WorldWideScience

Sample records for stress-fractured metal boxes

  1. Estimation of the controlling stress in creep fracture

    International Nuclear Information System (INIS)

    Henderson, J.; Ferguson, F.R.

    1975-01-01

    The implementation of correct criterion in creep design, has been shown to be of fundamental significance in the assessment of component life. The present report considers the problem of the means whereby the criterion may be derived for a particular metal without the availability of sophisticated complex-stress testing equipment and procedures such as the combined tension and torsion tests on thin walled tubular specimens employed in the earlier fundamental researches on the subject. By investigating a wide spectrum of engineering metals it was established that for homogeneous stress conditions two criteria appeared to be sufficient to cover all the metals studied for complex-stress creep fracture, either the maximum principal stress or the octahedral shear stress criterion. Further, it was found that those metals which developed random and continuous cracking during creep were controlled with respect to fracture time by the maximum principal stress, while metals which showed virtually no cracking were governed by the octahedral shear stress or second order invariant. The physical nature of the final fracture (transcrystalline or inter-crystalline), contrary to considerable current concepts, was found to be unrelated to which criterion was operative. Having reduced the possible fracture criteria to two, it only remained to develop a simple test method exploiting this finding to achieve the precise identification for a particular metal. Seven metals including aluminium, copper, titanium, cast iron and three steels have been investigated in the present report at temperatures where creep conditions are operative. The results have shown that the method leads to sufficiently accurate prediction of the complex stress creep fracture criterion for the metals studied

  2. The elasto plastic fracture mechanics in ductile metal sheets

    International Nuclear Information System (INIS)

    Khan, M.A.; Malik, M.N.; Naeem, A.; Haq, A.U.; Atkins, A.G.

    1999-01-01

    The crack initiation of propagation in ductile metal sheets are caused by various micro and macro changes taking place due to material properties, applied loads, shape of the indenter (tool geometry) and the environmental conditions. These microstructural failures are directly related to the atomic bonding, crystal lattices, grain boundary status, material flaws in matrix, inhomogeneities and anisotropy in the metal sheets. The Elasto-Plastic related energy based equations are applied to these Rigid Plastic materials to determine the onset of fracture in metal forming. The combined stress and strain criterion of a critical plastic work per unit volume is no more considered as a universal ductile fracture criterion, rather a critical plastic work per unit volume dependence on all sort of stresses (hydrostatic) are the required features for the sheet metal failure (fracture). In this present study, crack initiation and propagation are related empirically with fracture toughness and the application of the theory in industry to save energy. (author)

  3. NextGen Stress & Fracture for Lightweight Structures

    Data.gov (United States)

    National Aeronautics and Space Administration — The dream in stress and fracture analysis has always been to be able to simulate cracks initiating and then propagating in a stress field in a metal or composite...

  4. A novel F-box protein CaF-box is involved in responses to plant hormones and abiotic stress in pepper (Capsicum annuum L.).

    Science.gov (United States)

    Chen, Rugang; Guo, Weili; Yin, Yanxu; Gong, Zhen-Hui

    2014-02-10

    The F-box protein family is characterized by an F-box motif that has been shown to play an important role in regulating various developmental processes and stress responses. In this study, a novel F-box-containing gene was isolated from leaves of pepper cultivar P70 (Capsicum annuum L.) and designated CaF-box. The full-length cDNA is 2088 bp and contains an open reading frame of 1914 bp encoding a putative polypeptide of 638 amino acids with a mass of 67.8 kDa. CaF-box was expressed predominantly in stems and seeds, and the transcript was markedly upregulated in response to cold stress, abscisic acid (ABA) and salicylic acid (SA) treatment, and downregulated under osmotic and heavy metal stress. CaF-box expression was dramatically affected by salt stress, and was rapidly increased for the first hour, then sharply decreased thereafter. In order to further assess the role of CaF-box in the defense response to abiotic stress, a loss-of-function experiment in pepper plants was performed using a virus-induced gene silencing (VIGS) technique. Measurement of thiobarbituric acid reactive substances (TBARS) and electrolyte leakage revealed stronger lipid peroxidation and cell death in the CaF-box-silenced plants than in control plants, suggesting CaF-box plays an important role in regulating the defense response to abiotic stress resistance in pepper plants.

  5. Stress Fractures

    Science.gov (United States)

    Stress fractures Overview Stress fractures are tiny cracks in a bone. They're caused by repetitive force, often from overuse — such as repeatedly jumping up and down or running long distances. Stress fractures can also arise from normal use of ...

  6. Multiple fracture planes in deuteron irradiated metals

    International Nuclear Information System (INIS)

    Jones, W.R.; Johnson, P.B.

    1987-01-01

    Evidence has been found of multiple fracture planes in the blistering and flaking of metals observed at room temperature following irradiation at 120 K with 200 keV deuterons. In particular, two fracture planes are identified in copper, gold and stainless steel and three in aluminium. In nickel only one fracture plane is found. Qualitative models are proposed which explain the different fracture planes that are observed. In these models it is proposed that several mechanisms are important. (i) High levels of compressional stress in the implanted layer inhibits bubble nucleation and bubble growth in the depth region near the maxima in the damage and gas deposition profiles. (ii) The lateral stress varies from compression in the implant region to tension in the material below. In the region of tension bubble growth is enhanced. The vertical gradient in the lateral stress may also assist gas to move deeper into the target to further enhance bubble growth in this region. (iii) Shear resulting from differential expansion due to a combination of radiation induced swelling and localised heating is an important mechanism leading to fracture. (orig.)

  7. An unusual stress fracture: Bilateral posterior longitudinal stress fracture of tibia.

    Science.gov (United States)

    Malkoc, Melih; Korkmaz, Ozgur; Ormeci, Tugrul; Oltulu, Ismail; Isyar, Mehmet; Mahirogulları, Mahir

    2014-01-01

    Stress fractures (SF) occur when healthy bone is subjected to cyclic loading, which the normal carrying range capacity is exceeded. Usually, stress fractures occur at the metatarsal bones, calcaneus, proximal or distal tibia and tends to be unilateral. This article presents a 58-year-old male patient with bilateral posterior longitudinal tibial stress fractures. A 58 years old male suffering for persistent left calf pain and decreased walking distance for last one month and after imaging studies posterior longitudinal tibial stress fracture was detected on his left tibia. After six months the patient was admitted to our clinic with the same type of complaints in his right leg. All imaging modalities and blood counts were performed and as a result longitudinal posterior tibial stress fractures were detected on his right tibia. Treatment of tibial stress fracture includes rest and modified activity, followed by a graded return to activity commensurate with bony healing. We have applied the same treatment protocol and our results were acceptable but our follow up time short for this reason our study is restricted for separate stress fractures of the posterior tibia. Although the main localization of tibial stress fractures were unilateral, anterior and transverse pattern, rarely, like in our case, the unusual bilateral posterior localization and longitudinal pattern can be seen. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Epidemiology of metatarsal stress fractures versus tibial and femoral stress fractures during elite training.

    Science.gov (United States)

    Finestone, Aharon; Milgrom, Charles; Wolf, Omer; Petrov, Kaloyan; Evans, Rachel; Moran, Daniel

    2011-01-01

    The training of elite infantry recruits takes a year or more. Stress fractures are known to be endemic in their basic training and the clinical presentation of tibial, femoral, and metatarsal stress fractures are different. Stress fracture incidence during the subsequent progressively more demanding training is not known. The study hypothesis was that after an adaptation period, the incidence of stress fractures during the course of 1 year of elite infantry training would fall in spite of the increasingly demanding training. Seventy-six male elite infantry recruits were followed for the development of stress fractures during a progressively more difficult training program composed of basic training (1 to 14 weeks), advanced training (14 to 26 weeks), and unit training (26 to 52 weeks). Subjects were reviewed regularly and those with clinical suspicion of stress fracture were assessed using bone scan and X-rays. The incidence of stress fractures was 20% during basic training, 14% during advanced training and 23% during unit training. There was a statistically significant difference in the incidence of tibial and femoral stress fractures versus metatarsal stress fractures before and after the completion of phase II training at week 26 (p=0.0001). Seventy-eight percent of the stress fractures during phases I and II training were either tibial or femoral, while 91% of the stress fractures in phase III training were metatarsal. Prior participation in ball sports (p=0.02) and greater tibial length (p=0.05) were protective factors for stress fracture. The study hypothesis that after a period of soldier adaptation, the incidence of stress fractures would decrease in spite of the increasingly demanding elite infantry training was found to be true for tibial and femoral fractures after 6 months of training but not for metatarsal stress fractures. Further studies are required to understand the mechanism of this difference but physicians and others treating stress fractures

  9. An unusual stress fracture: Bilateral posterior longitudinal stress fracture of tibia

    OpenAIRE

    Malkoc, Melih; Korkmaz, Ozgur; Ormeci, Tugrul; Oltulu, Ismail; Isyar, Mehmet; Mahirogulları, Mahir

    2014-01-01

    INTRODUCTION Stress fractures (SF) occur when healthy bone is subjected to cyclic loading, which the normal carrying range capacity is exceeded. Usually, stress fractures occur at the metatarsal bones, calcaneus, proximal or distal tibia and tends to be unilateral. PRESENTATION OF CASE This article presents a 58-year-old male patient with bilateral posterior longitudinal tibial stress fractures. A 58 years old male suffering for persistent left calf pain and decreased walking distance for las...

  10. Stress fracture of the femoral neck in a child (stress fracture)

    International Nuclear Information System (INIS)

    Coldwell, D.; Gross, G.W.; Boal, D.K.

    1984-01-01

    Femoral neck stress fracture is extremely rare in childhood. We report a case of femoral neck stress fracture in an 11-year-old girl. Differentials diagnosis and a brief review of the literature follow. (orig.)

  11. Low-temperature embrittlement and fracture of metals with different crystal lattices – Dislocation mechanisms

    Directory of Open Access Journals (Sweden)

    V.M. Chernov

    2016-12-01

    Full Text Available The state of a low-temperature embrittlement (cold brittleness and dislocation mechanisms for formation of the temperature of a ductile-brittle transition and brittle fracture of metals (mono- and polycrystals with various crystal lattices (BCC, FCC, HCP are considered. The conditions for their formation connected with a stress-deformed state and strength (low temperature yield strength as well as the fracture breaking stress and mobility of dislocations in the top of a crack of the fractured metal are determined. These conditions can be met for BCC and some HCP metals in the initial state (without irradiation and after a low-temperature damaging (neutron irradiation. These conditions are not met for FCC and many HCP metals. In the process of the damaging (neutron irradiation such conditions are not met also and the state of low-temperature embrittlement of metals is absent (suppressed due to arising various radiation dynamic processes, which increase the mobility of dislocations and worsen the strength characteristics.

  12. Stress fractures

    International Nuclear Information System (INIS)

    Berquist, T.H.; Cooper, K.L.; Pritchard, D.J.

    1985-01-01

    The diagnosis of a stress fracture should be considered in patients presented with pain after a change in activity, especially if the activity is strenuous and the pain is in the lower extremities. Since evidence of the stress fracture may not be apparent for weeks on routine radiographs, proper use of other imaging techniques will allow an earlier diagnosis. Prompt diagnosis is especially important in the femur, where displacement may occur

  13. Boundary element analysis of stress singularity in dissimilar metals by friction welding

    International Nuclear Information System (INIS)

    Chung, N. Y.; Park, C. H.

    2012-01-01

    Friction welded dissimilar metals are widely applied in automobiles, rolling stocks, machine tools, and various engineering fields. Dissimilar metals have several advantages over homogeneous metals, including high strength, material property, fatigue endurance, impact absorption, high reliability, and vibration reduction. Due to the increased use of these metals, understanding their behavior under stress conditions is necessary, especially the analysis of stress singularity on the interface of friction-welded dissimilar metals. To establish a strength evaluation method and a fracture criterion, it is necessary to analyze stress singularity on the interface of dissimilar metals with welded flashes by friction welding under various loads and temperature conditions. In this paper, a method analyzing stress singularity for the specimens with and without flashes set in friction welded dissimilar metals is introduced using the boundary element method. The stress singularity index (λ) and the stress singularity factor (Γ) at the interface edge are computed from the stress analysis results. The shape and flash thickness, interface length, residual stress, and load are considered in the computation. Based on these results, the variations of interface length (c) and the ratio of flash thickness (t2 t1) greatly influence the stress singularity factors at the interface edge of friction welded dissimilar metals. The stress singularity factors will be a useful fracture parameter that considers stress singularity on the interface of dissimilar metals

  14. Flow and Fracture of Bulk Metallic Glass Alloys and their Composites

    International Nuclear Information System (INIS)

    Flores, K M; Suh, D; Howell, R; Asoka-Kumar, P; Dauskardt, R H

    2001-01-01

    The fracture and plastic deformation mechanisms of a Zr-Ti-Ni-Cu-Be bulk metallic glass and a composite utilizing a crystalline reinforcement phase are reviewed. The relationship between stress state, free volume and shear band formation are discussed. Positron annihilation techniques were used to confirm the predicted increase in free volume after plastic straining. Strain localization and failure were examined for a wide range of stress states. Finally, methods for toughening metallic glasses are considered. Significant increases in toughness are demonstrated for a composite bulk metallic glass containing a ductile second phase which stabilizes shear band formation and distributes plastic deformation

  15. Dynamic fracture characteristics of Fe78Si9B13 metallic glass subjected to laser shock loading

    International Nuclear Information System (INIS)

    Zheng, Chao; Sun, Sheng; Song, Libin; Zhang, Guofang; Luan, Yiguo; Ji, Zhong; Zhang, Jianhua

    2013-01-01

    The response of the Fe 78 Si 9 B 13 metallic glass under different ratio of laser beam diameter (d) to die hole diameter (D) in micro scale laser punching was investigated. The typical fracture surface morphologies were observed using scanning electron microscope. The influence of the ratio d/D on dynamic deformation and fracture of metallic glasses foils was characterized. The results show that the dynamic fracture behavior of the Fe 78 Si 9 B 13 metallic glass is sensitive to the ratio d/D. In the case of d/D = 1.75, the fracture surface is occupied by numerous liquid droplets, indicating that the temperature rise in an adiabatic shear band is beyond the melting temperature of the material. On the other hand, the fracture surface is covered dominantly with a mixture of shear steps, cellular patterns, liquid droplets and melted belts at d/D = 0.70. According to the general mechanical analysis, the specimen fails in a shear fracture mode at d/D = 1.75 due to the existence of shear stresses, while the fracture occurs in a tensile fracture mode at d/D = 0.70 under the effect of bidirectional tensile stresses.

  16. Stress fractures in athletes

    International Nuclear Information System (INIS)

    Kirschberger, R.; Henning, A.; Graff, K.H.

    1984-01-01

    The early exclusion of the presence of a stress fracture may be decisive for the success of an athlete. Scintigraphy with a bone-seeking radiopharmaceutical is suitable for the early detection of stress lesions. Of 30 athletes, fractures were demonstrated in 17 whereas in 6 they were excluded. We found most fractures in the tarsal bones such as os naviculare pedis, ossa cuneiformia and talus. The type of sport engaged in appears to be an important factor in determining the location of the fracture. Scintiphotos were taken in several views using region of interest techniques and two phase-scintigraphy. This method is considered to be useful for localization and follow-up of skeletal stress lesions as well as for differential diagnosis. (orig.) [de

  17. Stress fractures in athletes

    Energy Technology Data Exchange (ETDEWEB)

    Kirschberger, R; Henning, A; Graff, K H

    1984-12-01

    The early exclusion of the presence of a stress fracture may be decisive for the success of an athlete. Scintigraphy with a bone-seeking radiopharmaceutical is suitable for the early detection of stress lesions. Of 30 athletes, fractures were demonstrated in 17 whereas in 6 they were excluded. We found most fractures in the tarsal bones such as os naviculare pedis, ossa cuneiformia and talus. The type of sport engaged in appears to be an important factor in determining the location of the fracture. Scintiphotos were taken in several views using region of interest techniques and two phase-scintigraphy. This method is considered to be useful for localization and follow-up of skeletal stress lesions as well as for differential diagnosis.

  18. Bone stress in runners with tibial stress fracture.

    Science.gov (United States)

    Meardon, Stacey A; Willson, John D; Gries, Samantha R; Kernozek, Thomas W; Derrick, Timothy R

    2015-11-01

    Combinations of smaller bone geometry and greater applied loads may contribute to tibial stress fracture. We examined tibial bone stress, accounting for geometry and applied loads, in runners with stress fracture. 23 runners with a history of tibial stress fracture & 23 matched controls ran over a force platform while 3-D kinematic and kinetic data were collected. An elliptical model of the distal 1/3 tibia cross section was used to estimate stress at 4 locations (anterior, posterior, medial and lateral). Inner and outer radii for the model were obtained from 2 planar x-ray images. Bone stress differences were assessed using two-factor ANOVA (α=0.05). Key contributors to observed stress differences between groups were examined using stepwise regression. Runners with tibial stress fracture experienced greater anterior tension and posterior compression at the distal tibia. Location, but not group, differences in shear stress were observed. Stepwise regression revealed that anterior-posterior outer diameter of the tibia and the sagittal plane bending moment explained >80% of the variance in anterior and posterior bone stress. Runners with tibial stress fracture displayed greater stress anteriorly and posteriorly at the distal tibia. Elevated tibial stress was associated with smaller bone geometry and greater bending moments about the medial-lateral axis of the tibia. Future research needs to identify key running mechanics associated with the sagittal plane bending moment at the distal tibia as well as to identify ways to improve bone geometry in runners in order to better guide preventative and rehabilitative efforts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Stress fractures and bone pain

    International Nuclear Information System (INIS)

    Groshar, D.; Even-Sapir, E.; Lam, M.; Israel, O.; Front, D.

    1984-01-01

    Stress fractures result from an unusual repetitive physical activity causing absorption of bone in excess of repair and bone formation. This leads to the weakening of the bone and subsequently to a fracture. It is a benign condition that if recognized in time does not need any treatment besides rest. However, if diagnosis is not made and physical activity continues it may result in severe injury to the bone and a frank fracture may result. Pain is the typical clinical feature and bone scintigraphy, being more sensitive than radiography, is done to establish early diagnosis. The presence of asymptomatic sites of abnormal bone uptake typical of stress fracture in which pain appeared only about 2 weeks after scintigraphy, drew the authors' attention to the question of how close is the relationship between stress fractures and bone pain. Sixty-four military recruits diagnosed as suffering from stress fracture were investigated in order to correlate sites with abnormal uptake of Tc-99m MDP on bone scintigraphy with sites of local pain. In 37 (58%) subjects multiple sites of abnormal uptake were recognised. Of 123 sites of abnormal uptake, 31 (25%) were asymptomatic. In three patients bone pain appeared at the site of the abnormal uptake two weeks after scintigraphy. Bone scintigraphy appears to be more sensitive than bone pain in the diagnosis of stress fractures. The osteoblastic activity which manifests itself by abnormal uptake appears in some cases earlier than the pain caused by the fracture. Present findings may suggest that under certain circumstances, in a population prone to stress fracture, bone scan should be considered as a screening method

  20. Distinguishing stress fractures from pathologic fractures: a multimodality approach

    International Nuclear Information System (INIS)

    Fayad, Laura M.; Kamel, Ihab R.; Kawamoto, Satomi; Bluemke, David A.; Fishman, Elliot K.; Frassica, Frank J.

    2005-01-01

    Whereas stress fractures occur in normal or metabolically weakened bones, pathologic fractures occur at the site of a bone tumor. Unfortunately, stress fractures may share imaging features with pathologic fractures on plain radiography, and therefore other modalities are commonly utilized to distinguish these entities. Additional cross-sectional imaging with CT or MRI as well as scintigraphy and PET scanning is often performed for further evaluation. For the detailed assessment of a fracture site, CT offers a high-resolution view of the bone cortex and periosteum which aids the diagnosis of a pathologic fracture. The character of underlying bone marrow patterns of destruction can also be ascertained along with evidence of a soft tissue mass. MRI, however, is a more sensitive technique for the detection of underlying bone marrow lesions at a fracture site. In addition, the surrounding soft tissues, including possible involvement of adjacent muscle, can be well evaluated with MRI. While bone scintigraphy and FDG-PET are not specific, they offer a whole-body screen for metastases in the case of a suspected malignant pathologic fracture. In this review, we present select examples of fractures that underscore imaging features that help distinguish stress fractures from pathologic fractures, since accurate differentiation of these entities is paramount. (orig.)

  1. Fracture criteria of reactor graphite under multiaxial stresses

    International Nuclear Information System (INIS)

    Sato, S.; Kawamata, K.; Kurumada, A.; Oku, T.

    1987-01-01

    New fracture criteria for graphite under multiaxial stresses are presented for designing core and support materials of a high temperature gas cooled reactor. Different kinds of fracture strength tests are carried out for a near isotropic graphite IG-11. Results show that, under the stress state in which tensile stresses are predominant, the maximum principal stress theory is seen as applicable for brittle fracture. Under the stress state in which compressive stresses are predominant there may be two fracture modes for brittle fracture, namely, slipping fracture and mode II fracture. For the former fracture mode the maximum shear stress criterion is suitable, but for the latter fracture mode a new mode II fracture criterion including a restraint effect for cracks is verified to be applicable. Also a statistical correction for brittle fracture criteria under multiaxial stresses is discussed. By considering the allowable stress values for safe design, the specified minimum ultimate strengths corresponding to a survival probability of 99% at the 95% confidence level are presented. (orig./HP)

  2. Risk factors for stress fractures.

    Science.gov (United States)

    Bennell, K; Matheson, G; Meeuwisse, W; Brukner, P

    1999-08-01

    Preventing stress fractures requires knowledge of the risk factors that predispose to this injury. The aetiology of stress fractures is multifactorial, but methodological limitations and expediency often lead to research study designs that evaluate individual risk factors. Intrinsic risk factors include mechanical factors such as bone density, skeletal alignment and body size and composition, physiological factors such as bone turnover rate, flexibility, and muscular strength and endurance, as well as hormonal and nutritional factors. Extrinsic risk factors include mechanical factors such as surface, footwear and external loading as well as physical training parameters. Psychological traits may also play a role in increasing stress fracture risk. Equally important to these types of analyses of individual risk factors is the integration of information to produce a composite picture of risk. The purpose of this paper is to critically appraise the existing literature by evaluating study design and quality, in order to provide a current synopsis of the known scientific information related to stress fracture risk factors. The literature is not fully complete with well conducted studies on this topic, but a great deal of information has accumulated over the past 20 years. Although stress fractures result from repeated loading, the exact contribution of training factors (volume, intensity, surface) has not been clearly established. From what we do know, menstrual disturbances, caloric restriction, lower bone density, muscle weakness and leg length differences are risk factors for stress fracture. Other time-honoured risk factors such as lower extremity alignment have not been shown to be causative even though anecdotal evidence indicates they are likely to play an important role in stress fracture pathogenesis.

  3. Stress fractures in athletes

    International Nuclear Information System (INIS)

    Steingruber, I.E.; Wolf, C.; Gruber, H.; Czermak, B.V.; Mallouhi, A.; Jaschke, W.; Gabriel, M.

    2002-01-01

    Stress fractures may pose a diagnostic dilemma for radiologists since they are sometimes difficult to demonstrate on plain films and may simulate a tumour. They were first described in military personnel and professional athletes. Recently, there is an increasing incidence in the general population due to increasing sportive activities. Stress fractures occur most often in the lower extremities, especially in the tibia, the tarsal bone, the metatarsal bone, the femur and the fibula. In the upper extremities, they are commonly found in the humerus, the radius and the ulna. Some fractures of the lower extremities appear to be specific for particular sports, for example, fractures of the tibia affect mostly distance runners. Whereas stress fractures of the upper extremities are generally associated with upper limb-dominated sports. A correct diagnosis requires a careful clinical evaluation. The initial plain radiography may be normal. Further radiological evaluation could be performed by means of computerised tomography, magnetic resonance imaging and bone scanning. The latter two techniques are especially helpful for establishing a correct initial diagnosis. (orig.) [de

  4. Metatarsal stress fractures - aftercare

    Science.gov (United States)

    ... Metatarsal stress fracture. In: Safran MR, Zachazewski J, Stone DA, eds. Instructions for Sports Medicine Patients . 2nd ed. Elsevier Saunders; 2012:648-652. Smith MS. Metatarsal fractures. In: Eiff PM, Hatch R, eds. Fracture Management for Primary Care . 3rd ed. ...

  5. Stress fractures in elite cross-country athletes.

    Science.gov (United States)

    Laker, Scott R; Saint-Phard, Deborah; Tyburski, Mark; Van Dorsten, Brent

    2007-04-01

    This retrospective and comparative survey investigates an unusual number of stress fractures seen within a Division I college cross-country team. An anonymous questionnaire-designed to observe factors known to increase stress fracture incidence-was distributed to members of the current and previous seasons' teams. Running surface, sleep hours, intake of calcium, and shoe type were among the factors investigated. Eleven lower extremity stress fractures were found in nine athletes. Athletes with stress fractures reported significantly fewer workouts per week on the new track. All other study parameters had no statistically significant effect on stress fractures in these athletes.

  6. Stress fractures in the lower extremity

    International Nuclear Information System (INIS)

    Berger, Ferco H.; Jonge, Milko C. de; Maas, Mario

    2007-01-01

    Stress fractures are fatigue injuries of bone usually caused by changes in training regimen in the population of military recruits and both professional and recreational athletes. Raised levels of sporting activity in today's population and refined imaging technologies have caused a rise in reported incidence of stress fractures in the past decades, now making up more than 10% of cases in a typical sports medicine practice. Background information (including etiology, epidemiology, clinical presentation and treatment and prevention) as well as state of the art imaging of stress fractures will be discussed to increase awareness amongst radiologists, providing the tools to play an important role in diagnosis and prognosis of stress fractures. Specific fracture sites in the lower extremity will be addressed, covering the far majority of stress fracture incidence. Proper communication between treating physician, physical therapist and radiologist is needed to obtain a high index of suspicion for this easily overlooked entity. Radiographs are not reliable for detection of stress fractures and radiologist should not falsely be comforted by them, which could result in delayed diagnosis and possibly permanent consequences for the patient. Although radiographs are mandatory to rule out differentials, they should be followed through when negative, preferably by magnetic resonance imaging (MRI), as this technique has proven to be superior to bone scintigraphy. CT can be beneficial in a limited number of patients, but should not be used routinely

  7. Optimum development of a thin box-shaped reservoir with multiply fractured horizontal wells

    Energy Technology Data Exchange (ETDEWEB)

    Lietard, O.; Hegeman, P.

    1998-12-31

    An improved definition of the productivity index of multiply fractured wells is proposed, based on the use of Dietz`s shape factors for vertical wells centered in independent box-shaped drainage areas of equal size in a reservoir. Pseudo-radial flow around each fracture is taken into account and pressure drops in the reservoir are accurately estimated. By using the corrected Gringarten mathematical approach, it is confirmed that orthogonal fractures provide much better productivity than a single collinear fracture even at constant material usage. Up to five-fold improvements have been registered when the number of fractures was equal to 1.8 times the reservoir shape ratio (length over width). For best results, the well should be cased and cemented, and hydraulic fractures should be propagated one by one through short perforation clusters. 18 refs., 10 figs., 1 appendix.

  8. Factors leading to tracheobronchial self-expandable metallic stent fracture.

    Science.gov (United States)

    Chung, Fu-Tsai; Lin, Shu-Min; Chen, Hao-Cheng; Chou, Chun-Liang; Yu, Chih-Teng; Liu, Chien-Ying; Wang, Chun-Hua; Lin, Horng-Chyuan; Huang, Chien-Da; Kuo, Han-Pin

    2008-11-01

    This retrospective study was to determine factors that contribute to self-expandable metallic stent fracture in patients with tracheobronchial disease. From 2001 to 2006, 139 patients (age, 62.1 +/- 15.4 years; range, 23-87 years) with benign (n = 62) and malignant (n = 77) tracheobronchial disease received 192 Ultraflex (Boston Scientific, Natick, Mass) self-expandable metallic stents (98 in patients with benign disease and 94 in patients with malignant disease). Seventeen fractured self-expandable metallic stents were found; the incidence was 12.2% (17/139 patients) among patients with tracheobronchial disease. Tortuous airway (odds ratio, 4.06; 95% confidence interval, 1.04-18.34; P = .04) independently predicted self-expandable metallic stent fracture. Most self-expandable metallic stent fractures (64.7%, 11/17) were detected 500 to 1000 days after self-expandable metallic stent implantation. Clinical presentations for patients with fractured self-expandable metallic stents included dyspnea exacerbation (70.6%, 12/17) and cough (23.5%, 4/17). Self-expandable metallic stent fracture is not uncommon in patients with tracheobronchial disease. Tortuous airway is an independent predictor for it. Although management of the fractured self-expandable metallic stent in our study was feasible and safe, self-expandable metallic stents should be restricted to a more select population.

  9. Pedicular stress fracture in the lumbar spine

    International Nuclear Information System (INIS)

    Chong, V.F.H.; Htoo, M.M.

    1997-01-01

    Spondylolisthesis with or without spondylolysis is common in the lumbar spine. Associated fracture in the pedicle ('pediculolysis') is unusual. The margins of pedicular stress fractures, like spondylolysis, usually appear sclerotic. A patient with a pedicular stress fracture with minimal marginal sclerosis suggesting an injury of recent onset is presented here. There was associated bilateral spondylolysis. The findings in this patient suggest that established pediculolysis probably represents a stress fracture that has failed to heal. (authors)

  10. Contribution to the research on fracture properties of metals in the elasto-plastic field

    International Nuclear Information System (INIS)

    Rousselier, G.; Electricite de France, 77 - Ecuelles. Dept. Etudes des Materiaux)

    1979-01-01

    Standard Fracture Mechanics theories proved unsuccessful for the treatment of ductile fracture in metals. We have shown the necessity of better knowledge and satisfactory modelling of the fracture process, prior to any application to cracked bodies. In that way we developed stress-strain laws which take into consideration the growth of voids during ductile fracture. The damage resulting from void growth is characterized by internal parameters. Finite strain analysis leads to material instability, corresponding to the stage of void coalescence and material decohesion. This latter result is only true in a finite strain analysis. In the infinitesimal strain finite element numerical analysis of three-point bend specimens, a local fracture criterion is used. The experimental determination of this criterion is performed with axisymmetrical notched tension specimens, which allow the investigation of various stress triaxialities at fracture. The numerical analysis proved effective in the modelling of stable crack growth and size effect, and was compared with experimental results [fr

  11. Fracture patterns and stresses in granite

    International Nuclear Information System (INIS)

    Price, N.J.

    1979-01-01

    If granite bodies are to be used as receptacles for toxic waste materials, the presence or absence of barren fractures and the virgin stresses in the granite are of fundamental importance. Unfortunately, very little is known regarding the incidence of fractures, or stresses, which exist at depths (of about 1 km) in granite bodies. A simple analysis is presented of a hypothetical intrusion which indicates the magnitudes of stresses and the possible fracture development which may be expected in such bodies. (auth)

  12. Pedicular stress fracture in the lumbar spine

    Energy Technology Data Exchange (ETDEWEB)

    Chong, V.F.H.; Htoo, M.M. [Singapore General Hospital, Singapore, (Singapore). Department of Diagnostic Radiology

    1997-08-01

    Spondylolisthesis with or without spondylolysis is common in the lumbar spine. Associated fracture in the pedicle (`pediculolysis`) is unusual. The margins of pedicular stress fractures, like spondylolysis, usually appear sclerotic. A patient with a pedicular stress fracture with minimal marginal sclerosis suggesting an injury of recent onset is presented here. There was associated bilateral spondylolysis. The findings in this patient suggest that established pediculolysis probably represents a stress fracture that has failed to heal. (authors). 10 refs., 2 figs.

  13. Jogger's fracture and other stress fractures of the lumbo-sacral spine

    International Nuclear Information System (INIS)

    Abel, M.S.

    1985-01-01

    The posterior rings of the lower lumbo-sacral vertebrae are subject to stress fractures at any part - pedicle, pars, or lamina. The site of fracture is apparently determined by the axis of weight bearing. The three illustrative clinical examples cited include a jogger with a laminar fracture, a ballet dancer with pedicle fractures, and a nine-year-old boy with fractures of pars and lamina. Chronic low back pain is the typical complaint with stress fractures of the lower lumbo-sacral spine. Special imaging techniques are usually needed to demonstrate these lesions, including vertebral arch views, multi-directional tomography, and computed tomography (CT). (orig.)

  14. Equation of limiting plasticity of the metal upon complex stress state

    International Nuclear Information System (INIS)

    Tin'gaev, A.K.

    2002-01-01

    A method for evaluation of the limiting plasticity of the metal in the zones of complex 3D stress state is presented. An analytic equation is derived for limiting plasticity. Parameters of the equation are expresses through the standard characteristics of the mechanical properties determined upon static tension of the smooth sample. Introduced into the obtained analytical equation is a universal fracture constant which indirectly characterizes the state of the material from the point of view of its capacity for elastic overstrain relaxation in the form of plastic flow or fracture. The new equation makes it possible to estimate the limiting plasticity of the metal in a state of complex stress on the basis of traditional characteristics of mechanical properties, which are not difficult to determine [ru

  15. A constitutive equation for creep fracture under constant, variable or cyclic positive stress

    International Nuclear Information System (INIS)

    Snedden, J.D.

    1977-01-01

    Prediction of creep fracture of metals under variable stress is one of the most difficult problems of applied mechanics. At NEL this problem is under investigation using an approach in which creep is represented by two macroscopic components: an anelastic (reversible) component and a plastic (irreversible) component. Under variable loading conditions, the anelastic component's behaviour will be most important and, if an experimental programme is logically planned, the structural processes responsible will be implicit in the resulting constitutive equation describing the material's behaviour. The present paper deals with the development and application of a constitutive equation for creep fracture of RR58 Aluminium alloy at 180 0 C under variable stress and such a constitutive equation can be extrapolated to cover long-time behaviour just as with conventional constant stress creep fracture equations. Constant stress, in fact, is one of the boundary conditions of the general constitutive equation, representing zero prior damage. The other boundary condition is that of 'cadence loading' in which the stress is completely removed and then re-applied in a cyclic fashion. (Auth.)

  16. High-Risk Stress Fractures: Diagnosis and Management.

    Science.gov (United States)

    McInnis, Kelly C; Ramey, Lindsay N

    2016-03-01

    Stress fractures are common overuse injuries in athletes. They occur during periods of increased training without adequate rest, disrupting normal bone reparative mechanisms. There are a host of intrinsic and extrinsic factors, including biochemical and biomechanical, that put athletes at risk. In most stress fractures, the diagnosis is primarily clinical, with imaging indicated at times, and management focused on symptom-free relative rest with advancement of activity as tolerated. Overall, stress fractures in athletes have an excellent prognosis for return to sport, with little risk of complication. There is a subset of injuries that have a greater risk of fracture progression, delayed healing, and nonunion and are generally more challenging to treat with nonoperative care. Specific locations of high-risk stress fracture include the femoral neck (tension side), patella, anterior tibia, medial malleolus, talus, tarsal navicular, proximal fifth metatarsal, and great toe sesamoids. These sites share a characteristic region of high tensile load and low blood flow. High-risk stress fractures require a more aggressive approach to evaluation, with imaging often necessary, to confirm early and accurate diagnosis and initiate immediate treatment. Treatment consists of nonweight-bearing immobilization, often with a prolonged period away from sport, and a more methodic and careful reintroduction to athletic activity. These stress fractures may require surgical intervention. A high index of suspicion is essential to avoid delayed diagnosis and optimize outcomes in this subset of stress fractures. Copyright © 2016 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  17. Stress fractures in military training

    International Nuclear Information System (INIS)

    Jofre, M.J.; Sierralta, M.P.

    2002-01-01

    During military training, the incidence of overuse injuries like stress fractures increase. The aim of the study was to investigate the utility of bone scan in a military population with clinical suspected stress fractures or periostitis. Material and methods: A three-year retrospective analysis was made on patients who were clinically diagnosed with stress fractures at the Military Hospital Nuclear Medicine Department. Thirty-seven patients were studied (mean age 23. +/- 8 y.o; 31 males), 28 cases of which (76%) had tibial stress syndrome. Other localizations were lumbar spine, femoral, fibular, tarsal or metatarsal. Bone scintigraphy was performed injecting 1036 MBq of Tc99m-MDP i.v. Whole body images and lateral projections of lower extremities were done. Results: Bone scan in tibial syndrome was positive for 23 cases (82%), 65% of them were bilateral and 13% also had femoral injuries. X-rays were done in 10 cases and were all negative. In other localizations, the bone scans were negative, but demonstrated other degenerative lesions. All stress fractures were conservatively treated with non-steroidal anti-inflammatories and suspension of physical activity. Conclusions: Bone scan is a reliable confirmatory tool for tibial stress syndrome diagnosis. In addition, it helps to determine both the severity and extension of the injury as well as support the indication of rest in the military population

  18. Stress fractures in military training

    Energy Technology Data Exchange (ETDEWEB)

    Jofre, M J; Sierralta, M P [Military Hospital Nuclear Medicine Department, Santiago (Chile)

    2002-09-01

    During military training, the incidence of overuse injuries like stress fractures increase. The aim of the study was to investigate the utility of bone scan in a military population with clinical suspected stress fractures or periostitis. Material and methods: A three-year retrospective analysis was made on patients who were clinically diagnosed with stress fractures at the Military Hospital Nuclear Medicine Department. Thirty-seven patients were studied (mean age 23. +/- 8 y.o; 31 males), 28 cases of which (76%) had tibial stress syndrome. Other localizations were lumbar spine, femoral, fibular, tarsal or metatarsal. Bone scintigraphy was performed injecting 1036 MBq of Tc99m-MDP i.v. Whole body images and lateral projections of lower extremities were done. Results: Bone scan in tibial syndrome was positive for 23 cases (82%), 65% of them were bilateral and 13% also had femoral injuries. X-rays were done in 10 cases and were all negative. In other localizations, the bone scans were negative, but demonstrated other degenerative lesions. All stress fractures were conservatively treated with non-steroidal anti-inflammatories and suspension of physical activity. Conclusions: Bone scan is a reliable confirmatory tool for tibial stress syndrome diagnosis. In addition, it helps to determine both the severity and extension of the injury as well as support the indication of rest in the military population.

  19. Rare stress fracture: longitudinal fracture of the femur.

    Science.gov (United States)

    Pérez González, M; Velázquez Fragua, P; López Miralles, E; Abad Moretón, M M

    42-year-old man with pain in the posterolateral region of the right knee that began while he was running. Initially, it was diagnosed by magnetic resonance (MR) as a possible aggressive process (osteosarcoma or Ewing's sarcoma) but with computed tomography it was noted a cortical hypodense linear longitudinal image with a continuous, homogeneous and solid periosteal reaction without clear soft tissue mass that in this patient suggest a longitudinal distal femoral fatigue stress fracture. This type of fracture at this location is very rare. Stress fractures are entities that can be confused with an agressive process. MR iscurrently the most sensitive and specific imaging method for its diagnosis. Copyright © 2017 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  20. The fracture toughness of Type 316 steel and weld metal

    International Nuclear Information System (INIS)

    Picker, C.

    This paper describes the results of fracture toughness tests on Type 316 steel and Manual Metal Arc (MMA) weld metal over a range of temperatures from 20 deg. C to 550 deg. C, and includes the effects on toughness of specimen size, post weld heat treatment and thermal ageing. The conclusions reached are that Type 316 steel possesses a superior toughness to the weld metal in the as-welded or stress relieved conditions but the toughness of the steel is degraded to a level similar to that of the weld metal following thermal ageing at temperatures over 600 deg. C. Relatively short term thermal ageing in the temperature range 370 deg. C to 450 deg. C does not appear to affect the toughness of either Type 316 steel or weld metal. (author)

  1. Evaluation of fracture toughness for metal/ceramics composite materials by means of miniaturized specimen technique

    International Nuclear Information System (INIS)

    Saito, Masahiro; Takahashi, Hideaki; Jeong, Hee-Don; Kawasaki, Akira; Watanabe, Ryuzo

    1991-01-01

    In order to evaluate fracture strength for Y 2 O 3 -ZrO 2 , 3 mol% Y 2 O 3 -ZrO 2 (PSZ)/SUS 304 composite materials, Macor as a machinable ceramics and comercially available ceramics (SiC, Si 3 N 4 , PSZ, Al 2 O 3 ), fracture toughness tests were carried out by use of RCT or bending specimens. On the other hand, the fracture strength of these materials was evaluated and inspected the correlation between fracture toughness and fracture stress of small punch (SP) or modified small punch (MSP) test data to predict the fracture toughness value by using miniaturized specimens. Characteristic of the MSP testing method is the ability to evaluate elastic modulus (Young's modulus), fracture strength, yield strength, fracture strain, and fracture energy, etc., with high accuracy and good reproducibility for brittle materials. For a series of metal/ ceramics composites which from ductile to brittle, this paper clarified clear the applicable range for SP and MSP testing methods, which suggested that the simultaneous use of SP and MSP test methods can evaluate the fracture strength of metal/ ceramics composites. (author)

  2. Spalling fracture of metals and alloys under intense x-radiation

    International Nuclear Information System (INIS)

    Molitvin, A.M.

    2001-01-01

    Creation of different power and irradiating installations assisted in studying mechanical properties of structural materials under the effect of high-power radiation fluxes: laser, electron, X-ray, ion beam etc. There are being widely investigated such phenomena as surface and deep hardening of metals and alloys under irradiation, generation of elastic and shock waves, materials failure under thermal shock etc.In the paper there are discussed the results of long researches of spalling fracture of materials and alloys under intense X-radiation. Model assemblies with consequently arranged samples (foils) of metals and alloys under investigation underwent pulse X-radiation. The energy flux of X-radiation was weakened to the needed value by dose filters intensively absorbing soft spectrum of X-radiation. At carrying out the researches the foils of copper, nickel, titanium, brass, bronze, molybdenum, tungsten, tantalum, cadmium, lead, zinc, silver and steels 0.005-1 mm thick were used as objects under investigation. The samples diameter (10-16 mm) was chosen to be quite large as compared to their thickness so that the side load does not affect the central part of the samples and the front (looking the source of X-radiation) and back (shadow) surfaces of the samples are free what makes it possible to consider the processes of spalling fracture in one-dimensional approximation. Within the frames of kinetic approach to the problem of solid states spalling fracture under pulse loading that considers fracture as progressing in time process there were found spalling fracture time dependencies of lead, cadmium, zinc, silver, copper, brass, bronze, nickel, titanium, molybdenum, tungsten, tantalum and steels under thermal shock initiated by X-radiation. It was demonstrated that longevity of metals and alloys under thermal shock exponentially decreases with the growth of rupture stresses amplitude and can be described in terms of kinetic concept of strength.Within the frames of

  3. Analysis of fracture patterns and local stress field variations in fractured reservoirs

    Science.gov (United States)

    Deckert, Hagen; Drews, Michael; Fremgen, Dominik; Wellmann, J. Florian

    2010-05-01

    A meaningful qualitative evaluation of permeabilities in fractured reservoirs in geothermal or hydrocarbon industry requires the spatial description of the existing discontinuity pattern within the area of interest and an analysis how these fractures might behave under given stress fields. This combined information can then be used for better estimating preferred fluid pathway directions within the reservoir, which is of particular interest for defining potential drilling sites. A description of the spatial fracture pattern mainly includes the orientation of rock discontinuities, spacing relationships between single fractures and their lateral extent. We have examined and quantified fracture patterns in several outcrops of granite at the Costa Brava, Spain, and in the Black Forest, Germany, for describing reservoir characteristics. For our analysis of fracture patterns we have used photogrammetric methods to create high-resolution georeferenced digital 3D images of outcrop walls. The advantage of this approach, compared to conventional methods for fracture analysis, is that it provides a better 3D description of the fracture geometry as the entity of position, extent and orientation of single fractures with respect to their surrounding neighbors is conserved. Hence for instance, the method allows generating fracture density maps, which can be used for a better description of the spatial distribution of discontinuities in a given outcrop. Using photogrammetric techniques also has the advantage to acquire very large data sets providing statistically sound results. To assess whether the recorded discontinuities might act as fluid pathways information on the stress field is needed. A 3D model of the regional tectonic structure was created and the geometry of the faults was put into a mechanical 3D Boundary Element (BE) Model. The model takes into account the elastic material properties of the geological units and the orientation of single fault segments. The

  4. Stress fractures of the foot and ankle.

    Science.gov (United States)

    Welck, M J; Hayes, T; Pastides, P; Khan, W; Rudge, B

    2017-08-01

    Stress fractures occur as a result of microscopic injuries sustained when bone is subjected to repeated submaximal stresses. Overtime, with repeated cycles of loading, accumulation of such injuries can lead to macro-structural failure and frank fracture. There are numerous stress fractures about the foot and ankle of which a trauma and orthopaedic surgeon should be aware. These include: metatarsal, tibia, calcaneus, navicular, fibula, talus, medial malleolus, sesamoid, cuneiform and cuboid. Awareness of these fractures is important as the diagnosis is frequently missed and appropriate treatment delayed. Late identification can be associated with protracted pain and disability, and may predispose to non-union and therefore necessitate operative intervention. This article outlines the epidemiology and risk factors, aetiology, presentation and management of the range of stress fractures in the foot and ankle. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Computed tomography of stress fracture

    International Nuclear Information System (INIS)

    Murcia, M.; Brennan, R.E.; Edeiken, J.

    1982-01-01

    An athletic young female developed gradual onset of pain in the right leg. Plain radiographs demonstrated solid periosteal reaction in the tibia compatible with stress fracture. She stopped sport activites but her pain continued. Follow-up radiographs of the tibia revealed changes suspicious for osteoid osteoma. Computed tomography (CT) scan demonstrated periosteal reaction, but in addition, lucent fracture lines in the tibial cortex were evident. CT obviated the need for more invasive diagnostic procedures in this patient. In selected cases CT may be useful to confirm the diagnosis of stress fracture when plain radiographic or routine tomographic studies are not diagnostic. (orig.)

  6. Computed tomography of stress fracture

    International Nuclear Information System (INIS)

    Murcia, M.; Brennan, R.E.; Edeiken, J.

    1982-01-01

    An athletic young female developed gradual onset of pain in the right leg. Plain radiographs demonstrated solid periosteal reaction in the tibia compatible with stress fracture. She stopped sport activites but her pain continued. Follow-up radiographs of the tibia revealed changes suspicious for osteoid osteoma. Computed tomography (CT) scan demonstrated periosteal reaction, but in addition, lucent fracture lines in the tibial cortex were evident. CT obviated the need for more invasive diagnostic procedures in this patient. In selected cases CT may be useful to confirm the diagnosis of stress fracture when plain radiographic or routine tomographic studies are not diagnostic

  7. A stress-based fracture criteria validated on mixed microstructures of ferrite and bainite over a range of stress triaxialities

    Energy Technology Data Exchange (ETDEWEB)

    Golling, Stefan, E-mail: stefan.golling@ltu.se [Luleå University of Technology, SE 971 87 Luleå (Sweden); Östlund, Rickad [Gestamp HardTech, Ektjärnsvägen 5, SE 973 45 Luleå (Sweden); Oldenburg, Mats [Luleå University of Technology, SE 971 87 Luleå (Sweden)

    2016-09-30

    Hot stamping is a sequential process for formation and heat-treatment of sheet metal components with superior mechanical properties. By applying different cooling rates, the microstructural composition and thus the material properties of steel can be designed. By controlling the cooling rate in different sections of a blank, the material properties can be tailored depending on the desired toughness. Under continuous cooling, various volume fractions of ferrite and bainite are formed depending on the rate of cooling. This paper focuses on the ductile fracture behavior of a thin sheet metal made of low-alloyed boron steel with varying amounts of ferrite and bainite. An experimental setup was applied in order to produce microstructures with different volume fractions of ferrite and bainite. In total, five different test specimen geometries, representing different stress triaxialities, were heat treated and tensile tested. Through full-field measurements, flow curves extending beyond necking and the equivalent plastic strain to fracture were determined. Experimental results were further investigated using a mean-field homogenization scheme combined with local fracture criteria. The mean-field homogenization scheme comprises the influence of microstructure composition and stress triaxiality with usable accuracy, connoting auspicious possibilities for constitutive modeling of hot-stamped components.

  8. CANDIDATE GENE ANALYSIS IN ISRAELI SOLDIERS WITH STRESS FRACTURES

    Directory of Open Access Journals (Sweden)

    Ran Yanovich

    2012-03-01

    Full Text Available To investigate the association of polymorphisms within candidate genes which we hypothesized may contribute to stress fracture predisposition, a case-control, cross- sectional study design was employed. Genotyping 268 Single Nucleotide Polymorphisms- SNPs within 17 genes in 385 Israeli young male and female recruits (182 with and 203 without stress fractures. Twenty-five polymorphisms within 9 genes (NR3C1, ANKH, VDR, ROR2, CALCR, IL6, COL1A2, CBG, and LRP4 showed statistically significant differences (p < 0.05 in the distribution between stress fracture cases and non stress fracture controls. Seventeen genetic variants were associated with an increased stress fracture risk, and eight variants with a decreased stress fracture risk. None of the SNP associations remained significant after correcting for multiple comparisons (false discovery rate- FDR. Our findings suggest that genes may be involved in stress fracture pathogenesis. Specifically, the CALCR and the VDR genes are intriguing candidates. The putative involvement of these genes in stress fracture predisposition requires analysis of more cases and controls and sequencing the relevant genomic regions, in order to define the specific gene mutations

  9. Development of stress-modified fracture strain criterion for ductile fracture of API X65 steel

    International Nuclear Information System (INIS)

    Oh, Chang Kyun; Kim, Yun Jae; Park, Jin Moo; Kim, Woo Sik; Baek, Jong Hyun

    2005-01-01

    This paper presents a stress-modified fracture strain for API X65 steel used for gas pipeline, as a function of stress triaxiality. To determine the stress-modified fracture strain, tension test of bars with four different notch radii, made of API X65 steel, is firstly performed, from which true fracture strains are determined as a function of notch radius. Then detailed elastic-plastic, large strain Finite Element (FE) analyses are performed to estimate variations of stress triaxiality in the notched bars with load. Combining experimental with FE results provides the true fracture strain as a function of stress triaxiality, which is regarded as a criterion of ductile fracture. Application of the developed stress-modified fracture strain to failure prediction of gas pipes made of API X65 steel with various types of defects is discussed

  10. Biodegradable interlocking nails for fracture fixation

    NARCIS (Netherlands)

    van der Elst, M.; Bramer, J. A.; Klein, C. P.; de Lange, E. S.; Patka, P.; Haarman, H. J.

    1998-01-01

    Serious problems such as stress shielding, allergic reactions, and corrosion are associated with the use of metallic fracture fixation devices in fractured long bones. Metal implants often are removed during a second retrieval operation after fracture healing has completed. A biocompatible implant

  11. STRESS FRACTURE PREVALENCE IN ELITE FIGURE SKATERS

    Directory of Open Access Journals (Sweden)

    Sanda Dubravcic-Simunjak

    2008-09-01

    Full Text Available Figure skating is a physically demanding sport that requires a unique combination of artistic ability, speed, agility, flexibility and power. During the last decades not only the competitive schedule has become tougher, but after introduction of the new judging system in 2003, also more emphasis is put on difficult technical elements, jumps, steps and spins (ISU Rules, 2006. More studies about possible increasing prevalence of stress fractures in figure skaters and contributing factors are lacking (Dubravcic-Simunjak et al., 2003; Moran, 2000; Pecina et al., 1990. Therefore the aim of this study was to obtain data about the current stress fracture cumulative risk among elite junior and senior figure skaters, as well as possible factors that may contribute to stress fracture incidence. An anonymous questionnaire, divided into 5 sections, inquired about the prevalence of stress fracture were mailed and distributed to all 62 International Skating Union (ISU members by the ISU headquarters in Lausanne, Switzerland. The guidelines of the Helsinki declaration 2004 were followed. From the 644 skaters who received the questionnaire, 412 completed ones were returned from 110 female juniors (78 single skaters, 12 pair skaters and 20 ice dancers and 135 female seniors (97 single skaters, 16 pair skaters and 22 ice dancers and from 79 male juniors (47 single skaters, 12 pair skaters and 20 ice dancers and 88 male seniors (50 single skaters, 16 pair skaters and 22 ice dancers, coming from different ISU members. The response rate was 62% in females and 67% in males. The median age for female skaters was 16 years and for males 18 years (range 12-25 years. All participants started to skate between 3 and 6 years of age and started to compete in national and international competitions when they were between 5 and 7 years old. At the time of this analysis, they had been skating between 9 and 20 years.In females 41 (16.7%, and in males 25 (13.8% figure skaters

  12. Anomalous Transport in Natural Fracture Networks Induced by Tectonic Stress

    Science.gov (United States)

    Kang, P. K.; Lei, Q.; Lee, S.; Dentz, M.; Juanes, R.

    2017-12-01

    Fluid flow and transport in fractured rock controls many natural and engineered processes in the subsurface. However, characterizing flow and transport through fractured media is challenging due to the high uncertainty and large heterogeneity associated with fractured rock properties. In addition to these "static" challenges, geologic fractures are always under significant overburden stress, and changes in the stress state can lead to changes in the fracture's ability to conduct fluids. While confining stress has been shown to impact fluid flow through fractures in a fundamental way, the impact of confining stress on transportthrough fractured rock remains poorly understood. The link between anomalous (non-Fickian) transport and confining stress has been shown, only recently, at the level of a single rough fracture [1]. Here, we investigate the impact of geologic (tectonic) stress on flow and tracer transport through natural fracture networks. We model geomechanical effects in 2D fractured rock by means of a finite-discrete element method (FEMDEM) [2], which can capture the deformation of matrix blocks, reactivation of pre-existing fractures, and propagation of new cracks, upon changes in the stress field. We apply the model to a fracture network extracted from the geological map of an actual rock outcrop to obtain the aperture field at different stress conditions. We then simulate fluid flow and particle transport through the stressed fracture networks. We observe that anomalous transport emerges in response to confining stress on the fracture network, and show that the stress state is a powerful determinant of transport behavior: (1) An anisotropic stress state induces preferential flow paths through shear dilation; (2) An increase in geologic stress increases aperture heterogeneity that induces late-time tailing of particle breakthrough curves. Finally, we develop an effective transport model that captures the anomalous transport through the stressed fracture

  13. Modelling and Simulation of Tensile Fracture in High Velocity Compacted Metal Powder

    International Nuclear Information System (INIS)

    Jonsen, P.; Haeggblad, H.-A.

    2007-01-01

    In cold uniaxial powder compaction, powder is formed into a desired shape with rigid tools and a die. After pressing, but before sintering, the compacted powder is called green body. A critical property in the metal powder pressing process is the mechanical properties of the green body. Beyond a green body free from defects, desired properties are high strength and uniform density. High velocity compaction (HVC) using a hydraulic operated hammer is a production method to form powder utilizing a shock wave. Pre-alloyed water atomised iron powder has been HVC-formed into circular discs with high densities. The diametral compression test also called the Brazilian disc test is an established method to measure tensile strength in low strength material like e.g. rock, concrete, polymers and ceramics. During the test a thin disc is compressed across the diameter to failure. The compression induces a tensile stress perpendicular to the compressed diameter. In this study the test have been used to study crack initiation and the tensile fracture process of HVC-formed metal powder discs with a relative density of 99%. A fictitious crack model controlled by a stress versus crack-width relationship is utilized to model green body cracking. Tensile strength is used as a failure condition and limits the stress in the fracture interface. The softening rate of the model is obtained from the corresponding rate of the dissipated energy. The deformation of the powder material is modelled with an elastic-plastic Cap model. The characteristics of the tensile fracture development of the central crack in a diametrically loaded specimen is numerically studied with a three dimensional finite element simulation. Results from the finite element simulation of the diametral compression test shows that it is possible to simulate fracturing of HVC-formed powder. Results from the simulation agree reasonably with experiments

  14. The radiological diagnosis of stress fracture

    International Nuclear Information System (INIS)

    Li Yonggang; Wang Renfa; Zhang Jingfeng; Wang Min

    2005-01-01

    Objective: To study the radiological features and biomechanics of stress fracture. Methods: The X-ray, CT, MRI, and ECT signs in 20 cases of stress fracture and its correlation to biomechanics were analyzed. Results: Of the 20 cases, 14 cases occurred in the tibia, 2 cases in the metatarsal bone, 1 case in the rib, 1 case in the neck of femur and ribs, 1 case in the middle-inferior part of the femur, and 1 case in the fibula. Tow early cases of stress fracture demonstrated a characteristic sign of 'gray cortex'. The spherical or abnormal generation of bony callus and periosteum proliferation that demonstrated 'double cortex' sign in 2 cases were the sign of bone remodeling and the 'button sign' was the sign of bone healing. CT scan could clearly show the pathologic changes of bone and the soft tissue edema. Bone callus showed low signal on T 1 WI and slight high signal on T 2 WI. The area of bone edema on MRI that demonstrated low signal on T 1 WI and high signal on T 2 WI was larger than that on CT. MRI showed a linear band of low signal on both T 1 WI and T 2 WI in the area of bone fracture. ECT showed a focal area of increased uptake in the abnormal areas. The areas of bone stress fracture were characteristic and accorded with the biomechanical weak area in the bone. Conclusion: Stress fracture occurs in the special parts of the bone and has characteristic imaging features. X-ray should still be used to find the fracture of bones in the first inspection. CT and MRI are very helpful in the differentiation. Although sensitive, bone scan has lower specificity than either CT or MRI. (authors)

  15. Spartan Release Engagement Mechanism (REM) stress and fracture analysis

    Science.gov (United States)

    Marlowe, D. S.; West, E. J.

    1984-01-01

    The revised stress and fracture analysis of the Spartan REM hardware for current load conditions and mass properties is presented. The stress analysis was performed using a NASTRAN math model of the Spartan REM adapter, base, and payload. Appendix A contains the material properties, loads, and stress analysis of the hardware. The computer output and model description are in Appendix B. Factors of safety used in the stress analysis were 1.4 on tested items and 2.0 on all other items. Fracture analysis of the items considered fracture critical was accomplished using the MSFC Crack Growth Analysis code. Loads and stresses were obtaind from the stress analysis. The fracture analysis notes are located in Appendix A and the computer output in Appendix B. All items analyzed met design and fracture criteria.

  16. Stress fractures: pathophysiology, clinical presentation, imaging features, and treatment options.

    Science.gov (United States)

    Matcuk, George R; Mahanty, Scott R; Skalski, Matthew R; Patel, Dakshesh B; White, Eric A; Gottsegen, Christopher J

    2016-08-01

    Stress fracture, in its most inclusive description, includes both fatigue and insufficiency fracture. Fatigue fractures, sometimes equated with the term "stress fractures," are most common in runners and other athletes and typically occur in the lower extremities. These fractures are the result of abnormal, cyclical loading on normal bone leading to local cortical resorption and fracture. Insufficiency fractures are common in elderly populations, secondary to osteoporosis, and are typically located in and around the pelvis. They are a result of normal or traumatic loading on abnormal bone. Subchondral insufficiency fractures of the hip or knee may cause acute pain that may present in the emergency setting. Medial tibial stress syndrome is a type of stress injury of the tibia related to activity and is a clinical syndrome encompassing a range of injuries from stress edema to frank-displaced fracture. Atypical subtrochanteric femoral fracture associated with long-term bisphosphonate therapy is also a recently discovered entity that needs early recognition to prevent progression to a complete fracture. Imaging recommendations for evaluation of stress fractures include initial plain radiographs followed, if necessary, by magnetic resonance imaging (MRI), which is preferred over computed tomography (CT) and bone scintigraphy. Radiographs are the first-line modality and may reveal linear sclerosis and periosteal reaction prior to the development of a frank fracture. MRI is highly sensitive with findings ranging from periosteal edema to bone marrow and intracortical signal abnormality. Additionally, a brief description of relevant clinical management of stress fractures is included.

  17. Lower thoracic rib stress fractures in baseball pitchers.

    Science.gov (United States)

    Gerrie, Brayden J; Harris, Joshua D; Lintner, David M; McCulloch, Patrick C

    2016-01-01

    Stress fractures of the first rib on the dominant throwing side are well-described in baseball pitchers; however, lower thoracic rib fractures are not commonly recognized. While common in other sports such as rowing, there is scant literature on these injuries in baseball. Intercostal muscle strains are commonly diagnosed in baseball pitchers and have a nearly identical presentation but also a highly variable healing time. The diagnosis of a rib stress fracture can predict a more protracted recovery. This case series presents two collegiate baseball pitchers on one team during the same season who were originally diagnosed with intercostal muscle strains, which following magnetic resonance imaging (MRI) were found to have actually sustained lower thoracic rib stress fractures. The first sustained a stress fracture of the posterior aspect of the right 8th rib on the dominant arm side, while the second presented with a left-sided 10th rib stress fracture on the nondominant arm side. In both cases, MRI was used to visualize the fractures as plain radiographs are insensitive and commonly negative early in patient presentation. Patients were treated with activity modification, and symptomatic management for 4-6 weeks with a graduated return to throwing and competition by 8-10 weeks. The repetitive high stresses incurred by pitching may cause either dominant or nondominant rib stress fractures and this should be included in the differential diagnosis of thoracic injuries in throwers. It is especially important that athletic trainers and team physicians consider this diagnosis, as rib fractures may have a protracted course and delayed return to play. Additionally, using the appropriate imaging techniques to establish an accurate diagnosis can help inform return-to-play decisions, which have important practical applications in baseball, such as roster management and eligibility.

  18. Clinical evaluation of stress fractures using bone scintigraphy

    International Nuclear Information System (INIS)

    Furuta, Atsuhiko; Tanohata, Kazunori; Otake, Toru; Hashizume, Toshiyuki; Kobayashi, Yozi; Nakazima, Hiroyuki.

    1984-01-01

    Clinical evaluation of stress fractures were performed in 58 athletes using bone scintigraphy with sup(99m)Tc-MDP. Stress fractures of the tibia were most often seen in the males with running type sports. They occurred more often in the proximal tibia and on the right side. Stress fractures of the fibula were most often seen in females with jumping type sports, such as volley ball. They occurred more often in the distal fibula and on the right side. Tarsal bone fractures were seen most often rugby players. Metatarsal fractures occurred in the third fourth and fifth metatarsals. No lesion was seen in the first and second metatarsals. We feel that stress fractures of the femur can be differentiated from osteosarcoma by small loculated radionuclide accumulation as well as symptome, course and tomographic and CT finding. Bilateral involvement was seen in two cases in patellae and calcanei. Most of the other fractures were seen on the right side. Negative radiographs were seen in 36% of the patients and occurred most commonly in the tarsal bones excluding calcaneus. Bone scintigrams were positive in all cases and were most useful in fractures of the tarsal bones excluding calcaneus. (author)

  19. Clinical evaluation of stress fractures using bone scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Furuta, Atsuhiko; Tanohata, Kazunori; Otake, Toru; Hashizume, Toshiyuki (Kanto Rosai Hospital, Kawasaki, Kanagawa (Japan)); Kobayashi, Yozi; Nakazima, Hiroyuki

    1984-05-01

    Clinical evaluation of stress fractures were performed in 58 athletes using bone scintigraphy with sup(99m)Tc-MDP. Stress fractures of the tibia were most often seen in the males with running type sports. They occurred more often in the proximal tibia and on the right side. Stress fractures of the fibula were most often seen in females with jumping type sports, such as volley ball. They occurred more often in the distal fibula and on the right side. Tarsal bone fractures were seen most often rugby players. Metatarsal fractures occurred in the third fourth and fifth metatarsals. No lesion was seen in the first and second metatarsals. We feel that stress fractures of the femur can be differentiated from osteosarcoma by small loculated radionuclide accumulation as well as symptoms, course and tomographic and CT findings. Bilateral involvement was seen in two cases in patellae and calcanei. Most of the other fractures were seen on the right side. Negative radiographs were seen in 36% of the patients and occurred most commonly in the tarsal bones excluding calcaneus. Bone scintigrams were positive in all cases and were most useful in fractures of the tarsal bones excluding calcaneus.

  20. Safety evaluation for packaging CPC metal boxes

    International Nuclear Information System (INIS)

    Romano, T.

    1995-01-01

    This Safety Evaluation for Packaging (SEP) provides authorization for the use of Container Products Corporation (CPC) metal boxes, as described in this document, for the interarea shipment of radioactive contaminated equipment and debris for storage in the Central Waste Complex (CWC) or T Plant located in the 200 West Area. Authorization is granted until November 30, 1995. The CPC boxes included in this SEP were originally procured as US Department of Transportation (DOT) Specification 7A Type A boxes. A review of the documentation provided by the manufacturer revealed the documentation did not adequately demonstrate compliance to the 4 ft drop test requirement of 49 CFR 173.465(c). Preparation of a SEP is necessary to document the equivalent safety of the onsite shipment in lieu of meeting DOT packaging requirements until adequate documentation is received. The equivalent safety of the shipment is based on the fact that the radioactive contents consist of contaminated equipment and debris which are not dispersible. Each piece is wrapped in two layers of no less than 4 mil plastic prior to being placed in the box which has an additional 10 mil liner. Pointed objects and sharp edges are padded to prevent puncture of the plastic liner and wrapping

  1. Stress fractures of the femora in soldiers

    International Nuclear Information System (INIS)

    Meurman, K.O.A.; Somer, K.; Lamminen, A.

    1981-01-01

    Amongst 936 stress fractures found in soldiers, there were 58 in the femora (6%); of these 31 were in the neck and 27 in the shaft. Two were bilateral, and two patients had other stress fractures. Three displacements were found in the necks. In the shaft, 20 fractures were proximal, four were in the middle third and three in the distal third. In the latter group, it is necessary to differentiate from a sarcoma. CT is a new aid in this respect. Sport in highly motivated individuals appears to contribute particularly to fractures of the shaft. The symptoms from these fractures are relatively mild. (orig.) [de

  2. Stress fractures of the femora in soldiers

    Energy Technology Data Exchange (ETDEWEB)

    Meurman, K O.A.; Somer, K; Lamminen, A

    1981-05-01

    Amongst 936 stress fractures found in soldiers, there were 58 in the femora (6%); of these 31 were in the neck and 27 in the shaft. Two were bilateral, and two patients had other stress fractures. Three displacements were found in the necks. In the shaft, 20 fractures were proximal, four were in the middle third and three in the distal third. In the latter group, it is necessary to differentiate from a sarcoma. CT is a new aid in this respect. Sport in highly motivated individuals appears to contribute particularly to fractures of the shaft. The symptoms from these fractures are relatively mild.

  3. Influence of fracture extension on in-situ stress in tight reservoir

    Science.gov (United States)

    Zhang, Yongping; Wei, Xu; Zhang, Ye; Xing, Libo; Xu, Jianjun

    2018-01-01

    Currently, hydraulic fracturing is an important way to develop low permeability reservoirs. The fractures produced during the fracturing process are the main influencing factors of changing in-situ stress. In this paper, the influence of fracture extension on in-situ stress is studied by establishing a mathematical model to describe the relationship between fracture length and in-situ stress. The results show that the growth rate gradually decreases after the fracture reaches a certain length with the increase of fracturing time; the continuous extension of the fracture is the main factor to change the in-situ stress. In order to reduce the impact on the subsequent fracture extension due to the changing of in-situ stress, controlling fracturing time and fracture length without affecting the stimulated reservoir effect is an important way. The results presented in this study can effectively reduce the impact of changing of in-situ stress on subsequent fracturing construction.

  4. Modified Carpal Box Technique in the Diagnosis of Suspected Scaphoid Fractures

    Energy Technology Data Exchange (ETDEWEB)

    Toth, F.; Mester, S.; Cseh, G.; Bener, A.; Nyarady, J.; Lovasz, G. [Pecs Univ. (Hungary). Medical School

    2003-05-01

    Purpose: To establish and test the clinical efficacy of a new diagnostic algorithm with the extensive utilization of modified carpal box radiography (mX-CB) in the detection of scaphoid fractures. Material and Methods: Initial and early follow-up radiographic evaluation of 146 suspected scaphoid fractures were carried out by mX-CB. Patients with unconfirmed diagnosis were referred to CT. Patients were followed for 1 year after injury. Sensitivity, specificity and interobserver agreement of reading mX-CB images were determined statistically. Results: No non-union or avascular necrosis was seen at 1 year after the injury. 90% of the fractures were diagnosed by mX-CB, only 6.8% of the patients needed referral to CT. Sensitivity of mX-CB at initial presentation was 81.6%. Interobserver agreement was very high among evaluators of mX-CB images. Conclusion: Extensive utilization of mX-CB as primary and early follow-up investigation resulted in high initial diagnostic accuracy and low referral rate to a more expensive diagnostic modality.

  5. Correlation Between Fracture Network Properties and Stress Variability in Geological Media

    Science.gov (United States)

    Lei, Qinghua; Gao, Ke

    2018-05-01

    We quantitatively investigate the stress variability in fractured geological media under tectonic stresses. The fracture systems studied include synthetic fracture networks following power law length scaling and natural fracture patterns based on outcrop mapping. The stress field is derived from a finite-discrete element model, and its variability is analyzed using a set of mathematical formulations that honor the tensorial nature of stress data. We show that local stress perturbation, quantified by the Euclidean distance of a local stress tensor to the mean stress tensor, has a positive, linear correlation with local fracture intensity, defined as the total fracture length per unit area within a local sampling window. We also evaluate the stress dispersion of the entire stress field using the effective variance, that is, a scalar-valued measure of the overall stress variability. The results show that a well-connected fracture system under a critically stressed state exhibits strong local and global stress variabilities.

  6. Connection between tectonic stresses and well fracturing data

    Energy Technology Data Exchange (ETDEWEB)

    Scheidegger, A E [Imperial Oil Res. Lab., Calgary, CA

    1961-01-01

    Theoretical considerations of hydraulic well fracturing normally utilize a model in which the borehole is assumed to be a cylinder of infinite length. This leads to treatment of the induced stress state in two dimensions. The two-dimensional model is obviously an oversimplification. Therefore, a three-dimensional model is proposed in which the well pressure is assumed to be equivalent to a spherical pressure center. The bottom hole pressure during fracturing is determined by 4 variables; i.e., the 3 principal geological stresses and the rock strength. The response to fracturing is determined primarily by the prevailing stress state and to a lesser degree by the rock strength. The fracture condition is formulated and the model is used in the calculation of geological stresses from well data.

  7. Trochanteric Stress Fracture in a Female Window Cleaner

    OpenAIRE

    Lee, Bong-Jin; Song, Jyewon

    2016-01-01

    Stress fractures may occur at various sites in the femur including the head, neck, shaft, supracondylar and condylar regions. To the best of our knowledge, stress fracture occurring in the trochanteric region has not been previously reported. We report here a case of trochanteric stress fracture in a 53-year-old female window cleaner treated with hip nailing without adverse consequences. Careful consideration of this entity is needed when evaluating patients who have repetitive jumping up and...

  8. Interfacial fracture of the fibre-metal laminates based on fibre reinforced thermoplastics

    International Nuclear Information System (INIS)

    Abdullah, M.R.; Prawoto, Y.; Cantwell, W.J.

    2015-01-01

    As the adhesion quality plays an important role in determining the mechanical performance and environmental stability of most types of fibre-metal laminates (FMLs), investigating the interfacial fracture properties becomes one of the key factors for the improvement. Adhesion of a self-reinforced polypropylene (SRPP) and glass fibre reinforced polypropylene (GFPP) based FML is evaluated experimentally. Single Cantilever Beam (SCB) tests were performed to access interfacial fracture energy (G c ) of the bi-material laminates and their associated interlayer materials. Simulations mimicking the experiments were also performed. The energy needed to fracture was obtained experimentally and also via stress intensity factor from the simulations. The test results show that good adhesion between the aluminium and fibre reinforced thermoplastics can be achieved using a sulphuric acid anodising surface pre-treatment. Further examination has shown that the edges of the test samples highlighted the presence of significant fibre bridging in the SRPP and plastics deformation in the GFPP. - Highlights: • Adhesion of a self-reinforced polypropylene and glass fibre reinforced polypropylene is evaluated. • Single Cantilever Beam tests were performed to access interfacial fracture energy. • The energy needed to fracture was obtained experimentally and also via stress intensity factor from the simulations. • The test results show that best adhesion is achieved using a sulphuric acid anodizing surface pre-treatment

  9. 3-D description of fracture surfaces and stress-sensitivity analysis for naturally fractured reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, S.Q.; Jioa, D.; Meng, Y.F.; Fan, Y.

