lifetime exercise on these behaviours remain unknown. This study investigates the behavioural effects of lifetime exercise in normal healthy ageing C57BL/6 mice over the adult lifespan. 12 week-old C57BL/6 mice were randomly assigned to voluntary wheel running or non-exercise (control) groups. Exercise commenced at aged 3 months and behaviours were assessed in young adult (Y), early middle age (M), and old (O) mice (n=11-17/group). The open field and elevated zero maze examined anxiety-like behaviours, depression-like behaviours were quantified with the forced swim test, and the Y maze and Barnes maze investigated cognition-like behaviours. The effects of lifetime exercise were not simply an extension of the effects of chronic exercise on anxiety-like, depression-like, and cognition-like behaviours. Exercise tended to reduce overt anxiety-like behaviours with ageing, and improved recognition memory and spatial learning in M mice as was expected. However, exercise also increased anxiety behaviours including greater freezing behaviour that extended spatial learning latencies in Y female mice in particular, while reduced distances travelled contributed to longer spatial memory and cognitive flexibility latencies in Y and O mice. Lifetime exercise may increase neurogenesis-associated anxiety. This could be an evolutionary conserved adaptation that nevertheless has adverse impacts on cognition-like function, with particularly pronounced effects in Y female mice with intact sex hormones. These issues require careful investigation in future rodent studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Endogenous GLP-1 in lateral septum contributes to stress-induced hypophagia.

    Science.gov (United States)

    Terrill, Sarah J; Maske, Calyn B; Williams, Diana L

    2018-03-03

    Glucagon-like peptide 1 (GLP-1) neurons of the caudal brainstem project to many brain areas, including the lateral septum (LS), which has a known role in stress responses. Previously, we showed that endogenous GLP-1 in the LS plays a physiologic role in the control of feeding under non-stressed conditions, however, central GLP-1 is also involved in behavioral and endocrine responses to stress. Here, we asked whether LS GLP-1 receptors (GLP-1R) contribute to stress-induced hypophagia. Male rats were implanted with bilateral cannulas targeting the dorsal subregion of the LS (dLS). In a within-subjects design, shortly before the onset of the dark phase, rats received dLS injections of saline or the GLP-1R antagonist Exendin (9-39) (Ex9) prior to 30 min restraint stress. Food intake was measured continuously for the next 20 h. The stress-induced hypophagia observed within the first 30 min of dark was not influenced by Ex9 pretreatment, but Ex9 tended to blunt the effect of stress as early as 1 and 2 h into the dark phase. By 4-6 h, there were significant stress X drug interactions, and Ex9 pretreatment blocked the stress-induced suppression of feeding. These effects were mediated entirely through changes in average meal size; stress suppressed meal size while dLS Ex9 attenuated this effect. Using a similar design, we examined the role of dLS GLP-1R in the neuroendocrine response to acute restraint stress. As expected, stress potently increased serum corticosterone, but blockade of dLS GLP-1Rs did not affect this response. Together, these data show that endogenous GLP-1 action in the dLS plays a role in some but not all of the physiologic responses to acute stress. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Stress-induced eating in women with binge-eating disorder and obesity.

    Science.gov (United States)

    Klatzkin, Rebecca R; Gaffney, Sierra; Cyrus, Kathryn; Bigus, Elizabeth; Brownley, Kimberly A

    2018-01-01

    measuring the motivational versus hedonic aspects of stress-induced eating may expose nuanced eating behaviors that differentiate BED and obesity. If confirmed, our findings would support prevention and treatment strategies that target subsets of women based on obesity and BED status. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. A diet high in fat and sugar reverses anxiety-like behaviour induced by limited nesting in male rats: Impacts on hippocampal markers.

    Science.gov (United States)

    Maniam, Jayanthi; Antoniadis, Christopher P; Le, Vivian; Morris, Margaret J

    2016-06-01

    Stress exposure during early development is known to produce long-term mental health deficits. Stress promotes poor lifestyle choices such as poor diet. Early life adversity and diets high in fat and sugar (HFHS) are known to affect anxiety and memory. However additive effects of HFHS and stress during early development are less explored. Here, we examined whether early life stress (ELS) simulated by limited nesting (LN) induces anxiety-like behaviour and cognitive deficits that are modulated by HFHS diet. We examined key hippocampal markers involved in anxiety and cognition, testing the hypothesis that post-weaning HFHS following ELS would ameliorate anxiety-like behaviour but worsen memory and associated hippocampal changes. Sprague-Dawley rats were exposed to LN, postnatal days 2-9, and at weaning, male siblings were given unlimited access to chow or HFHS resulting in (Con-Chow, Con-HFHS, LN-Chow, LN-HFHS, n=11-15/group). Anxiety-like behaviour was assessed by Elevated Plus Maze (EPM) at 10 weeks and spatial and object recognition tested at 11 weeks of age. Rats were culled at 13 weeks. Hippocampal mRNA expression was measured using TaqMan(®) Array Micro Fluidic cards (Life Technologies). As expected HFHS diet increased body weight; LN and control rats had similar weights at 13 weeks, energy intake was also similar across groups. LN-Chow rats showed increased anxiety-like behaviour relative to control rats, but this was reversed by HFHS diet. Spatial and object recognition memory were unaltered by LN exposure or consumption of HFHS diet. Hippocampal glucocorticoid receptor (GR) protein was not affected by LN exposure in chow rats, but was increased by 45% in HFHS rats relative to controls. Hippocampal genes involved in plasticity and mood regulation, GSKα and GSKβ were affected, with reductions in GSKβ under both diet conditions, and reduced GSKα only in LN-HFHS versus Con-HFHS. Interestingly, HFHS diet and LN exposure independently reduced expression of

  15. Effects of Cynodon dactylon on Stress-Induced Infertility in Male Rats

    Science.gov (United States)

    Chidrawar, VR; Chitme, HR; Patel, KN; Patel, NJ; Racharla, VR; Dhoraji, NC; Vadalia, KR

    2011-01-01

    Cynodon dactylon (Family: Poaceae) is known to be a tackler in Indian mythology and is offered to Lord Ganesha. It is found everywhere, even on waste land, road side, dry places, and spreads vigorously on cultivated ground. This study was carried out with an objective to test if the constituents of this plant are useful in coping stress-induced sexual In this study, we considered immobilization stress to induce male infertility and the effect of C. dactylon in restoration of the dysfunction was evaluated by considering sexual behavioral observations, sexual performance, fructose content of the seminal vesicles, epididymal sperm concentration and histopathological examinations as parameters. Treatment of rats under stress with methanolic extract of C. dactylon has shown a promising effect in overcoming stress-induced sexual dysfunction, sexual performance, fructose content, sperm concentration and its effect on accessory sexual organs and body weight. We conclude that active constituents of C. dactylon present in methanolic extract have a potent aphrodisiac and male fertility activity. PMID:21607051

  16. Finite-strain micromechanical model of stress-induced martensitic transformations in shape memory alloys

    International Nuclear Information System (INIS)

    Stupkiewicz, S.; Petryk, H.

    2006-01-01

    A micromechanical model of stress-induced martensitic transformation in single crystals of shape memory alloys is developed. This model is a finite-strain counterpart to the approach presented recently in the small-strain setting [S. Stupkiewicz, H. Petryk, J. Mech. Phys. Solids 50 (2002) 2303-2331]. The stress-induced transformation is assumed to proceed by the formation and growth of parallel martensite plates within the austenite matrix. Propagation of phase transformation fronts is governed by a rate-independent thermodynamic criterion with a threshold value for the thermodynamic driving force, including in this way the intrinsic dissipation due to phase transition. This criterion selects the initial microstructure at the onset of transformation and governs the evolution of the laminated microstructure at the macroscopic level. A multiplicative decomposition of the deformation gradient into elastic and transformation parts is assumed, with full account for the elastic anisotropy of the phases. The pseudoelastic behavior of Cu-Zn-Al single crystal in tension and compression is studied as an application of the model

  17. Sex differences in stress-induced visceral hypersensitivity following early life adversity: a two hit model.

    Science.gov (United States)

    Prusator, D K; Greenwood-Van Meerveld, B

    2016-12-01

    Early life adversity (ELA) has been indicated as a risk factor for the development of stress axis dysfunction in adulthood, specifically in females. We previously showed that unpredictable ELA induces visceral hyperalgesia in adult female rats. It remains to be determined whether ELA alters visceral nociceptive responses to stress in adulthood. The current study tested the hypothesis that following ELA, exposure to an adulthood stressor, or second hit, serves as a risk factor for exaggerated stress-induced visceral hypersensitivity that is sex-specific. Following ELA, adult stress was induced via a single exposure (acute) or repetitive daily exposure, 1 h/day for 7 days (chronic), to water avoidance stress (WAS). Acute WAS increased pain behaviors in all adult female rats, however, females that experienced unpredictable ELA exhibited significantly more pain behaviors compared to those exposed to predictable ELA or controls. Following chronic WAS, all adult females exhibited increased pain responses, however, an exaggerated response was observed in rats exposed to unpredictable or predictable ELA compared to controls. Similarly, in adult male rats exposure to acute or chronic WAS increased pain behaviors, however, there were no differences in pain behaviors between ELA groups. This study highlights a novel consequence of ELA on stress-induced visceral nociception in adulthood that is sex-specific. More importantly, our study suggests that ELA not only serves as a risk factor for development of chronic pain in adulthood, but also serves as a predisposition for worsening of visceral pain following adult stress in female rats. © 2016 John Wiley & Sons Ltd.

  18. Cellular stress induces a protective sleep-like state in C. elegans.

    Science.gov (United States)

    Hill, Andrew J; Mansfield, Richard; Lopez, Jessie M N G; Raizen, David M; Van Buskirk, Cheryl

    2014-10-20

    Sleep is recognized to be ancient in origin, with vertebrates and invertebrates experiencing behaviorally quiescent states that are regulated by conserved genetic mechanisms. Despite its conservation throughout phylogeny, the function of sleep remains debated. Hypotheses for the purpose of sleep include nervous-system-specific functions such as modulation of synaptic strength and clearance of metabolites from the brain, as well as more generalized cellular functions such as energy conservation and macromolecule biosynthesis. These models are supported by the identification of synaptic and metabolic processes that are perturbed during prolonged wakefulness. It remains to be seen whether perturbations of cellular homeostasis in turn drive sleep. Here we show that under conditions of cellular stress, including noxious heat, cold, hypertonicity, and tissue damage, the nematode Caenorhabditis elegans engages a behavioral quiescence program. The stress-induced quiescent state displays properties of sleep and is dependent on the ALA neuron, which mediates the conserved soporific effect of epidermal growth factor (EGF) ligand overexpression. We characterize heat-induced quiescence in detail and show that it is indeed dependent on components of EGF signaling, providing physiological relevance to the behavioral effects of EGF family ligands. We find that after noxious heat exposure, quiescence-defective animals show elevated expression of cellular stress reporter genes and are impaired for survival, demonstrating the benefit of stress-induced behavioral quiescence. These data provide evidence that cellular stress can induce a protective sleep-like state in C. elegans and suggest that a deeply conserved function of sleep is to mitigate disruptions of cellular homeostasis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Stress-Induced Chronic Visceral Pain of Gastrointestinal Origin

    Directory of Open Access Journals (Sweden)

    Beverley Greenwood-Van Meerveld

    2017-11-01

    Full Text Available Visceral pain is generally poorly localized and characterized by hypersensitivity to a stimulus such as organ distension. In concert with chronic visceral pain, there is a high comorbidity with stress-related psychiatric disorders including anxiety and depression. The mechanisms linking visceral pain with these overlapping comorbidities remain to be elucidated. Evidence suggests that long term stress facilitates pain perception and sensitizes pain pathways, leading to a feed-forward cycle promoting chronic visceral pain disorders such as irritable bowel syndrome (IBS. Early life stress (ELS is a risk-factor for the development of IBS, however the mechanisms responsible for the persistent effects of ELS on visceral perception in adulthood remain incompletely understood. In rodent models, stress in adult animals induced by restraint and water avoidance has been employed to investigate the mechanisms of stress-induce pain. ELS models such as maternal separation, limited nesting, or odor-shock conditioning, which attempt to model early childhood experiences such as neglect, poverty, or an abusive caregiver, can produce chronic, sexually dimorphic increases in visceral sensitivity in adulthood. Chronic visceral pain is a classic example of gene × environment interaction which results from maladaptive changes in neuronal circuitry leading to neuroplasticity and aberrant neuronal activity-induced signaling. One potential mechanism underlying the persistent effects of stress on visceral sensitivity could be epigenetic modulation of gene expression. While there are relatively few studies examining epigenetically mediated mechanisms involved in visceral nociception, stress-induced visceral pain has been linked to alterations in DNA methylation and histone acetylation patterns within the brain, leading to increased expression of pro-nociceptive neurotransmitters. This review will discuss the potential neuronal pathways and mechanisms responsible for

  20. Stress-Induced Chronic Visceral Pain of Gastrointestinal Origin

    Science.gov (United States)

    Greenwood-Van Meerveld, Beverley; Johnson, Anthony C.

    2017-01-01

    Visceral pain is generally poorly localized and characterized by hypersensitivity to a stimulus such as organ distension. In concert with chronic visceral pain, there is a high comorbidity with stress-related psychiatric disorders including anxiety and depression. The mechanisms linking visceral pain with these overlapping comorbidities remain to be elucidated. Evidence suggests that long term stress facilitates pain perception and sensitizes pain pathways, leading to a feed-forward cycle promoting chronic visceral pain disorders such as irritable bowel syndrome (IBS). Early life stress (ELS) is a risk-factor for the development of IBS, however the mechanisms responsible for the persistent effects of ELS on visceral perception in adulthood remain incompletely understood. In rodent models, stress in adult animals induced by restraint and water avoidance has been employed to investigate the mechanisms of stress-induce pain. ELS models such as maternal separation, limited nesting, or odor-shock conditioning, which attempt to model early childhood experiences such as neglect, poverty, or an abusive caregiver, can produce chronic, sexually dimorphic increases in visceral sensitivity in adulthood. Chronic visceral pain is a classic example of gene × environment interaction which results from maladaptive changes in neuronal circuitry leading to neuroplasticity and aberrant neuronal activity-induced signaling. One potential mechanism underlying the persistent effects of stress on visceral sensitivity could be epigenetic modulation of gene expression. While there are relatively few studies examining epigenetically mediated mechanisms involved in visceral nociception, stress-induced visceral pain has been linked to alterations in DNA methylation and histone acetylation patterns within the brain, leading to increased expression of pro-nociceptive neurotransmitters. This review will discuss the potential neuronal pathways and mechanisms responsible for stress-induced

  1. Behavioral changes over time in post-traumatic stress disorder: Insights from a rat model of single prolonged stress.

    Science.gov (United States)

    Wu, Zhuoyun; Tian, Qing; Li, Feng; Gao, Junqiao; Liu, Yan; Mao, Meng; Liu, Jing; Wang, Shuyan; Li, Genmao; Ge, Dongyu; Mao, Yingqiu; Zhang, Wei; Liu, Zhaolan; Song, Yuehan

    2016-03-01

    Post-traumatic stress disorder (PTSD) is manifested as a persistent mental and emotional condition after potentially life-threatening events. Different animal models of PTSD have been developed for neuro-pathophysiology and pharmacological evaluations. A single prolonged stress (SPS) induced animal model has demonstrated to result in specific neuro-endocrinological dysregulation, and behavior abnormalities observed in PTSD. However, animal studies of PTSD have mostly been performed at one time point after SPS exposure. To better understand the development of PTSD-like behaviors in the SPS animal model, and to identify an optimal period of study, we examined depressive behavior, anxiety-like behavior, physical activity and body weight in SPS model rats for two weeks. Our results confirmed the SPS-induced PTSD-like behavior and physical activity observed in previous studies, and indicated that the most pronounced symptomatic behavior changes were observed on day 1 and 7 after SPS exposure, which may involve stress-induced acute hormone changes and unclear secondary neurobiological changes, respectively. These results provide a solid basis for further investigation into the neuro-pathophysiology of or neuropharmacology for PTSD using the SPS rat model. However, for chronic (pharmacological) studies longer than 7 days, a prolonged PTSD animal model should be developed, perhaps using enhanced stimulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Effects of Shuyusan on monoamine neurotransmitters expression in a rat model of chronic stress-induced depression

    Institute of Scientific and Technical Information of China (English)

    Yuanyuan Zhang; Jianjun Jia; Liping Chen; Zhitao Han; Yulan Zhao; Honghong Zhang; Yazhuo Hu

    2011-01-01

    Shuyusan, a traditional Chinese medicine, was shown to improve depression symptoms and behavioral scores, as well as increase 5-hydroxytryptamine (5-HT), 5-hydroxyindoleacetic acid, and 5-hydroxytryptophan levels, in a rat model of chronic stress-induced depression. However, dopamine, noradrenalin, and 3-methoxy-4-hydroxyphenylglycol expressions remained unchanged following Shuyusan treatment. Compared with the model group, the number of 5-HT-positive neurons in layers 4-5 of the frontal cortex, as well as hippocampal CA1 and CA3 regions, significantly increased following Shuyusan treatment. These results suggested that Shuyusan improved symptoms in a rat model of chronic stress-induced depression with mechanisms that involved 5-HT, 5-HT metabolite, 5-HT precursor expressions.

  3. Lateral stress-induced propagation characteristics in photonic crystal fibres

    Institute of Scientific and Technical Information of China (English)

    Tian Hong-Da; Yu Zhong-Yuan; Han Li-Hong; Liu Yu-Min

    2009-01-01

    Using the finite element method, this paper investigates lateral stress-induced propagation characteristics in a pho-tonic crystal fibre of hexagonal symmetry. The results of simulation show the strong stress dependence of effective index of the fundamental guided mode, phase modal birefringence and confinement loss. It also finds that the contribution of the geometrical effect that is related only to deformation of the photonic crystal fibre and the stress-related contribution to phase modal birefringence and confinement loss are entirely different. Furthermore, polarization-dependent stress sensitivity of confinement loss is proposed in this paper.

  4. Myg1-deficient mice display alterations in stress-induced responses and reduction of sex-dependent behavioural differences.

    Science.gov (United States)

    Philips, Mari-Anne; Abramov, Urho; Lilleväli, Kersti; Luuk, Hendrik; Kurrikoff, Kaido; Raud, Sirli; Plaas, Mario; Innos, Jürgen; Puussaar, Triinu; Kõks, Sulev; Vasar, Eero

    2010-02-11

    Myg1 (Melanocyte proliferating gene 1) is a highly conserved and ubiquitously expressed gene, which encodes a protein with mitochondrial and nuclear localization. In the current study we demonstrate a gradual decline of Myg1 expression during the postnatal development of the mouse brain that suggests relevance for Myg1 in developmental processes. To study the effects of Myg1 loss-of-function, we created Myg1-deficient (-/-) mice by displacing the entire coding sequence of the gene. Initial phenotyping, covering a multitude of behavioural, cognitive, neurological, physiological and stress-related responses, revealed that homozygous Myg1 (-/-) mice are vital, fertile and display no gross abnormalities. Myg1 (-/-) mice showed an inconsistent pattern of altered anxiety-like behaviour in different tests. The plus-maze and social interaction tests revealed that male Myg1 (-/-) mice were significantly less anxious than their wild-type littermates; female (-/-) mice showed increased anxiety in the locomotor activity arena. Restraint-stress significantly reduced the expression of the Myg1 gene in the prefrontal cortex of female wild-type mice and restrained female (-/-) mice showed a blunted corticosterone response, suggesting involvement of Myg1 in stress-induced responses. The main finding of the present study was that Myg1 invalidation decreases several behavioural differences between male and female animals that were obvious in wild-type mice, indicating that Myg1 contributes to the expression of sex-dependent behavioural differences in mice. Taken together, we provide evidence for the involvement of Myg1 in anxiety- and stress-related responses and suggest that Myg1 contributes to the expression of sex-dependent behavioural differences.

  5. Having your cake and eating it too: A habit of comfort food may link chronic social stress exposure and acute stress-induced cortisol hyporesponsiveness.

    Science.gov (United States)

    Stress has been tied to changes in eating behavior and food choice. Previous studies in rodents have shown that chronic stress increases palatable food intake which, in turn, increases mesenteric fat and inhibits acute stress-induced hypothalamic-pituitary-adrenal (HPA) axis activity. The effect of...

  6. Functional role of CCCTC binding factor (CTCF) in stress-induced apoptosis

    International Nuclear Information System (INIS)

    Li Tie; Lu Luo

    2007-01-01

    CTCF, a nuclear transcriptional factor, is a multifunctional protein and involves regulation of growth factor- and cytokine-induced cell proliferation/differentiation. In the present study, we investigated the role of CTCF in protecting stress-induced apoptosis in various human cell types. We found that UV irradiation and hyper-osmotic stress induced human corneal epithelial (HCE) and hematopoietic myeloid cell apoptosis detected by significantly increased caspase 3 activity and decreased cell viability. The stress-induced apoptotic response in these cells requires down-regulation of CTCF at both mRNA and protein levels, suggesting that CTCF may play an important role in downstream events of stress-induced signaling pathways. Inhibition of NFκB activity prevented stress-induced down-regulation of CTCF and increased cell viability against stress-induced apoptosis. The anti-apoptotic effect of CTCF was further studied by manipulating CTCF activities in HCE and hematopoietic cells. Transient transfection of cDNAs encoding full-length human CTCF markedly suppressed stress-induced apoptosis in these cells. In contrast, knocking down of CTCF mRNA using siRNA specific to CTCF significantly promoted stress-induced apoptosis. Thus, our results reveal that CTCF is a down stream target of stress-induced signaling cascades and it plays a significant anti-apoptotic role in regulation of stress-induced cellular responses in HCE and hematopoietic myeloid cells

  7. Anxiolytic effects of GLYX-13 in animal models of posttraumatic stress disorder-like behavior.

    Science.gov (United States)

    Jin, Zeng-Liang; Liu, Jin-Xu; Liu, Xu; Zhang, Li-Ming; Ran, Yu-Hua; Zheng, Yuan-Yuan; Tang, Yu; Li, Yun-Feng; Xiong, Jie

    2016-09-01

    In the present study, we investigated the effectiveness of GLYX-13, an NMDA receptor glycine site functional partial agonist, to alleviate the enhanced anxiety and fear response in both a mouse and rat model of stress-induced behavioral changes that might be relevant to posttraumatic stress disorder (PTSD). Studies over the last decades have suggested that the hyperactivity of hypothalamic-pituitary-adrenal (HPA) axis is one of the most consistent findings in stress-related disease. Herein, we used these animal models to further investigate the effect of GLYX-13 on the stress hormone levels and glucocorticoid receptor (GR) expression. We found that exposure to foot shock induced long-lasting behavioral deficiencies in mice, including freezing and anxiety-like behaviors, that were significantly ameliorated by the long-term administration of GLYX-13 (5 or 10 mg/kg). Our enzyme-linked immunosorbent assay results showed that long-term administration of GLYX-13 at behaviorally effective doses (5 or 10 mg/kg) significantly decreased the elevated serum levels of both corticosterone and its upstream stress hormone adrenocorticotropic hormone in rats subjected to the TDS procedure. These results suggest that GLYX-13 exerts a therapeutic effect on PTSD-like stress responding that is accompanied by (or associated with) modulation of the HPA axis, including inhibition of stress hormone levels and upregulation of hippocampal GR expression. © The Author(s) 2016.

  8. Neuroendocrine and oxidoreductive mechanisms of stress-induced cardiovascular diseases.

    Science.gov (United States)

    Pajović, S B; Radojcić, M B; Kanazir, D T

    2008-01-01

    The review concerns a number of basic molecular pathways that play a crucial role in perception, transmission, and modulation of the stress signals, and mediate the adaptation of the vital processes in the cardiovascular system (CVS). These highly complex systems for intracellular transfer of information include stress hormones and their receptors, stress-activated phosphoprotein kinases, stress-activated heat shock proteins, and antioxidant enzymes maintaining oxidoreductive homeostasis of the CVS. Failure to compensate for the deleterious effects of stress may result in the development of different pathophysiological states of the CVS, such as ischemia, hypertension, atherosclerosis and infarction. Stress-induced dysbalance in each of the CVS molecular signaling systems and their contribution to the CVS malfunctioning is reviewed. The general picture of the molecular mechanisms of the stress-induced pathophysiology in the CVS pointed out the importance of stress duration and intensity as etiological factors, and suggested that future studies should be complemented by the careful insights into the individual factors of susceptibility to stress, prophylactic effects of 'healthy' life styles and beneficial action of antioxidant-rich nutrition.

