WorldWideScience

Sample records for stress-free sintering temperature

  1. Stress-dislocation interaction mechanism in low-temperature thermo-compression sintering of Ag NPs

    Science.gov (United States)

    Wang, Fuliang; Tang, Zikai; He, Hu

    2018-04-01

    The sintering of metal nanoparticles (NPs) has been widely studied in the field of nanotechnology, and low-temperature sintering has become the industry standard. In this study, a molecular dynamics (MD) model was established to study the sintering behaviour of silver NPs during low-temperature thermo-compression. Primarily, we studied the sintering process, in which the ratio of neck radius to particle radius (x/r) changes. Under a uniaxial pressure, the maximum ratio in the temperature range 420-425 K was 1. According to the change of x/r, the process can be broken down into three stages: the neck-formation stage, neck-growth stage, and neck-stability stage. In addition, the relationship between potential energy, internal stress, and dislocation density during sintering is discussed. The results showed that cycling internal stress played an important role in sintering. Under the uniaxial pressure, the stress-dislocation interaction was found to be the major mechanism for thermo-compression sintering because the plastic deformation product dislocation intensified the diffusion of atoms. Also, the displacement vector, the mean square displacement, and the changing crystal structure during sintering were studied.

  2. Stress-dislocation interaction mechanism in low-temperature thermo-compression sintering of Ag NPs

    Directory of Open Access Journals (Sweden)

    Fuliang Wang

    2018-04-01

    Full Text Available The sintering of metal nanoparticles (NPs has been widely studied in the field of nanotechnology, and low-temperature sintering has become the industry standard. In this study, a molecular dynamics (MD model was established to study the sintering behaviour of silver NPs during low-temperature thermo-compression. Primarily, we studied the sintering process, in which the ratio of neck radius to particle radius (x/r changes. Under a uniaxial pressure, the maximum ratio in the temperature range 420–425 K was 1. According to the change of x/r, the process can be broken down into three stages: the neck-formation stage, neck-growth stage, and neck-stability stage. In addition, the relationship between potential energy, internal stress, and dislocation density during sintering is discussed. The results showed that cycling internal stress played an important role in sintering. Under the uniaxial pressure, the stress-dislocation interaction was found to be the major mechanism for thermo-compression sintering because the plastic deformation product dislocation intensified the diffusion of atoms. Also, the displacement vector, the mean square displacement, and the changing crystal structure during sintering were studied.

  3. Low sintering temperature and high piezoelectric properties of Li-doped (Ba,Ca)(Ti,Zr)O3 lead-free ceramics

    International Nuclear Information System (INIS)

    Chen, Xiaoming; Ruan, Xuezheng; Zhao, Kunyun; He, Xueqing; Zeng, Jiangtao; Li, Yongsheng; Zheng, Liaoying; Park, Chul Hong; Li, Guorong

    2015-01-01

    Highlights: • Li-doped Ba 0.85 Ca 0.15 Ti 0.9 Zr 0.1 O 3 (BCZT) lead-free piezoceramics were prepared by the two-step synthesis and solid-state reaction method. • Their sintering temperature decreases from about 1540 °C down to about 1400 °C. • With the proper addition of Li, the densities and grain sizes of ceramics increase. • The ceramics not only have the characteristics of hard piezoceramics but also possesses the features of soft piezoceramics at low sintering temperature. - Abstract: Li-doped Ba 0.85 Ca 0.15 Ti 0.9 Zr 0.1 O 3 (BCZT) lead-free piezoelectric ceramics were prepared by the two-step synthesis and the solid-state reaction method. The density and grain size of ceramics sufficiently increases by Li-doped sintering aid, and their sintering temperature decreases from about 1540 °C down to about 1400 °C. X-ray diffraction reveals that the phase structure of Li-doped BCTZ ceramics is changed with the sintering temperature, which is consistent with their phase transition observed by the temperature-dependent dielectric curves. The well-poled Li-doped BCZT ceramics show a high piezoelectric constant d 33 (512 pC/N) and a planar electromechanical coupling factor k p (0.49), which have the characteristics of soft Pb(Zr,Ti)O 3 (PZT) piezoceramic, on the other hand, the mechanical quality factor Q m is about 190, which possesses the features of hard PZT piezoceramics. The enhanced properties of the Li-doped BCZT are explained by the combination of Li-doped effect and sintering effect on the microstructure and the phase transition around room temperature

  4. Low sintering temperature and high piezoelectric properties of Li-doped (Ba,Ca)(Ti,Zr)O{sub 3} lead-free ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiaoming [Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); University of Chinese Academy of Sciences, Beijing 100039 (China); School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Ruan, Xuezheng; Zhao, Kunyun [Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); He, Xueqing [School of Materials and Metallurgy, Northeastern University, Shenyang 110004 (China); Zeng, Jiangtao, E-mail: zjt@mail.sic.ac.cn [Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Li, Yongsheng [School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Zheng, Liaoying [Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Park, Chul Hong [Department of Physics Education, Pusan National University, Pusan 609735 (Korea, Republic of); Li, Guorong [Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China)

    2015-05-25

    Highlights: • Li-doped Ba{sub 0.85}Ca{sub 0.15}Ti{sub 0.9}Zr{sub 0.1}O{sub 3} (BCZT) lead-free piezoceramics were prepared by the two-step synthesis and solid-state reaction method. • Their sintering temperature decreases from about 1540 °C down to about 1400 °C. • With the proper addition of Li, the densities and grain sizes of ceramics increase. • The ceramics not only have the characteristics of hard piezoceramics but also possesses the features of soft piezoceramics at low sintering temperature. - Abstract: Li-doped Ba{sub 0.85}Ca{sub 0.15}Ti{sub 0.9}Zr{sub 0.1}O{sub 3} (BCZT) lead-free piezoelectric ceramics were prepared by the two-step synthesis and the solid-state reaction method. The density and grain size of ceramics sufficiently increases by Li-doped sintering aid, and their sintering temperature decreases from about 1540 °C down to about 1400 °C. X-ray diffraction reveals that the phase structure of Li-doped BCTZ ceramics is changed with the sintering temperature, which is consistent with their phase transition observed by the temperature-dependent dielectric curves. The well-poled Li-doped BCZT ceramics show a high piezoelectric constant d{sub 33} (512 pC/N) and a planar electromechanical coupling factor k{sub p} (0.49), which have the characteristics of soft Pb(Zr,Ti)O{sub 3} (PZT) piezoceramic, on the other hand, the mechanical quality factor Q{sub m} is about 190, which possesses the features of hard PZT piezoceramics. The enhanced properties of the Li-doped BCZT are explained by the combination of Li-doped effect and sintering effect on the microstructure and the phase transition around room temperature.

  5. Residual stresses in a co-sintered SOC half-cell during post-sintering cooling

    DEFF Research Database (Denmark)

    Charlas, Benoit; Chatzichristodoulou, Christodoulos; Brodersen, Karen

    2014-01-01

    .e. the reference temperature (Tref) or the strain difference based on the curvature. This approximation gives good results for bilayers with a defined cooling temperature profile, where the curvature of the bilayer defines a unique balance between the two unknown residual stress states in the two layers......Due to the thermal expansion mismatch between the layers of a Solid Oxide Cell, residual stresses (thermal stresses) develop during the cooling after sintering. Residual stresses can induce cell curvature for asymmetric cells but more importantly they also result in more fragile cells. Depending...... on the loading conditions, the additional stress needed to break the cells can indeed be smaller due to the initial thermo-mechanical stress state. The residual stresses can for a bilayer cell be approximated by estimating the temperature at which elastic stresses start to build up during the cooling, i...

  6. Sintering of bi-layered porous structures: Stress development and shape evolution

    DEFF Research Database (Denmark)

    Ni, De Wei; Esposito, Vincenzo; Ramousse, Severine

    viscosity of layers was determined as a function of temperature and density using a vertical sintering approach. The distortion in the bi-layer configurations was experimentally recorded and compared with the analytical calculations. The sintering mismatch stress was calculated from both the camber...... development and linear strain rate mismatch, which showed a good agreement....

  7. HAp physical investigation - the effect of sintering temperature

    International Nuclear Information System (INIS)

    Mohd Reusmaazran Yusof; Idris Besar; Rusnah Mustaffa; Cik Rohaida Che Hak

    2004-01-01

    The paper presents the effect of sintering temperature on the physical properties of porous hydroxyapatite (HAp). In this study, the HAp was prepared using polymeric sponge techniques with different binder concentration. The sintering process was carried out in air for temperature ranging from 1200 degree C to 1600 degree C. Different physical properties namely density and porosity were observed at different sintering temperatures. The HAp prepared with higher PVP binder showed a slightly decreased in apparent density with increasing sintering temperature, while those HAp prepared with lower PVP showed a slightly increase in apparent density with increasing sintering temperature. The total porosity was found to be approximately constant in the whole sintering temperature range. However, closed porosity decreases with increasing sintering temperature for HAp prepared by lower binder concentration. On the other hand, the HAp prepared by higher binder concentration HAp showed increasing closed porosity with increasing sintering temperature. Other features such as the influence of sintering temperatures on grain and strut also be presented in this paper. (Author)

  8. Modeling the microstructural evolution during constrained sintering

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Frandsen, Henrik Lund; Tikare, V.

    A numerical model able to simulate solid state constrained sintering of a powder compact is presented. The model couples an existing kinetic Monte Carlo (kMC) model for free sintering with a finite element (FE) method for calculating stresses on a microstructural level. The microstructural response...... to the stress field as well as the FE calculation of the stress field from the microstructural evolution is discussed. The sintering behavior of two powder compacts constrained by a rigid substrate is simulated and compared to free sintering of the same samples. Constrained sintering result in a larger number...

  9. The investigation of the microstructure and mechanical properties of ordered alominide-iron (boron) nanostructures produced by mechanical alloying and sintering

    Science.gov (United States)

    Izadi, S.; Akbari, Gh.; Janghorban, K.; Ghaffari, M.

    In this study, mechanical alloying (MA) of Fe-50Al, Fe-49.5Al-1B, and Fe-47.5Al-5B (at.%) alloy powders and mechanical properties of sintered products of the as-milled powders were investigated. X-ray diffraction (XRD) results showed the addition of B caused more crystallite refinement compared to the B-free powders. To consider the sintering and ordering behaviors of the parts produced from cold compaction of the powders milled for 80 h, sintering was conducted at various temperatures. It was found that the sintering temperature has no meaningful effect on the long-range order parameter. The transformation of the disordered solid solution developed by MA to ordered Fe-Al- (B) intermetallics was a consequence of sintering. Also, the nano-scale structure of the samples was retained even after sintering. The microhardness of pore-free zones of the nanostructured specimens decreased by increasing the sintering temperature. Moreover, the sintering temperature has no effect on the compressive yield stress. However, the fracture strain increased by increasing the sintering temperature. The samples containing 1 at.% B showed more strain to fracture compared with the B-free and 5 at.% B samples.

  10. The Influence of Sintering Temperature of Reactive Sintered (Ti, MoC-Ni Cermets

    Directory of Open Access Journals (Sweden)

    Marek Jõeleht

    2015-09-01

    Full Text Available Titanium-molybdenum carbide nickel cermets ((Ti, MoC-Ni were produced using high energy milling and reactive sintering process. Compared to conventional TiC-NiMo cermet sintering the parameters for reactive sintered cermets vary since additional processes are present such as carbide synthesis. Therefore, it is essential to acquire information about the suitable sintering regime for reactive sintered cermets. One of the key parameters is the final sintering temperature when the liquid binder Ni forms the final matrix and vacancies inside the material are removed. The influence of the final sintering temperature is analyzed by scanning electron microscopy. Mechanical properties of the material are characterized by transverse rupture strength, hardness and fracture toughness.DOI: http://dx.doi.org/10.5755/j01.ms.21.3.7179

  11. Effects of sintering temperature on the mechanical properties of sintered NdFeB permanent magnets prepared by spark plasma sintering

    International Nuclear Information System (INIS)

    Wang, G.P.; Liu, W.Q.; Huang, Y.L.; Ma, S.C.; Zhong, Z.C.

    2014-01-01

    Sintered NdFeB-based permanent magnets were fabricated by spark plasma sintering (SPS) and a conventional method to investigate the mechanical and magnetic properties. The experimental results showed that sintered NdFeB magnet prepared by the spark plasma sintering (SPS NdFeB) possesses a better mechanical properties compared to the conventionally sintered one, of which the maximum value of bending strength and Vickers hardness was 402.3 MPa and 778.1 MPa, respectively. The effects of sintering temperature on bending strength and Vickers hardness were investigated. It was shown that the bending strength firstly increases to the maximum value and then decreases with the increase of sintering temperature in a certain range. The investigations of microstructures and mechanical properties indicated that the unique sintering mechanism in the SPS process is responsible for the improvement of mechanical properties of SPS NdFeB. Furthermore, the relations between the mechanical properties and relevant microstructure have been analyzed based on the experimental fact. - Highlights: • Studied the sintering temperature effect on strengthening mechanism of NdFeB magnet firstly. • It showed that sintering temperature may effectively affect the mechanical properties. • The maximum bending strength and Vickers hardness was 402.3 MPa and 778.1 MPa, respectively

  12. Effects of sintering temperature on the mechanical properties of sintered NdFeB permanent magnets prepared by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Wang, G.P., E-mail: wgp@jxnu.edu.cn [College of Physics and Communication Electronics, Jiangxi Normal University, Nanchang 330022 (China); Liu, W.Q. [Key Laboratory of Advanced Functional Materials Science and Engineering, Ministry of Education, Beijing University of Technology, Beijing 100022 (China); Huang, Y.L.; Ma, S.C.; Zhong, Z.C. [School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China)

    2014-01-15

    Sintered NdFeB-based permanent magnets were fabricated by spark plasma sintering (SPS) and a conventional method to investigate the mechanical and magnetic properties. The experimental results showed that sintered NdFeB magnet prepared by the spark plasma sintering (SPS NdFeB) possesses a better mechanical properties compared to the conventionally sintered one, of which the maximum value of bending strength and Vickers hardness was 402.3 MPa and 778.1 MPa, respectively. The effects of sintering temperature on bending strength and Vickers hardness were investigated. It was shown that the bending strength firstly increases to the maximum value and then decreases with the increase of sintering temperature in a certain range. The investigations of microstructures and mechanical properties indicated that the unique sintering mechanism in the SPS process is responsible for the improvement of mechanical properties of SPS NdFeB. Furthermore, the relations between the mechanical properties and relevant microstructure have been analyzed based on the experimental fact. - Highlights: • Studied the sintering temperature effect on strengthening mechanism of NdFeB magnet firstly. • It showed that sintering temperature may effectively affect the mechanical properties. • The maximum bending strength and Vickers hardness was 402.3 MPa and 778.1 MPa, respectively.

  13. Preparation and piezoelectric properties of (K0.5Na0.5)NbO3 lead-free piezoelectric ceramics with pressure-less sintering

    International Nuclear Information System (INIS)

    Du Hongliang; Li Zhimin; Tang Fusheng; Qu Shaobo; Pei Zhibin; Zhou Wancheng

    2006-01-01

    Lead-free piezoelectric ceramics (K 0.5 Na 0.5 )NbO 3 (abbreviated as KNN) with the relative density of 97.6% have been synthesized by press-less sintering owing to the careful control of processing conditions. The phase structure of KNN ceramics with different sintering temperature and heating rate was analyzed. Results show that the pure perovskite phase with orthorhombic symmetry is in all ceramics specimens. The effect of heating rate and sintering temperature on microstructure and piezoelectric properties of KNN ceramics was investigated. The densification behavior and piezoelectric properties of KNN ceramics were enhanced by improving heating rate and sintering temperature. Pure KNN ceramics sintered at 1120 deg. C with heating rate of 5 deg. C/min showed optimized densification and piezoelectric properties (ρ = 4.4 g/cm 3 , d 33 = 120 pC/N -1 , k p = 0.40 and T c = 400 deg. C). The results show that KNN is a promising candidate for lead-free piezoelectric ceramics

  14. Constrained sintering of an air-plasma-sprayed thermal barrier coating

    International Nuclear Information System (INIS)

    Cocks, A.C.F.; Fleck, N.A.

    2010-01-01

    A micromechanical model is presented for the constrained sintering of an air-plasma-sprayed, thermal barrier coating upon a thick superalloy substrate. The coating comprises random splats with intervening penny-shaped cracks. The crack faces make contact at asperities, which progressively sinter in-service by interfacial diffusion, accommodated by bulk creep. Diffusion is driven by the reduction in interfacial energy at the developing contacts and by the local asperity contact stress. At elevated operating temperature, both sintering and creep strains accumulate within the plane of the coating. The sensitivities of sintering rate and microstructure evolution rate to the kinetic parameters and thermodynamic driving forces are explored. It is demonstrated that the sintering response is governed by three independent timescales, as dictated by the material and geometric properties of the coating. Finally, the role of substrate constraint is assessed by comparing the rate of constrained sintering with that for free sintering.

  15. Kinetics of sintering of uranium dioxide

    International Nuclear Information System (INIS)

    Soni, N.C.; Moorthy, V.K.

    1978-01-01

    The kinetics of sintering of UO 2 powders derived from ADU route and calcined at different temperatures was studied. The activation energy for sintering was found to depend on the calcination temperature, the density chosen and the sintering temperature range. The motive force for sintering is the excess free energy in the particle system. This exists in the powder compact in the form of surface energy and the excess lattice energy due to defects. The defects which can be eliminated at the operating temperature are responsible for the mobility and hence sintering. This concept of the motive force for sintering has been used to explain the difference in the activation energies observed in the present study. This would also explain phenomena such as attainment of limiting density, presence of optimum sintering temperature and the influence of calcination treatments on the sintering behaviour of powders. (author)

  16. Characterization of x-ray diffraction and electron spin resonance: Effects of sintering time and temperature on bovine hydroxyapatite

    International Nuclear Information System (INIS)

    Kusrini, Eny; Sontang, Muhammad

    2012-01-01

    The physical and chemical properties of a hydroxyapatite produced by the sintering of bovine bone were investigated by powder x-ray diffraction (PXRD), electron spin resonance (ESR), energy dispersive x-ray spectroscopy (EDX), scanning electron microscopy (SEM), Fourier transform infrared (FTIR), and differential thermal analysis (DTA). A bovine bone powder was sintered at different temperatures ranging from 500 to 1400 °C. The influences of post-irradiation storage on the radiation ESR response of the bovine bone powder before and after sintering were also studied. The results indicate that the sintered bovine bone powder contained hydroxyapatite. Diffraction patterns were sharp and clear based on the (211), (300), and (202) reflections corresponding to bovine hydroxyapatite (BHA), which confirmed the phase purity and high crystalline grade of the BHA produced. The PXRD profile of BHA was dependent on sintering temperatures and times. The molecular formula of BHA was determined by Rietveld analysis showed a similar structure and composition to calcium hydroxyapatite in hexagonal P6 3 /m space group a=b=9.435 Å and c=6.895 Å. ESR data showed that the sintering process can decrease the number of free radicals in BHA; it also revealed that the number of free radicals is constant during long storage periods (75 days). The sintering technique described in this study may be used to extract hydroxyapatite from biowaste bovine bone, leading to its application as a bone filler. - Highlights: ► Natural hydroxyapatite was produced from the bio-wasting bovine bones by sintering method. ► PXRD profile of BHA is dependent on the different temperatures and times in sintering process. ► ESR data is useful to study the typical of free radicals formed in the samples after irradiation. ► Stability and physicochemical properties of BHA is dependent on the different storage times. ► Technique is able to be used to find the natural hydroxyapatite applicable for bone filler.

  17. Sintering and densification; new techniques: sinter forging

    International Nuclear Information System (INIS)

    Winnubst, A.J.A.

    1998-01-01

    In this chapter pressure assisted sintering methods will be described. Attention will mainly be paid to sinter forging as a die-wall free uniaxial pressure sintering technique, where large creep strains are possible. Sinter forging is an effective tool to reduce sintering temperature and time and to obtain a nearly theoretically dense ceramic. In this way grain size in tetragonal zirconia ceramics can be reduced down to 100 nm. Another important phenomenon is the reduction of the number density and size of cracks and flaws resulting in higher strength and improved reliability, which is of utmost importance for engineering ceramics. The creep deformation during sinter forging causes a rearrangement of the grains resulting in a reduction of interatomic spaces between grains, while grain boundary (glassy) phases can be removed. The toughness and in some cases the wear resistance is enhanced after sinter forging as a result of the grain-boundary-morphology improvement. (orig.)

  18. Influence of sintering temperature on mechanical properties of spark plasma sintered pre-alloyed Ti-6Al-4 V powder

    Energy Technology Data Exchange (ETDEWEB)

    Muthuchamy, A.; Patel, Paridh; Rajadurai, M. [VIT Univ., Vellore, Tamil Nadu (India); Chaurisiya, Jitendar K. [NIT, Suratkal (India); Annamalai, A. Raja [VIT Univ., Vellore, Tamil Nadu (India). Centre for Innovative Manufacturing Research

    2018-04-01

    Spark plasma sintering provides faster heating that can create fully, or near fully, dense samples without significant grain growth. In this study, pre-alloyed Ti-6Al-4 V powder compact samples produced through field assisted sintering in a spark plasma sintering machine are compared as a function of consolidation temperature. The effect of sintering temperature on the densification mechanism, microstructural evolution and mechanical properties of spark plasma sintered Ti-6Al-4 V alloy compacts was investigated in detail. The compact, sintered at 1100 C, exhibited near net density, highest hardness and strength as compared to the other compacts processed at a temperature lower than 1100 C.

  19. Effects of sintering temperature on electrical properties of sheep enamel hydroxyapatite

    Science.gov (United States)

    Dumludag, F.; Gunduz, O.; Kılıc, O.; Kılıc, B.; Ekren, N.; Kalkandelen, C.; Oktar, F. N.

    2017-12-01

    Bioceramics, especially calcium phosphate based bioceramics, whose examples are hydroxyapatite, and calcium phosphate powders have been widely used in the biomedical engineering applications. Hydroxyapatite (HA) is one of the most promising biomaterials, which are derived from natural sources, chemical method, animal like dental enamel and corals. The influence of sintering temperature on the electrical properties (i.e. DC conductivity, AC conductivity) of samples of sintered sheep enamel (SSSE) was studied in air and in vacuum ambient at room temperature. The sheep enamel were sintered at varying temperatures between 1000°C and 1300°C. DC conductivity results revealed that while dc conductivity of the SSSE decreases with increasing the sintering temperature in air ambient the values increased with increasing the sintering temperature in vacuum ambient. AC conductivity measurements were performed in the frequency range of 40 Hz - 105 Hz. The results showed that ac conductivity values decrease with increasing the sintering temperature.

  20. Effects of sintering temperature on the density and porosity

    African Journals Online (AJOL)

    2013-03-01

    bonding) between the salt beads at all the temperatures in which sintering was performed. .... and the sintering of some covalent solids and low- stability ceramics. The entire sintering process is gen- erally considered to occur in ...

  1. Low temperature sintering of fluorapatite glass-ceramics

    Science.gov (United States)

    Denry, Isabelle; Holloway, Julie A.

    2014-01-01

    Fluorapatite glass-ceramics have been shown to be excellent candidates as scaffold materials for bone grafts, however, scaffold production by sintering is hindered by concurrent crystallization of the glass. Our goal was to investigate the effect of Ca/Al ratio on the sintering behavior of Nb-doped fluorapatite-based glasses in the SiO2-Al2O3-P2O5-MgO-Na2O-K2O-CaO-CaF2 system. Glass compositions with Ca/Al ratio of 1 (A), 2 (B), 4 (C) and 19 (D) were prepared by twice melting at 1525°C for 3h. Glasses were either cast as cylindrical ingots or ground into powders. Disc-shaped specimens were prepared by either sectioning from the ingots or powder-compacting in a mold, followed by heat treatment at temperatures ranging between 700 and 1050°C for 1h. The density was measured on both sintered specimens and heat treated discs as controls. The degree of sintering was determined from these measurements. XRD showed that fluorapatite crystallized in all glass-ceramics. A high degree of sintering was achieved at 775°C for glass-ceramic D (98.99±0.04%), and 900°C for glass-ceramic C (91.31±0.10). Glass-ceramics A or B were only partially sintered at 1000°C (63.6±0.8% and 74.1±1.5%, respectively). SEM revealed a unique microstructure of micron-sized spherulitic fluorapatite crystals in glass-ceramics C and D. Increasing the Ca/Al ratio promoted low temperature sintering of fluorapatite glass-ceramics, which are traditionally difficult to sinter. PMID:24252652

  2. Low sintering temperature glass waste forms for sequestering radioactive iodine

    Science.gov (United States)

    Nenoff, Tina M.; Krumhansl, James L.; Garino, Terry J.; Ockwig, Nathan W.

    2012-09-11

    Materials and methods of making low-sintering-temperature glass waste forms that sequester radioactive iodine in a strong and durable structure. First, the iodine is captured by an adsorbant, which forms an iodine-loaded material, e.g., AgI, AgI-zeolite, AgI-mordenite, Ag-silica aerogel, ZnI.sub.2, CuI, or Bi.sub.5O.sub.7I. Next, particles of the iodine-loaded material are mixed with powdered frits of low-sintering-temperature glasses (comprising various oxides of Si, B, Bi, Pb, and Zn), and then sintered at a relatively low temperature, ranging from 425.degree. C. to 550.degree. C. The sintering converts the mixed powders into a solid block of a glassy waste form, having low iodine leaching rates. The vitrified glassy waste form can contain as much as 60 wt % AgI. A preferred glass, having a sintering temperature of 500.degree. C. (below the silver iodide sublimation temperature of 500.degree. C.) was identified that contains oxides of boron, bismuth, and zinc, while containing essentially no lead or silicon.

  3. Low temperature sintering of fluorapatite glass-ceramics.

    Science.gov (United States)

    Denry, Isabelle; Holloway, Julie A

    2014-02-01

    Fluorapatite glass-ceramics have been shown to be excellent candidates as scaffold materials for bone grafts, however, scaffold production by sintering is hindered by concurrent crystallization of the glass. Objective, our goal was to investigate the effect of Ca/Al ratio on the sintering behavior of Nb-doped fluorapatite-based glasses in the SiO2-Al2O3-P2O5-MgO-Na2O-K2O-CaO-CaF2 system. Methods, glass compositions with Ca/Al ratio of 1 (A), 2 (B), 4 (C) and 19 (D) were prepared by twice melting at 1525°C for 3h. Glasses were either cast as cylindrical ingots or ground into powders. Disk-shaped specimens were prepared by either sectioning from the ingots or powder-compacting in a mold, followed by heat treatment at temperatures ranging between 700 and 1050°C for 1h. The density was measured on both sintered specimens and heat treated discs as controls. The degree of sintering was determined from these measurements. Results and Significance XRD showed that fluorapatite crystallized in all glass-ceramics. A high degree of sintering was achieved at 775°C for glass-ceramic D (98.99±0.04%), and 900°C for glass-ceramic C (91.31±0.10). Glass-ceramics A or B were only partially sintered at 1000°C (63.6±0.8% and 74.1±1.5%, respectively). SEM revealed a unique microstructure of micron-sized spherulitic fluorapatite crystals in glass-ceramics C and D. Increasing the Ca/Al ratio promoted low temperature sintering of fluorapatite glass-ceramics, which are traditionally difficult to sinter. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  4. Uniform thin film electrode made of low-temperature-sinterable silver nanoparticles: optimized extent of ligand exchange from oleylamine to acrylic acid

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yung Jong; Kim, Na Rae; Lee, Changsoo; Lee, Hyuck Mo, E-mail: hmlee@kaist.ac.kr [Department of Materials Science and Engineering (Korea, Republic of)

    2017-02-15

    Lowering the sintering temperature of nanoparticles in the electrode deposition process holds both academic and industrial interest because of the potential applications of such electrodes in polymer devices and flexible electronics. In addition, achieving uniform electrode formation after ligand exchange is equally important as lowering the sintering temperature. Here, we report a simple chemical treatment by the addition of ligand-exchanging interfaces to lower the sintering temperature; we also determine the optimum extent of ligand exchange for crack-free electrode formation. First, we investigated the structural change of Ag thin films with respect to the concentration of acrylic acid (AA) solutions. Second, we used thermal analysis to evaluate the effects of changes in the sintering temperature. We observed that the resulting conductivity of the Ag patterns was only one order of magnitude lower than that of bulk Ag when the patterns were sintered at 150 °C. The simple chemical treatment developed in this work for solution-processed Ag electrode formation can be adopted for flexible electronics, which would eliminate the need for vacuum and high-temperature processes.

  5. The effect of forming stresses on the sintering of ultra-fine Ce0.9Gd0.1O2-δ powders

    DEFF Research Database (Denmark)

    Glasscock, Julie; Esposito, Vincenzo; Foghmoes, Søren Preben Vagn

    2013-01-01

    good sinterability when there is a favourable particle packing. The effect of the applied stresses during forming (which produce different particle packing arrangements) was investigated by forging green bodies by different shaping techniques, including casting, and cold isostatic pressing. Samples...... formed with techniques that apply low levels of stress had a particle arrangement which significantly enhanced sintering at low temperature, compared to those prepared by high stress techniques. The sample geometry, heat treatment for organic removal and the initial density of the green body had...

  6. Uniaxial ratcheting behavior of sintered nanosilver joint for electronic packaging

    International Nuclear Information System (INIS)

    Chen, Gang; Yu, Lin; Mei, Yunhui; Li, Xin; Chen, Xu; Lu, Guo-Quan

    2014-01-01

    Uniaxial ratcheting behavior and the fatigue life of sintered nanosilver joint were investigated at room temperature. All tests were carried out under stress-controlled mode. Force–displacement data were recorded during the entire fatigue lifespan by a non-contact displacement detecting system. Effects of stress amplitude, mean stress, stress rate, and stress ratio on the uniaxial ratcheting behavior of the sintered nanosilver joint were discussed. Stress-life (S–N) curves of the sintered joints were also obtained. The Smith–Watson–Topper (SWT) model, the Gerber model and the modified Goodman model, all of which took effect of mean stress into consideration, were compared for predicting the fatigue life of the sintered joint. Both the ratcheting strain and its rate increased with increasing stress amplitude or mean stress. The increase in stress amplitude and mean stress both reduced the fatigue life of the sintered joint, while the fatigue life prolonged with the increase in stress rate and stress ratio. The modified Goodman model predicted the fatigue life of the sintered joints well

  7. Combustion of fuels with low sintering temperature

    Energy Technology Data Exchange (ETDEWEB)

    Dalin, D

    1950-08-16

    A furnace for the combustion of low sintering temperature fuel consists of a vertical fuel shaft arranged to be charged from above and supplied with combustion air from below and containing a system of tube coils extending through the fuel bed and serving the circulation of a heat-absorbing fluid, such as water or steam. The tube-coil system has portions of different heat-absorbing capacity which are so related to the intensity of combustion in the zones of the fuel shaft in which they are located as to keep all parts of the fuel charge below sintering temperature.

  8. Low temperature spark plasma sintering of YIG powders

    International Nuclear Information System (INIS)

    Fernandez-Garcia, L.; Suarez, M.; Menendez, J.L.

    2010-01-01

    A transition from a low to a high spin state in the magnetization saturation between 1000 and 1100 o C calcination temperature is observed in YIG powders prepared by oxides mixture. Spark plasma sintering of these powders between 900 and 950 o C leads to dense samples with minimal formation of YFeO 3 , opening the way to co-sintering of YIG with metals or metallic alloys. The optical properties depend on the sintering stage: low (high) density samples show poor (bulk) optical absorption.

  9. Enhanced pressureless bonding by Tin Doped Silver Paste at low sintering temperature

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Cheng-Xiang [School of Material Science and Engineering, and Tianjin Key Laboratory of Advanced Joining Technology, Tianjin University, Tianjin (China); Department of Material Science and Engineering, Virginia Tech (United States); Li, Xin, E-mail: xinli@tju.edu.cn [School of Material Science and Engineering, and Tianjin Key Laboratory of Advanced Joining Technology, Tianjin University, Tianjin (China); Lu, Guo-Quan [School of Material Science and Engineering, and Tianjin Key Laboratory of Advanced Joining Technology, Tianjin University, Tianjin (China); Department of Material Science and Engineering, Virginia Tech (United States); Mei, Yun-Hui [School of Material Science and Engineering, and Tianjin Key Laboratory of Advanced Joining Technology, Tianjin University, Tianjin (China)

    2016-04-13

    The nanosilver sintering die-attach technique has been a promising alternative for wide band gap semiconductors. However, it is less preferable in industry because of its high sintering temperature. Recently research has been initiated to develop transient liquid phase sintering (TLPS) solder paste for use in electronics packaging. In this article, in order to lower the sintering temperature of nanosilver paste, we develop a novel tin (up to 10 wt%) doped silver paste (TDSP) and a sintering profile with the highest processing temperature of 235 °C based on TLPS. Sintered TDSP is Ag/Ag{sub 3}Sn/Ag–Sn solid solution composites. The composites have a microstructure of Ag matrix grains reinforced by Ag{sub 3}Sn and Ag–Sn solid solution within the matrix grains. And this microstructure endows the sintered Ag+4%Sn with a pressureless bonding strength of 23 MPa. The improved mechanical properties of sintered TDSP are attributed to second-phase strengthening and solid solution strengthening mechanisms. However, the overmuch formation of brittle Ag{sub 3}Sn phase is the main reason resulting in sharp decrease of bonding strength when the Sn content over 5 wt%. The new TDSP technology is expected to be applicable to a wide range of power semiconductors devices, such as organic devices and printed circuit boards. Furthermore, it provides new strategies for low-temperature sintering.

  10. Nickel and Copper-Free Sintered Structural Steels Containing Mn, Cr, Si, and Mo Developed for High Performance Applications

    Directory of Open Access Journals (Sweden)

    Cias A.

    2017-03-01

    Full Text Available In an attempt to study the sinterability of potential high-strength nickel-free sintered structural steels containing Mn, Cr, Si and Mo compacts were prepared based on sponge and water atomised iron powders and on Astaloy prealloyed powders. To these were admixed ferromanganese, ferroslicon, and graphite. The samples were sintered at temperatures 1120 and 1250°C in laboratory tube furnaces in hydrogen, hydrogen-nitrogen atmospheres with dew points better than -60°C or in nitrogen in a semiclosed container in a local microatmosphere. After sintering the samples were slowly cooled or sinterhardened. Generally resultant microstructures were inhomogeneous, consisted of pearlite/ bainite/martensite, but were characterised by an absence of oxide networks. Sintering studies performed over a range of compositions have shown that superior strength, ranging beyond 900 MPa, along with reasonable tensile elongation, can be achieved with these new steels.

  11. Preparation and electromagnetic properties of low-temperature sintered ferroelectric-ferrite composite ceramics

    International Nuclear Information System (INIS)

    Yue Zhenxing; Chen Shaofeng; Qi Xiwei; Gui Zhilun; Li Longtu

    2004-01-01

    For the purpose of multilayer chip EMI filters, the new ferroelectric-ferrite composite ceramics were prepared by mixing PMZNT relaxor ferroelectric powder with composition of 0.85Pb(Mg 1/3 Nb 2/3 )O 3 -0.1Pb(Ni 1/3 Nb 2/3 )O 3 -0.05PbTiO 3 and NiCuZn ferrite powder with composition of (Ni 0.20 Cu 0.20 Zn 0.60 )O(Fe 2 O 3 ) 0.97 at low sintering temperatures. A small amount of Bi 2 O 3 was added to low sintering temperature. Consequently, the dense composite ceramics were obtained at relative low sintering temperatures, which were lower than 940 deg. C. The X-ray diffractometer (XRD) identifications showed that the sintered ceramics retained the presence of distinct ferroelectric and ferrite phases. The sintering studies and scanning electron microscope (SEM) observations revealed that the co-existed two phases affect the sintering behavior and grain growth of components. The electromagnetic properties, such as dielectric constant and initial permeability, change continuously between those of two components. Thus, the low-temperature sintered ferroelectric-ferrite composite ceramics with tunable electromagnetic properties were prepared by adjusting the relative content of two components. These materials can be used for multilayer chip EMI filters with various properties

  12. Effects of forming temperature and sintering rate to the final properties of FeCuAl powder compacts formed through uniaxial die compaction process

    Science.gov (United States)

    Rahman, M. M.; Ismail, M. A.; Sopyan, I.; Rahman, H. Y.

    2018-01-01

    This paper presents the outcomes of an experimental investigation on the effects of forming temperature and sintering schedule to the final characteristics of FeCuAl powder mass formed at different temperature and sintered at different schedule. A lab-scale uni-axial die compaction rig was designed and fabricated which enabled the compaction of powder mass at room temperature as well as elevated temperature. Iron (Fe) powder ASC 100.29 was mechanically mixed with other elemental powders, namely copper (Cu), and aluminum (Al) for 60 minutes and compacted at three different temperature, i.e., 30°C, 150°C, and 200°C by applying 425 MPa of simultaneous downward and upward axial loading to generate green compacts. The as-pressed samples were inspected visually and the defect-free green compacts were subsequently sintered in an argon gas fired furnace at 800°C for 60 min at three different heating/cooling rates, i.e., 5, 10, and 15°C/min, respectively. The sintered samples were then characterised for their physical, electrical, and mechanical properties. The microstructures of the sintered samples were also analysed. The results revealed that a forming temperature of 150°C and a sintering rate of 10°C/min could produce a product with better characteristics.

  13. Coarsening-densification transition temperature in sintering of uranium dioxide

    International Nuclear Information System (INIS)

    Balakrishna, Palanki; Narasimha Murty, B.; Chakraborthy, K.P.; Jayaraj, R.N.; Ganguly, C.

    2001-01-01

    The concept of coarsening-densification transition temperature (CDTT) has been proposed to explain the experimental observations of the study of sintering undoped uranium dioxide and niobia-doped uranium dioxide powder compacts in argon atmosphere in a laboratory tubular furnace. The general method for deducing CDTT for a given material under the prevailing conditions of sintering and the likely variables that influence the CDTT are described. Though the present work is specific in nature for uranium dioxide sintering in argon atmosphere, the concept of CDTT is fairly general and must be applicable to sintering of any material and has immense potential to offer advantages in designing and/or optimizing the profile of a sintering furnace, in the diagnosis of the fault in the process conditions of sintering, and so on. The problems of viewing the effect of heating rate only in terms of densification are brought out in the light of observing the undesirable phenomena of coring and bloating and causes were identified and remedial measures suggested

  14. [Influence of compaction pressure and pre-sintering temperature on the machinability of zirconia ceramic].

    Science.gov (United States)

    Huang, Huil; Li, Jing; Zhang, Fuqiang; Sun, Jing; Gao, Lian

    2011-10-01

    In order to make certain the compaction pressure as well as pre-sintering temperature on the machinability of the zirconia ceramic. 3 mol nano-size 3 mol yttria partially stabilized zirconia (3Y-TZP) powder were compacted at different isostatic pressure and sintered at different temperature. The cylindrical surface was traversed using a hard metal tool. Surface and edge quality were checked visually using light stereo microscopy. Pre-sintering temperature had the obviously influence on the machinability of 3Y-TZP. The cutting surface was smooth, and the integrality of edge was better when the pre-sintering temperature was chosen between 800 degrees C to 900 degrees C. Compaction pressure showed only a weak influence on machinability of 3Y-TZP blanks, but the higher compaction pressure result in the poor surface quality. The best machinability of pre-sintered zirconia body was found for 800-900 degrees C pre-sintering temperature, and 200-300 MPa compaction pressure.

  15. Effect of sintering temperature on magnetization and Mössbauer parameters of cobalt ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, Grish, E-mail: grishphysics@gmail.com [Department of Physics, DSB Campus Kumaun University, Nainital 263002, Uttarakhand (India); Srivastava, R.C. [Department of Physics, GB Pant University of Agriculture and Technology, Pantnagar, Uttarakhand (India); Reddy, V.R. [UGC-DAE CSR, Khandwa Road, DAVV Campus, Indore 452017, Madhya Pradesh (India); Agrawal, H.M. [Department of Physics, GB Pant University of Agriculture and Technology, Pantnagar, Uttarakhand (India)

    2017-04-01

    Nanoparticles of cobalt ferrite of different particle size were prepared using sol-gel method. Powder X-ray diffraction (XRD), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM) and Mössbauer spectroscopy techniques were employed for characterization of nanoparticles for structural and magnetic properties. The particle size and saturation magnetization increase with the increase of sintering temperature. The saturation magnetization increases from 53 to 85 emu/g as the sintering temperature increases from 300 to 900 °C. The remanence increases while the coercivity decreases slightly with the increase of sintering temperature. Mössbauer spectra show the ferrimagnetic nature of all the samples and the cation distribution strictly depends on the sintering temperature. The stoichiometry of the cobalt ferrite formed was estimated to be (Co{sup 2+}{sub x}Fe{sup 3+}{sub 1−x})[Co{sup 2+}{sub 1−x}Fe{sup 3+}{sub 1+x}]O{sub 4}, based on our Mössbauer analysis. The inverse spinel structure gradually transforms towards the normal spinel structure as the sintering temperature increases. - Highlights: • After 500 °C sintering the cobalt ferrite shows complete crystallization. • An inversion sintering temperature between 900 °C and 1200 °C is proposed where the Fe{sup +3} again starts migration from B site to A site. • Sintering temperature is one of the prime factors which effect the magnetization and cation distribution between two sites A and B.

  16. Modeling of sintering of functionally gradated materials

    International Nuclear Information System (INIS)

    Gasik, M.; Zhang, B.

    2001-01-01

    The functionally gradated materials (FGMs) are distinguished from isotropic materials by gradients of composition, phase distribution, porosity, and related properties. For FGMs made by powder metallurgy, sintering control is one of the most important factors. In this study sintering process of FGMs is modeled and simulated with a computer. A new modeling approach was used to formulate equation systems and the model for sintering of gradated hard metals, coupled with heat transfer and grain growth. A FEM module was developed to simulate FGM sintering in conventional, microwave and hybrid conditions, to calculate density, stress and temperature distribution. Behavior of gradated WC-Co hardmetal plate and cone specimens was simulated for various conditions, such as mean particle size, green density distribution and cobalt gradation parameter. The results show that the deformation behavior and stress history of graded powder compacts during heating, sintering and cooling could be predicted for optimization of sintering process. (author)

  17. Preparation of silicon carbide/carbon fiber composites through high-temperature spark plasma sintering

    Directory of Open Access Journals (Sweden)

    Ehsan Ghasali

    2017-12-01

    Full Text Available This study discusses the potentials of spark plasma sintering (SPS integrated with high temperature process that can enable sintering of SiC/Cf composites without any sintering aids. The random distribution of carbon fibers was obtained through mixing composite components in ethanol by using a shaker mill for 10 min. The corresponding sintering process was carried out at 1900 and 2200 °C with 50 MPa pressure applied at maximum temperature. The results showed that 89 ± 0.9 and 97 ± 0.8% of the theoretical density can be obtained for sintering temperatures of 1900 and 2200 °C, respectively. The densification curves were plotted to monitor sintering behavior with punch displacement changes. The appropriate bonding between SiC particles and carbon fibers was detected using FE-SEM for sample which was sintered at 2200 °C. The clear maximum in hardness (2992 ± 33 Vickers, bending strength (427 ± 26 MPa and fracture toughness (4.2 ± 0.3 MPa m1/2 were identified for sample sintered at 2200 °C. XRD investigations supposed that SiC and carbon were the only crystalline phases in both sintered samples.

  18. Bonding evolution with sintering temperature in low alloyed steels with chromium

    Directory of Open Access Journals (Sweden)

    Fuentes-Pacheco L.

    2009-01-01

    Full Text Available At present, high performance PM steels for automotive applications follow a processing route that comprises die compaction of water-atomized powder, followed by sintering and secondary treatments, and finishing operations. This study examines Cr-alloyed sintered steels with two level of alloying. In chromium-alloyed steels, the surface oxide on the powder is of critical importance for developing the bonding between the particles during sintering. Reduction of this oxide depends mainly on three factors: temperature, dew point of the atmosphere, and carbothermic reduction provided by the added graphite. The transformation of the initial surface oxide evolves sequence as temperature increases during sintering, depending on the oxide composition. Carbothermic reduction is supposed to be the controlling mechanism, even when sintering in hydrogen-containing atmospheres. The effect of carbothermic reduction can be monitored by investigating the behavior of the specimens under tensile testing, and studying the resultant fracture surfaces.

  19. Improved microstructure and thermoelectric properties of iodine doped indium selenide as a function of sintering temperature

    Science.gov (United States)

    Dhama, Pallavi; Kumar, Aparabal; Banerji, P.

    2018-04-01

    In this paper, we explored the effect of sintering temperature on the microstructure, thermal and electrical properties of iodine doped indium selenide in the temperature range 300 - 700 K. Samples were prepared by a collaborative process of vacuum melting, ball milling and spark plasma sintering at 570 K, 630 K and 690 K. Single phase samples were obtained at higher sintering temperature as InSe is stable only at lower temperature. With increasing sintering temperature, densities of the samples were found to improve with larger grain size formation. Negative values of Seebeck coefficient were observed which indicates n-type carrier transport. Seebeck coefficient increases with sintering temperature and found to be the highest for the sample sintered at 690 K. Thermal conductivity found to be lower in the samples sintered at lower temperatures. The maximum thermoelectric figure of merit found to be ˜ 1 at 700 K due to the enhanced power factor as a result of improved microstructure.

  20. The effect of various sintering temperature on used refractory towards its physical properties

    Science.gov (United States)

    Sudibyo; Wulandari, Y. R.; Amin, M.; Azhar

    2018-01-01

    The used magnesia refractory from the kiln of cement industry was successfully recycled to new refractory using Kaolin as an adhesive. In this work, the temperatures of sintering were varied from 1000°C to 1500°C. The result shows that the increment temperature effects in sintering process will enhance refractory physical properties such as bulk density, cold crushing strength or pressure strength and thermal conductivity. Meanwhile, the porosity was decreased as the increase of the sintering temperature.

  1. Effect of sintering temperature and heating mode on consolidation of ...

    Indian Academy of Sciences (India)

    ratures ranging from 570–630 ◦C. Microwave sintering at a heating rate of as high as 22◦. C/min resulted in ... The effect of heating mode and sintering temperature are discussed .... the compacts. This is attributed to the Zn evaporated from the.

  2. Effect of Sintering Temperature on the Properties of Aluminium-Aluminium Oxide Composite Materials

    Directory of Open Access Journals (Sweden)

    Dewan Muhammad Nuruzzaman

    2016-12-01

    Full Text Available In this study, aluminium-aluminium oxide (Al-Al2O3 metal matrix composites of different weight percentage reinforcements of aluminium oxide were processed at different sintering temperatures. In order to prepare these composite specimens, conventional powder metallurgy (PM method was used. Three types specimens of different compositions such as 95%Al+5%Al2O3, 90%Al+10%Al2O3 and 85%Al+15%Al2O3 were prepared under 20 Ton compaction load. Then, all the specimens were sintered in a furnace at two different temperatures 550oC and 580oC. In each sintering process, two different heating cycles were used. After the sintering process, it was observed that undistorted flat specimens were successfully prepared for all the compositions. The effects of sintering temperature and weight fraction of aluminium oxide particulates on the density, hardness and microstructure of Al-Al2O3 composites were observed. It was found that density and hardness of the composite specimens were significantly influenced by sintering temperature and percentage aluminium oxide reinforcement. Furthermore, optical microscopy revealed that almost uniform distribution of aluminium oxide reinforcement within the aluminium matrix was achieved.

  3. Effect of temperature on sintered austeno-ferritic stainless steel microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Munez, C.J. [Departamento de Ciencia e Ingenieria de Materiales, Escuela Superior de Ciencias Experimentales y Tecnologia, Universidad Rey Juan Carlos, 28933 Mostoles, Madrid (Spain)], E-mail: claudio.munez@urjc.es; Utrilla, M.V.; Urena, A. [Departamento de Ciencia e Ingenieria de Materiales, Escuela Superior de Ciencias Experimentales y Tecnologia, Universidad Rey Juan Carlos, 28933 Mostoles, Madrid (Spain)

    2008-09-08

    The influence of temperature on microstructural changes of sintered austeno-ferritic steels has been investigated. PM stainless steels have been obtained by sintering mixtures of austenitic and ferritic stainless steel powders. Only temperature-induced phase transformation was observed in austenite, as a result of elements interdiffusion between both phases. Microstructural characterization was completed with atomic force microscopy (AFM) and micro- and nano-indentation test, it is revealed an increase in the hardness with respect to the solutionized materials.

  4. Effects of pressure and temperature on sintering of Cr-doped Al2O3 by pulsed electric current sintering process

    Science.gov (United States)

    Dang, K. Q.; Nanko, M.

    2011-03-01

    The aluminium oxide crystal, Al2O3, which contains a small amount of chromium, Cr, is called ruby. Pulsed electric current sintering (PECS) was applied to sinter ruby polycrystals. Cr2O3-Al2O3 powder mixture prepared by drying an aqueous slurry containing amounts of Al2O3 and Cr(NO3)3 was consolidated by PECS process. The PECS process was performed in vacuum at sintering temperature raging from 1100 to 1300°C with heating rate of 2 K/min under applied uniaxial pressure varied from 40 to 100 MPa. This study found that highly densified and transparent Cr-doped Al2O3 can be obtained by the PECS process with the high applied pressure at sintering temperature of 1200°C.

  5. The effect of sintering temperature on the 3Y-TZP co-doped with equimolar addition of the yttria and niobia

    International Nuclear Information System (INIS)

    Fonseca, Flavia Baccaro; Dorat, Daniele Ramos; Melo, Francisco Cristovao Lourenco de; Piorino Neto, Francisco; Reis, Danieli Aparecida

    2010-01-01

    The aim of this work is to identify the better sintering temperature to densify zirconia co-doped with yttria and niobia and to verify the existence of the stable tetragonal phase (t´) under applied stress at room temperature to be applied as a TBC material. Four compositions with equimolar addition of yttria and niobia in the 3Y-TZP were produced, 13.0 %, 14.5 %, 16.0 % and 17.5 %. The mixtures were prepared in high energy ball milling for 10 minutes and the samples prepared on uniaxial and isostatic pressing. The selected sintering temperatures were 1500 deg C, 1550 deg C, 1600 deg C and 1650 deg C, for 1 hour. Analysis of conventional and high resolution X-Ray Diffraction and measures of specific mass by Archimedes method were performed. Through measures of the specific mass, the best sintering temperature was 1550 deg C, with relative specific mass above 95 %. The x-ray diffraction analysis indicate a probable existence of t´ in all samples. (author)

  6. Influence of sintering temperature on screen printed Cu2ZnSnS4 (CZTS) films

    International Nuclear Information System (INIS)

    Wang Yu; Huang Yanhua; Lee, Alex Y.S.; Wang Chiou Fu; Gong Hao

    2012-01-01

    Highlights: ► The influences of sintering temperature on structure and properties of screen printed Cu 2 ZnSnS 4 (CZTS) were investigated. ► It was found that the direct optical band gap increased with increasing the sintering temperature. ► The screen printed CZTS film after sintering at 450 °C had a high photosensitivity (G i − G d )/G d of 14%. ► The hexagonal CuS phase aggregated after sintering at 500 °C and higher temperature. - Abstract: Screen printing is a useful and simple method for coating layers of several solar materials, but care must be taken in preparing stoichiometric CZTS film due to its instability at a high processing temperature and a small chemical potential domain. This paper reports screen printing prepared CZTS films and the influence of sintering temperature on CZTS properties. The thermostability, structural, electronic and optical properties are studied. The direct optical band gap energies of the films vary from 1.39 to 1.60 eV, while the resistivities change from 830 to 6 Ω cm after sintering at different temperatures up to 550 °C. A high photosensitivity of 14% is achieved for the sample sintered at 450 °C. The phenomena observed are also discussed.

  7. Effects of sintering time and temperature to the characteristics of FeCrAl powder compacts formed at elevated temperature

    Science.gov (United States)

    Rahman, M. M.; Rahman, H. Y.; Awang, M. A. A.; Sopyan, I.

    2018-01-01

    This paper presents the outcomes of an experimental investigation on the effect of sintering schedule, i.e., holding time and temperature to the final properties of FeCrAl powder compacts prepared through uniaxial die compaction process at above room temperature. The feedstock was prepared by mechanically mixing iron powder ASC 100.29 with chromium (22 wt%) and aluminium (11 wt%) for 30 min at room temperature. A cylindrical shape die was filled with the powder mass and heated for one hour for uniform heating of the die assembly together with the powder mass. Once the temperature reached to the setup temperature, i.e., 150°C, the powder mass was formed by applying an axial pressure of 425 MPa simultaneously from upward and downward directions. The as-pressed green compacts were then cooled to room temperature and subsequently sintered in argon gas fired furnace at a rate of 5°C/min for three different holding times, i.e., 30, 60, and 90 min at three different sintering temperatures, i.e., 800, 900, and 1000°C. The sintered samples were characterized for their density, electrical resistivity, bending strength, and microstructure. The results revealed that the sample sintered at 1000°C for 90 min achieved the better characteristics.

  8. Room Temperature Electrochemical Sintering of Zn Microparticles and Its Use in Printable Conducting Inks for Bioresorbable Electronics.

    Science.gov (United States)

    Lee, Yoon Kyeung; Kim, Jeonghyun; Kim, Yerim; Kwak, Jean Won; Yoon, Younghee; Rogers, John A

    2017-10-01

    This study describes a conductive ink formulation that exploits electrochemical sintering of Zn microparticles in aqueous solutions at room temperature. This material system has relevance to emerging classes of biologically and environmentally degradable electronic devices. The sintering process involves dissolution of a surface passivation layer of zinc oxide in CH 3 COOH/H 2 O and subsequent self-exchange of Zn and Zn 2+ at the Zn/H 2 O interface. The chemical specificity associated with the Zn metal and the CH 3 COOH/H 2 O solution is critically important, as revealed by studies of other material combinations. The resulting electrochemistry establishes the basis for a remarkably simple procedure for printing highly conductive (3 × 10 5 S m -1 ) features in degradable materials at ambient conditions over large areas, with key advantages over strategies based on liquid phase (fusion) sintering that requires both oxide-free metal surfaces and high temperature conditions. Demonstrations include printed magnetic loop antennas for near-field communication devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Sintering of Kernel UO2 for High Temperature Reactor Fuel

    International Nuclear Information System (INIS)

    Sukarsono; Dwi-Heru-Sucahyo; Hidayati; Evi-Hertiviana; Bambang-Sugeng

    2000-01-01

    Sintering investigation of UO 2 gel has been done. The gel was preparedthrough two ways. The first, gel was produced using PVA as additive agent.The second gel was produced using HMTA and Urea as additive agent. From thepreparation of gel, the PVA method better than the urea - HMTA method,because was not necessary the cold temperature for sol preparation and alsowas not necessary the hot temperature for gelation process. After nextprocessing, the sintered gel of gel through PVA, also better than HMTAprocess. (author)

  10. On The Stress Free Deformation Of Linear FGM Interface Under Constant Temperature

    Directory of Open Access Journals (Sweden)

    Ganczarski Artur

    2015-09-01

    Full Text Available This paper demonstrates the stress free thermo-elastic problem of the FGM thick plate. Existence of such a purely thermal deformation is proved in two ways. First proof is based on application of the Iljushin thermo-elastic potential to displacement type system of equations. This reduces 3D problem to the plane stress state problem. Next it is shown that the unique solution fulfils conditions of simultaneous constant temperature and linear gradation of thermal expansion coefficient. Second proof is based directly on stress type system of equations which straightforwardly reduces to compatibility equations for purely thermal deformation. This occurs if only stress field is homogeneous in domain and at boundary. Finally an example of application to an engineering problem is presented.

  11. Coercivity enhancement of Dy-free Nd–Fe–B sintered magnets by intergranular adding Ho{sub 63.4}Fe{sub 36.6} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Liping; Ma, Tianyu, E-mail: maty@zju.edu.cn; Wu, Chen; Zhang, Pei; Liu, Xiaolian; Yan, Mi, E-mail: mse_yanmi@zju.edu.cn

    2016-01-01

    High coercivity Nd–Fe–B sintered magnets serving in high-temperature environments always consume expensive and scarce heavy rare-earth Dy, which has simulated considerable interest to reduce Dy usage. In this work, coercivity of Dy-free magnets was investigated through intergranular adding eutectic Ho{sub 63.4}Fe{sub 36.6} powders. The coercivity increases gradually up to 4 wt% Ho{sub 63.4}Fe{sub 36.6} addition, however the remanence starts to deteriorate drastically as the addition is over 2.5 wt%. Coercivity above 18.0 kOe is obtained at the expense of a slight reduction in remanence through optimizing the addition amount and sintering conditions. The coercivity enhancement is explained through microstructural observations and elemental distribution analysis. (i) (Nd, Ho){sub 2}Fe{sub 14}B shell forms in the outer region of 2:14:1 phase grains, strengthening the local magnetic anisotropy filed, (ii) RE-rich grain boundary phase with low Fe content is thickened, weakening the magnetic coupling between adjacent 2:14:1 phase grains, and (iii) 2:14:1 phase grains are refined upon lowering sintering temperature, reducing the microstructural defects and the stray fields aroused from neighboring grains. - Highlights: • Eutectic Ho{sub 63.4}Fe{sub 36.6} powders were intergranular added to NdFeB sintered magnets. • The doped Dy-free magnet possessed coercivity of 18.0 kOe, remanence of 13.15 kGs. • (Nd, Ho){sub 2}Fe{sub 14}B shell formed in the surface of the matrix grains, increasing the H{sub A}. • Thick grain boundaries with low Fe content formed, decoupling the matrix grains. • By sintered at lower temperature, the matrix phase grains were refined.

  12. The behaviour of doped elements in tungsten sintering

    International Nuclear Information System (INIS)

    Scheiner, L.

    1975-01-01

    The lecture deals with the occurrence of bubbles in the sintering of doped tungsten. The doping of tungsten normally takes place by the addition of K, Al and Si compounds. A part of the doping substances disappears with sintering which can easily be proved by chemical analyses. In the process described here, the evaporation is non-destructively observed during sintering with an absorption spectrometer. Temperature, absorption slope and sintering resistance are recorded. The evaluation of the absorption curves gives a diffusion equation. The discussion of the curves resulted so far in that a doped substance compound sets free the single elements of the compound at high temperature. Aluminium and silicon diffuse out. In the case of aluminium, the activation energy can be determined. (GSC/LH) [de

  13. Effects of Sintering Temperature on the Density And Porosity of ...

    African Journals Online (AJOL)

    Effects of sintering temperature on the density and porosity of sodium chloride preforms for alu- minium foam manufacturing have been investigated. Cold pressed salt preforms were sintered at 30, 760 and 790 and di erent times ranging between 6- 18 hours in a carbolite furnace at a heating rate of 5/minute. The Results of ...

  14. Modeling Macroscopic Shape Distortions during Sintering of Multi-layers

    DEFF Research Database (Denmark)

    Tadesse Molla, Tesfaye

    as to help achieve defect free multi-layer components. The initial thickness ratio between the layers making the multi-layer has also significant effect on the extent of camber evolution depending on the material systems. During sintering of tubular bi-layer structures, tangential (hoop) stresses are very...... large compared to radial stresses. The maximum value of hoop stress, which can generate processing defects such as cracks and coating peel-offs, occurs at the beginning of the sintering cycle. Unlike most of the models defining material properties based on porosity and grain size only, the multi...... (firing). However, unintended features like shape instabilities of samples, cracks or delamination of layers may arise during sintering of multi-layer composites. Among these defects, macroscopic shape distortions in the samples can cause problems in the assembly or performance of the final component...

  15. Thermal stress in UO2 during sintering as a possible cause of cracking

    International Nuclear Information System (INIS)

    Aragones, M.A.; Tobias, E.; Tulli, I.; Naquid, C.

    1980-01-01

    Thermal stresses arising during sintering of UO 2 pellets are evaluated numerically by the solution of coupled equations for heat transfer through the sample. Results are compared with those of a semiempirical approach reported in the literature. Better insight into the heat transfer process is obtained from the solution of the coupled equations rather than from the empirical approach. The two approaches give different results for the thermal stresses arising during sintering. The use of heating and cooling rates of approximately 0.5 0 Cs -1 is found to prevent the possibility of cracking in UO 2 pellets of radii varying from 0.6 cm to 1 cm during sintering in hydrogen or argon-hydrogen atmospheres. (author)

  16. Low temperature synthesis & characterization of lead-free BCZT ceramics using molten salt method

    Science.gov (United States)

    Jai Shree, K.; Chandrakala, E.; Das, Dibakar

    2018-04-01

    Piezoelectric properties are greatly influenced by the synthesis route, microstructure, stoichiometry of the chemical composition, purity of the starting materials. In this study, molten salt method was used to prepare lead-free BCZT ceramics. Molten salt method is one of the simplestmethods to prepare chemically-purified, single phase powders in high yield often at lower temperatures and shorten reaction time. Calcination of the molten salt synthesized powders resulted in asingle-phase perovskite structure at 1000 °C which is ˜ 350 °C less than the conventional solid-sate reaction method. With increasing calcination temperature the average template size was increased (˜ 0.5-2 µm). Formation of well dispersive templates improves the sinterability at lower temperatures. Lead-free BCZT ceramics sintered at 1500 °C for 2 h resulted in homogenous and highly dense microstructure with ˜92% of the theoretical density and a grain size of ˜ 35 µm. This highly dense microstructure could enhance the piezoelectric properties of the system.

  17. Influence of Sintering Temperature on Hardness and Wear Properties of TiN Nano Reinforced SAF 2205

    Science.gov (United States)

    Oke, S. R.; Ige, O. O.; E Falodun, O.; Obadele, B. A.; Mphalele, M. R.; Olubambi, P. A.

    2017-12-01

    Conventional duplex stainless steel degrade in wear and mechanical properties at high temperature. Attempts have been made by researchers to solve this problems leading to the dispersion of second phase particles into duplex matrix. Powder metallurgy methods have been used to fabricate dispersion strengthened steels with a challenge of obtaining fully dense composite and grain growth. This could be resolved by appropriate selection of sintering parameters especially temperature. In this research, spark plasma sintering was utilized to fabricate nanostructured duplex stainless steel grade SAF 2205 with 5 wt.% nano TiN addition at different temperatures ranging from 1000 °C to 1200 °C. The effect of sintering temperature on the microstructure, density, hardness and wear of the samples was investigated. The results showed that the densities and grain sizes of the sintered nanocomposites increased with increasing the sintering temperature. The microstructures reveal ferrite and austenite grains with fine precipitates within the ferrite grains. The study of the hardness and wear behaviors, of the samples indicated that the optimum properties were obtained for the sintering temperature of 1150 °C.

  18. Effect of sintering temperature on microstructure and performance of LSM-YSZ composite cathodes

    DEFF Research Database (Denmark)

    Juhl Jørgensen, M.; Primdahl, S.; Bagger, C.

    2001-01-01

    the sintering temperature to 1050 degreesC the increase in the polarisation resistance was counterbalanced by a decrease in the series resistance, The optimum sintering temperature with respect to the initial performance is assumed to be where good physical and electrical contact between LSM and YSZ is obtained...

  19. Comparative sinterability of combustion synthesized and commercial titanium carbides

    International Nuclear Information System (INIS)

    Manley, B.W.

    1984-11-01

    The influence of various parameters on the sinterability of combustion synthesized titanium carbide was investigaged. Titanium carbide powders, prepared by the combustion synthesis process, were sintered in the temperature range 1150 to 1600 0 C. Incomplete combustion and high oxygen contents were found to be the cause of reduced shrinkage during sintering of the combustion syntheized powders when compared to the shrinkage of commercial TiC. Free carbon was shown to inhibit shrinkage. The activation energy for sintering was found to depend on stoichiometry (C/Ti). With decreasing C/Ti, the rate of sintering increased. 29 references, 16 figures, 13 tables

  20. Effect of temperature on electrical conductance of inkjet-printed silver nanoparticle ink during continuous wave laser sintering

    International Nuclear Information System (INIS)

    Lee, Dae-Geon; Kim, Dong Keun; Moon, Yoon-Jae; Moon, Seung-Jae

    2013-01-01

    To determine the effect of temperature on the specific electrical conductance of inkjet-printed ink during continuous wave laser sintering, the temperature of the sintered ink was estimated. The ink, which contained 34 wt.% silver nanoparticles with an average size of approximately 50 nm, was inkjet-printed onto a liquid crystal display glass substrate. The printed ink was irradiated with a 532 nm continuous wave laser for 60 s with various laser intensities. During laser irradiation, the in-situ electrical conductance of the sintered ink was measured to estimate the transient thermal conductivity of the ink. The electrical conductance and thermal conductivity of the ink was coupled to obtain the transient temperature by applying the Wiedemann–Franz law to a two-dimensional transient heat conduction equation. The electrical conductance of laser-sintered ink was highly dependent on the sintering temperature of the ink. - Highlights: • The in-situ electrical conductance was measured during the laser sintering process. • Wiedemann–Franz law coupled the electrical conductance with transient temperature. • The transient temperature of the laser-sintered Ag nanoparticle ink was estimated

  1. A study for preparation of Ti-Fe coating by high temperature sintering method

    International Nuclear Information System (INIS)

    Hu Yonghai

    1995-03-01

    A new technology for preparation of Ti-Fe alloy coating on the steel substrate was investigated by high temperature sintering method. The pulp of titanium hydride powder was coated on the cleaned steel substrate, then heated in vacuum for desorption of hydrogen and sintered at high temperature in argon atmosphere for forming Ti-Fe alloy coating. The electron probe analysis shows a strong coherent diffusion layer formed between the elements of titanium and iron. X-ray diffraction analysis indicates that the coating consists of α-Ti, TiFe and TiFe 2 three phases. The wear resistance of the coating is twice as large as that of grey cast iron and the hardness determined can reach 7300∼7800 N/mm 2 . The coating is almost porous free. The corrosion potential increases with the time and the corrosion resistance is near to that of pure titanium. The working life of ridge-type diaphragm valve coated by Ti-Fe alloy for carbonization tower of alkali factories is five times higher than that of valve made of grey cast iron. Therefore, this new technology can be widely used in metallurgical, chemical and nuclear industries. (9 figs., 10 tabs.)

  2. Effect of sintering temperature on the densification of B4C pellets

    International Nuclear Information System (INIS)

    Gomide, R.G.; Durazzo, M.; Riella, H.G.

    1990-01-01

    Boron is largely used in several types of nuclear reactors control and safety systems. In the majority of these applications sintered boron carbide pellets are used. Near stoichiometric B 4 C hardly densifies during pressureless sintering. As a starting point of an overall program to produce > 70% TD B 4 C pellets pressing parameters have been studied for further study of the influence of sintering temperature in the densification of this ceramic material. Dilatometric analyses show that sintering starts at 1760 0 C for the F 1200 ESK - type boron carbide powders. Moreover, the sintering experiments show that up to 92% TD pellets can be obtained. (author) [pt

  3. Temperature Field Simulation of Powder Sintering Process with ANSYS

    Science.gov (United States)

    He, Hongxiu; Wang, Jun; Li, Shuting; Chen, Zhilong; Sun, Jinfeng; You, Ying

    2018-03-01

    Aiming at the “spheroidization phenomenon” in the laser sintering of metal powder and other quality problems of the forming parts due to the thermal effect, the finite element model of the three-dimensional transient metal powder was established by using the atomized iron powder as the research object. The simulation of the mobile heat source was realized by means of parametric design. The distribution of the temperature field during the sintering process under different laser power and different spot sizes was simulated by ANSYS software under the condition of fully considering the influence of heat conduction, thermal convection, thermal radiation and thermophysical parameters. The influence of these factors on the actual sintering process was also analyzed, which provides an effective way for forming quality control.

  4. Mineral Phases and Release Behaviors of As in the Process of Sintering Residues Containing As at High Temperature

    Directory of Open Access Journals (Sweden)

    Xingrun Wang

    2014-01-01

    Full Text Available To investigate the effect of sintering temperature and sintering time on arsenic volatility and arsenic leaching in the sinter, we carried out experimental works and studied the structural changes of mineral phases and microstructure observation of the sinter at different sintering temperatures. Raw materials were shaped under the pressure of 10 MPa and sintered at 1000~1350°C for 45 min with air flow rate of 2000 mL/min. The results showed that different sintering temperatures and different sintering times had little impact on the volatilization of arsenic, and the arsenic fixed rate remained above 90%; however, both factors greatly influenced the leaching concentration of arsenic. Considering the product’s environmental safety, the best sintering temperature was 1200°C and the best sintering time was 45 min. When sintering temperature was lower than 1000°C, FeAsS was oxidized into calcium, aluminum, and iron arsenide, mainly Ca3(AsO42 and AlAsO4, and the arsenic leaching was high. When it increased to 1200°C, arsenic was surrounded by a glass matrix and became chemically bonded inside the matrix, which lead to significantly lower arsenic leaching.

  5. Effect Of Compaction Pressure And Sintering Temperature On The Liquid Phase Sintering Behavior Of Al-Cu-Zn Alloy

    Directory of Open Access Journals (Sweden)

    Lee S.H.

    2015-06-01

    Full Text Available The liquid phase sintering characteristics of Al-Cu-Zn alloy were investigated with respect to various powder metallurgy processing conditions. Powders of each alloying elements were blended to form Al-6Cu-5Zn composition and compacted with pressures of 200, 400, and 600 MPa. The sintering process was performed at various temperatures of 410, 560, and 615°C in N2 gas atmosphere. Density and micro-Vickers hardness measurements were conducted at different processing stages, and transverse rupture strength of sintered materials was examined for each condition, respectively. The microstructure was characterized using optical microscope and scanning electron microscopy. The effect of Zn addition on the liquid phase sintering behavior during P/M process of the Al-Cu-Zn alloy was also discussed in detail.

  6. The effects of high temperature and fiber diameter on the quasi static compressive behavior of metal fiber sintered sheets

    Energy Technology Data Exchange (ETDEWEB)

    Song, Weidong, E-mail: swdgh@bit.edu.cn [State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081 (China); Liu, Ge [State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081 (China); Wang, Jianzhong; Tang, Huiping [State Key Laboratory of Porous Metal Materials, Northwest Institute for Non-ferrous Metal Research, Xi’an 710016 (China)

    2017-04-06

    The compressive mechanical properties of the sintered sheets of continuous stainless steel fibers with different fiber diameters (8 µm, 12 µm, 28 µm) are investigated at temperatures from 298 K to 1073 K. The stress-strain curves of metal fiber sintered sheet (MFSS) are obtained by testing under uniaxial compression and 0.2% offset yield stress are determined. Inner micro-structures of the material are revealed by using scanning electron microscope (SEM) and microscopic computer tomography. The results indicates that fabrication technique and porosity are two principle factors affecting the yield strength of MFSS and the strength of MFSS is insensitive to the temperature below 873 K while softening occurs at temperature 1073 K. At relative high porosity (e.g. 77%), the material with small diameter fibers tends to have higher yield strength while at low porosity, MFSS's yield strength becomes high with the increase of the fiber diameter, which is probably attributed to the joint size, the surface appearance of fibers and prehardening generated during the manufacturing of MFSS. A simplified structure model taking joint size into consideration is established to explain the influence of the joint size on the yield strength of MFSS.

  7. High coercivity, anisotropic, heavy rare earth-free Nd-Fe-B by Flash Spark Plasma Sintering.

    Science.gov (United States)

    Castle, Elinor; Sheridan, Richard; Zhou, Wei; Grasso, Salvatore; Walton, Allan; Reece, Michael J

    2017-09-11

    In the drive to reduce the critical Heavy Rare Earth (HRE) content of magnets for green technologies, HRE-free Nd-Fe-B has become an attractive option. HRE is added to Nd-Fe-B to enhance the high temperature performance of the magnets. To produce similar high temperature properties without HRE, a crystallographically textured nanoscale grain structure is ideal; and this conventionally requires expensive "die upset" processing routes. Here, a Flash Spark Plasma Sintering (FSPS) process has been applied to a Dy-free Nd 30.0 Fe 61.8 Co 5.8 Ga 0.6 Al 0.1 B 0.9 melt spun powder (MQU-F, neo Magnequench). Rapid sinter-forging of a green compact to near theoretical density was achieved during the 10 s process, and therefore represents a quick and efficient means of producing die-upset Nd-Fe-B material. The microstructure of the FSPS samples was investigated by SEM and TEM imaging, and the observations were used to guide the optimisation of the process. The most optimal sample is compared directly to commercially die-upset forged (MQIII-F) material made from the same MQU-F powder. It is shown that the grain size of the FSPS material is halved in comparison to the MQIII-F material, leading to a 14% increase in coercivity (1438 kA m -1 ) and matched remanence (1.16 T) giving a BH max of 230 kJ m -3 .

  8. Development of the high temperature sintering furnace for DUPIC fuel fabrication

    International Nuclear Information System (INIS)

    Lee, Jung Won; Kim, B. G.; Park, J. J.; Yang, M. S.; Kim, K. H.; Kim, J. H.; Cho, K. H.; Lee, D. Y.; Lee, Y. S.

