WorldWideScience

Sample records for stress state exists

  1. The mutual influence of krypton implantation and pre-existing stress states in polycrystalline alpha titanium

    Energy Technology Data Exchange (ETDEWEB)

    Nsengiyumva, S. [Department of Physics, University of Cape Town, Rondebosch 7701 (South Africa); Department of Physics, Kigali Institute of Education, P.O. Box 5039 Kigali (Rwanda)], E-mail: schadrack.nsengiyumva@uct.ac.za; Ntsoane, T.P. [Nuclear Energy Corporation of South Africa (NECSA), P.O. Box 582 (South Africa); Raji, A.T. [Department of Physics, University of Cape Town, Rondebosch 7701 (South Africa); Topic, M. [iThemba LABS, Somerset West 7129 (South Africa); Kellermann, G. [Laboratorio Nacional de Luz Sincrotron (LNLS), Campinas (Brazil); Riviere, J.P. [Laboratoire de Physique des Materiaux UMR6630-CNRS, 86960 (France); Britton, D.T.; Haerting, M. [Department of Physics, University of Cape Town, Rondebosch 7701 (South Africa)

    2009-08-15

    The stress profile in polycrystalline titanium implanted with krypton ions at different fluences has been determined using synchrotron radiation diffraction. For each fluence, the krypton profile has been measured using Rutherford backscattering geometry. The results were compared to model calculations obtained from the SRIM 2008 computer code. A strong stress relaxation was found for high fluence implantation, whereas for low fluence implantation an additional source of tensile stress was introduced in the near surface region. The projected range of the implanted krypton was significantly reduced compared to the expected range. A possible cause of this discrepancy is the drift of implanted ions under the influence of the pre-existing stress gradient.

  2. The mutual influence of krypton implantation and pre-existing stress states in polycrystalline alpha titanium

    International Nuclear Information System (INIS)

    Nsengiyumva, S.; Ntsoane, T.P.; Raji, A.T.; Topic, M.; Kellermann, G.; Riviere, J.P.; Britton, D.T.; Haerting, M.

    2009-01-01

    The stress profile in polycrystalline titanium implanted with krypton ions at different fluences has been determined using synchrotron radiation diffraction. For each fluence, the krypton profile has been measured using Rutherford backscattering geometry. The results were compared to model calculations obtained from the SRIM 2008 computer code. A strong stress relaxation was found for high fluence implantation, whereas for low fluence implantation an additional source of tensile stress was introduced in the near surface region. The projected range of the implanted krypton was significantly reduced compared to the expected range. A possible cause of this discrepancy is the drift of implanted ions under the influence of the pre-existing stress gradient.

  3. Electric foot shock stress adaptation: Does it exist or not?

    Science.gov (United States)

    Bali, Anjana; Jaggi, Amteshwar Singh

    2015-06-01

    Stress adaptation is a protective phenomenon against repeated stress exposure and is characterized by a decreased responsiveness to a repeated stress stimulus. The adaptation is associated with a complex cascade of events, including the changes in behavior, neurotransmitter and gene expression levels. The non-adaptation or maladaptation to stress may underlie the affective disorders, such as anxiety, depression and post-traumatic stress disorder (PTSD). Electric foot shock is a complex stressor, which includes both physical and emotional components. Unlike immobilization, restraint and cold immersion stress, the phenomenon of stress adaptation is not very well defined in response to electric foot shock. A number of preclinical studies have reported the development of adaptation to electric foot shock stress. However, evidence also reveals the non-adaptive behavior in response to foot shocks. The distinct adaptive/non-adaptive responses may be possibly influenced by the type, intensity, and duration of the stress. The present review discusses the existence or non-existence of adaptation to electric foot shock stress along with possible mechanism. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. GASICA: Generic Automated Stress Induction and Control ApplicationDesign of an application for controlling the stress state

    Directory of Open Access Journals (Sweden)

    Benny Van Der Vijgh

    2014-12-01

    Full Text Available 1.In a multitude of research and therapy paradigms it is relevant to know, and desirably to control, the stress state of a patient or participant. Examples include research paradigms in which the stress state is the dependent or independent variable, or therapy paradigms where this state indicates the boundaries of the therapy. To our knowledge, no application currently exists that focuses specifically on the automated control of the stress state while at the same time being generic enough to be used in various therapy and research purposes. Therefore, we introduce GASICA, an application aimed at the automated control of the stress state in a multitude of therapy and research paradigms. The application consists of three components: a digital stressor game, a set of measurement devices and a feedback model. These three components form a closed loop (called a biocybernetic loop by Pope, Bogart, & Bartolome, 1995 and Fairclough, 2009 that continuously presents an acute psychological stressor, measures several physiological responses to this stressor, and adjusts the stressor intensity based on these measurements by means of the feedback model, hereby aiming to control the stress state. In this manner GASICA presents multidimensional and ecological valid stressors, whilst continuously in control of the form and intensity of the presented stressors, aiming at the automated control of the stress state. Furthermore, the application is designed as a modular open-source application to easily implement different therapy and research tasks using a high-level programming interface and configuration file, and allows for the addition of (existing measurement equipment, making it usable for various paradigms.

  5. GASICA: generic automated stress induction and control application design of an application for controlling the stress state.

    Science.gov (United States)

    van der Vijgh, Benny; Beun, Robbert J; van Rood, Maarten; Werkhoven, Peter

    2014-01-01

    In a multitude of research and therapy paradigms it is relevant to know, and desirably to control, the stress state of a patient or participant. Examples include research paradigms in which the stress state is the dependent or independent variable, or therapy paradigms where this state indicates the boundaries of the therapy. To our knowledge, no application currently exists that focuses specifically on the automated control of the stress state while at the same time being generic enough to be used in various therapy and research purposes. Therefore, we introduce GASICA, an application aimed at the automated control of the stress state in a multitude of therapy and research paradigms. The application consists of three components: a digital stressor game, a set of measurement devices, and a feedback model. These three components form a closed loop (called a biocybernetic loop by Pope et al. (1995) and Fairclough (2009) that continuously presents an acute psychological stressor, measures several physiological responses to this stressor, and adjusts the stressor intensity based on these measurements by means of the feedback model, hereby aiming to control the stress state. In this manner GASICA presents multidimensional and ecological valid stressors, whilst continuously in control of the form and intensity of the presented stressors, aiming at the automated control of the stress state. Furthermore, the application is designed as a modular open-source application to easily implement different therapy and research tasks using a high-level programming interface and configuration file, and allows for the addition of (existing) measurement equipment, making it usable for various paradigms.

  6. Heat induced fracturing of rock in an existing uniaxial stress field

    International Nuclear Information System (INIS)

    Mathis, J.; Stephansson, O.; Bjarnason, B.; Hakami, H.; Herdocia, A.; Mattila, U.; Singh, U.

    1986-01-01

    This study was initiated under the premise that it may be possible to determine the state of stress in the earth's crust by heat induced fracturing of the rock surrounding a borehole. The theory involved is superficially simple, involving the superposition of the stress field around a borehole due to the existing virgin stresses and the uniform stress field of thermally loaded rock as induced by a heater. Since the heat stress field is uniform, varying only in magnitude and gradient as a function of heater input, fracturing should be controlled by the non-uniform virgin stress field. To determine if the method was, in fact, feasible, a series of laboratory test were conducted. These tests consisted of physically loading center drilled cubes of rock, 0.3 m on a side, uniaxially from 0 to 25 MPa. The blocks were then thermally loaded with a nominally rated 3.7 kW heater until failure occurred. Results from these laboratory tests were then compared to analytical studies of the problem, i.e., finite element and discrete theoretical analysis. Overall, results were such that the method is likely eliminated as a stress measurement technique. The immediate development of a thermal compressive zone on the borehole wall overlaps the tensile zone created by the uniaxial stress field, forcing the failure is thus controlled largely by the power input of the heater, being retarded by the small compressive stresses genrated by the uniaxial stress field. This small retardation effect is of such low magnitude that the retardation effect is of such low magnitude that the fracture time is relatively insensitive to the local virgin stress field. (authors)

  7. A review of creep analysis and design under multi-axial stress states

    International Nuclear Information System (INIS)

    Yao, H.-T.; Xuan Fuzhen; Wang Zhengdong; Tu Shantung

    2007-01-01

    The existence of multi-axial states of stress cannot be avoided in elevated temperature components. It is essential to understand the associated failure mechanisms and to predict the lifetime in practice. Although metal creep has been studied for about 100 years, many problems are still unsolved, in particular for those involving multi-axial stresses. In this work, a state-of-the-art review of creep analysis and engineering design is carried out, with particular emphasis on the effect of multi-axial stresses. The existing theories and creep design approaches are grouped into three categories, i.e., the classical plastic theory (CPT) based approach, the cavity growth mechanism (CGM) based approach and the continuum damage mechanics (CDM) based approach. Following above arrangements, the constitutive equations and design criteria are addressed. In the end, challenges on the precise description of the multi-axial creep behavior and then improving the strength criteria in engineering design are presented

  8. Probing Earth's State of Stress

    Science.gov (United States)

    Delorey, A. A.; Maceira, M.; Johnson, P. A.; Coblentz, D. D.

    2016-12-01

    The state of stress in the Earth's crust is a fundamental physical property that controls both engineered and natural systems. Engineered environments including those for hydrocarbon, geothermal energy, and mineral extraction, as well those for storage of wastewater, carbon dioxide, and nuclear fuel are as important as ever to our economy and environment. Yet, it is at spatial scales relevant to these activities where stress is least understood. Additionally, in engineered environments the rate of change in the stress field can be much higher than that of natural systems. In order to use subsurface resources more safely and effectively, we need to understand stress at the relevant temporal and spatial scales. We will present our latest results characterizing the state of stress in the Earth at scales relevant to engineered environments. Two important components of the state of stress are the orientation and magnitude of the stress tensor, and a measure of how close faults are to failure. The stress tensor at any point in a reservoir or repository has contributions from both far-field tectonic stress and local density heterogeneity. We jointly invert seismic (body and surface waves) and gravity data for a self-consistent model of elastic moduli and density and use the model to calculate the contribution of local heterogeneity to the total stress field. We then combine local and plate-scale contributions, using local indicators for calibration and ground-truth. In addition, we will present results from an analysis of the quantity and pattern of microseismicity as an indicator of critically stressed faults. Faults are triggered by transient stresses only when critically stressed (near failure). We show that tidal stresses can trigger earthquakes in both tectonic and reservoir environments and can reveal both stress and poroelastic conditions.

  9. Interpretation of the Haestholmen in situ state of stress based on core damage observations

    International Nuclear Information System (INIS)

    Hakala, M.

    2000-01-01

    At the Haestholmen investigation site, direct in situ stress measurements, overcoring and hydraulic fracturing have been unsuccessful because of ring disking and horizontal hydraulic fracturing. Prior to this study, a detailed study on both core disking and ring disking was made, and based on those results an in situ state of stress interpretation method was developed. In this work this method is applied to the Haestholmen site. The interpretation is based on disk fracture type, spacing and shape. Also, the Hoek-Brown strength envelope and Poisson's ratio of intact rock are needed. The interpretation result is most reliable if both core disking and ring disking information at the same depth levels is available. A detailed core logging showed that ring disking is systematic below the -365 m level in the vertical overcoring stress measurement hole, HH-KR6. On the other hand, no representative core disking exists except for two points in two differently oriented subvertical boreholes HH-KR2 and HHKR7. Because the interpretation has to be based on ring disking only, upper and lower estimates for the vertical stress were set. These were gravitational and 67% of gravitational. Furthermore, the in situ stress state was assumed to be in horizontal and vertical planes, because the disking in vertical borehole HH-KR6 was not inclined. The interpretation resulted in a good estimate for the major horizontal stress but none of the horizontal stress rations ( 0.25, 0.5, 0.75 and 1.0 ) or vertical stress assumptions studied are clearly more probable the others. At the 500 m level the resulting maximum horizontal stress is 41 MPa. If a linear fit through the zero depth and zero stress point is applied, the maximum horizontal stress gradient is 0.0818 z MPa/m with a standard deviation between 5 and 12 per cent. The orientation of the major horizontal stress is 108 with standard deviation of 21 degrees. The interpreted major horizontal stress state also indicated that systematic

  10. The influence of normal fault on initial state of stress in rock mass

    Directory of Open Access Journals (Sweden)

    Tajduś Antoni

    2016-03-01

    Full Text Available Determination of original state of stress in rock mass is a very difficult task for rock mechanics. Yet, original state of stress in rock mass has fundamental influence on secondary state of stress, which occurs in the vicinity of mining headings. This, in turn, is the cause of the occurrence of a number of mining hazards, i.e., seismic events, rock bursts, gas and rock outbursts, falls of roof. From experience, it is known that original state of stress depends a lot on tectonic disturbances, i.e., faults and folds. In the area of faults, a great number of seismic events occur, often of high energies. These seismic events, in many cases, are the cause of rock bursts and damage to the constructions located inside the rock mass and on the surface of the ground. To estimate the influence of fault existence on the disturbance of original state of stress in rock mass, numerical calculations were done by means of Finite Element Method. In the calculations, it was tried to determine the influence of different factors on state of stress, which occurs in the vicinity of a normal fault, i.e., the influence of normal fault inclination, deformability of rock mass, values of friction coefficient on the fault contact. Critical value of friction coefficient was also determined, when mutual dislocation of rock mass part separated by a fault is impossible. The obtained results enabled formulation of a number of conclusions, which are important in the context of seismic events and rock bursts in the area of faults.

  11. The influence of normal fault on initial state of stress in rock mass

    Science.gov (United States)

    Tajduś, Antoni; Cała, Marek; Tajduś, Krzysztof

    2016-03-01

    Determination of original state of stress in rock mass is a very difficult task for rock mechanics. Yet, original state of stress in rock mass has fundamental influence on secondary state of stress, which occurs in the vicinity of mining headings. This, in turn, is the cause of the occurrence of a number of mining hazards, i.e., seismic events, rock bursts, gas and rock outbursts, falls of roof. From experience, it is known that original state of stress depends a lot on tectonic disturbances, i.e., faults and folds. In the area of faults, a great number of seismic events occur, often of high energies. These seismic events, in many cases, are the cause of rock bursts and damage to the constructions located inside the rock mass and on the surface of the ground. To estimate the influence of fault existence on the disturbance of original state of stress in rock mass, numerical calculations were done by means of Finite Element Method. In the calculations, it was tried to determine the influence of different factors on state of stress, which occurs in the vicinity of a normal fault, i.e., the influence of normal fault inclination, deformability of rock mass, values of friction coefficient on the fault contact. Critical value of friction coefficient was also determined, when mutual dislocation of rock mass part separated by a fault is impossible. The obtained results enabled formulation of a number of conclusions, which are important in the context of seismic events and rock bursts in the area of faults.

  12. 46 CFR 4.05-25 - Reports when state of war exists.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Reports when state of war exists. 4.05-25 Section 4.05-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY PROCEDURES APPLICABLE TO THE PUBLIC MARINE... war exists. During the period when a state of war exists between the United States and any foreign...

  13. The State of Stress Beyond the Borehole

    Science.gov (United States)

    Johnson, P. A.; Coblentz, D. D.; Maceira, M.; Delorey, A. A.; Guyer, R. A.

    2015-12-01

    The state of stress controls all in-situ reservoir activities and yet we lack the quantitative means to measure it. This problem is important in light of the fact that the subsurface provides more than 80 percent of the energy used in the United States and serves as a reservoir for geological carbon sequestration, used fuel disposition, and nuclear waste storage. Adaptive control of subsurface fractures and fluid flow is a crosscutting challenge being addressed by the new Department of Energy SubTER Initiative that has the potential to transform subsurface energy production and waste storage strategies. Our methodology to address the above mentioned matter is based on a novel Advance Multi-Physics Tomographic (AMT) approach for determining the state of stress, thereby facilitating our ability to monitor and control subsurface geomechanical processes. We developed the AMT algorithm for deriving state-of-stress from integrated density and seismic velocity models and demonstrate the feasibility by applying the AMT approach to synthetic data sets to assess accuracy and resolution of the method as a function of the quality and type of geophysical data. With this method we can produce regional- to basin-scale maps of the background state of stress and identify regions where stresses are changing. Our approach is based on our major advances in the joint inversion of gravity and seismic data to obtain the elastic properties for the subsurface; and coupling afterwards the output from this joint-inversion with theoretical model such that strain (and subsequently) stress can be computed. Ultimately we will obtain the differential state of stress over time to identify and monitor critically stressed faults and evolving regions within the reservoir, and relate them to anthropogenic activities such as fluid/gas injection.

  14. An updated stress map of the continental United States reveals heterogeneous intraplate stress

    Science.gov (United States)

    Levandowski, Will; Herrmann, Robert B.; Briggs, Rich; Boyd, Oliver; Gold, Ryan

    2018-06-01

    Knowledge of the state of stress in Earth's crust is key to understanding the forces and processes responsible for earthquakes. Historically, low rates of natural seismicity in the central and eastern United States have complicated efforts to understand intraplate stress, but recent improvements in seismic networks and the spread of human-induced seismicity have greatly improved data coverage. Here, we compile a nationwide stress map based on formal inversions of focal mechanisms that challenges the idea that deformation in continental interiors is driven primarily by broad, uniform stress fields derived from distant plate boundaries. Despite plate-boundary compression, extension dominates roughly half of the continent, and second-order forces related to lithospheric structure appear to control extension directions. We also show that the states of stress in several active eastern United States seismic zones differ significantly from those of surrounding areas and that these anomalies cannot be explained by transient processes, suggesting that earthquakes are focused by persistent, locally derived sources of stress. Such spatially variable intraplate stress appears to justify the current, spatially variable estimates of seismic hazard. Future work to quantify sources of stress, stressing-rate magnitudes and their relationship with strain and earthquake rates could allow prospective mapping of intraplate hazard.

  15. Osteomalacia and coxa vara. An unusual co-existence for femoral neck stress fracture

    Directory of Open Access Journals (Sweden)

    Kerim Sariyilmaz

    2015-01-01

    Conclusion: Joint and bone pain without any trauma should be investigated and bone metabolism disorders should be kept in mind. There might be co-existing factors related with stress fractures, and they must be treated simultaneously.

  16. Investigations on the influence of the stress state on fracture-mechanical values

    International Nuclear Information System (INIS)

    Schmidt, P.

    1979-01-01

    Fracture toughness obtained from specimen can be applied to construction elements only when the same stress state exists. In standardised fracture-mechanical tests plain strain is realised. Using the stress intensity factor, a critical crack length or a critical load can be obtained. Above these values a crack propagates in an unstable way. The specimen are tested under uni-axial load. In this paper investigations have been made whether a biaxial load increases the stress state over the plain strain and whether consequently a decrease of the critical fracture toughness and a shift of the temperatures Tsub(g)sub(y) and Tsub(s) results which characterise the fracture behaviour of steel. In order to answer these questions the tests were made which induced due to their geometry an additional nominal stress parallel to the crack front in spite of uni-axial loading. The results were compared with those from specimen without an additional nominal stress and having in their cross section under same test conditions nearly the same plain strain. The fracture toughness of both specimen types were compared at temperatures between 142 K and 252 K and correlated to other material-characterising values. The tests were completed by stress analysis and by comparing the crack opening displacement. Due to the additional stress, Tsub(g)sub(y) was found to be 20 K higher than for the reference specimen. The fracture toughness decreases significantly in certain temperature ranges. The plastic stress concentration factor was comperatively higher and the remaining plastic crack opening decreases up to 25%. (orig.) [de

  17. Oxidative stress markers in hypertensive states of pregnancy: preterm and term disease.

    Directory of Open Access Journals (Sweden)

    Lesia Olha Kurlak

    2014-08-01

    Full Text Available Discussion continues as to whether de novo hypertension in pregnancy with significant proteinuria (pre-eclampsia; PE and non-proteinuric new hypertension (gestational hypertension; GH are parts of the same disease spectrum or represent different conditions. Non-pregnant hypertension, pregnancy and PE are all associated with oxidative stress. We have established a 6 weeks post-partum clinic for women who experienced a hypertensive pregnancy. We hypothesized that PE and GH could be distinguished by markers of oxidative stress; thiobarbituric acid reactive substances (TBARS and antioxidants (ferric ion reducing ability of plasma; FRAP. Since the severity of PE and GH is greater pre-term, we also compared pre-term and term disease. Fifty-eight women had term PE, 23 pre-term PE, 60 had term GH and 6 pre-term GH, 11 pre-existing (essential hypertension (EH without PE. Limited data were available from normotensive pregnancies (n=7 and non-pregnant controls (n=14. There were no differences in postpartum TBARS or FRAP between hypertensive states; TBARS (P=0.001 and FRAP (P=0.009 were lower in plasma of non-pregnant controls compared to recently-pregnant women. Interestingly FRAP was higher in preterm than term GH (P=0.013. In PE and GH, TBARS correlated with low density lipoprotein (LDL-cholesterol (P=0.036; this association strengthened with inclusion of EH ((P=0.011. The 10 year Framingham index for cardiovascular risk was positively associated with TBARS (P=0.003.Oxidative stress profiles do not differ between hypertensive states but appear to distinguish between recently-pregnant and non-pregnant states. This suggests that pregnancy may alter vascular integrity with changes remaining 6 weeks postpartum. LDL-cholesterol is a known determinant of oxidative stress in cardiovascular disease and we have shown this association to be present in hypertensive pregnancy further emphasizing that such a pregnancy may be revealing a pre-existing cardiovascular

  18. Scale effect in fatigue resistance under complex stressed state

    International Nuclear Information System (INIS)

    Sosnovskij, L.A.

    1979-01-01

    On the basis the of the fatigue failure statistic theory obtained is the formula for calculated estimation of probabillity of failure under complex stressed state according to partial probabilities of failure under linear stressed state with provision for the scale effect. Also the formula for calculation of equivalent stress is obtained. The verification of both formulae using literary experimental data for plane stressed state torsion has shown that the error of estimations does not exceed 10% for materials with the ultimate strength changing from 61 to 124 kg/mm 2

  19. Biaxial nominal state of stress at the crack front

    International Nuclear Information System (INIS)

    Dietmann, H.; Kussmaul, K.

    1979-01-01

    In fracture toughness testing with CT-specimens there is an unaxial nominal stress state caused by the nominal stress psub(y) perpendicular to the crack surface. This paper investigates the question whether the fracture toughness, or generally speaking, the fracture load, is influenced by additional nominal stresses psub(x) and psub(z) in the crack surface, i.e. by a multiaxial stress state. (orig.)

  20. Remark on state vector construction when flavor mixing exists

    International Nuclear Information System (INIS)

    Fujii, K.; Shimomura, T.

    2006-01-01

    In the framework of quantum field theory, we consider the way to construct the one-particle state (with definite 3-momentum) when particle mixing exists, such as in the case of flavor-neutrino mixing. In the preceding report (Prog. Theor. Phys. 112, 901 (2004)), we have examined the structure of expectation values of the flavor neutrino charges (at time t) with respect to a neutrino-source state prepared at time t' (earlier than t). When there is no mixing, each of various contributions to the expectation value is equal, in its dominant part, to the transition probability corresponding to the respective neutrino-production process. On the basis of the assumption that such an equality holds also in the mixing case, we can find an appropriate form of one-flavor-neutrino state with 3-momentum and helicity. Along the same way, we examine the boson case when flavor mixing exists. We give remarks on the relation and difference between the ordinary and the present approaches to flavor oscillation

  1. Tremor frequency characteristics in Parkinson's disease under resting-state and stress-state conditions.

    Science.gov (United States)

    Lee, Hong Ji; Lee, Woong Woo; Kim, Sang Kyong; Park, Hyeyoung; Jeon, Hyo Seon; Kim, Han Byul; Jeon, Beom S; Park, Kwang Suk

    2016-03-15

    Tremor characteristics-amplitude and frequency components-are primary quantitative clinical factors for diagnosis and monitoring of tremors. Few studies have investigated how different patient's conditions affect tremor frequency characteristics in Parkinson's disease (PD). Here, we analyzed tremor characteristics under resting-state and stress-state conditions. Tremor was recorded using an accelerometer on the finger, under resting-state and stress-state (calculation task) conditions, during rest tremor and postural tremor. The changes of peak power, peak frequency, mean frequency, and distribution of power spectral density (PSD) of tremor were evaluated across conditions. Patients whose tremors were considered more than "mild" were selected, for both rest (n=67) and postural (n=25) tremor. Stress resulted in both greater peak powers and higher peak frequencies for rest tremor (pstate condition. The distributions of PSD of tremor were symmetrical, regardless of conditions. Tremor is more evident and typical tremor characteristics, namely a lower frequency as amplitude increases, are different in stressful condition. Patient's conditions directly affect neural oscillations related to tremor frequencies. Therefore, tremor characteristics in PD should be systematically standardized across patient's conditions such as attention and stress levels. Copyright © 2016. Published by Elsevier B.V.

  2. Chimera States in Continuous Media: Existence and Distinctness

    Science.gov (United States)

    Nicolaou, Zachary G.; Riecke, Hermann; Motter, Adilson E.

    2017-12-01

    The defining property of chimera states is the coexistence of coherent and incoherent domains in systems that are structurally and spatially homogeneous. The recent realization that such states might be common in oscillator networks raises the question of whether an analogous phenomenon can occur in continuous media. Here, we show that chimera states can exist in continuous systems even when the coupling is strictly local, as in many fluid and pattern forming media. Using the complex Ginzburg-Landau equation as a model system, we characterize chimera states consisting of a coherent domain of a frozen spiral structure and an incoherent domain of amplitude turbulence. We show that in this case, in contrast with discrete network systems, fluctuations in the local coupling field play a crucial role in limiting the coherent regions. We suggest these findings shed light on new possible forms of coexisting order and disorder in fluid systems.

  3. [Methods and Applications of Psychological Stress State Assessment].

    Science.gov (United States)

    Li, Xin; Yang, Yadan; Hou, Yongjie; Chen, Zetao

    2015-08-01

    In this paper, the response of individual's physiological system under psychological stress state is discussed, and the theoretical support for psychological stress assessment research is provided. The two methods, i.e., the psychological stress assessment of questionnaire and physiological parameter assessment used for current psychological stress assessment are summarized. Then, the future trend of development of psychological stress assessment research is pointed out. We hope that this work could do and provide further support and help to psychological stress assessment studies.

  4. Constitutive relations describing creep deformation for multi-axial time-dependent stress states

    Science.gov (United States)

    McCartney, L. N.

    1981-02-01

    A THEORY of primary and secondary creep deformation in metals is presented, which is based upon the concept of tensor internal state variables and the principles of continuum mechanics and thermodynamics. The theory is able to account for both multi-axial and time-dependent stress and strain states. The wellknown concepts of elastic, anelastic and plastic strains follow naturally from the theory. Homogeneous stress states are considered in detail and a simplified theory is derived by linearizing with respect to the internal state variables. It is demonstrated that the model can be developed in such a way that multi-axial constant-stress creep data can be presented as a single relationship between an equivalent stress and an equivalent strain. It is shown how the theory may be used to describe the multi-axial deformation of metals which are subjected to constant stress states. The multi-axial strain response to a general cyclic stress state is calculated. For uni-axial stress states, square-wave loading and a thermal fatigue stress cycle are analysed.

  5. Non-existence of natural states for Abelian Chern-Simons theory

    Science.gov (United States)

    Dappiaggi, Claudio; Murro, Simone; Schenkel, Alexander

    2017-06-01

    We give an elementary proof that Abelian Chern-Simons theory, described as a functor from oriented surfaces to C∗-algebras, does not admit a natural state. Non-existence of natural states is thus not only a phenomenon of quantum field theories on Lorentzian manifolds, but also of topological quantum field theories formulated in the algebraic approach.

  6. Numerical evaluation of state boundary surface through rotation of principal stress axes in sand

    International Nuclear Information System (INIS)

    Sadrnejad, S. A.

    2001-01-01

    In applying shear stress to saturated soil with arbitrary stress paths, the prediction of the exact value of strains is difficult because of mainly its stress path dependent nature. Rotation of the principal stress axes during shearing of the soil is a feature of stress paths associated with many field loading situations. A proper understanding of the effects of principal stress rotation on soil behavior can be provided if the anisotropy existing prior to stress rotation and induced anisotropy due to plastic flow in soil are clearly understood and modeled. A multi laminate based model for soil is developed and used to compute and present the influence of rotation of principal stress axes on the plastic behavior of soil. This is fulfilled by distributing the effects of boundary condition changes into several predefined sampling orientations at one point and summing the micro-results up as the macro-result. The validity of the presented model examined by comparing numerical and test results showing the mentioned aspect. In this paper, the state boundary surface is numerically obtained by a multi laminate based model capable of predicting the behavior of sand under the influences of rotation of the direction of principal stress axes and induced anisotropy. the predicted numerical results are tally in agreement with experiments

  7. The influence of the stress state on Ksub(Ic)

    International Nuclear Information System (INIS)

    Aurich, D.; Helms, R.; Schmidt, P.; Veith, H.; Ziebs, J.

    1977-01-01

    To get a first impression of the influence of stress states of higher multi-axiality than plane strain on Ksub(c) a specimen has been created, in which a bi-axial nominal stress state arises by uniaxial tension. This is attained by tension superimposed by transverse bending stress. The stress distribution without crack was analysed by photoelasticity as well as by finite element method. The results were identical. The stress distribution in the fracture (crack) plane was somewhat inhomogeneous, of course. But the ratio of the stress parallel to the tension axis to that perpendicular to it was max. 1:0.3 with a mean value 1:0.15. Specimens of this type were machined from a rolled sheet of the steel 22 NiMoCr 37, with specimen thickness of about 50 mm. For comparison single-edge notched specimens of the same cross section were prepared from the same material. Fatigue cracks were made following ASTM Recommendations. The fracture mechanics tests were carried out at a temperature of -100 0 C. Although valid Ksub(Ic)-values following the rigorous intention of the linear elastic fracture mechanics (ASTM Recommendations) were not obtained, the differences between the results of the two types of specimens and stress states were significant. The Ksub(Q)-values of the bi-axial stressed specimen were about 25% lower than that of the single-edge notched specimen. The deviation of the load-displacement trace from the linear elastic behavior was greater for the single-edge notched specimens than for the bi-axial stressed specimens. The consequences of these results for the assessment of flaws in pressure vessels are evident considering that bi-axial nominal stress states occur in pressure vessels

  8. STRESS AND STRAIN STATE OF REPAIRING SECTION OF PIPELINE

    Directory of Open Access Journals (Sweden)

    V. V. Nikolaev

    2015-01-01

    Full Text Available Reliability of continuous operation of pipelines is an actual problem. For this reason should be developed an effective warning system of the main pipelines‘  failures and accidents not only in design and operation but also in selected repair. Changing of linear, unloaded by bending position leads to the change of stress and strain state of pipelines. And besides this, the stress and strain state should be determined and controlled in the process of carrying out the repair works. The article presents mathematical model of pipeline’s section straining in viscoelastic setting taking into account soils creep and high-speed stress state of pipeline with the purpose of stresses evaluation and load-supporting capacity of repairing section of pipeline, depending on time.  Stress and strain state analysis of pipeline includes longitudinal and circular stresses calculation  with  account of axis-asymmetrical straining and  was  fulfilled  on  the base of momentless theory of shells. To prove the consistency of data there were compared the calcu- lation results and the solution results by analytical methods for different cases (long pipeline’s section strain only under influence of cross-axis action; long pipeline’s section strain under in- fluence of longitudinal stress; long pipeline’s section strain; which is on the elastic foundation, under influence of cross-axis action. Comparison results shows that the calculation error is not more than 3 %.Analysis of stress-strain state change of pipeline’s section was carried out with development  of  this  model,  which  indicates  the  enlargement  of  span  deflection  in  comparison with problem’s solution in elastic approach. It is also proved, that for consistent assessment of pipeline maintenance conditions, it is necessary to consider the areolas of rheological processes of soils. On the base of complex analysis of pipelines there were determined stresses and time

  9. The effect of stress state on zirconium hydride reorientation

    Science.gov (United States)

    Cinbiz, Mahmut Nedim

    Prior to storage in a dry-cask facility, spent nuclear fuel must undergo a vacuum drying cycle during which the spent fuel rods are heated up to elevated temperatures of ≤ 400°C to remove moisture the canisters within the cask. As temperature increases during heating, some of the hydride particles within the cladding dissolve while the internal gas pressure in fuel rods increases generating multi-axial hoop and axial stresses in the closed-end thin-walled cladding tubes. As cool-down starts, the hydrogen in solid solution precipitates as hydride platelets, and if the multiaxial stresses are sufficiently large, the precipitating hydrides reorient from their initial circumferential orientation to radial orientation. Radial hydrides can severely embrittle the spent nuclear fuel cladding at low temperature in response to hoop stress loading. Because the cladding can experience a range of stress states during the thermo-mechanical treatment induced during vacuum drying, this study has investigated the effect of stress state on the process of hydride reorientation during controlled thermo-mechanical treatments utilizing the combination of in situ X-ray diffraction and novel mechanical testing analyzed by the combination of metallography and finite element analysis. The study used cold worked and stress relieved Zircaloy-4 sheet containing approx. 180 wt. ppm hydrogen as its material basis. The failure behavior of this material containing radial hydrides was also studied over a range of temperatures. Finally, samples from reactor-irradiated cladding tubes were examined by X-ray diffraction using synchrotron radiation. To reveal the stress state effect on hydride reorientation, the critical threshold stress to reorient hydrides was determined by designing novel mechanical test samples which produce a range of stress states from uniaxial to "near-equibiaxial" tension when a load is applied. The threshold stress was determined after thermo-mechanical treatments by

  10. Assessment of brain activities during an emotional stress state using fMRI

    International Nuclear Information System (INIS)

    Hayashi, Takuto; Mizuno-Matsumoto, Yuko; Kawasaki, Aika; Kato, Makoto; Murata, Tsutomu

    2011-01-01

    We investigated cerebrum activation using functional magnetic resonance imaging during a mental stress state. Thirty-four healthy adults participated. Before the experiment, we assessed their stress states using the Stress Self-rating Scale and divided the participants into Stress and Non-stress groups. The experiment consisted of 6 trials. Each trial consisted of a 20-s block of emotional audio-visual stimuli (4-s stimulation x 5 slides) and a fixation point. These processes were performed 3 times continuously (Relaxed, Pleasant, Unpleasant stimuli) in a random order. These results showed that the Non-stress group indicated activation of the amygdala and hippocampus in the Pleasant and Unpleasant stimuli while the Stress group indicated activation of the hippocampus in Pleasant stimuli, and the amygdala and hippocampus in Unpleasant stimuli. These findings suggested that the mental stress state engages the reduction of emotional processing. Also, the responsiveness of the memory system remained during and after the emotional stress state. (author)

  11. Stress responses during aerobic exercise in relation to motivational dominance and state.

    Science.gov (United States)

    Thatcher, Joanne; Kuroda, Yusuke; Legrand, Fabien D; Thatcher, Rhys

    2011-02-01

    We examined the hypothesis that congruence between motivational dominance and state results in optimal psychological responses and performance during exercise. Twenty participants (10 telic dominant and 10 paratelic dominant) rated their stress at 5 min intervals as they cycled on an ergometer at gas exchange threshold for 30 min in both telic and paratelic state manipulated conditions. Participants then performed a test to exhaustion at a resistance equivalent to 110% of VO(2max). The hypothesized interaction between condition and dominance was significant for internal tension stress, as paratelic dominants were more stressed than telic dominants when exercising in the telic state and telic dominants were more stressed than paratelic dominants when exercising in the paratelic state. Similarly, the condition × dominance interaction for internal stress discrepancy was significant, as paratelic dominants reported greater internal stress discrepancy exercising in the telic compared with the paratelic state. Findings are discussed in relation to the application of reversal theory for understanding stress responses during aerobic exercise.

  12. Effects of Consolidation Stress State on Normally Consolidated Clay

    DEFF Research Database (Denmark)

    Lade, Poul V.

    2000-01-01

    The effect of consolidation stress state on the stress-strain and strength characteristics has been studied from experiments on undisturbed block samples of a natural, normally consolidated clay known as San Francisco Bay Mud. The results of experiments on K0-consolidated, hollow cylinder specimens...... and on isotropically consolidated, cubical specimens, both tested in triaxial compression and extension, clearly showed the influence of the undisturbed fabric as well as the effect of the initial consolidation stress states. While the K0-consolidated specimens appeared to retain their original fabric and exhibit...

  13. PRESENTDAY STRESS STATE OF THE SHANXI TECTONIC BELT

    Directory of Open Access Journals (Sweden)

    Wang Kaiying

    2012-01-01

    Full Text Available The Shanxi tectonic belt is a historically earthquakeabundant area. For the majority of strong earthquakes in this area, the distribution of earthquake foci was controlled by the N–S oriented local structures on the tectonic belt. Studies of the present stress state of the Shanxi tectonic belt can contribute to the understanding of the relationship between strong earthquakes’ occurrence and their structural distribution and also facilitate assessments of regional seismic danger and determination of the regions wherein strong earthquakes may occur in future. Using the Cataclastic Analysis Method (CAM, we performed stress inversion based on the focal mechanism data of earthquakes which took place in the Shanxi tectonic belt from 1967 to 2010. Our results show that orientations of the maximum principal compressive stress axis of the Shanxi tectonic belt might have been variable before and after the 2001 Kunlun MS=8.1 strong earthquake, with two different superior trends of the NW–SE and NE–SW orientation in different periods. When the maximum principal compressive stress axis is oriented in the NE–SW direction, the pattern of the space distribution of the seismic events in the Shanxi tectonic belt shows a trend of their concentration in the N–S oriented tectonic segments. At the same time, the stress state is registered as horizontal shearing and horizontal extension in the N–S and NE–SW oriented local segments in turn. When the maximum principal compressive stress axis is NW–SE oriented, the stress state of the N–S and NE–SW oriented tectonic segments is primarily registered as horizontal shearing. Estimations of plunges of stress axes show that seismicity in the Shanxi belt  corresponds primarily to the activity of lowangle faults, and highangle stress sites are located in the NE–SW oriented extensional tectonic segments of the Shanxi belt. This indicates that the stress change of the Shanxi belt is

  14. Mathematical model of polyethylene pipe bending stress state

    Science.gov (United States)

    Serebrennikov, Anatoly; Serebrennikov, Daniil

    2018-03-01

    Introduction of new machines and new technologies of polyethylene pipeline installation is usually based on the polyethylene pipe flexibility. It is necessary that existing bending stresses do not lead to an irreversible polyethylene pipe deformation and to violation of its strength characteristics. Derivation of the mathematical model which allows calculating analytically the bending stress level of polyethylene pipes with consideration of nonlinear characteristics is presented below. All analytical calculations made with the mathematical model are experimentally proved and confirmed.

  15. Effect of insulin pump infusion on comprehensive stress state of ...

    African Journals Online (AJOL)

    Effect of insulin pump infusion on comprehensive stress state of patients with diabetic ketoacidosis. ... Relevant diabetes-associated serum indices, oxidative stress and stress hormone levels were compared between the ... from 32 Countries:.

  16. Examination stress at unified state examination: student destabilization or success factor?

    Directory of Open Access Journals (Sweden)

    Svetlana N. Kostromina

    2017-01-01

    Full Text Available The aim of the research is to clear up the influence of examination stress on the results of completing examination papers by students in the situation of trial General and Unified State Examinations, imitating the real-life environment of unified state certification of schoolchildren. The tasks of the research included determining the dynamics of psychophysiological stress indices at different examination stages, and evaluating additional factors (the subject in which the examination is held, the strategy of solving the variant, success of solving the task etc., influencing the quantity and quality of stress reactions at the examination.The novelty of the research is in the attempt to overcome the problem of confusing the notions of examination stress and examination anxiety, caused by metering the students’ state either before or after the examination. The technology of online monitoring the students’ psychophysiological state is used in the work, which makes it possible to eliminate a number of restrictions occurring during subjective evaluation of the state by the students themselves. Telemetric cardiorhythmography was chosen as the basic method. The method is based on a three-component model of extreme states with consequent domination of one of the three stress-reactive systems. A cardiointervalogramm was being registered in the research process in the online mode and underwent spectral analysis. The following indices of heart rate variability were recorded in order to determine stress reactions: the total power of the spectrum (TP, the spectrum power in low-frequency (LF and high-frequency (HF regions, and a vegetative balance index (relation of the spectrum powers in low-frequency and high-frequency regions (LF/HF. When the total power of the heart rate fell and, at the same time, the vegetative balance index rose, a conclusion was made of there being a stress reaction. Twenty-five students of an illustrious school were examined

  17. Existence results for fractional integro-differential inclusions with state-dependent delay

    Directory of Open Access Journals (Sweden)

    Siracusa Giovana

    2017-10-01

    Full Text Available In this paper we are concerned with a class of abstract fractional integro-differential inclusions with infinite state-dependent delay. Our approach is based on the existence of a resolvent operator for the homogeneous equation.We establish the existence of mild solutions using both contractive maps and condensing maps. Finally, an application to the theory of heat conduction in materials with memory is given.

  18. Existence results for impulsive evolution differential equations with state-dependent delay

    OpenAIRE

    Eduardo Hernandez M.; Rathinasamy Sakthivel; Sueli Tanaka Aki

    2008-01-01

    We study the existence of mild solution for impulsive evolution abstract differential equations with state-dependent delay. A concrete application to partial delayed differential equations is considered.

  19. Stress state dependence of transient irradiation creep in 20% cold worked 316 stainless steel

    International Nuclear Information System (INIS)

    Foster, J.P.; Gilbert, E.R.

    1998-01-01

    Irradiation creep tests were performed in fast reactors using the stress states of uniaxial tension, biaxial tension, bending and torsion. In order to compare the saturated transient strain irradiation creep component, the test data were converted to equivalent strain and equivalent stress. The saturated transient irradiation creep component was observed to depend on the stress state. The highest value was exhibited by the uniaxial tension stress state, and the lowest by the torsion stress state. The biaxial tension and bending stress state transient component values were intermediate. This behavior appears to be related to the dislocation or microscopic substructure resulting from fabrication processing and the applied stress direction. (orig.)

  20. Measurements of the state of stress in deep drill holes

    International Nuclear Information System (INIS)

    Vaeaetaeinen, A.; Saerkkae, P.