    1997-08-01

    Three kinds of reservoir cores (limestone, sandstone, and shale with natural fractures) were used to study the effect of morphology of fracture surfaces on stress sensitivity. The cores, obtained from the reservoirs with depths of 2170 to 2300 m, have fractures which are mated on a large scale, but unmated on a fine scale. A specially designed photoelectric scanner with a computer was used to describe the topography of the fracture surfaces. Then, theoretical analysis of the fracture closure was carried out based on the fracture topography generated. The scanning results show that the asperity has almost normal distributions for all three types of samples. For the tested samples, the fracture closure predicted by the elastic-contact theory is different from the laboratory measurements because plastic deformation of the aspirates plays an important role under the testing range of normal stresses. In this work, the traditionally used elastic-contact theory has been modified to better predict the stress sensitivity of reservoir fractures. Analysis shows that the standard deviation of the probability density function of asperity distribution has a great effect on the fracture closure rate.

  10. Lower limb stress fractures in sport: Optimising their management and outcome

    Science.gov (United States)

    Robertson, Greg A J; Wood, Alexander M

    2017-01-01

    Stress fractures in sport are becoming increasing more common, comprising up to 10% of all of sporting injuries. Around 90% of such injuries are located in the lower limb. This articles aims to define the optimal management of lower limb stress fractures in the athlete, with a view to maximise return rates and minimise return times to sport. Treatment planning of this condition is specific to the location of the injury. However, there remains a clear division of stress fractures by “high” and “low” risk. “Low risk” stress fractures are those with a low probability of fracture propagation, delayed union, or non-union, and so can be managed reliably with rest and exercise limitation. These include stress fractures of the Postero-Medial Tibial Diaphysis, Metatarsal Shafts, Distal Fibula, Medial Femoral Neck, Femoral Shaft and Calcaneus. “High risk” stress fractures, in contrast, have increased rates of fracture propagation, displacement, delayed and non-union, and so require immediate cessation of activity, with orthopaedic referral, to assess the need for surgical intervention. These include stress fractures of the Anterior Tibial Diaphysis, Fifth Metatarsal Base, Medial Malleolus, Lateral Femoral Neck, Tarsal Navicular and Great Toe Sesamoids. In order to establish the optimal methods for managing these injuries, we present and review the current evidence which guides the treatment of stress fractures in athletes. From this, we note an increased role for surgical management of certain high risk stress fractures to improve return times and rates to sport. Following this, key recommendations are provided for the management of the common stress fracture types seen in the athlete. Five case reports are also presented to illustrate the application of sport-focussed lower limb stress fracture treatment in the clinical setting. PMID:28361017

  11. Lower limb stress fractures in sport: Optimising their management and outcome.

    Science.gov (United States)

    Robertson, Greg A J; Wood, Alexander M

    2017-03-18

    Stress fractures in sport are becoming increasing more common, comprising up to 10% of all of sporting injuries. Around 90% of such injuries are located in the lower limb. This articles aims to define the optimal management of lower limb stress fractures in the athlete, with a view to maximise return rates and minimise return times to sport. Treatment planning of this condition is specific to the location of the injury. However, there remains a clear division of stress fractures by "high" and "low" risk. "Low risk" stress fractures are those with a low probability of fracture propagation, delayed union, or non-union, and so can be managed reliably with rest and exercise limitation. These include stress fractures of the Postero-Medial Tibial Diaphysis, Metatarsal Shafts, Distal Fibula, Medial Femoral Neck, Femoral Shaft and Calcaneus. "High risk" stress fractures, in contrast, have increased rates of fracture propagation, displacement, delayed and non-union, and so require immediate cessation of activity, with orthopaedic referral, to assess the need for surgical intervention. These include stress fractures of the Anterior Tibial Diaphysis, Fifth Metatarsal Base, Medial Malleolus, Lateral Femoral Neck, Tarsal Navicular and Great Toe Sesamoids. In order to establish the optimal methods for managing these injuries, we present and review the current evidence which guides the treatment of stress fractures in athletes. From this, we note an increased role for surgical management of certain high risk stress fractures to improve return times and rates to sport. Following this, key recommendations are provided for the management of the common stress fracture types seen in the athlete. Five case reports are also presented to illustrate the application of sport-focussed lower limb stress fracture treatment in the clinical setting.

  12. Radioisotopic and Radiological Evaluation in Patient with Stress Fracture

    International Nuclear Information System (INIS)

    Ko, Kwang Seop; Kim, Jai Young; Kang, Sung Koo; Kim, So Yon; Lee, Gwon Jun

    1987-01-01

    The stress fracture is a disease caused by and abnormal stress to the normal bone with constant, repeated pull. Early detection of stress fracture plays an important role in treatment and prevention of its complication. Bone scintigraphy was performed to evaluate 18 patients with stress fracture of the lower extremities from May, 1985 to April, 1987, in the Department of Internal Medicine of National Police Hospital. The results were as follows: 1) Seventeen of the 18 cases showed positive bone scans at the initial study performed from 1 week to 5 months after the onset of symptom. 2) Ten of the 18 patients had findings of stress fracture at the initial X-ray film. Two out of 8 negative case revealed positive findings in the follow-up studies. 3) The bone scans in the 2 cases taken 5 months after the onset of symptom; the one showed only slightly increased radio uptake, the other showed no abnormal findings. In conclusion, bone scanning is a more sensitive indicator of early stress fracture than radiologic study, The healing phase is characterized by a gradual decline in radioactivity at the fracture site in concordance with subsidence of symptom.

  13. Case report: bilateral ischial stress fractures in an elite tennis player

    International Nuclear Information System (INIS)

    Clarke, A.W.; Connell, D.A.

    2009-01-01

    A case report of bilateral ischial stress fractures in an elite tennis player initially mimicking hamstring pathology is described. This is an unusual site of stress fracture. Typical sites of stress fracture are well documented; however, awareness of less common sites of stress-related bone injury can aid early diagnosis and treatment before overt fracture occurs. (orig.)

  14. Case report: bilateral ischial stress fractures in an elite tennis player

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, A.W.; Connell, D.A. [Royal National Orthopaedic Hospital NHS Trust, Department of Radiology, London, Middlesex (United Kingdom)

    2009-07-15

    A case report of bilateral ischial stress fractures in an elite tennis player initially mimicking hamstring pathology is described. This is an unusual site of stress fracture. Typical sites of stress fracture are well documented; however, awareness of less common sites of stress-related bone injury can aid early diagnosis and treatment before overt fracture occurs. (orig.)

  15. Postpartum Sacral Stress Fracture: An Atypical Case Report

    Directory of Open Access Journals (Sweden)

    Andrea Speziali

    2015-01-01

    Full Text Available Sacral stress fractures are common in elderly people. However, sacral stress fracture should be always screened in the differential diagnoses of low back pain during the postpartum period. We present a case of sacral fracture in a thirty-six-year-old woman with low back pain and severe right buttock pain two days after cesarean section delivery of a 3.9 Kg baby. The diagnosis was confirmed by MRI and CT scan, while X-ray was unable to detect the fracture. Contribution of mechanical factors during the cesarean section is not a reasonable cause of sacral fracture. Pregnancy and lactation could be risk factors for sacral stress fracture even in atraumatic delivery such as cesarean section. Our patient had no risk factors for osteoporosis except for pregnancy and lactation. Transient or focal osteoporosis is challenging to assess and it cannot be ruled out even if serum test and mineral density are within the normal range.

  16. Tibial stress fractures in racing Standardbreds: 13 cases (1989-1993)

    International Nuclear Information System (INIS)

    Ruggles, A.J.; Moore, R.M.; Bertone, A.L.; Schneider, R.K.; Bailey, M.Q.

    1996-01-01

    To determine clinical signs, radiographic and scintigraphic findings, and performance outcome of racing Standardbreds with tibial stress fractures. Retrospective case series. 13 racing Standardbreds with tibial stress fractures. Information concerning clinical signs, diagnostic evaluation, and recommendations was obtained by review of the medical records. Performance information before and after diagnosis of the fracture was collected from racing records, and follow-up information was obtained from the owners or trainers by use of a telephone questionnaire. Horses with tibial stress fractures were moderately lame, and diagnosis was made by nuclear scintigraphy and radiography. Fractures were more likely to occur in 2-year-old horses than in older horses. The fracture location was unique for Standardbreds; 11 of 13 developed stress fractures in the mid-diaphysis of the tibia, whereas fractures in Thoroughbreds are usually in the proximal caudal or caudolateral cortex. Fractures occurred in young horses that had raced or were in advanced race training. All horses were treated with rest alone, and 10 of 13 horses raced after injury. The horses that raced after injury were able to return to a level of performance that was equal to or better than the level raced before injury. 8 of 10 horses established a lifetime-best winning time after injury. Tibial stress fractures are a cause of lameness in young racing Standardbreds. Diagnosis is aided by nuclear scintigraphy. The prognosis for return to previous level of performance after a tibial stress fracture is good

  17. Fatigue stress fractures of the sacrum: diagnosis with MR imaging

    International Nuclear Information System (INIS)

    Ahovuo, J.A.; Vusuri, T.

    2004-01-01

    The aim of this study was to describe the MRI findings and clinical observations in a fatigue stress fracture of the sacrum. In this retrospective study, 380 conscripts (53 women, 327 men; age range 18-29 years, mean age 20.7 years) who suffered from stress-related hip pain were studied with MRI of the pelvis. The findings of MRI were evaluated with regard to stress fracture of the sacrum. Thirty-one (8%) patients had MRI changes in signal intensity of the cranial part of the sacrum, extending to the first and second sacral foramina. The MRI changes in signal intensity were intermediate on T1-weighted images, and high on short tau inversion recovery or T2-weighted fat-suppressed images. A linear signal void fracture line was also seen. Multiple stress injuries to the pelvic bones were also seen in 7 of 31 (23%) patients. Five patients (16%) had bilateral sacral stress fracture. Fatigue sacral stress fractures appeared more commonly in women than in men (p<0.001). During recovery time 20 of the 31 patients underwent control MRI, and fatty marrow conversion was seen in 8 (40%) cases as high signal intensity on T1-weighted images, which disappeared 5-6 months after the onset of symptoms. Fatigue sacral stress fractures are associated with stress-related hip pain. These fractures were more common in women than in men. Other stress injuries of the pelvis may be seen simultaneously with sacral stress fractures. Signal intensity of the sacrum was normal after 5-6 months

  18. Spontaneous stress fractures of the femoral neck

    International Nuclear Information System (INIS)

    Dorne, H.L.; Lander, P.H.

    1985-01-01

    The diagnosis of spontaneous stress fractures of the femoral neck, a form of insufficiency stress fracture, can be missed easily. Patients present with unremitting hip pain without a history of significant trauma or unusual increase in daily activity. The initial radiographic features include osteoporosis, minor alterations of trabecular alignment, minimal extracortical or endosteal reaction, and lucent fracture lines. Initial scintigraphic examinations performed in three of four patients showed focal increased radionuclide uptake in two and no focal abnormality in one. Emphasis is placed on the paucity of early findings. Evaluation of patients with persistent hip pain requires a high degree of clinical suspicion and close follow-up; the sequelae of undetected spontaneous fractures are subcapital fracture with displacement, angular deformity, and a vascular necrosis of the femoral head

  19. Fracture resistance of metal-free composite crowns-effects of fiber reinforcement, thermal cycling, and cementation technique.

    Science.gov (United States)

    Lehmann, Franziska; Eickemeyer, Grit; Rammelsberg, Peter

    2004-09-01

    The improved mechanical properties of contemporary composites have resulted in their extensive use for the restoration of posterior teeth. However, the influence of fiber reinforcement, cementation technique, and physical stress on the fracture resistance of metal-free crowns is unknown. This in vitro study evaluated the effect of fiber reinforcement, physical stress, and cementation methods on the fracture resistance of posterior metal-free Sinfony crowns. Ninety-six extracted human third molars received a standardized tooth preparation: 0.5-mm chamfer preparation and occlusal reduction of 1.3 to 1.5 mm. Sinfony (nonreinforced crowns, n=48) and Sinfony-Vectris (reinforced crowns, n=48) crowns restoring original tooth contour were prepared. Twenty-four specimens of each crown type were cemented, using either glass ionomer cement (GIC) or resin cement. Thirty-two crowns (one third) were stored in humidity for 48 hours. Another third was exposed to 10,000 thermal cycles (TC) between 5 degrees C and 55 degrees C. The remaining third was treated with thermal cycling and mechanical loading (TCML), consisting of 1.2 million axial loads of 50 N. The artificial crowns were then vertically loaded with a steel sphere until failure occurred. Significant differences in fracture resistance (N) between experimental groups were assessed by nonparametric Mann-Whitney U-test (alpha=.05). Fifty percent of the Sinfony and Sinfony-Vectris crowns cemented with glass ionomer cement loosened after thermal cycling. Thermal cycling resulted in a significant reduction in the mean fracture resistance for Sinfony crowns cemented with GIC, from 2037 N to 1282 N (P=.004). Additional fatigue produced no further effects. Fiber reinforcement significantly increased fracture resistance, from 1555 N to 2326 N (P=.001). The minimal fracture resistance was above 600 N for all combinations of material, cement and loading. Fracture resistance of metal-free Sinfony crowns was significantly increased by

  20. Upper extremity and rib stress fractures in a child

    International Nuclear Information System (INIS)

    Moon, B.S.; Price, C.T.; Campbell, J.B.

    1998-01-01

    Stress fractures in children are rare compared with the incidence in [ults. This report describes an 11-year-old girl with stress fractures of the acromion, clavicle, and first rib on the left and contralateral fractures of the first and second ribs. It was eventually discovered that these fractures were caused by a nervous tic consisting of repetitive, vigorous shrugging and translation of the shoulders. (orig.)

  1. Polyaxial stress-dependent permeability of a three-dimensional fractured rock layer

    Science.gov (United States)

    Lei, Qinghua; Wang, Xiaoguang; Xiang, Jiansheng; Latham, John-Paul

    2017-12-01

    A study about the influence of polyaxial (true-triaxial) stresses on the permeability of a three-dimensional (3D) fractured rock layer is presented. The 3D fracture system is constructed by extruding a two-dimensional (2D) outcrop pattern of a limestone bed that exhibits a ladder structure consisting of a "through-going" joint set abutted by later-stage short fractures. Geomechanical behaviour of the 3D fractured rock in response to in-situ stresses is modelled by the finite-discrete element method, which can capture the deformation of matrix blocks, variation of stress fields, reactivation of pre-existing rough fractures and propagation of new cracks. A series of numerical simulations is designed to load the fractured rock using various polyaxial in-situ stresses and the stress-dependent flow properties are further calculated. The fractured layer tends to exhibit stronger flow localisation and higher equivalent permeability as the far-field stress ratio is increased and the stress field is rotated such that fractures are preferentially oriented for shearing. The shear dilation of pre-existing fractures has dominant effects on flow localisation in the system, while the propagation of new fractures has minor impacts. The role of the overburden stress suggests that the conventional 2D analysis that neglects the effect of the out-of-plane stress (perpendicular to the bedding interface) may provide indicative approximations but not fully capture the polyaxial stress-dependent fracture network behaviour. The results of this study have important implications for understanding the heterogeneous flow of geological fluids (e.g. groundwater, petroleum) in subsurface and upscaling permeability for large-scale assessments.

  2. Fracture of coherent interfaces between an fcc metal matrix and the Cr23C6 carbide precipitate from first principles

    Science.gov (United States)

    Barbé, Elric; Fu, Chu-Chun; Sauzay, Maxime

    2018-02-01

    It is known that microcrack initiation in metallic alloys containing second-phase particles may be caused by either an interfacial or an intraprecipitate fracture. So far, the dependence of these features on properties of the precipitate and the interface is not clearly known. The present study aims to determine the key properties of carbide-metal interfaces controlling the energy and critical stress of fracture, based on density functional theory (DFT) calculations. We address coherent interfaces between a fcc iron or nickel matrix and a frequently observed carbide, the M23C6 , for which a simplified chemical composition Cr23C6 is assumed. The interfacial properties such as the formation and Griffith energies, and the effective Young's modulus are analyzed as functions of the magnetic state of the metal lattice, including the paramagnetic phase of iron. Interestingly, a simpler antiferromagnetic phase is found to exhibit similar interfacial mechanical behavior to the paramagnetic phase. A linear dependence is determined between the surface (and interface) energy and the variation of the number of chemical bonds weighted by the respective bond strength, which can be used to predict the relative formation energy for the surface and interface with various chemical terminations. Finally, the critical stresses of both intraprecipitate and interfacial fractures due to a tensile loading are estimated via the universal binding energy relation (UBER) model, parametrized on the DFT data. The validity of this model is verified in the case of intraprecipitate fracture, against results from DFT tensile test simulations. In agreement with experimental evidences, we predict a much stronger tendency for an interfacial fracture for this carbide. In addition, the calculated interfacial critical stresses are fully compatible with available experimental data in steels, where the interfacial carbide-matrix fracture is only observed at incoherent interfaces.

  3. Sacral Stress Fracture in an Amateur Badminton Player

    Directory of Open Access Journals (Sweden)

    Yusuke Yuasa

    2017-01-01

    Full Text Available Sacral stress fractures are rare among athletes but have been reported most frequently in long distance runners. We report herein the first case of a sacral stress fracture in an amateur badminton player. A 16-year-old, left-handed adolescent girl, who had just started to play badminton 3 months previously, complained of acute left buttock pain when she received a shuttlecock. Magnetic resonance imaging revealed a linear lesion of the left sacrum with low signal intensity on T1- and high signal intensity on T2-weighted images, which was consistent with a stress fracture. Conservative treatment with rest relieved her symptoms. Her fracture was considered to have occurred due to repetition of an exercise that caused excessive vertical power.

  4. Stress fractures of ankle and wrist in childhood: nature and frequency

    International Nuclear Information System (INIS)

    Oestreich, Alan E.; Bhojwani, Nicholas

    2010-01-01

    Stress fractures of many etiologies are found not infrequently in various tarsal bones but are less commonly recognized in carpal bones. To assess the distribution of tarsal and carpal stress fractures. During the last three decades, the senior author collected locations of tarsal and carpal bone stress fracture callus seen on plain radiographs. 527 children with tarsal and carpal stress fractures were identified (88 children had multiple bones involved). The totals were: calcaneus 244, cuboid 188, talus 121, navicular 24, cuneiforms 23, capitate 18, lunate 1, and scaphoid 1. Stress fractures were more frequently seen once we became aware each particular bone could be involved. Tarsal and carpal stress fractures in children are not rare. Careful perusal of these bones is urged in all susceptible children with limping or wrist pain. (orig.)

  5. Stress fractures of ankle and wrist in childhood: nature and frequency

    Energy Technology Data Exchange (ETDEWEB)

    Oestreich, Alan E. [Cincinnati Children' s Hospital Medical Center, Department of Radiology, Cincinnati, OH (United States); Bhojwani, Nicholas [University of Cincinnati College of Medicine, Cincinnati, OH (United States)

    2010-08-15

    Stress fractures of many etiologies are found not infrequently in various tarsal bones but are less commonly recognized in carpal bones. To assess the distribution of tarsal and carpal stress fractures. During the last three decades, the senior author collected locations of tarsal and carpal bone stress fracture callus seen on plain radiographs. 527 children with tarsal and carpal stress fractures were identified (88 children had multiple bones involved). The totals were: calcaneus 244, cuboid 188, talus 121, navicular 24, cuneiforms 23, capitate 18, lunate 1, and scaphoid 1. Stress fractures were more frequently seen once we became aware each particular bone could be involved. Tarsal and carpal stress fractures in children are not rare. Careful perusal of these bones is urged in all susceptible children with limping or wrist pain. (orig.)

  6. Stress fractures: definition, diagnosis and treatment ?

    OpenAIRE

    Astur, Diego Costa; Zanatta, Fernando; Arliani, Gustavo Gon?alves; Moraes, Eduardo Ramalho; Pochini, Alberto de Castro; Ejnisman, Benno

    2015-01-01

    ABSTRACT Stress fractures were first described in Prussian soldiers by Breithaupt in 1855. They occur as the result of repeatedly making the same movement in a specific region, which can lead to fatigue and imbalance between osteoblast and osteoclast activity, thus favoring bone breakage. In addition, when a particular region of the body is used in the wrong way, a stress fracture can occur even without the occurrence of an excessive number of functional cycles. The objective of this study wa...

  7. Influence of microporosity on fracture stress of pyrocarbon coatings

    International Nuclear Information System (INIS)

    Krautwasser, P.; Nickel, H.; Taueber, K.

    1975-01-01

    In this paper recent investigations on fracture behaviour of integral PyC-coatings are presented. The fracture stresses of propene, acetylene, and methane-derived pyrocarbons are measured as a function of deposition temperature and deposition rate. The measured fracture stresses are interpreted in terms of microporosity values determined by X-ray small angle scattering (SAXS). It can be shown that the fracture stress is correlated unambigously with the concentration of micropores in the range of about 50 to 500A diameter. TEM inspection of the investigated materials revealed a component of disordered, tangled fibres with a high microporosity in agreement with SAXS results. This component increases with temperature in the range of 1250 to 1400 at the expense of of a high-density component. As a result, the coatings deposited in this temperature range show decreasing fracture stress with increasing amount of the porous glass wool like component. PyC coatings with a good irradiation behaviour had an initial pore size distribution typical for a relatively high content of tangled material. The assumption, that a relatively high amount of the disordered material is fafourable for a good behaviour i.e. integrity of coating up to high neutron doses, was confirmed besides other investigations by the relative low preirradiation fracture stresses of the well behaving coatings. This means, the integrity of pyrocarbon coatings after irradiation is favoured not so much by a high preirradiation fracture stress, but by the enhanced dimensional stability of the disordered porous material. In addition to this, the increase of the relatively low fractures stress due to the measured irradiation induced reduction of pores in the size range of 200 to 1000A diameter is in favour of coating integrity

  8. Bilateral femoral supracondylar stress fractures in a cross country runner.

    Science.gov (United States)

    Ross, Kate; Fahey, Mark

    2008-08-01

    Several high-risk factors lead to stress fractures. They include excessive training in athletes leading to overuse injuries, nutritional deficiencies, and endocrine disorders. While stress fractures are common, bilateral stress fractures are rarely seen. Few cases have been reported of bilateral femoral stress fractures in young athletes. This article presents a case of a 14-year-old cross country runner with a bilateral femoral supracondylar stress fracture. He presented with bilateral supracondylar stress fractures from running. The patient followed a strict vegan diet, but his parents stated that, to their knowledge, he was getting adequate protein and calcium. Treatment consisted of decreased activity to pain-free levels with acetaminophen for pain. Low-impact conditioning such as swimming and bicycling was allowed. Hamstring and quadricep stretching was suggested. Nutritional consultation was obtained to ensure appropriate nutrition on a vegan diet. At 1-month follow-up, he was pain free and allowed to proceed with a gradual return to running activities. In this case, the onset of a new workout routine was intolerable for this patient's low bone density, causing insufficiency fractures. Appropriate vegan diets were not associated with stress fracture in our literature review. He may have had an inadequate diet prior to this injury. As in this case, full recovery can be made after this rest period, and the patient may return to his or her original activity safely. In young athletes, diet and nutrition must be kept in mind.

  9. kISMET: Stress and fracture characterization in a deep mine

    Science.gov (United States)

    Oldenburg, C. M.; Dobson, P. F.; Daley, T. M.; Birkholzer, J. T.; Cook, P. J.; Ajo Franklin, J. B.; Rutqvist, J.; Siler, D.; Kneafsey, T. J.; Nakagawa, S.; Wu, Y.; Guglielmi, Y.; Ulrich, C.; Marchesini, P.; Wang, H. F.; Haimson, B. C.; Sone, H.; Vigilante, P.; Roggenthen, W.; Doe, T.; Lee, M.; Mattson, E.; Huang, H.; Johnson, T. C.; Morris, J.; White, J. A.; Johnson, P. A.; Coblentz, D. D.; Heise, J.

    2016-12-01

    We are developing a community facility called kISMET (permeability (k) and Induced Seismicity Management for Energy Technologies) at the Sanford Underground Research Facility (SURF) in Lead, SD. The purpose of kISMET is to investigate stress and the effects of rock fabric on hydraulic fracturing. Although findings from kISMET may have broad applications that inform stress and fracturing in anisotropic rock, results will be most applicable to improving control of hydraulic fracturing for enhanced geothermal systems (EGS) in crystalline rock. At the kISMET site on the 4850 ft (1480 m depth) level of SURF, we have drilled and cored an array of nearly vertical boreholes in Precambrian phyllite. The array consists of four 50-m deep monitoring boreholes surrounding one 100-m deep borehole forming a 6 m-wide five-spot pattern at a depth of 1530 m. Previous investigations of the stress field at SURF suggest that the principal stress s1 is nearly vertical. By aligning the kISMET boreholes approximately with σ1, fractures created in the center borehole should in theory be perpendicular to σ3, the least principal horizontal stress. But the phyllite at kISMET has a strong fabric (foliation) that could influence fracturing. Stress measurements and stimulation using hydraulic fracturing will be carried out in the center borehole using a straddle packer and high-pressure pump. We will use an impression packer and image logs after stress testing and stimulation to determine fracture orientation and extent at the center borehole. In order to study the control of stress, rock fabric, and stimulation approach on size, aperture, and orientation of hydraulic fractures, we will carefully monitor the stress measurements and stimulation. For example, we will use continuous active source seismic (CASSM) in two of the monitoring boreholes to measure changes in seismic-wave velocity as water fills the fracture. Second, near real-time electrical resistance tomography (ERT) will be used in

  10. Effect of yield stress matching on ductile fracture behavior of girth welds for X line pipe

    Energy Technology Data Exchange (ETDEWEB)

    Motohashi, Hiroyuki; Hagiwara, Naoto [Tokyo Gas Co., Ltd. (Japan)

    2005-07-01

    This paper describes the effects of yield stress matching on the ductile fracture behavior of girth welded joints for X linepipes. Three welded joints were made on an X line pipe using several consumables to obtain about a 20% overmatched, even matched and about a 20% under matched weld metal. For these three welded joints, curved wide plate tensile tests were then conducted with a surface notch in the weld metal. To determine the ductile crack initiation from the surface notch, these tests employed a direct-current electric potential (d-c E P) method. Crack opening displacement, gauge length strain and local strain adjacent to the surface notch were also measured. The ductile crack initiation was successfully detected using the d-c E P method. The yield stress matching significantly affected the ductile crack initiation and fracture behavior, that is, the overmatched welded joint had a higher resistance to ductile fracture than that of the under matched welded joint. The allowable strength matching level was determined from the relationship between the strength matching and the gauge length strain at the ductile crack initiation detected using the d-c E P method. (author)

  11. Stress generation and hierarchical fracturing in reactive systems

    Science.gov (United States)

    Jamtveit, B.; Iyer, K.; Royne, A.; Malthe-Sorenssen, A.; Mathiesen, J.; Feder, J.

    2007-12-01

    Hierarchical fracture patterns are the result of a slowly driven fracturing process that successively divides the rocks into smaller domains. In quasi-2D systems, such fracture patterns are characterized by four sided domains, and T-junctions where new fractures stop at right angles to pre-existing fractures. We describe fracturing of mm to dm thick enstatite layers in a dunite matrix from the Leka ophiolite complex in Norway. The fracturing process is driven by expansion of the dunite matrix during serpentinization. The cumulative distributions of fracture lengths show a scaling behavior that lies between a log - normal and power law (fractal) distribution. This is consistent with a simple fragmentation model in which domains are divided according to a 'top hat' distribution of new fracture positions within unfractured domains. Reaction-assisted hierarchical fracturing is also likely to be responsible for other (3-D) structures commonly observed in serpentinized ultramafic rocks, including the mesh-textures observed in individual olivine grains, and the high abundance of rectangular domains at a wide range of scales. Spectacular examples of 3-D hierarchical fracture patterns also form during the weathering of basaltic intrusions (dolerites). Incipient chemical weathering of dolerites in the Karoo Basin in South Africa occurs around water- filled fractures, originally produced by thermal contraction or by externally imposed stresses. This chemical weathering causes local expansion of the rock matrix and generates elastic stresses. On a mm to cm scale, these stresses lead to mechanical layer-by-layer spalling, producing the characteristic spheroidal weathering patterns. However, our field observations and computer simulations demonstrate that in confined environments, the spalling process alone is unable to relieve the elastic stresses. In such cases, chemical weathering drives a much larger scale hierarchical fracturing process in which fresh dolerite undergoes a

  12. Solubility of hydrogen isotopes in stressed hydride-forming metals

    International Nuclear Information System (INIS)

    Coleman, C.E.; Ambler, J.F.R.

    1983-01-01

    Components made from hydride-forming metals can be brittle when particles of hydride are present. The solid solubility limit of hydrogen in these metals needs to be known so that fracture resistance can be properly assessed. Stress affects the solubility of hydrogen in metals. As hydrogen dissolves the metal volume increases, an applied hydrostatic tensile stress supplies work to increase the solubility. Precipitation of hydrides increases the volume further. A hydrostatic tensile stress promotes the formation of hydrides and tends to reduce the terminal solubility. For materials containing hydrogen in solution in equilibrium with hydrides, the effect of stress on the terminal solubility is given. Hydrogen migrates up tensile stress gradients because of the effect of stress on the solubility and solubility limit. Consequently, hydrogen concentrates at flaws. When hydrides are present in the metal matrix, those remote from the flaw tip will preferentially dissolve in favor of those precipitated at the flaw. If the stress is large enough, at some critical condition the hydrides at the flaw will crack. This is delayed hydrogen cracking. Notched and fatigue-cracked cantilever beam specimens (6) (38 x 4 x 3 mm) were machined from the circumferential direction of several cold-worked Zr-2.5 at. % Nb pressure tubes. The chemical compositions had the ranges (in atomic %) Nb - 2.5 to 2.7; O - 0.58 to 0.71; H - 0.018 to 0.18. The effect of test temperature is for a specimen containing 0.13 at. % protium and 0.29 at .% deuterium. Between 505 K and 530 K was less than 1 hr, between 530 K and 537 K it increased to 25.8 h, while at 538 K no cracking was observed up to the 54 h

  13. Atypical stress-avulsion fracture of the Lisfranc joint complex.

    LENUS (Irish Health Repository)

    O'Neill, Barry J

    2014-04-01

    Antiphospholipid syndrome and systemic erythematosus have been associated with metatarsal stress fractures. Stress fractures of the Lisfranc joint complex are uncommon injuries but have been reported to occur most frequently in ballet dancers. We present a case of an avulsion fracture of the Lisfranc joint complex that occurred spontaneously. We have reviewed the association between systemic conditions and metatarsal fractures and proposed a series of hypothetical pathological events that may have contributed to this unusual injury.

  14. Ultrasound-Diagnosed Tibia Stress Fracture: A Case Report.

    Science.gov (United States)

    Amoako, Adae; Abid, Ayesha; Shadiack, Anthony; Monaco, Robert

    2017-01-01

    Stress fractures are a frequent cause of lower extremity pain in athletes, and especially in runners. Plain imaging has a low sensitivity. Magnetic resonance imaging (MRI) or bone scan scintigraphy is the criterion standard, but expensive. We present the case of a young female distance runner with left shin pain. Plain radiography was unremarkable. Ultrasound showed focal hyperechoic elevation of the periosteum with irregularity over the distal tibia and increased flow on Doppler. These findings were consistent with a distal tibia stress fracture and confirmed by MRI. Examination of our case will highlight the utility of considering an ultrasound for diagnosis of tibial stress fracture.

  15. Ultrasound-Diagnosed Tibia Stress Fracture: A Case Report

    Directory of Open Access Journals (Sweden)

    Adae Amoako

    2017-04-01

    Full Text Available Stress fractures are a frequent cause of lower extremity pain in athletes, and especially in runners. Plain imaging has a low sensitivity. Magnetic resonance imaging (MRI or bone scan scintigraphy is the criterion standard, but expensive. We present the case of a young female distance runner with left shin pain. Plain radiography was unremarkable. Ultrasound showed focal hyperechoic elevation of the periosteum with irregularity over the distal tibia and increased flow on Doppler. These findings were consistent with a distal tibia stress fracture and confirmed by MRI. Examination of our case will highlight the utility of considering an ultrasound for diagnosis of tibial stress fracture.

  16. Exercise-induced rib stress fractures: influence of reduced bone mineral density

    DEFF Research Database (Denmark)

    Vinther, Anders; Kanstrup, Inge-Lis; Christiansen, Erik

    2005-01-01

    study investigated BMD in seven Danish national team rowers with previous rib stress fracture (RSF) and 7 controls (C) matched for gender, age, height, weight and training experience. Total body scan and specific scans of the lumbar spine (L2-L4), femoral neck and distal radius were performed using......Exercise-induced rib stress fractures have been reported frequently in elite rowers during the past decade. The etiology of rib stress fractures is unclear, but low bone mineral density (BMD) has been suggested to be a potential risk factor for stress fractures in weight-bearing bones. The present...... density may be a potential risk factor for the development of exercise-induced rib stress fractures in elite rowers....

  17. Release of metal in vivo from stressed and nonstressed maxillofacial fracture plates and screws.

    Science.gov (United States)

    Matthew, I R; Frame, J W

    2000-07-01

    To analyze the release of metal into the adjacent tissues from stressed and nonstressed titanium and stainless steel miniplates and screws. Two miniplates were inserted into the cranial vaults of 12 beagle dogs while they were under general endotracheal anesthesia. One miniplate was shaped to fit the curvature of the skull (control). Another miniplate, made of the same material, was bent in a curve until the midpoint was raised 3 mm above the ends. Screws were inserted and tightened until the plate conformed to the skull curvature, creating stresses in the system. Four animals (2 each, having titanium or stainless steel plates and screws) were killed after 4, 12, and 24 weeks. Metallosis of adjacent soft tissues was assessed qualitatively. Miniplates and screws were removed, and adjacent soft tissue and bone was excised. Titanium, iron, chromium, nickel, and aluminum levels were assayed by ultraviolet/visible light and atomic absorption spectrophotometry. Nonparametric statistical methods were used for data analysis. There was no clear relationship between pigmentation of soft tissue adjacent to the miniplates and screws and the concentrations of metal present. The data did not demonstrate any consistent differences in the concentrations of metallic elements next to stressed and nonstressed (control) miniplates and screws of either material. Stresses arising through poor contouring of miniplates do not appear to influence the extent of release of metal into the adjacent tissues.

  18. Effects of degradation on the mechanical properties and fracture toughness of a steel pressure-vessel weld metal

    International Nuclear Information System (INIS)

    Wu, S.J.; Knott, J.F.

    2003-01-01

    A degradation procedure has been devised to simulate the effect of neutron irradiation on the mechanical properties of a steel pressure-vessel weld metal. The procedure combines the application of cold prestrain together with an embrittling heat treatment to produce an increase in yield stress, a decrease in strain hardening rate, and an increased propensity for brittle intergranular fracture. Fracture tests were carried out using blunt-notch four-point-bend specimens in slow bend over a range of temperatures and the brittle/ductile transition was shown to increase by approximately 110 deg. C as a result of the degradation. Fractographic analysis of specimens broken at low temperatures showed about 30% intergranular failure in combination with transgranular cleavage. Predictions have been made of the ductile-brittle transition curves for the weld metal (sharp crack) fracture toughness in degraded and non-degraded states, based on the notched-bar test results and on finite element analyses of the stress distributions ahead of the notches and sharp cracks. The ductile-brittle transition temperature shift (ΔT=110 deg. C) between non-degraded and degraded weld metal at a notch opening displacement of 0.31 mm was combined with the Ritchie, Knott and Rice (RKR) model to predict an equivalent shift of 115 deg. C for sharp-crack specimens at a toughness level of 70 MN/m 3/2

  19. Stress Fracture and Nonunion of Coronoid Process in a Gymnast

    Directory of Open Access Journals (Sweden)

    T. Hetling

    2016-01-01

    Full Text Available Background. Gymnasts have high mechanical loading forces of up to 14 times body weight. Overuse lesions are typical in wrists and stress fractures in the olecranon, while isolated fractures of the coronoid process are uncommon. We present a case of retraumatized nonunion stress fracture of the ulnar coronoid process. Case Description. A 19-year-old gymnast presented with elbow pain after training. Imaging confirmed an old fracture of the coronoid process. We describe a 6-month multiphase return to competition rehabilitation program, which allowed him to compete pain-freely. Literature Review. Acute and overuse injuries in gymnasts are known but no nonunion of the coronoid process has been described before. Only one case of stress fracture of coronoid process in a gymnast was reported. Purpose and Clinical Relevance. We could successfully and conservatively return to sport a reactivated nonunion of a stress fracture of the coronoid process.

  20. Proximal tibial stress fracture associated with mild osteoarthritis of the knee: case report.

    Science.gov (United States)

    Curković, Marko; Kovac, Kristina; Curković, Bozidar; Babić-Naglić, Durda; Potocki, Kristina

    2011-03-01

    Stress fractures are considered as multifactorial overuse injuries occurring in 0.3%-0.8% of patients suffering from rheumatic diseases, with rheumatoid arthritis being the most common underlying condition. Stress fractures can be classified according to the condition of the bone affected as: 1) fatigue stress fractures occurring when normal bone is exposed to repeated abnormal stresses; and 2) insufficiency stress fractures that occur when normal stress is applied to bone weakened by an underlying condition. Stress fractures are rarely associated with severe forms of knee osteoarthritis, accompanied with malalignment and obesity. We present a patient with a proximal tibial stress fracture associated with mild knee osteoarthritis without associated malalignment or obesity. Stress fracture should be considered when a patient with osteoarthritis presents with sudden deterioration, severe localized tenderness to palpation and localized swelling or periosteal thickening at the pain site and elevated local temperature. The diagnosis of stress fractures in patients with rheumatic diseases may often be delayed because plain film radiographs may not reveal a stress fracture soon after the symptom onset; moreover, evidence of a fracture may never appear on plain radiographs. Triple phase nuclear bone scans and magnetic resonance imaging are more sensitive in the early clinical course than plain films for initial diagnosis.

  1. Longitudinal stress fracture of the tibia

    International Nuclear Information System (INIS)

    Lopez, J.M.; Onatibia, A.; Galardi, A.; Laso, C.

    1997-01-01

    We present two cases of lengthwise stress fracture in tibia. This is an atypical and uncommon presentation. We describe the major clinical and radiological findings, stressing the enormous importance of CT in the correct diagnosis. (Author) 6 refs

  2. Stress fractures about the tibia, foot, and ankle.

    Science.gov (United States)

    Shindle, Michael K; Endo, Yoshimi; Warren, Russell F; Lane, Joseph M; Helfet, David L; Schwartz, Elliott N; Ellis, Scott J

    2012-03-01

    In competitive athletes, stress fractures of the tibia, foot, and ankle are common and lead to considerable delay in return to play. Factors such as bone vascularity, training regimen, and equipment can increase the risk of stress fracture. Management is based on the fracture site. In some athletes, metabolic workup and medication are warranted. High-risk fractures, including those of the anterior tibial diaphysis, navicular, proximal fifth metatarsal, and medial malleolus, present management challenges and may require surgery, especially in high-level athletes who need to return to play quickly. Noninvasive treatment modalities such as pulsed ultrasound and extracorporeal shock wave therapy may have some benefit but require additional research.

  3. The treatment of residual stress in fracture assessment of pressure vessels

    International Nuclear Information System (INIS)

    Green, D.; Knowles, J.

    1992-01-01

    The treatment of weld residual stress in the fracture assessment of cylindrical pressure vessels is considered through partitioning the stress into membrane, bending and self-balancing through wall components. The influence of each on fracture behavior is discussed. Stress intensity factor solutions appropriate to each type of stress are presented. Short range, medium range and long range stress categories are identified according to simple rules relating the effect of increasing crack length to stress intensity factor and ligament net stress. Proposals are made on how the stress intensity factor from these stress types may be incorporated into a Kr, Lr based fracture assessment

  4. The role of local stress perturbation on the simultaneous opening of orthogonal fractures

    Science.gov (United States)

    Boersma, Quinten; Hardebol, Nico; Barnhoorn, Auke; Bertotti, Giovanni; Drury, Martyn

    2016-04-01

    Orthogonal fracture networks (ladder-like networks) are arrangements that are commonly observed in outcrop studies. They form a particularly dense and well connected network which can play an important role in the effective permeability of tight hydrocarbon or geothermal reservoirs. One issue is the extent to which both the long systematic and smaller cross fractures can be simultaneously critically stressed under a given stress condition. Fractures in an orthogonal network form by opening mode-I displacements in which the main component is separation of the two fracture walls. This opening is driven by effective tensile stresses as the smallest principle stress acting perpendicular to the fracture wall, which accords with linear elastic fracture mechanics. What has been well recognized in previous field and modelling studies is how both the systematic fractures and perpendicular cross fractures require the minimum principle stress to act perpendicular to the fracture wall. Thus, these networks either require a rotation of the regional stress field or local perturbations in stress field. Using a mechanical finite element modelling software, a geological case of layer perpendicular systematic mode I opening fractures is generated. New in our study is that we not only address tensile stresses at the boundary, but also address models using pore fluid pressure. The local stress in between systematic fractures is then assessed in order to derive the probability and orientation of micro crack propagation using the theory of sub critical crack growth and Griffith's theory. Under effective tensile conditions, the results indicate that in between critically spaced systematic fractures, local effective tensile stresses flip. Therefore the orientation of the least principle stress will rotate 90°, hence an orthogonal fracture is more likely to form. Our new findings for models with pore fluid pressures instead of boundary tension show that the magnitude of effective tension

  5. Length scale of secondary stresses in fracture and fatigue

    International Nuclear Information System (INIS)

    Dong, P.

    2008-01-01

    In an attempt to provide a consistent framework for the analysis and treatment of secondary stresses associated with welding and thermal loading in the context of fracture mechanics, this paper starts with an effective stress characterization procedure by introducing a length-scale concept. With it, a traction-based stress separation procedure is then presented to provide a consistent characterization of stresses from various sources based on their length scale. Their relative contributions to fracture driving force are then quantified in terms of their characteristic length scales. Special attention is given to the implications of the length-scale argument on both analysis and treatment of welding residual stresses in fracture assessment. A series of examples is provided to demonstrate how the present developments can be applied for treating not only secondary stresses but also externally applied stresses, as well as their combined effects on the structural integrity of engineering components

  6. Dynamic Response in Transient Stress-Field Behavior Induced by Hydraulic Fracturing

    Science.gov (United States)

    Jenkins, Andrew

    Hydraulic fracturing is a technique which is used to exploit geologic features and subsurface properties in an effort to increase production in low-permeability formations. The process of hydraulic fracturing provides a greater surface contact area between the producing formation and the wellbore and thus increases the amount of recoverable hydrocarbons from within the reservoir. The use of this stimulation technique has brought on massive applause from the industry due to its widespread success and effectiveness, however the dynamic processes that take part in the development of hydraulic fractures is a relatively new area of research with respect to the massive scale operations that are seen today. The process of hydraulic fracturing relies upon understanding and exploiting the in-situ stress distribution throughout the area of study. These in-situ stress conditions are responsible for directing fracture orientation and propagation paths throughout the period of injection. The relative magnitude of these principle stresses is key in developing a successful stimulation plan. In horizontal well plan development the interpretation of stress within the reservoir is required for determining the azimuth of the horizontal well path. These horizontal laterals are typically oriented in a manner such that the well path lies parallel to the minimum horizontal stress. This allows for vertical fractures to develop transversely to the wellbore, or normal to the least principle stress without the theoretical possibility of fractures overlapping, creating the most efficient use of the fluid energy during injection. The orientation and magnitude of these in-situ stress fields however can be dynamic, controlled by the subsequent fracture propagation and redistribution of the surrounding stresses. That is, that as the fracture propagates throughout the reservoir, the relative stress fields surrounding the fractures may see a shift and deviate from their original direction or

  7. Dilemma in pediatric mandible fractures: resorbable or metallic plates?

    Science.gov (United States)

    Taylan Filinte, Gaye; Akan, İsmail Mithat; Ayçiçek Çardak, Gülçin Nujen; Özkaya Mutlu, Özay; Aköz, Tayfun

    2015-12-01

    The aim of this study was to compare the efficiency of resorbable and metallic plates in open reduction and internal fixation of mandible fractures in children. Thirty-one patients (mean age, 8.05 years; range 20 months-14 years) were operated on various fractures of the mandible (26 [60.4%] symphysis- parasymphysis, 12 [27.9%] condylar-subcondylar fractures, 5 [11.6%] angulus and ramus fractures). Twelve patients were treated with resorbable plates and 19 patients with metallic plates. Mean follow-up time was 41 months (11-74 months) in the metallic hardware group and was 22 months (8-35 months) in the resorbable plate group. Both groups were investigated for primary bone healing, complications, number of operations, and mandibular growth. The results were discussed below. Both groups demonstrated primary bone healing. Minor complications were similar in both groups. The metallic group involved secondary operations for plate removal. Mandibular growth was satisfactory in both groups. Resorbable plates cost more than the metallic ones; however, when the secondary operations are included in the total cost, resorbable plates were favourable. As mandibular growth and complication parameters are similar in both groups, resorbable plates are favored due to avoidance of potential odontogenic injury, elimination of long-term foreign body retention and provision of adequate stability for rapid bone healing. However, learning curve and concerns for decreased stability against heavy forces of mastication accompanied with the resorbable plates when compared to the metallic ones should be kept in mind.

  8. 'Cable-maker's clavicle': stress fracture of the medial clavicle

    International Nuclear Information System (INIS)

    Peebles, C.R.; Sulkin, T.; Sampson, M.A.

    2000-01-01

    A 50-year-old man presented with a non-traumatic painful swelling over the medial clavicle. Radiographs showed a poorly defined fracture and the possibility of an underlying pathology was raised. Computed tomography suggested a stress fracture. This prompted a further, more detailed occupational history to be obtained from the patient, which revealed a hitherto undescribed cause of clavicular stress fracture and obviated the need for further imaging or biopsy. (orig.)

  9. Stress Fractures of the Foot.

    Science.gov (United States)

    Hossain, Munier; Clutton, Juliet; Ridgewell, Mark; Lyons, Kathleen; Perera, Anthony

    2015-10-01

    Stress fractures of the foot and ankle may be more common among athletes than previously reported. A low threshold for investigation is warranted and further imaging may be appropriate if initial radiographs remain inconclusive. Most of these fractures can be treated conservatively with a period of non-weight-bearing mobilization followed by gradual return to activity. Early surgery augmented by bone graft may allow athletes to return to sports earlier. Risk of delayed union, nonunion, and recurrent fracture is high. Many of the patients may also have risk factors for injury that should be modified for a successful outcome. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Taking a holistic approach to managing difficult stress fractures.

    Science.gov (United States)

    Miller, Timothy L; Best, Thomas M

    2016-09-09

    Stress fractures and other bony stress injuries occur along a spectrum of severity which can impact treatment and prognosis. When treating these injuries, it should be borne in mind that no two stress fractures behave exactly alike. Given that they are not a consistent injury, standardized treatment protocols can be challenging to develop. Treatment should be individualized to the patient or athlete, the causative activity, the anatomical site, and the severity of the injury. A holistic approach to the treatment of the most difficult stress fractures should be taken by orthopedists and sports medicine specialists. This approach is necessary to obtain optimal outcomes, minimize loss of fitness and time away from sports participation, and decrease the risk of recurrence.

  11. Applicability and interpretation of fracture test methods for metals

    International Nuclear Information System (INIS)

    Langford, W.J.

    1978-05-01

    Fracture tests are conducted usually out of a conviction (sometimes only vaguely defined) that they will guarantee a certain level of protecton from metal failure. Qualitative tests, such as the Charpy V-notch, produce results which cannot be rigorously related to a measure of fracture tolerance: rather, they indicate metal quality so that fracture tolerance may be inferred. Quantitative tests on the other hand provide parameters which may be used directly in equations to determine the likelihood of fracture. Both types of tests have limitations which should be understood: the paper tries to provide guidance on the relative merits of either approach for a particular purpose, and gives an insight into near-future test methods which will extend the range of usefullness of quantitative tests. (author)

  12. Fracture toughness in metal matrix composites

    Directory of Open Access Journals (Sweden)

    Perez Ipiña J.E.

    2000-01-01

    Full Text Available Evaluations of the fracture toughness in metal matrix composites (Duralcan reinforced with 15% of Al(20(3 and SiC are presented in this work. The application of Elastic Plastic Fracture Mechanics is discussed and the obtained values are compared with the ones obtained by means of Linear Elastic Fracture Mechanics. Results show that J IC derived K JC values are higher than the corresponding values obtained by direct application of the linear elastic methodology. The effect of a heat treatment on the material fracture toughness was also evaluated in which the analyzed approaches showed, not only different toughness values, but also opposite tendencies. A second comparison of the J IC and K JC values obtained in this work with toughness values reported in the literature is presented and discussed.

  13. Stress analysis of implant-bone fixation at different fracture angle

    Science.gov (United States)

    Izzawati, B.; Daud, R.; Afendi, M.; Majid, MS Abdul; Zain, N. A. M.; Bajuri, Y.

    2017-10-01

    Internal fixation is a mechanism purposed to maintain and protect the reduction of a fracture. Understanding of the fixation stability is necessary to determine parameters influence the mechanical stability and the risk of implant failure. A static structural analysis on a bone fracture fixation was developed to simulate and analyse the biomechanics of a diaphysis shaft fracture with a compression plate and conventional screws. This study aims to determine a critical area of the implant to be fractured based on different implant material and angle of fracture (i.e. 0°, 30° and 45°). Several factors were shown to influence stability to implant after surgical. The stainless steel, (S. S) and Titanium, (Ti) screws experienced the highest stress at 30° fracture angle. The fracture angle had a most significant effect on the conventional screw as compared to the compression plate. The stress was significantly higher in S.S material as compared to Ti material, with concentrated on the 4th screw for all range of fracture angle. It was also noted that the screws closest to the intense concentration stress areas on the compression plate experienced increasing amounts of stress. The highest was observed at the screw thread-head junction.

  14. The ``gray cortex``: an early sign of stress fracture

    Energy Technology Data Exchange (ETDEWEB)

    Mulligan, M.E. [Dept. of Radiology, Univ. of Maryland Medical Center, Baltimore, MD (United States)

    1995-04-01

    The purpose of this report is to describe an early radiographic sign of stress fracture, the ``gray cortex.`` The imaging findings in three patients with tibial stress fractures were reviewed. The ``gray cortex`` sign was evident on the initial conventional radiographs in all three cases. It was prospectively reported as a sign of stress fracture in two patients and was evident on the initial radiographs (taken elsewhere) of the third patient, who was referred for additional workup of a possible neoplasm. Special imaging studies (technetium-99m bone scan, computed tomography, and magnetic resonance imaging) confirmed the diagnosis in all three cases. (orig.)

  15. The ''gray cortex'': an early sign of stress fracture

    International Nuclear Information System (INIS)

    Mulligan, M.E.

    1995-01-01

    The purpose of this report is to describe an early radiographic sign of stress fracture, the ''gray cortex.'' The imaging findings in three patients with tibial stress fractures were reviewed. The ''gray cortex'' sign was evident on the initial conventional radiographs in all three cases. It was prospectively reported as a sign of stress fracture in two patients and was evident on the initial radiographs (taken elsewhere) of the third patient, who was referred for additional workup of a possible neoplasm. Special imaging studies (technetium-99m bone scan, computed tomography, and magnetic resonance imaging) confirmed the diagnosis in all three cases. (orig.)

  16. Mixing implants of differing metallic composition in the treatment of upper-extremity fractures.

    Science.gov (United States)

    Acevedo, Daniel; Loy, Bo Nasmyth; Loy, Bo Nasymuth; Lee, Brian; Omid, Reza; Itamura, John

    2013-09-01

    Mixing implants with differing metallic compositions has been avoided for fear of galvanic corrosion and subsequent failure of the implants and of bone healing. The purpose of this study was to evaluate upper-extremity fractures treated with open reduction and internal fixation with metallic implants that differed in metallic composition placed on the same bone. The authors studied the effects of using both stainless steel and titanium implants on fracture healing, implant failure, and other complications associated with this method of fixation. Their hypothesis was that combining these metals on the same bone would not cause clinically significant nonunions or undo clinical effects from galvanic corrosion. A retrospective review was performed of 17 patients with upper-extremity fractures fixed with metal implants of differing metallic compositions. The primary endpoint was fracture union. Eight clavicles, 2 proximal humeri, 3 distal humeri, 3 olecranons, and 1 glenoid fracture with an average follow-up 10 months were reviewed. All fractures healed. One patient experienced screw backout, which did not affect healing. This study implies that mixing implants with differing metallic compositions on the same bone for the treatment of fractures does not adversely affect bone healing. No evidence existed of corrosion or an increase in complications with this method of treatment. Contrary to prior belief, small modular hand stainless steel plates can be used to assist in reduction of smaller fracture fragments in combination with anatomic titanium plates to obtain anatomic reduction of the fracture without adversely affecting healing. Copyright 2013, SLACK Incorporated.

  17. An Unusual Stress Fracture in an Archer with Hypophosphatasia

    Directory of Open Access Journals (Sweden)

    Umut Yavuz

    2013-01-01

    Full Text Available We report a 45-year-old male archer with stress fracture in his left ulna on the background of adult type of hypophosphatasia. The patient presented to several medical centers for pain around the left elbow and received medical treatment upon diagnosis of tenosynovitis. History of the patient revealed that he had had diagnosis of hypophosphatasia ten years ago and underwent percutaneous screwing for stress fracture on both of his femoral necks. Upon finding nondisplaced stress fracture on proximal metaphysis of the ulna on X-ray, the patient underwent magnetic resonance imaging (MRI in order to exclude pathological causes. No additional pathology was observed in MRI scanning. The patient’s sportive activities were restricted for 6 weeks and he received conservative management with arm slings. Adult type of hypophosphatasia is a disease manifesting with widespread osteoporosis and presenting with low serum level of alkali phosphatase (ALP. Stress fracture should definitely be considered in the patients with history of hypophosphatasia and refractory extremity pain.

  18. Metal Matrix Composite Solar Cell Metallization

    Directory of Open Access Journals (Sweden)

    Wilt David M.

    2017-01-01

    Full Text Available Advanced solar cells are moving to ever thinner formats in order to save mass and in some cases improve performance. As cells are thinned, the possibility that they may fracture or cleave due to mechanical stresses is increased. Fractures of the cell can degrade the overall device performance if the fracture propagates through the contact metallization, which frequently occurs. To address this problem, a novel semiconductor metallization system based on multi-walled carbon nanotube (CNT reinforcement, termed metal matrix composite (MMC metallization is under investigation. Electro-mechanical characterization of MMC films demonstrate their ability to provide electrical conductivity over >40 micron wide cracks in the underlying semiconductor, with the carbon nanotubes bridging the gap. In addition, these materials show a “self-healing” behaviour, electrically reconnecting at ~30 microns when strained past failure. Triple junction (TJ space cells with MMC metallization demonstrated no loss in Jsc after intentional fracture, whereas TJ cells with conventional metallization suffer up to 50% Jsc loss.

  19. Diagnosis, treatment, and rehabilitation of stress fractures in the lower extremity in runners

    Directory of Open Access Journals (Sweden)

    Kahanov L

    2015-03-01

    Full Text Available Leamor Kahanov,1 Lindsey E Eberman,2 Kenneth E Games,2 Mitch Wasik2 1College of Health Science, Misericordia University, Dallas, PA, USA; 2Department of Applied Medicine and Rehabilitation, Indiana State University, Terre Haute, IN, USA Abstract: Stress fractures account for between 1% and 20% of athletic injuries, with 80% of stress fractures in the lower extremity. Stress fractures of the lower extremity are common injuries among individuals who participate in endurance, high load-bearing activities such as running, military and aerobic exercise and therefore require practitioner expertise in diagnosis and management. Accurate diagnosis for stress fractures is dependent on the anatomical area. Anatomical regions such as the pelvis, sacrum, and metatarsals offer challenges due to difficulty differentiating pathologies with common symptoms. Special tests and treatment regimes, however, are similar among most stress fractures with resolution between 4 weeks to a year. The most difficult aspect of stress fracture treatment entails mitigating internal and external risk factors. Practitioners should address ongoing risk factors to minimize recurrence. Keywords: medial tibial stress syndrome, stress injury, nonunion stress fracture

  20. Stress Fractures of Tibia Treated with Ilizarov External Fixator.

    Science.gov (United States)

    Górski, Radosław; Żarek, Sławomir; Modzelewski, Piotr; Górski, Ryszard; Małdyk, Paweł

    2016-08-30

    Stress fractures are the result of cyclic loading of the bone, which gradually becomes damaged. Most often they are treated by rest or plaster cast and, in rare cases, by internal fixation. There is little published data on initial reposition followed by stabilization with the Ilizarov apparatus in such fractures. Six patients were treated with an external fixator according to the Ilizarov method for a stress fracture of the tibia between 2007 and 2015. Three patients were initially treated conservatively. Due to increasing tibial deformation, they were qualified for surgical treatment with external stabilization. In the other patients, surgery was the first-line treatment. All patients demonstrated risk factors for a stress fracture. After the surgery, they fully loaded the operated limb. No patient developed malunion, nonunion, infection or venous thrombosis. The average time from the first operation to the removal of the external fixator was 19 weeks. Radiographic and clinical outcomes were satisfactory in all patients. 1. The Ilizarov method allows for successful stabilization of stress fractures of the tibia. 2. It may be a good alternative to internal stabilization, especially in patients with multiple comorbidities which affect bone quality and may impair soft tissue healing.

  1. Stress fractures: definition, diagnosis and treatment.

    Science.gov (United States)

    Astur, Diego Costa; Zanatta, Fernando; Arliani, Gustavo Gonçalves; Moraes, Eduardo Ramalho; Pochini, Alberto de Castro; Ejnisman, Benno

    2016-01-01

    Stress fractures were first described in Prussian soldiers by Breithaupt in 1855. They occur as the result of repeatedly making the same movement in a specific region, which can lead to fatigue and imbalance between osteoblast and osteoclast activity, thus favoring bone breakage. In addition, when a particular region of the body is used in the wrong way, a stress fracture can occur even without the occurrence of an excessive number of functional cycles. The objective of this study was to review the most relevant literature of recent years in order to add key information regarding this pathological condition, as an updating article on this topic.

  2. Risk factors for stress fracture among young female cross-country runners.

    Science.gov (United States)

    Kelsey, Jennifer L; Bachrach, Laura K; Procter-Gray, Elizabeth; Nieves, Jeri; Greendale, Gail A; Sowers, Maryfran; Brown, Byron W; Matheson, Kim A; Crawford, Sybil L; Cobb, Kristin L

    2007-09-01

    To identify risk factors for stress fracture among young female distance runners. Participants were 127 competitive female distance runners, aged 18-26, who provided at least some follow-up data in a randomized trial among 150 runners of the effects of oral contraceptives on bone health. After completing a baseline questionnaire and undergoing bone densitometry, they were followed an average of 1.85 yr. Eighteen participants had at least one stress fracture during follow-up. Baseline characteristics associated (Pstress fracture occurrence were one or more previous stress fractures (rate ratio [RR] [95% confidence interval]=6.42 (1.80-22.87), lower whole-body bone mineral content (RR=2.70 [1.26-5.88] per 1-SD [293.2 g] decrease), younger chronologic age (RR=1.42 [1.05-1.92] per 1-yr decrease), lower dietary calcium intake (RR=1.11 [0.98-1.25] per 100-mg decrease), and younger age at menarche (RR=1.92 [1.15-3.23] per 1-yr decrease). Although not statistically significant, a history of irregular menstrual periods was also associated with increased risk (RR=3.41 [0.69-16.91]). Training-related factors did not affect risk. The results of this and other studies indicate that risk factors for stress fracture among young female runners include previous stress fractures, lower bone mass, and, although not statistically significant in this study, menstrual irregularity. More study is needed of the associations between stress fracture and age, calcium intake, and age at menarche. Given the importance of stress fractures to runners, identifying preventive measures is of high priority.

  3. Detection of early squats by axle box acceleration

    OpenAIRE

    Molodova, M.

    2013-01-01

    This thesis discusses a new method for detection of short track irregularities, particularly squats, with axle box acceleration (ABA) measurements. A squat is a surface initiated short track defect, associated with high frequency vibrations of the wheel-rail system. High stresses in the contact patch at squats cause accumulation of plastic deformation of the rail and growth of cracks. Cracks growing in the subsurface can cause a rail fracture. Light squats can be treated by grinding of the ra...

  4. Stress- and Chemistry-Mediated Permeability Enhancement/Degradation in Stimulated Critically-Stressed Fractures

    Energy Technology Data Exchange (ETDEWEB)

    Derek Elsworth; Abraham S. Grader; Chris Marone; Phillip Halleck; Peter Rose; Igor Faoro; Joshua Taron; André Niemeijer; Hideaki Yasuhara

    2009-03-30

    This work has investigated the interactions between stress and chemistry in controlling the evolution of permeability in stimulated fractured reservoirs through an integrated program of experimentation and modeling. Flow-through experiments on natural and artificial fractures in Coso diorite have examined the evolution of permeability under paths of mean and deviatoric stresses, including the role of dissolution and precipitation. Models accommodating these behaviors have examined the importance of incorporating the complex couplings between stress and chemistry in examining the evolution of permeability in EGS reservoirs. This document reports the findings of experiment [1,2] and analysis [3,4], in four sequential chapters.

  5. Diagnosis, treatment, and rehabilitation of stress fractures in the lower extremity in runners

    Science.gov (United States)

    Kahanov, Leamor; Eberman, Lindsey E; Games, Kenneth E; Wasik, Mitch

    2015-01-01

    Stress fractures account for between 1% and 20% of athletic injuries, with 80% of stress fractures in the lower extremity. Stress fractures of the lower extremity are common injuries among individuals who participate in endurance, high load-bearing activities such as running, military and aerobic exercise and therefore require practitioner expertise in diagnosis and management. Accurate diagnosis for stress fractures is dependent on the anatomical area. Anatomical regions such as the pelvis, sacrum, and metatarsals offer challenges due to difficulty differentiating pathologies with common symptoms. Special tests and treatment regimes, however, are similar among most stress fractures with resolution between 4 weeks to a year. The most difficult aspect of stress fracture treatment entails mitigating internal and external risk factors. Practitioners should address ongoing risk factors to minimize recurrence. PMID:25848327

  6. A Discrete Fracture Network Model with Stress-Driven Nucleation and Growth

    Science.gov (United States)

    Lavoine, E.; Darcel, C.; Munier, R.; Davy, P.

    2017-12-01

    The realism of Discrete Fracture Network (DFN) models, beyond the bulk statistical properties, relies on the spatial organization of fractures, which is not issued by purely stochastic DFN models. The realism can be improved by injecting prior information in DFN from a better knowledge of the geological fracturing processes. We first develop a model using simple kinematic rules for mimicking the growth of fractures from nucleation to arrest, in order to evaluate the consequences of the DFN structure on the network connectivity and flow properties. The model generates fracture networks with power-law scaling distributions and a percentage of T-intersections that are consistent with field observations. Nevertheless, a larger complexity relying on the spatial variability of natural fractures positions cannot be explained by the random nucleation process. We propose to introduce a stress-driven nucleation in the timewise process of this kinematic model to study the correlations between nucleation, growth and existing fracture patterns. The method uses the stress field generated by existing fractures and remote stress as an input for a Monte-Carlo sampling of nuclei centers at each time step. Networks so generated are found to have correlations over a large range of scales, with a correlation dimension that varies with time and with the function that relates the nucleation probability to stress. A sensibility analysis of input parameters has been performed in 3D to quantify the influence of fractures and remote stress field orientations.

  7. Postpartum osteoporosis associated with proximal tibial stress fracture

    Energy Technology Data Exchange (ETDEWEB)

    Clemetson, I.A.; Anderson, S.E. [Department of Radiology, University Hospital of Bern, Inselspital, 3010, Bern (Switzerland); Popp, A.; Lippuner, K. [Department of Osteology, University Hospital of Bern, Inselspital, 3010, Bern (Switzerland); Ballmer, F. [Knee and Sports Medicine Unit, Lindenhofspital Bern, 3012, Bern (Switzerland)

    2004-02-01

    A 33-year-old woman presented with acute nonspecific knee pain, 6 months postpartum. MR imaging, computed tomography and radiography were performed and a proximal tibia plateau insufficiency fracture was detected. Bone densitometry demonstrated mild postpartum osteoporosis. To our knowledge these findings have not been described in this location and in this clinical setting. The etiology of the atraumatic fracture of the tibia is presumed to be due to a low bone mineral density. The bone loss was probably due to pregnancy, lactation and postpartum hormonal changes. There were no other inciting causes and the patient was normocalcemic. We discuss the presence of a postpartum stress fracture in a hitherto undescribed site in a patient who had lactated following an uncomplicated pregnancy and had no other identifiable cause for a stress fracture. (orig.)

  8. Postpartum osteoporosis associated with proximal tibial stress fracture

    International Nuclear Information System (INIS)

    Clemetson, I.A.; Anderson, S.E.; Popp, A.; Lippuner, K.; Ballmer, F.

    2004-01-01

    A 33-year-old woman presented with acute nonspecific knee pain, 6 months postpartum. MR imaging, computed tomography and radiography were performed and a proximal tibia plateau insufficiency fracture was detected. Bone densitometry demonstrated mild postpartum osteoporosis. To our knowledge these findings have not been described in this location and in this clinical setting. The etiology of the atraumatic fracture of the tibia is presumed to be due to a low bone mineral density. The bone loss was probably due to pregnancy, lactation and postpartum hormonal changes. There were no other inciting causes and the patient was normocalcemic. We discuss the presence of a postpartum stress fracture in a hitherto undescribed site in a patient who had lactated following an uncomplicated pregnancy and had no other identifiable cause for a stress fracture. (orig.)

  9. Measurement of residual stresses using fracture mechanics weight functions

    International Nuclear Information System (INIS)

    Fan, Y.

    2000-01-01

    A residual stress measurement method has been developed to quantify through-the-thickness residual stresses. Accurate measurement of residual stresses is crucial for many engineering structures. Fabrication processes such as welding and machining generate residual stresses that are difficult to predict. Residual stresses affect the integrity of structures through promoting failures due to brittle fracture, fatigue, stress corrosion cracking, and wear. In this work, the weight function theory of fracture mechanics is used to measure residual stresses. The weight function theory is an important development in computational fracture mechanics. Stress intensity factors for arbitrary stress distribution on the crack faces can be accurately and efficiently computed for predicting crack growth. This paper demonstrates that the weight functions are equally useful in measuring residual stresses. In this method, an artificial crack is created by a thin cut in a structure containing residual stresses. The cut relieves the residual stresses normal to the crack-face and allows the relieved residual stresses to deform the structure. Strain gages placed adjacent to the cut measure the relieved strains corresponding to incrementally increasing depths of the cut. The weight functions of the cracked body relate the measured strains to the residual stresses normal to the cut within the structure. The procedure details, such as numerical integration of the singular functions in applying the weight function method, will be discussed

  10. Measurement of residual stresses using fracture mechanics weight functions

    International Nuclear Information System (INIS)

    Fan, Y.

    2001-01-01

    A residual stress measurement method has been developed to quantify through-the-thickness residual stresses. Accurate measurement of residual stresses is crucial for many engineering structures. Fabrication processes such as welding and machining generate residual stresses that are difficult to predict. Residual stresses affect the integrity of structures through promoting failures due to brittle fracture, fatigue, stress corrosion cracking, and wear. In this work, the weight function theory of fracture mechanics is used to measure residual stresses. The weight function theory is an important development in computational fracture mechanics. Stress intensity factors for arbitrary stress distribution on the crack faces can be accurately and efficiently computed for predicting crack growth. This paper demonstrates that the weight functions are equally useful in measuring residual stresses. In this method, an artificial crack is created by a thin cut in a structure containing residual stresses. The cut relieves the residual stresses normal to the crack-face and allows the relieved residual stresses to deform the structure. Strain gages placed adjacent to the cut measure the relieved strains corresponding to incrementally increasing depths of the cut. The weight functions of the cracked body relate the measured strains to the residual stresses normal to the cut within the structure. The procedure details, such as numerical integration of the singular functions in applying the weight function method, will be discussed. (author)

  11. The Contribution of SPECT/CT in the Diagnosis of Stress Fracture of the Proximal Tibia.

    Science.gov (United States)

    Okudan, Berna; Coşkun, Nazım; Arıcan, Pelin

    2018-02-01

    Stress fractures are injuries most commonly seen in the lower limbs and are usually caused by repetitive stress. While the distal and middle third of the tibia is the most frequent site for stress fractures (almost 50%), stress fractures of the proximal tibia is relatively rare and could be confused with other types of tibial fractures, thus altering management plans for the clinician. Early diagnosis of stress fractures is also important to avoid complications. Imaging plays an important role in the diagnosis of stress fractures, especially bone scan. Combined with single-photon emission computed tomography/computed tomography (SPECT/CT) it is an important imaging technique for stress fractures in both upper and lower extremities, and is widely preferred over other imaging techniques. In this case, we present the case of a 39-year-old male patient diagnosed with stress fracture of the proximal tibia and demonstrate the contribution of CT scan fused with SPECT imaging in the early diagnosis of stress fracture prior to other imaging modalities.

  12. Variant selection of martensites in steel welded joints with low transformation temperature weld metals

    International Nuclear Information System (INIS)

    Takahashi, Masaru; Yasuda, Hiroyuki Y.

    2013-01-01

    Highlights: ► We examined the variant selection of martensites in the weld metals. ► We also measured the residual stress developed in the butt and box welded joints. ► 24 martensite variants were randomly selected in the butt welded joint. ► High tensile residual stress in the box welded joint led to the strong variant selection. ► We discussed the rule of the variant selection focusing on the residual stress. -- Abstract: Martensitic transformation behavior in steel welded joints with low transformation temperature weld (LTTW) metal was examined focusing on the variant selection of martensites. The butt and box welded joints were prepared with LTTW metals and 980 MPa grade high strength steels. The residual stress of the welded joints, which was measured by a neutron diffraction technique, was effectively reduced by the expansion of the LTTW metals by the martensitic transformation during cooling after the welding process. In the LTTW metals, the retained austenite and martensite phases have the Kurdjumov–Sachs (K–S) orientation relationship. The variant selection of the martensites in the LTTW metals depended strongly on the type of welded joints. In the butt welded joint, 24 K–S variants were almost randomly selected while a few variants were preferentially chosen in the box welded joint. This suggests that the high residual stress developed in the box welded joint accelerated the formation of specific variants during the cooling process, in contrast to the butt welded joint with low residual stress

  13. Expected Time to Return to Athletic Participation After Stress Fracture in Division I Collegiate Athletes.

    Science.gov (United States)

    Miller, Timothy L; Jamieson, Marissa; Everson, Sonsecharae; Siegel, Courtney

    2017-12-01

    Few studies have documented expected time to return to athletic participation after stress fractures in elite athletes. Time to return to athletic participation after stress fractures would vary by site and severity of stress fracture. Retrospective cohort study. Level 3. All stress fractures diagnosed in a single Division I collegiate men's and women's track and field/cross-country team were recorded over a 3-year period. Site and severity of injury were graded based on Kaeding-Miller classification system for stress fractures. Time to return to full unrestricted athletic participation was recorded for each athlete and correlated with patient sex and site and severity grade of injury. Fifty-seven stress fractures were diagnosed in 38 athletes (mean age, 20.48 years; range, 18-23 years). Ten athletes sustained recurrent or multiple stress fractures. Thirty-seven injuries occurred in women and 20 in men. Thirty-three stress fractures occurred in the tibia, 10 occurred in the second through fourth metatarsals, 3 occurred in the fifth metatarsal, 6 in the tarsal bones (2 navicular), 2 in the femur, and 5 in the pelvis. There were 31 grade II stress fractures, 11 grade III stress fractures, and 2 grade V stress fractures (in the same patient). Mean time to return to unrestricted sport participation was 12.9 ± 5.2 weeks (range, 6-27 weeks). No significant differences in time to return were noted based on injury location or whether stress fracture was grade II or III. The expected time to return to full unrestricted athletic participation after diagnosis of a stress fracture is 12 to 13 weeks for all injury sites. Athletes with grade V (nonunion) stress fractures may require more time to return to sport.