    1998-11-01

    This report describes the development of the high temperature sintering furnace for manufacturing DUPIC (Direct Use of spent PWR fuel in CANDU reactors) fuel pellets. The furnace has to be remotely operated and maintained in a high radioactive hot cell using master-slave manipulators. The high temperature sintering furnace for manufacturing DUPIC fuel pellets, which is satisfied with the requirements of remote operation and maintenance in a hot cell, was successfully developed and installed in the M6 hot cell at IMEF (Irradiated Material Examination Facility). The functional and thermal performance test was also successfully completed. The technology accumulated during developing this sintering furnace became the basis of other DUPIC equipment development, and will be very helpful in the development of equipment for use in hot cell in the future. (author). 20 figs

  9. Spark Plasma Sintering constrained process parameters of sintered silver paste for connection in power electronic modules: Microstructure, mechanical and thermal properties

    Energy Technology Data Exchange (ETDEWEB)

    Alayli, N. [Université Paris 13, Sorbonne Paris Cité, Laboratoire des Sciences des Procédés et des Matériaux, Centre National de la Recherche Scientifique, Unité Propre de Recherche 3407, 99 avenue Jean Baptiste Clément, F-93430 Villetaneuse (France); Université de Versailles-Saint-Quentin-en-Yvelines, Sorbonne Universités, Université Pierre et Marie Curie, Université Paris 06, Centre National de la Recherche Scientifique/INSU, Laboratoire Atmosphères Milieux Observations Spatiales-IPSL, Quartier des Garennes, 11 Boulevard d' Alembert, F-78280 Guyancourt (France); Schoenstein, F., E-mail: frederic.schoenstein@univ-paris13.fr [Université Paris 13, Sorbonne Paris Cité, Laboratoire des Sciences des Procédés et des Matériaux, Centre National de la Recherche Scientifique, Unité Propre de Recherche 3407, 99 avenue Jean Baptiste Clément, F-93430 Villetaneuse (France); Girard, A. [Office National d' Étude et de Recherches Aérospatiales, Laboratoire d' Étude des Microstructures, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 104, 29 avenue de la Division Leclerc, F-92322 Châtillon (France); and others

    2014-11-14

    Processing parameters of Spark Plasma Sintering (SPS) technique were constrained to process nano sized silver particles bound in a paste for interconnection in power electronic devices. A novel strategy combining debinding step and consolidation processes (SPS) in order to elaborate nano-structured silver bulk material is investigated. Optimum parameters were sought for industrial power electronics packaging from the microstructural and morphological properties of the sintered material. The latter was studied by Scanning Electron Microscope (SEM) and X-Ray Diffraction (XRD) to determine the density and the grain size of crystallites. Two types of samples, termed S1 (bulk) and S2 (multilayer) were elaborated and characterized. They are homogeneous with a low degree of porosity and a good adhesion to the substrate and the process parameters are compatible with industrial constraints. As the experimental results show, the mean crystallite size is between 60 nm and 790 nm with a density between 50% and 92% resulting in mechanical and thermal properties that are better than that of lead free solder. The best SPS sintering parameters, the applied pressure, the temperature and the processing time were determined as being 3 MPa, 300 °C and 1 min respectively when the desizing time of the preprocessing step was kept below 5 min at 150 °C. Using these processing parameters, acceptable for automotive packaging industry, a semi-conductor power chip was successfully connected to a metalized substrate by sintered silver with thermal and electrical properties better than those of current solders and with thermomechanical properties allowing absorption of thermoplastic stresses. - Highlights: • The sintered silver joints have nanometric structure. • The grain growth was controlled by the SPS sintering parameters. • New connection material improve thermal and electrical properties of current solders. • Interconnection's plastic strain can absorb thermo

  10. Fracture Toughness and Micro-Strain of Y-TZP Nanoceramics at Different Sintering Temperature

    Directory of Open Access Journals (Sweden)

    Rabiha S. Yaseen

    2017-11-01

    Full Text Available The objective of this research is to study the effect of sintering temperature on the mechanical properties and micro-strain of yttria tetragonal zirconia polycrystalls (Y-TZP nanostructure.   Where green disk formed by uniaxially press, sintered at (1500 – 1550 – 1600⁰C in air for 2hr then polished to mirror shape for fracture toughness and micro-hardness measurement by Vickers indenter at (60 kg to 100gm loads. Atomic force microscopy (AFM technique was use to measure the change in grain size and shape of the samples, X-ray diffraction (XRD evaluated to identify the phases and to measure the micro-strain of the samples.          The Results show that increasing sintering temperature will increase the grain size with increasing the average of micro-strain. Tetragonal  phase is the prevailing phase with small amount of cubic phase and the amount of monoclinic phase was under detection limite after sintering but there is increas in lattice dimension according to micro-strain calculation and grinding process produce micro-strain. With increasing the sintering temperature micro-hardness and fracture toughness will increas.

  11. W/Cu composites produced by low temperature Pulse Plasma Sintering

    International Nuclear Information System (INIS)

    Rosinski, M.S.; Fortuna, E.; Michalski, A.J.; Kurzydlowski, K.J.

    2006-01-01

    The plasma facing components (PFCs) must withstand the thermal, mechanical and neutron loads under cyclic mode of operation and vacuum. Despite that PFCs of ITER and demonstration reactors must assure reliability and long in service lifetime. For that reason PFCs are designed to be made of beryllium, tungsten or carbon fibre composites armours and copper based heat sink material. Such design concepts can only be used if joining methods of these dissimilar materials are resolved. Several techniques have been developed for joining W and Cu e. g. casting of pure Cu onto W, high temperature brazing, direct diffusion bonding or CVDs of W onto Cu. The main problem in the development of such joints is the large difference in the coefficients of thermal expansion, CTE (alpha Cu > 4 alpha W) and elastic modula (ECu > 0.2 EW). These differences result in large stresses at the W/Cu interfaces during manufacturing and/or during operation, which may lead to cracking or delamination reducing lifetime of the components. Possible solution to this problem is the use of W-Cu composites (FGM). W-Cu composites are widely used for spark erosion electrodes, in heavy duty circuit breakers and as heat sinks of microelectronic devices. They are commonly produced by infiltration of a porous sintered tungsten by liquid copper. Other technological route is powder metallurgy. Coatings can be produced by low pressure plasma spraying. All these methods, however, are known to have some disadvantages. For infiltration there is a 30 wt.% limit of Cu content while for powder metallurgy and plasma spraying techniques porosity is of concern. In our work the W-Cu composites of different composition were produced by pulse plasma sintering (PPS). This new method utilizes pulsed high electric discharges to heat the powders under uniaxial load. The arc discharges clean surface of powder particles and intensify diffusion. The total sintering time is reduced to several minutes. In our investigations various

  12. Novel low-temperature sintering ceramic substrate based on indialite/cordierite glass ceramics

    Science.gov (United States)

    Varghese, Jobin; Vahera, Timo; Ohsato, Hitoshi; Iwata, Makoto; Jantunen, Heli

    2017-10-01

    In this paper, a novel low-temperature sintering substrate for low temperature co-fired ceramic applications based on indialite/cordierite glass ceramics with Bi2O3 as a sintering aid showing low permittivity (εr) and ultralow dielectric loss (tan δ) is described. The fine powder of indialite was prepared by the crystallization of cordierite glass at 1000 °C/1 h. The optimized sintering temperature was 900 °C with 10 wt % Bi2O3 addition. The relative density achieved was 97%, and εr and tan δ were 6.10 and 0.0001 at 1 MHz, respectively. The composition also showed a moderately low temperature coefficient of relative permittivity of 118 ppm/°C at 1 MHz. The obtained linear coefficient of thermal expansion was 3.5 ppm/°C in the measured temperature range of 100 to 600 °C. The decreasing trend in dielectric loss, the low relative permittivity at 1 MHz, and the low thermal expansion of the newly developed composition make it an ideal choice for radio frequency applications.

  13. Effect of Bed Temperature on the Laser Energy Required to Sinter Copper Nanoparticles

    Science.gov (United States)

    Roy, N. K.; Dibua, O. G.; Cullinan, M. A.

    2018-03-01

    Copper nanoparticles (NPs), due to their high electrical conductivity, low cost, and easy availability, provide an excellent alternative to other metal NPs such as gold, silver, and aluminum in applications ranging from direct printing of conductive patterns on metal and flexible substrates for printed electronics applications to making three-dimensional freeform structures for interconnect fabrication for chip-packaging applications. Lack of research on identification of optimum sintering parameters such as fluence/irradiance requirements for sintering of Cu NPs serves as the primary motivation for this study. This article focuses on the identification of a good sintering irradiance window for Cu NPs on an aluminum substrate using a continuous wave (CW) laser. The study also includes the comparison of CW laser sintering irradiance windows obtained with substrates at different initial temperatures. The irradiance requirements for sintering of Cu NPs with the substrate at 150-200°C were found to be 5-17 times smaller than the irradiance requirements for sintering with the substrate at room temperature. These findings were also compared against the results obtained with a nanosecond (ns) laser and a femtosecond (fs) laser.

  14. Debinding and Sintering of an Injection-Moulded Hypereutectic Al⁻Si Alloy.

    Science.gov (United States)

    Ni, Jiaqi; Yu, Muhuo; Han, Keqing

    2018-05-16

    Hypereutectic Al⁻Si (20 wt.%) alloy parts were fabricated by employing a powder injection moulding (PIM) technique with a developed multi-component binder system composed of high-density polyethylene (35 wt.%), carnauba wax (62 wt.%) and stearic acid (3 wt.%). The feedstocks contained 83 wt.% metal powders. The debinding process was carried out by a combination of solvent extraction and thermal decomposition. The effects of solvent debinding variables such as kind of solvents, debinding temperatures and time, and the bulk surface area to volume ratios on the debinding process were investigated. Thermal debinding and the subsequent sintering process were carried out in a heating sequence under a nitrogen atmosphere. The influences of sintering temperature and sintering time on the mechanical properties and structure were considered. Under the optimal sintering condition, sintering at 550 °C for 3 h, the final sintering parts were free of distortion and exhibited good mechanical properties. Relative sintered density, Brinell hardness, and tensile strength were ~95.5%, 58 HBW and ~154, respectively.

  15. Sintering of Spherical Particles of Equal and Different Size Arranged in a Body Centered Cubic Structure

    DEFF Research Database (Denmark)

    Redanz, Pia; McMeeking, R. M.

    2003-01-01

    Solid-state sintering of a bcc structure of spherical particles has been studied numerically by use of simple shape parameters to describe the state of the unit cell. Both free and pressure-assisted sintering of particles of equal and different sizes for various ratios of boundary and surface dif......, different dihedral angles and the evolution of relative density and sintering stresses are studied....

  16. Effect of sintering temperature on structure of C-B4C-SiC composites with silicon additive

    International Nuclear Information System (INIS)

    Wu Lijun; Academia Sinica, Shenyang; Huang Qizhong; Yang Qiaoqin; Zhao Lihu; Xu Zhongyu

    1996-01-01

    Carbon materials possess good electric conductivity, heat conductivity, corrosion-resistance, self-lubrication and hot-shocking resistance, and are easily machined. However, they have low mechanical strength, and are easily oxidized in air at high temperature. On the contrary, ceramic materials have high mechanical strength and hardness, and have good wear-resistance and oxidation-resistance. However, they have the shortages of poor thermal-shock resistance lubrication, and are difficult to machine. Therefore, carbon/ceramic composites with the advantages of both carbon and ceramic materials have been widely studied in the recent years. Huang prepared C-B 4 C-SiC composites with the free sintering method and the hot pressing method, and studied the effects of Si, Al, Al 2 O 3 , Ni and Ti additives on the properties of the composites. The results showed that these additives could improve the properties of the composites. Zhao et al. studies the structure of C-B 4 C-SiC composites with Si additive sintered at 2,000 C and found two c-center monoclinic phases. In this paper, the authors discussed the effect of the sintering temperature on the structure of C-B 4 C-SiC composites with Si additive by means of transmission electron microscope (TEM) and x-ray diffractometer (XRD)

  17. Camber Evolution and Stress Development of Porous Ceramic Bilayers During Co-Firing

    DEFF Research Database (Denmark)

    Ni, De Wei; Esposito, Vincenzo; Schmidt, Cristine Grings

    2013-01-01

    sintering mismatch stress in co-fired CGO-LSM/CGO bilayer laminates was significantly lower than general sintering stresses expected for free sintering conditions. As a result, no co-firing defects were observed in the bilayer laminates, illustrating an acceptable sintering compatibility of the ceramic...

  18. The influence of sintering temperature on microstructure and mechanical properties of Ni-Al intermetallics fabricated by SPS

    Energy Technology Data Exchange (ETDEWEB)

    Thömmes, A., E-mail: thoemmes.alexander@gmail.com; Shevtsova, L. I., E-mail: edeliya2010@mail.ru; Laptev, I. S., E-mail: ilya-laptev-nstu@mail.ru; Mul, D. O., E-mail: ddariol@yandex.ru [Novosibirsk State Technical University, Novosibirsk, 630073 (Russian Federation); Mali, V. I., E-mail: vmali@mail.ru; Anisimov, A. G., E-mail: anis@hydro.nsc.ru [Lavrentyev Institute of Hydrodynamics SB RAS, Novosibirsk, 630090 (Russian Federation)

    2015-10-27

    In the present study PN85Yu15 was used as elemental powder to produce a sintered compound with Ni3Al as main phase. The Spark Plasma Sintering (SPS) technique is used to compact the powders. The powder was sintered in a temperature range between 1000°C and 1150°C to observe the influence of the sintering temperature on the microstructure and the mechanical properties. The microstructure was observed with optical microscope (OM), the phase composition was characterized by X-ray diffraction (XRD) technique. Density and microhardness were observed and compared the values with the results of other researchers. The compressive-, density- and microhardness tests show as clear result that with increasing the sintering temperature nearly all properties become better and also the microstructure studies show that porous places become less.

  19. Debinding and Sintering of an Injection-Moulded Hypereutectic Al–Si Alloy

    Directory of Open Access Journals (Sweden)

    Jiaqi Ni

    2018-05-01

    Full Text Available Hypereutectic Al–Si (20 wt.% alloy parts were fabricated by employing a powder injection moulding (PIM technique with a developed multi-component binder system composed of high-density polyethylene (35 wt.%, carnauba wax (62 wt.% and stearic acid (3 wt.%. The feedstocks contained 83 wt.% metal powders. The debinding process was carried out by a combination of solvent extraction and thermal decomposition. The effects of solvent debinding variables such as kind of solvents, debinding temperatures and time, and the bulk surface area to volume ratios on the debinding process were investigated. Thermal debinding and the subsequent sintering process were carried out in a heating sequence under a nitrogen atmosphere. The influences of sintering temperature and sintering time on the mechanical properties and structure were considered. Under the optimal sintering condition, sintering at 550 °C for 3 h, the final sintering parts were free of distortion and exhibited good mechanical properties. Relative sintered density, Brinell hardness, and tensile strength were ~95.5%, 58 HBW and ~154, respectively.

  20. Expeditious low-temperature sintering of copper nanoparticles with thin defective carbon shells

    Science.gov (United States)

    Kim, Changkyu; Lee, Gyoungja; Rhee, Changkyu; Lee, Minku

    2015-04-01

    The realization of air-stable nanoparticles, well-formulated nanoinks, and conductive patterns based on copper is a great challenge in low-cost and large-area flexible printed electronics. This work reports the synthesis of a conductively interconnected copper structure via thermal sintering of copper inks at a low temperature for a short period of time, with the help of thin defective carbon shells coated onto the copper nanoparticles. Air-stable copper/carbon core/shell nanoparticles (typical size ~23 nm, shell thickness ~1.0 nm) are prepared by means of an electric explosion of wires. Gaseous oxidation of the carbon shells with a defective structure occurs at 180 °C, impacting the choice of organic solvents as well as the sintering conditions to create a crucial neck formation. Isothermal oxidation and reduction treatment at 200 °C for only about 10 min yields an oxide-free copper network structure with an electrical resistivity of 25.1 μΩ cm (14.0 μΩ cm at 250 °C). Finally, conductive copper line patterns are achieved down to a 50 μm width with an excellent printing resolution (standard deviation ~4.0%) onto a polyimide substrate using screen printing of the optimized inks.The realization of air-stable nanoparticles, well-formulated nanoinks, and conductive patterns based on copper is a great challenge in low-cost and large-area flexible printed electronics. This work reports the synthesis of a conductively interconnected copper structure via thermal sintering of copper inks at a low temperature for a short period of time, with the help of thin defective carbon shells coated onto the copper nanoparticles. Air-stable copper/carbon core/shell nanoparticles (typical size ~23 nm, shell thickness ~1.0 nm) are prepared by means of an electric explosion of wires. Gaseous oxidation of the carbon shells with a defective structure occurs at 180 °C, impacting the choice of organic solvents as well as the sintering conditions to create a crucial neck formation

  1. Conventional and two step sintering of PZT-PCN ceramics

    Science.gov (United States)

    Keshavarzi, Mostafa; Rahmani, Hooman; Nemati, Ali; Hashemi, Mahdieh

    2018-02-01

    In this study, PZT-PCN ceramic was made via sol-gel seeding method and effects of conventional sintering (CS) as well as two-step sintering (TSS) were investigated on microstructure, phase formation, density, dielectric and piezoelectric properties. First, high quality powder was achieved by seeding method in which the mixture of Co3O4 and Nb2O5 powder was added to the prepared PZT sol to form PZT-PCN gel. After drying and calcination, pyrochlore free PZT-PCN powder was synthesized. Second, CS and TSS were applied to achieve dense ceramic. The optimum temperature used for 2 h of conventional sintering was obtained at 1150 °C; finally, undesired ZrO2 phase formed in CS procedure was removed successfully with TSS procedure and dielectric and piezoelectric properties were improved compared to the CS procedure. The best electrical properties obtained for the sample sintered by TSS in the initial temperature of T 1 = 1200 °C and secondary temperature of T 2 = 1000 °C for 12 h.

  2. Modifier free supercritical fluid extraction of uranium from sintered UO2, soil and ore samples

    International Nuclear Information System (INIS)

    Kanekar, A.S.; Pathak, P.N.; Acharya, R.; Mohapatra, P.K.; Manchanda, V.K.

    2011-01-01

    Direct extraction of uranium from different samples viz. sintered UO 2 , soil and ores was carried out by modifier free supercritical fluid using tri-n-butyl phosphate-nitric acid (TBP-HNO 3 ) adduct as extractant. These studies showed that pre-equilibration with more concentrated nitric acid helps in better dissolution and extraction of uranium from sintered UO 2 samples. Modifier free supercritical fluid extraction appears attractive with respect to minimization of secondary wastes. This method resulted 80-100% extraction of uranium from different soil/ore samples. The results were confirmed by performing neutron activation analysis of original (before extraction) and residue (after extraction) samples. (author)

  3. The Influence of Spark Plasma Sintering Temperature on the Microstructure and Thermoelectric Properties of Al,Ga Dual-Doped ZnO

    DEFF Research Database (Denmark)

    Han, Li; Le, Thanh Hung; Van Nong, Ngo

    2013-01-01

    ZnO dual-doped with Al and Ga was prepared by spark plasma sintering using different sintering temperatures. The microstructural evolution and thermoelectric properties of the samples were investigated in detail. The samples obtained with sintering temperature above 1223 K had higher relative...... of ZnO particles and microstructure evolution at different sintering temperatures were investigated by simulation of the self-Joule-heating effect of the individual particles....

  4. Effect of Sintering Temperature and Applied Load on Anode-Supported Electrodes for SOFC Application

    Directory of Open Access Journals (Sweden)

    Xuan-Vien Nguyen

    2016-08-01

    Full Text Available Anode-supported cells are prepared by a sequence of hot pressing and co-sintering processes for solid oxide fuel cell (SOFC applications. Commercially available porous anode tape (NiO/YSZ = 50 wt %/50 wt %, anode tape (NiO/YSZ = 30 wt %/70 wt %, and YSZ are used as the anode substrate, anode functional layer, and electrolyte layer, respectively. After hot pressing, the stacked layers are then sintered at different temperatures (1250 °C, 1350 °C, 1400 °C and 1450 °C for 5 h in air. Different compressive loads are applied during the sintering process. An (La,SrMnO3 (LSM paste is coated on the post-sintered anode-supported electrolyte surface as the cathode, and sintered at different temperatures (1100 °C, 1150 °C, 1200 °C and 1250 °C for 2 h in air to generate anode-supported cells with dimensions of 60 × 60 mm2 (active reaction area of 50 × 50 mm2. SEM is used to investigate the anode structure of the anode-supported cells. In addition, confocal laser scanning microscopy is used to investigate the roughness of the cathode surfaces. At sintering temperatures of 1400 °C and 1450 °C, there is significant grain growth in the anode. Furthermore, the surface of the cathode is smoother at a firing temperature of 1200 °C. It is also found that the optimal compressive load of 1742 Pa led to a flatness of 168 µm/6 cm and a deformation of 0.72%. The open circuit voltage and power density of the anode-supported cell at 750 °C were 1.0 V and 178 mW·cm−2, respectively.

  5. Boric oxide or boric acid sintering aid for sintering ceramics

    International Nuclear Information System (INIS)

    Lawler, H.A.

    1979-01-01

    The invention described relates to the use of liquid sintering aid in processes involving sintering of ceramic materials to produce dense, hard articles having industrial uses. Although the invention is specifically discussed in regard to compositions containing silicon carbide as the ceramic material, other sinterable carbides, for example, titanium carbide, may be utilized as the ceramic material. A liquid sintering aid for densifying ceramic material is selected from solutions of H 3 BO 3 , B 2 O 3 and mixtures of these solutions. In sintering ceramic articles, e.g. silicon carbide, a shaped green body is formed from a particulate ceramic material and a resin binder, and the green body is baked at a temperature of 500 to 1000 0 C to form a porous body. The liquid sintering aid of B 2 O 3 and/or H 3 BO 3 is then dispersed through the porous body and the treated body is sintered at a temperature of 1900 to 2200 0 C to produce the sintered ceramic article. (U.K.)

  6. Real-time microradiology of disintegration of iron ore sinteres

    International Nuclear Information System (INIS)

    Kim, Jong Ryun; Kang, H.S.; Lee, Ho Jun; Je, Jung Ho; Jeong, S.K.; Tsai, W.-L.; Hsu, P.C.; Hwu, Y.

    2003-01-01

    We first present real-time microradiology of disintegration of self-fluxing iron ore sinters in low temperature reduction using highly collimated synchrotron source. The experiments were performed on the 5C1 beamline at PLS (Pohang Light Source, Pohang, Korea), operating at 2.5 GeV. We used unmonochromatized ('white') light with no optical elements except beryllium windows. The images of the crack superimpose, on the two-dimensional projection of a three-dimensional phenomenon, suggest that cracks are always initiated from pores in the sinters and propagate along neighboring pores. Interestingly, cracking occurs mostly on macropores (>800 μm), preferentially initiated from stress concentrated sites on pore surfaces. This dynamic study of the disintegration of sinters clearly shows that the crack initiation temperature is as low as 450 deg. C

  7. Process Developed for Generating Ceramic Interconnects With Low Sintering Temperatures for Solid Oxide Fuel Cells

    Science.gov (United States)

    Zhong, Zhi-Min; Goldsby, Jon C.

    2005-01-01

    Solid oxide fuel cells (SOFCs) have been considered as premium future power generation devices because they have demonstrated high energy-conversion efficiency, high power density, and extremely low pollution, and have the flexibility of using hydrocarbon fuel. The Solid-State Energy Conversion Alliance (SECA) initiative, supported by the U.S. Department of Energy and private industries, is leading the development and commercialization of SOFCs for low-cost stationary and automotive markets. The targeted power density for the initiative is rather low, so that the SECA SOFC can be operated at a relatively low temperature (approx. 700 C) and inexpensive metallic interconnects can be utilized in the SOFC stack. As only NASA can, the agency is investigating SOFCs for aerospace applications. Considerable high power density is required for the applications. As a result, the NASA SOFC will be operated at a high temperature (approx. 900 C) and ceramic interconnects will be employed. Lanthanum chromite-based materials have emerged as a leading candidate for the ceramic interconnects. The interconnects are expected to co-sinter with zirconia electrolyte to mitigate the interface electric resistance and to simplify the processing procedure. Lanthanum chromites made by the traditional method are sintered at 1500 C or above. They react with zirconia electrolytes (which typically sinter between 1300 and 1400 C) at the sintering temperature of lanthanum chromites. It has been envisioned that lanthanum chromites with lower sintering temperatures can be co-fired with zirconia electrolyte. Nonstoichiometric lanthanum chromites can be sintered at lower temperatures, but they are unstable and react with zirconia electrolyte during co-sintering. NASA Glenn Research Center s Ceramics Branch investigated a glycine nitrate process to generate fine powder of the lanthanum-chromite-based materials. By simultaneously doping calcium on the lanthanum site, and cobalt and aluminum on the

  8. Influence of sintering temperature on the characteristics of a-alumina filtration tubes

    International Nuclear Information System (INIS)

    Zarina Abdul Wahid; Rafindde Ramli; Andanastuti Muchtar; Abd Wahab Mohammad

    2005-01-01

    The emerging technology of ceramic membrane filters has created a lot of impact on the materials development and separation industries. Ceramic membrane filters have been used in many separation industry applications particularly in food, dairy, beverages, biotechnology, pharmaceutical and waste treatment industries. This is due to the fact that ceramics are inert and durable and can withstand high temperatures as well as extreme chemical conditions. They also have favourable mechanical properties and lower fouling rates. In this study, ceramic filtration tubes having dimensions of 10 mm outer diameter, 6 mm inner diameter and 880 mm long were prepared from a-alumina using the extrusion technique. The effects of sintering temperature on the pore size, microstructure and porosity of the alumina tube were investigated. The optimum sintering temperature was determined based on the performance of the tubes with regards to porosity, pore size and microstructure. The alumina tubes were sintered at six different temperatures i.e. 1250 degree C, 1300 degree C, 1350 degree C, 1400 degree C, 1450 degree C and 1500 degree C. The porous structures of the alumina tubes were studied using Scanning Electron Microscope (SEM) whereas a Mercury Porosimeter was used to determine the porosity and pore size distribution. (Author)

  9. Low temperature sintering of Ag nanoparticles/graphene composites for paper based writing electronics

    International Nuclear Information System (INIS)

    Wang, Fuliang; He, Hu; Zhu, Haixin

    2016-01-01

    With the great demand in the applications of flexible electronics, the methods leading to improvements in the electrical and mechanical performance have been widely investigated. In this work, we firstly prepared a hybrid composite ink using Ag nanoparticles and graphene. Then, a hot-press sintering process was deployed to obtain the desired electrical tracks which could be applied in flexible electronics. We have systematically investigated the effects of sintering time, pressure and temperature, as well as the different percentage of weight (wt%) of graphene for the electrical and mechanical performance of sintered electrical tracks. We achieved reasonably low electrical resistivity at low sintering temperature (120 °C). Specifically, the resistivity reaches 6.19  ×  10 −8 Ω · m which is just 3.87 times higher than the value of bulk silver. Additionally, the prepared hybrid composite ink obtained better electrical reliability against bending test comparing with Ag nanoparticle ink. Finally, the optimal wt% of graphene and potential effect to the electrical and mechanical performance were also investigated. (paper)

  10. New materials through a variety of sintering methods

    Science.gov (United States)

    Jaworska, L.; Cyboroń, J.; Cygan, S.; Laszkiewicz-Łukasik, J.; Podsiadło, M.; Novak, P.; Holovenko, Y.

    2018-03-01

    New sintering techniques make it possible to obtain materials with special properties that are impossible to obtain by conventional sintering techniques. This issue is especially important for ceramic materials for application under extreme conditions. Following the tendency to limit critical materials in manufacturing processes, the use of W, Si, B, Co, Cr should be limited, also. One of the cheapest and widely available materials is aluminum oxide, which shows differences in phase composition, grain size, hardness, strain and fracture toughness of the same type of powder, sintered via various methods. In this paper the alumina was sintered using the conventional free sintering process, microwave sintering, Spark Plasma Sintering (SPS), high pressure-high temperature method (HP-HT) and High Pressure Spark Plasma Sintering (HP SPS). Phase composition analysis, by X-ray diffraction of the alumina materials sintered using various methods, was carried out. For the conventional sintering method, compacts are composed of α-Al2O3 and θ-Al2O3. For compacts sintered using SPS, microwave and HP-HT methods, χ-Al2O3 and γ-Al2O3 phases were additionally present. Mechanical and physical properties of the obtained materials were compared between the methods of sintering. On the basis of images from scanning electron microscope quantitative analysis was performed to determine the degree of grain growth of alumina after sintering.

  11. Development of high temperature scanning electron microscopy and applications to sintering studies

    International Nuclear Information System (INIS)

    Wang, D.N.K.; Miller, D.J.; Fulrath, R.M.

    1978-01-01

    The densification and microstructural changes of a metallic and/or ceramic powder compact during sintering is a critically important but incompletely understood process. Whether solely in the solid state or in the presence of a liquid phase, mass transport occurs at elevated temperatures to eliminate porosity and reduce the surface energy of the system. Changes in specimen dimensions, particle shape and pore morphology, formation of liquid phases and other direct evidence of the sintering process have been observed and recorded at temperature using video tape and 16mm time lapse movies of the TV scanning image. Materials that have been examined at elevated temperature are Ni, glass, Al 2 O 3 , UO 2 , W, Cu, WC-Co, and CaF 2

  12. Initial stage sintering of polymer particles – Experiments and modelling of size-, temperature- and time-dependent contacts

    Directory of Open Access Journals (Sweden)

    Fuchs Regina

    2017-01-01

    Full Text Available The early-stage sintering of thin layers of micron-sized polystyrene (PS particles, at sintering temperatures near and above the glass transition temperature Tg (~ 100°C, is studied utilizing 3D tomography, nanoindentation and confocal microscopy. Our experimental results confirm the existence of a critical particle radius (rcrit ~ 1 μm below which surface forces need to be considered as additional driving force, on top of the usual surfacetension driven viscous flow sintering mechanism. Both sintering kinetics and mechanical properties of particles smaller than rcrit are dominated by contact deformation due to surface forces, so that sintering of larger particles is generally characterized by viscous flow. Consequently, smaller particles require shorter sintering. These experimental observations are supported by discrete particle simulations that are based on analytical models: for small particles, if only viscous sintering is considered, the model under-predicts the neck radius during early stage sintering, which confirms the need for an additional driving mechanism like elastic-plastic repulsion and surface forces that are both added to the DEM model.

  13. Sintering of nonstoichiometric UO2

    International Nuclear Information System (INIS)

    Susnik, D.; Holc, J.

    1983-01-01

    Activated sintering of UO 2 pellets at 1100 deg C is described. In CO 2 atmosphere is UO 2 is nonstoichiometric and pellets from active UO 2 powders sinter at 900 deg C to high density. At 1100 deg C the final sintered density is practically achieved at heating on sintering temperature. After reduction and cooling in H 2 atmosphere which is followed sintering in CO 2 the structure is identical to the structured UO 2 pellets sintered at high temperature in H 2 . Density of activated sintered UO 2 pellets is stable, even after additional sintering at 1800 deg C. (author)

  14. Hydrothermal Cold Sintering

    Science.gov (United States)

    Kang, Xiaoyu

    Solid state sintering transforms particle compact to a physically robust and dense polycrystalline monolith driven by reduction of surface energy and curvature. Since bulk diffusion is required for neck formation and pore elimination, sintering temperature about 2/3 of melting point is needed. It thus places limitations for materials synthesis and integration, and contributes to significant energy consumption in ceramic processing. Furthermore, since surface transport requires lower temperature than bulk processes, grain growth is often rapid and can be undesired for physical properties. For these reasons, several techniques have been developed including Liquid Phase Sintering (LPS), Hot Pressing (HP) and Field Assisted Sintering Technique (FAST), which introduce either viscous melt, external pressure or electric field to speed up densification rates at lower temperature. However, because of their inherent reliability on bulk diffusion, temperatures required are often too high for integrating polymers and non-noble metals. Reduction of sintering temperature below 400 °C would require a different densification mechanism that is based on surface transport with external forces to drive volume shrinkage. Densification method combining uniaxial pressure and solution under hydrothermal condition was first demonstrated by Kanahara's group at Kochi University in 1986 and was brought to our attention by the work of Kahari, etc, from University of Oulu on densification of Li2MoO 4 in 2015. This relatively new process showed promising ultra-low densification temperature below 300 °C, however little was known about its fundamental mechanism and scope of applications, which became the main focus of this dissertation. In this work, a uniaxial hydraulic press, a standard stainless steel 1/2 inch diameter die with heating band were utilized in densifying metal oxides. Applied pressure and sintering temperature were between 100 MPa and 700 MPa and from room temperature to 300

  15. Coal fly ash utilization: Low temperature sintering of wall tiles

    International Nuclear Information System (INIS)

    Chandra, Navin; Sharma, Priya; Pashkov, G.L.; Voskresenskaya, E.N.; Amritphale, S.S.; Baghel, Narendra S.

    2008-01-01

    We present here a study of the sintering of fly ash and its mixture with low alkali pyrophyllite in the presence of sodium hexa meta phosphate (SHMP), a complex activator of sintering, for the purpose of wall tile manufacturing. The sintering of fly ash with SHMP in the temperature range 925-1050 deg. C produces tiles with low impact strength; however, the incremental addition of low alkali pyrophyllite improves impact strength. The impact strength of composites with ≥40% (w/w) pyrophyllite in the fly ash-pyrophyllite mix satisfies the acceptable limit (19.6 J/m) set by the Indian Standards Institute for wall tiles. Increasing the pyrophyllite content results in an increase in the apparent density of tiles, while shrinkage and water absorption decrease. The strength of fly ash tiles is attributed to the formation of a silicophosphate phase; in pyrophyllite rich tiles, it is attributed to the formation of a tridymite-structured T-AlPO 4 phase. Scanning electron micrographs show that the reinforcing rod shaped T-AlPO 4 crystals become more prominent as the pyrophyllite content increases in the sintered tiles

  16. Sintering of nickel catalysts. Effects of time, atmosphere, temperature, nickel-carrier interactions, and dopants

    Energy Technology Data Exchange (ETDEWEB)

    Sehested, Jens; Gelten, Johannes A.P.; Helveg, Stig [Haldor Topsoee A/S, Nymoellevej 55, DK-2800 Kgs. Lyngby (Denmark)

    2006-08-01

    Supported nickel catalysts are widely used in the steam-reforming process for industrial scale production of hydrogen and synthesis gas. This paper provides a study of sintering in nickel-based catalysts (Ni/Al{sub 2}O{sub 3} and Ni/MgAl{sub 2}O{sub 4}). Specifically the influence of time, temperature, atmosphere, nickel-carrier interactions and dopants on the rate of sintering is considered. To probe the sintering kinetics, all catalysts were analyzed by sulfur chemisorption to determine the Ni surface area. Furthermore selected samples were further analyzed using X-ray diffraction (XRD), mercury porosimetry, BET area measurements, and electron microscopy (EM). The observed sintering rates as a function of time, temperature, and P{sub H{sub 2}O}/P{sub H{sub 2}} ratio were consistent with recent model predictions [J. Sehested, J.A.P. Gelten, I.N. Remediakis, H. Bengaard, J.K. Norskov, J. Catal. 223 (2004) 432] over a broad range of environmental conditions. However, exposing the catalysts to severe sintering conditions the loss of nickel surface area is faster than model predictions and the deviation is attributed to a change in the sintering mechanism and nickel removal by nickel-carrier interactions. Surprisingly, alumina-supported Ni particles grow to sizes larger than the particle size of the carrier indicating that the pore diameter does not represent an upper limit for Ni particle growth. The effects of potassium promotion and sulfur poisoning on the rates of sintering were also investigated. No significant effects of the dopants were observed after ageing at ambient pressure. However, at high pressures of steam and hydrogen (31bar and H{sub 2}O:H{sub 2}=10:1) potassium promotion increased the sintering rate relative to that of the unpromoted catalyst. Sulfur also enhances the rate of sintering at high pressures, but the effect of sulfur is less than for potassium. (author)

  17. Effect of the sintering temperature and time on phase assemblage and electrical conductivity of zirconia-scandia-ceria

    International Nuclear Information System (INIS)

    Grosso, R.L.; Muccillo, E.N.S.

    2012-01-01

    ZrO 2 -based solid electrolytes have been extensively studied over the last decades for application in solid oxide fuel cells (SOFCs). Zirconia containing scandia and ceria solid electrolyte is a potential candidate in SOFCs operating at intermediate temperatures (600 - 800 deg C). In this work, commercial ZrO 2 containing 10 mol% Sc 2 O 3 and 1 mol% CeO 2 was sintered by the conventional and two-step methods. Several sintering conditions were evaluated by varying the temperature as well as the residence time. High values of sintered density (> 98%) were obtained. A careful selection of the sintering conditions is necessary in order to obtain a single cubic phase, as revealed by X-ray diffraction results. The grain growth can be controlled in specimens sintered by the two-step method. The electrical conductivity show similar behavior for the grain component independent on the sintering method. (author)

  18. Influence of sintering atmospheres on the aluminium sintering characteristics

    International Nuclear Information System (INIS)

    Mintzer, S.; Bermudez Belkys, S.

    1993-01-01

    This paper describes the aluminium powder (Al) cool compacted (at 95% from theoretical density) which was sintered at 903 K during 4 hours at different atmospheres; oxidizing (air), inert Argon (Ar), Nitrogen (N) and high vacuum. The results obtained show: a) porosity measurements; greater porosity when sintering in Ar and air. b) Metallographic and Scanning observations: many fine pores (< 1 μm) and pore lines distributed at random, at air sintering and greater pores distributed preferentially near the surface, in Ar and N atmospheres. c) Dimensional changes: tendency to contraction of the samples at N and vacuum sintering and expansion in Ar or air. d) Mechanical properties: greater strength and fluence stresses at air and N sintering. The analysis of the results is performed considering sintering modes in presence of an oxide layer and dropped inert gases. (Author)

  19. Production of pure sintered alumina

    International Nuclear Information System (INIS)

    Rocha, J.C. da; Huebner, H.W.

    1982-01-01

    With the aim of optimizing the sintering parameters, the strength of a large number of alumina samples was determined which were produced under widely varying sintering conditions and with different amounts of MgO content. The strength as a function of sintering time or temperature was found to go through a maximum. With increasing time, this maximum is shifted to lower temperatures, and with decreasing temperature to longer times. Data pairs of sintering times and temperatures which yeld the strength maximum were determined. The value of the strength at the maximum remains unchanged. The strength is high (= 400 MN/m 2 , at a grain size of 3 um and a porosity of 2 per cent) and comparable to foreign aluminas produced for commercial purposes, or even higher. The increase in the sintering time from 1 h to 16 h permits a reduction of the sintering temperature from 1600 to 1450 0 C without losing strength. The practical importance of this fact for a production of sintered alumina on a large scale is emphasized. (Author) [pt

  20. Low-temperature plasma nitriding of sintered PIM 316L austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, Aecio Fernando; Scheuer, Cristiano Jose; Joanidis, Ioanis Labhardt; Cardoso, Rodrigo Perito; Mafra, Marcio; Klein, Aloisio Nelmo; Brunatto, Silvio Francisco, E-mail: brunatto@ufpr.br [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Dept. de Engenharia Mecanica. Grupo de Tecnologia de Fabricacao Assistida pro Plasma e Metalurgia do Po

    2014-08-15

    This work reports experimental results on sintered PIM 316L stainless steel low-temperature plasma nitriding. The effect of treatment temperature and time on process kinetics, microstructure and surface characteristics of the nitrided samples were investigated. Nitriding was carried out at temperatures of 350, 380, 410 and 440 °C , and times of 4, 8 and 16 h, using a gas mixture composed by 60% N2 + 20% H2 + 20% Ar, at a gas flow rate of 5.00 X 10{sup 6} Nm{sup 3-1}, and a pressure of 800 Pa. The treated samples were characterized by scanning electron microscopy, X-ray diffractometry and microhardness measurements. Results indicate that low-temperature plasma nitriding is a diffusion controlled process. The calculated activation energy for nitrided layer growth was 111.4 kJmol{sup -1}. Apparently precipitation-free layers were produced in this study. It was also observed that the higher the treatment temperature and time the higher is the obtained surface hardness. Hardness up to 1343 HV{sub 0.025} was verified for samples nitrided at 440 °C. Finally, the characterization of the treated surface indicates the formation of cracks, which were observed in regions adjacent to the original pores after the treatment. (author)

  1. Development of AUC-based process at BARC for production of free-flowing and sinterable UO2 powder

    International Nuclear Information System (INIS)

    Keni, V.S.; Ghosh, S.K.; Ganguly, C.; Majumdar, S.

    1994-01-01

    Ammonium uranium carbonate (AUC) process has been developed and industrially used in Germany for preparation of free-flowing and sinterable UO 2 powder for fabrication of UO 2 fuel pellets for light water reactors (LWR). Efforts are underway at Bhabha Atomic Research Centre (BARC) for developing AUC-based process which would yield free-flowing UO 2 powder suitable for direct pelletisation and sintering to very high density (> 96% T.D.) UO 2 fuel pellets for pressurised heavy water reactors (PHWRs) in India. The first phase of this work has been completed jointly by Chemical Engineering Division (ChED) and Radiometallurgy Division (RMD) in batches of 1.5 kg. It was possible to fabricate UO 2 pellets of density 93-95% T.D. on a reproducible basis. At ChED, process parameters have been optimised for fabrication of AUC with suitable physical properties in batches of 1.5 kg (U), starting with nuclear pure uranyl nitrate solution. At RMD calcination parameters of AUC was optimised in batches of 500 g for obtaining free-flowing UO 2 powder, suitable for direct pelletisation and sintering. The pelletisation and sintering have been carried out at Radiometallurgy Division in batches of 1-1.5 kg. The maximum achievable density of UO 2 pellets has been in the range of 95.5-96% T.D. (author). 11 refs

  2. Temperature variations in sintering ovens for metal ceramic dental prostheses: non-destructive assessment using OCT

    Science.gov (United States)

    Sinescu, C.; Bradu, A.; Duma, V.-F.; Topala, F. I.; Negrutiu, M. L.; Podoleanu, A. G.

    2018-02-01

    We present a recent investigation regarding the use of optical coherence tomography (OCT) in the monitoring of the calibration loss of sintering ovens for the manufacturing of metal ceramic dental prostheses. Differences in the temperatures of such ovens with regard to their specifications lead to stress and even cracks in the prostheses material, therefore to the failure of the dental treatment. Evaluation methods of the ovens calibration consist nowadays of firing supplemental samples; this is subjective, expensive, and time consuming. Using an in-house developed swept source (SS) OCT system, we have demonstrated that a quantitative assessment of the internal structure of the prostheses, therefore of the temperature settings of the ovens can be made. Using en-face OCT images acquired at similar depths inside the samples, the differences in reflectivity allow for the evaluation of the differences in granulation (i.e., in number and size of ceramic grains) of the prostheses material. Fifty samples, divided in five groups, each sintered at different temperatures (lower, higher, or equal to the prescribed one) have been analyzed. The consequences of the temperature variations with regard to the one prescribed were determined. Rules-of-thumb were extracted to monitor objectively, using only OCT images of currently manufactured samples, the settings of the oven. The method proposed allows for avoiding producing prostheses with defects. While such rules-of-thumb achieve a qualitative assessment, an insight in our on-going work on the quantitative assessment of such losses of calibration on dental ovens using OCT is also made.

  3. The preparation of sintered NdFeB magnet with high-coercivity and high temperature-stability

    Energy Technology Data Exchange (ETDEWEB)

    Yan, G H; Chen, R J; Ding, Y; Guo, S; Lee, Don; Yan, A R, E-mail: yangh@nimte.ac.cn [Zhejiang province Key Laboratory of Magnetic Materials and Application Technology, Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201 (China)

    2011-01-01

    The NdFeB magnets with high intrinsic coercivity have been produced by using the conventional powder metallurgy method (including SC, HD and JM) of sintered NdFeB magnets. The effects of grain boundary phases on the microstructure and magnetic properties of as-sintered and annealed magnets have been tried to investigate. Also the Curie temperature of the magnets was studied. By adopting suitable component ratio of some heavy rare-earth atoms and some micro-quantity additives, we have prepared high-coercivity sintered NdFeB magnets with magnetic properties of {sub j}H{sub c}=36.3kOe, B{sub r}=11.7kGs and (BH){sub max}=34.0MGOe. The temperature coefficient of residual magnetic flux of the magnets (between 20 and 200 deg. C) is -0.113%/deg. C, while the temperature coefficient of intrinsic coercivity -0.355%/deg. C. The Curie temperature of the magnets is about 342 deg. C.

  4. The preparation of sintered NdFeB magnet with high-coercivity and high temperature-stability

    International Nuclear Information System (INIS)

    Yan, G H; Chen, R J; Ding, Y; Guo, S; Lee, Don; Yan, A R

    2011-01-01

    The NdFeB magnets with high intrinsic coercivity have been produced by using the conventional powder metallurgy method (including SC, HD and JM) of sintered NdFeB magnets. The effects of grain boundary phases on the microstructure and magnetic properties of as-sintered and annealed magnets have been tried to investigate. Also the Curie temperature of the magnets was studied. By adopting suitable component ratio of some heavy rare-earth atoms and some micro-quantity additives, we have prepared high-coercivity sintered NdFeB magnets with magnetic properties of j H c =36.3kOe, B r =11.7kGs and (BH) max =34.0MGOe. The temperature coefficient of residual magnetic flux of the magnets (between 20 and 200 deg. C) is -0.113%/deg. C, while the temperature coefficient of intrinsic coercivity -0.355%/deg. C. The Curie temperature of the magnets is about 342 deg. C.

  5. Effect of sintering temperatures on titanium matrix composites reinforced by ceramic particles

    Energy Technology Data Exchange (ETDEWEB)

    Romero, F.; Amigo, V.; Busquets, D.; Klyatskina, E. [Mechanical and Materials Engineering Department. Polytechnical University of Valencia, Valencia (Spain)

    2005-07-01

    Titanium and titanium composites have a potential use in aerospace and biotechnology industries, and nowadays in others like sports and fashion ones. In this work composite materials, based on titanium matrix reinforced with ceramic particles, have been developed. PM route is used to obtain compact and sintered samples. TiN and TiAl powders, are milled with Ti powder in different volumetric percentages in a ball mill. These mixtures are pressed in a uniaxial press and sintered in a vacuum furnace at different temperatures between 1180 to 1220 deg. C. Porosity of samples is analysed, before and after the sintering process, by Archimedes technique and by image analysis. Mechanical properties and the reinforcement particles influence in the titanium matrix are studied by flexion test in green and sintered states, and by hardness and microhardness tests. Complimentarily, a microstructural analysis is carried out by optical and electron microscopy, and the reactivity between the reinforce particles and titanium matrix are studied. (authors)

  6. Influence of sintering temperature on microstructures and energy-storage properties of barium strontium titanate glass-ceramics prepared by sol-gel process

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Jia; Zhang, Yong; Song, Xiaozhen; Zhang, Qian; Yang, Dongliang; Chen, Yongzhou [Beijing Key Laboratory of Fine Ceramics, State Key Laboratory of New Ceramics and Fine Processing, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084 (China)

    2015-12-15

    The sol-gel processing, microstructures, dielectric properties and energy-storage properties of barium strontium titanate glass-ceramics over the sintering temperature range of 1000-1150 C were studied. Through the X-ray diffraction result, it is revealed that the crystallinity increases as the sintering temperature increased from 1000 to 1080 C and has reached a steady-state regime above 1100 C. Scanning electron microscopy images showed that with the increase of sintering temperature, the crystal size increased. Dielectric measurements revealed that the increase in the sintering temperature resulted in a significant increase in the dielectric constant, a strong sharpness of the temperature-dependent dielectric response and a pronounced decrease of the temperature of the dielectric maximum. The correlation between charge spreading behavior and activation energies of crystal and glass was discussed by the employment of the impedance spectroscopy studies. As a result of polarization-electric field hysteresis loops, both the charged and discharged densities increased with increasing sintering temperature. And the maximum value of energy storage efficiency was found to occur at 1130 C. Finally, the dependence of released energy and power densities calculated from the discharged current-time (I-t) curves on the sintering temperature was studied. The relationship between the energy storage properties and microstructure was correlated. Polarization-electric field hysteresis loops for the BST glass-ceramics sintered at different temperatures. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. The Influence of Spark Plasma Sintering Temperature on the Microstructure and the Thermoelectric Properties of Al, Ga dually-doped ZnO

    DEFF Research Database (Denmark)

    Han, Li; Le, Thanh Hung; Van Nong, Ngo

    2012-01-01

    Al, Ga dually-doped ZnO was prepared by spark plasma sintering with different sintering temperatures. The microstructural evolution and thermoelectric properties of the samples were investigated in detail. The samples with a sintering temperature above 1223K obtained higher relative densities...

  8. Effects of sintering temperature on properties of toroid cores using NiZnCu ferrites for power applications at >1 MHz

    Science.gov (United States)

    Liu, Junchang; Mei, Yunhui; Liu, Wen; Li, Xin; Hou, Feng; Lu, Guo-Quan

    2018-05-01

    The microstructures, magnetic and electronic performance of NiZnCu ferrites have been investigated at temperature from 850 °C to 1000 °C. X-ray diffraction (XRD) patterns showed that only single phase with spinel structure existed. Scanning electron microscopy (SEM) results showed that grain size increased with enhancement of sintering temperature and the most homogeneous, compact microstructure was obtained at 950 °C. Magnetic properties measurements revealed that both complex permeability and saturation magnetization increased with increasing of sintering temperature. The initial permeability was approximately linear within the scope of 850-1000 °C as well as the resonance frequency decreased from 70 MHz to 30 MHz. Power loss density tests demonstrated that the core sintered at 950 °C instead of the one sintered at 1000 °C had the lower power loss density at both 5 mT and 10 mT and the higher inductance under a certain exciting direct current at 1 MHz. Also the inductance of the sample sintered at the higher temperature dropped faster than that at the lower temperature. The results showed that the core sintered at 950 °C had better electrical performance and was suitable for wide usage.

  9. Predicting sintering deformation of ceramic film constrained by rigid substrate using anisotropic constitutive law

    International Nuclear Information System (INIS)

    Li Fan; Pan Jingzhe; Guillon, Olivier; Cocks, Alan

    2010-01-01

    Sintering of ceramic films on a solid substrate is an important technology for fabricating a range of products, including solid oxide fuel cells, micro-electronic PZT films and protective coatings. There is clear evidence that the constrained sintering process is anisotropic in nature. This paper presents a study of the constrained sintering deformation using an anisotropic constitutive law. The state of the material is described using the sintering strains rather than the relative density. In the limiting case of free sintering, the constitutive law reduces to a conventional isotropic constitutive law. The anisotropic constitutive law is used to calculate sintering deformation of a constrained film bonded to a rigid substrate and the compressive stress required in a sinter-forging experiment to achieve zero lateral shrinkage. The results are compared with experimental data in the literature. It is shown that the anisotropic constitutive law can capture the behaviour of the materials observed in the sintering experiments.

  10. Improvement of mechanical strength of sintered Mo alloyed steel by optimization of sintering and cold-forging processes with densification

    Science.gov (United States)

    Kamakoshi, Y.; Shohji, I.; Inoue, Y.; Fukuda, S.

    2017-10-01

    Powder metallurgy (P/M) materials have been expected to be spread in automotive industry. Generally, since sintered materials using P/M ones contain many pores and voids, mechanical properties of them are inferior to those of conventional wrought materials. To improve mechanical properties of the sintered materials, densification is effective. The aim of this study is to improve mechanical strength of sintered Mo-alloyed steel by optimizing conditions in sintering and cold-forging processes. Mo-alloyed steel powder was compacted. Then, pre-sintering (PS) using a vacuum sintering furnace was conducted. Subsequently, coldforging (CF) by a backward extrusion method was conducted to the pre-sintered specimen. Moreover, the cold-forged specimen was heat treated by carburizing, tempering and quenching (CQT). Afterwards, mechanical properties were investigated. As a result, it was found that the density of the PS specimen is required to be more than 7.4 Mg/m3 to strengthen the specimen by heat treatment after CF. Furthermore, density and the microstructure of the PS specimen are most important factors to make the high density and strength material by CF. At the CF load of 1200 kN, the maximum density ratio reached approximately 99% by the use of the PS specimen with proper density and microstructure. At the CF load of 900 kN, although density ratio was high like more than 97.8%, transverse rupture strength decreased sharply. Since densification caused high shear stress and stress concentration in the surface layer, microcracks occurred by the damages of inter-particle sintered connection of the surface layer. On the contrary, in case of the CF load of 1200 kN, ultra-densification of the surface layer occurred by a sufficient plastic flow. Such sufficient compressed specimens regenerated the sintered connections by high temperature heat treatment and thus the high strength densified material was obtained. These processes can be applicable to near net shape manufacturing

  11. Preparation of Ti3Al intermetallic compound by spark plasma sintering

    Science.gov (United States)

    Ito, Tsutomu; Fukui, Takahiro

    2018-04-01

    Sintered compacts of single phase Ti3Al intermetallic compound, which have excellent potential as refractory materials, were prepared by spark plasma sintering (SPS). A raw powder of Ti3Al intermetallic compound with an average powder diameter of 176 ± 56 μm was used in this study; this large powder diameter is disadvantageous for sintering because of the small surface area. The samples were prepared at sintering temperatures (Ts) of 1088, 1203, and 1323 K, sintering stresses (σs) of 16, 32, and 48 MPa, and a sintering time (ts) of 10 min. The calculated relative densities based on the apparent density of Ti3Al provided by the supplier were approximately 100% under all sintering conditions. From the experimental results, it was evident that SPS is an effective technique for dense sintering of Ti3Al intermetallic compounds in a short time interval. In this report, the sintering characteristics of Ti3Al intermetallic compacts are briefly discussed and compared with those of pure titanium compacts.

  12. Thermoset recycling via high-pressure high-temperature sintering: Revisiting the effect of interchange chemistry

    Science.gov (United States)

    Morin, Jeremy Edward

    In 1844 Charles Goodyear obtained U.S. Patent #3,633 for his "Gum Elastic Composition". In a published circular, which describes his patent for the sulfur vulcanization of gum elastic composition, he stated: "No degree of heat, without blaze, can melt it (rubber)... It resists the most powerful chemical reagents. Aquafortis (nitric acid), sulphuric acid, essential and common oils, turpentine and other solvents... ..." Goodyear's sulfur vulcanization of rubber fueled much of the industrial revolution and made transportation possible, as it exists today. In doing so, Goodyear created one of the most difficult materials to recycle. Rubber will not melt, dissolve, or lend itself to the usual methods of chemical decomposition. Ironically, Goodyear recognized this problem and in 1853 he patented the process of adding ground rubber to virgin material, now currently known as regrind blending. Today, scrap tires represent one of the most serious sources of pollution in the world. Studies estimate that there are roughly 2 billion scrap tires in U.S. landfills and more are being added at a rate of over 273 million tires per year. Current methods of recycling waste tires are crude, ineffective, and use rubber powder as a low cost filler instead of a new rubber. The groundwork for a very simple and effective method of producing high-quality rubber goods using 100% scrap rubber was discovered in 1944 by A. V. Tobolsky et al. This application, however, was not recognized until recently in our laboratory. The process as studied to date represents a method of creating quality, high-value added rubber goods with nothing other than heat and pressure. High pressure is required to obtain a void-free compaction of the rubber particles by forcing all of the free surfaces into intimate contact. High temperature then activates the chemical rearrangement, scission, and reformation of the chemical bonds thus providing new bridges between the once fractured interfaces. This occurs both within

  13. Sintering of composite

    International Nuclear Information System (INIS)

    Bordia, R.K.; Scherer, G.W.

    1988-01-01

    Several constitutive laws have been used in the literature to predict the response of sintering bodies under external and internal stress fields. These analyses are based on the assumptions of linear and isotropic behavior. The authors provide a critical examination of these equations and show that some of the available constitutive laws predict a negative Poisson's ratio. These laws have been used to analyze sintering of ceramic matrix composites with rigid inclusions and predict large values of the internal stresses and significant retardation of the densification of composites. Since a negative value of Poisson's ratio has never been observed in sinter - forging experiments, the authors conclude that either the stresses are small (as predicted by the constitutive laws with positive Poisson's ratio) or the basic assumption of linearity and isotropy used in all the analyses is incorrect. Finally, the authors discuss some phenomena that could be important in understanding the densification of ceramic matrix composites

  14. Gas response properties of citrate gel synthesized nanocrystalline MgFe2O4: Effect of sintering temperature

    International Nuclear Information System (INIS)

    Patil, J.Y.; Mulla, I.S.; Suryavanshi, S.S.

    2013-01-01

    Graphical abstract: Display Omitted Highlights: ► Synthesis of nanocrystalline MgFe 2 O 4 by economical citrate gel combustion method. ► Structural, morphological, and gas response properties of MgFe 2 O 4 . ► Enhancement in selectivity of MgFe 2 O 4 towards LPG with sintering temperature. ► Use of MgFe 2 O 4 to detect different gases at different operating temperatures. -- Abstract: Spinel type MgFe 2 O 4 material was synthesized by citrate gel combustion method. The effect of sintering temperature on structural, morphological, and gas response properties was studied. The powder X-ray diffraction pattern and transmission electron microscope study confirms nanocrystalline spinel structure of the synthesized powder. The material was tested for response properties to various reducing gases like liquid petroleum gas (LPG), acetone, ethanol, and ammonia. The results demonstrated n-type semiconducting behavior of MgFe 2 O 4 material. It was revealed that MgFe 2 O 4 sintered at 973 K was most sensitive to LPG at 648 K and to acetone at 498 K. However MgFe 2 O 4 sintered at 1173 K exhibited higher response and selectivity to LPG with marginal increase in the operating temperature. Furthermore, the sensor exhibited a fast response and a good recovery. It was observed that the particles size, porosity, and surface activity of the sensor material is affected by the sintering temperature.

  15. The effect of CNT content and sintering temperature on some properties of CNT-reinforced MgAl composites

    Directory of Open Access Journals (Sweden)

    Islak Serkan

    2017-01-01

    Full Text Available Magnesium and its alloys are considered as an important material for modern light structures at the present time and therefore they have a wide area of usage especially in electronics, aircraft, and automotive industries. Its popularity increases further as a result of its production as a composite material. In this study, carbon nanotube (CNT reinforced MgAl matrix composite materials were produced by using the hot pressing method. While 0.25 wt%, 0.50 wt%, 0.75 wt%, and 1.00 wt% CNT were added, 450°C, 500°C, and 550°C was selected as sintering temperatures. The effect of sintering temperature and amount of CNT on some properties of the composites was examined. Microstructure and phase composition of the materials were examined by using optical microscopy (OM, scanning electron microscope (SEM, X-ray diffraction (XRD, and energy-dispersive X-ray spectroscopy (EDS. The hardness of the composites was measured in Brinell. Relative densities of the materials were determined in accordance with Archimedes’ principle. A dense and slightly porous structure was obtained based on both SEM images and density measurements. XRD analyses showed that there were Mg, Mg17Al12, and MgO phases in the composites. The reason for the absence of Al in graphics was that Al formed the solid solution by being dissolved in Mg. Also, the C peak could not be determined for CNT. The hardness of the composites increased with the increasing sintering temperature and CNT addition. The highest hardness value was measured as 88.45 HB10 with the addition of 1.00 wt% CNT at 550°C. Free distribution of CNT in the matrix caused this hardness increase.

  16. Analysis of the sintering stresses and shape distortion produced in co-firing of CGO-LSM/CGO bi-layer porous structures

    DEFF Research Database (Denmark)

    Ni, De Wei; Esposito, Vincenzo; Schmidt, Cristine Grings

    such as cracks, de-lamination and shape distortion can result as a consequence of sintering mismatch stresses caused by the strain rate difference between layers. This work seeks to understand the underlying mechanisms that occur during the co-firing of porous CGO-LSM/CGO bi-layer laminates, by evaluating...... the sintering mismatch stress and distortion development through modeling and experiments....

  17. Green Compact Temperature Evolution during Current-Activated Tip-Based Sintering (CATS of Nickel

    Directory of Open Access Journals (Sweden)

    Khaled Morsi

    2013-04-01

    Full Text Available Current-activated tip-based sintering (CATS is a novel process where spark plasma sintering conditions are applied through an electrically conducting tip on a locally controlled area on a green powder compact/bed. The localization of electric current in CATS allows for unique temporal and spatial current and temperature distributions within the tip and powder compact. In this paper, special experimental setups were used to monitor the temperature profiles in the tip and at multiple locations on the surface of nickel powder compacts. A variation in the initial green density was found to have a significant effect on the maximum temperature in the tip as well as the temperature distribution across the powder compact. In general, the lowest green density specimens displayed the best conditions for localized densification. The concept of effective current density is introduced and results are discussed in relation to the densification parameter.

  18. Improved critical current densities in bulk FeSe superconductor using ball milled powders and high temperature sintering

    Energy Technology Data Exchange (ETDEWEB)

    Muralidhar, M.; Furutani, K.; Murakami, M. [Graduate School of Science and Engineering, Superconducting Materials Laboratory, Shibaura Institute of Technology, Tokyo (Japan); Kumar, Dinesh; Rao, M.S. Ramachandra [Department of Physics, Nano Functional Materials Technology Centre and Materials Science Research Centre, Indian Institute of Technology Madras, Chennai (India); Koblischka, M.R. [Institute of Experimental Physics, Saarland University, Saarbruecken (Germany)

    2016-12-15

    The present study is investigating the effect of high temperature sintering combined with ball milled powders for the preparation of FeSe material via solid state sintering technique. The commercial powders of Fe (99.9% purity) and Se (99.9% purity) were mixed in a nominal ratio Fe:Se = 1:1 and thoroughly ground and ball-milled in a glove box during 6 h. Then, the powder mixture was pressed into pellets of 5 mm in diameter and 2 mm thickness using an uniaxial pressure of 100 MPa. The samples were sealed in quartz tubes and sintered at 600 C for 24 h. Then, the pellets were again thoroughly ground and ball-milled in the glove box and pressed into pellets, and the final sintering was performed at two different temperatures, namely at 900 C for 24 h and at 950 C for 24 h. X-ray diffraction results confirmed that both samples showed mainly of the β-FeSe with tetragonal structure. The temperature dependence of magnetization (M-T) curves revealed a sharp superconducting transition T{sub c,} {sub onset} = 8.16 K for the sample sintered at 900 C. Further, scanning electron microscopy observations proved that samples sintered at 900 C show a platelike grain structure with high density. As a result, improved irreversibility fields around 5 T and the critical current density (J{sub c}) values of 6252 A cm{sup -2} at 5 K and self-field are obtained. Furthermore, the normalized volume pinning force versus the reduced field plots indicated a peak position at 0.4 for the sample sintered at 900 C. Improved flux pinning and the high J{sub c} values are attributed to the textured microstructure of the material, produced by a combination of high temperature sintering and ball milling. (copyright 2016 The Authors. Phys. Status Solidi A published by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Sintering densification of CaO–UO{sub 2}–Gd{sub 2}O{sub 3} nuclear fuel pellets

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yun [Fundamental Science on Radioactive Geology and Exploration Technology Laboratory, East China Institute of Technology, Nanchang, 330013, Jiangxi (China); Sun, Huidong [China Nucle Power Engineering Co., Ltd (China); Wang, Hui, E-mail: yinchanggeng5525@163.com [National Key Laboratory for Nuclear Fuel and Materials, Nuclear Power Institute of China, Chengdu, 610041 (China); Pan, Xiaoqiang; Li, Tongye; Liu, Jinhong; Zhang, Yong; Wang, Xinjie [National Key Laboratory for Nuclear Fuel and Materials, Nuclear Power Institute of China, Chengdu, 610041 (China)

    2015-10-15

    CaO-doped UO{sub 2}-10 wt% Gd{sub 2}O{sub 3} burnable poison fuel was prepared by co-precipitation reaction method. It was found that 0.3 wt% CaO-doping significantly improved the sintered density, grain sizes and crushing strength of UO{sub 2}–Gd{sub 2}O{sub 3} fuel pellets at the sintering temperature of 1650 °C in the sintering atmosphere of hydrogen for 3.5 h. In addition, homogeneous solid solution without precipitation of free phases of CaO and Gd{sub 2}O{sub 3} was successfully achieved. CaO doping in UO{sub 2}–Gd{sub 2}O{sub 3} fuel pellet system accelerated the thermally activated material transport, so the onset temperature of densification as well as the temperature of the maximum densification rate shifted to a lower temperature region. - Highlights: • A small amount of 0.3% doped CaO{sub 2} can significantly improve the sintered density. • Homogeneous solid solution forms without precipitation of free phases. • The pellet has good density, high strength and increasing grain sizes with homogeneity. • The pellet accelerates a thermally activated material transport.

  20. Studies on the sintering of copper powder compacts

    International Nuclear Information System (INIS)

    Elmasry, M.A.A.; Abadir, M.F.; Mahdy, A.N.; Elkinawy, W.S.

    1995-01-01

    Solid state sintering behavior of cylindrical compacts, (1 cm diameter and 1 cm height), made of copper powder was studied within a range of compacting pressure of 75 up to 300 MPa, sintering temperature of 600 up to to 900 degree C, and sintering time of 5 up to 60 min in a reducing atmosphere composed of H2 and N 2 gases with a volumetric ratio 3:1. The green and the sintered densities were found to to increase with the compacting pressure. Higher sintering temperature, and time favour increased sintered density. probable mechanisms during the initial stage of sintering were disclosed. It was found that low pressures cause dilation of closed pores, and vice versa. At low pressures and temperatures the surface diffusion mechanism is favoured, While high temperatures favour lattice diffusion mechanism. at high pressures, the lattice diffusion mechanism is suppressed while surface diffusion predominates. Density and hence shrinkage were also found to increase with the increase of sintering time, While its rate increases with the increase of sintering temperature. the influence of sintering conditions on the hardness of the compacts was studied. An increase in hardness, When higher compacting pressures and higher sintering temperatures were adopted, has bee obtained. 11 figs

  1. An in situ Study of NiTi Powder Sintering Using Neutron Diffraction

    Directory of Open Access Journals (Sweden)

    Gang Chen

    2015-04-01

    Full Text Available This study investigates phase transformation and mechanical properties of porous NiTi alloys using two different powder compacts (i.e., Ni/Ti and Ni/TiH2 by a conventional press-and-sinter means. The compacted powder mixtures were sintered in vacuum at a final temperature of 1373 K. The phase evolution was performed by in situ neutron diffraction upon sintering and cooling. The predominant phase identified in all the produced porous NiTi alloys after being sintered at 1373 K is B2 NiTi phase with the presence of other minor phases. It is found that dehydrogenation of TiH2 significantly affects the sintering behavior and resultant microstructure. In comparison to the Ni/Ti compact, dehydrogenation occurring in the Ni/TiH2 compact leads to less densification, yet higher chemical homogenization, after high temperature sintering but not in the case of low temperature sintering. Moreover, there is a direct evidence of the eutectoid decomposition of NiTi at ca. 847 and 823 K for Ni/Ti and Ni/TiH2, respectively, during furnace cooling. The static and cyclic stress-strain behaviors of the porous NiTi alloys made from the Ni/Ti and Ni/TiH2 compacts were also investigated. As compared with the Ni/Ti sintered samples, the samplessintered from the Ni/TiH2 compact exhibited a much higher porosity, a higher close-to-total porosity, a larger pore size and lower tensile and compressive fracture strength.

  2. Investigation on the effect of sintering temperature on kaolin hollow fibre membrane for dye filtration.

    Science.gov (United States)

    Mohtor, Nur Hamizah; Othman, Mohd Hafiz Dzarfan; Ismail, Ahmad Fauzi; Rahman, Mukhlis A; Jaafar, Juhana; Hashim, Nur Awanis

    2017-07-01

    Despite its extraordinary price, ceramic membrane can still be able to surpass polymeric membrane in the applications that require high temperature and pressure conditions, as well as harsh chemical environment. In order to alleviate the high cost of ceramic material that still becomes one of the major factors that contributes to the high production cost of ceramic membrane, various attempts have been made to use low cost ceramic materials as alternatives to well-known expensive ceramic materials such as alumina, silica, and zirconia in the fabrication of ceramic membrane. Thus, local Malaysian kaolin has been chosen as the ceramic material in this study for the preparation of kaolin hollow fibre membrane since it is inexpensive and naturally abundant in Malaysia. Due to the fact that the sintering process plays a prominent role in obtaining the desired morphology, properties, and performances of prepared ceramic membrane, the aim of this work was to study the effect of different sintering temperatures applied (ranging from 1200 to 1500 °C) in the preparation of kaolin hollow fibre membrane via dry/wet phase inversion-based spinning technique and sintering process. The morphology and properties of membrane were then characterised by SEM, AFM, FTIR, XRD, and three-point bending test, while the performances of membrane were investigated by conducting water permeation and Reactive Black 5 (RB5) dye rejection tests. From the experimental results obtained, the sintering temperature of 1400 °C could be selected as the optimum sintering temperature in preparing the kaolin hollow fibre membrane with the dense sponge-like structure of separation layer that resulted in the good mechanical strength of 70 MPa with the appreciable water permeation of 75 L/h m 2  bar and RB5 rejection of 68%.

  3. Microwave assisted sintering of gadolinium doped barium cerate electrolyte for intermediate temperature solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Arumugam Senthil, E-mail: senthu.ramp@gmail.com [Department of Physics, PSG College of Technology, Coimbatore, 641 004, Tamilnadu (India); Balaji, Ramamoorthy [Department of Physics, PSG College of Technology, Coimbatore, 641 004, Tamilnadu (India); Jayakumar, Srinivasalu [Department of Physics, PSG Institute of Technology and Applied Research, Coimbatore, 641 062, Tamilnadu (India); Pradeep, Chandran [Department of Physics, Indian Institute of Technology, Madras, 600 036, Tamilnadu (India)

    2016-10-01

    In Solid Oxide Fuel Cell (SOFC), electrolyte plays a vital role to increase the energy conversion efficiency. The main hurdle of such electrolyte in fuel cell is its higher operating temperature (1000 °C) which results in design limitation and higher fabrication cost. In order to reduce the operating temperature of SOFC, a suitable electrolyte has been prepared through co-precipitation method followed by microwave sintering of solid ceramic. The calcination temperature for the as-prepared powder was identified using Differential Scanning Calorimetry. The crystal structure of the sample was found to exhibit its orthorhombic perovskite structure. The particle size was determined using High-Resolution Transmission Electron Microscope with uniform in shape and size, match with XRD results and confirmed from structural analysis. Thus, the sample prepared via co-precipitation method and the solid ceramic sintered through microwave can be a promising electrolyte for fuel cells operated at intermediate temperature. - Highlights: • To synthesis the composite electrolyte by chemical method and sinter using microwave. • To reduce the operating temperature of electrolyte for high ionic conductivity in SOFC's. • To study the phase purity and to develop nanocomposite at reduced temperature.

  4. Apparatus and method for direct measurement of coal ash sintering and fusion properties at elevated temperatures and pressures

    Science.gov (United States)

    Khan, M. Rashid

    1990-01-01

    A high-pressure microdilatometer is provided for measuring the sintering and fusion properties of various coal ashes under the influence of elevated pressures and temperatures in various atmospheres. Electrical resistivity measurements across a sample of coal ash provide a measurement of the onset of the sintering and fusion of the ash particulates while the contraction of the sample during sintering is measured with a linear variable displacement transducer for detecting the initiation of sintering. These measurements of sintering in coal ash at different pressures provide a mechanism by which deleterious problems due to the sintering and fusion of ash in various combustion systems can be minimized or obviated.

  5. Production of sintered alumina from powder; optimization of the sinterized parameters for the maximum mechanical resistence

    International Nuclear Information System (INIS)

    Rocha, J.C. da.

    1981-02-01

    Pure, sinterized alumina and the optimization of the parameters of sinterization in order to obtain the highest mechanical resistence are discussed. Test materials are sinterized from a fine powder of pure alumina (Al 2 O 3 ), α phase, at different temperatures and times, in air. The microstructures are analysed concerning porosity and grain size. Depending on the temperature or the time of sinterization, there is a maximum for the mechanical resistence. (A.R.H.) [pt

  6. An investigation into texturing of high-Tc superconducting ceramics by creep-sintering

    International Nuclear Information System (INIS)

    Regnier, P.; Le Hazif, R.; Chaffron, L.

    1989-01-01

    The possibility of preparing highly textured samples of YBa 2 Cu 3 O 7-x high-Tc ceramics by creep-sintering under an uniaxial stress was investigated in detail. It is shown that the quality of the texture is sharply dependant on: the applied load, the temperature of the sintering dwell, the rate at which this dwell is reached, the exact instant at which the load is applied and the nature of the material in contact with the sample. It is also shown that further annealing without applied stress enhances the texture and considerably increases the grain size. Deformation, which was systematically recorded, occurs within a few minutes after the load is applied and exhibits a stress dependance typical of a viscous flow. Systematic examination by polarized light microscopy has indicated that the texture was homogeneous throughout the whole thickness of all the prepared samples. The resistivity versus temperature curves show that the transition is very sharp and well above 77 K

  7. The agglomeration, coalescence and sliding of nanoparticles, leading to the rapid sintering of zirconia nanoceramics.

    Science.gov (United States)

    Kocjan, Andraž; Logar, Manca; Shen, Zhijian

    2017-05-31

    Conventional sintering is a time- and energy-consuming process used for the densification of consolidated particles facilitated by atomic diffusion at high temperatures. Nanoparticles, with their increased surface free energy, can promote sintering; however, size reduction also promotes agglomeration, so hampering particle packing and complete densification. Here we show how the ordered agglomeration of zirconia primary crystallites into secondary particle assemblies ensures their homogeneous packing, while also preserving the high surface energy to higher temperatures, increasing the sintering activity. When exposed to intense electromagnetic radiation, providing rapid heating, the assembled crystallites are subjected to further agglomeration, coalescence and sliding, leading to rapid densification in the absence of extensive diffusional processes, cancelling out the grain growth during the initial sintering stages and providing a zirconia nanoceramic in only 2 minutes at 1300 °C.

  8. Elevated-Temperature Mechanical Properties of Lead-Free Sn-0.7Cu- xSiC Nanocomposite Solders

    Science.gov (United States)

    Mohammadi, A.; Mahmudi, R.

    2018-02-01

    Mechanical properties of Sn-0.7 wt.%Cu lead-free solder alloy reinforced with 0 vol.%, 1 vol.%, 2 vol.%, and 3 vol.% 100-nm SiC particles have been assessed using the shear punch testing technique in the temperature range from 25°C to 125°C. The composite materials were fabricated by the powder metallurgy route by blending, compacting, sintering, and finally extrusion. The 2 vol.% SiC-containing composite showed superior mechanical properties. In all conditions, the shear strength was adversely affected by increasing test temperature, and the 2 vol.% SiC-containing composite showed superior mechanical properties. Depending on the test temperature, the shear yield stress and ultimate shear strength increased, respectively, by 3 MPa to 4 MPa and 4 MPa to 5.5 MPa, in the composite materials. The strength enhancement was mostly attributed to the Orowan particle strengthening mechanism due to the SiC nanoparticles, and to a lesser extent to the coefficient of thermal expansion mismatch between the particles and matrix in the composite solder. A modified shear lag model was used to predict the total strengthening achieved by particle addition, based on the contribution of each of the above mechanisms.