    1985-05-01

    The state of stress in rock is one of the most important parameters in the safe planning of stable underground openings in rock. At the same time, it is very difficult to be determined from a great distance. The common methods for the determination of state of stress in bedrock are usually not able to do this from a distance over 30 m. This work is a survey on rock stress determination methods usable in deep, over 500 m, drill holes. It also contains a recommendation for a method to determine the state of stress in Lavia test hole. The presented recommendation for the measurement of the state of stress contains an estimation on the working time for the measurement as well as the amount and location of the measuring points. The examination of the methods has been concentrated on three methods, hydraulic fracturing, overcoring by Vattenfall and differential strain analysis. Theoretical background of these methods has been analyzed. A special interest has been laid on the fundamental assumptions of different methods and their influence on the reliability of the results and the interpretation of the state of stress. The comparison of the methods has been made by literature and user interviews. Equipment and personnel needed, and way of measurement are described for the methods. The parameters measured and their possible sources of errors are described, too, as well as the fundamental assumptions and potential difficulties in the measurement. The organizations in Scandinavia performing measurements and their abilities to do measurements and interpretation are presented. Readiness to interpretation in Finland is described shortly

  1. Effect of stress-state and spacing on voids in a shear-field

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2012-01-01

    in the overall average stress state can be prescribed. This also allows for studies of the effect of different initial void spacing in the two in-plane coordinate directions. The stress states considered are essentially simple shear, with various levels of tensile stresses or compressive stresses superposed, i.......e. low positive stress triaxiality or even negative stress triaxiality. For high aspect ratio unit cells a clear localization band is found inside the cell, which actually represents several parallel bands, due to periodicity. In the materials represented by a low aspect ratio unit cell localization...

  2. Experimental study on the thermo-mechanical behaviour of stiff clay under non-isotropic stress state

    International Nuclear Information System (INIS)

    Tang, Anh Minh; Cui, Yu-Jun; Li, Xiang-Ling

    2012-01-01

    Document available in extended abstract form only. Stiff clay is usually considered as possible host-rock for geological radioactive waste disposal due to its low permeability and its self-sealing capacity. Boom Clay, for instance, is one of the clays currently considered by the Belgian radioactive waste management agency Ondraf/Niras as a potential host for a geological repository. In order to analyse the performance of this material, it is important to understand its behaviour under the coupled thermo-hydro-mechanical solicitations. In laboratory, several studies have been performed to study the volume change of clay under coupled thermomechanical loading. The results show that heating under drained conditions can induce thermal dilation at low confining stress and thermal contraction at high confining stress. On the other hand, compression tests performed at constant temperature show that the compressibility parameters of soil can be modified by temperature change. These features are now well considered in constitutive laws based on the framework of elasto-plasticity. Under undrained conditions, heating can increase pore-water pressure and this behaviour can be simulated using the theoretical thermo-poro-elastic framework. The temperature effect on the soil behaviour under triaxial compression is also often considered. It is commonly accepted that heating decreases the shear strength of clay but this softening can be hidden by the thermal contraction that occurs during heating which can induce at the same time soil hardening. In spite of these existing works, laboratory tests considering the thermo-mechanical loading path that the soil can be subjected to are still rare. Actually, in the case of geological radioactive waste disposal, after the installation of waste canisters, the soil is expected to be heated under non-isotropic stress state. Most of the existing laboratory works show heating tests in odometer cell or triaxial cell under isotropic stress

  3. State of stress in exhumed basins and implications for fluid flow: insights from the Illizi Basin, Algeria

    KAUST Repository

    English, Joseph M.

    2017-05-31

    The petroleum prospectivity of an exhumed basin is largely dependent on the ability of pre-existing traps to retain oil and gas volumes during and after the exhumation event. Although faults may act as lateral seals in petroleum traps, they may start to become hydraulically conductive again and enable fluid flow and hydrocarbon leakage during fault reactivation. We constrain the present day in situ stresses of the exhumed Illizi Basin in Algeria and demonstrate that the primary north–south and NW–SE (vertical strike-slip) fault systems in the study area are close to critical stress (i.e. an incipient state of shear failure). By contrast, the overpressured and unexhumed Berkine Basin and Hassi Messaoud areas to the north do not appear to be characterized by critical stress conditions. We present conceptual models of stress evolution and demonstrate that a sedimentary basin with benign in situ stresses at maximum burial may change to being characterized by critical stress conditions on existing fault systems during exhumation. These models are supportive of the idea that the breaching of a closed, overpressured system during exhumation of the Illizi Basin may have been a driving mechanism for the regional updip flow of high-salinity formation water within the Ordovician reservoirs during Eocene–Miocene time. This work also has implications for petroleum exploration in exhumed basins. Fault-bounded traps with faults oriented at a high angle to the maximum principal horizontal stress direction in strike-slip or normal faulting stress regimes are more likely to have retained hydrocarbons in exhumed basins than fault-bounded traps with faults that are more optimally oriented for shear failure and therefore have a greater propensity to become critically stressed during exhumation.

  4. [Study on the relationship between occupational stress and psychological health state among oil workers].

    Science.gov (United States)

    Liu, Jiwen; Wang, Zhiming; Wang, Mianzhen; Lan, Yajia; Zhan, Chenglie; Zhao, Xiaoguo

    2002-02-01

    To study the relationship between occupational stress and psychological health state among oil workers. 1,230 oil workers in 122 work types of oil industry were selected and written occupational stress questionary(OSQ) and symptom check list (SCL-90). Petroleum workers' psychological health states were poor with increasing occupational stress degree. The scores in physical symptoms(1.87 +/- 0.80, 1.72 +/- 0.70), depression(1.74 +/- 0.76, 1.62 +/- 0.67), horror(1.48 +/- 0.65, 1.39 +/- 0.55) in the high and medium stress group were obviously higher than those in low stress group(1.55 +/- 0.61, 1.43 +/- 0.54, 1.28 +/- 0.46, respectively, P < 0.05). The score of mood state in the high and medium stress group was obviously higher than that in low stress group(P < 0.05). Psychological health states and mood state in the petroleum workers with short service length are significantly poorer than that with long service length(P < 0.01). Occupational stress should affect psychological health state of petroleum workers.

  5. Modelling of the in situ stress state at Olkiluoto Site, Western Finland

    International Nuclear Information System (INIS)

    Valli, J.; Kuula, H.; Hakala, M.

    2011-06-01

    . Although some correlation to current measured in situ stress orientation and magnitude was found at specific depth levels, discrepancies exist. Glacial simulations demonstrated that viscous residual horizontal stresses can result in slip of BFZ in the top most part of the bedrock. The first 300 m of bedrock experienced heavy stress rotations as a result of glaciation whilst magnitudes were roughly the same, essentially a reset of in situ stress. Below this depth level stress magnitudes and trends were similar to those seen prior to loading. As a result of modelling the stress state at Olkiluoto can be considered to be heterogeneous up to a depth of roughly 300 m which is a result of the affects imposed by brittle deformation zones and glaciation. Below this depth principal stress orientations can be considered to match those expected from regional stress. Further studies may include the re-evaluation of core-logging results with the objective of using such parameters in modelling, if it is found necessary to attempt to simulate as realistic a situation as possible. (orig.)

  6. Computer modeling of the stress-strain state of welded construction

    Science.gov (United States)

    Nurguzhin, Marat; Danenova, Gulmira; Akhmetzhanov, Talgat

    2017-11-01

    At the present time the maintenance of the welded construction serviceability over normative service life is provided by the maintenance system on the basis of the guiding documents according to the concept of "fail safe". However, technology factors relating to welding such as high residual stresses and significant plastic strains are not considered in the guiding documents. The design procedure of the stressed-strained state of welded constructions is suggested in the paper. The procedure investigates welded constructions during welding and the external load using the program ANSYS. In this paper, the model of influence of the residual stress strain state on the factor of stress intensity is proposed. The calculation method of the residual stressed-strained state (SSS) taking into account the phase transition is developed by the authors. Melting and hardening of a plate material during heating and cooling is considered. The thermomechanical problem of heating a plate by a stationary heat source is solved. The setup of the heating spot center on distance (190 mm) from the crack top in a direction of its propagation leads to the fact that the value of total factor of stress intensity will considerably decrease under action of the specified residual compressing stresses. It can lower the speed of the crack propagation to zero. The suggested method of survivability maintenance can be applied during operation with the purpose of increasing the service life of metal constructions up to running repair of technological machines.

  7. The influence of the anisotropic stress state on the intermediate strain properties of granular material

    KAUST Repository

    Goudarzy, M.

    2017-07-20

    This paper shows the effect of anisotropic stress state on intermediate strain properties of cylindrical samples containing spherical glass particles. Tests were carried out with the modified resonant column device available at Ruhr-Universität Bochum. Dry samples were subjected to two anisotropic stress states: (a) cell pressure, σ′h, constant and vertical stress, σ′v, increased (stress state GB-I) and (b) σ′v/σ′h equal to 2 (stress state GB-II). The experimental results revealed that the effect of stress state GB-II on the modulus and damping ratio was more significant and obvious than stress state GB-I. The effect of the anisotropic stress state was explained through the impact of confining pressure and anisotropic stress components on the stiffness and damping ratio. The results showed that: (a) G(γ) increased, η(γ) decreased and their strain non-linearity decreased with an increase in the confining pressure component σ′vσ′h; (b) G(γ) decreased, η(γ) increased and their strain non-linearity increased with an increase in the anisotropic stress component, σ′v/σ′h. The analysis of results revealed that reference shear strain was also affected by anisotropic stress state. Therefore, an empirical relationship was developed to predict the reference shear strain, as a function of confining pressure and anisotropic stress components. Additionally, the damping ratio was written as a function of the minimum damping ratio and the reference shear strain.

  8. Stress and Strain State Analysis of Defective Pipeline Portion

    Science.gov (United States)

    Burkov, P. V.; Burkova, S. P.; Knaub, S. A.

    2015-09-01

    The paper presents computer simulation results of the pipeline having defects in a welded joint. Autodesk Inventor software is used for simulation of the stress and strain state of the pipeline. Places of the possible failure and stress concentrators are predicted on the defective portion of the pipeline.

  9. Investigation of the Residual Stress State in an Epoxy Based Specimen

    DEFF Research Database (Denmark)

    Baran, Ismet; Jakobsen, Johnny; Andreasen, Jens Henrik

    2015-01-01

    Abstract. Process induced residual stresses may play an important role under service loading conditions for fiber reinforced composite. They may initiate premature cracks and alter the internal stress level. Therefore, the developed numerical models have to be validated with the experimental...... observations. In the present work, the formation of the residual stresses/strains are captured from experimental measurements and numerical models. An epoxy/steel based sample configuration is considered which creates an in-plane biaxial stress state during curing of the resin. A hole drilling process...... material models, i.e. cure kinetics, elastic modulus, CTE, chemical shrinkage, etc. together with the drilling process using the finite element method. The measured and predicted in-plane residual strain states are compared for the epoxy/metal biaxial stress specimen....

  10. Defect-dependent elasticity: Nanoindentation as a probe of stress state

    International Nuclear Information System (INIS)

    Jarausch, K. F.; Kiely, J. D.; Houston, J. E.; Russell, P. E.

    2000-01-01

    Using an interfacial force microscope, the measured elastic response of 100-nm-thick Au films was found to be strongly correlated with the films' stress state and thermal history. Large, reversible variations (2x) of indentation modulus were recorded as a function of applied stress. Low-temperature annealing caused permanent changes in the films' measured elastic properties. The measured elastic response was also found to vary in close proximity to grain boundaries in thin films and near surface steps on single-crystal surfaces. These results demonstrate a complex interdependence of stress state, defect structure, and elastic properties in thin metallic films. (c) 2000 Materials Research Society

  11. State of charge estimation for lithium-ion pouch batteries based on stress measurement

    International Nuclear Information System (INIS)

    Dai, Haifeng; Yu, Chenchen; Wei, Xuezhe; Sun, Zechang

    2017-01-01

    State of charge (SOC) estimation is one of the important tasks of battery management system (BMS). Being different from other researches, a novel method of SOC estimation for pouch lithium-ion battery cells based on stress measurement is proposed. With a comprehensive experimental study, we find that, the stress of the battery during charge/discharge is composed of the static stress and the dynamic stress. The static stress, which is the measured stress in equilibrium state, corresponds to SOC, this phenomenon facilitates the design of our stress-based SOC estimation. The dynamic stress, on the other hand, is influenced by multiple factors including charge accumulation or depletion, current and historical operation, thus a multiple regression model of the dynamic stress is established. Based on the relationship between static stress and SOC, as well as the dynamic stress modeling, the SOC estimation method is founded. Experimental results show that the stress-based method performs well with a good accuracy, and this method offers a novel perspective for SOC estimation. - Highlights: • A State of Charge estimator based on stress measurement is proposed. • The stress during charge and discharge is investigated with comprehensive experiments. • Effects of SOC, current, and operation history on battery stress are well studied. • A multiple regression model of the dynamic stress is established.

  12. Stress-affected microstructural development and creep-swelling interrelationship

    International Nuclear Information System (INIS)

    Brager, H.R.; Garner, F.A.; Gilbert, E.R.; Flinn, J.E.; Wolfer, W.G.

    1977-05-01

    Macroscopic measurement of the deformations arising from swelling and creep during neutron irradiation indicate that both processes are dependent on the magnitude and possibly the sign of the applied stress state. Current modeling efforts also indicate that a strong interaction exists between swelling and creep through the stress state. Because the macroscopic distortions arise from the integrated microscopic strains associated with specific microstructural elements, the effect of applied stress on microstructural development has been studied

  13. Stress Exposure, Food Intake, and Emotional State

    Science.gov (United States)

    Ulrich-Lai, Yvonne M.; Fulton, Stephanie; Wilson, Mark; Petrovich, Gorica; Rinaman, Linda

    2016-01-01

    This manuscript summarizes the proceedings of the symposium entitled, “Stress, Palatable Food and Reward”, that was chaired by Drs. Linda Rinaman and Yvonne Ulrich-Lai at the 2014 Neurobiology of Stress Workshop held in Cincinnati, OH. This symposium comprised research presentations by four neuroscientists whose work focuses on the biological bases for complex interactions among stress, food intake and emotion. First, Dr. Ulrich-Lai describes her rodent research exploring mechanisms by which the rewarding properties of sweet palatable foods confer stress relief. Second, Dr. Stephanie Fulton discusses her work in which excessive, long-term intake of dietary lipids, as well as their subsequent withdrawal, promotes stress-related outcomes in mice. Third, Dr. Mark Wilson describes his group’s research examining the effects of social hierarchy-related stress on food intake and diet choice in group-housed female rhesus macaques, and compared the data from monkeys to results obtained in analogous work using rodents. Lastly, Dr. Gorica Petrovich discusses her research program that is aimed at defining cortical–amygdalar–hypothalamic circuitry responsible for curbing food intake during emotional threat (i.e., fear anticipation) in rats. Their collective results reveal the complexity of physiological and behavioral interactions that link stress, food intake and emotional state, and suggest new avenues of research to probe the impact of genetic, metabolic, social, experiential, and environmental factors. PMID:26303312

  14. Stress exposure, food intake and emotional state.

    Science.gov (United States)

    Ulrich-Lai, Yvonne M; Fulton, Stephanie; Wilson, Mark; Petrovich, Gorica; Rinaman, Linda

    2015-01-01

    This manuscript summarizes the proceedings of the symposium entitled, "Stress, Palatable Food and Reward", that was chaired by Drs. Linda Rinaman and Yvonne Ulrich-Lai at the 2014 Neurobiology of Stress Workshop held in Cincinnati, OH. This symposium comprised research presentations by four neuroscientists whose work focuses on the biological bases for complex interactions among stress, food intake and emotion. First, Dr Ulrich-Lai describes her rodent research exploring mechanisms by which the rewarding properties of sweet palatable foods confer stress relief. Second, Dr Stephanie Fulton discusses her work in which excessive, long-term intake of dietary lipids, as well as their subsequent withdrawal, promotes stress-related outcomes in mice. Third, Dr Mark Wilson describes his group's research examining the effects of social hierarchy-related stress on food intake and diet choice in group-housed female rhesus macaques, and compared the data from monkeys to results obtained in analogous work using rodents. Finally, Dr Gorica Petrovich discusses her research program that is aimed at defining cortical-amygdalar-hypothalamic circuitry responsible for curbing food intake during emotional threat (i.e. fear anticipation) in rats. Their collective results reveal the complexity of physiological and behavioral interactions that link stress, food intake and emotional state, and suggest new avenues of research to probe the impact of genetic, metabolic, social, experiential and environmental factors on these interactions.

  15. Oxidatively generated DNA/RNA damage in psychological stress states

    DEFF Research Database (Denmark)

    Jørgensen, Anders

    2013-01-01

    age-related somatic disorders. The overall aim of the PhD project was to investigate the relation between psychopathology, psychological stress, stress hormone secretion and oxidatively generated DNA and RNA damage, as measured by the urinary excretion of markers of whole-body DNA/RNA oxidation (8...... between the 24 h urinary cortisol excretion and the excretion of 8-oxodG/8-oxoGuo, determined in the same samples. Collectively, the studies could not confirm an association between psychological stress and oxidative stress on nucleic acids. Systemic oxidatively generated DNA/RNA damage was increased......Both non-pathological psychological stress states and mental disorders are associated with molecular, cellular and epidemiological signs of accelerated aging. Oxidative stress on nucleic acids is a critical component of cellular and organismal aging, and a suggested pathogenic mechanism in several...

  16. Measured resolved shear stresses and Bishop-Hill stress states in individual grains of austenitic stainless steel

    DEFF Research Database (Denmark)

    Juul, Nicolai Ytterdal; Oddershede, Jette; Beaudoin, Armand

    2017-01-01

    somewhat from the theoretical expectation. These deviations are found to originate from a larger tensile stress component than in the theoretical Bishop-Hill stress states and to be associated also with deviations from axisymmetric plastic strain. This conclusion was supported by finite-element crystal...

  17. Selective buckling via states of self-stress in topological metamaterials.

    Science.gov (United States)

    Paulose, Jayson; Meeussen, Anne S; Vitelli, Vincenzo

    2015-06-23

    States of self-stress--tensions and compressions of structural elements that result in zero net forces--play an important role in determining the load-bearing ability of structures ranging from bridges to metamaterials with tunable mechanical properties. We exploit a class of recently introduced states of self-stress analogous to topological quantum states to sculpt localized buckling regions in the interior of periodic cellular metamaterials. Although the topological states of self-stress arise in the linear response of an idealized mechanical frame of harmonic springs connected by freely hinged joints, they leave a distinct signature in the nonlinear buckling behavior of a cellular material built out of elastic beams with rigid joints. The salient feature of these localized buckling regions is that they are indistinguishable from their surroundings as far as material parameters or connectivity of their constituent elements are concerned. Furthermore, they are robust against a wide range of structural perturbations. We demonstrate the effectiveness of this topological design through analytical and numerical calculations as well as buckling experiments performed on two- and three-dimensional metamaterials built out of stacked kagome lattices.

  18. Existence of periodic solutions for Rayleigh equations with state-dependent delay

    Directory of Open Access Journals (Sweden)

    Jehad O. Alzabut

    2012-05-01

    Full Text Available We establish sufficient conditions for the existence of periodic solutions for a Rayleigh-type equation with state-dependent delay. Our approach is based on the continuation theorem in degree theory, and some analysis techniques. An example illustrates that our approach to this problem is new.

  19. Numerical study on core damage and interpretation of in situ state of stress

    Energy Technology Data Exchange (ETDEWEB)

    Hakala, M. [Gridpoint Finland Oy (Finland)

    1999-06-01

    Core disking is a phenomenon where a diamond cored core sample will be sliced when released from a stressed host rock. Ring disking is a similar phenomenon which takes place during overcoring with a pilot hole. Because of the uniform shape and spacing of disk fracturing, it has the potential to be used for estimating the in situ state of stress. If this is feasible, it could be used in high stress states where the traditional stress measuring techniques are not valid or even possible. In this work the both the core disking and ring disking phenomena were studied based on the elastic bottom hole stress application developed and a series of fracture growth stability simulations. The results-showed that both phenomena are very complicated and site specific, but the spacing, shape, extent and initiation point are clearly stress state dependent. Throughout the work, guidelines for the in situ stress field interpretation method were developed and implemented for the borehole aligned orthogonal stress field and Poisson`s ratio of 0.25. Based on this study, the in situ state of stress can be estimated with acceptable accuracy if information on both core disking and ring disking is available. On the other hand, as an indirect method, there are no reasons to use it if direct measurements can be used. (orig.) 35 refs.

  20. Numerical study on core damage and interpretation of in situ state of stress

    International Nuclear Information System (INIS)

    Hakala, M.

    1999-06-01

    Core disking is a phenomenon where a diamond cored core sample will be sliced when released from a stressed host rock. Ring disking is a similar phenomenon which takes place during overcoring with a pilot hole. Because of the uniform shape and spacing of disk fracturing, it has the potential to be used for estimating the in situ state of stress. If this is feasible, it could be used in high stress states where the traditional stress measuring techniques are not valid or even possible. In this work the both the core disking and ring disking phenomena were studied based on the elastic bottom hole stress application developed and a series of fracture growth stability simulations. The results-showed that both phenomena are very complicated and site specific, but the spacing, shape, extent and initiation point are clearly stress state dependent. Throughout the work, guidelines for the in situ stress field interpretation method were developed and implemented for the borehole aligned orthogonal stress field and Poisson's ratio of 0.25. Based on this study, the in situ state of stress can be estimated with acceptable accuracy if information on both core disking and ring disking is available. On the other hand, as an indirect method, there are no reasons to use it if direct measurements can be used. (orig.)

  1. Application of laser interferometry for assessment of surface residual stress by determination of stress-free state

    International Nuclear Information System (INIS)

    Kim, Dong Won; Kwon, Dong Il; Lee, Nak Kyu; Choi, Tae Hoon; Na, Kyoung Hoan

    2003-01-01

    The total relaxed stress in annealing and the thermal strain/stress were obtained from the identification of the residual stress-free state using Electronic Speckle Pattern Interferometry (ESPI). The residual stress fields in case of both single and film/substrate systems were modeled using the thermo-elastic theory and the relationship between relaxed stresses and displacements. We mapped the surface residual stress fields on the indented bulk Cu and the 0.5 μm Au film by ESPI. In indented Cu, the normal and shear residual stress are distributed over -1.7 GPa to 700 MPa and -800 GPa to 600 MPa respectively around the indented point and in deposited Au film on Si wafer, the tensile residual stress is uniformly distributed on the Au film from 500 MPa to 800 MPa. Also we measured the residual stress by the X-Ray Diffractometer (XRD) for the verification of above residual stress results by ESPI

  2. Stress state evaluation in low carbon and TRIP steels by magnetic permeability

    International Nuclear Information System (INIS)

    Kouli, M.-E.; Giannakis, M

    2016-01-01

    Magnetic permeability is an indicative factor for the steel health monitoring. The measurements of magnetic permeability lead to the evaluation of the stress state of any ferromagnetic steel. The magnetic permeability measurements were conducted on low carbon and TRIP steel samples, which were subjected to both tensile and compressive stresses. The results indicated a direct correlation of the magnetic permeability with the mechanical properties, the stress state and the microstructural features of the examined samples. (paper)

  3. Stress-induced state transitions in flexible liquid-crystal devices

    International Nuclear Information System (INIS)

    Ho, I-Lin; Chang, Yia-Chung

    2012-01-01

    This work studies the stress-strain dynamics for the transient optoelectronic characteristics of flexible liquid-crystal (LC) devices. Due to the fast response of LC directors, the configuration of the LC is assumed to be in quasi-equilibrium during the process of elastic deformations of the flexible structures. The LC medium hence can be treated effectively as a thin-film layer and can approximately follow the strain-stress mechanism in the solids. Relevant theoretical algorithms are studied in this work, and numerical results present the stress-induced state transitions in the π cell.

  4. Thyro-stress.

    Science.gov (United States)

    Kalra, Sanjay; Verma, Komal; Balhara, Yatan Pal Singh

    2017-01-01

    Our understanding of the biopsychosocial model of health, and its influence on chronic endocrine conditions, has improved over the past few decades. We can distinguish, for example, between diabetes distress and major depressive disorders in diabetes. Similar to diabetes distress, we suggest the existence of "thyrostress" in chronic thyroid disorders. Thyro-stress is defined as an emotional state, characterized by extreme apprehension, discomfort or dejection, caused by the challenges and demand of living with thyroid disorders such as hypothyroidism. This communication describes the etiology, clinical features, differential diagnosis, and management of thyro-stress.

  5. Simulation of Stress-Strain State of Shovel Rotary Support Kingpin

    Science.gov (United States)

    Khoreshok, A. A.; Buyankin, P. V.; Vorobiev, A. V.; Dronov, A. A.

    2016-04-01

    The article presents the sequence of computational simulation of stress-strain state of shovel’s rotary support. Computation results are analyzed, the kingpin is specified as the most loaded element, maximum stress zones are identified. Kingpin design modification such as enhancement of fillet curvature radius to 25 mm and displacement of eyebolt holes on the diameter of 165 mm are proposed, thus diminishing impact of stress concentrators and improving reliability of the rotary support.

  6. Shallow Lunar Seismic Activity and the Current Stress State of the Moon

    Science.gov (United States)

    Watters, Thomas R.; Weber, Renee C.; Collins, Geoffrey C.; Johnson, Catherine L.

    2017-01-01

    A vast, global network of more than 3200 lobate thrust fault scarps has been revealed in high resolution Lunar Reconnaissance Orbiter Camera (LROC) images. The fault scarps are very young, less than 50 Ma, based on their small scale and crisp appearance, crosscutting relations with small-diameter impact craters, and rates of infilling of associated small, shallow graben and may be actively forming today. The population of young thrust fault scarps provides a window into the recent stress state of the Moon and offers insight into the origin of global lunar stresses. The distribution of orientations of the fault scarps is non-random, inconsistent with isotropic stresses from late-stage global contraction as the sole source of stress. Modeling shows that tidal stresses contribute significantly to the current stress state of the lunar crust. Tidal stresses (orbital recession and diurnal tides) superimposed on stresses from global contraction result in non-isotropic compressional stress and may produce thrust faults consistent with lobate scarp orientations. At any particular point on the lunar surface, peak compressive stress will be reached at a certain time in the diurnal cycle. Coseismic slip events on currently active thrust faults are expected to be triggered when peak stresses are reached. Analysis of the timing of the 28 the shallow moonquakes recorded by the Apollo seismic network shows that 19 indeed occur when the Moon is closer to apogee, while only 9 shallow events occur when the Moon is closer to perigee. Here we report efforts to refine the model for the current stress state of the Moon by investigating the contribution of polar wander. Progress on relocating the epicentral locations of the shallow moonquakes using an algorithm designed for sparse networks is also reported.

  7. Off-state stress and pulse response investigation of InAl/Ga HFET

    International Nuclear Information System (INIS)

    Florovic, M.; Hronec, P.; Kovac, J.; Skriniarova, J.; Donoval, D.; Kordos, P.

    2011-01-01

    In this study In 0.18 Al 0.82 N/GaN HFETs were off-state tested under high drain bias, I-V characteristics were measured using standard DC voltage source (drain-source, gate-source). Subsequently drain current responses on pulse gate-source voltage for various drain-source voltages were recorded and analysed. Static performance of InAlN/GaN HFETs with AlN buffer layer prepared at different conditions were analysed before, during and after the off-state stress. The static output I-V characteristics show the maximum drain current I d ≅ 0,44 A/mm for V gs = 6 V, the device has pinch-off at V gs - 4.4 V. The drain and gate currents of the InAlN/GaN HFET were measured continuously during the off-state stress (V ds = 30 V, V gs = -4.4 V), a partial increase of the drain/gate current was observed after this interruption, which indicates on some recovery effect. The devices were characterised in details after the total stress time of 60 min., as well as after 30 min without the stress, the output I-V characteristic show permanent off-state stress degradation. This effect will be studied in details in the next. (authors)

  8. Level of physical activity, well-being, stress and self-rated health in persons with migraine and co-existing tension-type headache and neck pain.

    Science.gov (United States)

    Krøll, Lotte Skytte; Hammarlund, Catharina Sjödahl; Westergaard, Maria Lurenda; Nielsen, Trine; Sloth, Louise Bönsdorff; Jensen, Rigmor Højland; Gard, Gunvor

    2017-12-01

    The prevalence of migraine with co-existing tension-type headache and neck pain is high in the general population. However, there is very little literature on the characteristics of these combined conditions. The aim of this study was to investigate a) the prevalence of migraine with co-existing tension-type headache and neck pain in a clinic-based sample, b) the level of physical activity, psychological well-being, perceived stress and self-rated health in persons with migraine and co-existing tension-type headache and neck pain compared to healthy controls, c) the perceived ability of persons with migraine and co-existing tension-type headache and neck pain to perform physical activity, and d) which among the three conditions (migraine, tension-type headache or neck pain) is rated as the most burdensome condition. The study was conducted at a tertiary referral specialised headache centre where questionnaires on physical activity, psychological well-being, perceived stress and self-rated health were completed by 148 persons with migraine and 100 healthy controls matched by sex and average age. Semi-structured interviews were conducted to assess characteristics of migraine, tension-type headache and neck pain. Out of 148 persons with migraine, 100 (67%) suffered from co-existing tension-type headache and neck pain. Only 11% suffered from migraine only. Persons with migraine and co-existing tension-type headache and neck pain had lower level of physical activity and psychological well-being, higher level of perceived stress and poorer self-rated health compared to healthy controls. They reported reduced ability to perform physical activity owing to migraine (high degree), tension-type headache (moderate degree) and neck pain (low degree). The most burdensome condition was migraine, followed by tension-type headache and neck pain. Migraine with co-existing tension-type headache and neck pain was highly prevalent in a clinic-based sample. Persons with migraine and co-existing

  9. The stress shadow induced by the 1975-1984 Krafla rifting episode

    KAUST Repository

    Maccaferri, F.; Rivalta, E.; Passarelli, L.; Jonsson, Sigurjon

    2013-01-01

    of several magnitude 6–7 earthquakes. This compelling case of the existence of a stress shadow has never been studied in detail, and the implications of such a stress shadow remain an open question. According to rate-state models, intense stress shadows cause

  10. Existence results for impulsive neutral functional differential equations with state-dependent delay

    Directory of Open Access Journals (Sweden)

    Mani Mallika Arjunan

    2009-04-01

    Full Text Available In this article, we study the existence of mild solutions for a class of impulsive abstract partial neutral functional differential equations with state-dependent delay. The results are obtained by using Leray-Schauder Alternative fixed point theorem. Example is provided to illustrate the main result.

  11. Influence of psychoemotional stress on the functional state of the neuromuscular system and the efficiency of sensorimotor activity of highly skilled athletes

    Directory of Open Access Journals (Sweden)

    Svitlana Fedorchuk

    2017-08-01

    Full Text Available Purpose: assessment of the influence of the level of psychoemotional stress and the effectiveness of mental self-regulation on the functional state of the neuromuscular system and the effectiveness of the sensorimotor activity of highly skilled athletes specializing in complex co-ordination sports (on the example of diving. Material & Methods: study involved 14 high-class athletes (master of sport, international master of sport, honored master of sports at the age of 15–30 years. To determine the psychophysiological properties of the nervous system of athletes, the diagnostic complex "Diagnost-1" are used. Electroneuromyography was performed on the neurodiagnostic complex "Nicolet Viking Select". For a differentiated assessment of the level of stress, the emotional state of the respondents and also for assessing the effectiveness of mental self-regulation, a technique to select colors was used. Result: interrelation between the effectiveness of mental self-regulation and adaptability, the intensity of existing stress, emotional stability and vegetative balance with electroneuromyographic characteristics, strength and functional mobility of nervous processes, the accuracy of reaction to a moving object and the ratio of the reactions of lead and lag, the efficiency of sensorimotor activity are identified. Conclusion: revealed interrelation of the effectiveness of mental self-regulation and adaptability, intensity of existing stress, emotional stability and vegetative balance with typological properties of the higher parts of the central nervous system and electroneuromyographic characteristics of athletes can have prognostic value and be used to optimize the sports development of promising young people.

  12. Specific strain work as a failure criterion in plane stress state

    International Nuclear Information System (INIS)

    Zuchowski, R.; Zietkowski, L.

    1985-01-01

    An experimental verification of failure criterion based on specific strain work was performed. Thin-walled cylindrical specimens were examined by loading with constant force and constant torque moment, assuming different values for particular tests, at the same time keeping stress intensity constant, and by subjecting to thermal cycling. It was found that the critical value of failure did not depend on axial-to-shearing stresses ratio, i.e., on the type of state of stress. Thereby, the validity of the analysed failure criterion in plane stress was confirmed. Besides, a simple description of damage development in plane stress was suggested. (orig./RF)

  13. Thyro-stress

    Directory of Open Access Journals (Sweden)

    Sanjay Kalra

    2017-01-01

    Full Text Available Our understanding of the biopsychosocial model of health, and its influence on chronic endocrine conditions, has improved over the past few decades. We can distinguish, for example, between diabetes distress and major depressive disorders in diabetes. Similar to diabetes distress, we suggest the existence of “thyrostress” in chronic thyroid disorders. Thyro-stress is defined as an emotional state, characterized by extreme apprehension, discomfort or dejection, caused by the challenges and demand of living with thyroid disorders such as hypothyroidism. This communication describes the etiology, clinical features, differential diagnosis, and management of thyro-stress.

  14. Comparison of stress states in GaN films grown on different substrates: Langasite, sapphire and silicon

    Science.gov (United States)

    Park, Byung-Guon; Saravana Kumar, R.; Moon, Mee-Lim; Kim, Moon-Deock; Kang, Tae-Won; Yang, Woo-Chul; Kim, Song-Gang

    2015-09-01

    We demonstrate the evolution of GaN films on novel langasite (LGS) substrate by plasma-assisted molecular beam epitaxy, and assessed the quality of grown GaN film by comparing the experimental results obtained using LGS, sapphire and silicon (Si) substrates. To study the substrate effect, X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman spectroscopy and photoluminescence (PL) spectra were used to characterize the microstructure and stress states in GaN films. Wet etching of GaN films in KOH solution revealed that the films deposited on GaN/LGS, AlN/sapphire and AlN/Si substrates possess Ga-polarity, while the film deposited on GaN/sapphire possess N-polarity. XRD, Raman and PL analysis demonstrated that a compressive stress exist in the films grown on GaN/LGS, AlN/sapphire, and GaN/sapphire substrates, while a tensile stress appears on AlN/Si substrate. Comparative analysis showed the growth of nearly stress-free GaN films on LGS substrate due to the very small lattice mismatch ( 3.2%) and thermal expansion coefficient difference ( 7.5%). The results presented here will hopefully provide a new framework for the further development of high performance III-nitride-related devices using GaN/LGS heteroepitaxy.

  15. On the role of the residual stress state in product manufacturing

    NARCIS (Netherlands)

    Zijlstra, G.; Groen, M.; Post, J.; Ocelik, V.; de Hosson, J.Th.M.

    2016-01-01

    This paper concentrates on the effect of the residual stress state during product manufacturing of AISI 420 steel on the final shape of the product. The work includes Finite Element (FE) calculations of the distribution of the residual stresses after metal forming and a heat treatment. The evolution

  16. Transactional stress and coping theory in accounting for psychological states measures

    Directory of Open Access Journals (Sweden)

    V. Buško

    2007-08-01

    Full Text Available The paper examines a relative predictive value of some stable individual attributes and the processes of cognitive appraisals and coping with stress in accounting for specific components of anxiety state measures. Self-report instruments for the measurement of selected psychological constructs, i.e. perceived incompetence, externality, stress intensity and duration, situation-specific coping strategies, and the two anxiety state components, were taken in a sample of 449 male military basics trainees, ranging in age from 18-27. Hierarchical multiple regression analyses showed that the set of predictors employed could account for statistically, as well as theoretically and practically a significant part of variance in cognitive anxiety component (45,5%, and in visceral-emotional component (32,2% of the anxiety state. The extent of anxiety reactions assessed by both scales could primarily be explained by general perception of personal incompetence, as a relatively stable dimension of general self-concept. Of the ways of coping examined, reinterpretation of stressful events was the only strategy contributing to low level, whereas passivization, wishful thinking, and seeking social support contributed to higher levels of anxiety measured by both scales. The results give partial support to the basic hypotheses on the mediating role of coping in the relationships among particular components of the stress and coping models.

  17. PRIVATE LAW EFFECTS OF THE NON-RECOGNITION OF STATES' EXISTENCE AND TERRITORIAL CHANGES

    Directory of Open Access Journals (Sweden)

    Ioan-Luca VLAD

    2015-07-01

    Full Text Available The study presents an outline of the effects in private law (including private international law of the non-recognition of a state or a change of territory. Specifically, it addresses the question of what measures can another state take, in the field of private law, in order to give effect to its policy of not recognizing a state or a territorial annexation, and, in parallel, what are the means available to private parties with links to the unrecognized state or territory. The study is structured in two parts, namely 1 the effects in private law of the non-recognition of a state; and 2 the effect in private law of the non-recognition of an annexation of territory. I will make specific references in particular to the situation in Transnistria and Crimea, as examples of the two issues being addressed. The study intends to be a guide of past and present state practice at the legislative and judicial level, as well as presenting the connections between instruments of public international law, such as Sanctions Resolutions of the UN Security Council, and normative instruments of private law, such as rules of civil procedure, which must adapt to the policy of non-recognition adopted by (or imposed on states. The study also presents specific examples of situations or administrative practices which create practical problems, and result from the existence of a non-recognized entity or change of territory: issues like air traffic coordination, postal traffic, the change in the official currency of a territory, questions of citizenship etc., the aim being to present the reader with a full picture of the issues and intricacies resulting from irregularities existing at the level of the international community of states.

  18. Existing and Proposed Child Find Initiatives in One State's Part C Program

    Science.gov (United States)

    Edwards, Nicole Megan; Gallagher, Peggy A.; Green, Katherine B.

    2013-01-01

    Despite a Child Find mandate in IDEA, early detection and screening of infants and toddlers with special needs continues to remain an area in need of improvement. The authors sought to better understand existing and proposed outreach initiatives in one state's Part C Early Intervention (EI) program that ranks among the lowest nationally in the…

  19. Experimental research data on stress state of salt rock mass around an underground excavation

    Science.gov (United States)

    Baryshnikov, VD; Baryshnikov, DV

    2018-03-01

    The paper presents the experimental stress state data obtained in surrounding salt rock mass around an excavation in Mir Mine, ALROSA. The deformation characteristics and the values of stresses in the adjacent rock mass are determined. Using the method of drilling a pair of parallel holes in a stressed area, the authors construct linear relationship for the radial displacements of the stress measurement hole boundaries under the short-term loading of the perturbing hole. The resultant elasticity moduli of rocks are comparable with the laboratory core test data. Pre-estimates of actual stresses point at the presence of a plasticity zone in the vicinity of the underground excavation. The stress state behavior at a distance from the excavation boundary disagrees with the Dinnik–Geim hypothesis.

  20. Influence of Health Behaviors and Occupational Stress on Prediabetic State among Male Office Workers.

    Science.gov (United States)

    Ryu, Hosihn; Moon, Jihyeon; Jung, Jiyeon

    2018-06-14

    This study examined the influence of health behaviors and occupational stress on the prediabetic state of male office workers, and identified related risks and influencing factors. The study used a cross-sectional design and performed an integrative analysis on data from regular health checkups, health questionnaires, and a health behavior-related survey of employees of a company, using Spearman’s correlation coefficients and multiple logistic regression analysis. The results showed significant relationships of prediabetic state with health behaviors and occupational stress. Among health behaviors, a diet without vegetables and fruits (Odds Ratio (OR) = 3.74, 95% Confidence Interval (CI) = 1.93⁻7.66) was associated with a high risk of prediabetic state. In the subscales on occupational stress, organizational system in the 4th quartile (OR = 4.83, 95% CI = 2.40⁻9.70) was significantly associated with an increased likelihood of prediabetic state. To identify influencing factors of prediabetic state, the multiple logistic regression was performed using regression models. The results showed that dietary habits (β = 1.20, p = 0.002), total occupational stress score (β = 1.33, p = 0.024), and organizational system (β = 1.13, p = 0.009) were significant influencing factors. The present findings indicate that active interventions are needed at workplace for the systematic and comprehensive management of health behaviors and occupational stress that influence prediabetic state of office workers.

  1. Do enhanced states exist? Boosting cognitive capacities through an action video-game.

    Science.gov (United States)

    Kozhevnikov, Maria; Li, Yahui; Wong, Sabrina; Obana, Takashi; Amihai, Ido

    2018-04-01

    This research reports the existence of enhanced cognitive states in which dramatic temporary improvements in temporal and spatial aspects of attention were exhibited by participants who played (but not by those who merely observed) action video-games meeting certain criteria. Specifically, Experiments 1 and 2 demonstrate that the attentional improvements were exhibited only by participants whose skills matched the difficulty level of the video game. Experiment 2 showed that arousal (as reflected by the reduction in parasympathetic activity and increase in sympathetic activity) is a critical physiological condition for enhanced cognitive states and corresponding attentional enhancements. Experiment 3 showed that the cognitive enhancements were transient, and were no longer observed after 30 min of rest following video-gaming. Moreover, the results suggest that the enhancements were specific to tasks requiring visual-spatial focused attention, but not distribution of spatial attention as has been reported to improve significantly and durably as a result of long-term video-game playing. Overall, the results suggest that the observed enhancements cannot be simply due to the activity of video-gaming per se, but might rather represent an enhanced cognitive state resulting from specific conditions (heightened arousal in combination with active engagement and optimal challenge), resonant with what has been described in previous phenomenological literature as "flow" (Csikszentmihalyi, 1975) or "peak experiences" (Maslov, 1962). The findings provide empirical evidence for the existence of the enhanced cognitive states and suggest possibilities for consciously accessing latent resources of our brain to temporarily boost our cognitive capacities upon demand. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. EVALUATION OF STRAIN-STRESS STATE OF THE RAILS IN THE PRODUCTION

    Directory of Open Access Journals (Sweden)

    V. V. Muravev

    2017-01-01

    Full Text Available High values of residual stresses is one of the most common reason of breaking lots of metal constructions, including rails. These stresses can reach values of flow limit, especially in the area of faults. Estimation of residual stresses values allows to get information about technical condition of the rail and also allow to avoid abnormal situations So, the aim of the research is creating the model of stress-strain state of the rail, which was hardened in its top and bottom, and to compare modeling results with experimental measurements of stresses and discrepancy of the housing.For creating the model and making evaluations by finite element method we used a program COMSOL. Forces on the top and bottom of the rail cause tension stresses, forces on the web of the rail cause tensile stresses. We compared calculated values of stresses with discrepancy of the housing. The discrepancy of the housing is informative characteristic for estimating the residual stresses according to standards. For experimental measurements we used an acoustic structuroscope SEMA. This structuroscope uses the acoustoelastic phenomenon for measurements. We made measurements of the five rails.According to the calculation results of the model, critical discrepancy of the housing in 2 mm corresponded to the following values of maximum stresses: –54 MPa in the top of the rail, 86 MPa in the web and –62 MPa in the bottom of the rail. Experimental measurements are the following: from –48 MPa to – 64 MPa in the top of the rail, 54 MPa to 93 MPa in the web of the rail, and –59 MPA to –74 MPa in the bottom of the rail. Absolute error was ±5 MPa.Thus we created the model, which allowed to analyze strain-stress state and compare real values of stresses with discrepancy of the housing. Results of the modeling showed coincidence with structure of distribution of residual stresses in five probes of rails. 