  14. Acetabular stress fractures in military endurance athletes and recruits: incidence and MRI and scintigraphic findings

    International Nuclear Information System (INIS)

    Williams, T.R.; Puckett, M.L.; Shin, A.Y.; Gorman, J.D.; Denison, G.

    2002-01-01

    Objective: To evaluate the incidence and the MRI and scintigraphic appearance of acetabular stress (fatigue) fractures in military endurance athletes and recruits. Design and patients: One hundred and seventy-eight active duty military endurance trainees with a history of activity-related hip pain were evaluated by both MRI and bone scan over a 2-year period. Patients in the study ranged in age from 17 to 45 years. They had hip pain related to activity and had plain radiographs of the hip and pelvis that were interpreted as normal or equivocal. The study was originally designed to evaluate the MRI and scintigraphic appearance of femoral neck stress fractures. Patients had scintigraphy and a limited MRI examination (coronal imaging only) within 48 h of the bone scan. Twelve patients demonstrated imaging findings compatible with acetabular stress fractures. Results: Stress fractures are common in endurance athletes and in military populations; however, stress fracture of the acetabulum is uncommon. Twelve of 178 patients (6.7%) in our study had imaging findings consistent with acetabular stress fractures. Two patterns were identified. Seven of the 12 (58%) patients had acetabular roof stress fractures. In this group, two cases of bilateral acetabular roof stress fractures were identified, one with a synchronous tensile sided femoral neck stress fracture. The remaining five of 12 (42%) patients had anterior column stress fractures, rarely occurring in isolation, and almost always occurring with inferior pubic ramus stress fracture (4 of 5, or 80%). One case of bilateral anterior column stress fractures was identified without additional sites of injury. Conclusions: Stress fractures are commonplace in military populations, especially endurance trainees. Acetabular stress fractures are rare and therefore unrecognized, but do occur and may be a cause for activity-related hip pain in a small percentage of military endurance athletes and recruits. (orig.)

  15. Incidence and Time to Return to Training for Stress Fractures during Military Basic Training

    Directory of Open Access Journals (Sweden)

    Alexander M. Wood

    2014-01-01

    Full Text Available Currently, little is known about the length of time required to rehabilitate patients from stress fractures and their return to preinjury level of physical activity. Previous studies have looked at the return to sport in athletes, in a general population, where rehabilitation is not as controlled as within a captive military population. In this study, a longitudinal prospective epidemiological database was assessed to determine the incidence of stress fractures and the time taken to rehabilitate recruits to preinjury stage of training. Findings demonstrated a background prevalence of 5% stress fractures in Royal Marine training; femoral and tibial stress fractures take 21.1 weeks to return to training with metatarsal stress fractures being the most common injury taking 12.2 weeks. Rehabilitation from stress fractures accounts for 814 weeks of recruit rehabilitation time per annum. Stress fracture incidence is still common in military training; despite this stress fracture recovery times remain constant and represent a significant interruption in training. It takes on average 5 weeks after exercise specific training has restarted to reenter training at a preinjury level, regardless of which bone has a stress fracture. Further research into their prevention, treatment, and rehabilitation is required to help reduce these burdens.

  16. Fracture mechanical treatment of bridging stresses in ceramics

    International Nuclear Information System (INIS)

    Fett, T.; Munz, D.

    1993-12-01

    Failure of ceramic materials often starts from cracks which can originate at pores, inclusions or can be generated during surface treatment. Fracture occurs when the stress intensity factor of the most serious crack in a component reaches a critical value K lc , the fracture toughness of the material. In case of ideal brittle materials the fracture toughness is independent of the crack extension and, consequently, identical with the stress intensity factor K l0 necessary for the onset of stable crack growth. It is a well-known fact that failure of several ceramics is influenced by an increasing crack-growth resistance curve. Several effects are responsible for this behaviour. Crack-border interactions in the wake of the advancing crack, residual stress fields in the crack region of transformation-toughened ceramics, the generation of a micro-crack zone ahead the crack tip and crack branching. The effect of increasing crack resistance has consequences on many properties of ceramic materials. In this report the authors discuss the some aspects of R-curve behaviour as the representation by stress intensity factors or energies and the influence on the compliance using the bridging stress model. (orig.) [de

  17. The effect of stress fracture interventions in a single elite infantry training unit (1983-2015).

    Science.gov (United States)

    Milgrom, Charles; Finestone, Aharon S

    2017-10-01

    Stress fractures can be seen as an undesired byproduct of demanding physical training. The threshold value of stress that places an individual bone at high risk for stress fracture has not been identified. In a prospective study of stress fractures in 1983, a 31% incidence was found during demanding Israeli infantry basic training by bone scan criteria. Within a subgroup of these recruits, an elite infantry unit was found to have a 40% incidence. Since then and until 2015, eight additional induction companies of the same elite infantry unit were prospectively monitored for stress fractures during their basic training. In all of the studies, stress fracture surveillance and the examining orthopedist were the same. A retrospective review of all nine studies and of eight training changes was performed to look for a temporal trend in stress fracture incidence and to see if these might be related to training changes. There was a statistically significant trend for lower radiological proven stress fractures (p=0.0001) and radiological proven stress fractures plus clinical stress fractures (p=0.0013), as well as lower stress fracture severity by radiological criteria (p=0.0001) between 1983 and 2015. The only training change that was associated, by multivariate logistic regression, with a decreased incidence of stress fracture was restricting training to the authorized training protocol (odds ratio, 3874; 95% CI, 1.526 to 9.931; p=0.004). Increased recruit weight was found by multivariate analysis to be associated with lower stress fracture incidence (odds ratio 1.034; 95% CI, 1.00 to 1.070; p=0.051). Moving the training to a base with flatter terrain and reducing the formal marching distance by 1/3 was associated with a decrease in high grade stress fractures (odds ratio, 10.03; 95% CI, 3.5 to 28.4; p=0.0001). Neither the combined changes of enforcing a seven hour a night sleep regimen, training in more comfortable boots and adding a physical therapist to the unit nor

  18. Multiple stress fractures in a young female runner.

    Science.gov (United States)

    Dusek, T; Pećina, M; Loncar-Dusek, M; Bojanic, I

    2004-01-01

    The effect of exercise on female's bone metabolism has received much attention in recent years. We report on unusual case of a female runner with low body mass and amenorrhea, who suffered 4 stress fractures. Three of the stress fractures occurred during her sports career, and the fourth occurred 7 years after the cessation of sports activities. It seems that exercise-induced amenorrhea together with food restriction in the young age may cause long-term consequences on bone metabolism.

  19. The Contribution of SPECT/CT in the Diagnosis of Stress Fracture of the Proximal Tibia

    Directory of Open Access Journals (Sweden)

    Berna Okudan

    2018-02-01

    Full Text Available Stress fractures are injuries most commonly seen in the lower limbs and are usually caused by repetitive stress. While the distal and middle third of the tibia is the most frequent site for stress fractures (almost 50%, stress fractures of the proximal tibia is relatively rare and could be confused with other types of tibial fractures, thus altering management plans for the clinician. Early diagnosis of stress fractures is also important to avoid complications. Imaging plays an important role in the diagnosis of stress fractures, especially bone scan. Combined with single-photon emission computed tomography/computed tomography (SPECT/CT it is an important imaging technique for stress fractures in both upper and lower extremities, and is widely preferred over other imaging techniques. In this case, we present the case of a 39-year-old male patient diagnosed with stress fracture of the proximal tibia and demonstrate the contribution of CT scan fused with SPECT imaging in the early diagnosis of stress fracture prior to other imaging modalities.

  20. Fracture predictions for cracks exposed to superimposed normal and shear stresses

    International Nuclear Information System (INIS)

    Richard, H.A.

    1985-01-01

    The author developed a special device and a fracture mechanics specimen and proposed a procedure for determining the fracture toughness when Mixed Mode and Mode II stresses are applied. This device makes it possible to generate pure normal stresses, superimposed normal and shearing stresses as well as pure shearing stresses in the cross section of the crack in the specimen, as desired. The so-called CTS fracture mechanics specimen has an edge crack. The load is transferred statically determind from the device to the specimen by means of six studs altogether. The experiments described, which were carried out with specimens made of the brittle materials PMMA (Plexiglas) and Araldit B, clearly show that it is possible to evaluate the validity of the individual fracture hypotheses by suitable experiments. It is also found that the fracture behaviour of different materials varies considerably both in quality and quantity. In conclusion, a practice-oriented fracture criterion is indicated which enables a practice-conforming evaluation of Mixed-Mode crack problems, as is shown by way of examples. (orig./HP) [de

  1. Treatment of suspended solids and heavy metals from urban stormwater runoff by a tree box filter.

    Science.gov (United States)

    Geronimo, F K F; Maniquiz-Redillas, M C; Tobio, J A S; Kim, L H

    2014-01-01

    Particulates, inorganic and toxic constituents are the most common pollutants associated with urban stormwater runoff. Heavy metals such as chromium, nickel, copper, zinc, cadmium and lead are found to be in high concentration on paved roads or parking lots due to vehicle emissions. In order to control the rapid increase of pollutant loads in stormwater runoff, the Korean Ministry of Environment proposed the utilization of low impact developments. One of these was the application of tree box filters that act as a bioretention treatment system which executes filtration and sorption processes. In this study, a tree box filter located adjacent to an impervious parking lot was developed to treat suspended solids and heavy metal concentrations from urban stormwater runoff. In total, 11 storm events were monitored from July 2010 to August 2012. The results showed that the tree box filter was highly effective in removing particulates (up to 95%) and heavy metals (at least 70%) from the urban stormwater runoff. Furthermore, the tree box filter was capable of reducing the volume runoff by 40% at a hydraulic loading rate of 1 m/day and below.

  2. Stress and Reliability Analysis of a Metal-Ceramic Dental Crown

    Science.gov (United States)

    Anusavice, Kenneth J; Sokolowski, Todd M.; Hojjatie, Barry; Nemeth, Noel N.

    1996-01-01

    Interaction of mechanical and thermal stresses with the flaws and microcracks within the ceramic region of metal-ceramic dental crowns can result in catastrophic or delayed failure of these restorations. The objective of this study was to determine the combined influence of induced functional stresses and pre-existing flaws and microcracks on the time-dependent probability of failure of a metal-ceramic molar crown. A three-dimensional finite element model of a porcelain fused-to-metal (PFM) molar crown was developed using the ANSYS finite element program. The crown consisted of a body porcelain, opaque porcelain, and a metal substrate. The model had a 300 Newton load applied perpendicular to one cusp, a load of 30ON applied at 30 degrees from the perpendicular load case, directed toward the center, and a 600 Newton vertical load. Ceramic specimens were subjected to a biaxial flexure test and the load-to-failure of each specimen was measured. The results of the finite element stress analysis and the flexure tests were incorporated in the NASA developed CARES/LIFE program to determine the Weibull and fatigue parameters and time-dependent fracture reliability of the PFM crown. CARES/LIFE calculates the time-dependent reliability of monolithic ceramic components subjected to thermomechanical and/Or proof test loading. This program is an extension of the CARES (Ceramics Analysis and Reliability Evaluation of Structures) computer program.

  3. Deformation aspects of time dependent fracture

    International Nuclear Information System (INIS)

    Li, C.Y.; Turner, A.P.L.; Diercks, D.R.; Laird, C.; Langdon, T.G.; Nix, W.D.; Swindeman, R.; Wolfer, W.G.; Woodford, D.A.

    1979-01-01

    For all metallic materials, particularly at elevated temperatures, deformation plays an important role in fracture. On the macro-continuum level, the inelastic deformation behavior of the material determines how stress is distributed in the body and thus determines the driving force for fracture. At the micro-continuum level, inelastic deformation alters the elastic stress singularity at the crack tip and so determines the local environment in which crack advance takes place. At the microscopic and mechanistic level, there are many possibilities for the mechanisms of deformation to be related to those for crack initiation and growth. At elevated temperatures, inelastic deformation in metallic systems is time dependent so that the distribution of stress in a body will vary with time, affecting conditions for crack initiation and propagation. Creep deformation can reduce the tendency for fracture by relaxing the stresses at geometric stress concentrations. It can also, under suitable constraints, cause a concentration of stresses at specific loading points as a result of relaxation elsewhere in the body. A combination of deformation and unequal heating, as in welding, can generate large residual stress which cannot be predicted from the external loads on the body. Acceleration of deformation by raising the temperature can be an effective way to relieve such residual stresses

  4. Stress fracture in posterior aspect of the tibia

    International Nuclear Information System (INIS)

    Moon, Tae Yong; Jung, Hyun Woo; Park, Chung Hun; Chun, Kyung Ah; Koo, Bong Sig; Lee, Sang Yong

    1999-01-01

    To determine correlation between stress fracture of the posterior tibia and flexor digitorum longus muscle injury caused by athletic or sporting activity during adolescence. Eleven cases diagnosed as stress fracture after X-ray and MR imaging of the lower leg were reviewed. With regard to each fracture, the following features were noted : age, sex, and athletic or sporting activity of the patient, and site. Using MR imaging techniques, axial and sagittal T1 and T2 weighted imaged were obtained in all cases and T1-Gd DTPA images in seven. The activities undertaken were running (n=3), football (n=2), ballet (n=2), taekwando (n=1), badminton (n=1), field hockey (n=1), and basketball (n=1). MR images revealed localized cortical thickness (n=11), linear intramedullary callus showing a low signal on T1 and T2 weighted images (n=9), marrow hyperemia (n=7), and flexor digitorum longus muscle injury showing a high signal on T1-Gd DTPA and T2 weighted image (n=7). Stress fracture of the posterior tibia might be induced by flexor digitorum longus muscle activity induced by athletic or sporting activities during adolescence

  5. Stress fracture in posterior aspect of the tibia

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Tae Yong; Jung, Hyun Woo; Park, Chung Hun [Pusan National Univ. College of Medicine, Pusan (Korea, Republic of); Chun, Kyung Ah [Catholic Univ Hospital, Pusan (Korea, Republic of); Koo, Bong Sig [Donga Univ. Hospital, Pusan (Korea, Republic of); Lee, Sang Yong [Chunbuk Natinoal Univ. Hospital, Chunju (Korea, Republic of)

    1999-01-01

    To determine correlation between stress fracture of the posterior tibia and flexor digitorum longus muscle injury caused by athletic or sporting activity during adolescence. Eleven cases diagnosed as stress fracture after X-ray and MR imaging of the lower leg were reviewed. With regard to each fracture, the following features were noted : age, sex, and athletic or sporting activity of the patient, and site. Using MR imaging techniques, axial and sagittal T1 and T2 weighted imaged were obtained in all cases and T1-Gd DTPA images in seven. The activities undertaken were running (n=3), football (n=2), ballet (n=2), taekwando (n=1), badminton (n=1), field hockey (n=1), and basketball (n=1). MR images revealed localized cortical thickness (n=11), linear intramedullary callus showing a low signal on T1 and T2 weighted images (n=9), marrow hyperemia (n=7), and flexor digitorum longus muscle injury showing a high signal on T1-Gd DTPA and T2 weighted image (n=7). Stress fracture of the posterior tibia might be induced by flexor digitorum longus muscle activity induced by athletic or sporting activities during adolescence.

  6. On metal fracture induced by laser radiation and impact pinched plasma

    International Nuclear Information System (INIS)

    Sultanov, M.A.; Olejnikov, V.P.

    1980-01-01

    Dependences of erosion of metals (Mo, W, Fe, Ta, Cr, Cd and etc.) on thermal physical properties and the place of laser radiation focusing are investigated. The radiation output energy has reached 10G, the impulse durability - 10 -3 sec. It is shown that the lense focus shift causes the change in the form and dimensions of a crater fracture. It is noted that there are shock waves in the laser plasma structure of fracture products, which are indicative of supersonic velocities of outflow of plasma microjets. A greater fracture degree of refractory metals (W, Mo, Ta) under the investigated conditions is noted. The erosion parameters of a great number of the metals under investigation are given

  7. Stress fracture risk factors in female football players and their clinical implications.

    Science.gov (United States)

    Warden, Stuart J; Creaby, Mark W; Bryant, Adam L; Crossley, Kay M

    2007-08-01

    A stress fracture represents the inability of the skeleton to withstand repetitive bouts of mechanical loading, which results in structural fatigue, and resultant signs and symptoms of localised pain and tenderness. Reports of stress fractures in female football players are not prevalent; however, they are probably under-reported and their importance lies in the morbidity that they cause in terms of time lost from participation. By considering risk factors for stress fractures in female football players it may be possible to reduce the impact of these troublesome injuries. Risk factors for stress fractures in female football players include intrinsic risk factors such as gender, endocrine, nutritional, physical fitness and neuromusculoskeletal factors, as well as extrinsic risk factors such as training programme, equipment and environmental factors. This paper discusses these risk factors and their implications in terms of developing prevention and management strategies for stress fractures in female football players.

  8. First-rib stress fracture in two adolescent swimmers: a case report.

    Science.gov (United States)

    Low, Sara; Kern, Michael; Atanda, Alfred

    2016-01-01

    First-rib stress fractures have been described in adolescent athletes in various sports, with only one prior case report of first-rib stress fractures in an adolescent female swimmer. There is a need for research on the cause, management, and prevention of these injuries as they lead to significant morbidity and critical time away from sport for these aspiring athletes. We aimed to describe first-rib stress fractures as a potential cause for non-specific atraumatic chronic shoulder pain in adolescent swimmers and to discuss the different presentations, unique risk factors, treatment, and potential injury prevention strategies of such fractures. We discussed two such cases which were successfully treated with activity modification with restriction of all overhead activity, gradually progressive physical therapy and a return to swimming protocol. First-rib stress fractures can vary in presentation and should be in the differential diagnosis in adolescent swimmers with chronic shoulder pain. These injuries can be successfully managed with rest from overhead activities and physical therapy. Gradual return to competitive swimming can be achieved even with non-union of a first-rib stress fracture. Emphasis on balanced strength training in different muscle groups and proper swimming technique is essential to prevent these injuries.

  9. Unusual longitudinal stress fractures of the femoral diaphysis: report of five cases

    International Nuclear Information System (INIS)

    Williams, M.; Timsit, M.A.; Karneff, A.; Pertuiset, E.

    1999-01-01

    We present five cases of a distinctive type of longitudinal stress fracture of the upper femoral shaft in which the fracture line is parallel to the outer surface of the bone, in contrast to the perpendicular orientation to the cortical surface in previously reported cases of diaphyseal stress fractures. In two cases the fracture recurred after 15 and 18 months, respectively. (orig.)

  10. Bilateral First Rib Stress Fractures in a Basketball Player

    Directory of Open Access Journals (Sweden)

    Abidin (Radyoloji Kilincer

    2016-04-01

    Full Text Available I read the article published by Aydogdu et al with a great interest. I congratulate them for this successfully written case report. Additionally, I want to focus an important point about the case they presented is that the diagnosis in that case is likely stress fracture. It is understood from the text and title that they avoided to make a diagnosis of stress fracture in the case, despite of history of lifting heavy weights for three days. And also I decided to mention through this article to an example of our case with bilateral first rib old fractures.

  11. Dislocation-free zone model of fracture comparison with experiments

    International Nuclear Information System (INIS)

    Ohr, S.M.; Chang, S.

    1982-01-01

    The dislocation-free zone (DFZ) model of fracture has been extended to study the relationship between the stress intensity factor, extent of plastic deformation, and crack tip geometry of an elastic-plastic crack as a function of applied stress. The results show that the stress intensity factor K decreases from the elastic value at first slowly, then goes rapidly to zero as the number of dislocations in the plastic zone increases. The crack with a zero stress intensity factor has its crack tip stress field completely relaxed by plastic deformation and hence is called a plastic crack. Between the elastic and plastic cracks, a wide range of elastic-plastic cracks having both a stress singularity and a plastic zone are possible. These elastic-plastic cracks with a DFZ are predicted if there is a critical stress intensity factor K/sub g/ required for the generation of dislocations at the crack tip. The expression for K/sub g/ is obtained from the crack tip dislocation nucleation model of Rice and Thomson. In most metals, the magnitude of K/sub g/ is less than the critical stress intensity factor for brittle fracture K/sub c/. The values of K are determined from electron microscope fracture experiments for various metals and they are found to be in good agreement with the K/sub g/ predicted from the model. It is concluded that for most ductile and semibrittle metals, the mechanism of dislocation generation is more important than the fracture surface energy in determining the stress intensity factor at the crack tip

  12. Acoustic Emission Based Surveillance System for Prediction of Stress Fractures

    Science.gov (United States)

    2007-09-01

    aging are susceptible to such fractures in contexts of osteoporosis, diabetes, cerebral palsy, fibrous dysplasia and osteogenesis imperfecta . This...disease, or, healthy people who have excessive exercise regimes (soldiers and athletes) experience these fractures [2]. Stress fractures interrupt

  13. Medial tibial plateau morphology and stress fracture location: A magnetic resonance imaging study.

    Science.gov (United States)

    Yukata, Kiminori; Yamanaka, Issei; Ueda, Yuzuru; Nakai, Sho; Ogasa, Hiroyoshi; Oishi, Yosuke; Hamawaki, Jun-Ichi

    2017-06-18

    To determine the location of medial tibial plateau stress fractures and its relationship with tibial plateau morphology using magnetic resonance imaging (MRI). A retrospective review of patients with a diagnosis of stress fracture of the medial tibial plateau was performed for a 5-year period. Fourteen patients [three female and 11 male, with an average age of 36.4 years (range, 15-50 years)], who underwent knee MRI, were included. The appearance of the tibial plateau stress fracture and the geometry of the tibial plateau were reviewed and measured on MRI. Thirteen of 14 stress fractures were linear, and one of them stellated on MRI images. The location of fractures was classified into three types. Three fractures were located anteromedially (AM type), six posteromedially (PM type), and five posteriorly (P type) at the medial tibial plateau. In addition, tibial posterior slope at the medial tibial plateau tended to be larger when the fracture was located more posteriorly on MRI. We found that MRI showed three different localizations of medial tibial plateau stress fractures, which were associated with tibial posterior slope at the medial tibial plateau.

  14. Non-metallic implant for patellar fracture fixation: A systematic review.

    Science.gov (United States)

    Camarda, Lawrence; Morello, Salvatore; Balistreri, Francesco; D'Arienzo, Antonio; D'Arienzo, Michele

    2016-08-01

    Despite good clinical outcome proposals, there has been relatively little published regarding the use of non-metallic implant for patellar fracture fixation. The purpose of the study was to perform a systematic literature review to summarize and evaluate the clinical studies that described techniques for treating patella fractures using non-metallic implants. A comprehensive literature search was systematically performed to evaluate all studies included in the literature until November 2015. The following search terms were used: patellar fracture, patella suture, patella absorbable, patella screw, patella cerclage. Two investigators independently reviewed all abstracts and the selection of these abstracts was then performed based on inclusion and/or exclusion criteria. A total of 9 studies involving 123 patients were included. Patients had a mean age of 33.7 years and were followed up for a mean of 18.9 months. The most common method for fracture fixations included the use of suture material. Good clinical outcomes were reported among all studies. Thirteen patients (10.5%) presented complications, while 4 patients (3.2%) required additional surgery for implant removal. There is a paucity of literature focused on the use of non-metallic implant for patellar fracture fixation. However, this systematic review showed that non-metallic implants are able to deliver good clinical outcomes reducing the rate of surgical complications and re-operation. These results may assist surgeons in choosing to use alternative material such as sutures to incorporate into their routine practice or to consider it, in order to reduce the rate of re-operation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Fatigue and fracture of fibre metal laminates

    CERN Document Server

    Alderliesten, René

    2017-01-01

    This book contributes to the field of hybrid technology, describing the current state of knowledge concerning the hybrid material concept of laminated metallic and composite sheets for primary aeronautical structural applications. It is the only book to date on fatigue and fracture of fibre metal laminates (FMLs). The first section of the book provides a general background of the FML technology, highlighting the major FML types developed and studied over the past decades in conjunction with an overview of industrial developments based on filed patents. In turn, the second section discusses the mechanical response to quasi-static loading, together with the fracture phenomena during quasi-static and cyclic loading. To consider the durability aspects related to strength justification and certification of primary aircraft structures, the third section discusses thermal aspects related to FMLs and their mechanical response to various environmental and acoustic conditions.

  16. Influence of Bone Remodeling Inhibition on the Development of Experimental Stress Fractures

    National Research Council Canada - National Science Library

    Schaffler, Mitchell B

    2005-01-01

    .... Using a bisphosphonate (BIS) to suppress remodeling in the rabbit tibial stress fracture model, we found that antiresorptive therapy reduced the intensity of the stress fracture response in this model...

  17. Impacts of groundwater metal loads from bedrock fractures on water quality of a mountain stream.

    Science.gov (United States)

    Caruso, Brian S; Dawson, Helen E

    2009-06-01

    Acid mine drainage and metal loads from hardrock mines to surface waters is a significant problem in the western USA and many parts of the world. Mines often occur in mountain environments with fractured bedrock aquifers that serve as pathways for metals transport to streams. This study evaluates impacts from current and potential future groundwater metal (Cd, Cu, and Zn) loads from fractures underlying the Gilt Edge Mine, South Dakota, on concentrations in Strawberry Creek using existing flow and water quality data and simple mixing/dilution mass balance models. Results showed that metal loads from bedrock fractures to the creek currently contribute water quality is achieved upstream in Strawberry Creek, fracture metal loads would be water quality standards exceedances once groundwater with elevated metals concentrations in the aquifer matrix migrates to the fractures and discharges to the stream. Potential future metal loads from an upstream fracture would contribute a small proportion of the total load relative to current loads in the stream. Cd has the highest stream concentrations relative to standards. Even if all stream water was treated to remove 90% of the Cd, the standard would still not be achieved. At a fracture farther downstream, the Cd standard can only be met if the upstream water is treated achieving a 90% reduction in Cd concentrations and the median stream flow is maintained.

  18. The diagnosis of stress fractures of runners by an isotope scintigraphy

    International Nuclear Information System (INIS)

    Karvonen, J.; Nieminen, M.

    1988-01-01

    By means of isotope scintigraphy the suspected stress fractures in the lower limb bones of ten competitive runners were verified in nine cases (9/10). In all cases the X-rays were normal. By conservative treatment avoiding excessive stress, the intensive local isotope uptake in the bone and pain symptoms of the stress fracture disappeared after 2-4 months. (orig.)

  19. Mechanisms Underlying Stress Fracture and the Influence of Sex and Race/Ethnicity

    Science.gov (United States)

    2017-10-01

    AWARD NUMBER: W81XWH-16-1-0652 TITLE: Mechanisms Underlying Stress Fracture and the Influence of Sex and Race/Ethnicity PRINCIPAL INVESTIGATOR...5a. CONTRACT NUMBER W81XWH-16-1-0652 Mechanisms Underlying Stress Fracture and the Influence of Sex and Race/Ethnicity 5b. GRANT NUMBER W81XWH...to stress fracture risk. In particular, in Study 1, we will perform advanced skeletal imaging along with gait-assessments in subjects with history of

  20. Acetabular roof stress fracture: a rare cause of hip pain in children ...

    African Journals Online (AJOL)

    Stress fracture of acetabular roof is an unusual cause of hip pain. It is considered as an underdiagnosed entity. People who are more susceptible to experience this fracture are athletes, soldiers and dancers. We present the case of an 11 year old girl with a roof acetabular stress fracture for which the diagnosis and ...

  1. Investigations on the influence of the stress state on fracture-mechanical values

    International Nuclear Information System (INIS)

    Schmidt, P.

    1979-01-01

    Fracture toughness obtained from specimen can be applied to construction elements only when the same stress state exists. In standardised fracture-mechanical tests plain strain is realised. Using the stress intensity factor, a critical crack length or a critical load can be obtained. Above these values a crack propagates in an unstable way. The specimen are tested under uni-axial load. In this paper investigations have been made whether a biaxial load increases the stress state over the plain strain and whether consequently a decrease of the critical fracture toughness and a shift of the temperatures Tsub(g)sub(y) and Tsub(s) results which characterise the fracture behaviour of steel. In order to answer these questions the tests were made which induced due to their geometry an additional nominal stress parallel to the crack front in spite of uni-axial loading. The results were compared with those from specimen without an additional nominal stress and having in their cross section under same test conditions nearly the same plain strain. The fracture toughness of both specimen types were compared at temperatures between 142 K and 252 K and correlated to other material-characterising values. The tests were completed by stress analysis and by comparing the crack opening displacement. Due to the additional stress, Tsub(g)sub(y) was found to be 20 K higher than for the reference specimen. The fracture toughness decreases significantly in certain temperature ranges. The plastic stress concentration factor was comperatively higher and the remaining plastic crack opening decreases up to 25%. (orig.) [de

  2. Value of lateral blood pool imaging in patients with suspected stress fractures of the tibia.

    Science.gov (United States)

    Mohan, Hosahalli K; Clarke, Susan E M; Centenara, Martin; Lucarelli, Amanda; Baron, Daniel; Fogelman, Ignac

    2011-03-01

    To critically evaluate the use of lateral blood pool imaging in athletes with lower limb pain and with a clinical suspicion of stress fracture. Two experienced nuclear medicine physicians evaluated 3-phase bone scans using 99mTc-methylene diphosphonate performed in 50 consecutive patients referred from a specialist sports injury clinic for suspected tibial stress fracture. The vascularity to the tibia as seen on the blood pool (second phase) images in the anterior/posterior views was compared with the lateral/medial view assessments. Stress fractures were presumed to be present when on the delayed images (third phase) there was a focal or fusiform area of increased tracer uptake involving the tibial cortex. Shin splints which are a recognized cause of lower limb pain in athletes mimicking stress fracture were diagnosed if increased tracer uptake was seen extending along the posterior tibial surface with no significant focal or fusiform area of uptake within this. Inter-reviewer agreement for the assessment of vascularity was also assessed using Cohen's Kappa scores. Twenty-four stress fractures in 24 patients and 66 shin splints in 40 patients were diagnosed. In 18 patients stress fracture and shin splints coexisted. In 10 patients no tibial pathology was identified. Of the 24 patients diagnosed with stress fractures, lateral/medial blood pool imaging was superior in the assessment of blood pool activity (P tibial stress fractures, lateral views of the tibia provide the optimal method for evaluation of vascularity. Prospective studies with quantitative or semi-quantitative assessment of skeletal vascularity could provide supplementary information relating to the pathophysiology of stress fractures, for example, the time scale of vascular changes after a tibial stress fracture, and potentially could have clinical relevance as to the assessment of the severity of stress fractures and their prognosis.

  3. Chondromalacia of trochlear notch after healing of olecranon stress fracture: a case report.

    Science.gov (United States)

    Lu, Cheng-Chang; Chen, Shen-Kai; Wang, Chih-Wei; Chou, Pei-Hsi

    2006-05-01

    Chondromalacia of the trochlear notch and stress fracture of olecranon are uncommon injuries in the throwing athletes. We report an 18-year-old high school pitcher who had persistent postero-lateral elbow pain after a healed olecranon stress fracture of the right elbow. Diagnostic arthroscopy revealed chondromalacia of the trochlear notch. After treatment with arthroscopic drilling and abrasion chondroplasty, he returned to competitive pitching 1 year later postsurgery. This rare association between chondromalacia and stress fracture of the olecranon has not been reported previously in the literatures. Chondromalacia of the trochlear notch should be included as a differential diagnosis in evaluating athletes with persistent elbow pain after healed olecranon stress fractures.

  4. STRESS FRACTURE OF THE ULNA IN A BREAK-DANCER

    Directory of Open Access Journals (Sweden)

    Yu-Hsu Chen

    2008-12-01

    Full Text Available Break dancing is a popular activity in teenagers and is associated with severe trauma to bones and tissues. We report the first known case of a break dancer with an ulnar stress fracture. Such injuries occur in a variety of sports due to substantial stress on the ulna and repetitive excessive rotation of the forearm. In this study we describe a patient who experienced an ulnar stress fracture during break dancing training. The diagnosis was established by history and physical examination. Initial radiographic findings were negative. However, radiographs taken 3 months after initial presented revealed callus formation over the ulnar shaft. This suggested that readjustment is required in break dancing training protocols. It is important to increase awareness of this injury among physicians to expedite the diagnosis and to prevent the possibility of conversion to an overt fracture in the future

  5. Stress fractures of the rib arising from the manufactory assembly line

    International Nuclear Information System (INIS)

    Arima, Toru; Iwasaki, Masayuki

    2007-01-01

    We investigated stress injuries of the rib arising from the assembly line. The patients, all males, were 20 in number and divided into two groups; those with stress fracture (n=13) and those with ''pre-fracture'' (n=7). The former group with the average age of 37 years was involved by a single fracture in 10 patients and multiple fractures in 3, ranging from 5th to 8th ribs, with the affected side on the right in 9 and the left in 4. All 13 fractures occurred in the posterior half of the rib, in which 5 were located in its lateral portion, 5 in the middle, and 3 in the posterior. The latter group with the average age of 32 years were involved on the right side in 4 and the left in 3. The working pattern causing rib injuries was either repeated raising of the upper extremity or forward pushing of the shoulder girdle. The symptom was back pain, and aggravated especially in elevation of the arm, deep breathing and sneezing. Local tenderness over the fracture site was noted in all cases. X-ray findings at initial examination revealed fractures in most cases and 3D-CT was employed in 9 questionable cases to assess fracture conditions. In the ''pre-fracture'' group, although the fracture was not recognized on X-ray, the diagnosis was made as an impending fracture based on the localized tenderness on the rib. As to treatment, bust band fixation and work load reduction were performed. Stress fractures of the rib have been occasionally reported in sports medicine, but not so much in industrial medicine. This specific injury has been treated in literature as muscle strain because of the absence of apparent trauma. It is important to recognize the underlying pathology to make the correct diagnosis. In the early stage of rib fractures, 3D-CT was more useful than X-ray in making diagnosis and assessing the bony union. As to the pathomechanism of this condition, it was postulated that repeated raising or forward pushing of the arm applying excessive traction to the origin of the

  6. Epidemiology of stress fracture injuries among US high school athletes, 2005-2006 through 2012-2013.

    Science.gov (United States)

    Changstrom, Bradley G; Brou, Lina; Khodaee, Morteza; Braund, Cortney; Comstock, R Dawn

    2015-01-01

    High school athletes in the United States sustain millions of injuries annually, approximately 10% of which are fractures. However, there is no clear estimate of the number of stress fractures sustained by high school athletes annually despite reports that stress fractures account for 0.7% to 20% of injuries seen in sports medicine clinics. This suggests a high utilization of resources for a potentially preventable injury. In addition, stress fractures have been associated with low energy availability and disordered eating in young athletes, highlighting the importance of early recognition and intervention. To investigate stress fracture rates and patterns in a large national sample of US high school athletes. Descriptive epidemiologic study. Data from High School RIO (Reporting Information Online), a national sports injury surveillance study, were analyzed to describe rates and patterns of stress fracture injury sustained from 2005-2006 through 2012-2013, across sports and by sex. From 2005-2006 through 2012-2013, a total of 51,773 injuries were sustained during 25,268,873 athlete-exposures, of which 389 (0.8%) were stress fractures, resulting in an overall stress fracture rate of 1.54 per 100,000 athlete-exposures. Rates per 100,000 athlete-exposures were highest in girls' cross country (10.62), girls' gymnastics (7.43), and boys' cross country (5.42). In sex-comparable sports, girls sustained more stress fractures (63.3%) than did boys (36.7%) and had higher rates of stress fracture (2.22 vs 1.27; rate ratio, 1.75; 95% CI, 1.38-2.23). The most commonly injured sites were the lower leg (40.3% of all stress fractures), foot (34.9%), and lower back/lumbar spine/pelvis (15.2%). Management was nonsurgical in 98.7% of the cases, and 65.3% of injuries resulted in ≥3 weeks of time loss, medical disqualification, or an end to the season before athletes could return to play. Although a rare injury, stress fractures cause considerable morbidity for high school athletes

  7. Association of stressful life events with incident falls and fractures in older men: the Osteoporotic Fractures in Men (MrOS) Study

    Science.gov (United States)

    Fink, Howard A.; Kuskowski, Michael A.; Marshall, Lynn M.

    2014-01-01

    Background: small, retrospective studies suggest that major life events and/or sudden emotional stress may increase fall and fracture risk. The current study examines these associations prospectively. Methods: a total of 5,152 men aged ≥65 years in the Osteoporotic Fractures in Men study self-reported data on stressful life events for 1 year prior to study Visit 2. Incident falls and fractures were ascertained for 1 year after Visit 2. Fractures were centrally confirmed. Results: a total of 2,932 (56.9%) men reported ≥1 type of stressful life event. In men with complete stressful life event, fall and covariate data (n = 3,949), any stressful life event was associated with a 33% increased risk of incident fall [relative risk (RR) 1.33, 95% confidence interval (CI) 1.19–1.49] and 68% increased risk of multiple falls (RR = 1.68, 95% CI = 1.40–2.01) in the year following Visit 2 after adjustment for age, education, Parkinson's disease, diabetes, stroke, instrumental activities of daily living (IADL) impairment, chair stand time, walk speed, multiple past falls, depressive symptoms and antidepressant use. Risk increased with the number of types of stressful life events. Though any stressful life event was associated with a 58% increased age-adjusted risk for incident fracture, this association was attenuated and no longer statistically significant after additional adjustment for total hip bone mineral density, fracture after age 50, Parkinson's disease, stroke and IADL impairment. Conclusions: in this cohort of older men, stressful life events significantly increased risk of incident falls independent of other explanatory variables, but did not independently increase incident fracture risk. PMID:24002237

  8. Quantitative analysis of scintigraphic findings in tibial stress fractures in Thoroughbred racehorses.

    Science.gov (United States)

    Valdés-Martínez, Alejandro; Seiler, Gabriela; Mai, Wilfried; Bolt, David M; Mudge, Margaret; Dukti, Sarah A; Hubert, Jeremy D

    2008-07-01

    To develop a quantitative method of interpreting tibial scintigrams of Thoroughbred racehorses with tibial stress fractures that may facilitate diagnosis of fractures and to provide prognostic information regarding future performance of affected horses. 35 Thoroughbred racehorses. Static bone-phase scintigrams of tibial stress fractures were quantitatively analyzed by use of ratios of the mean radionuclide counts per pixel in a region of interest (ROI) drawn around the area of increased uptake of radiopharmaceutical to mean counts per pixel in a second ROI drawn around an apparently normal area of the tibial diaphysis. In horses with unilateral fractures, ratios for the contralateral tibia were determined by use of 2 ROIs drawn at the same positions as the ROIs in the fractured tibia. Ratios were compared between fractured versus apparently normal tibias, between horses that returned to racing versus those that did not, and among horses with various grades of lameness. The association between ratios for fractured tibias and intervals between diagnosis and return to racing was also assessed. Mean ratio of ROIs in apparently normal tibias was 1.35 (95% confidence interval [CI], 1.21 to 1.50); that in tibias with stress fractures was 3.55 (95% CI, 2.50 to 4.60). These ratios were significantly different. None of the associations between ratios for fractured tibias and grades of lameness or performance outcomes were significant. Tibial stress fracture scintigrams can be quantitatively analyzed. A prospective study with a controlled rehabilitation period is necessary to evaluate the possible applications of this method.

  9. Fracture toughness measurements of WC-based hard metals

    International Nuclear Information System (INIS)

    Prakash, L.; Albert, B.

    1983-01-01

    The fracture toughness of WC-based cemented carbides was determined by different methods. The values obtained are dependent on the procedure of measurement. Each method thoughness of hard metals mutually. (orig.) [de

  10. Bone lesions from overload: shin splint and stress fracture

    International Nuclear Information System (INIS)

    Una Gorospe; Jon Andoni; Isla Gallego, Concepcion; Santana Borbones, Aranzazu; Perera Romero, Carmen; Allende Riera, Ana J

    2005-01-01

    There are many stress injuries in the lower extremities due to exercise, and the case we present is an example of two injuries which may present in children or young adults who train excessively. The patient complains of pain and tightness on exercise. The underlying pathology is probably rupture of insertion fibres of the tibial and soleus (Sharpey's fibres) muscles. Probably, there is also periostitis and myositis. Stress fractures and shin splints are often present at the same time in different stages, and both are typical pathologies due to excessive training. Scintigraphy allows identification and early management of shin splints and stress fractures (au)

  11. Surgical treatment of refractory tibial stress fractures in elite dancers: a case series.

    Science.gov (United States)

    Miyamoto, Ryan G; Dhotar, Herman S; Rose, Donald J; Egol, Kenneth

    2009-06-01

    Treatment of tibial stress fractures in elite dancers is centered on rest and activity modification. Surgical intervention in refractory cases has important implications affecting the dancers' careers. Refractory tibial stress fractures in dancers can be treated successfully with drilling and bone grafting or intramedullary nailing. Case series; Level of evidence, 4. Between 1992 and 2006, 1757 dancers were evaluated at a dance medicine clinic; 24 dancers (1.4%) had 31 tibial stress fractures. Of that subset, 7 (29.2%) elite dancers with 8 tibial stress fractures were treated operatively with either intramedullary nailing or drilling and bone grafting. Six of the patients were followed up closely until they were able to return to dance. One patient was available only for follow-up phone interview. Data concerning their preoperative treatment regimens, operative procedures, clinical union, radiographic union, and time until return to dance were recorded and analyzed. The mean age of the surgical patients at the time of stress fracture was 22.6 years. The mean duration of preoperative symptoms before surgical intervention was 25.8 months. Four of the dancers were male and 3 were female. All had failed nonoperative treatment regimens. Five patients (5 tibias) underwent drilling and bone grafting of the lesion, and 2 patients (3 tibias) with completed fractures or multiple refractory stress fractures underwent intramedullary nailing. Clinical union was achieved at a mean of 6 weeks and radiographic union at 5.1 months. Return to full dance activity was at an average of 6.5 months postoperatively. Surgical intervention for tibial stress fractures in dancers who have not responded to nonoperative management allowed for resolution of symptoms and return to dancing with minimal morbidity.

  12. Case report 491: Stress fracture of the right sacrum

    Energy Technology Data Exchange (ETDEWEB)

    Hoang, T.A.; Nguyen, T.H.; Daffner, R.H.; Lupetin, A.R.; Deeb, Z.L.

    1988-07-01

    A case of stress fracture of the right sacrum in a postpartum woman has been presented. Key features in making the diagnosis include a history of pain in the sacrum, considerable weight gain during the pregnancy and pronounced increased physical activity in the immediate postpartum period. CT, particularly, and MRI were critical in making the diagnosis. A low signal area on the T-1 neglected image was considered characteristic for the sacral fracture. In the CT studies a vertical lucency thru a zone of sclerosis is classical for a fracture, whether an insufficiency fracture or a fatigue fracture.

  13. Talar body fatigue stress fractures: three cases observed in elite female gymnasts

    International Nuclear Information System (INIS)

    Rossi, F.; Dragoni, S.

    2005-01-01

    To introduce and emphasize the clinical and radiological findings of three talar body fatigue stress fractures in competitive athletes. Clinical and radiographic skeletal records of 24,562 athletes taken between 1962 and 2002 were retrospectively reviewed. Among these, 6851 files related to acute foot and ankle injuries or chronic post-traumatic sequelae were found. There were 925 (3.76%) stress fatigue fractures selected from the whole collection. Among these there were three cases (0.32%) of talar body stress fractures diagnosed in elite female gymnasts 15 - 17 years old. The negative first radiograph become positive 4-6 weeks later. Scintigraphy was positive at an early stage and consistent for the diagnosis. CT and MRI gave positive results 1-2 weeks after the beginning of symptoms which were always greatly diagnostic. The sports medicine literature lacks reports of talar body fatigue stress fractures. The poor initial sensitivity of radiography makes it problematic to establish an early diagnosis. A wise combination of scintigraphy, CT and MRI has therefore to be relied upon. Familiarity with this rare location for a stress fracture may prevent delayed diagnosis and long-lasting damage, both of which are important factors in competitive athletes. (orig.)

  14. Talar body fatigue stress fractures: three cases observed in elite female gymnasts

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, F. [National Institute of Sports Medicine of the Italian Olympic Committee, Rome (Italy); Dragoni, S. [National Institute of Sports Medicine of the Italian Olympic Committee, Rome (Italy); Istituto Nazionale di Medicina dello Sport, Rome (Italy)

    2005-07-01

    To introduce and emphasize the clinical and radiological findings of three talar body fatigue stress fractures in competitive athletes. Clinical and radiographic skeletal records of 24,562 athletes taken between 1962 and 2002 were retrospectively reviewed. Among these, 6851 files related to acute foot and ankle injuries or chronic post-traumatic sequelae were found. There were 925 (3.76%) stress fatigue fractures selected from the whole collection. Among these there were three cases (0.32%) of talar body stress fractures diagnosed in elite female gymnasts 15 - 17 years old. The negative first radiograph become positive 4-6 weeks later. Scintigraphy was positive at an early stage and consistent for the diagnosis. CT and MRI gave positive results 1-2 weeks after the beginning of symptoms which were always greatly diagnostic. The sports medicine literature lacks reports of talar body fatigue stress fractures. The poor initial sensitivity of radiography makes it problematic to establish an early diagnosis. A wise combination of scintigraphy, CT and MRI has therefore to be relied upon. Familiarity with this rare location for a stress fracture may prevent delayed diagnosis and long-lasting damage, both of which are important factors in competitive athletes. (orig.)

  15. Identification of natural fractures and in situ stress at Rantau Dedap geothermal field

    Science.gov (United States)

    Artyanto, Andika; Sapiie, Benyamin; Idham Abdullah, Chalid; Permana Sidik, Ridwan

    2017-12-01

    Rantau Dedap Area is a geothermal field which is located in Great Sumatra Fault (GSF). The fault and fracture are main factor in the permeability of the geothermal system. However, not all faults and fractures have capability of to flow the fluids. Borehole image log is depiction of the borehole conditions, it is used to identify the natural fractures and drilling induced fracture. Both of them are used to identify the direction of the fracture, direction of maximum horizontal stress (SHmax), and geomechanics parameters. The natural fractures are the results of responses to stress on a rock and permeability which controlling factor in research area. Breakouts is found in this field as a trace of drilling induced fracture due to in situ stress work. Natural fractures are strongly clustered with true strike trending which first, second, and third major direction are N170°E - N180°E (N-S), N60°E - N70°E (NE-SW), and N310°E - N320°E (NW-SE), while the dominant dip is 80° -90°. Based on borehole breakout analysis, maximum horizontal stress orientation is identified in N162°E - N204°E (N-S) and N242°E (NE-SW) direction. It’s constantly similar with regional stress which is affected by GSF. Several parameters have been identified and analyzed are SHmax, SHmin, and Sy. It can be concluded that Rantau Dedap Geothermal Field is affected by strike-slip regime. The determination of in situ stress and natural fractures are important to study the pattern of permeability which is related to the fault in reservoir of this field.

  16. Arabidopsis AtbHLH112 regulates the expression of genes involved in abiotic stress tolerance by binding to their E-box and GCG-box motifs.

    Science.gov (United States)

    Liu, Yujia; Ji, Xiaoyu; Nie, Xianguang; Qu, Min; Zheng, Lei; Tan, Zilong; Zhao, Huimin; Huo, Lin; Liu, Shengnan; Zhang, Bing; Wang, Yucheng

    2015-08-01

    Plant basic helix-loop-helix (bHLH) transcription factors play essential roles in abiotic stress tolerance. However, most bHLHs have not been functionally characterized. Here, we characterized the functional role of a bHLH transcription factor from Arabidopsis, AtbHLH112, in response to abiotic stress. AtbHLH112 is a nuclear-localized protein, and its nuclear localization is induced by salt, drought and abscisic acid (ABA). In addition, AtbHLH112 serves as a transcriptional activator, with the activation domain located at its N-terminus. In addition to binding to the E-box motifs of stress-responsive genes, AtbHLH112 binds to a novel motif with the sequence 'GG[GT]CC[GT][GA][TA]C' (GCG-box). Gain- and loss-of-function analyses showed that the transcript level of AtbHLH112 is positively correlated with salt and drought tolerance. AtbHLH112 mediates stress tolerance by increasing the expression of P5CS genes and reducing the expression of P5CDH and ProDH genes to increase proline levels. AtbHLH112 also increases the expression of POD and SOD genes to improve reactive oxygen species (ROS) scavenging ability. We present a model suggesting that AtbHLH112 is a transcriptional activator that regulates the expression of genes via binding to their GCG- or E-boxes to mediate physiological responses, including proline biosynthesis and ROS scavenging pathways, to enhance stress tolerance. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  17. Femoral neck stress fractures (fnsf) in military recruits

    International Nuclear Information System (INIS)

    Majeed, N.U.; Naqvi, A.N.; Majeed, H.

    2012-01-01

    Objective: To identify patterns of Femoral Neck Stress Fractures (FNSF), its presentation and outcome of its treatment in PMA (Pakistan Military Academy) cadets. These findings would help suggest guidelines for their appropriate management. Study design: Case Series Place and duration of study: CMH Abbottabad and CMH Rawalpindi from May 2005 to January 2008. Materials and Methods: Twenty cases (20 hips in 18 patients) of FNSF were included in the study. Only male cadets from Pakistan Military Academy (PMA) were included. Diagnosis was made clinically and was confirmed by radiographs or bone scan. Incomplete fractures were managed conservatively where as complete fractures were fixed surgically. Results: All compression fractures healed conservatively where as tension fractures needed surgical fixation in all the cases, except one where fracture remained incomplete. Rest of tension fractures converted from incomplete fractures to complete fractures and hence needed surgical stabilization. There was no problem of avascular necrosis of femoral head (AVNFH) in any patient. Conclusion: FNSF are uncommon injuries with potentially serious complications and are difficult to diagnose clinically. When diagnosed early and managed appropriately, they carry good prognosis. (author)

  18. Stress fracture of the second proximal phalanx of the foot in teenage athletes: Unrecognized location of stress fracture

    Directory of Open Access Journals (Sweden)

    Satoshi Yamaguchi

    2017-10-01

    Conclusion: Although a rare injury, it is important that clinicians be aware of this type of stress fracture, as a timely diagnosis can avoid the need for surgical treatment and allow an early return to play.

  19. Failure of metals III: Fracture and fatigue of nanostructured metallic materials

    International Nuclear Information System (INIS)

    Pineau, André; Amine Benzerga, A.; Pardoen, Thomas

    2016-01-01

    Pushing the internal or external dimensions of metallic alloys down to the nanometer scale gives rise to strong materials, though most often at the expense of a low ductility and a low resistance to cracking, with negative impact on the transfer to engineering applications. These characteristics are observed, with some exceptions, in bulk ultra-fine grained and nanocrystalline metals, nano-twinned metals, thin metallic coatings on substrates and freestanding thin metallic films and nanowires. This overview encompasses all these systems to reveal commonalities in the origins of the lack of ductility and fracture resistance, in factors governing fatigue resistance, and in ways to improve properties. After surveying the various processing methods and key deformation mechanisms, we systematically address the current state of the art in terms of plastic localization, damage, static and fatigue cracking, for three classes of systems: (1) bulk ultra-fine grained and nanocrystalline metals, (2) thin metallic films on substrates, and (3) 1D and 2D freestanding micro and nanoscale systems. In doing so, we aim to favour cross-fertilization between progress made in the fields of mechanics of thin films, nanomechanics, fundamental researches in bulk nanocrystalline metals and metallurgy to impart enhanced resistance to fracture and fatigue in high-strength nanostructured systems. This involves exploiting intrinsic mechanisms, e.g. to enhance hardening and rate-sensitivity so as to delay necking, or improve grain-boundary cohesion to resist intergranular cracks or voids. Extrinsic methods can also be utilized such as by hybridizing the metal with another material to delocalize the deformation - as practiced in stretchable electronics. Fatigue crack initiation is in principle improved by a fine structure, but at the expense of larger fatigue crack growth rates. Extrinsic toughening through hybridization allows arresting or bridging cracks. The content and discussions are based on

  20. Fracture permeability under effect of normal and shear stress: A preliminary experimental investigation

    International Nuclear Information System (INIS)

    Mohanty, S.; Manteufel, R.D.; Chowdhury, A.H.

    1995-01-01

    The change in fracture permeability under mechanical loads have been investigated. An apparatus has been developed to measure change in fracture permeability, when a single fracture is subjected to normal and shear stress. Both radial and linear flow experiments have been conducted by modifying a direct shear test apparatus. Preliminary results suggest a 35-percent change in fracture permeability under normal stress to 8 MPa and nearly 350 percent under shear displacement of 9.9254 m (1 in.) at 5 MPa normal stress. Effort is underway to separate the permeability change due to gouge material production from that of due to dilation

  1. Radiological findings and healing patterns of incomplete stress fractures of the pars interarticularis

    International Nuclear Information System (INIS)

    Dunn, Andrew J.; Campbell, Robert S.D.; Mayor, Peter E.; Rees, Dai

    2008-01-01

    The objective was to retrospectively record the CT and MRI features and healing patterns of acute, incomplete stress fractures of the pars interarticularis. The CT scans of 156 adolescents referred with suspected pars interarticularis stress fractures were reviewed. Patients with incomplete (grade 2) pars fractures were included in the study. Fractures were assessed on CT according to vertebral level, location of cortical involvement and direction of fracture propagation. MRI was also performed in 72 of the 156 cases. MRI images of incomplete fractures were assessed for the presence of marrow oedema and cortical integrity. Fracture healing patterns were characterised on follow-up CT imaging. Twenty-five incomplete fractures were identified in 23 patients on CT. All fractures involved the inferior or infero-medial cortex of the pars and propagated superiorly or superolaterally. Ninety-two percent of incomplete fractures demonstrated either complete or partial healing on follow-up imaging. Two (8%) cases progressed to complete fractures. Thirteen incomplete fractures in 11 patients confirmed on CT also had MRI, and 92% demonstrated oedema in the pars. Ten out of thirteen fractures (77%) showed a break in the infero-medial cortex with intact supero-lateral cortex, which correlated with the CT findings. MRI incorrectly graded one case as a complete (grade 3) fracture, and 2 cases as (grade 1) stress reaction. Six fractures had follow-up MRI, 67% showed partial or complete cortical healing, and the same number showed persistent marrow oedema. Incomplete fracture of the pars interarticularis represents a stage of the evolution of a complete stress fracture. The direction of fracture propagation is consistent, and complete healing can be achieved in most cases with appropriate clinical management. CT best demonstrates fracture size and extent, and is the most appropriate modality for follow-up. MRI is limited in its ability to fully depict the cortical integrity of

  2. Radiological findings and healing patterns of incomplete stress fractures of the pars interarticularis

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Andrew J.; Campbell, Robert S.D. [Royal Liverpool and Broadgreen University Teaching Hospitals, Department of Medical Imaging, Liverpool (United Kingdom); Mayor, Peter E. [Leighton Hospital, Department of Medical Imaging, Crewe, Cheshire (United Kingdom); Rees, Dai [Robert Jones and Agnes-Hunt Orthopaedic Hospital, Department of Orthopaedic Surgery, Oswestry, Shropshire (United Kingdom)

    2008-05-15

    The objective was to retrospectively record the CT and MRI features and healing patterns of acute, incomplete stress fractures of the pars interarticularis. The CT scans of 156 adolescents referred with suspected pars interarticularis stress fractures were reviewed. Patients with incomplete (grade 2) pars fractures were included in the study. Fractures were assessed on CT according to vertebral level, location of cortical involvement and direction of fracture propagation. MRI was also performed in 72 of the 156 cases. MRI images of incomplete fractures were assessed for the presence of marrow oedema and cortical integrity. Fracture healing patterns were characterised on follow-up CT imaging. Twenty-five incomplete fractures were identified in 23 patients on CT. All fractures involved the inferior or infero-medial cortex of the pars and propagated superiorly or superolaterally. Ninety-two percent of incomplete fractures demonstrated either complete or partial healing on follow-up imaging. Two (8%) cases progressed to complete fractures. Thirteen incomplete fractures in 11 patients confirmed on CT also had MRI, and 92% demonstrated oedema in the pars. Ten out of thirteen fractures (77%) showed a break in the infero-medial cortex with intact supero-lateral cortex, which correlated with the CT findings. MRI incorrectly graded one case as a complete (grade 3) fracture, and 2 cases as (grade 1) stress reaction. Six fractures had follow-up MRI, 67% showed partial or complete cortical healing, and the same number showed persistent marrow oedema. Incomplete fracture of the pars interarticularis represents a stage of the evolution of a complete stress fracture. The direction of fracture propagation is consistent, and complete healing can be achieved in most cases with appropriate clinical management. CT best demonstrates fracture size and extent, and is the most appropriate modality for follow-up. MRI is limited in its ability to fully depict the cortical integrity of

  3. Longitudinal stress fracture: patterns of edema and the importance of the nutrient foramen

    Energy Technology Data Exchange (ETDEWEB)

    Craig, Joseph G.; Widman, David; Holsbeeck, Marnix van [Department of Radiology, Henry Ford Hospital, Detroit, MI 48202 (United States)

    2003-01-01

    We reviewed the MR appearances of six cases of longitudinal stress fracture of the lower extremity.Results. One fracture was in the femur and five were in the tibia. Four of the tibial fractures showed edema starting in the mid-tibia at the level of the nutrient foramen with the fracture on the anteromedial cortex. The other tibial fracture started at the nutrient foramen. Three fractures (two tibial and the femur fracture) showed eccentric marrow edema; all fractures showed either eccentric periosteal reaction or soft tissue edema.Conclusion. Primary diagnosis of longitudinal stress fracture is made by finding a vertical cleft on one or more axial images. Secondary signs of position of the nutrient foramen and patterns of edema may be useful. (orig.)

  4. Distinct hip and rearfoot kinematics in female runners with a history of tibial stress fracture.

    Science.gov (United States)

    Milner, Clare E; Hamill, Joseph; Davis, Irene S

    2010-02-01

    Cross-sectional controlled laboratory study. To investigate the kinematics of the hip, knee, and rearfoot in the frontal and transverse planes in female distance runners with a history of tibial stress fracture. Tibial stress fractures are a common overuse injury in runners, accounting for up to half of all stress fractures. Abnormal kinematics of the lower extremity may contribute to abnormal musculoskeletal load distributions, leading to an increased risk of stress fractures. Thirty female runners with a history of tibial stress fracture were compared to 30 age-matched and weekly-running-distance-matched control subjects with no previous lower extremity bony injuries. Kinematic and kinetic data were collected using a motion capture system and a force platform, respectively, as subjects ran in the laboratory. Selected variables of interest were compared between the groups using a multivariate analysis of variance (MANOVA). Peak hip adduction and peak rearfoot eversion angles were greater in the stress fracture group compared to the control group. Peak knee adduction and knee internal rotation angles and all joint angles at impact peak were similar between the groups. Runners with a previous tibial stress fracture exhibited greater peak hip adduction and rearfoot eversion angles during the stance phase of running compared to healthy controls. A consequence of these mechanics may be altered load distribution within the lower extremity, predisposing individuals to stress fracture.

  5. A new coal-permeability model: Internal swelling stress and fracture-matrix interaction

    Energy Technology Data Exchange (ETDEWEB)

    Liu, H.H.; Rutqvist, J.

    2009-10-01

    We have developed a new coal-permeability model for uniaxial strain and constant confining stress conditions. The model is unique in that it explicitly considers fracture-matrix interaction during coal deformation processes and is based on a newly proposed internal-swelling stress concept. This concept is used to account for the impact of matrix swelling (or shrinkage) on fracture-aperture changes resulting from partial separation of matrix blocks by fractures that do not completely cut through the whole matrix. The proposed permeability model is evaluated with data from three Valencia Canyon coalbed wells in the San Juan Basin, where increased permeability has been observed during CH{sub 4} gas production, as well as with published data from laboratory tests. Model results are generally in good agreement with observed permeability changes. The importance of fracture-matrix interaction in determining coal permeability, demonstrated in this work using relatively simple stress conditions, underscores the need for a dual-continuum (fracture and matrix) mechanical approach to rigorously capture coal-deformation processes under complex stress conditions, as well as the coupled flow and transport processes in coal seams.

  6. Effect of weld metal toughness on fracture behavior under ultra-low cycle fatigue loading (earthquake)

    Energy Technology Data Exchange (ETDEWEB)

    Kermajani, M. [School of Materials Engineering, College of Engineering, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Ghaini, F. Malek, E-mail: Fmalek@modares.ac.ir [School of Materials Engineering, College of Engineering, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Miresmaeili, R. [School of Materials Engineering, College of Engineering, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Aghakouchak, A.A. [School of Civil Engineering, College of Engineering, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Shadmand, M. [Department of Research and Development, MAPNA Electric and Control (MECO) Company, Karaj (Iran, Islamic Republic of)

    2016-06-21

    Results from 12 ultra-low cycle fatigue tests performed on the weld metals of both toughness and non-toughness rated grades are presented. Fracture resistance under these loadings seemed to be dependent on materials' toughness, displacement amplitude, and stress state triaxiality, while the toughness effect was more highlighted at high stress levels and concentrations. To study the effect of microstructures on these failures, supporting ancillary tests including all-weld tension coupons, Charpy V-notched impact tests, and optical and scanning electron microscope analyses were performed. The favored microstructures appeared to be those which absorbed energy by plastic deformation and, hence, hindered void formation and/or could avoid crack propagation by deflection. Considering the response of the tested materials to cyclic loadings and the requirements of the materials specified in AISC341 Provisions could question the adequacy of these requirements for weld metals. However, the role of microstructural features like inclusions would be the same in both the Charpy impact tests and ultra-low cycle loadings.

  7. ALUMINUM BOX BUNDLING PRESS

    Directory of Open Access Journals (Sweden)

    Iosif DUMITRESCU

    2015-05-01

    Full Text Available In municipal solid waste, aluminum is the main nonferrous metal, approximately 80- 85% of the total nonferrous metals. The income per ton gained from aluminum recuperation is 20 times higher than from glass, steel boxes or paper recuperation. The object of this paper is the design of a 300 kN press for aluminum box bundling.

  8. Medial supracondylar stress fracture in an adolescent pitcher

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Eric Y.; Chung, Christine B. [VA San Diego Healthcare System, San Diego, CA (United States); University of California, San Diego Medical Center, San Diego, CA (United States); Fronek, Jan [Scripps Healthcare, La Jolla, CA (United States)

    2014-01-15

    We report the occurrence of a medial supracondylar stress fracture in an adolescent pitcher. To our knowledge, this fracture has not been described in the literature, and awareness of this entity allows initiation of therapy and precludes further unnecessary work-up. The radiographic, computed tomography, and magnetic resonance imaging appearances are reviewed and the mechanism of injury is discussed. (orig.)

  9. Crack initiation and fracture features of Fe–Co–B–Si–Nb bulk metallic glass during compression

    Directory of Open Access Journals (Sweden)

    S. Lesz

    2016-01-01

    Full Text Available The aim of the paper was investigation crack initiation and fracture features developed during compression of Fe-based bulk metallic glass (BMG. These Fe-based BMG has received great attention as a new class of structural material due to an excellent properties (e.g. high strength and high elasticity and low costs. However, the poor ductility and brittle fracture exhibited in BMGs limit their structural application. At room temperature, BMGs fails catastrophically without appreciable plastic deformation under tension and only very limited plastic deformation is observed under compression or bending. Hence a well understanding of the crack initiation and fracture morphology of Fe-based BMGs after compression is of much importance for designing high performance BMGs. The raw materials used in this experiment for the production of BMGs were pure Fe, Co, Nb metals and nonmetallic elements: Si, B. The Fe–Co–B–Si–Nb alloy was cast as rods with three different diameters. The structure of the investigated BMGs rod is amorphous. The measurement of mechanical properties (Young modulus - E, compressive stress - σc, elastic strain - ε, unitary elastic strain energy – Uu were made in compression test. Compression test indicates the rods of Fe-based alloy to exhibit high mechanical strength. The development of crack initiation and fracture morphology after compression of Fe-based BMG were examined with scanning electron microscope (SEM. Fracture morphology of rods has been different on the cross section. Two characteristic features of the compressive fracture morphologies of BMGs were observed. One is the smooth region. Another typical feature of the compressive fracture morphology of BMGs is the vein pattern. The veins on the compressive fracture surface have an obvious direction as result of initial displace of sample along shear bands. This direction follows the direction of the displacement of a material. The formation of veins on the

  10. Preventive osteopathic manipulative treatment and stress fracture incidence among collegiate cross-country athletes.

    Science.gov (United States)

    Brumm, Lynn F; Janiski, Carrie; Balawender, Jenifer L; Feinstein, Adam

    2013-12-01

    Stress fractures are common among athletes, particularly distance runners, with many theories regarding the etiologic process of stress fractures and various studies identifying risk factors or suggesting preventive techniques. To our knowledge, no previous studies have discussed the possible causative effects of somatic dysfunction or the preventive capabilities of osteopathic manipulative treatment (OMT). To apply a preventive OMT protocol for cross-country athletes to reduce the incidence of stress fractures. Cohort study. Examinations of cross-country athletes at an NCAA (National Collegiate Athletic Association) Division I university were performed by supervising physician-examiners and first- and second-year osteopathic medical students during several consecutive academic years. Athletes re-enrolled in the study each year they continued to be eligible. The intervention included osteopathic structural examination and OMT that focused on somatic dysfunction identified in the pelvis, sacrum, and lower extremities. More than 1800 participant examinations were performed on 124 male and female participants by 3 supervising physician-examiners and 141 osteopathic medical students over the course of 5 consecutive academic years (2004-2005 to 2008-2009). Data from these academic years were compared with data from the previous 8 academic years (1996-1997 to 2003-2004). An average of 20 new participants enrolled yearly. The number of annual stress fractures per team ranged from 0 to 6 for male participants and 1 to 6 for female participants. The cumulative annual incidence of stress fractures for male participants demonstrated a statistically significant decrease from 13.9% (20 of 144) before intervention to 1.0% (1 of 105) after intervention, resulting in a 98.7% relative reduction in stress-fracture diagnosis (P=.019). The cumulative annual incidence for female participants showed a minimal decrease from 12.9% (23 of 178) before intervention to 12.0% (17 of 142) after

  11. ADIMEW: Fracture assessment and testing of an aged dissimilar metal weld pipe assembly

    International Nuclear Information System (INIS)

    Wintle, J.B.; Hayes, B.; Goldthorpe, M.R.

    2004-01-01

    ADIMEW (Assessment of Aged Piping Dissimilar Metal Weld Integrity) was a three-year collaborative research programme carried out under the EC 5th Framework Programme. The objective of the study was to advance the understanding of the behaviour and safety assessment of defects in dissimilar metal welds between pipes representative of those found in nuclear power plant. ADIMEW studied and compared different methods for predicting the behaviour of defects located near the fusion boundaries of dissimilar metal welds typically used to join sections of austenitic and ferritic piping operating at high temperature. Assessment of such defects is complicated by issues that include: severe mis-match of yield strength of the constituent parent and weld metals, strong gradients of material properties, the presence of welding residual stresses and mixed mode loading of the defect. The study includes the measurement of material properties and residual stresses, predictive engineering analysis and validation by means of a large-scale test. The particular component studied was a 453mm diameter pipe that joins a section of type A508 Class 3 ferritic pipe to a section of type 316L austenitic pipe by means of a type 308 austenitic weld with type 308/309L buttering laid on the ferritic pipe. A circumferential, surface-breaking defect was cut using electro discharge machining into the 308L/309L weld buttering layer parallel to the fusion line. The test pipe was subjected to four-point bending to promote ductile tearing of the defect. This paper presents the results of TWI contributions to ADIMEW including: fracture toughness testing, residual stress measurements and assessments of the ADIMEW test using elastic-plastic, cracked body, finite element analysis. (orig.)

  12. Diagnosis, treatment, and rehabilitation of stress fractures in the lower extremity in runners

    OpenAIRE

    Kahanov, Leamor; Eberman,Lindsey; Games,Kenneth; Wasik,Mitch

    2015-01-01

    Leamor Kahanov,1 Lindsey E Eberman,2 Kenneth E Games,2 Mitch Wasik2 1College of Health Science, Misericordia University, Dallas, PA, USA; 2Department of Applied Medicine and Rehabilitation, Indiana State University, Terre Haute, IN, USA Abstract: Stress fractures account for between 1% and 20% of athletic injuries, with 80% of stress fractures in the lower extremity. Stress fractures of the lower extremity are common injuries among individuals who participate in endurance, high load-bearing ...

  13. Sequential Proximal Tibial Stress Fractures associated with Prolonged usage of Methotrexate and Corticosteroids: A Case Report

    Directory of Open Access Journals (Sweden)

    Tan TJL

    2015-11-01

    Full Text Available Stress fractures of the proximal tibia metaphysis are rare in the elderly. We present a case of a 65-year old male who developed sequential proximal tibia stress fractures associated with prolonged usage of methotrexate and prednisolone within a span of 18 months. Magnetic Resonance Imaging revealed an incomplete stress fracture involving the medial proximal tibial region. The patient was treated with stemmed total knee arthroplasty (TKA bilaterally. Stress fractures should be considered in patients with atypical knee pain who have a history of methotrexate and prednisolone usage. TKA is an effective treatment in stress fractures of the proximal tibia.

  14. Failure by fracture in bulk metal forming

    DEFF Research Database (Denmark)

    Silva, C.M.A.; Alves, Luis M.; Nielsen, Chris Valentin

    2015-01-01

    This paper revisits formability in bulk metal forming in the light of fundamental concepts of plasticity,ductile damage and crack opening modes. It proposes a new test to appraise the accuracy, reliability and validity of fracture loci associated with crack opening by tension and out-of-plane shear...

  15. Distribution and natural history of stress fractures in U.S. Marine recruits

    International Nuclear Information System (INIS)

    Greaney, R.B.; Gerber, F.H.; Laughlin, R.L.; Kmet, J.P.; Metz, C.D.; Kilcheski, T.S.; Rao, B.R.; Silverman, E.D.

    1983-01-01

    In a prospective study of stress injuries of the lower extremities of U.S. Marine recruits, researchers derived a frequency distribution of stress fractures. The most frequently fractured bone was the tibia (73%), while the single most common site was the posterior calcaneal tuberosity (21%). The natural history of stress fractures by scintigraphy and radiography has been outlined, showing the evolutionary changes on either study as a universal progression independent of injury site or type of stress. An identical spectrum of changes should be present within any group undergoing intense new exercise. The frequency distribution of stress fractures should be a function of differing forms and intensities of exercise, therefore, our figures should not be applied to other groups. Researchers used the presence of a scintigraphic abnormality at a symptomatic site as the criterion for diagnosis of stress fracture. Since the distribution of skeletal radiotracer uptake is directly dependent on local metabolic activity, it is expected that a focal alteration in bone metabolism will result in a scintigram approaching 100% sensitivity for the abnormality (9). In the proper clinical setting, the specificity should approximate this figure; however, a focal, nonstress-related bone abnormality which has not manifested any radiographic change, such as early osteomyelitis, could result in a false-positive examination. Specificity cannot, therefore, be accurately determined without an actual determination of the pathologic changes within the bone, necessarily involving biopsy

  16. Direct Imaging of Natural Fractures and Stress Compartments Stimulated by Hydraulic Fracturing

    Science.gov (United States)

    Lacazette, A.; Vermilye, J. M.