  9. Oxidative stress induces mitochondrial fragmentation in frataxin-deficient cells

    Energy Technology Data Exchange (ETDEWEB)

    Lefevre, Sophie [Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod, CNRS-Universite Paris-Diderot, Sorbonne Paris Cite, 15 rue Helene Brion, 75205 Paris cedex 13 (France); ED515 UPMC, 4 place Jussieu 75005 Paris (France); Sliwa, Dominika [Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod, CNRS-Universite Paris-Diderot, Sorbonne Paris Cite, 15 rue Helene Brion, 75205 Paris cedex 13 (France); Rustin, Pierre [Inserm, U676, Physiopathology and Therapy of Mitochondrial Disease Laboratory, 75019 Paris (France); Universite Paris-Diderot, Faculte de Medecine Denis Diderot, IFR02 Paris (France); Camadro, Jean-Michel [Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod, CNRS-Universite Paris-Diderot, Sorbonne Paris Cite, 15 rue Helene Brion, 75205 Paris cedex 13 (France); Santos, Renata, E-mail: santos.renata@ijm.univ-paris-diderot.fr [Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod, CNRS-Universite Paris-Diderot, Sorbonne Paris Cite, 15 rue Helene Brion, 75205 Paris cedex 13 (France)

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer Yeast frataxin-deficiency leads to increased proportion of fragmented mitochondria. Black-Right-Pointing-Pointer Oxidative stress induces complete mitochondrial fragmentation in {Delta}yfh1 cells. Black-Right-Pointing-Pointer Oxidative stress increases mitochondrial fragmentation in patient fibroblasts. Black-Right-Pointing-Pointer Inhibition of mitochondrial fission in {Delta}yfh1 induces oxidative stress resistance. -- Abstract: Friedreich ataxia (FA) is the most common recessive neurodegenerative disease. It is caused by deficiency in mitochondrial frataxin, which participates in iron-sulfur cluster assembly. Yeast cells lacking frataxin ({Delta}yfh1 mutant) showed an increased proportion of fragmented mitochondria compared to wild-type. In addition, oxidative stress induced complete fragmentation of mitochondria in {Delta}yfh1 cells. Genetically controlled inhibition of mitochondrial fission in these cells led to increased resistance to oxidative stress. Here we present evidence that in yeast frataxin-deficiency interferes with mitochondrial dynamics, which might therefore be relevant for the pathophysiology of FA.

  10. Stress induces pain transition by potentiation of AMPA receptor phosphorylation.

    Science.gov (United States)

    Li, Changsheng; Yang, Ya; Liu, Sufang; Fang, Huaqiang; Zhang, Yong; Furmanski, Orion; Skinner, John; Xing, Ying; Johns, Roger A; Huganir, Richard L; Tao, Feng

    2014-10-08

    Chronic postsurgical pain is a serious issue in clinical practice. After surgery, patients experience ongoing pain or become sensitive to incident, normally nonpainful stimulation. The intensity and duration of postsurgical pain vary. However, it is unclear how the transition from acute to chronic pain occurs. Here we showed that social defeat stress enhanced plantar incision-induced AMPA receptor GluA1 phosphorylation at the Ser831 site in the spinal cord and greatly prolonged plantar incision-induced pain. Interestingly, targeted mutation of the GluA1 phosphorylation site Ser831 significantly inhibited stress-induced prolongation of incisional pain. In addition, stress hormones enhanced GluA1 phosphorylation and AMPA receptor-mediated electrical activity in the spinal cord. Subthreshold stimulation induced spinal long-term potentiation in GluA1 phosphomimetic mutant mice, but not in wild-type mice. Therefore, spinal AMPA receptor phosphorylation contributes to the mechanisms underlying stress-induced pain transition. Copyright © 2014 the authors 0270-6474/14/3413737-10$15.00/0.

  11. Stress-induced phase transformation and room temperature aging in Ti-Nb-Fe alloys

    Energy Technology Data Exchange (ETDEWEB)

    Cai, S.; Schaffer, J.E. [Fort Wayne Metals Research Products Corp, 9609 Ardmore Ave., Fort Wayne, IN 46809 (United States); Ren, Y. [Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, IL 60439 (United States)

    2017-01-05

    Room temperature deformation behavior of Ti-17Nb-1Fe and Ti-17Nb-2Fe alloys was studied by synchrotron X-ray diffraction and tensile testing. It was found that, after proper heat treatment, both alloys were able to recover a deformation strain of above 3.5% due to the Stress-induced Martensite (SIM) phase transformation. Higher Fe content increased the beta phase stability and onset stress for SIM transformation. A strong {110}{sub β} texture was produced in Ti-17Nb-2Fe compared to the {210}{sub β} texture that was observed in Ti-17Nb-1Fe. Room temperature aging was observed in both alloys, where the formation of the omega phase increased the yield strength (also SIM onset stress), and decreased the ductility and strain recovery. Other metastable beta Ti alloys may show a similar aging response and this should draw the attention of materials design engineers.

  12. Restoration of hippocampal growth hormone reverses stress-induced hippocampal impairment

    Directory of Open Access Journals (Sweden)

    Caitlin M. Vander Weele

    2013-06-01

    Full Text Available Though growth hormone (GH is synthesized by hippocampal neurons, where its expression is influenced by stress exposure, its function is poorly characterized. Here, we show that a regimen of chronic stress that impairs hippocampal function in rats also leads to a profound decrease in hippocampal GH levels. Restoration of hippocampal GH in the dorsal hippocampus via viral-mediated gene transfer completely reversed stress-related impairment of two hippocampus-dependent behavioral tasks, auditory trace fear conditioning and contextual fear conditioning, without affecting hippocampal function in unstressed control rats. GH overexpression reversed stress-induced decrements in both fear acquisition and long-term fear memory. These results suggest that loss of hippocampal GH contributes to hippocampal dysfunction following prolonged stress and demonstrate that restoring hippocampal GH levels following stress can promote stress resilience.

  13. Monocyte Trafficking to the Brain with Stress and Inflammation: A Novel Axis of Immune-to-Brain Communication that Influences Mood and Behavior

    Directory of Open Access Journals (Sweden)

    Eric S Wohleb

    2015-01-01

    Full Text Available Psychological stressors cause physiological, immunological, and behavioral alterations in humans and rodents that can be maladaptive and negatively affect quality of life. Several lines of evidence indicate that psychological stress disrupts key functional interactions between the immune system and brain that ultimately affects mood and behavior. For example, activation of microglia, the resident innate immune cells of the brain, has been implicated as a key regulator of mood and behavior in the context of prolonged exposure to psychological stress. Emerging evidence implicates a novel neuroimmune circuit involving microglia activation and sympathetic outflow to the peripheral immune system that further reinforces stress-related behaviors by facilitating the recruitment of inflammatory monocytes to the brain. Evidence from various rodent models, including repeated social defeat (RSD, revealed that trafficking of monocytes to the brain promoted the establishment of anxiety-like behaviors following prolonged stress exposure. In addition, new evidence implicates monocyte trafficking from the spleen to the brain as key regulator of recurring anxiety following exposure to prolonged stress. The purpose of this review is to discuss mechanisms that cause stress-induced monocyte re-distribution in the brain and how dynamic interactions between microglia, endothelial cells, and brain macrophages lead to maladaptive behavioral responses.

  14. An Elongin-Cullin-SOCS Box Complex Regulates Stress-Induced Serotonergic Neuromodulation

    Directory of Open Access Journals (Sweden)

    Xicotencatl Gracida

    2017-12-01

    Full Text Available Neuromodulatory cells transduce environmental information into long-lasting behavioral responses. However, the mechanisms governing how neuronal cells influence behavioral plasticity are difficult to characterize. Here, we adapted the translating ribosome affinity purification (TRAP approach in C. elegans to profile ribosome-associated mRNAs from three major tissues and the neuromodulatory dopaminergic and serotonergic cells. We identified elc-2, an Elongin C ortholog, specifically expressed in stress-sensing amphid neuron dual ciliated sensory ending (ADF serotonergic sensory neurons, and we found that it plays a role in mediating a long-lasting change in serotonin-dependent feeding behavior induced by heat stress. We demonstrate that ELC-2 and the von Hippel-Lindau protein VHL-1, components of an Elongin-Cullin-SOCS box (ECS E3 ubiquitin ligase, modulate this behavior after experiencing stress. Also, heat stress induces a transient redistribution of ELC-2, becoming more nuclearly enriched. Together, our results demonstrate dynamic regulation of an E3 ligase and a role for an ECS complex in neuromodulation and control of lasting behavioral states.

  15. Electroacupuncture Promotes Proliferation of Amplifying Neural Progenitors and Preserves Quiescent Neural Progenitors from Apoptosis to Alleviate Depressive-Like and Anxiety-Like Behaviours

    Directory of Open Access Journals (Sweden)

    Liu Yang

    2014-01-01

    Full Text Available The present study was designed to investigate the effects of electroacupuncture (EA on depressive-like and anxiety-like behaviours and neural progenitors in the hippocampal dentate gyrus (DG in a chronic unpredictable stress (CUS rat model of depression. After being exposed to a CUS procedure for 2 weeks, rats were subjected to EA treatment, which was performed on acupoints Du-20 (Bai-Hui and GB-34 (Yang-Ling-Quan, once every other day for 15 consecutive days (including 8 treatments, with each treatment lasting for 30 min. The behavioural tests (i.e., forced swimming test, elevated plus-maze test, and open-field entries test revealed that EA alleviated the depressive-like and anxiety-like behaviours of the stressed rats. Immunohistochemical results showed that proliferative cells (BrdU-positive in the EA group were significantly larger in number compared with the Model group. Further, the results showed that EA significantly promoted the proliferation of amplifying neural progenitors (ANPs and simultaneously inhibited the apoptosis of quiescent neural progenitors (QNPs. In a word, the mechanism underlying the antidepressant-like effects of EA is associated with enhancement of ANPs proliferation and preserving QNPs from apoptosis.

  16. Chronic THC during adolescence increases the vulnerability to stress-induced relapse to heroin seeking in adult rats.

    Science.gov (United States)

    Stopponi, Serena; Soverchia, Laura; Ubaldi, Massimo; Cippitelli, Andrea; Serpelloni, Giovanni; Ciccocioppo, Roberto

    2014-07-01

    Cannabis derivatives are among the most widely used illicit substances among young people. The addictive potential of delta-9-tetrahydrocannabinol (THC), the major active ingredient of cannabis is well documented in scientific literature. However, the consequence of THC exposure during adolescence on occurrence of addiction for other drugs of abuse later in life is still controversial. To explore this aspect of THC pharmacology, in the present study, we treated adolescent rats from postnatal day (PND) 35 to PND-46 with increasing daily doses of THC (2.5-10mg/kg). One week after intoxication, the rats were tested for anxiety-like behavior in the elevated plus maze (EPM) test. One month later (starting from PND 75), rats were trained to operantly self-administer heroin intravenously. Finally, following extinction phase, reinstatement of lever pressing elicited by the pharmacological stressor, yohimbine (1.25mg/kg) was evaluated. Data revealed that in comparison to controls, animals treated with chronic THC during adolescence showed a higher level of anxiety-like behavior. When tested for heroin (20μg per infusion) self-administration, no significant differences were observed in both the acquisition of operant responding and heroin intake at baseline. Noteworthy, following the extinction phase, administration of yohimbine elicited a significantly higher level of heroin seeking in rats previously exposed to THC. Altogether these findings demonstrate that chronic exposure to THC during adolescence is responsible for heightened anxiety and increased vulnerability to drug relapse in adulthood. Copyright © 2013 Elsevier B.V. and ECNP. All rights reserved.

  17. Stress-induced roughening instabilities along surfaces of piezoelectric materials

    International Nuclear Information System (INIS)

    Chien, N.Y.; Gao, H.

    1993-01-01

    The possibility of using electric field to stabilize surfaces of piezoelectric solids against stress-induced morphological roughening is explored in this paper. Two types of idealized boundary conditions are considered: (1) a traction free and electrically insulating surface and (2) a traction free and electrically conducting surface. A perturbation solution for the energy variation associated with surface roughening suggests that the electric field can be used to suppress the roughening instability to various degrees. A completely stable state is possible in the insulating case, and kinetically more stable states can be attained in the conducting case. The stabilization has importance in reducing concentration of stress and electric fields due to microscopic surface roughness which might trigger failure processes involving dislocation, cracks and dielectric breakdown

  18. Stress-induced premature senescence of endothelial cells.

    Science.gov (United States)

    Chen, Jun; Patschan, Susann; Goligorsky, Michael S

    2008-01-01

    Stress-induced premature senescence (SIPS) is characterized by cell cycle arrest and curtailed Hayflick limit. Studies support a central role for Rb protein in controlling this process via signaling from the p53 and p16 pathways. Cellular senescence is considered an essential contributor to the aging process and has been shown to be an important tumor suppression mechanism. In addition, emerging evidence suggests that SIPS may be involved in the pathogenesis of chronic human diseases. Here, focusing on endothelial cells, we discuss recent advances in our understanding of SIPS and the pathways that trigger it, evaluate their correlation with the apoptotic response and examine their links to the development of chronic diseases, with the emphasis on vasculopathy. Emerging novel therapeutic interventions based on recent experimental findings are also reviewed.

  19. Oxidative stress-induced autophagy: Role in pulmonary toxicity

    International Nuclear Information System (INIS)

    Malaviya, Rama; Laskin, Jeffrey D.; Laskin, Debra L.

    2014-01-01

    Autophagy is an evolutionarily conserved catabolic process important in regulating the turnover of essential proteins and in elimination of damaged organelles and protein aggregates. Autophagy is observed in the lung in response to oxidative stress generated as a consequence of exposure to environmental toxicants. Whether autophagy plays role in promoting cell survival or cytotoxicity is unclear. In this article recent findings on oxidative stress-induced autophagy in the lung are reviewed; potential mechanisms initiating autophagy are also discussed. A better understanding of autophagy and its role in pulmonary toxicity may lead to the development of new strategies to treat lung injury associated with oxidative stress. - Highlights: • Exposure to pulmonary toxicants is associated with oxidative stress. • Oxidative stress is known to induce autophagy. • Autophagy is upregulated in the lung following exposure to pulmonary toxicants. • Autophagy may be protective or pathogenic

  20. Oxidative stress-induced autophagy: Role in pulmonary toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Malaviya, Rama [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854 (United States); Laskin, Debra L., E-mail: laskin@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States)

    2014-03-01

    Autophagy is an evolutionarily conserved catabolic process important in regulating the turnover of essential proteins and in elimination of damaged organelles and protein aggregates. Autophagy is observed in the lung in response to oxidative stress generated as a consequence of exposure to environmental toxicants. Whether autophagy plays role in promoting cell survival or cytotoxicity is unclear. In this article recent findings on oxidative stress-induced autophagy in the lung are reviewed; potential mechanisms initiating autophagy are also discussed. A better understanding of autophagy and its role in pulmonary toxicity may lead to the development of new strategies to treat lung injury associated with oxidative stress. - Highlights: • Exposure to pulmonary toxicants is associated with oxidative stress. • Oxidative stress is known to induce autophagy. • Autophagy is upregulated in the lung following exposure to pulmonary toxicants. • Autophagy may be protective or pathogenic.

  1. REPEATED ACUTE STRESS INDUCED ALTERATIONS IN CARBOHYDRATE METABOLISM IN RAT

    Directory of Open Access Journals (Sweden)

    Nirupama R.

    2010-09-01

    Full Text Available Acute stress induced alterations in the activity levels of rate limiting enzymes and concentration of intermediates of different pathways of carbohydrate metabolism have been studied. Adult male Wistar rats were restrained (RS for 1 h and after an interval of 4 h they were subjected to forced swimming (FS exercise and appropriate controls were maintained. Five rats were killed before the commencement of the experiment (initial controls, 5 control and equal number of stressed rats were killed 2 h after RS and remaining 5 rats in each group were killed 4 h after FS. There was a significant increase in the adrenal 3β- hydroxy steroid dehydrogenase activity following RS, which showed further increase after FS compared to controls and thereby indicated stress response of rats. There was a significant increase in the blood glucose levels following RS which showed further increase and reached hyperglycemic condition after FS. The hyperglycemic condition due to stress was accompanied by significant increases in the activities of glutamate- pyruvate transaminase, glutamate- oxaloacetate transaminase, glucose -6- phosphatase and lactate dehydrogenase and significant decrease in the glucose -6- phosphate dehydrogenase and pyruvate dehydrogenase activities, whereas pyruvate kinase activity did not show any alteration compared to controls. Further, the glycogen and total protein contents of the liver were decreased whereas those of pyruvate and lactate showed significant increase compared to controls after RS as well as FS.The results put together indicate that acute stress induced hyperglycemia results due to increased gluconeogenesis and glycogenolysis without alteration in glycolysis. The study first time reveals that after first acute stress exposure, the subsequent stressful experience augments metabolic stress response leading to hyperglycemia. The results have relevance to human health as human beings are exposed to several stressors in a day and

  2. Clonidine blocks stress-induced craving in cocaine users.

    Science.gov (United States)

    Jobes, Michelle L; Ghitza, Udi E; Epstein, David H; Phillips, Karran A; Heishman, Stephen J; Preston, Kenzie L

    2011-11-01

    Reactivity to stressors and environmental cues, a putative cause of relapse in addiction, may be a useful target for relapse-prevention medication. In rodents, alpha-2 adrenergic agonists such as clonidine block stress-induced reinstatement of drug seeking, but not drug cue-induced reinstatement. The objective of this study is to test the effect of clonidine on stress- and cue-induced craving in human cocaine users. Healthy, non-treatment-seeking cocaine users (n = 59) were randomly assigned to three groups receiving clonidine 0, 0.1, or 0.2 mg orally under double-blind conditions. In a single test session, each participant received clonidine or placebo followed 3 h later by exposure to two pairs of standardized auditory-imagery scripts (neutral/stress and neutral/drug). Subjective measures of craving were collected. Subjective responsivity ("crave cocaine" Visual Analog Scale) to stress scripts was significantly attenuated in the 0.1- and 0.2-mg clonidine groups; for drug-cue scripts, this attenuation occurred only in the 0.2-mg group. Other subjective measures of craving showed similar patterns of effects but Dose × Script interactions were not significant. Clonidine was effective in reducing stress-induced (and, at a higher dose, cue-induced) craving in a pattern consistent with preclinical findings, although this was significant on only one of several measures. Our results, though modest and preliminary, converge with other evidence to suggest that alpha-2 adrenergic agonists may help prevent relapse in drug abusers experiencing stress or situations that remind them of drug use.

  3. Social defeat stress causes depression-like behavior with metabolite changes in the prefrontal cortex of rats.

    Science.gov (United States)

    Liu, Yi-Yun; Zhou, Xin-Yu; Yang, Li-Ning; Wang, Hai-Yang; Zhang, Yu-Qing; Pu, Jun-Cai; Liu, Lan-Xiang; Gui, Si-Wen; Zeng, Li; Chen, Jian-Jun; Zhou, Chan-Juan; Xie, Peng

    2017-01-01

    Major depressive disorder is a serious mental disorder with high morbidity and mortality. The role of social stress in the development of depression remains unclear. Here, we used the social defeat stress paradigm to induce depression-like behavior in rats, then evaluated the behavior of the rats and measured metabolic changes in the prefrontal cortex using gas chromatography-mass spectrometry. Within the first week after the social defeat procedure, the sucrose preference test (SPT), open field test (OFT), elevated plus maze (EPM) and forced swim test (FST) were conducted to examine the depressive-like and anxiety-like behaviors. For our metabolite analysis, multivariate statistics were applied to observe the distribution of all samples and to differentiate the socially defeated group from the control group. Ingenuity pathway analysis was used to find the potential relationships among the differential metabolites. In the OFT and EPM, there were no significant differences between the two experimental groups. In the SPT and FST, socially defeated rats showed less sucrose intake and longer immobility time compared with control rats. Metabolic profiling identified 25 significant variables with good predictability. Ingenuity pathways analysis revealed that "Hereditary Disorder, Neurological Disease, Lipid Metabolism" was the most significantly altered network. Stress-induced alterations of low molecular weight metabolites were observed in the prefrontal cortex of rats. Particularly, lipid metabolism, amino acid metabolism, and energy metabolism were significantly perturbed. The results of this study suggest that repeated social defeat can lead to metabolic changes and depression-like behavior in rats.

  4. Stress responses of adolescent male and female rats exposed repeatedly to cat odor stimuli, and long-term enhancement of adult defensive behaviors.

    Science.gov (United States)

    Wright, Lisa D; Muir, Katherine E; Perrot, Tara S

    2013-07-01

    In order to characterize the short- and long-term effects of repeated stressor exposure during adolescence, and to compare the effects of using two sources of cat odor as stressor stimuli, male and female adolescent rats (postnatal day (PND) ∼ 38-46) were exposed on five occasions to either a control stimulus, a cloth stimulus containing cat hair/dander, or a section of cat collar previously worn by a cat. Relative to control stimulus exposure, activity was suppressed and defensive behavior enhanced during exposure to either cat odor stimulus (most pervasively in rats exposed to the collar). Only cloth-exposed rats showed elevated levels of corticosterone (CORT), and only after repeated stressor exposure, but interestingly, rats exposed to the collar stimulus during adolescence continued to show increased behavioral indices of anxiety in adulthood. In this group, the time an individual spent in physical contact with a cagemate during the final adolescent exposure was negatively related to stress-induced CORT output in adulthood, which suggests that greater use of social support during adolescent stress may facilitate adult behavioral coping, without necessitating increased CORT release. These findings demonstrate that adolescent male and female rats respond defensively to cat odor stimuli across repeated exposures and that exposure to such stressors during adolescence can augment adult anxiety-like behavior in similar stressful conditions. These findings also suggest a potential role for social behavior during adolescent stressor exposure in mediating long-term outcomes. Copyright © 2012 Wiley Periodicals, Inc.

  5. Stress-induced variation in evolution: from behavioural plasticity to genetic assimilation.

    Science.gov (United States)

    Badyaev, Alexander V

    2005-05-07

    Extreme environments are closely associated with phenotypic evolution, yet the mechanisms behind this relationship are poorly understood. Several themes and approaches in recent studies significantly further our understanding of the importance that stress-induced variation plays in evolution. First, stressful environments modify (and often reduce) the integration of neuroendocrinological, morphological and behavioural regulatory systems. Second, such reduced integration and subsequent accommodation of stress-induced variation by developmental systems enables organismal 'memory' of a stressful event as well as phenotypic and genetic assimilation of the response to a stressor. Third, in complex functional systems, a stress-induced increase in phenotypic and genetic variance is often directional, channelled by existing ontogenetic pathways. This accounts for similarity among individuals in stress-induced changes and thus significantly facilitates the rate of adaptive evolution. Fourth, accumulation of phenotypically neutral genetic variation might be a common property of locally adapted and complex organismal systems, and extreme environments facilitate the phenotypic expression of this variance. Finally, stress-induced effects and stress-resistance strategies often persist for several generations through maternal, ecological and cultural inheritance. These transgenerational effects, along with both the complexity of developmental systems and stressor recurrence, might facilitate genetic assimilation of stress-induced effects. Accumulation of phenotypically neutral genetic variance by developmental systems and phenotypic accommodation of stress-induced effects, together with the inheritance of stress-induced modifications, ensure the evolutionary persistence of stress-response strategies and provide a link between individual adaptability and evolutionary adaptation.