  9. A study on some properties of sintered stainless steel powder compacts with sintering conditions

    International Nuclear Information System (INIS)

    Lee, Bang Sik; Kim, Kwan Hyu; Lee, Doh Jae; Choi, Dap Chun

    1986-01-01

    Sintered specimens for the mechanical and corrosion tests were prepared from 316L, 410L and 434L stainless steel powder compacts with green densities in the range of 6.2∼7.0g/cm 3 . The experimental variables studied were green density, sintering atmosphere, temperature and time, type of lubricant used and cooling rate after sintering operation. Mechanical properties of green compacts and sintered specimens were evaluated. The corrosion tests were performed by potentiodynamic anodic polarization technique. Mechanical properties were very sensitive to the sintering atmosphere; sintering in dissociated ammonia resulted in the strengthing but embrittlement of sintered 316L, 410L and 434L strainless steel powder compacts. Their corrosion resistance was also decreased. The tensile strength was increased with increases in sintering time and temperature while the decreases in the yield strength were observed. The tensile properties of green compacts were shown to closely related to the green density. Addition of 1% acrawax as a lubricant was appeared to be most effective for the improvement of green strength. (Author)

  10. Technological aspects of UO2 sintering at low temperature

    International Nuclear Information System (INIS)

    Thern, Gerardo G.; Dominguez, Carlos A.; Benitez, Ana M.; Marajofsky, Adolfo

    1999-01-01

    Within the Fuel Cycle Program of CNEA, the knowledge that plant personnel has on sintering at low temperature was evaluated, because this process could decrease costs for UO 2 and (U,Gd)O 2 pellets production, simplify the furnace maintenance and facilitate the automation of the production process, specially convenient for uranium recovery. By applying this technology, some companies have achieved production at pilot-scale and irradiated a significant number of pellets. (author)

  11. Improvement of the electrochromic response of a low-temperature sintered dye-modified porous electrode using low-resistivity indium tin oxide nanoparticles

    International Nuclear Information System (INIS)

    Watanabe, Yuichi; Suemori, Kouji; Hoshino, Satoshi

    2016-01-01

    An indium tin oxide (ITO) nanoparticle-based porous electrode sintered at low temperatures was investigated as a transparent electrode for electrochromic displays (ECDs). The electrochromic (EC) response of the dye-modified ITO porous electrode sintered at 150 °C, which exhibited a generally low resistivity, was markedly superior to that of a conventional dye-modified TiO 2 porous electrode sintered at the same temperature. Moreover, the EC characteristics of the dye-modified ITO porous electrode sintered at 150 °C were better than those of the high-temperature (450 °C) sintered conventional dye-modified TiO 2 porous electrode. These improvements in the EC characteristics of the dye-modified ITO porous electrode are attributed to its lower resistivity than that of the TiO 2 porous electrodes. In addition to its sufficiently low resistivity attained under the sintering conditions required for flexible ECD applications, the ITO porous film had superior visible-light transparency and dye adsorption capabilities. We conclude that the process temperature, resistivity, optical transmittance, and dye adsorption capability of the ITO porous electrode make it a promising transparent porous electrode for flexible ECD applications.

  12. Sintering Theory and Practice

    Science.gov (United States)

    German, Randall M.

    1996-01-01

    Although sintering is an essential process in the manufacture of ceramics and certain metals, as well as several other industrial operations, until now, no single book has treated both the background theory and the practical application of this complex and often delicate procedure. In Sintering Theory and Practice, leading researcher and materials engineer Randall M. German presents a comprehensive treatment of this subject that will be of great use to manufacturers and scientists alike. This practical guide to sintering considers the fact that while the bonding process improves strength and other engineering properties of the compacted material, inappropriate methods of control may lead to cracking, distortion, and other defects. It provides a working knowledge of sintering, and shows how to avoid problems while accounting for variables such as particle size, maximum temperature, time at that temperature, and other problems that may cause changes in processing. The book describes the fundamental atomic events that govern the transformation from particles to solid, covers all forms of the sintering process, and provides a summary of many actual production cycles. Building from the ground up, it begins with definitions and progresses to measurement techniques, easing the transition, especially for students, into advanced topics such as single-phase solid-state sintering, microstructure changes, the complications of mixed particles, and pressure-assisted sintering. German draws on some six thousand references to provide a coherent and lucid treatment of the subject, making scientific principles and practical applications accessible to both students and professionals. In the process, he also points out and avoids the pitfalls found in various competing theories, concepts, and mathematical disputes within the field. A unique opportunity to discover what sintering is all about--both in theory and in practice What is sintering? We see the end product of this thermal

  13. Influence of the starch content and sintering temperature on the processing of porous zirconia substrates

    International Nuclear Information System (INIS)

    Albano, Maria P; Garrido, Liliana B

    2008-01-01

    Porous ceramics are used as electrodes in fuel cells, separators in batteries, filters, etc. Thin porous substrates of zirconium stabilized with yttrium oxide (ZSY) are used as anodes in solid oxide fuel cells. One way to obtain a porous band is to mix starch particles during the preparation stage of the ZSY suspension. The starch burns during the removal of the binder and leaves stable pores that are not eliminated in the subsequent sintering stage. This work used the band pouring process to produce porous bands of ZSY with porosities of 29% to 53% using starch as a transitory additive. Concentrated aqueous suspensions of ZSY were prepared with different contents of starch and of an acrylic latex binder. The influence of the fraction of starch volume and of the temperature on the sintering behavior and on the final micro structure of the bands was studied. The total porosity of the bands was higher than the fractions in volume of added starch, due to the presence of closed porosity in the matrix. The deviations compared to the porosity predicted based on the fractions in the volume of starch, were greater as the starch content increased. The percentage of open porosity in the sintered bands depended on the fraction in the volume of added starch and on the sintering temperature. When the fraction in volume of starch increased from 17.6% to 37.8% a gradual increase occurred in the opening of the porous structure. The contraction of the bands during sintering at a given temperature correlated with the density of the packing of ZSY (au)

  14. High hardness-high toughness WC-20Co nanocomposites: Effect of VC variation and sintering temperature

    International Nuclear Information System (INIS)

    Kumar, Devender; Singh, K.

    2016-01-01

    WC-Co nanocomposites with variable VC content are synthesized by liquid phase sintering at two different temperatures. The as synthesized samples are characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM) and optical microscope. The mechanical properties are obtained by Vickers indentation method. The high content of VC, lead to high porosity when sintering temperature is increased from 1350 to 1400 °C. The relative density of all the samples is more than 95%. Microstructure reveals that agglomeration of W-Co-C and V-W-C increases at 1400 °C, which generates layered interfaces in radial direction and hence the material inhomogeneity. XRD pattern shows that the formation of η phase increases at 1400 °C, which is responsible to decrease the fracture toughness of the present samples. The average particle size of 102 nm, highest hardness of 1870.6 kgf/mm"2 with fracture toughness of 14.4 MN/mm"3"/"2 is observed in sample having 7.5 wt% VC, sintered at 1350 °C for one minute. This combination shows the highest hardness and reasonably high toughness as compared to conventionally sintered materials reported so far.

  15. Alternative sintering methods compared to conventional thermal sintering for inkjet printed silver nanoparticle ink

    NARCIS (Netherlands)

    Niittynen, J.; Abbel, R.; Mäntysalo, M.; Perelaer, J.; Schubert, U.S.; Lupo, D.

    2014-01-01

    In this contribution several alternative sintering methods are compared to traditional thermal sintering as high temperature and long process time of thermal sintering are increasing the costs of inkjet-printing and preventing the use of this technology in large scale manufacturing. Alternative

  16. Thermal cycling properties of a lead-free positive temperature coefficient thermistor in the Ba0.97(Bi0.5Na0.5)0.03TiO3 system

    Science.gov (United States)

    Choi, Hyoung-Seuk; Choi, Soon-Mok; Choi, Duck-Kyun

    2016-01-01

    A Pb-free PTC (positive temperature coefficient thermistor) heater was developed in the Ba0.97(Bi0.5Na0.5)0.03TiO3 system especially for automotive part applications. The reliability was verified by using a thermal cycling test designed on the basis of the result from a quality function deployment (QFD) analysis. We compared the thermal cycling test results from the newly-developed Pb-free PTC heaters with the results from PTC heaters currently on the market, namely, PTC heaters containing Pb. Life prediction and stress-strength relationships were analyzed together with a thermal diffusivity evaluation. We discuss the potential failure mechanisms during the thermal cycling test, focusing on the fact that electrical degradation in PTC materials is closely related to mechanical degradation due to the internal stress in the materials that comes from repeated phase changes. Different grain size distributions on the sintered bulks were considered to a key factor for explaining the different results of the reliability tests between the new Pb-free PTC heaters developed in this study and the commercial PTC heaters containing Pb.

  17. Design and fabrication of sintered Nd-Fe-B magnets with a low temperature coefficient of intrinsic coercivity

    Directory of Open Access Journals (Sweden)

    Cui X.G.

    2009-01-01

    Full Text Available To decrease the temperature coefficients of sintered Nd-Fe-B magnets, the influencing factors on temperature coefficients, especially the reversible temperature coefficient β of intrinsic coercivity Hcj, were analyzed. The results showed that the absolute value of β decreased with increasing Hcj and also the ratio of microstructure parameter c to Neff, indicating that the increase of magnetocrystalline anisotropy field HA and c/Neff can effectively decrease the absolute value of β. On the basis of this analysis, a sintered Nd-Fe-B magnet with a low temperature coefficient of Hcj was fabricated through composition design, and the value of β was only -0.385%/ºC in the temperature interval of 20-150ºC.

  18. Preparation of (Bi, Pb)-2223/Ag tapes by high temperature sintering and post-annealing process

    DEFF Research Database (Denmark)

    Hua, L.; Grivel, Jean-Claude; Andersen, L.G.

    2002-01-01

    A novel heat treatment process was developed to fabricate (Bi, Pb)-2223/Ag tapes with high critical current density (J(c)). The process can be divided into two parts: reformation and post-annealing. Tapes were first heated to the maximum temperature (830-860 degreesC) followed by slow cooling...... (reformation). Then, tape, were annealed between 760 and 820 degreesC (post-annealing). Reformation is expected to produce a large amount of liquid phase which may heat microcracks, decrease porosity, and improve grain growth. However, since the sintering temperature is beyond the Bi-2223 single-phase region......-energy synchrotron XRD and SEM/EDX. Some process parameters e.g. sintering temperature. cooling rate. and post-annealing time were optimised. (C) 2002 Elsevier Science B.V. All rights reserved....

  19. Interpretation of Frenkel’s theory of sintering considering evolution of activated pores: III. Determination of equilibrium sintering time

    Directory of Open Access Journals (Sweden)

    Yu C.L.

    2015-01-01

    Full Text Available In this article, the Frenkel’s theory of liquid-phase sintering was interpreted regarding pores as the activated volume. The mathematical model established by Nikolić et al. was used to infer the equilibrium sintering time at varied sintering temperatures during the isothermal sintering of codierite glass by Giess et al. Through the calculation, the equilibrium time at 800ºC, 820ºC, 840ºC and 860ºC is inferred to be 7014.42mins, 1569.65mins, 368.92mins and 114.61mins, respectively. The equilibrium time decreases as the temperature increases. And the theoretical value is in good accordance with the experimental results. Thus, the model established by Nikolić et al. can be applied successfully to predict the equilibrium sintering time of the cordierite glass at varied temperatures during isothermal sintering.

  20. Laser sintering of metal powders on top of sintered layers under multiple-line laser scanning

    International Nuclear Information System (INIS)

    Xiao Bin; Zhang Yuwen

    2007-01-01

    A three-dimensional numerical model for multiple-line sintering of loose powders on top of multiple sintered layers under the irradiation of a moving Gaussian laser beam is carried out. The overlaps between vertically deposited layers and adjacent lines which strengthen bonding are taken into account. The energy equation is formulated using the temperature transforming model and solved by the finite volume method. The effects of the number of the existing sintered layers, porosity and initial temperature coupled with the optimal combination laser intensity and scanning velocity are presented. The results show that the liquid pool moves slightly towards the negative scanning direction and the shape of the liquid pool becomes shallower with higher scanning velocity. A higher laser intensity is needed to achieve the required overlaps when the number of the existing sintered layers increases. Increasing porosity or initial temperature enhances the sintering process and thus less intensity is needed for the overlap requirement

  1. Flash sintering of ceramic materials

    Science.gov (United States)

    Dancer, C. E. J.

    2016-10-01

    During flash sintering, ceramic materials can sinter to high density in a matter of seconds while subjected to electric field and elevated temperature. This process, which occurs at lower furnace temperatures and in shorter times than both conventional ceramic sintering and field-assisted methods such as spark plasma sintering, has the potential to radically reduce the power consumption required for the densification of ceramic materials. This paper reviews the experimental work on flash sintering methods carried out to date, and compares the properties of the materials obtained to those produced by conventional sintering. The flash sintering process is described for oxides of zirconium, yttrium, aluminium, tin, zinc, and titanium; silicon and boron carbide, zirconium diboride, materials for solid oxide fuel applications, ferroelectric materials, and composite materials. While experimental observations have been made on a wide range of materials, understanding of the underlying mechanisms responsible for the onset and latter stages of flash sintering is still elusive. Elements of the proposed theories to explain the observed behaviour include extensive Joule heating throughout the material causing thermal runaway, arrested by the current limitation in the power supply, and the formation of defect avalanches which rapidly and dramatically increase the sample conductivity. Undoubtedly, the flash sintering process is affected by the electric field strength, furnace temperature and current density limit, but also by microstructural features such as the presence of second phase particles or dopants and the particle size in the starting material. While further experimental work and modelling is still required to attain a full understanding capable of predicting the success of the flash sintering process in different materials, the technique non-etheless holds great potential for exceptional control of the ceramic sintering process.

  2. Effect of low temperature in-situ sintering on the impedance and the performance of intermediate temperature solid oxide fuel cell cathodes

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Hjalmarsson, Per; Hansen, Martin Hangaard

    2014-01-01

    The effect of in-situ sintering temperature and time on the electronic conductivity, impedance and performance of IT-SOFC cathodes were studied. The studied cathodes were for comparison (La0.6Sr0.4)0.99CoO3 (LSC), (La0.6Sr0.4)0.99CoO3:Ce0.9Gd0.1O1.95 (LSC:CGO), La0.58Sr0.4Co0.2Fe0.8O3 (LSCF) and La......0.58Sr0.4Co0.2Fe0.8O3:Ce0.9Gd0.1O1.95 (LSCF:CGO). The LSCF-based cathodes showed poor sintering capabilities compared to the LSC-based cathodes in the studied temperature range of 650–950 °C. The poor necking between individual LSCF grains lower the electronic conductivity. Furthermore, poor cathode....../electrolyte adhesion was seen as an additional high frequency impedance arc, which gradually disappeared as the LSCF cathodes were sintered at increasing temperature. Effects on the impedance shape from poor cathode grain connectivity was shown through impedance simulations to result in a possible increase in the high...

  3. Effects of hexagonal boron nitride and sintering temperature on mechanical and tribological properties of SS316L/h-BN composites

    International Nuclear Information System (INIS)

    Mahathanabodee, S.; Palathai, T.; Raadnui, S.; Tongsri, R.; Sombatsompop, N.

    2013-01-01

    Highlights: ► 20 vol% h-BN in stainless steel gave the lowest friction coefficient. ► Sintering temperature of 1200 °C was recommended for optimum friction coefficient. ► h-BN in stainless steel transformed to a boride liquid phase at 1250 °C. - Abstract: In this work, hexagonal boron nitride (h-BN)-embedded 316L stainless steel (SS316L/h-BN) composites were prepared using a conventional powder metallurgy process. In order to produce self-lubricating composites, various amounts of h-BN (10, 15 and 20 vol%) were incorporated. Effects of h-BN content and sintering temperature on the mechanical and tribological properties were of primary interest. The results suggested that an increase in h-BN content reduced the hardness of the composites, but that the hardness could be improved by increasing the sintering temperature. Addition of h-BN up to 20 vol% improved the friction coefficient of the composites. At a sintering temperature of 1250 °C, h-BN transformed into a boride liquid phase, which formed a eutectic during cooling and exhibited a deterioration effect on lubricating film formation of the h-BN, resulting in an increase in the friction coefficient of the composites. The specific wear rate was greatly reduced when the composites were sintered at 1200 °C. The lowest friction coefficient and specific wear rate in the composites could be found under the experimental conditions used in this work when using 20 vol% of h-BN at a sintering temperature of 1200 °C

  4. Behaviour of Ca2Fe2O5 with Nb substitution and sintering temperatures seen by Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Duhalde, S.; Saragovi, C.; Moraes, I.J.; Terrile, M.C.; Francisco, R.H.P.

    1991-01-01

    Moessbauer spectroscopy of samples of Ca 2 Fe 2-x Nb x O 5+x with x values ranging from 0 to 0.8 and sintering temperatures of 1200degC and 1300degC shows the presence of two magnetic fields and a paramagnetic signal. The behaviour of the parameters as a function of x and of the sintering temperatures are discussed and compared with XRD results. (orig.)

  5. Solid-state sintering of tungsten heavy alloys

    International Nuclear Information System (INIS)

    Gurwell, W.E.

    1994-10-01

    Solid-state sintering is a technologically important step in the fabrication of tungsten heavy alloys. This work addresses practical variables affecting the sinterability: powder particle size, powder mixing, and sintering temperature and time. Compositions containing 1 to 10 micrometer (μM) tungsten (W) powders can be fully densified at temperatures near the matrix solidus. Blending with an intensifier bar provided good dispersion of elemental powders and good as-sintered mechanical properties under adequate sintering conditions. Additional ball milling increases powder bulk density which primarily benefits mold and die filling. Although fine, 1 μm W powder blends have high sinterability, higher as-sintered ductilities are reached in shorter sintering times with coarser, 5 μm W powder blends; 10μm W powder blends promise the highest as-sintered ductilities due to their coarse microstructural W

  6. Effect of various sintering temperature on resistivity behaviour and magnetoresistance of La{sub 0.67}Ba{sub 0.33}MnO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Pratama, R.; Kurniawan, B., E-mail: bkuru07@gmail.com; Manaf, A.; Ramadhan, M. R. [Department of Physics, FMIPA, Universitas Indonesia, Kampus UI Depok (Indonesia); Nanto, D. [Department of Physics Education, Syarif Hidayatullah State Islamic University, Jakarta 15412 (Indonesia); Saptari, S. A. [Faculty of Science and Technology, Syarif Hidayatullah State Islamic University, Jakarta 15412 (Indonesia); Imaduddin, A. [Research Center of Metallurgy and Material, Indonesian Institute of Science,s Gd 470 Kawasan Puspitek, Serpong, Tangerang Selatan 15314 (Indonesia)

    2016-04-19

    A detail work was conducted in order to investigate effect of various sintering temperature on resistivity behavior and its relation with the magneto-resistance effect of La{sub 0.67}Ba{sub 0.33}MnO{sub 3} (LBMO). The LBMO samples were synthesized using solid state reaction. Characterization using X-ray diffraction shows that all LBMO samples have a single phase for each variation. Variation of sintering temperature on the LBMO samples affects its lattice parameters. The resistivity measurement in an absence and under applied magnetic field resulted in a highly significant different values. In one of the sintering temperature variation of LBMO, an increasing resistivity had shown at a low temperature and had reached its maximum value at a specific temperature, and then the resistivity decreases to the lowest value near the room temperature. Similar result observed at higher varieties of sintering temperature but with significant lower maximum resistivity.

  7. Effect of sintering temperatures and screen printing types on TiO2 layers in DSSC applications

    Science.gov (United States)

    Supriyanto, Agus; Furqoni, Lutfi; Nurosyid, Fahru; Hidayat, Jojo; Suryana, Risa

    2016-03-01

    Dye-Sensitized Solar Cell (DSSC) is a candidate solar cell, which has a big potential in the future due to its eco-friendly material. This research is conducted to study the effect of sintering temperature and the type of screen-printing toward the characteristics of TiO2 layer as a working electrode in DSSC. TiO2 layers were fabricated using a screen-printing method with a mesh size of T-49, T-55, and T-61. TiO2 layers were sintered at temperatures of 600°C and 650°C for 60 min. DSSC structure was composed of TiO2 as semiconductors, ruthenium complex as dyes, and carbon as counter electrodes. The morphology of TiO2 layer was observed by using Nikon E2 Digital Camera Microscopy. The efficiencies of DSSC were calculated from the I-V curves. The highest efficiency is 0.015% at TiO2 layer fabricated with screen type T-61 and at a sintering temperature of 650°C.

  8. Effect of sintering temperatures and screen printing types on TiO_2 layers in DSSC applications

    International Nuclear Information System (INIS)

    Supriyanto, Agus; Furqoni, Lutfi; Nurosyid, Fahru; Suryana, Risa; Hidayat, Jojo

    2016-01-01

    Dye-Sensitized Solar Cell (DSSC) is a candidate solar cell, which has a big potential in the future due to its eco-friendly material. This research is conducted to study the effect of sintering temperature and the type of screen-printing toward the characteristics of TiO_2 layer as a working electrode in DSSC. TiO_2 layers were fabricated using a screen-printing method with a mesh size of T-49, T-55, and T-61. TiO_2 layers were sintered at temperatures of 600°C and 650°C for 60 min. DSSC structure was composed of TiO_2 as semiconductors, ruthenium complex as dyes, and carbon as counter electrodes. The morphology of TiO_2 layer was observed by using Nikon E2 Digital Camera Microscopy. The efficiencies of DSSC were calculated from the I-V curves. The highest efficiency is 0.015% at TiO_2 layer fabricated with screen type T-61 and at a sintering temperature of 650°C.

  9. The origin of the coercivity reduction of Nd–Fe–B sintered magnet annealed below an optimal temperature

    International Nuclear Information System (INIS)

    Akiya, T.; Sasaki, T.T.; Ohkubo, T.; Une, Y.; Sagawa, M.; Kato, H.; Hono, K.

    2013-01-01

    In order to understand the origin of the coercivity reduction in a sintered Nd–Fe–B magnet that is annealed below an optimal annealing temperature, we performed focused ion beam/scanning electron microscopy tomography of post-sinter annealed magnets. A number of grain boundary cracks were observed between Nd 2 Fe 14 B grains and Nd-rich phases in the sample annealed below the optimal temperature. We deduced micromagnetic parameters α and N eff by fitting the temperature dependence of the coercivity. While α was constant regardless of the annealing conditions, N eff increased in the sample annealed below the optimal temperature with the reduced coercivity. This indicates that the reduction of the coercivity is due to the local stray field at the cracks. - Highlights: • We performed FIB/SEM tomography of post-sinter annealed magnets. • A number of grain boundary cracks were observed in the low-coercivity sample. • Parameters α and N eff were deduced from the temperature dependence of coercivity. • While α was constant, N eff increased in the low-coercivity sample. • The reduction of the coercivity is due to the local stray field at the cracks

  10. Effect of sintering temperature on the microstructure and properties of foamed glass-ceramics prepared from high-titanium blast furnace slag and waste glass

    Science.gov (United States)

    Chen, Chang-hong; Feng, Ke-qin; Zhou, Yu; Zhou, Hong-ling

    2017-08-01

    Foamed glass-ceramics were prepared via a single-step sintering method using high-titanium blast furnace slag and waste glass as the main raw materials The influence of sintering temperature (900-1060°C) on the microstructure and properties of foamed glass-ceramics was studied. The results show that the crystal shape changed from grainy to rod-shaped and finally turned to multiple shapes as the sintering temperature was increased from 900 to 1060°C. With increasing sintering temperature, the average pore size of the foamed glass-ceramics increased and subsequently decreased. By contrast, the compressive strength and the bulk density decreased and subsequently increased. An excessively high temperature, however, induced the coalescence of pores and decreased the compressive strength. The optimal properties, including the highest compressive strength (16.64 MPa) among the investigated samples and a relatively low bulk density (0.83 g/cm3), were attained in the case of the foamed glass-ceramics sintered at 1000°C.

  11. Highly textured KNN-based piezoelectric ceramics by conventional sintering

    International Nuclear Information System (INIS)

    Zapata, Angelica Maria Mazuera; Silva Junior, Paulo Sergio da; Zambrano, Michel Venet

    2016-01-01

    Full text: Texturing in ferroelectric ceramics has played an important role in the enhancement of their piezoelectric properties. Common methods for ceramic texturing are hot pressing and template grain ground; nevertheless, the needed facilities to apply hot pressing and the processing of single crystal make the texture of ceramics expensive and very difficult. In this study, a novel method was investigated to obtain highly textured lead-free ceramics. A (K 0.5 Na 0.5 ) 0.97 Li 0. 0 3 Nb 0.8 Ta 0. 2 matrix (KNLNT), with CuO excess was sintered between 1070 and 1110 °C following a solid state reaction procedure. The CuO excess promotes liquid phase formation and a partial melting of the material. XRD patterns showed the intensity of (100) family peaks became much stronger with the increasing of sintering temperature and CuO. In addition, Lotgering factor was calculated and exhibited a texture degree between 40 % and 70 % for sintered samples having 13 and 16 wt. % CuO, respectively. These, highly textured ceramics, with adequate cut, can be used as substitutes single crystals for texturing of KNN-based lead-free ceramics. (author)

  12. Gas response properties of citrate gel synthesized nanocrystalline MgFe{sub 2}O{sub 4}: Effect of sintering temperature

    Energy Technology Data Exchange (ETDEWEB)

    Patil, J.Y. [School of Physical Sciences, Solapur University Solapur-413255 (India); Mulla, I.S. [Emeritus Scientist (CSIR), Centre for Materials for Electronic Technology(C-MET) Pune-411 008 (India); Suryavanshi, S.S., E-mail: sssuryavanshi@rediffmail.com [School of Physical Sciences, Solapur University Solapur-413255 (India)

    2013-02-15

    Graphical abstract: Display Omitted Highlights: ► Synthesis of nanocrystalline MgFe{sub 2}O{sub 4} by economical citrate gel combustion method. ► Structural, morphological, and gas response properties of MgFe{sub 2}O{sub 4}. ► Enhancement in selectivity of MgFe{sub 2}O{sub 4} towards LPG with sintering temperature. ► Use of MgFe{sub 2}O{sub 4} to detect different gases at different operating temperatures. -- Abstract: Spinel type MgFe{sub 2}O{sub 4} material was synthesized by citrate gel combustion method. The effect of sintering temperature on structural, morphological, and gas response properties was studied. The powder X-ray diffraction pattern and transmission electron microscope study confirms nanocrystalline spinel structure of the synthesized powder. The material was tested for response properties to various reducing gases like liquid petroleum gas (LPG), acetone, ethanol, and ammonia. The results demonstrated n-type semiconducting behavior of MgFe{sub 2}O{sub 4} material. It was revealed that MgFe{sub 2}O{sub 4} sintered at 973 K was most sensitive to LPG at 648 K and to acetone at 498 K. However MgFe{sub 2}O{sub 4} sintered at 1173 K exhibited higher response and selectivity to LPG with marginal increase in the operating temperature. Furthermore, the sensor exhibited a fast response and a good recovery. It was observed that the particles size, porosity, and surface activity of the sensor material is affected by the sintering temperature.

  13. Effects of sintering temperature on structural and electrical transport properties of zinc ferrites prepared by sol-gel route

    International Nuclear Information System (INIS)

    Anis-ur-Rehman, M.; Malik, M.A.; Ahmad, I.; Nasir, S.; Mubeen, M.; Abdullah, A.

    2011-01-01

    The effects of sintering temperature on the structural and electrical transport properties of nanocrystalline zinc ferrites are reported. The zinc ferrites were prepared by WOWS sol-gel synthesis route. The prepared sample was sintered at temperatures 500 deg. C, 700 deg. C and 900 deg. C respectively for 2 h. X-ray Diffraction (XRD) technique was used to describe the structural properties. The crystallite size, lattice parameters and porosity of samples were measured from the analysis of XRD data. The average crystallite size for each sample was measured using the Scherrer formula by considering the most intense (3 1 1) peak. The dielectric constant (e), dielectric loss tangent (tan theta ) and AC electrical conductivity of nanocrystalline Zn ferrites are investigated as a function of frequency and sintering temperature. All the electrical properties are explained in accordance with MaxwellWagner model and Koops phenomenological theory. (author)

  14. High temperature creep deformation of glass-phase containing MoSi sub 2 sintered compacts. Glass so wo fukumu MoSi sub 2 shoketsutai no koon henkei

    Energy Technology Data Exchange (ETDEWEB)

    Shobu, K.; Watanabe, T.; Tani, E. (Government Industrial Research Inst., Kyushu, Saga (Japan))

    1991-07-25

    As such deformation mechanisms as diffusion, grain boundary sliding and motion of dislocation are known for high temperature deformation of polycrystallines, these atomic theoretical mechanism and quantitative side are not resolved perfectly. In this report, high temperature plasticity of sintered MoSi {sub 2} containing glass phase was examined and obtained some results shown as follows: its transient feature was same as usually observed one; and according to observe its structure, the deformation mechanism was mainly based on grain boundary sliding, and viscous flow of glass phase and diffusion therethrough; stress feature in deformation was shown a transient phenomenon at about 10MPa, and stress index approached to 3 under low stress and to 1 under high stress, in other words stress feature was controlled by viscous flow under high stress and by grain boundary sliding under low stress; and the stress index of grain boundary sliding was supposed to be 3 at low inclined angle and responsive grain boundary and 2 at high inclined angle. 4 refs., 5 figs.

  15. Low-temperature sintering and electrical properties of strontium- and magnesium-doped lanthanum gallate with V2O5 additive

    Science.gov (United States)

    Ha, Sang Bu; Cho, Yoon Ho; Ji, Ho-Il; Lee, Jong-Ho; Kang, Yun Chan; Lee, Jong-Heun

    2011-03-01

    The effects of a V2O5 additive on the low-temperature sintering and ionic conductivity of strontium- and magnesium-doped lanthanum gallate (LSGM: La0.8Sr0.2Ga0.8Mg0.2O2.8) are studied. The LSGM powders prepared by the glycine nitrate method are mixed with 0.5-2 at.% of VO5/2 and then sintered at 1100-1400 °C in air for 4 h. The apparent density and phase purity of the LSGM specimens are increased with increasing sintering temperature and VO5/2 concentration due to the enhanced sintering and mass transfer via the intergranular liquid phase. The 1 at.% VO5/2-doped LSGM specimen sintered at 1300 °C exhibits a high oxide ion conductivity of ∼0.027 S cm-1 at 700 °C over a wide range of oxygen partial pressure (PO2 =10-27 - 1 atm), thereby demonstrating its potential as a useful electrolyte for anode-supported solid oxide fuel cells (SOFCs) without the requirement for any buffer layer between the electrolyte and anode.

  16. Preparation of morphology controlled Th1-xUxO2 sintered pellets from low-temperature precursors

    International Nuclear Information System (INIS)

    Clavier, N.; Dacheux, N.; Podor, R.; Hingant, N.; Clavier, N.; Dacheux, N.; Hubert, S.; Barre, N.; Podor, R.; Aranda, L.

    2011-01-01

    Dense sintered samples of Th 1 - x U x O 2 solid solutions were prepared from the initial precipitation of oxalate precursors through two different wet chemical routes, based either on the direct precipitation of the cations or on the use of hydrothermal method. For both low-temperature precursors, the specific surface area was followed versus the heating temperature and the influence of the conversion step on the oxide powder reactivity was evidenced since it allowed to obtain reactive surfaces in the range of 15-45 m 2 g -1 without any additional grinding step. From dilatometric studies, the operating conditions required for the complete densification of the Th 1 - x U x O 2 pellets were set to a heat treatment of 3 h at 1500 degrees C. In these conditions, the density of the samples lies between 94% and 99% of the calculated value whatever the preparation method chosen which appeared very promising compared to the results already reported under inert atmosphere. The initial precipitation of low-temperature precursors thus allowed to lower the sintering temperature by about 100 degrees C while the use of hydrothermal conditions significantly improved the cationic distribution in the sintered samples, as shown from EPMA statistical experiments. (authors)

  17. Residual stress determination of direct metal laser sintered (DMLS) inconel specimens and parts

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, Thomas R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Unocic, Kinga A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Maziasz, Philip J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bunn, Jeffrey R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Fancher, Christopher M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Peralta, Alonso [Honeywell Aerospace, Phoenix, AZ (United States); Sundarraj, Suresh [Honeywell Aerospace, Phoenix, AZ (United States); Neumann, James [Honeywell Aerospace, Phoenix, AZ (United States)

    2018-01-01

    Residual stress determinations and microstructural studies were performed on a series of Inconel 718Plus prisms built using Direct Metal Laser Sintering (DMLS) at Honeywell Aerospace (hereafter also referred to as Honeywell). The results are being used to validate and improve existing models at Honeywell, and ultimately will expedite the implementation of DMLS throughout various industrial sectors (automotive, biomedical, etc.).

  18. Lower sintering temperature of nanostructured dense ceramics compacted from dry nanopowders using powerful ultrasonic action

    Science.gov (United States)

    Khasanov, O.; Reichel, U.; Dvilis, E.; Khasanov, A.

    2011-10-01

    Nanostructured high dense zirconia ceramics have been sintered from dry nanopowders compacted by uniaxial pressing with simultaneous powerful ultrasonic action (PUA). Powerful ultrasound with frequency of 21 kHz was supplied from ultrasonic generator to the mold, which was the ultrasonic wave-guide. Previously the mold was filled by non-agglomerated zirconia nanopowder having average particle size of 40 nm. Any binders or plasticizers were excluded at nanopowder processing. Compaction pressure was 240 MPa, power of ultrasonic generator at PUA was 1 kW and 3 kW. The fully dense zirconia ceramics has been sintered at 1345°C and high-dense ceramics with a density of 99.1%, the most grains of which had the sizes Dgr <= 200 nm, has been sintered at low sintering temperature (1325°C). Applied approach prevents essential grain growth owing to uniform packing of nanoparticles under vibrating PU-action at pressing, which provides the friction forces control during dry nanopowder compaction without contaminating binders or plasticizers.

  19. Reduction of surface erosion caused by helium blistering in sintered beryllium and sintered aluminum powder

    International Nuclear Information System (INIS)

    Das, S.K.; Kaminsky, M.

    1976-01-01

    Studies have been conducted to find materials with microstructures which minimize the formation of blisters. A promising class of materials appears to be sintered metal powder with small average grain sizes and low atomic number Z. Studies of the surface erosion of sintered aluminum powder (SAP 895) and of aluminum held at 400 0 C due to blistering by 100 keV helium ions have been conducted and the results are compared to those obtained earlier for room temperature irradiation. A significant reduction of the erosion rate in SAP 895 in comparison to annealed aluminum and SAP 930 is observed. In addition results on the blistering of sintered beryllium powder (type I) irradiated at room temperature and 600 0 C by 100 keV helium ions are given. These results will be compared with those reported recently for vacuum cast beryllium foil and a foil of sintered beryllium powder (type II) which was fabricated differently, than type I. For room temperature irradiation only a few blisters could be observed in sintered beryllium powder type I and type II and they are smaller in size and in number than in vacuum cast beryllium. For irradiation at 600 0 C large scale exfoliation of blisters was observed for vacuum cast beryllium but much less exfoliation was seen for sintered beryllium powder, type I, and type II. The results show a reduction in erosion rate cast beryllium, for both room temperature and 600 0 C

  20. Room-temperature saturated ferroelectric polarization in BiFeO3 ceramics synthesized by rapid liquid phase sintering

    International Nuclear Information System (INIS)

    Wang, Y.P.; Zhou, L.; Zhang, M.F.; Chen, X.Y.; Liu, J.-M.; Liu, Z.G.

    2004-01-01

    Single-phased ferroelectromagnet BiFeO 3 ceramics with high resistivity were synthesized by a rapid liquid phase sintering technique. Saturated ferroelectric hysteresis loops were observed at room temperature in the ceramics sintered at 880 deg. C for 450 s. The spontaneous polarization, remnant polarization, and the coercive field are 8.9 μC/cm 2 , 4.0 μC/cm 2 , and 39 kV/cm, respectively, under an applied field of 100 kV/cm. It is proposed that the formation of Fe 2+ and an oxygen deficiency leading to the higher leakage can be greatly suppressed by the very high heating rate, short sintering period, and liquid phase sintering technique. The latter was also found effective in increasing the density of the ceramics. The sintering technique developed in this work is expected to be useful in synthesizing other ceramics from multivalent or volatile starting materials

  1. Performance and Reliability of Bonded Interfaces for High-Temperature Packaging

    Energy Technology Data Exchange (ETDEWEB)

    Paret, Paul P [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-02

    Sintered silver has proven to be a promising candidate for use as a die-attach and substrate-attach material in automotive power electronics components. It holds promise of greater reliability than lead-based and lead-free solders, especially at higher temperatures (>200 degrees C). Accurate predictive lifetime models of sintered silver need to be developed and its failure mechanisms thoroughly characterized before it can be deployed as a die-attach or substrate-attach material in wide-bandgap device-based packages. Mechanical characterization tests that result in stress-strain curves and accelerated tests that produce cycles-to-failure result will be conducted. Also, we present a finite element method (FEM) modeling methodology that can offer greater accuracy in predicting the failure of sintered silver under accelerated thermal cycling. A fracture mechanics-based approach is adopted in the FEM model, and J-integral/thermal cycle values are computed.

  2. Effect of sintering temperatures and screen printing types on TiO{sub 2} layers in DSSC applications

    Energy Technology Data Exchange (ETDEWEB)

    Supriyanto, Agus; Furqoni, Lutfi; Nurosyid, Fahru, E-mail: nurosyid@yahoo.com; Suryana, Risa [Department of Physics, Faculty of Mathematics and Natural Sciences, Sebel as Maret University Jl. Ir. Sutami 36A Kentingan Surakarta 57126 (Indonesia); Hidayat, Jojo [Research Center for Electronics and Telecommunication, Indonesian Institute of Sciences (PPET-LIPI) Kampus LIPI Gd. 20 Jl. Sangkuriang Bandung (Indonesia)

    2016-03-29

    Dye-Sensitized Solar Cell (DSSC) is a candidate solar cell, which has a big potential in the future due to its eco-friendly material. This research is conducted to study the effect of sintering temperature and the type of screen-printing toward the characteristics of TiO{sub 2} layer as a working electrode in DSSC. TiO{sub 2} layers were fabricated using a screen-printing method with a mesh size of T-49, T-55, and T-61. TiO{sub 2} layers were sintered at temperatures of 600°C and 650°C for 60 min. DSSC structure was composed of TiO{sub 2} as semiconductors, ruthenium complex as dyes, and carbon as counter electrodes. The morphology of TiO{sub 2} layer was observed by using Nikon E2 Digital Camera Microscopy. The efficiencies of DSSC were calculated from the I-V curves. The highest efficiency is 0.015% at TiO{sub 2} layer fabricated with screen type T-61 and at a sintering temperature of 650°C.

  3. Influence of the sintering temperature on the structural and electronic properties of LaCrO3 doped with barium

    International Nuclear Information System (INIS)

    Silva, A.L.A. da; Souza, M.V.M.M.; Rocco, A.M.

    2010-01-01

    Ba-doped lanthanum chromites were synthesized by combustion method, utilizing urea and glycine as fuel agents. The powders were calcined (800 deg C/6 h), pelletized, sintered in various temperatures and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), density/porosity and electrical conductivity. The diffractograms of the sintered samples presented a well-defined structure, with presence of secondary phases which increase with the sintering temperature. The samples presented low densities and a high porosities (40 - 50%), which was also observed in SEM analysis. The urea-synthesized sample presented a higher conductivity (10.4 S/cm at 1000 deg C), which is related to the influence of the fuel agent in the material properties. (author)

  4. Effects of sintering temperature on the microstructural evolution and wear behavior of WCp reinforced Ni-based coatings

    Science.gov (United States)

    Chen, Chuan-hui; Bai, Yang; Ye, Xu-chu

    2014-12-01

    This article focuses on the microstructural evolution and wear behavior of 50wt%WC reinforced Ni-based composites prepared onto 304 stainless steel substrates by vacuum sintering at different sintering temperatures. The microstructure and chemical composition of the coatings were investigated by X-ray diffraction (XRD), differential thermal analysis (DTA), scanning and transmission electron microscopy (SEM and TEM) equipped with energy-dispersive X-ray spectroscopy (EDS). The wear resistance of the coatings was tested by thrust washer testing. The mechanisms of the decomposition, dissolution, and precipitation of primary carbides, and their influences on the wear resistance have been discussed. The results indicate that the coating sintered at 1175°C is composed of fine WC particles, coarse M6C (M=Ni, Fe, Co, etc.) carbides, and discrete borides dispersed in solid solution. Upon increasing the sintering temperature to 1225°C, the microstructure reveals few incompletely dissolved WC particles trapped in larger M6C, Cr-rich lamellar M23C6, and M3C2 in the austenite matrix. M23C6 and M3C2 precipitates are formed in both the γ/M6C grain boundary and the matrix. These large-sized and lamellar brittle phases tend to weaken the wear resistance of the composite coatings. The wear behavior is controlled simultaneously by both abrasive wear and adhesive wear. Among them, abrasive wear plays a major role in the wear process of the coating sintered at 1175°C, while the effect of adhesive wear is predominant in the coating sintered at 1225°C.

  5. Analysis and fabrication of tungsten CERMET materials for ultra-high temperature reactor applications via pulsed electric current sintering

    Science.gov (United States)

    Webb, Jonathan A.

    The optimized development path for the fabrication of ultra-high temperature W-UO2 CERMET fuel elements were explored within this dissertation. A robust literature search was conducted, which concluded that a W-UO 2 fuel element must contain a fine tungsten microstructure and spherical UO2 kernels throughout the entire consolidation process. Combined Monte Carlo and Computational Fluid Dynamics (CFD) analysis were used to determine the effects of rhenium and gadolinia additions on the performance of W-UO 2 fuel elements at refractory temperatures and in dry and water submerged environments. The computational analysis also led to the design of quasi-optimized fuel elements that can meet thermal-hydraulic and neutronic requirements A rigorous set of experiments were conducted to determine if Pulsed Electric Current Sintering (PECS) can fabricate tungsten and W-Ce02 specimens to the required geometries, densities and microstructures required for high temperature fuel elements as well as determine the mechanisms involved within the PECS consolidation process. The CeO2 acts as a surrogate for UO 2 fuel kernels in these experiments. The experiments seemed to confirm that PECS consolidation takes place via diffusional mass transfer methods; however, the densification process is rapidly accelerated due to the effects of current densities within the consolidating specimen. Fortunately the grain growth proceeds at a traditional rate and the PECS process can yield near fully dense W and W-Ce02 specimens with a finer microstructure than other sintering techniques. PECS consolidation techniques were also shown to be capable of producing W-UO2 segments at near-prototypic geometries; however, great care must be taken to coat the fuel particles with tungsten prior to sintering. Also, great care must be taken to ensure that the particles remain spherical in geometry under the influence of a uniaxial stress as applied during PECS, which involves mixing different fuel kernel sizes in

  6. Ferritic oxide dispersion strengthened alloys by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Allahar, Kerry N., E-mail: KerryAllahar@boisestate.edu [Materials and Science Engineering Department, Boise State University, 1910 University Blvd., Boise, ID 83725 (United States); Center for Advanced Energy Studies, 995 University Blvd., Idaho Falls, ID 83401 (United States); Burns, Jatuporn [Materials and Science Engineering Department, Boise State University, 1910 University Blvd., Boise, ID 83725 (United States); Center for Advanced Energy Studies, 995 University Blvd., Idaho Falls, ID 83401 (United States); Jaques, Brian [Materials and Science Engineering Department, Boise State University, 1910 University Blvd., Boise, ID 83725 (United States); Wu, Y.Q. [Materials and Science Engineering Department, Boise State University, 1910 University Blvd., Boise, ID 83725 (United States); Center for Advanced Energy Studies, 995 University Blvd., Idaho Falls, ID 83401 (United States); Charit, Indrajit [Department of Chemical and Materials Engineering, University of Idaho, McClure Hall Room 405D, Moscow, ID 83844 (United States); Cole, James [Idaho National Laboratory, Idaho Falls, ID 83401 (United States); Butt, Darryl P. [Materials and Science Engineering Department, Boise State University, 1910 University Blvd., Boise, ID 83725 (United States); Center for Advanced Energy Studies, 995 University Blvd., Idaho Falls, ID 83401 (United States)

    2013-11-15

    Spark plasma sintering (SPS) was used to consolidate a Fe–16Cr–3Al (wt.%) powder that was mechanically alloyed with Y{sub 2}O{sub 3} and Ti powders to produce 0.5 Y{sub 2}O{sub 3} and 0.5 Y{sub 2}O{sub 3}–1Ti powders. The effects of mechanical alloying and sintering conditions on the microstructure, relative density and hardness of the sintered oxide dispersion strengthened (ODS) alloys are presented. Scanning electron microscopy indicated a mixed fine-grain and coarse-grain microstructure that was attributed to recrystallization and grain growth during sintering. Analysis of the transmission electron microscopy (TEM) and atom probe tomography (APT) data identified Y–O and Y–O–Ti nanoclusters. Elemental ratios of these nanoclusters were consistent with that observed in hot-extruded ODS alloys. The influence of Ti was to refine the grains as well as the nanoclusters with there being greater number density and smaller sizes of the Y–O–Ti nanoclusters as compared to the Y–O nanoclusters. This resulted in the Ti-containing samples being harder than the Ti-free alloys. The hardness of the alloys with the Y–O–Ti nanoclusters was insensitive to sintering time while smaller hardness values were associated with longer sintering times for the alloys with the Y–O nanoclusters. Pressures greater than 80 MPa are recommended for improved densification as higher sintering temperatures and longer sintering times at 80 MPa did not improve the relative density beyond 97.5%.

  7. Thermal characteristic of sintered AgeCu nano-paste for high-temperature die-attach application

    International Nuclear Information System (INIS)

    Tan, Kim Seah; Cheong, Kuan Yew; Wong, Yew Hoong

    2015-01-01

    In this work, thermal characteristic of silver-copper (Ag-Cu) nano-paste that consists of a mixture of nano-sized Ag and Cu particles and organic compounds meant for high-temperature die-attach application is reported. The Ag-Cu nano-paste was sintered at 380 deg. C for 30 min without the need of applying external pressure and the effect of Cu loading (20-80 wt%) on the thermal properties was investigated in against of pure Ag nano-paste and pure Cu nano-paste. The results showed the specific heat of sintered Ag-Cu nano-paste was increased as the loading of Cu increased. For thermal conductivity and coefficient of thermal expansion (CTE) of sintered Ag-Cu nano-paste, a declining trend has been recorded with the increment of Cu loading. Overall, the sintered Ag-Cu nano-paste with 20 wt% of Cu loading has demonstrated the best combination of thermal conductivity (K) and CTE (α), which were 159 W/m K and 13 x 10 -6 /K, respectively. It has proven that there was a strong correlation between the amount of pores and thermal properties of the nano-paste. The ratio of K/α is a performance index (M), which has shown a higher value (12.2 x 10 6 W/m) than most of the commonly used die-attach systems. Finally, the Ag-Cu nano-paste has demonstrated a melting point of 955 deg. C, which can be proposed as an alternative high-temperature die-attach material

  8. Low temperature sintering of hyperstoichiometric uranium dioxide

    International Nuclear Information System (INIS)

    Chevrel, H.

    1991-12-01

    In the lattice of uranium dioxide with hyperstoichiometric oxygen content (UO 2+x ), each additional oxygen atoms is introduced by shifting two anions from normal sites to interstitial ones, thereby creating two oxygen vacancies. The point defects then combine to form complex defects comprising several interstitials and vacancies. The group of anions (3x) in the interstitial position participate in equilibria promoting the creation of uranium vacancies thereby considerably increasing uranium self-diffusion. However, uranium grain boundaries diffusion governs densification during the first two stages of sintering of uranium dioxide with hyperstoichiometric oxygen content, i.e., up to 93% of the theoretical density. Surface diffusion and evaporation-condensation, which are considerably accentuated by the hyperstoichiometric deviation, play an active role during sintering by promoting crystalline growth during the second and third stages of sintering. U 8 O 8 can be added to adjust the stoichiometry and to form a finely porous structure and thus increase the pore area subjected to surface phenomena. The composition with an O/U ratio equal to 2.25 is found to densify the best, despite a linear growth in sintering activation energy with hyperstoichiometric oxygen content, increasing from 300 kj.mol -1 for UO 2.10 to 440 kJ.mol -1 for UO 2.25 . Seeds can be introduced to obtain original microstructures, for example the presence of large grains in small-grain matrix

  9. Effects of Admixed Titanium on Densification of 316L Stainless Steel Powder during Sintering

    Directory of Open Access Journals (Sweden)

    Aslam Muhammad

    2014-07-01

    Full Text Available Effects of admixed titanium on powder water atomized (PWA and powder gas atomized (PGA 316L stainless steel (SS have been investigated in terms of densification. PGA and PWA powders, having different shapes and sizes, were cold pressed and sintered in argon atmosphere at 1300°C. The admixed titanium compacts of PGA and PWA have shown significant effect on densification through formation of intermetallic compound and reducing porosity during sintering process. PWA, having particle size 8 μm, blended with 1wt% titanium has exhibited higher sintered density and shrinkage as compared to gas atomized powder compacts. Improved densification of titanium blended PGA and PWA 316L SS at sintering temperature 1300°C is probably due to enhanced diffusion kinetics resulting from stresses induced by concentration gradient in powder compacts.

  10. Current state of the Uranium dioxide sintering theory

    International Nuclear Information System (INIS)

    Baranov, V.; Devyatko, Y.; Tenishev, A.; Khlunov, A.; Khomyakov, O.

    2011-01-01

    The basic approaches to the description of the ceramics sintering phenomenon are considered. It is established that diffusive sintering models incorrectly describe an intermediate stage of this process. The physical model of sintering, considering the substance plastic flow of pressing under the influence of internal stress forces and capillary forces, as the basic mechanism defining the shrinkage of sintering oxide nuclear fuel, is offered. (authors)

  11. Microwave sintering of hydroxyapatite-based composites

    International Nuclear Information System (INIS)

    Fang, Y.; Roy, D.M.; Cheng, J.; Roy, R.; Agrawal, D.K.

    1993-01-01

    Composites of hydroxyapatite/partially stabilized zirconia (HAp/PSZ) and hydroxyapatite/silicon carbide whiskers (HAp/SiC) were sintered at 1100-1200 degrees C by microwave at 2.45 GHz. Characterization of the sintered composites was carried out by density, microstructure, phase composition, and fracture toughness measurements. The results show that although not yet fully densified, a much higher sintered density in the HAp/PSZ composite was achieved by microwave sintering than by conventional sintering at the same temperature. A relative density of 93% was achieved by 20 min. microwave processing at 1200 degrees C. Comparatively, 2 h conventional sintering of the same material at 1200 degrees C led to only 75.5% relative density. K IC of this microwave sintered HAp/PSZ of 93% density was found to be 3.88 MPa√m, which is 250% of the value for pure HAp of the same density. A further increase in K IC could be expected if full or nearly full densification was achieved. Sintering of PSZ particles in the HAp/PSZ composite was also observed in the microwave processed sample. Microwave sintering of HAp/SiC was not successful in the current study due to the oxidation of SiC in air at high temperature. 8 refs., 4 figs., 1 tab

  12. Microwave sintering and in vitro study of defect-free stable porous multilayered HAp–ZrO2 artificial bone scaffold

    Directory of Open Access Journals (Sweden)

    Dong-Woo Jang, Thi-Hiep Nguyen, Swapan Kumar Sarkar and Byong-Taek Lee

    2012-01-01

    Full Text Available Continuously porous hydroxyapatite (HAp/t-ZrO2 composites containing concentric laminated frames and microchanneled bodies were fabricated by an extrusion process. To investigate the mechanical properties of HAp/t-ZrO2 composites, the porous composites were sintered at different temperatures using a microwave furnace. The microstructure was designed to imitate that of natural bone, particularly small bone, with both cortical and spongy bone sections. Each microchannel was separated by alternating lamina of HAp, HAp–(t-ZrO2 and t-ZrO2. HAp and ZrO2 phases existed on the surface of the microchannel and the core zone to increase the biocompatibility and mechanical properties of the HAp-ZrO2 artificial bone. The sintering behavior was evaluated and the optimum sintering temperature was found to be 1400 °C, which produced a stable scaffold. The material characteristics, such as the microstructure, crystal structure and compressive strength, were evaluated in detail for different sintering temperatures. A detailed in vitro study was carried out using MTT assay, western blot analysis, gene expression by polymerase chain reaction and laser confocal image analysis of cell proliferation. The results confirmed that HAp-ZrO2 performs as an artificial bone, showing excellent cell growth, attachment and proliferation behavior using osteoblast-like MG63 cells.

  13. Grain-growth law during Stage 1 sintering of materials

    International Nuclear Information System (INIS)

    He Zeming; Ma, J.

    2002-01-01

    This work investigates the grain-growth behaviour of powder compact during Stage 1 sintering (<90{%} theoretical density). It is widely accepted that grain size is an important state variable in the constitutive modelling in material sintering. However, it is noted that all the existing grain-growth laws proposed in the literature do not incorporate the effect of externally applied stress independently. In this work, a grain-growth law with externally applied stress as a variable was proposed. Alumina powders were forge-sintered at different applied stresses to examine the proposed grain-growth relationship. The proposed grain-growth law was then applied to model the grain-growth process on the sinter forging of tool steel. It is shown that the present proposed grain-growth law provides a good description on the experimental results. (author)

  14. Thermal Properties of Silver Nanoparticle Sintering Bonding Paste for High-Power LED Packaging

    Directory of Open Access Journals (Sweden)

    Ping Zhang

    2016-01-01

    Full Text Available This paper describes the preparation of low-temperature sintered nanosilver paste with inverse microemulsion method with Span-80/Triton X-100 as the mixed-surfactant and analyzes the influence of different sintering parameters (temperature, pressure on the shear properties of low-temperature sintering of nanosilver. Experimental results show that the shear strength of the low-temperature sintering of nanosilver increases as the temperature and pressure increase. But there are many pores and relative fewer cracks on the sintering layer after low-temperature sintered. The test thermal resistance of low-temperature sintered nanosilver paste is 0.795 K/W which is greater than SAC305 weld layer with a T3ster thermal analyzer. The adhesive performance and the heat dispersion of low-temperature sintered nanosilver paste need to be further researched and improved.

  15. Role of sintering time, crystalline phases and symmetry in the piezoelectric properties of lead-free KNN-modified ceramics

    International Nuclear Information System (INIS)

    Rubio-Marcos, F.; Marchet, P.; Merle-Mejean, T.; Fernandez, J.F.

    2010-01-01

    Lead-free KNN-modified piezoceramics of the system (Li,Na,K)(Nb,Ta,Sb)O 3 were prepared by conventional solid-state sintering. The X-ray diffraction patterns revealed a perovskite phase, together with some minor secondary phase, which was assigned to K 3 LiNb 6 O 17 , tetragonal tungsten-bronze (TTB). A structural evolution toward a pure tetragonal structure with the increasing sintering time was observed, associated with the decrease of TTB phase. A correlation between higher tetragonality and higher piezoelectric response was clearly evidenced. Contrary to the case of the LiTaO 3 modified KNN, very large abnormal grains with TTB structure were not detected. As a consequence, the simultaneous modification by tantalum and antimony seems to induce during sintering a different behaviour from the one of LiTaO 3 modified KNN.

  16. Role of sintering time, crystalline phases and symmetry in the piezoelectric properties of lead-free KNN-modified ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Rubio-Marcos, F., E-mail: frmarcos@icv.csic.es [Electroceramic Department, Instituto de Ceramica y Vidrio, CSIC, Kelsen 5, 28049 Madrid (Spain); Marchet, P.; Merle-Mejean, T. [SPCTS, UMR 6638 CNRS, Universite de Limoges, 123, Av. A. Thomas, 87060 Limoges (France); Fernandez, J.F. [Electroceramic Department, Instituto de Ceramica y Vidrio, CSIC, Kelsen 5, 28049 Madrid (Spain)

    2010-09-01

    Lead-free KNN-modified piezoceramics of the system (Li,Na,K)(Nb,Ta,Sb)O{sub 3} were prepared by conventional solid-state sintering. The X-ray diffraction patterns revealed a perovskite phase, together with some minor secondary phase, which was assigned to K{sub 3}LiNb{sub 6}O{sub 17}, tetragonal tungsten-bronze (TTB). A structural evolution toward a pure tetragonal structure with the increasing sintering time was observed, associated with the decrease of TTB phase. A correlation between higher tetragonality and higher piezoelectric response was clearly evidenced. Contrary to the case of the LiTaO{sub 3} modified KNN, very large abnormal grains with TTB structure were not detected. As a consequence, the simultaneous modification by tantalum and antimony seems to induce during sintering a different behaviour from the one of LiTaO{sub 3} modified KNN.

  17. Titanium Powder Sintering in a Graphite Furnace and Mechanical Properties of Sintered Parts

    Directory of Open Access Journals (Sweden)

    Changzhou Yu

    2017-02-01

    Full Text Available Recent accreditation of titanium powder products for commercial aircraft applications marks a milestone in titanium powder metallurgy. Currently, powder metallurgical titanium production primarily relies on vacuum sintering. This work reported on the feasibility of powder sintering in a non-vacuum furnace and the tensile properties of the as-sintered Ti. Specifically, we investigated atmospheric sintering of commercially pure (C.P. titanium in a graphite furnace backfilled with argon and studied the effects of common contaminants (C, O, N on sintering densification of titanium. It is found that on the surface of the as-sintered titanium, a severely contaminated porous scale was formed and identified as titanium oxycarbonitride. Despite the porous surface, the sintered density in the sample interiors increased with increasing sintering temperature and holding time. Tensile specimens cut from different positions within a large sintered cylinder reveal different tensile properties, strongly dependent on the impurity level mainly carbon and oxygen. Depending on where the specimen is taken from the sintered compact, ultimate tensile strength varied from 300 to 580 MPa. An average tensile elongation of 5% to 7% was observed. Largely depending on the interstitial contents, the fracture modes from typical brittle intergranular fracture to typical ductile fracture.

  18. Fabrication and study of double sintered TiNi-based porous alloys

    Science.gov (United States)

    Sergey, Anikeev; Valentina, Hodorenko; Timofey, Chekalkin; Victor, Gunther; Ji-hoon, Kang; Ji-soon, Kim

    2017-05-01

    Double-sintered porous TiNi-based alloys were fabricated and their structural characteristics and physico-mechanical properties were investigated. A fabrication technology of powder mixtures is elaborated in this article. Sintering conditions were chosen experimentally to ensure good structure and properties. The porous alloys were synthesized by solid-state double diffusion sintering (DDS) of Ti-Ni powder and prepare to obtain dense, crack-free, and homogeneous samples. The Ti-Ni compound sintered at various temperatures was investigated by scanning electron microscopy. Phase composition of the sintered alloys was determined by x-ray diffraction. Analysis of the data confirmed the morphology and structural parameters. Mechanical and physical properties of the sintered alloys were evaluated. DDS at 1250 °C was found to be optimal to produce porous samples with a porosity of 56% and mean pore size of 90 μm. Pore size distribution was unimodal within the narrow range of values. The alloys present enhanced strength and ductility, owing to both the homogeneity of the macrostructure and relative elasticity of the bulk, which is hardened by the Ni-rich precipitates. These results suggest the possibility to manufacture porous TiNi-based alloys for application as a new class of dental implants.

  19. Effect of Aging Temperature on Corrosion Behavior of Sintered 17-4 PH Stainless Steel in Dilute Sulfuric Acid Solution

    Science.gov (United States)

    Szewczyk-Nykiel, Aneta; Kazior, Jan

    2017-07-01

    The general corrosion behavior of sintered 17-4 PH stainless steel processed under different processing conditions in dilute sulfuric acid solution at 25 °C was studied by open-circuit potential measurement and potentiodynamic polarization technique. The corrosion resistance was evaluated based on electrochemical parameters, such as polarization resistance, corrosion potential, corrosion current density as well as corrosion rate. The results showed that the precipitation-hardening treatment could significantly improve the corrosion resistance of the sintered 17-4 PH stainless steel in studied environment. As far as the influence of aging temperature on corrosion behavior of the sintered 17-4 PH stainless steel is concerned, polarization resistance and corrosion rate are reduced with increasing aging temperature from 480 up to 500 °C regardless of the temperature of solution treatment. It can be concluded that the highest corrosion resistance in 0.5 M H2SO4 solution exhibits 17-4 PH after solution treatment at 1040 °C followed by aging at 480 °C.

  20. Low-temperature sintering and microwave dielectric properties of Al2TeO6–TeO2 ceramics

    International Nuclear Information System (INIS)

    Kagomiya, Isao; Kodama, Yuichiro; Shimizu, Yukihiro; Kakimoto, Ken-ichi; Ohsato, Hitoshi; Miyauchi, Yasuharu

    2015-01-01

    Highlights: • This is the first study of dielectric properties of Al 2 TeO 6 –TeO 2 sintered at 900 °C. • The sintering at 900 °C contributed to densification, but it causes TeO 2 evaporation. • The annealing at 750 °C was effective for the further densification. • The both ε r and Q · f in the Al 2 TeO 6 –TeO 2 were improved with the annealing. - Abstract: We propose Al 2 TeO 6 –TeO 2 ceramics as a candidate for use as low-temperature co-fired ceramics (LTCC). We investigated microwave dielectric properties and low-temperature sintering conditions for Al 2 TeO 6 –TeO 2 ceramics. The calcined Al 2 TeO 6 powders were sintered at 900 °C for 2–10 h with 30–50 wt% additive TeO 2 . X-ray powder diffraction patterns showed that the sintered samples were Al 2 TeO 6 –TeO 2 composite with no other phase. The apparent density was improved with the additive TeO 2 content of up to 45 wt%. The dielectric constant (ε r ) increased by adding TeO 2 content from 35 to 45 wt%, although the quality factor (Q · f) decreased. During sintering at 900 °C, the ε r of the Al 2 TeO 6 –TeO 2 decreased slightly, whereas the Q · f increased gradually. The observed microstructures showed that the longer sintering time makes fewer pores in Al 2 TeO 6 –TeO 2 ceramics. Sintering at 900 °C for a long time contributes to densification, but it simultaneously causes TeO 2 evaporation. To prevent TeO 2 evaporation, we investigated the effects of annealing at 750 °C after sintering at 900 °C. Apparent densities or ε r for the annealed samples were higher than those of the non-annealed samples. The Q · f improved with increasing annealing duration time, suggesting that sintering proceeded well during annealing with slower TeO 2 evaporation at 750 °C. The results show that annealing at 750 °C is effective to facilitate sintering and to control TeO 2 evaporation

  1. The effect of sintering temperature on the intergranular properties and weak link behavior of Bi2223 superconductors

    Directory of Open Access Journals (Sweden)

    P. Kameli

    2006-03-01

    Full Text Available  A systematic study of the intergranular properties of (Bi,Pb2 Sr2 Ca2 Cu3 Oy (Bi2223 polycrystalline samples has been done using the electrical resistivity and AC susceptibility techniques. In this study, we have prepared a series of Bi2223 samples with different sintering temperatures. The XRD results show that by increasing the sintering temperature up to 865° c , the Bi2212 phase fraction decreases. It was found that the Bi2212 phase on the grain boundaries is likely to play the role of the weak links and consequently reduces the intergranular critical current densities.

  2. Production and corrosion resistance of NdFeBZr magnets with an improved response to thermal variations during sintering

    International Nuclear Information System (INIS)

    Yu, L.Q.; Zhong, X.L.; Zhang, Y.P.; Yan, Y.G.; Zhen, Y.H.; Zakotnik, M.

    2011-01-01

    This study describes an attempt to produce NdFeB magnets that are insensitive to the sintering temperature. It was found that addition of Zr to NdFeB magnets significantly augmented the thermal stability of this magnetic material during sintering at high temperature even at industrial scale. The best sintered magnets were produced by jet-milling the powder (to achieve an average 3.4 μm particle size), and then aligned, pressed and sintered under argon at 1100 o C for 3 h followed by appropriate heat treatment. The magnetic properties of the resulting magnets were: (BH) m =403.8 kJ m -3 (±4.7 kJ m -3 ), B r =1430 mT (±9 mT) and i H c =907 kA m -1 (±12 kA m -1 ). Large grain growth, in excess of 100 μm in the Zr-free magnets, was observed during sintering at 1100 o C. This did not occur in the presence of Zr. These observations imply that the sensitivity of this class of magnets to high sintering temperatures is greatly reduced by Zr addition. Corrosion resistance of NdFeB was therefore significantly improved by the addition of small amounts of Zr. - Research highlights: →This study describes an attempt to produce NdFeB magnets that are insensitive to the sintering temperature. → It was found that addition of Zr to NdFeB magnets significantly augmented the thermal stability of this magnetic material during sintering at high temperature; even at industrial scale. → The magnetic properties of the resulting magnets were: (BH) m =403.8 kJ m -3 (±4.7 kJ m -3 ), B r =1430 mT (±9 mT) and i H c =907 kA m -1 (±12 kA m -1 ).

  3. Development of iodine waste forms using low-temperature sintering glass

    International Nuclear Information System (INIS)

    Krumhansl, James Lee; Nenoff, Tina Maria; Garino, Terry J.; Rademacher, David

    2010-01-01

    This presentation will describe our recent work on the use of low temperature-sintering glass powders mixed with either AgI or AgI-zeolite to produce a stable waste form. Radioactive iodine ( 129 I, half-life of 1.6 x 10 7 years) is generated in the nuclear fuel cycle and is of particular concern due to its extremely long half-life and its effects on human health. As part of the DOE/NE Advanced Fuel Cycle Initiative (AFCI), the separation of 129 I from spent fuel during fuel reprocessing is being studied. In the spent fuel reprocessing scheme under consideration, the iodine is released in gaseous form and collected using Ag-loaded zeolites, to form AgI. Although AgI has extremely low solubility in water, it has a relatively high vapor pressure at moderate temperatures (>550 C), thus limiting the thermal processing. Because of this, immobilization using borosilicate glass is not feasible. Therefore, a bismuth oxide-based glasses are being studied due to the low solubility of bismuth oxide in aqueous solution at pH > 7. These waste forms were processed at 500 C, where AgI volatility is low but the glass powder is able to first densify by viscous sintering and then crystallize. Since the glass is not melted, a more chemically stable glass can be used. The AgI-glass mixture was found to have high iodine leach resistance in these initial studies.

  4. High temperature aqueous stress corrosion testing device

    International Nuclear Information System (INIS)

    Bornstein, A.N.; Indig, M.E.

    1975-01-01

    A description is given of a device for stressing tensile samples contained within a high temperature, high pressure aqueous environment, thereby permitting determination of stress corrosion susceptibility of materials in a simple way. The stressing device couples an external piston to an internal tensile sample via a pull rod, with stresses being applied to the sample by pressurizing the piston. The device contains a fitting/seal arrangement including Teflon and weld seals which allow sealing of the internal system pressure and the external piston pressure. The fitting/seal arrangement allows free movement of the pull rod and the piston

  5. Nonvacuum, maskless fabrication of a flexible metal grid transparent conductor by low-temperature selective laser sintering of nanoparticle ink.

    Science.gov (United States)

    Hong, Sukjoon; Yeo, Junyeob; Kim, Gunho; Kim, Dongkyu; Lee, Habeom; Kwon, Jinhyeong; Lee, Hyungman; Lee, Phillip; Ko, Seung Hwan

    2013-06-25

    We introduce a facile approach to fabricate a metallic grid transparent conductor on a flexible substrate using selective laser sintering of metal nanoparticle ink. The metallic grid transparent conductors with high transmittance (>85%) and low sheet resistance (30 Ω/sq) are readily produced on glass and polymer substrates at large scale without any vacuum or high-temperature environment. Being a maskless direct writing method, the shape and the parameters of the grid can be easily changed by CAD data. The resultant metallic grid also showed a superior stability in terms of adhesion and bending. This transparent conductor is further applied to the touch screen panel, and it is confirmed that the final device operates firmly under continuous mechanical stress.

  6. Two-step flash light sintering process for crack-free inkjet-printed Ag films

    International Nuclear Information System (INIS)

    Park, Sung-Hyeon; Kim, Hak-Sung; Jang, Shin; Lee, Dong-Jun; Oh, Jehoon

    2013-01-01

    In this paper, a two-step flash light sintering process for inkjet-printed Ag films is investigated with the aim of improving the quality of sintered Ag films. The flash light sintering process is divided into two steps: a preheating step and a main sintering step. The preheating step is used to remove the organic binder without abrupt vaporization. The main sintering step is used to complete the necking connections among the silver nanoparticles and achieve high electrical conductivity. The process minimizes the damage on the polymer substrate and the interface between the sintered Ag film and polymer substrate. The electrical conductivity is calculated by measuring the resistance and cross-sectional area with an LCR meter and 3D optical profiler, respectively. It is found that the resistivity of the optimal flash light-sintered Ag films (36.32 nΩ m), which is 228.86% of that of bulk silver, is lower than that of thermally sintered ones (40.84 nΩ m). Additionally, the polyimide film used as the substrate is preserved with the inkjet-printed pattern shape during the flash light sintering process without delamination or defects. (paper)

  7. Stress Intensity of Delamination in a Sintered-Silver Interconnection: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    DeVoto, D. J.; Paret, P. P.; Wereszczak, A. A.

    2014-08-01

    In automotive power electronics packages, conventional thermal interface materials such as greases, gels, and phase-change materials pose bottlenecks to heat removal and are also associated with reliability concerns. The industry trend is toward high thermal performance bonded interfaces for large-area attachments. However, because of coefficient of thermal expansion mismatches between materials/layers and resultant thermomechanical stresses, adhesive and cohesive fractures could occur, posing a reliability problem. These defects manifest themselves in increased thermal resistance. This research aims to investigate and improve the thermal performance and reliability of sintered-silver for power electronics packaging applications. This has been experimentally accomplished by the synthesis of large-area bonded interfaces between metalized substrates and copper base plates that have subsequently been subjected to thermal cycles. A finite element model of crack initiation and propagation in these bonded interfaces will allow for the interpretation of degradation rates by a crack-velocity (V)-stress intensity factor (K) analysis. A description of the experiment and the modeling approach are discussed.

  8. Factors Affecting the Sintering of UO2 Pellets

    International Nuclear Information System (INIS)

    El-Hakim, E.; Afifi, Y.K.

    1999-01-01

    Sintering of UO 2 pellets is affected by many parameters such as; UO 2 powder parameters, the conditions followed for preparing the green UO 2 pellets and the sintering scheme(heating and cooling rate, soaking time and temperature). The aim of this work is to study the effect of some these parameters on the characteristics of the sintered UO 2 pellets were qualified according to the technical specifications of Candu fuel. Pressed green pellets at different pressing force (15 to 50 k N) were sintered at 1650 ±20 degree for two hours to study the effect of pressing force on the sintered pellets characteristics; visual inspection, pellet dimensions, density and shrinkage ratio. Compacted green pellets at a pressing force of 48 k N were sintered at different sintering temperature (1600± 20 degree, 1650 ±20 degree, 1700± 20 degree) for two hours to study the effect of sintering temperature on the sintered pellets characteristics. The effect of the heating rate (200,300 and 400 degree per hour) on the sintered pellets characteristics was also investigated. It was found that the pressing force used to compact the green pellets had an effect on the density of the sintered pellets. Pellets pressed at 15 k N have a density of 10.3 g/cm 3 while, those pressed at 50 k N have a density of 10.6 g/cm 3. It was observed that increasing the heating rate to 400 degree /h lead to cracked pellets

  9. Ageing sintered silver: Relationship between tensile behavior, mechanical properties and the nanoporous structure evolution

    Energy Technology Data Exchange (ETDEWEB)

    Gadaud, Pascal; Caccuri, Vincenzo; Bertheau, Denis [Institut Pprime, Dept. Phys. Mech. Mat., UPR CNRS 3346, ENSMA, Université de Poitiers, 1 av. Clément Ader, Téléport 2, 86961 Futuroscope – Chasseneuil (France); Carr, James [HMXIF, Materials Science Centre, The University of Manchester, M13 9PL (United Kingdom); Milhet, Xavier, E-mail: xavier.milhet@ensma.fr [Institut Pprime, Dept. Phys. Mech. Mat., UPR CNRS 3346, ENSMA, Université de Poitiers, 1 av. Clément Ader, Téléport 2, 86961 Futuroscope – Chasseneuil (France)

    2016-07-04

    Silver pastes sintering is a potential candidate for die bonding in power electronic modules. The joints, obtained by sintering, exhibit a significant pore fraction thus reducing the density of the material compared to bulk silver. This was shown to alter drastically the mechanical properties (Young's modulus, yield strength and ultimate tensile stress) at room temperature. While careful analysis of the microstructure has been reported for the as-sintered material, little is known about its quantitative evolution (pores and grains) during thermal ageing. To address this issue, sintered bulk specimens and sintered joints were aged either under isothermal conditions (125 °C up to 1500 h) or under thermal cycling (between −40 °C/+125 °C with 30 min dwell time at each temperature for 2400 cycles). Under these conditions, it is shown that the density of the material does not change but the sub-micron porosity evolves towards a broader size distribution, consistent with Oswald ripening. It is also shown that only the step at 125 °C during the non-isothermal ageing is responsible for the microstructure evolution: isothermal ageing at high temperature can be regarded as a useful tool to perform accelerated ageing tests. Tensile properties are investigated as both a function of ageing time and a function of density. It is shown that the elastic properties do not evolve with the ageing time unlike the plastic properties. This is discussed as a function of the material microstructure evolution.

  10. Design of safety monitor system for operation sintering furnace ME-06

    International Nuclear Information System (INIS)

    Sugeng Rianto; Triarjo; Djoko Kisworo; Agus Sartono

    2013-01-01

    Design of safety monitoring system for safety operation of sinter furnace ME-06 has been done. Parameters monitored during this operation include: temperature, gas pressure, flow rate of gas, voltage and current furnace. For sintering furnace temperature system that monitored were the temperature of the furnace temperature, the temperature of the cooling water system inlet and outlet, temperature of flow hydrogen gas inlet and outlet. For pressure system and flow rate gas sinter furnace which monitored the pressure and flow rate of hydrogen gas inlet and outlet. The system also monitors current and voltage applied to the sinter furnace heating system. Monitor system hardware consists of: the system temperature sensor, pressure, rate and data acquisition systems. While software systems using the labview driver interface that connects the hard and software systems. Function test results during sintering operation for setting the temperature 1700 °C sintering temperature increases the ramp function by 250 °C/hour average measurements obtained when the sintering time 1707.016 °C with a standard deviation of 0.38 °C. The maximum temperature of the hydrogen gas temperature 35.4 °C. The maximum temperature of the cooling water system 27.4 °C. The maximum pressure of 1,911 bar Gas Inlet and outlet of 0,051 bar. Maximum inlet gas flow 12.996 L / min and outlet 14.086 L / min. (author)

  11. High-temperature effect of hydrogen on sintered alpha-silicon carbide

    Science.gov (United States)

    Hallum, G. W.; Herbell, T. P.

    1986-01-01

    Sintered alpha-silicon carbide was exposed to pure, dry hydrogen at high temperatures for times up to 500 hr. Weight loss and corrosion were seen after 50 hr at temperatures as low as 1000 C. Corrosion of SiC by hydrogen produced grain boundary deterioration at 1100 C and a mixture of grain and grain boundary deterioration at 1300 C. Statistically significant strength reductions were seen in samples exposed to hydrogen for times greater than 50 hr and temperatures above 1100 C. Critical fracture origins were identified by fractography as either general grain boundary corrision at 1100 C or as corrosion pits at 1300 C. A maximum strength decrease of approximately 33 percent was seen at 1100 and 1300 C after 500 hr exposure to hydrogen. A computer assisted thermodynamic program was also used to predict possible reaction species of SiC and hydrogen.