    2014-12-01

    This contribution will present results from passive seismic studies of hydraulic fracture treatments in North American and Asian basins. One of the key data types is a comparatively new surface-based seismic imaging product - "Tomographic Fracture Images®" (TFI®). The procedure is an extension of Seismic Emission Tomography (SET), which is well-established and widely used. Conventional microseismic results - microearthquake hypocenter locations, magnitudes, and focal mechanism solutions - are also obtained from the data via a branch of the processing workflow. TFI is accomplished by summing the individual time steps in a multidimensional SET hypervolume over extended periods of time, such as an entire frac stage. The dimensions of a SET hypervolume are the X, Y, and Z coordinates of the voxels, the time step (typically on the order of 100 milliseconds), and the seismic activity value. The resulting summed volume is skeletonized to produce images of the main fracture surfaces, which are known to occupy the maximum activity surfaces of the high activity clouds from theory, field studies, and experiments. The orientation vs. area of the resulting TFIs can be analyzed in detail and compared with independent data sets such as volumetric structural attributes from reflection seismic data and borehole fracture data. We find that the primary effect of hydraulic fracturing is to stimulate preexisting natural fracture networks and faults. The combination of TFIs with hypocenter distributions and microearthquake focal mechanisms provides detailed information on subsurface stress compartmentalization. Faults are directly imaged which allows discrimination of fault planes from auxiliary planes of focal mechanism solutions. Examples that will be shown include simultaneous movement on a thrust fault and tear fault and examples of radically different stress compartments (e.g. extensional vs. wrench faulting) stimulated during a single hydraulic fracture treatment. The figure

  17. Stress fractures in athletes. How to spot this underdiagnosed injury.

    Science.gov (United States)

    Sallis, R E; Jones, K

    1991-05-01

    Stress fractures are an increasingly common injury in competitive athletes, especially runners. Amenorrheic athletes are at particularly high risk. A radionuclide bone scan should be considered when the index of suspicion for stress fracture is high. Plain radiographs are of little use in establishing the diagnosis in the early stages of the injury. Early diagnosis and prompt institution of conservative therapy allow for a favorable outcome in most cases. Avoidance of or reduced participation in the inciting activity is important for pain control. Certain stress fractures, such as those involving the femoral neck, should be monitored closely and treated aggressively with internal fixation when conservative measures fail. Runners who have exercise-induced amenorrhea should be advised to decrease their training intensity to a level where menses resume. Cyclic therapy with conjugated estrogens and progesterone should also be considered, as should daily calcium supplementation.

  18. Molecular cloning and characterization of an F-box family gene CarF-box1 from chickpea (Cicer arietinum L.).

    Science.gov (United States)

    Jia, Yuying; Gu, Hanyan; Wang, Xiansheng; Chen, Quanjia; Shi, Shubing; Zhang, Jusong; Ma, Lin; Zhang, Hua; Ma, Hao

    2012-03-01

    F-box protein family has been found to play important roles in plant development and abiotic stress responses via the ubiquitin pathway. In this study, an F-box gene CarF-box1 (for Cicer arietinum F-box gene 1, Genbank accession no. GU247510) was isolated based on a cDNA library constructed with chickpea seedling leaves treated by polyethylene glycol. CarF-box1 encoded a putative protein with 345 amino acids and contained no intron within genomic DNA sequence. CarF-box1 is a KFB-type F-box protein, having a conserved F-box domain in the N-terminus and a Kelch repeat domain in the C-terminus. CarF-box1 was localized in the nucleus. CarF-box1 exhibited organ-specific expression and showed different expression patterns during seed development and germination processes, especially strongly expressed in the blooming flowers. In the leaves, CarF-box1 could be significantly induced by drought stress and slightly induced by IAA treatment, while in the roots, CarF-box1 could be strongly induced by drought, salinity and methyl jasmonate stresses. Our results suggest that CarF-box1 encodes an F-box protein and may be involved in various plant developmental processes and abiotic stress responses.

  19. Sport related stress fracture of the clavicle with non-union: Case report and review

    Science.gov (United States)

    Constantinou, Demitri; Kastanos, Konstantinos

    2008-01-01

    Stress fractures are relatively uncommon sports injuries and when they do occur, are mostly found in the lower limb. Stress fractures of the clavicle are particularly rare, having been described in a number of non-sport related pathologies, such as nervous tics and post radical neck dissection. In sport, there have only been seven cases reported in the literature. We report on a clavicle stress fracture in a 47-year-old male, partaking in recreational weight lifting activities. This is the first reported case of a non-union stress fracture of the clavicle. The patient underwent an open reduction and internal fixation and made a full recovery. PMID:21264151

  20. Bilateral Tibial Stress Fractures in a Young Man Associated with Idiopathic Osteoporosis - Case Report

    Directory of Open Access Journals (Sweden)

    Selahattin Özyürek

    2010-12-01

    Full Text Available Stress fractures are defined as a partial or complete fracture of bone due to an inability to endure a non-violent stress. Two factors have been proposed to explain the aetiology of stress fractures: muscle fatigue, and direct muscle action. We want to point to third factor with our case report: Osteoporosis. (From the World of Osteoporosis 2010;16:58-60

  1. Prediction of retained residual stresses in laboratory fracture mechanics specimens extracted from welded components

    International Nuclear Information System (INIS)

    Hurlston, R.G.; Sherry, A.H.; James, P.; Sharples, J.K.

    2015-01-01

    The measurement of weld material fracture toughness properties is important for the structural integrity assessment of engineering components. However, welds can contain high levels of residual stress and these can be retained in fracture mechanics specimens, particularly when machined from non-stress relieved welds. Retained residual stresses can make the measurement of valid fracture toughness properties difficult. This paper describes the results of analytical work undertaken to investigate factors that can influence the magnitude and distribution of residual stresses retained in fracture mechanics specimen blanks extracted from as-welded ferritic and austenitic stainless steel plates. The results indicate that significant levels of residual stress can be retained in specimen blanks prior to notching, and that the magnitude and distribution of stress is dependent upon material properties, specimen geometry and size, and extraction location through the thickness of the weld. Finite element modelling is shown to provide a useful approach for estimating the level and distributions of retained residual stresses. A new stress partitioning approach has been developed to estimate retained stress levels and results compare favourably with FE analysis and available experimental data. The approach can help guide the selection of specimen geometry and machining strategies to minimise the level of residual stresses retained in fracture mechanics specimen blanks extracted from non stress-relieved welds and thus improve the measurement of weld fracture toughness properties. - Highlights: • A simplified method for generating realistic weld residual stresses has been developed. • It has been shown that significant levels of residual stress can be retained within laboratory fracture mechanics specimens. • The level and distribution is dependant upon material, specimen type, specimen size and extraction location. • A method has been developed to allow estimates of the

  2. STRESS FRACTURE OF THE FIRST RIB IN A HIGH SCHOOL WEIGHT LIFTER

    Directory of Open Access Journals (Sweden)

    Hiroyuki Fujioka

    2009-06-01

    Full Text Available A 17-year-old boy, who played a weight lifting in high school, sustained stress fracture of the first rib without any causes. We successfully treated first rib stress fracture with limitation of using the upper extremity and with using low-intensity pulsed ultrasound

  3. Transcriptome analysis uncovers Arabidopsis F-BOX STRESS INDUCED 1 as a regulator of jasmonic acid and abscisic acid stress gene expression.

    Science.gov (United States)

    Gonzalez, Lauren E; Keller, Kristen; Chan, Karen X; Gessel, Megan M; Thines, Bryan C

    2017-07-17

    The ubiquitin 26S proteasome system (UPS) selectively degrades cellular proteins, which results in physiological changes to eukaryotic cells. F-box proteins are substrate adaptors within the UPS and are responsible for the diversity of potential protein targets. Plant genomes are enriched in F-box genes, but the vast majority of these have unknown roles. This work investigated the Arabidopsis F-box gene F-BOX STRESS INDUCED 1 (FBS1) for its effects on gene expression in order elucidate its previously unknown biological function. Using publically available Affymetrix ATH1 microarray data, we show that FBS1 is significantly co-expressed in abiotic stresses with other well-characterized stress response genes, including important stress-related transcriptional regulators. This gene suite is most highly expressed in roots under cold and salt stresses. Transcriptome analysis of fbs1-1 knock-out plants grown at a chilling temperature shows that hundreds of genes require FBS1 for appropriate expression, and that these genes are enriched in those having roles in both abiotic and biotic stress responses. Based on both this genome-wide expression data set and quantitative real-time PCR (qPCR) analysis, it is apparent that FBS1 is required for elevated expression of many jasmonic acid (JA) genes that have established roles in combatting environmental stresses, and that it also controls a subset of JA biosynthesis genes. FBS1 also significantly impacts abscisic acid (ABA) regulated genes, but this interaction is more complex, as FBS1 has both positive and negative effects on ABA-inducible and ABA-repressible gene modules. One noteworthy effect of FBS1 on ABA-related stress processes, however, is the restraint it imposes on the expression of multiple class I LIPID TRANSFER PROTEIN (LTP) gene family members that have demonstrated protective effects in water deficit-related stresses. FBS1 impacts plant stress responses by regulating hundreds of genes that respond to the plant

  4. STAFAN, Fluid Flow, Mechanical Stress in Fractured Rock of Nuclear Waste Repository

    International Nuclear Information System (INIS)

    Huyakorn, P.; Golis, M.J.

    1989-01-01

    1 - Description of program or function: STAFAN (Stress And Flow Analysis) is a two-dimensional, finite-element code designed to model fluid flow and the interaction of fluid pressure and mechanical stresses in a fractured rock surrounding a nuclear waste repository. STAFAN considers flow behavior of a deformable fractured system with fracture-porous matrix interactions, the coupling effects of fluid pressure and mechanical stresses in a medium containing discrete joints, and the inelastic response of the individual joints of the rock mass subject to the combined fluid pressure and mechanical loading. 2 - Restrictions on the complexity of the problem: STAFAN does not presently contain thermal coupling, and it is unable to simulate inelastic deformation of the rock mass and variably saturated or two-phase flow in the fractured porous medium system

  5. Anterior tibial stress fractures treated with anterior tension band plating in high-performance athletes.

    Science.gov (United States)

    Cruz, Alexandre Santa; de Hollanda, João Paris Buarque; Duarte, Aires; Hungria Neto, José Soares

    2013-06-01

    The non-surgical treatment of anterior tibial cortex stress fractures requires long periods of abstention from sports activities and often results in non-union. Many different surgical techniques have already been previously described to treat these fractures, but there is no consensus on the best treatment. We describe the outcome of treatment using anterior tibial tension band plating in three high-performance athletes (4 legs) with anterior tibial cortex stress fractures. Tibial osteosynthesis with a 3.5-mm locking compression plate in the anterolateral aspect of the tibia was performed in all patients diagnosed with anterior tibial stress fracture after September 2010 at Santa Casa Hospital. All of the fractures were consolidated within a period of 3 months after surgery, allowing for an early return to pre-injury levels of competitive sports activity. There were no infection, non-union, malunion or anterior knee pain complications. Anterior tibial tension band plating leads to prompt fracture consolidation and is a good alternative for the treatment of anterior tibial cortex stress fractures. Bone grafts were shown to be unnecessary.

  6. Bilateral stress fracture of femoral neck in non-athlete - case report

    Directory of Open Access Journals (Sweden)

    Ubiratan Stefani de Oliveira

    Full Text Available ABSTRACT Bilateral stress fracture of femoral neck in healthy young patients is an extremely rare entity, whose diagnostic and treatment represent a major challenge. Patients with history of hip pain, even non-athletes or military recruits, should be analyzed to achieve an early diagnosis and prevent possible complications from the surgical treatment. This report describes a 43-year-old male patient, non-athlete, without previous diseases, who developed bilateral stress fracture of femoral neck without displacement. He had a late diagnosis; bilateral osteosynthesis was made using cannulated screws. Although the diagnosis was delayed in this case, the study highlights the importance of the diagnosis of stress fracture, regardless of the activity level of the patients, for the success of the treatment.

  7. The effects of the local fracture stress and carbides on the cleavage fracture characteristics of Mn-Mo-Ni low alloy steels in the transition region

    International Nuclear Information System (INIS)

    Yang, Won Jon; Huh, Moo Young; Roh, Sung Joo; Lee, Bong Sang; Oh, Yong Jun; Hong, Jun Hwa

    2000-01-01

    In the ductile-brittle transition temperature region of SA508 C1.3 Mn-Mo-Ni low alloy steels, the relationship of the local fracture stress and carbides influencing the cleavage fracture behavior was investigated. Based on the ASTM E1921-97 standard method, the reference transition temperatures were determined by three point bending fracture toughness tests. A local fracture stress σ f * , was determined from a theoretical stress distribution in front of crack tip using the cleavage initiation distance measured in each fractured specimen surface. The local fracture stress values showed a strong relationship with toughness characteristics of the materials and those were larger in the materials of smaller carbide size. Quantitative analysis of carbides showed that carbides larger than a certain size are mainly responsible for the cleavage fracture in the ductile-brittle transition temperature region. (author)

  8. Fracture assessment for a dissimilar metal weld of low alloy steel and Ni-base alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Takuya, E-mail: takuya4.ogawa@toshiba.co.jp [Toshiba Corporation Power Systems Company, Power and Industrial Systems Research and Development Center, 8, Shinsugita-cho, Isogo-ku, Yokohama 235-8523 (Japan); Itatani, Masao; Saito, Toshiyuki; Hayashi, Takahiro; Narazaki, Chihiro; Tsuchihashi, Kentaro [Toshiba Corporation Power Systems Company, Power and Industrial Systems Research and Development Center, 8, Shinsugita-cho, Isogo-ku, Yokohama 235-8523 (Japan)

    2012-02-15

    Recently, instances of SCC in Ni-base alloy weld metal of light water reactor components have been reported. Despite the possibility of propagation of SCC crack to the fusion line between low alloy steel (LAS) of pressure vessel and Ni-base alloy of internal structure, a fracture assessment method of dissimilar metal welded joint has not been established. The objective of this study is to investigate a fracture mode of dissimilar metal weld of LAS and Ni-base alloy for development of a fracture assessment method for dissimilar metal weld. Fracture tests were conducted using two types of dissimilar metal weld test plates with semi-elliptical surface crack. In one of the test plates, the fusion line lies around the surface points of the surface crack and the crack tips at the surface points have intruded into LAS. Material ahead of the crack tip at the deepest point is Ni-base alloy. In the other, the fusion line lies around the deepest point of the surface crack and the crack tip at the deepest point has intruded into LAS. Material ahead of the crack tip at the deepest point is LAS. The results of fracture tests using the former type of test plate reveal that the collapse load considering the proportion of ligament area of each material gives a good estimation for fracture load. That is, fracture assessment based on plastic collapse mode is applicable to the former type of test plate. It is also understood that a fracture assessment method based on the elastic-plastic fracture mode is suitable for the latter type of test plate.

  9. Longitudinal stress fracture of the femur: A rare presentation

    International Nuclear Information System (INIS)

    Bilreiro, Carlos; Bahia, Carla; Castro, Miguel Oliveira e

    2016-01-01

    We present the case of an 80 year old woman with hip pain, caused by a longitudinal femoral insufficiency stress fracture, depicted with radiographs, CT and MR. This type of fracture is very rare, with only a few cases reported. We conducted a literature review and compared the findings with the present case

  10. Review of possible correlations between in situ stress and PFL fracture transmissivity data at Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Derek (University of Alberta (United States)); Follin, Sven (SF GeoLogic AB (Sweden))

    2011-11-15

    In laboratory samples, the fracture transmissivity decreases significantly as the confining stress increases. While these experimental relationships are widely accepted and validated on laboratory samples, it is unknown if such relationships exist in situ or if these relationships can be scaled from the centimetre-scale laboratory tests to the metre-scale of in situ fractures. The purpose of this work is to assess the relationship between the structural-hydraulic data gathered in deep, cored boreholes at Forsmark and the in situ stress state acting on the these fractures. In conclusion, there does not appear to be sufficient evidence from these analyses to support the notion that the magnitude of the flow along the fractures at Forsmark is solely controlled by the in situ stress acting on the fracture. This should not be surprising because the majority of the fractures formed more than 1 billion years ago and the current in situ stress state has only been active for the past 12 million years. It is more likely that the transmissivity values are controlled by fracture roughness, open channels within the fracture, fracture stiffness and fracture infilling material

  11. An electron microscopy appraisal of tensile fracture in metallic glasses

    International Nuclear Information System (INIS)

    Matthews, D.T.A.; Ocelik, V.; Bronsveld, P.M.; De Hosson, J.Th.M.

    2008-01-01

    Three glass-forming alloy compositions were chosen for ribbon production and subsequent electron microscopy studies. In situ tensile testing with transmission electron microscopy (TEM), followed by ex situ TEM and ex situ scanning electron microscopy (SEM), allowed the deformation processes in tensile fracture of metallic glasses to be analysed. In situ shear band propagation was found to be jump-like, with the jump sites correlating with the formation of secondary shear bands. The effect of structural relaxation by in situ heating is also discussed. Nanocrystallization near the fracture surface was observed; however, no crystallization was also reported in the same sample and the reasons for this are discussed. Both the TEM and the SEM observations confirmed the presence of a liquid-like layer on or near the fracture surface of the ribbons. The formation of a liquid-like layer was characterized by the vein geometries and vein densities on the fracture surfaces and its dependence on shear displacement, δ, is discussed. A simple model is adapted to relate the temperature rise during shear banding to the glass transition and melting temperatures and this is used to explain the variety of fracture surfaces which are developed for macroscopically identical tensile testing of metallic glasses together with features which exhibit local melting

  12. Stress fracture and premenstrual syndrome in Japanese adolescent athletes: a cross-sectional study.

    Science.gov (United States)

    Takeda, Takashi; Imoto, Yoko; Nagasawa, Hiroyo; Takeshita, Atsuko; Shiina, Masami

    2016-10-18

    To investigate the relationship between the occurrence of stress fracture and premenstrual syndrome (PMS)/premenstrual dysphoric disorder (PMDD) in Japanese adolescent athletes. Cross-sectional study. Osaka, Japan. A school-based survey on menstruation and school life was conducted using a sample of 1818 Japanese female students who belonged to two public high schools in Japan. Among them, we recruited 394 athletes who had regular menstrual cycles (25-38 days) and completed a questionnaire about their premenstrual symptoms and their competitive career. Premenstrual symptoms and the occurrence of stress fracture. The prevalences of moderate-to-severe PMS and PMDD were 8.9% and 1.3%, respectively, which were the same as in collegiate athletes in a previous study. Premenstrual symptoms disturbed 'Work efficiency or productivity, home responsibilities', 'Relationships with coworkers or family' and 'Athletic performance in training or competition' more severely than menstrual pain (p=0.031, p=0.004 and p<0.001, respectively). 66 athletes (16.8%) reported having experienced a stress fracture. The severity of 'Overeating or food cravings', 'Physical symptoms' and 'Performance in training or competition' in athletes with previous stress fractures were much higher than in those without a history of stress fractures (p=0.015, p=0.008 and p=0.006, respectively). In terms of premenstrual symptoms, 'Physical symptoms' was associated with an increased risk of stress fractures in athletes (OR 1.66, 95% CI 1.06 to 2.62). The results from this study indicated that premenstrual symptoms may affect athletic performance and has the risk of stress fractures in adolescent athletes. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  13. L5 radiculopathy due to sacral stress fracture

    International Nuclear Information System (INIS)

    Aylwin, Anthony; Saifuddin, Asif; Tucker, Stuart

    2003-01-01

    We report the case of a 70-year-old man who presented with a history of left buttock pain with radiation into the left leg in an L5 distribution. MRI of the lumbar spine revealed a left sacral stress fracture with periosteal reaction involving the left L5 nerve root anterior to the sacral ala. With spontaneous healing of the fracture, the patient's symptoms resolved completely. (orig.)

  14. Outcomes of Surgical Treatment for Anterior Tibial Stress Fractures in Athletes: A Systematic Review.

    Science.gov (United States)

    Chaudhry, Zaira S; Raikin, Steven M; Harwood, Marc I; Bishop, Meghan E; Ciccotti, Michael G; Hammoud, Sommer

    2017-12-01

    Although most anterior tibial stress fractures heal with nonoperative treatment, some may require surgical management. To our knowledge, no systematic review has been conducted regarding surgical treatment strategies for the management of chronic anterior tibial stress fractures from which general conclusions can be drawn regarding optimal treatment in high-performance athletes. This systematic review was conducted to evaluate the surgical outcomes of anterior tibial stress fractures in high-performance athletes. Systematic review; Level of evidence, 4. In February 2017, a systematic review of the PubMed, MEDLINE, Cochrane, SPORTDiscus, and CINAHL databases was performed to identify studies that reported surgical outcomes for anterior tibial stress fractures. Articles meeting the inclusion criteria were screened, and reported outcome measures were documented. A total of 12 studies, published between 1984 and 2015, reporting outcomes for the surgical treatment of anterior tibial stress fractures were included in this review. All studies were retrospective case series. Collectively, surgical outcomes for 115 patients (74 males; 41 females) with 123 fractures were evaluated in this review. The overall mean follow-up was 23.3 months. The most common surgical treatment method reported in the literature was compression plating (n = 52) followed by drilling (n = 33). Symptom resolution was achieved in 108 of 123 surgically treated fractures (87.8%). There were 32 reports of complications, resulting in an overall complication rate of 27.8%. Subsequent tibial fractures were reported in 8 patients (7.0%). Moreover, a total of 17 patients (14.8%) underwent a subsequent procedure after their initial surgery. Following surgical treatment for anterior tibial stress fracture, 94.7% of patients were able to return to sports. The available literature indicates that surgical treatment of anterior tibial stress fractures is associated with a high rate of symptom resolution and return

  15. Couple stresses and the fracture of rock.

    Science.gov (United States)

    Atkinson, Colin; Coman, Ciprian D; Aldazabal, Javier

    2015-03-28

    An assessment is made here of the role played by the micropolar continuum theory on the cracked Brazilian disc test used for determining rock fracture toughness. By analytically solving the corresponding mixed boundary-value problems and employing singular-perturbation arguments, we provide closed-form expressions for the energy release rate and the corresponding stress-intensity factors for both mode I and mode II loading. These theoretical results are augmented by a set of fracture toughness experiments on both sandstone and marble rocks. It is further shown that the morphology of the fracturing process in our centrally pre-cracked circular samples correlates very well with discrete element simulations. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  16. Ductile fracture surface morphology of amorphous metallic alloys

    NARCIS (Netherlands)

    Miskuf, J; Csach, K; Ocelik, [No Value; Bengus, VZ; Tabachnikova, ED; Duhaj, P; Ocelik, Vaclav

    1999-01-01

    Fracture surfaces of ductile failure of two types bulk amorphous metallic alloys were studied using quantitative and qualitative fractographic analysis. The observed fractographic behaviour of ductile failure in comparison with the ductile failure of amorphous alloy ribbons shows signs of the same

  17. Rehabilitation and return to running after lower limb stress fractures.

    Science.gov (United States)

    Liem, Brian C; Truswell, Hallie J; Harrast, Mark A

    2013-01-01

    Lower limb stress fractures are common injuries in runners. In terms of treatment, much of the medical literature has focused primarily on rest and cessation of running, but little has been written about the rehabilitation and functional progression of runners following a lower limb stress fracture. This article reviews the scientific evidence behind common rehabilitation concepts used for runners recovering from these injuries and also discusses sport-specific training modalities such as deep water running and antigravity treadmill training. Overall this article is intended to be a practical resource for clinicians to guide runners in functional rehabilitation and return to running following lower limb stress injury.

  18. Hydraulic and mechanical properties of natural fractures in low-permeability rock

    International Nuclear Information System (INIS)

    Pyrack-Nolte, L.J.; Myer, L.R.; Cook, N.G.W.; Witherspoon, P.A.

    1987-01-01

    The results of a comprehensive laboratory study of the mechanical displacement, permeability, and void geometry of single rock fractures in a quartz monzonite are summarized and analyzed. A metal-injection technique was developed that provided quantitative data on the precise geometry of the void spaces between the fracture surfaces and the areas of contact at different stresses. At effective stresses of less than 20 MPa fluid flow was proportional to the mean fracture aperture raised to a power greater than 3. As stress was increased, contact area was increased and void spaces become interconnected by small tortuous channels that constitute the principal impediment to fluid flow. At effective stresses higher than 20 MPa, the mean fracture aperture continued to diminish with increasing stress, but this had little effect on flow because the small tortuous flow channels deformed little with increasing stress

  19. Stress fractures of the ribs and upper extremities: causation, evaluation, and management.

    Science.gov (United States)

    Miller, Timothy L; Harris, Joshua D; Kaeding, Christopher C

    2013-08-01

    Stress fractures are common troublesome injuries in athletes and non-athletes. Historically, stress fractures have been thought to predominate in the lower extremities secondary to the repetitive stresses of impact loading. Stress injuries of the ribs and upper extremities are much less common and often unrecognized. Consequently, these injuries are often omitted from the differential diagnosis of rib or upper extremity pain. Given the infrequency of this diagnosis, few case reports or case series have reported on their precipitating activities and common locations. Appropriate evaluation for these injuries requires a thorough history and physical examination. Radiographs may be negative early, requiring bone scintigraphy or MRI to confirm the diagnosis. Nonoperative and operative treatment recommendations are made based on location, injury classification, and causative activity. An understanding of the most common locations of upper extremity stress fractures and their associated causative activities is essential for prompt diagnosis and optimal treatment.

  20. Subtrochanteric stress fractures in patients on oral bisphosphonate therapy: an emerging problem.

    LENUS (Irish Health Repository)

    Murphy, Colin G

    2012-01-31

    The emergence of a new variant of subtrochanteric stress fractures of the femur, affecting patients on oral bisphosphonate therapy, has only recently been described. This fracture is often preceded by pain and distinctive radiographic changes (lateral cortical thickening), and associated with a characteristic fracture pattern (transverse fracture line and medial cortical spike). A retrospective review (2007-2009) was carried out for patients who were taking oral bisphosphonates and who sustained a subtrochanteric fracture after a low velocity injury. Eleven fractures were found in 10 patients matching the inclusion criteria outlined. All were females, and taking bisphosphonates for a mean of 43 years. Five of the 10 patients mentioned prodromal symptoms, for an average of 9.4 months before the fracture. Although all fractures were deemed low velocity, 5 of 11 were even atraumatic. Two patients had previously sustained contralateral subtrochanteric fractures. Plain radiographs of two patients showed lateral cortical thickening on the contralateral unfractured femur; the bisphosphonate therapy was stopped and close surveillance was started. Patients taking oral bisphosphonates may be at risk of a new variant of stress fracture of the proximal femur. Awareness of the symptoms is the key to ensure that appropriate investigations are undertaken.

  1. Short-term effects of teriparatide versus placebo on bone biomarkers, structure, and fracture healing in women with lower-extremity stress fractures: A pilot study

    Directory of Open Access Journals (Sweden)

    Ellen A. Almirol

    2016-09-01

    Conclusions: In this randomized, pilot study, brief administration of TPTD showed anabolic effects that TPTD may help hasten fracture healing in premenopausal women with lower-extremity stress fractures. Larger prospective studies are warranted to determine the effects of TPTD treatment on stress fracture healing in premenopausal women.

  2. Implications of recent developments in the plastic fracture mechanics field to the PCI stress corrosion problem

    International Nuclear Information System (INIS)

    Smith, E.

    1980-01-01

    Fractographic observations on irradiated Zircaloy cladding stress corrosion fracture surfaces are considered against the background of recent developments in the plastic fracture mechanics field. Dimples have been observed on the fracture surfaces of failed cladding, even though the cracks in metallographic sections are tight, i.e., crack propagation is associated with a low crack tip opening angle. This result is interpreted as providing evidence for an environmentally assisted ductile mode of fracture. The presence of this fracture mode forms the basis of an argument, which adds further support for the view that power ramp stress corrosion cladding failures are caused by stress concentrations that produce stress gradients in the cladding. (orig.)

  3. Immediate effects of modified landing pattern on a probabilistic tibial stress fracture model in runners.

    Science.gov (United States)

    Chen, T L; An, W W; Chan, Z Y S; Au, I P H; Zhang, Z H; Cheung, R T H

    2016-03-01

    Tibial stress fracture is a common injury in runners. This condition has been associated with increased impact loading. Since vertical loading rates are related to the landing pattern, many heelstrike runners attempt to modify their footfalls for a lower risk of tibial stress fracture. Such effect of modified landing pattern remains unknown. This study examined the immediate effects of landing pattern modification on the probability of tibial stress fracture. Fourteen experienced heelstrike runners ran on an instrumented treadmill and they were given augmented feedback for landing pattern switch. We measured their running kinematics and kinetics during different landing patterns. Ankle joint contact force and peak tibial strains were estimated using computational models. We used an established mathematical model to determine the effect of landing pattern on stress fracture probability. Heelstrike runners experienced greater impact loading immediately after landing pattern switch (Ptibial strains and the risk of tibial stress fracture in runners with different landing patterns (P>0.986). Immediate transitioning of the landing pattern in heelstrike runners may not offer timely protection against tibial stress fracture, despite a reduction of impact loading. Long-term effects of landing pattern switch remains unknown. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Spontaneous osteonecrosis of the knee associated with tibial plateau and femoral condyle insufficiency stress fracture

    Energy Technology Data Exchange (ETDEWEB)

    Narvaez, J.A.; Narvaez, J.; Lama, E.De; Sanchez, A. [Department of Magnetic Resonance Imaging, IDI Hospital Duran i Reynals, Ciutat Sanitaria i Universitaria de Bellvitge, Gran Via s/n, 08907, L' Hospitalet de Llobregat (Barcelona) (Spain)

    2003-08-01

    The purpose of this article is to describe the association between spontaneous osteonecrosis and insufficiency stress fractures of the knee. To determine whether insufficiency stress fracture is associated with spontaneous osteonecrosis of the knee, we retrospectively reviewed the medical charts and imaging studies of all patients with spontaneous osteonecrosis of the knee, studied by MR imaging, seen in a tertiary hospital over an 8-year period. Four women (age range 66-84 years) presented spontaneous osteonecrosis of the knee associated with insufficiency stress fracture of the medial tibial plateau. One of these patients also presented a concomitant insufficiency stress fracture of the medial femoral condyle. Radiographs were diagnostic of spontaneous osteonecrosis of the medial femoral condyle in three cases, and insufficiency stress fracture of the medial tibial plateau was detected in one case. Magnetic resonance imaging allows the diagnosis of both conditions in all four cases. Spontaneous osteonecrosis of the knee may be associated with insufficiency stress fracture of the medial femoral condyle and the medial tibial plateau. This association provides additional arguments in favor of the traumatic etiology of spontaneous osteonecrosis of knee. (orig.)

  5. Spontaneous osteonecrosis of the knee associated with tibial plateau and femoral condyle insufficiency stress fracture

    International Nuclear Information System (INIS)

    Narvaez, J.A.; Narvaez, J.; Lama, E.De; Sanchez, A.

    2003-01-01

    The purpose of this article is to describe the association between spontaneous osteonecrosis and insufficiency stress fractures of the knee. To determine whether insufficiency stress fracture is associated with spontaneous osteonecrosis of the knee, we retrospectively reviewed the medical charts and imaging studies of all patients with spontaneous osteonecrosis of the knee, studied by MR imaging, seen in a tertiary hospital over an 8-year period. Four women (age range 66-84 years) presented spontaneous osteonecrosis of the knee associated with insufficiency stress fracture of the medial tibial plateau. One of these patients also presented a concomitant insufficiency stress fracture of the medial femoral condyle. Radiographs were diagnostic of spontaneous osteonecrosis of the medial femoral condyle in three cases, and insufficiency stress fracture of the medial tibial plateau was detected in one case. Magnetic resonance imaging allows the diagnosis of both conditions in all four cases. Spontaneous osteonecrosis of the knee may be associated with insufficiency stress fracture of the medial femoral condyle and the medial tibial plateau. This association provides additional arguments in favor of the traumatic etiology of spontaneous osteonecrosis of knee. (orig.)

  6. Stress fractures of the humerus, radius, and tibia in horses: clinical features and radiographic and/or scintigraphic appearance

    International Nuclear Information System (INIS)

    Mackey, V.S.; Trout, D.R.; Meagher, D.M.; Hornof, W.J.

    1987-01-01

    The medical records, radiographic and nuclear scintigraphic findings of 26 racing horses with 27 stress fracture episodes of the humerus, radius, or tibia were reviewed. The purposes of this study were to describe the radiographic and/or scintigraphic features of stress fractures of the humerus, radius, or tibia, and to evaluate the signalment and history of horses in which stress fracture occurred. Stress fractures of the three long bones examined were primarily seen in 2- and 3-year-old male Thoroughbred horses; commonly, the onset of lameness was immediately following training gallops or racing. There were 13 humeral stress fracture episodes in 12 horses. Ten were in the proximal caudolateral cortex, and three were in the distal craniomedial cortex. Radical stress fractures were seen in three horses, all in the midshaft radius. Tibial stress fractures were diagnosed in 11 horses. They were located in the proximal lateral tibia in six horses, the distal caudolateral tibia in three horses, and the midshaft tibia in three horses. Fifteen stress fractures were diagnosed with radiography alone, one was diagnosed with scintigraphy alone, nine were diagnosed with radiographs and scintigraphy, and, in two horses, radiographs were negative, but the scintigraphic findings were consistent with stress fracture

  7. Stress and gas hydrate-filled fracture distribution, Krishna-Godavari Basin, India

    Energy Technology Data Exchange (ETDEWEB)

    Cook, A.; Goldberg, D. [Lamont-Doherty Earth Observatory of Columbia Univ., Palisades, NY (United States)

    2008-07-01

    The first expedition of the Indian National Gas Hydrate Program (NGHP) was launched in the summer of 2006 to characterize the presence of gas hydrates on the continental margins of India. This paper presented a study from the NGHP expedition that found high resistivity fractures in unconsolidated clay sediments on logging-while-drilling (LWD) borehole resistivity images. Gas hydrate-filled and conductive fractures appearing on LWD resistivity images in holes 5A, 5B, 6A, 7A and 10 were analysed and discussed. Fracture orientation and shallow sediment stress orientations were determined for each hole. The paper described how to determine which sections of a log are hydrate bearing as well as how to calculate the predicted water saturated resistivity. It was concluded that holes 5A, 5B, 6A and 7A contained well-ordered, high-angle fractures, from which horizontal stress directions could be accurately resolved. However, these stress directions, contradicted the orientations normally seen on a passive margin, and may be the result of local bathymetry variations. 6 refs., 1 tab., 11 figs.

  8. Wheat F-Box Protein Gene TaFBA1 Is Involved in Plant Tolerance to Heat Stress

    Directory of Open Access Journals (Sweden)

    Qinxue Li

    2018-04-01

    Full Text Available Adverse environmental conditions, including high temperature, often affect the growth and production of crops worldwide. F-box protein, a core component of the Skp1-Cullin-F-box (SCF E3 ligase complex, plays an important role in abiotic stress responses. A previously cloned gene from wheat, TaFBA1, encodes a homologous F-box protein. A Yeast two-Hybrid (Y2H assay showed that TaFBA1 interacted with other SCF proteins. We found that the expression of TaFBA1 could be induced by heat stress (45°C. Overexpression of TaFBA1 enhanced heat stress tolerance in transgenic tobacco, because growth inhibition was reduced and photosynthesis increased as compared with those in the wild type (WT plants. Furthermore, the accumulation of H2O2, O2-, and carbonyl protein decreased and cell damage was alleviated in transgenic plants under heat stress, which resulted in less oxidative damage. However, the transgenic plants contained more enzymatic antioxidants after heat stress, which might be related to the regulation of some antioxidant gene expressions. The qRT-PCR analysis showed that the overexpression of TaFBA1 upregulated the expression of genes involved in reactive oxygen species (ROS scavenging, proline biosynthesis, and abiotic stress responses. We identified the interaction of TaFBA1 with Triticum aestivum stress responsive protein 1 (TaASRP1 by Y2H assay and bimolecular fluorescence complementation (BiFC assay. The results suggested that TaFBA1 may improve enzymatic antioxidant levels and regulate gene expression by interacting with other proteins, such as TaASRP1, which leads to the enhanced heat stress tolerance seen in the transgenic plants.

  9. Photoelastic stress analysis assisted evaluation of fracture toughness in hydrothermally aged epoxies

    Directory of Open Access Journals (Sweden)

    G. Pitarresi

    2014-10-01

    Full Text Available The present work has investigated the fracture toughness of a model DGEBA epoxy system subject to Hidro-Thermal aging. A Photoelastic Stress Analysis technique has been implemented, showing the evolution of stresses arising throughout the water uptake process due to the non-uniform swelling of the material. Gravimetric and Dynamic Mechanical Thermal Analyses have further complemented the characterization, showing the onset of plasticization effects with aging. The correlation of all previous characterizations has allowed to conclude that an increase of KIC fracture toughness is obtained at the fully saturated condition. In particular Photoelasticity has also revealed the onset of relevant swelling induced stresses during the first stages of water absorption, leading to an increase of fracture toughness due to compressive stresses settling near the crack tip. A stress free condition is instead reestablished at the later stages of absorption, suggesting that the increased toughness of the saturated material is an effect of the modifications induced by aging on the polymer structure.

  10. Case report: multifocal subchondral stress fractures of the femoral heads and tibial condyles in a young military recruit.

    Science.gov (United States)

    Yoon, Pil Whan; Yoo, Jeong Joon; Yoon, Kang Sup; Kim, Hee Joong

    2012-03-01

    Subchondral stress fractures of the femoral head may be either of the insufficiency-type with poor quality bone or the fatigue-type with normal quality bone but subject to high repetitive stresses. Unlike osteonecrosis, multiple site involvement rarely has been reported for subchondral stress fractures. We describe a case of multifocal subchondral stress fractures involving femoral heads and medial tibial condyles bilaterally within 2 weeks. A 27-year-old military recruit began having left knee pain after 2 weeks of basic training, without any injury. Subsequently, right knee, right hip, and left hip pain developed sequentially within 2 weeks. The diagnosis of multifocal subchondral stress fracture was confirmed by plain radiographs and MR images. Nonoperative treatment of the subchondral stress fractures of both medial tibial condyles and the left uncollapsed femoral head resulted in resolution of symptoms. The collapsed right femoral head was treated with a fibular strut allograft to restore congruity and healed without further collapse. There has been one case report in which an insufficiency-type subchondral stress fracture of the femoral head and medial femoral condyle occurred within a 2-year interval. Because the incidence of bilateral subchondral stress fractures of the femoral head is low and multifocal involvement has not been reported, multifocal subchondral stress fractures can be confused with multifocal osteonecrosis. Our case shows that subchondral stress fractures can occur in multiple sites almost simultaneously.

  11. Stress fracture as a complication of autogenous bone graft harvest from the distal tibia.

    Science.gov (United States)

    Chou, Loretta B; Mann, Roger A; Coughlin, Michael J; McPeake, William T; Mizel, Mark S

    2007-02-01

    Autogenous bone graft from the distal tibia provides cancellous bone graft for foot and ankle operations, and it has osteogenic and osteoconductive properties. The site is in close proximity to the foot and ankle, and published retrospective studies show low morbidity from the procedure. One-hundred autografts were obtained from the distal tibia between 2000 and 2003. In four cases the distal tibial bone graft harvest resulted in a stress fracture. There were three women and one man. The average time of diagnosis of the stress fracture from the operation was 1.8 months. All stress fractures healed with a short course (average 2.4 months) of cast immobilization. This study demonstrated that a stress fracture from the donor site of autogenous bone graft of the distal tibia occurs and can be successfully treated nonoperatively.

  12. Scintigraphic diagnosis of stress-induced incomplete fractures of the proximal tibia

    International Nuclear Information System (INIS)

    Collier, B.D.; Johnson, R.P.; Carrera, G.F.; Akhtar, K.; Isitman, A.T.

    1984-01-01

    Incomplete stress fractures of the proximal tibial diaphysis can be diagnosed by bone scintigraphy. The scintigraphic appearance of incomplete rather than complete tibial stress fractures is apparently reported for the first time in this article. With no treatment other than restricted activity, this injury heals rapidly and completely in 4 to 6 weeks. The major threat to the patient's welfare is unfounded suspicion of tumor or infection which may lead to biopsy or inappropriate therapy

  13. Repeated Stress Fractures in an Amenorrheic Marathoner: A Case Conference.

    Science.gov (United States)

    Sutton, John R.; Nilson, Karen L.

    1989-01-01

    Presents a case conference by 2 experts on the relationship between a 26-year-old marathoner's amenorrhea and her sustained unusual stress fractures in 4 ribs (plus previous similar fractures of the calcaneal, navicular, metatarsal, and tibial bones). The experts conclude that she suffers many manifestations of overtraining. (SM)

  14. Unilateral Pedicle Stress Fracture in a Long-Term Hemodialysis Patient with Isthmic Spondylolisthesis

    Directory of Open Access Journals (Sweden)

    Keishi Maruo

    2015-01-01

    Full Text Available Most unilateral pedicle stress fractures occur on the contralateral side of patients with unilateral spondylolysis. However, there are few reports of unilateral pedicle stress fractures in patients with bilateral spondylolysis and spondylolisthesis. We report a unique case of unilateral pedicle stress fracture in a long-term hemodialysis patient with isthmic spondylolisthesis. A 65-year-old man who had undergone hemodialysis presented with lower back pain that had persisted for several years. The patient experienced severe right lower extremity pain with no history of trauma. Computed tomography revealed unilateral pedicle fracture with bilateral L5 spondylolysis and spondylolisthesis with progression of scoliosis. The patient underwent Gill laminectomy of L5 with pedicle screw fixation at L4-S1 and interbody fusion at L5-S1. The patient’s leg pain ceased immediately, and he began walking without leg pain. In our present patient, development of scoliosis caused by destructive spondyloarthropathy may have contributed to a unilateral pedicle fracture.

  15. Fracture toughness and stress relief response of irradiated Type 347/348 stainless steel

    International Nuclear Information System (INIS)

    Haggag, F.M.

    1985-01-01

    A test program has experimentally determined: (1) The fracture toughness of Type 347/348 stainless steel (SS) specimens with high values of irradiation fluence (2.3 to 4.8 x 10 22 n/cm 2 , E > 1.0 MeV) and experiencing different levels of irradiation creep (0.0, 0.6, 1.1, 1.8%), (2) the effect of thermal stress relief on fracture toughness recovery for the highly irradiated material, and (3) the mechanisms associated with fracture toughness recovery due to thermal stress relief. The postirradiation fracture toughness tests and tensile tests were conducted at 427 0 C

  16. Manubrial stress fractures diagnosed on MRI: report of two cases and review of the literature.

    Science.gov (United States)

    Baker, Jonathan C; Demertzis, Jennifer L

    2016-06-01

    In contrast to widely-reported sternal insufficiency fractures, stress fractures of the sternum from overuse are extremely rare. Of the 5 cases of sternal stress fracture published in the English-language medical literature, 3 were in the sternal body and only 2 were in the manubrium. We describe two cases of manubrial stress fracture related to golf and weightlifting, and present the first report of the MR findings of this injury. In each of these cases, the onset of pain was atraumatic, insidious, and associated with increased frequency of athletic activity. Imaging was obtained because of clinical diagnostic uncertainty. On MRI, each patient had a sagittally oriented stress fracture of the lateral manubrium adjacent to the first rib synchondrosis. Both patients had resolution of pain after a period of rest, with subsequent successful return to their respective activities. One patient had a follow-up MRI, which showed resolution of the manubrial marrow edema and fracture line. Based on the sternal anatomy and MR findings, we hypothesize that this rare injury might be caused by repetitive torque of the muscle forces on the first costal cartilage and manubrium, and propose that MRI might be an effective means of diagnosing manubrial stress fracture.

  17. Manubrial stress fractures diagnosed on MRI: report of two cases and review of the literature

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Jonathan C.; Demertzis, Jennifer L. [Washington University School of Medicine, Mallinckrodt Institute of Radiology, Musculoskeletal Section, St Louis, MO (United States)

    2016-06-15

    In contrast to widely-reported sternal insufficiency fractures, stress fractures of the sternum from overuse are extremely rare. Of the 5 cases of sternal stress fracture published in the English-language medical literature, 3 were in the sternal body and only 2 were in the manubrium. We describe two cases of manubrial stress fracture related to golf and weightlifting, and present the first report of the MR findings of this injury. In each of these cases, the onset of pain was atraumatic, insidious, and associated with increased frequency of athletic activity. Imaging was obtained because of clinical diagnostic uncertainty. On MRI, each patient had a sagittally oriented stress fracture of the lateral manubrium adjacent to the first rib synchondrosis. Both patients had resolution of pain after a period of rest, with subsequent successful return to their respective activities. One patient had a follow-up MRI, which showed resolution of the manubrial marrow edema and fracture line. Based on the sternal anatomy and MR findings, we hypothesize that this rare injury might be caused by repetitive torque of the muscle forces on the first costal cartilage and manubrium, and propose that MRI might be an effective means of diagnosing manubrial stress fracture. (orig.)

  18. Manubrial stress fractures diagnosed on MRI: report of two cases and review of the literature

    International Nuclear Information System (INIS)

    Baker, Jonathan C.; Demertzis, Jennifer L.

    2016-01-01

    In contrast to widely-reported sternal insufficiency fractures, stress fractures of the sternum from overuse are extremely rare. Of the 5 cases of sternal stress fracture published in the English-language medical literature, 3 were in the sternal body and only 2 were in the manubrium. We describe two cases of manubrial stress fracture related to golf and weightlifting, and present the first report of the MR findings of this injury. In each of these cases, the onset of pain was atraumatic, insidious, and associated with increased frequency of athletic activity. Imaging was obtained because of clinical diagnostic uncertainty. On MRI, each patient had a sagittally oriented stress fracture of the lateral manubrium adjacent to the first rib synchondrosis. Both patients had resolution of pain after a period of rest, with subsequent successful return to their respective activities. One patient had a follow-up MRI, which showed resolution of the manubrial marrow edema and fracture line. Based on the sternal anatomy and MR findings, we hypothesize that this rare injury might be caused by repetitive torque of the muscle forces on the first costal cartilage and manubrium, and propose that MRI might be an effective means of diagnosing manubrial stress fracture. (orig.)

  19. The impact of in-situ stress and outcrop-based fracture geometry on hydraulic aperture and upscaled permeability in fractured reservoirs

    DEFF Research Database (Denmark)

    Bisdom, Kevin; Bertotti, Giovanni; Nick, Hamid

    2016-01-01

    explicitly, we quantify equivalent permeability, i.e. combined matrix and stress-dependent fracture flow. Fracture networks extracted from a large outcropping pavement form the basis of these models. The results show that the angle between fracture strike and σ 1 has a controlling impact on aperture...

  20. Analysis of the fractures of metallic materials using optical coherence tomography

    Science.gov (United States)

    Hutiu, Gh.; Duma, V.-F.; Demian, D.; Bradu, A.; Podoleanu, A. Gh.

    2017-06-01

    Forensic in situ investigations, for example for aviation, maritime, road, or rail accidents would benefit from a method that may allow to distinguish ductile from brittle fractures of metals - as material defects are one of the potential causes of such accidents. Currently, the gold standard in material studies is represented by scanning electron microscopy (SEM). However, SEM are large, lab-based systems, therefore in situ measurements are excluded. In addition, they are expensive and time-consuming. We have approached this problem and propose the use of Optical Coherence Tomography (OCT) in such investigations in order to overcome these disadvantages of SEM. In this respect, we demonstrate the capability to perform such fracture analysis by obtaining the topography of metallic surfaces using OCT. Different materials have been analyzed; in this presentation a sample of low soft carbon steel with the chemical composition of C 0.2%, Mn 1.15%, S 0.04%, P 0.05 % and Fe for the rest has been considered. An in-house developed Swept Source (SS) OCT system has been used, and height profiles have been generated for the sample surface. This profile allowed for concluding that the carbon steel sample was subjected to a ductile fracture. A validation of the OCT images obtained with a 10 microns resolution has been made with SEM images obtained with a 4 nm resolution. Although the OCT resolution is much lower than the one of SEM, we thus demonstrate that it is sufficient in order to obtain clear images of the grains of the metallic materials and thus to distinguish between ductile and brittle fractures. This study analysis opens avenues for a range of applications, including: (i) to determine the causes that have generated pipe ruptures, or structural failures of metallic bridges and buildings, as well as damages of machinery parts; (ii) to optimize the design of various machinery; (iii) to obtain data regarding the structure of metallic alloys); (iv) to improve the

  1. Stress fractures of the proximal tibia in runners

    International Nuclear Information System (INIS)

    Daffner, R.H.; Martinez, S.; Gehweiler, J.A.; Harrelson, J.M.

    1982-01-01

    Stress fractures developed along the popliteal-solean line of the posteromedial surface of the tibia in 4 patients as the result of running. Radionuclide bone scans may be useful in early diagnosis of such injuries

  2. Prediction of tectonic stresses and fracture networks with geomechanical reservoir models

    International Nuclear Information System (INIS)

    Henk, A.; Fischer, K.

    2014-09-01

    This project evaluates the potential of geomechanical Finite Element (FE) models for the prediction of in situ stresses and fracture networks in faulted reservoirs. Modeling focuses on spatial variations of the in situ stress distribution resulting from faults and contrasts in mechanical rock properties. In a first methodological part, a workflow is developed for building such geomechanical reservoir models and calibrating them to field data. In the second part, this workflow was applied successfully to an intensively faulted gas reservoir in the North German Basin. A truly field-scale geomechanical model covering more than 400km 2 was built and calibrated. It includes a mechanical stratigraphy as well as a network of 86 faults. The latter are implemented as distinct planes of weakness and allow the fault-specific evaluation of shear and normal stresses. A so-called static model describes the recent state of the reservoir and, thus, after calibration its results reveal the present-day in situ stress distribution. Further geodynamic modeling work considers the major stages in the tectonic history of the reservoir and provides insights in the paleo stress distribution. These results are compared to fracture data and hydraulic fault behavior observed today. The outcome of this project confirms the potential of geomechanical FE models for robust stress and fracture predictions. The workflow is generally applicable and can be used for modeling of any stress-sensitive reservoir.

  3. Prediction of tectonic stresses and fracture networks with geomechanical reservoir models

    Energy Technology Data Exchange (ETDEWEB)

    Henk, A.; Fischer, K. [TU Darmstadt (Germany). Inst. fuer Angewandte Geowissenschaften

    2014-09-15

    This project evaluates the potential of geomechanical Finite Element (FE) models for the prediction of in situ stresses and fracture networks in faulted reservoirs. Modeling focuses on spatial variations of the in situ stress distribution resulting from faults and contrasts in mechanical rock properties. In a first methodological part, a workflow is developed for building such geomechanical reservoir models and calibrating them to field data. In the second part, this workflow was applied successfully to an intensively faulted gas reservoir in the North German Basin. A truly field-scale geomechanical model covering more than 400km{sup 2} was built and calibrated. It includes a mechanical stratigraphy as well as a network of 86 faults. The latter are implemented as distinct planes of weakness and allow the fault-specific evaluation of shear and normal stresses. A so-called static model describes the recent state of the reservoir and, thus, after calibration its results reveal the present-day in situ stress distribution. Further geodynamic modeling work considers the major stages in the tectonic history of the reservoir and provides insights in the paleo stress distribution. These results are compared to fracture data and hydraulic fault behavior observed today. The outcome of this project confirms the potential of geomechanical FE models for robust stress and fracture predictions. The workflow is generally applicable and can be used for modeling of any stress-sensitive reservoir.

  4. Fracture toughness study of new Zr-based Be-bearing bulk metallic glasses

    OpenAIRE

    Kim, C. Paul; Suh, Jin-Yoo; Wiest, Aaron; Lind, Mary Laura; Conner, R. Dale; Johnson, William L.

    2009-01-01

    Three new compositional variants of the Zr–Ti–Be–LTM (late transition metal) family of metallic glasses are discussed. Thermal stability, ΔT = T_x−T_g, was increased from 82 °C for Zr_(41.2)Ti_(13.8)Cu_(12.5)Ni_(10)Be_(22.5) (Viterloy 1) to 141 °C for Zr_(44)Ti_(11)Cu_(20)Be_(25). It is found that fracture toughness is the most distinguishing parameter characterizing the alloys in contrast to other mechanical properties. Quaternary alloys consistently had fracture toughness values exceeding 8...

  5. Understanding the etiology of the posteromedial tibial stress fracture.

    Science.gov (United States)

    Milgrom, Charles; Burr, David B; Finestone, Aharon S; Voloshin, Arkady

    2015-09-01

    Previous human in vivo tibial strain measurements from surface strain gauges during vigorous activities were found to be below the threshold value of repetitive cyclical loading at 2500 microstrain in tension necessary to reduce the fatigue life of bone, based on ex vivo studies. Therefore it has been hypothesized that an intermediate bone remodeling response might play a role in the development of tibial stress fractures. In young adults tibial stress fractures are usually oblique, suggesting that they are the result of failure under shear strain. Strains were measured using surface mounted unstacked 45° rosette strain gauges on the posterior aspect of the flat medial cortex just below the tibial midshaft, in a 48year old male subject while performing vertical jumps, staircase jumps and running up and down stadium stairs. Shear strains approaching 5000 microstrain were recorded during stair jumping and vertical standing jumps. Shear strains above 1250 microstrain were recorded during runs up and down stadium steps. Based on predictions from ex vivo studies, stair and vertical jumping tibial shear strain in the test subject was high enough to potentially produce tibial stress fracture subsequent to repetitive cyclic loading without necessarily requiring an intermediate remodeling response to microdamage. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Heat induced fracturing of rock in an existing uniaxial stress field

    International Nuclear Information System (INIS)

    Mathis, J.; Stephansson, O.; Bjarnason, B.; Hakami, H.; Herdocia, A.; Mattila, U.; Singh, U.

    1986-01-01

    This study was initiated under the premise that it may be possible to determine the state of stress in the earth's crust by heat induced fracturing of the rock surrounding a borehole. The theory involved is superficially simple, involving the superposition of the stress field around a borehole due to the existing virgin stresses and the uniform stress field of thermally loaded rock as induced by a heater. Since the heat stress field is uniform, varying only in magnitude and gradient as a function of heater input, fracturing should be controlled by the non-uniform virgin stress field. To determine if the method was, in fact, feasible, a series of laboratory test were conducted. These tests consisted of physically loading center drilled cubes of rock, 0.3 m on a side, uniaxially from 0 to 25 MPa. The blocks were then thermally loaded with a nominally rated 3.7 kW heater until failure occurred. Results from these laboratory tests were then compared to analytical studies of the problem, i.e., finite element and discrete theoretical analysis. Overall, results were such that the method is likely eliminated as a stress measurement technique. The immediate development of a thermal compressive zone on the borehole wall overlaps the tensile zone created by the uniaxial stress field, forcing the failure is thus controlled largely by the power input of the heater, being retarded by the small compressive stresses genrated by the uniaxial stress field. This small retardation effect is of such low magnitude that the retardation effect is of such low magnitude that the fracture time is relatively insensitive to the local virgin stress field. (authors)

  7. Fatigue damage and fracture behavior of tungsten fiber reinforced Zr-based metallic glassy composite

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, H. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Zhang, Z.F. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China)]. E-mail: zhfzhang@imr.ac.cn; Wang, Z.G. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Qiu, K.Q. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Zhang, H.F. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Zang, Q.S. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Hu, Z.Q. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China)

    2006-02-25

    The fatigue life, damage and fracture behavior of tungsten fiber reinforced metallic glass Zr{sub 41.25}Ti{sub 13.75}Ni{sub 10}Cu{sub 12.5}Be{sub 22.5} composites are investigated under cyclic push-pull loading. It is found that the fatigue life of the composite increases with increasing the volume fraction of tungsten fibers. Similar to crystalline metals, the regions of crack initiation, propagation and overload fracture can be discerned on the fracture surface of the specimen. Fatigue crack normally initiates in the metallic glass matrix at the outer surface of the composite specimen and propagates predominantly in the matrix. Different crack front profile around the tungsten fibers and fiber pullout demonstrate that fatigue crack may propagate around the fiber, leading to bridging of the crack faces by the unbroken fiber and hence improved fatigue crack-growth resistance. Locally decreased effective stiffness in the region where fiber distribution is sparse may provide preferential crack path in the composite. A proposed model was exercised to elucidate different tungsten fiber fracture morphologies in the fatigue crack propagation and overload fracture regions in the light of Poisson's ratio effect during fatigue loading.

  8. Fatigue damage and fracture behavior of tungsten fiber reinforced Zr-based metallic glassy composite

    International Nuclear Information System (INIS)

    Zhang, H.; Zhang, Z.F.; Wang, Z.G.; Qiu, K.Q.; Zhang, H.F.; Zang, Q.S.; Hu, Z.Q.

    2006-01-01

    The fatigue life, damage and fracture behavior of tungsten fiber reinforced metallic glass Zr 41.25 Ti 13.75 Ni 10 Cu 12.5 Be 22.5 composites are investigated under cyclic push-pull loading. It is found that the fatigue life of the composite increases with increasing the volume fraction of tungsten fibers. Similar to crystalline metals, the regions of crack initiation, propagation and overload fracture can be discerned on the fracture surface of the specimen. Fatigue crack normally initiates in the metallic glass matrix at the outer surface of the composite specimen and propagates predominantly in the matrix. Different crack front profile around the tungsten fibers and fiber pullout demonstrate that fatigue crack may propagate around the fiber, leading to bridging of the crack faces by the unbroken fiber and hence improved fatigue crack-growth resistance. Locally decreased effective stiffness in the region where fiber distribution is sparse may provide preferential crack path in the composite. A proposed model was exercised to elucidate different tungsten fiber fracture morphologies in the fatigue crack propagation and overload fracture regions in the light of Poisson's ratio effect during fatigue loading

  9. Dynamic Stress Testing Is Unnecessary for Unimalleolar Supination-External Rotation Ankle Fractures with Minimal Fracture Displacement on Lateral Radiographs.

    Science.gov (United States)

    Nortunen, Simo; Leskelä, Hannu-Ville; Haapasalo, Heidi; Flinkkilä, Tapio; Ohtonen, Pasi; Pakarinen, Harri

    2017-03-15

    This study aimed to identify factors from standard radiographs that contributed to the stability of the ankle mortise in patients with isolated supination-external rotation fractures of the lateral malleolus (OTA/AO 44-B). Non-stress radiographs of the mortise and lateral views, without medial clear space widening or incongruity, were prospectively collected for 286 consecutive patients (mean age, 45 years [range, 16 to 85 years]), including 144 female patients (mean age, 50 years [range, 17 to 85 years]) and 142 male patients (mean age, 40 years [range, 16 to 84 years]) from 2 trauma centers. The radiographs were analyzed for fracture morphology by 2 orthopaedic surgeons, who were blinded to each other's measurements and to the results of external rotation stress radiographs (the reference for stability). Factors significantly associated with ankle mortise stability were tested in multiple logistic regression. Receiver operating characteristic analyses were performed for continuous variables to determine optimal thresholds. A sensitivity of >90% was used as the criterion for an optimal threshold. According to external rotation stress radiographs, 217 patients (75.9%) had a stable injury, defined as that with a medial clear space of ankle mortise were female sex (odds ratio [OR], 2.5 [95% confidence interval (CI), 1.4 to 4.6]), a posterior diastasis of fracture fragments (OR, 7.3 [95% CI, 2.1 to 26.3]). When the posterior diastasis was fracture fragments were present, the probability of a stable ankle mortise was 0.98 for 48 female patients (16.8%) and 0.94 for 37 male patients (12.9%). Patients with noncomminuted lateral malleolar fractures (85 patients [29.7%]) could be diagnosed with a stable ankle mortise without further stress testing, when the fracture line widths were <2 mm on lateral radiographs. Prognostic Level IV. See Instructions for Authors for a complete description of levels of evidence.

  10. Treatment of transverse patellar fractures: a comparison between metallic and non-metallic implants.

    Science.gov (United States)

    Heusinkveld, Maarten H G; den Hamer, Anniek; Traa, Willeke A; Oomen, Pim J A; Maffulli, Nicola

    2013-01-01

    Several methods of transverse patellar fixation have been described. This study compares the clinical outcome and the occurrence of complications of various fixation methods. The databases PubMed, Web of Science, Science Direct, Google Scholar and Google were searched. A direct comparison between fixation techniques using mixed or non-metallic implants and metallic K-wire and tension band fixation shows no significant difference in clinical outcome between both groups. Additionally, studies reporting novel operation techniques show good clinical results. Studies describing the treatment of patients using non-metallic or mixed implants are fewer compared with those using metallic fixation. A large variety of clinical scoring systems were used for assessing the results of treatment, which makes direct comparison difficult. More data of fracture treatment using non-metallic or mixed implants is needed to achieve a more balanced comparison.

  11. Unusual stress fracture in an adolescent baseball pitcher affecting the trochlear groove of the olecranon

    International Nuclear Information System (INIS)

    Blake, Joseph J.; Block, John J.; Kan, J.H.; Hannah, Gene A.

    2008-01-01

    Stress fractures of the proximal ulna are known to occur in throwing athletes. Most cases extend to involve the olecranon, and cases limited to the trochlear groove are rare. In this report we present a 17-year-old elite baseball pitcher with a stress fracture of the trochlear groove of the proximal ulna. Diagnosis was made by demonstration of characteristic signal changes on MRI of the elbow. The fracture occurred at the cortical notch, also known as the pseudodefect of the trochlear groove. This case suggests that the cortical notch serves as an area of weakness predisposing pitchers to development of a stress fracture. (orig.)

  12. Fatigue Stress Fracture of the Talar Body: An Uncommon Cause of Ankle Pain.

    Science.gov (United States)

    Kim, Young Sung; Lee, Ho Min; Kim, Jong Pil; Moon, Han Sol

    2016-01-01

    Fatigue stress fractures of the talus are rare and usually involve the head of the talus in military recruits. We report an uncommon cause of ankle pain due to a fatigue stress fracture of the body of the talus in a 32-year-old male social soccer player. Healing was achieved after weightbearing suppression for 6 weeks. Although rare, a stress fracture of the body of the talus should be considered in an athlete with a gradual onset of chronic ankle pain. Magnetic resonance imaging and bone scan are useful tools for early diagnosis. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  13. Fracture toughness testing of a reactor grade graphite

    Energy Technology Data Exchange (ETDEWEB)

    Roeding, M.; Klein, G.; Schiffers, H.; Nickel, H.

    1976-03-15

    Fracture mechanics is a well established tool for the assessment of brittle fracture in metallic structural materials. In this paper an attempt is made to apply fracture mechanics to a reactor-grade graphite. The effect of several test parameters on the stress intensity factor was measured; this was found to lie in the range 25 and 50 N/mm/sup -3/2/. The results are discussed in terms of the well known mechanical characteristics of graphite.

  14. Stress fractures of the foot and ankle, part 2: site-specific etiology, imaging, and treatment, and differential diagnosis.

    Science.gov (United States)

    Mandell, Jacob C; Khurana, Bharti; Smith, Stacy E

    2017-09-01

    Stress fractures of the foot and ankle are a commonly encountered problem among athletes and individuals participating in a wide range of activities. This illustrated review, the second of two parts, discusses site-specific etiological factors, imaging appearances, treatment options, and differential considerations of stress fractures of the foot and ankle. The imaging and clinical management of stress fractures of the foot and ankle are highly dependent on the specific location of the fracture, mechanical forces acting upon the injured site, vascular supply of the injured bone, and the proportion of trabecular to cortical bone at the site of injury. The most common stress fractures of the foot and ankle are low risk and include the posteromedial tibia, the calcaneus, and the second and third metatarsals. The distal fibula is a less common location, and stress fractures of the cuboid and cuneiforms are very rare, but are also considered low risk. In contrast, high-risk stress fractures are more prone to delayed union or nonunion and include the anterior tibial cortex, medial malleolus, navicular, base of the second metatarsal, proximal fifth metatarsal, hallux sesamoids, and the talus. Of these high-risk types, stress fractures of the anterior tibial cortex, the navicular, and the proximal tibial cortex may be predisposed to poor healing because of the watershed blood supply in these locations. The radiographic differential diagnosis of stress fracture includes osteoid osteoma, malignancy, and chronic osteomyelitis.

  15. Stress fractures of the ribs in elite competitive rowers: a report of nine cases

    Energy Technology Data Exchange (ETDEWEB)

    Dragoni, S. [Institute of Sport Medicine and Science of the Italian Olympic Committee, Department of Radiology, Rome (Italy); Giombini, A.; Ripani, M. [University of Motor Sciences, Department of Health, Rome (Italy); Di Cesare, A. [University of Rome ' ' La Sapienza' ' , Department of Physical Medicine and Rehabilitation, Rome (Italy); Magliani, G. [Medical Department of the Italian State Police, Rome (Italy)

    2007-10-15

    The objective was to report the clinical and imaging patterns of nine cases of stress fractures of the rib diagnosed in Italian Olympic rowers. Nine patients with stress fractures of the rib detected from 103 (8.7%) Italian team rowers competing between May 2000 and May 2006 were identified based on the database of a sports medicine institute. All athletes were male. They were aged between 17 and 31 years (mean: 24.4). Patient weight, fracture location, rowing side and imaging methods employed were noted. The diagnosis was made based on history, clinical examination and Tc-99m MDP bone scintigraphy. Eight of the 9 fractures were located anterolaterally between the fourth and ninth rib. In 1 of the 5 athletes with standard radiographs, a fracture line was visible and in 4 there was callus formation. In 2 athletes sonography was performed, which detected discontinuity of the rib surface and callus formation (1 case each). Stress fractures of the ribs are relatively common in competitive rowers. They are characterized by increasing lateral chest pain and typical scintigraphic, radiographic and sonographic findings. (orig.)

  16. Stress fractures of the ribs in elite competitive rowers: a report of nine cases

    International Nuclear Information System (INIS)

    Dragoni, S.; Giombini, A.; Ripani, M.; Di Cesare, A.; Magliani, G.

    2007-01-01

    The objective was to report the clinical and imaging patterns of nine cases of stress fractures of the rib diagnosed in Italian Olympic rowers. Nine patients with stress fractures of the rib detected from 103 (8.7%) Italian team rowers competing between May 2000 and May 2006 were identified based on the database of a sports medicine institute. All athletes were male. They were aged between 17 and 31 years (mean: 24.4). Patient weight, fracture location, rowing side and imaging methods employed were noted. The diagnosis was made based on history, clinical examination and Tc-99m MDP bone scintigraphy. Eight of the 9 fractures were located anterolaterally between the fourth and ninth rib. In 1 of the 5 athletes with standard radiographs, a fracture line was visible and in 4 there was callus formation. In 2 athletes sonography was performed, which detected discontinuity of the rib surface and callus formation (1 case each). Stress fractures of the ribs are relatively common in competitive rowers. They are characterized by increasing lateral chest pain and typical scintigraphic, radiographic and sonographic findings. (orig.)

  17. The involvement of wheat F-box protein gene TaFBA1 in the oxidative stress tolerance of plants.

    Directory of Open Access Journals (Sweden)

    Shu-Mei Zhou

    Full Text Available As one of the largest gene families, F-box domain proteins have been found to play important roles in abiotic stress responses via the ubiquitin pathway. TaFBA1 encodes a homologous F-box protein contained in E3 ubiquitin ligases. In our previous study, we found that the overexpression of TaFBA1 enhanced drought tolerance in transgenic plants. To investigate the mechanisms involved, in this study, we investigated the tolerance of the transgenic plants to oxidative stress. Methyl viologen was used to induce oxidative stress conditions. Real-time PCR and western blot analysis revealed that TaFBA1 expression was up-regulated by oxidative stress treatments. Under oxidative stress conditions, the transgenic tobacco plants showed a higher germination rate, higher root length and less growth inhibition than wild type (WT. The enhanced oxidative stress tolerance of the transgenic plants was also indicated by lower reactive oxygen species (ROS accumulation, malondialdehyde (MDA content and cell membrane damage under oxidative stress compared with WT. Higher activities of antioxidant enzymes, including superoxide dismutase (SOD, catalase (CAT, ascorbate peroxidase (APX and peroxidase (POD, were observed in the transgenic plants than those in WT, which may be related to the upregulated expression of some antioxidant genes via the overexpression of TaFBA1. In others, some stress responsive elements were found in the promoter region of TaFBA1, and TaFBA1 was located in the nucleus, cytoplasm and plasma membrane. These results suggest that TaFBA1 plays an important role in the oxidative stress tolerance of plants. This is important for understanding the functions of F-box proteins in plants' tolerance to multiple stress conditions.

  18. Crack-jump mechanism of microvein formation and its implications for stress cyclicity during extension fracturing

    Science.gov (United States)

    Caputo, Riccardo; Hancock, Paul L.

    1998-11-01

    It is well accepted and documented that faulting is produced by the cyclic behaviour of a stress field. Some extension fractures, such as veins characterised by the crack-seal mechanism, have also been presumed to result from repeated stress cycles. In the present note, some commonly observed field phenomena and relationships such as hackle marks and vein and joint spacing, are employed to argue that a stress field can also display cyclic behaviour during extensional fracturing. Indeed, the requirement of critical stress conditions for the occurrence of extensional failure events does not accord with the presence of contemporaneously open nearby parallel fractures. Therefore, because after each fracture event there is stress release within the surrounding volume of rock, high density sets of parallel extensional fractures also strongly support the idea that rocks undergo stress cyclicity during jointing and veining. A comparison with seismological data from earthquakes with dipole mechanical solutions, confirms that this process presently occurs at depth in the Earth crust. Furthermore, in order to explain dense sets of hair-like closely spaced microveins, a crack-jump mechanism is introduced here as an alternative to the crack-seal mechanism. We also propose that as a consequence of medium-scale stress cyclicity during brittle deformation, the re-fracturing of a rock mass occurs in either one or the other of these two possible ways depending on the ratio between the elastic parameters of the sealing material and those of the host rock. The crack-jump mechanism occurs when the former is stronger.

  19. 99mTc-MDP bone scintigraphy in the diagnosis of stress fracture of the metatarsal bones mimicking oligoarthritis

    Directory of Open Access Journals (Sweden)

    Jauković Ljiljana

    2008-01-01

    Full Text Available Background. Stress fractures are the injuries of soft tissues and bones caused by intensive and repeated stress on a bone. Repeated submaximal stress disturbs the balance between the processes of bone production and resorption that results in fracture. Case report. We presented a case of a patient with stress fracture of metatarsal bone. The patient was diagnosed and treated as having reactive oligoarthritis caused by Chlamydia trachomatis and administered antibiotics. Initial plain radiography was negative for bone fracture. Tc-99m bone scintigraphy suggested stress fracture of the second metatarsal. Plain radiography was became positive three weeks later, showing callus formation in the proximal part of the second metatarsal. Conclusion. Bone scintigraphy is a diagnostic test of choice in early diagnosis of stress fracture, and it is important to apply it timely in order to include the entire therapy and prevent complications, as well as to let a patient return to previous daily activites.

  20. Dose dependence of true stress parameters in irradiated bcc, fcc, and hcp metals

    Science.gov (United States)

    Byun, T. S.

    2007-04-01

    The dose dependence of true stress parameters has been investigated for nuclear structural materials: A533B pressure vessel steels, modified 9Cr-1Mo and 9Cr-2WVTa ferritic martensitic steels, 316 and 316LN stainless steels, and Zircaloy-4. After irradiation to significant doses, these alloys show radiation-induced strengthening and often experience prompt necking at yield followed by large necking deformation. In the present work, the critical true stresses for deformation and fracture events, such as yield stress (YS), plastic instability stress (PIS), and true fracture stress (FS), were obtained from uniaxial tensile tests or calculated using a linear strain-hardening model for necking deformation. At low dose levels where no significant embrittlement was detected, the true fracture stress was nearly independent of dose. The plastic instability stress was also independent of dose before the critical dose-to-prompt-necking at yield was reached. A few bcc alloys such as ferritic martensitic steels experienced significant embrittlement at doses above ∼1 dpa; and the true fracture stress decreased with dose. The materials fractured before yield at or above 10 dpa.

  1. Medial tibial plateau morphology and stress fracture location: A magnetic resonance imaging study

    OpenAIRE

    Yukata, Kiminori; Yamanaka, Issei; Ueda, Yuzuru; Nakai, Sho; Ogasa, Hiroyoshi; Oishi, Yosuke; Hamawaki, Jun-ichi

    2017-01-01

    AIM To determine the location of medial tibial plateau stress fractures and its relationship with tibial plateau morphology using magnetic resonance imaging (MRI). METHODS A retrospective review of patients with a diagnosis of stress fracture of the medial tibial plateau was performed for a 5-year period. Fourteen patients [three female and 11 male, with an average age of 36.4 years (range, 15-50 years)], who underwent knee MRI, were included. The appearance of the tibial plateau stress fract...

  2. Navicular stress fractures treated with minimally invasive fixation

    Directory of Open Access Journals (Sweden)

    Korula Mani Jacob

    2013-01-01

    Early intervention with minimally invasive surgery has significantly less morbidity and a reliable early return to active sports and is therefore the best option in high-performance athletes. Materials and Methods: Nine athletes with ten stress fractures of the navicular treated at our institution between April 1991 and October 2000. The mean age of the patients was 22.8 years (range 18-50 years. All patients were treated by minimally invasive screw fixation and early weight bearing mobilization without a cast. The average followup was 7 years (range 2-11 years. Results: Seven of the nine patients returned to their pre-fracture level of sporting activity at an average of 5 months (range 3-9 months. One patient returned to full sporting activity following a delay of 2 years due to an associated tibial stress fracture and one patient had an unsatisfactory result. Long term review at an average of 7 years showed that six of these eight patients who returned to sports remained symptom free with two patients experiencing minimal intermittent discomfort after prolonged activity. Conclusions: We recommend percutaneous screw fixation as a reliable, low morbidity procedure allowing early return to full sporting activity without long term complications or recurrences.