  6. Dysregulation of Prefrontal Cortex-Mediated Slow-Evolving Limbic Dynamics Drives Stress-Induced Emotional Pathology.

    Science.gov (United States)

    Hultman, Rainbo; Mague, Stephen D; Li, Qiang; Katz, Brittany M; Michel, Nadine; Lin, Lizhen; Wang, Joyce; David, Lisa K; Blount, Cameron; Chandy, Rithi; Carlson, David; Ulrich, Kyle; Carin, Lawrence; Dunson, David; Kumar, Sunil; Deisseroth, Karl; Moore, Scott D; Dzirasa, Kafui

    2016-07-20

    Circuits distributed across cortico-limbic brain regions compose the networks that mediate emotional behavior. The prefrontal cortex (PFC) regulates ultraslow (stress-related illnesses including major depressive disorder (MDD). To uncover the mechanism whereby stress-induced changes in PFC circuitry alter emotional networks to yield pathology, we used a multi-disciplinary approach including in vivo recordings in mice and chronic social defeat stress. Our network model, inferred using machine learning, linked stress-induced behavioral pathology to the capacity of PFC to synchronize amygdala and VTA activity. Direct stimulation of PFC-amygdala circuitry with DREADDs normalized PFC-dependent limbic synchrony in stress-susceptible animals and restored normal behavior. In addition to providing insights into MDD mechanisms, our findings demonstrate an interdisciplinary approach that can be used to identify the large-scale network changes that underlie complex emotional pathologies and the specific network nodes that can be used to develop targeted interventions. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. A Time to Wean? Impact of Weaning Age on Anxiety-Like Behaviour and Stability of Behavioural Traits in Full Adulthood

    Science.gov (United States)

    Richter, S. Helene; Kästner, Niklas; Loddenkemper, Dirk-Heinz; Kaiser, Sylvia; Sachser, Norbert

    2016-01-01

    In mammals, weaning constitutes an important phase in the progression to adulthood. It comprises the termination of suckling and is characterized by several changes in the behaviour of both mother and offspring. Furthermore, numerous studies in rodents have shown that the time point of weaning shapes the behavioural profile of the young. Most of these studies, however, have focused on ‘early weaning’, while relatively little work has been done to study ‘late weaning’ effects. The aim of the present study was therefore to explore behavioural effects of ‘late weaning’, and furthermore to gain insights into modulating effects of weaning age on the consistency of behavioural expressions over time. In total, 25 male and 20 female C57BL/6J mice, weaned after three (W3) or four (W4) weeks of age, were subjected to a series of behavioural paradigms widely used to assess anxiety-like behaviour, exploratory locomotion, and nest building performance. Behavioural testing took place with the mice reaching an age of 20 weeks and was repeated eight weeks later to investigate the stability of behavioural expressions over time. At the group level, W4 mice behaved less anxious and more explorative than W3 animals in the Open Field and Novel Cage, while anxiety-like behaviour on the Elevated Plus Maze was modulated by a weaning-age-by-sex interaction. Furthermore, weaning age shaped the degree of behavioural stability over time in a sex-specific way. While W3 females and W4 males displayed a remarkable degree of behavioural stability over time, no such patterns were observed in W3 males and W4 females. Adding to the existing literature, we could thus confirm that effects of weaning age do indeed exist when prolonging this phase, and were furthermore able to provide first evidence for the impact of weaning age and sex on the consistency of behavioural expressions over time. PMID:27930688

  8. Oxidative Stress Induces Senescence in Cultured RPE Cells.

    Science.gov (United States)

    Aryan, Nona; Betts-Obregon, Brandi S; Perry, George; Tsin, Andrew T

    2016-01-01

    The aim of this research is to determine whether oxidative stress induces cellular senescence in human retinal pigment epithelial cells. Cultured ARPE19 cells were subjected to different concentrations of hydrogen peroxide to induce oxidative stress. Cells were seeded into 24-well plates with hydrogen peroxide added to cell medium and incubated at 37°C + 5% CO2 for a 90-minute period [at 0, 300, 400 and 800 micromolar (MCM) hydrogen peroxide]. The number of viable ARPE19 cells were recorded using the Trypan Blue Dye Exclusion Method and cell senescence was measured by positive staining for senescence-associated beta-galactosidase (SA-beta-Gal) protein. Without hydrogen peroxide treatment, the number of viable ARPE19 cells increased significantly from 50,000 cells/well to 197,000 within 72 hours. Treatment with hydrogen peroxide reduced this level of cell proliferation significantly (to 52,167 cells at 400 MCM; to 49,263 cells at 800 MCM). Meanwhile, cells with a high level of positive senescence-indicator SA-Beta-Gal-positive staining was induced by hydrogen peroxide treatment (from a baseline level of 12% to 80% at 400 MCM and at 800 MCM). Our data suggests that oxidative stress from hydrogen peroxide treatment inhibited ARPE19 cell proliferation and induced cellular senescence.

  9. Effects of Kombucha on oxidative stress induced nephrotoxicity in rats

    Directory of Open Access Journals (Sweden)

    Gharib Ola

    2009-11-01

    Full Text Available Abstract Background Trichloroethylene (TCE may induce oxidative stress which generates free radicals and alters antioxidants or oxygen-free radical scavenging enzymes. Methods Twenty male albino rats were divided into four groups: (1 the control group treated with vehicle, (2 Kombucha (KT-treated group, (3 TCE-treated group and (4 KT/TCE-treated group. Kidney lipid peroxidation, glutathione content, nitric oxide (NO and total blood free radical concentrations were evaluated. Serum urea, creatinine level, gamma-glutamyl transferase (GGT and lactate dehydrogenase (LDH activities were also measured. Results TCE administration increased the malondiahyde (MDA and NO contents in kidney, urea and creatinine concentrations in serum, total free radical level in blood and GGT and LDH activities in serum, whereas it decreased the glutathione (GSH level in kidney homogenate. KT administration significantly improved lipid peroxidation and oxidative stress induced by TCE. Conclusion The present study indicates that Kombucha may repair damage caused by environmental pollutants such as TCE and may be beneficial to patient suffering from renal impairment.

  10. Effects of Kombucha on oxidative stress induced nephrotoxicity in rats.

    Science.gov (United States)

    Gharib, Ola Ali

    2009-11-27

    Trichloroethylene (TCE) may induce oxidative stress which generates free radicals and alters antioxidants or oxygen-free radical scavenging enzymes. Twenty male albino rats were divided into four groups: (1) the control group treated with vehicle, (2) Kombucha (KT)-treated group, (3) TCE-treated group and (4) KT/TCE-treated group. Kidney lipid peroxidation, glutathione content, nitric oxide (NO) and total blood free radical concentrations were evaluated. Serum urea, creatinine level, gamma-glutamyl transferase (GGT) and lactate dehydrogenase (LDH) activities were also measured. TCE administration increased the malondiahyde (MDA) and NO contents in kidney, urea and creatinine concentrations in serum, total free radical level in blood and GGT and LDH activities in serum, whereas it decreased the glutathione (GSH) level in kidney homogenate. KT administration significantly improved lipid peroxidation and oxidative stress induced by TCE. The present study indicates that Kombucha may repair damage caused by environmental pollutants such as TCE and may be beneficial to patient suffering from renal impairment.

  11. Stress-induced hyperglycaemia and venous thromboembolism following total hip or total knee arthroplasty Analysis from the RECORD trials

    NARCIS (Netherlands)

    Cohn, Danny M.; Hermanides, Jeroen; DeVries, J. Hans; Kamphuisen, Pieter-Willem; Kuhls, Silvia; Homering, Martin; Hoekstra, Joost B. L.; Lensing, Anthonie W. A.; Büller, Harry R.

    2012-01-01

    Stress-induced hyperglycaemia is common during orthopaedic surgery. In addition, hyperglycaemia activates coagulation. The aim of the study was to assess whether stress-induced hyperglycaemia is associated with symptomatic or asymptomatic venous thromboembolism (VTE) following orthopaedic surgery.

  12. Stress-induced endocrine response and anxiety: the effects of comfort food in rats.

    Science.gov (United States)

    Ortolani, Daniela; Garcia, Márcia Carvalho; Melo-Thomas, Liana; Spadari-Bratfisch, Regina Celia

    2014-05-01

    The long-term effects of comfort food in an anxiogenic model of stress have yet to be analyzed. Here, we evaluated behavioral, endocrine and metabolic parameters in rats submitted or not to chronic unpredictable mild stress (CUMS), with access to commercial chow alone or to commercial chow and comfort food. Stress did not alter the preference for comfort food but decreased food intake. In the elevated plus-maze (EPM) test, stressed rats were less likely to enter/remain in the open arms, as well as being more likely to enter/remain in the closed arms, than were control rats, both conditions being more pronounced in the rats given access to comfort food. In the open field test, stress decreased the time spent in the centre, independent of diet; neither stress nor diet affected the number of crossing, rearing or grooming episodes. The stress-induced increase in serum corticosterone was attenuated in rats given access to comfort food. Serum concentration of triglycerides were unaffected by stress or diet, although access to comfort food increased total cholesterol and glucose. It is concluded that CUMS has an anorexigenic effect. Chronic stress and comfort food ingestion induced an anxiogenic profile although comfort food attenuated the endocrine stress response. The present data indicate that the combination of stress and access to comfort food, common aspects of modern life, may constitute a link among stress, feeding behavior and anxiety.

  13. Effect of the critical size of initial voids on stress-induced migration

    International Nuclear Information System (INIS)

    Aoyagi, Minoru

    2004-01-01

    The stress-induced migration phenomenon is one of the problems related to the reliability of metal interconnections in semiconductor devices. This phenomenon causes voids and fractures in interconnections. The basic feature of this phenomenon is vacancy migration to minute initial voids. Expanding initial voids grow into larger voids and fractures. The purpose of this work is to theoretically clarify the effects of residual thermal stress and void surface stress on the behavior of the initial voids which exist immediately after a passivation process. Using a spherical metal sample with a spherical void under external stress, vacancy absorption or emission was investigated between the void surface and the sample surface. The behavior of vacancies and atoms was also investigated in interconnections under residual thermal stress. We show that the void or sample surface becomes a vacancy sink or source, depending on the mutual relationship between the surface stress due to the surface-free energy and the residual thermal stress. We also reveal that the initial voids, which exist immediately after a passivation process, grow into larger voids and fractures when the size of the initial voids exceeds the critical size. If the size of the initial void can be controlled to below the critical size, voids and fractures do not occur

  14. The RFamide receptor DMSR-1 regulates stress-induced sleep in C. elegans.

    Science.gov (United States)

    Iannacone, Michael J; Beets, Isabel; Lopes, Lindsey E; Churgin, Matthew A; Fang-Yen, Christopher; Nelson, Matthew D; Schoofs, Liliane; Raizen, David M

    2017-01-17

    In response to environments that cause cellular stress, animals engage in sleep behavior that facilitates recovery from the stress. In Caenorhabditis elegans , stress-induced sleep(SIS) is regulated by cytokine activation of the ALA neuron, which releases FLP-13 neuropeptides characterized by an amidated arginine-phenylalanine (RFamide) C-terminus motif. By performing an unbiased genetic screen for mutants that impair the somnogenic effects of FLP-13 neuropeptides, we identified the gene dmsr-1 , which encodes a G-protein coupled receptor similar to an insect RFamide receptor. DMSR-1 is activated by FLP-13 peptides in cell culture, is required for SIS in vivo , is expressed non-synaptically in several wake-promoting neurons, and likely couples to a Gi/o heterotrimeric G-protein. Our data expand our understanding of how a single neuroendocrine cell coordinates an organism-wide behavioral response, and suggest that similar signaling principles may function in other organisms to regulate sleep during sickness.

  15. Stress-induced core temperature changes in pigeons (Columba livia).

    Science.gov (United States)

    Bittencourt, Myla de Aguiar; Melleu, Fernando Falkenburger; Marino-Neto, José

    2015-02-01

    Changes in body temperature are significant physiological consequences of stressful stimuli in mammals and birds. Pigeons (Columba livia) prosper in (potentially) stressful urban environments and are common subjects in neurobehavioral studies; however, the thermal responses to stress stimuli by pigeons are poorly known. Here, we describe acute changes in the telemetrically recorded celomatic (core) temperature (Tc) in pigeons given a variety of potentially stressful stimuli, including transfer to a novel cage (ExC) leading to visual isolation from conspecifics, the presence of the experimenter (ExpR), gentle handling (H), sham intracelomatic injections (SI), and the induction of the tonic immobility (TI) response. Transfer to the ExC cage provoked short-lived hyperthermia (10-20 min) followed by a long-lasting and substantial decrease in Tc, which returned to baseline levels 2 h after the start of the test. After a 2-hour stay in the ExC, the other potentially stressful stimuli evoked only weak, marginally significant hyperthermic (ExpR, IT) or hypothermic (SI) responses. Stimuli delivered 26 h after transfer to the ExC induced definite and intense increases in Tc (ExpR, H) or hypothermic responses (SI). These Tc changes appear to be unrelated to modifications in general activity (as measured via telemetrically recorded actimetric data). Repeated testing failed to affect the hypothermic responses to the transference to the ExC, even after nine trials and at 1- or 8-day intervals, suggesting that the social (visual) isolation from conspecifics may be a strong and poorly controllable stimulus in this species. The present data indicated that stress-induced changes in Tc may be a consistent and reliable physiological parameter of stress but that they may also show stressor type-, direction- and species-specific attributes. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Pharmacologic stress-induced stunning: evaluation with quantitative gated SPECT

    International Nuclear Information System (INIS)

    Chun, K. A.; Cho, I. H.; Won, K. J.; Lee, H. W.

    2000-01-01

    The after-effect of pharmacologic stress (adenosine) on left ventricular (LV) function, end-diastolic volume (EDV), end-systolic volume (ESV) and ejection fraction (LVEF) were evaluated after pharmacologic stress with Tl-201 and 99m Tc-MIBI SPECT using an automated program in 153 subjects. The subjects were grouped as follows: 1) Tl-201 group (n=35, male 18, female 17, mean age: 58 years); normal scan (n=24), ischemia (n=8) and infarction (n=3). 2) 99m Tc-MIBI group (n=118, male 60, female 58, mean age: 62 years); normal scan (n=73), ischemia (n=20) and infarction (n=25) based on the interpretation of perfusion images. All patients were in sinus rhythm during the study. 1)Tl-201 group; In patients with ischemia (the mean time interval between injection and acquisition is 12.3 min), post-stress LVEF was significantly depressed after adenosine infusion (51.2 ± 6.3% vs 59.8± 8.2%, p 99m Tc-MIBI group; In patients with ischemia (the mean time interval between injection and acquisition is 80 min), post-stress LVEF was significantly depressed after adenosine infusion (p<0.001) and ΔLVEF was 5.1%. Eight patients (40%) showed an increase in LVEF greater than 5% from poststress to rest. Poststress ESV (37.1±17.3 ml) was significantly higher than ESV (31.3±15.5 ml, p<0.001) at rest, but no significant difference in EDV. These results showed that pharmacologic stress induced stunning is well noted in the early quantitative gated SPECT in ischemic patients and also observed in the delayed gated SPECT, even though the rate of stunning is less than the early SPECT

  17. Phenotypic heterogeneity in a bacteriophage population only appears as stress-induced mutagenesis.

    Science.gov (United States)

    Yosef, Ido; Edgar, Rotem; Qimron, Udi

    2016-11-01

    Stress-induced mutagenesis has been studied in cancer cells, yeast, bacteria, and archaea, but not in viruses. In a recent publication, we present a bacteriophage model showing an apparent stress-induced mutagenesis. We show that the stress does not drive the mutagenesis, but only selects the fittest mutants. The mechanism underlying the observed phenomenon is a phenotypic heterogeneity that resembles persistence of the viral population. The new findings, the background for the ongoing debate on stress-induced mutagenesis, and the phenotypic heterogeneity underlying a novel phage infection strategy are discussed in this short manuscript.

  18. Maternal chewing during prenatal stress ameliorates stress-induced hypomyelination, synaptic alterations, and learning impairment in mouse offspring.

    Science.gov (United States)

    Suzuki, Ayumi; Iinuma, Mitsuo; Hayashi, Sakurako; Sato, Yuichi; Azuma, Kagaku; Kubo, Kin-Ya

    2016-11-15

    Maternal chewing during prenatal stress attenuates both the development of stress-induced learning deficits and decreased cell proliferation in mouse hippocampal dentate gyrus. Hippocampal myelination affects spatial memory and the synaptic structure is a key mediator of neuronal communication. We investigated whether maternal chewing during prenatal stress ameliorates stress-induced alterations of hippocampal myelin and synapses, and impaired development of spatial memory in adult offspring. Pregnant mice were divided into control, stress, and stress/chewing groups. Stress was induced by placing mice in a ventilated restraint tube, and was initiated on day 12 of pregnancy and continued until delivery. Mice in the stress/chewing group were given a wooden stick to chew during restraint. In 1-month-old pups, spatial memory was assessed in the Morris water maze, and hippocampal oligodendrocytes and synapses in CA1 were assayed by immunohistochemistry and electron microscopy. Prenatal stress led to impaired learning ability, and decreased immunoreactivity of myelin basic protein (MBP) and 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) in the hippocampal CA1 in adult offspring. Numerous myelin sheath abnormalities were observed. The G-ratio [axonal diameter to axonal fiber diameter (axon plus myelin sheath)] was increased and postsynaptic density length was decreased in the hippocampal CA1 region. Maternal chewing during stress attenuated the prenatal stress-induced impairment of spatial memory, and the decreased MBP and CNPase immunoreactivity, increased G-ratios, and decreased postsynaptic-density length in the hippocampal CA1 region. These findings suggest that chewing during prenatal stress in dams could be an effective coping strategy to prevent hippocampal behavioral and morphologic impairments in their offspring. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. The effect of microinjection of dimethyl sulfoxide into the rostral ventromedial medulla on swim stress-induced analgesia

    Directory of Open Access Journals (Sweden)

    S. Nazemi

    2018-02-01

    Full Text Available Background: Dimethyl sulfoxide (DMSO is an important solvent for compounds that used in pain research. Rostral ventromedial medulla (RVM plays an important role in modulating nociception and stress-induced analgesia (SIA. Objective: The aim of this study was to investigate the effect of DMSO administration into the RVM on SIA by using formalin test. Methods: This experimental study was conducted on 27 Wistar male rats (200±30 gr were randomly assigned to control, stress and stress+DMSO groups. Animals were placed in a water reservoir (20±1°C for 3 minutes to induce forced swimming stress. Stereotaxic surgery was performed to microinjection of DMSO (0.5μl, 100% into RVM. The pain behavior score was evaluated by subcutaneous injection of formalin 2% in the dorsal plantar region of hid paw. Findings: The pain score of phase 1, interphase and phase 2 of formalin test in swim stress group decreased significantly in comparison to control group (P<0.001, P< 0.05, P<0.001 respectively. In addition, the pain score of three phase of formalin test after DMSO injection in swim stress group decreased significantly in comparison to control and stress group (P<0.001, P<0.05 respectively. Conclusion: Also microinjections of DMSO into the RVM potentiate the swim stress analgesia. According to the analgesic effects of dimethyl sulfoxide, as well as its ability to potentiate stressinduced analgesia, DMSO should be used with caution as a solvent in pain studies. Conclusion: Force swim stress induces analgesia in, and microinjections of DMSO into the RVM potentiate the swim stress analgesia. According to the analgesic effects of DMSO, as well as its ability to potentiate stress-induced analgesia, it should be used with caution as solvent in pain studies.

  20. Stress-induced oxytocin release and oxytocin cell number and size in prepubertal and adult male and female rats.

    Science.gov (United States)

    Minhas, Sumeet; Liu, Clarissa; Galdamez, Josselyn; So, Veronica M; Romeo, Russell D

    2016-08-01

    Studies indicate that adolescent exposure to stress is a potent environmental factor that contributes to psychological and physiological disorders, though the mechanisms that mediate these dysfunctions are not well understood. Periadolescent animals display greater stress-induced hypothalamic-pituitary-adrenal (HPA) axis responses than adults, which may contribute to these vulnerabilities. In addition to the HPA axis, the hypothalamo-neurohypophyseal tract (HNT) is also activated in response to stress. In adults, stress activates this system resulting in secretion of oxytocin from neurons in the supraoptic (SON) and paraventricular (PVN) nuclei. However, it is currently unknown whether a similar or different response occurs in prepubertal animals. Given the influence of these hormones on a variety of emotional behaviors and physiological systems known to change as an animal transitions into adulthood, we investigated stress-induced HPA and HNT hormonal responses before and after stress, as well as the number and size of oxytocin-containing cells in the SON and PVN of prepubertal (30d) and adult (70d) male and female rats. Though we found the well-established protracted adrenocorticotropic hormone and corticosterone response in prepubertal males and females, only adult males and prepubertal females showed a significant stress-induced increase in plasma oxytocin levels. Moreover, though we found no pubertal changes in the number of oxytocin cells, we did find a pubertal-related increase in oxytocin somal size in both the SON and PVN of males and females. Taken together, these data indicate that neuroendocrine systems can show different patterns of stress reactivity before and after adolescent development and that these responses can be further modified by sex. Given the impact of these hormones on a variety of systems, it will be imperative to further explore these changes in hormonal stress reactivity and their role in adolescent health. Copyright © 2016 Elsevier

  1. Chronic restraint stress causes anxiety- and depression-like behaviors, downregulates glucocorticoid receptor expression, and attenuates glutamate release induced by brain-derived neurotrophic factor in the prefrontal cortex.

    Science.gov (United States)

    Chiba, Shuichi; Numakawa, Tadahiro; Ninomiya, Midori; Richards, Misty C; Wakabayashi, Chisato; Kunugi, Hiroshi

    2012-10-01

    Stress and the resulting increase in glucocorticoid levels have been implicated in the pathophysiology of depressive disorders. We investigated the effects of chronic restraint stress (CRS: 6 hours × 28 days) on anxiety- and depression-like behaviors in rats and on the possible changes in glucocorticoid receptor (GR) expression as well as brain-derived neurotrophic factor (BDNF)-dependent neural function in the prefrontal cortex (PFC). We observed significant reductions in body weight gain, food intake and sucrose preference from 1 week after the onset of CRS. In the 5th week of CRS, we conducted open-field (OFT), elevated plus-maze (EPM) and forced swim tests (FST). We observed a decrease in the number of entries into open arms during the EPM (anxiety-like behavior) and increased immobility during the FST (depression-like behavior). When the PFC was removed after CRS and subject to western blot analysis, the GR expression reduced compared with control, while the levels of BDNF and its receptors remained unchanged. Basal glutamate concentrations in PFC acute slice which were measured by high performance liquid chromatography were not influenced by CRS. However, BDNF-induced glutamate release was attenuated after CRS. These results suggest that reduced GR expression and altered BDNF function may be involved in chronic stress-induced anxiety--and depression-like behaviors. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Chronic stress-induced effects of corticosterone on brain: direct and indirect

    NARCIS (Netherlands)

    Dallman, M. F.; Akana, S. F.; Strack, A. M.; Scribner, K. S.; Pecoraro, N.; La Fleur, S. E.; Houshyar, H.; Gomez, F.

    2004-01-01

    Acutely, glucocorticoids act to inhibit stress-induced corticotrophin-releasing factor (CRF) and adrenocorticotrophic hormone (ACTH) secretion through their actions in brain and anterior pituitary (canonical feedback). With chronic stress, glucocorticoid feedback inhibition of ACTH secretion changes

  3. Physiological correlates of stress-induced decrements in human perceptual performance.

    Science.gov (United States)

    1993-11-01

    Stress-induced changes in human performance have been thought to result from alterations in the "multidimensional arousal state" of the individual, as indexed by alterations in the physiological and psychological mechanisms controlling performance. I...

  4. Petroselinum Crispum is Effective in Reducing Stress-Induced Gastric Oxidative Damage

    OpenAIRE

    Ayşin Akıncı; Mukaddes Eşrefoğlu; Elif Taşlıdere; Burhan Ateş

    2017-01-01

    Background: Oxidative stress has been shown to play a principal role in the pathogenesis of stress-induced gastric injury. Parsley (Petroselinum crispum) contains many antioxidants such as flavanoids, carotenoids and ascorbic acid. Aims: In this study, the histopathological and biochemical results of nutrition with a parsley-rich diet in terms of eliminating stress-induced oxidative gastric injury were evaluated. Study Design: Animal experimentation. Methods: Forty male Wistar albino...