  12. Two steps sintering alumina doped with niobia

    International Nuclear Information System (INIS)

    Gomes, L.B.; Hatzfeld, J.; Heck, M.; Pokorny, A.; Bergmann, C.P.

    2014-01-01

    In this work, high surface area commercial alumina was doped with niobia and sintered in two steps in order to obtain dense materials with lower processing temperatures. The powders were milled and uniaxially pressed (200 MPa). The first step of sintering took place at 1100°C for 3, 6, 9 and 12 hours, followed by the second step at 1350°C for 3 hours. The relative density, porosity and water absorption of the samples were determined by the Archimedes method. The crystalline phases were analyzed by X-ray Diffraction (XRD) and the morphology of the samples after sintering, evaluated by Scanning Electron Microscopy (SEM). The results indicate that the use of niobia combined with the two steps sintering promotes an increase in the density of the material, even at lower sintering temperatures. (author)

  13. Sintering Characteristics of Multilayered Thermal Barrier Coatings Under Thermal Gradient and Isothermal High Temperature Annealing Conditions

    Science.gov (United States)

    Rai, Amarendra K.; Schmitt, Michael P.; Bhattacharya, Rabi; Zhu, Dongming; Wolfe, Douglas E.

    2014-01-01

    Pyrochlore oxides have most of the relevant attributes for use as next generation thermal barrier coatings such as phase stability, low sintering kinetics and low thermal conductivity. One of the issues with the pyrochlore oxides is their lower toughness and therefore higher erosion rate compared to the current state-of-the-art TBC material, yttria (6 to 8 wt%) stabilized zirconia (YSZ). In this work, sintering characteristics were investigated for novel multilayered coating consisted of alternating layers of pyrochlore oxide viz Gd2Zr2O7 and t' low k (rare earth oxide doped YSZ). Thermal gradient and isothermal high temperature (1316 C) annealing conditions were used to investigate sintering and cracking in these coatings. The results are then compared with that of relevant monolayered coatings and a baseline YSZ coating.

  14. Sintering of ZrC by hot isostatic pressing (HIP) and spark plasma sintering (SPS). Effect of impurities

    International Nuclear Information System (INIS)

    Allemand, Alexandre; Le Flem - Dormeval, Marion; Guillard, Francois

    2005-01-01

    Carbides are generally used as structural materials for high temperature applications. Particularly, ZrC because of low activation, neutronic transparency, cubic structure (isotropic behaviour) and good thermal conductivity, is one of the candidates under consideration for structural materials in the core of new high temperature nuclear reactors (Generation IV). Just a few studies about densification of monolithic ZrC exist. They mainly involve natural sintering or hot pressing at high temperature (until 2700 deg. C). Unfortunately those processes induce grain growth and do not lead to fully densified ZrC. The aim of this study is to compare the characteristics and the properties of ZrC sintered by HIP and by SPS. Fully dense ZrC can be reached either by HIP or by SPS, grain size being more or less controlled. Microstructural observations and mechanical testing of several ZrC grades shows that powder impurities play an important role in the quality of the grain boundaries and consequently in the mechanical properties. In particular, the porosity falls from 17% to 3 % just by reducing the free carbon content in starting ZrC powder. The densification process of dense monolithic ZrC was improved by combining a HIP at 1600 deg. C (titanium canning) followed by a post-HIP at 1900 deg. C (no canning required). Four-point bending tests are in progress to confirm the improvement of fracture strength. (authors)

  15. Residual stress in TI6AL4V objects produced by direct metal laser sintering

    Directory of Open Access Journals (Sweden)

    Van Zyl, Ian

    2016-12-01

    Full Text Available Direct Metal Laser Sintering produces 3D objects using a layer-by- layer method in which powder is deposited in thin layers. Laser beam scans over the powder fusing powder particles as well as the previous layer. High-concentration of laser energy input leads to high thermal gradients which induce residual stress within the as- built parts. Ti6Al4V (ELI samples have been manufactured by EOSINT M280 system at prescribed by EOS process-parameters. Residual stresses were measured by XRD method. Microstructure, values and directions of principal stresses inTi6Al4V DMLS samples were analysed.

  16. The pressureless sintering and mechanical properties of AlON ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, N., E-mail: zhangning5832@163.com [Key Lab. of Advanced Materials and Manufacturing Technology of Liaoning Province, Shenyang University, Shenyang, Liaoning 110044 (China); Liang, B.; Wang, X.Y.; Kan, H.M.; Zhu, K.W. [Key Lab. of Advanced Materials and Manufacturing Technology of Liaoning Province, Shenyang University, Shenyang, Liaoning 110044 (China); Zhao, X.J. [Department of Materials Science and Engineering, School of Materials and Metallurgy, Northeastern University, Shenyang, Liaoning 110004 (China)

    2011-07-25

    Highlights: {yields} A one-step pressureless sintering process was proposed, which is simple and viable. {yields} Cheap and easily available {alpha}-Al{sub 2}O{sub 3} and aluminum powders were chosen as raw materials substituting for expensive AlN ultrafine powders. {yields} The sintering temperature of AlON ceramic was reduced by 50 deg. C and the flexural strength was enhanced by 29.4%. - Abstract: Aluminum oxynitride (AlON) ceramic was synthesized by one-step pressureless sintering technology using low cost and easily available {alpha}-Al{sub 2}O{sub 3} and aluminum powders as raw materials. The sintering temperature was reduced because aluminum powders were nitridized into high activity AlN under the flowing nitrogen atmosphere. The curves of thermal analysis, microstructure and atomic distribution were investigated. The influence of sintering temperatures on phase composition, sintering densification and flexural strength was also explored. The experimental results showed that {alpha}-Al{sub 2}O{sub 3} and aluminum powders were acceptable substitutes for more expensive AlN ultrafine powders. Under the optimum sintering process at 1750 deg. C for 2 h, the sintered density and flexural strength of AlON ceramic were higher, 3.62 g/cm{sup 3} and 321 MPa, respectively. The sintering temperature was decreased by 50 deg. C because newly formed high activity AlN in situ reacted with Al{sub 2}O{sub 3} into Al{sub 23}O{sub 27}N{sub 5}, enhancing flexural strength by 29.4%. However, the sintering temperature could not be too high because grain growth and displacement of oxygen atoms from AlON ceramics by nitrogen atoms caused a decline in sintering densification and flexural strength.

  17. Thermally stable sintered porous metal articles

    International Nuclear Information System (INIS)

    Gombach, A.L.; Thellmann, E.L.

    1980-01-01

    A sintered porous metal article is provided which is essentially thermally stable at elevated temperatures. In addition, a method for producing such an article is also provided which method comprises preparing a blend of base metal particles and active dispersoid particles, forming the mixture into an article of the desired shape, and heating the so-formed article at sintering temperatures

  18. Profile of yttrium segregation in BaCe0,9Y0,1O3-δ as function of sintering temperature

    International Nuclear Information System (INIS)

    Hosken, C.M.; Souza, D.P.F. de

    2010-01-01

    Researches on solid oxide fuel cells indicate barium cerate perovskite as a very attractive material for using as electrolyte due to its high protonic conductivity. The objective of this work is investigate the yttrium segregation during sintering of BaCe 0,9 Y 0,1 O 3-δ doped with Zn O as a sintering aid. The powders were prepared by citrate process. Powders were isostatic pressed into pellets and sintered in air at 1200, 1275, 1325 and 1400 deg C. The samples were characterized by scanning electron microscopy, X-ray diffraction and impedance spectroscopy. Secondary phase containing Yttrium and Cerium was detected as sintering temperature increased. Increase of the lattice parameter and activation energy for electrical conductivity were also detected on samples sintered at 1400 deg C. (author)

  19. LOW TEMPERATURE SINTERING OF ALUMINA BIOCERAMIC UNDER NORMAL PRESSURE

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Superfine alumina powder with high purity (mean particle size is less than 0. 35μm) were used as main starting material for sintering alumina ceramic. A multiple additive MgO-ZrO2 (Y2O3) was homogeneously added into the batch by the chemical coprecipitation method. Sintering of alumina bioceramic at low tempera ture (<1600C) was achieved resulting in a dense and high strength alumina ceramic with the bending strength up to 382 MPa and an improved fracture toughness. Mechanism that the multiple additives promote the sintering of alumina ceramic is discussed on the base of XRD and SEM analysis.

  20. Strength evaluation test of pressureless-sintered silicon nitride at room temperature

    Science.gov (United States)

    Matsusue, K.; Takahara, K.; Hashimoto, R.

    1984-01-01

    In order to study strength characteristics at room temperature and the strength evaluating method of ceramic materials, the following tests were conducted on pressureless sintered silicon nitride specimens: bending tests, the three tensile tests of rectangular plates, holed plates, and notched plates, and spin tests of centrally holed disks. The relationship between the mean strength of specimens and the effective volume of specimens are examined using Weibull's theory. The effect of surface grinding on the strength of specimens is discussed.

  1. Sintering equation: determination of its coefficients by experiments - using multiple regression

    International Nuclear Information System (INIS)

    Windelberg, D.

    1999-01-01

    Sintering is a method for volume-compression (or volume-contraction) of powdered or grained material applying high temperature (less than the melting point of the material). Maekipirtti tried to find an equation which describes the process of sintering by its main parameters sintering time, sintering temperature and volume contracting. Such equation is called a sintering equation. It also contains some coefficients which characterise the behaviour of the material during the process of sintering. These coefficients have to be determined by experiments. Here we show that some linear regressions will produce wrong coefficients, but multiple regression results in an useful sintering equation. (orig.)

  2. Effect of sintering temperature on physical, structural and optical properties of wollastonite based glass-ceramic derived from waste soda lime silica glasses

    Directory of Open Access Journals (Sweden)

    Karima Amer Almasri

    Full Text Available The impact of different sintering temperatures on physical, optical and structural properties of wollastonite (CaSiO3 based glass-ceramics were investigated for its potential application as a building material. Wollastonite based glass-ceramics was provided by a conventional melt-quenching method and followed by a controlled sintering process. In this work, soda lime silica glass waste was utilized as a source of silicon. The chemical composition and physical properties of glass were characterized by using Energy Dispersive X-ray Fluorescence (EDXRF and Archimedes principle. The Archimedes measurement results show that the density increased with the increasing of sintering temperature. The generation of CaSiO3, morphology, size and crystal phase with increasing the heat-treatment temperature were examined by field emission scanning electron microscopy (FESEM, Fourier transforms infrared reflection spectroscopy (FTIR, and X-ray diffraction (XRD. The average calculated crystal size gained from XRD was found to be in the range 60 nm. The FESEM results show a uniform distribution of particles and the morphology of the wollastonite crystal is in relict shapes. The appearance of CaO, SiO2, and Ca-O-Si bands disclosed from FTIR which showed the formation of CaSiO3 crystal phase. In addition to the calculation of the energy band gap which found to be increased with increasing sintering temperature. Keywords: Soda lime silica glass, Wollastonite, Sintering, Structural properties, Optical properties

  3. Effects of sintering atmosphere and temperature on structural and magnetic properties of Ni-Cu-Zn ferrite nano-particles: Magnetic enhancement by a reducing atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Gholizadeh, Ahmad, E-mail: gholizadeh@du.ac.ir; Jafari, Elahe, E-mail: ah_gh1359@yahoo.com

    2017-01-15

    In this work, effects of sintering atmosphere and temperature on structural and magnetic properties of Ni{sub 0.3}Cu{sub 0.2}Zn{sub 0.5}Fe{sub 2}O{sub 4} nanoparticles prepared by citrate precursor method have been studied. The structural characterization of the samples by X-ray powder diffraction and FT-IR spectroscopy is evidence for formation of a cubic structure with no presence of impurity phase. Calculated values of crystallite size and unit cell parameter show an increase with sintering temperature under different atmospheres. Variation of saturation magnetization with sintering temperature and atmosphere can be attributed to change of three factors: magnetic core size, inversion parameter and the change of Fe{sup 3+}-ion concentration due to the presence of Fe{sup 4+} and Fe{sup 2+} ions. The saturation magnetization gradually grows with sintering temperature due to increase of magnetic core size and a maximum 63 emu/g was achieved at 600 °C under carbon monoxide-ambient atmosphere. - Highlights: • Different sintering atmosphere and temperature cause substantial differences in Ni{sub 0.3}Cu{sub 0.2}Zn{sub 0.5}Fe{sub 2}O{sub 4} nanoparticles. • The saturation magnetization gradually grows. • A maximum 63 emu/g was achieved at 600 °C under a reducing atmosphere.

  4. Significantly enhanced piezoelectricity in low-temperature sintered Aurivillius-type ceramics with ultrahigh Curie temperature of 800 °C

    International Nuclear Information System (INIS)

    Cai, Kai; Huang, Chengcheng; Guo, Dong

    2017-01-01

    We report an Aurivillius-type piezoelectric ceramic (Ca 1−2x (LiCe) x Bi 4 Ti 3.99 Zn 0.01 O 15 ) that has an ultrahigh Curie temperature (T c ) around 800 °C and a significantly enhanced piezoelectric coefficient (d 33 ), comparable to that of textured ceramics fabricated using the complicated templating method. Surprisingly, the highest d 33 of 26 pC/N was achieved at an unexpectedly low sintering temperature (T s ) of only 920 °C (∼200 °C lower than usual) despite the non-ideal density. Study of different synthesized samples indicates that a relatively low T s is crucial for suppressing Bi evaporation and abnormal grain growth, which are indispensable for high resistivity and effective poling due to decreased carrier density and restricted anisotropic conduction. Because the layered structure is sensitive to lattice defects, controlled Bi loss is considered to be crucial for maintaining structural order and spontaneous polarization. This low-T s system is very promising for practical applications due to its high piezoelectricity, low cost and high reproducibility. Contrary to our usual understanding, the results reveal that a delicate balance of density, Bi loss and grain morphology achieved by adjusting the sintering temperature is crucial for the enhancing performance in Aurivillius-type high- T c ceramics. (paper)

  5. Microstructure characteristics of high borated stainless steel fabricated by hot-pressing sintering

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xuan; Wang, Mingjia, E-mail: mingjiawangysu@126.com; Zhao, Hongchang

    2016-04-25

    The present study investigated the microstructure of powder metallurgy (P/M) high borated stainless steel through hot-pressing sintering in a temperature range of 1000–1150 °C within 30 min under 30 MPa. Microstructure and phase examinations were carried out by applying scanning electron microscope, electron backscatter diffraction and X-ray diffraction analysis. The results of as-atomized powders demonstrated that many powders kept egg-type structure with an austenite outer layer and the eutectic borides were much finer than those in traditional cast products. Microstructure studies revealed that borides suffered Ostwald ripening and were significantly influenced by the sintering temperature. Orientation maps indicated that the inter-particle contact areas consisted of equiaxed grains and the regions consisting of large elongated grains partly inherited the microstructure characteristics of as-atomized powder particles. Furthermore, the mechanisms governing the morphological changes in microstructure were discussed. - Highlights: • Near-complete densification could be obtained through hot-pressing sintering. • There was no phase transformation and present phases were M{sub 2}B and austenite. • Borides suffered Ostwald ripening and were significantly influenced by temperature. • Inter-particle contact areas consisted of equiaxed grains for recrystallization. • Deformation-free zones exhibited elongated grains for dendritic arms coarsening.

  6. Integrated analysis of oxide nuclear fuel sintering

    International Nuclear Information System (INIS)

    Baranov, V.; Kuzmin, R.; Tenishev, A.; Timoshin, I.; Khlunov, A.; Ivanov, A.; Petrov, I.

    2011-01-01

    Dilatometric and thermal-gravimetric investigations have been carried out for the sintering process of oxide nuclear fuel in gaseous Ar - 8% H 2 atmosphere at temperatures up to 1600 0 C. The pressed compacts were fabricated under real production conditions of the OAO MSZ with application of two different technologies, so called 'dry' and 'wet' technologies. Effects of the grain size growth after the heating to different temperatures were observed. In order to investigate the effects produced by rate of heating on properties of sintered fuel pellets, the heating rates were varied from 1 to 8 0 C per minute. Time of isothermal overexposure at maximal temperature (1600 0 C) was about 8 hours. Real production conditions were imitated. The results showed that the sintering process of the fuel pellets produced by two technologies differs. The samples sintered under different heating rates were studied with application of scanning electronic microscopy analysis for determination of mean grain size. A simulation of heating profile for industrial furnaces was performed to reduce the beam cycles and estimate the effects of variation of the isothermal overexposure temperatures. Based on this data, an optimization of the sintering conditions was performed in operations terms of OAO MSZ. (authors)

  7. Room Temperature Imprint Using Crack-Free Monolithic SiO2-PVA Nanocomposite for Fabricating Microhole Array on Silica Glass

    Directory of Open Access Journals (Sweden)

    Shigeru Fujino

    2015-01-01

    Full Text Available This paper aims to fabricate microhole arrays onto a silica glass via a room temperature imprint and subsequent sintering by using a monolithic SiO2-poly(vinyl alcohol (PVA nanocomposite as the silica glass precursor. The SiO2-PVA suspension was prepared from fumed silica particles and PVA, followed by drying to obtain tailored SiO2-PVA nanocomposites. The dependence of particle size of the fumed silica particles on pore size of the nanocomposite was examined. Nanocomposites prepared from 7 nm silica particles possessed suitable mesopores, whereas the corresponding nanocomposites prepared from 30 nm silica particles hardly possessed mesopores. The pore size of the nanocomposites increased as a function of decreasing pH of the SiO2-PVA suspension. As a consequence, the crack-free monolithic SiO2-PVA nanocomposite was obtained using 7 nm silica particles via the suspension at pH 3. Micropatterns were imprinted on the monolithic SiO2-PVA nanocomposite at room temperature. The imprinted nanocomposite was sintered to a transparent silica glass at 1200°C in air. The fabricated sintered glass possessed the microhole array on their surface with aspect ratios identical to the mold.

  8. Strain-enhanced sintering of iron powders

    Energy Technology Data Exchange (ETDEWEB)

    Amador, D.R.; Torralba, J.M. [Universidad Carlos III de Madrid, Departamento de Ciencias de Materiales e Ingenieria Metalurgica, Leganes, Madrid (Spain); Monge, M.A.; Pareja, R. [Universidad Carlos III de Madrid, Departamento de Fisica, Madrid (Spain)

    2005-02-01

    Sintering of ball-milled and un-milled Fe powders has been investigated using dilatometry, X-ray, density, and positron annihilation techniques. A considerable sintering enhancement is found in milled powders showing apparent activation energies that range between 0.44 and 0.80 eV/at. The positron annihilation results, combined with the evolution of the shrinkage rate with sintering temperature, indicate generation of lattice defects during the sintering process of milled and un-milled powders. The sintering enhancement is attributed to pipe diffusion along the core of moving dislocations in the presence of the vacancy excess produced by plastic deformation. Positron annihilation results do not reveal the presence of sintering-induced defects in un-milled powders sintered above 1200 K, the apparent activation energy being in good agreement with that for grain-boundary diffusion in {gamma}-Fe. (orig.)

  9. The evaluation of microstructure and mechanical properties of sintered sub-micron WC-Co powders

    International Nuclear Information System (INIS)

    Nor Izan Izura; Mohd Asri Selamat; Noraizham Mohamad Diah; Talib Ria Jaafar

    2007-01-01

    A cemented tungsten carbide (WC-Co) is widely used for a variety of machining, cutting, drilling and other applications. The properties of this tungsten heavy alloy are sensitive to processing and degraded by residual porosity. The sequence of high end powder metallurgy process include mixing, compacting and followed by multi-atmosphere sintering of green compact were analyzed. The sub micron (<1.0 μm) and less than 10.0 μm of WC powders are sintered with a metal binder 6% Co to provide pore-free part. The powder compacts were sintered at temperatures cycle in the range of 1200 degree Celsius-1550 degree Celsius in nitrogen-based sintering atmosphere. To date, however there have been few reported studies in the literature that the best sintering was carried out via liquid phase sintering in vacuum at approximately 1500 degree Celsius. from this study we found that in order to attain high mechanical properties, a fine grain size of powder is necessary. Therefore, the attention of this work is to develop and produce wear resistant component with better properties or comparable to the commercial ones. (author)

  10. Two step sintering of zirconia-escandia-ceria

    International Nuclear Information System (INIS)

    Grosso, R.L.; Muccillo, E.N.S.

    2011-01-01

    Recent reports show that the ceramic system based on zirconia-scandia-ceria is a good candidate to act as solid electrolyte in solid oxide fuel cells operating at intermediate temperatures (600-800 °C). In this work, commercial ZrO_2 containing 10 mol% scandium oxide and 1 mol% cerium oxide was sintered by the two stage method. This technique was proposed to in order to obtain ceramic materials with high density along with fine grain sizes, because it avoids the grain growth occurring in the last stage of sintering. A number of experimental conditions were fully exploited by varying the dwell temperature (T_2) and the dwell time. The peak temperature (T_1) was chosen from linear shrinkage results. High (>98%) density values were obtained using this method. The medium grain size was evaluated for selected sintered samples. X-ray diffraction patterns reveal a secondary (rhombohedral) phase in sintered samples. The intensity of the secondary phase is a function of T_1 being small for relatively higher peak temperatures. (author)

  11. Preparation and characterization of sintered Mo-Re alloys

    International Nuclear Information System (INIS)

    Morito, F.

    1993-01-01

    By the method of powder metallurgy, we have tried to fabricate Mo-Re alloys, which were electron beam weldable. Severe quality control was carried out during the whole fabrication process focused to reducing oxygen contamination. It is inevitable that the starting raw powders of Mo and Re were both high purity with 99.99 mass% up. Moreover, high vacuum sintering was performed before final sintering with high-purity hydrogen gas. As a result, we obtained electron beam weldable Mo-Re alloys, the total oxygen content of which was about 10 mass ppm or less, respectively. Several specimens were melted by electron beam welding (EBW) method. It was found that EBW gives an easy and effective survey to examine the weldability and the quality of the materials. Fracture surfaces examined by AES exhibited very low content of oxygen, carbon and nitrogen or that less than detectability limit. In conclusion, we have succeeded to obtain defect-free welds of sintered Mo-Re alloys. Furthermore it was found that Mo-Re alloys showed excellent potentialities not only in mechanical properties at low temperature but also in the respects of microstructure. (orig.)

  12. Sintering studies on iron-carbon-copper compacts

    Directory of Open Access Journals (Sweden)

    Perianayagam Philomen-D-Anand Raj

    2016-01-01

    Full Text Available Sintered Iron-Carbon-Copper parts are among the most widely used powder metallurgy product in automobile. In this paper, studies have been carried out to find out the sintering characteristics of iron-carbon-copper compacts when sintered in nitrogen atmosphere. The effects of various processing parameters on the sintering characteristics were studied. The various processing parameters considered were compaction pressure, green density and sintering temperature. The sintering characteristics determined were sintered density, porosity, dimensional change, micro hardness and radial crush strength. The results obtained have been discussed on the basis of micro structural observations. The characteristics of SEM fractography were also used to determine the mechanism of fracture. The fracture energy is strongly dependent on density of the compact.

  13. Structural and optical properties of Mn{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} nano ferrites: Effect of sintering temperature

    Energy Technology Data Exchange (ETDEWEB)

    Thakur, Prashant, E-mail: prashant007thakur@gmail.com; Sharma, Rohit; Sharma, Vineet, E-mail: vineet.sharma@juiit.ac.in; Sharma, Pankaj, E-mail: pankaj.sharma@juit.ac.in

    2017-06-01

    Mn-Zn ferrites have shown various remarkable applications e.g. in magnetic amplifiers, power transformers and electromagnetic interference etc. due to their high initial permeability. Mn–Zn ferrite powder (Mn{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4}) has been prepared by the co-precipitation method and subsequently sintered at three different temperatures i.e. 973 K, 1173 K, 1373 K. Optical properties have been correlated with the structural properties. For structural properties X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and Fourier transform infrared spectroscopy (FTIR) have been employed. It has been observed that there is an increase in crystallite size with sintering from 973 K to 1373 K and FTIR confirms the formation of bond between metal ion and oxygen ion at the octahedral site and tetrahedral site. A red shift has been confirmed from UV–visible absorption spectra and photoluminescence spectra have been reported with an increase in sintering temperature. - Graphical abstract: Mn–Zn ferrite powder (Mn{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4}) has been prepared by the co-precipitation method and subsequently sintered at three different temperatures i.e. 973 K, 1173 K, 1373 K. A red shift has been confirmed from UV–visible absorption spectra and photoluminescence spectra have been reported with an increase in sintering temperature. - Highlights: • Nanoparticles of Mn{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} have been prepared by the co-precipitation method. • There is an increase in crystallite size with sintering from 973 K to 1373 K. • A red shift is found in UV–visible and PL spectra with an increase in sintering temperature.

  14. Foam glass obtained through high-pressure sintering

    DEFF Research Database (Denmark)

    Østergaard, Martin Bonderup; Petersen, Rasmus Rosenlund; König, Jakob

    2018-01-01

    Foam glasses are usually prepared through a chemical approach, that is, by mixing glass powder with foaming agents, and heating the mixture to a temperature above the softening point (106.6 Pa s) of the glass. The foaming agents release gas, enabling expansion of the sintered glass. Here, we use...... a physical foaming approach to prepare foam glass. First, closed pores filled with inert gases (He, Ar, or N2) are physically introduced into a glass body by sintering cathode ray tube (CRT) panel glass powder at high gas pressure (5‐25 MPa) at 640°C and, then cooled to room temperature. The sintered bodies...... are subjected to a second heat treatment above the glass transition temperature at atmospheric pressure. This heat treatment causes expansion of the pores due to high internal gas pressure. We found that the foaming ability strongly depends on the gas pressure applied during sintering, and on the kinetic...

  15. Effects of helium and deuterium irradiation on SPS sintered W–Ta composites at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Mateus, R., E-mail: rmateus@ipfn.ist.utl.pt [Associação Euratom/IST, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Dias, M. [ITN, Instituto Tecnológico e Nuclear, Estrada Nacional 10, 2686-953 Sacavém (Portugal); Lopes, J. [ITN, Instituto Tecnológico e Nuclear, Estrada Nacional 10, 2686-953 Sacavém (Portugal); ISEL, Instituto Superior de Engenharia de Lisboa, Rua Conselheiro Emídio Navarro, 1, 1959-007 Lisboa (Portugal); Rocha, J.; Catarino, N.; Franco, N. [ITN, Instituto Tecnológico e Nuclear, Estrada Nacional 10, 2686-953 Sacavém (Portugal); Livramento, V. [Associação Euratom/IST, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); LNEG, Laboratório Nacional de Energia e Geologia, Estrada do Paço do Lumiar, 1649-038 Lisboa (Portugal); and others

    2013-11-15

    Energetic He{sup +} and D{sup +} ions were implanted into different W–Ta composites in order to investigate their stability under helium and deuterium irradiation. The results were compared with morphological and chemical modifications arising from exposure of pure W and Ta. Special attention was given to tantalum hydride (Ta{sub 2}H) formation due to its implications for tritium inventory. Three W–Ta composites with 10 and 20 at.% Ta were prepared from elemental W powder and Ta fibre or powder through low-energy ball milling in argon atmosphere. Spark plasma sintering (SPS) was used as the consolidation process in the temperature range from 1473 to 1873 K. The results obtained from pure elemental samples and composites are similar. However, Ta{sub 2}H is easily formed in pure Ta by using a pre-implantation stage of He{sup +}, whereas in W–Ta composites the same reaction is clearly reduced, and it can be inhibited by controlling the sintering temperature.

  16. Sintering behavior, microstructure and properties of TiC-FeCr hard alloy

    Institute of Scientific and Technical Information of China (English)

    Farid Akhtar; Shiju Guo; Jawid Askari; Jianjun Tian

    2007-01-01

    TiC based cermets were produced with FeCr,as a binder,by conventional P/M (powder metallurgy) to near >97% of the theoretical density.Sintering temperature significantly affects the mechanical properties of the composite.The sintering temperature of>1360 ℃ caused severe chemical reaction between TiC particles and the binder phase.In the TiC-FeCr cermets,the mechanical properties did not vary linearly with the carbide content.Optimum mechanical properties were found in the composite containing 57wt%TiC reinforcement,when sintered at 1360 ℃ for 1 h.Use of carbon as an additive enhanced the mechanical properties of the composites.Cermets containing carbon as an additive with 49wt% TiC exhibited attractive mechanical properties.The microstructure of the developed composite contained less or no debonding,representing good wettability of the binder with TiC particles.Homogeneous distribution of the TiC particles ensured the presence of isotropic mechanical properties and homogeneous distribution of stresses in the composite.Preliminary experiments for evaluation of the oxidation resistance of FeCr bonded TiC cermets indicate that they are more resistant than WC-Co hardmetals.

  17. On the sintering kinetics in UO2

    International Nuclear Information System (INIS)

    Marajofsky, A.

    1998-01-01

    The fabrication process of UO 2 pellets from powders involve pressing and a sintering anneal at high temperature (1650 deg. C to 1750 deg. C) during two or more hours in a hydrogen atmosphere. An alternative method is the oxidative sintering, made at lower temperature (1000 deg. C to 1300 deg. C) in a CO 2 or CO/CO 2 atmosphere. The sintering phenomena consist in the densification of the material by a thermal treatment below the fusion point. For a compact made by pressing a powder, sintering is the process of annulation of the porosity present in the compact or pellet. Several theories describe the sintering phenomena dividing it in three stages, initial, intermediate and final: in all of them the densification is a continuous growing function of time. Nevertheless it has been experimentally reported that a reduction of the density occurs in the third step of the sintering. The phenomena has been called solarization. Solarization has been attributed to the effect of the evolved gases from additives or to the CO 2 atmosphere in oxidative sintering. Thus, it is convenient to distinguish between solarization in oxidative or reducing conditions. Reducing solarization is a consequence of the tendency towards equilibrium of intergranular pores. In oxidative sintering it occurs in the reducing anneal after the sintering and is due to the change in the lattice parameter. This work shows examples of both types of solarization and qualitative interpretation of this phenomena. Both situations show the need of strict control of the sintering and powder production conditions. (author)

  18. Spark plasma sintering of titanium aluminide intermetallics and its composites

    Science.gov (United States)

    Aldoshan, Abdelhakim Ahmed

    Titanium aluminide intermetallics are a distinct class of engineering materials having unique properties over conventional titanium alloys. gamma-TiAl compound possesses competitive physical and mechanical properties at elevated temperature applications compared to Ni-based superalloys. gamma-TiAl composite materials exhibit high melting point, low density, high strength and excellent corrosion resistance. Spark plasma sintering (SPS) is one of the powder metallurgy techniques where powder mixture undergoes simultaneous application of uniaxial pressure and pulsed direct current. Unlike other sintering techniques such as hot iso-static pressing and hot pressing, SPS compacts the materials in shorter time (< 10 min) with a lower temperature and leads to highly dense products. Reactive synthesis of titanium aluminide intermetallics is carried out using SPS. Reactive sintering takes place between liquid aluminum and solid titanium. In this work, reactive sintering through SPS was used to fabricate fully densified gamma-TiAl and titanium aluminide composites starting from elemental powders at different sintering temperatures. It was observed that sintering temperature played significant role in the densification of titanium aluminide composites. gamma-TiAl was the predominate phase at different temperatures. The effect of increasing sintering temperature on microhardness, microstructure, yield strength and wear behavior of titanium aluminide was studied. Addition of graphene nanoplatelets to titanium aluminide matrix resulted in change in microhardness. In Ti-Al-graphene composites, a noticeable decrease in coefficient of friction was observed due to the influence of self-lubrication caused by graphene.

  19. Melt-Pool Temperature and Size Measurement During Direct Laser Sintering

    Energy Technology Data Exchange (ETDEWEB)

    List, III, Frederick Alyious [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dinwiddie, Ralph Barton [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Carver, Keith [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gockel, Joy E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    Additive manufacturing has demonstrated the ability to fabricate complex geometries and components not possible with conventional casting and machining. In many cases, industry has demonstrated the ability to fabricate complex geometries with improved efficiency and performance. However, qualification and certification of processes is challenging, leaving companies to focus on certification of material though design allowable based approaches. This significantly reduces the business case for additive manufacturing. Therefore, real time monitoring of the melt pool can be used to detect the development of flaws, such as porosity or un-sintered powder and aid in the certification process. Characteristics of the melt pool in the Direct Laser Sintering (DLS) process is also of great interest to modelers who are developing simulation models needed to improve and perfect the DLS process. Such models could provide a means to rapidly develop the optimum processing parameters for new alloy powders and optimize processing parameters for specific part geometries. Stratonics’ ThermaViz system will be integrated with the Renishaw DLS system in order to demonstrate its ability to measure melt pool size, shape and temperature. These results will be compared with data from an existing IR camera to determine the best approach for the determination of these critical parameters.

  20. SINTERING EFFECTS ON THE DENSIFICATION OF NANOCRYSTALLINE HYDROXYAPATITE

    Directory of Open Access Journals (Sweden)

    M. Amiriyan

    2011-06-01

    Full Text Available The effects of sintering profiles on the densification behaviour of synthesized nanocrystalline hydroxyapatite (HA powder were investigated in terms of phase stability and mechanical properties. A wet chemical precipitation method was successfully employed to synthesize a high purity and single phase HA powder. Green HA compacts were prepared and subjected to sintering in air atmosphere over a temperature range of 700° C to 1300° C. In this study two different holding times were compared, i.e. 1 minute versus the standard 120 minutes. The results revealed that the 1 minute holding time sintering profile was indeed effective in producing a HA body with high density of 98% theoretical when sintered at 1200° C. High mechanical properties such as fracture toughness of 1.41 MPa.m1/2 and hardness of 9.5 GPa were also measured for HA samples sintered under this profile. Additionally, XRD analysis indicated that decomposition of the HA phase during sintering at high temperatures was suppressed.

  1. LOW-TEMPERATURE SINTERED (ZnMg2SiO4 MICROWAVE CERAMICS WITH TiO2 ADDITION AND CALCIUM BOROSILICATE GLASS

    Directory of Open Access Journals (Sweden)

    BO LI

    2011-03-01

    Full Text Available The low-temperature sintered (ZnMg2SiO–TiO2 microwave ceramic using CaO–B2O3–SiO2 (CBS as a sintering aid has been developed. Microwave properties of (Zn1-xMgx2SiO4 base materials via sol-gel method were highly dependent on the Mg-substituted content. Further, effects of CBS and TiO2 additives on the crystal phases, microstructures and microwave characteristics of (ZnMg2SiO4 (ZMS ceramics were investigated. The results indicated that CBS glass could lower the firing temperature of ZMS dielectrics effectively from 1170 to 950°C due to the liquid-phase effect, and significantly improve the sintering behavior and microwave properties of ZMS ceramics. Moreover, ZMS–TiO2 ceramics showed the biphasic structure and the abnormal grain growth was suppressed by the pinning effect of second phase TiO2. Proper amount of TiO2 could tune the large negative temperature coefficient of resonant frequency (tf of ZMS system to a near zero value. (Zn0.8Mg0.22SiO4 codoped with 10 wt.% TiO2 and 3 wt.% CBS sintered at 950°C exhibits the dense microstructure and excellent microwave properties: εr = 9.5, Q·f = 16 600 GHz and tf = −9.6 ppm/°C.

  2. Ash chemistry and sintering, verification of the mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Hupa, M.; Skrifvars, B.J. [Aabo Akademi, Turku (Finland)

    1996-12-01

    In this project four sintering mechanisms have been studied, i.e., partial melting with a viscous liquid, partial melting with a non-viscous liquid, chemical reaction sintering and solid state sintering. The work has aimed at improving the understanding of ash sintering mechanisms and quantifying their role in combustion and gasification. The work has been oriented in particular on the understanding of biomass ash behavior. The work has not directly focused on any specific technical application. However, results can also be applied on other fuels such as brown coal, petroleum coke, black liquor and different types of wastes (PDF, RDF, MSW). In one part of study the melting behavior was calculated for ten biomass ashes and compared with lab measurements of sintering tendencies. The comparison showed that the T{sub 15} temperatures, i.e. those temperatures at which the ashes contained 15 % molten phase, correlated fairly well with the temperature at which the sintering measurements detected sintering. This suggests that partial melting can be predicted fairly accurate for some ashes already with the today existing thermodynamic calculation routines. In some cases, however the melting calculations did not correlate with the detected sintering temperatures. In a second part detailed measurements on ash behavior was conducted both in a semi full scale CFB and a lab scale FBC. Ashes and deposits were collected and analyzed in several different ways. These analyses show that the ash chemistry shifts radically when the fuel is shifted. Fuels with silicate based ashes behaved totally different than those with an oxide or salt based ash. The chemistry was also affected by fuel blending. The ultimate goal has been to be able to predict the ash thermal behavior during biomass thermal conversion, using the fuel and ash elemental analyses and a few operational key parameters as the only input data. This goal has not yet today been achieved. (author)

  3. Field assisted sintering of refractory carbide ceramics and fiber reinforced ceramic matrix composites

    Science.gov (United States)

    Gephart, Sean

    materials. While FAST sintered materials showed higher average values, in general they also showed consistently larger variation in the scattered data and consequently larger standard deviation for the resulting material properties. In addition, dynamic impact testing (V50 test) was conducted on the resulting materials and it was determined that there was no discernable correlation between observed mechanical properties of the ceramic materials and the resulting dynamic testing. Another study was conducted on the sintering of SiC and carbon fiber reinforced SiC ceramic matrix composites (CMC) using FAST. There has been much interest recently in fabricating high strength, low porosity SiC CMC.s for high temperature structural applications, but the current methods of production, namely chemical vapor infiltration (CVI), melt infiltration (MI), and polymer infiltration and pyrolysis (PIP), are considered time consuming and involve material related shortcomings associated with their respective methodologies. In this study, SiC CMC.s were produced using the 25 ton laboratory unit with a target sample size of 40 mm diameter and 3 mm thickness, as well as on the larger 250 ton industrial FAST system targeting a sample size of 101.6 x 101.6 x 3 mm3 to investigate issues associated with scaling. Several sintering conditions were explored including: pressure of 35-65 MPa, temperature of 1700-1900°C, and heating rates between 50-400°C/min. The SiC fibers used in this study were coated using chemical vapor deposition (CVD) with boron nitride (BN) and pyrolytic carbon to act as a barrier layer and preserve the integrity of the fibers during sintering. Then the barrier coating was coated by an outer layer of SiC to enhance the bonding between the fibers and the SiC matrix. Microstructures of the sintered samples were examined by FE-SEM. Mechanical properties including flexural strength-deflection and stress-strain were characterized using 4-point bend testing. Tensile testing was

  4. Computer Modeling of Direct Metal Laser Sintering

    Science.gov (United States)

    Cross, Matthew

    2014-01-01

    A computational approach to modeling direct metal laser sintering (DMLS) additive manufacturing process is presented. The primary application of the model is for determining the temperature history of parts fabricated using DMLS to evaluate residual stresses found in finished pieces and to assess manufacturing process strategies to reduce part slumping. The model utilizes MSC SINDA as a heat transfer solver with imbedded FORTRAN computer code to direct laser motion, apply laser heating as a boundary condition, and simulate the addition of metal powder layers during part fabrication. Model results are compared to available data collected during in situ DMLS part manufacture.

  5. Influence of sintering temperature in red ceramic with addition of mill scale

    International Nuclear Information System (INIS)

    Arnt, A.B.C.; Rocha, M.R.; Bernardin, A.M.; Meller, J.G.

    2010-01-01

    This study aimed to evaluate the influence of sintering temperature in a red ceramic body with the addition of mill scale. This residue consists of oxides of iron had to replace the function of pigments used in ceramic materials. After chemical characterization, by X-ray diffraction, X-ray fluorescence and scanning electron microscopy, this residue was added at a rate of 5% in commercial ceramic past. The formulations were subjected to different burn temperatures of around 950 deg C, 1000 deg C and 1200 deg C. The formulations were evaluated for physical loss to fire, linear firing shrinkage, water absorption and flexural strength by 3 and intensity of tone. The results indicate that the different firing temperatures influence the strength and stability of tone in the formulations tested. (author)

  6. Sintering Behavior of Spark Plasma Sintered SiC with Si-SiC Composite Nanoparticles Prepared by Thermal DC Plasma Process

    Science.gov (United States)

    Yu, Yeon-Tae; Naik, Gautam Kumar; Lim, Young-Bin; Yoon, Jeong-Mo

    2017-11-01

    The Si-coated SiC (Si-SiC) composite nanoparticle was prepared by non-transferred arc thermal plasma processing of solid-state synthesized SiC powder and was used as a sintering additive for SiC ceramic formation. Sintered SiC pellet was prepared by spark plasma sintering (SPS) process, and the effect of nano-sized Si-SiC composite particles on the sintering behavior of micron-sized SiC powder was investigated. The mixing ratio of Si-SiC composite nanoparticle to micron-sized SiC was optimized to 10 wt%. Vicker's hardness and relative density was increased with increasing sintering temperature and holding time. The relative density and Vicker's hardness was further increased by reaction bonding using additional activated carbon to the mixture of micron-sized SiC and nano-sized Si-SiC. The maximum relative density (97.1%) and Vicker's hardness (31.4 GPa) were recorded at 1800 °C sintering temperature for 1 min holding time, when 0.2 wt% additional activated carbon was added to the mixture of SiC/Si-SiC.

  7. Preparation of Nd–Fe–B sintered magnets from HDDR-processed powder

    Energy Technology Data Exchange (ETDEWEB)

    Takagi, Kenta, E-mail: k-takagi@aist.go.jp [Green Innovative Magnetic Materials Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Nagoya 463-8560 (Japan); Akada, Misaho [Magnetic Materials R& D Center, Research Associations of Magnetic Materials for High-Efficiency Motors (MagHEM), Nagoya 463-8560 (Japan); Soda, Rikio; Ozaki, Kimihiro [Green Innovative Magnetic Materials Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Nagoya 463-8560 (Japan)

    2015-11-01

    The electric-current sintering technique was used to fully densify hydrogenation–disproportionation–desorption–recombination (HDDR)-processed Nd–Fe–B powder at temperatures below the grain growth temperature in order to produce high-coercive bulk magnets. However, the sintered magnets exhibited anomalous coercivity reduction that depended on sintered density. Reheating examination of the sintered magnets revealed that the reduced coercivity was increased in proportion to the heating temperature, resulting in complete recovery of coercivity. As a result, the combination of electric-current sintering and post-annealing produced sintered magnets with a coercivity of 15 kOe. Scanning and transmission electron microscopy revealed no evidence that associated the anomalous coercivity reduction and recovery with grain boundary morphology. On the other hand, various HDDR powders with different particle sizes were sintered, and finer powders yielded lower coercivity after sintering, implying that the anomalous coercivity reduction was associated with particle surface oxides of the raw powder. - Highlights: • We conduct a sintering of HDDR-processed Nd–Fe–B powder without coercivity reduction. • Rapid current sintering allows densification of this powder without grain growth. • However, the sintered magnets show an anomalous coercivity reduction phenomenon. • It is found that post-annealing completely recovers the reduced coercivity. • The anomalous coercivity reduction would be due to surface oxide of the raw powder.

  8. Sintering characteristics of nano-ceramic coatings

    NARCIS (Netherlands)

    de Hosson, J.T.M.; Popma, R.

    2003-01-01

    This paper concentrates on sintering characteristics of nano-sized ceramic SiO2 particles. The sintering process is studied as a function of temperature using a conventional furnace and using a laser beam. The underlying idea is to combine the nanoceramic sol-gel concept with inkjet technology and

  9. Selection of optimal sintering temperature of K0.5Na0.5NbO3 ceramics for electromechanical applications

    Directory of Open Access Journals (Sweden)

    Gaurav Vats

    2014-03-01

    Full Text Available This paper has considered the selection of the optimal processing parameter (sintering temperature leading to best possible properties of K0.5Na0.5NbO3 (KNN for electromechanical applications. Vital piezoelectric properties for such applications include the piezoelectric coupling coefficient (kp, piezoelectric coefficient (d31, Curie temperature (Tc, remanent polarization (Pr, coercive field (Ec, density (ρ, elastic compliance (S11E and S12E and dielectric loss (tan δ. The weights and priority of these physical properties for KNN are calculated using the modified digital logic (MDL method. The priority order of these properties used for the selection of optimal processing parameters is as d31>tan δ>S11E=S12E>Tc=Pr>ρ>kp>Ec. The weights obtained using MDL are further incorporated with analytic hierarchy process (AHP and VlseKriterijumska Optimisacija I Kompromisno Resenje (VIKOR in order to determine the optimal sintering temperature for KNN. Both methods suggest that 1080 °C and 1120 °C are the most and least desirable sintering temperatures, respectively. Finally, sensitivity analysis is performed for the robustness of our results and prediction of most influential parameter in terms of sensitivity. tan δ is found to be the most sensitive property for alteration in the present ranking.

  10. Effects of B{sub 2}O{sub 3} content and sintering temperature on crystallization and microstructure of CBS glass–ceramic coatings

    Energy Technology Data Exchange (ETDEWEB)

    Li, Pengyang [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Wang, Shubin, E-mail: shubinwang@buaa.edu.cn [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials and Engneering, Beihang University, Beijing 100191 (China); Liu, Jianggao; Feng, Mengjie; Yang, Xinwang [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China)

    2015-11-30

    Graphical abstract: (a) TEM photogram of CG3 sintered at 800 °C, crystals are obvious; (b) the XRD patterns of CG3 glass samples sintered at various temperatures; (c) SEM photogram of CG3 sintered at 800 °C; (d) Kissinger, Augis–Bennett and Ozawa kinetics plots of CG3 glass samples. - Highlights: • Combining sol–gel method with direct sintering method to reduce the temperature of coatings formation. • Characterizing CaO–SiO{sub 2}–B{sub 2}O{sub 3} glass–ceramic coatings on porous substrates. • Surface crystallization of CBS glass–ceramic coatings: nucleation and kinetics. • Activation energies for crystal growth in CBS glass–ceramics with different contents of B{sub 2}O{sub 3}. - Abstract: Borosilicate glass–ceramics precursors with varying compositional ratios in the CaO–SiO{sub 2}–B{sub 2}O{sub 3} (CBS) system were synthesized by sol–gel method. The precursors were calcined at 1200 °C for 2 h to form glass powders. The glass–ceramics were prepared by overlaying glass slurries on the substrates before sintering at different temperatures. The as-prepared glasses and glass–ceramics were characterized by differential scanning calorimetry and X-ray diffraction. The crystallization activation energies (E{sub c}) were calculated using the Kissinger method from DSC results. The morphology and crystallization behavior of the glass–ceramics were monitored by scanning electron microscopy. Both glass transition and crystallization temperatures decreased, however, the metastable zone increased. The E{sub c} values of CBS glasses and glass–ceramics were 254.1, 173.2 and 164.4 kJ/mol with increasing B{sub 2}O{sub 3} content, whereas that of the calcined G3 glass was 104.9 kJ/mol. Finally, the coatings were prepared at a low temperature (700 °C). The crystals that grew on the surface of multilayer coatings demonstrated heterogeneous surface nucleation and crystallization after heat-treatment from 700 °C to 850 °C for 4 h.

  11. Uranium dioxide sintering Kinetics and mechanisms under controlled oxygen potentials

    International Nuclear Information System (INIS)

    Freitas, C.T. de.

    1980-06-01

    The initial, intermediate, and final sintering stages of uranium dioxide were investigated as a function of stoichiometry and temperature by following the kinetics of the sintering reaction. Stoichiometry was controlled by means of the oxygen potential of the sintering atmosphere, which was measured continuously by solid-state oxygen sensors. Included in the kinetic study were microspheres originated from UO 2 gels and UO 2 pellets produced by isostatic pressing ceramic grade powders. The microspheres sintering behavior was examined using hot-stage microscopy and a specially designed high-temperature, controlled atmosphere furnace. This same furnace was employed as part of an optical dilatometer, which was utilized in the UO 2 pellet sintering investigations. For controlling the deviations from stoichiometry during heat treatment, the oxygen partial pressure in the sintering atmosphere was varied by passing the gas through a Cu-Ti-Cu oxygen trap. The trap temperature determined the oxygen partial pressure of the outflowing mixture. Dry hydrogen was also used in some of the UO sub(2+x) sintering experiments. The determination of diametrial shrinkages and sintering indices was made utilizing high-speed microcinematography and ultra-microbalance techniques. It was observed that the oxygen potential has a substantial influence on the kinetics of the three sintering stages. The control of the sintering atmosphere oxygen partial pressure led to very fast densification of UO sub(2+x). Values in the interval 95.0 to 99.5% of theoretical density were reached in less than one minute. Uranium volume diffusion is the dominant mechanism in the initial and intermediate sintering stages. For the final stage, uranium grain boundary diffusion was found to be the main sintering mechanism. (Author) [pt

  12. High performance sinter-HIP for hard metals

    International Nuclear Information System (INIS)

    Hongxia Chen; Deming Zhang; Yang Li; Jingping Chen

    2001-01-01

    The horizontal sinter-HIP equipment with great charge capacity and high performance, developed and manufactured by Central Iron and Steel Research Institute(CISRI), is mainly used for sintering and condensation of hard metals. This equipment is characterized by large hot zone, high heating speed, good temperature uniformity and fast cooling system. The equipment can provide uniform hot zone with temperature difference less than 6 o C at 1500-1600 o C and 6-10 MPa by controlling temperature, pressure and circulation of gas precisely. Using large scale horizontal sinter-HIP equipment to produce hard matals have many advantages such as stable quality, high efficiency of production, high rate of finished products and low production cost, so this equipment is a good choice for manufacturer of hard metals. (author)

  13. Fusibility and sintering characteristics of ash

    Energy Technology Data Exchange (ETDEWEB)

    Ots, A. A., E-mail: aots@sti.ttu.ee [Tallinn University of Technology (Estonia)

    2012-03-15

    The temperature characteristics of ash fusibility are studied for a wide range of bituminous and brown coals, lignites, and shales with ratios R{sub B/A} of their alkaline and acid components between 0.03 and 4. Acritical value of R{sub B/A} is found at which the fusion temperatures are minimal. The sintering properties of the ashes are determined by measuring the force required to fracture a cylindrical sample. It is found that the strength of the samples increases sharply at certain temperatures. The alkali metal content of the ashes has a strong effect on their sintering characteristics.

  14. On the stress-free lattice expansion of porous cordierite

    International Nuclear Information System (INIS)

    Bruno, Giovanni; Efremov, Alexander M.; Clausen, Bjorn; Balagurov, Anatoly M.; Simkin, Valeriy N.; Wheaton, Bryan R.; Webb, James E.; Brown, Donald W.

    2010-01-01

    An extensive investigation of the lattice expansion (up to 1200 deg. C) of porous synthetic cordierite (obtained by firing a mixture of talc, clay, alumina and silica) was carried out using time-of-flight neutron diffraction at LANSCE, Los Alamos, NM, USA and FNLP, Dubna, Russia. An extruded rod and several powders, with different particle size (dispersity), were studied, with the aim of monitoring the variation of the (lattice) micro-strain as a function of temperature and its influence on the microscopic and macroscopic thermal expansion. Results show a different expansion of the a- and b-axes of the orthorhombic cell (in the rod above 800 deg. C). While the finest powder seems to contract more along the c-axis, thus hinting at the presence of smaller stress, the integral peak width increases as a function of temperature in the intermediate range (300-700 deg. C). This could be explained by the integrity factor modeling in terms of micro-cracking. In polycrystalline cordierite, the model implies tension along the a- and b-axes (positive thermal expansion) accompanied by compression along the c-axis (negative thermal expansion) and a stress release upon cooling, via a thermal micro-cracking mechanism. The calculations of the cordierite macroscopic thermal expansion having as input crystal axial expansions assumed to be stress-free allowed us to conclude that even a fine powder (5 μm particle size) cannot be considered completely stress-free. This conclusion is supported by microstructural observations.

  15. Concentrated solar energy used for sintering magnesium titanates for electronic applications

    Science.gov (United States)

    Apostol, Irina; Rodríguez, Jose; Cañadas, Inmaculada; Galindo, Jose; Mendez, Senen Lanceros; de Abreu Martins, Pedro Libȃnio; Cunha, Luis; Saravanan, Kandasamy Venkata

    2018-04-01

    Solar energy is an important renewable source of energy with many advantages: it is unlimited, clean and free. The main objective of this work was to sinter magnesium titanate ceramics in a solar furnace using concentrated solar energy, which is a novel and original process. The direct conversion of solar power into high temperature makes this process simple, feasible and ecologically viable/environmentally sustainable. We performed the solar sintering experiments at Plataforma Solar de Almeria-CIEMAT, Spain. This process takes place in a vertical axis solar furnace (SF5-5 kW) hosting a mobile flat mirror heliostat, a fixed parabolic mirror concentrator, an attenuator and a test table the concentrator focus. We sintered (MgO)0.63(TiO2)0.37, (MgO)0.49(TiO2)0.51, (MgO)0.50(TiO2)0.50 ceramics samples in air at about 1100 °C for a duration of 16 min, 1 h, 2 h and 3 h in the solar furnace. The MgO/TiO2 ratio and the dwell time was varied in order to obtain phase pure MgTiO3 ceramic. We obtained a pure MgTiO3 geikielite phase by solar sintering of (MgO)0.63(TiO2)0.37 samples at 1100 °C (16 min-3 h). Samples of (MgO)0.63(TiO2)0.37, solar sintered at 1100 °C for 3 h, resulted in well-sintered, non-porous samples with good density (3.46 g/cm3). The sintered samples were analyzed by XRD for phase determination. The grain and surface morphology was observed using SEM. Electrical measurements were carried out on solar sintered samples. The effect of processing parameters on microstructure and dielectric properties were investigated and is presented.

  16. Thermoelectric Coolers with Sintered Silver Interconnects

    Science.gov (United States)

    Kähler, Julian; Stranz, Andrej; Waag, Andreas; Peiner, Erwin

    2014-06-01

    The fabrication and performance of a sintered Peltier cooler (SPC) based on bismuth telluride with sintered silver interconnects are described. Miniature SPC modules with a footprint of 20 mm2 were assembled using pick-and-place pressure-assisted silver sintering at low pressure (5.5 N/mm2) and moderate temperature (250°C to 270°C). A modified flip-chip bonder combined with screen/stencil printing for paste transfer was used for the pick-and-place process, enabling high positioning accuracy, easy handling of the tiny bismuth telluride pellets, and immediate visual process control. A specific contact resistance of (1.4 ± 0.1) × 10-5 Ω cm2 was found, which is in the range of values reported for high-temperature solder interconnects of bismuth telluride pellets. The realized SPCs were evaluated from room temperature to 300°C, considerably outperforming the operating temperature range of standard commercial Peltier coolers. Temperature cycling capability was investigated from 100°C to 235°C over more than 200 h, i.e., 850 cycles, during which no degradation of module resistance or cooling performance occurred.

  17. Effect of sintering process parameters on the properties of 3Y-PSZ ceramics

    International Nuclear Information System (INIS)

    Chu, H L; Chen, R S; Wang, C L; Hwang, W S; Lee, H E; Sie, Y Y; Wang, M C

    2013-01-01

    The effect of sintering process parameters on the properties of 3 mol% yttria partially stability zirconia (3Y-PSZ) ceramics has been investigated. The relative density of the sintered pellet rapidly increases from 70.5 to 93.6% with rose temperature from 1473 to 1573 K. In addition, the relative density only slightly increases from 94.9 to 96.6 %, when rose sintered temperature from 1573 to 1773 K. This result shows that no significant influence on the densification behavior when sintering at 1573 to 1773 K for 2 h. The Vickers hardness and toughness also increase with the sintered temperature

  18. Synergistic effect of carbon nanotube as sintering aid and toughening agent in spark plasma sintered molybdenum disilicide-hafnium carbide composite

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Biswajyoti; Asiq Rahman, O.S.; Sribalaji, M [Materials Science and Engineering, Indian Institute of Technology Patna, Bihta Kanpa Road, Bihta, Patna, Bihar 801103 (India); Bakshi, Srinivasa Rao [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036 (India); Keshri, Anup Kumar, E-mail: anup@iitp.ac.in [Materials Science and Engineering, Indian Institute of Technology Patna, Bihta Kanpa Road, Bihta, Patna, Bihar 801103 (India)

    2016-12-15

    Hafnium carbide (HfC) along with sintering aids was consolidated at a relatively lower temperature i.e. 1600 °C (i.e. T=~0.41 T{sub m}) under a uniaxial load of 50 MPa by spark plasma sintering. Two different sintering aids such as molybdenum disilicide (MoSi{sub 2}) and carbon nanotube (CNT) were added to enhance the densification and lower the extent of grain growth in the sintered pellets. Density of the sintered pellet increased from 96.0±0.8% in HfC +5 wt% MoSi{sub 2} (HM) to 99.0±0.5% with the addition of 2 wt% CNT in HfC+5 wt% MoSi{sub 2} (HMC) at sintering temperature of 1600 °C. Further, the extent of grain growth drastically reduced from 204% in HM to 50% in HMC. Analysis of linear shrinkage during densification revealed that CNT addition increased densification rate and decreased the time required to reach the density of 99.0±0.5% at 1600 °C. Increased densification and lower degree of grain growth could be due to the synergistic effect offered by the CNT, which are as follows: (i) Lubrication effect of CNT, (ii) Lower activation energy for grain boundary diffusion (iii) Reduction in liquid phase sintering temperature and (iv) Grain boundary pinning. Fracture toughness of the sintered HM and HMC composite was obtained using indentation technique. By the addition of 2 wt% CNT in HM, drastic increase of 91% in fracture toughness was seen. This significant improvement in fracture toughness was due to the enhanced densification and relatively lower grain size of HMC. Also crack bridging, crack deflection, crack arrest, CNT and graphene sheet pull-out and swording played major role in toughening of HMC pellet.

  19. Sintering Behavior of Spark Plasma Sintered SiC with Si-SiC Composite Nanoparticles Prepared by Thermal DC Plasma Process.

    Science.gov (United States)

    Yu, Yeon-Tae; Naik, Gautam Kumar; Lim, Young-Bin; Yoon, Jeong-Mo

    2017-11-25

    The Si-coated SiC (Si-SiC) composite nanoparticle was prepared by non-transferred arc thermal plasma processing of solid-state synthesized SiC powder and was used as a sintering additive for SiC ceramic formation. Sintered SiC pellet was prepared by spark plasma sintering (SPS) process, and the effect of nano-sized Si-SiC composite particles on the sintering behavior of micron-sized SiC powder was investigated. The mixing ratio of Si-SiC composite nanoparticle to micron-sized SiC was optimized to 10 wt%. Vicker's hardness and relative density was increased with increasing sintering temperature and holding time. The relative density and Vicker's hardness was further increased by reaction bonding using additional activated carbon to the mixture of micron-sized SiC and nano-sized Si-SiC. The maximum relative density (97.1%) and Vicker's hardness (31.4 GPa) were recorded at 1800 °C sintering temperature for 1 min holding time, when 0.2 wt% additional activated carbon was added to the mixture of SiC/Si-SiC.

  20. Quartz crystal reinforced quartz glass by spark plasma sintering

    International Nuclear Information System (INIS)

    Torikai, D.; Barazani, B.; Ono, E.; Santos, M.F.M.; Suzuki, C.K.

    2011-01-01

    The Spark Plasma Sintering presents fast processing time when compared to conventional sintering techniques. This allows to control the grain growth during sintering as well as the diffusion rate of a multi-material compounds, and make possible obtainment of functionally graded materials and nanostructured compounds. Powders of high purity silica glass and crystalline silica were sintered in a SPS equipment at temperatures around 1350° C, i.e., above the softening temperature of silica glass and below the melting temperature of quartz crystal. As a result, glass ceramics with pure silica glass matrix reinforced with crystalline alpha-quartz grains were fabricated at almost any desired range of composition, as well as controlled size of the crystalline reinforcement. X-ray diffraction and density measurements showed the possibility to manufacture a well controlled density and crystallinity glass-ceramic materials. (author)

  1. Modeling sintering of multilayers under influence of gravity

    DEFF Research Database (Denmark)

    Frandsen, Henrik Lund; Olevsky, Eugene; Tadesse Molla, Tesfaye

    2013-01-01

    , which describes the combined effect of sintering and gravity of thin multilayers, is derived and later compared with experimental results. It allows for consideration of both uniaxial and biaxial stress states. The model is based on the Skorohod-Olevsky viscous sintering framework, the classical...... laminate theory and the elastic-viscoelastic correspondence principle. The modeling approach is then applied to illustrate the effect of gravity during sintering of thin layers of cerium gadolinium oxide (CGO), and it is found to be significant. © 2012 The American Ceramic Society....

  2. U3O8 microspheres sintering kinetics

    International Nuclear Information System (INIS)

    Godoy, A.L.E.

    1986-01-01

    U 3 O 8 microspheres sintering kinetics was determined using a hot-stage optical microscopy apparatus, able to reach temperature up to 1350 0 C in controlled atmospheres. The sintered material had its microstructure analysed by optical and electron microscopy. The microspheres were characterized initialy utilizing X-ray diffractometry and thermogravimetry. The equation which describes the microspheres shrinkage in function of the time was obtained using finite difference analysis X-ray diffractometry indicated hexagonal structure for the microspheres main starting material, ammonium diuranate thermogravimetric analysis showed reduction of this material to U 3 O 8 at 600 0 C. Ceramography results showed 5 hours sintered microspheres grain sizes G vary with the temperature. Sintered U 3 O 8 micrographs compared with published results for UO 2 , indicate similar homogeneity microstructural characteristics and suggest the processed micorspheres to be potentially useful as nuclear fuels. (Author) [pt

  3. Fast and low-temperature sintering of silver complex using oximes as a potential reducing agent for solution-processible, highly conductive electrodes

    International Nuclear Information System (INIS)

    Yoo, Ji Hoon; Park, Su Bin; Kim, Ji Man; Han, Dae Sang; Chae, Jangwoo; Kwak, Jeonghun

    2014-01-01

    Highly conductive, solution-processed silver thin-films were obtained at a low sintering temperature of 100 °C in a short sintering time of 10 min by introducing oximes as a potential reductant for silver complex. The thermal properties and reducibility of three kinds of oximes, acetone oxime, 2-butanone oxime, and one dimethylglyoxime, were investigated as a reducing agent, and we found that the thermal decomposition product of oximes (ketones) accelerated the conversion of silver complex into highly conductive silver at low sintering temperature in a short time. Using the acetone oxime, the silver thin-film exhibited the lowest surface resistance (0.91 Ω sq −1 ) compared to those sing other oximes. The silver thin-film also showed a high reflectance of 97.8%, which is comparable to evaporated silver films. We also demonstrated inkjet printed silver patterns with the oxime-added silver complex inks. (paper)

  4. Reaction behavior of SO2 in the sintering process with flue gas recirculation.

    Science.gov (United States)

    Yu, Zhi-Yuan; Fan, Xiao-Hui; Gan, Min; Chen, Xu-Ling; Chen, Qiang; Huang, Yun-Song

    2016-07-01

    The primary goal of this paper is to reveal the reaction behavior of SO2 in the sinter zone, combustion zone, drying-preheating zone, and over-wet zone during flue gas recirculation (FGR) technique. The results showed that SO2 retention in the sinter zone was associated with free-CaO in the form of CaSO3/CaSO4, and the SO2 adsorption reached a maximum under 900ºC. SO2 in the flue gas came almost from the combustion zone. One reaction behavior was the oxidation of sulfur in the sintering mix when the temperature was between 800 and 1000ºC; the other behavior was the decomposition of sulfite/sulfate when the temperature was over 1000ºC. However, the SO2 adsorption in the sintering bed mainly occurred in the drying-preheating zone, adsorbed by CaCO3, Ca(OH)2, and CaO. When the SO2 adsorption reaction in the drying-preheating zone reached equilibrium, the excess SO2 gas continued to migrate to the over-wet zone and was then absorbed by Ca(OH)2 and H2O. The emission rising point of SO2 moved forward in combustion zone, and the concentration of SO2 emissions significantly increased in the case of flue gas recirculation (FGR) technique. Aiming for the reuse of the sensible heat and a reduction in exhaust gas emission, the FGR technique is proposed in the iron ore sintering process. When using the FGR technique, SO2 emission in exhaust gas gets changed. In practice, the application of the FGR technique in a sinter plant should be cooperative with the flue gas desulfurization (FGD) technique. Thus, it is necessary to study the influence of the FGR technique on SO2 emissions because it will directly influence the demand and design of the FGD system.

  5. One step sintering of homogenized bauxite raw material and kinetic study

    Science.gov (United States)

    Gao, Chang-he; Jiang, Peng; Li, Yong; Sun, Jia-lin; Zhang, Jun-jie; Yang, Huan-ying

    2016-10-01

    A one-step sintering process of bauxite raw material from direct mining was completed, and the kinetics of this process was analyzed thoroughly. The results show that the sintering kinetics of bauxite raw material exhibits the liquid-phase sintering behavior. A small portion of impurities existed in the raw material act as a liquid phase. After X-ray diffraction analyses, scanning electron microscopy observations, and kinetics calculations, sintering temperature and heating duration were determined as the two major factors contributing to the sintering process and densification of bauxite ore. An elevated heating temperature and longer duration favor the densification process. The major obstacle for the densification of bauxite material is attributed to the formation of the enclosed blowhole during liquid-phase sintering.

  6. Cleanable sintered metal filters in hot off-gas systems

    International Nuclear Information System (INIS)

    Schurr, G.A.

    1981-01-01

    Filters with sintered metal elements, arranged as tube bundles with backflush air cleaning, are the equivalent of bag filters for high-temperature, harsh environments. They are virtually the only alternative for high-temperature off-gas systems where a renewable, highly efficient particle trap is required. Tests were conducted which show that the sintered metal elements installed in a filter system provide effective powder collection in high-temperature atmospheres over thousands of cleaning cycles. Such a sintered metal filter system is now installed on the experimental defense waste calciner at the Savannah River Laboratory. The experimental results included in this paper were used as the basis for its design

  7. Sintering of a class F fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Joseph J. Biernacki; Anil K. Vazrala; H. Wayne Leimer [Tennessee Technological University, Cookeville, TN (United States). Department of Chemical Engineering

    2008-05-15

    The sinterability of a class F fly ash was investigated as a function of processing conditions including sintering temperature (1050-1200{sup o}C) and sintering time (0-90 min). Density, shrinkage, splitting tensile strength, water absorption and residual loss on ignition (RLOI) were evaluated as measures of sintering efficiency. Scanning electron microscopy (SEM), X-ray microanalysis and X-ray diffraction was used to examine microstructure and phase development due to processing. The results show that premature densification can inhibit complete carbon removal and that carbon combustion is influenced by both internal and external mass transfer conditions. 18 refs., 10 figs., 1 tab.

  8. Inkjet printed paper based frequency selective surfaces and skin mounted RFID tags : the interrelation between silver nanoparticle ink, paper substrate and low temperature sintering technique

    NARCIS (Netherlands)

    Sanchez-Romaquera, V.; Wïnscher, S.; Turki, B.M.; Abbel, R.J.; Barbosa, S.; Tate, D.J.; Oyeka, D.; Batchelor, J.C.; Parker, E.A.; Schubert, U.S.; Yeates, S.G.

    2015-01-01

    Inkjet printing of functional frequency selective surfaces (FSS) and radio frequency identification (RFID) tags on commercial paper substrates using silver nanoparticle inks sintered using low temperature thermal, plasma and photonic techniques is reported. Printed and sintered FSS devices

  9. Thermomechanical Modeling of Sintered Silver - A Fracture Mechanics-based Approach: Extended Abstract: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Paret, Paul P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); DeVoto, Douglas J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Narumanchi, Sreekant V [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-01

    Sintered silver has proven to be a promising candidate for use as a die-attach and substrate-attach material in automotive power electronics components. It holds promise of greater reliability than lead-based and lead-free solders, especially at higher temperatures (less than 200 degrees Celcius). Accurate predictive lifetime models of sintered silver need to be developed and its failure mechanisms thoroughly characterized before it can be deployed as a die-attach or substrate-attach material in wide-bandgap device-based packages. We present a finite element method (FEM) modeling methodology that can offer greater accuracy in predicting the failure of sintered silver under accelerated thermal cycling. A fracture mechanics-based approach is adopted in the FEM model, and J-integral/thermal cycle values are computed. In this paper, we outline the procedures for obtaining the J-integral/thermal cycle values in a computational model and report on the possible advantage of using these values as modeling parameters in a predictive lifetime model.

  10. The Effects of Post-Sintering Treatments on Microstructure and Mechanical Properties of Mn-Mo Steel

    Science.gov (United States)

    Fiał, Ch.

    2017-12-01

    The effect of heat treatment on density, hardness, microstructure and tensile properties of Fe-0.85Mo-1.3Mn-0.6C sintered steel were investigated. Pre-alloyed Astaloy 85Mo, ferromanganese and UF4 graphite powders were mixed for 60 minutes in a Turbula mixer and then pressed in single-action die at 660MPa to produce green compacts (according to PN EN ISO 2740).The compacts were sintered in a specially designed semi-closed container at 1120 or 1250°C for 60 minutes in N2. The chemical composition of the sintering atmosphere was modified by adding getter and/or activator into the container. Two different types of heat treatment in nitrogen were carried out: sinteraustempering at 525°C for 60 minutes; and sinterhardening with additional tempering at 200°C for 60 minutes. The slightly better combination of strength and plasticity of steel for both sintering temperatures were achieved after sinterhardening+tempering variant. Average values of 0.2% offset yield stress, ultimate tensile strength and elongation after sintering in 1250°C, were 415MPa, 700MPa, and 2.0%, respectively.

  11. Studies on the sintering behaviour of uranium dioxide powder compacts

    International Nuclear Information System (INIS)

    Das, P.; Chowdhury, R.

    1988-01-01

    Uranium dioxide fuel pellets are normally made from their precursor ammonium diuranate, followed by calcination, subsequent reduction to sinterable grade powders and a post operation treatment of pressing and sintering. The low temperature calcined powders, usually exhibiting non-crystalline behaviour (under X-ray diffraction studies) progressively transforms into a crystalline variety on subsequent heat treatment at higher temperature. It is observed however that powders calcined between 800 to 900 0 C exhibit enhanced densification behaviour when sintered at higher temperatures. The isothermal shrinkage versus time plot of the sintered compacts are well described by a hyperbolic relationship which takes care of the observed shrinkage (λ) as caused due to a cumulative effect from the initial sintering of the powder compacts at zero time (α) and that caused due to the structural transformation from a non-crystalline modification with increased thermal treatment (β). The derived equation is a modification of the sintering mechanism of the viscous flow type proposed by Frenkel, involving sintering of an amorphous phase, the viscosity of the latter is presumed to increase with increasing thermal treatment to assume the final modified form as λ=t/(α+βt), where t = time, λ = shrinkage and α and β are the unknown parameters. (orig.)

  12. Boron Carbide: Stabilization of Highly-Loaded Aqueous Suspensions, Pressureless Sintering, and Room Temperature Injection Molding

    Science.gov (United States)

    Diaz-Cano, Andres

    Boron carbide (B4C) is the third hardest material after diamond and cubic boron nitride. It's unique combination of properties makes B4C a highly valuable material. With hardness values around 35 MPa, a high melting point, 2450°C, density of 2.52 g/cm3, and high chemical inertness, boron carbide is used in severe wear components, like cutting tools and sandblasting nozzles, nuclear reactors' control rots, and finally and most common application, armor. Production of complex-shaped ceramic component is complex and represents many challenges. Present research presents a new and novel approach to produce complex-shaped B4C components. Proposed approach allows forming to be done at room temperatures and under very low forming pressures. Additives and binder concentrations are kept as low as possible, around 5Vol%, while ceramics loadings are maximized above 50Vol%. Given that proposed approach uses water as the main solvent, pieces drying is simple and environmentally safe. Optimized formulation allows rheological properties to be tailored and adjust to multiple processing approaches, including, injection molding, casting, and additive manufacturing. Boron carbide samples then were pressureless sintered. Due to the high covalent character of boron carbide, multiples sintering aids and techniques have been proposed in order to achieve high levels of densification. However, is not possible to define a clear sintering methodology based on literature. Thus, present research developed a comprehensive study on the effect of multiple sintering aids on the densification of boron carbide when pressureless sintered. Relative densities above 90% were achieved with values above 30MPa in hardness. Current research allows extending the uses and application of boron carbide, and other ceramic systems, by providing a new approach to produce complex-shaped components with competitive properties.

  13. Effects of sintering atmosphere and initial particle size on sintering of gadolinia-doped ceria

    International Nuclear Information System (INIS)

    Batista, Rafael Morgado

    2014-01-01

    The effects of the sintering atmosphere and initial particle size on the sintering of ceria containing 10 mol% gadolinia (GdO 1.5 ) were systematically investigated. The main physical parameter was the specific surface area of the initial powders. Nanometric powders with three different specific surface areas were utilized, 210 m 2 /g, 36,2 m 2 /g e 7,4 m 2 /g. The influence on the densification, and micro structural evolution were evaluated. The starting sintering temperature was verified to decrease with increasing on the specific surface area of raw powders. The densification was accelerated for the materials with smaller particle size. Sintering paths for crystallite growth were obtained. Master sintering curves for gadolinium-doped ceria were constructed for all initial powders. A computational program was developed for this purpose. The results for apparent activation energy showed noticeable dependence with specific surface area. In this work, the apparent activation energy for densification increased with the initial particle size of powders. The evolution of the particle size distributions on non isothermal sintering was investigated by WPPM method. It was verified that the grain growth controlling mechanism on gadolinia doped ceria is the pore drag for initial stage and beginning of intermediate stage. The effects of the sintering atmosphere on the stoichiometry deviation of ceria, densification, microstructure evolution, and electrical conductivity were analyzed. Inert, oxidizing, and reducing atmospheres were utilized on this work. Deviations on ceria stoichiometry were verified on the bulk materials. The deviation verified was dependent of the specific surface area and sintering atmosphere. Higher reduction potential atmospheres increase Ce 3+ bulk concentration after sintering. Accelerated grain growth and lower electrical conductivities were verified when reduction reactions are significantly present on sintering. (author)

  14. Investigation of rye straw ash sintering characteristics and the effect of additives

    International Nuclear Information System (INIS)

    Wang, Liang; Skreiberg, Øyvind; Becidan, Michael; Li, Hailong

    2016-01-01

    Highlights: • Rye straw ash has a high sintering tendency at elevated temperatures. • Addition of additive increases melting temperature of the rye straw ash. • Kaolin addition leads to formation of silicates binding K in the ash. • Calcite and Ca-sludge promotes formation of silicates and phosphates in the ash. • Calcite addition restrains attaching and accumulation of rye straw ash melts. - Abstract: The understanding of ash sintering during combustion of agricultural residues is far from complete, because of the high heterogeneity of the content and composition of ash forming matters and the complex transformation of them. In order to make agricultural residues competitive fuels on the energy market, further research efforts are needed to investigate agricultural residues’ ash sintering behavior and propose relevant anti-sintering measures. The aim of this work was to investigate the ash characteristics of rye straw and effects of additives. Three additives were studied regarding their abilities to prevent and abate rye straw ash sintering. Standard ash fusion characterization and laboratory-scale sintering tests were performed on ashes from mixtures of rye straw and additives produced at 550 °C. Ash residues from sintering tests at higher temperatures were analyzed using a combination of X-ray diffraction (XRD) and scanning electron microscopy–energy dispersive X-ray spectrometry (SEM–EDX). High sintering and melting tendency of the rye straw ash at elevated temperatures was observed. Severe sintering of the rye straw ash was attributed to the formation and fusion of low temperature K–silicates and K–phosphates with high K/Ca ratios. Among the three additives, calcite served the best one to mitigate sintering of the rye straw ash. Ca from the calcite promoted formation of high temperature silicates and calcium rich K–phosphates. In addition, calcite may hinder aggregating of ash melts and further formation of large ash slag. Therefore

  15. Design of sintering-stable heterogeneous catalysts

    DEFF Research Database (Denmark)

    Gallas-Hulin, Agata

    One of the major issues in the use of metal nanoparticles in heterogeneous catalysis is sintering. Sintering occurs at elevated temperatures because of increased mobility of nanoparticles, leading to their agglomeration and, as a consequence, to the deactivation of the catalyst. It is an emerging...... problem especially for the noble metals-based catalysis. These metals being expensive and scarce, it is worth developing catalyst systems which preserve their activity over time. Encapsulation of nanoparticles inside zeolites is one of the ways to prevent sintering. Entrapment of nanoparticles inside...