  3. Fracture transmissivity as a function of normal and shear stress: first results in Opalinus Clay

    International Nuclear Information System (INIS)

    Cuss, R.J.; Milodowski, A.; Noy, D.J.; Harrington, J.F.

    2010-01-01

    Document available in extended abstract form only. Rock-mass failure around openings is usually observed in the form of a highly complex fracture network (EDZ), which is heterogeneous in distribution around a circular tunnel opening because of the heterogeneous stress distribution. The orientation of stress with respect to the fracture network is known to be important. The complex heterogeneous stress trajectory and heterogeneous fracture network results in a broad range of stresses and stress directions acting on the open fracture network. During the open stage of a repository, stress will slowly alter as shear movements occur along the fractures, as well as other time-dependent phenomena. As the repository is back filled, the stress field is further altered as the backfill settles and changes volume because of re-saturation. Therefore, a complex and wide ranging stress regime and stress history will result. In a purely mechanical sense, fracture transmissivity is a function of normal stress, shear stress, and fracture aperture. The Selfrac test from Mont Terri showed the change in transmissivity with effective normal stress. This work showed that fracture transmissivity decreased with increasing normal load and that an effective normal stress of 2.5 MPa is sufficient to yield a transmissivity similar to that seen in intact Opalinus clay (OPA). Therefore fracture closure because of normal stresses has been proven to be a quite efficient mechanism in OPA. A new shear rig was designed to investigate the detail of fracture transmissivity in OPA. The experimental configuration uses two prepared blocks that are 60 x 60 mm in size and approximately 20 mm thick. The first test sample had machine ground surfaces in contact with each other, with pore fluid being delivered through the centre of the top block directly to the fracture surface. The experimental programme included two distinct stages. In the first normal load was altered to investigate fracture transmissivity

  4. Select metal and metalloid surveillance of free-ranging Eastern box turtles from Illinois and Tennessee (Terrapene carolina carolina).

    Science.gov (United States)

    Allender, Matthew C; Dreslik, Michael J; Patel, Bishap; Luber, Elizabeth L; Byrd, John; Phillips, Christopher A; Scott, John W

    2015-08-01

    The Eastern box turtle (Terrapene carolina carolina) is a primarily terrestrial chelonian distributed across the eastern US. It has been proposed as a biomonitor due to its longevity, small home range, and reliance on the environment to meet its metabolic needs. Plasma samples from 273 free-ranging box turtles from populations in Tennessee and Illinois in 2011 and 2012 were evaluated for presence of heavy metals and to characterize hematologic variables. Lead (Pb), arsenic (As), zinc (Zn), chromium (Cr), selenium (Se), and copper (Cu) were detected, while cadmium (Cd) and silver (Ag) were not. There were no differences in any metal detected among age class or sex. However, Cr and Pb were higher in turtles from Tennessee, while As, Zn, Se, and Cu were higher in turtles from Illinois. Seasonal differences in metal concentrations were observed for Cr, Zn, and As. Health of turtles was assessed using hematologic variables. Packed cell volume was positively correlated with Cu, Se, and Pb in Tennessee. Total solids, a measure of plasma proteins, in Tennessee turtles were positively correlated with Cu and Zn. White blood cell count, a measure of inflammation, in Tennessee turtles was negatively correlated with Cu and As, and positively correlated with Pb. Metals are a threat to human health and the health of an ecosystem, and the Eastern Box Turtle can serve as a monitor of these contaminants. Differences established in this study can serve as baseline for future studies of these or related populations.

  5. Factors associated with recurrent fifth metatarsal stress fracture.

    Science.gov (United States)

    Lee, Kyung-tai; Park, Young-uk; Jegal, Hyuk; Kim, Ki-chun; Young, Ki-won; Kim, Jin-su

    2013-12-01

    Many surgeons agree that fifth metatarsal stress fractures have a tendency toward delayed union, nonunion, and possibly refracture. Difficulty healing seems to be correlated with fracture classification. However, refracture sometimes occurs after low-grade fracture, even long after apparent resolution. The records of 168 consecutive cases of fifth metatarsal stress fracture (163 patients) treated by modified tension band wiring from March 2002 to June 2011 were evaluated retrospectively. Mean length of follow-up was 23.6 months (range, 10-112 months). Forty-nine cases classified as Torg III were bone grafted initially also. All enrolled patients were elite athletes. Eleven patients experienced nonunion and 18 refracture. The 11 nonunion cases were bone grafted. The 157 patients (excluding nonunion cases) were allocated to either a refracture group or a union group. Clinical features, such as age, weight, fracture classification, time to union, and reinjury history, were compared. Radiological parameters representing cavus deformity and fifth metatarsal head protrusion were compared to evaluate the influence of structural abnormalities. Mean group weights were significantly different (P = .041), but mean ages (P = .879), fracture grades (P = .216, P = .962), and time from surgery to rehabilitation (P = .539) were similar. No significant intergroup differences were found for talocalcaneal (TC) angle (P = .470), calcaneal pitch (CP) angle (P = .847), or talo-first metatarsal (T-MT1) angle (P = .407) on lateral radiographs; for fifth metatarsal lateral deviation (MT5-LD) angle (P = .623) on anteroposterior (AP) radiographs; or for MT5-LD angle (P = .065) on the 30-degree medial oblique radiographs. However, the mean fourth-fifth intermetatarsal (IMA4-5) angle on AP radiographs was significantly greater in the refracture group, and for Torg II cases, mean weight (P = .042), IMA4-5 angle on AP radiographs (P = .014), and MT5-LD angle (P = .043) on 30-degree medial

  6. Stress in hard metal films

    NARCIS (Netherlands)

    Janssen, G.C.A.M.; Kamminga, J.D.

    2004-01-01

    In the absence of thermal stress, tensile stress in hard metal films is caused by grain boundary shrinkage and compressive stress is caused by ion peening. It is shown that the two contributions are additive. Moreover tensile stress generated at the grain boundaries does not relax by ion

  7. Effectiveness of stress release geometries on reducing residual stress in electroforming metal microstructure

    Science.gov (United States)

    Song, Chang; Du, Liqun; Zhao, Wenjun; Zhu, Heqing; Zhao, Wen; Wang, Weitai

    2018-04-01

    Micro electroforming, as a mature micromachining technology, is widely used to fabricate metal microdevices in micro electro mechanical systems (MEMS). However, large residual stress in the local positions of the micro electroforming layer often leads to non-uniform residual stress distributions, dimension accuracy defects and reliability issues during fabrication of the metal microdevice. To solve this problem, a novel design method of presetting stress release geometries in the topological structure of the metal microstructure is proposed in this paper. First, the effect of stress release geometries (circular shape, annular groove shape and rivet shape) on the residual stress in the metal microstructure was investigated by finite element modeling (FEM) analysis. Two evaluation parameters, stress concentration factor K T and stress non-uniformity factor δ were calculated. The simulation results show that presetting stress release geometries can effectively reduce and homogenize the residual stress in the metal microstructures were measured metal microstructure. By combined use with stress release geometries of annular groove shape and rivet shape, the stress concentration factor K T and the stress non-uniformity factor δ both decreased at a maximum of 49% and 53%, respectively. Meanwhile, the average residual stress σ avg decreased at a maximum of 20% from  -292.4 MPa to  -232.6 MPa. Then, micro electroforming experiments were carried out corresponding to the simulation models. The residual stresses in the metal microstructures were measured by micro Raman spectroscopy (MRS) method. The results of the experiment proved that the stress non-uniformity factor δ and the average residual stress σ avg also decreased at a maximum with the combination use of annular groove shape and rivet shape stress release geometries, which is in agreement with the results of FEM analysis. The stress non-uniformity factor δ has a maximum decrease of 49% and the

  8. Thermal Stress and Heat Transfer Coefficient for Ceramics Stalk Having Protuberance Dipping into Molten Metal

    Science.gov (United States)

    Noda, Nao-Aki; Hendra; Li, Wenbin; Takase, Yasushi; Ogura, Hiroki; Higashi, Yusuke

    Low pressure die casting is defined as a net shape casting technology in which the molten metal is injected at high speeds and pressure into a metallic die. The low pressure die casting process plays an increasingly important role in the foundry industry as a low-cost and high-efficiency precision forming technique. In the low pressure die casting process is that the permanent die and filling systems are placed over the furnace containing the molten alloy. The filling of the cavity is obtained by forcing the molten metal, by means of a pressurized gas, to rise into a ceramic tube having protuberance, which connects the die to the furnace. The ceramics tube, called stalk, has high temperature resistance and high corrosion resistance. However, attention should be paid to the thermal stress when the stalk having protuberance is dipped into the molten aluminum. It is important to reduce the risk of fracture that may happen due to the thermal stresses. In this paper, thermo-fluid analysis is performed to calculate surface heat transfer coefficient. The finite element method is applied to calculate the thermal stresses when the stalk having protuberance is dipped into the crucible with varying dipping speeds. It is found that the stalk with or without protuberance should be dipped into the crucible slowly to reduce the thermal stress.

  9. Tension Band Plating for Chronic Anterior Tibial Stress Fractures in High-Performance Athletes.

    Science.gov (United States)

    Zbeda, Robert M; Sculco, Peter K; Urch, Ekaterina Y; Lazaro, Lionel E; Borens, Olivier; Williams, Riley J; Lorich, Dean G; Wellman, David S; Helfet, David L

    2015-07-01

    Anterior tibial stress fractures are associated with high rates of delayed union and nonunion, which can be particularly devastating to a professional athlete who requires rapid return to competition. Current surgical treatment strategies include intramedullary nailing, which has satisfactory rates of fracture union but an associated risk of anterior knee pain. Anterior tension band plating is a biomechanically sound alternative treatment for these fractures. Tension band plating of chronic anterior tibial stress fractures leads to rapid healing and return to physical activity and avoids the anterior knee pain associated with intramedullary nailing. Case series; Level of evidence, 4. Between 2001 and 2013, there were 13 chronic anterior tibial stress fractures in 12 professional or collegiate athletes who underwent tension band plating after failing nonoperative management. Patient charts were retrospectively reviewed for demographics, injury history, and surgical details. Radiographs were used to assess time to osseous union. Follow-up notes and phone interviews were used to determine follow-up time, return to training time, and whether the patient was able to return to competition. Cases included 13 stress fractures in 12 patients (9 females, 3 males). Five patients were track-and-field athletes, 4 patients played basketball, 2 patients played volleyball, and 1 was a ballet dancer. Five patients were Division I collegiate athletes and 7 were professional or Olympic athletes. Average age at time of surgery was 23.6 years (range, 20-32 years). Osseous union occurred on average at 9.6 weeks (range, 5.3-16.9 weeks) after surgery. Patients returned to training on average at 11.1 weeks (range, 5.7-20 weeks). Ninety-two percent (12/13) eventually returned to preinjury competition levels. Thirty-eight percent (5/13) underwent removal of hardware for plate prominence. There was no incidence of infection or nonunion. Anterior tension band plating for chronic tibial stress

  10. Excess Stress Fractures, Musculoskeletal Injuries, and Health Care Utilization Among Unfit and Overweight Female Army Trainees.

    Science.gov (United States)

    Krauss, Margot R; Garvin, Nadia U; Boivin, Michael R; Cowan, David N

    2017-02-01

    Musculoskeletal injuries are prevalent among military trainees and certain occupations. Fitness and body mass index (BMI) have been associated with musculoskeletal conditions, including stress fractures. The incidence of, and excess health care utilization for, stress fracture and non-stress fracture overuse musculoskeletal injuries during the first 6 months of service is higher among unfit female recruits. Those who exceeded body fat limits are at a greater risk of incident stress fractures, injuries, or health care utilization compared with weight-qualified recruits. Cohort study; Level of evidence, 3. All applicants to the United States Army were required to take a preaccession fitness test during the study period (February 2005-September 2006). The test included a 5-minute step test scored as pass or fail. BMI was recorded at application. There were 2 distinct comparisons made in this study: (1) between weight-qualified physically fit and unfit women and (2) between weight-qualified physically fit women and those who exceeded body fat limits. We compared the incidence of, and excess health care utilization for, musculoskeletal injuries, including stress fractures and physical therapy visits, during the first 183 days of military service. Among the weight-qualified women, unfit participants had a higher non-stress fracture injury incidence and related excess health care utilization rate compared with fit women, with rate ratios of 1.32 (95% CI, 1.14-1.53) and 1.18 (95% CI, 1.10-1.27), respectively. Among fit women, compared with the weight-qualified participants, those exceeding body fat limits had higher rate ratios for non-stress fracture injury incidence and related excess health care utilization of 1.27 (95% CI, 1.07-1.50) and 1.20 (95% CI, 1.11-1.31), respectively. Weight-qualified women who were unfit had a higher incidence of stress fractures and related excess health care utilization compared with fit women, with rate ratios of 1.62 (95% CI, 1

  11. New model for surface fracture induced by dynamical stress

    OpenAIRE

    Andersen, J. V.; Lewis, L. J.

    1997-01-01

    We introduce a model where an isotropic, dynamically-imposed stress induces fracture in a thin film. Using molecular dynamics simulations, we study how the integrated fragment distribution function depends on the rate of change and magnitude of the imposed stress, as well as on temperature. A mean-field argument shows that the system becomes unstable for a critical value of the stress. We find a striking invariance of the distribution of fragments for fixed ratio of temperature and rate of ch...

  12. Displacement and stress fields around rock fractures opened by irregular overpressure variations

    Directory of Open Access Journals (Sweden)

    Shigekazu eKusumoto

    2014-05-01

    Full Text Available Many rock fractures are entirely driven open by fluids such as ground water, geothermal water, gas, oil, and magma. These are a subset of extension fractures (mode I cracks; e.g., dikes, mineral veins and joints referred to as hydrofractures. Field measurements show that many hydrofractures have great variations in aperture. However, most analytical solutions for fracture displacement and stress fields assume the loading to be either constant or with a linear variation. While these solutions have been widely used, it is clear that a fracture hosted by heterogeneous and anisotropic rock is normally subject to loading that is neither constant nor with a linear variation. Here we present new general solutions for the displacement and stress fields around hydrofractures, modelled as two-dimensional elastic cracks, opened by irregular overpressure variations given by the Fourier cosine series. Each solution has two terms. The first term gives the displacement and stress fields due to the average overpressure acting inside the crack; it is given by the initial term of the Fourier coefficients expressing the overpressure variation. The second term gives the displacement and stress fields caused by the overpressure variation; it is given by general terms of the Fourier coefficients and solved through numerical integration. Our numerical examples show that the crack aperture variation closely reflects the overpressure variation. Also, that the general displacement and stress fields close to the crack follow the overpressure variation but tend to be more uniform far from the crack. The present solutions can be used to estimate the displacement and stress fields around any fluid-driven crack, that is, any hydrofracture, as well as its aperture, provided the variation in overpressure can be described by Fourier series. The solutions add to our understanding of local stresses, displacements, and fluid transport associated with hydrofractures in the crust.

  13. Short-term effects of teriparatide versus placebo on bone biomarkers, structure, and fracture healing in women with lower-extremity stress fractures: A pilot study.

    Science.gov (United States)

    Almirol, Ellen A; Chi, Lisa Y; Khurana, Bharti; Hurwitz, Shelley; Bluman, Eric M; Chiodo, Christopher; Matzkin, Elizabeth; Baima, Jennifer; LeBoff, Meryl S

    2016-09-01

    In this pilot, placebo-controlled study, we evaluated whether brief administration of teriparatide (TPTD) in premenopausal women with lower-extremity stress fractures would increase markers of bone formation in advance of bone resorption, improve bone structure, and hasten fracture healing according to magnetic resonance imaging (MRI). Premenopausal women with acute lower-extremity stress fractures were randomized to injection of TPTD 20-µg subcutaneous (s.c.) (n = 6) or placebo s.c. (n = 7) for 8 weeks. Biomarkers for bone formation N-terminal propeptide of type I procollagen (P1NP) and osteocalcin (OC) and resorption collagen type-1 cross-linked C-telopeptide (CTX) and collagen type 1 cross-linked N-telopeptide (NTX) were measured at baseline, 4 and 8 weeks. The area between the percent change of P1NP and CTX over study duration is defined as the anabolic window. To assess structural changes, peripheral quantitative computed topography (pQCT) was measured at baseline, 8 and 12 weeks at the unaffected tibia and distal radius. The MRI of the affected bone assessed stress fracture healing at baseline and 8 weeks. After 8 weeks of treatment, bone biomarkers P1NP and OC increased more in the TPTD- versus placebo-treated group (both p ≤ 0.01), resulting in a marked anabolic window (p ≤ 0.05). Results from pQCT demonstrated that TPTD-treated women showed a larger cortical area and thickness compared to placebo at the weight bearing tibial site, while placebo-treated women had a greater total tibia and cortical density. No changes at the radial sites were observed between groups. According to MRI, 83.3% of the TPTD- and 57.1% of the placebo-treated group had improved or healed stress fractures (p = 0.18). In this randomized, pilot study, brief administration of TPTD showed anabolic effects that TPTD may help hasten fracture healing in premenopausal women with lower-extremity stress fractures. Larger prospective studies are warranted to determine

  14. Critical cleavage fracture stress characterization of A508 nuclear pressure vessel steels

    International Nuclear Information System (INIS)

    Wu, Sujun; Jin, Huijin; Sun, Yanbin; Cao, Luowei

    2014-01-01

    The critical cleavage fracture stress of SA508 Gr.4N and SA508 Gr.3 low alloy reactor pressure vessel (RPV) steels was studied through the combination of experiments and finite element method (FEM) analysis. The results showed that the value of the local cleavage fracture stress, σ F , of SA508 Gr.4N steel was significantly higher than that of SA508 Gr.3 steel. Detailed microstructural analysis was carried out using FEGSEM which revealed much smaller grains, finer and more homogenous carbide particles formed in SA508 Gr.4N steel. Compared with the SA508 Gr.3 steel currently used in the nuclear industry, the SA508 Gr.4N steel possesses higher strength and notch toughness as well as improved cleavage fracture behavior, and is considered a better candidate RPV steel for the next generation nuclear reactors. - Highlights: • Critical cleavage fracture stress was calculated through experiments and FEM. • Effects of both grain and carbide particle sizes on σ F were discussed. • The SA508 Gr.4N steel is a better candidate for the next generation nuclear reactors

  15. The Epidemiology of Stress Fractures in Collegiate Student-Athletes, 2004-2005 Through 2013-2014 Academic Years.

    Science.gov (United States)

    Rizzone, Katherine H; Ackerman, Kathryn E; Roos, Karen G; Dompier, Thomas P; Kerr, Zachary Y

    2017-10-01

    Stress fractures are injuries caused by cumulative, repetitive stress that leads to abnormal bone remodeling. Specific populations, including female athletes and endurance athletes, are at higher risk than the general athletic population. Whereas more than 460 000 individuals participate in collegiate athletics in the United States, no large study has been conducted to determine the incidence of stress fractures in collegiate athletes.   To assess the incidence of stress fractures in National Collegiate Athletic Association (NCAA) athletes and investigate rates and patterns overall and by sport.   Descriptive epidemiology study.   National Collegiate Athletic Association institutions.   National Collegiate Athletic Association athletes.   Data were analyzed from the NCAA Injury Surveillance Program for the academic years 2004-2005 through 2013-2014. We calculated rates and rate ratios (RRs) with 95% confidence intervals (CIs).   A total of 671 stress fractures were reported over 11 778 145 athlete-exposures (AEs) for an overall injury rate of 5.70 per 100 000 AEs. The sports with the highest rates of stress fractures were women's cross-country ( 28.59/100  000 AEs), women's gymnastics ( 25.58/100  000 AEs), and women's outdoor track ( 22.26/100  000 AEs). Among sex-comparable sports (baseball/softball, basketball, cross-country, ice hockey, lacrosse, soccer, swimming and diving, tennis, indoor track, and outdoor track), stress fracture rates were higher in women (9.13/100 000 AEs) than in men (4.44/100 000 AEs; RR = 2.06; 95% CI = 1.71, 2.47). Overall, stress fracture rates for these NCAA athletes were higher in the preseason (7.30/100 000 AEs) than in the regular season (5.12/100 000 AEs; RR = 1.43; 95% CI = 1.22, 1.67). The metatarsals (n = 254, 37.9%), tibia (n = 147, 21.9%), and lower back/lumbar spine/pelvis (n = 81, 12.1%) were the most common locations of injury. Overall, 21.5% (n = 144) of stress fractures were

  16. SCF Ubiquitin Ligase F-box Protein Fbx15 Controls Nuclear Co-repressor Localization, Stress Response and Virulence of the Human Pathogen Aspergillus fumigatus.

    Directory of Open Access Journals (Sweden)

    Bastian Jöhnk

    2016-09-01

    Full Text Available F-box proteins share the F-box domain to connect substrates of E3 SCF ubiquitin RING ligases through the adaptor Skp1/A to Cul1/A scaffolds. F-box protein Fbx15 is part of the general stress response of the human pathogenic mold Aspergillus fumigatus. Oxidative stress induces a transient peak of fbx15 expression, resulting in 3x elevated Fbx15 protein levels. During non-stress conditions Fbx15 is phosphorylated and F-box mediated interaction with SkpA preferentially happens in smaller subpopulations in the cytoplasm. The F-box of Fbx15 is required for an appropriate oxidative stress response, which results in rapid dephosphorylation of Fbx15 and a shift of the cellular interaction with SkpA to the nucleus. Fbx15 binds SsnF/Ssn6 as part of the RcoA/Tup1-SsnF/Ssn6 co-repressor and is required for its correct nuclear localization. Dephosphorylated Fbx15 prevents SsnF/Ssn6 nuclear localization and results in the derepression of gliotoxin gene expression. fbx15 deletion mutants are unable to infect immunocompromised mice in a model for invasive aspergillosis. Fbx15 has a novel dual molecular function by controlling transcriptional repression and being part of SCF E3 ubiquitin ligases, which is essential for stress response, gliotoxin production and virulence in the opportunistic human pathogen A. fumigatus.

  17. CHARACTERIZATION OF IN-SITU STRESS AND PERMEABILITY IN FRACTURED RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    Daniel R. Burns; M. Nafi Toksoz

    2002-12-31

    We have extended a three-dimensional finite difference elastic wave propagation model previously developed at the Massachusetts Institute of Technology (MIT) Earth Resources Laboratory (ERL) for modeling and analyzing the effect of fractures on seismic waves. The code has been translated into C language and parallelized [using message passing interface (MPI)] to allow for larger models to be run on Linux PC computer clusters. We have also obtained another 3-D code from Lawrence Berkeley Laboratory, which we will use for verification of our ERL code results and also to run discrete fracture models. Testing of both codes is underway. We are working on a new finite difference model of borehole wave propagation for stressed formations. This code includes coordinate stretching to provide stable, variable grid sizes that will allow us to model the thin fluid annulus layers in borehole problems, especially for acoustic logging while drilling (LWD) applications. We are also extending our analysis routines for the inversion of flexural wave dispersion measurements for in situ stress estimates. Initial results on synthetic and limited field data are promising for a method to invert cross dipole data for the rotation angle and stress state simultaneously. A meeting is being scheduled between MIT and Shell Oil Company scientists to look at data from a fractured carbonate reservoir that may be made available to the project. The Focus/Disco seismic processing system from Paradigm Geophysical has been installed at ERL for field data analysis and as a platform for new analysis modules. We have begun to evaluate the flow properties of discrete fracture distributions through a simple 2D numerical model. Initial results illustrate how fluid flow pathways are very sensitive to variations in the geometry and apertures of fracture network.

  18. Natural Fractures Characterization and In Situ Stresses Inference in a Carbonate Reservoir—An Integrated Approach

    Directory of Open Access Journals (Sweden)

    Ali Shafiei

    2018-02-01

    Full Text Available In this paper, we characterized the natural fracture systems and inferred the state of in situ stress field through an integrated study in a very complex and heterogeneous fractured carbonate reservoir. Relative magnitudes and orientations of the in-situ principal stresses in a naturally fractured carbonate heavy oil field were estimated with a combination of available data (World Stress Map, geological and geotectonic evidence, outcrop studies and techniques (core analysis, borehole image logs and Side View Seismic Location. The estimates made here using various tools and data including routine core analysis and image logs are confirmatory to estimates made by the World Stress Map and geotectonic facts. NE-SW and NW-SE found to be the dominant orientations for maximum and minimum horizontal stresses in the study area. In addition, three dominant orientations were identified for vertical and sub-vertical fractures atop the crestal region of the anticlinal structure. Image logs found useful in recognition and delineation of natural fractures. The results implemented in a real field development and proved practical in optimal well placement, drilling and production practices. Such integrated studies can be instrumental in any E&P projects and related projects such as geological CO2 sequestration site characterization.

  19. Linking Scales in Plastic Deformation and Fracture

    DEFF Research Database (Denmark)

    Martinez-Paneda, Emilio; Niordson, Christian Frithiof; S. Deshpande, Vikram

    2017-01-01

    We investigate crack growth initiation and subsequent resistance in metallic materials by means of an implicit multi-scale approach. Strain gradient plasticity is employed to model the mechanical response of the solid so as to incorporate the role of geometrically necessary dislocations (GNDs......) and accurately capture plasticity at the small scales involved in crack tip deformation. The response ahead of the crack is described by means of a traction-separation law, which is characterized by the cohesive strength and the fracture energy. Results reveal that large gradients of plastic strain accumulatein...... the vicinity of the crack, elevating the dislocation density and the local stress. This stress elevation enhances crack propagation and significantly lowers the steady state fracture toughness with respect to conventional plasticity. Important insight is gained into fracture phenomena that cannot be explained...

  20. Pace bowlers in cricket with history of lumbar stress fracture have increased risk of lower limb muscle strains, particularly calf strains.

    Science.gov (United States)

    Orchard, John; Farhart, Patrick; Kountouris, Alex; James, Trefor; Portus, Marc

    2010-01-01

    To assess whether a history of lumbar stress fracture in pace bowlers in cricket is a risk factor for lower limb muscle strains. This was a prospective cohort risk factor study, conducted using injury data from contracted first class pace bowlers in Australia during seasons 1998-1999 to 2008-2009 inclusive. There were 205 pace bowlers, 33 of whom suffered a lumbar stress fracture when playing first class cricket. Risk ratios ([RR] with 95% confidence intervals[CI]) were calculated to compare the seasonal incidence of various injuries between bowlers with a prior history of lumbar stress fracture and those with no history of lumbar stress fracture. Risk of calf strain was strongly associated with prior lumbar stress fracture injury history (RR = 4.1; 95% CI: 2.4-7.1). Risks of both hamstring strain (RR = 1.5; 95% CI: 1.03-2.1) and quadriceps strain (RR = 2.0; 95% CI: 1.1-3.5) were somewhat associated with history of lumbar stress fracture. Risk of groin strain was not associated with history of lumbar stress fracture (RR = 0.7; 95% CI: 0.4-1.1). Other injuries showed little association with prior lumbar stress fracture, although knee cartilage injuries were more likely in the non-stress fracture group. Bony hypertrophy associated with lumbar stress fracture healing may lead to subsequent lumbar nerve root impingement, making lower limb muscle strains more likely to occur. Confounders may be responsible for some of the findings. In particular, bowling speed is likely to be independently correlated with risk of lumbar stress fracture and risk of muscle strain. However, as the relationship between lumbar stress fracture history and calf strain was very strong, and that there is a strong theoretical basis for the connection, it is likely that this is a true association.

  1. Field performance of timber bridges. 11, Spearfish Creek stress-laminated box-beam bridge

    Science.gov (United States)

    J. P. Wacker; M. A. Ritter; K. Stanfill-McMillan

    The Spearfish Creek bridge was constructed in 1992 in Spearfish, South Dakota. It is a single-span, stress-laminated, box-beam superstructure. Performance of the bridge is being monitored for 5 years, beginning at installation. This report summarizes results for the first 3-1/2 years of monitoring and includes information on the design, construction, and field...

  2. Stress localization in BCC polycrystals and its implications on the probability of brittle fracture

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, Ludovic [CEA, DEN, SRMA, 91191 Gif sur Yvette Cedex (France); Gelebart, Lionel, E-mail: lionel.gelebart@cea.fr [CEA, DEN, SRMA, 91191 Gif sur Yvette Cedex (France); Dakhlaoui, Rim; Marini, Bernard [CEA, DEN, SRMA, 91191 Gif sur Yvette Cedex (France)

    2011-07-15

    Highlights: {yields} Intergranular stress distributions in a bainitic steel. {yields} Comparison of local mean stress field with neutron diffraction results. {yields} Application of the local stress distribution in a brittle fracture model. - Abstract: The evaluation of the reliability of pressure vessels in nuclear plants relies on the evaluation of failure probability models. Micromechanical approaches are of great interest to refine their description, to better understand the underlying mechanisms leading to failure, and finally to improve the prediction of these models. The main purpose of this paper is to introduce the stress heterogeneities arising within the polycrystal in a probabilistic modeling of brittle fracture. Stress heterogeneities are evaluated from Finite-Element simulations performed on a large number of Statistical Volume Elements. Results are validated both on the measured averaged behavior and on the averaged stresses measured by neutron diffraction in five specific orientations. A probabilistic model for brittle fracture is then presented accounting for the carbide distribution and the stress distribution evaluated previously inside an elementary volume V{sub 0}. Results are compared to a 'Beremin type' approach, assuming a homogeneous stress state inside V{sub 0}.

  3. Sacral Stress Fracture following the Bone Union of Lumbar Spondylolysis

    Directory of Open Access Journals (Sweden)

    Tatsuro Sasaji

    2016-01-01

    Full Text Available While 22 articles have reported on sacral stress fractures, it is a rare injury and its etiology is not well known. We present the case of a 16-year-old male who presented with low back pain in 2015. He was a high school soccer player with a previous history of a bilateral L5 lumbar spondylolysis in 2014. The patient refrained from soccer and wore a brace for six months. Two months after restarting soccer, he again complained of low back pain. After 1 year, a lumbar spine computed tomography revealed the bone union of the spondylolysis. At his first visit to our hospital, his general and neurological conditions were normal and laboratory data were within the normal range. Sacral coronal magnetic resonance imaging (MRI of the left sacral ala revealed an oblique lineal signal void surrounding bone marrow edema. Based on his symptoms, sports history, and MRI, he was diagnosed with a sacral stress fracture. He again refrained from soccer; his low back pain soon improved, and, after 1 year, the abnormal signal change had disappeared on sacral MRI. Recurrent low back pain case caused by a sacral stress fracture occurring after the bone union of lumbar spondylolysis is uncommon.

  4. Channel box

    International Nuclear Information System (INIS)

    Tanabe, Akira.

    1993-01-01

    In a channel box of a BWR type reactor, protruding pads are disposed in axial position on the lateral side of a channel box opposing to a control rod and facing the outer side portion of the control rod in a reactor core loaded state. In the initial loading stage of fuel assemblies, channel fasteners and spacer pads are abutted against each other in the upper portion between the channel boxes sandwiching the control rod therebetween. Further, in the lower portion, a gap as a channel for the movement of the control rod is ensured by the support of fuel support metals. If the channel box is bent toward the control rod along with reactor operation, the pads are abutted against each other to always ensure the gap through which the control rod can move easily. Further, when the pads are brought into contact with each other, the bending deformation of the channel box is corrected by urging to each other. Thus, the control rod can always be moved smoothly to attain reactor safety operation. (N.H.)

  5. Diagnostic accuracy of magnetic resonance imaging versus computed tomography in stress fractures of the lumbar spine

    International Nuclear Information System (INIS)

    Ganiyusufoglu, A.K.; Onat, L.; Karatoprak, O.; Enercan, M.; Hamzaoglu, A.

    2010-01-01

    Aim: To compare the diagnostic accuracy of magnetic resonance imaging (MRI) with computed tomography (CT) in stress fractures of the lumbar spine. Materials and methods: Radiological and clinical data from 57 adolescents and young adults with a diagnosis of stress injury of the lumbar spine were retrospectively reviewed. All cases had undergone both 1.5 T MRI and 16-section CT examinations. All MRI and CT images were retrospectively reviewed and evaluated in separate sessions. The fracture morphology (complete/incomplete, localization) and vertebral levels were noted at both the CT and MRI examinations. Bone marrow/peri-osseous soft-tissue oedema was also determined at MRI. Results: In total, 73 complete and 32 incomplete stress fractures were detected with CT. Sixty-seven complete, 24 incomplete fractures and eight stress reactions were detected using MRI in the same study group. Marrow oedema was also seen in eight of the complete and 20 of the incomplete fractures. The specificity, sensitivity, and accuracy of MRI in detecting fracture lines were 99.6, 86.7, and 97.2%, respectively. MRI was more accurate at the lower lumbar levels in comparison to upper lumbar levels. Conclusion: MRI has a similar diagnostic accuracy to CT in determining complete fractures with or without accompanying marrow oedema and incomplete fractures with accompanying marrow oedema, especially at the lower lumbar levels, which constitutes 94% of all fractures. At upper lumbar levels and in the incomplete fractures of the pars interarticularis with marked surrounding sclerosis, MRI has apparent limitations compared to CT imaging.

  6. Diagnostic accuracy of magnetic resonance imaging versus computed tomography in stress fractures of the lumbar spine

    Energy Technology Data Exchange (ETDEWEB)

    Ganiyusufoglu, A.K., E-mail: kursady33@yahoo.co [Department of Radiology, Florence Nightingale Hospital, Istanbul (Turkey); Onat, L. [Department of Radiology, Florence Nightingale Hospital, Istanbul (Turkey); Karatoprak, O.; Enercan, M.; Hamzaoglu, A. [Department of Orthopedics and Traumatology, Florence Nightingale Hospital, Istanbul (Turkey)

    2010-11-15

    Aim: To compare the diagnostic accuracy of magnetic resonance imaging (MRI) with computed tomography (CT) in stress fractures of the lumbar spine. Materials and methods: Radiological and clinical data from 57 adolescents and young adults with a diagnosis of stress injury of the lumbar spine were retrospectively reviewed. All cases had undergone both 1.5 T MRI and 16-section CT examinations. All MRI and CT images were retrospectively reviewed and evaluated in separate sessions. The fracture morphology (complete/incomplete, localization) and vertebral levels were noted at both the CT and MRI examinations. Bone marrow/peri-osseous soft-tissue oedema was also determined at MRI. Results: In total, 73 complete and 32 incomplete stress fractures were detected with CT. Sixty-seven complete, 24 incomplete fractures and eight stress reactions were detected using MRI in the same study group. Marrow oedema was also seen in eight of the complete and 20 of the incomplete fractures. The specificity, sensitivity, and accuracy of MRI in detecting fracture lines were 99.6, 86.7, and 97.2%, respectively. MRI was more accurate at the lower lumbar levels in comparison to upper lumbar levels. Conclusion: MRI has a similar diagnostic accuracy to CT in determining complete fractures with or without accompanying marrow oedema and incomplete fractures with accompanying marrow oedema, especially at the lower lumbar levels, which constitutes 94% of all fractures. At upper lumbar levels and in the incomplete fractures of the pars interarticularis with marked surrounding sclerosis, MRI has apparent limitations compared to CT imaging.

  7. The FEM Analysis of Stress Distribution in front of the Crack Tip and Fracture Process in the Elements of Modified and Unmodified Cast Steel G17CrMo5-5

    Directory of Open Access Journals (Sweden)

    Pała Robert

    2016-09-01

    Full Text Available The article presents influence of modification of the low-alloy cast steel G17CrMo5-5 by rare earth metals on stress distribution in front of the crack at the initial moment of the crack extension. Experimental studies include determination of strength and fracture toughness characteristics for unmodified (UM and modified (M cast steel. In the numerical computations, experimentally tested specimens SEN(B were modelled. The true stress–strain curves for the UM and M cast steel are used in the calculation. The stress distributions in front of the crack were calculated at the initial moment of the crack extension. On the basis of data on the particle size inclusions in the UM and M cast steel, and the calculated stress distributions was performed an assessment of the possibility of the occurrence of cleavage fracture. The analysis results indicate that at room temperature for the UM cast steel, there is a possibility of cleavage fracture, while for the M cast steel occurrence of cleavage fracture is negligible.

  8. Bilateral stress fractures of femoral neck in non-athletes: a report of four cases

    Directory of Open Access Journals (Sweden)

    Naik Monappa A

    2013-04-01

    Full Text Available 【Abstract】Femoral neck stress fractures (FNSFs are rare, constituting only 5% of all stress fractures in young adults. These fractures are usually seen in athletes, military recruits and patients with underlying metabolic diseases. The treatment of FNSFs is still controversial because of the inherent complications associated with the treatment procedure. We came across 4 cases of bilateral FNSFs in non-athletic individuals who were manual labourers with-out underlying bony disorders. Two patients with FNSFs and coxa vara deformity on both sides were managed by subtrochanteric valgus osteotomy and dynamic hip screw fixation. One of the remaining two patients was treated by cannulated cancellous screw fixation on one side and sub-trochanteric valgus osteotomy on the other side. The fourth patient received subtrochanteric valgus osteotomy on one side and bipolar hemiarthroplasty on the other side after failed cannulated screw fixation. All the fractures healed without any complications. No evidence of avascular ne-crosis or arthritis was noted in our series. Subtrochanteric valgus osteotomy restores normal neck-shaft angle in pa-tients suffering from FNSFs combined with coxa vara deformity. Moreover, it helps to bring the forces acting around the hip to normal biomechanical levels, leading to fracture union and better results. Replacement arthroplasty is recommended to patients who fail to achieve bony union after fixation. Key words: Fractures, stress; Femoral neck fractures; Coxa vara; Osteotomy

  9. Fracture toughness evaluation of a low upper-shelf weld metal from the Midland Reactor using the master curve

    International Nuclear Information System (INIS)

    McCabe, D.E.; Sokolov, M.A.; Nanstad, R.K.

    1997-01-01

    The primary objective of the Heavy-Section Steel Irradiation (HSSI) Program Tenth Irradiation Series was to develop a fracture mechanics evaluation of weld metal WF-70, which was taken from the beltline and nozzle course girth weld joints of the Midland Reactor vessel. This material became available when Consumers Power Company of Midland, Michigan, decided to abort plans to operate their nuclear power plant. WF-70 is classified as a low upper-shelf steel primarily due to the Linde 80 flux that was used in the submerged-arc welding process. The master curve concept is introduced to model the transition range fracture toughness when the toughness is quantified in terms of K Jc values. K Jc is an elastic-plastic stress intensity factor calculated by conversion from J c ; i.e., J-integral at onset of cleavage instability

  10. Acute changes in foot strike pattern and cadence affect running parameters associated with tibial stress fractures.

    Science.gov (United States)

    Yong, Jennifer R; Silder, Amy; Montgomery, Kate L; Fredericson, Michael; Delp, Scott L

    2018-05-18

    Tibial stress fractures are a common and debilitating injury that occur in distance runners. Runners may be able to decrease tibial stress fracture risk by adopting a running pattern that reduces biomechanical parameters associated with a history of tibial stress fracture. The purpose of this study was to test the hypothesis that converting to a forefoot striking pattern or increasing cadence without focusing on changing foot strike type would reduce injury risk parameters in recreational runners. Running kinematics, ground reaction forces and tibial accelerations were recorded from seventeen healthy, habitual rearfoot striking runners while running in their natural running pattern and after two acute retraining conditions: (1) converting to forefoot striking without focusing on cadence and (2) increasing cadence without focusing on foot strike. We found that converting to forefoot striking decreased two risk factors for tibial stress fracture: average and peak loading rates. Increasing cadence decreased one risk factor: peak hip adduction angle. Our results demonstrate that acute adaptation to forefoot striking reduces different injury risk parameters than acute adaptation to increased cadence and suggest that both modifications may reduce the risk of tibial stress fractures. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Bilateral periprosthetic tibial stress fracture after total knee arthroplasty: A case report.

    Science.gov (United States)

    Ozdemir, Guzelali; Azboy, Ibrahim; Yilmaz, Baris

    2016-01-01

    Periprosthetic fractures around the knee after total knee arthroplasty can be seen in the femur, tibia and patella. The tibial fractures are rare cases. Our case with bilateral tibial stress fracture developed after total knee arthroplasty (TKA) is the first of its kind in the literature. 75-year-old male patient with bilateral knee osteoarthritis had not benefited from conservative treatment methods previously applied. Left TKA was applied. In the second month postoperatively, periprosthetic tibial fracture was identified and osteosynthesis was implemented with locked tibia proximal plate-screw. Bone union in 12 weeks was observed in his follow-ups. After 15 months of his first operation, TKA was applied to the right knee. Postoperatively in the second month, as in the first operation, periprosthetic tibial fracture was detected. Osteosynthesis with locking plate-screw was applied and union in 12 weeks was observed in his follow-up. He was seen mobilized independently and without support in the last control of the case made in the 24th month after the second operation. The number of TKA applications is expected to increase in the future. The incidence of periprosthetic fractures should also be expected to increase in these cases. Periprosthetic tibial fractures after TKA are rarely seen. The treatment of periprosthetic fractures around the knee after TKA can be difficult. In the case of persistent pain in the upper end of the tibia after the surgery, stress fracture should be considered. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Stresses, fatigue and fracture analysis in the tube sheets

    International Nuclear Information System (INIS)

    Billon, F.

    1986-05-01

    The purpose of the present work is to study the behaviour of the nuclear PWR steam generator tube sheet. But the methods developed in this field can easily be generalized in order to study tube sheets from any other type of heat exchangers. The aim of the stress analysis of these sheets is to verify their correct design, to quantify the risk of fatigue damage in the areas submitted to a high stress concentration and through the fracture mechanic, to make sure there is no risk of fast fracture resulting from initiated or pre-existing defects. This analysis necessarily relates to the calculation of stresses in all parts of the multidrilled area, mainly around the holes where they are concentrated. However the tube sheets are so complexe structures that their direct modelization cannot be envisaged within the context of the finite element method. We then must refer to the concept of equivalent medium in order to calculate the nominal stresses. Then using the stresses multiple fonctions appropriate to the net geometry, we can calculate the actual stresses concentrated around the holes. The method depends on the behaviour of the elementary volume which represents the behaviour of the multidrilled medium. This approach must allow to correctly take account of the ''thermal skin effect'', which is a phenomenon particular to the tube sheets with thermal loads. It must as well be generalized in order to analyse the irregular ligaments which affect the periodical stresses distribution and locally overconcentrate them [fr

  13. An Elongin-Cullin-SOCS Box Complex Regulates Stress-Induced Serotonergic Neuromodulation

    Directory of Open Access Journals (Sweden)

    Xicotencatl Gracida

    2017-12-01

    Full Text Available Neuromodulatory cells transduce environmental information into long-lasting behavioral responses. However, the mechanisms governing how neuronal cells influence behavioral plasticity are difficult to characterize. Here, we adapted the translating ribosome affinity purification (TRAP approach in C. elegans to profile ribosome-associated mRNAs from three major tissues and the neuromodulatory dopaminergic and serotonergic cells. We identified elc-2, an Elongin C ortholog, specifically expressed in stress-sensing amphid neuron dual ciliated sensory ending (ADF serotonergic sensory neurons, and we found that it plays a role in mediating a long-lasting change in serotonin-dependent feeding behavior induced by heat stress. We demonstrate that ELC-2 and the von Hippel-Lindau protein VHL-1, components of an Elongin-Cullin-SOCS box (ECS E3 ubiquitin ligase, modulate this behavior after experiencing stress. Also, heat stress induces a transient redistribution of ELC-2, becoming more nuclearly enriched. Together, our results demonstrate dynamic regulation of an E3 ligase and a role for an ECS complex in neuromodulation and control of lasting behavioral states.

  14. Nutritional factors that influence change in bone density and stress fracture risk among young female cross-country runners.

    Science.gov (United States)

    Nieves, Jeri W; Melsop, Kathryn; Curtis, Meredith; Kelsey, Jennifer L; Bachrach, Laura K; Greendale, Gail; Sowers, Mary Fran; Sainani, Kristin L

    2010-08-01

    To identify nutrients, foods, and dietary patterns associated with stress fracture risk and changes in bone density among young female distance runners. Two-year, prospective cohort study. Observational data were collected in the course of a multicenter randomized trial of the effect of oral contraceptives on bone health. One hundred and twenty-five female competitive distance runners ages 18-26 years. Dietary variables were assessed with a food frequency questionnaire. Bone mineral density and content (BMD/BMC) of the spine, hip, and total body were measured annually by dual x-ray absorptiometry (DEXA). Stress fractures were recorded on monthly calendars, and had to be confirmed by radiograph, bone scan, or magnetic resonance imaging. Seventeen participants had at least one stress fracture during follow-up. Higher intakes of calcium, skim milk, and dairy products were associated with lower rates of stress fracture. Each additional cup of skim milk consumed per day was associated with a 62% reduction in stress fracture incidence (P stress fracture rate. Potassium intake was also associated with greater gains in hip and whole-body BMD. Copyright © 2010 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  15. Marrow changes in anorexia nervosa masking the presence of stress fractures on MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Tins, B.; Cassar-Pullicino, V. [Department of Radiology, RJAH Orthopaedic and District Hospital, Oswestry (United Kingdom)

    2006-11-15

    Patients with anorexia nervosa (AN) usually have abnormal bone and bone marrow metabolism resulting in osteopenia and serous bone marrow change. There is an increased risk of stress/insufficiency fractures and these can be the first presentation of AN. This case report describes a patient with previously undiagnosed AN who presented with foot pain. The serous bone marrow changes of AN were found to mask the MR imaging features of stress fractures, as both had low T1w and high T2w and STIR signal intensities. Contrast enhancement was not helpful but actually masked fractures. Scintigraphy was helpful. The radiologist might be the first clinician to raise the possibility of AN and should be aware of the difficulties in diagnosing stress fractures in bones with underlying serous bone marrow change. In this severe case of AN even the heel fat pad and the fat pad in Kager's triangle had undergone serous change.

  16. Marrow changes in anorexia nervosa masking the presence of stress fractures on MR imaging

    International Nuclear Information System (INIS)

    Tins, B.; Cassar-Pullicino, V.

    2006-01-01

    Patients with anorexia nervosa (AN) usually have abnormal bone and bone marrow metabolism resulting in osteopenia and serous bone marrow change. There is an increased risk of stress/insufficiency fractures and these can be the first presentation of AN. This case report describes a patient with previously undiagnosed AN who presented with foot pain. The serous bone marrow changes of AN were found to mask the MR imaging features of stress fractures, as both had low T1w and high T2w and STIR signal intensities. Contrast enhancement was not helpful but actually masked fractures. Scintigraphy was helpful. The radiologist might be the first clinician to raise the possibility of AN and should be aware of the difficulties in diagnosing stress fractures in bones with underlying serous bone marrow change. In this severe case of AN even the heel fat pad and the fat pad in Kager's triangle had undergone serous change

  17. Residual stress effects in LMFBR fracture assessment procedures

    International Nuclear Information System (INIS)

    Hooton, D.G.

    1984-01-01

    Two post-yield fracture mechanics methods, which have been developed into fully detailed failure assessment procedures for ferritic structures, have been reviewed from the point of view of the manner in which as-welded residual stress effects are incorporated, and comparisons then made with finite element and theoretical models of centre-cracked plates containing residual/thermal stresses in the form of crack-driving force curves. Applying the procedures to austenitic structures, comparisons are made in terms of failure assessment curves and it is recommended that the preferred method for the prediction of critical crack sizes in LMFBR austenitic structures containing as-welded residual stresses is the CEGB-R6 procedure based on a flow stress defined at 3% strain in the parent plate. When the prediction of failure loads in such structures is required, it is suggested that the CEGB-R6 procedure be used with residual/thermal stresses factored to give a maximum total stress of flow stress magnitude

  18. Sliding-screw plate fixation of proximal femoral fractures: Radiographic assessment

    Energy Technology Data Exchange (ETDEWEB)

    Sartoris, D.J.; Resnick, D.; Kerr, R.; Goergen, T.

    1985-07-01

    The sliding compression screw-sideplate combination is currently the most widely employed device for internal fixation of stable and unstable intertrochanteric fractures of the femur. The normal and abnormal radiographic appearances of this device in the immediate post-operative period are discussed. Potential long-term complications including mal- or non-union, intra-articular penetration, metal failure, rotation of the proximal fracture fragment, disengagement, trochanteric bursitis, leg length discrepancy, delayed cervical stress fracture, and ischemic necrosis are reviewed.

  19. Sliding-screw plate fixation of proximal femoral fractures: Radiographic assessment

    International Nuclear Information System (INIS)

    Sartoris, D.J.; Resnick, D.; California Univ., San Diego, La Jolla; Kerr, R.; Goergen, T.

    1985-01-01

    The sliding compression screw-sideplate combination is currently the most widely employed device for internal fixation of stable and unstable intertrochanteric fractures of the femur. The normal and abnormal radiogrpahic appearances of this device in the immediate post-operative period are discussed. Potential long-term complications including mal- or non-union, intra-articular penetration, metal failure, rotation of the proximal fracture fragment, disengagement, trochanteric bursitis, leg length discrepancy, delayed cervical stress fracture, and ischemic necrosis are reviewed. (orig.)

  20. Construction of dry-boxes for plutonium metallurgy

    International Nuclear Information System (INIS)

    Grison, E.; Pascard, R.

    1958-01-01

    The dry-boxes used at Chatillon are of two main types: a) boxes with a metal frame work of welded angle-pieces, panels of plexiglass, bakelite, duralumin, etc... They include a standard panel which enables them to be connected up to the contaminated repairs workshop; b) boxes made entirely of welded plastic. The working face only is of plexiglas held by screw clamps to a pure rubber joint. These boxes, which cannot be connected to the contaminated workshop, are generally reserved for small pieces of chemical apparatus. None has yet been used for working under argon, although their airtightness is excellent. After an interval of several hours, in fact, no decrease in the pressure inside the box can be detected. Several means can be adopted to ensure that the joints between panels and mountings are absolutely air-tight. Up to the present we are using three types of box with metal framework at the same time, without being able to make a definitive choice. (author) [fr

  1. Pea p68, a DEAD-box helicase, provides salinity stress tolerance in transgenic tobacco by reducing oxidative stress and improving photosynthesis machinery.

    Science.gov (United States)

    Tuteja, Narendra; Banu, Mst Sufara Akhter; Huda, Kazi Md Kamrul; Gill, Sarvajeet Singh; Jain, Parul; Pham, Xuan Hoi; Tuteja, Renu

    2014-01-01

    The DEAD-box helicases are required mostly in all aspects of RNA and DNA metabolism and they play a significant role in various abiotic stresses, including salinity. The p68 is an important member of the DEAD-box proteins family and, in animal system, it is involved in RNA metabolism including pre-RNA processing and splicing. In plant system, it has not been well characterized. Here we report the cloning and characterization of p68 from pea (Pisum sativum) and its novel function in salinity stress tolerance in plant. The pea p68 protein self-interacts and is localized in the cytosol as well as the surrounding of cell nucleus. The transcript of pea p68 is upregulated in response to high salinity stress in pea. Overexpression of p68 driven by constitutive cauliflower mosaic virus-35S promoter in tobacco transgenic plants confers enhanced tolerances to salinity stress by improving the growth, photosynthesis and antioxidant machinery. Under stress treatment, pea p68 overexpressing tobacco accumulated higher K+ and lower Na+ level than the wild-type plants. Reactive oxygen species (ROS) accumulation was remarkably regulated by the overexpression of pea p68 under salinity stress conditions, as shown from TBARS content, electrolyte leakage, hydrogen peroxide accumulation and 8-OHdG content and antioxidant enzyme activities. To the best of our knowledge this is the first direct report, which provides the novel function of pea p68 helicase in salinity stress tolerance. The results suggest that p68 can also be exploited for engineering abiotic stress tolerance in crop plants of economic importance.

  2. Investigating liquid-metal embrittlement of T91 steel by fracture toughness tests

    Energy Technology Data Exchange (ETDEWEB)

    Ersoy, Feyzan, E-mail: fersoy@sckcen.be [SCK-CEN (Belgian Nuclear Research Centre), Boeretang 200, B-2400, Mol (Belgium); Department of Materials Science and Engineering, Ghent University (UGent), Technologiepark 903, B-9052, Ghent (Belgium); Gavrilov, Serguei [SCK-CEN (Belgian Nuclear Research Centre), Boeretang 200, B-2400, Mol (Belgium); Verbeken, Kim [Department of Materials Science and Engineering, Ghent University (UGent), Technologiepark 903, B-9052, Ghent (Belgium)

    2016-04-15

    Heavy liquid metals such as lead bismuth eutectic (LBE) are chosen as the coolant to innovative Generation IV (Gen IV) reactors where ferritic/martensitic T91 steel is a candidate material for high temperature applications. It is known that LBE has a degrading effect on the mechanical properties of this steel. This degrading effect, which is known as liquid metal embrittlement (LME), has been screened by several tests such as tensile and small punch tests, and was most severe in the temperature range from 300 °C to 425 °C. To meet the design needs, mechanical properties such as fracture toughness should be addressed by corresponding tests. For this reason liquid-metal embrittlement of T91 steel was investigated by fracture toughness tests at 350 °C. Tests were conducted in Ar-5%H{sub 2} and LBE under the same experimental conditions Tests in Ar-5%H{sub 2} were used as reference. The basic procedure in the ASTM E 1820 standard was followed to perform tests and the normalization data reduction (NDR) method was used for the analysis. Comparison of the tests demonstrated that the elastic–plastic fracture toughness (J{sub 1C}) of the material was reduced by a factor in LBE and the fracture mode changed from ductile to quasi-cleavage. It was also shown that the pre-cracking environment played an important role in observing LME of the material since it impacts the contact conditions between LBE and steel at the crack tip. It was demonstrated that when specimens were pre-cracked in air and tested in LBE, wetting of the crack surface by LBE could not be achieved. When specimens were pre-cracked in LBE though, they showed a significant reduction in fracture toughness.

  3. Stress, Flow and Particle Transport in Rock Fractures

    Energy Technology Data Exchange (ETDEWEB)

    Koyama, Tomofumi

    2007-09-15

    The fluid flow and tracer transport in a single rock fracture during shear processes has been an important issue in rock mechanics and is investigated in this thesis using Finite Element Method (FEM) and streamline particle tracking method, considering evolutions of aperture and transmissivity with shear displacement histories under different normal stresses, based on laboratory tests. The distributions of fracture aperture and its evolution during shear were calculated from the initial aperture fields, based on the laser-scanned surface roughness features of replicas of rock fracture specimens, and shear dilations measured during the coupled shear-flow-tracer tests in laboratory performed using a newly developed testing apparatus in Nagasaki University, Nagasaki, Japan. Three rock fractures of granite with different roughness characteristics were used as parent samples from which nine plaster replicas were made and coupled shear-flow tests was performed under three normal loading conditions (two levels of constant normal loading (CNL) and one constant normal stiffness (CNS) conditions). In order to visualize the tracer transport, transparent acrylic upper parts and plaster lower parts of the fracture specimens were manufactured from an artificially created tensile fracture of sandstone and the coupled shear-flow tests with fluid visualization was performed using a dye tracer injected from upstream and a CCD camera to record the dye movement. A special algorithm for treating the contact areas as zero-aperture elements was used to produce more accurate flow field simulations by using FEM, which is important for continued simulations of particle transport, but was often not properly treated in literature. The simulation results agreed well with the flow rate data obtained from the laboratory tests, showing that complex histories of fracture aperture and tortuous flow channels with changing normal stresses and increasing shear displacements, which were also captured

  4. Standard test method for determining a threshold stress intensity factor for environment-assisted cracking of metallic materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2003-01-01

    1.1 This test method covers the determination of the environment-assisted cracking threshold stress intensity factor parameters, KIEAC and KEAC, for metallic materials from constant-force testing of fatigue precracked beam or compact fracture specimens and from constant-displacement testing of fatigue precracked bolt-load compact fracture specimens. 1.2 This test method is applicable to environment-assisted cracking in aqueous or other aggressive environments. 1.3 Materials that can be tested by this test method are not limited by thickness or by strength as long as specimens are of sufficient thickness and planar size to meet the size requirements of this test method. 1.4 A range of specimen sizes with proportional planar dimensions is provided, but size may be variable and adjusted for yield strength and applied force. Specimen thickness is a variable independent of planar size. 1.5 Specimen configurations other than those contained in this test method may be used, provided that well-established stress ...

  5. Pace bowlers in cricket with history of lumbar stress fracture have increased risk of lower limb muscle strains, particularly calf strains

    Directory of Open Access Journals (Sweden)

    John Orchard

    2010-09-01

    Full Text Available John Orchard1, Patrick Farhart2, Alex Kountouris3, Trefor James3, Marc Portus31School of Public Health, University of Sydney, Australia; 2Punjab Kings XI team, Indian Premier League, India; 3Cricket Australia, Melbourne, AustraliaObjective: To assess whether a history of lumbar stress fracture in pace bowlers in cricket is a risk factor for lower limb muscle strains.Methods: This was a prospective cohort risk factor study, conducted using injury data from contracted first class pace bowlers in Australia during seasons 1998–1999 to 2008–2009 inclusive. There were 205 pace bowlers, 33 of whom suffered a lumbar stress fracture when playing first class cricket. Risk ratios ([RR] with 95% confidence intervals[CI] were calculated to compare the seasonal incidence of various injuries between bowlers with a prior history of lumbar stress fracture and those with no history of lumbar stress fracture.Results: Risk of calf strain was strongly associated with prior lumbar stress fracture injury history (RR = 4.1; 95% CI: 2.4–7.1. Risks of both hamstring strain (RR = 1.5; 95% CI: 1.03–2.1 and quadriceps strain (RR = 2.0; 95% CI: 1.1–3.5 were somewhat associated with history of lumbar stress fracture. Risk of groin strain was not associated with history of lumbar stress fracture (RR = 0.7; 95% CI: 0.4–1.1. Other injuries showed little association with prior lumbar stress fracture, although knee cartilage injuries were more likely in the non-stress fracture group.Conclusion: Bony hypertrophy associated with lumbar stress fracture healing may lead to subsequent lumbar nerve root impingement, making lower limb muscle strains more likely to occur. Confounders may be responsible for some of the findings. In particular, bowling speed is likely to be independently correlated with risk of lumbar stress fracture and risk of muscle strain. However, as the relationship between lumbar stress fracture history and calf strain was very strong, and that there is a

  6. Outcomes of operative treatment of unstable ankle fractures: a comparison of metallic and biodegradable implants.

    Science.gov (United States)

    Noh, Jung Ho; Roh, Young Hak; Yang, Bo Gyu; Kim, Seong Wan; Lee, Jun Suk; Oh, Moo Kyung

    2012-11-21

    Biodegradable implants for internal fixation of ankle fractures may overcome some disadvantages of metallic implants, such as imaging interference and the potential need for additional surgery to remove the implants. The purpose of this study was to evaluate the outcomes after fixation of ankle fractures with biodegradable implants compared with metallic implants. In this prospectively randomized study, 109 subjects with an ankle fracture underwent surgery with metallic (Group I) or biodegradable implants (Group II). Radiographic results were assessed by the criteria of the Klossner classification system and time to bone union. Clinical results were assessed with use of the American Orthopaedic Foot & Ankle Society (AOFAS) ankle-hindfoot scale, Short Musculoskeletal Function Assessment (SMFA) dysfunction index, and the SMFA bother index at three, six, and twelve months after surgery. One hundred and two subjects completed the study. At a mean of 19.7 months, there were no differences in reduction quality between the groups. The mean operative time was 30.2 minutes in Group I and 56.4 minutes in Group II (p implants were inferior to those after fixation with metallic implants in terms of the score on the AOFAS scale and time to bone union. However, the difference in the final AOFAS score between the groups may not be clinically important. The outcomes associated with the use of biodegradable implants for the fixation of isolated lateral malleolar fractures were comparable with those for metallic implants.

  7. Femoral Neck Stress Fractures in Children Younger Than 10 Years of Age.

    Science.gov (United States)

    Boyle, Matthew J; Hogue, Grant D; Heyworth, Benton E; Ackerman, Kathryn; Quinn, Bridget; Yen, Yi-Meng

    2017-03-01

    Femoral neck stress fractures are rare in healthy children, with only 9 cases previously reported. The present article reviews our institutional experience with femoral neck stress fractures in children younger than 10 years of age, to highlight the unique features of this condition. We undertook a retrospective review of clinical records of patients who had been treated at our institution for an idiopathic femoral neck stress fracture between 2000 and 2014. To focus on children rather than adolescents, the World Health Organization's definition of adolescent as a person between 10 and 19 years of age was used; we thereby limited our analysis to patients younger than 10 years of age. The study included 6 patients (3 males, 3 females) treated for an idiopathic femoral neck stress fracture, with a mean age at diagnosis of 7.7 years (range, 5.2 to 8.9 y). All patients presented with a limp, which worsened with activity and had persisted for a mean of 5 weeks (range, 2 to 9 wk). None of the patients had experienced an increase in activity level or sporting volume before symptom onset. On examination, 3 patients experienced pain with terminal hip flexion and 3 patients demonstrated pain-free hip range of motion. Plain radiography demonstrated inferior femoral neck cortical disruption, suggesting a compression-type stress fracture mechanism. The diagnosis was confirmed by cross-sectional imaging in all cases. All patients were initially treated with 6 to 8 weeks of non-weight-bearing followed by 4 to 6 weeks of partial weight-bearing, leading to complete healing in 4 patients. Two patients demonstrated incomplete healing and were managed with spica casting for an additional 6 weeks. Our case series illustrates the unique features of this rare condition in children, with a history and examination profile distinct from those of adolescents and adults. Compliance with weight-bearing restrictions is difficult in this population and hip spica casting may be required to permit

  8. Stress fracture of hamate's hook: case report with emphasis to the imaging findings

    International Nuclear Information System (INIS)

    Carvalho, Leonardo Fontenelle de; Vianna, Evandro Miguelote; Domingues, Romulo; Domingues, Romeu Cortes; Metsavaht, Leonardo

    2007-01-01

    Stress fractures of the hook of the hamate are related to sports that use devices such as golf clubs, rackets and baseball bats. Because usually there is no history of obvious trauma, the diagnosis necessitates better knowledge of the lesion and high index of suspicion. The authors report a case of stress fracture of the hook of the hamate in a golf player with diagnosis and follow-up done with magnetic resonance and multislice computer tomography. (author)

  9. Study on fracture and stress corrosion cracking behavior of casing sour service materials

    International Nuclear Information System (INIS)

    Sequera, C.; Gordon, H.

    2003-01-01

    Present work describes sulphide stress corrosion cracking and fracture toughness tests performed to high strength sour service materials of T-95, C-100 and C-110 oil well tubular grades. P-110 was considered as a reference case, since it is one of the high strength materials included in specification 5CT of American Petroleum Institute, API. Sulphide stress corrosion cracking, impact and fracture toughness values obtained in the tests show that there is a correspondence among them. A decreasing classification order was established, namely C-100, T-95, C-110 and P-110. Special grades steels studied demonstrated a better behavior in the evaluated properties than the reference case material grade: P-110. Results obtained indicate that a higher sulphide stress corrosion cracking resistance is related to a higher toughness. The fracture toughness results evidence the hydrogen influence on reducing the toughness values. (author)

  10. Do Capacity Coupled Electric Fields Accelerate Tibial Stress Fracture Healing?

    National Research Council Canada - National Science Library

    Hoffman, Andrew

    2004-01-01

    A convenience sample based on availability of tibial stress fracture cases a% local Sports Medicine Clinics will be selected over 4 years until forty subjects (20 male, 20 female) have been treated...

  11. Effect of Random Natural Fractures on Hydraulic Fracture Propagation Geometry in Fractured Carbonate Rocks

    Science.gov (United States)

    Liu, Zhiyuan; Wang, Shijie; Zhao, Haiyang; Wang, Lei; Li, Wei; Geng, Yudi; Tao, Shan; Zhang, Guangqing; Chen, Mian

    2018-02-01

    Natural fractures have a significant influence on the propagation geometry of hydraulic fractures in fractured reservoirs. True triaxial volumetric fracturing experiments, in which random natural fractures are created by placing cement blocks of different dimensions in a cuboid mold and filling the mold with additional cement to create the final test specimen, were used to study the factors that influence the hydraulic fracture propagation geometry. These factors include the presence of natural fractures around the wellbore, the dimension and volumetric density of random natural fractures and the horizontal differential stress. The results show that volumetric fractures preferentially formed when natural fractures occurred around the wellbore, the natural fractures are medium to long and have a volumetric density of 6-9%, and the stress difference is less than 11 MPa. The volumetric fracture geometries are mainly major multi-branch fractures with fracture networks or major multi-branch fractures (2-4 fractures). The angles between the major fractures and the maximum horizontal in situ stress are 30°-45°, and fracture networks are located at the intersections of major multi-branch fractures. Short natural fractures rarely led to the formation of fracture networks. Thus, the interaction between hydraulic fractures and short natural fractures has little engineering significance. The conclusions are important for field applications and for gaining a deeper understanding of the formation process of volumetric fractures.

  12. Stress fracture of the medial clavicle secondary to nervous tic

    International Nuclear Information System (INIS)

    Yamada, K.; Sugiura, H.; Suzuki, Y.

    2004-01-01

    The clinical and radiological characteristics of swelling in the region of the medial clavicle may suggest the presence of a neoplastic or inflammatory lesion. This report describes a 27-year-old man with a painful tumor-like lesion over the medial clavicle, which was found to be a stress fracture caused by a nervous tic resulting from mental stress. (orig.)

  13. Increased Oxidative Stress Response in Granulocytes from Older Patients with a Hip Fracture May Account for Slow Regeneration

    Directory of Open Access Journals (Sweden)

    Zhiyong Wang

    2014-01-01

    Full Text Available Proximal femur fracture, a typical fracture of the elderly, is often associated with morbidity, reduced quality of life, impaired physical function and increased mortality. There exists evidence that responses of the hematopoietic microenvironment to fractures change with age. Therefore, we investigated oxidative stress markers and oxidative stress-related MAPK activation in granulocytes from the young and the elderly with and without fractured long bones. Lipid peroxidation levels were increased in the elderly controls and patients. Aged granulocytes were more sensitive towards oxidative stress induced damage than young granulocytes. This might be due to the basally increased expression of SOD-1 in the elderly, which was not further induced by fractures, as observed in young patients. This might be caused by an altered MAPK activation. In aged granulocytes basal p38 and JNK activities were increased and basal ERK1/2 activity was decreased. Following fracture, JNK activity decreased, while ERK1/2 and p38 activities increased in both age groups. Control experiments with HL60 cells revealed that the observed p38 activation depends strongly on age. Summarizing, we observed age-dependent changes in the oxidative stress response system of granulocytes after fractures, for example, altered MAPK activation and SOD-1 expression. This makes aged granulocytes vulnerable to the stress stimuli of the fracture and following surgery.

  14. Plastic deformation and fracture behavior of zircaloy-2 fuel cladding tubes under biaxial stress

    International Nuclear Information System (INIS)

    Maki, Hideo; Ooyama, Masatosi

    1975-01-01

    Various combinations of biaxial stress were applied on five batches of recrystallized zircaloy-2 fuel cladding tubes with different textures; elongation in both axial and circumferential directions of the specimen was measured continuously up to 5% plastic deformation. The anisotropic theory of plasticity proposed by Hill was applied to the resulting data, and anisotropy constants were obtained through the two media of plastic strain loci and plastic strain ratios. Comparison of the results obtained with the two methods proved that the plastic strain loci provide data that are more effective in predicting quantitatively the plastic deformation behavior of the zircaloy-2 tubes. The anisotropy constants change their value with progress of plastic deformation, and judicious application of the effective stress and effective strain obtained on anisotropic materials will permit the relationship between stress and strain under various biaxialities of stresses to be approximated by the work hardening law. The test specimens used in the plastic deformation experiments were then stressed to fracture under the same combination of biaxial stress as in the proceeding experiments, and the deformation in the fractured part was measured. The result proved that the tilt angle of the c-axis which serves as the index of texture is related to fracture ductility under biaxial stress. Based on this relationship, it was concluded that material with a tilt angle ranging from 10 0 to 15 0 is the most suitable for fuel cladding tubes, from the viewpoint of fracture ductility, at least in the case of unirradiated material. (auth.)

  15. BISPHOSPHONATE INDUCED STRESS FRACTURE OF BILATERAL FEMUR: A CASE REPORT

    Directory of Open Access Journals (Sweden)

    Saidapur

    2015-08-01

    Full Text Available Osteoporosis is a common problem affecting people after 4 - 5 decade of life. There are various treatment options available for Osteoporosis and Bisphosphonates are widely used. Bisphosphonates work by blocking osteoclast mediated bone resorption and can be given in oral and injectable forms. R ecent studies have brought to light the risk of sub trochanteric stress fracture secondary to bisphosphonate therapy. Here we are presenting a case with bilateral sub trochanteric fracture following prolonged bisphosphonate therapy

  16. Hydraulic fracturing rock stress measurement at Haestholmen, Finland

    International Nuclear Information System (INIS)

    Ljunggren, C.; Klasson, H.

    1992-12-01

    This report presents hydraulic fracturing measurements in two boreholes located on the Haestholmen island near Loviisa, Finland. The aim of the measurements was to provide stress data, forming input for the design of an underground facility for disposal of low- and medium-level waste as well as future plant decommissioning radioactive waste from the IVO reactor units situated on Haestholmen. The theoretical background to the hydrofracturing method is summarized, as is the equipment and experimental procedures used in the present case. All results obtained are presented and critically discussed. The final stress parameters presented are magnitudes and directions of the maximum and minimum horizontal stresses. Testing was successfully completed according to schedule in both boreholes.(orig.)

  17. A Scaphoid Stress Fracture in a Female Collegiate-Level Shot-Putter and Review of the Literature

    Directory of Open Access Journals (Sweden)

    Jessica M. Kohring

    2016-01-01

    Full Text Available Scaphoid stress fractures are rare injuries that have been described in young, high-level athletes who exhibit repetitive loading with the wrist in extension. We present a case of an occult scaphoid stress fracture in a 22-year-old female Division I collegiate shot-putter. She was successfully treated with immobilization in a thumb spica splint for 6 weeks. Loaded wrist extension activities can predispose certain high-level athletes to sustain scaphoid stress fractures, and a high index of suspicion in this patient population may aid prompt diagnosis and management of this rare injury.

  18. Repair of olecranon fractures using fiberWire without metallic implants: report of two cases

    Directory of Open Access Journals (Sweden)

    Okawa Atsushi

    2010-10-01

    Full Text Available Abstract Olecranon fractures are a common injury in fractures. The tension band technique for olecranon fractures yields good clinical outcomes; however, it is associated with significant complications. In many patients, implants irritate overlying soft tissues and cause pain. This is mostly due to protrusion of the proximal ends of the K-wires or by the twisted knots of the metal wire tension band. Below we described 2 cases of olecranon fractures treated with a unique technique using FiberWire without any metallic implants. Technically, the fragment was reduced, and two K-wires were inserted from the dorsal cortex of the distal segment to the tip of the olecranon. K-wire was exchanged for a suture retriever, and 2 strands of FiberWire were retrieved twice. Each of the two FiberWires was manually tensioned and knotted on the posterior surface of the olecranon. Bony unions could be achieved, and patients had no complaint of pain and skin irritation. There was only a small loss of flexion and extension in comparison with that of the contralateral side, and the patient did not feel inconvenienced in his daily life. Using the method described, difficulty due to K-wire or other metallic implants was avoided.

  19. Repair of olecranon fractures using fiberWire without metallic implants: report of two cases.

    Science.gov (United States)

    Nimura, Akimoto; Nakagawa, Teruhiko; Wakabayashi, Yoshiaki; Sekiya, Ichiro; Okawa, Atsushi; Muneta, Takeshi

    2010-10-12

    Olecranon fractures are a common injury in fractures. The tension band technique for olecranon fractures yields good clinical outcomes; however, it is associated with significant complications. In many patients, implants irritate overlying soft tissues and cause pain. This is mostly due to protrusion of the proximal ends of the K-wires or by the twisted knots of the metal wire tension band. Below we described 2 cases of olecranon fractures treated with a unique technique using FiberWire without any metallic implants. Technically, the fragment was reduced, and two K-wires were inserted from the dorsal cortex of the distal segment to the tip of the olecranon. K-wire was exchanged for a suture retriever, and 2 strands of FiberWire were retrieved twice. Each of the two FiberWires was manually tensioned and knotted on the posterior surface of the olecranon. Bony unions could be achieved, and patients had no complaint of pain and skin irritation. There was only a small loss of flexion and extension in comparison with that of the contralateral side, and the patient did not feel inconvenienced in his daily life. Using the method described, difficulty due to K-wire or other metallic implants was avoided.