  3. Requirements for existing buildings

    DEFF Research Database (Denmark)

    Thomsen, Kirsten Engelund; Wittchen, Kim Bjarne

    This report collects energy performance requirements for existing buildings in European member states by June 2012.......This report collects energy performance requirements for existing buildings in European member states by June 2012....

  4. Final Report: Characterization of Canister Mockup Weld Residual Stresses

    International Nuclear Information System (INIS)

    Enos, David; Bryan, Charles R.

    2016-01-01

    Stress corrosion cracking (SCC) of interim storage containers has been indicated as a high priority data gap by the Department of Energy (DOE) (Hanson et al., 2012), the Electric Power Research Institute (EPRI, 2011), the Nuclear Waste Technical Review Board (NWTRB, 2010a), and the Nuclear Regulatory Commission (NRC, 2012a, 2012b). Uncertainties exist in terms of the environmental conditions that prevail on the surface of the storage containers, the stress state within the container walls associated both with weldments as well as within the base metal itself, and the electrochemical properties of the storage containers themselves. The goal of the work described in this document is to determine the stress states that exists at various locations within a typical storage canister by evaluating the properties of a full-diameter cylindrical mockup of an interim storage canister. This mockup has been produced using the same manufacturing procedures as the majority of the fielded spent nuclear fuel interim storage canisters. This document describes the design and procurement of the mockup and the characterization of the stress state associated with various portions of the container. It also describes the cutting of the mockup into sections for further analyses, and a discussion of the potential impact of the results from the stress characterization effort.

  5. Final Report: Characterization of Canister Mockup Weld Residual Stresses

    Energy Technology Data Exchange (ETDEWEB)

    Enos, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bryan, Charles R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-12-01

    Stress corrosion cracking (SCC) of interim storage containers has been indicated as a high priority data gap by the Department of Energy (DOE) (Hanson et al., 2012), the Electric Power Research Institute (EPRI, 2011), the Nuclear Waste Technical Review Board (NWTRB, 2010a), and the Nuclear Regulatory Commission (NRC, 2012a, 2012b). Uncertainties exist in terms of the environmental conditions that prevail on the surface of the storage containers, the stress state within the container walls associated both with weldments as well as within the base metal itself, and the electrochemical properties of the storage containers themselves. The goal of the work described in this document is to determine the stress states that exists at various locations within a typical storage canister by evaluating the properties of a full-diameter cylindrical mockup of an interim storage canister. This mockup has been produced using the same manufacturing procedures as the majority of the fielded spent nuclear fuel interim storage canisters. This document describes the design and procurement of the mockup and the characterization of the stress state associated with various portions of the container. It also describes the cutting of the mockup into sections for further analyses, and a discussion of the potential impact of the results from the stress characterization effort.

  6. Level of physical activity, well-being, stress and self-rated health in persons with migraine and co-existing tension-type headache and neck pain

    DEFF Research Database (Denmark)

    Krøll, Lotte Skytte; Hammarlund, Catharina Sjödahl; Westergaard, Maria Lurenda

    2017-01-01

    where questionnaires on physical activity, psychological well-being, perceived stress and self-rated health were completed by 148 persons with migraine and 100 healthy controls matched by sex and average age. Semi-structured interviews were conducted to assess characteristics of migraine, tension......-existing tension-type headache and neck pain in a clinic-based sample, b) the level of physical activity, psychological well-being, perceived stress and self-rated health in persons with migraine and co-existing tension-type headache and neck pain compared to healthy controls, c) the perceived ability of persons...... well-being, higher level of perceived stress and poorer self-rated health compared to healthy controls. They reported reduced ability to perform physical activity owing to migraine (high degree), tension-type headache (moderate degree) and neck pain (low degree). The most burdensome condition...

  7. Frustration-induced internal stresses are responsible for quasilocalized modes in structural glasses

    Science.gov (United States)

    Lerner, Edan; Bouchbinder, Eran

    2018-03-01

    It has been recently shown [E. Lerner, G. Düring, and E. Bouchbinder, Phys. Rev. Lett. 117, 035501 (2016), 10.1103/PhysRevLett.117.035501] that the nonphononic vibrational modes of structural glasses at low frequencies ω are quasilocalized and follow a universal density of states D (ω ) ˜ω4 . Here we show that the gapless nature of the observed density of states depends on the existence of internal stresses that generically emerge in glasses due to frustration, thus elucidating a basic element underlying this universal behavior. Similarly to jammed particulate packings, low-frequency modes in structural glasses emerge from a balance between a local elasticity term and an internal stress term in the dynamical matrix, where the difference between them is orders of magnitude smaller than their typical magnitude. By artificially reducing the magnitude of internal stresses in a computer glass former in three dimensions, we show that a gap is formed in the density of states below which no vibrational modes exist, thus demonstrating the crucial importance of internal stresses. Finally, we show that while better annealing the glass upon cooling from the liquid state significantly reduces its internal stresses, the self-organizational processes during cooling render the gapless D (ω ) ˜ω4 density of state unaffected.

  8. Analysis of residual stress state in sheet metal parts processed by single point incremental forming

    Science.gov (United States)

    Maaß, F.; Gies, S.; Dobecki, M.; Brömmelhoff, K.; Tekkaya, A. E.; Reimers, W.

    2018-05-01

    The mechanical properties of formed metal components are highly affected by the prevailing residual stress state. A selective induction of residual compressive stresses in the component, can improve the product properties such as the fatigue strength. By means of single point incremental forming (SPIF), the residual stress state can be influenced by adjusting the process parameters during the manufacturing process. To achieve a fundamental understanding of the residual stress formation caused by the SPIF process, a valid numerical process model is essential. Within the scope of this paper the significance of kinematic hardening effects on the determined residual stress state is presented based on numerical simulations. The effect of the unclamping step after the manufacturing process is also analyzed. An average deviation of the residual stress amplitudes in the clamped and unclamped condition of 18 % reveals, that the unclamping step needs to be considered to reach a high numerical prediction quality.

  9. 45 CFR 261.80 - How do existing welfare reform waivers affect a State's penalty liability under this part?

    Science.gov (United States)

    2010-10-01

    ... FAMILIES, DEPARTMENT OF HEALTH AND HUMAN SERVICES ENSURING THAT RECIPIENTS WORK How Do Welfare Reform Waivers Affect State Penalties? § 261.80 How do existing welfare reform waivers affect a State's penalty... 45 Public Welfare 2 2010-10-01 2010-10-01 false How do existing welfare reform waivers affect a...

  10. Modeling of the stress-strain state of the ground mass contaminated with peracetic acid

    Directory of Open Access Journals (Sweden)

    Levenko Anna

    2017-01-01

    Full Text Available None of the methods described previously provides a solution to the problem that deals with the SSS evaluation of the ground mass which is under the influence of chemically active substances and, in particular, under the influence of peracetic acid. The stress-strain state of the ground mass contaminated with peracetic acid was estimated. Stresses occurring in the ground mass in the natural state were determined after the entry of acid into it and after the chemical fixation of it with sodium silicate. All the parameters of the stress-strain state of the ground mass were obtained under a number of physical and mechanical conditions. It was determined that following the work on the silicatization of the ground mass contaminated with peracetic acid the quantity of strain decreased by 26.11 to 48.9%. The comparison of the results of stress calculations indicates the stress reduction in the ground mass in 1.8 – 2.6 times after its fixing.

  11. Equation of limiting plasticity of the metal upon complex stress state

    International Nuclear Information System (INIS)

    Tin'gaev, A.K.

    2002-01-01

    A method for evaluation of the limiting plasticity of the metal in the zones of complex 3D stress state is presented. An analytic equation is derived for limiting plasticity. Parameters of the equation are expresses through the standard characteristics of the mechanical properties determined upon static tension of the smooth sample. Introduced into the obtained analytical equation is a universal fracture constant which indirectly characterizes the state of the material from the point of view of its capacity for elastic overstrain relaxation in the form of plastic flow or fracture. The new equation makes it possible to estimate the limiting plasticity of the metal in a state of complex stress on the basis of traditional characteristics of mechanical properties, which are not difficult to determine [ru

  12. Cellular stress induces a protective sleep-like state in C. elegans.

    Science.gov (United States)

    Hill, Andrew J; Mansfield, Richard; Lopez, Jessie M N G; Raizen, David M; Van Buskirk, Cheryl

    2014-10-20

    Sleep is recognized to be ancient in origin, with vertebrates and invertebrates experiencing behaviorally quiescent states that are regulated by conserved genetic mechanisms. Despite its conservation throughout phylogeny, the function of sleep remains debated. Hypotheses for the purpose of sleep include nervous-system-specific functions such as modulation of synaptic strength and clearance of metabolites from the brain, as well as more generalized cellular functions such as energy conservation and macromolecule biosynthesis. These models are supported by the identification of synaptic and metabolic processes that are perturbed during prolonged wakefulness. It remains to be seen whether perturbations of cellular homeostasis in turn drive sleep. Here we show that under conditions of cellular stress, including noxious heat, cold, hypertonicity, and tissue damage, the nematode Caenorhabditis elegans engages a behavioral quiescence program. The stress-induced quiescent state displays properties of sleep and is dependent on the ALA neuron, which mediates the conserved soporific effect of epidermal growth factor (EGF) ligand overexpression. We characterize heat-induced quiescence in detail and show that it is indeed dependent on components of EGF signaling, providing physiological relevance to the behavioral effects of EGF family ligands. We find that after noxious heat exposure, quiescence-defective animals show elevated expression of cellular stress reporter genes and are impaired for survival, demonstrating the benefit of stress-induced behavioral quiescence. These data provide evidence that cellular stress can induce a protective sleep-like state in C. elegans and suggest that a deeply conserved function of sleep is to mitigate disruptions of cellular homeostasis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Stress state and its anomaly observations in the vicinity of a fault in NanTroSEIZE Expedition 322

    Science.gov (United States)

    Wu, Hung-Yu; Saito, Saneatsu; Kinoshita, Masataka

    2015-12-01

    To better understand the stress state and geological properties within the shallow Shikoku Basin, southwest of Japan, two sites, C0011A and C0011B, were drilled in open-ocean sediments using Logging While Drilling (LWD) and coring, respectively. Resistivity image logging was performed at C0011A from sea floor to 950 m below sea floor (mbsf). At C0011B, the serial coring was obtained in order to determine physical properties from 340 to 880 mbsf. For the LWD images, a notable breakout anomaly was observed at a depth of 615 m. Using resistivity images and a stress polygon, the potential horizontal principal stress azimuth and its magnitude within the 500-750 mbsf section of the C0011A borehole were constrained. Borehole breakout azimuths were observed for the variation by the existence of a fault zone at a depth of 615 mbsf. Out of this fracture zone, the breakout azimuth was located at approximately 109° ± 12°, subparallel to the Nankai Trough convergence vector (300-315°). Our calculations describe a stress drop was determined based on the fracture geometry. A close 90° (73° ± 12°) rotation implied a 100% stress drop, defined as a maximum shear stress drop equal to 1 MPa. The magnitude of the horizontal principal stresses near the fracture stress anomaly ranged between 49 and 52 MPa, and the bearing to the vertical stress (Sv = 52 MPa) was found to be within the normal-faulting stress regime. Low rock strength and a low stress level are necessary to satisfy the observations.

  14. Deciphering Stress State of Seismogenic Faults in Oklahoma and Kansas Based on High-resolution Stress Maps

    Science.gov (United States)

    Qin, Y.; Chen, X.; Haffener, J.; Trugman, D. T.; Carpenter, B.; Reches, Z.

    2017-12-01

    Induced seismicity in Oklahoma and Kansas delineates clear fault trends. It is assumed that fluid injection reactivates faults which are optimally oriented relative to the regional tectonic stress field. We utilized recently improved earthquake locations and more complete focal mechanism catalogs to quantitatively analyze the stress state of seismogenic faults with high-resolution stress maps. The steps of analysis are: (1) Mapping the faults by clustering seismicity using a nearest-neighbor approach, manually picking the fault in each cluster and calculating the fault geometry using principal component analysis. (2) Running a stress inversion with 0.2° grid spacing to produce an in-situ stress map. (3) The fault stress state is determined from fault geometry and a 3D Mohr circle. The parameter `understress' is calculated to quantify the criticalness of these faults. If it approaches 0, the fault is critically stressed; while understress=1 means there is no shear stress on the fault. Our results indicate that most of the active faults have a planar shape (planarity>0.8), and dip steeply (dip>70°). The fault trends are distributed mainly in conjugate set ranges of [50°,70°] and [100°,120°]. More importantly, these conjugate trends are consistent with mapped basement fractures in southern Oklahoma, suggesting similar basement features from regional tectonics. The fault length data shows a loglinear relationship with the maximum earthquake magnitude with an expected maximum magnitude range from 3.2 to 4.4 for most seismogenic faults. Based on 3D local Mohr circle, we find that 61% of the faults have low understress (0.5) are located within highest-rate injection zones and therefore are likely to be influenced by high pore pressure. The faults that hosted the largest earthquakes, M5.7 Prague and M5.8 Pawnee are critically stressed (understress 0.2). These differences may help in understanding earthquake sequences, for example, the predominantly aftershock

  15. Structure/property relations of aluminum under varying rates and stress states

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, Matthew T [Los Alamos National Laboratory; Horstemeyer, Mark F [MISSISSIPPI STATE UNIV; Whittington, Wilburn R [MISSISSIPPI STATE UNIV; Solanki, Kiran N [MISSISSIPPI STATE UNIV.

    2010-11-19

    In this work we analyze the plasticity, damage, and fracture characteristics of three different processed aluminum alloys (rolled 5083-H13, cast A356-T6, and extruded 6061-T6) under varying stress states (tension, compression, and torsion) and strain rates (0.001/, 1/s., and 1000/s). The stress state difference had more of a flow stress effect than the applied strain rates for those given in this study (0.001/sec up to 1000/sec). The stress state and strain rate also had a profound effect on the damage evolution of each aluminum alloy. Tension and torsional straining gave much greater damage nucleation rates than compression. Although the damage of all three alloys was found to be void nucleation dominated, the A356-T6 and 5083-H131 aluminum alloys incurred void damage via micron scale particles where the 6061-T6 aluminum alloy incurred void damage from two scales, micron-scale particles and nanoscale precipitates. Having two length scales of particles that participated in the damage evolution made the 6061-T6 incur a strain rate sensitive damage rate that was different than the other two aluminum alloys. Under tension, as the strain rate increased, the 6061-T6 aluminum alloy's void nucleation rate decreased, but the A356-T6 and 5083-H131 aluminum alloys void nucleation rate increased.

  16. Relationship between Organizational Climate, Job Stress and Job Performance Officer at State Education Department

    Science.gov (United States)

    Suandi, Turiman; Ismail, Ismi Arif; Othman, Zulfadli

    2014-01-01

    This research aims at finding out the relationship between Organizational Climate, job stress and job performance among State Education Department (JPN) officers . The focus of the research is to determine the job performance of state education department officers, level of job stress among the officers, level of connection between organizational…

  17. Residual stress state in pipe cut ring specimens for fracture toughness testing

    Energy Technology Data Exchange (ETDEWEB)

    Damjanovic, Darko [J.J. Strossmayer Univ. of Osijek, Slavonski Brod (Croatia). Mechanical Engineering Faculty; Kozak, Drazan [Zagreb Univ. (Croatia). Dept. for Mechanical Design; Marsoner, Stefan [Materials Center, Leoben (Austria).; Gubeljak, Nenad [Maribor Univ. (Slovenia). Chair of Mechanics

    2017-07-01

    Thin-walled pipes are not suitable for measuring fracture toughness parameters of vital importance because longitudinal crack failure is the most common failure mode in pipes. This is due to the impossibility to manufacture standard specimens for measuring fracture toughness, such as SENB or CT specimens, from the thin wall of the pipe. Previous works noticed this problem, but until now, a good and convenient solution has not been found or developed. To overcome this problem, very good alternative solution was proposed, the so-called pipe ring notched bend specimen (PRNB) [1-5]. Until now, only the idealized geometry PRNB specimen is analyzed, i. e., a specimen which is not cut out from an actual pipe but produced from steel plate. Based on that, residual stresses are neglected along with the imperfections in geometry (elliptical and eccentricity). The aim of this research is to estimate the residual stress state(s) in real pipes used in the boiler industry produced by hot rolling technique. These types of pipes are delivered only in normalized condition, but not stress relieved. Therefore, there are residual stresses present due to the manufacturing technique, but also due to uneven cooling after the production process. Within this paper, residual stresses are estimated by three methods: the incremental hole drilling method (IHMD), X-ray diffraction (XRD) and the splitting method (SM). Knowing the residual stress state in the ring specimen, it is possible to assess their impact on fracture toughness measured on the corresponding PRNB specimen(s).

  18. Residual stress state in pipe cut ring specimens for fracture toughness testing

    International Nuclear Information System (INIS)

    Damjanovic, Darko; Kozak, Drazan; Marsoner, Stefan; Gubeljak, Nenad

    2017-01-01

    Thin-walled pipes are not suitable for measuring fracture toughness parameters of vital importance because longitudinal crack failure is the most common failure mode in pipes. This is due to the impossibility to manufacture standard specimens for measuring fracture toughness, such as SENB or CT specimens, from the thin wall of the pipe. Previous works noticed this problem, but until now, a good and convenient solution has not been found or developed. To overcome this problem, very good alternative solution was proposed, the so-called pipe ring notched bend specimen (PRNB) [1-5]. Until now, only the idealized geometry PRNB specimen is analyzed, i. e., a specimen which is not cut out from an actual pipe but produced from steel plate. Based on that, residual stresses are neglected along with the imperfections in geometry (elliptical and eccentricity). The aim of this research is to estimate the residual stress state(s) in real pipes used in the boiler industry produced by hot rolling technique. These types of pipes are delivered only in normalized condition, but not stress relieved. Therefore, there are residual stresses present due to the manufacturing technique, but also due to uneven cooling after the production process. Within this paper, residual stresses are estimated by three methods: the incremental hole drilling method (IHMD), X-ray diffraction (XRD) and the splitting method (SM). Knowing the residual stress state in the ring specimen, it is possible to assess their impact on fracture toughness measured on the corresponding PRNB specimen(s).

  19. Stress drops of induced and tectonic earthquakes in the central United States are indistinguishable.

    Science.gov (United States)

    Huang, Yihe; Ellsworth, William L; Beroza, Gregory C

    2017-08-01

    Induced earthquakes currently pose a significant hazard in the central United States, but there is considerable uncertainty about the severity of their ground motions. We measure stress drops of 39 moderate-magnitude induced and tectonic earthquakes in the central United States and eastern North America. Induced earthquakes, more than half of which are shallower than 5 km, show a comparable median stress drop to tectonic earthquakes in the central United States that are dominantly strike-slip but a lower median stress drop than that of tectonic earthquakes in the eastern North America that are dominantly reverse-faulting. This suggests that ground motion prediction equations developed for tectonic earthquakes can be applied to induced earthquakes if the effects of depth and faulting style are properly considered. Our observation leads to the notion that, similar to tectonic earthquakes, induced earthquakes are driven by tectonic stresses.

  20. Stress evaluation of metallic material under steady state based on nonlinear critically refracted longitudinal wave

    Science.gov (United States)

    Mao, Hanling; Zhang, Yuhua; Mao, Hanying; Li, Xinxin; Huang, Zhenfeng

    2018-06-01

    This paper presents the study of applying the nonlinear ultrasonic wave to evaluate the stress state of metallic materials under steady state. The pre-stress loading method is applied to guarantee components with steady stress. Three kinds of nonlinear ultrasonic experiments based on critically refracted longitudinal wave are conducted on components which the critically refracted longitudinal wave propagates along x, x1 and x2 direction. Experimental results indicate the second and third order relative nonlinear coefficients monotonically increase with stress, and the normalized relationship is consistent with simplified dislocation models, which indicates the experimental result is logical. The combined ultrasonic nonlinear parameter is proposed, and three stress evaluation models at x direction are established based on three ultrasonic nonlinear parameters, which the estimation error is below 5%. Then two stress detection models at x1 and x2 direction are built based on combined ultrasonic nonlinear parameter, the stress synthesis method is applied to calculate the magnitude and direction of principal stress. The results show the prediction error is within 5% and the angle deviation is within 1.5°. Therefore the nonlinear ultrasonic technique based on LCR wave could be applied to nondestructively evaluate the stress of metallic materials under steady state which the magnitude and direction are included.

  1. Existence of solutions for the anti-plane stress for a new class of “strain-limiting” elastic bodies

    KAUST Repository

    Bulí ček, Miroslav; Má lek, Josef; Rajagopal, K. R.; Walton, Jay R.

    2015-01-01

    © 2015, Springer-Verlag Berlin Heidelberg. The main purpose of this study is to establish the existence of a weak solution to the anti-plane stress problem on V-notch domains for a class of recently proposed new models that could describe elastic materials in which the stress can increase unboundedly while the strain yet remains small. We shall also investigate the qualitative properties of the solution that is established. Although the equations governing the deformation that are being considered share certain similarities with the minimal surface problem, the boundary conditions and the presence of an additional model parameter that appears in the equation and its specific range makes the problem, as well as the result, different from those associated with the minimal surface problem.

  2. Existence of solutions for the anti-plane stress for a new class of “strain-limiting” elastic bodies

    KAUST Repository

    Bulíček, Miroslav

    2015-04-21

    © 2015, Springer-Verlag Berlin Heidelberg. The main purpose of this study is to establish the existence of a weak solution to the anti-plane stress problem on V-notch domains for a class of recently proposed new models that could describe elastic materials in which the stress can increase unboundedly while the strain yet remains small. We shall also investigate the qualitative properties of the solution that is established. Although the equations governing the deformation that are being considered share certain similarities with the minimal surface problem, the boundary conditions and the presence of an additional model parameter that appears in the equation and its specific range makes the problem, as well as the result, different from those associated with the minimal surface problem.

  3. Application of the Raman technique to measure stress states in individual Si particles in a cast Al-Si alloy

    International Nuclear Information System (INIS)

    Harris, Stephen J.; O'Neill, Ann; Boileau, James; Donlon, William; Su, Xuming; Majumdar, B.S.

    2007-01-01

    While Raman spectroscopy is often used to measure stresses, the analyses are almost always limited to cases with simple stress states (uniaxial, equibiaxial). Recently we provided an experimental methodology to determine the full state of stress in Si wafers. Here we extend that methodology to interrogate stress states in Si particles embedded in an Al-Si alloy. Such determinations will ultimately be valuable for predicting ductility of cast Al, since a primary source of damage is cracking of eutectic Si particles. We combine electron back-scattered diffraction with the frequency shift, polarization and intensity of the Raman light to determine stress states. Stress states are measured both in the as-received residually stressed state and under in situ uniaxial loading. Comparison with finite element calculations shows good agreement. As an application of the technique, we show the determination of strength of an individual Si particle and compare the stress evolution with various models

  4. Stress among Secondary School Teachers in Ebonyi State, Nigeria: Suggested Interventions in the Worksite Milieu

    Science.gov (United States)

    Nwimo, Ignatius O.; Onwunaka, Chinagorom

    2015-01-01

    The aim of the study was to determine the level of stress experienced by secondary school teachers in Ebonyi State. The dimensions of stress studied included physical stress, mental stress, emotional stress and social stress. The study adopted the cross-sectional survey design using a sample of 660 (male 259, female 401) teachers randomly drawn…

  5. From point-wise stress data to a continuous description of the 3D crustal in situ stress state

    Science.gov (United States)

    Heidbach, O.; Ziegler, M.; Reiter, K.; Hergert, T.

    2017-12-01

    The in situ stress is a key parameter for the safe and sustainable management of geo-reservoirs or storage of waste and energy in deep geological repositories. It is also an essential initial condition for thermo-hydro-mechanical (THM) models that investigate man-made induced processes e.g. seismicity due to fluid injection/extraction, reservoir depletion or storage of heat producing high-level radioactive waste. Without a reasonable assumption on the initial stress condition it is not possible to assess if a man-made process is pushing the system into a critical state or not. However, modelling the initial 3D stress state on reservoir scale is challenging since data are hardly available before drilling in the area of interest. This is in particular the case for the stress magnitude data which are a prerequisite for a reliable model calibration. Here, we present a multi-stage 3D geomechani­cal-numerical model approach to estimate for a reservoir-scale volume the 3D in situ stress state. First, we set up a large-scale model which is calibrated by stress data and use the modelled stress field subsequently to calibrate a small-scale model located within the large-scale model. The local model contains a significantly higher resolution representation of the subsurface geometry around boreholes of a projected geothermal power plant. This approach incorporates two models and is an alternative to the required trade-off between resolution, computational cost and calibration data which is inevitable for a single model; an extension to a three-stage approach would be straight forward. We exemplify the two-stage approach for the area around Munich in the German Molasse Basin. The results of the reservoir-scale model are presented in terms of values for slip tendency as a measure for the criticality of fault reactivation. The model results show that variations due to uncertainties in the input data are mainly introduced by the uncertain material properties and missing

  6. occupational stress and job performance of female bankers in bank ...

    African Journals Online (AJOL)

    DGS-FUTO

    2018-06-01

    Jun 1, 2018 ... Ebonyi State University, Abakaliki ... exists between occupational stress (role boundary, distorted ... For instance, while employees in a hotel may be stressed up ..... the job performance of the female staff of UBAPlc, Abakaliki. ... as the extent of role boundary increases, there would be an inverse decrease in.

  7. Slab Geometry and Stress State of the Southwestern Colombia Subduction Zone

    Science.gov (United States)

    Chang, Ying

    A high rate of intermediate-depth earthquakes is concentrates in the Cauca cluster (3.5°N-5.5°N) and isolated from nearby seismicity in the southwestern Colombia subduction zone. Previously-studied nests of intermediate-depth earthquakes show that a high seismicity rate is often associated with a slab tear, detachment, or contortion. The cause of the less-studied Cauca cluster is unknown. To investigate the cause, we image the slab geometry using precise relative locations of intermediate-depth earthquakes. We use the earthquake catalog produced and seismic waveforms recorded by the Colombian National Seismic Network from January 2010 to March 2014. We calculate the focal mechanisms to examine whether the earthquakes reactivate pre-existing faults or form new fractures. The focal mechanisms are inverted for the intraslab stress field to check the stress guide hypothesis and to evaluate the stress orientations with regard to the change in the slab geometry. The earthquake relocations indicate that the Cauca segment has a continuous 20 km thick seismic zone and increases in dip angle from north to south. Two 40-km-tall fingers of earthquakes extend out of the slab and into the mantle wedge. Different from the previously-studied nests, the Cauca cluster does not correspond to slab contortions or tearing. The cluster may be associated with a high amount of dehydrated fluid. The determined focal mechanisms of 69 earthquakes have various types and variably-oriented nodal planes, corresponding to the reactivation of pre-existing faults and the formation of new fractures. The results of stress inversion show that the extensional axis in the northern Cauca segment is in the plane of the slab and 25° from the downdip direction, and the southern part has along-strike extension. The compression is subnormal to the plane of the slab. The stress field supports the stress guide hypothesis and shows a consistent rotation with increase in slab dip angle.

  8. Thyro-stress

    OpenAIRE

    Kalra, Sanjay; Verma, Komal; Balhara, Yatan Pal Singh

    2017-01-01

    Our understanding of the biopsychosocial model of health, and its influence on chronic endocrine conditions, has improved over the past few decades. We can distinguish, for example, between diabetes distress and major depressive disorders in diabetes. Similar to diabetes distress, we suggest the existence of “thyrostress” in chronic thyroid disorders. Thyro-stress is defined as an emotional state, characterized by extreme apprehension, discomfort or dejection, caused by the challenges and dem...

  9. Effect of Stress State on Fracture Features

    Science.gov (United States)

    Das, Arpan

    2018-02-01

    Present article comprehensively explores the influence of specimen thickness on the quantitative estimates of different ductile fractographic features in two dimensions, correlating tensile properties of a reactor pressure vessel steel tested under ambient temperature where the initial crystallographic texture, inclusion content, and their distribution are kept unaltered. It has been investigated that the changes in tensile fracture morphology of these steels are directly attributable to the resulting stress-state history under tension for given specimen dimensions.

  10. Relationship of Challenge and Hindrance Stress with Coping Style and Job Satisfaction in Chinese State-Owned Enterprises

    OpenAIRE

    Yamaguchi, Hiroyuki; Zhao, Dong Mei

    2008-01-01

    This study aimed to categorize stresses prevalent in Chinese state-owned enterprises and to investigate the relationships among stresses, coping styles and job satisfaction. Data ( n = 549) were collected from three state-owned enterprises in Cang Zhou, He Bei Province, Mainland China. The result of a factor analysis yielded the following three factors: enterprise stress, interpersonal stress, and challenge stress. In order to test the moderator effect of problem-focused coping and emotion-fo...

  11. A toy model to investigate the existence of excitons in the ground state of strongly-correlated semiconductor

    Science.gov (United States)

    Karima, H. R.; Majidi, M. A.

    2018-04-01

    Excitons, quasiparticles associated with bound states between an electron and a hole and are typically created when photons with a suitable energy are absorbed in a solid-state material. We propose to study a possible emergence of excitons, created not by photon absorption but the effect of strong electronic correlations. This study is motivated by a recent experimental study of a substrate material SrTiO3 (STO) that reveals strong exitonic signals in its optical conductivity. Here we conjecture that some excitons may already exist in the ground state as a result of the electronic correlations before the additional excitons being created later by photon absorption. To investigate the existence of excitons in the ground state, we propose to study a simple 4-energy-level model that mimics a situation in strongly-correlated semiconductors. The four levels are divided into two groups, lower and upper groups separated by an energy gap, Eg , mimicking the valence and the conduction bands, respectively. Further, we incorporate repulsive Coulomb interactions between the electrons. The model is then solved by exact diagonalization method. Our result shows that the toy model can demonstrate band gap widening or narrowing and the existence of exciton in the ground state depending on interaction parameter values.

  12. Influence of thyroid states on stress gastric ulcer formation

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, D.E.; Walker, C.H.; Mason, G.A.

    1988-01-01

    This study was designed to test the hypothesis that thyroid states may affect the acute development of gastric lesions induced by cold-resistant stress. Normal (euthyroid), hyperthyroid and hypothyroid rats were used. Gastric lesion incidence and severity was significantly increased in hypothyroid rats, whereas in contrast hyperthyroid rats developed significantly less gastric lesions. As anticipated, plasma levels of thyroxin (T/sub 4/) were significantly elevated in hyperthyroid rats, and undetectable in hypothyroid rats. Acute pretreatment with i.p. cimetidine, but not T/sub 4/ 1 h prior to stress completely prevented gastric lesions formation in hypothyroid rats. Finally, binding of /sup 3/H-dihydroalprenolol to ..beta..-adrenergic receptors on brain membranes prepared from frontal cortex was reduced by 20% in hypothyroid rats after 3 h of stress. These and other data contained herein suggest that thyroid hormones contribute to modulate the responsiveness of the gastric mucosa to stress. The increase rate of ulcerogenesis observed in hypothyroid rats appears to be mediated by gastric acid secretion. The central mechanism for this response may involve decreased brain nonadrenergic receptor function.

  13. Influence of thyroid states on stress gastric ulcer formation

    International Nuclear Information System (INIS)

    Hernandez, D.E.; Walker, C.H.; Mason, G.A.

    1988-01-01

    This study was designed to test the hypothesis that thyroid states may affect the acute development of gastric lesions induced by cold-resistant stress. Normal (euthyroid), hyperthyroid and hypothyroid rats were used. Gastric lesion incidence and severity was significantly increased in hypothyroid rats, whereas in contrast hyperthyroid rats developed significantly less gastric lesions. As anticipated, plasma levels of thyroxin (T 4 ) were significantly elevated in hyperthyroid rats, and undetectable in hypothyroid rats. Acute pretreatment with i.p. cimetidine, but not T 4 1 h prior to stress completely prevented gastric lesions formation in hypothyroid rats. Finally, binding of 3 H-dihydroalprenolol to β-adrenergic receptors on brain membranes prepared from frontal cortex was reduced by 20% in hypothyroid rats after 3 h of stress. These and other data contained herein suggest that thyroid hormones contribute to modulate the responsiveness of the gastric mucosa to stress. The increase rate of ulcerogenesis observed in hypothyroid rats appears to be mediated by gastric acid secretion. The central mechanism for this response may involve decreased brain nonadrenergic receptor function

  14. Failure of Sierra White granite under general states of stress

    Science.gov (United States)

    Ingraham, M. D.; Dewers, T. A.; Lee, M.; Holdman, O.; Cheung, C.; Haimson, B. C.

    2017-12-01

    The effect of the intermediate principal stress on the failure of Sierra White granite was investigated by performing tests under true triaxial states of stress. Tests were performed under constant Lode angle conditions with Lode angles ranging from 0 to 30°, pure shear to axisymmetric compression. Results show that the failure of Sierra White granite is heavily dependent on the intermediate principal stress which became more dramatic as the mean stress increased. An analysis of the shear bands formed at failure was performed using an associated flow rule and the Rudnicki and Rice (1975) localization criteria. The localization analysis showed excellent agreement with experimental results. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

  15. Exploring the Individual Contributory Personality Factors of Stress: A Survey of Washington State Elementary Teachers

    Science.gov (United States)

    Dean, Effie J.

    2010-01-01

    Prolonged stress is shown to lead to low productivity, which is one of the leading causes of poor performance, and high absenteeism/turnover in occupational fields (Norton, 2002). The field of education is a prime example of low productivity resulting from prolonged stress (Norton, 2002). Currently, there are many existing studies on environmental…

  16. Mozart versus new age music: relaxation states, stress, and ABC relaxation theory.

    Science.gov (United States)

    Smith, Jonathan C; Joyce, Carol A

    2004-01-01

    Smith's (2001) Attentional Behavioral Cognitive (ABC) relaxation theory proposes that all approaches to relaxation (including music) have the potential for evoking one or more of 15 factor-analytically derived relaxation states, or "R-States" (Sleepiness, Disengagement, Rested / Refreshed, Energized, Physical Relaxation, At Ease/Peace, Joy, Mental Quiet, Childlike Innocence, Thankfulness and Love, Mystery, Awe and Wonder, Prayerfulness, Timeless/Boundless/Infinite, and Aware). The present study investigated R-States and stress symptom-patterns associated with listening to Mozart versus New Age music. Students (N = 63) were divided into three relaxation groups based on previously determined preferences. Fourteen listened to a 28-minute tape recording of Mozart's Eine Kleine Nachtmusik and 14 listened to a 28-minute tape of Steven Halpern's New Age Serenity Suite. Others (n = 35) did not want music and instead chose a set of popular recreational magazines. Participants engaged in their relaxation activity at home for three consecutive days for 28 minutes a session. Before and after each session, each person completed the Smith Relaxation States Inventory (Smith, 2001), a comprehensive questionnaire tapping 15 R-States as well as the stress states of somatic stress, worry, and negative emotion. Results revealed no differences at Session 1. At Session 2, those who listened to Mozart reported higher levels of At Ease/Peace and lower levels of Negative Emotion. Pronounced differences emerged at Session 3. Mozart listeners uniquely reported substantially higher levels of Mental Quiet, Awe and Wonder, and Mystery. Mozart listeners reported higher levels, and New Age listeners slightly elevated levels, of At Ease/Peace and Rested/Refreshed. Both Mozart and New Age listeners reported higher levels of Thankfulness and Love. In summary, those who listened to Mozart's Eine Kleine Nachtmusik reported more psychological relaxation and less stress than either those who listened to

  17. Existence of Mild Solutions for Impulsive Fractional Integro-Differential Inclusions with State-Dependent Delay

    Directory of Open Access Journals (Sweden)

    Selvaraj Suganya

    2017-01-01

    Full Text Available In this manuscript, we implement Bohnenblust–Karlin’s fixed point theorem to demonstrate the existence of mild solutions for a class of impulsive fractional integro-differential inclusions (IFIDI with state-dependent delay (SDD in Banach spaces. An example is provided to illustrate the obtained abstract results.

  18. Nonlinear morphoelastic plates I: Genesis of residual stress

    KAUST Repository

    McMahon, J.

    2011-04-28

    Volumetric growth of an elastic body may give rise to residual stress. Here a rigorous analysis is given of the residual strains and stresses generated by growth in the axisymmetric Kirchhoff plate. Balance equations are derived via the Global Constraint Principle, growth is incorporated via a multiplicative decomposition of the deformation gradient, and the system is closed by a response function. The particular case of a compressible neo-Hookean material is analyzed, and the existence of residually stressed states is established. © SAGE Publications 2011.

  19. Nonlinear morphoelastic plates I: Genesis of residual stress

    KAUST Repository

    McMahon, J.; Goriely, A.; Tabor, M.

    2011-01-01

    Volumetric growth of an elastic body may give rise to residual stress. Here a rigorous analysis is given of the residual strains and stresses generated by growth in the axisymmetric Kirchhoff plate. Balance equations are derived via the Global Constraint Principle, growth is incorporated via a multiplicative decomposition of the deformation gradient, and the system is closed by a response function. The particular case of a compressible neo-Hookean material is analyzed, and the existence of residually stressed states is established. © SAGE Publications 2011.

  20. Modeling of residual stress state in turning of 304L

    International Nuclear Information System (INIS)

    Valiorgue, F.; Rech, J.; Bergheau, J.M.

    2010-01-01

    Research presented in this paper aims to link machining parameters to residual stress state and helps understanding mechanisms responsible of machined surface properties modifications. The first presented works are based on an experimental campaign. They reproduce the finishing turning operation of 304L and allow observing the residual stress state evolution at the work piece surface and for an affected depth of 0.2 mm for such processes. Then, the finishing turning operation is simulated numerically in order to realize the same sensitivity study to cutting parameters. This simulation is based on an hybrid approach mixing experimental data and numerical simulation. This method allows getting round the classical difficulties of turning simulation by applying equivalent thermo mechanical loadings onto the work piece surface without modeling the material separation phenomena. Moreover the numerical model uses an hardening law taking into account dynamic recrystallization phenomena. (authors)

  1. Personal determinants of positive states and stress in psychology students

    Directory of Open Access Journals (Sweden)

    G.S. Kozhukhar

    2013-07-01

    Full Text Available We report study results of personality characteristics as predictors of positive states (active, optimistic, emotional, subjective comfort and stress experience in adults with one higher education and ongoing training in Psychology. The respondents were 107 people aged 23 to 52 years. Diagnostic methods we used were: "SMIL" (L. Sobchik, Optimism and Activity Scale (adapted by E. Vodopyanova, C. Izard Differential Emotions Scale (adapted by A. Leonova, Subjective Comfort Scale (adapted by A. Leonova, PSM-25 Scale by Lemyr-Tessier-Fillion. The regression analysis revealed that in subjects ongoing training in Psychology, basic predictor of positive emotions and stress experience is anxiety. Cluster analysis revealed three types of subjects by their positive states experiences, which differ primarily by the level of baseline anxiety and related personality characteristics. The group of risk comprised Psychology students with a tendency to depression and negative emotions and specific personality profile.

  2. Fatigue Equivalent Stress State Approach Validation in Non-conservative Criteria: a Comparative Study

    Directory of Open Access Journals (Sweden)

    Kévin Martial Tsapi Tchoupou

    Full Text Available Abstract This paper is concerned with the fatigue prediction models for estimating the multiaxial fatigue limit. An equivalent loading approach with zero out-of-phase angles intended for fatigue limit evaluation under multiaxial loading is used. Based on experimental data found in literatures, the equivalent stress is validated in Crossland and Sines criteria and predictions compared to the predictions of existing multiaxial fatigue; results over 87 experimental items show that the equivalent stress approach is very efficient.

  3. Detecting and monitoring water stress states in maize crops using spectral ratios obtained in the photosynthetic domain

    Science.gov (United States)

    Baranoski, Gladimir V. G.; Van Leeuwen, Spencer R.

    2017-07-01

    The reliable detection and monitoring of changes in the water status of crops composed of plants like maize, a highly adaptable C4 species in large demand for both food and biofuel production, are longstanding remote sensing goals. Existing procedures employed to achieve these goals rely predominantly on the spectral signatures of plant leaves in the infrared domain where the light absorption within the foliar tissues is dominated by water. It has been suggested that such procedures could be implemented using subsurface reflectance to transmittance ratios obtained in the visible (photosynthetic) domain with the assistance of polarization devices. However, the experiments leading to this proposition were performed on detached maize leaves, which were not influenced by the whole (living) plant's adaptation mechanisms to water stress. In this work, we employ predictive simulations of light-leaf interactions in the photosynthetic domain to demonstrate that the living specimens' physiological responses to dehydration stress should be taken into account in this context. Our findings also indicate that a reflectance to transmittance ratio obtained in the photosynthetic domain at a lower angle of incidence without the use of polarization devices may represent a cost-effective alternative for the assessment of water stress states in maize crops.