  16. Recrystallization and embrittlement of sintered tungsten

    International Nuclear Information System (INIS)

    Bega, N.D.; Babak, A.V.; Uskov, E.I.

    1982-01-01

    The recrystallization of sintered tungsten with a cellular structure of deformation is studied as related to its embrittlement. It is stated that in case of preliminary recrystallization the sintered tungsten crack resistance does not depend on the testing temperature. The tungsten crack resistance is shown to lower with an increase of the structure tendency to primary recrystallization [ru

  17. Effects of additives on the sintering of UO2.Gd2O3 nuclear fuel

    International Nuclear Information System (INIS)

    Pagano Junior, Luciano

    2009-01-01

    The addition of 0.5wt% TiO 2 , Nb 2 O 5 , SiO 2 , Fe 2 O 3 and Al(OH) 3 in the UO 2 ·7%Gd 2 O 3 nuclear fuel and the effect on its sintering kinetics under a 99.999% H 2 atmosphere were investigated by stepwise isothermal dilatometry. This fuel, used as burnable poison in nuclear power plants, presents a diffusion barrier around 1573 K that impairs densification. The aid of the sintering additives TiO 2 , Al(OH) 3 , Nb 2 O 5 and Fe 2 O 3 turned out to be effective to obtain the required final density, unlike the effect observed for the SiO 2 -doped composition. The activation energy for the intermediate sintering stage was calculated by stepwise isothermal dilatometry method and a positive correlation with the sintered body density was found. The method was valid for part of the intermediate sintering stage, in the range from 1200 K to 1700 K for the doped compositions and with no additive, except for the SiO 2 -doped one, whose validity range was between 1500 K and 1900 K. The energy-density correlation was not valid for the SiO 2 -doped composition, whose effect was to reduce the final density. This anomalous behavior may be attributed to the intense loss of Si mass, probably due to lower oxides volatilization, during the initial sintering stage at temperatures lower than 1173 K. Similar loss, but no so intense, was observed for the Al(OH) 3 -doped composition in the temperature interval from 1173 K to 1573 K. The Si concentration decrease to residual values of dozens of parts per million may explain its anomalous behavior. The positive correlation between activation energy and sintered body density may be explained by the inhibitor role played by the TiO 2 , Nb 2 O 5 , Fe 2 O 3 and Al(OH) 3 additives on the diffusion mechanisms that enhance the coarsening regime. As a consequence, the densification mechanisms are favored in the competition for the surface free energy. The coarsening-densification transition temperature model, originally suggested for the UO 2

  18. The influence of green microstructure and sintering parameters on precipitation process during copper-nickel-zinc ferrites sintering

    International Nuclear Information System (INIS)

    Barba, A.; Clausell, C.; Jarque, J. C.; Monzo, M.

    2014-01-01

    Microstructural changes that occur during heat treatment of copper-nickel-zinc ferrites have been studied. The process of precipitation of the two types of crystals that occur during the sintering process has been analyzed. It is found that this process depends on dry relative density of the press specimens and on the following sintering parameters: sintering temperature, sintering time and cooling rate of the thermal cycle. Crystal precipitates characterization have been done by scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) analysis, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). These techniques have allowed to determine the nature of these crystals, which in this case correspond to zinc and copper oxides. It has been used two chemical reactions to explain the bulk precipitation and subsequent re-dissolution of these crystal precipitates during sintering. (Author)

  19. Techniques for ceramic sintering using microwave energy

    International Nuclear Information System (INIS)

    Kimrey, H.D.; Janney, M.A.; Becher, P.F.

    1987-01-01

    The use of microwave energy for ceramic sintering offers exciting new possibilities for materials processing. Based on experience gathered in microwave processing associated with the heating of fusion plasmas, we have developed hardware and methods for uniformly heating ceramic parts of large volume and irregular shape to temperatures in excess of 1600 0 C, in vacuum or pressurized atmosphere. Microwave processing at 28 GHz yields enhanced densification rates with a corresponding reduction in sintering temperatures. 6 refs

  20. Effects of sintering temperature on the corrosion behavior of AZ31 alloy with Ca–P sol–gel coating

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Bo [School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou, Liaoning Province, 121001 (China); Shi, Ping, E-mail: p_shi@sohu.com [School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou, Liaoning Province, 121001 (China); Wei, Donghua [School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou, Liaoning Province, 121001 (China); E, Shanshan [School of Mathematics and Physics, Bohai University, Jinzhou, Liaoning Province, 121013 (China); Li, Qiang; Chen, Yang [School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou, Liaoning Province, 121001 (China)

    2016-04-25

    To slow down the initial biodegradation rate of magnesium alloy, calcium phosphate (Ca–P) coatings were prepared on AZ31 magnesium alloy by a sol–gel technique. To study the effects of sintering temperature on microstructure, bonding strength and corrosion behavior of the coatings, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and an adhesive strength test were used to characterize the coatings. The corrosion resistance of the coatings was investigated by immersion test and electrochemical corrosion techniques in simulated body fluid (SBF) solution. It shows that the sol–gel coatings consist of Ca{sub 2}P{sub 2}O{sub 7}, mixture of Ca{sub 2}P{sub 2}O{sub 7}, Ca{sub 3}(PO{sub 4}){sub 2} and hydroxyapatite, and hydroxyapatite, by sintering respectively at 300 °C, 400 °C and 500 °C. There are major cracks on the coatings. The crack area portion on the coating and the bonding strength at the interface between the calcium phosphate coating and the bare AZ31 increases, and the corrosion resistance of the coated AZ31 in SBF decreases with increasing sintering temperatures from 300 °C to 500 °C. Based on our investigations, the corrosion resistance of the coated AZ31 in SBF depends mainly on the crack area portion on the coatings, rather than on the coating phase stability. - Highlights: • Ca–P coating was prepared on AZ31 alloy by a sol–gel technique. • Crack area portion in the coating increases with temperatures. • Bonding strength between Ca–P coating and substrate increases with temperatures. • Corrosion resistance of the coated AZ31 in SBF decreases with temperatures. • Corrosion resistance of the coated AZ31 depends mainly on the crack area portion.

  1. Influence of Sintering Temperature on Mechanical and Physical properties of Mill Scale based Bipolar Plates for PEMFC

    Science.gov (United States)

    Khaerudini, Deni S.; Berliana, Rina; Prakoso, Gatra B.; Insiyanda, Dita R.; Alva, Sagir

    2018-03-01

    This work concerns the utilization of mill scale, a by-product of iron and steel formed during the hot rolling of steel, as a potential material for use as bipolar plates in proton exchange membrane fuel cells (PEMFCs). On the other hand, mill scale is considered a very rich in iron source having characteristic required such as for current collector in bipolar plate and would significantly contribute to lower the overall cost of PEMFC based fuel cell systems. In this study, the iron reach source of mill scale powder, after sieving of 150 mesh, was mechanically alloyed with the aluminium source containing 30 wt.% using a shaker mill for 3 h. The mixed powders were then pressed at 300 MPa and sintered at various temperatures of 400, 450 and 500 °C for 1 h under inert gas atmosphere. The structural changes of powder particles during mechanical alloying and after sintering were studied by x-ray diffractometry, scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDX), microhardness measurement, and density - porosity analysis. The details of the performance variation of three different sintering conditions can be preliminary explained by the metallographic and crystallographic structure and phase analysis as well as sufficient mechanical strength of the sintered materials was presented in this report.

  2. Normal and abnormal grain growth in fine-grained Nd-Fe-B sintered magnets prepared from He jet milled powders

    Energy Technology Data Exchange (ETDEWEB)

    Bittner, F., E-mail: f.bittner@ifw-dresden.de [IFW Dresden, Institute for Metallic Materials, PO Box 270116, 01171 Dresden (Germany); Technische Universität Dresden, Institute of Materials Science, 01062 Dresden (Germany); Woodcock, T.G. [IFW Dresden, Institute for Metallic Materials, PO Box 270116, 01171 Dresden (Germany); Schultz, L. [IFW Dresden, Institute for Metallic Materials, PO Box 270116, 01171 Dresden (Germany); Technische Universität Dresden, Institute of Materials Science, 01062 Dresden (Germany); Schwöbel, C. [Technische Universität Darmstadt, Materialwissenschaft, Alarich-Weiß-Str. 16, 64287 Darmstadt (Germany); Gutfleisch, O. [Technische Universität Darmstadt, Materialwissenschaft, Alarich-Weiß-Str. 16, 64287 Darmstadt (Germany); Fraunhofer ISC, Projektgruppe für Werkstoffkreisläufe und Ressourcenstrategie IWKS, Rodenbacher Chaussee 4, 63457 Hanau (Germany); Zickler, G.A.; Fidler, J. [Technische Universität Wien, Institute of Solid State Physics, Wiedner Hauptstr. 8-10, 1040 Wien (Austria); Üstüner, K.; Katter, M. [Vacuumschmelze GmbH & Co. KG, 63412 Hanau (Germany)

    2017-03-15

    Fine-grained, heavy rare earth free Nd-Fe-B sintered magnets were prepared from He jet milled powders with an average particle size of 1.5 µm by low temperature sintering at 920 °C or 980 °C. A coercivity of >1600 kA/m was achieved for an average grain size of 1.68 µm. Transmission electron microscopy showed that the distribution and composition of intergranular and grain boundary junction phases was similar to that in conventionally processed magnets. Microstructural analysis on different length scales revealed the occurrence of abnormal grain growth, which is unexpected for sintering temperatures below 1000 °C. A larger area fraction of abnormal grains was observed in the sample sintered at 920 °C compared to that sintered at 980 °C. Microtexture investigation showed a better crystallographic alignment of the abnormal grains compared to the fine-grained matrix, which is explained by a size dependent alignment of the powder particles during magnetic field alignment prior to sintering. Slightly larger particles in the initial powder show a better alignment and will act as nucleation sites for abnormal grain growth. Magneto-optical Kerr investigations confirmed the lower switching field of the abnormal grains compared to the fine-grained matrix. The demagnetisation curve of the sample sintered at 920 °C showed reduced rectangularity and this was attributed to a cooperative effect of the larger fraction of abnormal grains with low switching field and, as a minor effect, a reduced degree of crystallographic texture in this sample compared to the material sintered at 980 °C, which did not show the reduced rectangularity of the demagnetisation curve. - Highlights: • He Jet milling to reduce Nd-Fe-B grain size and to enhance coercivity. • Normal and abnormal grain growth observed for low temperature sintering. • Well oriented abnormal grown grains explained by size dependent field alignment. • Poor rectangularity is caused by low nucleation field of

  3. Normal and abnormal grain growth in fine-grained Nd-Fe-B sintered magnets prepared from He jet milled powders

    International Nuclear Information System (INIS)

    Bittner, F.; Woodcock, T.G.; Schultz, L.; Schwöbel, C.; Gutfleisch, O.; Zickler, G.A.; Fidler, J.; Üstüner, K.; Katter, M.

    2017-01-01

    Fine-grained, heavy rare earth free Nd-Fe-B sintered magnets were prepared from He jet milled powders with an average particle size of 1.5 µm by low temperature sintering at 920 °C or 980 °C. A coercivity of >1600 kA/m was achieved for an average grain size of 1.68 µm. Transmission electron microscopy showed that the distribution and composition of intergranular and grain boundary junction phases was similar to that in conventionally processed magnets. Microstructural analysis on different length scales revealed the occurrence of abnormal grain growth, which is unexpected for sintering temperatures below 1000 °C. A larger area fraction of abnormal grains was observed in the sample sintered at 920 °C compared to that sintered at 980 °C. Microtexture investigation showed a better crystallographic alignment of the abnormal grains compared to the fine-grained matrix, which is explained by a size dependent alignment of the powder particles during magnetic field alignment prior to sintering. Slightly larger particles in the initial powder show a better alignment and will act as nucleation sites for abnormal grain growth. Magneto-optical Kerr investigations confirmed the lower switching field of the abnormal grains compared to the fine-grained matrix. The demagnetisation curve of the sample sintered at 920 °C showed reduced rectangularity and this was attributed to a cooperative effect of the larger fraction of abnormal grains with low switching field and, as a minor effect, a reduced degree of crystallographic texture in this sample compared to the material sintered at 980 °C, which did not show the reduced rectangularity of the demagnetisation curve. - Highlights: • He Jet milling to reduce Nd-Fe-B grain size and to enhance coercivity. • Normal and abnormal grain growth observed for low temperature sintering. • Well oriented abnormal grown grains explained by size dependent field alignment. • Poor rectangularity is caused by low nucleation field of

  4. Low-Temperature Sintering Li3Mg1.8Ca0.2NbO6 Microwave Dielectric Ceramics with LMZBS Glass

    Science.gov (United States)

    Wang, Gang; Zhang, Huaiwu; Liu, Cheng; Su, Hua; Jia, Lijun; Li, Jie; Huang, Xin; Gan, Gongwen

    2018-05-01

    Li3Mg1.8Ca0.2NbO6 ceramics doped with Li2O-MgO-ZnO-B2O3-SiO2 glass (LMZBS) were prepared via a solid-state route. The LMZBS glass effectively reduced the sintering temperature of Li3Mg1.8Ca0.2NbO6 ceramics to 950°C. The effects of the LMZBS glass on the sintering behavior, microstructures and microwave dielectric properties of Li3Mg1.8Ca0.2NbO6 ceramics are discussed in detail. Among all the LMZBS doped Li3Mg1.8Ca0.2NbO6 ceramics, the sample with 1 wt.% of LMZBS glass sintered at 950°C for 4 h exhibited good dielectric properties: ɛ r = 16.7, Q × f = 31,000 GHz (9.92 GHz), τ f = - 1.3 ppm/°C. The Li3Mg1.8Ca0.2NbO6 ceramics possessed excellent chemical compatibility with Ag electrodes, and could be applied in low temperature co-fired ceramics (LTCC) applications.

  5. Process for preparing sintered uranium dioxide nuclear fuel

    International Nuclear Information System (INIS)

    Carter, R.E.

    1975-01-01

    Uranium dioxide is prepared for use as fuel in nuclear reactors by sintering it to the desired density at a temperature less than 1300 0 C in a chemically controlled gas atmosphere comprised of at least two gases which in equilibrium provide an oxygen partial pressure sufficient to maintain the uranium dioxide composition at an oxygen/uranium ratio of at least 2.005 at the sintering temperature. 7 Claims, No Drawings

  6. Properties of Bulk Sintered Silver As a Function of Porosity

    Energy Technology Data Exchange (ETDEWEB)

    Wereszczak, Andrew A [ORNL; Vuono, Daniel J [ORNL; Wang, Hsin [ORNL; Ferber, Mattison K [ORNL; Liang, Zhenxian [ORNL

    2012-06-01

    This report summarizes a study where various properties of bulk-sintered silver were investigated over a range of porosity. This work was conducted within the National Transportation Research Center's Power Device Packaging project that is part of the DOE Vehicle Technologies Advanced Power Electronics and Electric Motors Program. Sintered silver, as an interconnect material in power electronics, inherently has porosity in its produced structure because of the way it is made. Therefore, interest existed in this study to examine if that porosity affected electrical properties, thermal properties, and mechanical properties because any dependencies could affect the intended function (e.g., thermal transfer, mechanical stress relief, etc.) or reliability of that interconnect layer and alter how its performance is modeled. Disks of bulk-sintered silver were fabricated using different starting silver pastes and different sintering conditions to promote different amounts of porosity. Test coupons were harvested out of the disks to measure electrical resistivity and electrical conductivity, thermal conductivity, coefficient of thermal expansion, elastic modulus, Poisson's ratio, and yield stress. The authors fully recognize that the microstructure of processed bulk silver coupons may indeed not be identical to the microstructure produced in thin (20-50 microns) layers of sintered silver. However, measuring these same properties with such a thin actual structure is very difficult, requires very specialized specimen preparation and unique testing instrumentation, is expensive, and has experimental shortfalls of its own, so the authors concluded that the herein measured responses using processed bulk sintered silver coupons would be sufficient to determine acceptable values of those properties. Almost all the investigated properties of bulk sintered silver changed with porosity content within a range of 3-38% porosity. Electrical resistivity, electrical conductivity

  7. Electrical properties and temperature stability of a new kind of lead-free piezoelectric ceramics

    International Nuclear Information System (INIS)

    Wang Yuanyu; Wu Jiagang; Xiao Dingquan; Zhang Bin; Wu Wenjuan; Shi Wei; Zhu Jianguo

    2008-01-01

    0.995[(K 0.50 Na 0.50 ) 0.94 Li 0.06 ]NbO 3 -0.005AETiO 3 (AE=Ca, Sr, Mg, Ba) lead-free piezoelectric ceramics were prepared by normal sintering. The effects of the AETiO 3 and poling temperature on the electrical properties of the ceramics were carefully studied, and the temperature stability of the electrical properties of the ceramics was also investigated. The experimental results show that the ceramics with Li and CaTiO 3 possess the pure phase, Li and AETiO 3 improves the electrical properties of the pure (K 0.50 Na 0.50 )NbO 3 ceramics, the poling temperature near tetragonal and orthorhombic phase transition will enhance the piezoelectric properties of the ceramics and the KNLN-CT ceramics exhibit good temperature stability of electrical properties for tetragonal and orthorhombic phase transition below room temperature. The KNLN-CT ceramics exhibit relatively good properties: d 33 = 172 pC N -1 , k p = 0.43, tan δ = 0.032, ε r = 771 and T c = 465 deg. C. As a result, the KNLN-CT ceramic is promising candidate material for piezoelectric devices.

  8. Science of sintering and its future

    International Nuclear Information System (INIS)

    Ristic, M.M.

    1975-01-01

    Some new books published by M.Yu. Baljshin, V.A. Ivensen, V.V. Skorohod and others are characterized by the wish to give a complete approach to the problems of sintering theory. Bearing just this in mind while writing the book ''An Essay on the Generalization of Sintering Theory'' (G.V.Samsonov, M.M. Ristic with the collaborators) an idea was born: to ask the most eminent scientists in this field to present their own opinions on the theme ''The Science of Sintering and Modern Views on its Future''. There were formed 18 questions, given in the appendix to be answered. The received answers were presented in 10 chapters of this book. The fourth part of the book consists of papers of eminent scientists engaged in the field of sintering science (some of which were published here for the first time). This material is published in the book with the consent of the authors and these original contributions provide a more profound knowledge of sintering. The initial idea, that the book should have a monograph character and in which the answers would serve as some data on the latest notions of the science of sintering, was somewhat changed since the original opinions of individual scientists are given in the book and these, are sometimes very contradictory. This, in fact, gives the book a special charm because the unsolved problems in the science of sintering are most evidently stressed in this way

  9. Microstructural characteristics of low-temperature (1400°C sintered MgO obtained from seawater

    Directory of Open Access Journals (Sweden)

    Jakić Jelena

    2017-01-01

    Full Text Available The purpose of this study was to investigate the influence of a rinsing of Mg(OH2 precipitated from seawater by substoichiometric precipitation (80% precipitation and the addition of TiO2 on microstructural characteristics of the MgO obtained by sintering at low temperature (1400°C. The results of examination indicate that the method of rinsing of the magnesium hydroxide precipitate in the technological process of obtaining MgO from seawater significantly affects the chemical composition of samples, primarily with regard to the CaO and B2O3 content. The samples were doped with TiO2 to improve the evaporation of B2O3 and sintering of MgO samples that were characterized by XRD and SEM/EDS. These techniques confirmed the high purity of MgO samples obtained and the formation of secondary compounds in very small quantities that have a positive effect on the densification.

  10. Microwave-assisted sintering of non-stoichiometric strontium bismuth niobate ceramic: Structural and dielectric properties

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Rajveer [Department of Physics and Astrophysics, University of Delhi, New Delhi 110007 (India); Department of Physics, Atmaram Sanatan Dharma College, University of Delhi, Dhaula Kuan, New Delhi 110021 (India); Luthra, Vandna [Department of Physics, Gargi College, University of Delhi, Siri Fort Road, New Delhi 110049 (India); Tandon, R.P., E-mail: ram_tandon@hotmail.com [Department of Physics and Astrophysics, University of Delhi, New Delhi 110007 (India)

    2016-11-01

    In recent years the microwave sintering has been utilized for the synthesis of materials in enhancement of the properties. In this paper strontium bismuth niobate (Sr{sub 0.8}Bi{sub 2.2}Nb{sub 2}O{sub 9}:SBN) bulk ceramic has been synthesized by microwave reactive sintering and conventional heating techniques. A relative density of 99.6% has been achieved for microwave sintered SBN, which is higher than that of (98.81%) conventionally sintered SBN. The phase formation of SBN synthesized by both processes has been confirmed by X-ray diffraction (XRD). The surface morphology of SBN was observed by scanning electron microscopy (SEM). The microstructure was found to be more uniform in case of SBN sintered by microwave sintering. The dielectric properties of SBN were studied as a function of frequency in the temperature range of 30–500 °C. Both the samples synthesized by two different processes were found to follow Curie–Weiss law above the transition temperature. The Curie temperature was found to be higher for microwave sintered SBN. The dielectric constant and the transition temperature were observed to be higher for SBN ceramic synthesized by microwave sintering technique. The ac and dc activation energy values were also found to be higher for microwave sintered SBN as compared to conventional sintering technique.

  11. Nd:YAG transparent ceramics fabricated by direct cold isostatic pressing and vacuum sintering

    Science.gov (United States)

    Ge, Lin; Li, Jiang; Zhou, Zhiwei; Liu, Binglong; Xie, Tengfei; Liu, Jing; Kou, Huamin; Shi, Yun; Pan, Yubai; Guo, Jingkun

    2015-12-01

    The sintering behavior of neodymium doped yttrium aluminum garnet (Nd:YAG) ceramics was investigated on the basis of densification trajectory, microstructure evolution and transmittance. Nd:YAG ceramics with in-line transmittance of 83.9% at 1064 nm and 82.5% at 400 nm were obtained by direct cold isostatic pressing (CIP) at 250 MPa and solid-state reactive sintering at 1790 °C for 30 h under vacuum. Compared with the porosity and the average pore diameter of the sample from uniaxial dry-pressing followed by CIP, those from direct CIP are much smaller. The samples pressed at 250 MPa were sintered from 1500 °C to 1750 °C for 0.5-20 h to study their sintering behavior. At the temperature higher than 1500 °C, pure YAG phase is formed, followed by the densification and grain growth process. The relative density and the grain size increase with the increase of sintering time and temperature, and the sintering behavior is more sensitive to temperature than holding time. The mechanism controlling densification and grain growth at sintering temperature of 1550 °C is grain boundary diffusion.

  12. Phase and Microstructural Correlation of Spark Plasma Sintered HfB2-ZrB2 Based Ultra-High Temperature Ceramic Composites

    Directory of Open Access Journals (Sweden)

    Ambreen Nisar

    2017-07-01

    Full Text Available The refractory diborides (HfB2 and ZrB2 are considered as promising ultra-high temperature ceramic (UHTCs where low damage tolerance limits their application for the thermal protection system in re-entry vehicles. In this regard, SiC and CNT have been synergistically added as the sintering aids and toughening agents in the spark plasma sintered (SPS HfB2-ZrB2 system. Herein, a novel equimolar composition of HfB2 and ZrB2 has shown to form a solid-solution which then allows compositional tailoring of mechanical properties (such as hardness, elastic modulus, and fracture toughness. The hardness of the processed composite is higher than the individual phase hardness up to 1.5 times, insinuating the synergy of SiC and CNT reinforcement in HfB2-ZrB2 composites. The enhanced fracture toughness of CNT reinforced composite (up to a 196% increment surpassing that of the parent materials (ZrB2/HfB2-SiC is attributed to the synergy of solid solution formation and enhanced densification (~99.5%. In addition, the reduction in the analytically quantified interfacial residual tensile stress with SiC and CNT reinforcements contribute to the enhancement in the fracture toughness of HfB2-ZrB2-SiC-CNT composites, mandatory for aerospace applications.

  13. Superior sinterability of nano-crystalline gadolinium doped ceria powders synthesized by co-precipitation method

    International Nuclear Information System (INIS)

    Hari Prasad, D.; Kim, H.-R.; Park, J.-S.; Son, J.-W.; Kim, B.-K.; Lee, H.-W.; Lee, J.-H.

    2010-01-01

    Reduced sintering temperature of doped ceria can greatly simplify the fabrication process of solid oxide fuel cells (SOFCs) by utilizing the co-firing of all cell components with a single step. In the present study, nano-crystalline gadolinium doped ceria (GDC) powders of high sinterability at lower sintering temperature has been synthesized by co-precipitation at room temperature. The successful synthesis of nano-crystalline GDC was confirmed by XRD, TEM and Raman spectroscopy analysis. Dilatometry studies showed that GDC prepared by this method can be fully densified (97% relative density) at a sintering temperature of 950 o C which is fairly lower than ever before. It has also been found that the sintered samples have a higher ionic conductivity of 1.64 x 10 -2 S cm -1 at 600 o C which is suitable for the intermediate temperature SOFC application.

  14. Enhanced reversible lithium storage in a nano-Si/MWCNT free-standing paper electrode prepared by a simple filtration and post sintering process

    International Nuclear Information System (INIS)

    Yue Lu; Zhong Haoxiang; Zhang Lingzhi

    2012-01-01

    Graphical abstract: Nano-Si/multi-wall carbon nanotube composite paper was prepared as free-standing electrode for lithium-ion batteries by a simple filtration method using sodium carboxymethyl cellulose as a dispersing/binding agent, followed by a thermal sintering process. The prepared paper electrode exhibited a significantly improved electrochemical performance, maintaining a specific capacity of 942 mAh g −1 after 30 cycles with a capacity fade of 0.46%/cycle. - Abstract: Nano-Si/(multi-wall carbon nanotube) (Si/MWCNT) composite paper was prepared as flexible electrode for lithium ion batteries by a simple filtration method using sodium carboxymethyl cellulose (CMC) as a dispersing/binding agent, followed by a thermal sintering process. Scanning electron microscopy (SEM) showed that nanosized Si particles were dispersed homogeneously and intertwined by the MWCNT throughout the whole paper electrode. After thermal sintering, Si/MWCNT paper electrode exhibited a significantly improved flexibility with a high Si content of 35.6 wt% as compared with before sintering, and retained a specific capacity of 942 mAh g −1 after 30 cycles with a capacity fade of 0.46%/cycle.

  15. Effect of sintering temperature variations on fabrication of 45S5 bioactive glass-ceramics using rice husk as a source for silica.

    Science.gov (United States)

    Leenakul, Wilaiwan; Tunkasiri, Tawee; Tongsiri, Natee; Pengpat, Kamonpan; Ruangsuriya, Jetsada

    2016-04-01

    45S5 bioactive glass is a highly bioactive substance that has the ability to promote stem cell differentiation into osteoblasts--the cells that create bone matrix. The aim of this work is to analyze physical and mechanical properties of 45S5 bioactive glass fabricated by using rice husk ash as its silica source. The 45S5 bioactive glass was prepared by melting the batch at 1300 °C for 3h. The samples were sintered at different temperatures ranging from 900 to 1050 °C with a fixed dwell-time of 2h. The phase transitions, density, porosity and microhardness values were investigated and reported. DTA analysis was used to examine the crystallization temperatures of the glasses prepared. We found that the sintering temperature had a significant effect on the mechanical and physical properties of the bioactive glass. The XRD showed that when the sintering temperature was above 650 °C, crystallization occurred and bioactive glass-ceramics with Na2Ca2Si3O9, Na2Ca4(PO4)2SiO4 and Ca3Si2O7 were formed. The optimum sintering temperature resulting in maximum mechanical values was around 1050 °C, with a high density of 2.27 g/cm(3), 16.96% porosity and the vicker microhardness value of 364HV. Additionally, in vitro assay was used to examine biological activities in stimulated body fluid (SBF). After incubation in SBF for 7 days, all of the samples showed formations of apatite layers indicating that the 45S5 bioactive glasses using rice husk as a raw material were also bioactive. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. The Setup Design for Selective Laser Sintering of High-Temperature Polymer Materials with the Alignment Control System of Layer Deposition

    Directory of Open Access Journals (Sweden)

    Alexey Nazarov

    2018-03-01

    Full Text Available This paper presents the design of an additive setup for the selective laser sintering (SLS of high-temperature polymeric materials, which is distinguished by an original control system for aligning the device for depositing layers of polyether ether ketone (PEEK powder. The kinematic and laser-optical schemes are given. The main cooling circuits are described. The proposed technical and design solutions enable conducting the SLS process in different types of high-temperature polymer powders. The principles of the device adjustment for depositing powder layers based on an integral thermal analysis are disclosed. The PEEK sinterability was shown on the designed installation. The physic-mechanical properties of the tested 3D parts were evaluated in comparison with the known data and showed an acceptable quality.

  17. A Modified Porous Titanium Sheet Prepared by Plasma-Activated Sintering for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Yukimichi Tamaki

    2010-01-01

    Full Text Available This study aimed to develop a contamination-free porous titanium scaffold by a plasma-activated sintering within an originally developed TiN-coated graphite mold. The surface of porous titanium sheet with or without a coated graphite mold was characterized. The cell adhesion property of porous titanium sheet was also evaluated in this study. The peak of TiC was detected on the titanium sheet processed with the graphite mold without a TiN coating. Since the titanium fiber elements were directly in contact with the carbon graphite mold during processing, surface contamination was unavoidable event in this condition. The TiC peak was not detectable on the titanium sheet processed within the TiN-coated carbon graphite mold. This modified plasma-activated sintering with the TiN-coated graphite mold would be useful to fabricate a contamination-free titanium sheet. The number of adherent cells on the modified titanium sheet was greater than that of the bare titanium plate. Stress fiber formation and the extension of the cells were observed on the titanium sheets. This modified titanium sheet is expected to be a new tissue engineering material in orthopedic bone repair.

  18. Sintering of Pt nanoparticles via volatile PtO_2: Simulation and comparison with experiments

    International Nuclear Information System (INIS)

    Plessow, Philipp N.; Abild-Pedersen, Frank

    2016-01-01

    It is a longstanding question whether sintering of platinum under oxidizing conditions is mediated by surface migration of Pt species or through the gas phase, by PtO_2(g). Clearly, a rational approach to avoid sintering requires understanding the underlying mechanism. A basic theory for the simulation of ripening through the vapor phase has been derived by Wynblatt and Gjostein. Recent modeling efforts, however, have focused entirely on surface-mediated ripening. In this work, we explicitly model ripening through PtO_2(g) and study how oxygen pressure, temperature, and shape of the particle size distribution affect sintering. On the basis of the available data on α-quartz, adsorption of monomeric Pt species on the support is extremely weak and has therefore not been explicitly simulated, while this may be important for more strongly interacting supports. Our simulations clearly show that ripening through the gas phase is predicted to be relevant. Assuming clean Pt particles, sintering is generally overestimated. This can be remedied by explicitly including oxygen coverage effects that lower both surface free energies and the sticking coefficient of PtO_2(g). Additionally, mass-transport limitations in the gas phase may play a role. Using a parameterization that accounts for these effects, we can quantitatively reproduce a number of experiments from the literature, including pressure and temperature dependence. Lastly, this substantiates the hypothesis of ripening via PtO_2(g) as an alternative to surface-mediated ripening.

  19. 3Y-TZP/Si2N2O composite obtained by pressureless sintering

    International Nuclear Information System (INIS)

    Santos, Carlos Augusto Xavier

    2006-01-01

    Zirconia 3YTZP presents excellent properties at room temperature. These properties decrease as the temperature increases because high temperature acts negatively over the stress induced transformation toughening in the matrix. The addition of Si 3 N 4 and SiC in a Y-TZP matrix is very interesting because leads to formation of silicon oxynitride and it increases the mechanical properties like toughness and hardness. Certainly the mechanical properties increment is limited by several difficulties which have appeared during processing and heating of these materials. This paper studies the Y-TZP/Si 2 N 2 0 pressureless sintered composite, under different temperatures, showing the behavior of 20 vol %Si 3 N 4 -SiC when added in YTZP matrix and heated under no pressure system. Al 2 O 3 and Y 2 O 3 were used as sintering aids. The mixture was milled and molded by cold isostatic pressure. Samples were heated at 1500 deg, 1600 deg and 17000 deg C x 2h without pressure under atmospheric conditions using Si 3 N 4 bed-powder. Samples were characterized by XRD and density, hardness, toughness, bending strength were measured. The structure of the material was observed in SEMITEM/EPMA to verify the distribution and composition of the materials in the composite and the contact between filler surface and the matrix. The formation of SiON 2 was observed in the sintered material due to reaction between both nitride and carbide with Y - TZP matrix. Furthermore the material showed an increment of both hardness and toughness as temperature increases. The samples presented considerable resistance to oxidation below 1000 deg C. (author)

  20. Verification of the Skorohod-Olevsky Viscous Sintering (SOVS) Model

    Energy Technology Data Exchange (ETDEWEB)

    Lester, Brian T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-11-16

    Sintering refers to a manufacturing process through which mechanically pressed bodies of ceramic (and sometimes metal) powders are heated to drive densification thereby removing the inherit porosity of green bodies. As the body densifies through the sintering process, the ensuing material flow leads to macroscopic deformations of the specimen and as such the final configuration differs form the initial. Therefore, as with any manufacturing step, there is substantial interest in understanding and being able to model the sintering process to predict deformation and residual stress. Efforts in this regard have been pursued for face seals, gear wheels, and consumer products like wash-basins. To understand the sintering process, a variety of modeling approaches have been pursued at different scales.

  1. Effects of Milling Atmosphere and Increasing Sintering Temperature on the Magnetic Properties of Nanocrystalline Ni0.36Zn0.64Fe2O4

    Directory of Open Access Journals (Sweden)

    Abdollah Hajalilou

    2015-01-01

    Full Text Available Nanocrystalline Ni0.36Zn0.64Fe2O4 was synthesized by milling a powder mixture of Zn, NiO, and Fe2O3 in a high-energy ball mill for 30 h under three different atmospheres of air, argon, and oxygen. After sintering the 30 h milled samples at 500°C, the XRD patterns suggested the formation of a single phase of Ni-Zn ferrite. The XRD results indicated the average crystallite sizes to be 15, 14, and 16 nm, respectively, for the 30 h milled samples in air, argon, and oxygen atmospheres sintered at 500°C. From the FeSEM micrographs, the average grain sizes of the mentioned samples were 83, 75, and 105 nm, respectively, which grew to 284, 243, and 302 nm after sintering to 900°C. A density of all the samples increased while a porosity decreased by elevating sintering temperature. The parallel evolution of changes in magnetic properties, due to microstructural variations with changes in the milling atmosphere and sintering temperature in the rage of 500–900°C with 100°C increments, is also studied in this work.

  2. Sintering uranium oxide using a preheating step

    International Nuclear Information System (INIS)

    Jensen, N.J.; Nivas, Y.; Packard, D.R.

    1977-01-01

    Compacted pellets of uranium oxide or uranium oxide with one or more additives are heated in a kiln in a process having a preheating step, a sintering step, a reduction step, and a cooling step in a controlled atmosphere. The process is practiced to give a range of temperature and atmosphere conditions for obtaining optimum fluoride removal from the compacted pellets along with optimum sintering in a single process. The preheating step of this process is conducted in a temperature range of about 600 0 to about 900 0 C and the pellets are held for at least twenty min, and preferably about 60 min, in an atmosphere having a composition in the range of about 10 to about 75 vol % hydrogen with the balance being carbon dioxide. The sintering step is conducted at a temperature in the range of about 900 0 C to 1500 0 C in the presence of an atmosphere having a composition in the range of about 0.5 to about 90 vol % hydrogen with the balance being carbon dioxide. The reduction step reduces the oxygen to metal ratio of the pellets to a range of about 1.98 to 2.10:1 and this is accomplished by gradually cooling the pellets for about 30 to about 120 min from the temperature of the sintering step to about 1100 0 C in an atmosphere of about 10 to 90 vol % hydrogen with the balance being carbon dioxide. Thereafter the pellets are cooled to about 100 0 C under a protective atmosphere, and in one preferred practice the same atmosphere used in the reduction step is used in the cooling step. The preheating, sintering and reduction steps may also be conducted with their respective atmospheres having an initial additional component of water vapor and the water vapor can comprise up to about 20 vol %

  3. Modeling constrained sintering of bi-layered tubular structures

    DEFF Research Database (Denmark)

    Tadesse Molla, Tesfaye; Kothanda Ramachandran, Dhavanesan; Ni, De Wei

    2015-01-01

    Constrained sintering of tubular bi-layered structures is being used in the development of various technologies. Densification mismatch between the layers making the tubular bi-layer can generate stresses, which may create processing defects. An analytical model is presented to describe the densi...... and thermo-mechanical analysis. Results from the analytical model are found to agree well with finite element simulations as well as measurements from sintering experiment....

  4. Method of sintering ceramic materials

    Science.gov (United States)

    Holcombe, Cressie E.; Dykes, Norman L.

    1992-01-01

    A method for sintering ceramic materials is described. A ceramic article is coated with layers of protective coatings such as boron nitride, graphite foil, and niobium. The coated ceramic article is embedded in a container containing refractory metal oxide granules and placed within a microwave oven. The ceramic article is heated by microwave energy to a temperature sufficient to sinter the ceramic article to form a densified ceramic article having a density equal to or greater than 90% of theoretical density.

  5. Fabrication and testing of the sintered ceramic UO2 fuel - I - III, Part III - testing of sintered uranium dioxide properties dependent on the fabrication procedure

    International Nuclear Information System (INIS)

    Novakovic, M.; Ristic, M.M.

    1961-12-01

    The objective of this task was testing the influence of some parameters on the properties of sintered UO 2 . The influence of parameters tested were as follows: adhesives; pressure in the pressing procedure; temperature of sintering of the UO 2 powder. Other parameters were chosen according to the theoretical study. Sintering was done in argon atmosphere. Characterization of the UO 2 powder was performed meaning determining the needed chemical, physical and physico-chemical properties. Some new methods were developed within this task: SET method for measuring the specific surfaces, DTA, TGA, high-temperature torsion

  6. Effect of sintering temperature on the morphology and mechanical properties of PTFE membranes as a base substrate for proton exchange membrane

    Directory of Open Access Journals (Sweden)

    Nor Aida Zubir

    2002-11-01

    Full Text Available This paper reports the development of PTFE membranes as the base substrates for producing proton exchange membrane by using radiation-grafting technique. An aqueous dispersion of PTFE, which includes sodium benzoate, is cast in order to form suitable membranes. The casting was done by usinga pneumatically controlled flat sheet membrane-casting machine. The membrane is then sintered to fuse the polymer particles and cooled. After cooling process, the salt crystals are leached from the membrane by dissolution in hot bath to leave a microporous structure, which is suitable for such uses as a filtration membrane or as a base substrate for radiation grafted membrane in PEMFC. The effects of sintering temperature on the membrane morphology and tensile strength were investigated at 350oC and 385oC by using scanning electron microscopy (SEM and EX 20, respectively. The pore size and total void space are significantly smaller at higher sintering temperature employed with an average pore diameter of 11.78 nm. The tensile strength and tensile strain of sintered PTFE membrane at 385oC are approximately 19.02 + 1.46 MPa and 351.04 + 23.13 %, respectively. These results were indicated at 385oC, which represents significant improvements in tensile strength and tensile strain, which are nearly twice those at 350oC.

  7. Sintering and microstructure of ZnO varistor

    International Nuclear Information System (INIS)

    Leite, E.R.; Longo, E.; Varela, J.A.

    1987-01-01

    The sintering and microstructure of ZnO-Bi 2 O 3 (ZB) and ZuO-Sb 2 O 3 -CoO-Bi 2 O 3 (ZSCB) varistors in several temperatures, for one hour in dry air temperature were studied. The compounds were analyzed by scanning electron microscopy, X-ray diffraction, differential thermal analysis and the density and porosity were determined by mercury picnometry. The experimental results showed that the ZB and ZSCB system sinters by liquid means and that liquid will control the density and grain growth mechanisms. (E.G.) [pt

  8. The effect of temperature on the magnetization reversal mechanism in sintered PrFeB

    International Nuclear Information System (INIS)

    Crew, D. C.; Lewis, L. H.; Welch, D. O.; Pourarian, F.

    2000-01-01

    To understand the effects of nucleation fields and intergranular dipolar interactions on the magnetization reversal mechanism, recoil curves from the major hysteresis loop have been measured on a sample of sintered PrFeB as a function of temperature from 150 to 300 K. At room temperature the reversible magnetization behavior indicates a reversal mechanism of nucleation of domain walls whose motion after nucleation is resisted by dipolar fields. As the temperature is reduced, the coercivity, and hence the nucleation field, is observed to increase while the dipolar fields, dependent on microstructure and saturation magnetization, remain approximately constant. These temperature-dependent changes in the relative magnitudes of the dipolar field and nucleation field cause the reversible magnetization behavior to change from domain wall motion to rotation. This change in behavior is attributed to the supposition that at temperatures where the nucleation field exceeds the dipolar field, once nucleated, domain walls are swept out of the material. (c) 2000 American Institute of Physics

  9. Evaluation of Sintering Behavior of Premix Al-Zn-Mg-Cu Alloy Powder

    Directory of Open Access Journals (Sweden)

    Haris Rudianto

    2015-01-01

    Full Text Available Sintering of light aluminium alloys powder has been investigated as a way to substitute steels in automotive and aerospace industries. Premix Al-5.5Zn-2.5Mg-0.5Cu composite powder called Alumix 431D was analyzed in this research. Sintering was carried out under ultra high purity nitrogen gas and before reaching sintering temperature, green samples were delubricated at 400°C for 30 min. The powder possesses high sinterability by reaching 96% relative density at 580°C sintering temperature. Formation of liquid phase seems to support achieving high sintering density. Optimum mechanical properties also were obtained under those conditions. T6 heat treatment was done to improve the mechanical properties by formation of precipitation strengthening, and MgZn2 appears to be dominant strengthening precipitate. X-ray diffraction, optical microscopy, and SEM-EDS were used to characterize powder, and sintered and heat treated samples.

  10. Electrical Properties of Low Temperature Sintering Step-Down Multilayer Piezoelectric Transformer

    Science.gov (United States)

    Yoo, Juhyun; Kim, Kookjin; Jeong, Yeongho

    2007-06-01

    The multilayer structured ceramic transformers were sintered at the low temperature of 940 °C and manufactured with the size of 27 × 27 × 2.2 mm3, respectively, using 0.07Pb(Mn1/3Nb2/3)O3-0.06Pb(Zn1/3Nb2/3)O3-0.87Pb(Zr0.48Ti0.52)O3 (A-type) and 0.07Pb(Mn1/3Nb2/3)O3-0.10Pb(Ni1/3Nb2/3)O3-0.83Pb(Zr0.48Ti0.52)O3 (B-type) composition ceramics. And then, their electrical properties were investigated according to the variations of frequency and load resistance. The voltage step-up ratio of the transformers showed the maximum values at the vicinity of 69 kHz. At the load resistance of 100 Ω, A-type and B-type piezoelectric transformers showed the temperature rises of about 21 °C at the output power of 15 and 18 W, respectively. At B-type transformer with high effective electromechanical coupling factor (keff) and high piezoelectric constant (d33), lower temperature increase was relatively appeared.

  11. Effect of sintering temperature and boron carbide content on the wear behavior of hot pressed diamond cutting segments

    Directory of Open Access Journals (Sweden)

    Islak S.

    2015-01-01

    Full Text Available The aim of this study was to investigate the effect of sintering temperature and boron carbide content on wear behavior of diamond cutting segments. For this purpose, the segments contained 2, 5 and 10 wt.% B4C were prepared by hot pressing process carried out under a pressure of 35 MPa, at 600, 650 and 700 °C for 3 minutes. The transverse rupture strength (TRS of the segments was assessed using a three-point bending test. Ankara andesite stone was cut to examine the wear behavior of segments with boron carbide. Microstructure, surfaces of wear and fracture of segments were determined by scanning electron microscopy (SEM-EDS, and X-ray diffraction (XRD analysis. As a result, the wear rate decreased significantly in the 0-5 wt.% B4C contents, while it increased in the 5-10 wt.% B4C contents. With increase in sintering temperature, the wear rate decreased due to the hard matrix.

  12. Influence of Various Process Parameters on the Density of Sintered Aluminium Alloys

    Directory of Open Access Journals (Sweden)

    Mateusz Laska

    2012-01-01

    Full Text Available This paper presents the results of density measurements carried out on Alumix sintered parts. ECKA Alumix aluminium powders were used because of their wide application in the powder metallurgy industry. The compacts were produced using a wide range of compaction pressures for three different chemical compositions. The compacts were then sintered under a pure dry nitrogen atmosphere at three different temperatures. The heating and cooling rates were the same throughout the entire test. The results showed that the green density increases with compaction pressure, but that sintered density is independent of green density (compaction pressure for each sintering temperature.

  13. Sintering of MSW fly ash for reuse as a concrete aggregate.

    Science.gov (United States)

    Mangialardi, T

    2001-10-12

    The sintering process of municipal solid waste (MSW) fly ash was investigated in order to manufacture sintered products for reuse as concrete aggregates. Four types of fly ash resulting from different Italian MSW incineration plants were tested in this study. A modification of the chemical composition of MSW fly ash--through a preliminary four-stage washing treatment of this material with water--was attempted to improve the chemical and mechanical characteristics of sintered products.The sintering treatment of untreated or washed fly ash was performed on cylindrical compact specimens (15 mm in diameter and 20mm in height) at different compact pressures, sintering temperatures and times.The sintering process of untreated MSW fly ashes proved to be ineffective for manufacturing sintered products for reuse as a construction material, because of the adverse chemical characteristics of these fly ashes in terms of sulfate, chloride, and vitrifying oxide contents.A preliminary washing treatment of MSW fly ash with water greatly improved the chemical and mechanical characteristics of sintered products and, for all the types of fly ash tested, the sintered products satisfied the Italian requirements for normal weight aggregates for use in concretes having a specified strength not greater than 12 and 15N/mm(2), when measured on cylindrical and cubic specimens, respectively.A compact pressure of 28 N/mm(2), a sintering temperature of 1140 degrees C, and a sintering time of 60 min were the best operating conditions for manufacturing sintered products of washed MSW fly ash.

  14. Sintered cobalt-rare earth intermetallic product

    International Nuclear Information System (INIS)

    Benz, M.C.

    1975-01-01

    A process is described for preparing novel sintered cobalt--rare earth intermetallic products which can be magnetized to form permanent magnets having stable improved magnetic properties. A cobalt--rare earth metal alloy is formed having a composition which at sintering temperature falls outside the composition covered by the single Co 5 R intermetallic phase on the rare earth richer side. The alloy contains a major amount of the Co 5 R intermetallic phase and a second solid CoR phase which is richer in rare earth metal content than the Co 5 R phase. The specific cobalt and rare earth metal content of the alloy is substantially the same as that desired in the sintered product. The alloy, in particulate form, is pressed into compacts and sintered to the desired density. The sintered product is comprised of a major amount of the Co 5 R solid intermetallic phase and up to about 35 percent of the product of the second solid CoR intermetallic phase which is richer in rare earth metal content than the Co 5 R phase

  15. Effect of Power Characteristics on the Densification of Sintered Alumina

    International Nuclear Information System (INIS)

    Al-Sarraj, Z.S.A.; Noor, S.S.

    2011-01-01

    The effect of particle size distribution, soaking time and sintering temperatures on the densification behaviors of α-Al 2 O 3 was investigated. Two different average particle sizes of 36 and 45μ were examined as a variable to analyze the difference in density, radial and axial shrinkage, densification, and microstructure developments. Conventional powder technology route was used to prepare disc-shaped green pellets sintered at 1200-1600 0 C for different periods. Density measurements for both green and sintered compacts allow for the refinement of processing parameters to obtain dense sintered bodies. Compacts with particle size of 36 μm were noticed to attain higher relative densities as compared with those of 45μm. Densification parameter (ΔP) calculations clearly reveals the presence of definite temperatures and times in which limited densification retardation occurred, which permits the suggesting of suitable sintering schemes for this material. Scanning electron micrographs analysis revealed a pore structure assist the observed behaviours for the different schemes. (author)

  16. Densification of LSGM electrolytes using activated microwave sintering

    Science.gov (United States)

    Kesapragada, S. V.; Bhaduri, S. B.; Bhaduri, S.; Singh, P.

    Lanthanum gallate doped with alkaline rare earths (LSGM) powders were densified using an activated microwave sintering process for developing a dense stable electrolyte layer for applications in intermediate temperature-solid oxide fuel cells (IT-SOFCs). Due to heat generation in situ, the process of sintering gets activated with faster kinetics compared to a conventional sintering process. The effect of various microwave process parameters on the microstructure and phase formation was studied. The sintered pellets were characterized using scanning electron microscopy-energy dispersive analysis (SEM-EDAX), and X-ray diffraction (XRD). The density of LSGM pellets microwave sintered at 1350 °C for 20 min is greater than 95% theoretical density with a fine grained microstructure (˜2-3 μm) and without the presence of other phase(s).

  17. Powder metallurgy: Solid and liquid phase sintering of copper

    Science.gov (United States)

    Sheldon, Rex; Weiser, Martin W.

    1993-01-01

    Basic powder metallurgy (P/M) principles and techniques are presented in this laboratory experiment. A copper based system is used since it is relatively easy to work with and is commercially important. In addition to standard solid state sintering, small quantities of low melting metals such as tin, zinc, lead, and aluminum can be added to demonstrate liquid phase sintering and alloy formation. The Taguchi Method of experimental design was used to study the effect of particle size, pressing force, sintering temperature, and sintering time. These parameters can be easily changed to incorporate liquid phase sintering effects and some guidelines for such substitutions are presented. The experiment is typically carried out over a period of three weeks.

  18. Development of a Sinter/HIP process for the superalloy Udimet 700 with investigations of the influence of the sinteratmosphere

    International Nuclear Information System (INIS)

    Wenning, L.

    1991-03-01

    The oxidation free treatment of reactive metalpowders like the nickel base alloy Udimet 700 demands sufficient oxygen free sinteratmospheres in nowadays sinter-HIP plants are not reachable. The reported work deals with the development of a sinter-HIP process which enables a sufficient low partial pressure of oxygen by scavenging the Udimet 700 powder packings with argon during vacuum sintering. By this the sinter hindering oxidation is avoided. Intensive investigations of the sinteratmosphere with a mass spectrometer and a zirconium oxide probe verify the reduction of the oxygen content of the residual gas atmosphere reached with different processes. In a second part the applicability of the scavenging gas process during the capsule free sinter-HIP treatment of metall injection moulded (MIM) samples is shown. (orig.) [de

  19. Method of manufacturing gadolinium oxide-incorporated nuclear fuel sintering products

    International Nuclear Information System (INIS)

    Komono, Akira; Seki, Makoto; Omori, Sadayuki.

    1987-01-01

    Purpose: To manufacture nuclear fuel sintering products excellent in burning property and mechanical property. Constitution: In the manufacturing step for nuclear fuel sintering products, specific metal oxides are added for promoting the growth of crystal grains in the sintering. Those metal oxides melted at a temperature lower than the sintering temperature of a mixture of nuclear fuel oxide powder and oxide power, or those metal oxides causing eutectic reaction are used as the metal oxide. Particularly, those compounds having oxygen atom - metal atom ratio (O/M) of not less than 2 are preferably used. As such metal oxides usable herein transition metal oxides, e.g., Nb 2 O 5 , TiO 2 , MoO 3 and WO 3 are preferred, with Nb 2 O 3 and TiO 2 being preferred particularly. (Seki, T.)

  20. Laser-controlled stress of Si nanocrystals in a free-standing Si /SiO2 superlattice

    Science.gov (United States)

    Khriachtchev, Leonid; Räsänen, Markku; Novikov, Sergei

    2006-01-01

    We report laser manipulations with stress at the nanoscale level. The continuous-wave Ar+ laser radiation melts Si nanocrystals in a free-standing Si /SiO2 superlattice. Silicon crystallization from the liquid phase leads to a compressive stress, which can be accurately tuned in the 3GPa range using laser annealing below the Si melting temperature and then recovered by laser annealing above the melting temperature. This allows investigations of various phenomena as a function of stress and makes a case of Si-nanocrystal memory with very long retention time, which can be written, erased, and read by optical means.

  1. Laser-controlled stress of Si nanocrystals in a free-standing Si/SiO2 superlattice

    International Nuclear Information System (INIS)

    Khriachtchev, Leonid; Raesaenen, Markku; Novikov, Sergei

    2006-01-01

    We report laser manipulations with stress at the nanoscale level. The continuous-wave Ar + laser radiation melts Si nanocrystals in a free-standing Si/SiO 2 superlattice. Silicon crystallization from the liquid phase leads to a compressive stress, which can be accurately tuned in the 3 GPa range using laser annealing below the Si melting temperature and then recovered by laser annealing above the melting temperature. This allows investigations of various phenomena as a function of stress and makes a case of Si-nanocrystal memory with very long retention time, which can be written, erased, and read by optical means

  2. Sintering of dioxide pellets in an oxidizing atmosphere (CO2)

    International Nuclear Information System (INIS)

    Santos, G.R.T.

    1992-01-01

    This work consists in the study of the sintering process of U O 2 pellets in an oxidizing atmosphere. Sintering tests were performed in an CO 2 atmosphere and the influence of temperature and time on the pellets density and microstructure were verified. The results obtained were compared to those from the conventional sintering process and its efficiency was confirmed. (author)

  3. Development of intergranular thermal residual stresses in beryllium during cooling from processing temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D.W. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)], E-mail: dbrown@lanl.gov; Sisneros, T.A.; Clausen, B.; Abeln, S.; Bourke, M.A.M.; Smith, B.G.; Steinzig, M.L.; Tome, C.N.; Vogel, S.C. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2009-02-15

    The intergranular thermal residual stresses in texture-free solid polycrystalline beryllium were determined by comparison of crystallographic lattice parameters in solid and powder samples measured by neutron diffraction during cooling from 800 deg. C. The internal stresses are not significantly different from zero >575 deg. C and increase nearly linearly <525 deg. C. At room temperature, the c axis of an average grain is under {approx}200 MPa of compressive internal stress, and the a axis is under 100 MPa of tensile stress. For comparison, the stresses have also been calculated using an Eshelby-type polycrystalline model. The measurements and calculations agree very well when temperature dependence of elastic constants is accounted for, and no plastic relaxation is allowed in the model.

  4. Microwave sintering of zirconia toughened alumina at 28GHz

    International Nuclear Information System (INIS)

    Samandi, M.; Ji, H.; Miyake, S.

    1998-01-01

    Microwave radiation from a 10 kW, CW gyrotron operating at 28 GHz was employed to sinter 10% zirconia toughened alumina (ZTA) ceramic samples. It has been established that the use of millimetre wave radiation circumvents the difficulties encountered during the sintering of ceramics, i e. formation of hot spot, by radiation at industrially permissible frequency of 2.45GHz. Further, careful density measurement and microstructural characterisation of mm- wave and conventionally sintered samples by XRD, SEM and TEM has unequivocally demonstrated the effectiveness of mm-wave radiation for obtaining high density ceramics at lower sintering temperatures. Copyright (1998) Australasian Ceramic Society

  5. The Effect of Magnesium Substitution and Sintering Temperature on the Structural and Magnetic Properties of Manganese- Magnesium Ferrite

    Directory of Open Access Journals (Sweden)

    S.T. Mohammadi Benehi

    2016-12-01

    Full Text Available Magnesium-manganese ferrite nanopowders (MgxMn1-xFe2O4, x=0.0 up to 1 with step 0.2 were prepared by coprecipitation method. The as-prepared samples were pressed with hydrolic press to form a pellet and were sintered in 900, 1050 and 1250˚C. Scanning Tunneling Microscope (STM images showed the particle size of powders about 17 nm. The X-ray patterns confirmed the formation of cubic single phase spinel structure in samples sintered at 1250˚C. Substituting Mg2+ with Mn2+ in these samples, the lattice parameter decreased from 8.49 to 8.35Å and magnetization saturation decreased from 74.7 to 21.2emu/g. Also, coercity (HC increased from 5 to 23Oe and Curie temperature (TC increased from 269 to 392˚C. Samples with x= 0.2, 0.4, 0.6 sintered at 1250 ˚C, because of their magnetic properties, can be recommended for hyperthermia applications and for phase shifters.

  6. Influences of spark plasma sintering temperature on the microstructures and thermoelectric properties of (Sr0.95Gd0.05)TiO3 ceramics

    Science.gov (United States)

    Li, Liang-Liang; Qin, Xiao-Ying; Liu, Yong-Fei; Liu, Quan-Zhen

    2015-06-01

    (Sr0.95Gd0.05)TiO3 (SGTO) ceramics are successfully prepared via spark plasma sintering (SPS) respectively at 1548, 1648, and 1748 K by using submicron-sized SGTO powders synthesized from a sol-gel method. The densities, microstructures, and thermoelectric properties of the SGTO ceramics are studied. Though the Seebeck coefficient shows no obvious difference in the case that SPS temperatures range from 1548 K to 1648 K, the electrical conductivity and the thermal conductivity increase remarkably due to the increase in grain size and density. The sample has a density higher than 98% theoretical density as the sintering temperature increases up to 1648 K and shows average grain sizes increasing from ˜ 0.7 μm to 7 μm until 1748 K. As a result, the maximum of the dimensionless figure of merit of ˜ 0.24 is achieved at ˜ 1000 K for the samples sintered at 1648 K and 1748 K, which was ˜ 71% larger than that (0.14 at ˜ 1000 K) for the sample sintered at 1548 K due to the enhancement of the power factor. Project supported by the National Natural Science Foundation of China (Grant Nos. 11174292, 51101150, and 11374306).

  7. A study of pressureless microwave sintering, microwave-assisted hot press sintering and conventional hot pressing on properties of aluminium/alumina nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Abedinzadeh, Reza; Safavi, Seyed Mohsen; Karimzadeh, Fathallah [Isfahan University, Isfahan (Iran, Islamic Republic of)

    2016-05-15

    Bulk Al/4wt-%Al{sub 2}O{sub 3} nanocomposites were prepared by consolidating nanocomposite powders using pressureless microwave sintering, microwave-assisted hot press sintering and conventional hot pressing techniques. Microstructural observations revealed that the microwave-assisted hot press sintering at different sintering temperatures of 400.deg.C and 500.deg.C resulted in more densification and smaller grain size for Al/Al{sub 2}O{sub 3} nanocomposite as compared with the conventional hot pressing. Moreover, the application of pressure in microwave sintering process led to more densification and grain growth. Mechanical properties resulting from microhardness and nanoindentation tests were also compared between three-method processed samples. It was found that the microwave-assisted hot-pressed sample exhibited higher hardness and elastic modulus in comparison with microwave-sintered and conventional hot-pressed samples. The improvement in the mechanical properties can be ascribed to lower porosity of microwave-assisted hot-pressed sample.

  8. Effects of inclusions on the sintering behavior of YBa2Cu3O6+x

    International Nuclear Information System (INIS)

    Stearns, L.C.; Harmer, M.P.; Chan, H.M.

    1990-01-01

    The sintering behavior of two types of heterogeneous compacts of YBa 2 Cu 3 O 6+x was studied: Soft agglomerates present in the starting powder were used to study the effect of rapidly densifying inclusions on the overall sample densification. In this case, the induced stresses caused severe cracklike damage in the sintered microstructure. On the other hand, when nondensifying inclusions (same composition) were incorporated into the starting powder, no sintering damage was observed. Further, there was no retardation of densification or coarsening due to the presence of these dense inclusions, over a wide range of inclusion size. Several possibilities for this behavior are discussed, based on the distribution of stresses induced by differential sintering rates

  9. Sintering-alkaline processing of borosilicate ores of Tajikistan

    International Nuclear Information System (INIS)

    Nazarov, F.A.

    2018-01-01

    The aim of the work is to study the processes of decomposition of boron-containing ore by sintering with NaOH, finding the optimal parameters of the decomposition process, studying the kinetics of processes and developing the technological foundations for ore processing. The processes of borosilicate ore processing were studied by sintering with NaOH. Possible mechanisms of chemical reactions of the process of sintering-alkaline decomposition of boron-containing ore are established, the results of which are substantiated by physicochemical methods of analysis. A principal technological scheme for processing of borosilicate ores by a sintering-alkaline method has been developed. In the first chapter, data on alkaline and caking processes for processing boron-containing and aluminium comprising raw materials are available in the literature. Based on this, the directions of our own research are outlined. The second chapter is devoted to the study of the chemical and mineralogical compositions of borosilicate ores and their concentrates with the help of X-ray phase and chemical analysis methods, the stoichiometric calculation of the formation of aluminum, iron, and boron salts has been carried out, and a thermodynamic analysis of the processes of sintering borosilicate ores with alkali has been considered. The third chapter presents the results of a study of sintering-alkaline method of processing of initial borosilicate ore of the Ak-Arkhar Deposit and its concentrate without calcination and after calcination. The kinetics of sintering of borosilicate ores with sodium hydroxide was studied. The optimal conditions of borosilicate ore sintering before and after the preliminary calcination with alkali were determined. Optimal parameters of the sintering process have been found: sintering temperature 800-8500 deg C, duration of the process - 60 minutes, mass ratio of NaOH to raw materials 2: 1. The conditions for sintering of borosilicate concentrate with alkali have been

  10. Sintering process of Eu doped luminescent glass prepared from porous glass

    International Nuclear Information System (INIS)

    Akai, T; Murakami, M; Yamashita, M; Okajima, T; Umesaki, N

    2011-01-01

    Eu doped high silica glass prepared by sintering porous glass exhibits blue luminescence with high quantum efficiency. In this work, we studied effects of sintering temperature on valance state of europium ion. To investigate a change of valance state of Eu, X-ray absorption near edge structure (XANES) spectroscopy measurements were carried out. Intensity of blue emission at around 430nm drastically increases when the sintering temperature is above 1000 deg. C. From XANES spectra, it is found that almost all the Eu exist as Eu 3+ in a samples sintered below 900 deg. C, while more than 70% of Eu exist as Eu 2+ in the sample sintered at 1050 deg. C and 1100 deg. C. The drastic change of oxidation state of europium ion between 900 and 1050 deg. C is discussed in relation to the structural change probed by infrared (IR) spectroscopy.

  11. Cu ion ink for a flexible substrate and highly conductive patterning by intensive pulsed light sintering.

    Science.gov (United States)

    Wang, Byung-Yong; Yoo, Tae-Hee; Song, Yong-Won; Lim, Dae-Soon; Oh, Young-Jei

    2013-05-22

    Direct printing techniques that utilize nanoparticles to mitigate environmental pollution and reduce the processing time of the routing and formation of electrodes have received much attention lately. In particular, copper (Cu) nanoink using Cu nanoparticles offers high conductivity and can be prepared at low cost. However, it is difficult to produce homogeneous nanoparticles and ensure good dispersion within the ink. Moreover, Cu particles require a sintering process over an extended time at a high temperature due to high melting temperature of Cu. During this process, the nanoparticles oxidize quickly in air. To address these problems, the authors developed a Cu ion ink that is free of Cu particles or any other impurities. It consequently does not require separate dispersion stability. In addition, the developed ink is environmentally friendly and can be sintered even at low temperatures. The Cu ion ink was sintered on a flexible substrate using intense pulsed light (IPL), which facilitates large-area, high-speed calcination at room temperature and at atmospheric pressures. As the applied light energy increases, the Cu2O phase diminishes, leaving only the Cu phase. This is attributed to the influence of formic acid (HCOOH) on the Cu ion ink. Only the Cu phase was observed above 40 J cm(-2). The Cu-patterned film after sintering showed outstanding electrical resistivity in a range of 3.21-5.27 μΩ·cm at an IPL energy of 40-60 J cm(-2). A spiral-type micropattern with a line width of 160 μm on a PI substrate was formed without line bulges or coffee ring effects. The electrical resistivity was 5.27 μΩ·cm at an energy level of 40.6 J cm(-2).

  12. Effect of Gold on the Microstructural Evolution and Integrity of a Sintered Silver Joint

    Science.gov (United States)

    Muralidharan, Govindarajan; Leonard, Donovan N.; Meyer, Harry M.

    2017-07-01

    There is a need for next-generation, high-performance power electronic packages and systems employing wide-bandgap devices to operate at high temperatures in automotive and electric grid applications. Sintered silver joints are currently being evaluated as an alternative to Pb-free solder joints. Of particular interest is the development of joints based on silver paste consisting of nano- or micron-scale particles that can be processed without application of external pressure. The microstructural evolution at the interface of a pressureless-sintered silver joint formed between a SiC die with Ti/Ni/Au metallization and an active metal brazed (AMB) substrate with Ag metallization at 250°C has been evaluated using scanning electron microscopy (SEM), x-ray microanalysis, and x-ray photoelectron spectroscopy (XPS). Results from focused ion beam (FIB) cross-sections show that, during sintering, pores in the sintered region near to the Au layer tend to be narrow and elongated with long axis oriented parallel to the interface. Further densification results in formation of many small, relatively equiaxed pores aligned parallel to the interface, creating a path for easy crack propagation. X-ray microanalysis results confirm interdiffusion between Au and Ag and that a region with poor mechanical strength is formed at the edge of this region of interdiffusion.

  13. Effect of sintering conditions on the magnetic disaccommodation in barium M-type hexaferrites

    International Nuclear Information System (INIS)

    Hernandez-Gomez, Pablo; Torres, Carlos; Francisco, Carlos de; Munoz, Jose Maria; Alejos, Oscar; Iniguez, Jose Ignacio; Raposo, Victor; Montero, Oscar

    2006-01-01

    The relaxation of the initial magnetic permeability has been measured in polycrystalline hexaferrites with nominal composition BaO.6Fe 2 O 3 (i.e. M-type). The samples have been sintered at different temperatures in CO 2 atmosphere and with different manufacturing conditions. In temperature range between 80 and 500 K, the magnetic disaccommodation shows presence of different relaxation processes, depending on both the sintering temperature and sintering time. The analogies and differences between the results obtained are discussed in terms of similar phase formation and different crystallite size

  14. Porous copper template from partially spark plasma-sintered Cu–Zn ...

    Indian Academy of Sciences (India)

    Administrator

    analysis. Keywords. Metal; corrosion; porous structure; sintering; powder metallurgy. 1. Introduction ... well as in the case, when the overall electrode potential of the final ... at 100 °C/min to reach sintering temperature and load was applied ...

  15. Reactive Sintering of Bimodal WC-Co Hardmetals

    Directory of Open Access Journals (Sweden)

    Marek Tarraste

    2015-09-01

    Full Text Available Bimodal WC-Co hardmetals were produced using novel technology - reactive sintering. Milled and activated tungsten and graphite powders were mixed with commercial coarse grained WC-Co powder and then sintered. The microstructure of produced materials was free of defects and consisted of evenly distributed coarse and fine tungsten carbide grains in cobalt binder. The microstructure, hardness and fracture toughness of reactive sintered bimodal WC-Co hardmetals is exhibited. Developed bimodal hardmetal has perspective for demanding wear applications for its increased combined hardness and toughness. Compared to coarse material there is only slight decrease in fracture toughness (K1c is 14.7 for coarse grained and 14.4 for bimodal, hardness is increased from 1290 to 1350 HV units.DOI: http://dx.doi.org/10.5755/j01.ms.21.3.7511

  16. Sintering and electrical properties of strontium-doped lanthanum manganite

    Energy Technology Data Exchange (ETDEWEB)

    Tarrago, Diego Pereira; Sousa, Vania Caldas de [Universidade Federal do Rio Grande do Sul (LABIOMAT/PPGEM/UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia de Minas, Metalurgica e de Materiais. Lab. de Biomateriais], Email: dptarrago@gmail.com; Moreno Buriel, Berta; Chinarro Martini, Eva; Jurado Egea, Jose Ramon [Consejo Superior de Investigaciones Cientificas (ICV/CSIC), Madrid (Spain). Inst. de Ceramica y Vidrio; Malfatti, Celia de Fraga [Universidade Federal do Rio Grande do Sul (LAPEC/PPGEM/UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia de Minas, Metalurgica e de Materiais. Lab. de Pesquisa em Corrosao

    2010-07-01

    Lanthanum strontium manganites (LSM) are potential materials for cathode applications in solid oxide fuel cells (SOFC) due to their good catalytic activity, chemical stability and compatibility with electrolyte materials in high temperatures. The sinterability of single phase La{sub 1-x}Sr{sub x}Mn{sub O3} (x=0.18) perovskite powders and the electrical properties of the resulting samples are analyzed in this study. Using a heating microscope, the powders were pressed and sintered at different pressures and temperatures, resulting in an open porosity of 33.36% when compacted at 125 MPa and sintered at 1200 degree C. Top and cross-section s canning electron microscopy (SEM) micrographs revealed interconnected pores in the sintered body and, hence, a suitable microstructure for the application. The activation energy for conductance was 0.04 eV and the tested LSM bulk started to exhibit adequate electrical properties at about 500 degree C. (author)

  17. Microwave sintering of nano size powder β-TCP bioceramics

    Directory of Open Access Journals (Sweden)

    Mirhadi B.

    2014-01-01

    Full Text Available A nano sized beta tricalcium phosphate (β-TCP powder was conventional sintered (CS and microwave sintered (MW, in order to obtain dense β-TCP ceramics. In this work the effect of microwave sintering conditions on the microstructure, phase composition and mechanical properties of materials based on tricalcium phosphate (TCP was investigated by SEM (scanning electron microscopyand XRD(X-ray diffraction and then compared with conventional sintered samples. Nano-size β-TCP powders with average grain size of 80 nm were prepared by the wet chemical precipitation method with calcium nitrate and diammonium hydrogen phosphate as calcium and phosphorus precursors, respectively. The precipitation process employed was also found to be suitable for the production of submicrometre β-TCP powder in situ. The β-TCP samples microwave (MW sintered for 15 min at 1100°C, with average grain size of 3μm, showed better densification, higher density and certainly higher hardness than samples conventionally sintered for 2 h at the same temperature. By comparing sintered and MW sintered β-TCP samples, it was concluded that MW sintered β-TCP samples have superior mechanical properties.

  18. The effect of sintering conditions and ZrN volume fraction on the mechanical properties of spark plasma sintered W/ZrN composites

    International Nuclear Information System (INIS)

    Lee, Dongju; Umer, Malik Adeel; Shin, Yoochul; Jeon, Seokwoo; Hong, Soonhyung

    2012-01-01

    Highlights: ► Effect of sintering conditions on properties of W composites was investigated. ► Effect of ZrN volume fraction on properties of W composites was investigated. ► The grain size and relative density increased with increasing sintering temperature. ► ZrN particles led to an increase in strength of W and a decrease in grain size. ► Highest flexural strength was obtained for 10 vol.% W/ZrN with lowest agglomeration. - Abstract: In an effort to improve the room temperature mechanical properties of tungsten, W/ZrN composites were fabricated by high energy ball milling followed by spark plasma sintering at temperatures in a range of 1200–1700 °C under a pressure of 50 MPa. The effects of sintering conditions and ZrN volume fraction on the mechanical properties of the W/ZrN composites were studied and the results were compared to the properties of monolithic tungsten. The grain size of monolith tungsten and W/ZrN composites was found to increase with an increase in sintering temperature and time. In the case of the W/ZrN composites, ZrN particles led to an increase in the compressive strength of tungsten and a decrease in grain size. The increase in compressive strength of the composites was attributed to a reinforcement effect of ZrN particles as well as grain size refinement according to the Hall–Petch relation. Compressive strength of the composites increased with increasing ZrN content while the flexural strength decreased for samples with ZrN content exceeding 10 vol.%. This was attributed to the effects of ZrN agglomeration within the tungsten matrix.