  20. Do Capacitively Coupled Electric Fields Accelerate Tibial Stress Fracture Healing

    National Research Council Canada - National Science Library

    Hoffman, Andrew

    2002-01-01

    A convenience sample based on availability of tibial stress fracture cases at local Sports Medicine Clinics will be selected over 2-3 years until forty subjects (20 male, 20 female) have been treated...

  1. Do Capacitively Coupled Electric Fields Accelerate Tibial Stress Fracture Healing

    National Research Council Canada - National Science Library

    Hoffman, Andrew

    2003-01-01

    A convenience sample based on availability of tibial stress fracture cases at local Sports Medicine Clinics will be selected over 2-3 years until forty subjects (20 male, 20 female) have been treated...

  2. Theoretical and Experimental Investigation of Characteristics of Single Fracture Stress-Seepage Coupling considering Microroughness

    Directory of Open Access Journals (Sweden)

    Shengtong Di

    2017-01-01

    Full Text Available Based on the results of the test among the joint roughness coefficient (JRC of rock fracture, mechanical aperture, and hydraulic aperture proposed by Barton, this paper deduces and proposes a permeability coefficient formula of single fracture stress-seepage coupling considering microroughness by the introduction of effect variables considering the microparticle size and structural morphology of facture surface. Quasi-sandstone fracture of different particle size is made by the laboratory test, and the respective modification is made on the coupled shear-seepage test system of JAW-600 rock. Under this condition, the laboratory test of stress-seepage coupling of fracture of different particle size is carried out. The test results show that, for the different particle-sized fracture surface of the same JRC, the permeability coefficient is different, which means the smaller particle size, the smaller permeability coefficient, and the larger particle size, the larger permeability coefficient; with the increase of cranny hydraulic pressure, the permeability coefficient increases exponentially, and under the same cranny hydraulic pressure, there is relation of power function between the permeability coefficient and normal stress. Meanwhile, according to the theoretical formula, the microroughness coefficient of the fractures with different particle size is obtained by the calculation, and its accuracy and validity are verified by experiments. The theoretical verification values are in good agreement with the measured values.

  3. kISMET: Stress analysis and intermediate-scale hydraulic fracturing at the Sanford Underground Research Facility

    Science.gov (United States)

    Dobson, P. F.; Oldenburg, C. M.; Wu, Y.; Cook, P. J.; Kneafsey, T. J.; Nakagawa, S.; Ulrich, C.; Siler, D. L.; Guglielmi, Y.; Ajo Franklin, J. B.; Rutqvist, J.; Daley, T. M.; Birkholzer, J. T.; Wang, H. F.; Lord, N.; Haimson, B. C.; Sone, H.; Vigilante, P.; Roggenthen, W.; Doe, T.; Lee, M.; Ingraham, M. D.; Huang, H.; Mattson, E.; Johnson, T. C.; Zhou, J.; Zoback, M. D.; Morris, J.; White, J. A.; Johnson, P. A.; Coblentz, D. D.; Heise, J.

    2017-12-01

    In 2015, we established a field test facility at the Sanford Underground Research Facility (SURF), and in 2016 we carried out in situ hydraulic fracturing experiments to characterize the stress field, understand the effects of crystalline rock fabric on fracturing, and gain experience in monitoring using geophysical methods. The kISMET (permeability (k) and Induced Seismicity Management for Energy Technologies) project test site was established in the West Access Drift at the 4850 ft level, 1478 m below ground in phyllite of the Precambrian Poorman Formation. The kISMET team drilled and cored five near-vertical boreholes in a line on 3 m spacing, deviating the two outermost boreholes slightly to create a five-spot pattern around the test borehole centered in the test volume 40 m below the drift invert (floor) at a total depth of 1518 m. Laboratory measurements of core from the center test borehole showed P-wave velocity heterogeneity along each core indicating strong, fine-scale ( 1 cm or smaller) changes in the mechanical properties of the rock. Tensile strength ranges between 3‒7.5 MPa and 5‒12 MPa. Pre-fracturing numerical simulations with a discrete element code were carried out to predict fracture size and magnitude of microseismicity. Field measurements of the stress field were made using hydraulic fracturing, which produced remarkably uniformly oriented fractures suggesting rock fabric did not play a significant role in controlling fracture orientation. Electrical resistivity tomography (ERT) and continuous active seismic source monitoring (CASSM) were deployed in the four monitoring boreholes, and passive seismic accelerometer-based measurements in the West Access Drift were carried out during the generation of a larger fracture (so-called stimulation test). ERT was not able to detect the fracture created, nor did the accelerometers in the drift, but microseismicity was detected for the first (deepest) hydraulic-fracturing stress measurement. Analytical

  4. Comparison of stress fractures of male and female recruits during basic training in the Israeli anti-aircraft forces.

    Science.gov (United States)

    Gam, Arnon; Goldstein, Liav; Karmon, Yuval; Mintser, Igor; Grotto, Itamar; Guri, Alex; Goldberg, Avishay; Ohana, Nissim; Onn, Erez; Levi, Yehezkel; Bar-Dayan, Yaron

    2005-08-01

    In military basic training, stress fractures are a common orthopedic problem. Female recruits have a significantly higher incidence of stress fractures than do male recruits. Because the Israeli Defense Forces opened traditionally male roles in combat units to female recruits, their high risk for stress fractures is of concern. To compare the prevalence of stress fractures during Israeli Defense Forces anti-aircraft basic training among otherwise healthy young male and female recruits, in terms of anatomic distribution and severity. Ten mixed gender batteries, including 375 male recruits and 138 female recruits, carried out basic training in the Israeli anti-aircraft corps between November 1999 and January 2003. Each battery was monitored prospectively for 10 weeks of a basic training course. During that time, recruits who were suspected of having an overuse injury went through a protocol that included an orthopedic specialist physical examination followed by a radionuclide technetium bone scan, which was assessed by consultant nuclear medicine experts. The assessment included the anatomic site and the severity of the fractures, labeled as either high severity or low severity. Stress fractures were significantly more common among female recruits than among male recruits. A total of 42 male (11.2%) and 33 female (23.91%) recruits had positive bone scans for stress fractures (female:male relative ratio, 2.13; p < 0.001). Pelvic, femur, and tibia fractures were significantly more common among female recruits than among male recruits (p < 0.005). Female recruits had significantly more severe fractures in the tibia (p < 0.05). However, there was no significant difference in the severity of stress fractures in the femur or metatarsals between male and female recruits, as assessed by radionuclide uptake. We recommend that different training programs be assigned according to gender, in which female recruits would have a lower level of target strain or a more moderate

  5. Field performance of timber bridges. 12, Christian Hollow stress-laminated box-beam bridge

    Science.gov (United States)

    J. P. Wacker; S. C. Catherman; R. G. Winnett

    In January 1992, the Christian Hollow bridge was constructed in Steuben County, New York. The bridge is a single-span, stress-laminated box-beam superstructure that is 9.1 m long, 9.8 m wide, and 502 mm deep (30 ft long, 32 ft wide, and 19-3/4 in. deep). The performance of the bridge was continuously monitored for 28 months, beginning shortly after installation....

  6. Virtual stress testing of fracture stability in soldiers with severely comminuted tibial fractures.

    Science.gov (United States)

    Petfield, Joseph L; Hayeck, Garry T; Kopperdahl, David L; Nesti, Leon J; Keaveny, Tony M; Hsu, Joseph R

    2017-04-01

    Virtual stress testing (VST) provides a non-invasive estimate of the strength of a healing bone through a biomechanical analysis of a patient's computed tomography (CT) scan. We asked whether VST could improve management of patients who had a tibia fracture treated with external fixation. In a retrospective case-control study of 65 soldier-patients who had tibia fractures treated with an external fixator, we performed VST utilizing CT scans acquired prior to fixator removal. The strength of the healing bone and the amount of tissue damage after application of an overload were computed for various virtual loading cases. Logistic regression identified computed outcomes with the strongest association to clinical events related to nonunion within 2 months after fixator removal. Clinical events (n = 9) were associated with a low tibial strength for compression loading (p fracture patients who can safely resume weight bearing. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:805-811, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  7. Assessment of Ductile, Brittle, and Fatigue Fractures of Metals Using Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    Gheorghe Hutiu

    2018-02-01

    Full Text Available Some forensic in situ investigations, such as those needed in transportation (for aviation, maritime, road, or rail accidents or for parts working under harsh conditions (e.g., pipes or turbines would benefit from a method/technique that distinguishes ductile from brittle fractures of metals—as material defects are one of the potential causes of incidents. Nowadays, the gold standard in material studies is represented by scanning electron microscopy (SEM. However, SEM instruments are large, expensive, time-consuming, and lab-based; hence, in situ measurements are impossible. To tackle these issues, we propose as an alternative, lower-cost, sufficiently high-resolution technique, Optical Coherence Tomography (OCT to perform fracture analysis by obtaining the topography of metallic surfaces. Several metals have been considered in this study: low soft carbon steels, lamellar graphite cast iron, an antifriction alloy, high-quality rolled steel, stainless steel, and ductile cast iron. An in-house developed Swept Source (SS OCT system, Master-Slave (MS enhanced is used, and height profiles of the samples’ surfaces were generated. Two configurations were used: one where the dimension of the voxel was 1000 μm3 and a second one of 160 μm3—with a 10 μm and a 4 μm transversal resolution, respectively. These height profiles allowed for concluding that the carbon steel samples were subject to ductile fracture, while the cast iron and antifriction alloy samples were subjected to brittle fracture. The validation of OCT images has been made with SEM images obtained with a 4 nm resolution. Although the OCT images are of a much lower resolution than the SEM ones, we demonstrate that they are sufficiently good to obtain clear images of the grains of the metallic materials and thus to distinguish between ductile and brittle fractures—especially with the higher resolution MS/SS-OCT system. The investigation is finally extended to the most useful case of

  8. Pea p68, a DEAD-box helicase, provides salinity stress tolerance in transgenic tobacco by reducing oxidative stress and improving photosynthesis machinery.

    Directory of Open Access Journals (Sweden)

    Narendra Tuteja

    Full Text Available The DEAD-box helicases are required mostly in all aspects of RNA and DNA metabolism and they play a significant role in various abiotic stresses, including salinity. The p68 is an important member of the DEAD-box proteins family and, in animal system, it is involved in RNA metabolism including pre-RNA processing and splicing. In plant system, it has not been well characterized. Here we report the cloning and characterization of p68 from pea (Pisum sativum and its novel function in salinity stress tolerance in plant.The pea p68 protein self-interacts and is localized in the cytosol as well as the surrounding of cell nucleus. The transcript of pea p68 is upregulated in response to high salinity stress in pea. Overexpression of p68 driven by constitutive cauliflower mosaic virus-35S promoter in tobacco transgenic plants confers enhanced tolerances to salinity stress by improving the growth, photosynthesis and antioxidant machinery. Under stress treatment, pea p68 overexpressing tobacco accumulated higher K+ and lower Na+ level than the wild-type plants. Reactive oxygen species (ROS accumulation was remarkably regulated by the overexpression of pea p68 under salinity stress conditions, as shown from TBARS content, electrolyte leakage, hydrogen peroxide accumulation and 8-OHdG content and antioxidant enzyme activities.To the best of our knowledge this is the first direct report, which provides the novel function of pea p68 helicase in salinity stress tolerance. The results suggest that p68 can also be exploited for engineering abiotic stress tolerance in crop plants of economic importance.

  9. Hamate hook stress fracture in a professional bowler: Case report of an unusual causal sport.

    Science.gov (United States)

    How Kit, N; Malherbe, M; Hulet, C

    2017-02-01

    Stress fracture of the hook of the hamate is uncommon and is usually seen in sports involving a club, racquet or bat (i.e., golf, tennis or baseball). It is caused by direct blunt trauma. We report an unusual case of stress fracture with non-union in a 23-year-old professional bowler, probably caused by endogenous constraints, 1 year after the start of symptoms. Treatment consisted of surgical resection of the hook of the hamate. Multimodal imaging of this fracture is reviewed. Copyright © 2016. Published by Elsevier Masson SAS.

  10. Proximal tibia stress fracture with Osteoarthritis of knee - Radiological and functional analysis of one stage TKA with long stem.

    Science.gov (United States)

    Soundarrajan, Dhanasekaran; Rajkumar, Natesan; Dhanasekararaja, Palanisamy; Rajasekaran, Shanmuganathan

    2018-01-01

    Proximal tibia stress fractures with knee osteoarthritis pose a challenging situation. We evaluated the radiological and functional outcome of one-stage total knee arthroplasty (TKA) and long stem for patients with varied grades of knee arthritis and proximal tibia stress fractures.  Methods: We analysed 20 patients from April 2012 to March 2017 with proximal tibia stress fractures associated with knee osteoarthritis of varied grades. Out of 20 patients, five were acute fresh fractures. The mean age was 64 years (range, 52-78) which includes three men and 17 women. Previous surgery in the same limb, rheumatoid arthritis, valgus deformity were excluded. All patients were treated with posterior stabilised TKA with long stem, of which, four patients had screw augmentation for medial tibial bone defect and two patients with malunited fracture at stress fracture site required osteotomy, plating and bone grafting. Two patients had two level stress fracture of tibia in the same leg. The mean follow-up period was 28 (range, 6-60) months. The mean tibiofemoral angle improved from 18.27° varus to 1.8° valgus. The mean knee society score improved from 21.9 (range, -10 to 45) to 82.8 (range, 15-99) [p fractures got united at the last follow-up. One patient had infection and wound dehiscence at six months for which debridement done and had poor functional outcome. TKA with long stem gives excellent outcome, irrespective of severity of arthritis associated with stress fracture. By restoring limb alignment and bypassing the fracture site, it facilitates fracture healing. Early detection and prompt intervention is necessary to prevent the progression to recalcitrant non-union or malunion. © The Authors, published by EDP Sciences, 2018.

  11. Non-linear hydrotectonic phenomena: Part I - fluid flow in open fractures under dynamical stress loading

    International Nuclear Information System (INIS)

    Archambeau, C.B.

    1994-01-01

    A fractured solid under stress loading (or unloading) can be viewed as behaving macroscopically as a medium with internal, hidden, degrees of freedom, wherein changes in fracture geometry (i.e. opening, closing and extension) and flow of fluid and gas within fractures will produce major changes in stresses and strains within the solid. Likewise, the flow process within fractures will be strongly coupled to deformation within the solid through boundary conditions on the fracture surfaces. The effects in the solid can, in part, be phenomenologically represented as inelastic or plastic processes in the macroscopic view. However, there are clearly phenomena associated with fracture growth and open fracture fluid flows that produce effects that can not be described using ordinary inelastic phenomenology. This is evident from the fact that a variety of energy release phenomena can occur, including seismic emissions of previously stored strain energy due to fracture growth, release of disolved gas from fluids in the fractures resulting in enhanced buoyancy and subsequent energetic flows of gas and fluids through the fracture system which can produce raid extension of old fractures and the creation of new ones. Additionally, the flows will be modulated by the opening and closing of fractures due to deformation in the solid, so that the flow process is strongly coupled to dynamical processes in the surrounding solid matrix, some of which are induced by the flow itself

  12. The impact of different aperture distribution models and critical stress criteria on equivalent permeability in fractured rocks

    DEFF Research Database (Denmark)

    Bisdom, Kevin; Bertotti, Giovanni; Nick, Hamid

    2016-01-01

    Predicting equivalent permeability in fractured reservoirs requires an understanding of the fracture network geometry and apertures. There are different methods for defining aperture, based on outcrop observations (power law scaling), fundamental mechanics (sublinear length-aperture scaling...... in the fraction of open fractures. For the applied stress conditions, Coulomb predicts that 50% of the network is critically stressed, compared to 80% for Barton-Bandis peak shear. The impact of the fracture network on equivalent permeability depends on the matrix hydraulic properties, as in a low...

  13. Macro-mesoscopic Fracture and Strength Character of Pre-cracked Granite Under Stress Relaxation Condition

    Science.gov (United States)

    Liu, Junfeng; Yang, Haiqing; Xiao, Yang; Zhou, Xiaoping

    2018-05-01

    The fracture characters are important index to study the strength and deformation behavior of rock mass in rock engineering. In order to investigate the influencing mechanism of loading conditions on the strength and macro-mesoscopic fracture character of rock material, pre-cracked granite specimens are prepared to conduct a series of uniaxial compression experiments. For parts of the experiments, stress relaxation tests of different durations are also conducted during the uniaxial loading process. Furthermore, the stereomicroscope is adopted to observe the microstructure of the crack surfaces of the specimens. The experimental results indicate that the crack surfaces show several typical fracture characters in accordance with loading conditions. In detail, some cleavage fracture can be observed under conventional uniaxial compression and the fractured surface is relatively rough, whereas as stress relaxation tests are attached, relative slip trace appears between the crack faces and some shear fracture starts to come into being. Besides, the crack faces tend to become smoother and typical terrace structures can be observed in local areas. Combining the macroscopic failure pattern of the specimens, it can be deduced that the duration time for the stress relaxation test contributes to the improvement of the elastic-plastic strain range as well as the axial peak strength for the studied material. Moreover, the derived conclusion is also consistent with the experimental and analytical solution for the pre-peak stage of the rock material. The present work may provide some primary understanding about the strength character and fracture mechanism of hard rock under different engineering environments.

  14. Residual stress state in pipe cut ring specimens for fracture toughness testing

    Energy Technology Data Exchange (ETDEWEB)

    Damjanovic, Darko [J.J. Strossmayer Univ. of Osijek, Slavonski Brod (Croatia). Mechanical Engineering Faculty; Kozak, Drazan [Zagreb Univ. (Croatia). Dept. for Mechanical Design; Marsoner, Stefan [Materials Center, Leoben (Austria).; Gubeljak, Nenad [Maribor Univ. (Slovenia). Chair of Mechanics

    2017-07-01

    Thin-walled pipes are not suitable for measuring fracture toughness parameters of vital importance because longitudinal crack failure is the most common failure mode in pipes. This is due to the impossibility to manufacture standard specimens for measuring fracture toughness, such as SENB or CT specimens, from the thin wall of the pipe. Previous works noticed this problem, but until now, a good and convenient solution has not been found or developed. To overcome this problem, very good alternative solution was proposed, the so-called pipe ring notched bend specimen (PRNB) [1-5]. Until now, only the idealized geometry PRNB specimen is analyzed, i. e., a specimen which is not cut out from an actual pipe but produced from steel plate. Based on that, residual stresses are neglected along with the imperfections in geometry (elliptical and eccentricity). The aim of this research is to estimate the residual stress state(s) in real pipes used in the boiler industry produced by hot rolling technique. These types of pipes are delivered only in normalized condition, but not stress relieved. Therefore, there are residual stresses present due to the manufacturing technique, but also due to uneven cooling after the production process. Within this paper, residual stresses are estimated by three methods: the incremental hole drilling method (IHMD), X-ray diffraction (XRD) and the splitting method (SM). Knowing the residual stress state in the ring specimen, it is possible to assess their impact on fracture toughness measured on the corresponding PRNB specimen(s).

  15. Residual stress state in pipe cut ring specimens for fracture toughness testing

    International Nuclear Information System (INIS)

    Damjanovic, Darko; Kozak, Drazan; Marsoner, Stefan; Gubeljak, Nenad

    2017-01-01

    Thin-walled pipes are not suitable for measuring fracture toughness parameters of vital importance because longitudinal crack failure is the most common failure mode in pipes. This is due to the impossibility to manufacture standard specimens for measuring fracture toughness, such as SENB or CT specimens, from the thin wall of the pipe. Previous works noticed this problem, but until now, a good and convenient solution has not been found or developed. To overcome this problem, very good alternative solution was proposed, the so-called pipe ring notched bend specimen (PRNB) [1-5]. Until now, only the idealized geometry PRNB specimen is analyzed, i. e., a specimen which is not cut out from an actual pipe but produced from steel plate. Based on that, residual stresses are neglected along with the imperfections in geometry (elliptical and eccentricity). The aim of this research is to estimate the residual stress state(s) in real pipes used in the boiler industry produced by hot rolling technique. These types of pipes are delivered only in normalized condition, but not stress relieved. Therefore, there are residual stresses present due to the manufacturing technique, but also due to uneven cooling after the production process. Within this paper, residual stresses are estimated by three methods: the incremental hole drilling method (IHMD), X-ray diffraction (XRD) and the splitting method (SM). Knowing the residual stress state in the ring specimen, it is possible to assess their impact on fracture toughness measured on the corresponding PRNB specimen(s).

  16. Characterization of metallized alumina: properties. [Diamonite P-3142-1, Wesgo Al-500 alumina ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Swearengen, J.C.; Burchett, O.L., Gieske, J.H.

    1976-12-01

    The effects of metallizing and brazing on the mechanical properties of Diamonite P-3142-1 and Wesgo A1-500 alumina ceramics were evaluated. The information was required for analytical prediction of the performance of ceramic-to-metal joints formed by the metallize-braze process. Residual stresses and fracture strengths were monitored before and after metallizing treatments; micromechanical modelling and surface acoustic wave experiments were utilized to determine density, thermal expansion and elastic moduli within the metallized region of the ceramics. It was observed that the metallizing elements penetrate the ceramics to a depth of about 005 ..mu..m and measurably modify the properties to a depth of about 300 ..mu..m. The moduli and density are increased approximately five percent within the penetration zone. The thermal expansion coefficients are not modified significantly by metallizing; the warping which occurs during metallizing results from microstructural changes within the ceramics and not differential thermal contraction. Fracture toughness of the Diamonite ceramic is greater than that of the Wesgo, although the metallizing treatments increase the toughness of each. Fracture strength of the Diamonite was degraded on the metallized surface, whereas the strength of the Wesgo was essentially unchanged by metallizing. Macroscopic compressive residual stresses, which exist at the surfaces of the ceramics, do not significantly affect the fracture strengths. The implications of these results for calculations of joint performance are discussed.

  17. Fatigue Fracture Strength of Implant-Supported Full Contour Zirconia and Metal Ceramic Fixed Partial Dentures

    Directory of Open Access Journals (Sweden)

    Fariborz Vafaee

    2017-10-01

    Full Text Available Objectives: Zirconia restorations have been suggested as a more durable and more appealing alternative to metal restorations. However, their mechanical properties may be negatively affected by fatigue due to superficial stresses or low temperature degradation. This study aimed to assess the fatigue fracture strength of three-unit implant-supported full contour zirconia and pre-sintered cobalt-chromium (Co-Cr alloy posterior fixed partial dentures (FPDs.Materials and Methods: In this in-vitro experimental study, 28 posterior three-unit implant-supported FPDs were fabricated of full contour zirconia and pre-sintered Co-Cr alloy, and were cemented on implant abutments. To simulate the oral environment, FPDs were subjected to 10,000 thermal cycles between 5-55°C for 30 seconds, and were then transferred to a chewing simulator (100,000 cycles, 50 N, 0.5 Hz. Afterwards, fatigue fracture strength was measured using a universal testing machine. Data were analyzed by Mann-Whitney U test.Results: The mean and standard deviation of fracture strength were 2108.6±440.1 N in full contour zirconia, and 3499.9±1106.5 N in pre-sintered Co-Cr alloy. According to Mann- Whitney U test, the difference in this respect was statistically significant between the two groups (P=0.007.Conclusions: Since the fracture strength values obtained in the two groups were significantly higher than the maximum mean masticatory load in the oral environment, both materials can be used for fabrication of posterior three-unit FPDs, depending on the esthetic demands of patients.

  18. Hydraulic fracturing stress measurements at Yucca Mountain, Nevada, and relationship to the regional stress field

    International Nuclear Information System (INIS)

    Stock, J.M.; Healy, J.H.; Hickman, S.H.; Zoback, M.D.

    1985-01-01

    Hydraulic fracturing stress measurements and acoustic borehole televiewer logs were run in holes USW G-1 and USW G-2 at Yucca Mountain as part of the Nevada Nuclear Waste Storage Investigations for the U. S. Department of Energy. Eight tests in the saturated zone, at depths from 646 to 1288 m, yielded values of the least horizontal stress S/sub h/ that are considerably lower than the vertical principal stress S/sub v/. In tests for which the greatest horizontal principal stress S/sub H/ could be determined, it was found to be less than S/sub v/, indicating a normal faulting stress regime. The borehole televiewer logs showed the presence of long (in excess of 10 m), vertical, drilling-induced fractures in the first 300 m below the water table. These are believed to form by the propagation of small preexisting cracks under the excess downhole fluid pressures (up to 5.2 MPa) applied during drilling. The presence of these drilling-induced hydrofractures provides further confirmation of the low value of the least horizontal stresses. A least horizontal principal stress direction of N60 0 W--N65 0 W is indicated by the orientation of the drilling-induced hydrofractures (N25 0 E--N30 0 E), and the orientation of stress-induced well bore breakouts in the lower part of USW G-2 (N65 0 W). This direction is in good agreement with indicators of stress direction from elsewhere at the Nevada Test Site. The observed stress magnitudes and directions were examined for the possibility of slip on preexisting faults. Using these data, the Coulomb criterion for frictional sliding suggests that for coefficients of friction close to 0.6, movement on favorably oriented faults could be expected

  19. Study of the Fracture Mechanisms of Electroplated Metallization Systems Using In Situ Microtension Test

    Science.gov (United States)

    Msolli, Sabeur; Kim, Heung Soo

    2018-03-01

    This framework assesses the mechanical behavior of some potential thin/thick metallization systems in use as either ohmic contacts for diamond semi-conductors or for metallization on copper double bounded ceramic substrates present in the next-generation power electronics packaging. The interesting and unique characteristic of this packaging is the use of diamond as a semi-conductor material instead of silicon to increase the lifetime of embedded power converters for use in aeronautical applications. Theoretically, such packaging is able to withstand temperatures of up to 300 °C without breaking the semi-conductor, provided that the constitutive materials of the packaging are compatible. Metallization is very important to protect the chips and substrates. Therefore, we address this issue in the present work. The tested metallization systems are Ni/Au, Ni/Cr/Au and Ni/Cr. These specific systems were studied since they can be used in conjunction with existing bonding technologies, including AuGe soldering, Ag-In Transient liquid Phase Bonding and silver nanoparticle sintering. The metallization is achieved via electrodeposition, and a mechanical test, consisting of a microtension technique, is carried out at room temperature inside a scanning electron microscopy chamber. The technique permits observations the cracks initiation and growth in the metallization to locate the deformation zones and identify the fracture mechanisms. Different failure mechanisms were shown to occur depending on the metallic layers deposited on top of the copper substrate. The density of these cracks depends on the imposed load and the involved metallization. These observations will help choose the metallization that is compatible with the particular bonding material, and manage mechanical stress due to thermal cycling so that they can be used as a constitutive component for high-temperature power electronics packaging.

  20. Macro and Microscopic Investigation on Fracture Specimen of Alloy 617 Base Metal and Weldment in Low Cycle Fatigue Regime

    International Nuclear Information System (INIS)

    Kim, Seon Jin; Dewa, Rando Tungga; Kim, Won Gon

    2016-01-01

    This paper investigates macro- and microscopic fractography performed on fracture specimens from low cycle fatigue (LCF) testings through an Alloy 617 base metal and weldments. The weldment specimens were taken from gas tungsten arc welding (GTAW) pad of Alloy 617. The aim of the present study is to investigate the macro- and microscopic aspects of the low cycle fatigue fracture mode and mechanism of Alloy 617 base metal and GTAWed weldment specimens. Fully axial total strain controlled fatigue tests were conducted at room temperature with total strain ranges of 0.6, 0.9, 1.2 and 1.5%. Macroscopic fracture surfaces of Alloy 617 base metal specimens showed a flat type normal to the fatigue loading direction, whereas the GTAWed weldment specimens were of a shear/star type. The fracture surfaces of both the base metal and weldment specimens revealed obvious fatigue striations at the crack propagation regime. In addition, the fatigue crack mechanism of the base metal showed a transgranular normal to fatigue loading direction; however, the GTAWed weldment specimens showed a transgranular at approximately 45° to the fatigue loading direction

  1. Macro and Microscopic Investigation on Fracture Specimen of Alloy 617 Base Metal and Weldment in Low Cycle Fatigue Regime

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seon Jin; Dewa, Rando Tungga [Pukyung National Univ., Busan (Korea, Republic of); Kim, Won Gon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-06-15

    This paper investigates macro- and microscopic fractography performed on fracture specimens from low cycle fatigue (LCF) testings through an Alloy 617 base metal and weldments. The weldment specimens were taken from gas tungsten arc welding (GTAW) pad of Alloy 617. The aim of the present study is to investigate the macro- and microscopic aspects of the low cycle fatigue fracture mode and mechanism of Alloy 617 base metal and GTAWed weldment specimens. Fully axial total strain controlled fatigue tests were conducted at room temperature with total strain ranges of 0.6, 0.9, 1.2 and 1.5%. Macroscopic fracture surfaces of Alloy 617 base metal specimens showed a flat type normal to the fatigue loading direction, whereas the GTAWed weldment specimens were of a shear/star type. The fracture surfaces of both the base metal and weldment specimens revealed obvious fatigue striations at the crack propagation regime. In addition, the fatigue crack mechanism of the base metal showed a transgranular normal to fatigue loading direction; however, the GTAWed weldment specimens showed a transgranular at approximately 45° to the fatigue loading direction.

  2. Stress Fractures of the Distal Femur Involving Small Nonossifying Fibromas in Young Athletes.

    Science.gov (United States)

    Robertson, Michael; Gilley, Jasen; Nicholas, Richard

    2016-11-01

    Small nonossifying fibromas (ie, fibrocortical defects) are incidental findings commonly seen on radiographs of young patients evaluated for extremity pain or sport-related trauma. Although pathological fractures have been reported in larger lesions, the subcentimeter, intracortical defects are not generally thought to predispose to pathological fractures. The authors report on 2 young athletes who presented with knee pain after initiating conditioning exercise programs (cross-training). Both were diagnosed with transverse metaphyseal stress fractures involving fibrous cortical defects of the distal femur. Initial radiographs were interpreted without evidence of fractures. However, subsequent magnetic resonance imaging was informative, suggesting that magnetic resonance imaging may have value in identifying potential stress reactions in young athletes. In addition, subsequent plain radiographs of both patients showed subperiosteal new bone formation in these nondisplaced fractures, suggesting that serial radiographs and close clinical follow-up are warranted for patients with persistent symptoms. The authors propose that, in the appropriate clinical setting, the presence of a small nonossifying fibroma may be a clinical indication that further evaluation is needed when plain radiographs show normal findings, as the defect could be an unrecognized area of fracture initiation. [Orthopedics. 2016; 39(6):e1197-e1200.]. Copyright 2016, SLACK Incorporated.

  3. Magnetic resonance imaging of an equine fracture model containing stainless steel metal implants.

    Science.gov (United States)

    Pownder, S L; Koff, M F; Shah, P H; Fortier, L A; Potter, H G

    2016-05-01

    Post operative imaging in subjects with orthopaedic implants is challenging across all modalities. Magnetic resonance imaging (MRI) is preferred to assess human post operative musculoskeletal complications, as soft tissue and bones are evaluated without using ionising radiation. However, with conventional MRI pulse sequences, metal creates susceptibility artefact that distorts anatomy. Assessment of the post operative equine patient is arguably more challenging due to the volume of metal present, and MRI is often not performed in horses with implants. Novel pulse sequences such as multiacquisition variable resonance image combination (MAVRIC) now provide improved visibility in the vicinity of surgical-grade implants and offer an option for imaging horses with metal implants. To compare conspicuity of regional anatomy in an equine fracture-repair model using MAVRIC, narrow receiver bandwidth (NBW) fast spin echo (FSE), and wide receiver bandwidth (WBW) FSE sequences. Nonrandomised in vitro experiment. MAVRIC, NBW FSE and WBW FSE were performed on 9 cadaveric distal limbs with fractures and stainless steel implants in the third metacarpal bone and proximal phalanx. Objective measures of artefact reduction were performed by calculating the total artefact area in each transverse image as a percentage of the total anatomic area. The number of transverse images in which fracture lines were visible was tabulated for each sequence. Regional soft tissue conspicuity was assessed subjectively. Overall anatomic delineation was improved using MAVRIC compared with NBW FSE; delineation of structures closest to the metal implants was improved using MAVRIC compared with WBW FSE and NBW FSE. Total artefact area was the highest for NBW FSE and lowest for MAVRIC; the total number of transverse slices with a visible fracture line was highest in MAVRIC and lowest in NBW FSE. MAVRIC and WBW FSE are feasible additions to minimise artefact around implants. © 2015 EVJ Ltd.

  4. Coulomb stress change during and after tensile fracture opening in a geothermal reservoir

    NARCIS (Netherlands)

    Urpi, L.; Blöcher, G.; Zimmermann, G.; Wees, J.D. van; Fokker, P.

    2013-01-01

    Stress shadowing and the ratio of shear to normal stress in the rock surrounding a newly created tensile fracture are investigated. Shearing on plane of weakness near the stimulated volume can be inhibited or promoted by change in poro- and thermo-elastic stress, while pore pressure increase tends

  5. [Stress fractures in disabled athletes' preparation for the paralympic games in Athens, 2004: an assessment].

    Science.gov (United States)

    Laboute, E; Druvert, J C; Pailler, D; Piera, J-B

    2008-03-01

    To identify stress fracture frequency and the associated risk factors in disabled female athletes preparing the Paralympic Games in Athens in 2004. The study is focused on four athletes (including one with a vision impairment) among the 31 women selected to participate in the Paralympic Games. The medical records of selected athletes not having been able to participate in the Games due to a stress fracture were analyzed. One case of stress fracture to the first metatarsal was reported of one below-knee amputee and an additional case to the second metatarsal of one hemiplegic athlete. Two of three athletes with physical disability were unable to participate in the Games because of stress fracture occurring during the preparatory phase. Among four athletes selected to take part in the Paralympic Games. If morphological predispositions are inherent to the sportswomen, the main favouring factor to be retained is their running asymmetry. Training programmes must therefore take this characteristic into account and must not offer heavy-load repetitive exercise (such as endurance or jogging) at the expense of technique. Over-intense training exposes the disabled athlete to this type of pathology and is likely to affect his chances of competing.

  6. Failure and fracture of thin film materials for MEMS

    Science.gov (United States)

    Jonnalagadda, Krishna Nagasai

    Design and reliable operation of Microelectromechanical systems (MEMS) depend on the material parameters that influence the failure and fracture properties of brittle and metallic thin films. Failure in brittle materials is quantified by the onset of catastrophic fracture, while in metals, the onset of inelastic deformation is considered as failure as it increases the material compliance. This dissertation research developed new experimental methods to address three aspects on the failure response of these two categories of materials: (a) the role of microstructure and intrinsic stress gradients in the opening mode fracture of mathematically sharp pre-cracks in amorphous and polycrystalline brittle thin films, (b) the critical conditions for mixed mode I/II pre-cracks and their comparison with linear elastic fracture mechanics (LEFM) criteria for crack initiation in homogeneous materials, and (c) the strain rate sensitivity of textured nanocrystalline Au and Pt films with grain sizes of 38 nm and 25 nm respectively. One of the technical objectives of this research was to develop experimental methods and tools that could become standards in MEMS and thin film experimental mechanics. In this regard, a new method was introduced to conduct mode I and mixed mode I/II fracture studies with microscale thin film specimens containing sharp edge pre-cracks. The mode I experiments permitted the direct application of LEFM handbook solutions. On the other hand, the newly introduced mixed mode I/II experiments in thin films were conducted by establishing a new protocol that employs non-standard oblique edge pre-cracks and a numerical analysis based on the J-integral to calculate the stress intensity factors. Similarly, a new experimental protocol has been implemented to carry out experiments with metallic thin films at strain rates that vary by more than six orders of magnitude. The results of mode I fracture experiments concluded that grain inhomogeneity in polycrystalline

  7. Influence of stress-induced deformations on observed water flow in fractures at the Climax granitic stock

    International Nuclear Information System (INIS)

    Wilder, D.G.

    1987-06-01

    Three examples of stress-induced displacement influence on fracture-dominated hydrology were noted in drifts 1400 ft below surface in granite. Seepage into drifts was limited to portions of shears near a fault zone. No water entered the drifts from the fault itself, although its orientation relative to Basin and Range extension is favorable for fracture opening. Localization of seepage appears to result from excavation block motion that increased apertures of the shear zones in contrast to the fault where asperities had been destroyed by earlier shearing thus minimizing aperture increases. Seepage was also noted, in an adjoining drift, from a set of shallow-dip healed fractures that intersected the rib, and from vertical fractures that increased the crown. The restricted location of this seepage apparently was a result of shear opening of the joints that occurred because of cantilevered support of tabular rock between joints. Interpretation of paleostresses based on joint chronologies and orientations indicates that sets subjected to shear stresses at a time when normal stresses were low contained mineral infilling. Sets subjected to shear stresses at a time when the normal stresses were significant had minimal mineral infilling. 8 refs., 7 figs

  8. Fundamental differences in axial and appendicular bone density in stress fractured and uninjured Royal Marine recruits--a matched case-control study.

    Science.gov (United States)

    Davey, Trish; Lanham-New, Susan A; Shaw, Anneliese M; Cobley, Rosalyn; Allsopp, Adrian J; Hajjawi, Mark O R; Arnett, Timothy R; Taylor, Pat; Cooper, Cyrus; Fallowfield, Joanne L

    2015-04-01

    Stress fracture is a common overuse injury within military training, resulting in significant economic losses to the military worldwide. Studies to date have failed to fully identify the bone density and bone structural differences between stress fractured personnel and controls due to inadequate adjustment for key confounding factors; namely age, body size and physical fitness; and poor sample size. The aim of this study was to investigate bone differences between male Royal Marine recruits who suffered a stress fracture during the 32 weeks of training and uninjured control recruits, matched for age, body weight, height and aerobic fitness. A total of 1090 recruits were followed through training and 78 recruits suffered at least one stress fracture. Bone mineral density (BMD) was measured at the lumbar spine (LS), femoral neck (FN) and whole body (WB) using Dual X-ray Absorptiometry in 62 matched pairs; tibial bone parameters were measured using peripheral Quantitative Computer Tomography in 51 matched pairs. Serum C-terminal peptide concentration was measured as a marker of bone resorption at baseline, week-15 and week-32. ANCOVA was used to determine differences between stress fractured recruits and controls. BMD at the LS, WB and FN sites was consistently lower in the stress fracture group (Pstress fracture recruits and controls were evident in all slices of the tibia, with the most prominent differences seen at the 38% tibial slice. There was a negative correlation between the bone cross-sectional area and BMD at the 38% tibial slice. There was no difference in serum CTx concentration between stress fracture recruits and matched controls at any stage of training. These results show evidence of fundamental differences in bone mass and structure in stress fracture recruits, and provide useful data on bone risk factor profiles for stress fracture within a healthy military population. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.

  9. Oncogenic osteomalacia presenting as bilateral stress fractures of the tibia

    International Nuclear Information System (INIS)

    Ohashi, Kenjirou; Ohnishi, Takeshi; Ishikawa, Tohru; Tani, Haruo; Uesugi, Keisuke; Takagi, Masayuki

    1999-01-01

    We report on a patient with bilateral stress fractures of the tibia who subsequently showed classic biochemical features of oncogenic osteomalacia. Conventional radiographs were normal. MR imaging revealed symmetric, bilateral, band-like low-signal lesions perpendicular to the medial cortex of the tibiae and corresponding to the only lesions subsequently seen on the bone scan. A maxillary sinus lesion was subsequently detected and surgically removed resulting in prompt alleviation of symptoms and normalization of hypophosphatemia and low 1,25-(OH) 2 vitamin D 3 . The lesion was pathologically diagnosed as a hemangiopericytoma-like tumor. Patients with oncogenic osteomalacia may present with stress fractures limited to the tibia, as seen in athletes. The clue to the real diagnosis lies in paying close attention to the serum phosphate levels, especially in patients suffering generalized symptoms of weakness and not given to unusual physical activity. (orig.)

  10. Bilateral Stress Fractures of the Femoral Neck from Renal Osteomalacia: A Case Report

    Directory of Open Access Journals (Sweden)

    S Sengupta

    2008-04-01

    Full Text Available A rare case of spontaneous bilateral stress fractures of femoral neck leading to coxa vara in a young female with history of chronic renal disease and secondary osteomalacia is described. Once the underlying disease was controlled, the fracture was treated by valgus osteotomy with good result.

  11. Investigation into stress wave propagation in metal foams

    Directory of Open Access Journals (Sweden)

    Li Lang

    2015-01-01

    Full Text Available The aim of this study is to investigate stress wave propagation in metal foams under high-speed impact loading. Three-dimensional Voronoi model is established to represent real closed-cell foam. Based on the one-dimensional stress wave theory and Voronoi model, a numerical model is developed to calculate the velocity of elastic wave and shock wave in metal foam. The effects of impact velocity and relative density of metal foam on the stress wave propagation in metal foams are explored respectively. The results show that both elastic wave and shock wave propagate faster in metal foams with larger relative density; with increasing the impact velocity, the shock wave propagation velocity increase, but the elastic wave propagation is not sensitive to the impact velocity.

  12. Role of MRI in hip fractures, including stress fractures, occult fractures, avulsion fractures

    International Nuclear Information System (INIS)

    Nachtrab, O.; Cassar-Pullicino, V.N.; Lalam, R.; Tins, B.; Tyrrell, P.N.M.; Singh, J.

    2012-01-01

    MR imaging plays a vital role in the diagnosis and management of hip fractures in all age groups, in a large spectrum of patient groups spanning the elderly and sporting population. It allows a confident exclusion of fracture, differentiation of bony from soft tissue injury and an early confident detection of fractures. There is a spectrum of MR findings which in part is dictated by the type and cause of the fracture which the radiologist needs to be familiar with. Judicious but prompt utilisation of MR in patients with suspected hip fractures has a positive therapeutic impact with healthcare cost benefits as well as social care benefits.

  13. Effect of Stress State on Fracture Features

    Science.gov (United States)

    Das, Arpan

    2018-02-01

    Present article comprehensively explores the influence of specimen thickness on the quantitative estimates of different ductile fractographic features in two dimensions, correlating tensile properties of a reactor pressure vessel steel tested under ambient temperature where the initial crystallographic texture, inclusion content, and their distribution are kept unaltered. It has been investigated that the changes in tensile fracture morphology of these steels are directly attributable to the resulting stress-state history under tension for given specimen dimensions.

  14. Atypical femoral neck stress fracture in a marathon runner: a case report and literature review.

    LENUS (Irish Health Repository)

    2012-02-01

    BACKGROUND: Femoral neck stress fractures are relatively rare and may present as sports-related injuries. The presentation is variable, and prompt diagnosis facilitates the earliest return to pre-morbid functional activity levels. Delayed detection may precipitate femoral non-union or avascular necrosis, resulting in long-term functional deficit. AIMS: We present the case of a basicervical femoral neck stress fracture occurring in a 23-year-old marathon runner. The pathophysiology and practical management issues related to this unusual injury pattern are discussed. CONCLUSION: The growing interest in amateur athletic activities should raise the index of suspicion for stress fractures of the femoral neck in healthy adults with atypical hip pain. Increased levels of patient education and physician awareness can reduce the incidence of long-term morbidity in cases of this unusual sports-related injury.

  15. Simulation of three-dimensional tectonic stress fields and quantitative prediction of tectonic fracture within the Damintun Depression, Liaohe Basin, northeast China

    Science.gov (United States)

    Guo, Peng; Yao, Leihua; Ren, Desheng

    2016-05-01

    Tectonic fractures are important factors that influence oil and natural gas migration and accumulation within "buried hill" reservoirs. To obtain a quantitative forecast of the development and distribution of reservoir fractures in the Damintun Depression, we analyzed the characteristics of regional structural evolution and paleotectonic stress field setting. A reasonable geological model of the research area was built based on an interpretation of the geological structure, a test for rock mechanics, and experiment on acoustic emission. Thereafter, a three-dimensional paleotectonic stress field during the Yanshan movement was simulated by the finite element method. Rock failure criterion and comprehensive evaluation coefficient of fractures were used to determine the quantitative development of fractures and predict zones that are prone to fracture development. Under an intense Yanshan movement, high stress strength is distributed in the south and northeast parts of the study area, where stress is extremely high. The fracture development zones are mainly controlled by the tectonic stress field and typically located in the same areas as those of high maximum principal and shear stresses. The predicted areas with developed fractures are consistent with the wells with high fracture linear density and in locations with high-producing oil and gas wells.

  16. Effect of the critical size of initial voids on stress-induced migration

    International Nuclear Information System (INIS)

    Aoyagi, Minoru

    2004-01-01

    The stress-induced migration phenomenon is one of the problems related to the reliability of metal interconnections in semiconductor devices. This phenomenon causes voids and fractures in interconnections. The basic feature of this phenomenon is vacancy migration to minute initial voids. Expanding initial voids grow into larger voids and fractures. The purpose of this work is to theoretically clarify the effects of residual thermal stress and void surface stress on the behavior of the initial voids which exist immediately after a passivation process. Using a spherical metal sample with a spherical void under external stress, vacancy absorption or emission was investigated between the void surface and the sample surface. The behavior of vacancies and atoms was also investigated in interconnections under residual thermal stress. We show that the void or sample surface becomes a vacancy sink or source, depending on the mutual relationship between the surface stress due to the surface-free energy and the residual thermal stress. We also reveal that the initial voids, which exist immediately after a passivation process, grow into larger voids and fractures when the size of the initial voids exceeds the critical size. If the size of the initial void can be controlled to below the critical size, voids and fractures do not occur

  17. Combined macroscopic and microscopic approach to the fracture of metals. Technical progress report, July 1976--June 1977

    International Nuclear Information System (INIS)

    Gurland, J.; Rice, J.R.; Asaro, R.J.; Needleman, A.

    1977-07-01

    The work includes the completion of a comprehensive study of the contributions of dislocation substructures and local stresses at particle interfaces to the strain hardening of dispersion hardened steels, and the presentation of a model of segregant induced embrittlement of grain interfaces. Work was continued on crack initiation at inclusions and on the theory of plastic flow localization. These microscopic effects are discussed in relation to the mechanisms of brittle fracture and ductile rupture of metals and alloys. On a more macroscopic scale, the state of stress and strain associated with the large plastic deformation at a crack tip was further defined based on finite element and slip line calculations, and some preliminary results were obtained by finite element methods for stable crack growth under plane strain conditions. A new finite element method has been developed for fully plastic flow under plane strain conditions

  18. Bone geometry, strength, and muscle size in runners with a history of stress fracture.

    Science.gov (United States)

    Popp, Kristin L; Hughes, Julie M; Smock, Amanda J; Novotny, Susan A; Stovitz, Steven D; Koehler, Scott M; Petit, Moira A

    2009-12-01

    Our primary aim was to explore differences in estimates of tibial bone strength, in female runners with and without a history of stress fractures. Our secondary aim was to explore differences in bone geometry, volumetric density, and muscle size that may explain bone strength outcomes. A total of 39 competitive distance runners aged 18-35 yr, with (SFX, n = 19) or without (NSFX, n = 20) a history of stress fracture were recruited for this cross-sectional study. Peripheral quantitative computed tomography (XCT 3000; Orthometrix, White Plains, NY) was used to assess volumetric bone mineral density (vBMD, mg x mm(-3)), bone area (ToA, mm(2)), and estimated compressive bone strength (bone strength index (BSI) = ToA x total volumetric density (ToD(2))) at the distal tibia (4%). Total (ToA, mm(2)) and cortical (CoA, mm(2)) bone area, cortical vBMD, and estimated bending strength (strength-strain index (SSIp), mm(3)) were measured at the 15%, 25%, 33%, 45%, 50%, and 66% sites. Muscle cross-sectional area (MCSA) was measured at the 50% and 66% sites. Participants in the SFX group had significantly smaller (7%-8%) CoA at the 45%, 50%, and 66% sites (P stress fracture. However, the lower strength was appropriate for the smaller muscle size, suggesting that interventions to reduce stress fracture risk might be aimed at improving muscle size and strength.

  19. Stress analysis and optimization of Nd:YAG pulsed laser processing of notches for fracture splitting of a C70S6 connecting rod

    International Nuclear Information System (INIS)

    Kou, Shuqing; Gao, Yan; Zhao, Yong; Lin, Baojun

    2017-01-01

    The pulsed laser pre-processing of a notch as the fracture initiation source for the splitting process is the key mechanism of an advanced fracture splitting technology for C70S6 connecting rods. This study investigated the stress field of Nd:YAG pulsed laser grooving, which affects the rapid fracture initiation at the notch root and the controlled crack extension in the critical fracture splitting quality, to improve manufacturing quality. Thermal elastic-plastic incremental theory was applied to build the finite element analysis model of the stress field of pulsed laser grooving for fracture splitting based on the Rotary-Gauss body heat source. The corresponding numerical simulation of the stress field was conducted. The changes and distributions of the stress during pulsed laser grooving were examined, the influence rule of the primary technological parameters on the residual stress was analyzed, and the analysis results were validated by the corresponding cutting experiment. Results showed that the residual stress distribution was concentrated in the Heat-affected zone (HAZ) near the fracture splitting notch, which would cause micro-cracks in the HAZ. The stress state of the notch root in the fracture initiation direction was tensile stress, which was beneficial to the fracture initiation and the crack rapid extension in the subsequent fracture splitting process. However, the uneven distribution of the stress could lead to fracture splitting defects, and thus the residual stress should be lowered to a reasonable range. Decreasing the laser pulse power, increasing the processing speed, and lowering the pulse width can lower the residual stress. Along with the actual production, the reasonable main technological parameters were obtained.

  20. Stress analysis and optimization of Nd:YAG pulsed laser processing of notches for fracture splitting of a C70S6 connecting rod

    Energy Technology Data Exchange (ETDEWEB)

    Kou, Shuqing; Gao, Yan; Zhao, Yong; Lin, Baojun [Jilin University, Changchun (China)

    2017-05-15

    The pulsed laser pre-processing of a notch as the fracture initiation source for the splitting process is the key mechanism of an advanced fracture splitting technology for C70S6 connecting rods. This study investigated the stress field of Nd:YAG pulsed laser grooving, which affects the rapid fracture initiation at the notch root and the controlled crack extension in the critical fracture splitting quality, to improve manufacturing quality. Thermal elastic-plastic incremental theory was applied to build the finite element analysis model of the stress field of pulsed laser grooving for fracture splitting based on the Rotary-Gauss body heat source. The corresponding numerical simulation of the stress field was conducted. The changes and distributions of the stress during pulsed laser grooving were examined, the influence rule of the primary technological parameters on the residual stress was analyzed, and the analysis results were validated by the corresponding cutting experiment. Results showed that the residual stress distribution was concentrated in the Heat-affected zone (HAZ) near the fracture splitting notch, which would cause micro-cracks in the HAZ. The stress state of the notch root in the fracture initiation direction was tensile stress, which was beneficial to the fracture initiation and the crack rapid extension in the subsequent fracture splitting process. However, the uneven distribution of the stress could lead to fracture splitting defects, and thus the residual stress should be lowered to a reasonable range. Decreasing the laser pulse power, increasing the processing speed, and lowering the pulse width can lower the residual stress. Along with the actual production, the reasonable main technological parameters were obtained.

  1. Proximal tibia stress fracture with Osteoarthritis of knee − Radiological and functional analysis of one stage TKA with long stem

    Science.gov (United States)

    Soundarrajan, Dhanasekaran; Rajkumar, Natesan; Dhanasekararaja, Palanisamy; Rajasekaran, Shanmuganathan

    2018-01-01

    Introduction: Proximal tibia stress fractures with knee osteoarthritis pose a challenging situation. We evaluated the radiological and functional outcome of one-stage total knee arthroplasty (TKA) and long stem for patients with varied grades of knee arthritis and proximal tibia stress fractures.  Methods: We analysed 20 patients from April 2012 to March 2017 with proximal tibia stress fractures associated with knee osteoarthritis of varied grades. Out of 20 patients, five were acute fresh fractures. The mean age was 64 years (range, 52–78) which includes three men and 17 women. Previous surgery in the same limb, rheumatoid arthritis, valgus deformity were excluded. All patients were treated with posterior stabilised TKA with long stem, of which, four patients had screw augmentation for medial tibial bone defect and two patients with malunited fracture at stress fracture site required osteotomy, plating and bone grafting. Two patients had two level stress fracture of tibia in the same leg. Results: The mean follow-up period was 28 (range, 6–60) months. The mean tibiofemoral angle improved from 18.27° varus to 1.8° valgus. The mean knee society score improved from 21.9 (range, −10 to 45) to 82.8 (range, 15–99) [p fractures got united at the last follow-up. One patient had infection and wound dehiscence at six months for which debridement done and had poor functional outcome. Conclusion: TKA with long stem gives excellent outcome, irrespective of severity of arthritis associated with stress fracture. By restoring limb alignment and bypassing the fracture site, it facilitates fracture healing. Early detection and prompt intervention is necessary to prevent the progression to recalcitrant non-union or malunion. PMID:29667926

  2. Do stress fractures induce hypertrophy of the grafted fibula? A report of three cases received free vascularized fibular graft treatment for tibial defects.

    Science.gov (United States)

    Qi, Yong; Sun, Hong-Tao; Fan, Yue-Guang; Li, Fei-Meng; Lin, Zhou-Sheng

    2016-06-01

    The presence of large segmental defects of the diaphyseal bone is challenging for orthopedic surgeons. Free vascularized fibular grafting (FVFG) is considered to be a reliable reconstructive procedure. Stress fractures are a common complication following this surgery, and hypertrophy is the main physiological change of the grafted fibula. The exact mechanism of hypertrophy is not completely known. To the best of our knowledge, no studies have examined the possible relationship between stress fractures and hypertrophy. We herein report three cases of patients underwent FVFG. Two of them developed stress fractures and significant hypertrophy, while the remaining patient developed neither stress fractures nor significant hypertrophy. This phenomenon indicates that a relationship may exist between stress fractures and hypertrophy of the grafted fibula, specifically, that the presence of a stress fracture may initiate the process of hypertrophy.

  3. Use of Pulsing Electromagnetic Fields for the Treatment of Pelvic Stress Fractures Among Female Soldiers

    National Research Council Canada - National Science Library

    Jones, D

    1995-01-01

    .... Pulsing electromagnetic fields (PEMFs)have been shown to speed the healing of non-union fractures and we have used them successfully to treat stress fractures in the lower limbs. All women at Ft...

  4. Two-View Gravity Stress Imaging Protocol for Nondisplaced Type II Supination External Rotation Ankle Fractures: Introducing the Gravity Stress Cross-Table Lateral View.

    Science.gov (United States)

    Boffeli, Troy J; Collier, Rachel C; Gervais, Samuel J

    Assessing ankle stability in nondisplaced Lauge-Hansen supination external rotation type II injuries requires stress imaging. Gravity stress mortise imaging is routinely used as an alternative to manual stress imaging to assess deltoid integrity with the goal of differentiating type II from type IV injuries in cases without a posterior or medial fracture. A type II injury with a nondisplaced fibula fracture is typically treated with cast immobilization, and a type IV injury is considered unstable and often requires operative repair. The present case series (two patients) highlights a standardized 2-view gravity stress imaging protocol and introduces the gravity stress cross-table lateral view. The gravity stress cross-table lateral view provides a more thorough evaluation of the posterior malleolus owing to the slight external rotation and posteriorly directed stress. External rotation also creates less bony overlap between the tibia and fibula, allowing for better visualization of the fibula fracture. Gravity stress imaging confirmed medial-sided injury in both cases, confirming the presence of supination external rotation type IV or bimalleolar equivalent fractures. Open reduction and internal fixation was performed, and both patients achieved radiographic union. No further treatment was required at 21 and 33 months postoperatively. Copyright © 2017 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  5. Weightbearing vs Gravity Stress Radiographs for Stability Evaluation of Supination-External Rotation Fractures of the Ankle.

    Science.gov (United States)

    Seidel, Angela; Krause, Fabian; Weber, Martin

    2017-07-01

    Isolated lateral malleolar fractures may result from a supination-external rotation (SER) injury of the ankle. Stable fractures maintain tibiotalar congruence due to competent medial restraints and can be treated nonoperatively with excellent functional results and long-term prognosis. Stability might be assessed with either stress radiographs or weightbearing radiographs. A consecutive series of patients with closed SER fractures (presumed AO 44-B1) were prospectively enrolled from 2008 to 2015. Patients with clearly unstable fractures (medial clear space more than 7 mm) on the initial nonweightbearing radiograph were excluded and operated on. All other patients were examined with a gravity stress and a weightbearing anteroposterior radiograph. Borderline instability of the fracture was assumed when the medial clear space was 4 to 7 mm. Those were treated nonoperatively. Of 104 patients with isolated lateral malleolar fractures of the SER type, 14 patients were treated operatively because of clear instability (displacement) on the initial radiographs. Of the nonoperative patients, 44 patients demonstrated borderline instability on the gravity stress but stability on the weightbearing radiograph ("gravity borderline"); the remaining 46 were stable in both tests ("gravity stable"). At an average follow-up of 23 months, no significant differences were seen in the American Orthopaedic Foot & Ankle Society hindfoot score (92 points gravity-borderline group vs 93 points gravity-unstable group), the Foot Functional Index score (11 vs 10 points), the Short Form 36 (SF-36) physical component (86 vs 85 points), and SF-36 mental component (84 vs 81 points). Radiographically, all fractures had healed with anatomic congruity of the ankle. Weightbearing radiographs provided a reliable basis to decide about stability and nonoperative treatment in isolated lateral malleolar fractures of the SER type with excellent clinical and radiographic outcome at short-term follow-up. Gravity

  6. Comparison of fracture resistance between cast, CAD/CAM milling, and direct metal laser sintering metal post systems.

    Science.gov (United States)

    Bilgin, Mehmet Selim; Erdem, Ali; Dilber, Erhan; Ersoy, İbrahim

    2016-01-01

    The purpose of this study was to compare the fracture resistance of Co-Cr post-cores fabricated with 3 different techniques: traditional casting (TC), computer-aided design and manufacturing (CAD/CAM) milling (CCM) and direct metal laser sintering (DMLS). Forty intact human mandibular premolar were endodontically treated. The roots were then randomly divided into four groups according to the post systems: the control group was only filled with gutta percha. Co-Cr metal posts were fabricated with TC, CCM and DMLS in the other three groups. The posts were luted with a resin cement and subjected to compression test at a crosshead speed of 1mm/min. The statistical analysis of the data was performed using one-way analysis of variance (ANOVA) and multiple comparison post hoc Tukey tests (α=.05). The samples were examined under a stereomicroscope with ×20 magnification for the evaluation of the fracture types. The mean fracture loads were 432.69 N for control, 608.89 N for TC, 689.40 N for DMLS and 959.26 N for CCM. One-way ANOVA revealed significant difference between the groups (pmetal posts fabricated by CCM and DMLS could be an alternative to TC processing in daily clinical application. Copyright © 2015 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  7. Effect of TiC addition on fracture toughness of Al6061 alloy

    Science.gov (United States)

    Raviraj, M. S.; Sharanprabhu, C. M.; Mohankumar, G. C.

    2018-04-01

    Al 6061 matrix was reinforced with different proportions of TiC particles such as 3wt%, 5wt% and 7wt% and the effect on fracture toughness was studied. Al-TiC metal matrix composites were produced by stir casting method to ensure uniform distribution of the TiC particulates in the Al matrix. LEFM (Linear Elastic Fracture Mechanics) has been used to characterize the fracture toughness using various specimen geometries. The compact tension (CT) specimens with straight through notch were machined as per ASTM E399 specifications. All the specimens were machined to have constant a/W=0.5 and B/W was varied from 0.2 to 0.7. A sharp crack initiation was done at the end of notch by fatigue loading using servo-hydraulic controlled testing machine. Load v/s crack mouth opening displacement (CMOD) data was plotted and stress intensity factor, KQ determined. Critical stress intensity factor KIC was obtained by plotting KQ v/s thickness of specimen data. The fracture toughness of the composites varied between 16-19 MPa√m as compared to 23MPa√m for base alloy Al6061. Composites with 3wt% and 7wt% TiC showed better fracture toughness than 5wt% TiC reinforced Al metal matrix composites.

  8. Dry fracture method for simultaneous measurement of in-situ stress state and material properties

    International Nuclear Information System (INIS)

    Serata, S.; Oka, S.; Kikuchi, S.

    1996-01-01

    Based on the dry fracture principle, a computerized borehole probe has been developed to measure stress state and material properties, simultaneously. The probe is designed to obtain a series of measurements in a continuing sequence along a borehole length, without any interruptive measures, such as resetting packers, taking indentation of borehole wall, overcoming, etc. The new dry fracture probe for the single fracture method is designed to overcome the difficulties posed by its ancestor which was based on the double fracture method. The accuracy of the single fracture method is confirmed by a close agreement with the theory, FE modeling and laboratory testing

  9. Oncogenic osteomalacia presenting as bilateral stress fractures of the tibia

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, Kenjirou; Ohnishi, Takeshi; Ishikawa, Tohru [Department of Radiology, St. Marianna University Hospital, Kanagawa (Japan); Tani, Haruo [Department of Internal Medicine III, St. Marianna University Hospital, Kawasaki City, Kanagawa (Japan); Uesugi, Keisuke [Department of Otolaryngology, St. Marianna University Hospital, Kawasaki City, Kanagawa (Japan); Takagi, Masayuki [Department of Pathology, St. Marianna University Hospital, Kawasaki City, Kanagawa (Japan)

    1999-01-01

    We report on a patient with bilateral stress fractures of the tibia who subsequently showed classic biochemical features of oncogenic osteomalacia. Conventional radiographs were normal. MR imaging revealed symmetric, bilateral, band-like low-signal lesions perpendicular to the medial cortex of the tibiae and corresponding to the only lesions subsequently seen on the bone scan. A maxillary sinus lesion was subsequently detected and surgically removed resulting in prompt alleviation of symptoms and normalization of hypophosphatemia and low 1,25-(OH){sub 2} vitamin D{sub 3}. The lesion was pathologically diagnosed as a hemangiopericytoma-like tumor. Patients with oncogenic osteomalacia may present with stress fractures limited to the tibia, as seen in athletes. The clue to the real diagnosis lies in paying close attention to the serum phosphate levels, especially in patients suffering generalized symptoms of weakness and not given to unusual physical activity. (orig.) With 4 figs., 6 refs.

  10. Surgical Management of Proximal Interphalangeal Joint Repetitive Stress Epiphyseal Fracture Nonunion in Elite Sport Climbers.

    Science.gov (United States)

    El-Sheikh, Yasser; Lutter, Chris; Schoeffl, Isabelle; Schoeffl, Volker; Flohe, Sascha

    2017-11-14

    Repetitive stress fracture of the middle phalanx epiphysis is an injury specific to elite adolescent sport climbers. As sport climbing becomes increasingly popular in younger age groups, an increased number of these injuries have been reported in recent years. To date, treatment of these fractures has been nonsurgical, with strict rest and physiotherapy prescribed until fracture union. However, when these patients present in a delayed fashion with an established nonunion, nonsurgical treatment may fail, leading to disabling chronic pain and/or digital deformity in some cases. In this article, we present 2 cases of surgical treatment for finger middle phalanx repetitive stress epiphyseal fracture nonunion, using a percutaneous spot drilling epiphysiodesis technique. Copyright © 2017 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  11. Traversing the Links between Heavy Metal Stress and Plant Signaling

    Science.gov (United States)

    Jalmi, Siddhi K.; Bhagat, Prakash K.; Verma, Deepanjali; Noryang, Stanzin; Tayyeba, Sumaira; Singh, Kirti; Sharma, Deepika; Sinha, Alok K.

    2018-01-01

    Plants confront multifarious environmental stresses widely divided into abiotic and biotic stresses, of which heavy metal stress represents one of the most damaging abiotic stresses. Heavy metals cause toxicity by targeting crucial molecules and vital processes in the plant cell. One of the approaches by which heavy metals act in plants is by over production of reactive oxygen species (ROS) either directly or indirectly. Plants act against such overdose of metal in the environment by boosting the defense responses like metal chelation, sequestration into vacuole, regulation of metal intake by transporters, and intensification of antioxidative mechanisms. This response shown by plants is the result of intricate signaling networks functioning in the cell in order to transmit the extracellular stimuli into an intracellular response. The crucial signaling components involved are calcium signaling, hormone signaling, and mitogen activated protein kinase (MAPK) signaling that are discussed in this review. Apart from signaling components other regulators like microRNAs and transcription factors also have a major contribution in regulating heavy metal stress. This review demonstrates the key role of MAPKs in synchronously controlling the other signaling components and regulators in metal stress. Further, attempts have been made to focus on metal transporters and chelators that are regulated by MAPK signaling. PMID:29459874

  12. Ground reaction forces and bone parameters in females with tibial stress fracture.

    Science.gov (United States)

    Bennell, Kim; Crossley, Kay; Jayarajan, Jyotsna; Walton, Elizabeth; Warden, Stuart; Kiss, Z Stephen; Wrigley, Tim

    2004-03-01

    Tibial stress fracture is a common overuse running injury that results from the interplay of repetitive mechanical loading and bone strength. This research project aimed to determine whether female runners with a history of tibial stress fracture (TSF) differ in ground reaction force (GRF) parameters during running, regional bone density, and tibial bone geometry from those who have never sustained a stress fracture (NSF). Thirty-six female running athletes (13 TSF; 23 NSF) ranging in age from 18 to 44 yr were recruited for this cross-sectional study. The groups were well matched for demographic, training, and menstrual parameters. A force platform measured selected GRF parameters (peak and time to peak for vertical impact and active forces, and horizontal braking and propulsive forces) during overground running at 4.0 m.s.(-1). Lumbar spine, proximal femur, and distal tibial bone mineral density were assessed by dual energy x-ray absorptiometry. Tibial bone geometry (cross-sectional dimensions and areas, and second moments of area) was calculated from a computerized tomography scan at the junction of the middle and distal thirds. There were no significant differences between the groups for any of the GRF, bone density, or tibial bone geometric parameters (P > 0.05). Both TSF and NSF subjects had bone density levels that were average or above average compared with a young adult reference range. Factor analysis followed by discriminant function analysis did not find any combinations of variables that differentiated between TSF and NSF groups. These findings do not support a role for GRF, bone density, or tibial bone geometry in the development of tibial stress fractures, suggesting that other risk factors were more important in this cohort of female runners.

  13. Glove box

    International Nuclear Information System (INIS)

    Morita, Atsushi

    1990-01-01

    Wire rope earthquake proof supports having sufficient vibration transmitting and attenuating property are disposed between a fixed floor and the bottom of a glove box in order to improve earthquake proofness of the glove box. The vertical weight of the glove box is supported by support legs slidable on the surface of the fixed floor. The wire rope earthquake-proof supports when undergoing a load, cause stretching and rolling against the external force such as earthquakes, and provide flexible spring support and cause a great damping due to friction with strands. Further, the vertical weight is always supported by the support legs and, when a horizontal weight is applied, the glove box slides on the fixed floor freely with slidable members. In this way, stress concentration generated at joint portions of columns and beams can be moderated greatly and earthquake proofness can be improved. Further, quality control and maintenance for the device is almost unnecessary owing to excellent fatigue-resistant characteristics of the wire rope earthquake proof supports. (N.H.)

  14. The stress rupture properties of austenitic steel weld metals

    International Nuclear Information System (INIS)

    Wood, D.S.

    Elevated temperature stress rupture data on Mo containing and Mo free austenitic weld metals have been collected from French, Dutch, German and UK sources and the results analysed. The stress rupture strength of Mo containing weld metal is significantly higher than that of Mo free weld metal. At 10,000h the rupture strength of Mo containing weld metal is higher than that of Type 316 steel whereas the Mo free weld metal is about 20% lower than that of Type 304 steel. Austenitic weld metal can give low stress rupture ductility values. It is concluded that there are insufficient data to permit reliable extrapolations to long times and it is recommended that long term tests are performed to overcome this situation

  15. Treatment of stress fracture of the olecranon in throwing athletes with internal fixation through a small incision

    Directory of Open Access Journals (Sweden)

    Fujioka Hiroyuki

    2012-12-01

    Full Text Available Abstract The present study is a report of retrospective case series of stress fracture of the olecranon. Six patients presented posterior elbow pain in throwing in baseball and softball, but fracture was not diagnosed in radiographs. We detected stress fracture of the olecranon using computed tomographic (CT scan and treated the patient with internal fixation with a headless cannulated double threaded screw through a small skin incision. All patients returned to competitive level without elbow complaints after the operation. When throwing athletes present with unusual posterior elbow pain and no significant findings on radiographs, a CT scan examination should be performed. We recommend surgical treatment of internal fixation with a screw through a small skin incision, as a good option for stress fracture of the olecranon in order to allow early return to sports activity in competitive athletes.

  16. Standard test method for plane-strain (Chevron-Notch) fracture toughness of metallic materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1997-01-01

    1.1 This test method covers the determination of plane-strain (chevron-notch) fracture toughnesses, KIv or KIvM, of metallic materials. Fracture toughness by this method is relative to a slowly advancing steady state crack initiated at a chevron-shaped notch, and propagating in a chevron-shaped ligament (Fig. 1). Some metallic materials, when tested by this method, exhibit a sporadic crack growth in which the crack front remains nearly stationary until a critical load is reached. The crack then becomes unstable and suddenly advances at high speed to the next arrest point. For these materials, this test method covers the determination of the plane-strain fracture toughness, KIvj or KIvM, relative to the crack at the points of instability. Note 1—One difference between this test method and Test Method E 399 (which measures KIc) is that Test Method E 399 centers attention on the start of crack extension from a fatigue precrack. This test method makes use of either a steady state slowly propagating crack, or a...

  17. Predisposing Risk Factors and Stress Fractures in Division I Cross Country Runners.

    Science.gov (United States)

    Giffin, Kaci L; Knight, Kathy B; Bass, Martha A; Valliant, Melinda W

    2017-11-11

    The purpose of this study was to explore factors associated with increased stress fractures in collegiate cross country runners. Participants in this study were 42 male and female cross country runners at a Division I university. Each athlete completed a questionnaire regarding smoking status, vitamin/mineral intake, previous stress fracture history, birth control usage, menstrual status, and demographic information. Nutritional assessment via a 3-day food record and measurements of whole body, lumbar spine, and hip bone mineral densities (BMD) were also conducted on each athlete. Results indicated that 40% of the female and 35% of the male runners reported a history of stress fracture, and that all of these did not meet the recommended daily energy intake or adequate intakes for calcium or Vitamin D required for their amount of training. Two-tailed t-test found statistically higher incidences of lumbar spine BMD in males and females whose daily calcium and Vitamin D intakes were below minimum requirements as well as for women whose caloric intake was below the required level. When data on the lumbar spine was evaluated, 31% of participants (31.8% of the male and 30% of the female runners) were identified as having osteopenia and 4.8% with osteoporosis. Results warrant a need for future longitudinal studies.

  18. Prediction of minimum UO2 particle size based on thermal stress initiated fracture model

    International Nuclear Information System (INIS)

    Corradini, M.