  5. Petroselinum Crispum is Effective in Reducing Stress-Induced Gastric Oxidative Damage

    OpenAIRE

    Ak?nc?, Ay?in; E?refo?lu, Mukaddes; Ta?l?dere, Elif; Ate?, Burhan

    2017-01-01

    Background: Oxidative stress has been shown to play a principal role in the pathogenesis of stress-induced gastric injury. Parsley (Petroselinum crispum) contains many antioxidants such as flavanoids, carotenoids and ascorbic acid. Aims: In this study, the histopathological and biochemical results of nutrition with a parsley-rich diet in terms of eliminating stress-induced oxidative gastric injury were evaluated. Study Design: Animal experimentation Methods: Forty male Wistar albino rats were...

  6. Ancient genes establish stress-induced mutation as a hallmark of cancer.

    Science.gov (United States)

    Cisneros, Luis; Bussey, Kimberly J; Orr, Adam J; Miočević, Milica; Lineweaver, Charles H; Davies, Paul

    2017-01-01

    Cancer is sometimes depicted as a reversion to single cell behavior in cells adapted to live in a multicellular assembly. If this is the case, one would expect that mutation in cancer disrupts functional mechanisms that suppress cell-level traits detrimental to multicellularity. Such mechanisms should have evolved with or after the emergence of multicellularity. This leads to two related, but distinct hypotheses: 1) Somatic mutations in cancer will occur in genes that are younger than the emergence of multicellularity (1000 million years [MY]); and 2) genes that are frequently mutated in cancer and whose mutations are functionally important for the emergence of the cancer phenotype evolved within the past 1000 million years, and thus would exhibit an age distribution that is skewed to younger genes. In order to investigate these hypotheses we estimated the evolutionary ages of all human genes and then studied the probability of mutation and their biological function in relation to their age and genomic location for both normal germline and cancer contexts. We observed that under a model of uniform random mutation across the genome, controlled for gene size, genes less than 500 MY were more frequently mutated in both cases. Paradoxically, causal genes, defined in the COSMIC Cancer Gene Census, were depleted in this age group. When we used functional enrichment analysis to explain this unexpected result we discovered that COSMIC genes with recessive disease phenotypes were enriched for DNA repair and cell cycle control. The non-mutated genes in these pathways are orthologous to those underlying stress-induced mutation in bacteria, which results in the clustering of single nucleotide variations. COSMIC genes were less common in regions where the probability of observing mutational clusters is high, although they are approximately 2-fold more likely to harbor mutational clusters compared to other human genes. Our results suggest this ancient mutational response to

  7. Activation of ATP-sensitive potassium channel by iptakalim normalizes stress-induced HPA axis disorder and depressive behaviour by alleviating inflammation and oxidative stress in mouse hypothalamus.

    Science.gov (United States)

    Zhao, Xiao-Jie; Zhao, Zhan; Yang, Dan-Dan; Cao, Lu-Lu; Zhang, Ling; Ji, Juan; Gu, Jun; Huang, Ji-Ye; Sun, Xiu-Lan

    2017-04-01

    Stress-induced disturbance of the hypothalamic-pituitary-adrenal (HPA) axis is strongly implicated in incidence of mood disorders. A heightened neuroinflammatory response and oxidative stress play a fundamental role in the dysfunction of the HPA axis. We have previously demonstrated that iptakalim (Ipt), a new ATP-sensitive potassium (K-ATP) channel opener, could prevent oxidative injury and neuroinflammation against multiple stimuli-induced brain injury. The present study was to demonstrate the impacts of Ipt in stress-induced HPA axis disorder and depressive behavior. We employed 2 stress paradigms: 8 weeks of continuous restraint stress (chronic restraint stress, CRS) and 2h of restraint stress (acute restraint stress, ARS), to mimic both chronic stress and severe acute stress. Prolonged (4 weeks) and short-term (a single injection) Ipt treatment was administered 30min before each stress paradigm. We found that HPA axis was altered after stress, with different responses to CRS (lower ACTH and CORT, higher AVP, but normal CRH) and ARS (higher CRH, ACTH and CORT, but normal AVP). Both prolonged and short-term Ipt treatment normalized stress-induced HPA axis disorders and abnormal behaviors in mice. CRS and ARS up-regulated mRNA levels of inflammation-related molecules (TNFα, IL-1β, IL-6 and TLR4) and oxidative stress molecules (gp91phox, iNOS and Nrf2) in the mouse hypothalamus. Double immunofluorescence showed CRS and ARS increased microglia activation (CD11b and TNFα) and oxidative stress in neurons (NeuN and gp91phox), which were alleviated by Ipt. Therefore, the present study reveals that Ipt could prevent against stress-induced HPA axis disorders and depressive behavior by alleviating inflammation and oxidative stress in the hypothalamus. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Stress potentiates decision biases: A stress induced deliberation-to-intuition (SIDI model

    Directory of Open Access Journals (Sweden)

    Rongjun Yu

    2016-06-01

    Full Text Available Humans often make decisions in stressful situations, for example when the stakes are high and the potential consequences severe, or when the clock is ticking and the task demand is overwhelming. In response, a whole train of biological responses to stress has evolved to allow organisms to make a fight-or-flight response. When under stress, fast and effortless heuristics may dominate over slow and demanding deliberation in making decisions under uncertainty. Here, I review evidence from behavioral studies and neuroimaging research on decision making under stress and propose that stress elicits a switch from an analytic reasoning system to intuitive processes, and predict that this switch is associated with diminished activity in the prefrontal executive control regions and exaggerated activity in subcortical reactive emotion brain areas. Previous studies have shown that when stressed, individuals tend to make more habitual responses than goal-directed choices, be less likely to adjust their initial judgment, and rely more on gut feelings in social situations. It is possible that stress influences the arbitration between the emotion responses in subcortical regions and deliberative processes in the prefrontal cortex, so that final decisions are based on unexamined innate responses. Future research may further test this ‘stress induced deliberation-to-intuition’ (SIDI model and examine its underlying neural mechanisms.

  9. Micromechanical modeling of stress-induced strain in polycrystalline Ni–Mn–Ga by directional solidification

    International Nuclear Information System (INIS)

    Zhu, Yuping; Shi, Tao; Teng, Yao

    2015-01-01

    Highlights: • A micromechanical model of directional solidification Ni–Mn–Ga is developed. • The stress–strain curves in different directions are tested. • The martensite Young’s moduli in different directions are predicted. • The macro reorientation strains in different directions are investigated. - Abstract: Polycrystalline ferromagnetic shape memory alloy Ni–Mn–Ga produced by directional solidification possess unique properties. Its compressive stress–strain behaviors in loading–unloading cycle show nonlinear and anisotropic. Based on the self-consistent theory and thermodynamics principle, a micromechanical constitutive model of polycrystalline Ni–Mn–Ga by directional solidification is developed considering the generating mechanism of the macroscopic strain and anisotropy. Then, the stress induced strains at different angles to solidification direction are calculated, and the results agree well with the experimental data. The predictive curves of martensite Young’s modulus and macro reorientation strain in different directions are investigated. It may provide theoretical guidance for the design and use of ferromagnetic shape memory alloy

  10. Neonatal Handling Produces Sex Hormone-Dependent Resilience to Stress-Induced Muscle Hyperalgesia in Rats.

    Science.gov (United States)

    Alvarez, Pedro; Green, Paul G; Levine, Jon D

    2018-06-01

    Neonatal handling (NH) of male rat pups strongly attenuates stress response and stress-induced persistent muscle hyperalgesia in adults. Because female sex is a well established risk factor for stress-induced chronic muscle pain, we explored whether NH provides resilience to stress-induced hyperalgesia in adult female rats. Rat pups underwent NH, or standard (control) care. Muscle mechanical nociceptive threshold was assessed before and after water avoidance (WA) stress, when they were adults. In contrast to male rats, NH produced only a modest protection against WA stress-induced muscle hyperalgesia in female rats. Gonadectomy completely abolished NH-induced resilience in male rats but produced only a small increase in this protective effect in female rats. The administration of the antiestrogen drug fulvestrant, in addition to gonadectomy, did not enhance the protective effect of NH in female rats. Finally, knockdown of the androgen receptor by intrathecal antisense treatment attenuated the protective effect of NH in intact male rats. Together, these data indicate that androgens play a key role in NH-induced resilience to WA stress-induced muscle hyperalgesia. NH induces androgen-dependent resilience to stress-induced muscle pain. Therefore, androgens may contribute to sex differences observed in chronic musculoskeletal pain and its enhancement by stress. Copyright © 2018 The American Pain Society. Published by Elsevier Inc. All rights reserved.

  11. Nocturnal insomnia symptoms and stress-induced cognitive intrusions in risk for depression: A 2-year prospective study.

    Science.gov (United States)

    Kalmbach, David A; Pillai, Vivek; Drake, Christopher L

    2018-01-01

    Nearly half of US adults endorse insomnia symptoms. Sleep problems increase risk for depression during stress, but the mechanisms are unclear. During high stress, individuals having difficulty falling or staying asleep may be vulnerable to cognitive intrusions after stressful events, given that the inability to sleep creates a period of unstructured and socially isolated time in bed. We investigated the unique and combined effects of insomnia symptoms and stress-induced cognitive intrusions on risk for incident depression. 1126 non-depressed US adults with no history of DSM-5 insomnia disorder completed 3 annual web-based surveys on sleep, stress, and depression. We examined whether nocturnal insomnia symptoms and stress-induced cognitive intrusions predicted depression 1y and 2y later. Finally, we compared depression-risk across four groups: non-perseverators with good sleep, non-perseverators with insomnia symptoms, perseverators with good sleep, and perseverators with insomnia symptoms. Insomnia symptoms (β = .10-.13, p good sleeping non-perseverators had the lowest rates (3.3%, Relative Risk = 3.94). Perseverators with sleep latency >30 m reported greater depression than good sleeping perseverators (t = 2.09, p stress creates a depressogenic mindset, and nocturnal wakefulness may augment the effects of cognitive arousal on depression development. Poor sleepers may be especially vulnerable to cognitive intrusions when having difficulty initiating sleep. As treatable behaviors, nighttime wakefulness and cognitive arousal may be targeted to reduce risk for depression in poor sleepers.

  12. Fluoxetine normalizes the effects of prenatal maternal stress on depression- and anxiety-like behaviors in mouse dams and male offspring

    NARCIS (Netherlands)

    Salari, A.A.; Fatehi-Gharehlar, L.; Motayagheni, N.; Homberg, J.R.

    2016-01-01

    Maternal depression during pregnancy and the postpartum period (lactation) is a common debilitating condition affecting mother-fetus/-infant interactions, which can be a risk factor for cognitive and affective disorders in mothers and their children. Selective-serotonin-reuptake-inhibitor-(SSRI)

  13. Effects of mGluR5 and mGluR1 antagonists on anxiety-like behavior and learning in developing rats

    Czech Academy of Sciences Publication Activity Database

    Mikulecká, Anna; Mareš, Pavel

    2009-01-01

    Roč. 204, č. 1 (2009), s. 133-139 ISSN 0166-4328 R&D Projects: GA ČR(CZ) GA305/06/1188 Institutional research plan: CEZ:AV0Z50110509 Keywords : metabotropic glutamate receptors * anxiety * learning Subject RIV: FR - Pharmacology ; Medidal Chemistry Impact factor: 3.220, year: 2009

  14. Stress-Induced Proton Disorder in Hydrous Ringwoodite

    Science.gov (United States)

    Koch-Müller, M.; Rhede, D.; Mrosko, M.; Speziale, S.; Schade, U.

    2008-12-01

    observed up to 30 GPa without any discontinuity and their pressure behaviour (dν/dP) can well be described by linear fits. Molecular vibrations are very sensitive to non-hydrostatic conditions and we interpret the disappearance of the OH-bands as a stress-induced proton disordering in hydrous ringwoodite due to the use of hard pressure transmiting media like CsI or argon without thermal annealing. Thus, our study cannot confirm the phase transition observed by Camorro Perez et al. (2006) in ringwoodite. But as they used Neon as pressure transmitting medium, which is known to become non-hydrostatic at pressure above 16 GPa (Bell and Mao, 1981) we argue that their observation of a sudden disappearance of the OH band may also be related to non-hydrostatic conditions. References Bell P.M. and Mao H.-K. (1981) Carnegie Inst. Wash Yrbk 80: 404-406. Camorro Perez E.M., Daniel I., Chervin J.-C., Dumas P., Bass J.D. and Inoue T. (2006) Phys. Chem. Minerals, 33, 502 - 510. Kudoh Y., Kuribayashi T., Mizohata H., Ohtani E., (2000) Phys. Chem. Mineral. 27, 474-479. Wittlinger J., Fischer R., Wener S., ScheiderJ., Schulz J. (1997) Acta Cryst B53, 745 - 749.

  15. Having your cake and eating it too: a habit of comfort food may link chronic social stress exposure and acute stress-induced cortisol hyporesponsiveness.

    Science.gov (United States)

    Tryon, M S; DeCant, Rashel; Laugero, K D

    2013-04-10

    Stress has been tied to changes in eating behavior and food choice. Previous studies in rodents have shown that chronic stress increases palatable food intake which, in turn, increases visceral fat and inhibits acute stress-induced hypothalamic-pituitary-adrenal (HPA) axis activity. The effect of chronic stress on eating behavior in humans is less understood, but it may be linked to HPA responsivity. The purpose of this study was to investigate the influence of chronic social stress and acute stress reactivity on food choice and food intake. Forty-one women (BMI=25.9±5.1 kg/m(2), age range=41 to 52 years) were subjected to the Trier Social Stress Test or a control task (nature movie) to examine HPA responses to an acute laboratory stressor and then invited to eat from a buffet containing low- and high-calorie snacks. Women were also categorized as high chronic stress or low chronic stress based on Wheaton Chronic Stress Inventory scores. Women reporting higher chronic stress and exhibiting low cortisol reactivity to the acute stress task consumed significantly more calories from chocolate cake on both stress and control visits. Chronic stress in the low cortisol reactor group was also positively related to total fat mass, body fat percentage, and stress-induced negative mood. Further, women reporting high chronic stress consumed significantly less vegetables, but only in those aged 45 years and older. Chronic stress in women within the higher age category was positively related to total calories consumed at the buffet, stress-induced negative mood and food craving. Our results suggest an increased risk for stress eating in persons with a specific chronic stress signature and imply that a habit of comfort food may link chronic social stress and acute stress-induced cortisol hyporesponsiveness. Published by Elsevier Inc.

  16. Effects of GABA ligands injected into the nucleus accumbens shell on fear/anxiety-like and feeding behaviours in food-deprived rats.

    Science.gov (United States)

    Lopes, Ana Paula Fraga; Ganzer, Laís; Borges, Aline Caon; Kochenborger, Larissa; Januário, Ana Cláudia; Faria, Moacir Serralvo; Marino-Neto, José; Paschoalini, Marta Aparecida

    2012-03-01

    In an attempt to establish a relationship between food intake and fear/anxiety-related behaviours, the goal of this study was to investigate the effect of bilateral injections of GABAA (Muscimol, MUS, doses 25 and 50ng/side) and GABAB (Baclofen, BAC, doses 32 and 64ng/side) receptor agonists in the nucleus accumbens shell (AcbSh) on the level of fear/anxiety-like and feeding behaviours in 24h food-deprived rats. The antagonists of GABAA (Bicuculline, BIC, doses 75 and 150ng/side) and GABAB (Saclofen, SAC, doses 1.5 and 3μg/side) were also tested. The results indicated that the total number of risk assessment behaviour decreased after the injection of both doses of GABAA agonist (MUS) into the AcbSh of 24h food-deprived rats exposed to elevated plus maze. Similar results were obtained after treatment with both doses of GABAB (BAC) agonist in the AcbSh. These data indicated that the activation of both GABAA and GABAB receptors within the AcbSh caused anxiolysis in 24h food-deprived rats. In addition, feeding behaviour (food intake, feeding latency and feeding duration) remained unchanged after treatment with both GABA agonists. In contrast, both food intake and feeding duration decreased after injections of both doses of BIC (GABAA antagonist), while the feeding latency remained unchanged after treatment with both GABA antagonists in the AcbSh of 24h food-deprived rats. The treatment with SAC (GABAB antagonist) did not affect feeding behaviour. Collectively, these data suggest that emotional changes evoked by pharmacological manipulation of the GABA neurotransmission in the AcbSh are not linked with changes in food intake. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. The loss of NDRG2 expression improves depressive behavior through increased phosphorylation of GSK3β.

    Science.gov (United States)

    Ichikawa, Tomonaga; Nakahata, Shingo; Tamura, Tomohiro; Manachai, Nawin; Morishita, Kazuhiro

    2015-10-01

    N-myc downstream-regulated gene 2 (NDRG2) is one of the important stress-inducible genes and plays a critical role in negatively regulating PI3K/AKT signaling during hypoxia and inflammation. Through recruitment of PP2A phosphatase, NDRG2 maintains the dephosphorylated status of PTEN to suppress excessive PI3K/AKT signaling, and loss of NDRG2 expression is frequently seen in various types of cancer with enhanced activation of PI3K/AKT signaling. Because NDRG2 is highly expressed in the nervous system, we investigated whether NDRG2 plays a functional role in the nervous system using Ndrg2-deficient mice. Ndrg2-deficient mice do not display any gross abnormalities in the nervous system, but they have a diminished behavioral response associated with anxiety. Ndrg2-deficient mice exhibited decreased immobility and increased head-dipping and rearing behavior in two behavioral models, indicating an improvement of emotional anxiety-like behavior. Moreover, treatment of wild-type mice with the antidepressant drug imipramine reduced the expression of Ndrg2 in the frontal cortex, which was due to the degradation of HIF-1α through reduced expression of HSP90 protein. Furthermore, we found that the down-regulation of Ndrg2 in Ndrg2-deficient mice and imipramine treatment improved mood behavior with enhanced phosphorylation of GSK3β through activation of PI3K/AKT signaling, suggesting that the expression level of NDRG2 has a causal influence on mood-related phenotypes. Collectively, these results suggest that NDRG2 may be a potential target for mood disorders such as depression and anxiety. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Stress Induced Hyperglycemia and the Subsequent Risk of Type 2 Diabetes in Survivors of Critical Illness

    Science.gov (United States)

    Plummer, Mark P.; Finnis, Mark E.; Phillips, Liza K.; Kar, Palash; Bihari, Shailesh; Biradar, Vishwanath; Moodie, Stewart; Horowitz, Michael; Shaw, Jonathan E.; Deane, Adam M.

    2016-01-01

    Objective Stress induced hyperglycemia occurs in critically ill patients who have normal glucose tolerance following resolution of their acute illness. The objective was to evaluate the association between stress induced hyperglycemia and incident diabetes in survivors of critical illness. Design Retrospective cohort study. Setting All adult patients surviving admission to a public hospital intensive care unit (ICU) in South Australia between 2004 and 2011. Patients Stress induced hyperglycemia was defined as a blood glucose ≥ 11.1 mmol/L (200 mg/dL) within 24 hours of ICU admission. Prevalent diabetes was identified through ICD-10 coding or prior registration with the Australian National Diabetes Service Scheme (NDSS). Incident diabetes was identified as NDSS registration beyond 30 days after hospital discharge until July 2015. The predicted risk of developing diabetes was described as sub-hazard ratios using competing risk regression. Survival was assessed using Cox proportional hazards regression. Main Results Stress induced hyperglycemia was identified in 2,883 (17%) of 17,074 patients without diabetes. The incidence of type 2 diabetes following critical illness was 4.8% (821 of 17,074). The risk of diabetes in patients with stress induced hyperglycemia was approximately double that of those without (HR 1.91 (95% CI 1.62, 2.26), phyperglycemia identifies patients at subsequent risk of incident diabetes. PMID:27824898

  19. [Prediabetes as a riskmarker for stress-induced hyperglycemia in critically ill adults].

    Science.gov (United States)

    García-Gallegos, Diego Jesús; Luis-López, Eliseo

    2017-01-01

    It is not known if patients with prediabetes, a subgroup of non-diabetic patients that usually present hyperinsulinemia, have higher risk to present stress-induced hyperglycemia. The objective was to determine if prediabetes is a risk marker to present stress-induced hyperglycemia. Analytic, observational, prospective cohort study of non-diabetic critically ill patients of a third level hospital. We determined plasmatic glucose and glycated hemoglobin (HbA1c) at admission to diagnose stress-induced hyperglycemia (glucose ≥ 140 mg/dL) and prediabetes (HbA1c between 5.7 and 6.4%), respectively. We examined the proportion of non-prediabetic and prediabetic patients that developed stress hyperglycemia with contingence tables and Fisher's exact test for nominal scales. Of 73 patients studied, we found a proportion of stress-induced hyperglycemia in 6.6% in those without prediabetes and 61.1% in those with prediabetes. The Fisher's exact test value was 22.46 (p Prediabetes is a risk marker for stress-induced hyperglycemia in critically ill adults.

  20. In Vitro Production of Fumonisins by Fusarium verticillioides under Oxidative Stress Induced by H2O2.

    Science.gov (United States)

    Ferrigo, Davide; Raiola, Alessandro; Bogialli, Sara; Bortolini, Claudio; Tapparo, Andrea; Causin, Roberto

    2015-05-20

    The effects of oxidative stress induced by H2O2 were tested in liquid cultures in the fumonisin-producing fungus Fusarium verticillioides. The quantitative analysis of fumonisins B1, B2, B3, and B4 was achieved by means of liquid chromatography coupled to high-resolution mass spectrometry. Two effects in F. verticillioides, consisting of different abilities to produce fumonisins in response to oxidative stress, were identified. Following H2O2 addition, two F. verticillioides strains produced significantly more fumonisin (>300%) while three other strains produced significantly less (fumonisin and either no or minimal changes in the strain that made less fumonisin. Our data indicate the important role of oxidative stress toward the modulation of the fumonisin biosynthesis and suggest the necessity to verify the presence of such divergent behavior in F. verticillioides populations under natural conditions.

  1. BDNF and VEGF in the pathogenesis of stress-induced affective diseases: an insight from experimental studies.

    Science.gov (United States)

    Nowacka, Marta; Obuchowicz, Ewa

    2013-01-01

    Stress is known to play an important role in etiology, development and progression of affective diseases. Especially, chronic stress, by initiating changes in the hypothalamic-pituitary-adrenal axis (HPA), neurotransmission and the immune system, acts as a trigger for affective diseases. It has been reported that the rise in the concentration of pro-inflammatory cytokines and persistent up-regulation of glucocorticoid expression in the brain and periphery increases the excitotoxic effect on CA3 pyramidal neurons in the hippocampus resulting in dendritic atrophy, apoptosis of neurons and possibly inhibition of neurogenesis in adult brain. Stress was observed to disrupt neuroplasticity in the brain, and growing evidence demonstrates its role in the pathomechanism of affective disorders. Experimental studies indicate that a well-known brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF) which have recently focused increasing attention of neuroscientists, promote cell survival, positively modulate neuroplasticity and hippocampal neurogenesis. In this paper, we review the alterations in BDNF and VEGF pathways induced by chronic and acute stress, and their relationships with HPA axis activity. Moreover, behavioral effects evoked in rodents by both above-mentioned factors and the effects consequent to their deficit are presented. Biochemical as well as behavioral findings suggest that BDNF and VEGF play an important role as components of cascade of changes in the pathomechanism of stress-induced affective diseases. Further studies on the mechanisms regulating their expression in stress conditions are needed to better understand the significance of trophic hypothesis of stress-induced affective diseases.