  19. All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles

    International Nuclear Information System (INIS)

    Ko, Seung H; Pan Heng; Grigoropoulos, Costas P; Luscombe, Christine K; Frechet, Jean M J; Poulikakos, Dimos

    2007-01-01

    All-printed electronics is the key technology to ultra-low-cost, large-area electronics. As a critical step in this direction, we demonstrate that laser sintering of inkjet-printed metal nanoparticles enables low-temperature metal deposition as well as high-resolution patterning to overcome the resolution limitation of the current inkjet direct writing processes. To demonstrate this process combined with the implementation of air-stable carboxylate-functionalized polythiophenes, high-resolution organic transistors were fabricated in ambient pressure and room temperature without utilizing any photolithographic steps or requiring a vacuum deposition process. Local thermal control of the laser sintering process could minimize the heat-affected zone and the thermal damage to the substrate and further enhance the resolution of the process. This local nanoparticle deposition and energy coupling enable an environmentally friendly and cost-effective process as well as a low-temperature manufacturing sequence to realize large-area, flexible electronics on polymer substrates

  20. Fabrication mechanism of FeSe superconductors with high-energy ball milling aided sintering process

    International Nuclear Information System (INIS)

    Zhang, Shengnan; Liu, Jixing; Feng, Jianqing; Wang, Yao; Ma, Xiaobo; Li, Chengshan; Zhang, Pingxiang

    2015-01-01

    FeSe Superconducting bulks with high content of superconducting PbO-type β-FeSe phase were prepared with high-energy ball milling (HEBM) aided sintering process. During this process, precursor powders with certain Fe/Se ratio were ball milled first then sintered. The influences of HEBM process as well as initial Fe/Se ratio on the phase evolution process were systematically discussed. With HEBM process and proper initial Fe/Se ratio, the formation of non-superconducting hexagonal δ-FeSe phase were effectively avoided. FeSe bulk with the critical temperature of 9.0 K was obtained through a simple one-step sintering process with lower sintering temperature. Meanwhile, the phase evolution mechanism of the HEBM precursor powders during sintering was deduced based on both the thermodynamic analysis and step-by-step sintering results. The key function of the HEBM process was to provide a high uniformity of chemical composition distribution, thus to successfully avoide the formation of intermediate product during sintering, including FeSe 2 and Fe 7 Se 8 . Therefore, the fundamental principal for the synthesis of FeSe superconductors were concluded as: HEBM aided sintering process, with the sintering temperature of >635 °C and a slow cooling process. - Highlights: • A novel synthesis technique was developed for FeSe based superconductors. • FeSe bulks with high Tc and high β-FeSe phase content has been obtained. • Phase evolution process for the HEBM aided sintering process was proposed

  1. Effects of Ceramic Density and Sintering Temperature on the Mechanical Properties of a Novel Polymer-Infiltrated Ceramic-Network Zirconia Dental Restorative (Filling) Material.

    Science.gov (United States)

    Li, Weiyan; Sun, Jian

    2018-05-10

    BACKGROUND Polymer-infiltrated ceramic-network (PICN) dental material is a new and practical development in orthodontics. Sintering is the process of forming a stable solid mass from a powder by heating without melting. The aim of this study was to evaluate the effects of sintering temperature on the mechanical properties of a PICN zirconia dental material. MATERIAL AND METHODS A dense zirconia ceramic and four PICN zirconia dental materials, with varying porosities, were sintered at three different temperatures; 12 PICN zirconia dental materials based on these porous ceramics were prepared, as well as a pure polymer. After the specimen preparation, flexural strength and elastic modulus values were measured using the three-point bending test, and fracture toughness were determined by the single-edge notched beam (SENB) method. The Vickers hardness test method was used with an indentation strength (IS) test. Scanning electron microscopy (SEM) was used to examine the microstructure of the ceramic surface and the fracture surface. RESULTS Mechanical properties of the PICN dental materials, including flexural strength, elastic modulus, fracture toughness, and hardness, were more similar to the properties of natural teeth when compared with traditional dental ceramic materials, and were affected by the density and sintering temperature. SEM showed that the porous ceramic network became cohesive and that the length of cracks in the PICN dental material was reduced. CONCLUSIONS PICN zirconia dental materials were characterized by similar mechanical properties to natural dental tissues, but further studies are required continue to improve the similarities with natural human enamel and dentin.

  2. Milling properties of low temperature sintered zirconia blocks for dental use

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Ting-Hsun; Wang, Chau-Hsiang [Department of Prosthodontics, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan (China); School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 80728, Taiwan (China); Chen, Ker-Kong [Department of Conservation, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan (China); School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 80728, Taiwan (China); Wang, Moo-Chin, E-mail: mcwang@kmu.edu.tw [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 80728, Taiwan (China); Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 80756, Taiwan (China); Lee, Huey-Er, E-mail: huerle@kmu.edu.tw [Department of Prosthodontics, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan (China); School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 80728, Taiwan (China)

    2017-04-01

    To investigate the milling properties of different yttria-tetragonal zirconia polycrystalline (Y-TZP) block materials by applying a dental computer numerical control (CNC) milling center. Low temperature sintering zirconia block denoted by KMUZ (experimental) with two commercial zirconia blocks for T block made in Taiwan and a G block made in Germany were compared for the milling properties. Seventy-two specimens were milled using the same CNC milling center, and properties were evaluated by measuring the weight loss (g), milling time (s), margin integrity (%) and broken diameter (μm). The crystalline phases contents were identified by X-ray diffraction and the microstructures of the sintering specimens were observed by scanning electron microscopy and transmission electron microscopy. The mean milling time of G and KMUZ were significantly shorter than T (P < 0.05). The KMUZ samples exhibited the least weight loss among the three kinds of blocks (P < 0.05). The percentages of marginal integrity after milling were high in G and KMUZ but low in T (P < 0.05). The mean broken diameters were from 90 μm to 120 μm. The phase transformation of t-ZrO{sub 2} (KMUZ: 7.4%, G: 5.9%, T: 3.2%) to m-ZrO{sub 2} when facing the milling pressure in ZrO{sub 2} blocks was observed by XRD. The result of TEM microstructure of KMUZ revealed that Y and Si were soluble in grain boundaries. The results show that the milling properties of KMUZ were better than one commercial T and near the G. The hindered grain growth, as a result of the Y{sup 3+} content in the grain boundaries, also plays a role in promoting the abnormal grain growth of 3Y-TZP. - Highlights: • The phase transformation of t-ZrO{sub 2} to m-ZrO{sub 2} affects the milling properties. • The phase content of t-ZrO2 was 100% when sintering at 1350 °C for 2 h. • The Y{sup 3+} content in the grain boundaries that hinders grain growth. • The Y{sup 3+} content in boundaries also promotes the abnormal grain growth of 3Y-TZP.

  3. Monitoring Sintering Burn-Through Point Using Infrared Thermography

    Directory of Open Access Journals (Sweden)

    Francisco G. Bulnes

    2013-08-01

    Full Text Available Sintering is a complex industrial process that applies heat to fine particles of iron ore and other materials to produce sinter, a solidified porous material used in blast furnaces. The sintering process needs to be carefully adjusted, so that the combustion zone reaches the bottom of the material just before the discharge end. This is known as the burnthrough point. Many different parameters need to be finely tuned, including the speed and the quantities of the materials mixed. However, in order to achieve good results, sintering control requires precise feedback to adjust these parameters. This work presents a sensor to monitor the sintering burn-through point based on infrared thermography. The proposed procedure is based on the acquisition of infrared images at the end of the sintering process. At this position, infrared images contain the cross-section temperatures of the mixture. The objective of this work is to process this information to extract relevant features about the sintering process. The proposed procedure is based on four steps: key frame detection, region of interest detection, segmentation and feature extraction. The results indicate that the proposed procedure is very robust and reliable, providing features that can be used effectively to control the sintering process.

  4. Lanthanide (Nd, Gd) compounds with garnet and monazite structures. Powders synthesis by “wet” chemistry to sintering ceramics by Spark Plasma Sintering

    Energy Technology Data Exchange (ETDEWEB)

    Potanina, Ekaterina, E-mail: ekaterina.potanina@list.ru [Department of Solid State Chemistry, Lobachevsky State University of Nizhni Novgorod, National Research University, 23 Prospekt Gagarina, BLDG 2, 603950 Nizhny Novgorod (Russian Federation); Golovkina, Ludmila, E-mail: golovkina_lyudmila@mail.ru [Department of Solid State Chemistry, Lobachevsky State University of Nizhni Novgorod, National Research University, 23 Prospekt Gagarina, BLDG 2, 603950 Nizhny Novgorod (Russian Federation); Orlova, Albina, E-mail: albina.orlova@inbox.ru [Department of Solid State Chemistry, Lobachevsky State University of Nizhni Novgorod, National Research University, 23 Prospekt Gagarina, BLDG 2, 603950 Nizhny Novgorod (Russian Federation); Nokhrin, Aleksey, E-mail: nokhrin@nifti.unn.ru [Research Institute of Physics and Technology, Lobachevsky State University of Nizhni Novgorod, National Research University, 23 Prospekt Gagarina, BLDG 3, 603950 Nizhny Novgorod (Russian Federation); Boldin, Maksim, E-mail: boldin@nifti.unn.ru [Research Institute of Physics and Technology, Lobachevsky State University of Nizhni Novgorod, National Research University, 23 Prospekt Gagarina, BLDG 3, 603950 Nizhny Novgorod (Russian Federation); Sakharov, Nikita, E-mail: nvsaharov@nifti.unn.ru [Research Institute of Physics and Technology, Lobachevsky State University of Nizhni Novgorod, National Research University, 23 Prospekt Gagarina, BLDG 3, 603950 Nizhny Novgorod (Russian Federation)

    2016-05-15

    Complex oxide Y{sub 2.5}Nd{sub 0.5}Al{sub 5}O{sub 12} with garnet structure and phosphates NdPO{sub 4} and GdPO{sub 4} with monazite structure were obtained by using precipitation methods. Ceramics Y{sub 2.5}Nd{sub 0.5}Al{sub 5}O{sub 12} and NdPO{sub 4} were processed by Spark Plasma Sintering (SPS). Relative density more 98%, sintering time did not exceed 8 min, sintering temperature 1330–1390 °C. Leaching rates of elements from ceramics were 10{sup −6}–10{sup −7} g/(cm{sup 2} d). The process of ceramics sintering has two-stage character: the first step of sintering-compaction process is related to the plastic flow of the material, the second step–to the process of grain boundary diffusion and grain growth. - Highlights: • Powders were obtained by precipitation (sol–gel) method. • Ceramics were sintering by Spark Plasma Sintering method (ρ{sub rel} > 98%); shrinkage time does not exceed 8 min. • The process of ceramics sintering has two-stage character.

  5. Study of high-coercivity sintered NdFeB magnets

    International Nuclear Information System (INIS)

    Bai, G.; Gao, R.W.; Sun, Y.; Han, G.B.; Wang, B.

    2007-01-01

    Magnetic powders for sintered NdFeB magnets have been prepared by using an advanced processing method including strip casting, hydrogen decrepitation, jet milling and rubber isotropic press. The effects of Dy, Ga and Co addition on the microstructure and magnetic properties of sintered magnets have been investigated. By adopting a suitable component ratio and adjusting proper technological parameters, we have prepared high-coercivity sintered NdFeB magnets with hard magnetic properties of j H c =25.6 kOe, B r =13.2 kG and (BH) max =39.9 MGOe. The temperature coefficient of coercivity of the magnets (between 20 and 150 deg. C) is -0.53% deg. C. The magnetic properties at high temperature satisfy the needs of permanent magnet motors

  6. Vacuum-sintered body of a novel apatite for artificial bone

    Science.gov (United States)

    Tamura, Kenichi; Fujita, Tatsushi; Morisaki, Yuriko

    2013-12-01

    We produced regenerative artificial bone material and bone parts using vacuum-sintered bodies of a novel apatite called "Titanium medical apatite (TMA®)" for biomedical applications. TMA was formed by chemically connecting a Ti oxide molecule with the reactive [Ca10(PO4)6] group of Hydroxyapatite (HAp). The TMA powders were kneaded with distilled water, and solid cylinders of compacted TMA were made by compression molding at 10 MPa using a stainless-steel vessel. The TMA compacts were dried and then sintered in vacuum (about 10-3 Pa) or in air using a resistance heating furnace in the temperature range 1073-1773 K. TMA compacts were sintered at temperatures greater than 1073 K, thus resulting in recrystallization. The TMA compact bodies sintered in the range 1273-1773 K were converted into mixtures composed of three crystalline materials: α-TCP (tricalcium phosphate), β-TCP, and Perovskite-CaTiO3. The Perovskite crystals were stable and hard. In vacuum-sintering, the Perovskite crystals were transformed into fibers (approximately 1 µm in diameter × 8 µm in length), and the fiber distribution was uniform in various directions. We refer to the TMA vacuum-sintered bodies as a "reinforced composite material with Perovskite crystal fibers." However, in atmospheric sintering, the Perovskite crystals were of various sizes and were irregularly distributed as a result of the effect of oxygen. After sintering temperature at 1573 K, the following results were obtained: the obtained TMA vacuum-sintered bodies (1) were white, (2) had a density of approximately 2300 kg/m3 (corresponding to that of a compact bone or a tooth), and had a thermal conductivity of approximately 31.3 W/(m·K) (corresponding to those of metal or ceramic implants). Further, it was possible to cut the TMA bodies into various forms with a cutting machine. An implant made of TMA and inserted into a rabbit jaw bone was covered by new bone tissues after just one month because of the high

  7. On the determination of the stress-free temperature for alumina–zirconia multilayer structures

    Czech Academy of Sciences Publication Activity Database

    Chlup, Zdeněk; Hadraba, Hynek; Drdlík, D.; Maca, K.; Dlouhý, Ivo; Bermejo, R.

    2014-01-01

    Roč. 40, č. 4 (2014), s. 5787-5793 ISSN 0272-8842 R&D Projects: GA ČR(CZ) GAP108/11/1644; GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : Sintering * Thermal expansion * Zirconia * Alumina * Layered Ceramics Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 2.605, year: 2014

  8. EFFECT OF DIFFERENT COMPACTION PRESSURE AND DIFFERENT SINTERING ROUTE ON K0.5NA0.5NBO₃ PHYSICAL AND DIELECTRIC PROPERTIES

    Directory of Open Access Journals (Sweden)

    Nor Fatin Khairah Bahanurddin

    2016-07-01

    Full Text Available Alkaline niobate known as K0.5Na0.5NbO3 (KNN, a lead-free piezoelectric ceramic was synthesized via a solid state reaction method. The samples were compacted at different pressures (100, 200, 300 and 400 MPa and sintered using two different techniques (conventional furnace and hot isostatic pressing (HIP. The effect of compaction pressure and sintering technique on physical and dielectric properties was studied. The optimum compaction pressure (300 MPa and sintering via HIP (at 1080 °C for 30 min increased the density and grain size ( range 30 - 300 nm and improved its dielectric properties. Therefore, the combination of suitable compaction pressure and sintering technique has produced larger grain size and higher density of KNN which resulted in outstanding dielectric properties. At room temperature, excellent values of ε r (5517.35 and tan δ (0.954, recorded at 1 MHz were measured for the KNN300HIP sample with highest density (4.4885 g/cm³.

  9. Morphological analysis and modelling of sintering and of sintered materials

    International Nuclear Information System (INIS)

    Jernot, Jean-Paul

    1982-01-01

    This research thesis addresses the study of solid phase sintering of metallic powders, and aims at describing as precisely as possible the different involved matter transport mechanisms, first by using a thermodynamic approach to sintering. Sintering diagrams are also used to determine prevailing mechanisms. The microstructure of sintered materials has been studied by using image quantitative analysis, thus by using a morphological approach to sintering. Morphological parameters allow, on the one hand, the evolution of powders during sintering to be followed, and, on the other hand, sintered products to be correctly characterised. Moreover, the author reports the study of the evolution of some physical properties of sintered materials with respect to their microstructure parameters. This leads to the development of a modelling of the behaviour of these materials [fr

  10. Non-pressurized sintered silicon carbide with titanium carbide reinforcement

    International Nuclear Information System (INIS)

    Adler, J.

    1992-01-01

    A non-pressurized compression of SiC-TiC composite materials can be achieved via liquid phase sintering by the application of oxidic additives. Materials with TiC proportions up to 40% by volume of TiC and densities of 97 to 98% TD were produced at sintering temperatures around 1875 C. With SiC sintered in the liquid phase an increase of toughness at fracture of 80% compared with conventionally non-pressurized sintered SiC was achieved with B/C additive. No further increase could be achieved by the addition of TiC particles. However, the oxidation resistance at 1200 C was worsened. (orig.) [de

  11. Sintering mechanism of blast furnace slag-kaolin ceramics

    International Nuclear Information System (INIS)

    Mostafa, Nasser Y.; Shaltout, Abdallah A.; Abdel-Aal, Mohamed S.; El-maghraby, A.

    2010-01-01

    A general ceramics processing scheme by cold uniaxial pressing and conventional sintering process have been used to prepare ceramics from mixtures of blast furnace slag (BFS) and kaolin (10%, 30% and 50% kaolin). The properties of the ceramics were studied by measuring linear shrinkage, bulk density, apparent porosity and mechanical properties of samples heated at temperatures from 800 o C to 1100 o C. The formed crystalline phases were characterized using X-ray diffraction (XRD) and scanning electron microscope (SEM). Slag melt formed at relatively low temperatures (800-900 o C) modified the sintering process to liquid phase sintering mechanism. Combination of BFS with 10% kaolin gave the highest mechanical properties, densification and shrinkage at relatively low firing temperatures. The crystalline phases were identified as gehlenite (Ca 2 Al 2 SiO 7 ) in both BFS and BFS with 10% kaolin samples. Anorthite (CaAl 2 Si 2 O 8 ) phase increased with increasing kaolin contents. In the case of kaolin-rich mixtures (30% and 50% kaolin), increased expansion took place during firing at temperatures in the range 800-1000 o C. This effect could be attributed to the entrapment of released gases.

  12. Electrical conductivity of titanium pyrophosphate between 100 and 400 °C: effect of sintering temperature and phosphorus content

    DEFF Research Database (Denmark)

    Lapina, Alberto; Chatzichristodoulou, Christodoulos; Hallinder, Jonathan

    2014-01-01

    The synthesis of titanium pyrophosphate is carried out, and the material is sintered at different temperatures between 370 and 970 °C. Yttrium is added during the synthesis to act as acceptor dopant, but it is mainly present in the material in secondary phases. The conductivity is studied systema...... at 300–390 °C. Slow loss of phosphorus by evaporation over time and changes in the distribution of the amorphous phase during testing are suggested as causes of conductivity degradation above 220 °C.......The synthesis of titanium pyrophosphate is carried out, and the material is sintered at different temperatures between 370 and 970 °C. Yttrium is added during the synthesis to act as acceptor dopant, but it is mainly present in the material in secondary phases. The conductivity is studied...... to an amorphous secondary phase at the grain boundaries, associated with the presence of excess phosphorus in the samples. A contribution to the conductivity by point defects in the bulk may explain the conductivity trend in dry air and the difference in conductivity between oxidizing and reducing atmospheres...

  13. Temperature stability and corrosion behavior of sintered Nd-Dy-Fe-Co-TM-B magnets, TM:V,Mo (abstract)

    International Nuclear Information System (INIS)

    Adler, E.; Rodewald, W.; Wall, B.

    1991-01-01

    By simultaneous additions of Co and V or of Co and Mo the temperature stability of sintered Nd-Fe-Al-B magnets can be improved. 1--3 A partial substitution of Nd by Dy increases the coercivity by 1.4 kA/cm per wt. % Dy in the alloy, which results in strong coercivities at high temperatures. At 150 degree C, for instance, coercivities of about 9 kA/cm can be achieved. The magnetizing behavior is determined by nucleation of reversed domains. A complete magnetization requires a magnetizing field strength of about 25 kA/cm and does not depend on the coercive field strength. Although in Nd-Dy-Fe-Co-Mo-B magnets the Nd-rich Fe eutectic and the Nd 1.1 Fe 4 B 4 boride are replaced by the Nd 3 Co compound and the Mo 2 FeB 2 boride, respectively, the corrosion is similar to sintered Nd-Dy-Fe-B magnets. The corrosion rate at the 85 degree C--85% relative humidity test is much more determined by the surface treatment of the magnets

  14. Sintering prevention and phase transformation of FePt nanoparticles

    International Nuclear Information System (INIS)

    Ding, Y.; Majetich, S.A.; Kim, J.; Barmak, K.; Rollins, H.; Sides, P.

    2004-01-01

    Two approaches attempted to overcome FePt nanoparticle sintering during the transformation to the high coercivity L1 0 phase, which currently limits the use of these nanoparticles in data storage media. High-pressure treatment of dilute nanoparticle solutions failed to prevent sintering due to surfactant decomposition above 360 deg. C. By pre-annealing nanoparticle monolayers to decompose the surfactant, and then coating with an immiscible SiO 2 matrix, sintering was prevented with annealing temperatures up to 700 deg. C

  15. Structural, microstructural, dielectric and ferroelectric properties of lead free Ba0.85Ca0.15Zr0.1Ti0.9O3 ceramic

    Science.gov (United States)

    Sharma, Sarita; Sharma, Hakikat; Negi, N. S.

    2018-05-01

    Lead free Ba0.85Ca0.15Zr0.1Ti0.9O3(BCTZ) ceramic has been synthesized by sol-gel method. Properties of material are studied at different sintering temperatures for 5 hours. Structural and microstructural properties are analyzed by using X-ray diffractrometer (XRD) and scanning electron microscopy (SEM) at annealing temperature of 850°C and 1050°C XRD pattern confirm the perovskite structure of the material without any unwanted phases crystalinity increased with increase of sintering temperature so as roughness and porosity is decreased as shown by SEM micrographs. There is large improvement in density with rise of sintering temperature which also leads to drastic change in ferroelectric and dielectric properties.

  16. Phenomenological model of sintering of oxide nuclear fuel with doping admixtures

    Science.gov (United States)

    Baranov, V. G.; Devyatko, Yu. N.; Tenishev, A. V.; Khomyakov, O. V.

    2015-12-01

    It is shown that a change in the linear dimension of compacted UO2 in the sintering process is associated with its plastic yielding under the action of the forces of residual stress and capillary forces. From the curves of sintering of a fuel with doping admixtures in various gaseous media, its rate of creep is reduced.

  17. Preliminary investigation of liquid phase sintering in ferrous systems

    International Nuclear Information System (INIS)

    Klein, J.

    1975-04-01

    Liquid phase sintering was utilized to achieve, by a simple compaction and sintering procedure involving short times and moderate temperatures, a virtually full dense high carbon Fe:C alloy and high boron Fe:B alloy. Parameters such as powder characteristics and mixing, compacting pressure, heating program and the liquid phase fraction were found to influence the sintered density. The response of the Fe:C alloy to a heat treatment is reported along with preliminary experiments in the iron base ternary system Fe:W:C. Residual porosities observed in microstructures of certain liquid phase sintered compacts were accounted for by a proposed capillary flow of the liquid phase and a local densification competing against an overall densification. Some general recommendations are made for liquid phase sintering of powder aggregates. 15 fig., 7 tables

  18. Sintering of wax for controlling release from pellets.

    Science.gov (United States)

    Singh, Reena; Poddar, S S; Chivate, Amit

    2007-09-14

    The purpose of the present study was to investigate incorporation of hydrophobic (ie, waxy) material into pellets using a thermal sintering technique and to evaluate the pellets in vitro for controlled release. Pellets prepared by extrusion-spheronization technology were formulated with a water-soluble drug, microcrystalline cellulose, and carnauba wax. Powdered carnauba wax (4%-20%) prepared by grinding or by emulsification was studied with an attempt to retard the drug release. The inclusion of ground or emulsified carnauba wax did not sustain the release of theophylline for more than 3 hours. Matrix pellets of theophylline prepared with various concentrations of carnauba wax were sintered thermally at various times and temperatures. In vitro drug release profiles indicated an increase in drug release retardation with increasing carnauba wax concentration. Pellets prepared with ground wax showed a higher standard deviation than did those prepared with emulsified wax. There was incomplete release at the end of 12 hours for pellets prepared with 20% ground or emulsified wax. The sintering temperature and duration were optimized to allow for a sustained release lasting at least 12 hours. The optimized temperature and duration were found to be 100 degrees C and 140 seconds, respectively. The sintered pellets had a higher hydrophobicity than did the unsintered pellets. Scanning electron micrographs indicated that the carnauba wax moved internally, thereby increasing the surface area of wax within the pellets.

  19. CTCP temperature fields and stresses

    Directory of Open Access Journals (Sweden)

    Minjiang Zhang

    2017-11-01

    Full Text Available Cross-tensioned concrete pavements (CTCPs are used in the construction of continuous Portland cement concrete pavements. They eliminate the need for transverse joints and also restrict cracking of the pavement. A CTCP consists of three components, namely, the CTCP slab, the sand sliding layer (SSL, and the cement-stabilized macadam base, from top to down. The retard-bonded tendons (RBTs of the CTCP slab are arranged diagonally. In the present study, a detailed 3D finite element model was developed and used to examine the temperature fields and stresses of a CTCP by thermal-mechanical coupling analysis, and the results were compared with field measurements. The model investigations revealed that, under typical cloudless summer conditions, the temperature field of the CTCP varied nonlinearly with both time and depth. The resultant step-type temperature gradient of the CTCP represents a significant deviation from that of a conventional pavement and impacts the thermal contact resistance of the SSL. It was found that the SSL could effectively reduce the temperature stresses in the CTCP, and that the residual temperature stresses were effectively resisted by the staged cross-tensioned RBTs. The potential problem areas in the vicinity of the temperature stresses were also investigated by the finite element method and field tests. Keywords: Portland cement concrete pavement, Prestressed concrete pavement, Temperature stress, Temperature field, Finite element method, Retard-bonded tendon

  20. Preparation and sintering of Zr(C,N,O) phases

    International Nuclear Information System (INIS)

    Tamborenea, S.; Mazzoni, A.D.; Aglietti, E.F.

    2003-01-01

    The Zr(C,O,N) compounds form a great mono-phase zone belonging to the pseudoternary ZrO-ZrN-ZrC system.Theses phases have cubic crystalline structure with a o parameter depending on the C, O 2 and N 2 content.These phases have many potential applications in the manufacture of ceramic pieces utilizable as electronic conductors.The Zr (C,O,N) phases can be obtained from ZrO 2 by carbonitriding reactions: that is carbothermal reduction and simultaneous nitriding.In this work a series of experiences of carbonitriding of zirconia under different conditions (temperatures between 1400 and 1600degC, times of 120 min, carbon content between 20 and 40%) in order to obtain suitable powders to be sintered.The XRD analysis shows the Zr(C,O,N) as the main products and β -ZrON as the only secondary product in proportions depending on the obtaining conditions.The variables employed were the C content and the reaction temperature.The Zr(C,O,N) content varies between 40 and 90% and tends to increase with the temperature and the carbon content whereas the β -ZrON phase varies between the 40 and 10 % decreasing its proportion with temperature and the carbon content.The oxidation resistance of these phases was studied by DTA-TG tests in air.Results show complete oxidation reaction at ∼500degC in air.The sintering of these materials was made on disks obtained by pressing of powders of Zr(C,N,O) contents higher than 90%.Sintering was performed in nitrogen atmosphere and temperatures between 1450 and 1620degC.Disks were characterized by pycnometry and Hg volumeter.The densities obtained were between 5 and 6,6g/cm 3 with a tendency to increase with the Zr(C,N,O) phase content, the temperature and the sintering time.Sintered disks were characterized by dilatometry in N 2

  1. Sintering and microstructure evolution of columnar nickel-based superalloy sheets prepared by EB-PVD

    International Nuclear Information System (INIS)

    Chen, S.; Qu, S.J.; Liang, J.; Han, J.C.

    2010-01-01

    Research highlights: → EB-PVD technology is commonly used to deposit thermal barrier coatings (TBCs) and columnar structure is commonly seen in EB-PVD condensates. The unique columnar structure can provide outstanding resistance against thermal shock and mechanical strains for TBCs. However, a number of researchers have found that the columnar structure can affect the mechanical properties of EB-PVD alloy thin sheet significantly. As yet, works on how to reduce this kind of effects are seldom done. In the present article, we tried to reveal the sintering effects on microstructure evolution and mechanical properties of columnar Ni-based superalloy sheet. The results suggests that after sintering, the columnar structure degrades. Degradation depends on sintering temperature and time. Both the ultimate tensile strength and the elongation percentage are effectively improved after sintering. - Abstract: A ∼0.15 mm-thick columnar nickel-based superalloy sheet was obtained by electron beam physical vapor deposition (EB-PVD). The as-deposited alloy sheet was sintered at different conditions. The microstructure of the specimens before and after sintering was characterized by using scanning electron microscopy. An X'Pert texture facility was used to determine the crystallographic orientation of the as-deposited alloy sheet. The phase transformation was investigated by X-ray diffraction. Tensile tests were conducted at room temperature on as-deposited and sintered specimens. The results show that the as-deposited sheet is composed of typical columnar structures. After sintering, however, the columnar structure degrades. The degradation depends on sintering temperature and time. Both the ultimate tensile strength and the elongation percentage are effectively improved after sintering.

  2. Microwave sintering of Ag-nanoparticle thin films on a polyimide substrate

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, S., E-mail: fujii.s.ap@m.titech.ac.jp [Department of Applied Chemistry, Tokyo Institute of Technology, Tokyo 152-8522 (Japan); Department of Information and Communication System Engineering, National Institute of Technology, Okinawa College, Nago, Okinawa 905-2192 (Japan); Kawamura, S.; Maitani, M. M.; Suzuki, E.; Wada, Y. [Department of Applied Chemistry, Tokyo Institute of Technology, Tokyo 152-8522 (Japan); Mochizuki, D. [Interdisciplinary Cluster for Cutting Edge Research, Center for Energy and Environmental Science, Shinshu University, Ueda, Nagano 386-8567 (Japan)

    2015-12-15

    Ag-nanoparticle thin films on a polyimide substrate were subjected to microwave sintering by use of a single-mode waveguide applicator. A two-step sintering process was employed. First, at low conductivities of the film, the film sample was placed at the site of the maximum electric field and subjected to microwave irradiation. Second, when the conductivity of the film increased, the film sample was placed at the site of the maximum magnetic field and again subjected to microwave irradiation. The microwave sintering process was completed within 1.5 min, which is significantly lower than the time required for the oven heating process. The resulting conductivity of the film, albeit only 30% of that of the bulk material, was seven times that of a film annealed at the same temperature in a furnace. Scanning electron microscopy images revealed that the nanoparticles underwent both grain necking and grain growth during microwave sintering. In addition, this sintering process was equivalent to the oven heating process performed at a 50 °C higher annealing temperature. An electromagnetic wave simulation and a heat transfer simulation of the microwave sintering process were performed to gain a thorough understanding of the process.

  3. Microwave sintering of Ag-nanoparticle thin films on a polyimide substrate

    Directory of Open Access Journals (Sweden)

    S. Fujii

    2015-12-01

    Full Text Available Ag-nanoparticle thin films on a polyimide substrate were subjected to microwave sintering by use of a single-mode waveguide applicator. A two-step sintering process was employed. First, at low conductivities of the film, the film sample was placed at the site of the maximum electric field and subjected to microwave irradiation. Second, when the conductivity of the film increased, the film sample was placed at the site of the maximum magnetic field and again subjected to microwave irradiation. The microwave sintering process was completed within 1.5 min, which is significantly lower than the time required for the oven heating process. The resulting conductivity of the film, albeit only 30% of that of the bulk material, was seven times that of a film annealed at the same temperature in a furnace. Scanning electron microscopy images revealed that the nanoparticles underwent both grain necking and grain growth during microwave sintering. In addition, this sintering process was equivalent to the oven heating process performed at a 50 °C higher annealing temperature. An electromagnetic wave simulation and a heat transfer simulation of the microwave sintering process were performed to gain a thorough understanding of the process.

  4. Effect of microstructure changes on magnetic properties of spark plasma sintered Nd-Fe-B powders

    Directory of Open Access Journals (Sweden)

    Michalski B.

    2013-01-01

    Full Text Available In this study the SPS method was applied for low RE content (8,5% at. and high RE content (13,5 % at. MQ powders. The powders were sintered in a wide range of temperature, for 5 min., under pressure of 35 MPa. The low RE content grade, densified reluctantly and gained the density close to the theoretical value only for 850 °C. The coercivity decreased gradually with increasing sintering temperature. On the other hand, the densification of the higher RE content grade powder occurred much easier and the coercivity, close to the theoretical value, was achieved already at 650 °C. The coercivity of this material also decreased with increasing sintering temperature. Microstructural studies revealed that the SPS sintering process leads to partial decomposition of the Nd2Fe14B phase. The proportion of the RE-rich and iron phases increases parallel to the increasing sintering temperature. On the basis of the current results one can conclude that fabrication of high density MQ powders based magnets by the SPS method is possible, however the powders having higher RE content should be used for this purpose and the sintering temperature as low as possible, related to density, should be kept.

  5. Borax as flux on sintering of iron Ancor Steel 1000® under glow discharge

    Science.gov (United States)

    Ariza Suarez, H. G.; Sarmiento Santos, A.; Ortiz Otálora, C. A.

    2016-02-01

    This work studies the flux effect of borax (di sodium tetraborate decahydrate) on sintering of iron Ancor Steel 1000® in abnormal glow discharge. The incidence of the percentage by weight of borax and the sintering temperature in the process were observed. Samples of powder metallurgical iron were prepared with proportions of 0.50%, 2.0%, 4.0% and 6.0% by weight of borax using the procedures of powder metallurgy. The samples were sintered at 800 and 1100°C for 30min, by glow discharge at low pressure in a reducing atmosphere composed of 20% H2+80% Ar. The samples in compact green-state were analyzed by TGA-DSC to determine the fusion process and mass loss during sintering. The analysis of microhardness and density, shows that at a sintering temperature of 800°C the sample density decreases and the sample microhardness increases with respect to sintered samples without borax. Sintered samples were analysed by DRX showing the absence of precipitates.

  6. The Effects of Solid Phase Additives on Sintering Properties of Alumina Bioceramic

    Institute of Scientific and Technical Information of China (English)

    WANG Xin-yu; LI Shi-pu; HE Jian-hua; JIANG Xin; LI Jian-hua

    2003-01-01

    In order to reduce the sintering temperature and improve the preparing conditions of alumina bioceramics,the Mg-Zr-Y composite solid phase additives were added into high purity Al2O3 micro-powder by chemical coprecipitation method.The powder was shaped under 200MPa cold isostatic pressure,and then the biscuits were sintered at 1600℃ under normal pressure.The sintered alumina materials were tested and the sintering mechanism was discussed.The results show that physical properties of the material were improved comparatively.The Mg-Zr-Y composite solid additives could promote the sintering of alumina bioceramics and the mechanism is solid phase sintering.

  7. Study of high-coercivity sintered NdFeB magnets

    Energy Technology Data Exchange (ETDEWEB)

    Bai, G. [School of Physics and Microelectronics, Shandong University, Jinan, 250100 (China); Department of Mathematics and Physics, Xi' an Institute of Technology, Xi' an, 710032 (China); Gao, R.W. [School of Physics and Microelectronics, Shandong University, Jinan, 250100 (China)]. E-mail: gaorwbox@sdu.edu.cn; Sun, Y. [School of Physics and Microelectronics, Shandong University, Jinan, 250100 (China); Han, G.B. [School of Physics and Microelectronics, Shandong University, Jinan, 250100 (China); Wang, B. [School of Physics and Microelectronics, Shandong University, Jinan, 250100 (China); Baotou Rare Earth Research Institute, Batou 014030 (China)

    2007-01-15

    Magnetic powders for sintered NdFeB magnets have been prepared by using an advanced processing method including strip casting, hydrogen decrepitation, jet milling and rubber isotropic press. The effects of Dy, Ga and Co addition on the microstructure and magnetic properties of sintered magnets have been investigated. By adopting a suitable component ratio and adjusting proper technological parameters, we have prepared high-coercivity sintered NdFeB magnets with hard magnetic properties of {sub j} H {sub c}=25.6 kOe, B {sub r}=13.2 kG and (BH){sub max}=39.9 MGOe. The temperature coefficient of coercivity of the magnets (between 20 and 150 deg. C) is -0.53% deg. C. The magnetic properties at high temperature satisfy the needs of permanent magnet motors.

  8. Use of IR pyrometry to measure free-surface temperatures of partially melted tin as a function of shock pressure

    International Nuclear Information System (INIS)

    Seifter, A.; Furlanetto, M. R.; Holtkamp, D. B.; Obst, A. W.; Payton, J. R.; Stone, J. B.; Tabaka, L. J.; Grover, M.; Macrum, G. S.; Stevens, G. D.; Turley, W. D.; Swift, D. C.; Veeser, L. R.

    2009-01-01

    Equilibrium equation of state theory predicts that the free-surface release temperature of shock-loaded tin will show a plateau at 505 K in the stress range from 19.5 to 33.0 GPa, corresponding to the solid-liquid, mixed-phase region of tin. In this paper we report free-surface temperature measurements on shock-loaded tin from 15 to 31 GPa using multiwavelength optical pyrometry. The shock waves were generated by direct contact of detonating high explosive with a tin sample, and the stress in the sample was determined by free-surface velocity measurements using photon Doppler velocimetry. We measured the emitted thermal radiance in the near IR region at four wavelengths from 1.5 to 5.0 μm. Above 25 GPa the measured free-surface temperatures were higher than the predicted 505 K, and they increased with increasing stress. This deviation may be explained by hot spots and/or variations in surface emissivity, and it may indicate a weakness in the use of a simple analysis of multiwavelength pyrometry data for conditions, such as above the melt threshold, where hot spots or emissivity variations may be significant. We are continuing to study the discrepancy to determine its cause.

  9. The physical chemistry and materials science behind sinter-resistant catalysts.

    Science.gov (United States)

    Dai, Yunqian; Lu, Ping; Cao, Zhenming; Campbell, Charles T; Xia, Younan

    2018-06-18

    Catalyst sintering, a main cause of the loss of catalytic activity and/or selectivity at high reaction temperatures, is a major concern and grand challenge in the general area of heterogeneous catalysis. Although all heterogeneous catalysts are inevitably subjected to sintering during their operation, the immediate and drastic consequences can be mitigated by carefully engineering the catalytic particles and their interactions with the supports. In this tutorial review, we highlight recent progress in understanding the physical chemistry and materials science involved in sintering, including the discussion of advanced techniques, such as in situ microscopy and spectroscopy, for investigating the sintering process and its rate. We also discuss strategies for the design and rational fabrication of sinter-resistant catalysts. Finally, we showcase recent success in improving the thermal stability and thus sinter resistance of supported catalytic systems.

  10. Sintering of uranium oxide of high specific surface area

    International Nuclear Information System (INIS)

    Bel, Alain; Francois, Bernard; Delmas, Roger; Caillat, Roger

    1959-01-01

    The extent to which a uranium oxide powder deriving from ammonium uranate or uranium peroxide lends itself to the sintering process depends largely on its specific surface area. When this is greater than 5 m 2 / g there is an optimum temperature for sintering in hydrogen. This temperature becomes less as the specific area of the powder is greater. Reprint of a paper published in Comptes rendus des seances de l'Academie des Sciences, t. 249, p. 1045-1047, sitting of 21 September 1959 [fr

  11. In situ Transmission Electron Microscopy of catalyst sintering

    DEFF Research Database (Denmark)

    DeLaRiva, Andrew T.; Hansen, Thomas Willum; Challa, Sivakumar R.

    2013-01-01

    Recent advancements in the field of electron microscopy, such as aberration correctors, have now been integrated into Environmental Transmission Electron Microscopes (TEMs), making it possible to study the behavior of supported metal catalysts under operating conditions at atomic resolution. Here......, we focus on in situ electron microscopy studies of catalysts that shed light on the mechanistic aspects of catalyst sintering. Catalyst sintering is an important mechanism for activity loss, especially for catalysts that operate at elevated temperatures. Literature from the past decade is reviewed...... along with our recent in situ TEM studies on the sintering of Ni/MgAl2O4 catalysts. These results suggest that the rapid loss of catalyst activity in the earliest stages of catalyst sintering could result from Ostwald ripening rather than through particle migration and coalescence. The smallest...

  12. Microstructure evolution during pressureless sintering of bulk oxide ceramics

    Directory of Open Access Journals (Sweden)

    Karel Maca

    2009-06-01

    Full Text Available The author’s experience concerning the infl uence of the choice of different pressureless heating schedules on the fi nal microstructure of oxide ceramic materials is summarized in the paper. Alumina, ceria, strontium titanate, as well as tetragonal (3 mol% Y2O3 and cubic (8 mol% Y2O3 zirconia were cold isostatically pressed or injection moulded and pressureless sintered with different heating schedules – namely with Constant-Rate of Heating with different dwell temperatures (CRH, with Rate-Controlled Sintering (RCS and with Two-Step Sintering (TSS. It was examined whether some of these three sintering schedules, with the same fi nal density achieved, can lead to a decrease of the grain size of sintered ceramics. The results showed that only TSS (and only for selected materials brought significant decrease of the grain size.

  13. Stress- and temperature-dependent scaling behavior of dynamic hysteresis in soft PZT bulk ceramics

    International Nuclear Information System (INIS)

    Yimnirun, R; Wongsaenmai, S; Wongmaneerung, R; Wongdamnern, N; Ngamjarurojana, A; Ananta, S; Laosiritaworn, Y

    2007-01-01

    Effects of electric field-frequency, electric field-amplitude, mechanical stress, and temperature on the hysteresis area, especially the scaling form, were investigated in soft lead zirconate titanate (PZT) bulk ceramics. The hysteresis area was found to depend on the frequency and field-amplitude with the same set of exponents as the power-law scaling for both with and without stresses. The inclusion of stresses into the power-law was obtained in the form of σ=0 > ∝ f -0.25 E 0 σ 0.45 which indicates the difference in energy dissipation between the under-stress and stress-free conditions. The power-law temperature scaling relations were obtained for hysteresis area (A) and remanent polarization P r , while the coercivity E C was found to scale linearly with temperature T. The three temperature scaling relations were also field-dependent. At fixed field amplitude E 0 , the scaling relations take the forms of ∝ T -1.1024 , P r ∼T -1.2322 and (E C0 - E C ) ∼T

  14. Microwave sintering of cordierite ceramic precursors obtained by starch direct consolidation

    International Nuclear Information System (INIS)

    Sandoval, M.L.; Talou, M.H.; Camerucci, M.A.; Universidad Nacional de Mar Del Plata; Souto, P.M. de; Kiminami, R.H.G.A.

    2009-01-01

    Microwave sintering of cordierite disk precursors (mixture of kaolin, talc and alumina) with potato starch was studied. Green disks were obtained by thermal consolidation of stable aqueous suspensions of the ceramic powders (29.6 % vol.) with potato starch (11.5 % vol.) at 75 and 85 deg C, 4h; drying (50 deg C,12h) and calcination (650 deg C, 2h). The reaction-sintering by microwave heating (power: 2.45 GHz; heating rate: 50 deg C/min) at different temperatures (1250-1330 deg C) and dwell times (10-20 min) was carried out. For comparative purposes, the reaction-sintering by conventional heating was analyzed (1330 deg C, 4h a 3 deg C/min). The evolution of the phases as a function of temperature and time was studied by XRD analysis. The developed microstructures (dense or porous) were characterized by density and porosity measurements, and SEM. The obtained results were analyzed in relation to the characteristics of starch behavior in aqueous suspension at temperature and the employed consolidation and sintering conditions. (author)

  15. Two-step flash light sintering of copper nanoparticle ink to remove substrate warping

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Chung-Hyeon; Joo, Sung-Jun [Department of Mechanical Convergence Engineering, Hanyang University, Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Kim, Hak-Sung, E-mail: kima@hanyang.ac.kr [Department of Mechanical Convergence Engineering, Hanyang University, Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Institute of Nano Science and Technology, Hanyang University, Seoul, 133-791 (Korea, Republic of)

    2016-10-30

    Highlights: • We performed the two-step flash light sintering for copper nanoparticle ink to remove substrate warping. • 12 J/cm{sup 2} of preheating and 7 J/cm{sup 2} of main sintering energies were determined as optimum conditions to sinter the copper nanoparticle ink. • The resistivity of two-step sintered copper nanoparticle ink was 3.81 μΩ cm with 5B adhesion level, 2.3 times greater than that of bulk copper. • The two-step sintered case showed a high conductivity without any substrate warping. - Abstract: A two-step flash light sintering process was devised to reduce the warping of polymer substrates during the sintering of copper nanoparticle ink. To determine the optimum sintering conditions of the copper nanoparticle ink, the flash light irradiation conditions (pulse power, pulse number, on-time, and off-time) were varied and optimized. In order to monitor the flash light sintering process, in situ resistance and temperature monitoring of copper nanoink were conducted during the flash light sintering process. Also, a transient heat transfer analysis was performed by using the finite-element program ABAQUS to predict the temperature changes of copper nanoink and polymer substrate. The microstructures of the sintered copper nanoink films were analyzed by scanning electron microscopy. Additionally, an X-ray diffraction and Fourier transform infrared spectroscopy were used to characterize the crystal phase change of the sintered copper nanoparticles. The resulting two-step flash light sintered copper nanoink films exhibited a low resistivity (3.81 μΩ cm, 2.3 times of that of bulk copper) and 5B level of adhesion strength without warping of the polymer substrate.

  16. Liquid phase sintered SiC. Processing and transformation controlled microstructure tailoring

    Directory of Open Access Journals (Sweden)

    V.A. Izhevskyi

    2000-10-01

    Full Text Available Microstructure development and phase formation processes during sintering of silicon carbide based materials with AlN-Y2O3, AlN-Yb2O3, and AlN-La2O3 sintering additives were investigated. Densification of the materials occurred by liquid-phase sintering mechanism. Proportion of alpha- and beta-SiC powders in the initial mixtures was a variable parameter, while the molar ratio of AlN/RE2O3, and the total amount of additives (10 vol. % were kept constant. Shrinkage behavior during sintering in interrelation with the starting composition of the material and the sintering atmosphere was investigated by high temperature dilatometry. Kinetics of b-SiC to a-SiC phase transformation during post-sintering heat treatment at temperatures 1900-1950 °C was studied, the degree of phase transformation being determined by quantitative x-ray analysis using internal standard technique. Evolution of microstructure resulting from beta-SiC to alpha-SiC transformation was followed up by scanning electron microscopy on polished and chemically etched samples. Transformation-controlled grain growth mechanism similar to the one observed for silicon nitride based ceramics was established. Possibility of in-situ platelet reinforced dense SiC-based ceramics fabrication with improved mechanical properties by means of sintering was shown.

  17. High efficiency particulate removal with sintered metal filters

    International Nuclear Information System (INIS)

    Kirstein, B.E.; Paplawsky, W.J.; Pence, D.T.; Hedahl, T.G.

    1981-01-01

    Because of their particle removal efficiencies and durability, sintered metal filters have been chosen for HEPA filter protection in the off-gas treatment system for the proposed Idaho National Engineering Laboratory Transuranic Waste Treatment Facility. Process evaluation of sintered metal filters indicated a lack of sufficient process design data to assume trouble-free operation. Subsequent pilot-scale testing was performed with fly ash as the test particulate. The test results showed that the sintered metal filters can have an efficiency greater than 0.9999999 for the specific test conditions used. Stable pressure drop characteristics were observed in pulsed and reversed flow blowback modes of operation. Over 4900 hours of operation were obtained with operating conditions ranging up to approximately 90 0 C and 24 volume percent water vapor in the gas stream

  18. High efficiency particulate removal with sintered metal filters

    International Nuclear Information System (INIS)

    Kirstein, B.E.; Paplawsky, W.J.; Pence, D.T.; Hedahl, T.G.

    1981-01-01

    Because of their particle removal efficiencies and durability, sintered metal filters have been chosen for high efficiency particulate air (HEPA) filter protection in the off-gas treatment system for the proposed Idaho National Engineering Laboratory Transuranic Waste Treatment Facility. Process evaluation of sintered metal filters indicated a lack of sufficient process design data to ensure trouble-free operation. Subsequence pilot scale testing was performed with flyash as the test particulate. The test results showed that the sintered metal filters can have an efficiency greater than 0.9999999 for the specific test conditions used. Stable pressure drop characteristics were observed in pulsed and reversed flow blowback modes of operation. Over 4900 hours of operation were obtained with operating conditions ranging up to approximately 90 0 C and 24 vol % water vapor in the gas stream

  19. Microstructure and superconducting properties of Bi-2223/Ag tapes fabricated in the two-step sintering process

    International Nuclear Information System (INIS)

    Lu, X.Y.; Nagata, A.; Sugawara, K.

    2008-01-01

    The microstructure and superconducting properties of Bi-2223/Ag tapes fabricated in the two-step sintering process were investigated. The tapes were then subjected to two heat treatments with an intermediate rolling. All the tapes were sintered at 835 deg. C for 24 h at initial sintering stage. A two-step sintering procedure was then used in the final sintering stage. In the first step, the tapes are sintered at 840-865 deg. C for 1 h. In the second step, they were sintered at 835 deg. C for 120 h. The results show that the first step sintering temperature has significant influence on the microstructure and the critical current density J c . The observed microstructures are consistent well with the different J c performances of the tapes first-step-sintered at different temperatures. The tape first-step-sintered at 850 deg. C, which has small secondary phases, stronger c-axis grain alignment, higher proportion of Bi-2223 phase, and no cracks, exhibits the highest J c value

  20. Influence of sintering temperature on the properties of pulsed electric current sintered hybrid coreshell powders

    Czech Academy of Sciences Publication Activity Database

    Mahmed, N.; Larismaa, J.; Heczko, Oleg; Cura, M.E.; Hannula, S.-P.

    2013-01-01

    Roč. 33, č. 12 (2013), s. 2233-2239 ISSN 0955-2219 R&D Projects: GA ČR(CZ) GAP107/11/0391 Institutional support: RVO:68378271 Keywords : sintering * silver * iron oxide * SiO 2 * phase transformation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.307, year: 2013 http://dx.doi.org/10.1016/j.jeurceramsoc.2012.12.023

  1. Characteristics Of The Porous Body Sintered By Nano-Sized Fe-Cr-Al Alloy Powder

    Directory of Open Access Journals (Sweden)

    Lee Su-In

    2015-06-01

    Full Text Available Porous metal with uniform honeycomb structure was successfully produced by sintering using Fe-Cr-Al nano powder, which was prepared by the pulsed wire evaporation (PWE in ethanol. Its process consisted of the several steps; 1 coating on the surface of polyurethane sponge with the liquid droplets generated from the ethanol-based slurry where the Fe-Cr-Al nano powders were uniformly dispersed, 2 heat treatment of debinding to remove the polyurethane sponge and 3 sintering of the porous green body formed by Fe-Cr-Al nano powders. The strut thickness of porous Fe-Cr-Al was increased by the increase of spraying times in ESP step. Also, The shrinkages and the oxidation resistance of the sintered porous body was increased with increase of sintering temperature. The optimal sintering temperature was shown to 1450°C in views to maximize the oxidation resistance and sinterability.

  2. Effect of sintering temperature and time on the mechanical ...

    Indian Academy of Sciences (India)

    Administrator

    that the shape of stress–strain curves were similar to each other, compacted ... sample sintered at 1250°C for 3 h showed an appropriate range of pore sizes and interconnectivity. The ..... Ping Li J, de Wijn J R, Van Blitterswijk C A and de Groot.

  3. Microstructure and properties of TiC-high manganese steel cermet prepared by different sintering processes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhi; Lin, Tao, E-mail: lintao@ustb.edu.cn; He, Xinbo; Shao, Huiping; Zheng, Jianshu; Qu, Xuanhui

    2015-11-25

    In the paper, the TiC −50 wt.% high manganese steel cermet was made with different sintering processes including vacuum sintering, hot pressing, microwave sintering and spark plasma sintering (SPS). The microstructure, porosity and fracture morphology of the samples were analyzed with scanning electron microscopy (SEM). Phase analysis was carried out using X-ray diffraction (XRD). The density, hardness, transverse rupture strength (TRS) and wear resistance were investigated for the effect of the sintering processes. The results showed that the core–shell structure was not clearly observed for the TiC particles in microstructures and the high manganese steel matrix is BCC structure. Hot pressing, microwave sintering and SPS are useful processes for densification of the cermet. Nearly full density and higher hardness can be reached by these three processes at a lower sintering temperature and in a shorter sintering time. However, higher TRS can be reached by means of alloying completely in a longer sintering time, for example vacuum sintering. Pre-sintering in a long sintering time at a lower sintering temperature is also useful for improving the TRS. Finally, vacuum sintering is an effective process for producing this composite with the lowest cost in the mass production. - Highlights: • TiC-high manganese steel cermets were prepared by four sintering processes. • The core–shell structure was not clearly observed for the TiC particles in microstructures. • Th high manganese steel matrix is BCC structure instead of FCC structure. • Pre-sintering before microwave sintering is also useful for improving the TRS. • Vacuum sintering can be effective way for prepare this cermet in mass production.

  4. Influences of donor dopants on the properties of PZT-PMS-PZN piezoelectric ceramics sintered at low temperatures

    International Nuclear Information System (INIS)

    Yoon, Seokjin; Choi, Jiwon; Choi, Jooyoung; Wan, Dandan; Li, Qian; Yang, Ying

    2010-01-01

    0.90Pb(Zr 0.48 Ti 0.52 )O 3 -0.05Pb(Mn 1/3 Sb 2/3 )O 3 -0.05Pb(Zn 1/3 Nb 2/3 )O 3 quaternary piezoelectric ceramics with CuO added were synthesized by using a conventional method at low sintering temperatures. CuO additive, 1.0 wt%, significantly improves the sinterability of 0.90PZT-0.05PMS-0.05PZN ceramics, lowering the sintering temperature to 900 .deg. C and showing moderate electrical properties: d 33 = 306 pC/N, Q m = 997, k p = 53.6%, tanδ = 0.50%, and ε T 33 = 1351. To obtain more optimal piezoelectric properties, we selected Bi 2 O 3 and Nb 2 O 5 as donor dopants to introduce a softening effect. The crystal structure, micro-morphology and electrical properties were studied in terms of the Bi 2 O 3 and the Nb 2 O 5 contents. Our study demonstrates that Bi 2 O 3 is very effective in improving the piezoelectric properties, causing a significant enhancement in d 33 and k p values. Particularly, 0.75-wt%-Bi 2 O 3 -added 0.90PZT-0.05PMS-0.05PZN + 1.0 wt% CuO ceramics show excellent electrical properties: d 33 = 363 pC/N, Q m = 851, k p = 59.3%, tanδ = 0.38%, and ε T 33 = 1596. On the other hand, the effect of Nb 2 O 5 on the piezoelectric properties is very complicated, 0.50 wt% Nb 2 O 5 doped 0.90PZT-0.05PMS-0.05PZN + 1.0 wt% CuO ceramics have a remarkable improvement in k p value and maintain good electrical properties: d 33 = 300 pC/N, Q m = 971, k p = 58.4%, tanδ = 0.36%, and ε T 33 = 1332.

  5. Optimization of the sintering atmosphere for high-density hydroxyapatite–carbon nanotube composites

    Science.gov (United States)

    White, Ashley A.; Kinloch, Ian A.; Windle, Alan H.; Best, Serena M.

    2010-01-01

    Hydroxyapatite–carbon nanotube (HA–CNT) composites have the potential for improved mechanical properties over HA for use in bone graft applications. Finding an appropriate sintering atmosphere for this composite presents a dilemma, as HA requires water in the sintering atmosphere to remain phase pure and well hydroxylated, yet CNTs oxidize at the high temperatures required for sintering. The purpose of this study was to optimize the atmosphere for sintering these composites. While the reaction between carbon and water to form carbon monoxide and hydrogen at high temperatures (known as the ‘water–gas reaction’) would seem to present a problem for sintering these composites, Le Chatelier's principle suggests this reaction can be suppressed by increasing the concentration of carbon monoxide and hydrogen relative to the concentration of carbon and water, so as to retain the CNTs and keep the HA's structure intact. Eight sintering atmospheres were investigated, including standard atmospheres (such as air and wet Ar), as well as atmospheres based on the water–gas reaction. It was found that sintering in an atmosphere of carbon monoxide and hydrogen, with a small amount of water added, resulted in an optimal combination of phase purity, hydroxylation, CNT retention and density. PMID:20573629

  6. Microwave sintering of ZnO nanopowders and characterization for gas sensing

    International Nuclear Information System (INIS)

    Bai Zikui; Xie Changsheng; Zhang Shunping; Xu Weilin; Xu Jie

    2011-01-01

    Thick film gas sensors based on ZnO nanopowders were fabricated by using microwave sintering. The surface and cross section morphologies were characterized by field-emission scanning electron microscopy (FE-SEM). The stability of the microstructure was studied by impedance spectroscopy. The results showed that the shape of the nanoparticles was not changed through microwave sintering, and the thick films had the more dense microstructures than that by muffle oven sintering. The resistance-temperature characteristic and the responses to toluene, methanol and formaldehyde revealed that the microwave sintering technique could effectively control the growth of ZnO nanoparticles, realize the uniform sintering of thick film, gain the stable microstructure and improve the response of sensor. In addition, the formative mechanism of the thick film microstructure was proposed according to microwave sintering mechanism.

  7. Effect of additives in reducing ash sintering and slagging in biomass combustion applications

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Liang

    2012-07-01

    The objective of this study was to investigate sintering and slagging behaviors of biofuels during combustion processes. Biofuels tested are derived from the agricultural sector, wood and furniture industry as well as from municipal sewage sludge. It was also the aim to test and evaluate additives that can prevent and abate biomass ash sintering by conducting laboratory and industrial scale tests. Sintering characteristics of sewage sludge ashes at elevated temperatures were investigated by means of different laboratory methods. Utilizing of phosphorus participation agents Al2(SO4)3 or Fe2(SO4)3 caused substantially high contents of aluminum or iron in the studied sewage sludge ashes, respectively. High initial melting temperatures over 1100 degrees C and low sintering tendencies were observed from the sewage sludge ashes rich in aluminum. It was related to presence and formation of the inert mineral phases such as aluminum oxide, quartz and calcium aluminum silicates in the aluminum rich sewage sludge ashes at elevated temperatures. A low melting temperature, about 994 degree C, was detected from the iron rich sewage sludge ash. Severe sintering of this sewage sludge ash was mainly due to generation of low temperature melting iron silicates, as results of interaction and re-assemblage of hematite (Fe2O3), quartz (SiO2) and alkali feldspars under heating. Fusion behaviors of corn cob ashes under rising temperatures were characterized. The work revealed that chemical compositions of corn cob ashes are dominated by potassium, silicon, chlorine and phosphorus. However, the relative concentrations of these principal elements are considerably different for three studied corn cob ashes, which have major influence on ash transformation reactions and sintering tendencies. Compared with the other two, the chemical composition of the Waimanalo corn cob (WCob) was characterized with the highest K/Cl, Si/(Ca+Mg) and (Si+P+K)/(Ca+Mg) molar ratios, which was favorable for

  8. Sintering and microstructure of ice: a review

    International Nuclear Information System (INIS)

    Blackford, Jane R

    2007-01-01

    Sintering of ice is driven by the thermodynamic requirement to decrease surface energy. The structural morphology of ice in nature has many forms-from snowflakes to glaciers. These forms and their evolution depend critically on the balance between the thermodynamic and kinetic factors involved. Ice is a crystalline material so scientific understanding and approaches from more conventional materials can be applied to ice. The early models of solid state ice sintering are based on power law models originally developed in metallurgy. For pressure sintering of ice, these are based on work on hot isostatic pressing of metals and ceramics. Recent advances in recognizing the grain boundary groove geometry between sintering ice particles require models that use new approaches in materials science. The newer models of sintering in materials science are beginning to incorporate more realistic processing conditions and microstructural complexity, and so there is much to be gained from applying these to ice in the future. The vapour pressure of ice is high, which causes it to sublime readily. The main mechanism for isothermal sintering of ice particles is by vapour diffusion; however other transport mechanisms certainly contribute. Plastic deformation with power law creep combined with recrystallization become important mechanisms in sintering with external pressure. Modern experimental techniques, low temperature scanning electron microscopy and x-ray tomography, are providing new insights into the evolution of microstructures in ice. Sintering in the presence of a small volume fraction of the liquid phase causes much higher bond growth rates. This may be important in natural snow which contains impurities that form a liquid phase. Knowledge of ice microstructure and sintering is beneficial in understanding mechanical behaviour in ice friction and the stability of snow slopes prone to avalanches. (topical review)

  9. Effect of sintering temperature on microstructure and transport properties of Li3xLa2/3-xTiO3 with different lithium contents

    International Nuclear Information System (INIS)

    Geng Hongxia; Lan Jinle; Mei Ao; Lin Yuanhua; Nan, C.W.

    2011-01-01

    Li 3x La 2/3-x TiO 3 (LLTO) powder with different lithium contents (nominal 3x = 0.03-0.75) was synthesized via a simple sol-gel route and then calcination of gel-derived precursor at 900 o C which was much below the calcination temperature required for synthesizing the LLTO powder via solid state reaction route. The LLTO powder of sub-micron sized particles, derived from such sol-gel method, showed almost no aggregation. Starting from the sol-gel-derived powder, the LLTO ceramics with different lithium contents were prepared at different sintering temperatures of 1250 and 1350 o C. It demonstrated that our sol-gel route is quite simple and convenient compared to the previous sol-gel method and requires lower temperature for the LLTO. Our results also illustrated that lithium content significantly affects the structure and ionic conductivity of the LLTO ceramics. The dependence of the ionic conductivity on the lithium content, lattice structure, microstructure and sintering temperature was investigated systematically.

  10. Process for the production of metal nitride sintered bodies and resultant silicon nitride and aluminum nitride sintered bodies

    Science.gov (United States)

    Yajima, S.; Omori, M.; Hayashi, J.; Kayano, H.; Hamano, M.

    1983-01-01

    A process for the manufacture of metal nitride sintered bodies, in particular, a process in which a mixture of metal nitrite powders is shaped and heated together with a binding agent is described. Of the metal nitrides Si3N4 and AIN were used especially frequently because of their excellent properties at high temperatures. The goal is to produce a process for metal nitride sintered bodies with high strength, high corrosion resistance, thermal shock resistance, thermal shock resistance, and avoidance of previously known faults.

  11. Liquid Phase Sintering of Highly Alloyed Stainless Steel

    DEFF Research Database (Denmark)

    Mathiesen, Troels

    1996-01-01

    Liquid phase sintering of stainless steel is usually applied to improve corrosion resistance by obtaining a material without an open pore system. The dense structure normally also give a higher strength when compared to conventional sintered steel. Liquid phase sintrering based on addition...... of boride to AISI 316L type steels have previously been studied, but were found to be sensitive to intergranular corrosion due to formation of intermetallic phases rich in chromium and molybdenum. In order to improve this system further, new investigations have focused on the use of higher alloyed stainless...... steel as base material. The stainless base powders were added different amounts and types of boride and sintered in hydrogen at different temperatures and times in a laboratory furnace. During sintering the outlet gas was analyzed and subsequently related to the obtained microstructure. Thermodynamic...

  12. Pressureless sintering behavior of injection molded alumina ceramics

    Directory of Open Access Journals (Sweden)

    Liu W.

    2014-01-01

    Full Text Available The pressureless sintering behaviors of two widely used submicron alumina (MgOdoped and undoped with different solid loadings produced by injection molding have been studied systematically. Regardless of the sinterability of different powders depending on their inherent properties, solid loading plays a critical role on the sintering behavior of injection molded alumina, which greatly determines the densification and grain size, and leads to its full densification at low temperatures. As compared to the MgO-doped alumina powder, the undoped specimens exhibit a higher sinterability for its smaller particle size and larger surface area. While full densification could be achieved for MgO-doped powders with only a lower solid loading, due to the fact that MgO addition can reduce the detrimental effect of the large pore space on the pore-boundary separation.

  13. Coupling in-situ X-ray micro- and nano-tomography and discrete element method for investigating high temperature sintering of metal and ceramic powders

    Directory of Open Access Journals (Sweden)

    Yan Zilin

    2017-01-01

    Full Text Available The behaviour of various powder systems during high temperature sintering has been investigated by coupling X-ray microtomography and discrete element method (DEM. Both methods are particularly relevant to analyse particle interactions and porosity changes occurring during sintering. Two examples are presented. The first one deals with a copper powder including artificially created pores which sintering has been observed in situ at the European synchrotron and simulated by DEM. 3D images with a resolution of 1.5 μm have been taken at various times of the sintering cycle. The comparison of the real displacement of particle centers with the displacement derived from the mean field assumption demonstrates significant particle rearrangement in some regions of the sample. Although DEM simulation showed less rearrangement, it has been able to accurately predict the densification kinetics. The second example concerns multilayer ceramic capacitors (MLCCs composed of hundreds of alternated metal electrode and ceramic dielectric layers. The observation of Ni-based MLCCs by synchrotron nanotomography at Argon National Laboratory with a spatial resolution between 10 and 50 nm allowed understanding the origin of heterogeneities formed in Ni layers during sintering. DEM simulations confirmed this analysis and provided clues for reducing these defects.

  14. Performance and Reliability of Bonded Interfaces for High-Temperature Packaging. Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    DeVoto, Douglas [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-04-01

    Current generation automotive power electronics packages utilize silicon devices and lead-free solder alloys. To meet stringent technical targets for 2020 and beyond (for cost, power density, specific power, efficiency and reliability), wide-bandgap devices are being considered since they offer advantages such as operation at higher frequencies, voltages, and temperatures. Traditional power electronics packages must be redesigned to utilize the full potential of wide-bandgap devices, and the die- and substrate-attach layers are key areas where new material development and validation is required. Present solder alloys do not meet the performance requirements for these new package designs while also meeting cost and hazardous substance restrictions. Sintered silver (Ag) promises to meet the needs for die- and substrate-attach interfaces but synthesis optimization and reliability evaluation must be completed. Sintered Ag material was proposed as an alternative solution in power electronics packages almost 20 years back. However, synthesis pressure requirements up 40 MPa caused a higher complexity in the production process and more stringent flatness specifications for the substrates. Recently, several manufacturers have developed sintered Ag materials that require lower (3-5 MPa) or even no bonding pressures. Degradation mechanisms for these sintered Ag materials are not well known and need to be addressed. We are addressing these aspects to some extent in this project. We are developing generalized (i.e., independent of geometry) stress intensity factor versus cycles-to-failure relations for sintered Ag. Because sintered Ag is a relatively new material for automotive power electronics, the industry currently does not have a good understanding of recommended synthesis parameters or expected reliability under prescribed conditions. It is an important deliverable of this project to transfer findings to industry to eliminate barriers to using sintered Ag as a viable and

  15. Effects of Heat Treatment on the Microstructures and High Temperature Mechanical Properties of Hypereutectic Al-14Si-Cu-Mg Alloy Manufactured by Liquid Phase Sintering Process

    Science.gov (United States)

    Heo, Joon-Young; Gwon, Jin-Han; Park, Jong-Kwan; Lee, Kee-Ahn

    2018-05-01

    Hypereutectic Al-Si alloy is an aluminum alloy containing at least 12.6 wt.% Si. It is necessary to evenly control the primary Si particle size and distribution in hypereutectic Al-Si alloy. In order to achieve this, there have been attempts to manufacture hypereutectic Al-Si alloy through a liquid phase sintering. This study investigated the microstructures and high temperature mechanical properties of hypereutectic Al-14Si-Cu-Mg alloy manufactured by liquid phase sintering process and changes in them after T6 heat treatment. Microstructural observation identified large amounts of small primary Si particles evenly distributed in the matrix, and small amounts of various precipitation phases were found in grain interiors and grain boundaries. After T6 heat treatment, the primary Si particle size and shape did not change significantly, but the size and distribution of CuAl2 ( θ) and AlCuMgSi ( Q) changed. Hardness tests measured 97.36 HV after sintering and 142.5 HV after heat treatment. Compression tests were performed from room temperature to 300 °C. The results represented that yield strength was greater after heat treatment (RT 300 °C: 351 93 MPa) than after sintering (RT 300 °C: 210 89 MPa). Fracture surface analysis identified cracks developing mostly along the interface between the primary Si particles and the matrix with some differences among temperature conditions. In addition, brittle fracture mode was found after T6 heat treatment.

  16. Mechanisms and mechanics of shape loss during supersolidus liquid-phase sintering

    Science.gov (United States)

    Lal, Anand

    Rapid sinter densification of relatively coarse prealloyed powders is possible by exceeding the solidus temperature in an approach termed supersolidus liquid phase sintering (SLPS). However, narrow processing windows for densification without distortion often limit this process. The liquid films at the grain boundaries that are responsible for densification also reduce the structural rigidity of components. Hence, components tend to slump under their own weight. Thus, the present study investigates shape loss during SLPS and rationalizes the processing and material factors with regard to separating densification from distortion. Experiments are performed on various prealloyed powders, including bronze, 316L stainless steel, and T15 tool steel. Differential thermal analysis, dilatometry, and in situ video imaging of sintering compacts are used to follow melting, densification, and distortion, respectively. Further, density and dimensional measurements are performed on sintered compacts. Results indicate a dependence of distortion on the sintering temperature and time, compact size, and melting behavior of the alloy. It is shown that the sintering temperature window, where high-density, precise components are obtained, can be widened for 316L stainless steel by boron addition. For the first time, a beam bending technique is used to measure the macroscopic apparent viscosity of semisolid bronze. The viscosity drops with temperature above the solidus and lies in the range of 108 to 106 Pa-s. Additionally, the in situ transverse rupture strength of bronze is measured to demonstrate the softening above the solidus temperature. Further, microstructural measurements are performed to enable correlation with the slumping behavior and viscosity. A model combining the deformation mechanisms, driving forces, and microstructural characteristics is developed to predict the conditions for densification and distortion onset. The microstructure is also correlated with the magnitude

  17. CALCIUM OXIDE SINTERING IN ATMOSPHERES CONTAINING WATER AND CARBON DIOXIDE

    Science.gov (United States)

    The paper gives results of measurements of the effects of water vapor and CO2 on the sintering rate of nascent CaO, as a function of partial pressure and temperature using CaO prepared by rapid decomposition of CaCO3 and CA(OH)2. Each gas strongly catalyzed the sintering process ...

  18. Analysis of thermal demagnetization behavior of Nd–Fe–B sintered magnets using magnetic domain observation

    International Nuclear Information System (INIS)

    Takezawa, Masaaki; Ikeda, Soichiro; Morimoto, Yuji; Kabashima, Hisayuki

    2016-01-01

    We used magnetic domain observation to statistically observe the thermal demagnetization behavior of Nd–Fe–B sintered magnets at elevated temperatures up to 150 °C. Simultaneous magnetization reversal in a hundred adjacent grains occurred at 90 °C because of the magnetic interaction among the grains beyond grain boundaries in the Dysprosium (Dy)-free low-coercivity magnet. Conversely, simultaneous magnetization reversal in a hundred grains did not occur in the Dy-added high-coercivity magnets, and the demagnetizing ratio steadily increased with temperature. Furthermore, the addition of Dy induced high thermal stability by eliminating the simultaneous thermal demagnetization, which was caused by the magnetic interaction among the grains.

  19. Analysis of thermal demagnetization behavior of Nd–Fe–B sintered magnets using magnetic domain observation

    Energy Technology Data Exchange (ETDEWEB)

    Takezawa, Masaaki, E-mail: take@ele.kyutech.ac.jp; Ikeda, Soichiro; Morimoto, Yuji [Department of Applied Science for Integrated System Engineering, Faculty of Engineering, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata-ku, Kitakyushu, Fukuoka 804-8550 (Japan); Kabashima, Hisayuki [Mazda Motor Corporation,3-1, Shinchi, Fuchu-cho, Aki-gun Hiroshima 730-8670 (Japan)

    2016-05-15

    We used magnetic domain observation to statistically observe the thermal demagnetization behavior of Nd–Fe–B sintered magnets at elevated temperatures up to 150 °C. Simultaneous magnetization reversal in a hundred adjacent grains occurred at 90 °C because of the magnetic interaction among the grains beyond grain boundaries in the Dysprosium (Dy)-free low-coercivity magnet. Conversely, simultaneous magnetization reversal in a hundred grains did not occur in the Dy-added high-coercivity magnets, and the demagnetizing ratio steadily increased with temperature. Furthermore, the addition of Dy induced high thermal stability by eliminating the simultaneous thermal demagnetization, which was caused by the magnetic interaction among the grains.

  20. Investigation of the sinterability of ZrO_2 (Y_2O3_)-bioglass dental ceramics by dilatometry

    International Nuclear Information System (INIS)

    Bicalho, Luiz de Araujo; Barboza, Miguel Ribeiro Justino; Santos, Claudinei dos; Habibe, Alexandre Fernandes; Magnago, Roberto de Oliveira

    2013-01-01

    The objective of this work is to study by dilatometry, the liquid phase sintering of ZrO_2 ceramics using bioglass as sintering additive. Y_2 O_3 - stabilized ZrO_2 powders were mixed with 3, 5 and 10 wt% of bioglass with the composition based on 3CaOP_2 O_5 -MgO-SiO_2 system. Specimens were prepared by cold uniaxial pressing under 80MPa and the green relative density was determined. The sintering behavior was studied by measuring the linear shrinkage of samples in a dilatometer in relation to the temperature. The heating and cooling rates used in this study were 10 deg C/min and the maximum sintering temperatures was 1300 deg C with a 120 min isothermal holding time. The results of the shrinkage and shrinkage rates in regard of the sintering temperature and time were related to the amount of bioglass added. The sintered samples were characterized by X-ray diffraction analysis and their relative density. SEM micrographs indicates similar microstructure, and an increase of bioglass content leads to increasing of monoclinic ZrO_2 phase content. The dilatometry results indicate a reduction of the temperature where a maximum shrinkage rate occurs, as function of bioglass increasing. Furthermore, the use of liquid phase reduces the maximum sintering temperature of 1447 deg C to 1250-1280 deg C. (author)

  1. COMPACTION OF LITHIUM-SILICATE CERAMICS USING SPARK PLASMA SINTERING

    Directory of Open Access Journals (Sweden)

    Tomas Frantisek Kubatik

    2016-12-01

    Full Text Available This paper deals with the compaction of ceramics based on lithium-silicate by spark plasma sintering (SPS. The initial powder was prepared by calcination in a resistance furnace at a temperature of 1300 °C with the ratio of Li/Si = 1. Compacting by SPS was carried out at temperatures of 800 - 1000 °C with a maximum pressure of 80 MPa. Samples with open porosity of less than 1 % were prepared at the temperature of 1000 °C. According to the quantitative Rietveld refinement of x-ray diffraction data, the dominant phases in all samples were Li₂Si₂O₅ and Li₂SiO₃, together representing over 80 wt. % of the sintered material.

  2. Implementation Challenges for Sintered Silicon Carbide Fiber Bonded Ceramic Materials for High Temperature Applications

    Science.gov (United States)

    Singh, M.

    2011-01-01

    During the last decades, a number of fiber reinforced ceramic composites have been developed and tested for various aerospace and ground based applications. However, a number of challenges still remain slowing the wide scale implementation of these materials. In addition to continuous fiber reinforced composites, other innovative materials have been developed including the fibrous monoliths and sintered fiber bonded ceramics. The sintered silicon carbide fiber bonded ceramics have been fabricated by the hot pressing and sintering of silicon carbide fibers. However, in this system reliable property database as well as various issues related to thermomechanical performance, integration, and fabrication of large and complex shape components has yet to be addressed. In this presentation, thermomechanical properties of sintered silicon carbide fiber bonded ceramics (as fabricated and joined) will be presented. In addition, critical need for manufacturing and integration technologies in successful implementation of these materials will be discussed.

  3. Fabrication and microstructure of CNTs activated sintered W–Nb alloys

    International Nuclear Information System (INIS)

    Sha, J.J.; Hao, X.N.; Li, J.; Wang, Z.