    1976-08-01

    An analytic study was employed to determine the minimum UO 2 particle size that could survive fragmentation induced by thermal stresses in a UO 2 -Na Fuel Coolant Interaction (FCI). A brittle fracture mechanics approach was the basis of the study whereby stress intensity factors K/sub I/ were compared to the fracture toughness K/sub IC/ to determine if the particle could fracture. Solid and liquid UO 2 droplets were considered each with two possible interface contact conditions; perfect wetting by the sodium or a finite heat transfer coefficient. The analysis indicated that particles below the range of 50 microns in radius could survive a UO 2 -Na fuel coolant interaction under the most severe temperature conditions without thermal stress fragmentation. Environmental conditions of the fuel-coolant interaction were varied to determine the effects upon K/sub I/ and possible fragmentation. The underlying assumptions of the analysis were investigated in light of the analytic results. It was concluded that the analytic study seemed to verify the experimental observations as to the range of the minimum particle size due to thermal stress fragmentation by FCI. However the method used when the results are viewed in light of the basic assumptions indicates that the analysis is crude at best, and can be viewed as only a rough order of magnitude analysis. The basic complexities in fracture mechanics make further investigation in this area interesting but not necessarily fruitful for the immediate future

  19. Plate Versus Intramedullary Nail Fixation of Anterior Tibial Stress Fractures: A Biomechanical Study.

    Science.gov (United States)

    Markolf, Keith L; Cheung, Edward; Joshi, Nirav B; Boguszewski, Daniel V; Petrigliano, Frank A; McAllister, David R

    2016-06-01

    Anterior midtibial stress fractures are an important clinical problem for patients engaged in high-intensity military activities or athletic training activities. When nonoperative treatment has failed, intramedullary (IM) nail and plate fixation are 2 surgical options used to arrest the progression of a fatigue fracture and allow bone healing. A plate will be more effective than an IM nail in preventing the opening of a simulated anterior midtibial stress fracture from tibial bending. Controlled laboratory study. Fresh-frozen human tibias were loaded by applying a pure bending moment in the sagittal plane. Thin transverse saw cuts, 50% and 75% of the depth of the anterior tibial cortex, were created at the midtibia to simulate a fatigue fracture. An extensometer spanning the defect was used to measure the fracture opening displacement (FOD) before and after the application of IM nail and plate fixation constructs. IM nails were tested without locking screws, with a proximal screw only, and with proximal and distal screws. Plates were tested with unlocked bicortical screws (standard compression plate) and locked bicortical screws; both plate constructs were tested with the plate edge placed 1 mm from the anterior tibial crest (anterior location) and 5 mm posterior to the crest. For the 75% saw cut depth, the mean FOD values for all IM nail constructs were 13% to 17% less than those for the saw cut alone; the use of locking screws had no significant effect on the FOD. The mean FOD values for all plate constructs were significantly less than those for all IM nail constructs. The mean FOD values for all plates were 28% to 46% less than those for the saw cut alone. Anterior plate placement significantly decreased mean FOD values for both compression and locked plate constructs, but the mean percentage reductions for locked and unlocked plates were not significantly different from each other for either plate placement. The percentage FOD reductions for all plate

  20. Estimation of In Situ Stresses with Hydro-Fracturing Tests and a Statistical Method

    Science.gov (United States)

    Lee, Hikweon; Ong, See Hong

    2018-03-01

    At great depths, where borehole-based field stress measurements such as hydraulic fracturing are challenging due to difficult downhole conditions or prohibitive costs, in situ stresses can be indirectly estimated using wellbore failures such as borehole breakouts and/or drilling-induced tensile failures detected by an image log. As part of such efforts, a statistical method has been developed in which borehole breakouts detected on an image log are used for this purpose (Song et al. in Proceedings on the 7th international symposium on in situ rock stress, 2016; Song and Chang in J Geophys Res Solid Earth 122:4033-4052, 2017). The method employs a grid-searching algorithm in which the least and maximum horizontal principal stresses ( S h and S H) are varied, and the corresponding simulated depth-related breakout width distribution as a function of the breakout angle ( θ B = 90° - half of breakout width) is compared to that observed along the borehole to determine a set of S h and S H having the lowest misfit between them. An important advantage of the method is that S h and S H can be estimated simultaneously in vertical wells. To validate the statistical approach, the method is applied to a vertical hole where a set of field hydraulic fracturing tests have been carried out. The stress estimations using the proposed method were found to be in good agreement with the results interpreted from the hydraulic fracturing test measurements.

  1. Coexistence of ductile and brittle fracture in metals

    International Nuclear Information System (INIS)

    Ohr, S.M.; Chang, S.J.; Park, C.G.; Thomson, R.

    1985-01-01

    It is well known that semibrittle body-centered cubic (bcc) metals fail at low temperatures by cleavage that is preceded by crack tip deformation. Sinclair and Finnis proposed a mechanism by which crack tip deformation may be combined with brittle crack extension. In this model, edge dislocations are emitted from a crack tip on an inclined plane under pure mode I loading conditions. The authors propose a new mechanism of brittle fracture of semibrittle metals preceded by crack tip deformation by extending the model of Sinclair and Finnis and by incorporating experimental evidence on mixed mode crack propagation observed by transmission electron microscopy (TEM). They have shown experimentally that, even when the orientation of the dislocations in the plastic zone indicated pure mode III crack tip deformation, the crack opening displacement determined from the relative displacement of the crack flanks showed the presence of an additional mode I component. They have also shown that zigzag crack propagation observed in many metals can occur only if mode I cleavage is superimposed to mode II crack tip deformation

  2. Fracture network growth for prediction of fracture characteristics and connectivity in tight reservoir rocks

    NARCIS (Netherlands)

    Barnhoorn, A.; Cox, S.F.

    2012-01-01

    Fracturing experiments on very low-porosity dolomite rocks shows a difference in growth of fracture networks by stress-driven fracturing and fluid-driven fracturing. Stress-driven fracture growth, in the absence of fluid pressure, initially forms fractures randomly throughout the rocks followed by

  3. Fracture toughness of austenitic stainless steel weld metal at 4 K

    International Nuclear Information System (INIS)

    Goodwin, G.M.

    1984-08-01

    Selection of the welding processess and weld filler metals for fabrication of a large toroidal superconducting magnet is described. Data available in the literature are collected and compared with data generated in this study for three welding processes, shielded metal arc (SMA), gas tungsten arc (GTA), and flux cored arc (FCA) welds had the highest fracture toughness as measured by K/sub Ic/ estimated from J/sub Ic/. The SMA and FCA welds had about the same toughness, below the GTA values but above the average from the literature. The fracture mode for all three processes was typified by ductile dimples. The fracture morphology of the FCA weld specimens was influenced by the solidification substructure, and small particles were found to be nucleation sites for void formation, especially for the GTA welds. All three welding processes were deemed adequate for the intended service and were used to fabricate the large magnet. A trunnion-type turning fixture eliminated the need for welding in the vertical and overhead positions. The GTA process was used for all root passes, and the horizontal welds were filled by the SMA process. Over 80% of the welds were done in the flat position with the FCA process, and its high deposition rate and ease of operation are credited with contributing greatly to the success of the effort

  4. X-ray fractography by using synchrotron radiation source. Residual stress distribution just beneath fatigue fracture surface

    International Nuclear Information System (INIS)

    Akita, Koichi; Yoshioka, Yasuo; Suzuki, Hiroshi; Sasaki, Toshihiko

    2000-01-01

    The residual stress distributions just beneath the fatigue fracture surface were measured using synchrotron radiation with three different wavelengths, i.e., three different penetration depths. The residual stress distributions were estimated from three kinds of diffraction data by the following process. First, a temporary residual stress distribution in the depth direction is assumed. Theoretical 2θ-sin 2 ψ diagrams for each wavelength, where each has a different penetration depth, are calculated by the cosψ method developed by one of the authors. The sum total of the differences between the theoretical and experimental values of the diffraction angle in 2θ-sin 2 ψ diagrams is calculated. This total value is minimized by changing the assumed stress distribution by the quasi-Newton optimization method. Finally, optimized 2θ-sin 2 ψ diagrams for each penetration depth and detailed stress distribution are determined. The true surface residual stress is obtained from this stress distribution. No effect of load ratio R (= P min /P max ) on the residual stresses of the fatigue fracture surfaces in low-carbon steels was observed when the sin 2 ψ method was used for stress measurement. However, the residual stresses became higher with increasing R when these were measured by the proposed method. On the basis of this, the stress intensity factor range, ΔK, can be estimated from the residual stress on the fatigue fracture surface. (author)

  5. Longitudinal stress fractures of the tibia: diagnosis by magnetic resonance imaging

    International Nuclear Information System (INIS)

    Umans, H.R.; Kaye, J.J.

    1996-01-01

    Previous works describe magnetic resonance (MR) imaging characteristics of stress fractures. This report focusses on MR imaging of longitudinal stress fractures of the tibia. Six cases are presented in which a longitudinal linear abnormal marrow signal was detected in the middle and distal parts of the tibial shaft. Five patients were imaged using a 1.5 Tesla MR unit. Axial, sagittal and coronal T1 and T2-weighted or fat suppressed proton density fast spin echo images were obtained in all but one patient. One patient was imaged using a 0.5 Tesla MR unit with axial and coronal T1- and T2-weighted sequences. Initial conventional radiographs seen at clinical presentation were interpreted as normal in all cases. Two patients underwent radionuclide bone scan, and one patient was imaged with CT prior to MR imaging. In each instance, MR imaging demonstrated linear marrow signal abnormalities orientated along the long axis of the tibial shaft. Endosteal and periosteal callus was identified on axial images. In all cases, MR imaging clearly demonstrated a fracture extending through one cortex with abnormal signal in both the marrow cavity as well as adjacent soft tissues indicating edema. (orig./MG)

  6. Longitudinal stress fractures of the tibia: diagnosis by magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Umans, H.R. [Dept. of Radiology, Albert Einstein Coll. of Medicine and Montefiore Medical Center, Bronx, NY (United States); Kaye, J.J. [The Hospital for Special Surgery, New York, NY (United States)

    1996-05-01

    Previous works describe magnetic resonance (MR) imaging characteristics of stress fractures. This report focusses on MR imaging of longitudinal stress fractures of the tibia. Six cases are presented in which a longitudinal linear abnormal marrow signal was detected in the middle and distal parts of the tibial shaft. Five patients were imaged using a 1.5 Tesla MR unit. Axial, sagittal and coronal T1 and T2-weighted or fat suppressed proton density fast spin echo images were obtained in all but one patient. One patient was imaged using a 0.5 Tesla MR unit with axial and coronal T1- and T2-weighted sequences. Initial conventional radiographs seen at clinical presentation were interpreted as normal in all cases. Two patients underwent radionuclide bone scan, and one patient was imaged with CT prior to MR imaging. In each instance, MR imaging demonstrated linear marrow signal abnormalities orientated along the long axis of the tibial shaft. Endosteal and periosteal callus was identified on axial images. In all cases, MR imaging clearly demonstrated a fracture extending through one cortex with abnormal signal in both the marrow cavity as well as adjacent soft tissues indicating edema. (orig./MG)

  7. Completed Ulnar Shaft Stress Fracture in a Fast-Pitch Softball Pitcher.

    Science.gov (United States)

    Wiltfong, Roger E; Carruthers, Katherine H; Popp, James E

    2017-03-01

    Stress fractures of the upper extremity have been previously described in the literature, yet reports of isolated injury to the ulna diaphysis or olecranon are rare. The authors describe a case involving an 18-year-old fast-pitch softball pitcher. She presented with a long history of elbow and forearm pain, which was exacerbated during a long weekend of pitching. Her initial physician diagnosed her as having forearm tendinitis. She was treated with nonsurgical means including rest, anti-inflammatory medications, therapy, and kinesiology taping. She resumed pitching when allowed and subsequently had an acute event immediately ceasing pitching. She presented to an urgent care clinic that evening and was diagnosed as having a complete ulnar shaft fracture subsequently needing surgical management. This case illustrates the need for a high degree of suspicion for ulnar stress fractures in fast-pitch soft-ball pitchers with an insidious onset of unilateral forearm pain. Through early identification and intervention, physicians may be able to reduce the risk of injury progression and possibly eliminate the need for surgical management. [Orthopedics. 2017; 40(2):e360-e362.]. Copyright 2016, SLACK Incorporated.

  8. Evaluating Heavy Metal Stress Levels in Rice Based on Remote Sensing Phenology.

    Science.gov (United States)

    Liu, Tianjiao; Liu, Xiangnan; Liu, Meiling; Wu, Ling

    2018-03-14

    Heavy metal pollution of croplands is a major environmental problem worldwide. Methods for accurately and quickly monitoring heavy metal stress have important practical significance. Many studies have explored heavy metal stress in rice in relation to physiological function or physiological factors, but few studies have considered phenology, which can be sensitive to heavy metal stress. In this study, we used an integrated Normalized Difference Vegetation Index (NDVI) time-series image set to extract remote sensing phenology. A phenological indicator relatively sensitive to heavy metal stress was chosen from the obtained phenological periods and phenological parameters. The Dry Weight of Roots (WRT), which directly affected by heavy metal stress, was simulated by the World Food Study (WOFOST) model; then, a feature space based on the phenological indicator and WRT was established for monitoring heavy metal stress. The results indicated that the feature space can distinguish the heavy metal stress levels in rice, with accuracy greater than 95% for distinguishing the severe stress level. This finding provides scientific evidence for combining rice phenology and physiological characteristics in time and space, and the method is useful to monitor heavy metal stress in rice.

  9. Bone Geometry as a Predictor of Tissue Fragility and Stress Fracture Risk

    Science.gov (United States)

    2004-10-01

    eferences ........................................................................ 11 A ppendices ...School of Medicine, New York NY Stress fractures occur among persons with normal bones, no acute injury, and are most common among elite runners and

  10. Additional Stress And Fracture Mechanics Analyses Of Pressurized Water Reactor Pressure Vessel Nozzles

    International Nuclear Information System (INIS)

    Walter, Matthew; Yin, Shengjun; Stevens, Gary; Sommerville, Daniel; Palm, Nathan; Heinecke, Carol

    2012-01-01

    In past years, the authors have undertaken various studies of nozzles in both boiling water reactors (BWRs) and pressurized water reactors (PWRs) located in the reactor pressure vessel (RPV) adjacent to the core beltline region. Those studies described stress and fracture mechanics analyses performed to assess various RPV nozzle geometries, which were selected based on their proximity to the core beltline region, i.e., those nozzle configurations that are located close enough to the core region such that they may receive sufficient fluence prior to end-of-life (EOL) to require evaluation of embrittlement as part of the RPV analyses associated with pressure-temperature (P-T) limits. In this paper, additional stress and fracture analyses are summarized that were performed for additional PWR nozzles with the following objectives: To expand the population of PWR nozzle configurations evaluated, which was limited in the previous work to just two nozzles (one inlet and one outlet nozzle). To model and understand differences in stress results obtained for an internal pressure load case using a two-dimensional (2-D) axi-symmetric finite element model (FEM) vs. a three-dimensional (3-D) FEM for these PWR nozzles. In particular, the ovalization (stress concentration) effect of two intersecting cylinders, which is typical of RPV nozzle configurations, was investigated. To investigate the applicability of previously recommended linear elastic fracture mechanics (LEFM) hand solutions for calculating the Mode I stress intensity factor for a postulated nozzle corner crack for pressure loading for these PWR nozzles. These analyses were performed to further expand earlier work completed to support potential revision and refinement of Title 10 to the U.S. Code of Federal Regulations (CFR), Part 50, Appendix G, Fracture Toughness Requirements, and are intended to supplement similar evaluation of nozzles presented at the 2008, 2009, and 2011 Pressure Vessels and Piping (PVP

  11. Practical application of fracture mechanics with consideration of multiaxiality of stress state to degraded nuclear piping

    International Nuclear Information System (INIS)

    Kussmaul, K.; Blind, D.; Herter, K.H.; Eisele, U.; Schuler, X.

    1995-01-01

    Within the scope of a research project nuclear piping components (T-branches and elbows) with dimensions like the primary coolant lines of PWR plants were investigated. In addition to the experimental full scale tests, extensive numerical calculations by means of the finite element method (FEM) as well as fracture mechanics analyses were performed. The applicability of these methods was verified by comparison with the experimental results. The calculation of fracture mechanics parameters as well as the calculated component stress enabled a statement on crack initiation. The failure behavior could be evaluated by means of the multiaxiality of stress state in the ligament (gradient of the quotient of the multiaxiality of stress state q). With respect to practical application on other pressurized components it is shown how to use the procedure (e.g. in a LBB analysis). A quantitative assessment with regard to crack initiation is possible by comparison of the effective crack initiation value J ieff with the calculated component stress. If the multiaxiality of stress state and the q gradient in the ligament of the fracture ligament of the fracture mechanics specimen and the pressurized component to be evaluated is comparable a quantitative assessment is possible as for crack extension and maximum load. If there is no comparability of the gradients a qualitative assessment is possible for the failure behavior

  12. Tension band plating of a nonunion anterior tibial stress fracture in an athlete.

    Science.gov (United States)

    Merriman, Jarrad A; Villacis, Diego; Kephart, Curtis J; Rick Hatch, George F

    2013-07-01

    The authors present a rare technique of tension band plating of the anterior tibia in the setting of a nonunion stress fracture. Surgical management with an intramedullary nail is a viable and proven option for treating such injuries. However, in treating elite athletes, legitimate concerns exist regarding the surgical disruption of the extensor mechanism and the risk of anterior knee pain associated with intramedullary nail use. The described surgical technique demonstrates the use of tension band plating as an effective treatment of delayed union and nonunion anterior tibial stress fractures in athletes without the potential risks of intramedullary nail insertion. Copyright 2013, SLACK Incorporated.

  13. A study on the fractures of iodine induced stress corrosion cracking of new zirconium alloys

    International Nuclear Information System (INIS)

    Peng Qian; Zhao Wenjin; Li Weijun; Tang Zhenghua; Heng Xuemei

    2005-10-01

    The morphology and chemical compositions of I-SCC fractures of new zirconium alloys were investigated by SEM and EDXA. The feature on fracture surface for I-SCC samples, such as corrosion products, the secondary cracking, intergranular cracking and pseudo-cleavage transgranular cracking, have been observed. And the fluting, the typical characteristic of I-SCC also has been found. Intergranular cracking is visible at crack initiation stage and transgranular cracking is distinguished at crack propagation stage. The corrosion products are mainly composed of Zr and O; and I can be detected on the local pseudocleavage zone. The most of grooves on the fractures of relieved-stress annealing samples are parallel with the roll plane. The intergranular cracking in relieved-stress annealing samples is not obvious. When the test temperature increases, the activity of iodine increases and the stress on crack tip is easier to be released, thus the corrosion products on fracture also increase and intergranular cracking is visible. The partial pressure of iodine influents the thickness of corrosion products, and intergranular cracking is easier to be found when iodine partial pressure is high enough. (authors)

  14. Source term analysis for a criticality accident in metal production line glove boxes

    International Nuclear Information System (INIS)

    Nguyen, D.H.

    1991-06-01

    A recent development in criticality accident analysis is the deterministic calculations of the transport of fission products and actinides through the barriers of the physical facility. The knowledge of the redistribution of the materials inside the facility will help determine the reentry and clean-up procedures. The amount of radioactive materials released to the environment is the source term for dispersion calculations. We have used an integrated computer model to determine the release of fission products to the environment from a hypothetical criticality event in a glove box of the metal production line (MPL) at the Lawrence Livermore National Laboratory (LLNL)

  15. Microstructural Effects on Hydrogen Delayed Fracture of 600 MPa and 800 MPa grade Deposited Weld Metal

    International Nuclear Information System (INIS)

    Kang, Hee Jae; Lee, Tae Woo; Cho, Kyung Mox; Kang, Namhyun; Yoon, Byung Hyun; Park, Seo Jeong; Chang, Woong Seong

    2012-01-01

    Hydrogen-delayed fracture (HDF) was analyzed from the deposited weld metals of 600-MPa and 800-MPa flux-cored arc (FCA) welding wires, and then from the diffusible hydrogen behavior of the weld zone. Two types of deposited weld metal, that is, rutile weld metal and alkali weld metal, were used for each strength level. Constant loading test (CLT) and thermal desorption spectrometry (TDS) analysis were conducted on the hydrogen pre-charged specimens electrochemically for 72 h. The effects of microstructures such as acicular ferrite, grain-boundary ferrite, and low-temperature-transformation phase on the time-to failure and amount of diffusible hydrogen were analyzed. The fracture time for hydrogen-purged specimens in the constant loading tests decreased as the grain size of acicular ferrite decreased. The major trapping site for diffusible hydrogen was the grain boundary, as determined by calculating the activation energies for hydrogen detrapping. As the strength was increased and alkali weld metal was used, the resistance to HDF decreased.

  16. Effectiveness of various isometric exercises at improving bone strength in cortical regions prone to distal tibial stress fractures.

    Science.gov (United States)

    Florio, C S

    2018-06-01

    A computational model was used to compare the local bone strengthening effectiveness of various isometric exercises that may reduce the likelihood of distal tibial stress fractures. The developed model predicts local endosteal and periosteal cortical accretion and resorption based on relative local and global measures of the tibial stress state and its surface variation. Using a multisegment 3-dimensional leg model, tibia shape adaptations due to 33 combinations of hip, knee, and ankle joint angles and the direction of a single or sequential series of generated isometric resultant forces were predicted. The maximum stress at a common fracture-prone region in each optimized geometry was compared under likely stress fracture-inducing midstance jogging conditions. No direct correlations were found between stress reductions over an initially uniform circular hollow cylindrical geometry under these critical design conditions and the exercise-based sets of active muscles, joint angles, or individual muscle force and local stress magnitudes. Additionally, typically favorable increases in cross-sectional geometric measures did not guarantee stress decreases at these locations. Instead, tibial stress distributions under the exercise conditions best predicted strengthening ability. Exercises producing larger anterior distal stresses created optimized tibia shapes that better resisted the high midstance jogging bending stresses. Bent leg configurations generating anteriorly directed or inferiorly directed resultant forces created favorable adaptations. None of the studied loads produced by a straight leg was significantly advantageous. These predictions and the insight gained can provide preliminary guidance in the screening and development of targeted bone strengthening techniques for those susceptible to distal tibial stress fractures. Copyright © 2018 John Wiley & Sons, Ltd.

  17. Stress fractures of the base of the metatarsal bones in young trainee ballet dancers

    Science.gov (United States)

    Albisetti, Walter; De Bartolomeo, Omar; Tagliabue, Lorenzo; Camerucci, Emanuela; Calori, Giorgio Maria

    2009-01-01

    Classical ballet is an art form requiring extraordinary physical activity, characterised by rigorous training. These can lead to many overuse injuries arising from repetitive minor trauma. The purpose of this paper is to report our experience in the diagnosis and treatment of stress fractures at the base of the second and third metatarsal bones in young ballet dancers. We considered 150 trainee ballet dancers from the Ballet Schools of "Teatro Alla Scala" of Milan from 2005 to 2007. Nineteen of them presented with stress fractures of the base of the metatarsal bones. We treated 18 dancers with external shockwave therapy (ESWT) and one with pulsed electromagnetic fields (EMF) and low-intensity ultrasound (US); all patients were recommended rest. In all cases good results were obtained. The best approach to metatarsal stress fractures is to diagnose them early through clinical examination and then through X-ray and MRI. ESWT gave good results, with a relatively short time of rest from the patients’ activities and a return to dancing without pain. PMID:19415273

  18. Standards and interdisciplinary treatment of boxing injuries of the head in professional boxing on the basis of an IBF World Championship Fight.

    Science.gov (United States)

    Dragu, Adrian; Unglaub, Frank; Radomirovic, Sinisa; Schnürer, Stefan; Wagner, Walter; Horch, Raymund E; Hell, Berthold

    2010-12-01

    Boxing injuries are well known in hobby boxing as well as in professional boxing. Especially in professional boxing it is of great importance to implement and follow prevention-, diagnosis- and therapy-standards in order to prevent or at least to minimize injuries of the athlete. The utmost aim would be to establish international prevention-, diagnosis- and therapy-standards for boxing injuries in professional boxing. However, this aim is on a short run unrealistic, as there are too many different professional boxing organisations with different regulations. A realistic short term aim would be to develop a national standard in order to unify the management and medical treatment of boxing injuries in professional boxing. We present the management and interdisciplinary treatment of a professional boxer with a bilateral open fracture of the mandible during a middle weight IBF World Championship Fight. On the basis of this case we want to present and discuss the possibilities of an interdisciplinary and successful medical treatment. In order to prevent or minimize boxing injuries of professional boxers, annual MRI-Scans of the head and neck have to be performed as prevention standard. Furthermore, neurocognitive tests must be performed on a regular basis. Boxing injuries in professional boxing need an interdisciplinary, unbiased and complex analysis directly at the boxing ring. The treatment of the injuries should be only performed in medical centres and thus under constant parameters. The needed qualifications must be learned in mandatory national licence courses of boxing physicians, referees and promoters.

  19. A local leaky-box model for the local stellar surface density-gas surface density-gas phase metallicity relation

    Science.gov (United States)

    Zhu, Guangtun Ben; Barrera-Ballesteros, Jorge K.; Heckman, Timothy M.; Zakamska, Nadia L.; Sánchez, Sebastian F.; Yan, Renbin; Brinkmann, Jonathan

    2017-07-01

    We revisit the relation between the stellar surface density, the gas surface density and the gas-phase metallicity of typical disc galaxies in the local Universe with the SDSS-IV/MaNGA survey, using the star formation rate surface density as an indicator for the gas surface density. We show that these three local parameters form a tight relationship, confirming previous works (e.g. by the PINGS and CALIFA surveys), but with a larger sample. We present a new local leaky-box model, assuming star-formation history and chemical evolution is localized except for outflowing materials. We derive closed-form solutions for the evolution of stellar surface density, gas surface density and gas-phase metallicity, and show that these parameters form a tight relation independent of initial gas density and time. We show that, with canonical values of model parameters, this predicted relation match the observed one well. In addition, we briefly describe a pathway to improving the current semi-analytic models of galaxy formation by incorporating the local leaky-box model in the cosmological context, which can potentially explain simultaneously multiple properties of Milky Way-type disc galaxies, such as the size growth and the global stellar mass-gas metallicity relation.

  20. Risk Stratification of Stress Fractures and Prediction of Return to Duty

    Science.gov (United States)

    2015-12-01

    SUBJECT TERMS bone microarchitecture, HRpQCT, race, gender , sex, bone mineral density, vBMD, bone geometry, stress fracture 16. SECURITY...are collaborating with local sports medicine physicians, coaches, and athletic trainers to continue recruiting effectively (Task 3, objective 3). We

  1. Fracture properties and heat resistance of ceramics consisting of microspheres of stabilized zirconium dioxide

    International Nuclear Information System (INIS)

    Krasulin, Yu.L.; Barinov, S.M.; Ivanov, A.B.; Timofeev, V.N.; Grevtsev, S.N.; Ivanov, D.A.

    1980-01-01

    Determined were effective specific fracture work, critical coefficient of stress intensity in the upper point of the fracture, strength and heat resistance during heat changes (20-1300 deg C) of the material produced by sintering stabilized zirconium dioxide microspheres. Dependence of these characteristics on granulometric composition of microspheres was determined. It was ascertained that the additional introduction of large microspheres into the bulk of small microspheres increased the metal fracture work. Specific work of material fracture progress exceeded specific work of fracture motion initiation. High value of fracture work together with high strength permits to use the material formed of microspheres as structural ceramics

  2. Finite element analysis and fracture resistance testing of a new intraradicular post

    Directory of Open Access Journals (Sweden)

    Eron Toshio Colauto Yamamoto

    2012-08-01

    Full Text Available OBJECTIVES: The objective of the present study was to evaluate a prefabricated intraradicular threaded pure titanium post, designed and developed at the São José dos Campos School of Dentistry - UNESP, Brazil. This new post was designed to minimize stresses observed with prefabricated post systems and to improve cost-benefits. MATERIAL AND METHODS: Fracture resistance testing of the post/core/root complex, fracture analysis by microscopy and stress analysis by the finite element method were used for post evaluation. The following four prefabricated metal post systems were analyzed: group 1, experimental post; group 2, modification of the experimental post; group 3, Flexi Post, and group 4, Para Post. For the analysis of fracture resistance, 40 bovine teeth were randomly assigned to the four groups (n=10 and used for the fabrication of test specimens simulating the situation in the mouth. The test specimens were subjected to compressive strength testing until fracture in an EMIC universal testing machine. After fracture of the test specimens, their roots were sectioned and analyzed by microscopy. For the finite element method, specimens of the fracture resistance test were simulated by computer modeling to determine the stress distribution pattern in the post systems studied. RESULTS: The fracture test presented the following averages and standard deviation: G1 (45.63±8.77, G2 (49.98±7.08, G3 (43.84±5.52, G4 (47.61±7.23. Stress was homogenously distributed along the body of the intraradicular post in group 1, whereas high stress concentrations in certain regions were observed in the other groups. These stress concentrations in the body of the post induced the same stress concentration in root dentin. CONCLUSIONS: The experimental post (original and modified versions presented similar fracture resistance and better results in the stress analysis when compared with the commercial post systems tested (08/2008-PA/CEP.

  3. Apple F-box Protein MdMAX2 Regulates Plant Photomorphogenesis and Stress Response

    Directory of Open Access Journals (Sweden)

    Jian-Ping An

    2016-11-01

    Full Text Available MAX2 (MORE AXILLARY GROWTH2 is involved in diverse physiological processes, including photomorphogenesis, the abiotic stress response, as well as karrikin and strigolactone signaling-mediated shoot branching. In this study, MdMAX2, an F-box protein that is a homolog of Arabidopsis MAX2, was identified and characterized. Overexpression of MdMAX2 in apple calli enhanced the accumulation of anthocyanin. Ectopic expression of MdMAX2 in Arabidopsis exhibited photomorphogenesis phenotypes, including increased anthocyanin content and decreased hypocotyl length. Further study indicated that MdMAX2 might promote plant photomorphogenesis by affecting the auxin signaling as well as other plant hormones. Transcripts of MdMAX2 were noticeably up-regulated in response to NaCl and Mannitol treatments. Moreover, compared with the wild type, the MdMAX2-overexpressing apple calli and Arabidopsis exhibited increased tolerance to salt and drought stresses. Taken together, these results suggest that MdMAX2 plays a positive regulatory role in plant photomorphogenesis and stress response.

  4. Consistent Practices for Characterizing the Detection Limits of Fracture Critical Metallic Component Inspection Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA-STD-5009 requires that successful flaw detection by NDE methods be statistically qualified for use on fracture critical metallic components using Probability of...

  5. A proposed standard round compact specimen for plane strain fracture toughness testing

    Science.gov (United States)

    Underwood, J. H.; Newman, J. C., Jr.; Seeley, R. R.

    1980-01-01

    A round, disk-shaped specimen is proposed as a standard test specimen for addition to ASTM Test for Plane-Strain Fracture Toughness of Metallic Materials (E 399-78A). The specimen is diametrically cracked, and loaded in the same way as the existing standard compact specimen. Tests and analyses were performed to verify that the proposed round compact specimen and associated stress intensity factor K solution are appropriate for a standard plane strain fracture toughness test. The use of the round compact specimen for other fracture tests is described.

  6. Preliminary experience with biodegradable implants for fracture fixation

    Directory of Open Access Journals (Sweden)

    Dhillon Mandeep

    2008-01-01

    Full Text Available Background: Biodegradable implants were designed to overcome the disadvantages of metal-based internal fixation devices. Although they have been in use for four decades internationally, many surgeons in India continue to be skeptical about the mechanical strength of biodegradable implants, hence this study. Materials and Methods: A prospective study was done to assess the feasibility and surgeon confidence level with biodegradable implants over a 12-month period in an Indian hospital. Fifteen fractures (intra-articular, metaphyseal or small bone fractures were fixed with biodegradable implants. The surgeries were randomly scheduled so that different surgeons with different levels of experience could use the implants for fixation. Results: Three fractures (one humeral condyle, two capitulum, were supplemented by additional K-wires fixation. Trans-articular fixator was applied in two distal radius and two pilon fractures where bio-pins alone were used. All fractures united, but in two cases the fracture displaced partially during the healing phase; one fibula due to early walking, and one radius was deemed unstable even after bio-pin and external fixator. Conclusions: Biodegradable -implants are excellent for carefully selected cases of intra-articular fractures and some small bone fractures. However, limitations for use in long bone fractures persist and no great advantage is gained if a "hybrid" composite is employed. The mechanical properties of biopins and screws in isolation are perceived to be inferior to those of conventional metal implants, leading to low confidence levels regarding the stability of reduced fractures; these implants should be used predominantly in fracture patterns in which internal fixation is subjected to minimal stress.

  7. Effects of Thermal Aging on Material Properties, Stress Corrosion Cracking, and Fracture Toughness of AISI 316L Weld Metal

    Science.gov (United States)

    Lucas, Timothy; Forsström, Antti; Saukkonen, Tapio; Ballinger, Ronald; Hänninen, Hannu

    2016-08-01

    Thermal aging and consequent embrittlement of materials are ongoing issues in cast stainless steels, as well as duplex, and high-Cr ferritic stainless steels. Spinodal decomposition is largely responsible for the well-known "748 K (475 °C) embrittlement" that results in drastic reductions in ductility and toughness in these materials. This process is also operative in welds of either cast or wrought stainless steels where δ-ferrite is present. While the embrittlement can occur after several hundred hours of aging at 748 K (475 °C), the process is also operative at lower temperatures, at the 561 K (288 °C) operating temperature of a boiling water reactor (BWR), for example, where ductility reductions have been observed after several tens of thousands of hours of exposure. An experimental program was carried out in order to understand how spinodal decomposition may affect changes in material properties in Type 316L BWR piping weld metals. The study included material characterization, nanoindentation hardness, double-loop electrochemical potentiokinetic reactivation (DL-EPR), Charpy-V, tensile, SCC crack growth, and in situ fracture toughness testing as a function of δ-ferrite content, aging time, and temperature. SCC crack growth rates of Type 316L stainless steel weld metal under simulated BWR conditions showed an approximate 2 times increase in crack growth rate over that of the unaged as-welded material. In situ fracture toughness measurements indicate that environmental exposure can result in a reduction of toughness by up to 40 pct over the corresponding at-temperature air-tested values. Material characterization results suggest that spinodal decomposition is responsible for the degradation of material properties measured in air, and that degradation of the in situ properties may be a result of hydrogen absorbed during exposure to the high-temperature water environment.

  8. Fracture characterization of inhomogeneous wrinkled metallic films deposited on soft substrates

    Science.gov (United States)

    Kishida, Hiroshi; Ishizaka, Satoshi; Nagakura, Takumi; Suzuki, Hiroaki; Yonezu, Akio

    2017-12-01

    This study investigated the fracture properties of wrinkled metallic films on a polydimethylsiloxane (PDMS) soft substrate. In particular, the crack density of the wrinkled film during tensile deformation was examined. In order to achieve better deformability of metallic thin films, a method to fabricate a wrinkled thin film on a PDMS soft substrate was first established. The copper (Cu) nano-film fabricated in this study possessed a wrinkled geometry, which plays a critical role in determining the extent of large elastic deformation. To create the wrinkled structure, wet-etching with a polymeric sacrificial layer was used. A sacrificial layer was first deposited onto a silicone rubber sheet. During the curing process of the layer, a compressive strain was applied such that the hardened surface layer buckled, and a wrinkled form was obtained. Subsequently, a PDMS solution was used to cover the layer in order to form a wrinkled PDMS substrate. Finally, the Cu film was deposited onto the wrinkled PDMS, such that the wrinkled Cu film on a soft PDMS substrate was fabricated. The use of uni-axial tensile tests resulted in film crack generation at the stress concentration zone in the wrinkled structure of the films. When the tensile loading was increased, the number of cracks increased. It was found that the increase in crack density was strongly related to the inhomogeneous nature of the wrinkled structure. Such a trend in crack density was investigated using FEM (finite element method) computations, such that this study established a simple mechanical model that may be used to predict the increase in crack density during tensile deformation. This model was verified through several experiments using various wrinkle patterns. The proposed mechanical model may be useful to predict the crack density of a wrinkled metallic film subject to tensile loading.

  9. On the fracture of human dentin: Is it stress- orstrain-controlled?

    Energy Technology Data Exchange (ETDEWEB)

    Nalla, R.K.; Kinney, J.H.; Ritchie, R.O.

    2006-02-01

    Despite substantial clinical interest in the fracture resistance of human dentin, there is little mechanistic information in archival literature that can be usefully used to model such fracture. In fact, although the fracture event indent in, akin to other mineralized tissues like bone, is widely believed to be locally strain-controlled, there has never been any scientific proof to support this belief. The present study seeks to address this issue through the use of a novel set of in vitro experiments in Hanks' balanced salt solution involving a double-notched bend test geometry, which is designed to discern whether the critical failure events involved in the onset of fracture are locally stress- or strain-controlled. Such experiments are further used to characterize the notion of ''plasticity'' in dentin and the interaction of cracks with the salient microstructural features. It is observed that fracture in dentin is indeed locally strain-controlled and that the presence of dentinal tubules does not substantially affect this process of crack initiation and growth. The results presented are believed to be critical steps in the development of a micromechanical model for the fracture of human dentin that takes into consideration the influence of both the microstructure and the local failure mode.

  10. Material and Thickness Grading for Aeroelastic Tailoring of the Common Research Model Wing Box

    Science.gov (United States)

    Stanford, Bret K.; Jutte, Christine V.

    2014-01-01

    This work quantifies the potential aeroelastic benefits of tailoring a full-scale wing box structure using tailored thickness distributions, material distributions, or both simultaneously. These tailoring schemes are considered for the wing skins, the spars, and the ribs. Material grading utilizes a spatially-continuous blend of two metals: Al and Al+SiC. Thicknesses and material fraction variables are specified at the 4 corners of the wing box, and a bilinear interpolation is used to compute these parameters for the interior of the planform. Pareto fronts detailing the conflict between static aeroelastic stresses and dynamic flutter boundaries are computed with a genetic algorithm. In some cases, a true material grading is found to be superior to a single-material structure.

  11. Lag screw fixation of dorsal cortical stress fractures of the third metacarpal bone in 116 racehorses.

    Science.gov (United States)

    Jalim, S L; McIlwraith, C W; Goodman, N L; Anderson, G A

    2010-10-01

    The effectiveness and best method to manage dorsal cortical stress fractures is not clear. This study was performed to evaluate the success of lag screw fixation of such fractures in a population of Thoroughbred racehorses. Lag screw fixation of dorsal cortical stress fractures is an effective surgical procedure allowing racehorses to return to their preoperative level of performance. The records of 116 racehorses (103 Thoroughbreds) admitted to Equine Medical Centre, California between 1986 and 2008 were assessed. Information obtained from medical records included subject details, limb(s) affected, fracture configuration, length of screw used in repair and presence of concurrent surgical procedures performed. Racing performance was evaluated relative to these factors using Fisher's exact test and nonparametric methods with a level of significance of Phorses, 83% raced preoperatively and 83% raced post operatively, with 63% having ≥5 starts. There was no statistically significant association between age, gender, limb affected, fracture configuration or presence of concurrent surgery and likelihood of racing post operatively or of having 5 or more starts. The mean earnings per start and the performance index for the 3 races following surgery were lower compared to the 3 races prior to surgery; however, 29 and 45% of horses either improved or did not change their earnings per start and performance index, respectively. Data show that lag screw fixation is successful at restoring ability to race in horses suffering from dorsal cortical stress fractures. © 2010 EVJ Ltd.

  12. Micromechanical studies of cyclic creep fracture under stress controlled loading

    DEFF Research Database (Denmark)

    van der Giessen, Erik; Tvergaard, Viggo

    1996-01-01

    is based on numerical unit cell analyses for a planar polycrystal model with the grains and grain boundaries modeled individually, in order to investigate the interactions between the mechanisms involved and to account for the build-up of residual stress fields during cycling. The behaviour of a limiting......This paper deals with a study of intergranular failure by creep cavitation under stress-controlled cyclic loading conditions. Loading is assumed to be slow enough that diffusion and creep mechanisms (including grain boundary sliding) dominate, leading to intergranular creep fracture. This study...

  13. An interbubble fracture mechanism of blister formation on helium-irradiated metals

    International Nuclear Information System (INIS)

    Evans, J.H.

    1977-01-01

    This paper describes a new model of surface blister formation in which a blister is nucleated by the interbubble fracture of highly overpressurized helium bubbles. As in other gas-driven models, the internal release of helium then provides the driving force for blister lid deformation. The high pressures required for the suggested mode of fracture are a result of the difficulty, experienced by the bubbles in acquiring vacancies. By considering the bubble growth mechanisms, the critical conditions for interbubble fracture are shown to depend on the helium dose and energy, the bubble size, and their depth in the irradiated material. These parameters and other aspects of blister formation are discussed on the basis of the proposed model. One important result concerns the position of the fracture plane; because of the usual displacement of damage and helium peaks relative to depth, this plane can lie well beyond the helium peak. Thus, the disagreement inherent in previous gas models between helium range and measured blister lid thickness values can be resolved without recourse to lateral stress arguments. (Auth.)

  14. Increased sclerostin associated with stress fracture of the third metacarpal bone in the Thoroughbred racehorse

    Science.gov (United States)

    Singer, E.; Henson, F.

    2018-01-01

    Objectives The exact aetiology and pathogenesis of microdamage-induced long bone fractures remain unknown. These fractures are likely to be the result of inadequate bone remodelling in response to damage. This study aims to identify an association of osteocyte apoptosis, the presence of osteocytic osteolysis, and any alterations in sclerostin expression with a fracture of the third metacarpal (Mc-III) bone of Thoroughbred racehorses. Methods A total of 30 Mc-III bones were obtained; ten bones were fractured during racing, ten were from the contralateral limb, and ten were from control horses. Each Mc-III bone was divided into a fracture site, condyle, condylar groove, and sagittal ridge. Microcracks and diffuse microdamage were quantified. Apoptotic osteocytes were measured using TUNEL staining. Cathepsin K, matrix metalloproteinase-13 (MMP-13), HtrA1, and sclerostin expression were analyzed. Results In the fracture group, microdamage was elevated 38.9% (sd 2.6) compared with controls. There was no difference in the osteocyte number and the percentage of apoptotic cells between contralateral limb and unraced control; however, there were significantly fewer apoptotic cells in fractured samples (p fractured samples, sclerostin expression was significantly higher (p fractured during racing. In this study, this is not associated with osteocyte apoptosis or osteocytic osteolysis. The finding of increased sclerostin in the region of the fracture suggests that this protein may be playing a key role in the regulation of bone microdamage during stress adaptation. Cite this article: N. Hopper, E. Singer, F. Henson. Increased sclerostin associated with stress fracture of the third metacarpal bone in the Thoroughbred racehorse. Bone Joint Res 2018;7:94–102. DOI: 10.1302/2046-3758.71.BJR-2016-0202.R4. PMID:29363519

  15. Effect of Crack Tip Stress Concentration Factor on Fracture Resistance in Vacuum Environment

    Science.gov (United States)

    2015-01-20

    indicate: (1) in all alloys, the fracture resistance is highest for blunt-notches (smaller Kt), and is lowest for fatigue -sharpened precracked...paths are transgranular and the fracture mode is ductile void coalescence in all cases, irrespective of the stress concentration factor. 20-01-2015...because of corrosion and/or various loading conditions such as fatigue , fretting, abrasion, etc. Also, the geometry of the structure may cause an

  16. Method for stress determination in N, E, and T tunnels, Nevada Test Site, by hydraulic fracturing, with a comparison of overcoring methods

    International Nuclear Information System (INIS)

    Miller, C.H.

    1976-01-01

    Twenty-nine intervals in 10 core holes were hydraulically fractured in N, E, and T tunnels, Nevada Test Site, during 1974. Certain pressures were determined and related to the ambient stress field, but the orientation of the hydraulic fractures was not measured. These data and data from previous investigations in G tunnel indicated that both the magnitude of the hydraulic pressures and the direction of fracturing are independent of the orientation of the core holes. The maximum and minimum principal compressive stresses determined by the hydraulic fracturing methods are good approximations of those determined by nearby overcore methods. The data show that a good approximation of the magnitudes of the maximum and minimum principal stress axes can be obtained from several hydrofractured intervals in one core hole. Furthermore, if fracture orientation can be measured, then the direction of minimum principal compressive stress can be determined and the orientation of the plane of the maximum and intermediate principal compressive stresses can also be determined

  17. Fracture toughness of Ceramic-Fiber-Reinforced Metallic-Intermetallic-Laminate (CFR-MIL) composites

    International Nuclear Information System (INIS)

    Vecchio, Kenneth S.; Jiang, Fengchun

    2016-01-01

    Novel Ceramic-Fiber-Reinforced-Metal-Intermetallic-Laminate (CFR-MIL) composites, Ti–Al 3 Ti–Al 2 O 3 –Al, were synthesized by reactive foil sintering in air. Microstructure controlled material architectures were achieved with continuous Al 2 O 3 fibers oriented in 0° and 90° layers to form fully dense composites in which the volume fractions of all four component phases can be tailored. Bend fracture specimens were cut from the laminate plates in divider orientation, and bend tests were performed to study the fracture behavior of CFR-MIL composites under three-point and four-point bending loading conditions. The microstructures and fractured surfaces of the CFR-MIL composites were examined using optical microscopy and scanning electron microscopy to establish a correlation between the fracture toughness, fracture surface morphology and microstructures of CFR-MIL composites. The fracture and toughening mechanisms of the CFR-MIL composites are also addressed. The present experimental results indicate that the fracture toughness of CFR-MIL composites determined by three- and four-point bend loading configurations are quite similar, and increased significantly compared to MIL composites without ceramic fiber reinforcement. The interface cracking behavior is related to the volume fraction of the brittle Al 3 Ti phase and residual ductile Al, but the fracture toughness values appear to be insensitive to the ratio of these two phases. The toughness appears to be dominated by the ductility/strength of the Ti layers and the strength and crack bridging effect of the ceramic fibers.

  18. Effects of fluid dynamic stress on fracturing of cell-aggregated tissue during purification for islets of Langerhans transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Shintaku, H; Kawano, S [Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Machikaneyama-cho, Toyonaka, Osaka 560-8531 (Japan); Okitsu, T [Transplantation Unit, Kyoto University Hospital, Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); Matsumoto, S [Baylor Research Institute Islet Cell Laboratory, 1400 Eight Avenue, Fort Worth, TX 76104 (United States); Suzuki, T; Kanno, I; Kotera, H [Department of Microengineering, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)], E-mail: shintaku@me.es.osaka-u.ac.jp

    2008-06-07

    Among clinical treatments for type 1 diabetes mellitus, the transplantation of islets of Langerhans to the portal vein of the hepar is a commonly used treatment for glucose homeostasis. Islet purification using the density gradient of a solution in a centrifuge separator is required for safety and efficiency. In the purification, the number of tissues to be transplanted is reduced by removing the acinar tissue and gathering the islet from the digest of pancreas. However, the mechanical effects on the fracture of islets in the centrifuge due to fluid dynamic stress are a serious problem in the purification process. In this study, a preliminary experiment using a cylindrical rotating viscometer with a simple geometry is conducted in order to systematically clarify the effect of fluid dynamic stress on the fracture of islets. The effects of fluid dynamic stress on the islet configuration is quantitatively measured for various flow conditions, and a predictive fracture model is developed based on the experimental results. Furthermore, in the practical purification process in the COBE (Gambro BCT), which is widely used in clinical applications, we perform a numerical analysis of the fluid dynamic stress based on Navier-Stokes equations to estimate the stress conditions for islets. Using the fracture model and numerical analysis, the islet fracture characteristics using the COBE are successfully investigated. The results obtained in this study provide crucial information for the purification of islets by centrifuge in practical and clinical applications.

  19. Effects of fluid dynamic stress on fracturing of cell-aggregated tissue during purification for islets of Langerhans transplantation

    International Nuclear Information System (INIS)

    Shintaku, H; Kawano, S; Okitsu, T; Matsumoto, S; Suzuki, T; Kanno, I; Kotera, H

    2008-01-01

    Among clinical treatments for type 1 diabetes mellitus, the transplantation of islets of Langerhans to the portal vein of the hepar is a commonly used treatment for glucose homeostasis. Islet purification using the density gradient of a solution in a centrifuge separator is required for safety and efficiency. In the purification, the number of tissues to be transplanted is reduced by removing the acinar tissue and gathering the islet from the digest of pancreas. However, the mechanical effects on the fracture of islets in the centrifuge due to fluid dynamic stress are a serious problem in the purification process. In this study, a preliminary experiment using a cylindrical rotating viscometer with a simple geometry is conducted in order to systematically clarify the effect of fluid dynamic stress on the fracture of islets. The effects of fluid dynamic stress on the islet configuration is quantitatively measured for various flow conditions, and a predictive fracture model is developed based on the experimental results. Furthermore, in the practical purification process in the COBE (Gambro BCT), which is widely used in clinical applications, we perform a numerical analysis of the fluid dynamic stress based on Navier-Stokes equations to estimate the stress conditions for islets. Using the fracture model and numerical analysis, the islet fracture characteristics using the COBE are successfully investigated. The results obtained in this study provide crucial information for the purification of islets by centrifuge in practical and clinical applications

  20. Cyclic Strain Resistance, Stress Response, Fatigue Life, and Fracture Behavior of High Strength Low Alloy Steel 300 M

    Science.gov (United States)

    Manigandan, K.; Srivatsan, T. S.; Tammana, Deepthi; Poorgangi, Behrang; Vasudevan, Vijay K.

    2014-05-01

    The focus of this technical manuscript is a record of the specific role of microstructure and test specimen orientation on cyclic stress response, cyclic strain resistance, and cyclic stress versus strain response, deformation and fracture behavior of alloy steel 300 M. The cyclic strain amplitude-controlled fatigue properties of this ultra-high strength alloy steel revealed a linear trend for the variation of log elastic strain amplitude with log reversals-to-failure, and log plastic strain amplitude with log reversals-to-failure for both longitudinal and transverse orientations. Test specimens of the longitudinal orientation showed only a marginal improvement over the transverse orientation at equivalent values of plastic strain amplitude. Cyclic stress response revealed a combination of initial hardening for the first few cycles followed by gradual softening for a large portion of fatigue life before culminating in rapid softening prior to catastrophic failure by fracture. Fracture characteristics of test specimens of this alloy steel were different at both the macroscopic and fine microscopic levels over the entire range of cyclic strain amplitudes examined. Both macroscopic and fine microscopic observations revealed fracture to be a combination of both brittle and ductile mechanisms. The underlying mechanisms governing stress response, deformation characteristics, fatigue life, and final fracture behavior are presented and discussed in light of the competing and mutually interactive influences of test specimen orientation, intrinsic microstructural effects, deformation characteristics of the microstructural constituents, cyclic strain amplitude, and response stress.

  1. Influence of shear and deviatoric stress on the evolution of permeability in fractured rock

    NARCIS (Netherlands)

    Faoro, Igor; Niemeijer, André; Marone, Chris; Elsworth, Derek

    The evolution of permeability in fractured rock as a function of effective normal stress, shear displacement, and damage remains a complex issue. In this contribution, we report on experiments in which rock surfaces were subject to direct shear under controlled pore pressure and true triaxial stress

  2. Fatigue-type stress fractures of the lower limb associated with fibrous cortical defects/non-ossifying fibromas in the skeletally immature.

    Science.gov (United States)

    Shimal, A; Davies, A M; James, S L J; Grimer, R J

    2010-05-01

    To investigate the association of a fatigue-type stress fracture and a fibrous cortical defect/non-ossifying fibroma (FCD/NOF) of the lower limb long bones in skeletally immature patients. The patient database of a specialist orthopaedic oncology centre was searched to determine the number of skeletally immature patients (lower limb long bone lesion ultimately shown to be a fatigue-type stress fracture. The diagnosis was established by a combination of typical imaging findings of a fatigue-type stress fracture, the absence of aggressive features suggestive of a sarcoma (e.g., interrupted periosteal reaction, cortical breach, and a soft-tissue mass) together with evidence of consolidation or healing on follow-up radiographs and resolution of symptoms over the subsequent weeks. The database was also used to determine the number of skeletally immature cases (lower limb long bones. The clinical and imaging features of those cases common to both groups (i.e., with both a fatigue-type stress fracture and a FCD or NOF) were reviewed. Six percent of patients (five cases) referred to an orthopaedic oncology unit, who were subsequently shown to have a stress fracture of the lower limb long bones, were found to have a related FCD/NOF. All had been referred with a suggested diagnosis of a bone sarcoma and/or osteomyelitis. The possibility of a stress fracture had been raised in only one case. Four cases involved the proximal tibia and one the distal femur. Radiographs revealed that both lesions arose in the posteromedial cortex in all but one of the cases. The radiographs and magnetic resonance imaging (MRI) features were considered typical of the overlapping pathological features of the lesions. A sarcoma could be effectively excluded in the absence of true cortical destruction and soft-tissue extension. Both fatigue-type stress fractures and FCD/NOFs occur at similar sites in the long bones. It is postulated that the existence of the latter may cause localized weakening of

  3. A retrospective cohort study on the influence of UV index and race/ethnicity on risk of stress and lower limb fractures.

    Science.gov (United States)

    Montain, Scott J; McGraw, Susan M; Ely, Matthew R; Grier, Tyson L; Knapik, Joseph J

    2013-04-12

    Low vitamin D status increases the risk of stress fractures. As ultraviolet (UV) light is required for vitamin D synthesis, low UV light availability is thought to increase the risk of vitamin D insufficiency and poor bone health. The purpose of this investigation was to determine if individuals with low UV intensity at their home of record (HOR) or those with darker complexions are at increased risk of developing stress fractures and lower limb fractures during U.S. Army Basic Combat Training (BCT). This was a retrospective cohort study using the Armed Forces Health Surveillance Center data repository. All Basic trainees were identified from January 1997 to January 2007. Cases were recruits diagnosed with stress fractures and lower limb fractures during BCT. The recruit's home of record (HOR) was identified from the Defense Manpower Data Center database. The average annual UV intensity at the recruits' HOR was determined using a U.S National Weather Service database and recruits were stratified into low (≤3.9); moderate (4.0-5.4), and high (≥5.5) UV index regions. Race was determined from self-reports. The dataset had 421,461 men and 90,141 women. Compared to men, women had greater risk of developing stress fractures (odds ratio (OR) = 4.5, 95% confidence interval (95%CI) = 4.4-4.7, p lower risk of stress fractures (male OR (low UV/high UV) = 0.92, 95%CI = 0.87-0.97; females OR = 0.89, 95%CI = 0.84-0.95, p lower limb fractures (male OR = 0.98, 95%CI = 0.89-1.07; female OR = 0.93, 95%CI = 0.80-1.09) than recruits from high UV index areas. Blacks had lower risk of stress and lower limb fractures than non-blacks, and there was no indication that Blacks from low UV areas were at increased risk for bone injuries. The UV index at home of record is not associated with stress or lower limb fractures in BCT. These data suggest that UV intensity is not a risk factor for poor bone health in younger American adults.

  4. Discrete fracture in quasi-brittle materials under compressive and tensile stress states

    CSIR Research Space (South Africa)

    Klerck, PA

    2004-01-01

    Full Text Available A method for modelling discrete fracture in geomaterials under tensile and compressive stress fields has been developed based on a Mohr-Coulomb failure surface in compression and three independent anisotropic rotating crack models in tension...

  5. Association of stressful life events with accelerated bone loss in older men: the Osteoporotic Fractures in Men (MrOS) Study

    Science.gov (United States)

    Fink, Howard A.; Kuskowski, Michael A.; Cauley, Jane A.; Taylor, Brent C.; Schousboe, John T.; Cawthon, Peggy M.; Ensrud, Kristine E.

    2015-01-01

    Purpose/Introduction Prior studies suggest that stressful life events may increase adverse health outcomes, including falls and possibly fractures. The current study builds on these findings and examines whether stressful life events are associated with increased bone loss. Methods 4388 men aged ≥65 years in the Osteoporotic Fractures in Men study completed total hip bone mineral density (BMD) measures at baseline and visit 2, approximately 4.6 years later, and self-reported stressful life events data mid-way between baseline and visit 2, and at visit 2. We used linear regression to model the association of stressful life events with concurrent annualized total hip BMD loss, and log binomial regression or Poisson regression to model risk of concurrent accelerated BMD loss (>1 SD more than mean annualized change). Results 75.3% of men reported ≥1 type of stressful life event, including 43.3% with ≥2 types of stressful life events. Mean annualized BMD loss was −0.36% (SD 0.88) and 13.9% of men were categorized with accelerated BMD loss (about 5.7% or more total loss). Rate of annualized BMD loss increased with the number of types of stressful life events after adjustment for age (pstressful life events (RR, 1.10 [95% CI, 1.04–1.16]) per increase of 1 type of stressful life event). Fracture risk was not significantly different between stressful life event-accelerated bone loss subgroups (p=0.08). Conclusions In these older men, stressful life events were associated with a small, dose-related increase in risk of concurrent accelerated hip bone loss. Low frequency of fractures limited assessment of whether rapid bone loss mediates any association of stressful life events with incident fractures. Future studies are needed to confirm these findings and to investigate the mechanism that may underlie this association. PMID:25169421

  6. Results of screw fixation combined with cortical drilling for treatment of dorsal cortical stress fractures of the third metacarpal bone in 56 Thoroughbred racehorses

    International Nuclear Information System (INIS)

    Dallap, B.L.; Bramlage, L.R.; Embertson, R.M.

    1999-01-01

    The purpose of this study was to evaluate screw fixation with cortical drilling as a surgical treatment for dorsal cortical stress fractures of MCIII in the Thoroughbred racehorse. Details of age, sex, limb affected, fracture assessment, and post operative recommendations were obtained from medical records and radiographs. Fracture healing was assessed radiographically at the time of screw removal. Performance evaluation was determined from race records obtained from The Jockey Club Information System, Lexington, Kentucky. Fifty-six Thoroughbred racehorses were treated surgically for stress fracture of MCIII with screw fixation and cortical drilling. Stress fractures occurred primarily in the left front limb of the male 3-year-olds, in the dorsolateral cortex of the middle third of MCIII. Ninety-seven percent of the fractures travelled in a dorsodistal to palmaroproximal direction. Median period to screw removal was 2.0 months. Evaluation at time of screw removal revealed 98% of single stress fractures of the left front limb were healed radiographically. Median period to resume training was 2.75 months (single stress fractures); median period to race was 7.62 months. There was no statistically significant difference in earnings/start before and after surgical intervention. Of the 63 fractures treated, two recurred. There were no catastrophic failures, and no incisional infections

  7. Degradation of impact fracture during accelerated aging of weld metal on microalloyed steel

    International Nuclear Information System (INIS)

    Vargas-Arista, B.; Hallen, J. M.; Albiter, A.; Angeles-Chavez, C.

    2008-01-01

    The effect of accelerated aging on the toughness and fracture of the longitudinal weld metal on an API5L-X52 line pipe steel was evaluated by Charpy V-notch impact test, fracture analysis and transmission electron microscopy. Aging was performed at 250 degree centigrade for 100 to 1000 h. The impact results indicated a significant reduction in the fracture energy and impact toughness as a function of aging time, which were achieved by the scanning electron microscope fractography that showed a decrease in the vol fraction of microvoids by Charpy ductile failure with the aging time, which favored the brittle fracture by transgranular cleavage. The minimum vol fraction of microvoids was reached at 500 h due to the peak aged. The microstructural analysis indicated the precipitation of transgranular iron nano carbides in the aged specimens, which was related to the deterioration of toughness and change in the ductile to brittle behavior. (Author) 15 refs

  8. Residual stress effects on the K parameter of the fracture mechanics

    International Nuclear Information System (INIS)

    Soares, Maria da Conceiccao B. Vieira; Andrade, Arnaldo H. Paes de

    1996-01-01

    Compressive residual stresses are beneficial and improve resistance to fracture and crack growth. Residual stresses can be introduced in fabricated components by a variety of means and a number of methods such as laser surface treatment, cold expanded hole, and shot peening. Neutrons diffraction measurements of residual stress were performed at a pulsed neutron source (ISIS, Didcot, UK), on shot peened plates of nickel base superalloy Udimet 720 and titanium alloy IMI 834. The stress intensity factor (K) of residual stress was evaluated by finite element modeling and weight function method. Finite element modeling of a 2D plate with a single edge-notch was applied and, due to symmetry only half of the plate was actually modeled. The stress intensity factor (K) was evaluated for both case of remote tension stress and residual stress. Crack surface overlapping, which is physically unacceptable, was noted for small cracks under residual and boundary lading. Overlap correction was proposed and applied in order to obtain reliable values for (K). (author)

  9. Assessment of foam fracture in sandwich beams using thermoelastic stress analysis

    DEFF Research Database (Denmark)

    Dulieu-Barton, J.M.; Berggreen, Christian; Mettemberg, C.

    2009-01-01

    Thermoelastic Stress Analysis (TSA) has been well established for determining crack-tip parameters in metallic materials. This paper examines its ability to determine accurately the crack-tip parameters for PVC foam used in sandwich structures.......Thermoelastic Stress Analysis (TSA) has been well established for determining crack-tip parameters in metallic materials. This paper examines its ability to determine accurately the crack-tip parameters for PVC foam used in sandwich structures....

  10. [Effect of axial stress stimulation on tibial and fibular open fractures healing after Taylor space stent fixation].

    Science.gov (United States)

    Ge, Qihang; Wan, Chunyou; Liu, Yabei; Ji, Xu; Ma, Jihai; Cao, Haikun; Yong, Wei; Liu, Zhao; Zhang, Ningning

    2017-08-01

    To investigate the effect of axial stress stimulation on tibial and fibular open fractures healing after Taylor space stent fixation. The data of 45 cases with tibial and fibular open fractures treated by Taylor space stent fixation who meet the selection criteria between January 2015 and June 2016 were retrospectively analysed. The patients were divided into trial group (23 cases) and control group (22 cases) according to whether the axial stress stimulation was performed after operation. There was no significant difference in gender, age, affected side, cause of injury, type of fracture, and interval time from injury to operation between 2 groups ( P >0.05). The axial stress stimulation was performed in trial group after operation. The axial load sharing ratio was tested, and when the value was less than 10%, the external fixator was removed. The fracture healing time, full weight-bearing time, and external fixator removal time were recorded and compared. After 6 months of external fixator removal, the function of the limb was assessed by Johner-Wruhs criteria for evaluation of final effectiveness of treatment of tibial shaft fractures. There were 2 and 3 cases of needle foreign body reaction in trial group and control group, respectively, and healed after symptomatic anti allergic treatment. All the patients were followed up 8-12 months with an average of 10 months. All the fractures reached clinical healing, no complication such as delayed union, nonunion, or osteomyelitis occurred. The fracture healing time, full weight-bearing time, and external fixator removal time in trial group were significantly shorter than those in control group ( P good in 6 cases, fair in 3 cases, and poor in 1 case in trial group, with an excellent and good rate of 82.6%; and was excellent in 5 cases, good in 10 cases, fair in 4 cases, and poor in 3 cases in control group, with an excellent and good rate of 68.2%, showing significant difference between 2 groups ( Z =-2.146, P =0

  11. Model of T-Type Fracture in Coal Fracturing and Analysis of Influence Factors of Fracture Morphology

    Directory of Open Access Journals (Sweden)

    Yuwei Li

    2018-05-01

    Full Text Available Special T-type fractures can be formed when coal is hydraulically fractured and there is currently no relevant theoretical model to calculate and describe them. This paper first establishes the height calculation model of vertical fractures in multi-layered formations and deduces the stress intensity factor (SIF at the upper and lower sides of the fracture in the process of vertical fracture extension. Combined with the fracture tip stress analysis method of fracture mechanics theory, the horizontal bedding is taken into account for tensile and shear failure, and the critical mechanical conditions for the formation of horizontal fracture in coal are obtained. Finally, the model of T-type fracture in coal fracturing is established, and it is verified by fracturing simulation experiments. The model calculation result shows that the increase of vertical fracture height facilitates the increase of horizontal fracture length. The fracture toughness of coal has a significant influence on the length of horizontal fracture and there is a threshold. When the fracture toughness is less than the threshold, the length of horizontal fracture remains unchanged, otherwise, the length of horizontal fracture increases rapidly with the increase of fracture toughness. When the shear strength of the interface between the coalbed and the interlayer increases, the length of the horizontal fracture of the T-type fracture rapidly decreases.

  12. Section modulus is the optimum geometric predictor for stress fractures and medial tibial stress syndrome in both male and female athletes.

    Science.gov (United States)

    Franklyn, Melanie; Oakes, Barry; Field, Bruce; Wells, Peter; Morgan, David

    2008-06-01

    Various tibial dimensions and geometric parameters have been linked to stress fractures in athletes and military recruits, but many mechanical parameters have still not been investigated. Sedentary people, athletes with medial tibial stress syndrome, and athletes with stress fractures have smaller tibial geometric dimensions and parameters than do uninjured athletes. Cohort study; Level of evidence, 3. Using a total of 88 subjects, male and female patients with either a tibial stress fracture or medial tibial stress syndrome were compared with both uninjured aerobically active controls and uninjured sedentary controls. Tibial scout radiographs and cross-sectional computed tomography images of all subjects were scanned at the junction of the midthird and distal third of the tibia. Tibial dimensions were measured directly from the films; other parameters were calculated numerically. Uninjured exercising men have a greater tibial cortical cross-sectional area than do their sedentary and injured counterparts, resulting in a greater value of some other cross-sectional geometric parameters, particularly the section modulus. However, for women, the cross-sectional areas are either not different or only marginally different, and there are few tibial dimensions or geometric parameters that distinguish the uninjured exercisers from the sedentary and injured subjects. In women, the main difference between the groups was the distribution of cortical bone about the centroid as a result of the different values of section modulus. Last, medial tibial stress syndrome subjects had smaller tibial cross-sectional dimensions than did their uninjured exercising counterparts, suggesting that medial tibial stress syndrome is not just a soft-tissue injury but also a bony injury. The results show that in men, the cross-sectional area and the section modulus are the key parameters in the tibia to distinguish exercise and injury status, whereas for women, it is the section modulus only.

  13. Cleavage and creep fracture of rock salt

    International Nuclear Information System (INIS)

    Chan, K.S.; Munson, D.E.; Bodner, S.R.

    1996-01-01

    The dominant failure mechanism in rock salt at ambient temperature is either cleavage or creep fracture. Since the transition of creep fracture to cleavage in a compressive stress field is not well understood, failure of rock salt by cleavage and creep fracture is analyzed in this paper to elucidate the effect of stress state on the competition between these two fracture mechanisms. For cleavage fracture, a shear crack is assumed to cause the formation and growth of a symmetric pair of wing cracks in a predominantly compressive stress field. The conditions for wing-crack instability are derived and presented as the cleavage fracture boundary in the fracture mechanism map. Using an existing creep fracture model, stress conditions for the onset of creep fracture and isochronous failure curves of specified times-to-rupture are calculated and incorporated into the fracture mechanism map. The regimes of dominance by cleavage and creep fracture are established and compared with experimental data. The result indicates that unstable propagation of cleavage cracks occurs only in the presence of tensile stress. The onset of creep fracture is promoted by a tensile stress, but can be totally suppressed by a high confining pressure. Transition of creep fracture to cleavage occurs when critical conditions of stress difference and tensile stress for crack instability are exceeded

  14. Microstructural sensitivity of 316H austenitic stainless steel: Residual stress relaxation and grain boundary fracture

    Energy Technology Data Exchange (ETDEWEB)

    Chen, B., E-mail: b.chen@bristol.ac.uk [Department of Mechanical Engineering, University of Bristol, Bristol BS8 1TR (United Kingdom); Flewitt, P.E.J. [Interface Analysis Centre, University of Bristol, 121 St Michael' s Hill, Bristol BS2 8BS (United Kingdom); H.H. Wills Physics Laboratory, School of Physics, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Smith, D.J. [Department of Mechanical Engineering, University of Bristol, Bristol BS8 1TR (United Kingdom)

    2010-10-25

    Research highlights: {yields} Triaxial residual macro-stresses have been measured by neutron diffraction. {yields} Rates of stress relaxation are shown to be a function of the microstructure. {yields} Quantification of M{sub 23}C{sub 6} precipitation was undertaken by a novel approach. {yields} Intergranular M{sub 23}C{sub 6} precipitation promotes the potential to intergranular fracture. {yields} Phosphorous segregation further enhances the potential to intergranular fracture. - Abstract: The present work considers the role of thermo-mechanical history on the generation and relaxation of residual stresses, typical of those encountered in Type 316H austenitic stainless steel thick section weldments. A series of thermo-mechanical pre-treatments have been developed and applied to simulate the critical microstructures observed within the heat affected zone of the thick section parent material. The through thickness distributions of the residual macro-stresses in cylindrical specimens have been measured by neutron diffraction and then the rates of the relaxation are shown to be a function of microstructure. The susceptibility to intergranular brittle fracture at a temperature of -196 deg. C is shown to be a function of M{sub 23}C{sub 6} carbide precipitates and phosphorous segregation at the grain boundaries. Finally, the link of the present study to the understanding of the reheat cracking is briefly discussed.

  15. Sternal stress fracture in a gymnast: A case report and literature review

    African Journals Online (AJOL)

    There is a high incidence of injuries among gymnasts.1 This is not surprising given the ... stress fracture. A common example of poor posture in gymnasts is excessive ... Dimakatso Althea Ramagole (MB ChB, MSc (Sports Med)). Dina Christina ...

  16. Characteristics of the Foot Static Alignment and the Plantar Pressure Associated with Fifth Metatarsal Stress Fracture History in Male Soccer Players: a Case-Control Study.

    Science.gov (United States)

    Matsuda, Sho; Fukubayashi, Toru; Hirose, Norikazu

    2017-12-01

    There is a large amount of information regarding risk factors for fifth metatarsal stress fractures; however, there are few studies involving large numbers of subjects. This study aimed to compare the static foot alignment and distribution of foot pressure of athletes with and without a history of fifth metatarsal stress fractures. The study participants comprised 335 collegiate male soccer players. Twenty-nine with a history of fifth metatarsal stress fractures were in the fracture group and 306 were in the control group (with subgroups as follows: 30 in the fracture foot group and 28 in the non-fracture group). We measured the foot length, arch height, weight-bearing leg-heel alignment, non-weight-bearing leg-heel alignment, forefoot angle relative to the rearfoot, forefoot angle relative to the horizontal axis, and foot pressure. The non-weight-bearing leg-heel alignment was significantly smaller and the forefoot angle relative to the rearfoot was significantly greater in the fracture foot group than in the control foot group (P = 0.049 and P = 0.038, respectively). With regard to plantar pressure, there were no significant differences among the groups. Midfield players had significantly higher rates of fifth metatarsal stress fracture in their histories, whereas defenders had significantly lower rates (chi-square = 13.2, P stress fractures according to the type of foot (kicking foot vs. pivoting foot) or the severity of ankle sprain. Playing the midfield position and having an everted rearfoot and inverted forefoot alignment were associated with fifth metatarsal stress fractures. This information may be helpful for preventing fifth metatarsal stress fracture recurrence. More detailed load evaluations and a prospective study are needed in the future.

  17. Consistent stress-strain ductile fracture model as applied to two grades of beryllium

    International Nuclear Information System (INIS)

    Priddy, T.G.; Benzley, S.E.; Ford, L.M.

    1980-01-01

    Published yield and ultimate biaxial stress and strain data for two grades of beryllium are correlated with a more complete method of characterizing macroscopic strain at fracture initiation in ductile materials. Results are compared with those obtained from an exponential, mean stress dependent, model. Simple statistical methods are employed to illustrate the degree of correlation for each method with the experimental data

  18. Effects of superimposed hydrostatic pressure on flow and fracture of a Zr-Ti-Ni-Cu-Be bulk amorphous alloy

    International Nuclear Information System (INIS)

    Lowhaphandu, P.; Montgomery, S.L.; Lewandowski, J.J.

    1999-01-01

    Recent successes in producing bulk amorphous alloys have renewed interest in this class of materials. Although amorphous metallic alloys have been shown to exhibit strengths in excess of 2.0 GPa, most of the earlier studies on such materials were conducted on tape or ribbon specimens due to the high cooling rates required to achieve the amorphous structure. The primary purpose of this investigation was to determine the effects of superimposed hydrostatic pressure on the flow and fracture behavior of a Zr-Ti-Ni-Cu-Be bulk metallic glass utilizing procedures successfully utilized on a range of structural materials, as reviewed recently. In general, few studies of this type have been conducted on metallic glasses, although thin ribbons (i.e., 300 microm thick) of a Pd-Cu-Si amorphous material tested with superimposed pressure have been reported previously. In particular, the effects of superimposed hydrostatic pressure over levels ranging from 50 MPa to 575 MPa on the flow/fracture behavior of cylindrical tensile specimens were compared to the flow and fracture behavior of identical materials tested in uniaxial tension and compression. It is shown that changes in stress triaxiality, defined as σ m /bar σ, over the range of -0.33 to 0.33 produced a negligible effect on the fracture stress and fracture strain, while the orientation of the macroscopic fracture plane with respect to the loading axis was significantly affected by changes in σ m /bar σ

  19. Double Threaded Screw Fixation for Bilateral Stress Fracture of the Medial Malleolus

    Directory of Open Access Journals (Sweden)

    Ryo Kanto

    2014-01-01

    Full Text Available An 18-year-old college basketball player presented with continued ankle pain. A radiographic examination showed bilateral medial malleolus stress fractures. Considering the prolonged history and refractory nature of this injury, surgery was adopted as a treatment option. At surgery, the fracture site was percutaneously fixed using two cannulated double threaded screws. Surgery for each side was sequentially performed two months apart. Prompt bony healing was attained after surgery, and the patient could return to his previous sports level six months after the first surgery without subsequent recurrence.