  2. Wheel running improves REM sleep and attenuates stress-induced flattening of diurnal rhythms in F344 rats.

    Science.gov (United States)

    Thompson, Robert S; Roller, Rachel; Greenwood, Benjamin N; Fleshner, Monika

    2016-05-01

    Regular physical activity produces resistance to the negative health consequences of stressor exposure. One way that exercise may confer stress resistance is by reducing the impact of stress on diurnal rhythms and sleep; disruptions of which contribute to stress-related disease including mood disorders. Given the link between diurnal rhythm disruptions and stress-related disorders and that exercise both promotes stress resistance and is a powerful non-photic biological entrainment cue, we tested if wheel running could reduce stress-induced disruptions of sleep/wake behavior and diurnal rhythms. Adult, male F344 rats with or without access to running wheels were instrumented for biotelemetric recording of diurnal rhythms of locomotor activity, heart rate, core body temperature (CBT), and sleep (i.e. REM, NREM, and WAKE) in the presence of a 12 h light/dark cycle. Following 6 weeks of sedentary or exercise conditions, rats were exposed to an acute stressor known to disrupt diurnal rhythms and produce behaviors associated with mood disorders. Prior to stressor exposure, exercise rats had higher CBT, more locomotor activity during the dark cycle, and greater %REM during the light cycle relative to sedentary rats. NREM and REM sleep were consolidated immediately following peak running to a greater extent in exercise, compared to sedentary rats. In response to stressor exposure, exercise rats expressed higher stress-induced hyperthermia than sedentary rats. Stressor exposure disrupted diurnal rhythms in sedentary rats; and wheel running reduced these effects. Improvements in sleep and reduced diurnal rhythm disruptions following stress could contribute to the health promoting and stress protective effects of exercise.

  3. Environmental Stress Induces Trinucleotide Repeat Mutagenesis in Human Cells by Alt-Nonhomologous End Joining Repair.

    Science.gov (United States)

    Chatterjee, Nimrat; Lin, Yunfu; Yotnda, Patricia; Wilson, John H

    2016-07-31

    Multiple pathways modulate the dynamic mutability of trinucleotide repeats (TNRs), which are implicated in neurodegenerative disease and evolution. Recently, we reported that environmental stresses induce TNR mutagenesis via stress responses and rereplication, with more than 50% of mutants carrying deletions or insertions-molecular signatures of DNA double-strand break repair. We now show that knockdown of alt-nonhomologous end joining (alt-NHEJ) components-XRCC1, LIG3, and PARP1-suppresses stress-induced TNR mutagenesis, in contrast to the components of homologous recombination and NHEJ, which have no effect. Thus, alt-NHEJ, which contributes to genetic mutability in cancer cells, also plays a novel role in environmental stress-induced TNR mutagenesis. Published by Elsevier Ltd.

  4. Stress-induced release of GUT peptides in young women classified as restrained or unrestrained eaters.

    Science.gov (United States)

    Hilterscheid, Esther; Laessle, Reinhold

    2015-12-01

    Basal release of GUT peptides has been found to be altered in restrained eaters. Stress-induced secretion, however, has not yet been described, but could be a biological basis of overeating that exposes restrained eaters to a higher risk of becoming obese. The aim of the present study was to compare restrained and unrestrained eaters with respect to stress-induced release of the GUT peptides ghrelin and PYY. 46 young women were studied. Blood sampling for peptides was done before and after the Trier Social Stress Test. Ghrelin secretion after stress was significantly elevated in the restrained eaters, whereas no significant differences were detected for PYY. Stress-induced release of GUT peptides can be interpreted as a cause as well as a consequence of restrained eating.

  5. Restraint stress-induced morphological changes at the blood-brain barrier in adult rats

    Directory of Open Access Journals (Sweden)

    Petra eSántha

    2016-01-01

    Full Text Available Stress is well known to contribute to the development of both neurological and psychiatric diseases. While the role of the blood-brain barrier is increasingly recognised in the development of neurodegenerative disorders, such as Alzheimer’s disease, dysfunction of the blood-brain barrier has been linked to stress-related psychiatric diseases only recently. In the present study the effects of restraint stress with different duration (1, 3 and 21 days were investigated on the morphology of the blood-brain barrier in male adult Wistar rats. Frontal cortex and hippocampus sections were immunostained for markers of brain endothelial cells (claudin-5, occludin and glucose transporter-1 and astroglia (GFAP. Staining pattern and intensity were visualized by confocal microscopy and evaluated by several types of image analysis. The ultrastructure of brain capillaries was investigated by electron microscopy. Morphological changes and intensity alterations in brain endothelial tight junction proteins claudin-5 and occludin were induced by stress. Following restraint stress significant increases in the fluorescence intensity of glucose transporter-1 were detected in brain endothelial cells in the frontal cortex and hippocampus. Significant reductions in GFAP fluorescence intensity were observed in the frontal cortex in all stress groups. As observed by electron microscopy, one-day acute stress induced morphological changes indicating damage in capillary endothelial cells in both brain regions. After 21 days of stress thicker and irregular capillary basal membranes in the hippocampus and edema in astrocytes in both regions were seen. These findings indicate that stress exerts time-dependent changes in the staining pattern of tight junction proteins occludin, claudin-5 and glucose transporter-1 at the level of brain capillaries and in the ultrastructure of brain endothelial cells and astroglial endfeet, which may contribute to neurodegenerative processes

  6. Stress Induces Contextual Blindness in Lotteries and Coordination Games

    Directory of Open Access Journals (Sweden)

    Isabelle Brocas

    2017-12-01

    Full Text Available In this paper, we study how stress affects risk taking in three tasks: individual lotteries, Stag Hunt (coordination games, and Hawk-Dove (anti-coordination games. Both control and stressed subjects take more risks in all three tasks when the value of the safe option is decreased and in lotteries when the expected gain is increased. Also, subjects take longer to take decisions when stakes are high, when the safe option is less attractive and in the conceptually more difficult Hawk-Dove game. Stress (weakly increases reaction times in those cases. Finally, our main result is that the behavior of stressed subjects in lotteries, Stag Hunt and Hawk-Dove are all highly predictive of each other (p-value < 0.001 for all three pairwise correlations. Such strong relationship is not present in our control group. Our results illustrate a “contextual blindness” caused by stress. The mathematical and behavioral tensions of Stag Hunt and Hawk-Dove games are axiomatically different, and we should expect different behavior across these games, and also with respect to the individual task. A possible explanation for the highly significant connection across tasks in the stress condition is that stressed subjects habitually rely on one mechanism to make a decision in all contexts whereas unstressed subjects utilize a more cognitively flexible approach.

  7. Cardioprotective effect of amlodipine in oxidative stress induced by experimental myocardial infarction in rats

    Directory of Open Access Journals (Sweden)

    Sudhira Begum

    2007-12-01

    Full Text Available The present study investigated whether the administration of amlodipine ameliorates oxidative stress induced by experimental myocardial infarction in rats. Adrenaline was administered and myocardial damage was evaluated biochemically [significantly increased serum aspertate aminotransferase (AST, lactate dehydrogenase (LDH and malondialdehyde (MDA levels of myocardial tissue] and histologically (morphological changes of myocardium. Amlodipine was administered as pretreatment for 14 days in adrenaline treated rats. Statistically significant amelioration in all the biochemical parameters supported by significantly improved myocardial morphology was observed in amlodipine pretreatment. It was concluded that amlodipine afforded cardioprotection by reducing oxidative stress induced in experimental myocardial infarction of catecholamine assault.

  8. Model for Stress-induced Protein Degradation in Lemna minor1

    Science.gov (United States)

    Cooke, Robert J.; Roberts, Keith; Davies, David D.

    1980-01-01

    Transfer of Lemna minor fronds to adverse or stress conditions produces a large increase in the rate of protein degradation. Cycloheximide partially inhibits stress-induced protein degradation and also partially inhibits the protein degradation which occurs in the absence of stress. The increased protein degradation does not appear to be due to an increase in activity of soluble proteolytic enzymes. Biochemical evidence indicates that stress, perhaps acting via hormones, affects the permeability of certain membranes, particularly the tonoplast. A general model for stress-induced protein degradation is presented in which changes in membrane properties allow vacuolar proteolytic enzymes increased access to cytoplasmic proteins. PMID:16661588

  9. Recovery of stress-impaired social behavior by an antagonist of the CRF binding protein, CRF6-33, in the bed nucleus of the stria terminalis of male rats.

    Science.gov (United States)

    Vasconcelos, Mailton; Stein, Dirson J; Albrechet-Souza, Lucas; Miczek, Klaus A; de Almeida, Rosa Maria M

    2018-01-09

    Social stress is recognized to promote the development of neuropsychiatric and mood disorders. Corticotropin releasing factor (CRF) is an important neuropeptide activated by social stress, and it contributes to neural and behavioral adaptations, as indicated by impaired social interactions and anhedonic effects. Few studies have focused on the role of the CRF binding protein (CRFBP), a component of the CRF system, and its activity in the bed nucleus of stria terminalis (BNST), a limbic structure connecting amygdala and hypothalamus. In this study, animals' preference for sweet solutions was examined as an index of stress-induced anhedonic responses in Wistar rats subjected to four brief intermittent episodes of social defeat. Next, social approach was assessed after local infusions of the CRFBP antagonist, CRF fragment 6-33 (CRF 6-33 ) into the BNST. The experience of brief episodes of social defeat impaired social approach behaviors in male rats. However, intra-BNST CRF 6-33 infusions restored social approach in stressed animals to the levels of non-stressed rats. CRF 6-33 acted selectively on social interaction and did not alter general exploration in nether stressed nor non-stressed rats. These findings suggest that BNST CRFBP is involved in the modulation of anxiety-like responses induced by social stress. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Oxidative stress induced by chlorine dioxide as an insecticidal factor to the Indian meal moth, Plodia interpunctella.

    Science.gov (United States)

    Kumar, Sunil; Park, Jiyeong; Kim, Eunseong; Na, Jahyun; Chun, Yong Shik; Kwon, Hyeok; Kim, Wook; Kim, Yonggyun

    2015-10-01

    A novel fumigant, chlorine dioxide (ClO2) is a commercial bleaching and disinfection agent. Recent study indicates its insecticidal activity. However, its mode of action to kill insects is yet to be understood. This study set up a hypothesis that an oxidative stress induced by ClO2 is a main factor to kill insects. The Indian meal moth, Plodia interpunctella, is a lepidopteran insect pest infesting various stored grains. Larvae of P. interpunctella were highly susceptible to ClO2 gas, which exhibited an acute toxicity. Physiological damages by ClO2 were observed in hemocytes. At high doses, the larvae of P. interpunctella suffered significant reduction of total hemocytes. At low doses, ClO2 impaired hemocyte behaviors. The cytotoxicity of ClO2 was further analyzed using two insect cell lines, where Sf9 cells were more susceptible to ClO2 than High Five cells. The cells treated with ClO2 produced reactive oxygen species (ROS). The produced ROS amounts increased with an increase of the treated ClO2 amount. However, the addition of an antioxidant, vitamin E, significantly attenuated the cytotoxicity of ClO2 in a dose-dependent manner. To support the oxidative stress induced by ClO2, two antioxidant genes (superoxide dismutase (SOD) and thioredoxin-peroxidase (Tpx)) were identified from P. interpunctella EST library using ortholog sequences of Bombyx mori. Both SOD and Tpx were expressed in larvae of P. interpunctella especially under oxidative stress induced by bacterial challenge. Exposure to ClO2 gas significantly induced the gene expression of both SOD and Tpx. RNA interference of SOD or Tpx using specific double stranded RNAs significantly enhanced the lethality of P. interpunctella to ClO2 gas treatment as well as to the bacterial challenge. These results suggest that ClO2 induces the production of insecticidal ROS, which results in a fatal oxidative stress in P. interpunctella. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Nocturnal insomnia symptoms and stress-induced cognitive intrusions in risk for depression: A 2-year prospective study

    Science.gov (United States)

    Pillai, Vivek; Drake, Christopher L.

    2018-01-01

    Nearly half of US adults endorse insomnia symptoms. Sleep problems increase risk for depression during stress, but the mechanisms are unclear. During high stress, individuals having difficulty falling or staying asleep may be vulnerable to cognitive intrusions after stressful events, given that the inability to sleep creates a period of unstructured and socially isolated time in bed. We investigated the unique and combined effects of insomnia symptoms and stress-induced cognitive intrusions on risk for incident depression. 1126 non-depressed US adults with no history of DSM-5 insomnia disorder completed 3 annual web-based surveys on sleep, stress, and depression. We examined whether nocturnal insomnia symptoms and stress-induced cognitive intrusions predicted depression 1y and 2y later. Finally, we compared depression-risk across four groups: non-perseverators with good sleep, non-perseverators with insomnia symptoms, perseverators with good sleep, and perseverators with insomnia symptoms. Insomnia symptoms (β = .10–.13, p insomnia had the highest rates of depression (13.0%), whereas good sleeping non-perseverators had the lowest rates (3.3%, Relative Risk = 3.94). Perseverators with sleep latency >30 m reported greater depression than good sleeping perseverators (t = 2.09, p < .04). Cognitive intrusions following stress creates a depressogenic mindset, and nocturnal wakefulness may augment the effects of cognitive arousal on depression development. Poor sleepers may be especially vulnerable to cognitive intrusions when having difficulty initiating sleep. As treatable behaviors, nighttime wakefulness and cognitive arousal may be targeted to reduce risk for depression in poor sleepers. PMID:29438400

  12. Effects of Active Mastication on Chronic Stress-Induced Bone Loss in Mice.

    Science.gov (United States)

    Azuma, Kagaku; Furuzawa, Manabu; Fujiwara, Shu; Yamada, Kumiko; Kubo, Kin-ya

    2015-01-01

    Chronic psychologic stress increases corticosterone levels, which decreases bone density. Active mastication or chewing attenuates stress-induced increases in corticosterone. We evaluated whether active mastication attenuates chronic stress-induced bone loss in mice. Male C57BL/6 (B6) mice were randomly divided into control, stress, and stress/chewing groups. Stress was induced by placing mice in a ventilated restraint tube (60 min, 2x/day, 4 weeks). The stress/chewing group was given a wooden stick to chew during the experimental period. Quantitative micro-computed tomography, histologic analysis, and biochemical markers were used to evaluate the bone response. The stress/chewing group exhibited significantly attenuated stress-induced increases in serum corticosterone levels, suppressed bone formation, enhanced bone resorption, and decreased trabecular bone mass in the vertebrae and distal femurs, compared with mice in the stress group. Active mastication during exposure to chronic stress alleviated chronic stress-induced bone density loss in B6 mice. Active mastication during chronic psychologic stress may thus be an effective strategy to prevent and/or treat chronic stress-related osteopenia.

  13. Stress-induced activation of brown adipose tissue prevents obesity in conditions of low adaptive thermogenesis

    Directory of Open Access Journals (Sweden)

    Maria Razzoli

    2016-01-01

    Conclusion: Our findings demonstrate that thermogenesis and BAT function are determinant of the resilience or vulnerability to stress-induced obesity. Our data support a model in which adrenergic and purinergic pathways exert complementary/synergistic functions in BAT, thus suggesting an alternative to βARs agonists for the activation of human BAT.

  14. Homeobox gene Dlx-2 is implicated in metabolic stress-induced necrosis

    Directory of Open Access Journals (Sweden)

    Lim Sung-Chul

    2011-09-01

    Full Text Available Abstract Background In contrast to tumor-suppressive apoptosis and autophagic cell death, necrosis promotes tumor progression by releasing the pro-inflammatory and tumor-promoting cytokine high mobility group box 1 (HMGB1, and its presence in tumor patients is associated with poor prognosis. Thus, necrosis has important clinical implications in tumor development; however, its molecular mechanism remains poorly understood. Results In the present study, we show that Distal-less 2 (Dlx-2, a homeobox gene of the Dlx family that is involved in embryonic development, is induced in cancer cell lines dependently of reactive oxygen species (ROS in response to glucose deprivation (GD, one of the metabolic stresses occurring in solid tumors. Increased Dlx-2 expression was also detected in the inner regions, which experience metabolic stress, of human tumors and of a multicellular tumor spheroid, an in vitro model of solid tumors. Dlx-2 short hairpin RNA (shRNA inhibited metabolic stress-induced increase in propidium iodide-positive cell population and HMGB1 and lactate dehydrogenase (LDH release, indicating the important role(s of Dlx-2 in metabolic stress-induced necrosis. Dlx-2 shRNA appeared to exert its anti-necrotic effects by preventing metabolic stress-induced increases in mitochondrial ROS, which are responsible for triggering necrosis. Conclusions These results suggest that Dlx-2 may be involved in tumor progression via the regulation of metabolic stress-induced necrosis.

  15. Acute stress-induced cortisol elevations mediate reward system activity during subconscious processing of sexual stimuli

    NARCIS (Netherlands)

    Oei, N.Y.L.; Both, S.; van Heemst, D.; van der Grond, J.

    2014-01-01

    Stress is thought to alter motivational processes by increasing dopamine (DA) secretion in the brain's "reward system", and its key region, the nucleus accumbens (NAcc). However, stress studies using functional magnetic resonance imaging (fMRI), mainly found evidence for stress-induced decreases in

  16. The ER stress inducer DMC enhances TRAIL-induced apoptosis in glioblastoma

    NARCIS (Netherlands)

    van Roosmalen, Ingrid A. M.; Dos Reis, Carlos R; Setroikromo, Rita; Yuvaraj, Saravanan; Joseph, Justin V.; Tepper, Pieter G.; Kruyt, Frank A. E.; Quax, Wim J.

    2014-01-01

    Glioblastoma multiforme (GBM) is the most aggressive malignant brain tumour in humans and is highly resistant to current treatment modalities. We have explored the combined treatment of the endoplasmic reticulum (ER) stress-inducing agent 2,5-dimethyl-celecoxib (DMC) and TNF-related

  17. Renal and endocrine changes in rats with inherited stress-induced arterial hypertension (ISIAH)

    DEFF Research Database (Denmark)

    Amstislavsky, Sergej; Welker, Pia; Frühauf, Jan-Henning

    2006-01-01

    Hypertensive inbred rats (ISIAH; inherited stress-induced arterial hypertension) present with baseline hypertension (>170 mmHg in adult rats), but attain substantially higher values upon mild emotional stress. We aimed to characterize key parameters related to hypertension in ISIAH. Kidneys, adre...

  18. Proteome oxidative carbonylation during oxidative stress-induced premature senescence of WI-38 human fibroblasts

    DEFF Research Database (Denmark)

    Le Boulch, Marine; Ahmed, Emad K; Rogowska-Wrzesinska, Adelina

    2018-01-01

    Accumulation of oxidatively damaged proteins is a hallmark of cellular and organismal ageing, and is also a phenotypic feature shared by both replicative senescence and stress-induced premature senescence of human fibroblasts. Moreover, proteins that are building up as oxidized (i.e. the "Oxi-pro...

  19. Diacylglycerol kinase regulation of protein kinase D during oxidative stress-induced intestinal cell injury

    International Nuclear Information System (INIS)

    Song Jun; Li Jing; Mourot, Joshua M.; Mark Evers, B.; Chung, Dai H.

    2008-01-01

    We recently demonstrated that protein kinase D (PKD) exerts a protective function during oxidative stress-induced intestinal epithelial cell injury; however, the exact role of DAG kinase (DGK)ζ, an isoform expressed in intestine, during this process is unknown. We sought to determine the role of DGK during oxidative stress-induced intestinal cell injury and whether DGK acts as an upstream regulator of PKD. Inhibition of DGK with R59022 compound or DGKζ siRNA transfection decreased H 2 O 2 -induced RIE-1 cell apoptosis as measured by DNA fragmentation and increased PKD phosphorylation. Overexpression of kinase-dead DGKζ also significantly increased PKD phosphorylation. Additionally, endogenous nuclear DGKζ rapidly translocated to the cytoplasm following H 2 O 2 treatment. Our findings demonstrate that DGK is involved in the regulation of oxidative stress-induced intestinal cell injury. PKD activation is induced by DGKζ, suggesting DGK is an upstream regulator of oxidative stress-induced activation of the PKD signaling pathway in intestinal epithelial cells

  20. Stress-induced osteolysis of distal clavicle: imaging patterns and treatment using CT-guided injection

    Energy Technology Data Exchange (ETDEWEB)

    Sopov, V.; Groshar, D. [Dept. of Nuclear Medicine, Technion-Israel Inst. of Technology, Haifa (Israel); Fuchs, D. [Dept. of Orthopaedics, Technion-Israel Inst. of Technology, Haifa (Israel); Bar-Meir, E. [Dept. of Radiology, Technion-Israel Inst. of Technology, Haifa (Israel)

    2001-02-01

    Osteolysis of distal clavicle (ODC) may occur in patients who experience repeated stress or microtrauma to the shoulder. This entity has clinical and radiological findings similar to post-traumatic ODC. We describe a case of successful treatment of stress-induced ODC with CT-guided injection of corticosteroid and anesthetic drug into the acromioclavicular joint. (orig.)

  1. Stress-induced osteolysis of distal clavicle: imaging patterns and treatment using CT-guided injection

    International Nuclear Information System (INIS)

    Sopov, V.; Groshar, D.; Fuchs, D.; Bar-Meir, E.

    2001-01-01

    Osteolysis of distal clavicle (ODC) may occur in patients who experience repeated stress or microtrauma to the shoulder. This entity has clinical and radiological findings similar to post-traumatic ODC. We describe a case of successful treatment of stress-induced ODC with CT-guided injection of corticosteroid and anesthetic drug into the acromioclavicular joint. (orig.)

  2. Shear stress-induced mitochondrial biogenesis decreases the release of microparticles from endothelial cells

    OpenAIRE

    Kim, Ji-Seok; Kim, Boa; Lee, Hojun; Thakkar, Sunny; Babbitt, Dianne M.; Eguchi, Satoru; Brown, Michael D.; Park, Joon-Young

    2015-01-01

    This study assesses effects of aerobic exercise training on the release of microparticles from endothelial cells and corroborates these findings using an in vitro experimental exercise stimulant, laminar shear stress. Furthermore, this study demonstrated that shear stress-induced mitochondrial biogenesis mediates these effects against endothelial cell activation and injury.

  3. Dopamine D1 receptors are responsible for stress-induced emotional memory deficit in mice.

    Science.gov (United States)

    Wang, Yongfu; Wu, Jing; Zhu, Bi; Li, Chaocui; Cai, Jing-Xia

    2012-03-01

    It is established that stress impairs spatial learning and memory via the hypothalamus-pituitary-adrenal axis response. Dopamine D1 receptors were also shown to be responsible for a stress-induced deficit of working memory. However, whether stress affects the subsequent emotional learning and memory is not elucidated yet. Here, we employed the well-established one-trial step-through task to study the effect of an acute psychological stress (induced by tail hanging for 5, 10, or 20 min) on emotional learning and memory, and the possible mechanisms as well. We demonstrated that tail hanging induced an obvious stress response. Either an acute tail-hanging stress or a single dose of intraperitoneally injected dopamine D1 receptor antagonist (SCH23390) significantly decreased the step-through latency in the one-trial step-through task. However, SCH23390 prevented the acute tail-hanging stress-induced decrease in the step-through latency. In addition, the effects of tail-hanging stress and/or SCH23390 on the changes in step-through latency were not through non-memory factors such as nociceptive perception and motor function. Our data indicate that the hyperactivation of dopamine D1 receptors mediated the stress-induced deficit of emotional learning and memory. This study may have clinical significance given that psychological stress is considered to play a role in susceptibility to some mental diseases such as depression and post-traumatic stress disorder.

  4. Heme oxygenase-1 expression protects melanocytes from stress-induced cell death: implications for vitiligo

    NARCIS (Netherlands)

    Elassiuty, Yasser E.; Klarquist, Jared; Speiser, Jodi; Yousef, Randa M.; El Refaee, Abdelaziz A.; Hunter, Nahla S.; Shaker, Olfat G.; Gundeti, Mohan; Nieuweboer-Krobotova, Ludmila; Caroline Le Poole, I.

    2011-01-01

    To study protection of melanocytes from stress-induced cell death by heme oxygenases during depigmentation and repigmentation in vitiligo, expression of isoforms 1 and 2 was studied in cultured control and patient melanocytes and normal skin explants exposed to UV or bleaching agent 4-TBP.