    2014-01-01

    Highlights: • Fabrication and microstructure of CNTs activated sintered W-Nb alloys were investigated. • CNTs could significantly enhance the sintering ability of W-Nb alloys at a low temperature. • The improved sintering was due to the enhanced diffusion of W atoms along the GBs induced by CNTs. • The grain size in CNTs activated sintered W-Nb alloys decreased with increasing the Nb content. -- Abstract: In order to fabricate highly dense W-based alloys at low temperature, in the present work, high-energy ball milling and hot pressing were applied to fabricate W–Nb alloys (mass fraction of Nb varied from 0.5% to 5%), where CNTs were used as the activated sintering additives. The phase composition and microstructure were characterized by XRD and SEM equipped with EDS, respectively. The study found coupled effects of CNTs activated sintering and Nb addition on the enhanced sintering ability and refined microstructure of W at 1500 °C. The main results are: (i) XRD characterization revealed that the high-energy ball milling could significantly reduce the crystallite size of W particles and increase lattice distortion, which would enhance the sintering behavior of W alloys. (ii) The addition of CNTs to W (W–0.1CNTs) led to the formation of nanoscale interfacial layer between W grains during hot pressing, resulting in considerable densification and grain growth. Based on this result, it suggested that the activated sintering of W in the present work is due to an enhanced diffusion of W atoms along the GBs induced by CNTs. (iii) With the addition of CNTs to W–Nb alloys, the densification was improved again, but was not so obvious. The optimal densification was obtained for the W–0.1CNTs–1Nb specimen. Moreover, the microstructure characterization in CNTs activated sintered W–Nb alloys indicated that the distribution of sphere-like W(Nb) solid solution particles and decreased W grain sizes with increasing Nb content are the main microstructure features

  4. Laser sintering of ceramics of Y2O3 pure e doped

    International Nuclear Information System (INIS)

    Oliveira, T.C. de; Goncalves, R.S.; Silva, R.S. da

    2012-01-01

    The Yttria (Y 2 O 3 ) is one of the most promising materials for refractory and optical applications due mainly to its high corrosion resistance, wide range of optical transmission and high melting point. However, due to its high melting point, ceramic bodies to obtain high density Y 2 O 3 high temperatures and require special sintering. Recently it has been proposed in the literature a new method of sintering in which a CO 2 laser, in continuous mode, is employed as the primary source of heat during sintering. Irradiation with laser light produces heating surface at elevated temperatures in a time interval of a few seconds, allowing to obtain dense ceramic bodies at elevated temperatures and with different properties from those sintered by conventional methods. In this paper, Y 2 O 3 powders of pure and doped with Mn, Ca and Zn were synthesized by the polymeric precursors and after calcination at 600 ° C/4h showed single phase. For the production and characterization of the samples used techniques DTA / TG, XRD Dilatometry, SEM and Radioluminescence. The sintered ceramics had a high relative density and strong dependence on the dopant used, which accelerate the densification process. Measures Radioluminescence showed characteristic peaks of Y 2 O 3 and dependence on the dopant used. (author)

  5. Low density, variation in sintered density and high nitrogen in uranium dioxide

    International Nuclear Information System (INIS)

    Balakrishna, Palanki; Murty, B.N.; Anuradha, M.; Nageshwara Rao, P.; Jayaraj, R.N.; Ganguly, C.

    2000-01-01

    Low sintered density and density variation in sintered UO 2 were found to have been caused by non uniformity in the granule feed characteristics to the compacting press. The nitrogen impurity content of sintered UO 2 was found to be sintering furnace related and associated with low sintered density pellets. The problems of low density, variation in sintered density and high nitrogen could be solved by the replacement of the prevailing four punch precompaction by a single punch process; by the introduction of a vibro-sieve for the separation of fine particles from the press feed granules; by innovation in the powder feed shoe design for simultaneous and uniform dispensing of powder in all the die holes; by increasing the final compaction pressure and by modifying the gas flows and preheat temperature in the sintering furnace. (author)

  6. Compression Molding and Novel Sintering Treatments for Alnico Type-8 Permanent Magnets in Near-Final Shape with Preferred Orientation

    Science.gov (United States)

    Kassen, Aaron G.; White, Emma M. H.; Tang, Wei; Hu, Liangfa; Palasyuk, Andriy; Zhou, Lin; Anderson, Iver E.

    2017-09-01

    Economic uncertainty in the rare earth (RE) permanent magnet marketplace, as well as in an expanding electric drive vehicle market that favors permanent magnet alternating current synchronous drive motors, motivated renewed research in RE-free permanent magnets like "alnico," an Al-Ni-Co-Fe alloy. Thus, high-pressure, gas-atomized isotropic type-8H pre-alloyed alnico powder was compression molded with a clean burn- out binder to near-final shape and sintered to density >99% of cast alnico 8 (full density of 7.3 g/cm3). To produce aligned sintered alnico magnets for improved energy product and magnetic remanence, uniaxial stress was attempted to promote controlled grain growth, avoiding directional solidification that provides alignment in alnico 9. Successful development of solid-state powder processing may enable anisotropically aligned alnico magnets with enhanced energy density to be mass-produced.

  7. Sintered nuclear fuel compact and method for its production

    International Nuclear Information System (INIS)

    Peehs, M.; Dorr, W.

    1988-01-01

    This patent describes a method of producing a sintered nuclear fuel compact with which reactivity losses in a nuclear reactor having long fuel element cycles are avoided, which comprises, forming a compact of a mixture of powders containing at least one nuclear fuel oxide selected from the group consisting of UO/sub 2/, PuO/sub 2/, ThO/sub 2/, mixed oxide (U, Pu)O/sub 2/ and mixed oxide (U, Th)O/sub 2/, at least one neutron poison selected from the group consisting of UB/sub x/, where x=2; 4 and/or 12 and B/sub 4/C, and sintering the compact of the mixture of powders so that the neutron piston is embedded in a sintered matrix of the nuclear fuel oxide at a treatment temperature in a range from 1000 0 C to 1400 0 C in an oxidizing sintering atmosphere, and then heat treating the sintered compact in a reducing gas atmosphere

  8. Electro sinter forging of titanium disks

    DEFF Research Database (Denmark)

    Cannella, Emanuele; Nielsen, Chris Valentin; Bay, Niels Oluf

    by measuring the electrical resistance during the sintering process [5], since low electrical resistance corresponds to high density. It is, however, necessary to be aware that increased temperature, on the other hand, increases the resistance. SEM micrographs and Computed Tomography (CT) are carried out......Electro sinter forging (ESF) is a new sintering process based on the principle of electrical Joule heating. In the present work, middle frequency direct current (MFDC) was flowing through the powder compact, which was under mechanical pressure. The main parameters are the high electrical current......, up to 10 kA, and the low voltage, 1-2 V, resulting in heat generation in the powder. Figure 1 shows the experimental setup. The punches were made of a conductive material; namely a copper alloy. The die, which has to be electrically insulating, was made of alumina. The ESF process takes 3-4s...

  9. Al2O3 - TiO2-A simple sol-gel strategy to the synthesis of low temperature sintered alumina-aluminium titanate composites through a core-shell approach

    International Nuclear Information System (INIS)

    Jayasankar, M.; Ananthakumar, S.; Mukundan, P.; Wunderlich, W.; Warrier, K.G.K.

    2008-01-01

    A simple sol-gel based core-shell approach for the synthesis of alumina-aluminium titanate composite is reported. Alumina is the core and titania is the shell. The coating of titania has been performed in aqueous medium on alumina particle by means of heterocoagulation of titanyl chloride. Further heat treatment results in low temperature formation of aluminium titanate as well as low temperature sintering of alumina-aluminium titanate composites. The lowering of the reaction temperature can be attributed to the maximisation of the contact surface between the reactants due to the core-shell approach involving nanoparticles. The mechanism of formation of aluminium titanate and the observations on densification features in the present process are compared with that of mixture of oxides under identical conditions. The sintered alumina-aluminium titanate composite has an average grain size of 2 μm. - Graphical abstract: The article presents a simple sol-gel process through core-shell approach to the synthesis of low temperature sintered alumina-aluminium titanate. The lowering of the reaction temperature can be attributed to the maximisation of the contact surface between the reactant due to the core-shell approach. This material showed the better microstructure control compared to the standard solid-state mixing route

  10. Influence of ZnO/MgO substitution on sintering, crystallisation, and bio-activity of alkali-free glass-ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Kapoor, Saurabh [Department of Materials and Ceramics Engineering, University of Aveiro, CICECO, 3810-193 Aveiro (Portugal); Goel, Ashutosh [Department of Materials Science and Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854-8065 (United States); Correia, Ana Filipa [Department of Materials and Ceramics Engineering, University of Aveiro, CICECO, 3810-193 Aveiro (Portugal); Pascual, Maria J. [Instituto de Cerámica y Vidrio (CSIC), Kelsen 5, Campus de Cantoblanco, 28049 Madrid (Spain); Lee, Hye-Young; Kim, Hae-Won [Institute of Tissue Regeneration Engineering (ITREN) & College of Dentistry, Dankook University, Cheonan 330714 (Korea, Republic of); Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Centre for Regenerative Medicine, Dankook University, Cheonan 330714 (Korea, Republic of); Ferreira, José M.F., E-mail: jmf@ua.pt [Department of Materials and Ceramics Engineering, University of Aveiro, CICECO, 3810-193 Aveiro (Portugal)

    2015-08-01

    The present study reports on the influence of partial replacement of MgO by ZnO on the structure, crystallisation behaviour and bioactivity of alkali-free bioactive glass-ceramics (GCs). A series of glass compositions (mol%): 36.07 CaO–(19.24 − x) MgO–x ZnO–5.61 P{sub 2}O{sub 5}–38.49 SiO{sub 2}–0.59 CaF{sub 2} (x = 2–10) have been synthesised by melt–quench technique. The structural changes were investigated by solid-state magic angle spinning nuclear magnetic resonance (MAS-NMR), X-ray diffraction and differential thermal analysis. The sintering and crystallisation behaviours of glass powders were studied by hot-stage microscopy and differential thermal analysis, respectively. All the glass compositions exhibited good densification ability resulting in well sintered and mechanically strong GCs. The crystallisation and mechanical behaviour were studied under non-isothermal heating conditions at 850 °C for 1 h. Diopside was the primary crystalline phase in all the GCs followed by fluorapatite and rankinite as secondary phases. Another phase named petedunnite was identified in GCs with ZnO content > 4 mol. The proliferation of mesenchymal stem cells (MSCs) and their alkaline phosphatase activity (ALP) on GCs was revealed to be Zn-dose dependent with the highest performance being observed for 4 mol% ZnO. - Highlights: • The addition of zinc to glasses decreased T{sub g} and promoted crystallisation. • Zinc enhanced the sintering ability and increased mechanical strength by 36%. • The apatite formation ability decreased with increasing Zn contents. • Zinc stimulated mesenchymal stem cell proliferation in a dose dependent manner.

  11. Influence of ZnO/MgO substitution on sintering, crystallisation, and bio-activity of alkali-free glass-ceramics

    International Nuclear Information System (INIS)

    Kapoor, Saurabh; Goel, Ashutosh; Correia, Ana Filipa; Pascual, Maria J.; Lee, Hye-Young; Kim, Hae-Won; Ferreira, José M.F.

    2015-01-01

    The present study reports on the influence of partial replacement of MgO by ZnO on the structure, crystallisation behaviour and bioactivity of alkali-free bioactive glass-ceramics (GCs). A series of glass compositions (mol%): 36.07 CaO–(19.24 − x) MgO–x ZnO–5.61 P 2 O 5 –38.49 SiO 2 –0.59 CaF 2 (x = 2–10) have been synthesised by melt–quench technique. The structural changes were investigated by solid-state magic angle spinning nuclear magnetic resonance (MAS-NMR), X-ray diffraction and differential thermal analysis. The sintering and crystallisation behaviours of glass powders were studied by hot-stage microscopy and differential thermal analysis, respectively. All the glass compositions exhibited good densification ability resulting in well sintered and mechanically strong GCs. The crystallisation and mechanical behaviour were studied under non-isothermal heating conditions at 850 °C for 1 h. Diopside was the primary crystalline phase in all the GCs followed by fluorapatite and rankinite as secondary phases. Another phase named petedunnite was identified in GCs with ZnO content > 4 mol. The proliferation of mesenchymal stem cells (MSCs) and their alkaline phosphatase activity (ALP) on GCs was revealed to be Zn-dose dependent with the highest performance being observed for 4 mol% ZnO. - Highlights: • The addition of zinc to glasses decreased T g and promoted crystallisation. • Zinc enhanced the sintering ability and increased mechanical strength by 36%. • The apatite formation ability decreased with increasing Zn contents. • Zinc stimulated mesenchymal stem cell proliferation in a dose dependent manner

  12. Drastic decrease of Ba(Zn1/3Ta2/3O3 sintering temperature by lithium salts and glass phase addition

    Directory of Open Access Journals (Sweden)

    Marinel, S.

    2011-04-01

    Full Text Available The complex perovskite oxide Ba(Zn1/3Ta2/3O3 (BZT has been studied for its attractive dielectric properties which make this material interesting for applications such as multilayer ceramics capacitors or hyperfrequency resonators. Nevertheless, BZT ceramic requires high temperature to be correctly sintered (≅1450°C, that is too high to envisage a silver co-sintering (Tf(Ag = 961°C. For this reason, the lowering of the sintering temperature of BZT by glass phase’s additions has been investigated. This material is sinterable at low temperature with combined glass phase –lithium salt additions, and exhibits, at 1MHz very low dielectric losses combined with relatively high dielectric constant and a good stability of this later versus temperature. The 5 wt% of ZnO-SiO2-B2O3 glass phase and 1 wt% of LiF added BZT sample sintered at 900°C exhibits a relative density higher than 95% and attractive dielectric properties: a dielectric constant εr of 32, low dielectrics losses (tan (δ-3 and a temperature coefficient of permittivity τε of -10ppm/°C. Their good dielectric properties and their compatibility with silver electrodes, make these ceramics suitable for L.T.C.C applications.Se ha estudiado el óxido complejo con estructura tipo perovskita Ba (Zn1/3Ta2/3 O3 (BZT. Sus atractivas propiedades dieléctricas le hacen muy interesante para aplicaciones como condensadores cerámicos multicapa o resonadores de microondas. No obstante, los cerámicos de BZT requieren temperaturas de sinterización superiores a 1450 ° C, que es muy alta para abordar un proceso de co-sinterización con electrodos de plata (Tf (Ag = 961 ° C. Para ello, se ha estudiado la bajada de la temperatura de sinterización del BZT mediante la adición de una fase vítrea. La suma combinada de la fase vítrea y la sal de litio lleva la sinterización de este material a temperaturas bajas. Las propiedades dieléctricas presentan pérdidas muy bajas, constante diel

  13. Translucence in dental prosthesis based on zirconia ceramics: effect of the sintering parameters

    International Nuclear Information System (INIS)

    Santos, C.

    2011-01-01

    In this work the translucence of Zirconia dental ceramics was evaluated as function of sintering conditions (temperature and isothermal holding time). Samples with 15x15x1mm, were sintered at 1450 to 1600 deg C, with holding of 2h or 4h. Sintered samples were characterized by relative density, crystalline phases and microstructural aspects. Full density was obtained in samples sintered at 1530 and 1600 deg C, which presented higher grain sizes. Na increasing of translucence was observed in samples sintered at 1530 and 1600, correlating these properties with increasing of density and grain size of the samples. (author)

  14. An investigation in texturing high Tc superconducting ceramics by creep sintering

    International Nuclear Information System (INIS)

    Regnier, P.; Deschanels, X.; Maurice, F.; Schmirgeld, L.; Aguillon, C.; Senoussi, S.; Mac Carthy, M.; Tatlock, G.J.

    1991-01-01

    We study in detail the possibility of high-T c superconducting ceramics texturing by high pressing them during sintering. We show texture variations as a function of the applied load, of the deformation, of the temperature, and of the sintering stage length, of the rate of variation of temperature, of the material nature in contact with ceramic and of the original powder quality. We present results obtained by optical microscopy, electronic microscopy, X-rays, and local chemical analysis

  15. Maps of Fe-Al phases formation kinetics parameters during isothermal sintering

    Energy Technology Data Exchange (ETDEWEB)

    Pochec, Ewelina, E-mail: epochec@wat.edu.pl [Department of Advanced Materials and Technology, Military University of Technology (Poland); Jozwiak, Stanislaw; Karczewski, Krzysztof; Bojar, Zbigniew [Department of Advanced Materials and Technology, Military University of Technology (Poland)

    2012-10-10

    Highlights: Black-Right-Pointing-Pointer The sintering temperature and compaction pressure have a strong influence on the sinters structure. Black-Right-Pointing-Pointer The measurements confirmed the presence of the high-aluminium phases from Fe-Al equilibrium system in tested sinters. Black-Right-Pointing-Pointer The kinetics of Fe-Al phase formation can be described by Johnson-Mehl-Avrami modelling. - Abstract: The influence of technological parameters (compaction pressure and sintering temperature) on Fe-Al phase formation was investigated. The kinetics of phase transformation preceding and during an SHS reaction was studied in isothermal conditions by DSC using the JMA (Johnson-Mehl-Avrami) model. This model allowed us to determine basic kinetic parameters, including the Avrami exponent, which characterises the rate and manner of particular phase nucleation. The activation energy (E{sub a}) of particular phase formation was determined by the Kissinger method. XRD analysis and SEM observations of sintered material showed that not only Fe{sub 2}Al{sub 5} phase and low-aluminium solid solution in iron but also aluminium-rich FeAl{sub 2} and FeAl{sub 3} phases are formed during the sintering of an FeAl50 elementary powder mixture in isothermal conditions with an SHS reaction. The above conclusions were confirmed by iron-based solid solution lattice parameter studies and microhardness measurements.

  16. Plasma preparation and low-temperature sintering of spherical TiC-Fe composite powder

    Institute of Scientific and Technical Information of China (English)

    Jian-jun Wang; Jun-jie Hao; Zhi-meng Guo; Song Wang

    2015-01-01

    A spherical Fe matrix composite powder containing a high volume fraction (82vol%) of fine TiC reinforcement was produced us-ing a novel process combining in situ synthesis and plasma techniques. The composite powder exhibited good sphericity and a dense struc-ture, and the fine sub-micron TiC particles were homogeneously distributed in theα-Fe matrix. A TiC–Fe cermet was prepared from the as-prepared spherical composite powder using powder metallurgy at a low sintering temperature;the product exhibited a hardness of HRA 88.5 and a flexural strength of 1360 MPa. The grain size of the fine-grained TiC and special surface structure of the spherical powder played the key roles in the fabrication process.

  17. Solvent/non-solvent sintering: a novel route to create porous microsphere scaffolds for tissue regeneration.

    Science.gov (United States)

    Brown, Justin L; Nair, Lakshmi S; Laurencin, Cato T

    2008-08-01

    Solvent/non-solvent sintering creates porous polymeric microsphere scaffolds suitable for tissue engineering purposes with control over the resulting porosity, average pore diameter, and mechanical properties. Five different biodegradable biocompatible polyphosphazenes exhibiting glass transition temperatures from -8 to 41 degrees C and poly (lactide-co-glycolide), (PLAGA) a degradable polymer used in a number of biomedical settings, were examined to study the versatility of the process and benchmark the process to heat sintering. Parameters such as: solvent/non-solvent sintering solution composition and submersion time effect the sintering process. PLAGA microsphere scaffolds fabricated with solvent/non-solvent sintering exhibited an interconnected porosity and pore size of 31.9% and 179.1 mum, respectively which was analogous to that of conventional heat sintered PLAGA microsphere scaffolds. Biodegradable polyphosphazene microsphere scaffolds exhibited a maximum interconnected porosity of 37.6% and a maximum compressive modulus of 94.3 MPa. Solvent/non-solvent sintering is an effective strategy for sintering polymeric microspheres, with a broad spectrum of glass transition temperatures, under ambient conditions making it an excellent fabrication route for developing tissue engineering scaffolds and drug delivery vehicles. (c) 2007 Wiley Periodicals, Inc.

  18. Spark plasma sintering and microwave electromagnetic properties of MnFe{sub 2}O{sub 4} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Penchal Reddy, M., E-mail: drlpenchal@gmail.com [Center for Advanced Materials, Qatar University, Doha 2713 (Qatar); Mohamed, A.M.A. [Center for Advanced Materials, Qatar University, Doha 2713 (Qatar); Department of Metallurgical and Materials Engineering, Faculty of Petroleum and Mining Engineering, Suez University, Suez 4372 (Egypt); Venkata Ramana, M. [Department of Physics, National Taiwan Normal University, Taipei 11677, Taiwan (China); Zhou, X.B.; Huang, Q. [Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Ningbo 315201 (China)

    2015-12-01

    MnFe{sub 2}O{sub 4} ferrite powder was synthesized by a facile one-pot hydrothermal route and then consolidated into dense nanostructured compacts by the spark plasma sintering (SPS) technique. The effect of sintering temperature, on densification, morphology, magnetic and microwave absorption properties was examined. Spark plasma sintering resulted in uniform microstructure, as well as maximum relative density of 98%. The magnetic analysis indicated that the MnFe{sub 2}O{sub 4} ferrite nanoparticles showed ferrimagnetic behavior. Moreover, the dielectric loss and magnetic loss properties of MnFe{sub 2}O{sub 4} ferrite nanoparticles were both enhanced due to its better dipole polarization, interfacial polarization and shape anisotropy. It is believed that such spark plasma sintered ceramic material will be applied widely in microwave absorbing area. - Highlights: • Successful synthesis of dense MnFe{sub 2}O{sub 4} ceramics using spark plasma sintering. • Lower temperature and shorter sintering time, compared to conventional methods. • Optimal sintering condition was achieved. • The magnetic properties of the sintered samples are sensitive to the density and microstructure.

  19. Thermal conduction and linear expansion of sintered rhenium and tungsten-rhenium alloys at a temperature up to 1000 K

    International Nuclear Information System (INIS)

    Pozdnyak, N.Z.; Belyaev, R.A.; Vavilov, Yu.V.; Vinogradov, Yu.G.; Serykh, G.M.

    1978-01-01

    Preparation technology (by powder metallurgy methods) of sintered rhenium and tungsten-rhenium VR-5, VR-10, and VR-20 alloys is described. Thermal conduction of rhenium and VR-20 alloy has been measured in the temperature range from 300 to 1000 K. The value obtained turned out to be considerably less than those published elsewhere, this testifies to the great thermal contact resistance between the material grains. Also measured is the mean linear expansion coefficient for the mentioned above materials in the same temperature range. Linear expansion increases with rhenium content increase

  20. Processing of pure titanium containing titanium-based reinforcing ceramics additives using spark plasma sintering

    Directory of Open Access Journals (Sweden)

    Mondiu Olayinka DUROWOJU

    2017-06-01

    Full Text Available The densification behaviour, microstructural changes and hardness characteristics during spark plasma sintering of CP-Ti reinforced with TiC, TiN, TiCN and TiB2 were investigated. Commercially pure Ti powders were dry mixed with varied amounts (2.5 and 5 wt. % of the ceramic additives using a T2F Turbula mixer for 5 h and at a speed of 49 rpm. The blended composite powders were then sintered using spark plasma sintering system (model HHPD-25 from FCT Germany at a heating rate of 100oC min-1, dwell time of 5 min and sintering temperature of 950ºC. The sintering of CP-Ti was used as a base study to select the proper spark plasma sintering temperature for full density. Densification was monitored through analysis of the recorded punch displacement and the measured density of the sintered samples using Archimedes method. High densities ranging from 97.8% for 5% TiB2 addition to 99.6% for 5% TiCN addition were achieved at a relatively low temperature of 950°C. Microstructural analyses show a uniform distribution of the additives and finer structure showing their inhibitive effect on grain growth. An improved hardness was observed in all the cases with highest values obtained with TiCN as a result of the combined effect of TiC and TiN. A change in the fracture mode from trans granular to intergranular was also observed.

  1. Study of automatic boat loading unit and horizontal sintering process of uranium dioxide pellet

    International Nuclear Information System (INIS)

    He Zhongjing; Chen Yu; Yao Dengfeng; Wang Youliang; Shu Binhua; Wu Genjiu

    2014-01-01

    Sintering process is a key process for the manufacture of nuclear fuel UO_2 pellet. In our factory, the continuous high temperature sintering furnace is used for sintering process. During the sintering of green pellets, the furnace, the boat and the accumulation way can influence the quality of the final product. In this text, on the basis of early process research, The automatic loading boat Unit and horizontal sintering process is studied successively. The results show that the physical and chemical properties of the products manufactured by automatic loading boat unit and horizontal sintering process can meet the technique requirements completely, and this system is reliable and continuous. (authors)

  2. Post-treatment of Plasma-Sprayed Amorphous Ceramic Coatings by Spark Plasma Sintering

    Science.gov (United States)

    Chraska, T.; Pala, Z.; Mušálek, R.; Medřický, J.; Vilémová, M.

    2015-04-01

    Alumina-zirconia ceramic material has been plasma sprayed using a water-stabilized plasma torch to produce free standing coatings. The as-sprayed coatings have very low porosity and are mostly amorphous. The amorphous material crystallizes at temperatures above 900 °C. A spark plasma sintering apparatus has been used to heat the as-sprayed samples to temperatures above 900 °C to induce crystallization, while at the same time, a uniaxial pressure of 80 MPa has been applied to their surface. After such post-treatment, the ceramic samples are crystalline and have very low open porosity. The post-treated material exhibits high hardness and significantly increased flexural strength. The post-treated samples have a microstructure that is best described as nanocomposite with the very small crystallites embedded in an amorphous matrix.

  3. Sintering and characterization of SrBi_2Ta_2O_9 obtained by high-pressure processing at low temperatures

    International Nuclear Information System (INIS)

    Souza, Ricson R.; Kirchner, Rejane K.; Jurado, Jose R.; Pereira, Altair S.; Sousa, Vânia C.

    2016-01-01

    High-pressure processing is a very attractive approach for the production of materials with new and/or improved properties. In this work, pressures in the order of 7.7 GPa and 2.5 GPa were induced in SrBi_2Ta_2O_9 samples at different temperatures placed in a specific reaction cell and generated different effects on phase formation. The microstructural evolution during high-pressure processing was investigated by scanning electron microscopy in association with energy dispersion spectroscopy and with the support of an X-ray diffraction analyzer. Frequency response analysis was used to obtain the dielectric curves by electrochemical impedance spectroscopy. A SrBi_2Ta_2O_9 single-phase sample, treated at 2.5 GPa and 900 °C, was used to evaluate the electrical properties, obtaining a dielectric response similar to SrBi_2Ta_2O_9 samples sintered by conventional processes at temperatures above 1000 °C. In addition, by this method, it was possible to obtain ceramics with uniform microstructure and a relative density of 93%. - Highlights: • The first production of SrBi_2Ta_2O_9 using the technique of high-pressure processing. • The ability to produce single-phase SrBi_2Ta_2O_9 treated at 2.5 GPa and 900 °C. • The electrical properties are compatible with SBT sintered at high temperatures.

  4. Reaction-sintered porous mineral-based mullite ceramic membrane supports made from recycled materials.

    Science.gov (United States)

    Dong, Yingchao; Zhou, Jian-Er; Lin, Bin; Wang, Yongqing; Wang, Songlin; Miao, Lifeng; Lang, Ying; Liu, Xingqin; Meng, Guangyao

    2009-12-15

    Bulk porous mullite supports for ceramic membranes were prepared directly using a mixture of industrial waste fly ash and bauxite by dry-pressing, followed by sintering between 1200 and 1550 degrees C. The effects of sintering temperature on the phase composition and shrinkage percent of porous mullite were studied. The XRD results indicate that secondary mullitization reaction took place above 1200 degrees C, and completed at 1450 degrees C. During sintering, the mixture samples first shrunk, then expanded abnormally between 1326 and 1477 degrees C, and finally shrunk again above 1477 degrees C. This unique volume self-expansion is ascribed to the secondary mullitization reaction between bauxite and fly ash. More especially, the micro-structural variations induced by this self-expansion sintering were verified by SEM, porosity, pore size distribution and nitrogen gas permeation flux. During self-expansion sintering, with increasing temperature, an abnormal increase in both open porosity and pore size is observed, which also results in the increase of nitrogen gas flux. The mineral-based mullite supports with increased open porosity were obtained. Furthermore, the sintered porous mullite membrane supports were characterized in terms of thermal expansion co-efficient and mechanical strength.

  5. Effects of La{sub 2}O{sub 3}-doping and sintering temperature on the dielectric properties of BaSrTiO{sub 3} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Hong Wei; Chang, Chun Rui [College of Science, North China University of Science and Technology, Hebei Province (China); Li, Yuan Liang [Hebei Provincial Key Laboratory of Inorganic Nonmetallic Materials, North China University of Science and Technology, Hebei Province (China); Yan, Chun Liang [Analysis and Testing Center, North China University of Science and Technology, Hebei Province (China)

    2016-03-15

    Using BaCO{sub 3}, SrCO{sub 3} and TiO{sub 2}, et al as crude materials, La{sub 2}O{sub 3} as dopant, Ba{sub 0.8}Sr{sub 0.2}TiO{sub 3} (BST) Ceramics of perovskite structure were prepared by solid state reaction method. We investigated the effects of La{sub 2}O{sub 3} -doping and sintering temperature on the dielectric properties of BaSrTiO{sub 3} ceramics. The experiment results show that: The amount of La{sub 2}O{sub 3} can increase the dielectric constant of the sample, with the doping amount increasing, the dielectric constant increases. The sintering temperature has also significant impact on the dielectric properties. The dielectric constant of the sample reaches its highest point at 1280 °C. (author)

  6. Comparison of Reactive and Non-Reactive Spark Plasma Sintering Routes for the Fabrication of Monolithic and Composite Ultra High Temperature Ceramics (UHTC Materials

    Directory of Open Access Journals (Sweden)

    Roberto Orrù

    2013-04-01

    Full Text Available A wider utilization of ultra high temperature ceramics (UHTC materials strongly depends on the availability of efficient techniques for their fabrication as dense bodies. Based on recent results reported in the literature, it is possible to state that Spark Plasma Sintering (SPS technology offers a useful contribution in this direction. Along these lines, the use of two different SPS-based processing routes for the preparation of massive UHTCs is examined in this work. One method, the so-called reactive SPS (R-SPS, consists of the synthesis and densification of the material in a single step. Alternatively, the ceramic powders are first synthesized by Self-propagating High-temperature Synthesis (SHS and then sintered by SPS. The obtained results evidenced that R-SPS method is preferable for the preparation of dense monolithic products, while the sintering of SHS powders requires relatively milder conditions when considering binary composites. The different kinetic mechanisms involved during R-SPS of the monolithic and composite systems, i.e., combustion-like or gradual solid-diffusion, respectively, provides a possible explanation. An important role is also played by the SHS process, particularly for the preparation of composite powders, since stronger interfaces are established between the ceramic constituents formed in situ, thus favoring diffusion processes during the subsequent SPS step.

  7. Spark plasma sintering of pure and doped tungsten as plasma facing material

    Science.gov (United States)

    Autissier, E.; Richou, M.; Minier, L.; Naimi, F.; Pintsuk, G.; Bernard, F.

    2014-04-01

    In the current water cooled divertor concept, tungsten is an armour material and CuCrZr is a structural material. In this work, a fabrication route via a powder metallurgy process such as spark plasma sintering is proposed to fully control the microstructure of W and W composites. The effect of chemical composition (additives) and the powder grain size was investigated. To reduce the sintering temperature, W powders doped with a nano-oxide dispersion of Y2O3 are used. Consequently, the sintering temperature for W-oxide dispersed strengthened (1800 °C) is lower than for pure W powder. Edge localized mode tests were performed on pure W and compared to other preparation techniques and showed promising results.

  8. Some aspects of barreling in sintered plain carbon steel powder metallurgy preforms during cold upsetting

    Directory of Open Access Journals (Sweden)

    Sumesh Narayan

    2012-04-01

    Full Text Available The present research establishes a relationship of bulged diameter with densification and hydrostatic stress in forming of sintered iron (Fe powder metallurgy preforms cold upset under two different frictional conditions, namely, nil/no and graphite lubricant condition. Sintered plain carbon steel cylindrical preforms with carbon (C contents of 0, 0.35, 0.75 and 1.1% with constant initial theoretical density of 84% and aspect ratio of 0.4 and 0.6 were prepared using a suitable die-set assembly on a 1 MN capacity hydraulic press and sintered for 90 minutes at 1200 °C. Each sintered preform was cold upset under two different frictional constraints. It is seen that the degree of bulging reduces with reducing frictional constraints at the die contact surface. Further, it is found that the bulging ratio changed as a function of relative density and hydrostatic stress, respectively, according to the power law equations.

  9. High temperature oxidation-sulfidation behavior of Cr-Al2O3 and Nb-Al2O3 composites densified by spark plasma sintering

    International Nuclear Information System (INIS)

    Saucedo-Acuna, R.A.; Monreal-Romero, H.; Martinez-Villafane, A.; Chacon-Nava, J.G.; Arce-Colunga, U.; Gaona-Tiburcio, C.; De la Torre, S.D.

    2007-01-01

    The high temperature oxidation-sulfidation behavior of Cr-Al 2 O 3 and Nb-Al 2 O 3 composites prepared by mechanical alloying (MA) and spark plasma sintering (SPS) has been studied. These composite powders have a particular metal-ceramic interpenetrating network and excellent mechanical properties. Oxidation-sulfidation tests were carried out at 900 deg. C, in a 2.5%SO 2 + 3.6%O 2 + N 2 (balance) atmosphere for 48 h. The results revealed the influence of the sintering conditions on the specimens corrosion resistance, i.e. the Cr-Al 2 O 3 and Nb-Al 2 O 3 composite sintered at 1310 deg. C/4 min showed better corrosion resistance (lower weight gains) compared with those found for the 1440 deg. C/5 min conditions. For the former composite, a protective Cr 2 O 3 layer immediately forms upon heating, whereas for the later pest disintegration was noted. Thus, under the same sintering conditions the Nb-Al 2 O 3 composites showed the highest weight gains. The oxidation products were investigated by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy

  10. Temperature modeling for analysis and design of the sintering furnance in HTR fuel type of ball

    International Nuclear Information System (INIS)

    Saragi, Elfrida; Setiadji, Moch

    2013-01-01

    One of the factors that determine the safety of the operation of the sintering furnace fuel HTR ball is the temperature distribution in the ceramic tube furnace. The temperature distribution must be determined at design stage. The tube has a temperature of 1600 °C at one end and about 40 °C at the other end. The outside of the tube was cooled by air through natural convection. The tube is a furnace ceramic tube which its geometry are 0.08, 0.09 and 0.5 m correspondingly for the inner tube diameter, outer tube diameter and tube length. The temperature distribution of the tube is determined by the natural convection coefficient (NCF), which is difficult to be calculated manually. The determination of NCF includes the Grasshoff, Prandtl, and Nusselt numbers which is a function of the temperature difference between the surrounding air with the ceramic tube. If the temperature vary along the tube, the complexity of the calculations increases. Thus the proposed modeling was performed to determine the temperature distribution along the tube and heat transfer coefficient using a self-developed software which permit the design process easier

  11. Sintered cobalt-rare earth intermetallic product

    International Nuclear Information System (INIS)

    Benz, M.G.

    1975-01-01

    This patent describes a sintered product having substantially stable permanent magnet properties in air at room temperature. It comprises compacted particulate cobalt--rare earth alloy consisting essentially of a Co 5 R intermetallic phase and a CoR intermetallic phase which is richer in rare earth metal content than the Co 5 R phase, where R is a rare earth metal. The Co 5 R intermetallic phase is present in an amount of at least 65 percent by weight of the sintered product and the CoR intermetallic phase which is richer in rare earth metal content than the Co 5 R phase is present in a positive amount having a value ranging up to about 35 percent by weight of the product. The sintered product has a density of at least 87 percent and has pores which are substantially noninterconnecting and wherein the component grains have an average size less than 30 microns

  12. Manufacture of sintered bricks of high density from beryllium oxide

    International Nuclear Information System (INIS)

    Pointud, R.; Rispal, Ch.; Le Garec, M.

    1959-01-01

    Beryllium oxide bricks of nuclear purity 100 x 100 x 50 and 100 x 100 x 100 mm of very high density (between 2.85 and 3.00) are manufactured by sintering under pressure in graphite moulds at temperatures between 1,750 and 1,850 deg. C, and under a pressure of 150 kg/cm 2 . The physico-chemical state of the saw material is of considerable importance with regard to the success of the sintering operation. In addition, a study of the sintering of a BeO mixture with 3 to 5 per cent of boron introduced in the form of boric acid, boron carbide or elementary boron shows that high densities can only be obtained by sintering under pressure. For technical reasons of manufacture, only the mixture based on boron carbide is used. The sintering is carried out in graphite moulds at 1500 deg. C under 150 kg/cm 2 pressure, and bricks can be obtained with density between 2,85 and 2,90. Laboratory studies and the industrial manufacture of various sinters are described in detail. (author) [fr

  13. Control of the flame front advance in a sintering bed of iron ores

    International Nuclear Information System (INIS)

    Cores, A.; Mochon, J.; Ruiz-Bustinza, I.; Parra, R.

    2010-01-01

    A sintering pan of 40 cm cubed is loaded with a mixture of iron ores, limestone and coke weighing 110 kg in a sintering pilot plant. In this sintering pan, a series of thermocouples have been introduced at different depths. Tests have been carried out to study the width of the combustion zone and the maximum temperature of the flame front across the sintering bed. For the analysis of the results, a data acquisition system was used. This consisted of two modules connected in serie, for performing the analogue-digital conversion. The analogue entry point is the exit point of the thermocouples and the digital exit point was the temperature average. A computer was used for conserving and storing the data and for carrying out interpolations, simulating the state and evolution of the flame front across the bed. (Author) 21 refs.

  14. Small-angle neutron scattering study of high-pressure sintered detonation nanodiamonds

    Energy Technology Data Exchange (ETDEWEB)

    Kidalov, S. V.; Shakhov, F. M., E-mail: fedor.shakhov@mail.ioffe.ru [Ioffe Physical-Technical Institute of the Russian Academy of Sciences (Russian Federation); Lebedev, V. T.; Orlova, D. N.; Grushko, Yu. S. [Russian Academy of Sciences, Konstantinov St. Petersburg Nuclear Physics Institute (Russian Federation)

    2011-12-15

    The structure of detonation diamonds sintered at a high pressure (7 GPa) and temperatures of 1200-1700 Degree-Sign C has been investigated by small-angle neutron scattering. It is shown that sintering leads to an increase in the particle size from 6 to 30 nm and established that this increase is due to the chainlike oriented attachment of particles. This study supplements the oriented-attachment model, which was suggested based on the X-ray diffraction spectra of detonation nanodiamonds (DNDs) sintered under the same conditions.

  15. Microstructure and properties of sintered mullite developed from ...

    Indian Academy of Sciences (India)

    Microstructure and properties of sintered mullite developed from Indian bauxite ... ductivity, high-temperature stability, good chemical inertia, ... refractory applications. Normally .... using sputtered gold coating on the polished surface after.

  16. Study of sintering on Mg-Zn-Ca alloy system

    Science.gov (United States)

    Annur, Dhyah; Lestari, Franciska P.; Erryani, Aprilia; Kartika, Ika

    2018-05-01

    Magnesium and its alloy have gained a lot of interest to be used in biomedical application due to its biodegradable and biocompatible properties. In this study, sintering process in powder metallurgy was chosen to fabricatenonporous Mg-6Zn-1Ca (in wt%) alloy and porous Mg-6Zn-1Ca-10 Carbamide alloy. For creating porous alloy, carbamide (CO(NH2)2 was added to alloy system as the space holder to create porous structure material. Effect of the space holder addition and sintering temperature on porosity, phase formation, mechanical properties, and corrosion properties was observed. Sintering process was done in a tube furnace under Argon atmosphere in for 5 hours. The heat treatment was done in two steps; heated up at 250 °C for 4 hours to decompose spacer particle, followed by heated up at 580 °C or 630 °C for 5 hours. The porous structure of the resulted alloys was examined using Scanning Electron Microscope (SEM), while the phase formation was characterized by X-ray diffraction (XRD) analysis. Mechanical properties were examined using compression testing. From this study, increasing sintering temperature up to 630 °C reduced the mechanical properties of Mg-Zn-Ca alloy.

  17. Optimization of thorium oxalate precipitation conditions relative to thorium oxide sinterability

    International Nuclear Information System (INIS)

    White, G.D.; Bray, L.A.; Hart, P.E.

    1980-01-01

    The effect of thorium oxalate precipitation conditions on derived oxide sinterability was investigated with the objective of producing ThO 2 powder that could be sintered to high density without premilling. Precipitation conditions examined were temperature, digestion time and agitation method which were employed in a two-level factorial experimental design to delineate their effects. The two levels for each of the factors, respectively, were 10 0 C and 70 0 C, 15 min and 360 min, and mechanical stirrer and a homogenizer that imparted both mechanical and ultrasonic agitation. The ThO 2 derived from each of the precipitation trials was characterized with respect to morphology, surface area, and crystallite size as well as sinterability. Only precipitation temperature had a significant effect upon all the properties of the derived oxide powders

  18. SINTERING OF NASCENT CALCIUM OXIDE

    Science.gov (United States)

    The paper discusses the measurement of the sintering rate of CaO in a nitrogen atmosphere at temperatures of 700-1100 C. CaO prepared from ultrapure CaCO3 was compared with an impure CaO derived from limestone. Both materials yielded an initial surface area of 104 sq m/g. The rat...

  19. Stress free configuration of the human eye.

    Science.gov (United States)

    Elsheikh, Ahmed; Whitford, Charles; Hamarashid, Rosti; Kassem, Wael; Joda, Akram; Büchler, Philippe

    2013-02-01

    Numerical simulations of eye globes often rely on topographies that have been measured in vivo using devices such as the Pentacam or OCT. The topographies, which represent the form of the already stressed eye under the existing intraocular pressure, introduce approximations in the analysis. The accuracy of the simulations could be improved if either the stress state of the eye under the effect of intraocular pressure is determined, or the stress-free form of the eye estimated prior to conducting the analysis. This study reviews earlier attempts to address this problem and assesses the performance of an iterative technique proposed by Pandolfi and Holzapfel [1], which is both simple to implement and promises high accuracy in estimating the eye's stress-free form. A parametric study has been conducted and demonstrated reliance of the error level on the level of flexibility of the eye model, especially in the cornea region. However, in all cases considered 3-4 analysis iterations were sufficient to produce a stress-free form with average errors in node location <10(-6)mm and a maximal error <10(-4)mm. This error level, which is similar to what has been achieved with other methods and orders of magnitude lower than the accuracy of current clinical topography systems, justifies the use of the technique as a pre-processing step in ocular numerical simulations. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  20. Sintering behavior of LZSA glass-ceramics

    Directory of Open Access Journals (Sweden)

    Oscar Rubem Klegues Montedo

    2009-06-01

    Full Text Available The LZSA glass-ceramic system (Li2O-ZrO2-SiO2-Al2O 3 shows interesting properties, such as good chemical resistance, low thermal expansion, high abrasion resistance, and a low dielectric constant. However, in order to obtain a high performance material for specific applications, the sintering behavior must be better understood so that the porosity may be reduced and other properties improved. In this context, a sintering investigation for a specific LZSA glass-ceramic system composition was carried out. A 18.8Li2O-8.3ZrO2-64.2SiO2-8.7Al 2O3 glass was prepared by melting the solids, quenching the melt in water, and grinding the resulting solid in order to obtain a powder (3.68 μm average particle diameter. Subsequently, the glass powder was characterized (chemical analysis and determination of thermal properties and the sintering behavior was investigated using optical non-contact dilatometry measurements. The results showed that the crystallization process strongly reduced the sintering in the temperature interval from 785 to 940 °C, and a maximum thermal shrinkage of 15.4% was obtained with operating conditions of 1020 °C and 180 minutes.

  1. Report on in-situ studies of flash sintering of uranium dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Raftery, Alicia Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-24

    Flash sintering is a novel type of field assisted sintering that uses an electric field and current to provide densification of materials on very short time scales. The potential for field assisted sintering techniques to be used in producing nuclear fuel is gaining recognition due to the potential economic benefits and improvements in material properties. The flash sintering behavior has so far been linked to applied and material parameters, but the underlying mechanisms active during flash sintering have yet to be identified. This report summarizes the efforts to investigate flash sintering of uranium dioxide using dilatometer studies at Los Alamos National Laboratory and two separate sets of in-situ studies at Brookhaven National Laboratory’s NSLS-II XPD-1 beamline. The purpose of the dilatometer studies was to understand individual parameter (applied and material) effects on the flash behavior and the purpose of the in-situ studies was to better understand the mechanisms active during flash sintering. As far as applied parameters, it was found that stoichiometry, or oxygen-to-metal ratio, has a significant effect on the flash behavior (time to flash and speed of flash). Composite systems were found to have degraded sintering behavior relative to pure UO2. The critical field studies are complete for UO2.00 and will be analyzed against an existing model for comparison. The in-situ studies showed that the strength of the field and current are directly related to the sample temperature, with temperature-driven phase changes occurring at high values. The existence of an ‘incubation time’ has been questioned, due to a continuous change in lattice parameter values from the moment that the field is applied. Some results from the in-situ experiments, which should provide evidence regarding ion migration, are still being analyzed. Some preliminary conclusions can be made from these results with regard to using field assisted sintering to

  2. Formation and properties of two-phase bulk metallic glasses by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Xie Guoqiang, E-mail: xiegq@imr.tohoku.ac.jp [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Louzguine-Luzgin, D.V. [WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Inoue, Akihisa [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan)

    2011-06-15

    Research highlights: > Two-phase bulk metallic glasses with high strength and good soft magnetic properties as well as satisfying large-size requirements were produced by spark plasma sintering. > Effects of sintering temperature on thermal stability, microstructure, mechanical and magnetic properties were investigated. > Densified samples were obtained by the spark plasma sintering at above 773 K. - Abstract: Using a mixture of the gas-atomized Ni{sub 52.5}Nb{sub 10}Zr{sub 15}Ti{sub 15}Pt{sub 7.5} and Fe{sub 73}Si{sub 7}B{sub 17}Nb{sub 3} glassy alloy powders, we produced the two-phase bulk metallic glass (BMG) with high strength and good soft magnetic properties as well as satisfying large-size requirements by the spark plasma sintering (SPS) process. Two kinds of glassy particulates were homogeneously dispersed each other. With an increase in sintering temperature, density of the produced samples increased, and densified samples were obtained by the SPS process at above 773 K. Good bonding state among the Ni- and Fe-based glassy particulates was achieved.

  3. Sinterability and microstructure evolution during sintering of ferrous powder mixtures

    Directory of Open Access Journals (Sweden)

    Kétner Bendo Demétrio

    2013-01-01

    Full Text Available The present work is focused on ferrous powder metallurgy and presents some results of a development of a suitable masteralloy for use as an additive to iron powder for the production of sintered steels. The masteralloy was produced by melting a powder mixture containing approximately Fe + 20% Ni + 20% Mn + 20% Si + 1% C (wt%, in order to obtain a cast billet that was converted into fine powder by crushing and milling. It was observed presence of SiC in the masteralloy after melting that is undesirable in the alloy. Si element should be introduced by using ferrosilicon. Sintered alloys with distinct contents of alloying elements were prepared by mixing the masteralloy powder to plain iron powder. Samples were produced by die compaction of the powder mixtures and sintering at 1200 °C in a differential dilatometer in order to record their linear dimensional behaviour during heating up and isothermal sintering, aiming at studying the sinterability of the compacts. Microstructure development during sintering was studied by SEM, XRD and microprobe analyses.

  4. Sintering with a chemical reaction as applied to uranium monocarbide

    International Nuclear Information System (INIS)

    Accary, A.; Caillat, R.

    1960-01-01

    The present paper provides a survey of different investigations whose aim was the preparation and fabrication of uranium monocarbide for nuclear use. If a chemical reaction takes place in the sample during the sintering operation, it may be expected that the atom rearrangements involved in this reaction should favour the sintering process and thereby lower the temperature needed to yield a body of a given density. With this hypothesis in mind, the following methods have been studied: - Sintering of U-C mixtures; - Sintering of UO 2 -C mixtures; - Hot pressing of U-C mixtures; - Extrusion of U-C mixtures. To generalize our result, it could be said that a chemical reaction does not lead to high densification, if one depends on a simple contact between discrete particles. On the contrary, a chemical reaction can help sintering if, as our hot pressing experiments shows, the densification can be achieved prior to the reaction. (author) [fr

  5. Sintering temperature and impedance analysis of Mn{sub 0.9}Co{sub 1.2}Ni{sub 0.27}Mg{sub 0.15}Al{sub 0.03}Fe{sub 0.45}O{sub 4} NTC ceramic prepared by W/O microemulsion method

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Junbo [Key Laboratory of Functional Materials and Devices under Special Environments, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics and Chemistry, CAS, Urumqi 830011 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhao, Qing, E-mail: zhaoq@ms.xjb.ac.cn [Key Laboratory of Functional Materials and Devices under Special Environments, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics and Chemistry, CAS, Urumqi 830011 (China); Gao, Bo [Key Laboratory of Functional Materials and Devices under Special Environments, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics and Chemistry, CAS, Urumqi 830011 (China); Chang, Aimin, E-mail: changam@ms.xjb.ac.cn [Key Laboratory of Functional Materials and Devices under Special Environments, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics and Chemistry, CAS, Urumqi 830011 (China); Zhang, Bo; Zhao, Pengjun; Ma, Renjun [Key Laboratory of Functional Materials and Devices under Special Environments, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics and Chemistry, CAS, Urumqi 830011 (China); University of Chinese Academy of Sciences, Beijing 100049 (China)

    2014-12-25

    Highlights: • The ceramics are mainly in spinel phase and cubic cobalt oxide phase. • A perfect sintering temperature of 1450 °C for the Mn–Co–Ni–Mg–Al–Fe–O was proposed. • The NTC characteristic of the ceramics derive from grain boundary resistance R{sub gb}. - Abstract: The Mn{sub 0.9}Co{sub 1.2}Ni{sub 0.27}Mg{sub 0.5}Al{sub 0.03}Fe{sub 0.45}O{sub 4} negative temperature coefficient (NTC) ceramics derived from nano-particles were sintered at 1380 °C, 1450 °C and 1560 °C, respectively. X-ray diffraction (XRD) result showed that the ceramics sintered at 1380 °C and 1450 °C were mainly in the cubic spinel structure except for a little of tetragonal spinel, and that sintered at 1560 °C was consisted of cubic spinel and cubic cobalt oxide phase. Scanning electron microscopy (SEM) image indicated that the grain size of the ceramic increased sharply when the sintering temperature increased from 1380 °C to 1450 °C, and it changed little when the temperature further increased to 1560 °C, while the porosity was enlarged seriously. Thus a perfect sintering temperature of 1450 °C was proposed. Impedance analysis revealed that the grain resistance R{sub g} showed positive temperature coefficient thermistor characteristic, while the grain boundary resistance R{sub gb} possessed negative temperature coefficient characteristic. Because the grain boundary resistance R{sub gb} was two orders of magnitude larger than the grain resistance R{sub g}, the material thus showed negative temperature coefficient thermistor characteristic.

  6. Analysis of key factors influencing the evaporation performances of an oriented linear cutting copper fiber sintered felt

    Science.gov (United States)

    Pan, Minqiang; Zhong, Yujian

    2018-01-01

    Porous structure can effectively enhance the heat transfer efficiency. A kind of micro vaporizer using the oriented linear cutting copper fiber sintered felt is proposed in this work. Multiple long cutting copper fibers are firstly fabricated with a multi-tooth tool and then sintered together in parallel to form uniform thickness metal fiber sintered felts that provided a characteristic of oriented microchannels. The temperature rise response and thermal conversion efficiency are experimentally investigated to evaluate the influences of porosity, surface structure, feed flow rate and input power on the evaporation characteristics. It is indicated that the temperature rise response of water is mainly affected by input power and feed flow rate. High input power and low feed flow rate present better temperature rise response of water. Porosity rather than surface structure plays an important role in the temperature rise response of water at a relatively high input power. The thermal conversion efficiency is dominated by the input power and surface structure. The oriented linear cutting copper fiber sintered felts for three kinds of porosities show better thermal conversion efficiency than that of the oriented linear copper wire sintered felt when the input power is less than 115 W. All the sintered felts have almost the same performance of thermal conversion at a high input power.

  7. Nano-composite powders Ag-SnO2 prepared by reactive milling sintering and microstructural evolution

    International Nuclear Information System (INIS)

    Lorrain, Nathalie

    2000-01-01

    This work aims at controlling the synthesis and the sintering of nano-composite powders Ag-SnO 2 in order to obtain a dense and nano-structured material for electrical contact as a substitute of the toxic compound Ag - CdO. The powder is prepared by reactive milling from silver oxide (Ag 2 O) and silver bronze (Ag 3 Sn) powders. This process leads to a fine dispersion of silver and tin oxide nanometer sized particles. We first studied the mechanisms of reaction promoted by milling in vacuum and in air. A two-stage oxidation of tin in Ag 3 Sn occurs: during forced contact with Ag 2 O, tin oxidises in SnO, then in SnO 2 . In air, gaseous oxygen also participates to the oxidation of tin in SnO 2 but the reaction is slower because of the formation of silver carbonates from a reaction of Ag 2 O with CO 2 .Then the sintering behaviour of the nano-composite powder as a function of the compacting pressure and of the heating rate has been studied. We show: (i) a diffusion of pure silver towards porosity and free surfaces (exo-diffusion) which destroys the nano-structure and (ii) a severe de-densification. We show that the origin of these phenomena is due to carbonates on to the Ag 2 O starting powder, which are incorporated, in the milled Ag-SnO 2 powder in course of milling; during sintering, decomposition gases generate internal stresses. Low stresses lead to a diffusional creep with exo-diffusion whereas high stresses induce an intensive de-densification by local plastic deformation but no exo-diffusion. A modelling shows that exo-diffusion is limited by heating very quickly a strongly compacted powder that contains a high quantity of carbonates. The experimental results confirm the predictions of the model. Finally, we propose solutions allowing a full densification and a process for decreasing the tin oxide concentration. (author) [fr

  8. Optimization of process parameters for spark plasma sintering of nano structured SAF 2205 composite

    Directory of Open Access Journals (Sweden)

    Samuel Ranti Oke

    2018-04-01

    Full Text Available This research optimized spark plasma sintering (SPS process parameters in terms of sintering temperature, holding time and heating rate for the development of a nano-structured duplex stainless steel (SAF 2205 grade reinforced with titanium nitride (TiN. The mixed powders were sintered using an automated spark plasma sintering machine (model HHPD-25, FCT GmbH, Germany. Characterization was performed using X-ray diffraction and scanning electron microscopy. Density and hardness of the composites were investigated. The XRD result showed the formation of FeN0.068. SEM/EDS revealed the presence of nano ranged particles of TiN segregated at the grain boundaries of the duplex matrix. A decrease in hardness and densification was observed when sintering temperature and heating rate were 1200 °C and 150 °C/min respectively. The optimum properties were obtained in composites sintered at 1150 °C for 15 min and 100 °C/min. The composite grades irrespective of the process parameters exhibited similar shrinkage behavior, which is characterized by three distinctive peaks, which is an indication of good densification phenomena. Keywords: Spark plasma sintering, Duplex stainless steel (SAF 2205, Titanium nitride (TiN, Microstructure, Density, Hardness

  9. High-Temperature Lead-Free Solder Alternatives: Possibilities and Properties

    DEFF Research Database (Denmark)

    High-temperature solders have been widely used as joining materials to provide stable interconnections that resist a severe thermal environment and also to facilitate the drive for miniaturization. High-lead containing solders have been commonly used as high-temperature solders. The development...... of high-temperature lead-free solders has become an important issue for both the electronics and automobile industries because of the health and environmental concerns associated with lead usage. Unfortunately, limited choices are available as high-temperature lead-free solders. This work outlines...... the criteria for the evaluation of a new high-temperature lead-free solder material. A list of potential ternary high-temperature lead-free solder alternatives based on the Au-Sn and Au-Ge systems is proposed. Furthermore, a comprehensive comparison of the high-temperature stability of microstructures...

  10. Sintering of uranium dioxide pellets (UO2) in an oxidizing atmosphere (C O2)

    International Nuclear Information System (INIS)

    Santos, G.R.T.

    1992-01-01

    This work consists in the study of the sintering process of U O 2 pellets in an oxidizing atmosphere. Sintering tests were performed in an CO 2 atmosphere and the influence of temperature and time on the pellets density and microstructure were verified. The results obtained were compared to those from the conventional sintering process and its efficiency was confirmed. (author)

  11. Finite element modeling of camber evolution during sintering of bi-layers

    DEFF Research Database (Denmark)

    Tadesse Molla, Tesfaye; Ni, De Wei; Bulatova, Regina

    2014-01-01

    The need for understanding the mechanisms and optimization of shape distortions during sintering of bilayers is necessary while producing structures with functionally graded architectures. A finite element model based on the continuum theory of sintering was developed to understand the camber...... developments during sintering of bilayers composed of La0.85Sr0.15MnO3 and Ce0.9Gd0.1O1.95 tapes. Free shrinkage kinetics of both tapes were used to estimate the parameters necessary for the finite element models. Systematic investigations of the factors affecting the kinetics of distortions such as gravity...... and friction as well as the initial geometric parameters of the bilayers were made using optical dilatometry experiments and the model. The developed models were able to capture the observed behaviors of the bilayers’ distortions during sintering. Finally, we present the importance of understanding and hence...

  12. Association between temperature and maternal stress during pregnancy.

    Science.gov (United States)

    Lin, Yanfen; Hu, Wenjing; Xu, Jian; Luo, Zhongcheng; Ye, Xiaofang; Yan, Chonghuai; Liu, Zhiwei; Tong, Shilu

    2017-10-01

    Maternal psychological stress during pregnancy has essentially been conceptualized as a teratogen. However, little is known about the effect of temperature on maternal stress during pregnancy. The aim of this study is to investigate the relationship between temperature and maternal stress during pregnancy. In 2010, a total of 1931 eligible pregnant women were enrolled across Shanghai from four prenatal-care clinics during their mid-to-late pregnancy. Maternal life-event stress and emotional stress levels during pregnancy were assessed by the "Life Event Scale for Pregnant Women" (LESPW) and "Symptom Checklist-90-Revised Scale" (SCL-90-R), respectively. Exposure to ambient temperature was evaluated based on daily regional average in different moving average and lag days. The generalized estimating equations were used to evaluate the relationship between daily average temperature/temperature difference and maternal stress. After adjusting for relevant confounders, an U-shaped relationship was observed between daily average temperature and maternal Global-Severity-Index (GSI) of the SCL-90-R. Cumulative exposures to extremely low temperatures (stress during pregnancy. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Microstructure evolution during 300 °C storage of sintered Ag nanoparticles on Ag and Au substrates

    Energy Technology Data Exchange (ETDEWEB)

    Paknejad, S.A. [King’s College London, Physics Department, Strand, London WC2R 2LS (United Kingdom); Dumas, G. [Eltek Semiconductors Ltd, Nelson Road Industrial Estate, Dartmouth, Devon TQ6 9LA (United Kingdom); West, G. [Loughborough University, Materials Department, Loughborough LE11 3TU (United Kingdom); Lewis, G. [Eltek Semiconductors Ltd, Nelson Road Industrial Estate, Dartmouth, Devon TQ6 9LA (United Kingdom); Mannan, S.H., E-mail: samjid.mannan@kcl.ac.uk [King’s College London, Physics Department, Strand, London WC2R 2LS (United Kingdom)

    2014-12-25

    Highlights: • Shear strength of pressure-free sintered Ag found to increase during ageing at 300 °C on Ag substrate. • Rapid collapse of void number density after 24 h ageing in the sintered Ag layer. • Higher porosity at edge of joint compared to the middle. • Shear strength of pressure-free sintered Ag decreases during ageing at 300 °C due to high porosity layer growth. • Void free layer and high porosity layer growth explained in terms of atomic diffusion and grain boundary migration. - Abstract: A silver nanoparticle based die attach material was used in a pressure free process to bond 2.5 mm square Ag plated Si die to Ag and Au plated substrates. The assemblies were stored at 300 °C for up to 500 h and the morphology of the sintered Ag and the shear strength were monitored as a function of time. On Ag substrate it was found that die shear strength increased and that the Ag grains grew in size and porosity decreased over time. There was also a clear difference in morphology between sintered Ag at the die edge and centre. On Au substrate, it was observed that the initially high die shear strength decreased with storage time and that voids migrated away from the Ag/Au interface and into the Ag joint. This has led to the formation of a void free layer at the interface followed by a high porosity region, which weakened the joint. The microstructure reveals a high density of grain and twin boundaries which facilitate the Ag and Au atomic diffusion responsible. The grain structure of the plated Au led to diffusion of Au into the Ag via high-angle tilt grain boundaries, and grain boundary migration further dispersed the Au into the Ag layer.

  14. Development of a dielectric ceramic based on diatomite-titania. Part one: powder preparation and sintering study

    Directory of Open Access Journals (Sweden)

    Tavares Elcio Correia de Souza

    1997-01-01

    Full Text Available This work presents powder preparation and sintering experiments of a mixture diatomite-titania. X-ray diffraction, DTA, TGA as well as chemical and microstructural analyses were made. The sintering process was investigated as a function of sintering temperature and time, mass variation, linear shrinkage and activation energy. The results show that sintering of diatomite-titania could be described by a viscous flow mechanism.

  15. Stress fields around a crack lying parallel to a free surface

    International Nuclear Information System (INIS)

    Higashida, Yutaka; Kamada, K.

    1980-12-01

    A method of stress analysis for a two dimentional crack, which is subjected to internal gas pressure, and situated parallel to a free surface of a material, is presented. It is based on the concept of continuously distributed edge dislocations of two kinds, i.e. one with Burgers vector normal to the free surface and the other with parallel to it. Stress fields of individual dislocations are chosen so as to satisfy stress free boundary conditions at the free surface, by taking account of image dislocations. Distributions of the both kinds of dislocations in the crack are derived so as to give the internal gas pressure and, at the same time, to satisfy shear stress free boundary condition on the crack surface. Stress fields σsub(xx), σsub(yy) and σsub(xy) in the sub-surface layer are then determined from them. They have square root singularities at the crack-tip. (author)

  16. Microstructural evaluation of the NbC-20Ni cemented carbides during sintering

    International Nuclear Information System (INIS)

    Rodrigues, D.; Cannizza, E.

    2016-01-01

    Full text: Fine carbides in a metallic matrix (binder) form the microstructure of the cemented carbides. Grain size and binder content are the main variables to adjust hardness and toughness. These products are produced by Powder Metallurgy, and traditional route involves mixing carbides with binder by high energy milling, pressing and sintering. During sintering, a liquid phase promotes densification, and a final relative density higher than 99% is expected. Sintering is carried out at high temperatures, and dissolution of the carbides changes the chemical composition of the binder. To control grain growth of the main carbide, which reduces hardness, small quantities of secondary carbides are used. These additives limit dissolution and precipitation of the main carbides reducing the final grain size. This paper focused the structural and chemical evolution during sintering using NbC-20Ni cermets. Mixtures of very fine NbC carbides and carbonyl Ni powders were produce by intense milling. These mixtures were pressed using uniaxial pressures from 50 to 200MPa. Shrinkage was evaluated using dilatometric measurements under an atmosphere of dynamic argon. Samples were also sintered under vacuum in high temperature industrial furnace. The sintered samples were characterized in terms of density hardness, toughness and microstructure. DRX was the main tool used to evaluate the structural evolution of the binder. In situ chemical analysis helped to understand the dissolution mechanisms. (author)

  17. Addition of niobia in alumina and its effects at its sintered microstructure

    International Nuclear Information System (INIS)

    Gomes, L.B.; Lima, M.M.O.; Pereira, A.S.; Bergmann, C.P.

    2016-01-01

    In this work, niobia was used as sintering additive of alumina in concentrations of 0.15, 0.5, 2 and 4 wt%. Homogenized powders was uniaxially pressed (200MPa) forming ceramic pellets with 10 mm diameter. The green bodies were sintered at 1400, 1500 and 1600°C for 60 minutes using a heating rate of 2,5°C.min -1 . After sintering, the specimens were polished using diamond paste with different particle sizes. The specimen's microstructure was analyzed by Scanning Electron Microscopy (SEM) and crystalline phases were determined by X-ray Diffraction (XRD). Results indicate that when niobia and alumina react they form AlNbO4 by liquid phase sintering. This phase is located among alumina grain. It was also verified that niobia addition promotes grain growth, acting as sintering agent, and this effect grows as niobia content and sintering temperature increase. (author)

  18. Effect of Free Radicals & Antioxidants on Oxidative Stress: A Review

    Directory of Open Access Journals (Sweden)

    Ashok Shinde

    2012-01-01

    Full Text Available Recently free radicals have attracted tremendous importance in the field of medicine including dentistry and molecular biology. Free radicals can be either harmful or helpful to the body. When there is an imbalance between formation and removal of free radicals then a condition called as oxidative stress is developed in body. To counteract these free radicals body has protective antioxidant mechanisms which have abilities to lower incidence of various human morbidities and mortalities. Many research groups in the past have tried to study and confirm oxidative stress. Many authors also have studied role of antioxidants in reducing oxidative stress. They have come across with controversial results and furthermore it is not yet fully confirmed whether oxidative stress increases the need for dietary antioxidants. Recently, an association between periodontitis and cardiovascular disease has received considerable attention. Various forms of antioxidants have been introduced as an approach to fight dental diseases and improve general gingival health. The implication of oxidative stress in the etiology of many chronic and degenerative diseases suggests that antioxidant therapy represents a promising avenue for treatment. This study was conducted with the objective of reviewing articles relating to this subject. A Pub Med search of all articles containing key words free radicals, oxidative stress, and antioxidants was done. A review of these articles was undertaken.

  19. Transport properties of microwave sintered pure and glass added MgCuZn ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Madhuri, W., E-mail: madhuriw12@gmail.com [School of Advanced Sciences, VIT University, Vellore 632 014 (India); Penchal Reddy, M.; Kim, Il Gon [Department of Physics, Changwon National University, Changwon 641 773 (Korea, Republic of); Rama Manohar Reddy, N. [Department of Materials Science and Nanotechnology, Yogi Vemana University, Kadapa 516 227 (India); Siva Kumar, K.V. [Ceramic Composites Materials Laboratory, Sri Krishnadevaraya University, Anantapur 515 055 (India); Murthy, V.R.K. [Microwave Laboratory, IIT Madras, Chennai 600 036 (India)

    2013-07-01

    Highlights: • MgCuZn ferrite was successfully prepared by novel microwave sintering (MS) method. • The sintering temperature was notably reduced from 1150 °C to 950 °C for MS. • Temperature dependence of DC conductivity and AC conductivity are studied. • 1 wt% PBS glass added MS MgCuZn ferrite samples are suitable for core materials in multilayer chip inductors (MLCI). -- Abstract: A series of pure stoichiometric and 1 wt% lead borosilicate (PBS) glass added MgCuZn ferrite with the general formula Mg{sub 0.5}Cu{sub x}Zn{sub 0.5−x}Fe{sub 2}O{sub 4} with x = 0.05, 0.1, 0.15, 0.2, 0.25 and 0.3 were synthesized by microwave sintering technique. Single phase spinel structure is exhibited by the XRD patterns of these ferrites. DC and AC conductivity were investigated as a function of composition, temperature and frequency. DC conductivities were also estimated using the impedance spectroscopy analysis of Cole–Cole plots. The DC conductivities thus obtained are in good agreement with the experimental results. All the investigated samples exhibited two regions of conductivity one in the low temperature and the second in the high temperature region. It is observed that PBS glass added samples have lower conductivities than pure samples. Due to their lower conductivities and sintering temperatures the 1 wt% PBS glass added samples are suitable for multilayer chip inductor (MLCI) and high definition TV deflection yoke material application.

  20. Composites of amorphous and nanocrystalline Zr–Cu–Al–Nb bulk materials synthesized by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Drescher, P., E-mail: philipp.drescher@uni-rostock.de [Fluidic Technology and Microfluidics, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, 18059 Rostock (Germany); Witte, K. [Physics of New Materials, Institute of Physics, University of Rostock, 18051 Rostock (Germany); Yang, B. [Polymer Physics, Institute of Physics, University of Rostock, 18051 Rostock (Germany); Steuer, R.; Kessler, O. [Chair of Materials Science, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, 18059 Rostock (Germany); Burkel, E. [Physics of New Materials, Institute of Physics, University of Rostock, 18051 Rostock (Germany); Schick, C. [Polymer Physics, Institute of Physics, University of Rostock, 18051 Rostock (Germany); Seitz, H. [Fluidic Technology and Microfluidics, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, 18059 Rostock (Germany)

    2016-05-15

    The fabrication of Zr{sub 70}Cu{sub 24}Al{sub 4}Nb{sub 2} bulk metallic glass composite samples by spark plasma sintering (SPS) process has been successfully realized. The unique characteristics of bulk metallic glasses could lead to the possibility of future applications as new structural and functional materials. The densification of an amorphous Zr{sub 70}Cu{sub 24}Al{sub 4}Nb{sub 2} powder was realized in a systematic study changing the sintering temperature in the SPS process leading to stable composites characteristic of amorphous and nanocrystalline structures. X-ray diffractometry (XRD) and differential scanning calorimetry (DSC) analysis, transmission electron microscopy (TEM) as well as hardness tests were applied to determine the structural and mechanical properties of the sintered materials. A stable amorphous bulk metallic glass based on Zr{sub 70}Cu{sub 24}Al{sub 4}Nb{sub 2} with a low fraction of crystallites could be fabricated applying a nominal sintering temperature of 400 °C. Higher sintering temperatures lead to composites with high fractions of nanocrystalline material with porosities below 0.5%.

  1. Formation of peripheral porosity regions around urania in zirconia-urania mixed oxide powder compact sintering

    International Nuclear Information System (INIS)

    Das, P.; Choudhury, R.

    1992-01-01

    Sintering studies of zirconia-urania mixed oxide powder compacts (in stages of 5% urania up to a maximum of 20% addition) were carried out at temperatures between 1000-1400deg C for various soaking periods. The formation of a peripheral porosity region around comparatively coarser urania particle was a characteristic feature in this mixed oxide sintered compact. At even a higher sintering temperature (1800deg C), where extensive solid solution formation takes place, this porosity region demarcates the solutionized particles from the host zirconia apparently acting as a discontinuity in the system. Relative shrinkage difference between the dissimilar particles probably contributes to the porosity regions around the minor second phase at a lower temperature while at higher temperature generation of 'Kirkendall porosity' may be responsible for such an effect. (orig.)

  2. An additive approach to low temperature zero pressure sintering of bismuth antimony telluride thermoelectric materials

    Science.gov (United States)

    Catlin, Glenn C.; Tripathi, Rajesh; Nunes, Geoffrey; Lynch, Philip B.; Jones, Howard D.; Schmitt, Devin C.

    2017-03-01

    This paper presents an additive-based approach to the formulation of thermoelectric materials suitable for screen printing. Such printing processes are a likely route to such thermoelectric applications as micro-generators for wireless sensor networks and medical devices, but require the development of materials that can be sintered at ambient pressure and low temperatures. Using a rapid screening process, we identify the eutectic combination of antimony and tellurium as an additive for bismuth-antimony-telluride that enables good thermoelectric performance without a high pressure step. An optimized composite of 15 weight percent Sb7.5Te92.5 in Bi0.5Sb1.5Te3 is scaled up and formulated into a screen-printable paste. Samples fabricated from this paste achieve a thermoelectric figure of merit (ZT) of 0.74 using a maximum processing temperature of 748 K and a total thermal processing budget of 12 K-hours.

  3. Al2O3-TiC Composite Prepared by Spark Plasma Sintering Process: Evaluation of Mechanical and Tribological Properties

    Science.gov (United States)

    Kumar, Rohit; Chaubey, A. K.; Bathula, Sivaiah; Prashanth, K. G.; Dhar, Ajay

    2018-03-01

    Al2O3-10TiC composites were synthesized by spark plasma sintering (SPS) process. Microstructural and mechanical properties of the composite reveal homogeneous distribution of the fine TiC particles in the matrix. The samples were produced with different sintering temperature, and it shows that the hardness and density gradually increases with increasing sintering temperature. Abrasion wear test result reveals that the composite sintered at 1500 °C shows high abrasion resistance (wt. loss 0.016 g) and the lowest abrasion resistance was observed for the composite sample sintered at 1100 °C (wt. loss 1.459 g). The profilometry surface roughness study shows that sample sintered at 1100 °C shows maximum roughness ( R a = 6.53 µm) compared to the sample sintered at 1500 °C ( R a = 0.66 µm) corroborating the abrasion wear test results.

  4. Material characterization of Inconel 718 from free bulging test at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Joon Tae; Yoon, Jong Hoon; Lee, Ho Sung [Korea Aerospace Research Institute, Daejeon (Korea, Republic of); Youn, Sung Kie [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2012-07-15

    Macroscopic superplastic behavior of metallic or non metallic materials is usually represented by the strain rate sensitivity, and it can be determined by tensile tests in uniaxial stress state and bulging tests in multi axial stress state, which is the actual hot forming process. And macroscopic behavior of Non SPF grade materials could be described in a similar way as that of superplastic materials, including strain hardening, cavity and so on. In this study, the material characterization of non SPF grade Inconel 718 has been carried out to determine the material parameters for flow stress throughout free bulging test under constant temperature. The measured height of bulged plate during the test was used for estimation of strain rate sensitivity, strain hardening index and cavity volume fraction with the help of numerical analysis. The bulged height obtained from the simulation showed good agreement with the experimental findings. The effects of strain hardening and cavity volume fraction factor for flow stress were also compared.

  5. Effect of heat treatment conditions on stress corrosion cracking resistance of alloy X-750 in high temperature water

    International Nuclear Information System (INIS)

    Yonezawa, Toshio; Onimura, Kichiro; Sakamoto, Naruo; Sasaguri, Nobuya; Susukida, Hiroshi; Nakata, Hidenori.