  4. Be Cool with Academic Stress: The Association between Emotional States and Regulatory Strategies among Chinese Adolescents

    Science.gov (United States)

    Sang, Biao; Pan, Tingting; Deng, Xinmei; Zhao, Xu

    2018-01-01

    Numerous studies have suggested that academic stress has negative impact on adolescents' psychological function, few of those studies, however, considered whether and how the impact of stress on adolescents' emotional states is moderated by corresponding regulation. This study aimed to examine the fluctuation of emotional states before and after…

  5. Residual stress state in an induction hardened steel bar determined by synchrotron- and neutron diffraction compared to results from lab-XRD

    International Nuclear Information System (INIS)

    Holmberg, Jonas; Steuwer, Axel; Stormvinter, Albin; Kristoffersen, Hans; Haakanen, Merja; Berglund, Johan

    2016-01-01

    Induction hardening is a relatively rapid heat treatment method to increase mechanical properties of steel components. However, results from FE-simulation of the induction hardening process show that a tensile stress peak will build up in the transition zone in order to balance the high compressive stresses close to the surface. This tensile stress peak is located in the transition zone between the hardened zone and the core material. The main objective with this investigation has been to non-destructively validate the residual stress state throughout an induction hardened component. Thereby, allowing to experimentally confirming the existence and magnitude of the tensile stress peak arising from rapid heat treatment. For this purpose a cylindrical steel bar of grade C45 was induction hardened and characterised regarding the microstructure, hardness, hardening depth and residual stresses. This investigation shows that a combined measurement with synchrotron/neutron diffraction is well suited to non-destructively measure the strains through the steel bar of a diameter of 20 mm and thereby making it possible to calculate the residual stress profile. The result verified the high compressive stresses at the surface which rapidly changes to tensile stresses in the transition zone resulting in a large tensile stress peak. Measured stresses by conventional lab-XRD showed however that at depths below 1.5 mm the stresses were lower compared to the synchrotron and neutron data. This is believed to be an effect of stress relaxation from the layer removal. The FE-simulation predicts the depth of the tensile stress peak well but exaggerates the magnitude compared to the measured results by synchrotron/neutron measurements. This is an important knowledge when designing the component and the heat treatment process since this tensile stress peak will have great impact on the mechanical properties of the final component.

  6. Residual stress state in an induction hardened steel bar determined by synchrotron- and neutron diffraction compared to results from lab-XRD

    Energy Technology Data Exchange (ETDEWEB)

    Holmberg, Jonas, E-mail: jonas.holmberg@swerea.se [Swerea IVF AB, Argongatan 30, 431 22 Mölndal (Sweden); University West, 461 86 Trollhättan (Sweden); Steuwer, Axel [Nelson Mandela Metropolitan University, Gardham Avenue, 6031 Port Elizabeth (South Africa); Stormvinter, Albin; Kristoffersen, Hans [Swerea IVF AB, Argongatan 30, 431 22 Mölndal (Sweden); Haakanen, Merja [Stresstech OY, Tikkutehtaantie 1, 40 800 Vaajakoski (Finland); Berglund, Johan [Swerea IVF AB, Argongatan 30, 431 22 Mölndal (Sweden)

    2016-06-14

    Induction hardening is a relatively rapid heat treatment method to increase mechanical properties of steel components. However, results from FE-simulation of the induction hardening process show that a tensile stress peak will build up in the transition zone in order to balance the high compressive stresses close to the surface. This tensile stress peak is located in the transition zone between the hardened zone and the core material. The main objective with this investigation has been to non-destructively validate the residual stress state throughout an induction hardened component. Thereby, allowing to experimentally confirming the existence and magnitude of the tensile stress peak arising from rapid heat treatment. For this purpose a cylindrical steel bar of grade C45 was induction hardened and characterised regarding the microstructure, hardness, hardening depth and residual stresses. This investigation shows that a combined measurement with synchrotron/neutron diffraction is well suited to non-destructively measure the strains through the steel bar of a diameter of 20 mm and thereby making it possible to calculate the residual stress profile. The result verified the high compressive stresses at the surface which rapidly changes to tensile stresses in the transition zone resulting in a large tensile stress peak. Measured stresses by conventional lab-XRD showed however that at depths below 1.5 mm the stresses were lower compared to the synchrotron and neutron data. This is believed to be an effect of stress relaxation from the layer removal. The FE-simulation predicts the depth of the tensile stress peak well but exaggerates the magnitude compared to the measured results by synchrotron/neutron measurements. This is an important knowledge when designing the component and the heat treatment process since this tensile stress peak will have great impact on the mechanical properties of the final component.

  7. Local Stress States and Microstructural Damage Response Associated with Deformation Twins in Hexagonal Close Packed Metals

    Directory of Open Access Journals (Sweden)

    Indranil Basu

    2017-12-01

    Full Text Available The current work implements a correlative microscopy method utilizing electron back scatter diffraction, focused ion beam and digital image correlation to accurately determine spatially resolved stress profiles in the vicinity of grain/twin boundaries and tensile deformation twin tips in commercially pure titanium. Measured local stress gradients were in good agreement with local misorientation values. The role of dislocation-boundary interactions on the buildup of local stress gradients is elucidated. Stress gradients across the twin-parent interface were compressive in nature with a maximum stress magnitude at the twin boundary. Stress profiles near certain grain boundaries initially display a local stress minimum, followed by a typically observed “one over square root of distance” variation, as was first postulated by Eshelby, Frank and Nabarro. The observed trends allude to local stress relaxation mechanisms very close to the grain boundaries. Stress states in front of twin tips showed tensile stress gradients, whereas the stress state inside the twin underwent a sign reversal. The findings highlight the important role of deformation twins and their corresponding interaction with grain boundaries on damage nucleation in metals.

  8. Stress State at the Vertex of a Composite Wedge, One Side of Which Slides Without Friction Along a Rigid Surface

    Directory of Open Access Journals (Sweden)

    V. Pestrenin

    Full Text Available Abstract For studying the stress-strain state at singular points and their neighborhoods new concept is proposed. A singular point is identified with an elementary volume that has a characteristic size of the real body representative volume. This makes it possible to set and study the restrictions at that point. It is shown that problems with singular points turn out to be ambiguous, their formulation depends on the combination of the material and geometric parameters of the investigated body. Number of constraints in a singular point is redundant compared to the usual point of the boundary (it makes singular point unique, exclusive. This circumstance determines the non-classical problem formulation for bodies containing singular points. The formulation of a non-classical problem is given, the uniqueness of its solution is proved (under the condition of existence, the algorithm of the iterative-analytical decision method is described. Restrictions on the state parameters at the composite wedge vertex, one generatrix of which is in non-friction contact with a rigid surface are studied under temperature and strength loading. The proposed approach allows to identify critical combinations of material and geometric parameters that define the singularity of stress and strain fields close to singular representative volumes. The constraints on load components needed to solution existence are established. An example of a numerical analysis of the state parameters at the wedge vertex and its neighborhood is considered. Solutions built on the basis of a new concept, directly in a singular point, and its small neighborhood differ significantly from the solutions made with asymptotic methods. Beyond a small neighborhood of a singular point the solutions obtained on the basis of different concepts coincide.

  9. Mild Social Stress in Mice Produces Opioid-Mediated Analgesia in Visceral but Not Somatic Pain States.

    Science.gov (United States)

    Pitcher, Mark H; Gonzalez-Cano, Rafael; Vincent, Kathleen; Lehmann, Michael; Cobos, Enrique J; Coderre, Terence J; Baeyens, José M; Cervero, Fernando

    2017-06-01

    Visceral pain has a greater emotional component than somatic pain. To determine if the stress-induced analgesic response is differentially expressed in visceral versus somatic pain states, we studied the effects of a mild social stressor in either acute visceral or somatic pain states in mice. We show that the presence of an unfamiliar conspecific mouse (stranger) in an adjacent cubicle of a standard transparent observation box produced elevated plasma corticosterone levels compared with mice tested alone, suggesting that the mere presence of a stranger is stressful. We then observed noxious visceral or somatic stimulation-induced nociceptive behavior in mice tested alone or in mildly stressful conditions (ie, beside an unfamiliar stranger). Compared with mice tested alone, the presence of a stranger produced a dramatic opioid-dependent reduction in pain behavior associated with visceral but not somatic pain. This social stress-induced reduction of visceral pain behavior relied on visual but not auditory/olfactory cues. These findings suggest that visceral pain states may provoke heightened responsiveness to mild stressors, an effect that could interfere with testing outcomes during simultaneous behavioral testing of multiple rodents. In mice, mild social stress due to the presence of an unfamiliar conspecific mouse reduces pain behavior associated with noxious visceral but not somatic stimulation, suggesting that stress responsiveness may be enhanced in visceral pain versus somatic pain states. Published by Elsevier Inc.

  10. FEA stress analysis considering cavity formation of metallic fuel pin under transient state

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hyun-Woo; Oh, Young-Ryun; Kim, Yun-Jae [Korea University, Seoul (Korea, Republic of)

    2016-05-15

    The aim of this research is to study the stress state of the fuel and the cladding under transient state using the commercial finite element analysis software, ABAQUS v6.13. It is checked out that the gap distance between the fuel and the cladding is a major factor determining FCMI stress. In this regard, initial boundary condition of the fuel pin such as the initial gap distance should be set carefully when the stress analysis of the fuel pin under transient state is conducted. In case of simulating cavity formation, it is confirmed that the new cavity simulation model that elements in cavity region lose their stiffness is valid. There is a great deal of research into SFR, which is one of GEN IV reactors. When it comes to the accidents of SFR, there are two cases of accident process. One of them is In-pin process that molten fuel is discharged into upper plenum. The other is Ex-pin process that the molten fuel is discharged into coolant because of breakage of cladding.

  11. Investigation of smooth specimen scc test procedures; variations in environment, specimen size, stressing frame, and stress state. [for high strength aluminum alloys

    Science.gov (United States)

    Lifka, B. W.; Sprowls, D. O.; Kelsey, R. A.

    1975-01-01

    The variables studied in the stress-corrosion cracking performance of high strength aluminum alloys were: (1) corrosiveness of the environment, (2) specimen size and stiffness of the stressing system, (3) interpretation of transgranular cracking, and (4) interaction of the state of stress and specimen orientation in a product with an anisotropic grain structure. It was shown that the probability of failure and time to fracture for a specimen loaded in direct tension are influenced by corrosion pattern, the stressing assembly stiffness, and the notch tensile strength of the alloy. Results demonstrate that the combination of a normal tension stress and a shear stress acting on the plane of maximum susceptibility in a product with a highly directional grain cause the greatest tendency for stress-corrosion cracking.

  12. Profile of mood states and stress-related biochemical indices in long-term yoga practitioners

    Directory of Open Access Journals (Sweden)

    Sudo Nobuyuki

    2011-06-01

    Full Text Available Abstract Background Previous studies have shown the short-term or intermediate-term practice of yoga to be useful for ameliorating several mental disorders and psychosomatic disorders. However, little is known about the long-term influences of yoga on the mental state or stress-related biochemical indices. If yoga training has a stress-reduction effect and also improves an individual's mental states for a long time, long-term yoga practitioners may have a better mental state and lower stress-related biochemical indices in comparison to non-experienced participants. This study simultaneously examined the differences in mental states and urinary stress-related biochemical indices between long-term yoga practitioners and non-experienced participants. Methods The participants were 38 healthy females with more than 2 years of experience with yoga (long-term yoga group and 37 age-matched healthy females who had not participated in yoga (control group. Their mental states were assessed using the Profile of Mood States (POMS questionnaire. The level of cortisol, 8-hydroxydeoxyguanosine (8-OHdG and biopyrrin in urine were used as stress-related biochemical indices. Results The average self-rated mental disturbance, tension-anxiety, anger-hostility, and fatigue scores of the long-term yoga group were lower than those of the control group. There was a trend toward a higher vigor score in the long-term yoga group than that in the control group. There were no significant differences in the scores for depression and confusion in the POMS between the two groups. The urine 8-OHdG concentration showed a trend toward to being lower in the long-term yoga group in comparison to the control group. There were no significant differences in the levels of urine biopyrrin or cortisol. Conclusions The present findings suggest that long-term yoga training can reduce the scores related to mental health indicators such as self-rated anxiety, anger, and fatigue.

  13. Nonintrusive biological signal monitoring in a car to evaluate a driver's stress and health state.

    Science.gov (United States)

    Baek, Hyun Jae; Lee, Haet Bit; Kim, Jung Soo; Choi, Jong Min; Kim, Ko Keun; Park, Kwang Suk

    2009-03-01

    Nonintrusive monitoring of a driver's physiological signals was introduced and evaluated in a car as a test of extending the concept of ubiquitous healthcare to vehicles. Electrocardiogram, photoplethysmogram, galvanic skin response, and respiration were measured in the ubiquitous healthcare car (U-car) using nonintrusively installed sensors on the steering wheel, driver's seat, and seat belt. Measured signals were transmitted to the embedded computer via Bluetooth(R) communication and processed. We collected and analyzed physiological signals during driving in order to estimate a driver's stress state while using this system. In order to compare the effect of stress on physical and mental conditions, two categories of stresses were defined. Experimental results show that a driver's physiological signals were measured with acceptable quality for analysis without interrupting driving, and they were changed meaningfully due to elicited stress. This nonintrusive monitoring can be used to evaluate a driver's state of health and stress.

  14. Stress state in perforated plates

    International Nuclear Information System (INIS)

    Visner, J.

    1977-01-01

    The method is described of photoelastic measurement of stress concentration factors (s.c.f) in plates perforated by a square, triangular and diagonal grid of circular holes and loaded by uniaxial or biaxial tensile stress. A loading equipment which was developed and its modifications are described. Stress concentration factors found are compared with theoretical and experimental results given in references. (author)

  15. Probing stress state and phase content in ultra-thin Ta films

    International Nuclear Information System (INIS)

    Whitacre, J.F.; Yalisove, S.M.; Bilello, J.C.; Rek, Z.U.

    1998-01-01

    Ta films 25 angstrom to 200 angstrom in thickness were sputter-deposited using different sputter gas (Ar) pressures and cathode power settings. The average in-plane stresses were determined using double crystal diffraction topography (DCDT). X-ray analysis (using the grazing incidence x-ray scattering (GIXS) geometry) was performed using a synchrotron light source. To study microstructure and phase content, transmission electron microscopy (TEM) and transmission electron diffraction (TED) were used. Well resolved x-ray patterns were collected for all of the films. The DCDT stress data was found to be consistent with stress effects evidence in the GIXS data. In general, residual stress state was not strongly dependent upon Ar pressure. The strongest evidence of amorphous content was found in both x-ray and TED data taken from 25 angstrom thick films deposited using 2mTorr Ar pressure and 460 W cathode power. These results show that it is possible to create and study ultra-thin Ta films which possess a range of residual stresses and phase compositions

  16. Existence problem of proton semi-bubble structure in the 2{sub 1}{sup +} state of {sup 34}Si

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Feng [China Institute of Atomic Energy, Beijing (China); Sichuan University, Key Laboratory of Radiation Physics and Technology of Ministry of Education, School of Physics Science and Technology, Chengdu (China); Bai, C.L. [Sichuan University, Key Laboratory of Radiation Physics and Technology of Ministry of Education, School of Physics Science and Technology, Chengdu (China); Yao, J.M. [University of North Carolina, Department of Physics and Astronomy, Chapel Hill, NC (United States); Southwest University, School of Physical Science and Technology, Chongqing (China); Zhang, H.Q.; Zhang, X.Z. [China Institute of Atomic Energy, Beijing (China)

    2017-09-15

    The fully self-consistent Hartree-Fock (HF) plus random phase approximation (RPA) based on Skyrme-type interaction is used to study the existence problem of proton semi-bubble structure in the 2{sub 1}{sup +} state of {sup 34}Si. The experimental excitation energy and the transition strength of the 2{sub 1}{sup +} state in {sup 34}Si can be reproduced quite well. The tensor effect is also studied. It is shown that the tensor interaction has a notable impact on the excitation energy of the 2{sub 1}{sup +} state and a small effect on the B(E2) value. Besides, its effect on the density distributions in the ground and 2{sub 1}{sup +} state of {sup 34}Si is negligible. Our present results with T36 and T44 show that the 2{sub 1}{sup +} state of {sup 34}Si is mainly caused by proton transition from π1d{sub 5/2} orbit to π2s{sub 1/2} orbit, and the existence of a proton semi-bubble structure in this state is very unlikely. (orig.)

  17. Differential relationship of recent self-reported stress and acute anxiety with divided attention performance.

    Science.gov (United States)

    Petrac, D C; Bedwell, J S; Renk, K; Orem, D M; Sims, V

    2009-07-01

    There have been relatively few studies on the relationship between recent perceived environmental stress and cognitive performance, and the existing studies do not control for state anxiety during the cognitive testing. The current study addressed this need by examining recent self-reported environmental stress and divided attention performance, while controlling for state anxiety. Fifty-four university undergraduates who self-reported a wide range of perceived recent stress (10-item perceived stress scale) completed both single and dual (simultaneous auditory and visual stimuli) continuous performance tests. Partial correlation analysis showed a statistically significant positive correlation between perceived stress and the auditory omission errors from the dual condition, after controlling for state anxiety and auditory omission errors from the single condition (r = 0.41). This suggests that increased environmental stress relates to decreased divided attention performance in auditory vigilance. In contrast, an increase in state anxiety (controlling for perceived stress) was related to a decrease in auditory omission errors from the dual condition (r = - 0.37), which suggests that state anxiety may improve divided attention performance. Results suggest that further examination of the neurobiological consequences of environmental stress on divided attention and other executive functioning tasks is needed.

  18. Interaction between diffusion and chemical stresses

    International Nuclear Information System (INIS)

    Yang Fuqian

    2005-01-01

    The present work studies the interaction between chemical stresses and diffusion. A new relation between hydrostatic stress and concentration of solute atoms is established. For a solid free of action of body force, the Laplacian of the hydrostatic stress is proportional to the Laplacian of the concentration of solute atoms, that is, deviation of the hydrostatic stress from its local average is proportional to deviation of the local concentration of solute atoms. A general relationship among surface concentration of solute atoms, normal stress and surface deformation of a solid is then derived, in which the normal stress is dependent on the mean curvature of the undeformed surface and tangential components of the surface displacement. A closed-form solution of the steady state concentration of solute atoms in a thin plate is obtained. It turns out that linear distribution of solute atoms in the plate is non-existent due to the interaction between chemical stresses and diffusion

  19. Existence of longitudinal waves in pre-stressed anisotropic elastic ...

    Indian Academy of Sciences (India)

    waves is truly longitudinal. Longitudinal wave in an anisotropic elastic medium is defined as the wave motion in which the particle motion (i.e., the. Keywords. General anisotropy; elastic stiffness; pre-stress; group velocity; ray direction; longitudinal waves; polarization. J. Earth Syst. Sci. 118, No. 6, December 2009, pp. 677– ...

  20. Evolution of microstructure and residual stress on L1{sub 0} ordering in FePt thin films with different initial stress states

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao, S.N., E-mail: pmami.hsiao@gmail.com [Department of Materials Science and Engineering, Feng Chia University, Taichung 407, Taiwan (China); Yuan, F.T. [iSentek Ltd., Advanced Sensor Laboratory, New Taipei City 221, Taiwan (China); Chen, S.K. [Department of Materials Science and Engineering, Feng Chia University, Taichung 407, Taiwan (China); Sun, A.C. [Department of Chemical Engineering and Materials Science, Yuan Ze University, Jungli 320, Taiwan (China); Su, S.H.; Chiu, K.F. [Department of Materials Science and Engineering, Feng Chia University, Taichung 407, Taiwan (China)

    2016-01-15

    We have characterized the dependence of microstructure, and internal strain/stress on L1{sub 0} ordering in 40 nm thick FePt films with different initial stresses. The microstructural and crystallographic results indicate that defect annihilation and grain growth induced an increase in tensile stress of ~1 GPa before extensive L1{sub 0} ordering. The induced tensile stress can efficiently facilitate the nucleation of L1{sub 0} phase owing to that the volume expansion of L1{sub 0} ordering and atomic rearrangement neutralizes the tensile stress. If the as-deposited FePt film has a highly compressive state, the induced tensile stress will be canceled out and ordering is retarded, which results in a higher ordering temperature. - Highlights: • Microstructure-stress connection in FePt films was studied. • Initial stress alters microstructure and stress evolution during annealing. • Densification induces tensile stress of ~1 GPa before extensive L1{sub 0} ordering. • Induced tensile stress can efficiently facilitate the nucleation of L1{sub 0} phase. • Compressively initial stress results in a higher ordering temperature .

  1. Geography of Existing and Potential Alternative Fuel Markets in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, C.; Hettinger, D.

    2014-11-01

    When deploying alternative fuels, it is paramount to match the right fuel with the right location, in accordance with local market conditions. We used six market indicators to evaluate the existing and potential regional market health for each of the five most commonly deployed alternative fuels: electricity (used by plug-in electric vehicles), biodiesel (blends of B20 and higher), E85 ethanol, compressed natural gas (CNG), and propane. Each market indicator was mapped, combined, and evaluated by industry experts. This process revealed the weight the market indicators should be given, with the proximity of fueling stations being the most important indicator, followed by alternative fuel vehicle density, gasoline prices, state incentives, nearby resources, and finally, environmental benefit. Though markets vary among states, no state received 'weak' potential for all five fuels, indicating that all states have an opportunity to use at least one alternative fuel. California, Illinois, Indiana, Pennsylvania, and Washington appear to have the best potential markets for alternative fuels in general, with each sporting strong markets for four of the fuels. Wyoming showed the least potential, with weak markets for all alternative fuels except for CNG, for which it has a patchy market. Of all the fuels, CNG is promising in the greatest number of states--largely because freight traffic provides potential demand for many far-reaching corridor markets and because the sources of CNG are so widespread geographically.

  2. Baseline and post-stress seasonal changes in immunocompetence and redox state maintenance in the fishing bat Myotis vivesi

    Science.gov (United States)

    Ibáñez-Contreras, Alejandra; Miranda-Labra, Roxana U.; Flores-Martínez, José Juan

    2018-01-01

    Little is known of how the stress response varies when animals confront seasonal life-history processes. Antioxidant defenses and damage caused by oxidative stress and their link with immunocompetence are powerful biomarkers to assess animal´s physiological stress response. The aim of this study was A) to determine redox state and variation in basal (pre-acute stress) immune function during summer, autumn and winter (spring was not assessed due to restrictions in collecting permit) in the fish-eating Myotis (Myotis vivesi; Chiroptera), and B) to determine the effect of acute stress on immunocompetence and redox state during each season. Acute stress was stimulated by restricting animal movement for 6 and 12 h. The magnitude of the cellular immune response was higher during winter whilst that of the humoral response was at its highest during summer. Humoral response increased after 6 h of movement restriction stress and returned to baseline levels after 12 h. Basal redox state was maintained throughout the year, with no significant changes in protein damage, and antioxidant activity was modulated mainly in relation to variation to environment cues, increasing during high temperatures and decreasing during windy nights. Antioxidant activity increased after the 6 h of stressful stimuli especially during summer and autumn, and to a lesser extent in early winter, but redox state did not vary. However, protein damage increased after 12 h of stress during summer. Prolonged stress when the bat is engaged in activities of high energy demand overcame its capacity to maintain homeostasis resulting in oxidative damage. PMID:29293551

  3. Parenting stress as a mediator of parents' negative mood state and behavior problems in children with newly diagnosed cancer.

    Science.gov (United States)

    van der Geest, Ivana M; van den Heuvel-Eibrink, Marry M; Passchier, Jan; van den Hoed-Heerschop, Corry; Pieters, Rob; Darlington, Anne-Sophie E

    2014-07-01

    The aim was to investigate the influence of parents' negative mood state and parenting stress on behavior in children with newly diagnosed cancer. A total of 123 parents (n=58 fathers, n=65 mothers) of 67 children with newly diagnosed cancer completed three questionnaires separately at the same time measuring parents' negative mood state, parenting stress, and child behavior problems. Parents' negative mood state was weakly correlated to more child behavior problems (r=0.31, pparenting stress were strongly correlated to more child behavior problems (r=0.61, pparents' negative mood state and child behavior problems (c=0.29, p=0.02 (fathers); c=0.25, p=0.04 (mothers)) became non-significant after mediating for parenting stress (c'=0.003, p=0.98 (fathers); c'=0.10, p=0.42 (mothers)). The indirect effect of parents' negative mood state and child behavior problems was only significant for fathers (95% CI [0.12; 0.51]), indicating that parenting stress mediates the effect between fathers' negative mood state and child behavior problems. This is the first study to demonstrate the mediational role of parenting stress in fathers of a child with newly diagnosed cancer. Copyright © 2014 John Wiley & Sons, Ltd.

  4. Existence and instability of steady states for a triangular cross-diffusion system: A computer-assisted proof

    Science.gov (United States)

    Breden, Maxime; Castelli, Roberto

    2018-05-01

    In this paper, we present and apply a computer-assisted method to study steady states of a triangular cross-diffusion system. Our approach consist in an a posteriori validation procedure, that is based on using a fixed point argument around a numerically computed solution, in the spirit of the Newton-Kantorovich theorem. It allows to prove the existence of various non homogeneous steady states for different parameter values. In some situations, we obtain as many as 13 coexisting steady states. We also apply the a posteriori validation procedure to study the linear stability of the obtained steady states, proving that many of them are in fact unstable.

  5. The study of stress-strain state of stabilized layered soil foundations

    Directory of Open Access Journals (Sweden)

    Sokolov Mikhail V.

    2017-01-01

    Full Text Available Herein presented are the results of modeling and analysis of stress-strain state of layered inhomogeneous foundation soil when it is stabilised by injection to different depths. Produced qualitative and quantitative analysis of the components of the field of isolines of stresses, strains, stress concentration and the difference between the strain at the boundary of different elastic horizontal layers. Recommendations are given for the location of stabilised zones in relation to the border of different elastic layers. In particular, it found that stabilization of soil within the weak layer is inappropriate, since it practically provides no increase in the stability of the soil foundation, and when performing stabilisation of soil foundations, it is recommended to place the lower border of the stabilisation zone below the border of a stronger layer, at this the distribution of stresses and strains occurs more evenly, and load-bearing capacity of this layer is used to the maximum.

  6. Application of nonlinear ultrasonic method for monitoring of stress state in concrete

    International Nuclear Information System (INIS)

    Kim, Gyu Jin; Kwak, Hyo Gyoung; Park, Sun Jong

    2016-01-01

    As the lifespan of concrete structures increases, their load carrying capacity decreases owing to cyclic loads and long-term effects such as creep and shrinkage. For these reasons, there is a necessity for stress state monitoring of concrete members. Particularly, it is necessary to evaluate the concrete structures for behavioral changes by using a technique that can overcome the measuring limitations of usual ultrasonic nondestructive evaluation methods. This paper proposes the use of a nonlinear ultrasonic method, namely, nonlinear resonant ultrasonic spectroscopy (NRUS) for the measurement of nonlinearity parameters for stress monitoring. An experiment compared the use of NRUS method and a linear ultrasonic method, namely, ultrasonic pulse velocity (UPV) to study the effects of continuously increasing loads and cyclic loads on the nonlinearity parameter. Both NRUS and UPV methods found a similar direct relationship between load level and that parameter. The NRUS method showed a higher sensitivity to micro-structural changes of concrete than UPV method. Thus, the experiment confirms the possibility of using the nonlinear ultrasonic method for stress state monitoring of concrete members

  7. Application of nonlinear ultrasonic method for monitoring of stress state in concrete

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gyu Jin; Kwak, Hyo Gyoung [Dept. of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Park, Sun Jong [Dept. of Structural System and Site Safety Evaluation, Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2016-04-15

    As the lifespan of concrete structures increases, their load carrying capacity decreases owing to cyclic loads and long-term effects such as creep and shrinkage. For these reasons, there is a necessity for stress state monitoring of concrete members. Particularly, it is necessary to evaluate the concrete structures for behavioral changes by using a technique that can overcome the measuring limitations of usual ultrasonic nondestructive evaluation methods. This paper proposes the use of a nonlinear ultrasonic method, namely, nonlinear resonant ultrasonic spectroscopy (NRUS) for the measurement of nonlinearity parameters for stress monitoring. An experiment compared the use of NRUS method and a linear ultrasonic method, namely, ultrasonic pulse velocity (UPV) to study the effects of continuously increasing loads and cyclic loads on the nonlinearity parameter. Both NRUS and UPV methods found a similar direct relationship between load level and that parameter. The NRUS method showed a higher sensitivity to micro-structural changes of concrete than UPV method. Thus, the experiment confirms the possibility of using the nonlinear ultrasonic method for stress state monitoring of concrete members.

  8. A Molecular Web: Endoplasmic Reticulum Stress, Inflammation and Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Namrata eChaudhari

    2014-07-01

    Full Text Available Execution of fundamental cellular functions demands regulated protein folding homeostasis. Endoplasmic reticulum (ER is an active organelle existing to implement this function by folding and modifying secretory and membrane proteins. Loss of protein folding homeostasis is central to various diseases and budding evidences suggest ER stress as being a major contributor in the development or pathology of a diseased state besides other cellular stresses. The trigger for diseases may be diverse but, inflammation and/or ER stress may be basic mechanisms increasing the severity or complicating the condition of the disease. Chronic ER stress and activation of the unfolded protein response (UPR through endogenous or exogenous insults may result in impaired calcium and redox homeostasis, oxidative stress via protein overload thereby also influencing vital mitochondrial functions. Calcium released from the ER augments the production of mitochondrial Reactive Oxygen Species (ROS. Toxic accumulation of ROS within ER and mitochondria disturb fundamental organelle functions. Sustained ER stress is known to potentially elicit inflammatory responses via UPR pathways. Additionally, ROS generated through inflammation or mitochondrial dysfunction could accelerate ER malfunction. Dysfunctional UPR pathways has been associated with a wide range of diseases including several neurodegenerative diseases, stroke, metabolic disorders, cancer, inflammatory disease, diabetes mellitus, cardiovascular disease and others. In this review we have discussed the UPR signaling pathways, and networking between ER stress induced inflammatory pathways, oxidative stress and mitochondrial signaling events which further induce or exacerbate ER stress.

  9. Knowledge work and work-related stress

    DEFF Research Database (Denmark)

    Ipsen, Christine

    2006-01-01

    Work-related stress is an increasing problem in Europe. Earlier studies have stated that knowledge-work comprises working conditions which reflect a good psychosocial environment. Recent Danish studies, however, point at stress being an increasing problem in knowledge-intensive companies...... with informally, individu-ally and incidentally. It is only when problems exist that enhanced support is offered in order to help an employee to cope or recover. As most workplace initiatives work at this tertiary level, the sources of work-related and organiza-tional stress are not reduced or eliminated...... as good and stimulating, but has on the other hand sides to it which can cause frustration and stress. The implication of organisational characteristics of the knowledge-intensive companies studied is a transfer of the responsibility for ones own working-life. Consequently, issues are dealt...

  10. Influence of fatigue crack wake length and state of stress on crack closure

    Science.gov (United States)

    Telesman, Jack; Fisher, Douglas M.

    1988-01-01

    The location of crack closure with respect to crack wake and specimen thickness under different loading conditions was determined. The rate of increase of K sub CL in the crack wake was found to be significantly higher for plasticity induced closure in comparison to roughness induced closure. Roughness induced closure was uniform throughout the thickness of the specimen while plasticity induced closure levels were 50 percent higher in the near surface region than in the midthickness. The influence of state of stress on low-high load interaction effects was also examined. Load interaction effects differed depending upon the state of stress and were explained in terms of delta K sub eff.

  11. Parametric peak stress functions of 90o pipe bends with ovality under steady-state creep conditions

    International Nuclear Information System (INIS)

    Yaghi, A.H.; Hyde, T.H.; Becker, A.A.; Sun, W.

    2009-01-01

    Stress-based life prediction techniques are commonly used to estimate the failure life of pressurised pipe-related components, such as welds and bends, under creep conditions. Previous research has shown that reasonable life predictions can be obtained, based on the steady-state peak stresses, compared with the life predictions obtained from creep damage modelling. In this work, a series of parametric steady-state peak rupture stress functions of right-angled pipe bends with ovality are presented, which are based on the results obtained from finite element (FE) analyses, covering a number of material property and geometry parameters in practical ranges. Methods used to determine the stress functions are described. The FE analyses have been performed using axisymmetric models, subjected to internal pressure only, with a Norton creep law. Typical examples of parametric peak stress curve fitting are shown. In particular, the accuracy of the interpolation and extrapolation abilities of the stress functions is assessed. The results show that in most cases the interpolated and extrapolated peak stresses are accurate to within ±3% and ±5%, respectively.

  12. Existence of equilibrium states of hollow elastic cylinders submerged in a fluid

    Directory of Open Access Journals (Sweden)

    M. B. M. Elgindi

    1992-01-01

    Full Text Available This paper is concerned with the existence of equilibrium states of thin-walled elastic, cylindrical shell fully or partially submerged in a fluid. This problem obviously serves as a model for many problems with engineering importance. Previous studies on the deformation of the shell have assumed that the pressure due to the fluid is uniform. This paper takes into consideration the non-uniformity of the pressure by taking into account the effect of gravity. The presence of a pressure gradient brings additional parameters to the problem which in turn lead to the consideration of several boundary value problems.

  13. Diagnostic Inspection of Pipelines for Estimating the State of Stress in Them

    Science.gov (United States)

    Subbotin, V. A.; Kolotilov, Yu. V.; Smirnova, V. Yu.; Ivashko, S. K.

    2017-12-01

    The diagnostic inspection used to estimate the technical state of a pipeline is described. The problems of inspection works are listed, and a functional-structural scheme is developed to estimate the state of stress in a pipeline. Final conclusions regarding the actual loading of a pipeline section are drawn upon a cross analysis of the entire information obtained during pipeline inspection.

  14. Geodynamics and Stress State of the Earth's Crust in the Greater and Lesser Caucasus (Azerbaijan) collision region

    Science.gov (United States)

    Babayev, Gulam; Akhmedova, Elnare; Babayev, Elvin

    2017-04-01

    The current study researches the present-day stress state of the Earth's crust within the territory of Azerbaijan by using the database of the international research project "World Stress Map" (WSM). The present stress state was also assessed by exploring the effects of the contemporary topographic properties of Caucasus in three-dimensional frame. Aiming to explore the relative roles of regional tectonic conditions in the definition of stress state of Greater and Lesser Caucasus, stress distribution model was developed by the earthquake data (1998-2016) and by the standard techniques of stress field calculation. The results show that the stress orientations are influenced also by the combination of topography and crust thickness distribution even at very large depth. Stress data and earthquake focal mechanisms indicate that the stress state of the Earth's crust of the Greater and Lesser Caucasus is characterized by the compression predominantly oriented across the regional strike. The model results suggest that the Lesser Caucasus and Kur depression are rotating coherently, with little or no internal deformation in a counter-clockwise rotation located near the north-eastern corner of the Black Sea. Orientation of stress axes well consistent with earthquake focal mechanisms revealed that within Upper and Lower Crusts, earthquakes are predominantly thrust-faulting with a number of normal-faulting and some strike-slip faulting. The map of the focal mechanisms and stress distribution suggests that the research area is characterized by the thrust of horizontal compression trending north-north-east in the western part of the southern Caucasus. In the western part of Azerbaijan, the compression takes place between the Main Caucasus Fault and the Kur depression, which strikes south along the northern margin of the mountain range. In addition, a clear transition from the left-lateral strike slip to the predominantly right-lateral strike slip is observed in the southern of

  15. Evolution of regional stress state based on faulting and folding near the pit river, Shasta county, California

    Science.gov (United States)

    Austin, Lauren Jean

    We investigate the evolution of the regional stress state near the Pit River, northern California, in order to understand the faulting style in a tectonic transition zone and to inform the hazard analysis of Fault 3432 near the Pit 3 Dam. By analyzing faults and folds preserved in and adjacent to a diatomite mine north of the Pit River, we have determined principal stress directions preserved during the past million years. We find that the stress state has evolved from predominantly normal to strike slip and most recently to reverse, which is consistent with regional structures such as the extensional Hat Creek Fault to the south and the compressional folding of Mushroom Rock to the north. South of the Pit River, we still observe normal and strike slip faults, suggesting that changes in stress state are moving from north to south through time.

  16. Application of geometric probability to the existence of faults in anisotropic media

    International Nuclear Information System (INIS)

    Cranwell, R.M.; Donath, F.A.

    1980-01-01

    Three primary aspects of faults which relate to their potential for degradation of a repository site are: the possibility of an existing but undetected fault intersecting the repository site; the potential for a new fault occurring and propagating through the repository site; the ability of any such fault to transmit groundwater. Given that a fault might be present in the region surrounding the site, the probability that it intersects the site depends primarily on its orientation and on the density of faulting in the area. Once these parameters are known, a model can be developed to determine the probability that an existing but undetected fault will intersect the repository site. Similar techniques can be used to estimate the potential for new faults occurring and intersecting site, or intersection from propagation along existing faults. However, additional data includng in situ stress measurements and records of seismic activity would be needed. One can estimate the stress level at which the strength in the surrounding media will be exceeded, and thus determine a time-dependent probability of movement along a pre-existing fault or of a new fault occurring, from a predicted rate of change in local stresses. In situ stress measurements taken at intervals of time could aid in determining the rate of stress change in the surrounding media, although measurable changes might not occur over the available period of observation. In situ stress measurements might also aid in assessing the ability of existing faults to transmit fluids

  17. P3-24: Pre-Existing Brain States Predict Aesthetic Judgments

    Directory of Open Access Journals (Sweden)

    Po-Jang Hsieh

    2012-10-01

    Full Text Available Intuition and an assumption of basic rationality would suggest that people evaluate a stimulus on the basis of its properties and their underlying utility. However, various findings suggest that evaluations often depend not only on the thing evaluated, but also on a variety of contextual factors. Here we demonstrate a further departure from normative decision making: Aesthetic evaluations of abstract fractal art by human subjects were predicted with up to 75% accuracy by their brain states before the stimuli were presented. These predictions were based on cross-validation tests of pre-stimulus patterns of BOLD fMRI signals across a distributed network of regions in the frontal lobes. This predictive power did not simply reflect motor biases in favor of pressing a particular button. Our findings suggest that endogenous neural signals that exist before trial onset can bias people's decisions when evaluating visual stimuli.

  18. The influence of stress state on the reorientation of hydrides in a zirconium alloy

    International Nuclear Information System (INIS)

    Cinbiz, Mahmut N.; Koss, Donald A.; Motta, Arthur T.

    2016-01-01

    Hydride reorientation can occur in spent nuclear fuel cladding when subjected to a tensile hoop stress above a threshold value during cooling. Because in these circumstances the cladding is under a multiaxial stress state, the effect of stress biaxiality on the threshold stress for hydride reorientation is investigated using hydrided CWSR Zircaloy-4 sheet specimens containing ∼180 wt ppm of hydrogen and subjected to a two-cycle thermo-mechanical treatment. The study is based on especially designed specimens within which the stress biaxiality ratios range from uniaxial (σ_2/σ_1 = 0) to “near-equibiaxial” tension (σ_2/σ_1 = 0.8). The threshold stress is determined by mapping finite element calculations of the principal stresses and of the stress biaxiality ratio onto the hydride microstructure obtained after the thermo-mechanical treatment. The results show that the threshold stress (maximum principal stress) decreases from 155 to 75 MPa as the stress biaxiality increases from uniaxial to “near-equibiaxial” tension.

  19. Evaluation of the state of stress at the Forsmark site. Preliminary site investigation Forsmark area - version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Sjoeberg, Jonny; Lindfors, Ulf; Perman, Fredrik; Ask, Daniel [SwedPower AB, Stockholm (Sweden)

    2005-09-15

    This report presents an evaluation of the state of stress at the Forsmark site, based on all conducted stress measurements to date at the site, indirect stress estimates, geological and tectonic description of the site, and regional stress data from nearby locations. The work included (i) compilation of measurement results from Forsmark, as well as from nearby (regional) sites/locations, (ii) analysis of confidence intervals for each group of measurement, (iii) assessment of the stress state for the Forsmark site accounting for geological/tectonic evolution at the site, (iv) assessment of stress state for selected nearby (regional) sites/locations, and (v) comparison and combined interpretation of similarities and/or differences in stress state from a regional perspective. The combined assessment of the local (site-scale) and regional stress data for Forsmark showed that the major stress is orientated sub-horizontally and trending NW-SE; however, with significant local variation. A thrust faulting ({sigma}H > {sigma}h > {sigma}v) or possibly strike-slip faulting ({sigma}H > {sigma}v > {sigma}h) stress regime is evident at the Forsmark site. The maximum horizontal stress tends to be higher at the site compared to nearby sites and regional conditions. The site and regional data indicate that the vertical stress seems to be solely due to the overburden pressure. The lack of solid core discing for large portions of the boreholes at Forsmark was used to estimate an upper limit of the maximum horizontal stress magnitude. However, such an estimation is highly uncertain due to e.g. partly unknown mechanism for core discing failure, and unknown effects of the simplifying assumptions made in the analysis. The possible effects of shallow-dipping deformation zones on the stress state, could not be verified from the currently available data. However, the possibility of different stress regimes above and below deformation zones must be considered in future work. Slightly lower

  20. Evaluation of the state of stress at the Forsmark site. Preliminary site investigation Forsmark area - version 1.2

    International Nuclear Information System (INIS)

    Sjoeberg, Jonny; Lindfors, Ulf; Perman, Fredrik; Ask, Daniel

    2005-09-01

    This report presents an evaluation of the state of stress at the Forsmark site, based on all conducted stress measurements to date at the site, indirect stress estimates, geological and tectonic description of the site, and regional stress data from nearby locations. The work included (i) compilation of measurement results from Forsmark, as well as from nearby (regional) sites/locations, (ii) analysis of confidence intervals for each group of measurement, (iii) assessment of the stress state for the Forsmark site accounting for geological/tectonic evolution at the site, (iv) assessment of stress state for selected nearby (regional) sites/locations, and (v) comparison and combined interpretation of similarities and/or differences in stress state from a regional perspective. The combined assessment of the local (site-scale) and regional stress data for Forsmark showed that the major stress is orientated sub-horizontally and trending NW-SE; however, with significant local variation. A thrust faulting (σH > σh > σv) or possibly strike-slip faulting (σH > σv > σh) stress regime is evident at the Forsmark site. The maximum horizontal stress tends to be higher at the site compared to nearby sites and regional conditions. The site and regional data indicate that the vertical stress seems to be solely due to the overburden pressure. The lack of solid core discing for large portions of the boreholes at Forsmark was used to estimate an upper limit of the maximum horizontal stress magnitude. However, such an estimation is highly uncertain due to e.g. partly unknown mechanism for core discing failure, and unknown effects of the simplifying assumptions made in the analysis. The possible effects of shallow-dipping deformation zones on the stress state, could not be verified from the currently available data. However, the possibility of different stress regimes above and below deformation zones must be considered in future work. Slightly lower horizontal stress was found in

  1. Impact of emerging clean vehicle system on water stress

    International Nuclear Information System (INIS)

    Cai, Hua; Hu, Xiaojun; Xu, Ming

    2013-01-01

    Graphical abstract: Display Omitted - Highlights: • Clean vehicles may increase US water consumption up to 2810 billion gallons/year. • Large-scale clean vehicle adoption could lead to severe regional water stress. • Fuel choice for clean vehicle is crucial in minimizing regional water stress. • Regional optimization illustrated the importance of regional consideration. - Abstract: While clean vehicles (i.e., vehicles powered by alternative fuels other than fossil fuels) offer great potential to reduce greenhouse gas emissions from gasoline-based vehicles, the associated impact on water resources has not yet been fully assessed. This research provides a systematic evaluation of the impact of a fully implemented clean vehicle system on national and state-level water demand and water stress. On the national level, based on existing policies, transitioning the current gasoline-based transportation into one with clean vehicles will increase national annual water consumption by 1950–2810 billion gallons of water, depending on the market penetration of electric vehicles. On the state level, variances of water efficiency in producing different fuels are significant. The fuel choice for clean vehicle development is especially crucial for minimizing water stress increase in states with already high water stress, high travel demands, and significant variations in water efficiency in producing different alternative fuels. Current development of clean vehicle infrastructure, however, has not reflected these state-level variations. This study takes an optimization approach to further evaluate impacts on state-level water stress from a fully implemented clean vehicle system and identified potential roles (fuel producer or consumer) states may play in real world clean vehicle development scenario. With an objective of minimizing overall water stress impact, our optimization model aims to provide an analytical framework to better assess impacts on state-level water

  2. Sectoral contributions to surface water stress in the coterminous United States

    International Nuclear Information System (INIS)

    Averyt, K; Meldrum, J; Caldwell, P; Sun, G; McNulty, S; Huber-Lee, A; Madden, N

    2013-01-01

    Here, we assess current stress in the freshwater system based on the best available data in order to understand possible risks and vulnerabilities to regional water resources and the sectors dependent on freshwater. We present watershed-scale measures of surface water supply stress for the coterminous United States (US) using the water supply stress index (WaSSI) model which considers regional trends in both water supply and demand. A snapshot of contemporary annual water demand is compared against different water supply regimes, including current average supplies, current extreme-year supplies, and projected future average surface water flows under a changing climate. In addition, we investigate the contributions of different water demand sectors to current water stress. On average, water supplies are stressed, meaning that demands for water outstrip natural supplies in over 9% of the 2103 watersheds examined. These watersheds rely on reservoir storage, conveyance systems, and groundwater to meet current water demands. Overall, agriculture is the major demand-side driver of water stress in the US, whereas municipal stress is isolated to southern California. Water stress introduced by cooling water demands for power plants is punctuated across the US, indicating that a single power plant has the potential to stress water supplies at the watershed scale. On the supply side, watersheds in the western US are particularly sensitive to low flow events and projected long-term shifts in flow driven by climate change. The WaSSI results imply that not only are water resources in the southwest in particular at risk, but that there are also potential vulnerabilities to specific sectors, even in the ‘water-rich’ southeast. (letter)

  3. Water stress and social vulnerability in the southern United States, 2010-2040

    Science.gov (United States)

    cassandra Johnson-Gaither; John Schelhas; Wayne Zipperer; Ge Sun; Peter V. Caldwell; Neelam Poudyal

    2014-01-01

    Water scarcities are striking in semiarid, subregions of the Southern United States such as Oklahoma and western Texas (Glennon 2009, Sabo et al. 2010). In Texas, water stress has been a constant concern since the 1950s when the state experienced severe drought conditions (Moore 2005). The nearly 2000-mile Rio Grande River, which forms part of the Texas–Mexico border,...