  5. Reversal of Stress-Induced Social Interaction Deficits by Buprenorphine.

    Science.gov (United States)

    Browne, Caroline A; Falcon, Edgardo; Robinson, Shivon A; Berton, Olivier; Lucki, Irwin

    2018-02-01

    Patients with post-traumatic stress disorder frequently report persistent problems with social interactions, emerging after a traumatic experience. Chronic social defeat stress is a widely used rodent model of stress that produces robust and sustained social avoidance behavior. The avoidance of other rodents can be reversed by 28 days of treatment with selective serotonin reuptake inhibitors, the only pharmaceutical class approved by the U.S. Food and Drug Administration for treating post-traumatic stress disorder. In this study, the sensitivity of social interaction deficits evoked by 10 days of chronic social defeat stress to prospective treatments for post-traumatic stress disorder was examined. The effects of acute and repeated treatment with a low dose of buprenorphine (0.25 mg/kg/d) on social interaction deficits in male C57BL/6 mice by chronic social defeat stress were studied. Another cohort of mice was used to determine the effects of the selective serotonin reuptake inhibitor fluoxetine (10 mg/kg/d), the NMDA antagonist ketamine (10 mg/kg/d), and the selective kappa opioid receptor antagonist CERC-501 (1 mg/kg/d). Changes in mRNA expression of Oprm1 and Oprk1 were assessed in a separate cohort. Buprenorphine significantly reversed social interaction deficits produced by chronic social defeat stress following 7 days of administration, but not after acute injection. Treatment with fluoxetine for 7 days, but not 24 hours, also reinstated social interaction behavior in mice that were susceptible to chronic social defeat. In contrast, CERC-501 and ketamine failed to reverse social avoidance. Gene expression analysis found: (1) Oprm1 mRNA expression was reduced in the hippocampus and increased in the frontal cortex of susceptible mice and (2) Oprk1 mRNA expression was reduced in the amygdala and increased in the frontal cortex of susceptible mice compared to non-stressed controls and stress-resilient mice. Short-term treatment with buprenorphine and fluoxetine

  6. FMRFamide signaling promotes stress-induced sleep in Drosophila.

    Science.gov (United States)

    Lenz, Olivia; Xiong, Jianmei; Nelson, Matthew D; Raizen, David M; Williams, Julie A

    2015-07-01

    Enhanced sleep in response to cellular stress is a conserved adaptive behavior across multiple species, but the mechanism of this process is poorly understood. Drosophila melanogaster increases sleep following exposure to septic or aseptic injury, and Caenorhabditis elegans displays sleep-like quiescence following exposure to high temperatures that stress cells. We show here that, similar to C. elegans, Drosophila responds to heat stress with an increase in sleep. In contrast to Drosophila infection-induced sleep, heat-induced sleep is not sensitive to the time-of-day of the heat pulse. Moreover, the sleep response to heat stress does not require Relish, the NFκB transcription factor that is necessary for infection-induced sleep, indicating that sleep is induced by multiple mechanisms from different stress modalities. We identify a sleep-regulating role for a signaling pathway involving FMRFamide neuropeptides and their receptor FR. Animals mutant for either FMRFamide or for the FMRFamide receptor (FR) have a reduced recovery sleep in response to heat stress. FR mutants, in addition, show reduced sleep responses following infection with Serratia marcescens, and succumb to infection at a faster rate than wild-type controls. Together, these findings support the hypothesis that FMRFamide and its receptor promote an adaptive increase in sleep following stress. Because an FMRFamide-like neuropeptide plays a similar role in C. elegans, we propose that FRMFamide neuropeptide signaling is an ancient regulator of recovery sleep which occurs in response to cellular stress. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. 5-HT1A receptor blockade targeting the basolateral amygdala improved stress-induced impairment of memory consolidation and retrieval in rats.

    Science.gov (United States)

    Sardari, M; Rezayof, A; Zarrindast, M-R

    2015-08-06

    The aim of the present study was to investigate the possible role of basolateral amygdala (BLA) 5-HT1A receptors in memory formation under stress. We also examined whether the blockade of these receptors is involved in stress-induced state-dependent memory. Adult male Wistar rats received cannula implants that bilaterally targeted the BLA. Long-term memory was examined using the step-through type of passive avoidance task. Behavioral stress was evoked by exposure to an elevated platform (EP) for 10, 20 and 30min. Post-training exposure to acute stress (30min) impaired the memory consolidation. In addition, pre-test exposure to acute stress-(20 and 30min) induced the impairment of memory retrieval. Interestingly, the memory impairment induced by post-training exposure to stress was restored in the animals that received 20- or 30-min pre-test stress exposure, suggesting stress-induced state-dependent memory retrieval. Post-training BLA-targeted injection of a selective 5-HT1A receptor antagonist, (S)-WAY-100135 (2μg/rat), prevented the impairing effect of stress on memory consolidation. Pre-test injection of the same doses of (S)-WAY-100135 that was targeted to the BLA also reversed stress-induced memory retrieval impairment. It should be considered that post-training or pre-test BLA-targeted injection of (S)-WAY-100135 (0.5-2μg/rat) by itself had no effect on the memory formation. Moreover, pre-test injection of (S)-WAY-100135 (2μg/rat) that targeted the BLA inhibited the stress-induced state-dependent memory retrieval. Taken together, our findings suggest that post-training or pre-test exposure to acute stress induced the impairment of memory consolidation, retrieval and state-dependent learning. The BLA 5-HT1A receptors have a critical role in learning and memory under stress. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Muscarinic receptors mediate cold stress-induced detrusor overactivity in type 2 diabetes mellitus rats.

    Science.gov (United States)

    Imamura, Tetsuya; Ishizuka, Osamu; Ogawa, Teruyuki; Yamagishi, Takahiro; Yokoyama, Hitoshi; Minagawa, Tomonori; Nakazawa, Masaki; Gautam, Sudha Silwal; Nishizawa, Osamu

    2014-10-01

    This study determined if muscarinic receptors could mediate the cold stress-induced detrusor overactivity induced in type 2 diabetes mellitus rats. Ten-week-old female Goto-Kakizaki diabetic rats (n = 12) and Wister Kyoto non-diabetic rats (n = 12) were maintained on a high-fat diet for 4 weeks. Cystometric investigations of the unanesthetized rats were carried out at room temperature (27 ± 2°C) for 20 min. They were intravenously administered imidafenacin (0.3 mg/kg, n = 6) or vehicle (n = 6). After 5 min, the rats were transferred to a low temperature (4 ± 2°C) for 40 min where the cystometry was continued. The rats were then returned to room temperature for the final cystometric measurements. Afterwards, expressions of bladder muscarinic receptor M3 and M2 messenger ribonucleic acids and proteins were assessed by reverse transcription polymerase chain reaction and immunohistochemistry. In non-diabetic Wister Kyoto rats, imidafenacin did not reduce cold stress-induced detrusor overactivity. In diabetic Goto-Kakizaki rats, just after transfer to a low temperature, the cold stress-induced detrusor overactivity in imidafenacin-treated rats was reduced compared with vehicle-treated rats. Within the urinary bladders, the ratio of M3 to M2 receptor messenger ribonucleic acid in the diabetic Goto-Kakizaki rats was significantly higher than that of the non-diabetic Wister Kyoto rats. The proportion of muscarinic M3 receptor-positive area within the detrusor in diabetic Goto-Kakizaki rats was also significantly higher than that in non-diabetic Wister Kyoto rats. Imidafenacin partially inhibits cold stress-induced detrusor overactivity in diabetic Goto-Kakizaki rats. In this animal model, muscarinic M3 receptors partially mediate cold stress-induced detrusor overactivity. © 2014 The Japanese Urological Association.

  9. Mental stress-induced left ventricular dysfunction and adverse outcome in ischemic heart disease patients.

    Science.gov (United States)

    Sun, Julia L; Boyle, Stephen H; Samad, Zainab; Babyak, Michael A; Wilson, Jennifer L; Kuhn, Cynthia; Becker, Richard C; Ortel, Thomas L; Williams, Redford B; Rogers, Joseph G; O'Connor, Christopher M; Velazquez, Eric J; Jiang, Wei

    2017-04-01

    Aims Mental stress-induced myocardial ischemia (MSIMI) occurs in up to 70% of patients with clinically stable ischemic heart disease and is associated with increased risk of adverse prognosis. We aimed to examine the prognostic value of indices of MSIMI and exercise stress-induced myocardial ischemia (ESIMI) in a population of ischemic heart disease patients that was not confined by having a recent positive physical stress test. Methods and results The Responses of Mental Stress Induced Myocardial Ischemia to Escitalopram Treatment (REMIT) study enrolled 310 subjects who underwent mental and exercise stress testing and were followed annually for a median of four years. Study endpoints included time to first and total rate of major adverse cardiovascular events, defined as all-cause mortality and hospitalizations for cardiovascular causes. Cox and negative binomial regression adjusting for age, sex, resting left ventricular ejection fraction, and heart failure status were used to examine associations of indices of MSIMI and ESIMI with study endpoints. The continuous variable of mental stress-induced left ventricular ejection fraction change was significantly associated with both endpoints (all p values mental stress, patients had a 5% increase in the probability of a major adverse cardiovascular event at the median follow-up time and a 20% increase in the number of major adverse cardiovascular events endured over the follow-up period of six years. Indices of ESIMI did not predict endpoints ( ps > 0.05). Conclusion In patients with stable ischemic heart disease, mental, but not exercise, stress-induced left ventricular ejection fraction change significantly predicts risk of future adverse cardiovascular events.

  10. Stress-induced antinociception in fish reversed by naloxone.

    Directory of Open Access Journals (Sweden)

    Carla Patrícia Bejo Wolkers

    Full Text Available Pain perception in non-mammalian vertebrates such as fish is a controversial issue. We demonstrate that, in the fish Leporinus macrocephalus, an imposed restraint can modulate the behavioral response to a noxious stimulus, specifically the subcutaneous injection of 3% formaldehyde. In the first experiment, formaldehyde was applied immediately after 3 or 5 min of the restraint. Inhibition of the increase in locomotor activity in response to formaldehyde was observed, which suggests a possible restraint-induced antinociception. In the second experiment, the noxious stimulus was applied 0, 5, 10 and 15 min after the restraint, and both 3 and 5 min of restraint promoted short-term antinociception of approximately 5 min. In experiments 3 and 4, an intraperitoneal injection of naloxone (30 mg.kg(-1 was administered 30 min prior to the restraint. The 3- minute restraint-induced antinociception was blocked by pretreatment with naloxone, but the corresponding 5-minute response was not. One possible explanation for this result is that an opioid and a non-preferential μ-opioid and/or non-opioid mechanism participate in this response modulation. Furthermore, we observed that both the 3- and 5- minutes restraint were severely stressful events for the organism, promoting marked increases in serum cortisol levels. These data indicate that the response to a noxious stimulus can be modulated by an environmental stressor in fish, as is the case in mammals. To our knowledge, this study is the first evidence for the existence of an endogenous antinociceptive system that is activated by an acute standardized stress in fish. Additionally, it characterizes the antinociceptive response induced by stress in terms of its time course and the opioid mediation, providing information for understanding the evolution of nociception modulation.

  11. Social defeat stress causes depression-like behavior with metabolite changes in the prefrontal cortex of rats.

    Directory of Open Access Journals (Sweden)

    Yi-Yun Liu

    Full Text Available Major depressive disorder is a serious mental disorder with high morbidity and mortality. The role of social stress in the development of depression remains unclear. Here, we used the social defeat stress paradigm to induce depression-like behavior in rats, then evaluated the behavior of the rats and measured metabolic changes in the prefrontal cortex using gas chromatography-mass spectrometry. Within the first week after the social defeat procedure, the sucrose preference test (SPT, open field test (OFT, elevated plus maze (EPM and forced swim test (FST were conducted to examine the depressive-like and anxiety-like behaviors. For our metabolite analysis, multivariate statistics were applied to observe the distribution of all samples and to differentiate the socially defeated group from the control group. Ingenuity pathway analysis was used to find the potential relationships among the differential metabolites. In the OFT and EPM, there were no significant differences between the two experimental groups. In the SPT and FST, socially defeated rats showed less sucrose intake and longer immobility time compared with control rats. Metabolic profiling identified 25 significant variables with good predictability. Ingenuity pathways analysis revealed that "Hereditary Disorder, Neurological Disease, Lipid Metabolism" was the most significantly altered network. Stress-induced alterations of low molecular weight metabolites were observed in the prefrontal cortex of rats. Particularly, lipid metabolism, amino acid metabolism, and energy metabolism were significantly perturbed. The results of this study suggest that repeated social defeat can lead to metabolic changes and depression-like behavior in rats.

  12. Cold stress-induced brain injury regulates TRPV1 channels and the PI3K/AKT signaling pathway.

    Science.gov (United States)

    Liu, Ying; Liu, Yunen; Jin, Hongxu; Cong, Peifang; Zhang, Yubiao; Tong, Changci; Shi, Xiuyun; Liu, Xuelei; Tong, Zhou; Shi, Lin; Hou, Mingxiao

    2017-09-01

    Transient receptor potential vanilloid 1 (TRPV1) is a nonselective cation channel that interacts with several intracellular proteins in vivo, including calmodulin and Phosphatidylinositol-3-Kinase/Protein Kinase B (PI3K/Akt). TRPV1 activation has been reported to exert neuroprotective effects. The aim of this study was to examine the impact of cold stress on the mouse brain and the underlying mechanisms of TRPV1 involvement. Adult male C57BL/6 mice were subjected to cold stress (4°C for 8h per day for 2weeks). The behavioral deficits of the mice were then measured using the Morris water maze. Expression levels of brain injury-related proteins and mRNA were measured by western blot, immunofluorescence or RT-PCR analysis. The mice displayed behavioral deficits, inflammation and changes in brain injury markers following cold stress. As expected, upregulated TRPV1 expression levels and changes in PI3K/Akt expression were found. The TRPV1 inhibitor reduced the levels of brain injury-related proteins and inflammation. These data suggest that cold stress can induce brain injury, possibly through TRPV1 activation and the PI3K/Akt signaling pathway. Suppression of inflammation by inhibition of TRPV1 and the PI3K/Akt pathway may be helpful to prevent cold stress-induced brain injury. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. A study on anti-stress property of Nardostachys jatamamsi on stress induced Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Shilpashree R.

    2011-09-01

    Full Text Available Stress is a feeling that’s created when we react to particular events. It s the body’s way of rising to a challenge and preparing to meet a tough situation with focus, strength, stamina, and heightened alertness. As a result of the stress immune system can be suppressed by chronic stress opening to increased infections and increasing the risk of autoimmune diseases. So one has to learn away to overcome stress. Here is an attempt made to overcome the stress induced in Drosophila melanogaster a model organism, in this study. Methotrexate is used to induce the stress at different concentration taking different group of flies and a Nardostachys jatamamsi plant extract having antistress property is used to relieve the stress induced. This stress relieve measured by the various stress related enzymes like catalase and Superoxide dismutase by this antistress property of the plant Nardostachys jatamamsi was shown.

  14. Sociotropic cognition moderates stress-induced cardiovascular responsiveness in college women.

    Science.gov (United States)

    Sauro, M D; Jorgensen, R S; Larson, C A; Frankowski, J J; Ewart, C K; White, J

    2001-10-01

    This study examined the moderating effects of sociotropic cognition (SC), a nondefensive need for approval, on stress-induced cardiovascular responsiveness (CVR) in women. Sixty-seven college-age females had blood pressure (BP) and heart rate (HR) monitored during baseline, anticipation, story-telling (where participants were randomly assigned to a low or high threat condition), and recovery periods. SC showed a positive association with CVR only in the high interpersonal threat context during task and early stages of the recovery periods. SC was positively correlated with such variables as anxiety, ruminative style, dysphoria, and anger. This is the first report examining the moderating effects of SC on interpersonal stress-induced CVR prior to, during, and following a task, using an explicit manipulation of social evaluation. The data help define risk factors for CVR in women, which may aid in the understanding of how emotions and stress affect physical health and well-being.

  15. Neuroprotective effects of ganoderma lucidum polysaccharides against oxidative stress-induced neuronal apoptosis

    Science.gov (United States)

    Sun, Xin-zhi; Liao, Ying; Li, Wei; Guo, Li-mei

    2017-01-01

    Ganoderma lucidum polysaccharides have protective effects against apoptosis in neurons exposed to ischemia/reperfusion injury, but the mechanisms are unclear. The goal of this study was to investigate the underlying mechanisms of the effects of ganoderma lucidum polysaccharides against oxidative stress-induced neuronal apoptosis. Hydrogen peroxide (H2O2) was used to induce apoptosis in cultured cerebellar granule cells. In these cells, ganoderma lucidum polysaccharides remarkably suppressed H2O2-induced apoptosis, decreased expression of caspase-3, Bax and Bim and increased that of Bcl-2. These findings suggested that ganoderma lucidum polysaccharides regulate expression of apoptosis-associated proteins, inhibit oxidative stress-induced neuronal apoptosis and, therefore, have significant neuroprotective effects. PMID:28761429

  16. Experimental study of stress-induced localized transformation plastic zones in tetragonal zirconia polycrystalline ceramics

    International Nuclear Information System (INIS)

    Sun, Q.; Zhao, Z.; Chen, W.; Qing, X.; Xu, X.; Dai, F.

    1994-01-01

    Stress-induced martensitic transformation plastic zones in ceria-stabilized tetragonal zirconia polycrystalline ceramics (Ce-TZP), under loading conditions of uniaxial tension, compression, and three-point bending, are studied by experiments. The transformed monoclinic phase volume fraction distribution and the corresponding plastic strain distribution and the surface morphology (surface uplift) are measured by means of moire interferometry, Raman microprobe spectroscopy, and the surface measurement system. The experimental results from the above three kinds of specimens and methods consistently show that the stress-induced transformation at room temperature of the above specimen is not uniform within the transformation zone and that the plastic deformation is concentrated in some narrow band; i.e., macroscopic plastic flow localization proceeds during the initial stage of plastic deformation. Flow localization phenomena are all observed in uniaxial tension, compression, and three-point bending specimens. Some implications of the flow localization to the constitutive modeling and toughening of transforming thermoelastic polycrystalline ceramics are explored

  17. UHPLC-MS/MS based target profiling of stress-induced phytohormones

    Czech Academy of Sciences Publication Activity Database

    Floková, Kristýna; Tarkowská, Danuše; Miersch, Otto; Strnad, Miroslav; Wasternack, Claus; Novák, Ondřej

    2014-01-01

    Roč. 105, SEP 2014 (2014), s. 147-157 ISSN 0031-9422 R&D Projects: GA ČR GA14-34792S; GA MŠk(CZ) LO1204; GA MŠk LK21306 Institutional support: RVO:61389030 Keywords : Stress-induced phytohormones * Jasmonates * Abscisic acid Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.547, year: 2014

  18. Induction of the Wnt antagonist Dickkopf-1 is involved in stress-induced hippocampal damage.

    Directory of Open Access Journals (Sweden)

    Francesco Matrisciano

    Full Text Available The identification of mechanisms that mediate stress-induced hippocampal damage may shed new light into the pathophysiology of depressive disorders and provide new targets for therapeutic intervention. We focused on the secreted glycoprotein Dickkopf-1 (Dkk-1, an inhibitor of the canonical Wnt pathway, involved in neurodegeneration. Mice exposed to mild restraint stress showed increased hippocampal levels of Dkk-1 and reduced expression of β-catenin, an intracellular protein positively regulated by the canonical Wnt signalling pathway. In adrenalectomized mice, Dkk-1 was induced by corticosterone injection, but not by exposure to stress. Corticosterone also induced Dkk-1 in mouse organotypic hippocampal cultures and primary cultures of hippocampal neurons and, at least in the latter model, the action of corticosterone was reversed by the type-2 glucocorticoid receptor antagonist mifepristone. To examine whether induction of Dkk-1 was causally related to stress-induced hippocampal damage, we used doubleridge mice, which are characterized by a defective induction of Dkk-1. As compared to control mice, doubleridge mice showed a paradoxical increase in basal hippocampal Dkk-1 levels, but no Dkk-1 induction in response to stress. In contrast, stress reduced Dkk-1 levels in doubleridge mice. In control mice, chronic stress induced a reduction in hippocampal volume associated with neuronal loss and dendritic atrophy in the CA1 region, and a reduced neurogenesis in the dentate gyrus. Doubleridge mice were resistant to the detrimental effect of chronic stress and, instead, responded to stress with increases in dendritic arborisation and neurogenesis. Thus, the outcome of chronic stress was tightly related to changes in Dkk-1 expression in the hippocampus. These data indicate that induction of Dkk-1 is causally related to stress-induced hippocampal damage and provide the first evidence that Dkk-1 expression is regulated by corticosteroids in the central

  19. Acute stress-induced cortisol elevations mediate reward system activity during subconscious processing of sexual stimuli

    OpenAIRE

    Oei, Nicole Y. L.; Both, Stephanie; van Heemst, Diana; van der Grond, Jeroen

    2014-01-01

    Summary Stress is thought to alter motivational processes by increasing dopamine (DA) secretion in the brain’s ‘‘reward system’’, and its key region, the nucleus accumbens (NAcc). However, stress studies using functional magnetic resonance imaging (fMRI), mainly found evidence for stress-induced decreases in NAcc responsiveness toward reward cues. Results from both animal and human PETstudies indicate that the stress hormone cortisol may be crucial in the interaction between st...

  20. Pathways Involving Beta-3 Adrenergic Receptors Modulate Cold Stress-Induced Detrusor Overactivity in Conscious Rats.

    Science.gov (United States)

    Imamura, Tetsuya; Ishizuka, Osamu; Ogawa, Teruyuki; Yamagishi, Takahiro; Yokoyama, Hitoshi; Minagawa, Tomonori; Nakazawa, Masaki; Nishizawa, Osamu

    2015-01-01

    To investigate pathways involving beta-3 adrenergic receptors (ARs) in detrusor overactivity induced by cold stress, we determined if the beta-3 AR agonist CL316243 could modulate the cold stress-induced detrusor overactivity in normal rats. Two days prior to cystometric investigations, the bladders of 10-week-old female Sprague-Dawley rats were cannulated. Cystometric measurements of the unanesthetized, unrestricted rats were taken to estimate baseline values at room temperature (RT, 27 ± 2 °C) for 20 min. They were then intravenously administered vehicle, 0.1, or 1.0 mg/kg CL316243 (n = 6 in each group). Five minutes after the treatments, they were gently and quickly transferred to the low temperature (LT, 4 ± 2 °C) room for 40 min where the cystometric measurements were again made. Afterward, the rats were returned to RT for final cystometric measurements. The cystometric effects of CL316243 were also measured at RT (n = 6 in each group). At RT, both low and high dose of CL316243 decreased basal and micturition pressure while the high dose (1.0 mg/kg) significantly increased voiding interval and bladder capacity. During LT exposure, the high dose of CL316243 partially reduced cold stress-induced detrusor overactivity characterized by increased basal pressure and urinary frequency. The high drug dose also significantly inhibited the decreases of both voiding interval and bladder capacity compared to the vehicle- and low dose (0.1 mg/kg)-treated rats. A high dose of the beta-3 agonist CL316243 could modulate cold stress-induced detrusor overactivity. Therefore, one of the mechanisms in cold stress-induced detrusor overactivity includes a pathway involving beta-3 ARs. © 2014 Wiley Publishing Asia Pty Ltd.