    1984-01-01

    In order to improve the resistance of the Alloy X-750 in high temperature and high purity water, the authors investigated the influence of heat treatment condition on the stress corrosion cracking resistance of the alloy. This paper describes results of the stress corrosion cracking test and some discussion on the mechanism of the stress corrosion cracking of Alloy X-750 in deaerated high temperature water. The following results were obtained. (1) The stress corrosion cracking resistance of Alloy X-750 in deaerated high temperature water remarkably depended upon the heat treatment condition. The materials solution heat treated and aged within temperature ranges from 1065 to 1100 0 C and from 704 to 732 0 C, respectively, have a good resistance to the stress corrosion cracking in deaerated high temperature water. Especially, water cooling after the solution heat treatment gives an excellent resistance to the stress corrosion cracking in deaerated high temperature water. (2) Any correlations were not observed between the stress corrosion cracking susceptibility of Alloy X-750 in deaerated high temperature water and grain boundary chromium depleted zones, precipitate free zones and the grain boundary segregation of impurity elements and so on. It appears that there are good correlations between the stress corrosion cracking resistance of the alloy in the environment and the kinds, morphology and coherency of precipitates along the grain boundaries. (author)

  6. Solvent/Non-Solvent Sintering To Make Microsphere Scaffolds

    Science.gov (United States)

    Laurencin, Cato T.; Brown, Justin L.; Nair, Lakshmi

    2011-01-01

    A solvent/non-solvent sintering technique has been devised for joining polymeric microspheres to make porous matrices for use as drug-delivery devices or scaffolds that could be seeded with cells for growing tissues. Unlike traditional sintering at elevated temperature and pressure, this technique is practiced at room temperature and pressure and, therefore, does not cause thermal degradation of any drug, protein, or other biochemical with which the microspheres might be loaded to impart properties desired in a specific application. Also, properties of scaffolds made by this technique are more reproducible than are properties of comparable scaffolds made by traditional sintering. The technique involves the use of two miscible organic liquids: one that is and one that is not a solvent for the affected polymer. The polymeric microspheres are placed in a mold having the size and shape of the desired scaffold, then the solvent/non-solvent mixture is poured into the mold to fill the void volume between the microspheres, then the liquid mixture is allowed to evaporate. Some of the properties of the resulting scaffold can be tailored through choice of the proportions of the liquids and the diameter of the microspheres.

  7. Inkjet printable nanosilver suspensions for enhanced sintering quality in rapid manufacturing

    International Nuclear Information System (INIS)

    Bai, John G; Creehan, Kevin D; Kuhn, Howard A

    2007-01-01

    Inkjet printable nanosilver suspensions were prepared by dispersing 30 nm silver particles into a water-based binder system to enhance the sintering quality in rapid manufacturing. During three-dimensional printing (3DP), the nanosilver suspensions were inkjet printed onto repetitively spread microsilver powder for selective joining. Since the nanosilver particles in the suspensions can be sintered at relatively low temperatures to bond the neighbouring microsilver powder, they were used to provide the continuous bonding strength of the manufacturing parts during the heat-up procedure of the sintering operation. Comparative study shows that the silver parts printed using the nanosilver suspension were significantly enhanced in sintering quality than those printed using the binder system, especially when the silver parts had thin or small features with high aspect ratios

  8. Designing a Tool System for Lowering Friction during the Ejection of In-Die Sintered Micro Gears

    DEFF Research Database (Denmark)

    Cannella, Emanuele; Nielsen, Emil Krabbe; Stolfi, Alessandro

    2017-01-01

    is affected by the influence of friction during the ejection phase, caused by radial expansion of the compacted and sintered powder. This paper presents the development of a pre-stressed tool system for the manufacture of micro gears made of aluminum. By using the hot isostatic pressing (HIP) sintering...

  9. Room and ultrahigh temperature structure-mechanical property relationships of tungsten alloys formed by field assisted sintering technique (FAST)

    Energy Technology Data Exchange (ETDEWEB)

    Browning, Paul N.; Alagic, Sven [Pennsylvania State University, Department of Materials Science and Engineering, State College, PA-16801 (United States); Pennsylvania State University, Applied Research Laboratory, State College, PA-16801 (United States); Kulkarni, Anil [Pennsylvania State University, Department of Nuclear and Mechanical Engineering, State College, PA-16801 (United States); Matson, Lawrence [Materials and Manufacturing Directorate, Wright Patterson Air Force Base, Dayton, OH (United States); Singh, Jogender, E-mail: jxs46@arl.psu.edu [Pennsylvania State University, Department of Materials Science and Engineering, State College, PA-16801 (United States); Pennsylvania State University, Applied Research Laboratory, State College, PA-16801 (United States)

    2016-09-30

    Tungsten based alloys have become of critical importance in a number of applications including plasma-facing materials in nuclear fusion reactors, rocket nozzles for aerospace applications, and in kinetic energy penetrators in the defense industry. Formation of components for these uses by powder metallurgical techniques has proven challenging, due to tungsten's relatively poor sinterability. Here we report the use of field assisted sintering technique (FAST) to produce high density, fine grain alloys with mechanical properties comparable or superior to that of components produced by conventional techniques. Alloys of pure tungsten, W-3 vol%TiC, W-5 vol%TiC, and W-10 vol%Ta were synthesized at 2100 °C, 35 MPa for 25 min using FAST. Microstructural characterization revealed effective reduction of grain size with TiC addition and preferential diffusion of oxygen into the center of tantalum particles in tantalum containing alloys. Tensile testing of alloys revealed TiC addition to W resulted in substantially improved ultimate tensile strength at the cost of ductility in comparison at temperatures up to 1926 °C (3500 °F) however this strengthening effect was lost at 2204 °C (4000 °F). Addition of 10 vol%Ta to W resulted in reduced hardness at room temperature, but substantially increased yield strength at the cost of slightly reduced ductility at 1926 °C and 2204 °C.

  10. Reactive synthesis of Ti-W-Cr-B mixing powder by spark plasma sintering; Hoden plasma shoketsu ni yoru Ti-W-Cr-B kongo funmatsu no hanno gosei

    Energy Technology Data Exchange (ETDEWEB)

    Kaga, H. [Hokkaido Industrial Technology Center, Sapporo (Japan); Carrillo-Heian, E.M.; Munir, Z.A. [University of California, CA, (United States)

    2000-08-15

    The reactive sintered compacts of Ti-W-Cr-B mixed powders were manufactured by a pulse electric current technique. Identification and characterization of the resulting boride phase were done using EPMA, XRD and other methods. The density of the sintered compacts rose rapidly with sintering temperature up to 1,773 K, at which temperature the relative density was 94%. Above this temperature, the density rose only slightly with increasing sintering temperature. The borides of Ti and W were synthesized from mixed metal powders by this method. The type of boride formed and its composition depended on sintering temperature. Compacts sintered at lower temperatures consisted of WB{sub 2} and TiB{sub 2} phases, but at the highest sintering temperature, 2,173K, the main phase was (Ti, W, Cr)B{sub 2} solid solution, in which W and Cr were dissolved in TiB{sub 2}. There was also a very small amount of {beta}-(W, Ti, Cr)B phase. By annealing compact sintered at high temperature, the (Ti, W, Cr)B{sub 2} solid solution phase decomposed and the amount decreased. (author)

  11. A high-temperature silicon-on-insulator stress sensor

    International Nuclear Information System (INIS)

    Wang Zheyao; Tian Kuo; Zhou Youzheng; Pan Liyang; Liu Litian; Hu Chaohong

    2008-01-01

    A piezoresistive stress sensor is developed using silicon-on-insulator (SOI) wafers and calibrated for stress measurement for high-temperature applications. The stress sensor consists of 'silicon-island-like' piezoresistor rosettes that are etched on the SOI layer. This eliminates leakage current and enables excellent electrical insulation at high temperature. To compensate for the measurement errors caused by the misalignment of the piezoresistor rosettes with respect to the crystallographic axes, an anisotropic micromachining technique, tetramethylammonium hydroxide etching, is employed to alleviate the misalignment issue. To realize temperature-compensated stress measurement, a planar diode is fabricated as a temperature sensor to decouple the temperature information from the piezoresistors, which are sensitive to both stress and temperature. Design, fabrication and calibration of the piezoresistors are given. SOI-related characteristics such as piezoresistive coefficients and temperature coefficients as well as the influence of the buried oxide layer are discussed in detail

  12. Study on the process of sintering matrix metallic Fe-Cu-25%Nb and Fe-Cu-25%Co during hot pressing

    International Nuclear Information System (INIS)

    Batista, A.C.; Oliveira, H.C.P.; Souza, M.H.; Assis, P.S.

    2016-01-01

    The sintering process promotes densification and the evolution of the microstructure of the material, with consequent significant increase in hardness and mechanical strength. However, few studies show the influence of pressure and temperature during sintering by hot pressing. In this sense, this work aims to evaluate the microstructural changes and properties with the variation of pressure and temperature and the type suffered by sintering metal powders during sintering by hot pressing. For this, two samples were studied by changing the sintering parameters: 25% Fe-50% Cu-25% Nb and 25% Fe-50% Cu-25% Co. Samples were analyzed by SEM / EDS in order to check the morphology and the presence of pores, as well as the interaction between the metallic constituents of each sample by the EDS analysis in line. They also determined the relative density, porosity and Vickers hardness (HV5). At the end of the study it was concluded that niobium alloy composite element by sintering activated suffered together with the liquid phase sintering. For cobalt alloys were observed by liquid phase sintering. The increase in the severity of the sintering conditions (temperature and pressure) led to an improvement in physical and mechanical properties of the alloys, which indicates that these parameters are directly related to the mechanisms of diffusion in the sintering process, improving the properties and diffusivity between elements. (author)

  13. The effects of sintering behavior on piezoelectric properties of porous PZT ceramics for hydrophone application

    International Nuclear Information System (INIS)

    Zeng Tao; Dong Xianlin; Chen Heng; Wang Yonglin

    2006-01-01

    Porous lead zirconate titanate (PZT) ceramics were fabricated by adding polymethyl methacrylate (PMMA) and the effects of sintering behavior on their microstructure and piezoelectric properties were investigated. The porosity of PZT ceramics decreased with an increase in the sintering temperature at a fixed PMMA addition. The dielectric constant (ε), longitudinal piezoelectric coefficient (d 33 ) and hydrostatic figures of merit (d h g h ) of 34% porous PZT ceramics increased with an increase in sintering temperature from 1050 to 1300 deg. C. When sintered at 1300 deg. C, longitudinal piezoelectric coefficient of 34% porous PZT ceramic was very close to that of 95% dense PZT ceramics, while the hydrostatic figures of merit of 34% porous PZT ceramics is about fifteen times more than that of 95% dense PZT ceramics. Compared with PZT-polymer composites, the dielectric constant of 34% porous PZT sintered at 1300 deg. C is much higher, which can be more efficient to resist the interference in receiving sensitivities caused by loading effect of the cable

  14. Optimization of Sintering Time and Holding Time for 3D Printing of Fe-Based Metallic Glasses

    Directory of Open Access Journals (Sweden)

    Wenzheng Wu

    2018-06-01

    Full Text Available Fe-based metallic glasses are amorphous alloys with high strength, high hardness, and excellent corrosion resistance; however, the immaturity of processing methods has prevented their wide application in industrial production. Fe-based metallic glass parts were manufactured employing pneumatic injection additive manufacturing in this study. An evenly dispersed and stable Fe-based metallic glass powder slurry with a solids content of 50% was prepared firstly. Then the Fe-based metallic glass parts were printed. The printed parts were dried, debinded, and sintered for strengthening. The deformations of the printed parts and sintered parts relative to the original model were then analyzed by a 3D scanning reconstruction method. The slightly average bulging and sunken deformation of the printed parts and sintered parts confirmed the good printing accuracy of the pneumatic injection manufacture system. The effects of the sintering temperature and holding time on the properties of the sintered parts were studied. For a sintering temperature of 580 °C and holding time of 1 h, the surface quality of the sintered parts was better. The sintering of 3D-printed Fe-based metallic glass parts was preliminarily realized in this study, and the feasibility of preparing Fe-based metallic glass using pneumatic injection additive manufacture was verified.

  15. Luminescence properties of the Mg co–doped Ce:SrHfO_3 ceramics prepared by the Spark Plasma Sintering Method

    International Nuclear Information System (INIS)

    Chiba, Hiroyuki; Kurosawa, Shunsuke; Harata, Koichi; Murakami, Rikito; Yamaji, Akihiro; Ohashi, Yuji; Pejchal, Jan; Kamada, Kei; Yokota, Yuui; Yoshikawa, Akira

    2016-01-01

    1300 or 1400 °C pre–sintered Al/Ce/Mg:SrHfO_3 and Al/Ce:SrHfO_3 ceramics were prepared by the Spark Plasma Sintering (SPS) in order to search for a new scintillation material with a high–effective atomic number(Z_e_f_f) and good light output. The SrHfO_3 has a high Z_e_f_f of 60, and high gamma–ray detection efficiency is expected. Meanwhile it has a high melting point of over 2500 °C, and single crystal is hard to be grown. On the other hand, high melting materials can be prepared as ceramics, and the SPS method is a simple process to fabricate the ceramics within a few hours. Thus, we prepared the samples using the SPS method, and their optical and scintillation properties were investigated. We found that Al/Ce/Mg:SrHfO_3 and Al/Ce:SrHfO_3 ceramics had an emission wavelength at around 400 nm originating from 5d–4f transition of Ce"3"+. Moreover, Al/Ce/Mg:SrHfO_3 pre-sintered at a temperature of 1400 °C had a light output of approximately 5,000 ph/MeV. In this paper, the light output of Mg-co-doped samples was improved compared with the Mg-free ones. The light output also depends on the pre-sintering temperature. - Highlights: • Luminescence Properties of Al/Ce/Mg:SrHfO_3 ceramics scintillator was investigated. • These ceramics were prepared by the Spark Plasma Sintering Method. • Light output of the Al/Ce/Mg:SrHfO_3 ceramics was approximately 5,000 ph/MeV.

  16. Inkjet Printing and Ebeam Sintering Approach to Fabrication of GHz Meta material Absorber

    International Nuclear Information System (INIS)

    Park, J. W.; Kim, Y. J.; Lee, Y. P.; Park, I. S.; Kang, J. H.; Lim, Jongwoo; Kim, Jonghee; Kim, Hyotae

    2013-01-01

    Metamaterial absorber structure of GHz range is fabricated by inkjet printing and e-beam sintering. The inkjet printing is of interest, which give the easier and quicker way to fabricate large scale metamaterials than the approaches by the lithographic process, Furthermore it is more suitable to make flexible electronics, which has yet been great technologic trend. Usual post process of inkjet printing is the sintering to ensure solvent-free from the printed pattern and to its better conductivity comparable to the ordinary vacuum deposition process. E-beam irradiation sintering of the pattern is promising because it is inherently local and low temperature process. The main procedure of metamaterials fabrication is printing a resonator structure with lossy metal such as Ag or Au. We designed two types of Ag based multiband absorber which are double and quadruple bands. Those adsorber patterns are printed on polyimide substrate with commercially available Ag ink (DGP 40LT-15C, 25C). The absorbance performance of fabricated metamaterials is characterized by Hewlett-Packard E836B network analyzer in microwave anechoic chamber. The conductivity enhancement after e-beam or other sintering process is checked by measuring sheet resistance. The absorbance of the fabricated metamaterial is measured around 60% for the types designed. The absorbance is not high enough to practical use, which is attributed to low conductivity of the printed pattern. The spectrum shows, however, quite interesting large broadness, which come in the interval between each pack absorbance, witch needs further study. Though the extent of its effectiveness of inkjet printing in metamaterials needs more experimental studies, the demonstrated capability of quick and large area fabrication to flexible substrate is excellent

  17. Effect of processing conditions on microstructural features in Mn–Si sintered steels

    Energy Technology Data Exchange (ETDEWEB)

    Oro, Raquel, E-mail: raqueld@chalmers.se [Department of Materials and Manufacturing Technology, Chalmers University of Technology, Rännvägen 2A, SE-41296 Gothenburg (Sweden); Hryha, Eduard, E-mail: hryha@chalmers.se [Department of Materials and Manufacturing Technology, Chalmers University of Technology, Rännvägen 2A, SE-41296 Gothenburg (Sweden); Campos, Mónica, E-mail: campos@ing.uc3m.es [Department of Materials Science and Engineering, IAAB, Universidad Carlos III de Madrid, Av. Universidad 30, 28911 Leganés, Madrid (Spain); Torralba, José M., E-mail: torralba@ing.uc3m.es [Department of Materials Science and Engineering, IAAB, Universidad Carlos III de Madrid, Av. Universidad 30, 28911 Leganés, Madrid (Spain); IMDEA Materials Institute, c/Eric Kandel, 2, 28906 Getafe, Madrid (Spain)

    2014-09-15

    Sintering of steels containing oxidation sensitive elements is possible if such elements are alloyed with others which present lower affinity for oxygen. In this work, a master alloy powder containing Fe–Mn–Si–C, specifically designed to create a liquid phase during sintering, has been used for such purpose. The effect of processing conditions such as sintering temperature and atmosphere was studied with the aim of describing the microstructural evolution as well as the morphology and distribution of oxides in the sintered material, evaluating the potential detrimental effect of such oxides on mechanical properties. Chemical analyses, metallography and fractography studies combined with X-ray photoelectron spectroscopy analyses on the fracture surfaces were used to reveal the main mechanism of fracture and their correlation with the chemical composition of the different fracture surfaces. The results indicate that the main mechanism of failure in these steels is brittle fracture in the surrounding of the original master alloy particles due to degradation of grain boundaries by the presence of oxide inclusions. Mn–Si oxide inclusions were observed on intergranular decohesive facets. The use of reducing atmospheres and high sintering temperatures reduces the amount and size of such oxide inclusions. Besides, high heating and cooling rates reduce significantly the final oxygen content in the sintered material. A model for microstructure development and oxide evolution during different stages of sintering is proposed, considering the fact that when the master alloy melts, the liquid formed can dissolve some of the oxides as well as the surface of the surrounding iron base particles. - Highlights: • Oxide distribution in steels containing oxidation-sensitive elements • Mn, Si introduced in a master alloy powder, mixed with a base iron powder • Selective oxidation of Mn and Si on iron grain boundaries • Decohesive fracture caused by degradation of grain

  18. Effect of processing conditions on microstructural features in Mn–Si sintered steels

    International Nuclear Information System (INIS)

    Oro, Raquel; Hryha, Eduard; Campos, Mónica; Torralba, José M.

    2014-01-01

    Sintering of steels containing oxidation sensitive elements is possible if such elements are alloyed with others which present lower affinity for oxygen. In this work, a master alloy powder containing Fe–Mn–Si–C, specifically designed to create a liquid phase during sintering, has been used for such purpose. The effect of processing conditions such as sintering temperature and atmosphere was studied with the aim of describing the microstructural evolution as well as the morphology and distribution of oxides in the sintered material, evaluating the potential detrimental effect of such oxides on mechanical properties. Chemical analyses, metallography and fractography studies combined with X-ray photoelectron spectroscopy analyses on the fracture surfaces were used to reveal the main mechanism of fracture and their correlation with the chemical composition of the different fracture surfaces. The results indicate that the main mechanism of failure in these steels is brittle fracture in the surrounding of the original master alloy particles due to degradation of grain boundaries by the presence of oxide inclusions. Mn–Si oxide inclusions were observed on intergranular decohesive facets. The use of reducing atmospheres and high sintering temperatures reduces the amount and size of such oxide inclusions. Besides, high heating and cooling rates reduce significantly the final oxygen content in the sintered material. A model for microstructure development and oxide evolution during different stages of sintering is proposed, considering the fact that when the master alloy melts, the liquid formed can dissolve some of the oxides as well as the surface of the surrounding iron base particles. - Highlights: • Oxide distribution in steels containing oxidation-sensitive elements • Mn, Si introduced in a master alloy powder, mixed with a base iron powder • Selective oxidation of Mn and Si on iron grain boundaries • Decohesive fracture caused by degradation of grain

  19. Study on factors affecting sintering density of Gd2O3-UO2 pellets

    International Nuclear Information System (INIS)

    Zhu Shuming; Zou Congpei; Yang Jing; Yang Youqing; Mei Xiaohui

    1996-02-01

    The sintered density of Gd 2 O 3 -UO 2 burnable poison fuel pellets is an important quality index and is one of main QC items. Therefore, the efforts were made to investigate the factors affecting the sintered density of Gd 2 O 3 -UO 2 , that is, the influences of pre-treatment of Gd 2 O 3 powder, additives, mixing methods and time, sintering atmosphere, sintering temperature and time on the final density of Gd 2 O 3 UO 2 pellets contained 0, 3%, 7% and 10% (mass percentage) Gd 2 O 3 . The results show: the pre-treatment is useful for improving the distribution of Gd 2 O 3 ; the additive of ammonium oxalate will effectively adjust the density of pellets; 1750 degree C is the suitable sintering temperature. The proper process parameters have been obtained, and the Gd 2 O 3 -UO 2 pellets prepared for in-pile irradiation test meet the design requirements for the density (93.5%∼96.5% of T.D.), homogeneity, microstructure, etc. (8 refs., 3 figs., 8 tabs.)

  20. Experimental sintering of ash at conduit conditions and implications for the longevity of tuffisites

    Science.gov (United States)

    Gardner, James E.; Wadsworth, Fabian B.; Llewellin, Edward W.; Watkins, James M.; Coumans, Jason P.

    2018-03-01

    Escape of gas from magma in the conduit plays a crucial role in mitigating explosivity. Tuffisite veins—ash-filled cracks that form in and around volcanic conduits—represent important gas escape pathways. Sintering of the ash infill decreases its porosity, eventually forming dense glass that is impermeable to gas. We present an experimental investigation of surface tension-driven sintering and associated densification of rhyolitic ash under shallow conduit conditions. Suites of isothermal (700-800 °C) and isobaric H2O pressure (20 and 40 MPa) experiments were run for durations of 5-90 min. Obsidian powders with two different size distributions were used: 1-1600 μm (mean size = 89 μm), and 63-400 μm (mean size = 185 μm). All samples evolved similarly through four textural phases: phase 1—loose and cohesion-less particles; phase 2—particles sintered at contacts and surrounded by fully connected tortuous pore space of up to 40% porosity; phase 3—continuous matrix of partially coalesced particles that contain both isolated spherical vesicles and connected networks of larger, contorted vesicles; phase 4—dense glass with 2-5% fully isolated vesicles that are mainly spherical. Textures evolve faster at higher temperature and higher H2O pressure. Coarse samples sinter more slowly and contain fewer, larger vesicles when fully sintered. We quantify the sintering progress by measuring porosity as a function of experimental run-time, and find an excellent collapse of data when run-time is normalized by the sintering timescale {λ}_s=η \\overline{R}/σ , where η is melt viscosity, \\overline{R} is mean particle radius, and σ is melt-gas surface tension. Because timescales of diffusive H2O equilibration are generally fast compared to those of sintering, the relevant melt viscosity is calculated from the solubility H2O content at experimental temperature and pressure. We use our results to develop a framework for estimating ash sintering rates under shallow

  1. Shape distortion and thermo-mechanical properties of dense SOFC components from green tape to sintered body

    DEFF Research Database (Denmark)

    Teocoli, Francesca; Esposito, Vincenzo; Ni, De Wei

    stresses, which develop a camber in the final sintered body. To analyze the phenomena, shrinkage of SOFC components single layers and camber development of bi-layers were measured in-situ by optical dilatometry. In addition, a thoughtful investigation of the viscoelastic properties of individual layers......Sintering of ceramic materials is a critical process, especially when the components are shaped as multilayer. Microstructural changes and stresses take place in ceramics as single layer from the green stage to the densification stage, leading to shape distortion, delamination and cracks...

  2. Effect of two-stage sintering process on microstructure and mechanical properties of ODS tungsten heavy alloy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyong H. [Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 373-1 Kusong-dong, Yusong-gu, Taejon 305-701 (Korea, Republic of); Cha, Seung I. [International Center for Young Scientists, National Institute for Materials Science 1-1, Namiki, Tsukuba 305-0044 (Japan); Ryu, Ho J. [DUPIC, Korea Atomic Energy Research Institute, 150 Deokjin-dong, Yusong-gu, Taejon 305-353 (Korea, Republic of); Hong, Soon H. [Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 373-1 Kusong-dong, Yusong-gu, Taejon 305-701 (Korea, Republic of)], E-mail: shhong@kaist.ac.kr

    2007-06-15

    Oxide dispersion strengthened (ODS) tungsten heavy alloys have been considered as promising candidates for advanced kinetic energy penetrator due to their characteristic fracture mode compared to conventional tungsten heavy alloy. In order to obtain high relative density, the ODS tungsten heavy alloy needs to be sintered at higher temperature for longer time, however, induces growth of tungsten grains. Therefore, it is very difficult to obtain controlled microstructure of ODS tungsten heavy alloy having fine tungsten grains with full densification. In this study, two-stage sintering process, consisted of primary solid-state sintering and followed by secondary liquid phase sintering, was introduced for ODS tungsten heavy alloys. The mechanically alloyed 94W-4.56Ni-1.14Fe-0.3Y{sub 2}O{sub 3} powders are solid-state sintered at 1300-1450 deg. C for 1 h in hydrogen atmosphere, and followed by liquid phase sintering temperature at 1465-1485 deg. C for 0-60 min. The microstructure of ODS tungsten heavy alloys showed high relative density above 97%, with contiguous tungsten grains after primary solid-state sintering. The microstructure of solid-state sintered ODS tungsten heavy alloy was changed into spherical tungsten grains embedded in W-Ni-Fe matrix during secondary liquid phase sintering. The two-stage sintered ODS tungsten heavy alloy from mechanically alloyed powders showed finer microstructure and higher mechanical properties than conventional liquid phase sintered alloy. The mechanical properties of ODS tungsten heavy alloys are dependent on the microstructural parameters such as tungsten grain size, matrix volume fraction and tungsten/tungsten contiguity, which can be controlled through the two-stage sintering process.

  3. Characterization and properties of sintered WC–Co and WC–Ni–Fe hard metal alloys

    International Nuclear Information System (INIS)

    Chang, Shih-Hsien; Chen, Song-Ling

    2014-01-01

    Highlights: • WC–Ni–Fe alloy sintered at 1400 °C had the highest hardness (HRA 85.3 ± 0.5). • The optimal WC–Ni–Fe sintered alloy possessed the highest TRS value (2524.5 ± 1.0 MPa). • The fracture toughness of the sintered WC–Ni–Fe alloys is mainly provided by the Ni–Fe binders. • WC–Ni–Fe sintered alloy possessed the highest fracture toughness of K IC (15.1 MPa m 1/2 ). • The WC–Ni–Fe sintered alloy had the much better corrosion resistance in 0.15 M HCl solution. -- Abstract: The aim of this study is to explore two different tungsten carbide binders (Co and Ni–Fe) and then impose various sintering temperature treatments. Experimental results show that the optimal sintering temperatures for WC–Co and WC–Ni–Fe hard metal alloys are 1350 °C and 1400 °C for 1 h, respectively. Meanwhile, the WC–Co and WC–Ni–Fe alloys undergo a well liquid-phase sintering and, thus, exhibit excellent mechanical properties. In addition, the sintered WC–Co and WC–Ni–Fe alloys show that when the relative density reached 99.76% and 99.68%, the hardness was enhanced to HRA 84.4 ± 0.5 and 85.3 ± 0.5, and the TRS increased to 2471.2 ± 1.0 and 2524.5 ± 1.0 MPa, respectively. Moreover, the corrosion test results show that the WC–Ni–Fe alloy sintered at 1400 °C had the lowest corrosion current (I corr ) of 1.11 × 10 −5 A cm −2 and the highest polarization resistance (R p ) of 2464.61 Ω cm 2 in 0.15 M HCl solution. Simultaneously, the fracture toughness of K IC increased to 15.1 MPa m 1/2 . Compared with sintered WC–Co alloys, the sintered WC–Ni–Fe hard metal alloys possessed much better corrosion resistance and mechanical properties

  4. Deformation, Stress Relaxation, and Crystallization of Lithium Silicate Glass Fibers Below the Glass Transition Temperature

    Science.gov (United States)

    Ray, Chandra S.; Brow, Richard K.; Kim, Cheol W.; Reis, Signo T.

    2004-01-01

    The deformation and crystallization of Li(sub 2)O (center dot) 2SiO2 and Li(sub 2)O (center dot) 1.6SiO2 glass fibers subjected to a bending stress were measured as a function of time over the temperature range -50 to -150 C below the glass transition temperature (Tg). The glass fibers can be permanently deformed at temperatures about 100 C below T (sub)g, and they crystallize significantly at temperatures close to, but below T,, about 150 C lower than the onset temperature for crystallization for these glasses in the no-stress condition. The crystallization was found to occur only on the surface of the glass fibers with no detectable difference in the extent of crystallization in tensile and compressive stress regions. The relaxation mechanism for fiber deformation can be best described by a stretched exponential (Kohlrausch-Williams-Watt (KWW) approximation), rather than a single exponential model.The activation energy for stress relaxation, Es, for the glass fibers ranges between 175 and 195 kJ/mol, which is considerably smaller than the activation energy for viscous flow, E, (about 400 kJ/mol) near T, for these glasses at normal, stress-free condition. It is suspected that a viscosity relaxation mechanism could be responsible for permanent deformation and crystallization of the glass fibers below T,

  5. Influence of Coke Ratio on the Sintering Behavior of High-Chromium Vanadium-Titanium Magnetite

    Directory of Open Access Journals (Sweden)

    Songtao Yang

    2017-06-01

    Full Text Available High-chromium vanadium and titanium magnetite (HCVTM sinter has poor properties. The coke ratio has an important effect on the behavior of HCVTM sintering as it affects the mineral phases in the high-chromium vanadium and titanium sinter (HCVTS via changing the sintering temperature and atmosphere. In this work, the sintering behavior of HCVTM mixed with varying coke ratios was investigated through sintering pot tests, X-ray diffraction (XRD, gas chromatographic analysis, and mineral phase analysis. The results show that, with the increase of the coke ratio from 4.0% to 6.0%, leading to the increase of the combustion ratio of the flue gas, the vertical sintering rate and sinter productivity decrease. Meanwhile, with the change of the coke ratio, the content of magnetite, silicate, and perovskite increase, while the hematite and calcium ferrite decrease. In addition, the tumble strength and reduction ability of HCVTS decrease, and its degradation strength increase. It was found that the appropriate coke ratio for the sintering process was 5.0 wt %.

  6. Temperature and stress calculation for final disposal

    International Nuclear Information System (INIS)

    Tarandi, T.

    1979-02-01

    Temperature and stress distribution in and around the final storage facility has been calculated for three different arrangements of the tunnels: - 2 planes with 60 m vertical distance between them - 2 planes with 100 m distance and - 1 plane. The highest temperatures and stresses occur for the 2 plane alternative with distance 60 m between planes. The maximum compressive stress is in this case 24.0 MPa 140 years after the time of deposition, compared with 12.6 MPa in the 1 plane case. The maximum tensile stress exists at the surface and is in the 2 plane case 6.0 MPa 800 - 1,500 years after deposition, compared with 4.2 MPa for the 1 plane variant. An estimation of maximum tensile stresses between the tunnel planes yields a value of 1.5 MPa. The above-mentioned stresses are due to temperature distribution induced by the radioactive waste. To obtain the total stresses, initial stresses in the undisturbed rock, which vary according to location, are to be added to these stresses. (author)

  7. Electric-Loading Enhanced Kinetics in Oxide Ceramics: Pore Migration, Sintering and Grain Growth: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Chen, I-Wei [Univ. of Pennsylvania, Philadelphia, PA (United States). Dept. of Materials Science & Engineering

    2018-02-02

    Solid oxide fuel cells and solid oxide electrolysis cells rely on solid electrolytes in which a large ionic current dominates. This project was initiated to investigate microstructural changes in such devices under electrochemical forces, because nominally insignificant processes may couple to the large ionic current to yield non-equilibrium phenomena that alter the microstructure. Our studies had focused on yttria-stabilized cubic zirconia (YSZ) widely used in these devices. The experiments have revealed enhanced grain growth at higher temperatures, pore and gas bubble migration at all temperatures, and the latter also lead to enhanced sintering of highly porous ceramics into fully dense ceramics at unprecedentedly low temperatures. These results have shed light on kinetic processes that fall completely outside the realm of classical ceramic processing. Other fast-oxygen oxide ceramics closely related to, and often used in conjunction with zirconia ceramics, have also be investigated, as are closely related scientific problems in zirconia ceramics. These include crystal structures, defects, diffusion kinetics, oxygen potentials, low temperature sintering, flash sintering, and coarsening theory, and all have resulted in greater clarity in scientific understanding. The knowledge is leveraged to provide new insight to electrode kinetics and near-electrode mixed conductivity and to new materials. In the following areas, our research has resulted in completely new knowledge that defines the state-of-the-art of the field. (a) Electrical current driven non-equilibrium phenomena, (b) Enhanced grain growth under electrochemically reducing conditions, (c) Development of oxygen potential polarization in electrically loaded electrolyte, (d) Low temperature sintering and grain growth, and (e) Structure, defects and cation kinetics of fluorite-structured oxides. Our research has also contributed to synthesis of new energy-relevant electrochemical materials and new understanding

  8. Creep-behavior of different SiC-materials in vacuum and in air

    International Nuclear Information System (INIS)

    Schnuerer, K.

    1979-10-01

    Creep data under 4-point loading conditions of two hot-pressed SiC-materials with different amounts of aluminium in the SiC powder and of two reaction-sintered and silicon-infiltrated materials with different amounts of free silicon are presented. Creep tests in vacuum and also in air are performed in a temperature range from 1273 K up to 1973 K and in a stress range from 100MN/m 2 to 190MN/m 2 . For the hot-pressed SiC a stress exponent of n = 1 and activation energies of 363kJ/mol and 386kJ/mol have been found by temperature and stress change tests in vacuum. From these data one can conclude that Coble-creep is the rate-controlling process. A measurable creep-rate can be observed at temperatures above 1673 K. On the opposite a creep-rate in vacuum for Si-infiltrated SiC is measurable at temperatures already below 1273 K. TEN-observation of this materials show the presence of a second phase at grain-boundaries (silicon), thus an influence of free silicon on creep can be deduced. Besides that, a stress dependence on stress exponent can be seen for one of the reaction-sintered materials. This is referred to the activity of dislocations. (orig./RW) [de

  9. Determination of the Critical Stress Associated with Dynamic Phase Transformation in Steels by Means of Free Energy Method

    Directory of Open Access Journals (Sweden)

    Clodualdo Aranas

    2018-05-01

    Full Text Available The double differentiation method overestimates the critical stress associated with the initiation of dynamic transformation (DT because significant amounts of the dynamic phase must be present in order for its effect on the work hardening rate to be detectable. In this work, an alternative method (referred to here as the free energy method is presented based on the thermodynamic condition that the driving force is equal to the total energy obstacle during the exact moment of transformation. The driving force is defined as the difference between the DT critical stress (measured in the single-phase austenite region and the yield stress of the fresh ferrite that takes its place. On the other hand, the energy obstacle consists of the free energy difference between austenite and ferrite, and the work of shear accommodation and dilatation associated with the phase transformation. Here, the DT critical stresses in a C-Mn steel were calculated using the free energy method at temperatures ranging from 870 °C to 1070 °C. The results show that the calculated critical stress using the present approach appears to be more accurate than the values measured by the double differentiation method.

  10. Finite Element Simulation of Diametral Strength Test of Hydroxyapatite

    International Nuclear Information System (INIS)

    Ozturk, Fahrettin; Toros, Serkan; Evis, Zafer

    2011-01-01

    In this study, the diametral strength test of sintered hydroxyapatite was simulated by the finite element software, ABAQUS/Standard. Stress distributions on diametral test sample were determined. The effect of sintering temperature on stress distribution of hydroxyapatite was studied. It was concluded that high sintering temperatures did not reduce the stress on hydroxyapatite. It had a negative effect on stress distribution of hydroxyapatite after 1300 deg. C. In addition to the porosity, other factors (sintering temperature, presence of phases and the degree of crystallinity) affect the diametral strength of the hydroxyapatite.

  11. Design of experiment approach for sintering study of nanocrystalline SiC fabricated using plasma pressure compaction

    Directory of Open Access Journals (Sweden)

    Bothara M.G.

    2009-01-01

    Full Text Available Plasma pressure compaction (P2C is a novel sintering technique that enables the consolidation of silicon carbide with a nanoscale microstructure at a relatively low temperature. To achieve a high final density with optimized mechanical properties, the effects of various sintering factors pertaining to the temperature-time profile and pressure were characterized. This paper reports a design of experiment approach used to optimize the processing for a 100 nm SiC powder focused on four sintering factors: temperature, time, pressure, and heating rate. Response variables included the density and mechanical properties. A L9 orthogonal array approach that includes the signal-to-noise (S/N ratio and analysis of variance (ANOVA was employed to optimize the processing factors. All of the sintering factors have significant effect on the density and mechanical properties. A final density of 98.1% was achieved with a temperature of 1600°C, hold time of 30 min, pressure of 50 MPa, and heating rate of 100°C/min. The hardness reached 18.4 GPa with a fracture toughness of 4.6 MPa√m, and these are comparable to reports from prior studies using higher consolidation temperatures.

  12. Bismuth Titanate Fabricated by Spray-on Deposition and Microwave Sintering For High-Temperature Ultrasonic Transducers.

    Science.gov (United States)

    Searfass, Clifford T; Pheil, C; Sinding, K; Tittmann, B R; Baba, A; Agrawal, D K

    2016-01-01

    Thick films of ferroelectric bismuth titanate (Bi4Ti3O12) have been fabricated by spray-on deposition in conjunction with microwave sintering for use as high-temperature ultrasonic transducers. The elastic modulus, density, permittivity, and conductivity of the films were characterized. Electro-mechanical properties of the films were estimated with a commercial d33 meter which gave 16 pC/N. This value is higher than typically reported for bulk bismuth titanate; however, these films withstand higher field strengths during poling which is correlated with higher d33 values. Films were capable of operating at 650 °C for roughly 5 min before depoling and can operate at 600 °C for at least 7 days.

  13. Highly transparent Tb3Al5O12 magneto-optical ceramics sintered from co-precipitated powders with sintering aids

    Science.gov (United States)

    Dai, Jiawei; Pan, Yubai; Xie, Tengfei; Kou, Huamin; Li, Jiang

    2018-04-01

    Highly transparent terbium aluminum garnet (Tb3Al5O12, TAG) magneto-optical ceramics were fabricated from co-precipitated nanopowders with tetraethoxysilane (TEOS) as sintering aid by vacuum sintering combined with hot isostatic pressing (HIP) post-treatment. The ball milled TAG powder shows better dispersity than the as-synthesized powder, and its average particle size is about 80 nm. For the ceramic sample pre-sintered at 1720 °C for 20 h with HIP post-treated at 1700 °C for 3 h, the in-line transmittance exceeds 76% in the region of 400-1580nm (except the absorption band), reaching a maximum value of 81.8% at the wavelength of 1390 nm. The microstructure of the TAG ceramic is homogeneous and its average grain size is approximately 19.7 μm. The Verdet constant of the sample is calculated to be -182.7 rad·T-1·m-1 at room temperature.

  14. Effects of particle shape and temperature on compaction of copper powder at micro scale

    Directory of Open Access Journals (Sweden)

    Chang Chao-Cheng

    2017-01-01

    Full Text Available This study investigated the effects of particle shape and temperature on the compaction of copper powder at micro scale. Copper powder particles were compressed inside a cylindrical die cavity with 2 mm diameter to form compacts with about 3 mm height. Two kinds of particle shapes, spherical and dendritic, and two forming temperatures, room temperature and 400 °C, were considered in the experiments. Some of the produced compacts were further sintered at 600 °C. The study also used simple upsetting tests to investigate the characteristics of the deformation of the compacts under compressive stresses. The results showed that the compacts produced at room temperature demonstrated brittle deformations. However, by increasing the forming temperature to 400 °C, ductile deformations have been observed on the compacts of dendritic particles. Furthermore, the sintering treatment resulted in increases in dimensions, decreases in relative density and hardness, and an increase in ductility. It also led to pore growths which have been seen on scanning-electron microscope images. These phenomena were most significant in the dendritic powder compacts which were produced at 400 °C and treated by the sintering process.

  15. Reaction sintering of ceramic-metal composites

    International Nuclear Information System (INIS)

    Botta Filho, W.J.; Rodrigues, J.A.; Tomasi, R.; Pandolfelli, V.C.; Passos, J.F.S.S.; Folgueras, M.V.

    1990-01-01

    Reaction sintering experiments have been carried out in the system Al 2 O 3 -ZrAl 2 -Nb 2 O 5 with the objective of producing ceramic-metal composites of improved toughness. The sintering treatments have been done in the temperature range of 700 0 C to 1400 0 C under different conditions of vacuum and in air and argon atmospheres. The treated samples have been analysed by X-ray diffraction and analytical electron microscopy. The results are discussed in function of the degree of reaction, the development of microstructure and the densification. These results have shown that although an exchange reaction can occur to produce a composite, the control of the reaction to obtain a dense microstructure has not been possible yet. (author) [pt

  16. Effect of processing variables on mechanical properties of sintered manganese steels Fe-3%Mn-0.8%C

    International Nuclear Information System (INIS)

    Sulowski, M.; Cias, A.

    1998-01-01

    The powder metallurgy route may allow sintered manganese steels to be made based on pure iron powder and ferromanganese powder with control over alloy microstructure. The factors that contribute to the mechanical properties of sintered Fe-3%Mn-0.8%C manganese steel, such as the sintering atmosphere, dew point, sintering temperature, cooling rate are summarised. The paper shows the influence of these parameters on the tensile strength, yield strength, transverse rupture strength, impact strength and hardness. It is showed that tensile high strength level higher than those of many present sintered steels can be obtained already in the as-sintered condition. (author)

  17. Photoacoustic spectroscopy investigation of sintered zinc-tin-oxide ceramics

    Directory of Open Access Journals (Sweden)

    Ivetić Tamara B.

    2007-01-01

    Full Text Available In this paper the changes that occurred in differently activated ZnO-SnO2 and sintered samples were investigated using photoacoustic spectroscopy. ZnO and SnO2 powders, mixed in the molar ratio 2:1, were mechanically activated in a planetary ball mill for 10-160 min. The mixtures were pres­sed and isothermally sintered at 1300°C for two hours. X-ray diffraction analysis of the obtained sintered samples was performed in order to investigate changes of the phase composition and confirmed only the presence of a pure zinc stannate (Zn2SnO4 phase in all the sintered samples as a result of the solid state reaction and reaction sintering between the starting ZnO and SnO2 powders. The microstructure of the sintered sam­ples was examined by scanning electron microscopy and showed that mechanical activation leads to the formation of a structure with reduced particle size which accelerates spinel formation. Grain growth of the spinel phase slows down the densification process and together with the agglomerates formed during mechanical activation causes the appearance of a porous microstructure. The photoacoustic (PA phase and amplitude spectra of the sintered samples were recorded as a function of the chopped frequency of the laser beam used (red laser with a power of 25 mW, λ=632 nm in a thermal-transmission detection configuration. PA experimental data were analyzed using the Rosenzweig-Gersho thermal-piston model, which enabled determination of the thermal diffusivity, ZT (m2s-1, diffusion coefficient of the minority free carriers D (m2s-1 and the optical absorption coefficient (m-1. The detected differences of the measured thermal-electrical properties of the obtained Zn2SnO4 ceramics indicate changes in the material induced by the different preparation procedure of the starting powders before the sintering process.

  18. Microstructure and mechanical strength of near- and sub-micrometre grain size copper prepared by spark plasma sintering

    DEFF Research Database (Denmark)

    Zhu, K. N.; Godfrey, A.; Hansen, Niels

    2017-01-01

    Spark plasma sintering (SPS) has been used to prepare fully dense samples of copper in a fully recrystallized condition with grain sizes in the near- and sub-micrometre regime. Two synthesis routes have been investigated to achieve grain size control: (i) SPS at different temperatures from 800...... transmission electron microscope, and on electron back-scatter diffraction studies, confirms the samples are in a nearly fully recrystallized condition, with grains that are dislocation-free, and have a random texture, with a high fraction of high angle boundaries. The mechanical strength of the samples has...

  19. Influence of spark plasma sintering conditions on the sintering and functional properties of an ultra-fine grained 316L stainless steel obtained from ball-milled powder

    Energy Technology Data Exchange (ETDEWEB)

    Keller, C., E-mail: clement.keller@insa-rouen.fr [Groupe de Physique des Matériaux, CNRS-UMR 6634, Université de Rouen, INSA de Rouen, Avenue de l' Université, 76800 Saint-Etienne du Rouvray (France); Tabalaiev, K.; Marnier, G. [Groupe de Physique des Matériaux, CNRS-UMR 6634, Université de Rouen, INSA de Rouen, Avenue de l' Université, 76800 Saint-Etienne du Rouvray (France); Noudem, J. [Laboratoire de Cristallographie des Matériaux, CNRS-UMR 6508, Université de Caen, ENSICAEN, 7 bd du Maréchal Juin, 14050 Caen (France); Sauvage, X. [Groupe de Physique des Matériaux, CNRS-UMR 6634, Université de Rouen, INSA de Rouen, Avenue de l' Université, 76800 Saint-Etienne du Rouvray (France); Hug, E. [Laboratoire de Cristallographie des Matériaux, CNRS-UMR 6508, Université de Caen, ENSICAEN, 7 bd du Maréchal Juin, 14050 Caen (France)

    2016-05-17

    In this work, 316L samples with submicrometric grain size were sintered by spark plasma sintering. To this aim, 316L powder was first ball-milled with different conditions to obtain nanostructured powder. The process control agent quantity and milling time were varied to check their influence on the crystallite size of milled powder. Samples were then sintered by spark plasma sintering using different sets of sintering parameters (temperature, dwell time and pressure). For each sample, grain size and density were systematically measured in order to investigate the influence of the sintering process on these two key microstructure parameters. Results show that suitable ball-milling and subsequent sintering can be employed to obtain austenitic stainless steel samples with grain sizes in the nanometer range with porosity lower than 3%. However, ball-milling and subsequent sintering enhance chromium carbides formation at the sample surface in addition to intragranular and intergranular oxides in the sample as revealed by X-ray diffraction and transmission electron microscopy. It has been shown that using Boron nitride together with graphite foils to protect the mold from powder welding prevent such carbide formation. For mechanical properties, results show that the grain size refinement strongly increases the hardness of the samples without deviation from Hall-Petch relationship despite the oxides formation. For corrosion resistance, grain sizes lower than a few micrometers involve a strong decrease in the pitting potential and a strong increase in passivation current. As a consequence, spark plasma sintering can be considered as a promising tool for ultra-fine grained austenitic stainless steel.

  20. Designing a Tool System for Lowering Friction during the Ejection of In-Die Sintered Micro Gears

    Directory of Open Access Journals (Sweden)

    Emanuele Cannella

    2017-07-01

    Full Text Available The continuous improvements in micro-forging technologies generally involve process, material, and tool design. The field assisted sintering technique (FAST is a process that makes possible the manufacture of near-net-shape components in a closed-die setup. However, the final part quality is affected by the influence of friction during the ejection phase, caused by radial expansion of the compacted and sintered powder. This paper presents the development of a pre-stressed tool system for the manufacture of micro gears made of aluminum. By using the hot isostatic pressing (HIP sintering process and different combinations of process parameters, the designed tool system was compared to a similar tool system designed without a pre-stressing strategy. The comparison between the two tool systems was based on the ejection force and part fidelity. The ejection force was measured during the tests, while the part fidelity was documented using an optical microscope and computed tomography in order to obtain a multi-scale characterization. The results showed that the use of pre-stress reduced the porosity in the gear by 40% and improved the dimensional fidelity by more than 75% compared to gears produced without pre-stress.

  1. Temperature dependence of grain boundary free energy and elastic constants

    International Nuclear Information System (INIS)

    Foiles, Stephen M.

    2010-01-01

    This work explores the suggestion that the temperature dependence of the grain boundary free energy can be estimated from the temperature dependence of the elastic constants. The temperature-dependent elastic constants and free energy of a symmetric Σ79 tilt boundary are computed for an embedded atom method model of Ni. The grain boundary free energy scales with the product of the shear modulus times the lattice constant for temperatures up to about 0.75 the melting temperature.

  2. Synthesis, vacuum sintering and dielectric characterization of zirconia (t-ZrO2) nanopowder

    International Nuclear Information System (INIS)

    Pazhani, R.; Padma Kumar, H.; Varghese, Angeo; Moses Ezhil Raj, A.; Solomon, Sam; Thomas, J.K.

    2011-01-01

    Highlights: → A single step auto-igniting combustion synthesis was employed for the preparation of nanocrystalline ZrO 2 . → Detailed structural analysis was carried out using XRD and FT-IR techniques. → Micro strain analysis of the asprepared nanocrystalline ZrO 2 was carried out. → A sintered density of above 98% of the theoretical value was obtained using vacuum sintering techniques. → The dielectric properties of vacuum sintered ZrO 2 were measured for a frequency range from 10 KHz to 10 MHz. - Abstract: Phase pure zirconium oxide powders have been synthesized using the single step auto-ignition combustion method, the particles were nanometer sized (20 nm) and the size distribution was very narrow (3.4 nm). Systematic structural characterization revealed the t-ZrO 2 and indexed for its tetragonal structure (a = 3.5975 A and c = 5.1649 A). Calculated microstrain in most of the plane indicated the presence of compressive stress (65-288 MPa) along various planes of the particles. Observed space group (P4 2 /nmc) revealed the presence of cations in the 8e positions (0.75, 0.25, 0.75) and the anions in the 16 h positions (0.25, 0.25, 0.4534). The metal-oxide (Zr-O) band observed at the low wavenumber region further confirmed the phase purity of the as-prepared ZrO 2 nanopowders. Peaks at the binding energy positions 2.042 and 0.525 keV in the energy dispersive X-ray spectrum revealed oxygen deficient zirconia. The particle size estimated by TEM was in good agreement with the results obtained through X-ray line broadening (20.81 nm) measurements. The nanopowders were sintered to above 98% of the theoretical density by using vacuum sintering technique at a relatively low temperature of 1300 deg. C. Stable tetragonal ZrO 2 experimentally yield the permittivity value of about 28 at 10 MHz.

  3. Effects of the sintering temperature on the diffused phase transition and the spin-glassy behavior in Pb0.95La0.05(Fe2/3W1/3)0.65Ti0.35O3 ceramics

    International Nuclear Information System (INIS)

    Hong, Cheng-Shong; Chu, Sheng-Yuan; Hsu, Chi-Cheng

    2010-01-01

    In this paper, the effect of the sintering temperature on the low-field dielectric behavior of nonstoichiometric Pb 0.95 La 0.05 (Fe 2/3 W 1/3 ) 0.65 Ti 0.35 O 3 relaxor ferroelectrics is investigated. The x-ray patterns and the scanning electron microscope images are used to detect the pyrochlore phase and the perovskite structure. The electric properties of the resistivity, the space charge polarization, the temperature-dependent dielectric constant and dielectric loss are discussed. The diffused phase transition and the ordering state are fitted and discussed by using the empirical law and two ordering models. Furthermore, the glassy behavior is determined by using the Curie-Weiss law and the spin-glass model. According to the experimental data and fitting results, the dielectric picture is changed from the short range order relaxorlike behavior to the long range order normal ferroelectric state as increasing the sintering temperature and the glassy behavior is weakened at the lowest and highest sintering temperature at which the pyrochlore phase PWO 4 is induced. Therefore, it is suggested that the 1:1 ordered domain is enhanced by increasing the sintering temperature and the glassy behavior is related to not only the ordering degree also the polar defect pairs. For more ordering degree and polar defect pairs, the glassy is weakened and the correlation of neighboring polar microregions is enhanced.

  4. The usability of ark clam shell (Anadara granosa) as calcium precursor to produce hydroxyapatite nanoparticle via wet chemical precipitate method in various sintering temperature.

    Science.gov (United States)

    Khiri, Mohammad Zulhasif Ahmad; Matori, Khamirul Amin; Zainuddin, Norhazlin; Abdullah, Che Azurahanim Che; Alassan, Zarifah Nadakkavil; Baharuddin, Nur Fadilah; Zaid, Mohd Hafiz Mohd

    2016-01-01

    This paper reported the uses of ark clam shell calcium precursor in order to form hydroxyapatite (HA) via the wet chemical precipitation method. The main objective of this research is to acquire better understanding regarding the effect of sintering temperature in the fabrication of HA. Throughout experiment, the ratio of Ca:P were constantly controlled, between 1.67 and 2.00. The formation of HA at these ratio was confirmed by means of energy-dispersive X-ray spectroscopy analysis. In addition, the effect of sintering temperature on the formation of HA was observed using X-ray diffraction analysis, while the structural and morphology was determined by means of field emission scanning electron microscopy. The formation of HA nanoparticle was recorded (~35-69 nm) in the form of as-synthesize HA powder. The bonding compound appeared in the formation of HA was carried out using Fourier transform infrared spectroscopy such as biomaterials that are expected to find potential applications in orthopedic and biomedical industries .

  5. Science of sintering

    International Nuclear Information System (INIS)

    Kuczynski, G.

    1977-01-01

    Although the methods of integration of materials by sintering, have been used since the early history of humanity, the actual understanding of the process involved came only in the last three decades. As in the most human endeavors, the art preceded theory. The comprehension of the elementary processes occuring during sintering comes from the studies of model system. Although the elementary processes occuring during sintering are today quite well understood, the problem of shrinkage of a powder compact which was at the origin of Sintering Science is still far from solved. This is due to the complexity of the internal geometry of the compacts. The recent attempts to apply statistics to this problem, seem to offer some promise

  6. Visible luminescence peculiar to sintered silica nanoparticles: Spectral and decay properties

    Energy Technology Data Exchange (ETDEWEB)

    Vaccaro, L. [Dipartimento di Fisica e Chimica, Università di Palermo, Via Archirafi 36, I-90123 Palermo (Italy); Cannas, M., E-mail: marco.cannas@unipa.it [Dipartimento di Fisica e Chimica, Università di Palermo, Via Archirafi 36, I-90123 Palermo (Italy); Cangialosi, C. [Dipartimento di Fisica e Chimica, Università di Palermo, Via Archirafi 36, I-90123 Palermo (Italy); Laboratoire H. Curien, UMR CNRS 5516, Université St-Etienne, St-Etienne F-42000 (France); Spallino, L.; Gelardi, F.M. [Dipartimento di Fisica e Chimica, Università di Palermo, Via Archirafi 36, I-90123 Palermo (Italy)

    2015-10-15

    We report that the sintering at 1000 °C of silica nanoparticles (an average diameter of 14 nm) produces a transparent sample that exhibits a bright visible emission under UV excitation. The use of time resolved luminescence spectroscopy and a tunable laser source allows us to single out three contributions centered at 1.96 eV, 2.41 eV and 3.43 eV. The excitation spectra of these emissions evidence bell shaped bands consistent with transitions between localized defects’ states. For each emission we study the intensity and the lifetime in the temperature range from 300 K down to 10 K, thus evidencing the competition between radiative and non-radiative processes in the optical cycle of luminescent centers. The comparison with the luminescence properties of silica, both nanoparticles and bulk, points out that the observed emissions are peculiar to the sintered silica network. - Highlights: • Solid-phase sintering at 1000 °C of silica nanoparticles produces a transparent sample. • Sintered silica nanoparticles emit a bright luminescence under UV excitation. • Three emissions, centered around 2.0 V, 2.4 eV and 3.4 eV, are distinguished on the basis of the excitation and decay properties. • The observed excitation/emission bands originate from localized defect states peculiar to the sintered silica network. • The luminescence efficiency decreases with temperature due to the activation of non-radiative channels.

  7. Sintering effect on material properties of electrochemical reactors used for removal of nitrogen oxides and soot particles emitted from diesel engines

    DEFF Research Database (Denmark)

    He, Zeming; Andersen, Kjeld Bøhm; Keel, Li

    2010-01-01

    In the present work, 12-layered electrochemical reactors (comprising five cells) with a novel configuration including supporting layer lanthanum strontium manganate (LSM)-yttria stabilised zirconia (YSZ), electrode layer LSM-gadolinia-doped cerium oxide (CGO) and electrolyte layer CGO were...... fabricated via the processes of slurry preparation, tape casting and lamination and sintering. The parameters of porosity, pore size, pore size distribution, shrinkage, flow rate of the sintered reactors and the electrical conductivities of the supporting layer and the electrode in the sintered reactors were...... characterised. The effect of sintering temperature on microstructures and properties of the sintered samples was discussed, and 1,250 °C was determined as the appropriate sintering temperature for reactor production based on the performance requirements for applications. Using the present ceramic processing...

  8. In situ formation of sintered cordierite–mullite nano–micro composites by utilizing of waste silica fume

    International Nuclear Information System (INIS)

    Khattab, R.M.; EL-Rafei, A.M.; Zawrah, M.F.

    2012-01-01

    Highlights: ► We succeeded to obtain in situ formed sintered cordierite–mullite nano–macro composites from waste and pure materials at 1400 °C. ► Their sinterability was greatly dependent on both firing temperature and composition. ► XRD patterns showed that the optimum temperature required for formation of sintered cordierite–mullite nano–macro composites was achieved at 1400 °C. ► The batch containing 70 wt.% cordierite and 30 wt.% mullite exhibited the best properties. ► Microstructures of the densified composites were composed of nano–macro cordierite–mullite structures. -- Abstract: This study aims at in situ formation of sintered cordierite–mullite nano–macro composites having high technological properties using waste silica fume, calcined ball clay, calcined alumina, and magnesia as starting materials. The starting materials were mixed in different ratios to obtain different cordierite–mullite composite batches in which the cordierite contents ranged from 50 to 100 wt.%. The batches were uni-axially pressed at 100 MPa and sintered at 1350, 1400 and 1450 °C to select the optimum temperature required for cordierite–mullite nano–macro composites formation. The formed phases were identified by X-ray diffraction (XRD) pattern. The sintering parameters in terms of bulk density (BD) and apparent porosity (AP) were determined. The microstructure of composites has been investigated by scanning electron microscope (SEM). Cold crushing strength (CCS) of the sintered batches was evaluated. The result revealed that the cordierite–mullite nano–macro composites were in-situ formed at 1400 °C. The batch containing 70 wt.% cordierite showed good physical and mechanical properties.

  9. Study on the sintered characteristics and properties of nanostructured WC–15 wt% (Fe–Ni–Co) and WC–15 wt% Co hard metal alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Shih-Hsien, E-mail: changsh@ntut.edu.tw [Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 10608, Taiwan (China); Chang, Ming-Hung [Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 10608, Taiwan (China); Huang, Kuo-Tsung [Department of Auto-Mechanics, National Kangshan Agricultural Industrial Senior High School, Kaohsiung 82049, Taiwan (China)

    2015-11-15

    In this work, four different vacuum sintering temperatures (1250 °C, 1300 °C, 1350 °C and 1400 °C) were studied to determine the optimal process parameters of nano WC–15 wt% (Fe–Ni–Co) and WC–15 wt% Co sintered hard metal alloys. Experimental results showed that the optimal sintering temperatures for nano WC–(Fe–Ni–Co) and WC–Co alloys were 1300 °C and 1350 °C for 1 h, respectively. The sintered nano WC–(Fe–Ni–Co) and WC–Co hard metal alloys showed a good contiguity of 0.44 and 0.42; hardness was enhanced to HRA 90.83 and 90.92; the transverse rupture strength (TRS) increased to 2567.97 and 2860.08 MPa; and K{sub IC} was 16.23 and 12.33 MPa√m, respectively. Although the nano WC–(Fe–Ni–Co) alloys possessed a slightly lower TRS value, they exhibited superior fracture toughness (K{sub IC}) and hardness similar to that of the nano WC–Co material. Significantly, nano WC–(Fe–Ni–Co) alloys could be sintered at a lower temperature and still retained their excellent mechanical properties. - Graphical abstract: The following figure shows the fracture morphology of the WC–(Fe–Ni–Co) and WC–Co specimens by means of high-magnification SEM after the K{sub IC} tests. Fig. a shows that numerous binder phases (Fe–Ni–Co) existed in the crack areas, which resisted the penetration and extension of the cracks. Due to the bridging effect of the binder phase, the stress concentration of the crack tip will be resolved through plastic deformation; thus, the cracks did not continue to extend. Once the deformation reaches a critical value, the crack propagation occurs. Meanwhile, the binder phase can link together the two crack faces through the bridging process. Although parts of the cracked areas also showed the bridging effect in the WC–Co specimens, as shown by the arrows (Fig. b), the crack propagation path was not obviously affected. This result corresponds to the tortuosity phenomenon. Consequently, the bridging process

  10. Hot-pressed silicon nitride with various lanthanide oxides as sintering additives

    Science.gov (United States)

    Ueno, K.; Toibana, Y.

    1984-01-01

    The effects of addition of various lanthanide oxides and their mixture with Y2O3 on the sintering of Si3N4 were investigated. The addition of simple and mixed lanthanide oxides promoted the densification of Si3N4 in hot-pressing at 1800 C under 300-400kg/ centimeters squared for 60 min. The crystallization of yttrium and lanthanide-silicon oxynitrides which was observed inn the sintered body containing yttrium-lanthanide mixed oxides as additives led to the formation of a highly refractory Si3N4 ceramic having a bending strength of 82 and 84 kg/millimeters squared at room temperature and 1300 C respectively. In a Y2O3+La2O3 system, a higher molar ratio of La2O3 to Y2O3 gave a higher hardness and strength at high temperatures. It was found that 90 min was an optimum sintering time for the highest strength.

  11. Simulated UO{sub 2} fuel containing CsI by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Wangle, T. [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Postfach 2340, 76125 Karlsruhe (Germany); Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Břehová 7, Praha 1, 115 19 (Czech Republic); Tyrpekl, V. [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Postfach 2340, 76125 Karlsruhe (Germany); Cologna, M., E-mail: marco.cologna@ec.europa.eu [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Postfach 2340, 76125 Karlsruhe (Germany); Somers, J. [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Postfach 2340, 76125 Karlsruhe (Germany)

    2015-11-15

    Herein, an innovative preparation procedure has been deployed enabling, for the first time, the incorporation of volatile fission product simulant into highly dense nuclear fuel pellets. Highly volatile fission products were embedded in a dense UO{sub 2} matrix in the form of CsI by simply mixing starting materials and consolidation in a Spark Plasma Sintering step at 1000 °C with a 5 min dwell time. CsI particles were evenly distributed throughout the pellet and were located at the grain boundaries. The sintering rate is dependent on the O/U ratio of the powder. Addition of CsI also acts as a sintering aid, reducing the temperature of maximum densification. - Highlights: • A new method was developed to incorporation of volatile fission products simulants into dense nuclear fuel pellets. • CsI doped UO{sub 2} pellets were synthetized for the first time, by Spark Plasma Sintering. • The sintering rate in Spark Plasma Sintering is dependent on the O/U ratio of UO{sub 2+x}.

  12. The spatial distribution of temperature and oxygen deficiency in spark-plasma sintered superconducting Bi-based materials

    International Nuclear Information System (INIS)

    Govea-Alcaide, E.; Pérez-Fernández, J.E.; Machado, I.F.; Jardim, R.F.

    2014-01-01

    Pre-reacted powders of (Bi–Pb) 2 Sr 2 Ca 2 Cu 3 O 10+δ (Bi-2223) were consolidated by using the spark plasma sintering (SPS) technique under vacuum and at different consolidate temperatures T D . X-ray diffraction patterns revealed that the dominant phase in all SPS samples is the Bi-2223 phase, but traces of the Bi 2 Sr 2 CaCu 2 O 10+x (Bi-2212) phase were identified. We have found that the transport properties of SPS samples depend on their oxygen content because the SPS process is performed under vacuum. Simulations by using the finite element method (FEM) were performed for determining the actual temperature in which powders are consolidated. From these results we have inferred that SPS samples are oxygen deficient and such a deficiency is more marked near the grain boundaries, suggesting the occurrence of grains with core–shell morphology. We also argued that the width of the shell depends on the consolidation temperature, a feature corroborated by the FEM simulations

  13. Nanoporous gold synthesized by plasma-assisted inert gas condensation: room temperature sintering, nanoscale mechanical properties and stability against high energy electron irradiation

    Science.gov (United States)

    Weyrauch, S.; Wagner, C.; Suckfuell, C.; Lotnyk, A.; Knolle, W.; Gerlach, J. W.; Mayr, S. G.

    2018-02-01

    With a plasma assisted gas condensation system it is possible to achieve high-purity nanoporous Au (np-Au) structures with minimal contaminations and impurities. The structures consist of single Au-nanoparticles, which partially sintered together due to their high surface to volume ratio. Through electron microscopy investigations a porosity  >50% with ligament sizes between 20-30 nm was revealed. The elastic modulus of the np-Au was determined via peak force quantitative nanomechanical mapping and resulted in values of 7.5  ±  1.5 GPa. The presented structures partially sintered at room temperature, but proved to be stable to electron irradiation with energies of 7 MeV up to doses of 100 MGy. The electron irradiation stability opens the venue for electron assisted functionalization with biomolecules.

  14. Numerical investigation of FAST powder consolidation of Al2O3 and additive free β-SiC

    International Nuclear Information System (INIS)

    Allen, J B; Cornwell, C F; Carlson, T; Marsh, C P

    2015-01-01

    In this work we examine ceramic synthesis through powder consolidation and the field assisted sintering technique. In particular, we investigate the sintering of Al 2 O 3 and additive free β−SiC from both an experimental and numerical perspective. For the numerical model, the continuum theory of sintering model is employed, and the densification mechanisms corresponding to power law creep and grain boundary diffusion are considered. Experiments are used for comparison and validation purposes. The results indicate that in general, the densification kinetics simulated by the numerical model compare favorably with the experimental results. Parametric studies involving initial grain size, heating rate, and applied stress are also examined using the numerical model, and confirm many of the expected results from previous research, including increased densification due to higher heating rates, smaller grain sizes, and increased applied loading conditions. (paper)

  15. Trace metal chemistry and silicification of microorganisms in geothermal sinter, Taupo Volcanic Zone, New Zealand

    Energy Technology Data Exchange (ETDEWEB)

    McKenzie, E.J.; Brown, K.L.; Campbell, K.A. [University of Auckland (New Zealand). Dept. of Geology; Cady, S.L. [Portland State University, Portland, OR (United States). Dept. of Geology

    2001-08-01

    As part of a pilot study investigating the role of microorganisms in the immobilisation ol As, Sb, B, Tl and Ug, the inorganic geochemistry of seven different active sinter deposits and their contact fluids were characterised. A comprehensive series of sequential extractions for a suite of trace elements was carried out on siliceous sinter and a mixed silica-carbonate sinter. The extractions showed whether metals were loosely exchangeable or bound to carbonate, oxide, organic or crystalline fractions. Hyperthermophilic microbial communities associated with sinters deposited from high temperature (92-94{sup o}C) fluids at a variety of geothermal sources were investigated using SEM. The rapidity and style of silicification of the hyperthermophiles can be correlated with the dissolved silica content of the fluid. Although high concentrations of Hg and TI were found associated with the organic fraction of the sinters, there was no evidence to suggest that any of the heavy metals were associated preferentially with the hyperthermophiles at the high temperature (92-94{sup o}C) ends of the terrestrial thermal spring ecosystems studied. (author)

  16. Effect of sintering temperature on the structural, dielectric and magnetic properties of Ni{sub 0.4}Zn{sub 0.2}Mn{sub 0.4}Fe{sub 2}O{sub 4} potential for radar absorbing

    Energy Technology Data Exchange (ETDEWEB)

    Praveena, K., E-mail: praveenaou@gmail.com [Department of Physics, National Taiwan Normal University, Taipei 11677, Taiwan (China); Sadhana, K. [Department of Physics, Osmania University, Saifabad, Hyderabad 500004 (India); Matteppanavar, S. [Department of Physics, Bangalore University, Bangalore 560056 (India); Department of Physics, Presidency University, Dibbur, Itgalpur, Bangalore 560089 (India); Liu, Hsiang-Lin [Department of Physics, National Taiwan Normal University, Taipei 11677, Taiwan (China)

    2017-02-01

    Ni{sub 0.4}Zn{sub 0.2}Mn{sub 0.4}Fe{sub 2}O{sub 4} nanopowders were prepared by sol-gel auto-combustion method, densified at different temperatures 400–700 °C/4 h using conventional sintering method. The grain sizes of all the samples vary between 18 nm and 30 nm. The hysteresis loops show high saturation magnetization and low coercivity, indicating magnetically soft behaviour of the material. The real and imaginary parts of permittivity is almost constant upto 1 GHz and increases with further increase of frequency. The permeability is ruled by Snoek’s law, the values of μ′ increases with increase of temperature and the resonance frequency increases with an increase of temperature. The reflection coefficient is however increasing with sintering temperature and the maximum loss is observed in the range of 100 MHz–1 GHz. Sample sintered at 700 °C has shown maximum reflection loss and this loss occurs due to absorption, destructive interference and multiple internal reflections in the sample. Quality factor is constant upto 380 MHz and increases with frequency for all the samples sintered at different temperatures. The T{sub C} for all the samples is above ~230 °C. The room temperature EPR spectra confirm the oxidation state of Fe{sup 3+}. The g-factor is in the range of ~2. - Highlights: • The highest reflection loss of –46 dB is achieved by 700 °C sample. • Quality factor is constant upto 380 MHz for all the samples. • The Curie temperature (T{sub C}) for all the samples is above ~230 °C. • The room temperature EPR spectra confirm the oxidation state of Fe{sup 3+}.

  17. Xenon thermal behavior in sintered titanium nitride, foreseen inert matrix for GFR

    International Nuclear Information System (INIS)

    Bes, R.

    2010-11-01

    This work concerns the generation IV future nuclear reactors such as gas-cooled fast reactor (GFR) for which refractory materials as titanium nitride (TiN) are needed to surround fuel and act as a fission product diffusion barrier. This study is about Xe thermal behavior in sintered titanium nitride. Microstructure effects on Xe behavior have been studied. In this purpose, several syntheses have been performed using different sintering temperatures and initial powder compositions. Xenon species have been introduced into samples by ionic implantation. Then, samples were annealed in temperature range from 1300 C to 1600 C, these temperatures being the accidental awaited temperature. A transport of xenon towards sample surface has been observed. Transport rate seems to be slow down when increasing sintering temperature. The composition of initial powder and the crystallographic orientation of each considered grain also influence xenon thermal behavior. Xenon release has been correlated with material oxidation during annealing. Xenon bubbles were observed. Their size is proportional with xenon concentration and increases with annealing temperature. Several mechanisms which could explain Xe intragranular mobility in TiN are proposed. In addition with experiments, very low Xe solubility in TiN has been confirmed by ab initio calculations. So, bi-vacancies were found to be the most favoured Xe incorporation sites in this material. (author)

  18. Sintered bentonite ceramics for the immobilization of cesium- and strontium-bearing radioactive waste

    Science.gov (United States)

    Ortega, Luis Humberto

    The Advanced Fuel Cycle Initiative (AFCI) is a Department of Energy (DOE) program, that has been investigating technologies to improve fuel cycle sustainability and proliferation resistance. One of the program's goals is to reduce the amount of radioactive waste requiring repository disposal. Cesium and strontium are two primary heat sources during the first 300 years of spent nuclear fuel's decay, specifically isotopes Cs-137 and Sr-90. Removal of these isotopes from spent nuclear fuel will reduce the activity of the bulk spent fuel, reducing the heat given off by the waste. Once the cesium and strontium are separated from the bulk of the spent nuclear fuel, the isotopes must be immobilized. This study is focused on a method to immobilize a cesium- and strontium-bearing radioactive liquid waste stream. While there are various schemes to remove these isotopes from spent fuel, this study has focused on a nitric acid based liquid waste. The waste liquid was mixed with the bentonite, dried then sintered. To be effective sintering temperatures from 1100 to 1200°C were required, and waste concentrations must be at least 25 wt%. The product is a leach resistant ceramic solid with the waste elements embedded within alumino-silicates and a silicon rich phase. The cesium is primarily incorporated into pollucite and the strontium into a monoclinic feldspar. The simulated waste was prepared from nitrate salts of stable ions. These ions were limited to cesium, strontium, barium and rubidium. Barium and rubidium will be co-extracted during separation due to similar chemical properties to cesium and strontium. The waste liquid was added to the bentonite clay incrementally with drying steps between each addition. The dry powder was pressed and then sintered at various temperatures. The maximum loading tested is 32 wt. percent waste, which refers to 13.9 wt. percent cesium, 12.2 wt. percent barium, 4.1 wt. percent strontium, and 2.0 wt. percent rubidium. Lower loadings of waste

  19. On the Mechanism of Microwave Flash Sintering of Ceramics

    Directory of Open Access Journals (Sweden)

    Yury V. Bykov

    2016-08-01

    Full Text Available The results of a study of ultra-rapid (flash sintering of oxide ceramic materials under microwave heating with high absorbed power per unit volume of material (10–500 W/cm3 are presented. Ceramic samples of various compositions—Al2O3; Y2O3; MgAl2O4; and Yb(LaO2O3—were sintered using a 24 GHz gyrotron system to a density above 0.98–0.99 of the theoretical value in 0.5–5 min without isothermal hold. An analysis of the experimental data (microwave power; heating and cooling rates along with microstructure characterization provided an insight into the mechanism of flash sintering. Flash sintering occurs when the processing conditions—including the temperature of the sample; the properties of thermal insulation; and the intensity of microwave radiation—facilitate the development of thermal runaway due to an Arrhenius-type dependency of the material’s effective conductivity on temperature. The proper control over the thermal runaway effect is provided by fast regulation of the microwave power. The elevated concentration of defects and impurities in the boundary regions of the grains leads to localized preferential absorption of microwave radiation and results in grain boundary softening/pre-melting. The rapid densification of the granular medium with a reduced viscosity of the grain boundary phase occurs via rotation and sliding of the grains which accommodate their shape due to fast diffusion mass transport through the (quasi-liquid phase. The same mechanism based on a thermal runaway under volumetric heating can be relevant for the effect of flash sintering of various oxide ceramics under a dc/ac voltage applied to the sample.

  20. SnO2*CoO ceramic obtained by microwave sintering

    International Nuclear Information System (INIS)

    Bordignon, M.A.N; Moura, F.; Zaghete, M.A.; Varela, J.A.; Perazolli, L.

    2009-01-01

    This work consists in the sintering study of CoO doped SnO 2 using microwave sintering oven and silicon carbide as a susceptor. The powders were obtained by dry oxides mixture and conformed in cylindrical shapes with 6mmx8mm and green density to 60%. Then the compacts were sintering up to 1.050 deg C, using heating rate of 50 deg C/min and isotherm up to 30min. The densities obtained were above 95% for both techniques. It was observed that occurred a temperature reducing of 400 deg C and time reducing of 210min to obtain the same densities, when was used the microwave oven without the phenomena of thermal runaway. So the sintered compacts were accomplished using DRX and SEM. It was made the electrical characterization (current x voltage) and it was found to have great potential in the production of dense ceramic-based SnO 2 with low resistivity to obtain electro-ceramic devices. (author)