  4. The contribution of trait negative affect and stress to recall for bodily states.

    Science.gov (United States)

    Ma-Kellams, Christine; Lai, Lei; Taylor, Shelley E; Lerner, Jennifer S

    2016-12-01

    How does trait negative affect shape somatic memory of stressful events? We hypothesized that negative affect would impair accurate recall of one's own heart rate during stressful situations. Two bio-behavioral studies used a new paradigm to test retrospective visceral perception and assessed whether negative affective states experienced during aversive events (i.e., the Trier Stress Task-Time 1) would retrospectively shape recall of past heart rate (Time 2), even when accounting for actual heart rate at the time of each stressful event (Time 1). Results across both studies showed that individual differences in negative affect in response to a stressful task predicted visceral recollections, and those who experienced more negative affect were more inaccurate. Negative affect was associated with a tendency to remember visceral reactions as worse than they actually were. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Effect of cyclic block loading on character of deformation and strength of structural materials in plane stressed state

    International Nuclear Information System (INIS)

    Kul'chitskij, N.M.; Troshchenko, A.V.; Koval'chuk, B.I.; Khamaza, L.A.; Nikolaev, I.A.

    1982-01-01

    The paper is concerned with choice of conditions for preliminary cyclic block loading, determination of fatigue failure resistance characteristics for various structural materials under regular and selected block loading, investigation of the preliminary cyclic loading effect on regularities of elastoplastic deformation of materials concerned in the biaxial stressed state. Under selected conditions of cyclic block loading the character of damage accumulation is close to the linear law for the materials of high-srength doped steel, and VT6 alloys of concern. These materials in the initial state and after preliminary cyclic loading are anisotropic. Axial direction is characterized by a higher plastic strain resistance for steel and tangential direction - for VT6 alloy. The generalized strain curves for the materials in question are not invariant as to the stressed state type. It is stated that the effect of preliminary unsteady cyclic loading on resistance and general regularities of material deformation in the complex stressed state is insignificant. It is observed that stress-strain properties of the materials tend to vary in the following way: plastic strain resistance of the steel lowers and that of VT6 rises, anisotropy of the materials somehow decreases. The variation in the material anisotropy may be attributed to a decrease in residual stresses resulting from preliminary cyclic loading

  6. State-of-stress in magmatic rift zones: Predicting the role of surface and subsurface topography

    Science.gov (United States)

    Oliva, S. J. C.; Ebinger, C.; Rivalta, E.; Williams, C. A.

    2017-12-01

    Continental rift zones are segmented along their length by large fault systems that form in response to extensional stresses. Volcanoes and crustal magma chambers cause fundamental changes to the density structure, load the plates, and alter the state-of-stress within the crust, which then dictates fracture orientation. In this study, we develop geodynamic models scaled to a structure, petrologic and thermodynamic studies constrain material densities, and seismicity and structural analyses constrain active and time-averaged kinematics. This area is an ideal test area because a 60º stress rotation is observed in time-averaged fault and magma intrusion, and in local seismicity, and because this was the site of a large volume dike intrusion and seismic sequence in 2007. We use physics-based 2D and 3D models (analytical and finite elements) constrained by data from active rift zones to quantify the effects of loading on state-of-stress. By modeling varying geometric arrangements, and density contrasts of topographic and subsurface loads, and with reasonable regional extensional forces, the resulting state-of-stress reveals the favored orientation for new intrusions. Although our models are generalized, they allow us to evaluate whether a magmatic system (surface and subsurface) can explain the observed stress rotation, and enable new intrusions, new faults, or fault reactivation with orientations oblique to the main border faults. Our results will improve our understanding of the different factors at play in these extensional regimes, as well as contribute to a better assessment of the hazards in the area.

  7. The study on stress-strain state of the spring at high temperature using ABAQUS

    Directory of Open Access Journals (Sweden)

    H Sun

    2014-01-01

    Full Text Available Cylindrical helical springs are widely used in the elements of thermal energy devices. It is necessary to guarantee the stability of the stress state of spring in high temperature. Relaxation phenomenon of stress is studied in this paper. Calculations are carried out in the environment of ABAQUS. The verification is taken out using analytical calculations.This paper describes the distribution and character of stress contour lines on the cross section of spring under the condition of instantaneous load, explicates the relaxation law with time. Research object is cylindrical helical spring, that working at high temperature. The purpose of this work is to get the stress relaxation law of spring, and to guarantee the long-term strength.This article presents the basic theory of helical spring. Establishes spring mathematical model of creep under the loads of compression and torsion. The stress formulas of each component in the cross section of spring are given. The calculation process of relaxation is analyzed in the program ABAQUS.In this paper compare the analytical formulas of spring stress with the simulation results, which are created by program ABAQUS.Finite element model for stress creep analysis in the cross section is created, material of spring – stainless steel 10X18N9T, springs are used at the temperature 650℃.At the beginning, stress-stain of spring is in the elastic state. Analyzes the change law of creep stress under the condition of constant load and a fixed compression.When analyzing under the condition of a fixed compression, the stresses are quickly decreased in most area in the cross section of spring, and the point of minimum shear stress gradually moves to the direction of outer diameter, because of this, stresses in a small area near the center increase slowly at first then decrease gradually with time. When analyzing under the condition of constant load, the stresses are quickly decreased in the around area and in creased

  8. Finite element modelling of creep process - steady state stresses and strains

    Directory of Open Access Journals (Sweden)

    Sedmak Aleksandar S.

    2014-01-01

    Full Text Available Finite element modelling of steady state creep process has been described. Using an analogy of visco-plastic problem with a described procedure, the finite element method has been used to calculate steady state stresses and strains in 2D problems. An example of application of such a procedure have been presented, using real life problem - cylindrical pipe with longitudinal crack at high temperature, under internal pressure, and estimating its residual life, based on the C*integral evaluation.

  9. Influence of cold rolling and fatigue on the residual stress state of a metal matrix composite

    International Nuclear Information System (INIS)

    Hanus, E.; Ericsson, T.; Lu, J.; Decomps, F.

    1993-01-01

    The large difference in the coefficient of thermal expansion between the matrix alloy and the particle in a metal matrix composite gives rise to residual stresses in the material. In the present work the effect of cold rolling and four-point bending fatigue on the residual stress state of a silicon carbide particle reinforced aluminium alloy (AA 2014) has been investigated. The three dimensional stress state measured in both phases: matrix and reinforcement, has been determined by using an X-ray diffraction technique. It was found that cold rolling induces surface compressive macrostresses of about -250 MPa, with a penetration depth around 2 mm. The absolute values of the pseudomacrostresses in both phases are significantly reduced due to the single track rolling. Stress relaxation occurs during four-point bending fatigue. (orig.)

  10. Interface states in stressed semiconductor heterojunction with antiferromagnetic ordering

    International Nuclear Information System (INIS)

    Kantser, V.G.

    1995-08-01

    The stressed heterojunctions with antiferromagnetic ordering in which the constituents have opposite band edge symmetry and their gaps have opposite signs have been investigated. The interface states have been shown to appear in these heterojunctions and they are spin-split. As a result if the Fermi level gets into one of the interface bands then it leads to magnetic ordering in the interface plane. That is if the interface magnetization effect can be observed. (author). 14 refs, 2 figs

  11. Family Environments and Children's Executive Function: The Mediating Role of Children's Affective State and Stress.

    Science.gov (United States)

    He, Zhong-Hua; Yin, Wen-Gang

    2016-09-01

    There is increasing evidence that inadequate family environments (family material environment and family psychosocial environment) are not only social problems but also factors contributing to adverse neurocognitive outcomes. In the present study, the authors investigated the relationship among family environments, children's naturalistic affective state, self-reported stress, and executive functions in a sample of 157 Chinese families. These findings revealed that in inadequate family material environments, reduced children's cognitive flexibility is associated with increased naturalistic negative affectivity and self-reported stress. In addition, naturalistic negative affectivity mediated the association between family expressiveness and children's cognitive flexibility. The authors used a structural equation model to examine the mediation model hypothesis, and the results confirmed the mediating roles of naturalistic negative affectivity and self-reported stress between family environments and the cognitive flexibility of Chinese children. These findings indicate the importance of reducing stress and negative emotional state for improving cognitive functions in children of low socioeconomic status.

  12. Metastability at the Yield-Stress Transition in Soft Glasses

    Directory of Open Access Journals (Sweden)

    Matteo Lulli

    2018-05-01

    Full Text Available We study the solid-to-liquid transition in a two-dimensional fully periodic soft-glassy model with an imposed spatially heterogeneous stress. The model we consider consists of droplets of a dispersed phase jammed together in a continuous phase. When the peak value of the stress gets close to the yield stress of the material, we find that the whole system intermittently tunnels to a metastable “fluidized” state, which relaxes back to a metastable “solid” state by means of an elastic-wave dissipation. This macroscopic scenario is studied through the microscopic displacement field of the droplets, whose time statistics displays a remarkable bimodality. Metastability is rooted in the existence, in a given stress range, of two distinct stable rheological branches, as well as long-range correlations (e.g., large dynamic heterogeneity developed in the system. Finally, we show that a similar behavior holds for a pressure-driven flow, thus suggesting possible experimental tests.

  13. Metastability at the Yield-Stress Transition in Soft Glasses

    Science.gov (United States)

    Lulli, Matteo; Benzi, Roberto; Sbragaglia, Mauro

    2018-04-01

    We study the solid-to-liquid transition in a two-dimensional fully periodic soft-glassy model with an imposed spatially heterogeneous stress. The model we consider consists of droplets of a dispersed phase jammed together in a continuous phase. When the peak value of the stress gets close to the yield stress of the material, we find that the whole system intermittently tunnels to a metastable "fluidized" state, which relaxes back to a metastable "solid" state by means of an elastic-wave dissipation. This macroscopic scenario is studied through the microscopic displacement field of the droplets, whose time statistics displays a remarkable bimodality. Metastability is rooted in the existence, in a given stress range, of two distinct stable rheological branches, as well as long-range correlations (e.g., large dynamic heterogeneity) developed in the system. Finally, we show that a similar behavior holds for a pressure-driven flow, thus suggesting possible experimental tests.

  14. Investigations into the Surface Strain/Stress State in a Single-Crystal Superalloy via XRD Characterization

    Directory of Open Access Journals (Sweden)

    Haodong Duan

    2018-05-01

    Full Text Available The present study was aimed at determining the surface strain/stress state in an Ni-based single-crystal (SC superalloy that was subjected to two different cooling rates from solid solution temperature through using the X-ray diffraction (XRD method. The normal stresses σ 11 s and σ 22 s were determined, then the Von Mises stresses ( σ V M s were derived from them. Field emission gun scanning electron microscope (FEG-SEM and transmission electron microscope (TEM micrographs were taken to illustrate the strain/stress state change. The precipitation of the secondary γ′ phases in the γ phase and the formation of the dislocation in the interphase upon a slower cooling rate caused the γ phase lattice distortion to increase, so a larger σ V M s of the γ phase was realized in comparison to the faster cooling sample. For both of the two cooling modes, we found that the σ V M s of the γ′ phase increased due to the growth of the γ′ phase during the aging process. Also, the aging process led to pronouncedly anisotropic lattice mismatches in the {331} and {004} planes. In addition, the surface strain/stress states of a cylinder sample and a tetragonal sample were also studied using a faster cooling rate, and σ 11 s and σ 22 s were analyzed to explain the influence of the shape factor on the stress anisotropy in the [001] and [ 1 1 ¯ 0 ] orientations. The strain in the [001] orientation of the γ phase is more sensitive to the shape change.

  15. Three-dimensional analysis of stresses and the development of failure mechanism in prestressed thick-walled cylinders

    International Nuclear Information System (INIS)

    Bertrand, G.; Kotulla, B.

    1984-01-01

    The new design concept for a prestressed concrete reactor vessel which integrates the complete gas cycle into the pressure vessel demands knowledge of crack zone propagation even in zones where predominantly pressure stresses exist. Analytically, the state of stresses and strains, which is dependent on the loading history, can be computed by recording the triaxial stress-strain law for concrete up to the range of critical volumetric and shear deformations. The constitutive law is derived tensorially using invariant description in the stress space. It is demonstrated that near failure loads membrane stress states develop which increase failure resistance. Collapse loads can be defined through the observation of the principal stress vector with the aid of the triaxial failure law of concrete. (author)

  16. Stress-free states of continuum dislocation fields : Rotations, grain boundaries, and the Nye dislocation density tensor

    NARCIS (Netherlands)

    Limkumnerd, Surachate; Sethna, James P.

    We derive general relations between grain boundaries, rotational deformations, and stress-free states for the mesoscale continuum Nye dislocation density tensor. Dislocations generally are associated with long-range stress fields. We provide the general form for dislocation density fields whose

  17. Type I and type II residual stress in iron meteorites determined by neutron diffraction measurements

    Science.gov (United States)

    Caporali, Stefano; Pratesi, Giovanni; Kabra, Saurabh; Grazzi, Francesco

    2018-04-01

    In this work we present a preliminary investigation by means of neutron diffraction experiment to determine the residual stress state in three different iron meteorites (Chinga, Sikhote Alin and Nantan). Because of the very peculiar microstructural characteristic of this class of samples, all the systematic effects related to the measuring procedure - such as crystallite size and composition - were taken into account and a clear differentiation in the statistical distribution of residual stress in coarse and fine grained meteorites were highlighted. Moreover, the residual stress state was statistically analysed in three orthogonal directions finding evidence of the existence of both type I and type II residual stress components. Finally, the application of von Mises approach allowed to determine the distribution of type II stress.

  18. Stress Prediction for Distributed Structural Health Monitoring Using Existing Measurements and Pattern Recognition.

    Science.gov (United States)

    Lu, Wei; Teng, Jun; Zhou, Qiushi; Peng, Qiexin

    2018-02-01

    The stress in structural steel members is the most useful and directly measurable physical quantity to evaluate the structural safety in structural health monitoring, which is also an important index to evaluate the stress distribution and force condition of structures during structural construction and service phases. Thus, it is common to set stress as a measure in steel structural monitoring. Considering the economy and the importance of the structural members, there are only a limited number of sensors that can be placed, which means that it is impossible to obtain the stresses of all members directly using sensors. This study aims to develop a stress response prediction method for locations where there are insufficent sensors, using measurements from a limited number of sensors and pattern recognition. The detailed improved aspects are: (1) a distributed computing process is proposed, where the same pattern is recognized by several subsets of measurements; and (2) the pattern recognition using the subset of measurements is carried out by considering the optimal number of sensors and number of fusion patterns. The validity and feasibility of the proposed method are verified using two examples: the finite-element simulation of a single-layer shell-like steel structure, and the structural health monitoring of the space steel roof of Shenzhen Bay Stadium; for the latter, the anti-noise performance of this method is verified by the stress measurements from a real-world project.

  19. A large-scale perspective on stress-induced alterations in resting-state networks

    Science.gov (United States)

    Maron-Katz, Adi; Vaisvaser, Sharon; Lin, Tamar; Hendler, Talma; Shamir, Ron

    2016-02-01

    Stress is known to induce large-scale neural modulations. However, its neural effect once the stressor is removed and how it relates to subjective experience are not fully understood. Here we used a statistically sound data-driven approach to investigate alterations in large-scale resting-state functional connectivity (rsFC) induced by acute social stress. We compared rsfMRI profiles of 57 healthy male subjects before and after stress induction. Using a parcellation-based univariate statistical analysis, we identified a large-scale rsFC change, involving 490 parcel-pairs. Aiming to characterize this change, we employed statistical enrichment analysis, identifying anatomic structures that were significantly interconnected by these pairs. This analysis revealed strengthening of thalamo-cortical connectivity and weakening of cross-hemispheral parieto-temporal connectivity. These alterations were further found to be associated with change in subjective stress reports. Integrating report-based information on stress sustainment 20 minutes post induction, revealed a single significant rsFC change between the right amygdala and the precuneus, which inversely correlated with the level of subjective recovery. Our study demonstrates the value of enrichment analysis for exploring large-scale network reorganization patterns, and provides new insight on stress-induced neural modulations and their relation to subjective experience.

  20. Thermo-mechanical constitutive modeling of unsaturated clays based on the critical state concepts

    OpenAIRE

    Tourchi, Saeed; Hamidi, Amir

    2015-01-01

    A thermo-mechanical constitutive model for unsaturated clays is constructed based on the existing model for saturated clays originally proposed by the authors. The saturated clays model was formulated in the framework of critical state soil mechanics and modified Cam-clay model. The existing model has been generalized to simulate the experimentally observed behavior of unsaturated clays by introducing Bishop's stress and suction as independent stress parameters and modifying the hardening rul...

  1. Practical application of fracture mechanics with consideration of multiaxiality of stress state to degraded nuclear piping

    International Nuclear Information System (INIS)

    Kussmaul, K.; Blind, D.; Herter, K.H.; Eisele, U.; Schuler, X.

    1995-01-01

    Within the scope of a research project nuclear piping components (T-branches and elbows) with dimensions like the primary coolant lines of PWR plants were investigated. In addition to the experimental full scale tests, extensive numerical calculations by means of the finite element method (FEM) as well as fracture mechanics analyses were performed. The applicability of these methods was verified by comparison with the experimental results. The calculation of fracture mechanics parameters as well as the calculated component stress enabled a statement on crack initiation. The failure behavior could be evaluated by means of the multiaxiality of stress state in the ligament (gradient of the quotient of the multiaxiality of stress state q). With respect to practical application on other pressurized components it is shown how to use the procedure (e.g. in a LBB analysis). A quantitative assessment with regard to crack initiation is possible by comparison of the effective crack initiation value J ieff with the calculated component stress. If the multiaxiality of stress state and the q gradient in the ligament of the fracture ligament of the fracture mechanics specimen and the pressurized component to be evaluated is comparable a quantitative assessment is possible as for crack extension and maximum load. If there is no comparability of the gradients a qualitative assessment is possible for the failure behavior

  2. Stressor specificity of central neuroendocrine responses: implications for stress-related disorders.

    Science.gov (United States)

    Pacák, K; Palkovits, M

    2001-08-01

    Despite the fact that many research articles have been written about stress and stress-related diseases, no scientifically accepted definition of stress exists. Selye introduced and popularized stress as a medical and scientific idea. He did not deny the existence of stressor-specific response patterns; however, he emphasized that such responses did not constitute stress, only the shared nonspecific component. In this review we focus mainly on the similarities and differences between the neuroendocrine responses (especially the sympathoadrenal and the sympathoneuronal systems and the hypothalamo-pituitary-adrenocortical axis) among various stressors and a strategy for testing Selye's doctrine of nonspecificity. In our experiments, we used five different stressors: immobilization, hemorrhage, cold exposure, pain, or hypoglycemia. With the exception of immobilization stress, these stressors also differed in their intensities. Our results showed marked heterogeneity of neuroendocrine responses to various stressors and that each stressor has a neurochemical "signature." By examining changes of Fos immunoreactivity in various brain regions upon exposure to different stressors, we also attempted to map central stressor-specific neuroendocrine pathways. We believe the existence of stressor-specific pathways and circuits is a clear step forward in the study of the pathogenesis of stress-related disorders and their proper treatment. Finally, we define stress as a state of threatened homeostasis (physical or perceived treat to homeostasis). During stress, an adaptive compensatory specific response of the organism is activated to sustain homeostasis. The adaptive response reflects the activation of specific central circuits and is genetically and constitutionally programmed and constantly modulated by environmental factors.

  3. Assessment of Creep Deformation, Damage, and Rupture Life of 304HCu Austenitic Stainless Steel Under Multiaxial State of Stress

    Science.gov (United States)

    Sahoo, K. C.; Goyal, Sunil; Parameswaran, P.; Ravi, S.; Laha, K.

    2018-03-01

    The role of the multiaxial state of stress on creep deformation and rupture behavior of 304HCu austenitic stainless steel was assessed by performing creep rupture tests on both smooth and notched specimens of the steel. The multiaxial state of stress was introduced by incorporating circumferential U-notches of different root radii ranging from 0.25 to 5.00 mm on the smooth specimens of the steel. Creep tests were carried out at 973 K over the stress range of 140 to 220 MPa. In the presence of notch, the creep rupture strength of the steel was found to increase with the associated decrease in rupture ductility. Over the investigated stress range and notch sharpness, the strengthening was found to increase drastically with notch sharpness and tended toward saturation. The fractographic studies revealed the mixed mode of failure consisting of transgranular dimples and intergranular creep cavitation for shallow notches, whereas the failure was predominantly intergranular for relatively sharper notches. Detailed finite element analysis of stress distribution across the notch throat plane on creep exposure was carried out to assess the creep failure of the material in the presence of notch. The reduction in von-Mises stress across the notch throat plane, which was greater for sharper notches, increased the creep rupture strength of the material. The variation in fracture behavior of the material in the presence of notch was elucidated based on the von-Mises, maximum principal, and hydrostatic stresses. Electron backscatter diffraction analysis of creep strain distribution across the notch revealed localized creep straining at the notch root for sharper notches. A master curve for predicting creep rupture life under the multiaxial state of stress was generated considering the representative stress having contributions from both the von-Mises and principal stress components of the stress field in the notch throat plane. Rupture ductility was also predicted based on the

  4. Stress-state monitoring of coal pillars during room and pillar extraction

    Czech Academy of Sciences Publication Activity Database

    Waclawik, Petr; Ptáček, Jiří; Koníček, Petr; Kukutsch, Radovan; Němčík, J.

    2016-01-01

    Roč. 15, č. 2 (2016), s. 49-56 ISSN 2300-3960 R&D Projects: GA MŠk(CZ) LO1406; GA MŠk ED2.1.00/03.0082 Institutional support: RVO:68145535 Keywords : stress-state monitoring * room and pillar * coal pillar Subject RIV: DH - Mining , incl. Coal Mining http://www.sciencedirect.com/science/article/pii/S2300396016300180

  5. Stress state of thin – walled member of the structure with operation damages under nonuniform loading

    Directory of Open Access Journals (Sweden)

    В.В. Астанін

    2004-01-01

    Full Text Available  The publication is dedicated to determining of stress state in particular the stress concentration factors for thin – walled members of the structures subject to nonuniform tension. A structure member has obtained the operation damage generation by corrosion and other causes.

  6. Existence of a ground state for the confined hydrogen atom in non-relativistic QED

    International Nuclear Information System (INIS)

    Amour, Laurent; Faupin, Jeremy

    2008-01-01

    We consider a system of a hydrogen atom interacting with the quantized electromagnetic field. Instead of fixing the nucleus, we assume that the system is confined by its center of mass. This model is used in theoretical physics to explain the Lamb-Dicke effect. After a brief review of the literature, we explain how to verify some properly chosen binding conditions which lead to the existence of a ground state for our model, and for all values of the fine-structure constant

  7. A novel design for storage of inner stress by colloidal processing on rock-like materials

    Science.gov (United States)

    Chen, Weichang; Wang, Sijing; Lekan Olatayo, Afolagboye; Fu, Huanran

    2018-06-01

    Inner stress exists in rocks, affecting rock engineering, yet has received very little attention and quantitative investigation because of uncertainty about its characteristics. Previous studies have suggested that the inner stresses of rock materials are closely related to their physical state variation. In this work, a novel mold was designed to simulate the storage process of inner stress in specimens composed of quartz sands and epoxy. Then, thermal tests were carried out to change the physical state of the specimens, and expansion of the specimens was monitored. The results indicated that inner stress could be partly locked by the mold and it could also be released by heating. It can be inferred from the analysis that one necessary condition of storage and release of inner stress is physical state variation. Additionally, by using an XRD method, the variations in the interplanar spacing of the quartz sands were detected, and the results reflect that inner stress could be locked-in aggregates (quartz sands) by a cement constraint (solid epoxy). The inner stress stored in quartz sands was calculated using height and interplanar spacing variations.

  8. Mastering the biaxial stress state in nanometric thin films on flexible substrates

    Energy Technology Data Exchange (ETDEWEB)

    Faurie, D., E-mail: faurie@univ-paris13.fr [LSPM-CNRS, UPR3407, Université Paris 13, Villetaneuse (France); Renault, P.-O.; Le Bourhis, E. [Institut Pprime UPR3346, CNRS – Université de Poitiers, Futuroscope (France); Geandier, G. [Institut Jean Lamour, CNRS UMR7198, Université de Lorraine, Nancy Cedex (France); Goudeau, P. [Institut Pprime UPR3346, CNRS – Université de Poitiers, Futuroscope (France); Thiaudière, D. [SOLEIL Synchrotron, Saint-Aubin, Gif-Sur-Yvette (France)

    2014-07-01

    Biaxial stress state of thin films deposited on flexible substrate can be mastered thanks to a new biaxial device. This tensile machine allows applying in-plane loads F{sub x} and F{sub y} in the two principal directions x and y of a cruciform-shaped polymer substrate. The transmission of the deformation at film/substrate interface allows controlling the stress and strain field in the thin films. We show in this paper a few illustrations dealing with strain measurements in polycrystalline thin films deposited on flexible substrate. The potentialities of the biaxial device located at Soleil synchrotron are also discussed.

  9. Obesity-Associated Oxidative Stress: Strategies Finalized to Improve Redox State

    Directory of Open Access Journals (Sweden)

    Valeria Gasperi

    2013-05-01

    Full Text Available Obesity represents a major risk factor for a plethora of severe diseases, including diabetes, cardiovascular disease, non-alcoholic fatty liver disease, and cancer. It is often accompanied by an increased risk of mortality and, in the case of non-fatal health problems, the quality of life is impaired because of associated conditions, including sleep apnea, respiratory problems, osteoarthritis, and infertility. Recent evidence suggests that oxidative stress may be the mechanistic link between obesity and related complications. In obese patients, antioxidant defenses are lower than normal weight counterparts and their levels inversely correlate with central adiposity; obesity is also characterized by enhanced levels of reactive oxygen or nitrogen species. Inadequacy of antioxidant defenses probably relies on different factors: obese individuals may have a lower intake of antioxidant- and phytochemical-rich foods, such as fruits, vegetables, and legumes; otherwise, consumption of antioxidant nutrients is normal, but obese individuals may have an increased utilization of these molecules, likewise to that reported in diabetic patients and smokers. Also inadequate physical activity may account for a decreased antioxidant state. In this review, we describe current concepts in the meaning of obesity as a state of chronic oxidative stress and the potential interventions to improve redox balance.

  10. Obesity-Associated Oxidative Stress: Strategies Finalized to Improve Redox State

    Science.gov (United States)

    Savini, Isabella; Catani, Maria Valeria; Evangelista, Daniela; Gasperi, Valeria; Avigliano, Luciana

    2013-01-01

    Obesity represents a major risk factor for a plethora of severe diseases, including diabetes, cardiovascular disease, non-alcoholic fatty liver disease, and cancer. It is often accompanied by an increased risk of mortality and, in the case of non-fatal health problems, the quality of life is impaired because of associated conditions, including sleep apnea, respiratory problems, osteoarthritis, and infertility. Recent evidence suggests that oxidative stress may be the mechanistic link between obesity and related complications. In obese patients, antioxidant defenses are lower than normal weight counterparts and their levels inversely correlate with central adiposity; obesity is also characterized by enhanced levels of reactive oxygen or nitrogen species. Inadequacy of antioxidant defenses probably relies on different factors: obese individuals may have a lower intake of antioxidant- and phytochemical-rich foods, such as fruits, vegetables, and legumes; otherwise, consumption of antioxidant nutrients is normal, but obese individuals may have an increased utilization of these molecules, likewise to that reported in diabetic patients and smokers. Also inadequate physical activity may account for a decreased antioxidant state. In this review, we describe current concepts in the meaning of obesity as a state of chronic oxidative stress and the potential interventions to improve redox balance. PMID:23698776

  11. Characterization of the Viable but Nonculturable (VBNC State in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Mohammad Salma

    Full Text Available The Viable But Non Culturable (VBNC state has been thoroughly studied in bacteria. In contrast, it has received much less attention in other microorganisms. However, it has been suggested that various yeast species occurring in wine may enter in VBNC following sulfite stress.In order to provide conclusive evidences for the existence of a VBNC state in yeast, the ability of Saccharomyces cerevisiae to enter into a VBNC state by applying sulfite stress was investigated. Viable populations were monitored by flow cytometry while culturable populations were followed by plating on culture medium. Twenty-four hours after the application of the stress, the comparison between the culturable population and the viable population demonstrated the presence of viable cells that were non culturable. In addition, removal of the stress by increasing the pH of the medium at different time intervals into the VBNC state allowed the VBNC S. cerevisiae cells to "resuscitate". The similarity between the cell cycle profiles of VBNC cells and cells exiting the VBNC state together with the generation rate of cells exiting VBNC state demonstrated the absence of cellular multiplication during the exit from the VBNC state. This provides evidence of a true VBNC state. To get further insight into the molecular mechanism pertaining to the VBNC state, we studied the involvement of the SSU1 gene, encoding a sulfite pump in S. cerevisiae. The physiological behavior of wild-type S. cerevisiae was compared to those of a recombinant strain overexpressing SSU1 and null Δssu1 mutant. Our results demonstrated that the SSU1 gene is only implicated in the first stages of sulfite resistance but not per se in the VBNC phenotype. Our study clearly demonstrated the existence of an SO2-induced VBNC state in S. cerevisiae and that the stress removal allows the "resuscitation" of VBNC cells during the VBNC state.

  12. Extracellular redox state: refining the definition of oxidative stress in aging.

    Science.gov (United States)

    Jones, Dean P

    2006-01-01

    Oxidative stress in aging can result from an imbalance of prooxidants and antioxidants with excessive, destructive free radical chemistry. Thiol systems are important in the control of these processes, both by protecting against damage and serving in redox signaling mechanisms to sense danger and repair the damage. Studies by a number of research groups in collaboration with the Emory Clinical Biomarkers Laboratory show that the redox state of the central tissue antioxidant, glutathione (GSH), can be measured in human plasma and provides a quantitative systemic indicator of oxidative stress. Plasma GSH/GSSG redox in humans becomes oxidized with age, in response to chemotherapy, as a consequence of cigarette smoking, and in association with common age-related diseases (e.g., type 2 diabetes, cardiovascular disease). However, the GSH/GSSG redox is not equilibrated with the larger plasma cysteine/cystine (Cys/CySS) pool, and the Cys/CySS redox varies with age in a pattern that is distinct from that of GSH/GSSG redox. Furthermore, in vitro studies show that variation in Cys/CySS redox over the range found in vivo affects signaling pathways, which control cell proliferation and oxidant-induced apoptosis. The results point to the conclusion that free radical scavenging antioxidants are of increased importance when thiol/disulfide redox states are oxidized. Because thiol/disulfide redox states, per se, function in redox signaling and control as well as antioxidant protection, GSH/GSSG and Cys/CySS redox states may provide central parameters to link environmental influences and progression of changes associated with aging.

  13. Occupational Stress and Management Strategies of Secondary School Principals in Cross River State, Nigeria

    Science.gov (United States)

    Anyanwu, Joy; Ezenwaji, Ifeyinwa; Okenjom, Godian; Enyi, Chinwe

    2015-01-01

    The study aimed at finding out sources and symptoms of occupational stress and management strategies of principals in secondary schools in Cross River State, Nigeria. Descriptive survey research design was adopted for the study with a population of 420 principals (304 males and 116 females) in secondary schools in Cross River State, Nigeria. Three…

  14. Numerical Analysis of the Influence of Clearance on Stress State and Contact Pressure in Plain Bearings

    Directory of Open Access Journals (Sweden)

    Vasile Cojocaru

    2017-12-01

    Full Text Available In the analysis of plain bearings by finite element method it is important to model as closely to real state the aspects that influence the stress and contact pressure: the loading mode, the properties of the materials, the lubrication system, the clearance between the shaft and the bearing body, the evolution in time of clearance correlated with the wear, etc. In order to study the effect of the clearance on the stress state, a plain bearing with nominal diameter d=40 mm was modeled. The contact pressure and the equivalent stress were computed for six discrete values of clearance, range from c=0 to c=0.3 mm. It has been shown that the increase of clearance generates an increase of the equivalent stress and contact pressure. The growth rate is higher for contact pressure, due to the decrease of the contact surface between the shaft and the bearing body

  15. Study of stress-strain state of pipeline under permafrost conditions

    Science.gov (United States)

    Tarasenko, A. A.; Redutinskiy, M. N.; Chepur, P. V.; Gruchenkova, A. A.

    2018-05-01

    In this paper, the dependences of the stress-strain state and subsidence of pipelines on the dimensions of the subsidence zone are obtained for the sizes of pipes that have become most widespread during the construction of main oil pipelines (530x10, 820x12, 1020x12, 1020x14, 1020x16, 1220x14, 1220x16, 1220x18 mm). True values of stresses in the pipeline wall, as well as the exact location of maximum stresses for the interval of subsidence zones from 5 to 60 meters, are determined. For this purpose, the authors developed a finite element model of the pipeline that takes into account the actual interaction of the pipeline with the subgrade and allows calculating the SSS of the structure for a variable subsidence zone. Based on the obtained dependences for the underground laying of oil pipelines in permafrost areas, it is proposed to artificially limit the zone of possible subsidence by separation supports from the soil with higher building properties and physical-mechanical parameters. This technical solution would significantly reduce costs when constructing new oil pipelines in permafrost areas.

  16. Fragmented metastable states exist in an attractive bose-einstein condensate for atom numbers well above the critical number of the Gross-Pitaevskii theory.

    Science.gov (United States)

    Cederbaum, Lorenz S; Streltsov, Alexej I; Alon, Ofir E

    2008-02-01

    It is well known that attractive condensates do not posses a stable ground state in three dimensions. The widely used Gross-Pitaevskii theory predicts the existence of metastable states up to some critical number N(cr)(GP) of atoms. It is demonstrated here that fragmented metastable states exist for atom numbers well above N(cr)(GP). The fragments are strongly overlapping in space. The results are obtained and analyzed analytically as well as numerically. The implications are discussed.

  17. Residual stresses

    International Nuclear Information System (INIS)

    Macherauch, E.

    1978-01-01

    Residual stresses are stresses which exist in a material without the influence of external powers and moments. They come into existence when the volume of a material constantly changes its form as a consequence of mechanical, thermal, and/or chemical processes and is hindered by neighbouring volumes. Bodies with residual stress are in mechanical balance. These residual stresses can be manifested by means of all mechanical interventions disturbing this balance. Acoustical, optical, radiological, and magnetical methods involving material changes caused by residual stress can also serve for determining residual stress. Residual stresses have an ambivalent character. In technical practice, they are feared and liked at the same time. They cause trouble because they can be the cause for unexpected behaviour of construction elements. They are feared since they can cause failure, in the worst case with catastrophical consequences. They are appreciated, on the other hand, because, in many cases, they can contribute to improvements of the material behaviour under certain circumstances. But they are especially liked for their giving convenient and (this is most important) mostly uncontrollable explanations. For only in very few cases we have enough knowledge and possibilities for the objective evaluation of residual stresses. (orig.) [de

  18. Probing Stress States in Silicon Nanowires During Electrochemical Lithiation Using In Situ Synchrotron X-Ray Microdiffraction

    Directory of Open Access Journals (Sweden)

    Imran Ali

    2018-04-01

    Full Text Available Silicon is considered as a promising anode material for the next-generation lithium-ion battery (LIB due to its high capacity at nanoscale. However, silicon expands up to 300% during lithiation, which induces high stresses and leads to fractures. To design silicon nanostructures that could minimize fracture, it is important to understand and characterize stress states in the silicon nanostructures during lithiation. Synchrotron X-ray microdiffraction has proven to be effective in revealing insights of mechanical stress and other mechanics considerations in small-scale crystalline structures used in many important technological applications, such as microelectronics, nanotechnology, and energy systems. In the present study, an in situ synchrotron X-ray microdiffraction experiment was conducted to elucidate the mechanical stress states during the first electrochemical cycle of lithiation in single-crystalline silicon nanowires (SiNWs in an LIB test cell. Morphological changes in the SiNWs at different levels of lithiation were also studied using scanning electron microscope (SEM. It was found from SEM observation that lithiation commenced predominantly at the top surface of SiNWs followed by further progression toward the bottom of the SiNWs gradually. The hydrostatic stress of the crystalline core of the SiNWs at different levels of electrochemical lithiation was determined using the in situ synchrotron X-ray microdiffraction technique. We found that the crystalline core of the SiNWs became highly compressive (up to -325.5 MPa once lithiation started. This finding helps unravel insights about mechanical stress states in the SiNWs during the electrochemical lithiation, which could potentially pave the path toward the fracture-free design of silicon nanostructure anode materials in the next-generation LIB.

  19. Interindividual differences in stress sensitivity: basal and stress-induced cortisol levels differentially predict neural vigilance processing under stress

    NARCIS (Netherlands)

    Henckens, Marloes J. A. G.; Klumpers, Floris; Everaerd, Daphne; Kooijman, Sabine C.; van Wingen, Guido A.; Fernández, Guillén

    2016-01-01

    Stress exposure is known to precipitate psychological disorders. However, large differences exist in how individuals respond to stressful situations. A major marker for stress sensitivity is hypothalamus-pituitary-adrenal (HPA)-axis function. Here, we studied how interindividual variance in both

  20. Environmental Social Stress, Paranoia and Psychosis Liability: A Virtual Reality Study.

    Science.gov (United States)

    Veling, Wim; Pot-Kolder, Roos; Counotte, Jacqueline; van Os, Jim; van der Gaag, Mark

    2016-11-01

    The impact of social environments on mental states is difficult to assess, limiting the understanding of which aspects of the social environment contribute to the onset of psychotic symptoms and how individual characteristics moderate this outcome. This study aimed to test sensitivity to environmental social stress as a mechanism of psychosis using Virtual Reality (VR) experiments. Fifty-five patients with recent onset psychotic disorder, 20 patients at ultra high risk for psychosis, 42 siblings of patients with psychosis, and 53 controls walked 5 times in a virtual bar with different levels of environmental social stress. Virtual social stressors were population density, ethnic density and hostility. Paranoia about virtual humans and subjective distress in response to virtual social stress exposures were measured with State Social Paranoia Scale (SSPS) and self-rated momentary subjective distress (SUD), respectively. Pre-existing (subclinical) symptoms were assessed with the Community Assessment of Psychic Experiences (CAPE), Green Paranoid Thoughts Scale (GPTS) and the Social Interaction Anxiety Scale (SIAS). Paranoia and subjective distress increased with degree of social stress in the environment. Psychosis liability and pre-existing symptoms, in particular negative affect, positively impacted the level of paranoia and distress in response to social stress. These results provide experimental evidence that heightened sensitivity to environmental social stress may play an important role in the onset and course of psychosis. © The Author 2016. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  1. The Stress-Strain State of Recent Structures in the Northeastern Sector of the Russian Arctic Region

    Science.gov (United States)

    Imaeva, L. P.; Imaev, V. S.; Mel'nikova, V. I.

    2018-03-01

    Complex research to determine the stress-strain state of the Earth's crust and the types of seismotectonic destruction for the northeastern sector of the Russian Arctic was conducted. The principles of regional ranking of neotectonic structures were developed according to the activity of geodynamic processes, and argumentation for their class differentiation is presented. The structural-tectonic position, the parameters of the deep structure, the system of active faults, and the tectonic stress fields, calculated on the basis of both tectonophysical analysis of discontinuous and folded late Cenozoic deformations and seismological data, were analyzed. This complex of investigations made it possible to determine the directions of the main axes of deformations of the stress-strain state of the Earth's crust and to reveal the regularity in the change of tectonic regimes.