  20. Contamination smoke: a simulation of heavy metal containing aerosols from fires in plutonium glove boxes: part II

    International Nuclear Information System (INIS)

    Buijs, K.; Chavane de Dalmassy, B.; Baumgaertner, E.

    1992-01-01

    The study of the dispersion of plutonium bearing aerosols during glove box fires on a laboratory scale has been, in part I of this work, focussed on fires of polymethylmethacrylate (PMMA - the major glove box construction material) whose surfaces were contaminated with cerium-europium oxide powder as a substitute for plutonium-uranium oxide. The present part II completes the study with comparative fire experiments involving contaminated samples of various glove box materials burning in or exposed to the flames of the standardized 0.6 MW fire source previously developed. Beyond spreading of the Ce-Eu-oxide powder as mentioned above, the other important surface contamination process is used, i.e. deposition and subsequent drying of droplets from acid cerium-europium solutions. It is shown that, among the tested materials, and with the exception of synthetic glove rubber, burning PMMA spreads the most radioactive contamination. On the other hand, this potential risk is much lower for fires involving materials contaminated from solution deposition than from powder or pellets. Attempts to measure the airborne contaminant particle sizes did not yield conclusive results. They suggest, however, that contamination from solutions leads to smaller heavy-metal containing aerosol particles than contamination with powder

  1. Dependence of fracture mechanical and fluid flow properties on fracture roughness and sample size

    International Nuclear Information System (INIS)

    Tsang, Y.W.; Witherspoon, P.A.

    1983-01-01

    A parameter study has been carried out to investigate the interdependence of mechanical and fluid flow properties of fractures with fracture roughness and sample size. A rough fracture can be defined mathematically in terms of its aperture density distribution. Correlations were found between the shapes of the aperture density distribution function and the specific fractures of the stress-strain behavior and fluid flow characteristics. Well-matched fractures had peaked aperture distributions that resulted in very nonlinear stress-strain behavior. With an increasing degree of mismatching between the top and bottom of a fracture, the aperture density distribution broadened and the nonlinearity of the stress-strain behavior became less accentuated. The different aperture density distributions also gave rise to qualitatively different fluid flow behavior. Findings from this investigation make it possible to estimate the stress-strain and fluid flow behavior when the roughness characteristics of the fracture are known and, conversely, to estimate the fracture roughness from an examination of the hydraulic and mechanical data. Results from this study showed that both the mechanical and hydraulic properties of the fracture are controlled by the large-scale roughness of the joint surface. This suggests that when the stress-flow behavior of a fracture is being investigated, the size of the rock sample should be larger than the typical wave length of the roughness undulations

  2. Revisiting fracture gradient: Comments on “A new approaching method to estimate fracture gradient by correcting Matthew–Kelly and Eaton's stress ratio”

    KAUST Repository

    Hakiki, Farizal

    2017-07-25

    A study performed by Marbun et al. [1] claimed that “A new methodology to predict fracture pressure from former calculations, Matthew–Kelly and Eaton are proposed.” Also, Marbun et al.\\'s paper stated that “A new value of Poisson\\'s and a stress ratio of the formation were generated and the accuracy of fracture gradient was improved.” We found those all statements are incorrect and some misleading concepts are revealed. An attempt to expose the method of fracture gradient determination from industry practice also appears to solidify that our arguments are acceptable to against improper Marbun et al.\\'s claims.

  3. Multifilamentary MgB2 wires fracture behavior during the drawing process

    International Nuclear Information System (INIS)

    Shan, D.; Yan, G.; Zhou, L.; Li, J.S.; Li, C.S.; Wang, Q.Y.; Xiong, X.M.; Jiao, G.F.

    2012-01-01

    The fracture behavior of 6 + 1 filamentary MgB 2 superconductive wires is presented here. The composite wires were fabricated by in situ Powder-in-Tube method using Nb as a barrier and copper as a stabilizer. The microstructure of the material has a great influence on its fracture behavior. The microstructural aspects of crack nucleation and propagation are discussed. It shows that there are complicated correlations between fracture behavior and the main influencing parameters, which contain specific drawing conditions (drawing velocity, reduction in area per pass), materials properties (strength, yield stress, microstructure) as well as the extent of bonding between the metal sheaths at their interface.

  4. Effect of plastic strain on elastic-plastic fracture toughness of SM490 carbon steel. Assessment by stress-based criterion for ductile crack initiation

    International Nuclear Information System (INIS)

    Kamaya, Masayuki

    2012-01-01

    Although the plastic strain induced in materials increases the mechanical strength, it may reduce the fracture toughness. In this study, the change in fracture toughness of SM490 carbon steel due to pre-straining was investigated using a stress-based criterion for ductile crack initiation. The specimens with blunt notch of various radiuses were used in addition to those with conventional fatigue pre-cracking. The degree of applied plastic strain was 5%, 10% or 20%. The fracture toughness was largest when the induced plastic strain was 5%, although it decreased for the plastic strains of 10% and 20%. The stress and strain distributions near the crack tip of fracture toughness test specimens was investigated by elastic-plastic finite element analyses using a well-correlated stress-strain curve for large strain. It was shown that the critical condition at the onset of the ductile crack was better correlated with the equivalent stress than the plastic strain at the crack tip. By using the stress-based criterion, which was represented by the equivalent stress and stress triaxiality, the change in the fracture toughness due to pre-straining could be reasonably explained. Based on these results, it was concluded that the stress-based criterion should be used for predicting the ductile crack initiation. (author)

  5. Intrapartum sacral stress fracture due to pregnancy-related osteoporosis: a case report.

    Science.gov (United States)

    Oztürk, Gülcan; Külcü, Duygu Geler; Aydoğ, Ece

    2013-01-01

    Low back pain (LBP) and hip pain frequently occur during pregnancy and postpartum period. Although pelvic and mechanic lesions of the soft tissues are most responsible for the etiology, sacral fracture is also one of the rare causes. A 32-year-old primigravid patient presented with LBP and right hip pain which started 3 days after vaginal delivery. Although direct radiographic examination was normal, magnetic resonance imaging of the sacrum revealed sacral stress fracture. Lumbar spine and femoral bone mineral density showed osteoporosis as a risk factor. There were no other risk factors such as trauma, excessive weight gain, and strenuous physical activity. It is considered that the patient had sacral fatigue and insufficiency fracture in intrapartum period. The patient's symptoms subsided in 3 months after physical therapy and rest. In conclusion, sacral fractures during pregnancy and postpartum period, especially resulting from childbirth, are very rare. To date, there are two cases in the literature. In cases who even do not have risk factors related to vaginal delivery such as high birth weight infant and the use of forceps, exc., sacral fracture should be considered in the differential diagnosis of LBP and hip pain started soon after child birth. Pregnancy-related osteoporosis may lead to fracture during vaginal delivery.

  6. Negative magnetic resonance imaging in three cases of anterior tibial cortex stress fractures

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Ralph; Moghal, M.; Newton, J.L.; Jones, N. [Oxford University Hospitals NHS Foundation Trust, Department of Sport and Exercise Medicine, Nuffield Orthopaedic Centre, Oxford (United Kingdom); Teh, J. [Oxford University Hospitals NHS Foundation Trust, Department of Radiology, Nuffield Orthopaedic Centre Oxford, Oxford (United Kingdom)

    2017-12-15

    Anterior mid-tibial cortex stress fractures (ATCSF) are uncommon and notoriously challenging to treat. They are termed high risk due to their predilection to prolonged recovery, nonunion and complete fracture. Early diagnosis is essential to avoid progression and reduce fracture complications. Imaging plays a key role in confirming the diagnosis. Magnetic resonance imaging (MRI) is accepted as the gold standard modality due to its high accuracy and nonionizing properties. This report describes three cases of ATCSFs in recreational athletes who had positive radiographic findings with no significant MRI changes. Two athletes had multiple striations within their tibias. Despite the radiographic findings, their severity of symptoms were low with mild or no tenderness on examination. Clinicians should be mindful that the ATCSFs may not present with typical acute stress fracture symptoms. We recommend that plain radiographs should be used as the first line investigation when suspecting ATCSFs. Clinicians should be aware that despite MRI being considered the gold standard imaging modality, we report three cases where the MRI was unremarkable, whilst radiographs and computed tomography confirmed the diagnosis. We urge clinicians to continue to use radiographs as the first line imaging modality for ATCSFs and not to directly rely on MRI. Those who opt directly for MRI may be falsely reassured causing a delay in diagnosis. (orig.)

  7. Negative magnetic resonance imaging in three cases of anterior tibial cortex stress fractures

    International Nuclear Information System (INIS)

    Smith, Ralph; Moghal, M.; Newton, J.L.; Jones, N.; Teh, J.

    2017-01-01

    Anterior mid-tibial cortex stress fractures (ATCSF) are uncommon and notoriously challenging to treat. They are termed high risk due to their predilection to prolonged recovery, nonunion and complete fracture. Early diagnosis is essential to avoid progression and reduce fracture complications. Imaging plays a key role in confirming the diagnosis. Magnetic resonance imaging (MRI) is accepted as the gold standard modality due to its high accuracy and nonionizing properties. This report describes three cases of ATCSFs in recreational athletes who had positive radiographic findings with no significant MRI changes. Two athletes had multiple striations within their tibias. Despite the radiographic findings, their severity of symptoms were low with mild or no tenderness on examination. Clinicians should be mindful that the ATCSFs may not present with typical acute stress fracture symptoms. We recommend that plain radiographs should be used as the first line investigation when suspecting ATCSFs. Clinicians should be aware that despite MRI being considered the gold standard imaging modality, we report three cases where the MRI was unremarkable, whilst radiographs and computed tomography confirmed the diagnosis. We urge clinicians to continue to use radiographs as the first line imaging modality for ATCSFs and not to directly rely on MRI. Those who opt directly for MRI may be falsely reassured causing a delay in diagnosis. (orig.)

  8. The effect of multiaxial stress state on creep behavior and fracture mechanism of P92 steel

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Yuan; Xu, Hong, E-mail: xuhong@ncepu.edu.cn; Ni, Yongzhong; Lan, Xiang; Li, Hongyuan

    2015-06-11

    The creep experiments on plain and double U-typed notched specimens were conducted on P92 steel at 650 °C. The notch strengthening effect was found in the notched specimens. Fracture appearance observed by scanning electron microscopy revealed that dimpled fracture for relatively blunt notched specimen, and dimpled fracture doubled with intergranular brittle fracture for relatively sharp notched specimen, which meant that fracture mechanism of P92 steel altered due to the presence of the notch. Meanwhile, based on Norton–Bailey and Kachanov–Robotnov constitutive models, a modified model was proposed. Finite element simulations were carried out to investigate the effect of multiaxial stress state on the creep behavior, fracture mechanism and damage evolvement of P92 steel. The simulation results agreed well with the fracture behaviors observed experimentally.

  9. Fatigue-type stress fractures of the lower limb associated with fibrous cortical defects/non-ossifying fibromas in the skeletally immature

    Energy Technology Data Exchange (ETDEWEB)

    Shimal, A.; Davies, A.M. [Department of Radiology, Royal Orthopaedic Hospital, Birmingham B31 2AP (United Kingdom); James, S.L.J., E-mail: steven.james@roh.nhs.u [Department of Radiology, Royal Orthopaedic Hospital, Birmingham B31 2AP (United Kingdom); Grimer, R.J. [Department of Orthopaedic Oncology, Royal Orthopaedic Hospital, Birmingham B31 2AP (United Kingdom)

    2010-05-15

    Aim: To investigate the association of a fatigue-type stress fracture and a fibrous cortical defect/non-ossifying fibroma (FCD/NOF) of the lower limb long bones in skeletally immature patients. Materials and methods: The patient database of a specialist orthopaedic oncology centre was searched to determine the number of skeletally immature patients (<=16 years of age) over an 18 year period with a lower limb long bone lesion ultimately shown to be a fatigue-type stress fracture. The diagnosis was established by a combination of typical imaging findings of a fatigue-type stress fracture, the absence of aggressive features suggestive of a sarcoma (e.g., interrupted periosteal reaction, cortical breach, and a soft-tissue mass) together with evidence of consolidation or healing on follow-up radiographs and resolution of symptoms over the subsequent weeks. The database was also used to determine the number of skeletally immature cases (<=16 years of age) referred in the same period in which the principal lesion was shown to be a fibrous cortical defect (FCD) or non-ossifying fibroma (NOF) of the lower limb long bones. The clinical and imaging features of those cases common to both groups (i.e., with both a fatigue-type stress fracture and a FCD or NOF) were reviewed. Results: Six percent of patients (five cases) referred to an orthopaedic oncology unit, who were subsequently shown to have a stress fracture of the lower limb long bones, were found to have a related FCD/NOF. All had been referred with a suggested diagnosis of a bone sarcoma and/or osteomyelitis. The possibility of a stress fracture had been raised in only one case. Four cases involved the proximal tibia and one the distal femur. Radiographs revealed that both lesions arose in the posteromedial cortex in all but one of the cases. The radiographs and magnetic resonance imaging (MRI) features were considered typical of the overlapping pathological features of the lesions. Conclusions: A sarcoma could be

  10. Fatigue-type stress fractures of the lower limb associated with fibrous cortical defects/non-ossifying fibromas in the skeletally immature

    International Nuclear Information System (INIS)

    Shimal, A.; Davies, A.M.; James, S.L.J.; Grimer, R.J.

    2010-01-01

    Aim: To investigate the association of a fatigue-type stress fracture and a fibrous cortical defect/non-ossifying fibroma (FCD/NOF) of the lower limb long bones in skeletally immature patients. Materials and methods: The patient database of a specialist orthopaedic oncology centre was searched to determine the number of skeletally immature patients (≤16 years of age) over an 18 year period with a lower limb long bone lesion ultimately shown to be a fatigue-type stress fracture. The diagnosis was established by a combination of typical imaging findings of a fatigue-type stress fracture, the absence of aggressive features suggestive of a sarcoma (e.g., interrupted periosteal reaction, cortical breach, and a soft-tissue mass) together with evidence of consolidation or healing on follow-up radiographs and resolution of symptoms over the subsequent weeks. The database was also used to determine the number of skeletally immature cases (≤16 years of age) referred in the same period in which the principal lesion was shown to be a fibrous cortical defect (FCD) or non-ossifying fibroma (NOF) of the lower limb long bones. The clinical and imaging features of those cases common to both groups (i.e., with both a fatigue-type stress fracture and a FCD or NOF) were reviewed. Results: Six percent of patients (five cases) referred to an orthopaedic oncology unit, who were subsequently shown to have a stress fracture of the lower limb long bones, were found to have a related FCD/NOF. All had been referred with a suggested diagnosis of a bone sarcoma and/or osteomyelitis. The possibility of a stress fracture had been raised in only one case. Four cases involved the proximal tibia and one the distal femur. Radiographs revealed that both lesions arose in the posteromedial cortex in all but one of the cases. The radiographs and magnetic resonance imaging (MRI) features were considered typical of the overlapping pathological features of the lesions. Conclusions: A sarcoma could be

  11. Anterior tension band plating for anterior tibial stress fractures in high-performance female athletes: a report of 4 cases

    NARCIS (Netherlands)

    Borens, Olivier; Sen, Milan K.; Huang, Russel C.; Richmond, Jeffrey; Kloen, Peter; Jupiter, Jesse B.; Helfet, David L.

    2006-01-01

    Stress fracture of the anterior tibial cortex is an extremely challenging fracture to treat, especially in the high-performance female athlete who requires rapid return to competition. Previous reports have not addressed treating these fractures in the world-class athlete with anterior plating. We

  12. Are Elite Female Soccer Athletes at Risk for Disordered Eating Attitudes, Menstrual Dysfunction, and Stress Fractures?

    Science.gov (United States)

    Prather, Heidi; Hunt, Devyani; McKeon, Kathryn; Simpson, Scott; Meyer, E Blair; Yemm, Ted; Brophy, Robert

    2016-03-01

    To determine the prevalence of stress fractures, menstrual dysfunction and disordered eating attitudes in elite female soccer athletes. Cross-sectional descriptive study. Female soccer athletes were recruited from a national level youth soccer club, an NCAA Division I university team, and a women's professional team. Two hundred twenty female soccer athletes with a mean age of 16.4 ± 4 years and BMI of 20.8 ± 2 kg/m(2) completed the study, representing all athletes from the included teams. One-time surveys completed by the athletes. Height and weight were recorded, and body mass index (BMI) was calculated for each athlete. Athletes reported age of menarche, history of missing 3 or more menses within a 12-month period and stress fracture. The Eating Attitudes Test (EAT-26) was used to assess the athlete's body perception and attitudes toward eating. Of the 220 soccer athletes, 3 athletes (1.6%) had a low BMI for their age, and 19 (8.6%) reported stress fractures of the lower extremity. Among athletes who had reached menarche, the average onset was 13 + 1 year; menstrual dysfunction were present in 21 (19.3%). On the EAT-26, 1 player scored in the high risk range (>20) and 17 (7.7%) scored in the intermediate risk range (10-19) for eating disorders. Athletes with an EAT-26 score ≥ 10 points had a significantly higher prevalence of menstrual dysfunction in the past year compared to athletes with an EAT-26 score of less than 10 (P = .02). Elite female soccer athletes are susceptible to stress fractures and menstrual dysfunction and have delayed onset of menarche despite normal BMI and appropriate body perception and attitudes towards eating. Further studies are needed to better understand stress fracture risk in female soccer athletes and in other team sports to determine how these findings relate to long-term bone health in this population. Copyright © 2016. Published by Elsevier Inc.

  13. Do Capacity Coupled Electric Fields Accelerate Tibial Stress Fracture Healing

    Science.gov (United States)

    2006-12-01

    MRI confirmed a large coexisting haemangioma which may have confounded perception of stress fracture symptoms. Table 1 is a comprehensive subject...Johnson JR, Light KI, Yuan HA: A double-blind study of capacitively coupled electrical stimulation as an adjunct to lumbar spinal fusions. Spine 24...Simmons JW, Jr., Mooney V, Thacker I: Pseudarthrosis after lumbar spine fusion: nonoperative salvage with pulsed electromagnetic fields. Am J

  14. Residual stress measurement in a metal microdevice by micro Raman spectroscopy

    International Nuclear Information System (INIS)

    Song, Chang; Du, Liqun; Qi, Leijie; Li, Yu; Li, Xiaojun; Li, Yuanqi

    2017-01-01

    Large residual stress induced during the electroforming process cannot be ignored to fabricate reliable metal microdevices. Accurate measurement is the basis for studying the residual stress. Influenced by the topological feature size of micron scale in the metal microdevice, residual stress in it can hardly be measured by common methods. In this manuscript, a methodology is proposed to measure the residual stress in the metal microdevice using micro Raman spectroscopy (MRS). To estimate the residual stress in metal materials, micron sized β -SiC particles were mixed in the electroforming solution for codeposition. First, the calculated expression relating the Raman shifts to the induced biaxial stress for β -SiC was derived based on the theory of phonon deformation potentials and Hooke’s law. Corresponding micro electroforming experiments were performed and the residual stress in Ni–SiC composite layer was both measured by x-ray diffraction (XRD) and MRS methods. Then, the validity of the MRS measurements was verified by comparing with the residual stress measured by XRD method. The reliability of the MRS method was further validated by the statistical student’s t -test. The MRS measurements were found to have no systematic error in comparison with the XRD measurements, which confirm that the residual stresses measured by the MRS method are reliable. Besides that, the MRS method, by which the residual stress in a micro inertial switch was measured, has been confirmed to be a convincing experiment tool for estimating the residual stress in metal microdevice with micron order topological feature size. (paper)

  15. Residual stress measurement in a metal microdevice by micro Raman spectroscopy

    Science.gov (United States)

    Song, Chang; Du, Liqun; Qi, Leijie; Li, Yu; Li, Xiaojun; Li, Yuanqi

    2017-10-01

    Large residual stress induced during the electroforming process cannot be ignored to fabricate reliable metal microdevices. Accurate measurement is the basis for studying the residual stress. Influenced by the topological feature size of micron scale in the metal microdevice, residual stress in it can hardly be measured by common methods. In this manuscript, a methodology is proposed to measure the residual stress in the metal microdevice using micro Raman spectroscopy (MRS). To estimate the residual stress in metal materials, micron sized β-SiC particles were mixed in the electroforming solution for codeposition. First, the calculated expression relating the Raman shifts to the induced biaxial stress for β-SiC was derived based on the theory of phonon deformation potentials and Hooke’s law. Corresponding micro electroforming experiments were performed and the residual stress in Ni-SiC composite layer was both measured by x-ray diffraction (XRD) and MRS methods. Then, the validity of the MRS measurements was verified by comparing with the residual stress measured by XRD method. The reliability of the MRS method was further validated by the statistical student’s t-test. The MRS measurements were found to have no systematic error in comparison with the XRD measurements, which confirm that the residual stresses measured by the MRS method are reliable. Besides that, the MRS method, by which the residual stress in a micro inertial switch was measured, has been confirmed to be a convincing experiment tool for estimating the residual stress in metal microdevice with micron order topological feature size.

  16. Imaging of upper extremity stress fractures in the athlete.

    Science.gov (United States)

    Anderson, Mark W

    2006-07-01

    Although it is much less common than injuries in the lower extremities, an upper extremity stress injury can have a significant impact on an athlete. If an accurate and timely diagnosis is to be made, the clinician must have a high index of suspicion of a stress fracture in any athlete who is involved in a throwing, weightlifting, or upper extremity weight-bearing sport and presents with chronic pain in the upper extremity. Imaging should play an integral role in the work-up of these patients; if initial radiographs are unrevealing, further cross-sectional imaging should be strongly considered. Although a three-phase bone scan is highly sensitive in this regard, MRI has become the study of choice at most centers.

  17. Osteomalacia and coxa vara. An unusual co-existence for femoral neck stress fracture

    Directory of Open Access Journals (Sweden)

    Kerim Sariyilmaz

    2015-01-01

    Conclusion: Joint and bone pain without any trauma should be investigated and bone metabolism disorders should be kept in mind. There might be co-existing factors related with stress fractures, and they must be treated simultaneously.

  18. Are metallothioneins equally good biomarkers of metal and oxidative stress?

    Science.gov (United States)

    Figueira, Etelvina; Branco, Diana; Antunes, Sara C; Gonçalves, Fernando; Freitas, Rosa

    2012-10-01

    Several researchers investigated the induction of metallothioneins (MTs) in the presence of metals, namely Cadmium (Cd). Fewer studies observed the induction of MTs due to oxidizing agents, and literature comparing the sensitivity of MTs to different stressors is even more scarce or even nonexistent. The role of MTs in metal and oxidative stress and thus their use as a stress biomarker, remains to be clearly elucidated. To better understand the role of MTs as a biomarker in Cerastoderma edule, a bivalve widely used as bioindicator, a laboratory assay was conducted aiming to assess the sensitivity of MTs to metal and oxidative stressors. For this purpose, Cd was used to induce metal stress, whereas hydrogen peroxide (H2O2), being an oxidizing compound, was used to impose oxidative stress. Results showed that induction of MTs occurred at very different levels in metal and oxidative stress. In the presence of the oxidizing agent (H2O2), MTs only increased significantly when the degree of oxidative stress was very high, and mortality rates were higher than 50 percent. On the contrary, C. edule survived to all Cd concentrations used and significant MTs increases, compared to the control, were observed in all Cd exposures. The present work also revealed that the number of ions and the metal bound to MTs varied with the exposure conditions. In the absence of disturbance, MTs bound most (60-70 percent) of the essential metals (Zn and Cu) in solution. In stressful situations, such as the exposure to Cd and H2O2, MTs did not bind to Cu and bound less to Zn. When organisms were exposed to Cd, the total number of ions bound per MT molecule did not change, compared to control. However the sort of ions bound per MT molecule differed; part of the Zn and all Cu ions where displaced by Cd ions. For organisms exposed to H2O2, each MT molecule bound less than half of the ions compared to control and Cd conditions, which indicates a partial oxidation of thiol groups in the cysteine

  19. The influence of crystal defects on the elastic properties of tungsten metals

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Hongyan [School of Physical Science Technology, Southwest Jiaotong University, Chengdu 610031 (China); Huang, Zheng, E-mail: zhhuang@home.swjtu.edu.cn [School of Physical Science Technology, Southwest Jiaotong University, Chengdu 610031 (China); Wen, Shulong [Laboratory of Advanced Technology of Materials (Ministry of Education),Superconductivity and New Energy R& D Center, Southwest Jiaotong University, Chengdu 610031 (China); Chen, Ji ming; Liu, Xiang [Fusion Science of Southwestern Institute of Physics, Chengdu, Sichuan 610041 (China); Pan, Min, E-mail: mpan@home.swjtu.edu.cn [Laboratory of Advanced Technology of Materials (Ministry of Education),Superconductivity and New Energy R& D Center, Southwest Jiaotong University, Chengdu 610031 (China); Western Superconducting Technologies Co., Ltd., Xi’an, Shanxi 710018 (China); Zhao, Yong [Laboratory of Advanced Technology of Materials (Ministry of Education),Superconductivity and New Energy R& D Center, Southwest Jiaotong University, Chengdu 610031 (China)

    2016-11-01

    Highlights: • The energy of FCC structure generated during the plastic deformation was higher than that of the BCC structure, thus the system energy was consumed. • The energy of HCP lattice was higher than that of FCC lattices. The two kinds of lattices form the twin belt with a long range periodic order, and so the system stress changed periodically with the strain. • The growth of the disordered structure not only destroyed the long range periodic structure of the twin belt, but also produced a cavity, which absorbed a large amount of energy and finally made the system fractured. • The effect of temperature on the fracture was equivalent to the effect of the vacancy, and the correlation between temperature and vacancy was quadratic. - Abstract: The four stretching process stages of the elastic, plastic, stalemate, and fracture were represented for the metal tungsten by using molecular dynamics method. The young's modulus, yield strain and yield stress were calculated. The microscopic mechanics of the stretching process is analyzed. The energy of FCC and HCP generated was higher than that of BCC, so that the energy of the system increased, and the stress level was lower in the plastic deformation stage. In the late stage of plastic deformation, the growth of the twin belt was of long range ordered periodic structure, which made the system stress change periodically. In the Stalemate Stage of deformation, the other disordered structure, setting in the HCP structure of the twin belt, growed to absorb energy and generate cavity under stress and makes the lattice fracture. The yield stress of metal tungsten decreases monotonically with temperature and vacancy. The effects of temperature and vacancy on the lattice fracture were discussed.

  20. Experimental investigation of effect of specimen thickness on fracture toughness of Al-TiC composites

    Directory of Open Access Journals (Sweden)

    M. S. Raviraj

    2016-07-01

    Full Text Available In this paper, the macro and micro-mechanical fracture behavior was studied for aluminum (Al6061 alloy matrix, reinforced with various proportions of TiC particles such as 3wt%, 5wt% and 7wt%. The Al6061-TiC metal matrix composites were produced by stir casting method to ensure uniform distribution of the TiC particulates in the Al matrix. The compact tension (CT specimens were machined according to ASTM E399 specifications to evaluate the fracture toughness for Al6061-TiC metal matrix composites. The CT specimens were machined for crack to width (a/W ratio of 0.5 and thickness to width (B/W ratios of 0.2 to 0.7 with an increment of 0.1. Load versus crack mouth opening displacement (CMOD data was plotted to estimate stress intensity factor KQ for various thicknesses of the specimen. The fracture toughness KIC was obtained by plotting stress intensity factor versus thickness to width ratios of specimen data. The fracture toughness of these composites varied between 16.4-19.2 MPa√m. Scanning Electron Microscope (SEM studies was made on the fractured surface of the specimens to understand the micro-mechanisms of failure involved in these composites. Void initiation is more significant in the matrix near the interface. The micro-cracks grow from these micro-voids and crack propagates by linking these micro cracks locating the crack path preferentially in the matrix adjacent to the interface indicating ductile fracture.

  1. Fracture surfaces of granular pastes.

    Science.gov (United States)

    Mohamed Abdelhaye, Y O; Chaouche, M; Van Damme, H

    2013-11-01

    Granular pastes are dense dispersions of non-colloidal grains in a simple or a complex fluid. Typical examples are the coating, gluing or sealing mortars used in building applications. We study the cohesive rupture of thick mortar layers in a simple pulling test where the paste is initially confined between two flat surfaces. After hardening, the morphology of the fracture surfaces was investigated, using either the box counting method to analyze fracture profiles perpendicular to the mean fracture plane, or the slit-island method to analyze the islands obtained by cutting the fracture surfaces at different heights, parallel to the mean fracture plane. The fracture surfaces were shown to exhibit scaling properties over several decades. However, contrary to what has been observed in the brittle or ductile fracture of solid materials, the islands were shown to be mass fractals. This was related to the extensive plastic flow involved in the fracture process.

  2. Local microstructure and flow stress in deformed metals

    DEFF Research Database (Denmark)

    Zhang, Xiaodan; Hansen, Niels; Nielsen, Chris Valentin

    2017-01-01

    The microstructure and flow stress of metals are related through many well-known strength-structure relationships based on structural parameters, where grain size and dislocation density are examples. In heterogeneous structures, the local stress and strain are important as they will affect...... the bulk properties. A microstructural method is presented which allows the local stress in a deformed metal to be estimated based on microstructural parameters determined by an EBSD analysis. These parameters are the average spacing of deformation introduced boundaries and the fraction of high angle...... boundaries. The method is demonstrated for two heterogeneous structures: (i) a gradient (sub)surface structure in steel deformed by shot peening; (ii) a heterogeneous structure introduced by friction between a tool and a workpiece of aluminum. Flow stress data are calculated based on the microstructural...

  3. Ipsilateral stress fracture of the proximal fibula after total knee arthroplasty in a patient with severe valgus knee deformity on a background of Rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    Hirokazu Takai

    Full Text Available Introduction: Previous studies have reported a lower extremity stress fracture after total knee arthroplasty (TKA. However, a fibular fracture after TKA is quite rare. We report a case of proximal fibula fracture after TKA in a patient with rheumatoid arthritis (RA. Presentation of case: A 45 year old woman with RA had severe knee and foot pain with an antalgic gait disturbance. There was a significant joint deformity in many of lower limb joints. Interval bilateral TKAs were performed two weeks apart. Right TKA was performed using a constraint-type prosthesis, through lateral parapatellar approach. Left TKA was performed using a posterior-stabilized (PS prosthesis through the more commonly employed, medial parapatellar approach. Seven weeks after the right TKA, the patient was found to have an atraumatic proximal fibular fracture. The fracture went on to heal conservatively. Discussion: The fracture was considered to have occurred after the TKA. The callus appeared eleven weeks after the TKA. The factors that contributed to the fracture were thought to be overload of the fragile bone secondarily to disuse osteopaenia, RA or potentially the significant valgus malalignment correction. The surgical approach, the implant or implantation or the persisting joint deformity, were thought to be contributing factors to the aetiology of the stress fracture. The resultant change in clinical outcome/course is outlined in this case report. Conclusion: A stress fracture of the proximal fibula has the potential in the aetiology of may cause other stress fractures, joint other instability, and/or malalignment of the total lower extremity. Keywords: Stress fracture, Insufficiency fracture, Total knee arthroplasty, Fibula fracture, Valgus deformity, Rheumatoid arthritis

  4. Progressive fracture of polymer matrix composite structures: A new approach

    Science.gov (United States)

    Chamis, C. C.; Murthy, P. L. N.; Minnetyan, L.

    1992-01-01

    A new approach independent of stress intensity factors and fracture toughness parameters has been developed and is described for the computational simulation of progressive fracture of polymer matrix composite structures. The damage stages are quantified based on physics via composite mechanics while the degradation of the structural behavior is quantified via the finite element method. The approach account for all types of composite behavior, structures, load conditions, and fracture processes starting from damage initiation, to unstable propagation and to global structural collapse. Results of structural fracture in composite beams, panels, plates, and shells are presented to demonstrate the effectiveness and versatility of this new approach. Parameters and guidelines are identified which can be used as criteria for structural fracture, inspection intervals, and retirement for cause. Generalization to structures made of monolithic metallic materials are outlined and lessons learned in undertaking the development of new approaches, in general, are summarized.

  5. Effects of root radius, stress, crack growth and rate on fracture instability

    Energy Technology Data Exchange (ETDEWEB)

    McClintock, F A

    1965-01-01

    Of various criteria for fracture at the root of a notch, the energy, local stress, and displacement criteria have limited validity. More appropriate is the history of both stress and strain over a small region ahead of the crack, as required for fracture by the coalescence of holes. Expressions are given for crack initiation, growth, and subsequent instability in anti-plane strain of a nonhardening material. Instability is shown to depend primarily on those strain increments arising from crack growth at constant load rather than on those from increasing load at constant crack length. Thus final instability conditions are similar for single and double- ended cracks, round notches, and cracks cut under constant load. Round notches may give instability, restabilization and final instability. The growth and coalescence of holes in front of a crack in a linearly viscous material is studied for both tensile and anti-plant-strain cracks. The absence of residual strain eliminates instability, but the crack continually accelerates. (26 refs.)

  6. Several loadings and stresses of first wall of SiC with metal liner on conceptual design of moving ring reactor 'KARIN-1'

    International Nuclear Information System (INIS)

    Nishikawa, Masahiro; Tachibana, Eizaburo; Watanabe, Kenji; Fujiie, Yoichi.

    1983-01-01

    On conceptual design of moving ring reactor ''KARIN-I'' (Output: 1850 MWe), the first wall of SiC with metal liner is considered by reason that SiC ceramics has specific features of excellent radiation damage resistance in fast neutron spectra and a very low residual radioactivity, and that the thin metal liner has good compatibility with liquid lithium and good vaccum-tight, however, a extent electromagnetic interaction. The electromagnetic force applied on the metal liner and several pressure losses of liquid lithum flow are estimated, and these forces correspond to the fluid mechanical loading on SiC first wall. Thermal loading by neutron flux is calculated on the first wall to obtain temperature distributions along the flow direction and toward the wall thickness. At the outlet of the burning section, the surface temperature of SiC rises to the value of 825 0 C on plasma side and on the metal liner, it rises to the value of 540 0 C. Finally, the stress analysis is performed. The thermal stress is about one order larger than the stress induced by the fluid mechanical loading. At the inlet of the burning section, the average tensile stress of 22.4kg/mm 2 is induced on the outer side of SiC wall, and on the inner side, the average compressive stress of -26.1kg/mm 2 is induced. At the outlet of the burning section, the tensile stress is found to oscillate between 25.5kg/mm 2 and 27.3kg/mm 2 on the outer side of SiC wall by frequency of 1 Hz, and on the inner side, the compressive stress also oscillates between -21.6kg/mm 2 and -29.0kg/mm 2 by the same frequency. These stresses are within the value of fracture stress, (72.5kg/mm 2 ). Difficult residual problems on the first wall are also discussed. (author)

  7. Adductor insertion avulsion syndrome with stress fracture of femoral shaft: MRI findings

    International Nuclear Information System (INIS)

    Lawande, M.A.; Sankhe, S.; Pungavkar, S.A.; Patkar, D.P.

    2007-01-01

    Full text: Chronic vague hip pain may be caused by stress-related injury in the proximal or mid-femoral diaphysis. This has been described as an entity called adductor insertion avulsion syndrome, or thigh splints. In the appropriate clinical setting, the radiologist interpreting the magnetic resonance imaging must be aware of this condition as its imaging findings are subtle. The diagnosis will help the clinician plan the appropriate management. Magnetic resonance imaging can also depict the complications such as stress fracture

  8. Fracture toughness and crack growth resistance of pressure vessel plate and weld metal steels

    International Nuclear Information System (INIS)

    Moskovic, R.

    1988-01-01

    Compact tension specimens were used to measure the initiation fracture toughness and crack growth resistance of pressure vessel steel plates and submerged arc weld metal. Plate test specimens were manufactured from four different casts of steel comprising: aluminium killed C-Mn-Mo-Cu and C-Mn steel and two silicon killed C-Mn steels. Unionmelt No. 2 weld metal test specimens were extracted from welds of double V butt geometry having either the C-Mn-Mo-Cu steel (three weld joints) or one particular silicon killed C-Mn steel (two weld joints) as parent plate. A multiple specimen test technique was used to obtain crack growth data which were analysed by simple linear regression to determine the crack growth resistance lines and to derive the initiation fracture toughness values for each test temperature. These regression lines were highly scattered with respect to temperature and it was very difficult to determine precisely the temperature dependence of the initiation fracture toughness and crack growth resistance. The data were re-analysed, using a multiple linear regression method, to obtain a relationship between the materials' crack growth resistance and toughness, and the principal independent variables (temperature, crack growth, weld joint code and strain ageing). (author)

  9. Application of hydraulic fracturing to determine virgin in situ stress state around Waste Isolation Pilot Plant - in situ measurements

    International Nuclear Information System (INIS)

    Wawersik, W.R.; Stone, C.M.

    1985-10-01

    Hydraulic fracturing tests were carried out in horizontal drillholes in rock salt in the Waste Isolation Pilot Plant (WIPP) near Carlsbad, NM. It was determined that the virgin in situ stress field is isotropic or nearly isotropic. The inferred magnitude of the isotropic in situ stress falls between bounds of 14.28 MPa and 17.9 MPa for the average breakdown/reopening pressures and driving pressures. The best estimate from instantaneous shut-in pressures is 16.61 MPa. Given some uncertainties about the interpretation of hydraulic fracturing data in salt, all of the foregoing values are in acceptable agreement with an average calculated isotropic in situ stress of 14.9 MPa at an average depth of 657 m below surface. Interpretations of breakdown and reopening pressures are based on finite element analyses of the relaxed stress field around a borehole in salt. This stress field varies little between approximately 50 and 200 days after drilling. The finite element analyses were also used to interpret the observed stable pressure-time signatures with little or no pressure drops during primary breakdown of the salt formation. The conclusion about the isotropic nature of the virgin in situ stress field is supported by observations of the induced fracture patterns. The report includes a comparison of the hydrofrac data in the WIPP with the published results of hydraulic fracturing tests in salt at three other locations. 75 refs., 21 figs., 4 tabs

  10. Biomechanical assessment of composite versus metallic intramedullary nailing system in femoral shaft fractures: A finite element study.

    Science.gov (United States)

    Samiezadeh, Saeid; Tavakkoli Avval, Pouria; Fawaz, Zouheir; Bougherara, Habiba

    2014-08-01

    Intramedullary nails are the primary choice for treating long bone fractures. However, complications following nail surgery including non-union, delayed union, and fracture of the bone or the implant still exist. Reducing nail stiffness while still maintaining sufficient stability seems to be the ideal solution to overcome the abovementioned complications. In this study, a new hybrid concept for nails made of carbon fibers/flax/epoxy was developed in order to reduce stress shielding. The mechanical performance of this new implant in terms of fracture stability and load sharing was assessed using a comprehensive non-linear FE model. This model considers several mechanical factors in nine fracture configurations at immediately post-operative, and in the healed bone stages. Post-operative results showed that the hybrid composite nail increases the average normal force at the fracture site by 319.23N (P<0.05), and the mean stress in the vicinity of fracture by 2.11MPa (P<0.05) at 45% gait cycle, while only 0.33mm and 0.39mm (P<0.05) increases in the fracture opening and the fragments' shear movement were observed. The healed bone results revealed that implantation of the titanium nail caused 20.2% reduction in bone stiffness, while the composite nail lowered the stiffness by 11.8% as compared to an intact femur. Our results suggest that the composite nail can provide a preferred mechanical environment for healing, particularly in transverse shaft fractures. This may help bioengineers better understand the biomechanics of fracture healing, and aid in the design of effective implants. Copyright © 2014. Published by Elsevier Ltd.

  11. Expedited patient-specific assessment of contact stress exposure in the ankle joint following definitive articular fracture reduction.

    Science.gov (United States)

    Kern, Andrew M; Anderson, Donald D

    2015-09-18

    Acute injury severity, altered joint kinematics, and joint incongruity are three important mechanical factors linked to post-traumatic osteoarthritis (PTOA). Finite element analysis (FEA) was previously used to assess the influence of increased contact stress due to joint incongruity on PTOA development. While promising agreement with PTOA development was seen, the inherent complexities of contact FEA limited the numbers of subjects that could be analyzed. Discrete element analysis (DEA) is a simplified methodology for contact stress computation, which idealizes contact surfaces as a bed of independent linear springs. In this study, DEA was explored as an expedited alternative to FEA contact stress exposure computation. DEA was compared to FEA using results from a previously completed validation study of two cadaveric human ankles, as well as a previous study of post-operative contact stress exposure in 11 patients with tibial plafond fracture. DEA-computed maximum contact stresses were within 19% of those experimentally measured, with 90% of the contact area having computed contact stress values within 1MPa of those measured. In the 11 fractured ankles, maximum contact stress and contact area differences between DEA and FEA were 0.85 ± 0.64 MPa and 22.5 ± 11.5mm(2). As a predictive measure for PTOA development, both DEA and FEA had 100% concordance with presence of OA (KL grade ≥ 2) and >95% concordance with KL grade at 2 years. These results support DEA as a reasonable alternative to FEA for computing contact stress exposures following surgical reduction of a tibial plafond fracture. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. On size effects in fracture

    International Nuclear Information System (INIS)

    Sinclair, G.B.

    1985-01-01

    This paper discusses the dependence of fracture stress on size. This conclusion is based on classical energy arguments. For an in-plane scaled specimen pair, the larger the specimen the smaller the fracture stress. In contrast the same theory gives a different dependence for out-of-plane specimen and the dependence involves plane stress, strain, fracture stresses and Poisson's ratio. The objective of this paper is to examine how well these predictions are actually complied with

  13. The concept of the average stress in the fracture process zone for the search of the crack path

    Directory of Open Access Journals (Sweden)

    Yu.G. Matvienko

    2015-10-01

    Full Text Available The concept of the average stress has been employed to propose the maximum average tangential stress (MATS criterion for predicting the direction of fracture angle. This criterion states that a crack grows when the maximum average tangential stress in the fracture process zone ahead of the crack tip reaches its critical value and the crack growth direction coincides with the direction of the maximum average tangential stress along a constant radius around the crack tip. The tangential stress is described by the singular and nonsingular (T-stress terms in the Williams series solution. To demonstrate the validity of the proposed MATS criterion, this criterion is directly applied to experiments reported in the literature for the mixed mode I/II crack growth behavior of Guiting limestone. The predicted directions of fracture angle are consistent with the experimental data. The concept of the average stress has been also employed to predict the surface crack path under rolling-sliding contact loading. The proposed model considers the size and orientation of the initial crack, normal and tangential loading due to rolling–sliding contact as well as the influence of fluid trapped inside the crack by a hydraulic pressure mechanism. The MATS criterion is directly applied to equivalent contact model for surface crack growth on a gear tooth flank.

  14. Discrete element analysis is a valid method for computing joint contact stress in the hip before and after acetabular fracture.

    Science.gov (United States)

    Townsend, Kevin C; Thomas-Aitken, Holly D; Rudert, M James; Kern, Andrew M; Willey, Michael C; Anderson, Donald D; Goetz, Jessica E

    2018-01-23

    Evaluation of abnormalities in joint contact stress that develop after inaccurate reduction of an acetabular fracture may provide a potential means for predicting the risk of developing post-traumatic osteoarthritis. Discrete element analysis (DEA) is a computational technique for calculating intra-articular contact stress distributions in a fraction of the time required to obtain the same information using the more commonly employed finite element analysis technique. The goal of this work was to validate the accuracy of DEA-computed contact stress against physical measurements of contact stress made in cadaveric hips using Tekscan sensors. Four static loading tests in a variety of poses from heel-strike to toe-off were performed in two different cadaveric hip specimens with the acetabulum intact and again with an intentionally malreduced posterior wall acetabular fracture. DEA-computed contact stress was compared on a point-by-point basis to stress measured from the physical experiments. There was good agreement between computed and measured contact stress over the entire contact area (correlation coefficients ranged from 0.88 to 0.99). DEA-computed peak contact stress was within an average of 0.5 MPa (range 0.2-0.8 MPa) of the Tekscan peak stress for intact hips, and within an average of 0.6 MPa (range 0-1.6 MPa) for fractured cases. DEA-computed contact areas were within an average of 33% of the Tekscan-measured areas (range: 1.4-60%). These results indicate that the DEA methodology is a valid method for accurately estimating contact stress in both intact and fractured hips. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Rapid expansion and fracture of metallic cylinders driven by explosive loads

    International Nuclear Information System (INIS)

    Hiroe, T.; Fujiwara, K.; Abe, T.; Yoshida, M.

    2004-01-01

    Smooth walled tubular specimens of stainless steel and low-carbon steels were explosively expanded to fragmentation. The driver was a column of the high explosive PETN inserted into the central bore and initiated by exploding a fine copper wire using a discharge current from a high-voltage capacitor bank. The variation of wall thickness and the effect of different explosive driver diameters are reported. A fully charged casing model was also exploded with initiation at the end surface for comparison. Streak and framing photos show both radially and axially symmetric expansion of cylinders at average strain rates of above 104 s-1 and a wall velocity of 417-1550 m/s. Some framing photos indicate the initiation and spacing of fractures during the bursting of the cylinders. Hydro codes have been applied to simulate the experimental behavior of the cylinders, examining numerical stresses, deformation and fracture criteria. Most of the fragments were successfully recovered inside a cushion-filled chamber, and the circumferential fracture spacing of measured fragments is investigated using a fragmentation model

  16. The effect of through-thickness compressive stress on mode II interlaminar fracture toughness

    NARCIS (Netherlands)

    Catalanotti, G.; Furtado, C.; Scalici, T.; Pitarresi, G.; van der Meer, F.P.; Camanho, PP

    2017-01-01

    The effect of through-thickness compressive stress on mode II interlaminar fracture toughness is investigated experimentally and replicated numerically. The modified Transverse Crack Tensile specimen recently proposed by the authors is used, together with an experimental device designed to apply

  17. Stress fractures of the hind limb in 2 Thoroughbreds

    International Nuclear Information System (INIS)

    Nelson, A.

    1994-01-01

    Stress factures are a common arthopaedic injury in human and equine athletes (McBryde 1985; Mackey et al. 1987). Although often presenting as acute lameness in the horse they are the accumulation of a long period of bone remodelling and eventual failure (Jones and Harris 1989). Gamma scintigraphy has been useful in the diagnosis of stress fractures in humans (Prather et al. 1977) and horses (Devous and Twardock 1984) and is more sensitive than radiography due to its ability to detect functional changes in bone metabolism (Matin 1988). Gamma scintigraphy may be performed in the horse using a hand held probe (Pilsworth 1989) or a gamma camera (Ueltshi 1977). The following cases were both investigated using a gamma camera and dedicated computer system (Elscint UK, Colonial Business Park, Watford, UK)

  18. Mechanics of Hydraulic Fractures

    Science.gov (United States)

    Detournay, Emmanuel

    2016-01-01

    Hydraulic fractures represent a particular class of tensile fractures that propagate in solid media under pre-existing compressive stresses as a result of internal pressurization by an injected viscous fluid. The main application of engineered hydraulic fractures is the stimulation of oil and gas wells to increase production. Several physical processes affect the propagation of these fractures, including the flow of viscous fluid, creation of solid surfaces, and leak-off of fracturing fluid. The interplay and the competition between these processes lead to multiple length scales and timescales in the system, which reveal the shifting influence of the far-field stress, viscous dissipation, fracture energy, and leak-off as the fracture propagates.

  19. Bearing Change to Metal-On-Polyethylene for Ceramic Bearing Fracture in Total Hip Arthroplasty; Does It Work?

    Science.gov (United States)

    Lee, Soong Joon; Kwak, Hong Suk; Yoo, Jeong Joon; Kim, Hee Joong

    2016-01-01

    We evaluated the short-term to midterm results of reoperation with bearing change to metal-on-polyethylene (MoP) after ceramic bearing fracture in ceramic-on-ceramic total hip arthroplasty. Nine third-generation ceramic bearing fractures (6 heads and 3 liners) were treated with bearing change to MoP. Mean age at reoperation was 52.7 years. Mean follow-up was 4.3 years. During follow-up, 2 of 3 liner-fractured hips and 1 of 6 head-fractured hips showed radiologic signs of metallosis and elevated serum chromium levels. Re-reoperation with bearing rechange to a ceramic head was performed for the hips with metallosis. One liner-fractured hip had periprosthetic joint infection. Dislocation occurred in 3 hips. From our experience, bearing change to MoP is not a recommended treatment option for ceramic bearing fracture in total hip arthroplasty. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Combined macroscopic and microscopic approach to the fracture of metals. Technical progress report

    International Nuclear Information System (INIS)

    Asaro, R.J.; Gurland, J.; Needleman, A.; Rice, R.J.

    1979-06-01

    Progress is reported on microscopic fracture mechanisms, including studies of void and crack initiation in steels in the absence and presence of hydrogen, the effects of hydrogen on ductile fracture in medium and high carbon steels; elastic--plastic crack growth including the quasi-stable growth of cracks in ductile solids under increasing load and conditions of instability; and elevated temperature rupture including analysis of the stress field near a crack tip in an elastic-nonlinear viscous material under tensile load as well as the processes of diffusion, and cavitation of grain boundaries in plastically creeping materials

  1. Decoding flow unit evolution upon annealing from fracture morphology in metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Gao, M., E-mail: gaomeng10@hotmail.com; Cao, X.F.; Ding, D.W.; Wang, B.B.; Wang, W.H., E-mail: whw@iphy.ac.cn

    2017-02-16

    The intrinsic correlation between the fracture morphology evolution and the structural heterogeneity of flow units in a typical Zr{sub 52.5}Ti{sub 5}Cu{sub 17.9}Ni{sub 14.6}Al{sub 10} (vit105) metallic glass (MG) upon annealing was investigated. By systematically tuning the annealing time at temperature below the glass transition temperature, a series of dimple-like fracture morphology were obtained, which is the unique fingerprint-like pattern for every annealing state. Based on the structural relaxation model of flow units, the evolution of the typical dimple sizes, the largest and smallest dimple size, with annealing were well fitted. Then the evolution of flow unit density was estimated from the fracture morphology evolution, which displays the same evolution trend with that measured from thermal relaxation. A stochastic dynamic model considering the interaction of activated flow units was proposed to analyze the effect of the initial flow unit density and the flow unit interaction intensity on the dynamic evolution of dimple distribution. Our work may provide a novel scheme to investigate the structural fingerprint information on flow units from fracture morphology, and enlighten the microscopic structural origin of the ductile-to-brittle transition during structural relaxation in MGs.

  2. Intergranular fracture stress and phosphorus grain boundary segregation of a Mn-Ni-Mo steel

    International Nuclear Information System (INIS)

    Naudin, C.; Frund, J.M.; Pineau, A.

    1999-01-01

    Nuclear Reactor Pressure Vessel (RPV) steel A508 class 3 which is a low alloyed steel is not usually sensitive to reversible temper embrittlement when properly heat treated. However heterogeneous zones may be present in particular near the inner side of the vessel. These zones result from the segregation of the alloying elements (C, Mn, Ni, Mo) and impurities (S, P) taking place during solidification of the material. They are called segregated zones (or ghost lines). They can reach 2 mm thick along the radius and 30 mm long through the circumferential direction. Their susceptibility to reversible temper embrittlement is mainly due to grain boundary phosphorus segregation triggering brittle intergranular fracture when the material is tested at low temperature. In this material like in other steels the influence of some other alloying elements (Mo, Mn...) is clearly significant and should also be taken into account. But phosphorus effect has proved to be predominant. The aim of the present study is therefore to find out a quantitative relationship between grain boundary phosphorus segregation and critical intergranular fracture stress. A synthetic steel with a chemical composition representative of an average segregated zone was prepared for the present study. A number of heat treatments were applied to reach different embrittlement conditions. Then brittle fracture properties were obtained by performing cryogenic fracture tests on notched tensile specimens while the corresponding grain boundary phosphorus levels were measured by Auger electron spectroscopy. Systematic fractographic observations were carried out. Moreover an attempt to determine the influence of temperature on the critical intergranular fracture stress was made

  3. Proximal tibia stress fracture with Osteoarthritis of knee − Radiological and functional analysis of one stage TKA with long stem

    Directory of Open Access Journals (Sweden)

    Soundarrajan Dhanasekaran

    2018-01-01

    Conclusion: TKA with long stem gives excellent outcome, irrespective of severity of arthritis associated with stress fracture. By restoring limb alignment and bypassing the fracture site, it facilitates fracture healing. Early detection and prompt intervention is necessary to prevent the progression to recalcitrant non-union or malunion.

  4. Relationships between fractures

    Science.gov (United States)

    Peacock, D. C. P.; Sanderson, D. J.; Rotevatn, A.

    2018-01-01

    Fracture systems comprise many fractures that may be grouped into sets based on their orientation, type and relative age. The fractures are often arranged in a network that involves fracture branches that interact with one another. Interacting fractures are termed geometrically coupled when they share an intersection line and/or kinematically coupled when the displacements, stresses and strains of one fracture influences those of the other. Fracture interactions are characterised in terms of the following. 1) Fracture type: for example, whether they have opening (e.g., joints, veins, dykes), closing (stylolites, compaction bands), shearing (e.g., faults, deformation bands) or mixed-mode displacements. 2) Geometry (e.g., relative orientations) and topology (the arrangement of the fractures, including their connectivity). 3) Chronology: the relative ages of the fractures. 4) Kinematics: the displacement distributions of the interacting fractures. It is also suggested that interaction can be characterised in terms of mechanics, e.g., the effects of the interaction on the stress field. It is insufficient to describe only the components of a fracture network, with fuller understanding coming from determining the interactions between the different components of the network.

  5. On the link between stress field and small-scale hydraulic fracture growth in anisotropic rock derived from microseismicity

    Science.gov (United States)

    Gischig, Valentin Samuel; Doetsch, Joseph; Maurer, Hansruedi; Krietsch, Hannes; Amann, Florian; Evans, Keith Frederick; Nejati, Morteza; Jalali, Mohammadreza; Valley, Benoît; Obermann, Anne Christine; Wiemer, Stefan; Giardini, Domenico

    2018-01-01

    To characterize the stress field at the Grimsel Test Site (GTS) underground rock laboratory, a series of hydrofracturing and overcoring tests were performed. Hydrofracturing was accompanied by seismic monitoring using a network of highly sensitive piezosensors and accelerometers that were able to record small seismic events associated with metre-sized fractures. Due to potential discrepancies between the hydrofracture orientation and stress field estimates from overcoring, it was essential to obtain high-precision hypocentre locations that reliably illuminate fracture growth. Absolute locations were improved using a transverse isotropic P-wave velocity model and by applying joint hypocentre determination that allowed for the computation of station corrections. We further exploited the high degree of waveform similarity of events by applying cluster analysis and relative relocation. Resulting clouds of absolute and relative located seismicity showed a consistent east-west strike and 70° dip for all hydrofractures. The fracture growth direction from microseismicity is consistent with the principal stress orientations from the overcoring stress tests, provided that an anisotropic elastic model for the rock mass is used in the data inversions. The σ1 stress is significantly larger than the other two principal stresses and has a reasonably well-defined orientation that is subparallel to the fracture plane; σ2 and σ3 are almost equal in magnitude and thus lie on a circle defined by the standard errors of the solutions. The poles of the microseismicity planes also lie on this circle towards the north. Analysis of P-wave polarizations suggested double-couple focal mechanisms with both thrust and normal faulting mechanisms present, whereas strike-slip and thrust mechanisms would be expected from the overcoring-derived stress solution. The reasons for these discrepancies can be explained by pressure leak-off, but possibly may also involve stress field rotation around the

  6. Advances in metal-induced oxidative stress and human disease

    International Nuclear Information System (INIS)

    Jomova, Klaudia; Valko, Marian

    2011-01-01

    Detailed studies in the past two decades have shown that redox active metals like iron (Fe), copper (Cu), chromium (Cr), cobalt (Co) and other metals undergo redox cycling reactions and possess the ability to produce reactive radicals such as superoxide anion radical and nitric oxide in biological systems. Disruption of metal ion homeostasis may lead to oxidative stress, a state where increased formation of reactive oxygen species (ROS) overwhelms body antioxidant protection and subsequently induces DNA damage, lipid peroxidation, protein modification and other effects, all symptomatic for numerous diseases, involving cancer, cardiovascular disease, diabetes, atherosclerosis, neurological disorders (Alzheimer's disease, Parkinson's disease), chronic inflammation and others. The underlying mechanism of action for all these metals involves formation of the superoxide radical, hydroxyl radical (mainly via Fenton reaction) and other ROS, finally producing mutagenic and carcinogenic malondialdehyde (MDA), 4-hydroxynonenal (HNE) and other exocyclic DNA adducts. On the other hand, the redox inactive metals, such as cadmium (Cd), arsenic (As) and lead (Pb) show their toxic effects via bonding to sulphydryl groups of proteins and depletion of glutathione. Interestingly, for arsenic an alternative mechanism of action based on the formation of hydrogen peroxide under physiological conditions has been proposed. A special position among metals is occupied by the redox inert metal zinc (Zn). Zn is an essential component of numerous proteins involved in the defense against oxidative stress. It has been shown, that depletion of Zn may enhance DNA damage via impairments of DNA repair mechanisms. In addition, Zn has an impact on the immune system and possesses neuroprotective properties. The mechanism of metal-induced formation of free radicals is tightly influenced by the action of cellular antioxidants. Many low-molecular weight antioxidants (ascorbic acid (vitamin C), alpha

  7. Stress concentration factor and stress intensity factor on hard metals in connection with the wear characteristics

    International Nuclear Information System (INIS)

    Dawihl, W.; Altmeyer, G.

    1977-01-01

    Description of a method to determine stress intensity factors on hard metals by lapping in notches of different diameter. Dependence of the values of the stress intensity factors on the size of the notch base diameter. For tungsten carbide hard metals with 6% Co, determination of a final value of 250 Nmm -3 / 2 . Characterisation of the stress intensity factor governed by the surface roughness which is decisive for the assessment of the wear-resistant behaviour. (orig.) [de

  8. Bone strength estimates relative to vertical ground reaction force discriminates women runners with stress fracture history.

    Science.gov (United States)

    Popp, Kristin L; McDermott, William; Hughes, Julie M; Baxter, Stephanie A; Stovitz, Steven D; Petit, Moira A

    2017-01-01

    To determine differences in bone geometry, estimates of bone strength, muscle size and bone strength relative to load, in women runners with and without a history of stress fracture. We recruited 32 competitive distance runners aged 18-35, with (SFX, n=16) or without (NSFX, n=16) a history of stress fracture for this case-control study. Peripheral quantitative computed tomography (pQCT) was used to assess volumetric bone mineral density (vBMD, mg/mm 3 ), total (ToA) and cortical (CtA) bone areas (mm 2 ), and estimated compressive bone strength (bone strength index; BSI, mg/mm 4 ) at the distal tibia. ToA, CtA, cortical vBMD, and estimated strength (section modulus; Zp, mm 3 and strength strain index; SSIp, mm 3 ) were measured at six cortical sites along the tibia. Mean active peak vertical (pkZ) ground reaction forces (GRFs), assessed from a fatigue run on an instrumented treadmill, were used in conjunction with pQCT measurements to estimate bone strength relative to load (mm 2 /N∗kg -1 ) at all cortical sites. SSIp and Zp were 9-11% lower in the SFX group at mid-shaft of the tibia, while ToA and vBMD did not differ between groups at any measurement site. The SFX group had 11-17% lower bone strength relative to mean pkZ GRFs (phistory of stress fracture. Bone strength relative to load is also lower in this same region suggesting that strength deficits in the middle 1/3 of the tibia and altered gait biomechanics may predispose an individual to stress fracture. Copyright © 2016. Published by Elsevier Inc.

  9. Decontamination and reconditioning of the Argonne National Laboratory-West Casting Laboratory alpha glove box

    International Nuclear Information System (INIS)

    Poston, J.W. Jr.; Burke, L.L.

    1998-01-01

    The Casting Laboratory (CL) alpha glove box was used to melt and cast metallic uranium and plutonium fuels as part of the Department of Energy''s Liquid Metal Fast Breeder Reactor Program. This highly contaminated alpha glove box was decontaminated and reconditioned to allow a change in mission. The goal of reconditioning was to install experimental apparatus and to improve contamination control prior to introducing plutonium-238 into the CL glove box. Construction of a glove box containment structure and an increase in room ventilation were required. A temporary breathing air station was provided for personnel protection as well as personnel comfort. The historical contamination levels, the decontamination techniques, and the results of decontamination also are presented. The health physics aspects of the CL alpha glove box project may be applicable to other glove box refurbishment or decommissioning projects

  10. The inclusion of weld residual stress in fracture margin assessments of embrittled nuclear reactor pressure vessels

    International Nuclear Information System (INIS)

    Dickson, T.L.; Bass, B.R.; McAfee, W.J.

    1998-01-01

    Analyses were performed to determine the impact of weld residual stresses in a reactor pressure vessel (RPV) on (1) the generation of pressure temperature (P-T) curves required for maintaining specified fracture prevention margins during nuclear plant startup and shutdown, and (2) the conditional probability of vessel failure due to pressurized thermal shock (PTS) loading. The through wall residual stress distribution in an axially oriented weld was derived using measurements taken from a shell segment of a canceled RPV and finite element thermal stress analyses. The P-T curve derived from the best estimate load analysis and a t / 8 deep flaw, based on K Ic , was less limiting than the one derived from the current methodology prescribed in the ASME Boiler and Pressure Vessel Code. The inclusion of the weld residual stresses increased the conditional probability of cleavage fracture due to PTS loading by a factor ranging from 2 to 4

  11. New airtight transfer box for SEM experiments: Application to lithium and sodium metals observation and analyses.

    Science.gov (United States)

    Stephant, Nicolas; Grissa, Rabeb; Guillou, Fanch; Bretaudeau, Mickaël; Borjon-Piron, Yann; Guillet, Jacques; Moreau, Philippe

    2018-04-18

    The surface of some materials reacts very quickly on contact with air, either because it is oxidized or because it gets humidity from the air. For the sake of original surface observation by scanning electron microscopy (SEM), we conceived an airtight transfer box to keep the samples under vacuum from the place of manufacturing to the SEM chamber. This object is designed to fit in all the models of SEM including those provided with an airlock chamber. The design is voluntarily simplified to allow the manufacturing of the object by a standard mechanical workshop. The transfer box can be easily opened by gravity inside the SEM and allows the preservation of the best vacuum inside, before opening. SEM images and energy dispersive spectroscopy (EDX) analyses of metallic lithium and sodium samples are presented prior and after exposure to the air. X-ray Photoelectron Spectroscopy (XPS) analyses of all samples are also discussed in order to investigate the chemical environments of the detected elements. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Quantifying Discrete Fracture Network Connectivity in Hydraulic Fracturing Stimulation

    Science.gov (United States)

    Urbancic, T.; Ardakani, E. P.; Baig, A.

    2017-12-01

    Hydraulic fracture stimulations generally result in microseismicity that is associated with the activation or extension of pre-existing microfractures and discontinuities. Microseismic events acquired under 3D downhole sensor coverage provide accurate event locations outlining hydraulic fracture growth. Combined with source characteristics, these events provide a high quality input for seismic moment tensor inversion and eventually constructing the representative discrete fracture network (DFN). In this study, we investigate the strain and stress state, identified fracture orientation, and DFN connectivity and performance for example stages in a multistage perf and plug completion in a North American shale play. We use topology, the familiar concept in many areas of structural geology, to further describe the relationships between the activated fractures and their effectiveness in enhancing permeability. We explore how local perturbations of stress state lead to the activation of different fractures sets and how that effects the DFN interaction and complexity. In particular, we observe that a more heterogeneous stress state shows a higher percentage of sub-horizontal fractures or bedding plane slips. Based on topology, the fractures are evenly distributed from the injection point, with decreasing numbers of connections by distance. The dimensionless measure of connection per branch and connection per line are used for quantifying the DFN connectivity. In order to connect the concept of connectivity back to productive volume and stimulation efficiency, the connectivity is compared with the character of deformation in the reservoir as deduced from the collective behavior of microseismicity using robustly determined source parameters.

  13. Structure, thermal and fracture mechanical properties of benzoxazine-modified amine-cured DGEBA epoxy resins

    Directory of Open Access Journals (Sweden)

    2011-03-01

    Full Text Available First, traditional diamine hardeners of epoxy resins (EP were checked as potential accelerators for the benzoxazine (BOX homopolymerization. It was established that the acceleration effect depends on both the type and amount of the diamine compounds. In the follow-up work amine-curable diglycidyl ether bisphenol A (DGEBA type EP was modified with BOX keeping the EP/BOX ratio constant (75/25 wt.%. The amine hardeners, added in the EP in stoichiometric amounts, were of aliphatic and aromatic nature, viz. diethylenetriamine (DETA, 4,4'-diaminodiphenyl methane (DDM, and their 1/1 mixture. The thermal, viscoelastic, flexural and fracture mechanical properties of the EP/BOX hybrids were determined and compared to those of the reference EPs. Based on dynamic-mechanical thermal analysis and atomic force microscopy the formation of co-network between EP and BOX was concluded. Homopolymerized BOX was built in the network in nanoscaled inclusions and it was associated with internal antiplasticization. Incorporation of BOX improved the charring, enhanced the flexural modulus and strength, and reduced the glass transition of the parent EP. The fracture toughness and energy were not improved by hybridization with BOX.

  14. Effects of local mechanical and fracture properties on LBB behavior of a dissimilar metal welded joint in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Du, L.Y.; Wang, G.Z., E-mail: gzwang@ecust.edu.cn; Xuan, F.Z.; Tu, S.T.

    2013-12-15

    Highlights: • Effect of local mechanical and fracture properties on LBB behavior were investigated. • Considering local mechanical properties leads to slightly high LBB curve. • Use of fracture resistance of base or weld will produce non-conservative LBB result. • Local fracture properties of interface region cannot be ignored in LBB analysis. - Abstract: In this paper, three-dimensional finite element models with and without considering local mechanical properties were built for a dissimilar metal welded joint (DMWJ) connected the safe end to pipe-nozzle of a reactor pressure vessel. The inner circumferential surface cracks were postulated at the interface of A508 steel and buttering Alloy52Mb. Based on the elastic–plastic fracture mechanics theory of J-integral, the crack growth stability was analyzed. The effects of the local mechanical and fracture resistance properties on LBB behavior were investigated. The results show that considering local mechanical properties leads to slightly high LBB curve. For the A508/Alloy52Mb interface region cracks in the DMWJ, if the fracture resistance curve of base metal A508 or the buttering Alloy52Mb is used, the non-conservative (unsafe) LBB assessment result will be produced. With increasing the applied bending moment, the degree of un-conservatism in LBB behavior becomes large. Therefore, to obtain accurate LBB assessment results, the local fracture resistance properties of the interface region should be used.

  15. Numerical Evaluation and Optimization of Multiple Hydraulically Fractured Parameters Using a Flow-Stress-Damage Coupled Approach

    Directory of Open Access Journals (Sweden)

    Yu Wang

    2016-04-01

    Full Text Available Multiple-factor analysis and optimization play a critical role in the the ability to maximizethe stimulated reservoir volume (SRV and the success of economic shale gas production. In this paper, taking the typical continental naturally fractured silty laminae shale in China as anexample, response surface methodology (RSM was employed to optimize multiple hydraulic fracturing parameters to maximize the stimulated area in combination with numerical modeling based on the coupled flow-stress-damage (FSD approach. This paper demonstrates hydraulic fracturing effectiveness by defining two indicesnamelythe stimulated reservoir area (SRA and stimulated silty laminae area (SLA. Seven uncertain parameters, such as laminae thickness, spacing, dip angle, cohesion, internal friction angle (IFA, in situ stress difference (SD, and an operational parameter-injection rate (IR with a reasonable range based on silty Laminae Shale, Southeastern Ordos Basin, are used to fit a response of SRA and SLA as the objective function, and finally identity the optimum design under the parameters based on simultaneously maximizingSRA and SLA. In addition, asensitivity analysis of the influential factors is conducted for SRA and SLA. The aim of the study is to improve the artificial ability to control the fracturing network by means of multi-parameteroptimization. This work promises to provide insights into the effective exploitation of unconventional shale gas reservoirs via optimization of the fracturing design for continental shale, Southeastern Ordos Basin, China.

  16. Influence of stress-induced deformations on observed water flow in fractures of the Climax Granitic Stock

    International Nuclear Information System (INIS)

    Wilder, D.G.

    1987-01-01

    Three examples of stress induced influence on fracture dominated hydrology were noted in drifts 1400 ft below surface in granite. Seepage into portions of shears near a fault zone and an adjoining drift, and mineralization of the joints were the three indicators of shear stress. Interpretation of these results are given

  17. A fracture mechanics model for iodine stress corrosion crack propagation in Zircaloy tubing

    International Nuclear Information System (INIS)

    Crescimanno, P.J.; Campbell, W.R.; Goldberg, I.

    1984-01-01

    A fracture mechanics model is presented for iodine-induced stress corrosion cracking in Zircaloy tubing. The model utilizes a power law to relate crack extension velocity to stress intensity factor, a hyperbolic tangent function for the influence of iodine concentration, and an exponential function for the influence of temperature and material strength. Comparisons of predicted to measured failure times show that predicted times are within a factor of two of the measured times for a majority of the specimens considered

  18. Stress relaxation of shear in metals during shock loading

    International Nuclear Information System (INIS)

    Glazyrin, V.P.; Platova, T.M.

    1988-01-01

    Constructed determining equation, taking into account stress relaxation of shear, was used to calculate the evolution of plane shock waves of primary and secondary compression in metals. Values of shear stress and viscosity coefficient were

  19. Brittle fracture in structural steels: perspectives at different size-scales.

    Science.gov (United States)

    Knott, John

    2015-03-28

    This paper describes characteristics of transgranular cleavage fracture in structural steel, viewed at different size-scales. Initially, consideration is given to structures and the service duty to which they are exposed at the macroscale, highlighting failure by plastic collapse and failure by brittle fracture. This is followed by sections describing the use of fracture mechanics and materials testing in carrying-out assessments of structural integrity. Attention then focuses on the microscale, explaining how values of the local fracture stress in notched bars or of fracture toughness in pre-cracked test-pieces are related to features of the microstructure: carbide thicknesses in wrought material; the sizes of oxide/silicate inclusions in weld metals. Effects of a microstructure that is 'heterogeneous' at the mesoscale are treated briefly, with respect to the extraction of test-pieces from thick sections and to extrapolations of data to low failure probabilities. The values of local fracture stress may be used to infer a local 'work-of-fracture' that is found experimentally to be a few times greater than that of two free surfaces. Reasons for this are discussed in the conclusion section on nano-scale events. It is suggested that, ahead of a sharp crack, it is necessary to increase the compliance by a cooperative movement of atoms (involving extra work) to allow the crack-tip bond to displace sufficiently for the energy of attraction between the atoms to reduce to zero. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  20. Fracture Mechanics

    CERN Document Server

    Zehnder, Alan T

    2012-01-01

    Fracture mechanics is a vast and growing field. This book develops the basic elements needed for both fracture research and engineering practice. The emphasis is on continuum mechanics models for energy flows and crack-tip stress- and deformation fields in elastic and elastic-plastic materials. In addition to a brief discussion of computational fracture methods, the text includes practical sections on fracture criteria, fracture toughness testing, and methods for measuring stress intensity factors and energy release rates. Class-tested at Cornell, this book is designed for students, researchers and practitioners interested in understanding and contributing to a diverse and vital field of knowledge. Alan Zehnder joined the faculty at Cornell University in 1988. Since then he has served in a number of leadership roles including Chair of the Department of Theoretical and Applied Mechanics, and Director of the Sibley School of Mechanical and Aerospace Engineering.  He teaches applied mechanics and his research t...