  1. Mineralocorticoid receptor blockade prevents stress-induced modulation of multiple memory systems in the human brain.

    Science.gov (United States)

    Schwabe, Lars; Tegenthoff, Martin; Höffken, Oliver; Wolf, Oliver T

    2013-12-01

    Accumulating evidence suggests that stress may orchestrate the engagement of multiple memory systems in the brain. In particular, stress is thought to favor dorsal striatum-dependent procedural over hippocampus-dependent declarative memory. However, the neuroendocrine mechanisms underlying these modulatory effects of stress remain elusive, especially in humans. Here, we targeted the role of the mineralocorticoid receptor (MR) in the stress-induced modulation of dorsal striatal and hippocampal memory systems in the human brain using a combination of event-related functional magnetic resonance imaging and pharmacologic blockade of the MR. Eighty healthy participants received the MR antagonist spironolactone (300 mg) or a placebo and underwent a stressor or control manipulation before they performed, in the scanner, a classification task that can be supported by the hippocampus and the dorsal striatum. Stress after placebo did not affect learning performance but reduced explicit task knowledge and led to a relative increase in the use of more procedural learning strategies. At the neural level, stress promoted striatum-based learning at the expense of hippocampus-based learning. Functional connectivity analyses showed that this shift was associated with altered coupling of the amygdala with the hippocampus and dorsal striatum. Mineralocorticoid receptor blockade before stress prevented the stress-induced shift toward dorsal striatal procedural learning, same as the stress-induced alterations of amygdala connectivity with hippocampus and dorsal striatum, but resulted in significantly impaired performance. Our findings indicate that the stress-induced shift from hippocampal to dorsal striatal memory systems is mediated by the amygdala, required to preserve performance after stress, and dependent on the MR. © 2013 Society of Biological Psychiatry.

  2. Adolescent Personality: Associations With Basal, Awakening, and Stress-Induced Cortisol Responses

    OpenAIRE

    Laceulle, Odilia M.; Nederhof, Esther; van Aken, Marcel A. G.; Ormel, Johan

    2015-01-01

    The purpose of the present study was to investigate the associations between personality facets and hypothalamic-pituitary-adrenal (HPA) axis functioning. Previous studies have mainly focussed on stress-induced HPA-axis activation. We hypothesized that other characteristics of HPA-axis functioning would have a stronger association with personality based on the neuroendocrine literature. Data (n=343) were used from the TRacking Adolescents' Individual Lives Survey (TRAILS), a large prospective...

  3. The interplay between neuroendocrine activity and psychological stress-induced exacerbation of allergic asthma

    Directory of Open Access Journals (Sweden)

    Tomomitsu Miyasaka

    2018-01-01

    Full Text Available Psychological stress is recognized as a key factor in the exacerbation of allergic asthma, whereby brain responses to stress act as immunomodulators for asthma. In particular, stress-induced enhanced type 2 T-helper (Th2-type lung inflammation is strongly associated with asthma pathogenesis. Psychological stress leads to eosinophilic airway inflammation through activation of the hypothalamic-pituitary-adrenal pathway and autonomic nervous system. This is followed by the secretion of stress hormones into the blood, including glucocorticoids, epinephrine, and norepinephrine, which enhance Th2 and type 17 T-helper (Th17-type asthma profiles in humans and rodents. Recent evidence has shown that a defect of the μ-opioid receptor in the brain along with a defect of the peripheral glucocorticoid receptor signaling completely disrupted stress-induced airway inflammation in mice. This suggests that the stress response facilitates events in the central nervous and endocrine systems, thus exacerbating asthma. In this review, we outline the recent findings on the interplay between stress and neuroendocrine activities followed by stress-induced enhanced Th2 and Th17 immune responses and attenuated regulatory T (Treg cell responses that are closely linked with asthma exacerbation. We will place a special focus on our own data that has emphasized the continuity from central sensing of psychological stress to enhanced eosinophilic airway inflammation. The mechanism that modulates psychological stress-induced exacerbation of allergic asthma through neuroendocrine activities is thought to involve a series of consecutive pathological events from the brain to the lung, which implies there to be a “neuropsychiatry phenotype” in asthma.

  4. Possible Involvement of µ Opioid Receptor in the Antidepressant-Like Effect of Shuyu Formula in Restraint Stress-Induced Depression-Like Rats

    Directory of Open Access Journals (Sweden)

    Fu-rong Wang

    2015-01-01

    Full Text Available Recently μ opioid receptor (MOR has been shown to be closely associated with depression. Here we investigated the action of Shuyu, a Chinese herbal prescription, on repeated restraint stress induced depression-like rats, with specific attention to the role of MOR and the related signal cascade. Our results showed that repeated restraint stress caused significant depressive-like behaviors, as evidenced by reduced body weight gain, prolonged duration of immobility in forced swimming test, and decreased number of square-crossings and rearings in open field test. The stress-induced depression-like behaviors were relieved by Shuyu, which was accompanied by decreased expression of MOR in hippocampus. Furthermore, Shuyu upregulated BDNF protein expression, restored the activity of CREB, and stimulated MEK and ERK phosphorylation in hippocampus of stressed rats. More importantly, MOR is involved in the effects of Shuyu on these depression-related signals, as they can be strengthened by MOR antagonist CTAP. Collectively, these data indicated that the antidepressant-like properties of Shuyu are associated with MOR and the corresponding CREB, BDNF, MEK, and ERK signal pathway. Our study supports clinical use of Shuyu as an effective treatment of depression and also suggests that MOR might be a target for treatment of depression and developing novel antidepressants.

  5. Basolateral amygdala and stress-induced hyperexcitability affect motivated behaviors and addiction

    OpenAIRE

    Sharp, B M

    2017-01-01

    The amygdala integrates and processes incoming information pertinent to reward and to emotions such as fear and anxiety that promote survival by warning of potential danger. Basolateral amygdala (BLA) communicates bi-directionally with brain regions affecting cognition, motivation and stress responses including prefrontal cortex, hippocampus, nucleus accumbens and hindbrain regions that trigger norepinephrine-mediated stress responses. Disruption of intrinsic amygdala and BLA regulatory neuro...

  6. Stress Induces a Shift Towards Striatum-Dependent Stimulus-Response Learning via the Mineralocorticoid Receptor.

    Science.gov (United States)

    Vogel, Susanne; Klumpers, Floris; Schröder, Tobias Navarro; Oplaat, Krista T; Krugers, Harm J; Oitzl, Melly S; Joëls, Marian; Doeller, Christian F; Fernández, Guillén

    2017-05-01

    Stress is assumed to cause a shift from flexible 'cognitive' memory to more rigid 'habit' memory. In the spatial memory domain, stress impairs place learning depending on the hippocampus whereas stimulus-response learning based on the striatum appears to be improved. While the neural basis of this shift is still unclear, previous evidence in rodents points towards cortisol interacting with the mineralocorticoid receptor (MR) to affect amygdala functioning. The amygdala is in turn assumed to orchestrate the stress-induced shift in memory processing. However, an integrative study testing these mechanisms in humans is lacking. Therefore, we combined functional neuroimaging of a spatial memory task, stress-induction, and administration of an MR-antagonist in a full-factorial, randomized, placebo-controlled between-subjects design in 101 healthy males. We demonstrate that stress-induced increases in cortisol lead to enhanced stimulus-response learning, accompanied by increased amygdala activity and connectivity to the striatum. Importantly, this shift was prevented by an acute administration of the MR-antagonist spironolactone. Our findings support a model in which the MR and the amygdala play an important role in the stress-induced shift towards habit memory systems, revealing a fundamental mechanism of adaptively allocating neural resources that may have implications for stress-related mental disorders.

  7. Transcription regulator TRIP-Br2 mediates ER stress-induced brown adipocytes dysfunction.

    Science.gov (United States)

    Qiang, Guifen; Whang Kong, Hyerim; Gil, Victoria; Liew, Chong Wee

    2017-01-09

    In contrast to white adipose tissue, brown adipose tissue (BAT) is known to play critical roles for both basal and inducible energy expenditure. Obesity is associated with reduction of BAT function; however, it is not well understood how obesity promotes BAT dysfunction, especially at the molecular level. Here we show that the transcription regulator TRIP-Br2 mediates ER stress-induced inhibition of lipolysis and thermogenesis in BAT. Using in vitro, ex vivo, and in vivo approaches, we demonstrate that obesity-induced inflammation upregulates brown adipocytes TRIP-Br2 expression via the ER stress pathway and amelioration of ER stress in mice completely abolishes high fat diet-induced upregulation of TRIP-Br2 in BAT. We find that increased TRIP-Br2 significantly inhibits brown adipocytes thermogenesis. Finally, we show that ablation of TRIP-Br2 ameliorates ER stress-induced inhibition on lipolysis, fatty acid oxidation, oxidative metabolism, and thermogenesis in brown adipocytes. Taken together, our current study demonstrates a role for TRIP-Br2 in ER stress-induced BAT dysfunction, and inhibiting TRIP-Br2 could be a potential approach for counteracting obesity-induced BAT dysfunction.

  8. Geranylgeranylacetone prevents stress-induced decline of leptin secretion in mice.

    Science.gov (United States)

    Itai, Miki; Kuwano, Yuki; Nishikawa, Tatsuya; Rokutan, Kazuhito; Kensei, Nishida

    2018-01-01

    Geranylgeranylacetone (GGA) is a chaperon inducer that protects various types of cell and tissue against stress. We examined whether GGA modulated energy intake and expenditure under stressful conditions. After mice were untreated or treated orally with GGA (0.16 g per kg body weight per day) for 10 days, they were subjected to 2-h restraint stress once or once a day for 5 consecutive days. GGA administration did not affect corticosterone response to the stress. Restraint stress rapidly decreased plasma leptin levels in control mice. GGA significantly increased circulating leptin levels without changing food intake and prevented the stress-induced decline of circulating leptin. However GGA-treated mice significantly reduced food intake during the repeated stress, compared with control mice. GGA prevented the stress-induced decline of leptin mRNA and its protein levels in epidydimal adipose tissues. We also found that GGA decreased ghrelin mRNA expression in gastric mucosa before the stress, whereas GGA-treated mice recovered the ghrelin mRNA expression to the baseline level after the repeated stress. Leptin and ghrelin are now recognized as regulators of anxiety and depressive mood. Our results suggest that GGA may regulate food intake and relief stress-induced mood disturbance through regulating leptin and ghrelin secretions. J. Med. Invest. 65:103-109, February, 2018.

  9. Stress-induced alterations of left-right electrodermal activity coupling indexed by pointwise transinformation.

    Science.gov (United States)

    Světlák, M; Bob, P; Roman, R; Ježek, S; Damborská, A; Chládek, J; Shaw, D J; Kukleta, M

    2013-01-01

    In this study, we tested the hypothesis that experimental stress induces a specific change of left-right electrodermal activity (EDA) coupling pattern, as indexed by pointwise transinformation (PTI). Further, we hypothesized that this change is associated with scores on psychometric measures of the chronic stress-related psychopathology. Ninety-nine university students underwent bilateral measurement of EDA during rest and stress-inducing Stroop test and completed a battery of self-report measures of chronic stress-related psychopathology. A significant decrease in the mean PTI value was the prevalent response to the stress conditions. No association between chronic stress and PTI was found. Raw scores of psychometric measures of stress-related psychopathology had no effect on either the resting levels of PTI or the amount of stress-induced PTI change. In summary, acute stress alters the level of coupling pattern of cortico-autonomic influences on the left and right sympathetic pathways to the palmar sweat glands. Different results obtained using the PTI, EDA laterality coefficient, and skin conductance level also show that the PTI algorithm represents a new analytical approach to EDA asymmetry description.

  10. First interactions between hydrogen and stress-induced reverse transformation of Ni-Ti superelastic alloy

    Science.gov (United States)

    Yokoyama, Ken'ichi; Hashimoto, Tatsuki; Sakai, Jun'ichi

    2017-11-01

    The first dynamic interactions between hydrogen and the stress-induced reverse transformation have been investigated by performing an unloading test on a Ni-Ti superelastic alloy subjected to hydrogen charging under a constant applied strain in the elastic deformation region of the martensite phase. Upon unloading the specimen, charged with a small amount of hydrogen, no change in the behaviour of the stress-induced reverse transformation is observed in the stress-strain curve, although the behaviour of the stress-induced martensite transformation changes. With increasing amount of hydrogen charging, the critical stress for the reverse transformation markedly decreases. Eventually, for a larger amount of hydrogen charging, the reverse transformation does not occur, i.e. there is no recovery of the superelastic strain. The residual martensite phase on the side surface of the unloaded specimen is confirmed by X-ray diffraction. Upon training before the unloading test, the properties of the reverse transformation slightly recover after ageing in air at room temperature. The present study indicates that to change the behaviour of the reverse transformation a larger amount of hydrogen than that for the martensite transformation is necessary. In addition, it is likely that a substantial amount of hydrogen in solid solution more strongly suppresses the reverse transformation than hydrogen trapped at defects, thereby stabilising the martensite phase.

  11. Oxidative Stress Induces Endothelial Cell Senescence via Downregulation of Sirt6

    Directory of Open Access Journals (Sweden)

    Rong Liu

    2014-01-01

    Full Text Available Accumulating evidence has shown that diabetes accelerates aging and endothelial cell senescence is involved in the pathogenesis of diabetic vascular complications, including diabetic retinopathy. Oxidative stress is recognized as a key factor in the induction of endothelial senescence and diabetic retinopathy. However, specific mechanisms involved in oxidative stress-induced endothelial senescence have not been elucidated. We hypothesized that Sirt6, which is a nuclear, chromatin-bound protein critically involved in many pathophysiologic processes such as aging and inflammation, may have a role in oxidative stress-induced vascular cell senescence. Measurement of Sirt6 expression in human endothelial cells revealed that H2O2 treatment significantly reduced Sirt6 protein. The loss of Sirt6 was associated with an induction of a senescence phenotype in endothelial cells, including decreased cell growth, proliferation and angiogenic ability, and increased expression of senescence-associated β-galactosidase activity. Additionally, H2O2 treatment reduced eNOS expression, enhanced p21 expression, and dephosphorylated (activated retinoblastoma (Rb protein. All of these alternations were attenuated by overexpression of Sirt6, while partial knockdown of Sirt6 expression by siRNA mimicked the effect of H2O2. In conclusion, these results suggest that Sirt6 is a critical regulator of endothelial senescence and oxidative stress-induced downregulation of Sirt6 is likely involved in the pathogenesis of diabetic retinopathy.

  12. Stress Induced Cardiomyopathy Triggered by Acute Myocardial Infarction: A Case Series Challenging the Mayo Clinic Definition.

    Science.gov (United States)

    Christodoulidis, Georgios; Kundoor, Vishwa; Kaluski, Edo

    2017-08-28

    BACKGROUND Various physical and emotional factors have been previously described as triggers for stress induced cardiomyopathy. However, acute myocardial infarction as a trigger has never been reported. CASE REPORT We describe four patients who presented with an acute myocardial infarction, in whom the initial echocardiography revealed wall motion abnormalities extending beyond the coronary distribution of the infarct artery. Of the four patients identified, the mean age was 59 years; three patients were women and two patients had underlying psychiatric history. Electrocardiogram revealed ST elevation in the anterior leads in three patients; QTc was prolonged in all cases. All patients had ≤ moderately elevated troponin. Single culprit lesion was found uniformly in the proximal or mid left anterior descending artery. Initial echocardiography revealed severely reduced ejection fraction with relative sparing of the basal segments, whereas early repeat echocardiography revealed significant improvement in the left ventricular function in all patients. CONCLUSIONS This is the first case series demonstrating that acute myocardial infarction can trigger stress induced cardiomyopathy. Extensive reversible wall motion abnormalities, beyond the ones expected from angiography, accompanied by modest elevation in troponin and marked QTc prolongation, suggest superimposed stress induced cardiomyopathy.

  13. Stress-induced enhancement of leukocyte trafficking into sites of surgery or immune activation

    Science.gov (United States)

    Viswanathan, Kavitha; Dhabhar, Firdaus S.

    2005-04-01

    Effective immunoprotection requires rapid recruitment of leukocytes into sites of surgery, wounding, infection, or vaccination. In contrast to immunosuppressive chronic stressors, short-term acute stressors have immunoenhancing effects. Here, we quantify leukocyte infiltration within a surgical sponge to elucidate the kinetics, magnitude, subpopulation, and chemoattractant specificity of an acute stress-induced increase in leukocyte trafficking to a site of immune activation. Mice acutely stressed before sponge implantation showed 200-300% higher neutrophil, macrophage, natural killer cell, and T cell infiltration than did nonstressed animals. We also quantified the effects of acute stress on lymphotactin- (LTN; a predominantly lymphocyte-specific chemokine), and TNF-- (a proinflammatory cytokine) stimulated leukocyte infiltration. An additional stress-induced increase in infiltration was observed for neutrophils, in response to TNF-, macrophages, in response to TNF- and LTN, and natural killer cells and T cells in response to LTN. These results show that acute stress initially increases trafficking of all major leukocyte subpopulations to a site of immune activation. Tissue damage-, antigen-, or pathogen-driven chemoattractants subsequently determine which subpopulations are recruited more vigorously. Such stress-induced increases in leukocyte trafficking may enhance immunoprotection during surgery, vaccination, or infection, but may also exacerbate immunopathology during inflammatory (cardiovascular disease or gingivitis) or autoimmune (psoriasis, arthritis, or multiple sclerosis) diseases. chemokine | psychophysiological stress | surgical sponge | wound healing | lymphotactin

  14. Secondary aerosol formation from stress-induced biogenic emissions and possible climate feedbacks

    Directory of Open Access Journals (Sweden)

    Th. F. Mentel

    2013-09-01

    Full Text Available Atmospheric aerosols impact climate by scattering and absorbing solar radiation and by acting as ice and cloud condensation nuclei. Biogenic secondary organic aerosols (BSOAs comprise an important component of atmospheric aerosols. Biogenic volatile organic compounds (BVOCs emitted by vegetation are the source of BSOAs. Pathogens and insect attacks, heat waves and droughts can induce stress to plants that may impact their BVOC emissions, and hence the yield and type of formed BSOAs, and possibly their climatic effects. This raises questions of whether stress-induced changes in BSOA formation may attenuate or amplify effects of climate change. In this study we assess the potential impact of stress-induced BVOC emissions on BSOA formation for tree species typical for mixed deciduous and Boreal Eurasian forests. We studied the photochemical BSOA formation for plants infested by aphids in a laboratory setup under well-controlled conditions and applied in addition heat and drought stress. The results indicate that stress conditions substantially modify BSOA formation and yield. Stress-induced emissions of sesquiterpenes, methyl salicylate, and C17-BVOCs increase BSOA yields. Mixtures including these compounds exhibit BSOA yields between 17 and 33%, significantly higher than mixtures containing mainly monoterpenes (4–6% yield. Green leaf volatiles suppress SOA formation, presumably by scavenging OH, similar to isoprene. By classifying emission types, stressors and BSOA formation potential, we discuss possible climatic feedbacks regarding aerosol effects. We conclude that stress situations for plants due to climate change should be considered in climate–vegetation feedback mechanisms.

  15. Laforin prevents stress-induced polyglucosan body formation and Lafora disease progression in neurons.

    Science.gov (United States)

    Wang, Yin; Ma, Keli; Wang, Peixiang; Baba, Otto; Zhang, Helen; Parent, Jack M; Zheng, Pan; Liu, Yang; Minassian, Berge A; Liu, Yan

    2013-08-01

    Glycogen, the largest cytosolic macromolecule, is soluble because of intricate construction generating perfect hydrophilic-surfaced spheres. Little is known about neuronal glycogen function and metabolism, though progress is accruing through the neurodegenerative epilepsy Lafora disease (LD) proteins laforin and malin. Neurons in LD exhibit Lafora bodies (LBs), large accumulations of malconstructed insoluble glycogen (polyglucosans). We demonstrated that the laforin-malin complex reduces LBs and protects neuronal cells against endoplasmic reticulum stress-induced apoptosis. We now show that stress induces polyglucosan formation in normal neurons in culture and in the brain. This is mediated by increased glucose-6-phosphate allosterically hyperactivating muscle glycogen synthase (GS1) and is followed by activation of the glycogen digesting enzyme glycogen phosphorylase. In the absence of laforin, stress-induced polyglucosans are undigested and accumulate into massive LBs, and in laforin-deficient mice, stress drastically accelerates LB accumulation and LD. The mechanism through which laforin-malin mediates polyglucosan degradation remains unclear but involves GS1 dephosphorylation by laforin. Our work uncovers the presence of rapid polyglucosan metabolism as part of the normal physiology of neuroprotection. We propose that deficiency in the degradative phase of this metabolism, leading to LB accumulation and resultant seizure predisposition and neurodegeneration, underlies LD.

  16. Effects of cocaine history on postsynaptic GABA receptors on dorsal raphe serotonin neurons in a stress-induced relapse model in rats.

    Science.gov (United States)

    Li, Chen; Kirby, Lynn G

    2016-01-01

    The serotonin (5-hydroxytryptamine, 5-HT) system plays an important role in stress-related psychiatric disorders and substance abuse. Stressors and stress hormones can inhibit the dorsal raphe nucleus (DRN)-5-HT system, which composes the majority of forebrain-projecting 5-HT. This inhibition is mediated via stimulation of GABA synaptic activity at DRN-5-HT neurons. Using swim stress-induced reinstatement of morphine conditioned place-preference, recent data from our laboratory indicate that morphine history sensitizes DRN-5-HT neurons to GABAergic inhibitory effects of stress. Moreover, GABAA receptor-mediated inhibition of the serotonergic DRN is required for this reinstatement. In our current experiment, we tested the hypothesis that GABAergic sensitization of DRN-5-HT neurons is a neuroadaptation elicited by multiple classes of abused drugs across multiple models of stress-induced relapse by applying a chemical stressor (yohimbine) to induce reinstatement of previously extinguished cocaine self-administration in Sprague-Dawley rats. Whole-cell patch-clamp recordings of GABA synaptic activity in DRN-5-HT neurons were conducted after the reinstatement. Behavioral data indicate that yohimbine triggered reinstatement of cocaine self-administration. Electrophysiology data indicate that 5-HT neurons in the cocaine group exposed to yohimbine had increased amplitude of inhibitory postsynaptic currents compared to yoked-saline controls exposed to yohimbine or unstressed animals in both drug groups. These data, together with previous findings, indicate that interaction between psychostimulant or opioid history and chemical or physical stressors may increase postsynaptic GABA receptor density and/or sensitivity in DRN-5-HT neurons. Such mechanisms may result in serotonergic hypofunction and consequent dysphoric mood states which confer vulnerability to stress-induced drug reinstatement. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  17. Transcranial Stimulation of the Dorsolateral Prefrontal Cortex Prevents Stress-Induced Working Memory Deficits.

    Science.gov (United States)

    Bogdanov, Mario; Schwabe, Lars

    2016-01-27

    Stress is known to impair working memory performance. This disruptive effect of stress on working memory has been linked to a decrease in the activity of the dorsolateral prefrontal cortex (dlPFC). In the present experiment, we tested whether transcranial direct current stimulation (tDCS) of the dlPFC can prevent stress-induced working memory impairments. We tested 120 healthy participants in a 2 d, sham-controlled, double-blind between-subjects design. Participants completed a test of their individual baseline working memory capacity on day 1. On day 2, participants were exposed to either a stressor or a control manipulation before they performed a visuospatial and a verbal working memory task. While participants completed the tasks, anodal, cathodal, or sham tDCS was applied over the right dlPFC. Stress impaired working memory performance in both tasks, albeit to a lesser extent in the verbal compared with the visuospatial working memory task. This stress-induced working memory impairment was prevented by anodal, but not sham or cathodal, stimulation of the dlPFC. Compared with sham or cathodal stimulation, anodal tDCS led to significantly better working memory performance in both tasks after stress. Our findings indicate a causal role of the dlPFC in working memory impairments after acute stress and point to anodal tDCS as a promising tool to reduce cognitive deficits related to working memory in stress-related mental disorders, such as depression, schizophrenia, or post-traumatic stress disorder. Working memory deficits are prominent in stress-related mental disorders, such as depression, schizophrenia, or post-traumatic stress disorder. Similar working memory impairments have been observed in healthy individuals exposed to acute stress. So far, attempts to prevent such stress-induced working memory deficits focused mainly on pharmacological interventions. Here, we tested the idea that transcranial direct current stimulation of the dorsolateral prefrontal

  18. Effects of FGF receptor peptide agonists on animal behavior under normal and pathological conditions

    DEFF Research Database (Denmark)

    Rudenko, Olga; Tkach, Vadym; Berezin, Vladimir

    2010-01-01

    , respectively) on social memory, exploratory activity, and anxiety-like behavior in adult rats. Treatment with hexafin1 and hexafin2 resulted in prolonged retention of social memory. Furthermore, rats treated with hexafin2 exhibited decreased anxiety-like behavior in the elevated plus maze. Employing an R6....../2 mouse model of Huntington's disease (HD), we found that although hexafin2 did not affect the progression of motor symptoms, it alleviated deficits in activity related to social behavior, including sociability and social novelty. Thus, hexafin2 may have therapeutic potential for the treatment of HD....