  2. Development of residual stress analysis procedure for fitness-for-service assessment of welded structure

    International Nuclear Information System (INIS)

    Kim, Jong Sung; Jin, Tae Eun; Dong, P.; Prager, M.

    2003-01-01

    In this study, a state of art review of existing residual stress analysis techniques and representative solutions is presented in order to develop the residual stress analysis procedure for Fitness-For-Service(FFS) assessment of welded structure. Critical issues associated with existing residual stress solutions and their treatments in performing FFS are discussed. It should be recognized that detailed residual stress evolution is an extremely complicated phenomenon that typically involves material-specific thermomechanical/metallurgical response, welding process physics, and structural interactions within a component being welded. As a result, computational procedures can vary significantly from highly complicated numerical techniques intended only to elucidate a small part of the process physics to cost-effective procedures that are deemed adequate for capturing some of the important features in a final residual stress distribution. Residual stress analysis procedure for FFS purposes belongs to the latter category. With this in mind, both residual stress analysis techniques and their adequacy for FFS are assessed based on both literature data and analyses performed in this investigation

  3. Stress state of main stop valve with 500 mm nominal diameter white thermomechanical loading

    International Nuclear Information System (INIS)

    Koklyuev, G.A.; Plotnikov, V.P.

    1987-01-01

    The method of finite elements was applied to calculate the stress-strain state of the main isolation valve case with 500 mm nominal diameter while thermomechanical loading. Maximum stress takes place in the zone of joining nozzles with a spherical case and it attains the value of 138 MPa at working pressure of 12.5 MPa. The stress level in the point of nozzle-case welding is essentially lower than in zones of stres concentration and when excluding water hitting the slot of the lack of fusion in the route of the weld the weld service life is attained during the calculated service life

  4. Reliability assessment of stress concentration performance state for a perforated composite plate under traction

    Directory of Open Access Journals (Sweden)

    Jabbouri A.

    2012-07-01

    Full Text Available Considering a perforated sandwich plate made from two elastic homogenous and isotropic layers, and having a square hole, reliability assessment of stress concentration limit state for which the stress should not exceed a given threshold is performed in this work. Assuming that the plate dimensions and the applied loading are deterministic, focus is done on the square hole centre position and edge length considered to be random variables. The means and the standard deviations of these variables are assumed to be known, but no information is so far available about their densities of probabilities. To assess reliability of the performance state, reliability analysis known methods are applied to a response surface representation of the stress concentration factor of the perforated plate which is obtained through quadratic polynomial regression of finite element results. A parametric study is performed regarding the influence of the distributions of probabilities chosen to model the hole dimensions uncertainties. It is shown that the probability of failure depends largely on the selected densities of probabilities.

  5. RESEARCH OF THE STRESS STATE OF A MODIFIED IN-SITU CONCRETE

    Directory of Open Access Journals (Sweden)

    D. V. Rudenko

    2016-12-01

    Full Text Available Purpose. The article focuses on investigation of the stress state of a modified in-situ concrete of natural hardening. Methodology. To achieve the aim, the research of the microstructure of the modified cement matrix of concrete, as well as the mechanism of structure formation of modified concrete with natural hardening was conducted; the methods for reliable evaluation of concrete strength were defined. Findings. The development of internal stresses affects the properties of concretedifferently. With an increase in temperature-shrinkage deformations in time and, thus, with increasing structural stresses in the cement sheath around the grains of the filler two opposite processes may develop: zone of plastic flow or cracking. Originality. It was established that the structural features complex of the modified concrete when the load transfer leads to the formation of extensive zones of prefracture which is able to absorb a significant amount of elastic strain energy that provides the design deformation properties of the concrete for special purposes. Ideas about the definition of the criteria of cracking modified concrete, hardening under natural conditions had further development. Practical value. The resulting equations allow to solve the problem about the minimum level of structural stress in monolithic concrete in a saturated large placeholder, as well as to assess the influence of structural stresses on the properties of concrete. In normal concrete with a relatively thin cement sheath at temperature-shrinkage deformations, high tangential and low radial tension occur. In vivo, this stress is higher as a result of higher values of Δε(τ, which is not observed in the modified concrete. In the modified concretes only tangential stresses are the greatest danger to structures. The change of shrinkage stress with time is straightforward. The total temperature-shrinkage deformations have a sawtooth graph. For modified concrete the amplitude is 48

  6. DEPRESSION, ANXIETY, STRESS, AND THEIR ASSOCIATED FACTORS AMONG CORPS MEMBERS SERVING IN KEBBI STATE.

    Science.gov (United States)

    Balami, Ahmed D

    2015-01-01

    Depression, anxiety and stress, are not only health problems by themselves, but also associated with other negative health consequences. The national youth service is usually characterized by a number of new challenges and experiences which may require life style adjustments by the corps member. However, no previous study on psychological factors has been conducted among corps members. This study was conducted to determine the prevalence of depression, anxiety and, stress and their associated factors among corps members serving in Kebbi state. A cross-sectional study was conducted among 264 corps members from four local government areas of the state. Selection of the local government areas and the individual participants was by simple random sampling. Data was collected from May to June 2014 using a self-administered questionnaire. Data analysis used chi-square test to identify the relationship between categorical variables and multivariate logistic regression to identify the independent factors for depression, anxiety and stress each. The response rate was 97%. Most of the respondents were males (63.6%), single (85.5%), and above 20 years of age (71.6%). The overall prevalences of depression, anxiety and stress among the respondents were 36.4%, 54.5% and 18.2% respectively. The independent factors for depression were; being from the North central (OR = 5.99; 95% CI: 2.194-16.354) or South-south; and the perception of earning enough income (OR = 2.987; 95% CI: 1.062-8.400). For anxiety, male gender (OR = 0.411; 95% CI: 0.169-0.999); and being from the North central were significant risk factors (OR = 3.731; 95% CI: 1.450-9.599). Being above 26 years of age was an independent risk factor for stress (OR = 0.083; 95% CI: 0.018-0.381). Also, those who had ever schooled outside their towns of residence were less likely to be stressed compared to those who had never (OR = 0.30; 95% CI: 0.110-0.855). All other factors did not show any significant association with any of

  7. [Stress-induced cellular adaptive mutagenesis].

    Science.gov (United States)

    Zhu, Linjiang; Li, Qi

    2014-04-01

    The adaptive mutations exist widely in the evolution of cells, such as antibiotic resistance mutations of pathogenic bacteria, adaptive evolution of industrial strains, and cancerization of human somatic cells. However, how these adaptive mutations are generated is still controversial. Based on the mutational analysis models under the nonlethal selection conditions, stress-induced cellular adaptive mutagenesis is proposed as a new evolutionary viewpoint. The hypothetic pathway of stress-induced mutagenesis involves several intracellular physiological responses, including DNA damages caused by accumulation of intracellular toxic chemicals, limitation of DNA MMR (mismatch repair) activity, upregulation of general stress response and activation of SOS response. These responses directly affect the accuracy of DNA replication from a high-fidelity manner to an error-prone one. The state changes of cell physiology significantly increase intracellular mutation rate and recombination activity. In addition, gene transcription under stress condition increases the instability of genome in response to DNA damage, resulting in transcription-associated DNA mutagenesis. In this review, we summarize these two molecular mechanisms of stress-induced mutagenesis and transcription-associated DNA mutagenesis to help better understand the mechanisms of adaptive mutagenesis.

  8. Steady thermal stress and strain rates in a rotating circular cylinder under steady state temperature

    Directory of Open Access Journals (Sweden)

    Pankaj Thakur

    2014-01-01

    Full Text Available Thermal stress and strain rates in a thick walled rotating cylinder under steady state temperature has been derived by using Seth’s transition theory. For elastic-plastic stage, it is seen that with the increase of temperature, the cylinder having smaller radii ratios requires lesser angular velocity to become fully plastic as compared to cylinder having higher radii ratios The circumferential stress becomes larger and larger with the increase in temperature. With increase in thickness ratio stresses must be decrease. For the creep stage, it is seen that circumferential stresses for incompressible materials maximum at the internal surface as compared to compressible material, which increase with the increase in temperature and measure n.

  9. Characterization of degradation products of amorphous and polymorphic forms of clopidogrel bisulphate under solid state stress conditions

    DEFF Research Database (Denmark)

    Raijada, Dhara K; Prasad, Bhagwat; Paudel, Amrit

    2010-01-01

    The present study deals with the stress degradation studies on amorphous and polymorphic forms of clopidogrel bisulphate. The objective was to characterize the degradation products and postulate mechanism of decomposition of the drug under solid state stress conditions. For that, amorphous form, ...

  10. The co-existence of depression, anxiety and post-traumatic stress symptoms in the perinatal period: A systematic review.

    Science.gov (United States)

    Agius, Andee; Xuereb, Rita Borg; Carrick-Sen, Debbie; Sultana, Roberta; Rankin, Judith

    2016-05-01

    to identify and appraise the current international evidence regarding the presence and prevalence of the co-existence of depression, anxiety and post-traumatic stress symptoms in the antenatal and post partum period. using a list of keywords, Medline, CINHAL, Cochrane Library, EMBASE, PsychINFO, Web of Science and the Index of Theses and Conference Proceedings (Jan 1960 - Jan 2015) were systematically searched. Experts in the field were contacted to locate papers that were in progress or in press. Reference lists from relevant review articles were searched. Inclusion criteria included full papers published in English reporting concurrent depression, anxiety and post-traumatic stress symptoms in pregnant and post partum women. A validated data extraction review tool was used. 3424 citations were identified. Three studies met the full inclusion criteria. All reported findings in the postnatal period. No antenatal studies were identified. The prevalence of triple co-morbidity was relatively low ranging from 2% to 3%. triple co-morbidity does occur, although the prevalence appears to be low. Due to the presentation of complex symptoms, women with triple co-morbidity are likely to be difficult to identify, diagnose and treat. Clinical staff should be aware of the potential of complex symptomatology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. The measurement of in-situ stress in near surface environments

    International Nuclear Information System (INIS)

    Garritty, P.; Irvin, R.A.

    1984-04-01

    One of the major unknowns affecting aspects of underground construction and the geohydrology of rock masses is the magnitude and direction of the geostatic principal stresses in the earth's crust. This is particularly the case in near surface rocks where there are indications that high horizontal stresses may exist. The measurement of stress in near surface environments is particularly difficult. The techniques, experience and results of a geostatic stress measurement programme using four commercially available devices at shallow depth in the Carnmenellis Granite are critically discussed and compared. This report also brings together some of the conclusions of two previous reports in the series, Garritty (1983) and Garritty and Irvin (1983), and emphasises the fundamental relationship between the state of stress in the earth's crust and the geohydrology of rock masses. (author)

  12. Stress inoculation training supported by physiology-driven adaptive virtual reality stimulation.

    Science.gov (United States)

    Popović, Sinisa; Horvat, Marko; Kukolja, Davor; Dropuljić, Branimir; Cosić, Kresimir

    2009-01-01

    Significant proportion of psychological problems related to combat stress in recent large peacekeeping operations underscores importance of effective methods for strengthening the stress resistance of military personnel. Adaptive control of virtual reality (VR) stimulation, based on estimation of the subject's emotional state from physiological signals, may enhance existing stress inoculation training (SIT). Physiology-driven adaptive VR stimulation can tailor the progress of stressful stimuli delivery to the physiological characteristics of each individual, which is indicated for improvement in stress resistance. Therefore, following an overview of SIT and its applications in the military setting, generic concept of physiology-driven adaptive VR stimulation is presented in the paper. Toward the end of the paper, closed-loop adaptive control strategy applicable to SIT is outlined.

  13. Effect of surface stress state on dissolution property of Alloy 690 in simulated primary water condition

    International Nuclear Information System (INIS)

    Kim, Kyung Mo; Shim, Hee-Sang; Lee, Eun Hee; Seo, Myung Ji; Han, Jung Ho; Hur, Do Haeng

    2014-01-01

    The dissolution control of nickel is important to reduce the radioactive dose rate and deterioration of fuel performance in the operation of nuclear power plants (PWR). The corrosion properties are affected by the metal surface residual stress introduced in manufacture process such as work hardening. This work studied the effect of surface modification on the release rate of Alloy 690, nickel-base alloy for a steam generator tube, in the test condition of simulated primary water chemistry in PWRs. The surface stress modification was applied by the electro-polishing and shot peening method. Shot peening process was applied using ceramic beads with different intensities through the variation of air pressure. The corrosion release tests performed at 330degC with LiOH 2 ppm and H 3 BO 4 1200 ppm, DH(dissolved hydrogen) 35 cc/kg (STP) and about 20 ppb of DO(dissolved oxygen) condition. The corrosion release rate was evaluated by a gravimetric analysis method and the surface analysed by SEM and optical microscope. The surface residual stress was measured by an X-ray diffractometer, and the distribution of stress state was evaluated by a micro-hardness tester. The metal ion release rate of alloy 690 was evaluated from the influence of the stress state on the metal surface. The oxide property and structure was affected by the residual stress in the oxide layer. (author)

  14. Study of the stress-strain state of compressed concrete elements with composite reinforcement

    Directory of Open Access Journals (Sweden)

    Bondarenko Yurii

    2017-01-01

    Full Text Available The efficiency analysis of the application of glass composite reinforcement in compressed concrete elements as a load-carrying component has been performed. The results of experimental studies of the deformation-strength characteristics of this reinforcement on compression and compressed concrete cylinders reinforced by this reinforcement are presented. The results of tests and mechanisms of sample destruction have been analyzed. The numerical analysis of the stress-strain state has been performed for axial compression of concrete elements with glasscomposite reinforcement. The influence of the reinforcement percentage on the stressed state of a concrete compressed element with the noted reinforcement is estimated. On the basis of the obtained results, it is established that the glass-composite reinforcement has positive effect on the strength of the compressed concrete elements. That is, when calculating the load-bearing capacity of such structures, the function of composite reinforcement on compression should not be neglected.

  15. Nutritional mitigation of winter thermal stress in gilthead seabream associated metabolic pathways and potential indicators of nutritional state

    DEFF Research Database (Denmark)

    Richard, Nadege; Silva, Tomé S.; Wulff, Tune

    2016-01-01

    and phenylalanine/tyrosine catabolism, and induced higher aerobic metabolism and gluconeogenesis. Results support the notion that WF diet had a positive effect on fish nutritional state by partially counteracting the effect of thermal stress and underlined the sensitivity of proteome data for nutritional....... A total of 404 protein spots, out of 1637 detected, were differentially expressed between the two groups of fish. Mass spectrometry analysis of selected spots suggested that WF diet improved oxidative stress defense, reduced endoplasmic reticulum stress, enhanced metabolic flux through methionine cycle...... and metabolic profiling purposes. Intragroup variability and co-measured information were also used to pinpoint which proteins displayed a stronger relation with fish nutritional state....

  16. Seismicity and stress state in the South China Sea, Indochina and their vicinity

    Science.gov (United States)

    Zang, Shaoxian; Wu, Zhongliang; Li, Aibing

    1992-02-01

    The distribution of earthquakes from 1973 to 1982 in the South China Sea, Indochina and their vicinity was studied using the data from I. S. C. It was found that the earthquakes are mainly concentrated along the boundaries of plates. Beside, some of shallow eartqhuakes are distributed in west part of Burma and the boundary between Burma and China, a few of earthquakes occurred in South China Sea. The features of Benioff zone along the boundaries between India plate, Philippine Sea plate and Eurasia plate were studied. The plate do not coupled well under the Java trench and the Philippine trench. The subducted India plate under Burmese range, Andaman—Nicobar arc moves NNE. The fault plane solutions of earthquakes were studied using the first motions of P wave. The stress state on subduction zones and within the area were deduced from the fault plane solutions and the fault movement. It was found that the direction of principal compression axis of stress is in the NNE in west part of Burma, in S—N in south and middle part of Bruma and Thailand, and in NNE or S—N in the South China Sea. It was also found that the stress state has close relation with the interaction of plates.

  17. Effect of different pneumoperitoneum pressure on stress state in patients underwent gynecological laparoscopy

    Directory of Open Access Journals (Sweden)

    Ai-Yun Shen

    2016-10-01

    Full Text Available Objective: To observe the effect of different CO2 pneumoperitoneum pressure on the stress state in patients underwent gynecological laparoscopy. Methods: A total of 90 patients who were admitted in our hospital from February, 2015 to October, 2015 for gynecological laparoscopy were included in the study and divided into groups A, B, and C according to different CO2 pneumoperitoneum pressure. The changes of HR, BP, and PetCO2 during the operation process in the three groups were recorded. The changes of stress indicators before operation (T0, 30 min during operation (T1, and 12 h after operation (T2 were compared. Results: The difference of HR, BP, and PetCO2 levels before operation among the three groups was not statistically significant (P>0.05. HR, BP, and PetCO2 levels 30 min after pneumoperitoneum were significantly elevated when compared with before operation (P0.05. PetCO2 level 30 min after pneumoperitoneum in group B was significantly higher than that in group A (P0.05. Conclusions: Low pneumoperitoneum pressure has a small effect on the stress state in patients underwent gynecological laparoscopy, will not affect the surgical operation, and can obtain a preferable muscular relaxation and vision field; therefore, it can be selected in preference.

  18. State of the stock-What do we know about existing buildings and their future prospects?

    International Nuclear Information System (INIS)

    Ravetz, Joe

    2008-01-01

    The UK building stock has seen major changes in the last 50 years, in its form, fabric and function. The context is the expansion of the building stock and built infrastructure, which takes place in most areas at 1-2% per year, with the implication that up to 75% of the dwellings of the year 2050 already exist now. This is a major challenge. The energy performance of much of this stock is generally low, while its economic, social and cultural values are often high. The purpose of this review is to provide a brief outline of the state of knowledge of the existing building stock, and of potential advances in that knowledge. We follow a knowledge mapping approach, set out on several axes. The first is an axis from buildings as physical forms, to buildings as containers of socio-economic activity. Another axis spans between existing buildings, renovations and adaptations, and new buildings. A third axis is that of scale, from building components to large-scale settlements. There are many possible combinations of these parameters. Here we focus on those that are most relevant to the SEMBE goals of sustainable energy management across the whole building stock

  19. Existence and controllability results for damped second order impulsive functional differential systems with state-dependent delay

    Directory of Open Access Journals (Sweden)

    M. Mallika Arjunan

    2014-01-01

    Full Text Available In this paper, we investigate the existence and controllability of mild solutions for a damped second order impulsive functional differential equation with state-dependent delay in Banach spaces. The results are obtained by using Sadovskii's fixed point theorem combined with the theories of a strongly continuous cosine family of bounded linear operators. Finally, an example is provided to illustrate the main results.

  20. Age, subjective stress, and depression after ischemic stroke.

    Science.gov (United States)

    McCarthy, Michael J; Sucharew, Heidi J; Alwell, Kathleen; Moomaw, Charles J; Woo, Daniel; Flaherty, Matthew L; Khatri, Pooja; Ferioli, Simona; Adeoye, Opeolu; Kleindorfer, Dawn O; Kissela, Brett M

    2016-02-01

    The incidence of stroke among younger adults in the United States is increasing. Few studies have investigated the prevalence of depressive symptoms after stroke among different age groups or the extent to which subjective stress at the time of stroke interacts with age to contribute to post-stroke depression. The present study examined whether there exists an age gradient in survivors' level of depressive symptoms and explored the extent to which financial, family, and health-related stress may also impact on depression. Bivariate analyses (N = 322) indicated significant differences in depression and stress by age group, as well as differences in age and stress by 3-month depression status. Linear regression analyses indicated that survivors between the ages of 25-54 and 55-64 years old had, on average, significantly higher depressive symptom scores. Those with financial, family, and health-related stress at the time of stroke, irrespective of age, also had significantly higher scores.

  1. Stress state reconstruction and tectonic evolution of the northern slope of the Baikit anteclise, Siberian Craton, based on 3D seismic data

    Science.gov (United States)

    Moskalenko, A. N.; Khudoley, A. K.; Khusnitdinov, R. R.

    2017-05-01

    In this work, we consider application of an original method for determining the indicators of the tectonic stress fields in the northern Baikit anteclise based on 3D seismic data for further reconstruction of the stress state parameters when analyzing structural maps of seismic horizons and corresponded faults. The stress state parameters are determined by the orientations of the main stress axes and shape of the stress ellipsoid. To calculate the stress state parameters from data on the spatial orientations of faults and slip vectors, we used the algorithms from quasiprimary stress computation methods and cataclastic analysis, implemented in the software products FaultKinWin and StressGeol, respectively. The results of this work show that kinematic characteristics of faults regularly change toward the top of succession and that the stress state parameters are characterized by different values of the Lode-Nadai coefficient. Faults are presented as strike-slip faults with normal or reverse component of displacement. Three stages of formation of the faults are revealed: (1) partial inversion of ancient normal faults, (2) the most intense stage with the predominance of thrust and strike-slip faults at north-northeast orientation of an axis of the main compression, and (3) strike-slip faults at the west-northwest orientation of an axis of the main compression. The second and third stages are pre-Vendian in age and correlate to tectonic events that took place during the evolution of the active southwestern margin of the Siberian Craton.

  2. Reassessment of the role of stress in development of radiation-induced microstructure

    International Nuclear Information System (INIS)

    Garner, F.A.; Wolfer, W.G.; Brager, H.R.

    1978-10-01

    Data are now accumulating which clearly demonstrate that the stress state plays a strong role in the development of void and dislocation microstructure in metals during neutron irradiation. In these experiments the application of a tensile biaxial stress state at constant fluence and temperature has been found to lead to a progressively decreasing metal density with increasing stress. The effect of stress on the concurrent development of voids, Frank interstitial loops and dislocation networks has been studied with transmission electron microscopy. The results of these experiments clearly show that the densities of both Frank loops and voids are enhanced by a tensile stress field, with the relevant operating variable being the hydrostatic stress. More importantly it appears that any anisotropy in the stress field is reflected in a corresponding anisotropy that develops in the number of Frank loops that form on the various (111) planes. The loop density that develops on each plane exhibits a clear and direct dependence on the resolved normal stress component at each plane. Although the data from these experiments have been previously interpreted to support the existence of stress-assisted nucleation mechanisms for both loops and voids, further analysis has shown both of these explanations to be deficient in one or more respects, and both models have been replaced

  3. State anxiety, psychological stress and positive well-being responses to yoga and aerobic exercise in people with schizophrenia: a pilot study.

    Science.gov (United States)

    Vancampfort, Davy; De Hert, Marc; Knapen, Jan; Wampers, Martien; Demunter, Hella; Deckx, Seppe; Maurissen, Katrien; Probst, Michel

    2011-01-01

    Worsening of schizophrenia symptoms is related to stress and anxiety. People with schizophrenia often experience difficulties in coping with stress and possess a limited repertoire of coping strategies. A randomised comparative trial was undertaken in patients with schizophrenia to evaluate changes in state anxiety, psychological stress and subjective well-being after single sessions of yoga and aerobic exercise compared with a control condition. Forty participants performed a single 30-min yoga session, 20-min of aerobic exercise on a bicycle ergometre at self-selected intensity and a 20-min no exercise control condition in random order. After single sessions of yoga and aerobic exercise individuals with schizophrenia or schizoaffective disorder showed significantly decreased state anxiety (p stress (p exercise control condition. Effect sizes ranged from 0.82 for psychological stress after aerobic exercise to 1.01 for state anxiety after yoga. The magnitude of the changes did not differ significantly between yoga and aerobic exercise. People with schizophrenia and physiotherapists can choose either yoga or aerobic exercise in reducing acute stress and anxiety taking into account the personal preference of each individual.

  4. Software for determining the direction of movement, shear and normal stresses of a fault under a determined stress state

    Science.gov (United States)

    Álvarez del Castillo, Alejandra; Alaniz-Álvarez, Susana Alicia; Nieto-Samaniego, Angel Francisco; Xu, Shunshan; Ochoa-González, Gil Humberto; Velasquillo-Martínez, Luis Germán

    2017-07-01

    In the oil, gas and geothermal industry, the extraction or the input of fluids induces changes in the stress field of the reservoir, if the in-situ stress state of a fault plane is sufficiently disturbed, a fault may slip and can trigger fluid leakage or the reservoir might fracture and become damaged. The goal of the SSLIPO 1.0 software is to obtain data that can reduce the risk of affecting the stability of wellbores. The input data are the magnitudes of the three principal stresses and their orientation in geographic coordinates. The output data are the slip direction of a fracture in geographic coordinates, and its normal (σn) and shear (τ) stresses resolved on a single or multiple fracture planes. With this information, it is possible to calculate the slip tendency (τ/σn) and the propensity to open a fracture that is inversely proportional to σn. This software could analyze any compressional stress system, even non-Andersonian. An example is given from an oilfield in southern Mexico, in a region that contains fractures formed in three events of deformation. In the example SSLIPO 1.0 was used to determine in which deformation event the oil migrated. SSLIPO 1.0 is an open code application developed in MATLAB. The URL to obtain the source code and to download SSLIPO 1.0 are: http://www.geociencias.unam.mx/ alaniz/main_code.txt, http://www.geociencias.unam.mx/ alaniz/ SSLIPO_pkg.exe.

  5. Stress among Accounting Educators in the United States.

    Science.gov (United States)

    Seiler, Robert E.; Pearson, Della A.

    1984-01-01

    Stress among accounting educators was investigated and relationships between stress levels and work satisfaction levels, personality traits, and stress-coping techniques were examined. The most important personality charcteristics of higher stress individuals were impatience, assertiveness, workaholism, and idealism. (Author/MLW)

  6. The intersection of stress and reward: BNST modulation of aversive and appetitive states.

    Science.gov (United States)

    Ch'ng, Sarah; Fu, Jingjing; Brown, Robyn M; McDougall, Stuart J; Lawrence, Andrew J

    2018-01-09

    The bed nucleus of the stria terminalis (BNST) is widely acknowledged as a brain structure that regulates stress and anxiety states, as well as aversive and appetitive behaviours. The diverse roles of the BNST are afforded by its highly modular organisation, neurochemical heterogeneity, and complex intrinsic and extrinsic circuitry. There has been growing interest in the BNST in relation to psychopathologies such as anxiety and addiction. Although research on the human BNST is still in its infancy, there have been extensive preclinical studies examining the molecular signature and hodology of the BNST and their involvement in stress and reward seeking behaviour. This review examines the neurochemical phenotype and connectivity of the BNST, as well as electrophysiological correlates of plasticity in the BNST mediated by stress and/or drugs of abuse. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Enhanced Performance Controller Design for Stochastic Systems by Adding Extra State Estimation onto the Existing Closed Loop Control

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yuyang; Zhang, Qichun; Wang, Hong

    2016-08-30

    To enhance the performance of the tracking property , this paper presents a novel control algorithm for a class of linear dynamic stochastic systems with unmeasurable states, where the performance enhancement loop is established based on Kalman filter. Without changing the existing closed loop with the PI controller, the compensative controller is designed to minimize the variances of the tracking errors using the estimated states and the propagation of state variances. Moreover, the stability of the closed-loop systems has been analyzed in the mean-square sense. A simulated example is included to show the effectiveness of the presented control algorithm, where encouraging results have been obtained.

  8. Regional homogeneity and resting state functional connectivity: associations with exposure to early life stress.

    Science.gov (United States)

    Philip, Noah S; Kuras, Yuliya I; Valentine, Thomas R; Sweet, Lawrence H; Tyrka, Audrey R; Price, Lawrence H; Carpenter, Linda L

    2013-12-30

    Early life stress (ELS) confers risk for psychiatric illness. Previous literature suggests ELS is associated with decreased resting-state functional connectivity (rs-FC) in adulthood, but there are no studies of resting-state neuronal activity in this population. This study investigated whether ELS-exposed individuals demonstrate resting-state activity patterns similar to those found in PTSD. Twenty-seven adults (14 with at least moderate ELS), who were medication-free and without psychiatric or medical illness, underwent MRI scans during two 4-minute rest periods. Resting-state activity was examined using regional homogeneity (ReHo), which estimates regional activation patterns through indices of localized concordance. ReHo values were compared between groups, followed by rs-FC analyses utilizing ReHo-localized areas as seeds to identify other involved regions. Relative to controls, ELS subjects demonstrated diminished ReHo in the inferior parietal lobule (IPL) and superior temporal gyrus (STG). ReHo values were inversely correlated with ELS severity. Secondary analyses revealed decreased rs-FC between the IPL and right precuneus/posterior cingulate, left fusiform gyrus, cerebellum and caudate in ELS subjects. These findings indicate that ELS is associated with altered resting-state activity and connectivity in brain regions involved in trauma-related psychiatric disorders. Future studies are needed to evaluate whether these associations represent potential imaging biomarkers of stress exposure. Published by Elsevier Ireland Ltd.

  9. The global distribution of giant radiating dike swarms on Venus: Implications for the global stress state

    Science.gov (United States)

    Grosfils, Eric B.; Head, James W.

    1994-01-01

    Magellan radar data of Venus reveal 163 large radial lineament systems composed of graben, fissure, and fracture elements. On the basis of their structure, plan view geometry, and volcanic associations, at least 72% are interpreted to have formed primarily through subsurface dike swarm emplacement, the remainder through uplift or a combination of these two mechanisms. The population of swarms is used to determine regional and global stress orientation. The stress configuration recorded from 330-210 deg E (Aphrodite Terra) is best explained by isostatic compensation of existing long wavelength topography or coupling between mantle flow and the lithosphere. The rest are correlated with concentrations of rifting and volcanism in the Beta-Atla-Themis region. The global stress field on Venus is different than that of Earth, where plate boundary forces dominate.

  10. Stress states in the Zagros fold-and-thrust belt from passive margin to collisional tectonic setting

    Science.gov (United States)

    Navabpour, Payman; Barrier, Eric

    2012-12-01

    The present-day Zagros fold-and-thrust belt of SW-Iran corresponds to the former Arabian passive continental margin of the southern Neo-Tethyan basin since the Permian-Triassic rifting, undergoing later collisional deformation in mid-late Cenozoic times. In this paper an overview of brittle tectonics and palaeostress reconstructions of the Zagros fold-and-thrust belt is presented, based on direct stress tensor inversion of fault slip data. The results indicate that, during the Neo-Tethyan oceanic opening, an extensional tectonic regime affectedthe sedimentary cover in Triassic-Jurassic times with an approximately N-S trend of the σ3 axis, oblique to the margin, which was followed by some local changes to a NE-SW trend during Jurassic-Cretaceous times. The stress state significantly changed to thrust setting, with a NE-SW trend of the σ1 axis, and a compressional tectonic regime prevailed during the continental collision and folding of the sedimentary cover in Oligocene-Miocene times. This compression was then followed by a strike-slip stress state with an approximately N-S trend of the σ1 axis, oblique to the belt, during inversion of the inherited extensional basement structures in Pliocene-Recent times. The brittle tectonic reconstructions, therefore, highlighted major changes of the stress state in conjunction with transitions between thin- and thick-skinned structures during different extensional and compressional stages of continental deformation within the oblique divergent and convergent settings, respectively.

  11. The state of stress in British rocks

    International Nuclear Information System (INIS)

    Klein, R.J.; Brown, E.T.

    1983-03-01

    When designing underground works, it is necessary to take account of not only the vertical stresses arising predictably from the weight of the rock overhead, but also horizontal stresses which may vary from one direction to another as a result of past tectonic action. This report discussed the techniques that have been used to measure such stresses. Few determinations have been made in Great Britain, so it has been necessary to augment what little is known by reference to fault systems, relying on correlations between the measured magnitude and direction of maximum horizontal stress with local tectonic history. This has enabled general conclusions to be reached for Great Britain. (author)

  12. Biomass Resource Assessment and Existing Biomass Use in the Madhya Pradesh, Maharashtra, and Tamil Nadu States of India

    Directory of Open Access Journals (Sweden)

    Karthikeyan Natarajan

    2015-05-01

    Full Text Available India is experiencing energy crisis and a widening gap between energy supply and demand. The country is, however, endowed with considerable, commercially and technically available renewable resources, from which surplus agro-biomass is of great importance and a relatively untapped resource. In the policy making process, knowledge of existing biomass use, degree of social reliance, and degree of biomass availability for energy production is unequivocal and pre-conditional. Field observations, documentation, and fill-in sheet tools were used to investigate the potential of biomass resources and the existing domestic, commercial, and industrial uses of biomass in selected Indian states. To do so, a team of field observers/supervisors visited three Indian states namely: Maharashtra (MH, Madhya Pradesh (MP, and Tamil Nadu (TN. Two districts from each state were selected to collect data regarding the use of biomass and the extent of biomass availability for energy production. In total, 471 farmers were interviewed, and approximately 75 farmers with various land holdings have been interviewed in each district. The existing uses of biomass have been documented in this survey study and the results show that the majority of biomass is used as fodder for domestic livestock followed by in-site ploughing, leaving trivial surplus quantities for other productive uses. Biomass for cooking appeared to be insignificant due to the availability and access to Liquefied Petroleum Gas (LPG cylinders in the surveyed districts. Opportunities exist to utilize roadside-dumped biomass, in-site burnt biomass, and a share of biomass used for ploughing. The GIS-based maps show that biomass availability varies considerably across the Taluks of the surveyed districts, and is highly dependent on a number of enviromental and socio-cultural factors. Developing competitive bioenergy market and enhancing and promoting access to more LPG fuel connections seem an appropriate socio

  13. Prospective Analysis of Risk Factors Related to Depression and Post Traumatic Stress Disorder in Deployed United States Navy Personnel

    Science.gov (United States)

    2011-03-28

    post traumatic stress disorder ( PTSD ) and depression (MDD) than...United States Several epidemiological studies have been conducted on the prevalence of post traumatic stress disorder ( PTSD ) and major depression in...forms contain the same 4-item screener for post - traumatic stress disorder ( PTSD ). This screener was developed by the National Center for PTSD and

  14. Main results of BN-600 reactor stress-strain state investigations

    International Nuclear Information System (INIS)

    Panov, V.A.

    1983-01-01

    The development of BN-600 fast reactor plant needed the solution of a series of complex engineering problems including ones for confirming integrity of the most vital structural components. The particular attention was given to the main vessel since reactor availability end safe operation of the plant as a whole depend on vessel strength end integrity. The present report deals with the main results of theoretical and experimental investigations of the stress-strain state of BN-600 reactor vessel carried out during design, start-up and initial bringing the reactor to power

  15. Experimental Research of Reliability of Plant Stress State Detection by Laser-Induced Fluorescence Method

    Directory of Open Access Journals (Sweden)

    Yury Fedotov

    2016-01-01

    Full Text Available Experimental laboratory investigations of the laser-induced fluorescence spectra of watercress and lawn grass were conducted. The fluorescence spectra were excited by YAG:Nd laser emitting at 532 nm. It was established that the influence of stress caused by mechanical damage, overwatering, and soil pollution is manifested in changes of the spectra shapes. The mean values and confidence intervals for the ratio of two fluorescence maxima near 685 and 740 nm were estimated. It is presented that the fluorescence ratio could be considered a reliable characteristic of plant stress state.

  16. Mindfulness meditation training alters stress-related amygdala resting state functional connectivity: a randomized controlled trial.

    Science.gov (United States)

    Taren, Adrienne A; Gianaros, Peter J; Greco, Carol M; Lindsay, Emily K; Fairgrieve, April; Brown, Kirk Warren; Rosen, Rhonda K; Ferris, Jennifer L; Julson, Erica; Marsland, Anna L; Bursley, James K; Ramsburg, Jared; Creswell, J David

    2015-12-01

    Recent studies indicate that mindfulness meditation training interventions reduce stress and improve stress-related health outcomes, but the neural pathways for these effects are unknown. The present research evaluates whether mindfulness meditation training alters resting state functional connectivity (rsFC) of the amygdala, a region known to coordinate stress processing and physiological stress responses. We show in an initial discovery study that higher perceived stress over the past month is associated with greater bilateral amygdala-subgenual anterior cingulate cortex (sgACC) rsFC in a sample of community adults (n = 130). A follow-up, single-blind randomized controlled trial shows that a 3-day intensive mindfulness meditation training intervention (relative to a well-matched 3-day relaxation training intervention without a mindfulness component) reduced right amygdala-sgACC rsFC in a sample of stressed unemployed community adults (n = 35). Although stress may increase amygdala-sgACC rsFC, brief training in mindfulness meditation could reverse these effects. This work provides an initial indication that mindfulness meditation training promotes functional neuroplastic changes, suggesting an amygdala-sgACC pathway for stress reduction effects. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  17. Endoplasmic reticulum redox state is not perturbed by pharmacological or pathological endoplasmic reticulum stress in live pancreatic β-cells.

    Directory of Open Access Journals (Sweden)

    Irmgard Schuiki

    Full Text Available Accumulation of unfolded, misfolded and aggregated proteins in the endoplasmic reticulum (ER causes ER stress. ER stress can result from physiological situations such as acute increases in secretory protein biosynthesis or pathological conditions that perturb ER homeostasis such as alterations in the ER redox state. Here we monitored ER redox together with transcriptional output of the Unfolded Protein Response (UPR in INS-1 insulinoma cells stably expressing eroGFP (ER-redox-sensor and mCherry protein driven by a GRP78 promoter (UPR-sensor. Live cell imaging, flow cytometry and biochemical characterization were used to examine these parameters in response to various conditions known to induce ER stress. As expected, treatment of the cells with the reducing agent dithiothreitol caused a decrease in the oxidation state of the ER accompanied by an increase in XBP-1 splicing. Unexpectedly however, other treatments including tunicamycin, thapsigargin, DL-homocysteine, elevated free fatty acids or high glucose had essentially no influence on the ER redox state, despite inducing ER stress. Comparable results were obtained with dispersed rat islet cells expressing eroGFP. Thus, unlike in yeast cells, ER stress in pancreatic β-cells is not associated with a more reducing ER environment.

  18. Stress og aldring

    DEFF Research Database (Denmark)

    Jørgensen, Anders; Jørgensen, Martin Balslev; Poulsen, Henrik Enghusen

    2012-01-01

    Accumulating evidence supports the popular notion that psychological stress states may accelerate aging. Stress has been shown to influence cellular systems known to be involved in the aging process. Furthermore, stress is associated with an increased risk of various age-related medical disorders....... These effects are likely mediated by the secretion of stress hormones. In this short review we focus on biochemical and epidemiological evidence for a link between stress and aging.......Accumulating evidence supports the popular notion that psychological stress states may accelerate aging. Stress has been shown to influence cellular systems known to be involved in the aging process. Furthermore, stress is associated with an increased risk of various age-related medical disorders...

  19. Physiology-driven adaptive virtual reality stimulation for prevention and treatment of stress related disorders.

    Science.gov (United States)

    Cosić, Kresimir; Popović, Sinisa; Kukolja, Davor; Horvat, Marko; Dropuljić, Branimir

    2010-02-01

    The significant proportion of severe psychological problems related to intensive stress in recent large peacekeeping operations underscores the importance of effective methods for strengthening the prevention and treatment of stress-related disorders. Adaptive control of virtual reality (VR) stimulation presented in this work, based on estimation of the person's emotional state from physiological signals, may enhance existing stress inoculation training (SIT). Physiology-driven adaptive VR stimulation can tailor the progress of stressful stimuli delivery to the physiological characteristics of each individual, which is indicated for improvement in stress resistance. Following an overview of physiology-driven adaptive VR stimulation, its major functional subsystems are described in more detail. A specific algorithm of stimuli delivery applicable to SIT is outlined.

  20. The influence of the anisotropic stress state on the intermediate strain properties of granular material

    KAUST Repository

    Goudarzy, M.; Kö nig, D.; Santamarina, Carlos; Schanz, T.

    2017-01-01

    This paper shows the effect of anisotropic stress state on intermediate strain properties of cylindrical samples containing spherical glass particles. Tests were carried out with the modified resonant column device available at Ruhr

  1. Development and validation of the Acculturative Stress Scale for Chinese College Students in the United States (ASSCS).

    Science.gov (United States)

    Bai, Jieru

    2016-04-01

    Chinese students are the biggest ethnic group of international students in the United States. This study aims to develop a reliable and valid scale to accurately measure their acculturative stress. A 72-item pool was sent online to Chinese students and a five-factor scale of 32 items was generated by exploratory factor analysis. The five factors included language insufficiency, social isolation, perceived discrimination, academic pressure, and guilt toward family. The Acculturative Stress Scale for Chinese Students demonstrated high reliability and initial validity by predicting depression and life satisfaction. It was the first Chinese scale of acculturative stress developed and validated among a Chinese student sample in the United States. In the future, the scale can be used as a diagnostic tool by mental health professionals and a self-assessment tool by Chinese students. (c) 2016 APA, all rights reserved.

  2. Stress factors for the deformation systems of zirconium under multiaxial stress

    International Nuclear Information System (INIS)

    Hobson, D.O.

    1976-01-01

    Calculation of the resolved shear stresses (rss) that act on various deformation systems in metals and, in particular, the determination of those systems subjected to the highest rss by a given set of multiaxial stresses is of importance in the study of texture development, yielding and plastic flow. This study examines the geometrical influences of any stress state on the deformation modes of zirconium. One slip mode and three twinning modes, comprising twenty-one deformation systems, are considered. Stress factors computed for these systems are shown on a coordinate system that allows specimen orientation, most highly stressed deformation system, and stress factor to be shown without ambiguity. The information in this report allows the determination of the rss that results from any multiaxial stress state; this information also allows the prediction of the deformation modes that might operate for any specimen orientation in that strss state

  3. On the impact of multi-axial stress states on trailing edge bondlines in wind turbine rotor blades

    Science.gov (United States)

    Noever Castelos, Pablo; Balzani, Claudio

    2016-09-01

    For a reliable design of wind turbine systems all of their components have to be designed to withstand the loads appearing in the turbine's lifetime. When performed in an integral manner this is called systems engineering, and is exceptionally important for components that have an impact on the entire wind turbine system, such as the rotor blade. Bondlines are crucial subcomponents of rotor blades, but they are not much recognized in the wind energy research community. However, a bondline failure can lead to the loss of a rotor blade, and potentially of the entire turbine, and is extraordinarily relevant to be treated with strong emphasis when designing a wind turbine. Modern wind turbine rotor blades with lengths of 80 m and more offer a degree of flexibility that has never been seen in wind energy technology before. Large deflections result in high strains in the adhesive connections, especially at the trailing edge. The latest edition of the DNV GL guideline from end of 2015 demands a three-dimensional stress analysis of bondlines, whereas before an isolated shear stress proof was sufficient. In order to quantify the lack of safety from older certification guidelines this paper studies the influence of multi-axial stress states on the ultimate and fatigue load resistance of trailing edge adhesive bonds. For this purpose, detailed finite element simulations of the IWES IWT-7.5-164 reference wind turbine blades are performed. Different yield criteria are evaluated for the prediction of failure and lifetime. The results show that the multi-axial stress state is governed by span-wise normal stresses. Those are evidently not captured in isolated shear stress proofs, yielding non-conservative estimates of lifetime and ultimate load resistance. This finding highlights the importance to include a three-dimensional stress state in the failure analysis of adhesive bonds in modern wind turbine rotor blades, and the necessity to perform a three-dimensional characterization

  4. About the Existence Results of Fractional Neutral Integrodifferential Inclusions with State-Dependent Delay in Fréchet Spaces

    Directory of Open Access Journals (Sweden)

    Selvaraj Suganya

    2016-01-01

    Full Text Available A recent nonlinear alternative for multivalued contractions in Fréchet spaces thanks to Frigon fixed point theorem consolidated with semigroup theory is utilized to examine the existence results for fractional neutral integrodifferential inclusions (FNIDI with state-dependent delay (SDD. An example is described to represent the hypothesis.

  5. Ferroelectric nanostructure having switchable multi-stable vortex states

    Science.gov (United States)

    Naumov, Ivan I [Fayetteville, AR; Bellaiche, Laurent M [Fayetteville, AR; Prosandeev, Sergey A [Fayetteville, AR; Ponomareva, Inna V [Fayetteville, AR; Kornev, Igor A [Fayetteville, AR

    2009-09-22

    A ferroelectric nanostructure formed as a low dimensional nano-scale ferroelectric material having at least one vortex ring of polarization generating an ordered toroid moment switchable between multi-stable states. A stress-free ferroelectric nanodot under open-circuit-like electrical boundary conditions maintains such a vortex structure for their local dipoles when subject to a transverse inhomogeneous static electric field controlling the direction of the macroscopic toroidal moment. Stress is also capable of controlling the vortex's chirality, because of the electromechanical coupling that exists in ferroelectric nanodots.

  6. STRESS-DEFORMED STATE OF A STRUT-FRAMED CRANE GIRDER

    Directory of Open Access Journals (Sweden)

    Kh. M. Muselemov

    2017-01-01

    Full Text Available Objectives. The aim of the present work is to study the influence of design parameters on the stress-deformed state of a sprengel crane girder; to compile the tables and corresponding graphs illustrating changes in internal force factors in the characteristic cross-sections of the system elements under consideration. The article describes the study of the stress-deformed state (SDS of a metal strut-framed crane girder.Methods. Numerical methods of analysis based on the use of the Green's function are used during solving this problem. A dimensionless parameter is introduced, depending on which the tables and graphs are constructed. According to the known algorithm, the calculations of internal force factors in the sections of the considered construction are performed.Results. Depending on the dimensionless parameter characterising the geometry and physical features of the system, tables of bending moments and transverse forces are compiled. According to these tables, the appropriate graphs are plotted in order to choose easily the optimal design parameters.Conclusion. The dependence of the moments and transverse forces on the dimensionless parameter k was found, the corresponding graphs were plotted and the metal costs for the girders were calculated. The minimum values of the moments and transverse forces are established to take place when the dimensionless parameter k values are close to zero. The most economical was a strut-framed crane girder having k = 0.0001. The most uneconomical had k = 0.05 and k =∞. Eventually, the sprengel girders were found to be more profitable as compared to conventional crane girders. In the examples considered in the article, the metal savings amounted up to 14%. The presented methodology allows the calculation and designing of strut-framed crane girders with two racks to be carried out. 

  7. Symptoms of Psychological Distress and Post-Traumatic Stress Disorder in United States Air Force Drone Operators

    Science.gov (United States)

    2014-08-01

    Disorder in United States Air Force “ Drone ” Operators 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...referred to as “ drones .” Participants were assessed for self-reported sources of occupational stress, levels of clinical distress using the Outcome...providers are discussed. 15. SUBJECT TERMS Stress, drone operator, PTSD, USAF 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT

  8. Effects of single moor baths on physiological stress response and psychological state: a pilot study

    Science.gov (United States)

    Stier-Jarmer, M.; Frisch, D.; Oberhauser, C.; Immich, G.; Kirschneck, M.; Schuh, A.

    2017-11-01

    Moor mud applications in the form of packs and baths are widely used therapeutically as part of balneotherapy. They are commonly given as therapy for musculoskeletal disorders, with their thermo-physical effects being furthest studied. Moor baths are one of the key therapeutic elements in our recently developed and evaluated 3-week prevention program for subjects with high stress level and increased risk of developing a burnout syndrome. An embedded pilot study add-on to this core project was carried out to assess the relaxing effect of a single moor bath. During the prevention program, 78 participants received a total of seven moor applications, each consisting of a moor bath (42 °C, 20 min, given between 02:30 and 05:20 p.m.) followed by resting period (20 min). Before and after the first moor application in week 1, and the penultimate moor application in week 3, salivary cortisol was collected, blood pressure and heart rate were measured, and mood state (Multidimensional Mood State Questionnaire) was assessed. A Friedman test of differences among repeated measures was conducted. Post hoc analyses were performed using the Wilcoxon signed-rank test. A significant decrease in salivary cortisol concentration was seen between pre- and post-moor bath in week 1 ( Z = -3.355, p = 0.0008). A non-significant decrease was seen between pre- and post-moor bath in week 3. Mood state improved significantly after both moor baths. This pilot study has provided initial evidence on the stress-relieving effects of single moor baths, which can be a sensible and recommendable therapeutic element of multimodal stress-reducing prevention programs. The full potential of moor baths still needs to be validated. A randomized controlled trial should be conducted comparing this balneo-therapeutic approach against other types of stress reduction interventions.

  9. Residual stress analysis for engineering applications by means of neutron diffraction

    International Nuclear Information System (INIS)

    Gnaeupel-Herold, T.; Brand, P.C.; Prask, H.J.

    1999-01-01

    Residual stresses originate from spatial differences in plastic deformation, temperature, or phase distribution, introduced by manufacturing processes or during service. Engineering parts and materials experience mechanical, thermal, and chemical loads during their service, and most of these loads introduce stresses that are superimposed on the already existing residual stresses. Residual stresses can therefore limit or improve life and strength of engineering parts; knowledge and understanding of these stresses is therefore critical for optimizing strength and durability. The economic and scientific importance of neutron diffraction residual stress analysis has led to an increasing number of suitable instruments worldwide. All of the major sources due in the next several years will have instruments for the sole purpose of performing residual stress and texture measurements. Recently, a dedicated, state-of-the-art diffractometer has been installed at the National Institute of Standards and Technology reactor. It has been used for a variety of measurements on basic and engineering stress problems. Among the most prominent examples that have been investigated in collaboration with industrial and academic partners are residual stresses in rails, weldments, and plasma-sprayed coatings

  10. Pressure and Stress Prediction in the Nankai Accretionary Prism: A Critical State Soil Mechanics Porosity-Based Approach

    Science.gov (United States)

    Flemings, Peter B.; Saffer, Demian M.

    2018-02-01

    We predict pressure and stress from porosity in the Nankai accretionary prism with a critical state soil model that describes porosity as a function of mean stress and maximum shear stress, and assumes Coulomb failure within the wedge and uniaxial burial beneath it. At Ocean Drilling Program Sites 1174 and 808, we find that pore pressure in the prism supports 70% to 90% of the overburden (λu = 0.7 to 0.9), for a range of assumed friction angles (5-30°). The prism pore pressure is equal to or greater than that in the underthrust sediments even though the porosity is lower within the prism. The high pore pressures lead to a mechanically weak wedge that supports low maximum shear stress, and this in turn requires very low basal traction to remain consistent with the observed narrowly tapered wedge geometry. We estimate the décollement friction coefficient (μb) to be 0.08-0.38 (ϕb' = 4.6°-21°). Our approach defines a pathway to predict pressure in a wide range of environments from readily observed quantities (e.g., porosity and seismic velocity). Pressure and stress control the form of the Earth's collisional continental margins and play a key role in its greatest earthquakes. However, heretofore, there has been no systematic approach to relate material state (e.g., porosity), pore pressure, and stress in these systems.

  11. Calculation of a steam generating tube stressed state under temperature oscillations in burnout zone

    International Nuclear Information System (INIS)

    Vorob'ev, V.A.; Loshchinin, V.M.; Remizov, O.V.

    1982-01-01

    The technique for evaluating the steam generating tube stressed state under the wall temperature oscillations in the burnout zone is described. The technique is based on analytical solutions for transfer functions connecting the amplitude of surface temperature oscillation with the amplitude and frequency of heat transfer coefficient oscillation and amplitude of thermoelastic stress oscillation with that of temperature oscillation. The results of calculations according to considered technique are compared with that of the problem numerical solution. The conclusion is made that the technique under consideration may be applied for evaluation of steam generator evaporating tube lifetime [ru

  12. On The Stress Free Deformation Of Linear FGM Interface Under Constant Temperature

    Directory of Open Access Journals (Sweden)

    Ganczarski Artur

    2015-09-01

    Full Text Available This paper demonstrates the stress free thermo-elastic problem of the FGM thick plate. Existence of such a purely thermal deformation is proved in two ways. First proof is based on application of the Iljushin thermo-elastic potential to displacement type system of equations. This reduces 3D problem to the plane stress state problem. Next it is shown that the unique solution fulfils conditions of simultaneous constant temperature and linear gradation of thermal expansion coefficient. Second proof is based directly on stress type system of equations which straightforwardly reduces to compatibility equations for purely thermal deformation. This occurs if only stress field is homogeneous in domain and at boundary. Finally an example of application to an engineering problem is presented.

  13. Analysis of internal stress and anelasticity in the shock-compressed state from unloading wave data

    International Nuclear Information System (INIS)

    Johnson, J.N.; Lomdahl, P.S.; Wills, J.M.

    1991-01-01

    This paper reports on time resolved shock-wave measurements have often been used to infer microstructural behavior in crystalline solids. The authors apply this approach to an interpretation of the release-wave response of an aluminum alloy (6061-T6) as it is dynamically unloaded from a shock-compressed state of 20.7 GPa. The anelastic behavior in the initial portion of the unloading wave is attributed to the accumulation of internal stresses created by the shock process. Specific internal-stress models which are investigated are the double pile-up, the single pile-up, and single dislocation loops between pinning points. It is found that the essential characteristics of double and single pile-ups can be represented by a single dislocation between two pinned dislocations of like sing. Calculations of anelastic wave speeds at constant unloading strain rate are then compared with experimental data. The results suggest that the residual internal stress is due to pinned loops of density 10 15 M - 2 , and the viscous drag coefficient in the shock-compressed state is on the order of 10 - 7 MPa s (approximately two orders of magnitude greater than expected under ambient conditions)

  14. Do bound color octet states of liberated quarks exist

    International Nuclear Information System (INIS)

    Lipkin, H.J.

    1979-01-01

    In models where quarks are liberated and color can be excited, the three-quark color-octet state is shown to be unbound and unstable against breakup into free quarks and diquarks. The signature for color excitation in deep inelastic processes will not be a bound three-quark state which decays electromagnetically but a final state containing free quarks. (author)

  15. Composite Analysis of Concrete - Creep, Relaxation and Eigenstrain/stress

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang

    1996-01-01

    approach.The model is successfully justified comparing predicted results with recent experimental data obtained in tests made at the Danish Technological Institute and at the Technical University of Denmark on creep, relaxation, and shrinkage of very young concretes (hours) - and also with experimental...... results on creep, shrinkage, and internal stresses caused by drying shrinkage reported in the literature on the mechanical behavior of mature concretes.Shrinkage (autogeneous or drying) of mortar and concrete and associated internal stress states are examples of analysis made in this report......A composite-rheological model of concrete is presented by which consistent predictions of creep, relaxation, and internal stresses can be made from known concrete composition, age at loading, and climatic conditions. No other existing "creep prediction method" offers these possibilities in one...

  16. Generation of stress-strain state in combined strip pile foundation beds through pressing of soil

    Directory of Open Access Journals (Sweden)

    Stepanov Maxim

    2017-01-01

    Full Text Available When erecting high-rise buildings, weak underlying soils cause a number of problems in design and construction. In order to ensure the required non-exceedance of the ultimate limit settlements, the combined strip pile foundation has been developed allowing the soil bed to be pre-stressed. This is achieved by injection of pressurized mortar (pressing. The paper analyzes the effect of soil pre-stressing followed by pressing of foundation with the cement mortar, as applied to existing structures using the Plaxis 3D software package in conditions of volume deformation and the Hardening Soil Model. Variable order of foundation pressing allows the required parameters of soil bed to be achieved in plan and depth, thus improving interaction with the foundation and superstructure.

  17. Relationships among Career and Life Stress, Negative Career thoughts, and Career Decision State: A Cognitive Information Processing Perspective

    Science.gov (United States)

    Bullock-Yowell, Emily; Peterson, Gary W.; Reardon, Robert C.; Leierer, Stephen J.; Reed, Corey A.

    2011-01-01

    According to cognitive information processing theory, career thoughts mediate the relationship between career and life stress and the ensuing career decision state. Using a sample of 232 college students and structural equation modeling, this study found that an increase in career and life stress was associated with an increase in negative career…

  18. Constraints on the stress state of the San Andreas fault with analysis based on core and cuttings from SAFOD drilling phases I and II

    Science.gov (United States)

    Lockner, David A.; Tembe, Cheryl; Wong, Teng-fong

    2009-01-01

    Analysis of field data has led different investigators to conclude that the San Andreas Fault (SAF) has either anomalously low frictional sliding strength (m 0.6). Arguments for the apparent weakness of the SAF generally hinge on conceptual models involving intrinsically weak gouge or elevated pore pressure within the fault zone. Some models assert that weak gouge and/or high pore pressure exist under static conditions while others consider strength loss or fluid pressure increase due to rapid coseismic fault slip. The present paper is composed of three parts. First, we develop generalized equations, based on and consistent with the Rice (1992) fault zone model to relate stress orientation and magnitude to depth-dependent coefficient of friction and pore pressure. Second, we present temperature- and pressure-dependent friction measurements from wet illite-rich fault gouge extracted from San Andreas Fault Observatory at Depth (SAFOD) phase 1 core samples and from weak minerals associated with the San Andreas Fault. Third, we reevaluate the state of stress on the San Andreas Fault in light of new constraints imposed by SAFOD borehole data. Pure talc (m0.1) had the lowest strength considered and was sufficiently weak to satisfy weak fault heat flow and stress orientation constraints with hydrostatic pore pressure. Other fault gouges showed a systematic increase in strength with increasing temperature and pressure. In this case, heat flow and stress orientation constraints would require elevated pore pressure and, in some cases, fault zone pore pressure in excess of vertical stress.

  19. Changes in seed water status as characterized by NMR in developing soybean seed grown under moisture stress conditions

    International Nuclear Information System (INIS)

    Krishnan, P.; Singh, Ravender; Verma, A.P.S.; Joshi, D.K.; Singh, Sheoraj

    2014-01-01

    Highlights: • In developing soybean seeds, moisture stress resulted in more proportion of water to bound state. • These changes are further corroborated by concomitant changes in seed metabolites. • Thus there exists a moisture stress and development stage dependence of seed tissue water status. - Abstract: Changes in water status of developing seeds of Soybean (Glycine max L. Merrill.) grown under different moisture stress conditions were characterized by proton nuclear magnetic resonance (NMR)- spin–spin relaxation time (T 2 ). A comparison of the seed development characteristics, composition and physical properties indicated that, characteristics like seed weight, seed number/ear, rate of seed filling increased with development stages but decreased with moisture stress conditions. The NMR- spin–spin relaxation (T 2 ) component like bound water increased with seed maturation (40–50%) but decreased with moisture stress conditions (30–40%). The changes in seed water status to increasing levels of moisture stress and seed maturity indicates that moisture stress resulted in more proportion of water to bound state and intermediate state and less proportion of water in free-state. These changes are further corroborated by significant changes in protein and starch contents in seeds under high moisture stress treatments. Thus seed water status during its development is not only affected by development processes but also by moisture stress conditions. This study strongly indicated a clear moisture stress and development stage dependence of seed tissue water status in developing soybean seeds

  20. Changes in seed water status as characterized by NMR in developing soybean seed grown under moisture stress conditions

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, P., E-mail: pkrishnan@iari.res.in; Singh, Ravender; Verma, A.P.S.; Joshi, D.K.; Singh, Sheoraj

    2014-02-21

    Highlights: • In developing soybean seeds, moisture stress resulted in more proportion of water to bound state. • These changes are further corroborated by concomitant changes in seed metabolites. • Thus there exists a moisture stress and development stage dependence of seed tissue water status. - Abstract: Changes in water status of developing seeds of Soybean (Glycine max L. Merrill.) grown under different moisture stress conditions were characterized by proton nuclear magnetic resonance (NMR)- spin–spin relaxation time (T{sub 2}). A comparison of the seed development characteristics, composition and physical properties indicated that, characteristics like seed weight, seed number/ear, rate of seed filling increased with development stages but decreased with moisture stress conditions. The NMR- spin–spin relaxation (T{sub 2}) component like bound water increased with seed maturation (40–50%) but decreased with moisture stress conditions (30–40%). The changes in seed water status to increasing levels of moisture stress and seed maturity indicates that moisture stress resulted in more proportion of water to bound state and intermediate state and less proportion of water in free-state. These changes are further corroborated by significant changes in protein and starch contents in seeds under high moisture stress treatments. Thus seed water status during its development is not only affected by development processes but also by moisture stress conditions. This study strongly indicated a clear moisture stress and development stage dependence of seed tissue water status in developing soybean seeds.

  1. A Hydraulic Stress Measurement System for Deep Borehole Investigations

    Science.gov (United States)

    Ask, Maria; Ask, Daniel; Cornet, Francois; Nilsson, Tommy

    2017-04-01

    Luleå University of Technology (LTU) is developing and building a wire-line system for hydraulic rock stress measurements, with funding from the Swedish Research Council and Luleå University of Technology. In this project, LTU is collaborating with University of Strasbourg and Geosigma AB. The stress state influences drilling and drillability, as well as rock mass stability and permeability. Therefore, knowledge about the state of in-situ stress (stress magnitudes, and orientations) and its spatial variation with depth is essential for many underground rock engineering projects, for example for underground storage of hazardous material (e.g. nuclear waste, carbon dioxide), deep geothermal exploration, and underground infrastructure (e.g. tunneling, hydropower dams). The system is designed to conduct hydraulic stress testing in slim boreholes. There are three types of test methods: (1) hydraulic fracturing, (2) sleeve fracturing and (3) hydraulic testing of pre-existing fractures. These are robust methods for determining in situ stresses from boreholes. Integration of the three methods allows determination of the three-dimensional stress tensor and its spatial variation with depth in a scientific unambiguously way. The stress system is composed of a downhole and a surface unit. The downhole unit consists of hydraulic fracturing equipment (straddle packers and downhole imaging tool) and their associated data acquisition systems. The testing system is state of the art in several aspects including: (1) Large depth range (3 km), (2) Ability to test three borehole dimensions (N=76 mm, H=96 mm, and P=122 mm), (3) Resistivity imager maps the orientation of tested fracture; (4) Highly stiff and resistive to corrosion downhole testing equipment; and (5) Very detailed control on the injection flow rate and cumulative volume is obtained by a hydraulic injection pump with variable piston rate, and a highly sensitive flow-meter. At EGU General Assembly 2017, we would like to

  2. THE STRESS-STRAIN STATE OF ELASTIC HALF-SPACE FROM RUNNING LINEAR LOAD ACTING ON THE LIMITED AND UNLIMITED EXTENT OVER ITS SURFACE

    Directory of Open Access Journals (Sweden)

    I. K. Badalakha

    2009-02-01

    Full Text Available The article shows the result of solving the problem of stress-strain state of an elastic half-space because of the load action that uniformly distributed over the line, with the use of untraditional linear dependence of deformations on stressed state that is different from the generalized Hooke’s law.

  3. Reality and Fiction in the Perspective of Linguistic Existence

    Directory of Open Access Journals (Sweden)

    Tomas Kačerauskas

    2011-04-01

    Full Text Available The paper deals with relation between reality and fiction. The project of phenomenology of creation is presented in this context. According to the author, reality is an environment of our becoming. We fill this environment with our objects, desires, and expectations. Reality and fiction make two poles of creative tension. Human creation, i.e. culture is developed between these two poles. The author links culture with existential creation, i.e. with creation of life story. It is stressed that life story is analogous not to a diary but to a novel where every event takes part in the existential whole. An existential novel is born in a particular spiritual environment which is renewed by its inscription into this environment. The author refers to existential events as phenomena which being inscribed into our living whole direct the stream of events. The author uses the metaphors of the theatre as a public space and the river as a reative stream. It is stated that our existence is developed as polyphonic interrelation between a part and the whole. Different modi of existential creation like realization, working, embodiment, spiritualization and their links are analysed. Working is connected with a private domestic environment the created works in which should be prooved in a public space of the city. It is discussed on an opinion that the national language is the main modus of nationality. It is stated that a multinational environment of a capitol is the best school of national existence. It is showed that a theoretical model of phenomenology of creation is useful in the interpretation of historical and cultural phenomena. 

  4. Mathematical Modeling in Systems for Operational Evaluation of the Stress-Strain State of the Arch-Gravity Dam at the Sayano-Shushenskaya Hydroelectric Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Bellendir, E. N.; Gordon, L. A., E-mail: lev-gordon@mail.ru; Khrapkov, A. A.; Skvortsova, A. E., E-mail: SkvortsovaAE@vniig.ru [B. E. Vedeneev All-Russia Research Institute of Hydraulic Engineering (VNIIG) (Russian Federation)

    2017-01-15

    Current studies of the stress-strain state of the dam at the Sayano-Shushenskaya Hydroelectric Power Plant at VNIIG based on mathematical modeling including full scale and experimental data are described. Applications and programs intended for automatic operational evaluation of the stress-strain state of the dam for optimizing control of the upper race level in the course of the annual filling-drawdown cycle and during seismic events are examined. Improvements in systems for monitoring the stress-strain state of concrete dams are proposed.

  5. Stress state and movement potential of the Kar-e-Bas fault zone, Fars, Iran

    Science.gov (United States)

    Sarkarinejad, Khalil; Zafarmand, Bahareh

    2017-08-01

    The Kar-e-Bas or Mengharak basement-inverted fault is comprised of six segments in the Zagros foreland folded belt of Iran. In the Fars region, this fault zone associated with the Kazerun, Sabz-Pushan and Sarvestan faults serves as a lateral transfer zone that accommodates the change in shortening direction from the western central to the eastern Zagros. This study evaluates the recent tectonic stress regime of the Kar-e-Bas fault zone based on inversion of earthquake focal mechanism data, and quantifies the fault movement potential of this zone based on the relationship between fault geometric characteristics and recent tectonic stress regimes. The trend and plunge of σ 1 and σ 3 are S25°W/04°-N31°E/05° and S65°E/04°-N60°W/10°, respectively, with a stress ratio of Φ = 0.83. These results are consistent with the collision direction of the Afro-Arabian continent and the Iranian microcontinent. The near horizontal plunge of maximum and minimum principle stresses and the value of stress ratio Φ indicate that the state of stress is nearly strike-slip dominated with little relative difference between the value of two principal stresses, σ 1 and σ 2. The obliquity of the maximum compressional stress into the fault trend reveals a typical stress partitioning of thrust and strike-slip motion in the Kar-e-Bas fault zone. Analysis of the movement potential of this fault zone shows that its northern segment has a higher potential of fault activity (0.99). The negligible difference between the fault-plane dips of the segments indicates that their strike is a controlling factor in the changes in movement potential.

  6. Anomalous Transport in Natural Fracture Networks Induced by Tectonic Stress

    Science.gov (United States)

    Kang, P. K.; Lei, Q.; Lee, S.; Dentz, M.; Juanes, R.

    2017-12-01

    Fluid flow and transport in fractured rock controls many natural and engineered processes in the subsurface. However, characterizing flow and transport through fractured media is challenging due to the high uncertainty and large heterogeneity associated with fractured rock properties. In addition to these "static" challenges, geologic fractures are always under significant overburden stress, and changes in the stress state can lead to changes in the fracture's ability to conduct fluids. While confining stress has been shown to impact fluid flow through fractures in a fundamental way, the impact of confining stress on transportthrough fractured rock remains poorly understood. The link between anomalous (non-Fickian) transport and confining stress has been shown, only recently, at the level of a single rough fracture [1]. Here, we investigate the impact of geologic (tectonic) stress on flow and tracer transport through natural fracture networks. We model geomechanical effects in 2D fractured rock by means of a finite-discrete element method (FEMDEM) [2], which can capture the deformation of matrix blocks, reactivation of pre-existing fractures, and propagation of new cracks, upon changes in the stress field. We apply the model to a fracture network extracted from the geological map of an actual rock outcrop to obtain the aperture field at different stress conditions. We then simulate fluid flow and particle transport through the stressed fracture networks. We observe that anomalous transport emerges in response to confining stress on the fracture network, and show that the stress state is a powerful determinant of transport behavior: (1) An anisotropic stress state induces preferential flow paths through shear dilation; (2) An increase in geologic stress increases aperture heterogeneity that induces late-time tailing of particle breakthrough curves. Finally, we develop an effective transport model that captures the anomalous transport through the stressed fracture

  7. Recovery in dc and rf performance of off-state step-stressed AlGaN/GaN high electron mobility transistors with thermal annealing

    International Nuclear Information System (INIS)

    Kim, Byung-Jae; Hwang, Ya-Hsi; Ahn, Shihyun; Zhu, Weidi; Dong, Chen; Lu, Liu; Ren, Fan; Holzworth, M. R.; Jones, Kevin S.; Pearton, Stephen J.; Smith, David J.; Kim, Jihyun; Zhang, Ming-Lan

    2015-01-01

    The recovery effects of thermal annealing on dc and rf performance of off-state step-stressed AlGaN/GaN high electron mobility transistors were investigated. After stress, reverse gate leakage current and sub-threshold swing increased and drain current on-off ratio decreased. However, these degradations were completely recovered after thermal annealing at 450 °C for 10 mins for devices stressed either once or twice. The trap densities, which were estimated by temperature-dependent drain-current sub-threshold swing measurements, increased after off-state step-stress and were reduced after subsequent thermal annealing. In addition, the small signal rf characteristics of stressed devices were completely recovered after thermal annealing

  8. Stress Physiology of Lactic Acid Bacteria

    Science.gov (United States)

    Papadimitriou, Konstantinos; Alegría, Ángel; Bron, Peter A.; de Angelis, Maria; Gobbetti, Marco; Kleerebezem, Michiel; Lemos, José A.; Linares, Daniel M.; Ross, Paul; Stanton, Catherine; Turroni, Francesca; van Sinderen, Douwe; Varmanen, Pekka; Ventura, Marco; Zúñiga, Manuel; Tsakalidou, Effie

    2016-01-01

    SUMMARY Lactic acid bacteria (LAB) are important starter, commensal, or pathogenic microorganisms. The stress physiology of LAB has been studied in depth for over 2 decades, fueled mostly by the technological implications of LAB robustness in the food industry. Survival of probiotic LAB in the host and the potential relatedness of LAB virulence to their stress resilience have intensified interest in the field. Thus, a wealth of information concerning stress responses exists today for strains as diverse as starter (e.g., Lactococcus lactis), probiotic (e.g., several Lactobacillus spp.), and pathogenic (e.g., Enterococcus and Streptococcus spp.) LAB. Here we present the state of the art for LAB stress behavior. We describe the multitude of stresses that LAB are confronted with, and we present the experimental context used to study the stress responses of LAB, focusing on adaptation, habituation, and cross-protection as well as on self-induced multistress resistance in stationary phase, biofilms, and dormancy. We also consider stress responses at the population and single-cell levels. Subsequently, we concentrate on the stress defense mechanisms that have been reported to date, grouping them according to their direct participation in preserving cell energy, defending macromolecules, and protecting the cell envelope. Stress-induced responses of probiotic LAB and commensal/pathogenic LAB are highlighted separately due to the complexity of the peculiar multistress conditions to which these bacteria are subjected in their hosts. Induction of prophages under environmental stresses is then discussed. Finally, we present systems-based strategies to characterize the “stressome” of LAB and to engineer new food-related and probiotic LAB with improved stress tolerance. PMID:27466284

  9. Recent state of stress change in the Walker Lane zone, western Basin and Range province, United States

    Science.gov (United States)

    Bellier, Olivier; Zoback, Mary Lou

    1995-06-01

    The NW to north-trending Walker Lane zone (WLZ) is located along the western boundary of the northern Basin and Range province with the Sierra Nevada. This zone is distinguished from the surrounding Basin and Range province on the basis of irregular topography and evidence for both normal and strike-slip Holocene faulting. Inversion of slip vectors from active faults, historic fault offsets, and earthquake focal mechanisms indicate two distinct Quaternary stress regimes within the WLZ, both of which are characterized by a consistent WNW σ3 axis; these are a normal faulting regime with a mean σ3 axis of N85°±9°W and a mean stress ratio (R value) (R=(σ2-σ1)/(σ3-σ1)) of 0.63-0.74 and a younger strike-slip faulting regime with a similar mean σ3 axis (N65° - 70°W) and R values ranging between ˜ 0.1 and 0.2. This younger regime is compatible with historic fault offsets and earthquake focal mechanisms. Both the extensional and strike-slip stress regimes reactivated inherited Mesozoic and Cenozoic structures and also produced new faults. The present-day strike-slip stress regime has produced strike-slip, normal oblique-slip, and normal dip-slip historic faulting. Previous workers have explained the complex interaction of active strike-slip, oblique, and normal faulting in the WLZ as a simple consequence of a single stress state with a consistent WNW σ3 axis and transitional between strike-slip and normal faulting (maximum horizontal stress approximately equal to vertical stress, or R ≈ 0 in both regimes) with minor local fluctuations. The slip data reported here support previous results from Owens Valley that suggest deformation within temporally distinct normal and strike-slip faulting stress regimes with a roughly constant WNW trending σ3 axis (Zoback, 1989). A recent change from a normal faulting to a strike-slip faulting stress regime is indicated by the crosscutting striae on faults in basalts the dominantly strike-slip earthquake focal mechanisms and

  10. NUMERICAL ANALYSIS OF THE STRESS-STRAIN STATE OF A ROPE STRAND WITH LINEAR CONTACT UNDER TENSION AND TORSION LOADING CONDITIONS

    Directory of Open Access Journals (Sweden)

    Evgenij Kalentev

    2017-06-01

    Full Text Available The paper presents the results of a numerical analysis of the stress-strain state of a rope strand with linear contact under tension and torsion loading conditions. Calculations are done using the ANSYS software package. Different approaches to calculation of the stress-strain state of ropes are reviewed, and their advantages and deficiencies are considered. The analysis of the obtained results leads us to the conclusion that the proposed method can be used in engineering calculations.

  11. Absorption enhancement in type-II coupled quantum rings due to existence of quasi-bound states

    Science.gov (United States)

    Hsieh, Chi-Ti; Lin, Shih-Yen; Chang, Shu-Wei

    2018-02-01

    The absorption of type-II nanostructures is often weaker than type-I counterpart due to spatially separated electrons and holes. We model the bound-to-continuum absorption of type-II quantum rings (QRs) using a multiband source-radiation approach using the retarded Green function in the cylindrical coordinate system. The selection rules due to the circular symmetry for allowed transitions of absorption are utilized. The bound-tocontinuum absorptions of type-II GaSb coupled and uncoupled QRs embedded in GaAs matrix are compared here. The GaSb QRs act as energy barriers for electrons but potential wells for holes. For the coupled QR structure, the region sandwiched between two QRs forms a potential reservoir of quasi-bound electrons. Electrons in these states, though look like bound ones, would ultimately tunnel out of the reservoir through barriers. Multiband perfectly-matched layers are introduced to model the tunneling of quasi-bound states into open space. Resonance peaks are observed on the absorption spectra of type-II coupled QRs due to the formation of quasi-bound states in conduction bands, but no resonance exist in the uncoupled QR. The tunneling time of these metastable states can be extracted from the resonance and is in the order of ten femtoseconds. Absorption of coupled QRs is significantly enhanced as compared to that of uncoupled ones in certain spectral windows of interest. These features may improve the performance of photon detectors and photovoltaic devices based on type-II semiconductor nanostructures.

  12. Perceived Sources of Occupational Stress among Primary School Teachers in Delta State of Nigeria

    Science.gov (United States)

    Akpochafo, G. O.

    2012-01-01

    This study investigated the most prevalent sources of occupational stress and also the demographic variables of gender, age and length of service among primary school teachers in Delta State. Two research questions and three hypotheses guided the study. The study used a descriptive survey design. The population was the primary school teachers in…

  13. Stress and Damage in Polymer Matrix Composite Materials Due to Material Degradation at High Temperatures

    Science.gov (United States)

    McManus, Hugh L.; Chamis, Christos C.

    1996-01-01

    This report describes analytical methods for calculating stresses and damage caused by degradation of the matrix constituent in polymer matrix composite materials. Laminate geometry, material properties, and matrix degradation states are specified as functions of position and time. Matrix shrinkage and property changes are modeled as functions of the degradation states. The model is incorporated into an existing composite mechanics computer code. Stresses, strains, and deformations at the laminate, ply, and micro levels are calculated, and from these calculations it is determined if there is failure of any kind. The rationale for the model (based on published experimental work) is presented, its integration into the laminate analysis code is outlined, and example results are given, with comparisons to existing material and structural data. The mechanisms behind the changes in properties and in surface cracking during long-term aging of polyimide matrix composites are clarified. High-temperature-material test methods are also evaluated.

  14. Changes in phase composition and stress state of surface layers of VK20 hard alloy after ion bombardment

    International Nuclear Information System (INIS)

    Platonov, G.L.; Leonov, E.Yu.; Anikin, V.N.; Anikeev, A.I.

    1988-01-01

    Titanium ion bombardment of the surface of the hard VK20 alloy is studied for its effect on variations in the phase and chemical composition of its surface layers. It is stated that ion treatment results in the appearance of the η-phase of Co 6 W 6 C composition in the surface layer of the VK20 alloy, in the increase of distortions and decrease of coherent scattering blocks of the hard alloy carbide phase. Such a bombardment is found to provoke a transition of the plane-stressed state of the hard alloy surface into the volume-stressed state. It is established that ion treatment does not cause an allotropic transition of the cobalt phase α-modification, formed during grinding of the hard alloy, into the β-modification

  15. Existence of ground state of an electron in the BDF approximation

    Science.gov (United States)

    Sok, Jérémy

    2014-05-01

    The Bogoliubov-Dirac-Fock (BDF) model allows us to describe relativistic electrons interacting with the Dirac sea. It can be seen as a mean-field approximation of Quantum Electrodynamics (QED) where photons are neglected. This paper treats the case of an electron together with the Dirac sea in the absence of any external field. Such a system is described by its one-body density matrix, an infinite rank, self-adjoint operator. The parameters of the model are the coupling constant α > 0 and the ultraviolet cut-off Λ > 0: we consider the subspace of squared integrable functions made of the functions whose Fourier transform vanishes outside the ball B(0, Λ). We prove the existence of minimizers of the BDF energy under the charge constraint of one electron and no external field provided that α, Λ-1 and α log(Λ) are sufficiently small. The interpretation is the following: in this regime the electron creates a polarization in the Dirac vacuum which allows it to bind. We then study the non-relativistic limit of such a system in which the speed of light tends to infinity (or equivalently α tends to zero) with αlog(Λ) fixed: after rescaling and translation the electronic solution tends to a Choquard-Pekar ground state.

  16. The effects of stress-tension on depression and anxiety symptoms: evidence from a novel twin modelling analysis.

    Science.gov (United States)

    Davey, C G; López-Solà, C; Bui, M; Hopper, J L; Pantelis, C; Fontenelle, L F; Harrison, B J

    2016-11-01

    Negative mood states are composed of symptoms of depression and anxiety, and by a third factor related to stress, tension and irritability. We sought to clarify the nature of the relationships between the factors by studying twin pairs. A total of 503 monozygotic twin pairs completed the Depression Anxiety Stress Scales (DASS), an instrument that assesses symptoms of depression, anxiety and stress-tension. We applied a recently developed twin regression methodology - Inference about Causation from Examination of FAmiliaL CONfounding (ICE FALCON) - to test for evidence consistent with the existence of 'causal' influences between the DASS factors. There was evidence consistent with the stress-tension factor having a causal influence on both the depression (p anxiety factors (p = 0.001), and for the depression factor having a causal influence on the anxiety factor (p stress-tension in the structure of negative mood states, and that interventions that target it may be particularly effective in reducing depression and anxiety symptoms.

  17. Analysis of steady state creep of southeastern New Mexico bedded salt

    International Nuclear Information System (INIS)

    Herrmann, W.; Wawersik, W.R.; Lauson, H.S.

    1980-03-01

    Steady state creep rates have been obtained from a large suite of existing experimental creep data relating to bedded rock salt from the Salado formation of S.E. New Mexico. Experimental conditions covered an intermediate temperature range from 22 0 C to 200 0 C, and shear stresses from 1000 psi (7 MPa) to 6000 psi (31 MPa). An expression, based on a single diffusion controlled dislocation climb mechanism, has been found to fit the observed dependence of steady state creep rate on shear stress and temperature, yielding an activation energy of 12 kcal/mole (50 kJ/mole) and a stress exponent of 4.9. Multiple regression analysis revealed a dependence on stratigraphy, but no statistically significant dependence on pressure of specimen size. No consistent dilatancy or compaction associated with steady state creep was found, although some individual specimens dilated or compacted during creep. The steady state creep data were found to agree very well with creep data for both bedded and dome salt from a variety of other locations

  18. Adaptive Finite Element-Discrete Element Analysis for Microseismic Modelling of Hydraulic Fracture Propagation of Perforation in Horizontal Well considering Pre-Existing Fractures

    Directory of Open Access Journals (Sweden)

    Yongliang Wang

    2018-01-01

    Full Text Available Hydrofracturing technology of perforated horizontal well has been widely used to stimulate the tight hydrocarbon reservoirs for gas production. To predict the hydraulic fracture propagation, the microseismicity can be used to infer hydraulic fractures state; by the effective numerical methods, microseismic events can be addressed from changes of the computed stresses. In numerical models, due to the challenges in accurately representing the complex structure of naturally fractured reservoir, the interaction between hydraulic and pre-existing fractures has not yet been considered and handled satisfactorily. To overcome these challenges, the adaptive finite element-discrete element method is used to refine mesh, effectively identify the fractures propagation, and investigate microseismic modelling. Numerical models are composed of hydraulic fractures, pre-existing fractures, and microscale pores, and the seepage analysis based on the Darcy’s law is used to determine fluid flow; then moment tensors in microseismicity are computed based on the computed stresses. Unfractured and naturally fractured models are compared to assess the influences of pre-existing fractures on hydrofracturing. The damaged and contact slip events were detected by the magnitudes, B-values, Hudson source type plots, and focal spheres.

  19. Creep properties of phosphorus alloyed oxygen free copper under multiaxial stress state

    International Nuclear Information System (INIS)

    Rui Wu; Sandstroem, Rolf; Seitisleam, Facredin

    2009-10-01

    Phosphorus alloyed oxygen free copper (Cu-OFP) canisters are planned to be used for spent nuclear fuel in Sweden. The copper canisters will be subjected to creep under multiaxial stress states in the repository. Creep tests have therefore been carried out at 75 deg C using double notch specimens with notch acuities of 0.5, 2, 5, and 18.8, respectively. The creep lifetime for notched specimens is considerably longer than that for the smooth one at a given net section stress, indicating that the investigated Cu-OFP is notch insensitive (notch strengthening). The notch strengthening factor in time is, for instance, greater than 70 at 180 MPa for the bluntest notch (notch acuity = 0.5). The creep lifetime is notch acuity dependent. The sharper the notch, the longer the creep lifetime is. The creep deformation is to a significant extent concentrated to the region around the notches. Different deformation on the two notches is observed. Both axial and radial strains on the failed notch are several times larger than those on the unbroken one. Linear relation between the axial and the radial strains on the notches is found. Transgranular failure is predominant, independent of stress, rupture time, and notch acuity. Adjacent to fracture, elongated grains along the stress direction, separate pores and cavities are often visible. On the unbroken notch, fewer separate cavities and cracks are only seen intergranularly for the sharper notches (notch acuity > 2). To interpret the tests for the notched creep specimens, finite element computations have been performed. A fundamental model for primary and secondary creep without fitting parameters has been used as constitutive equation. The FEM-modelling could represent the creep strain versus time curves for the notched specimens in a satisfactory way. In these curves the strain on loading is included. From the FEM-computations a stationary creep stress could be assessed, which is close to the reference stress. For a given

  20. [Emotional regulation in aspect of action vs. state orientation, stress and self - injurious behavior among people with borderline personality disorder].

    Science.gov (United States)

    Blasczyk-Schiep, Sybilla; Rabska, Ewelina; Jaworska-Andryszewska, Paulina; Laso, Agnieszka

    2015-06-01

    In the bordeline personality disorder a large role ascribe to biopsychosocial factors. Studies have shown that more than 70% patients BPD reported experiencing traumatic events in childhood. The findings are confirming that making self-harming is a frequent symptom of bordeline disorder and 70-75% patients show at least one act of self-harming. Selfharming can be a reaction to maladaptive emotional regulation. Moreover a lowered tolerance level is characteristic of them to the stress and determined course learning dysfunctional patterns of behavior. The aim of this study is to determine the level of emotional regulation through the variable action vs state orientation and to investigate their relation to stress, self-harming and suicidal behavior. In study participated 45 persons with emotionally unstable borderline personality diagnosis. In the group was 33 women and 12 men in age 19-43. A Polish adaptation of standardized questionnaires was used to measure stress and action vs state orientation (SSI-K), self-injurious behavior (SHI) and suicidal tendencies (RFL-I). By patients with borderline personality disorder the level of action control, reasons for living and stress are predictors of selfharming behavior. The mediation analyze showed, that stress and reasons for living are mediators between action vs. state control and the level of self-harming behavior. A high level of stress correlates positively with self-harming and negatively with action control in patients with borderline personality disorder, and a high level of reasons for living correlates positively with action control and negatively with self-harming in people with BPD. © 2015 MEDPRESS.