  19. Prevalence and clinical characteristics of mental stress-induced myocardial ischemia in patients with coronary heart disease.

    Science.gov (United States)

    Jiang, Wei; Samad, Zainab; Boyle, Stephen; Becker, Richard C; Williams, Redford; Kuhn, Cynthia; Ortel, Thomas L; Rogers, Joseph; Kuchibhatla, Maragatha; O'Connor, Christopher; Velazquez, Eric J

    2013-02-19

    The goal of this study was to evaluate the prevalence and clinical characteristics of mental stress-induced myocardial ischemia. Mental stress-induced myocardial ischemia is prevalent and a risk factor for poor prognosis in patients with coronary heart disease, but past studies mainly studied patients with exercise-induced myocardial ischemia. Eligible patients with clinically stable coronary heart disease, regardless of exercise stress testing status, underwent a battery of 3 mental stress tests followed by a treadmill test. Stress-induced ischemia, assessed by echocardiography and electrocardiography, was defined as: 1) development or worsening of regional wall motion abnormality; 2) left ventricular ejection fraction reduction ≥ 8%; and/or 3) horizontal or downsloping ST-segment depression ≥ 1 mm in 2 or more leads lasting for ≥ 3 consecutive beats during at least 1 mental test or during the exercise test. Mental stress-induced ischemia occurred in 43.45%, whereas exercise-induced ischemia occurred in 33.79% (p = 0.002) of the study population (N = 310). Women (odds ratio [OR]: 1.88), patients who were not married (OR: 1.99), and patients who lived alone (OR: 2.24) were more likely to have mental stress-induced ischemia (all p mental stress-induced ischemia (all p Mental stress-induced ischemia is more common than exercise-induced ischemia in patients with clinically stable coronary heart disease. Women, unmarried men, and individuals living alone are at higher risk for mental stress-induced ischemia. (Responses of Myocardial Ischemia to Escitalopram Treatment [REMIT]; NCT00574847). Copyright © 2013 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  20. Stress- and glucocorticoid-induced priming of neuroinflammatory responses: potential mechanisms of stress-induced vulnerability to drugs of abuse.

    Science.gov (United States)

    Frank, Matthew G; Watkins, Linda R; Maier, Steven F

    2011-06-01

    Stress and stress-induced glucocorticoids (GCs) sensitize drug abuse behavior as well as the neuroinflammatory response to a subsequent pro-inflammatory challenge. Stress also predisposes or sensitizes individuals to develop substance abuse. There is an emerging evidence that glia and glia-derived neuroinflammatory mediators play key roles in the development of drug abuse. Drugs of abuse such as opioids, psychostimulants, and alcohol induce neuroinflammatory mediators such as pro-inflammatory cytokines (e.g. interleukin (IL)-1β), which modulate drug reward, dependence, and tolerance as well as analgesic properties. Drugs of abuse may directly activate microglial and astroglial cells via ligation of Toll-like receptors (TLRs), which mediate the innate immune response to pathogens as well as xenobiotic agents (e.g. drugs of abuse). The present review focuses on understanding the immunologic mechanism(s) whereby stress primes or sensitizes the neuroinflammatory response to drugs of abuse and explores whether stress- and GC-induced sensitization of neuroimmune processes predisposes individuals to drug abuse liability and the role of neuroinflammatory mediators in the development of drug addiction. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Stress-Induced Sleep After Exposure to Ultraviolet Light Is Promoted by p53 in Caenorhabditis elegans.

    Science.gov (United States)

    DeBardeleben, Hilary K; Lopes, Lindsey E; Nessel, Mark P; Raizen, David M

    2017-10-01

    Stress-induced sleep (SIS) in Caenorhabditis elegans is important for restoration of cellular homeostasis and is a useful model to study the function and regulation of sleep. SIS is triggered when epidermal growth factor (EGF) activates the ALA neuron, which then releases neuropeptides to promote sleep. To further understand this behavior, we established a new model of SIS using irradiation by ultraviolet C (UVC) light. While UVC irradiation requires ALA signaling and leads to a sleep state similar to that induced by heat and other stressors, it does not induce the proteostatic stress seen with heat exposure. Based on the known genotoxic effects of UVC irradiation, we tested two genes, atl-1 and cep-1 , which encode proteins that act in the DNA damage response pathway. Loss-of-function mutants of atl-1 had no defect in UVC-induced SIS but a partial loss-of-function mutant of cep-1 , gk138 , had decreased movement quiescence following UVC irradiation. Germline ablation experiments and tissue-specific RNA interference experiments showed that cep-1 is required somatically in neurons for its effect on SIS. The cep-1 ( gk138 ) mutant suppressed body movement quiescence controlled by EGF, indicating that CEP-1 acts downstream or in parallel to ALA activation to promote quiescence in response to ultraviolet light. Copyright © 2017 by the Genetics Society of America.

  2. Chewing ameliorates stress-induced suppression of spatial memory by increasing glucocorticoid receptor expression in the hippocampus.

    Science.gov (United States)

    Miyake, Shinjiro; Yoshikawa, Gota; Yamada, Kentaro; Sasaguri, Ken-Ichi; Yamamoto, Toshiharu; Onozuka, Minoru; Sato, Sadao

    2012-03-29

    Chewing alters hypothalamic-pituitary-adrenal axis function and improves the ability to cope with stress in rodents. Given that stress negatively influences hippocampus-dependent learning and memory, we aimed to elucidate whether masticatory movements, namely chewing, improve the stress-induced impairment of spatial memory in conjunction with increased hippocampal glucocorticoid receptor expression. Male Sprague-Dawley rats were subjected to restraint stress by immobilization for 2h: the stress with chewing (SC) group were allowed to chew on a wooden stick during the latter half of the immobilization period, whereas the stress without chewing (ST) group were not allowed to do so. Performance in the Morris water maze test was significantly impaired in the ST group compared with the SC group. Further, the numbers of glucocorticoid receptor immunopositive neurons in the hippocampal cornu ammonis 1 region were significantly lower in the ST group than in the control and SC groups. The control and SC rats showed no significant differences in both the water maze performance and the numbers of glucocorticoid receptor-immunopositive neurons. The immunohistochemical finding correlated with the performance in the water maze test. These results suggest that chewing is a behavioral mechanism to cope with stress by increasing hippocampal glucocorticoid receptor expression. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Attenuation of stress induced memory deficits by nonsteroidal anti-inflammatory drugs (NSAIDs) in rats: Role of antioxidant enzymes.

    Science.gov (United States)

    Emad, Shaista; Qadeer, Sara; Sadaf, Sana; Batool, Zehra; Haider, Saida; Perveen, Tahira

    2017-04-01

    Repeated stress paradigms have been shown to cause devastating alterations on memory functions. Stress is linked with inflammation. Psychological and certain physical stressors could lead to neuroinflammation. Inflammatory process may occur by release of mediators and stimulate the production of prostaglandins through cyclooxygenase (COX). Treatment with COX inhibitors, which restrain prostaglandin production, has enhanced memory in a number of neuroinflammatory states showing a potential function for raised prostaglandins in these memory shortfalls. In the present study, potential therapeutic effects of indomethacin and diclofenac sodium on memory in both unrestraint and restraint rats were observed. Two components, long term memory and short term memory were examined by Morris water maze (MWM) and elevated plus maze (EPM) respectively. The present study also demonstrated the effect of nonsteroidal anti-inflammatory drugs (NSAIDs) on lipid peroxidation (LPO) and activities of antioxidant enzymes along with the activity of acetylcholinesterase (AChE). Results of MWM and EPM showed significant effects of drugs in both unrestraint and restraint rats as escape latency and transfer latency, in respective behavioral models were decreased as compared to that of control. This study also showed NSAIDs administration decreased LPO and increased antioxidant enzymes activity and decreased AChE activity in rats exposed to repeated stress. In conclusion this study suggests a therapeutic potential of indomethacin and diclofenac against repeated stress-induced memory deficits. Copyright © 2016. Published by Elsevier Urban & Partner Sp. z o.o.

  4. Stress-induced locomotor sensitization to amphetamine in adult, but not in adolescent rats, is associated with increased expression of ΔFosB in the nucleus accumbens.

    Directory of Open Access Journals (Sweden)

    Paulo Eduardo Carneiro de Oliveira

    2016-09-01

    Full Text Available While clinical and pre-clinical evidence suggests that adolescence is a risk period for the development of addiction, the underlying neural mechanisms are largely unknown. Stress during adolescence has a huge influence on drug addiction. However, little is known about the mechanisms related to the interaction among stress, adolescence and addiction. Studies point to ΔFosB as a possible target for this phenomenon. In the present study, adolescent and adult rats (postnatal day 28 and 60, respectively were restrained for 2 hours once a day for 7 days. Three days after their last exposure to stress, the animals were challenged with saline or amphetamine (1.0 mg/kg i.p. and amphetamine-induced locomotion was recorded. Immediately after the behavioral tests, rats were decapitated and the nucleus accumbens was dissected to measure ΔFosB protein levels. We found that repeated restraint stress increased amphetamine-induced locomotion in both adult and adolescent rats. Furthermore, in adult rats, stress-induced locomotor sensitization was associated with increased expression of ΔFosB in the nucleus accumbens. Our data suggest that ΔFosB may be involved in some of the neuronal plasticity changes associated with stress induced-cross sensitization with amphetamine in adult rats.

  5. Association between changes in heart rate variability during the anticipation of a stressful situation and the stress-induced cortisol response.

    Science.gov (United States)

    Pulopulos, Matias M; Vanderhasselt, Marie-Anne; De Raedt, Rudi

    2018-08-01

    Vagal activity - reflecting the activation of stress regulatory mechanisms and prefrontal cortex activation - is thought to play an inhibitory role in the regulation of the hypothalamus-pituitary-adrenal axis. However, most studies investigating the association between stress-induced changes in heart rate variability (HRV, an index of cardiac vagal tone) and cortisol have shown a non-significant relationship. It has been proposed that physiological changes observed during anticipation of a stressor allow individuals to make behavioral, cognitive, and physiological adjustments that are necessary to deal with the upcoming actual stressor. In this study, in a large sample of 171 healthy adults (96 men and 75 women; mean age = 29.98, SD = 11.07), we investigated whether the cortisol response to a laboratory-based stress task was related to anticipation-induced or stress task-induced changes in HRV. As expected, regression analyses showed that a larger decrease in HRV during the anticipation of a stress task was related to higher stress task-induced cortisol increase, but not cortisol recovery. In line with prior research, the stress task-induced change in HRV was not significantly related to cortisol increase or recovery. Our results show for the first time that anticipatory HRV (reflecting differences in stress regulation and prefrontal activity before the encounter with the stressor) is important to understand the stress-induced cortisol increase. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Opposite effects of alcohol in regulating stress-induced changes in body weight between the two mouse lines with enhanced or low opioid system activity.

    Science.gov (United States)

    Sacharczuk, Mariusz; Sadowski, Bogdan; Jaszczak, Kazimierz; Lipkowski, Andrzej W; Swiergiel, Artur H

    2010-04-19

    Considering the involvement of the opioid system in alcoholism, depression and metabolism - known risk factors in human obesity, we studied the effects of chronic mild stress (CMS) and alcohol intake on body weight in two mouse lines selected for high (HA-high analgesia) or low (LA-low analgesia) swim stress-induced analgesia. In comparison to LA mice, HA mice exhibit an upregulation of opioid receptor system function, different depression-like behavior and reduced energy expenditure in stress. LA animals showed enhanced basal and CMS-induced alcohol drinking versus HA. Now we report different effects of alcohol under no stress (control) and CMS conditions on food intake and body weight between the lines. CMS in animals with no access to alcohol increased body weight in both HA and LA mice, with no effect of CMS on food intake in either line and without differences between the lines. In LA mice alcohol reduced body weight under both conditions although significantly more under the control than CMS conditions. In contrast, in HA mice alcohol increased body weight more under the CMS than under control conditions. The results suggest that opioid system may modulate effects of alcohol on stress -induced changes in body weight. (c) 2010 Elsevier Inc. All rights reserved.

  7. Short-term environmental enrichment is sufficient to counter stress-induced anxiety and associated structural and molecular plasticity in basolateral amygdala.

    Science.gov (United States)

    Ashokan, Archana; Hegde, Akshaya; Mitra, Rupshi

    2016-07-01

    Moderate levels of anxiety enable individual animals to cope with stressors through avoidance, and could be an adaptive trait. However, repeated stress exacerbates anxiety to pathologically high levels. Dendritic remodeling in the basolateral amygdala is proposed to mediate potentiation of anxiety after stress. Similarly, modulation of brain-derived neurotrophic factor is thought to be important for the behavioral effects of stress. In the present study, we investigate if relatively short periods of environmental enrichment in adulthood can confer resilience against stress-induced anxiety and concomitant changes in neuronal arborisation and brain derived neurotrophic factor within basolateral amygdala. Two weeks of environmental enrichment countermanded the propensity of increased anxiety following chronic immobilization stress. Environmental enrichment concurrently reduced dendritic branching and spine density of projection neurons of the basolateral amygdala. Moreover, stress increased abundance of BDNF mRNA in the basolateral amygdala in agreement with the dendritic hypertrophy post-stress and role of BDNF in promoting dendritic arborisation. In contrast, environmental enrichment prevented stress-induced rise in the BDNF mRNA abundance. Gain in body weights and adrenal weights remained unaffected by exposure to environmental enrichment. These observations suggest that a short period of environmental enrichment can provide resilience against maladaptive effects of stress on hormonal, neuronal and molecular mediators of anxiogenesis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Characteristics of the stress-induced formation of R-phase in ultrafine-grained NiTi shape memory wire

    International Nuclear Information System (INIS)

    Olbricht, J.; Yawny, A.; Pelegrina, J.L.; Eggeler, G.; Yardley, V.A.

    2013-01-01

    Highlights: •We investigated the stress-induced formation of R-phase in NiTi shape memory wires. •The R-phase related strains were isolated from the overall stress-strain-behavior. •The stress–strain characteristics of R-phase suggest a homogeneous transformation. •Thermography confirms the homogeneous R-phase formation in ultrafine-grained NiTi. -- Abstract: The transformation between the cubic B2 and monoclinic B19′ phases in ultrafine-grained pseudoelastic NiTi can occur as a two-step process involving the intermediate rhombohedral R-phase. Experimental work using differential scanning calorimetry, electrical resistance measurements and transmission electron microscopy has demonstrated the formation of this intermediate phase during thermal cycling and during mechanical loading. In the present paper, complementary mechanical and thermographic results are presented which allow to further assess the character of the stress-induced R-phase formation. The transformation from B2 to R-phase is demonstrated to occur homogeneously within the gauge length rather than via advancing Lüders-type transition regions as it is the case in the localized transformation from B2 or R-phase to B19′

  9. Overlapping mechanisms of stress-induced relapse to opioid use disorder and chronic pain: Clinical implications

    Directory of Open Access Journals (Sweden)

    Udi E Ghitza

    2016-05-01

    Full Text Available Over the past two decades, a steeply growing number of persons with chronic non-cancer pain have been using opioid analgesics chronically to treat it, accompanied by a markedly increased prevalence of individuals with opioid-related misuse, opioid use disorders, emergency department visits, hospitalizations, admissions to drug treatment programs, and drug overdose deaths. This opioid misuse and overdose epidemic calls for well-designed randomized-controlled clinical trials into more skillful and appropriate pain management and for developing effective analgesics which have lower abuse liability and are protective against stress induced by chronic non-cancer pain. However, incomplete knowledge regarding effective approaches to treat various types of pain has been worsened by an under-appreciation of overlapping neurobiological mechanisms of stress, stress-induced relapse to opioid use, and chronic non-cancer pain in patients presenting for care for these conditions. This insufficient knowledge base has unfortunately encouraged common prescription of conveniently-available opioid pain-relieving drugs with abuse liability, as opposed to treating underlying problems using team-based multidisciplinary, patient-centered, collaborative-care approaches for addressing pain and co-occurring stress and risk for opioid use disorder. This paper reviews recent neurobiological findings regarding overlapping mechanisms of stress-induced relapse to opioid misuse and chronic non-cancer pain, and then discusses these in the context of key outstanding evidence gaps and clinical-treatment research directions which may be pursued to fill these gaps. Such research directions, if conducted through well-designed randomized controlled trials, may substantively inform clinical practice in general medical settings on how to effectively care for patients presenting with pain-related distress and these common co-occurring conditions.

  10. Stress-Induced Cubic-to-Hexagonal Phase Transformation in Perovskite Nanothin Films.

    Science.gov (United States)

    Cao, Shi-Gu; Li, Yunsong; Wu, Hong-Hui; Wang, Jie; Huang, Baoling; Zhang, Tong-Yi

    2017-08-09

    The strong coupling between crystal structure and mechanical deformation can stabilize low-symmetry phases from high-symmetry phases or induce novel phase transformation in oxide thin films. Stress-induced structural phase transformation in oxide thin films has drawn more and more attention due to its significant influence on the functionalities of the materials. Here, we discovered experimentally a novel stress-induced cubic-to-hexagonal phase transformation in the perovskite nanothin films of barium titanate (BaTiO 3 ) with a special thermomechanical treatment (TMT), where BaTiO 3 nanothin films under various stresses are annealed at temperature of 575 °C. Both high-resolution transmission electron microscopy and Raman spectroscopy show a higher density of hexagonal phase in the perovskite thin film under higher tensile stress. Both X-ray photoelectron spectroscopy and electron energy loss spectroscopy does not detect any change in the valence state of Ti atoms, thereby excluding the mechanism of oxygen vacancy induced cubic-to-hexagonal (c-to-h) phase transformation. First-principles calculations show that the c-to-h phase transformation can be completed by lattice shear at elevated temperature, which is consistent with the experimental observation. The applied bending plus the residual tensile stress produces shear stress in the nanothin film. The thermal energy at the elevated temperature assists the shear stress to overcome the energy barriers during the c-to-h phase transformation. The stress-induced phase transformation in perovskite nanothin films with TMT provides materials scientists and engineers a novel approach to tailor nano/microstructures and properties of ferroelectric materials.

  11. Petroselinum Crispum is Effective in Reducing Stress-Induced Gastric Oxidative Damage

    Directory of Open Access Journals (Sweden)

    Ayşin Akıncı

    2017-02-01

    Full Text Available Background: Oxidative stress has been shown to play a principal role in the pathogenesis of stress-induced gastric injury. Parsley (Petroselinum crispum contains many antioxidants such as flavanoids, carotenoids and ascorbic acid. Aims: In this study, the histopathological and biochemical results of nutrition with a parsley-rich diet in terms of eliminating stress-induced oxidative gastric injury were evaluated. Study Design: Animal experimentation. Methods: Forty male Wistar albino rats were divided into five groups: control, stress, stress + standard diet, stress + parsley-added diet and stress + lansoprazole (LPZ groups. Subjects were exposed to 72 hours of fasting and later immobilized and exposed to the cold at +4 degrees for 8 hours to create a severe stress condition. Samples from the animals’ stomachs were arranged for microscopic and biochemical examinations. Results: Gastric mucosal injury was obvious in rats exposed to stress. The histopathologic damage score of the stress group (7.00±0.57 was higher than that of the control group (1.50±0.22 (p<0.05. Significant differences in histopathologic damage score were found between the stress and stress + parsley-added diet groups (p<0.05, the stress and stress + standard diet groups (p<0.05, and the stress and stress + LPZ groups (p<0.05. The mean tissue malondialdehyde levels of the stress + parsley-added group and the stress + LPZ group were lower than that of the stress group (p<0.05. Parsley supported the cellular antioxidant system by increasing the mean tissue glutathione level (53.31±9.50 and superoxide dismutase (15.18±1.05 and catalase (16.68±2.29 activities. Conclusion: Oral administration of parsley is effective in reducing stress-induced gastric injury by supporting the cellular antioxidant defence system

  12. Effect of vitamin D on stress-induced hyperglycaemia and insulin resistance in critically ill patients.

    Science.gov (United States)

    Alizadeh, N; Khalili, H; Mohammadi, M; Abdollahi, A; Ala, S

    2016-05-01

    Effects of vitamin D supplementation on the glycaemic indices and insulin resistance in diabetic and non-diabetic patients were studied. In this study, effects of vitamin D supplementation on stress-induced hyperglycaemia and insulin resistance were evaluated in non-diabetic surgical critically ill patients. Adult surgical patients with stress-induced hyperglycaemia within the first 24 h of admission to the ICU were recruited. The patients randomly assigned to receive either vitamin D or placebo. Patients in the vitamin D group received a single dose of 600,000 IU vitamin D3 as intramuscular injection at time of recruitment. Besides demographic and clinical characteristics of the patients, plasma glucose, insulin, 25(OH) D and adiponectin levels were measured at the time of ICU admission and day 7. Homoeostasis model assessment for insulin resistance (HOMA-IR) and homestasis model assessment adiponectin (HOMA-AD) ratio were considered at the times of assessment. Comparing with the baseline, plasma 25(OH) D level significantly increased in the subjects who received vitamin D (p = 0.04). Improvement in fasting plasma glucose levels was detected in day 7 of the study compared with the baseline status in both groups. HOMA-IR showed a decrement pattern in vitamin D group (p = 0.09). Fasting plasma adiponectin levels increased significantly in the vitamin D group (p = 0.007), but not in the placebo group (p = 0.38). Finally, changes in HOMA-AD ratio were not significant in the both groups. Vitamin D supplementation showed positive effect on plasma adiponectin level, as a biomarker of insulin sensitivity in surgical critically ill patients with stress-induced hyperglycaemia. However, effects of vitamin D supplementation on HOMA-IR and HOMA-AD as indicators of insulin resistance were not significant. © 2016 John Wiley & Sons Ltd.

  13. Differential effects of stress-induced cortisol responses on recollection and familiarity-based recognition memory.

    Science.gov (United States)

    McCullough, Andrew M; Ritchey, Maureen; Ranganath, Charan; Yonelinas, Andrew

    2015-09-01

    Stress-induced changes in cortisol can impact memory in various ways. However, the precise relationship between cortisol and recognition memory is still poorly understood. For instance, there is reason to believe that stress could differentially affect recollection-based memory, which depends on the hippocampus, and familiarity-based recognition, which can be supported by neocortical areas alone. Accordingly, in the current study we examined the effects of stress-related changes in cortisol on the processes underlying recognition memory. Stress was induced with a cold-pressor test after incidental encoding of emotional and neutral pictures, and recollection and familiarity-based recognition memory were measured one day later. The relationship between stress-induced cortisol responses and recollection was non-monotonic, such that subjects with moderate stress-related increases in cortisol had the highest levels of recollection. In contrast, stress-related cortisol responses were linearly related to increases in familiarity. In addition, measures of cortisol taken at the onset of the experiment showed that individuals with higher levels of pre-learning cortisol had lower levels of both recollection and familiarity. The results are consistent with the proposition that hippocampal-dependent memory processes such as recollection function optimally under moderate levels of stress, whereas more cortically-based processes such as familiarity are enhanced even with higher levels of stress. These results indicate that whether post-encoding stress improves or disrupts recognition memory depends on the specific memory process examined as well as the magnitude of the stress-induced cortisol response. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Effect of the CRF1-receptor antagonist pexacerfont on stress-induced eating and food craving.

    Science.gov (United States)

    Epstein, David H; Kennedy, Ashley P; Furnari, Melody; Heilig, Markus; Shaham, Yavin; Phillips, Karran A; Preston, Kenzie L

    2016-12-01

    In rodents, antagonism of receptors for corticotropin-releasing factor (CRF) blocks stress-induced reinstatement of drug or palatable food seeking. To test anticraving properties of the CRF 1 antagonist pexacerfont in humans. We studied stress-induced<