  1. Stress Erythropoiesis Model Systems.

    Science.gov (United States)

    Bennett, Laura F; Liao, Chang; Paulson, Robert F

    2018-01-01

    Bone marrow steady-state erythropoiesis maintains erythroid homeostasis throughout life. This process constantly generates new erythrocytes to replace the senescent erythrocytes that are removed by macrophages in the spleen. In contrast, anemic or hypoxic stress induces a physiological response designed to increase oxygen delivery to the tissues. Stress erythropoiesis is a key component of this response. It is best understood in mice where it is extramedullary occurring in the adult spleen and liver and in the fetal liver during development. Stress erythropoiesis utilizes progenitor cells and signals that are distinct from bone marrow steady-state erythropoiesis. Because of that observation many genes may play a role in stress erythropoiesis despite having no effect on steady-state erythropoiesis. In this chapter, we will discuss in vivo and in vitro techniques to study stress erythropoiesis in mice and how the in vitro culture system can be extended to study human stress erythropoiesis.

  2. Role of multiaxial stress state in the hydrogen-assisted rolling-contact fatigue in bearings for wind turbines

    Directory of Open Access Journals (Sweden)

    J. Toribio

    2015-07-01

    Full Text Available Offshore wind turbines often involve important engineering challenges such as the improvement of hydrogen embrittlement resistance of the turbine bearings. These elements frequently suffer the so-called phenomenon of hydrogen-assisted rolling-contact fatigue (HA-RCF as a consequence of the synergic action of the surrounding harsh environment (the lubricant supplying hydrogen to the material and the cyclic multiaxial stress state caused by in-service mechanical loading. Thus the complex phenomenon could be classified as hydrogen-assisted rolling-contact multiaxial fatigue (HA-RC-MF. This paper analyses, from the mechanical and the chemical points of view, the so-called ball-on-rod test, widely used to evaluate the hydrogen embrittlement susceptibility of turbine bearings. Both the stress-strain states and the steady-state hydrogen concentration distribution are studied, so that a better elucidation can be obtained of the potential fracture places where the hydrogen could be more harmful and, consequently, where the turbine bearings could fail during their life in service.

  3. Elastic-plastic stresses in a thin rotating disk with shafthaving density variation parameter under steady-state temperature

    Directory of Open Access Journals (Sweden)

    Pankaj Thakur

    2014-01-01

    Full Text Available Steady thermal stresses in a rotating disc with shaft having density variation parameter subjected to thermal load have been derived by using Seth's transition theory. Neither the yields criterion nor the associated flow rule is assumed here. Results are depicted graphically. It has been seen that compressible material required higher percentage increased angular speed to become fully-plastic as compare to rotating disc made of incompressible material. Circumferential stresses are maximal at the outer surface of the rotating disc. With the introduction of thermal effect it decreases the value of radial and circumferential stresses at inner and outer surface for fully-plastic state.

  4. Stressed Out: How Stress Develops and How to Cope with it

    Directory of Open Access Journals (Sweden)

    Mortillaro Marcello

    2014-05-01

    Full Text Available Our experience of stress depends on how we evaluate the circumstances impacting our individual well-being. In principle, any event can be a stressor. Certain events can produce complex emotional states, such as a mixture of anger and worry. If such states are prolonged, they can lead to stress. Stress can be identified by means of such expressive components as facial expression and signs of stress in the voice. Indeed, the voice is particularly sensitive to stress and is frequently used to measure stress levels. Coping strategies differ from person to person and are not mutually exclusive. Often, people use multiple strategies at the same time. Not all of these strategies are good for individual well-being or favor a cooperation-based work culture. To avoid employee burnout, companies should keep an eye on the stress load of their employees and develop trainings to increase emotional competences and improve constructive stress management.

  5. Cigarette craving and stressful social interactions: The roles of state and trait social anxiety and smoking to cope.

    Science.gov (United States)

    Watson, Noreen L; DeMarree, Kenneth G; Cohen, Lee M

    2018-04-01

    Previous research indicates that social anxiety (SA) is a risk factor for the maintenance and relapse of smoking behaviors. However, little is known about the mechanisms underlying this relationship. The current study tested the effects of state and trait levels of SA as well as smoking to cope with symptoms of SA on craving during a social stressor task in abstinent conditions. Participants (n = 60) were daily smokers, aged 18-30. Participants attended two sessions: a baseline session and a second session, wherein they engaged in a social stressor task while deprived from nicotine for 24 h. Subjective ratings of cigarette craving and state levels of SA were assessed six times throughout the task. Data were analyzed via multilevel modeling. Both trait SA and some forms of smoking to cope with symptoms of SA were more likely to predict increased craving during times of high, relative to low, social stress. Further, individuals with higher state SA, greater smoking to cope behaviors, and those who experience greater relief of social distress by smoking experienced greater craving throughout the task. These effects remained after controlling for nicotine dependence, withdrawal symptoms, depression, and other symptoms of anxiety and stress. Smoking to cope with symptoms of SA did not moderate the relationship between state SA and craving. Smokers high in SA (state and trait) and smoking to cope with symptoms of SA may be at risk for continued smoking and relapse because of the intensity of cravings they experience during stressful social situations. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. The effect of inertia, viscous damping, temperature and normal stress on chaotic behaviour of the rate and state friction model

    Science.gov (United States)

    Sinha, Nitish; Singh, Arun K.; Singh, Trilok N.

    2018-04-01

    A fundamental understanding of frictional sliding at rock surfaces is of practical importance for nucleation and propagation of earthquakes and rock slope stability. We investigate numerically the effect of different physical parameters such as inertia, viscous damping, temperature and normal stress on the chaotic behaviour of the two state variables rate and state friction (2sRSF) model. In general, a slight variation in any of inertia, viscous damping, temperature and effective normal stress reduces the chaotic behaviour of the sliding system. However, the present study has shown the appearance of chaos for the specific values of normal stress before it disappears again as the normal stress varies further. It is also observed that magnitude of system stiffness at which chaotic motion occurs, is less than the corresponding value of critical stiffness determined by using the linear stability analysis. These results explain the practical observation why chaotic nucleation of an earthquake is a rare phenomenon as reported in literature.

  7. The therapeutic use of the relaxation response in stress-related diseases.

    Science.gov (United States)

    Esch, Tobias; Fricchione, Gregory L; Stefano, George B

    2003-02-01

    The objective of this work was to investigate a possible (therapeutic) connection between the relaxation response (RR) and stress-related diseases. Further, common underlying molecular mechanisms and autoregulatory pathways were examined. For the question of (patho)physiology and significance of RR techniques in the treatment of stress-related diseases, we analyzed peer-reviewed references only. The RR has been shown to be an appropriate and relevant therapeutic tool to counteract several stress-related disease processes and certain health-restrictions, particularly in certain immunological, cardiovascular, and neurodegenerative diseases/mental disorders. Further, common underlying molecular mechanisms may exist that represent a connection between the stress response, pathophysiological findings in stress-related diseases, and physiological changes/autoregulatory pathways described in the RR. Here, constitutive or low-output nitric oxide (NO) production may be involved in a protective or ameliorating context, whereas inducible, high-output NO release may facilitate detrimental disease processes. In mild or early disease states, a high degree of biological and physiological flexibility may still be possible (dynamic balance). Here, the therapeutic use of RR techniques may be considered particularly relevant, and the observable (beneficial) effects may be exerted via activation of constitutive NO pathways. RR techniques, regularly part of professional stress management or mind/body medical settings, represent an important tool to be added to therapeutic strategies dealing with stress-related diseases. Moreover, as part of 'healthy' life-style modifications, they may serve primary (or secondary) prevention. Further studies are necessary to elucidate the complex physiology underlying the RR and its impact upon stress-related disease states.

  8. The stem cell state in plant development and in response to stress

    Directory of Open Access Journals (Sweden)

    Gideon eGrafi

    2011-10-01

    Full Text Available Stem cells are commonly defined by their developmental capabilities, namely, self-renewal and multitype differentiation, yet the biology of stem cells and their inherent features both in plants and animals are only beginning to be elucidated. In this review article we highlight the stem cell state in plants (with reference to animals and the plastic nature of plant somatic cells (often referred to as totipotency as well as the essence of cellular dedifferentiation. Based on recent published data, we illustrate the picture of stem cells with emphasis on their open chromatin conformation. We discuss the process of dedifferentiation and highlight its transient nature, its distinction from reentry into the cell cycle and its activation following exposure to stress. We also discuss the potential hazard that can be brought about by stress-induced dedifferentiation and its major impact on the genome, which can undergo stochastic, abnormal reorganization leading to genetic variation by means of DNA transposition and/or DNA recombination.

  9. Stress state variations among the clay and limestone formations of the molasse basin of Northern Switzerland

    International Nuclear Information System (INIS)

    Vietor, Tim; Mueller, Herwig; Frieg, Bernd; Klee, Gerd

    2012-01-01

    Document available in extended abstract form only. Full text of publication follows: The design of geological repositories for radioactive waste responds to the requirements of technical feasibility and long-term safety in the context of a specific geological setting. An important aspect of the geological setting is the primary stress field. To a large extent the stress state controls repository induced effects such as the excavation damage zone and the associated potential changes in the waste isolation properties of the host rock. Therefore the measurement of the stress state receives some attention where the site selection for geological repositories focuses onto relatively weak host rocks such as clay-stones and marly shales that tend to develop a significant excavation damage zone. Measurements of the minimum stress magnitudes in a recently drilled geothermal well in the Molasse Basin of northern Switzerland have yielded a stress profile reaching from 592 m to 1455 m depth. It straddles several rock units and includes the top of the crystalline basement. The sedimentary sequence consists of Marine limestones, shales and marls unconformably covered by Tertiary rocks of the Molasse. In other parts of the basin the evaporitic rocks of the Triassic Muschelkalk formation at the base of the sedimentary layer served as a regional detachment and enabled thin skinned thrusting and the formation of the Jura Fold and Thrust Belt in the Late Miocene. The stress measurements have been performed in the open hole by Mini-frac tests. The method uses a double packer system to isolate a one meter long interval of the borehole that is then pressurized at high injection rates up to the breakdown of the formation. Repeated pressurization of the interval allows to determine the stress that acts on the newly created fracture. The total injected volume during such a test is in the range of a few litres and the size of the fracture that extends from the borehole normal to the minimum

  10. Stress and Alterations in Bones: An Interdisciplinary Perspective

    Directory of Open Access Journals (Sweden)

    Pia-Maria Wippert

    2017-05-01

    Full Text Available Decades of research have demonstrated that physical stress (PS stimulates bone remodeling and affects bone structure and function through complex mechanotransduction mechanisms. Recent research has laid ground to the hypothesis that mental stress (MS also influences bone biology, eventually leading to osteoporosis and increased bone fracture risk. These effects are likely exerted by modulation of hypothalamic–pituitary–adrenal axis activity, resulting in an altered release of growth hormones, glucocorticoids and cytokines, as demonstrated in human and animal studies. Furthermore, molecular cross talk between mental and PS is thought to exist, with either synergistic or preventative effects on bone disease progression depending on the characteristics of the applied stressor. This mini review will explain the emerging concept of MS as an important player in bone adaptation and its potential cross talk with PS by summarizing the current state of knowledge, highlighting newly evolving notions (such as intergenerational transmission of stress and its epigenetic modifications affecting bone and proposing new research directions.

  11. Posttraumatic stress disorder: a state-of-the-science review.

    Science.gov (United States)

    Nemeroff, Charles B; Bremner, J Douglas; Foa, Edna B; Mayberg, Helen S; North, Carol S; Stein, Murray B

    2006-02-01

    This article reviews the state-of-the-art research in posttraumatic stress disorder (PTSD) from several perspectives: (1) Sex differences: PTSD is more frequent among women, who tend to have different types of precipitating traumas and higher rates of comorbid panic disorder and agoraphobia than do men. (2) Risk and resilience: The presence of Group C symptoms after exposure to a disaster or act of terrorism may predict the development of PTSD as well as comorbid diagnoses. (3) Impact of trauma in early life: Persistent increases in CRF concentration are associated with early life trauma and PTSD, and may be reversed with paroxetine treatment. (4) Imaging studies: Intriguing findings in treated and untreated depressed patients may serve as a paradigm of failed brain adaptation to chronic emotional stress and anxiety disorders. (5) Neural circuits and memory: Hippocampal volume appears to be selectively decreased and hippocampal function impaired among PTSD patients. (6) Cognitive behavioral approaches: Prolonged exposure therapy, a readily disseminated treatment modality, is effective in modifying the negative cognitions that are frequent among PTSD patients. In the future, it would be useful to assess the validity of the PTSD construct, elucidate genetic and experiential contributing factors (and their complex interrelationships), clarify the mechanisms of action for different treatments used in PTSD, discover ways to predict which treatments (or treatment combinations) will be successful for a given individual, develop an operational definition of remission in PTSD, and explore ways to disseminate effective evidence-based treatments for this condition.

  12. The association between high levels of cumulative life stress and aberrant resting state EEG dynamics in old age.

    Science.gov (United States)

    Marshall, Amanda C; Cooper, Nicholas R

    2017-07-01

    Cumulative experienced stress produces shortcomings in old adults' cognitive performance. These are reflected in electrophysiological changes tied to task execution. This study explored whether stress-related aberrations in older adults' electroencephalographic (EEG) activity were also apparent in the system at rest. To this effect, the amount of stressful life events experienced by 60 young and 60 elderly participants were assessed in conjunction with resting state power changes in the delta, theta, alpha, and beta frequencies during a resting EEG recording. Findings revealed elevated levels of delta power among elderly individuals reporting high levels of cumulative life stress. These differed significantly from young high and low stress individuals and old adults with low levels of stress. Increases of delta activity have been linked to the emergence of conditions such as Alzheimer's Disease and Mild Cognitive Impairment. Thus, a potential interpretation of our findings associates large amounts of cumulative stress with an increased risk of developing age-related cognitive pathologies in later life. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Stress-strain state analysis and optimization of rod system under periodic pulse load

    Directory of Open Access Journals (Sweden)

    Grebenyuk Grigory

    2018-01-01

    Full Text Available The paper considers the problem of analysis and optimization of rod systems subjected to combined static and periodic pulse load. As a result of the study the analysis method was developed based on traditional approach to solving homogeneous matrix equations of state and a special algorithm for developing a particular solution. The influence of pulse parameters variations on stress-strain state of a rod system was analyzed. Algorithms for rod systems optimization were developed basing on strength recalculation and statement and solution of optimization problem as a problem of nonlinear mathematical programming. Recommendations are developed for efficient organization of process for optimization of rod systems under static and periodic pulse load.

  14. Calorimetric features of release of plastic deformation induced internal stresses, and approach to equilibrium state on annealing of crystals and glasses

    Energy Technology Data Exchange (ETDEWEB)

    Johari, G.P., E-mail: joharig@mcmaster.ca

    2014-04-01

    Highlights: • Stress release in a glass occurs at a faster rate than structural relaxation. • Plastically-deformed glass would show two exothermic minima, and no glass transition. • Enthalpy matching procedure would yield an inaccurate fictive temperature. • Complex heat capacity may distinguish plastically-deformed from quench-formed glass. - Abstract: Plastic deformation of crystals and glasses produces internal strains (stresses), which change their energy and other thermodynamic properties. On annealing, these stresses decrease at a rate faster than the structure relaxes toward the equilibrium state. Mechanism of such relaxations in crystals differs from that in glasses and it also differs for glasses of different types. In all cases, the energy related properties decrease with time isothermally and on heating, resembling the structure relaxation of a stress-free glass. We consider these features and argue that kinetics of enthalpy loss with time yields the rate constants of the stress release and of the structure change, and not the viscosity determining α-relaxation time. Since thermal cycling does not recover the enthalpy from internal stresses, a glass with stresses has neither a glass-softening temperature, T{sub g}, nor a fictive temperature, T{sub f}. Plastic deformation would not rejuvenate a physically aged glass to the properties of its un-aged state. The Prigogine–Defay ratio can be extended to all T{sub f}s, and used to investigate the effect of distribution of relaxation times on its value, but it can not be defined for an internally stressed glass. After discussing the effects of annealing on the heat capacity and DSC scans, we conclude that on slow heating, glass with deformation-induced stresses would show two exothermic minima, and normal glass would show only one such minimum. Temperature-modulated scanning calorimetry would also distinguish an internally stressed glass from an equally high-enthalpy, stress-free glass. Enthalpy

  15. Stress near geometrically complex strike-slip faults - Application to the San Andreas fault at Cajon Pass, southern California

    Science.gov (United States)

    Saucier, Francois; Humphreys, Eugene; Weldon, Ray, II

    1992-01-01

    A model is presented to rationalize the state of stress near a geometrically complex major strike-slip fault. Slip on such a fault creates residual stresses that, with the occurrence of several slip events, can dominate the stress field near the fault. The model is applied to the San Andreas fault near Cajon Pass. The results are consistent with the geological features, seismicity, the existence of left-lateral stress on the Cleghorn fault, and the in situ stress orientation in the scientific well, found to be sinistral when resolved on a plane parallel to the San Andreas fault. It is suggested that the creation of residual stresses caused by slip on a wiggle San Andreas fault is the dominating process there.

  16. Investigation of Concrete Structures in Serviceability Limit State Using Energy Principles

    DEFF Research Database (Denmark)

    Hagsten, Lars German; Fisker, Jakob

    2013-01-01

    of the choices, made in relation to the design of the structure with respect to the ultimate limit state (ULS). Hence, a rational link between the two states is established. The approach is appropriate for the design of new structures and assessment of existing structures. The method and the link between...... the choices made regarding the ULS and the state of stress in the SLS is compared with tests on reinforced concrete disks and beams, respectively. Fairly good agreement between theory and tests is achieved....

  17. A study on regional cerebral blood flow at rest and stress state in anxiety disorder patients

    International Nuclear Information System (INIS)

    Wan Li; Liu Jian

    2002-01-01

    Objective: To investigate he characteristics of rest and stress regional cerebral blood flow (rCBF) in naive anxiety disorder patients. Methods: Twenty naive anxiety disorder patients were enrolled in the study with twenty healthy volunteers as controls. The rest and stress 99 Tc m -ethylene cystein dimer (ECD) SPECT were performed separately at 2 consecutive days, Raven reasoning test was used as a stressor. Results: 1) Compared to the healthy controls, the patients' rest rCBF of the frontal lobe, temporal lobe, thalamus and basal ganglia were significantly lower (P<0.05 and 0.01). 2)The patients' stress rCBF of the frontal lobe, temporal lobe, part occipital lobe, part parietal lobe, thalamus and basal ganglia were significantly lower compared to the healthy controls' (P<0.05 and 0.01). 3) Opposite to the healthy controls, the rCBF of patients increased significantly after stressor simulating. Conclusions: The hypofunction of frontal lobe, temporal lobe, thalamus and basal ganglia may exist in naive anxiety disorder patients. The abnormal rCBF of patients after simulating may be one of the characteristics of anxiety disorder

  18. [Complex posttraumatic stress disorder].

    Science.gov (United States)

    Green, Tamar; Kotler, Moshe

    2007-11-01

    The characteristic symptoms resulting from exposure to an extreme trauma include three clusters of symptoms: persistent experience of the traumatic event, persistent avoidance of stimuli associated with the trauma and persistent symptoms of increased arousal. Beyond the accepted clusters of symptoms for posttraumatic stress disorder exists a formation of symptoms related to exposure to extreme or prolonged stress e.g. childhood abuse, physical violence, rape, and confinement within a concentration camp. With accumulated evidence of the existence of these symptoms began a trail to classify a more complex syndrome, which included, but was not confined to the symptoms of posttraumatic stress disorder. This review addresses several subjects for study in complex posttraumatic stress disorder, which is a complicated and controversial topic. Firstly, the concept of complex posttraumatic stress disorder is presented. Secondly, the professional literature relevant to this disturbance is reviewed and finally, the authors present the polemic being conducted between the researchers of posttraumatic disturbances regarding validity, reliability and the need for separate diagnosis for these symptoms.

  19. Monitoring training load, recovery-stress state, immune-endocrine responses, and physical performance in elite female basketball players during a periodized training program.

    Science.gov (United States)

    Nunes, João A; Moreira, Alexandre; Crewther, Blair T; Nosaka, Ken; Viveiros, Luis; Aoki, Marcelo S

    2014-10-01

    This study investigated the effect of a periodized training program on internal training load (ITL), recovery-stress state, immune-endocrine responses, and physical performance in 19 elite female basketball players. The participants were monitored across a 12-week period before an international championship, which included 2 overloading and tapering phases. The first overloading phase (fourth to sixth week) was followed by a 1-week tapering, and the second overloading phase (eighth to 10th week) was followed by a 2-week tapering. ITL (session rating of perceived exertion method) and recovery-stress state (RESTQ-76 Sport questionnaire) were assessed weekly and bi-weekly, respectively. Pretraining and posttraining assessments included measures of salivary IgA, testosterone and cortisol concentrations, strength, jumping power, running endurance, and agility. Internal training load increased across all weeks from 2 to 11 (p ≤ 0.05). After the first tapering period (week 7), a further increase in ITL was observed during the second overloading phase (p ≤ 0.05). After the second tapering period, a decrease in ITL was detected (p ≤ 0.05). A disturbance in athlete stress-recovery state was noted during the second overloading period (p ≤ 0.05), before returning to baseline level in end of the second tapering period. The training program led to significant improvements in the physical performance parameters evaluated. The salivary measures did not change despite the fluctuations in ITL. In conclusion, a periodized training program evoked changes in ITL in elite female basketball players, which appeared to influence their recovery-stress state. The training plan was effective in preparing participants for competition, as indicated by improvements in recovery-stress state and physical performance after tapering.

  20. Constraints on stress-energy perturbations in general relativity

    International Nuclear Information System (INIS)

    Traschen, J.

    1985-01-01

    Conditions are found for the existence of integral constraints on stress-energy perturbations in general relativity. The integral constraints can be thought of as a general-relativistic generalization of the conservation of energy and momentum of matter perturbations in special relativity. The constraints are stated in terms of a vector field V, and the Robertson-Walker spacetimes are shown to have such constraint vectors. Although in general V is not a Killing vector, in a vacuum spacetime the constraint vectors are precisely the Killing vectors

  1. An in-situ investigation of the acute effects of Bikram yoga on positive- and negative affect, and state-anxiety in context of perceived stress.

    Science.gov (United States)

    Szabo, Attila; Nikházy, Letícia; Tihanyi, Benedek; Boros, Szilvia

    2017-04-01

    Bikram yoga is a relatively new, but an increasingly popular form of exercise. Its health benefits were demonstrated on physical and psychological measures. The current field study tested the acute effects of Bikram yoga on practitioners' positive-/negative-affect and state-anxiety, and their link to the self-perceived stress, in Bikram yoga participants. Field study, within-participants design, testing perceived stress and its relation to changes in positive-/negative-affect and state-anxiety in 53 habitual Bikram yoga participants. Statistically significant positive changes emerged in all three psychological measures after the 90-min Bikram yoga session. The decrease in negative-affect and state-anxiety were significantly and positively related to the perceived stress. Estimated effort was unrelated to the magnitude of the changes recorded in the psychological measures. Heart rates and self-report measures indicated that physically Bikram yoga is only mildly challenging. The findings illustrate that, independently of the physical effort, Bikram yoga is a new mild form of exercise that reduces negative-affect and state-anxiety, and the reduction is directly related to the perceived stress. Therefore, Bikram yoga appears to be beneficial for all practitioners, but even more so for the individuals who experience substantial stress in the daily life.

  2. Stressed-deformed state of mountain rocks in elastic stage and between elasticity

    Directory of Open Access Journals (Sweden)

    Samedov A.M.

    2017-12-01

    Full Text Available The problems of the stress-strain state of rocks in the elastic stage and beyond the elastic limits, and the ways of schematizing the tension and compression diagrams were reviewed in the article. To simplify calculations outside the elastic range, the tension (compression diagrams are usually schematized, i.e. are replaced by curved smooth lines having a fairly simple mathematical expression and at the same time well coinciding with the experimentally obtained diagrams. When diagram is to be schematized, it is necessary to take a constant temperature of superheated water steam if a rock test is planned in a relaxed form. Note that when the diagram is schematizing, the difference between the limits of proportionality and fluidity is erased. This allows the limit of proportionality to be considered the limit of fluidity. Schematicization can be carried out in the area where the tensile strength (compression is planned to be destroyed with the established weakening of rocks by exposure to water steam or chemical reagents. Samples of rocks in natural form were tested and weakened by means of superheated water steam (220 °C and more and chemical reagents for tension and compression. The data are obtained, the diagrams of deformation are constructed and schematized in the elastic stage and beyond the elastic limit. Based on the schematic diagrams of deformation, the components of stress and strain were composed in the elastic stage and beyond the elastic limit. It is established in the publication that rocks under compression and stretching deform, both within the elastic stage, and beyond the limits of elasticity. This could be seen when the samples, both in natural and in weakened state, with superheated water steam (more than 220 °C or chemical reagents were tested. In their natural form, they are mainly deformed within the elastic stage and are destroyed as a brittle material, and in a weakened form they can deform beyond the elastic stage and

  3. Stress Assignment in Reading Italian Polysyllabic Pseudowords

    Science.gov (United States)

    Sulpizio, Simone; Arduino, Lisa S.; Paizi, Despina; Burani, Cristina

    2013-01-01

    In 4 naming experiments we investigated how Italian readers assign stress to pseudowords. We assessed whether participants assign stress following distributional information such as stress neighborhood (the proportion and number of existent words sharing orthographic ending and stress pattern) and whether such distributional information affects…

  4. Brain-derived neurotrophic factor and hypothalamic-pituitary-adrenal axis adaptation processes in a depressive-like state induced by chronic restraint stress.

    Science.gov (United States)

    Naert, Gaelle; Ixart, Guy; Maurice, Tangui; Tapia-Arancibia, Lucia; Givalois, Laurent

    2011-01-01

    Depression is potentially life-threatening. The most important neuroendocrine abnormality in this disorder is hypothalamo-pituitary-adrenocortical (HPA) axis hyperactivity. Recent findings suggest that all depression treatments may boost the neurotrophin production especially brain-derived neurotrophic factor (BDNF). Moreover, BDNF is highly involved in the regulation of HPA axis activity. The aim of this study was to determine the impact of chronic stress (restraint 3h/day for 3 weeks) on animal behavior and HPA axis activity in parallel with hippocampus, hypothalamus and pituitary BDNF levels. Chronic stress induced changes in anxiety (light/dark box test) and anhedonic states (sucrose preference test) and in depressive-like behavior (forced swimming test); general locomotor activity and body temperature were modified and animal body weight gain was reduced by 17%. HPA axis activity was highly modified by chronic stress, since basal levels of mRNA and peptide hypothalamic contents in CRH and AVP and plasma concentrations in ACTH and corticosterone were significantly increased. The HPA axis response to novel acute stress was also modified in chronically stressed rats, suggesting adaptive mechanisms. Basal BDNF contents were increased in the hippocampus, hypothalamus and pituitary in chronically stressed rats and the BDNF response to novel acute stress was also modified. This multiparametric study showed that chronic restraint stress induced a depressive-like state that was sustained by mechanisms associated with BDNF regulation. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. The psychoemotional status and cardiovascular system functional state of the first-year students under the influence of examination stress

    Directory of Open Access Journals (Sweden)

    Liliana K. Tokaeva

    2012-12-01

    Full Text Available The aim of this research is to study of the influence of examination stress on psycho-emotional status and functional state of the cardiovascular system of the 1-st year students of pedagogical high school. Methods – The study involved 105 young men aged 17-18 enrolled in the specialty "Physical Education". The studies were conducted during the period in-between the exams and during the examination session. The psycho-emotional status was determined by the SAN test questionnaire and test and the CH.D. Spielberg test, adapted for Russia by Ju.L. Khanin. The state of CVS autonomic regulation was evaluated by heart rate, blood pressure, endurance ratio, Kerdo index and the adaptive capacities by P.M. Bayevsky. Results – In the absence of exposure to stress in the majority of young men the studied parameters are within normal limits, indicating sufficient adaptive capabilities. A clear correlation between the level of personal anxiety in students and the nature of their reactivity to examination stress was found: the higher the anxiety level in a student is, the more stress resistance decreases and more pronounced changes in the cardiovascular system autonomic regulation appear. The strain of adaptation mechanism was found in a stressful situation in the first-year students with a high level of personal anxiety and satisfactory adaptation – in young men with average and low personal anxiety.

  6. Forming the stress state of a vibroisolated building in the process of mounting rubber steel vibration isolator

    Directory of Open Access Journals (Sweden)

    Dashevskiy Mikhail Aronovich

    2015-12-01

    Full Text Available The necessity to specificate the formation process of stress-strain state of buildings in the construction process is a new problem which requires including real production characteristics going beyond calculation models into calculation methods. Today the construction process lacks this specification. When mounting vibroisolators the stress-strein of a structure state is changing. The mounting method of vibroisolators is patented and consists in multistage successive compression loading of each vibroisolator with the constant speed and following fixation of this displacement. The specified engineering method of rubber-steel pads calculation in view of change of their form during deformation, nonlinearity, rheological processes is offered. Resilient pads look like rubber plates rectangular in plane reinforced on the basic surfaces with metal sheets. The influence of a time-variable static load and free vibrations of loaded pads are considered.

  7. Bruxism affects stress responses in stressed rats.

    Science.gov (United States)

    Sato, Chikatoshi; Sato, Sadao; Takashina, Hirofumi; Ishii, Hidenori; Onozuka, Minoru; Sasaguri, Kenichi

    2010-04-01

    It has been proposed that suppression of stress-related emotional responses leads to the simultaneous activation of both sympathetic and parasympathetic divisions of the autonomic nervous system (ANS) and that the expression of these emotional states has a protective effect against ulcerogenesis. In the present study, we investigated whether stress-induced bruxism activity (SBA) has a physiological effect of on the stress-induced changes of the stomach, thymus, and spleen as well as blood leukocytes, cortisol, and adrenaline. This study demonstrated that SBA attenuated the stress-induced ulcer genesis as well as degenerative changes of thymus and spleen. SBA also attenuated increases of adrenaline, cortisol, and neutrophils in the blood. In conclusion, expression of aggression through SBA during stress exposure attenuates both stress-induced ANS response, including gastric ulcer formation.

  8. Stress og aldring

    DEFF Research Database (Denmark)

    Jørgensen, Anders; Jørgensen, Martin Balslev; Poulsen, Henrik Enghusen

    2012-01-01

    Accumulating evidence supports the popular notion that psychological stress states may accelerate aging. Stress has been shown to influence cellular systems known to be involved in the aging process. Furthermore, stress is associated with an increased risk of various age-related medical disorders....... These effects are likely mediated by the secretion of stress hormones. In this short review we focus on biochemical and epidemiological evidence for a link between stress and aging....

  9. The existence of a hypnotic state revealed by eye movements.

    Directory of Open Access Journals (Sweden)

    Sakari Kallio

    Full Text Available Hypnosis has had a long and controversial history in psychology, psychiatry and neurology, but the basic nature of hypnotic phenomena still remains unclear. Different theoretical approaches disagree as to whether or not hypnosis may involve an altered mental state. So far, a hypnotic state has never been convincingly demonstrated, if the criteria for the state are that it involves some objectively measurable and replicable behavioural or physiological phenomena that cannot be faked or simulated by non-hypnotized control subjects. We present a detailed case study of a highly hypnotizable subject who reliably shows a range of changes in both automatic and volitional eye movements when given a hypnotic induction. These changes correspond well with the phenomenon referred to as the "trance stare" in the hypnosis literature. Our results show that this 'trance stare' is associated with large and objective changes in the optokinetic reflex, the pupillary reflex and programming a saccade to a single target. Control subjects could not imitate these changes voluntarily. For the majority of people, hypnotic induction brings about states resembling normal focused attention or mental imagery. Our data nevertheless highlight that in some cases hypnosis may involve a special state, which qualitatively differs from the normal state of consciousness.

  10. Nutritional mitigation of winter thermal stress in gilthead seabream: Associated metabolic pathways and potential indicators of nutritional state.

    Science.gov (United States)

    Richard, Nadège; Silva, Tomé S; Wulff, Tune; Schrama, Denise; Dias, Jorge P; Rodrigues, Pedro M L; Conceição, Luís E C

    2016-06-16

    A trial was carried out with gilthead seabream juveniles, aiming to investigate the ability of an enhanced dietary formulation (diet Winter Feed, WF, containing a higher proportion of marine-derived protein sources and supplemented in phospholipids, vitamin C, vitamin E and taurine) to assist fish in coping with winter thermal stress, compared to a low-cost commercial diet (diet CTRL). In order to identify the metabolic pathways affected by WF diet, a comparative two dimensional differential in-gel electrophoresis (2D-DIGE) analysis of fish liver proteome (pH 4–7) was undertaken at the end of winter. A total of 404 protein spots, out of 1637 detected, were differentially expressed between the two groups of fish. Mass spectrometry analysis of selected spots suggested that WF diet improved oxidative stress defense, reduced endoplasmic reticulum stress, enhanced metabolic flux through methionine cycle and phenylalanine/tyrosine catabolism, and induced higher aerobic metabolism and gluconeogenesis. Results support the notion that WF diet had a positive effect on fish nutritional state by partially counteracting the effect of thermal stress and underlined the sensitivity of proteome data for nutritional and metabolic profiling purposes. Intragroup variability and co-measured information were also used to pinpoint which proteins displayed a stronger relation with fish nutritional state. Winter low water temperature is a critical factor for gilthead seabream farming in the Mediterranean region, leading to a reduction of feed intake, which often results in metabolic and immunological disorders and stagnation of growth performances. In a recent trial, we investigated the ability of an enhanced dietary formulation (diet WF) to assist gilthead seabream in coping with winter thermal stress, compared to a standard commercial diet (diet CTRL). Within this context, in the present work, we identified metabolic processes that are involved in the stress-mitigating effect observed

  11. Modeling assumptions influence on stress and strain state in 450 t cranes hoisting winch construction

    Directory of Open Access Journals (Sweden)

    Damian GĄSKA

    2011-01-01

    Full Text Available This work investigates the FEM simulation of stress and strain state of the selected trolley’s load-carrying structure with 450 tones hoisting capacity [1]. Computational loads were adopted as in standard PN-EN 13001-2. Model of trolley was built from several cooperating with each other (in contact parts. The influence of model assumptions (simplification in selected construction nodes to the value of maximum stress and strain with its area of occurrence was being analyzed. The aim of this study was to determine whether the simplification, which reduces the time required to prepare the model and perform calculations (e.g., rigid connection instead of contact are substantially changing the characteristics of the model.

  12. Stress and food deprivation: linking physiological state to migration success in a teleost fish

    DEFF Research Database (Denmark)

    Midwood, J.D.; Larsen, Martin Hage; Aarestrup, Kim

    2016-01-01

    for the cortisol treatment. Food availability and individual energetic state appear to dictate the future life-history strategy (migrate or remain resident) of juvenile salmonids while experimental elevation of the stress hormone cortisol caused impaired growth and reduced survival of both resident and migratory......Food deprivation (FD) is a naturally occurring stressor that is thought to influence the ultimate life-history strategy of individuals. Little is known about how FD interacts with other stressors to influence migration success. European populations of brown trout (Salmo trutta) exhibit partial...... of the glucocorticoid stress response in determining life-history strategy and survival of a migratory species. Using an experimental approach, the relative influences of short-term FD and experimental cortisol elevation (i.e., intra-coelomic injection of cortisol suspended in cocoa butter) on migratory status...

  13. Estimating the Reactivation Potential of Pre-Existing Fractures in Subsurface Granitoids from Outcrop Analogues and in-Situ Stress Modeling: Implications for EGS Reservoir Stimulation with an Example from Thuringia (Central Germany)

    Science.gov (United States)

    Kasch, N.; Ustaszewski, K. M.; Siegburg, M.; Navabpour, P.; Hesse, G.

    2014-12-01

    The Mid-German Crystalline Rise (MGCR) in Thuringia (central Germany) is part of the European Variscan orogen and hosts large extents of Visean granites (c. 350 Ma), locally overlain by up to 3 km of Early Permian to Mid-Triassic volcanic and sedimentary rocks. A geothermal gradient of 36°C km-1 suggests that such subsurface granites form an economically viable hot dry rock reservoir at > 4 km depth. In order to assess the likelihood of reactivating any pre-existing fractures during hydraulic reservoir stimulation, slip and dilation tendency analyses (Morris et al. 1996) were carried out. For this purpose, we determined orientations of pre-existing fractures in 14 granite exposures along the southern border fault of an MGCR basement high. Additionally, the strike of 192 Permian magmatic dikes affecting the granite was considered. This analysis revealed a prevalence of NW-SE-striking fractures (mainly joints, extension veins, dikes and subordinately brittle faults) with a maximum at 030/70 (dip azimuth/dip). Borehole data and earthquake focal mechanisms reveal a maximum horizontal stress SHmax trending N150°E and a strike-slip regime. Effective in-situ stress magnitudes at 4.5 km depth, assuming hydrostatic conditions and frictional equilibrium along pre-existing fractures with a friction coefficient of 0.85 yielded 230 and 110 MPa for SHmax and Shmin, respectively. In this stress field, fractures with the prevailing orientations show a high tendency of becoming reactivated as dextral strike-slip faults if stimulated hydraulically. To ensure that a stimulation well creates fluid connectivity on a reservoir volume as large as possible rather than dissipating fluids along existing fractures, it should follow a trajectory at the highest possible angle to the orientation of prevailing fractures, i.e. subhorizontal and NE-SW-oriented. References: Morris, A., D. A. Ferrill, and D. B. Henderson (1996), Slip-tendency analysis and fault reactivation, Geology, 24, 275-278.

  14. Surgical Stress Abrogates Pre-Existing Protective T Cell Mediated Anti-Tumor Immunity Leading to Postoperative Cancer Recurrence.

    Directory of Open Access Journals (Sweden)

    Abhirami A Ananth

    Full Text Available Anti-tumor CD8+ T cells are a key determinant for overall survival in patients following surgical resection for solid malignancies. Using a mouse model of cancer vaccination (adenovirus expressing melanoma tumor-associated antigen (TAA-dopachrome tautomerase (AdDCT and resection resulting in major surgical stress (abdominal nephrectomy, we demonstrate that surgical stress results in a reduction in the number of CD8+ T cell that produce cytokines (IFNγ, TNFα, Granzyme B in response to TAA. This effect is secondary to both reduced proliferation and impaired T cell function following antigen binding. In a prophylactic model, surgical stress completely abrogates tumor protection conferred by vaccination in the immediate postoperative period. In a clinically relevant surgical resection model, vaccinated mice undergoing a positive margin resection with surgical stress had decreased survival compared to mice with positive margin resection alone. Preoperative immunotherapy with IFNα significantly extends survival in surgically stressed mice. Importantly, myeloid derived suppressor cell (MDSC population numbers and functional impairment of TAA-specific CD8+ T cell were altered in surgically stressed mice. Our observations suggest that cancer progression may result from surgery-induced suppression of tumor-specific CD8+ T cells. Preoperative immunotherapies aimed at targeting the prometastatic effects of cancer surgery will reduce recurrence and improve survival in cancer surgery patients.

  15. Residual stresses evaluation in a gas-pipeline crossing

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca, Maria Cindra [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil); Almeida, Manoel Messias [COMPAGAS, Curitiba, PR (Brazil); Rebello, Joao Marcos Alcoforado [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil); Souza Filho, Byron Goncalves de [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2009-07-01

    The X-rays diffraction technique is a well established and effectiveness method in the determination of the residual and applied stresses in fine grained crystalline materials. It allows to characterize and to quantify the magnitude and direction of the existing surface stresses in the studied point of the material. The objective of this work is the evaluation of the surface stresses in a 10 in diameter Natural Gas Distribution Pipeline manufactured from API 5 L Gr B steel of COMPAGAS company, in a crossing with a Natural Gas Transportation Pipeline, in Araucaria-PR. This kind of evaluation is important to establish weather you have to perform a repositioning of one of the pipeline or not. The measurements had been made in two transversal sections of the pipe, the one upstream (170 mm of the external wall of the pipeline) and another one downstream (840 mm of the external wall of the pipeline). Each transversal section measurements where carried out in 3 points: 9 hours, 12 hours and 3 hours. In each measured point of the pipe surface, the longitudinal and transversal stresses had been measured. The magnitude of the surface residual stresses in the pipe varied of +180 MPa at the -210 MPa. The residual stress state on the surface of the points 12 hours region is characterized by tensile stresses and by compressive stresses in the points of 3 and 9 hours region. The surface residual stresses in gas-pipeline have been measured using X-ray diffraction method, by double exposure technique, using a portable apparatus, with Cr-K-alpha radiation. (author)

  16. Work-related stress perception and hypertension amongst health workers of a mission hospital in Oyo State, south-western Nigeria

    Directory of Open Access Journals (Sweden)

    Akinwumi O. Owolabi

    2012-04-01

    Objective: This study was a work site cross-sectional descriptive study carried out amongst the health workers at the Baptist Medical Centre Ogbomoso, Oyo State, south-western Nigeria. The aim of the study was to discern the prevalence of perceived work stress and to explore the relationship between perceived work stress and the presence of hypertension. Methods: A total of 324 consenting health workers of the institution were administered the job demand-control questionnaire to assess work stress. A standardised questionnaire was used to collect socio-demographic data and other personal data. Measurements of blood pressure, weight and height were carried out and body mass indices were calculated. Results: More than a quarter (26.2% of the subjects perceived themself as stressed at work. The single largest group of hypertensive subjects was seen amongst subjects with work stress. Conclusion: A significant number of health workers in this study is afflicted by work-related stress and perceived work stress was found to be significantly associated with higher hypertension prevalence.

  17. ANALYSIS OF STRESS STATE IN UPPER LAYER OF ROAD CONCRETE PAVEMENT WITH TEMPERATURE ACTION

    Directory of Open Access Journals (Sweden)

    M. K. Pshembaev

    2017-01-01

    Full Text Available While being operated auto-road pavements are subjected to intensive mechanical impacts, ultraviolet ray irradiation, freeze-thaw temperatures, freezing and thawing, drying and moistening. Due to these actions various types of pavement distresses appear on the road pavement. The most significant and dangerous type of distresses is micro-cracks on the road surface. One of the main reasons for their formation is an action of weather and climatic factors that initiate large changes in temperature of coating surface and occurrence of large temperature gradients in the upper layer. In this context while designing and operating auto-roads it is rather essential to investigate a stress state in road surface which is caused by temperature action. Purpose of the described investigations is to determine permissible temperature gradients for cement-concrete pavements that exclude formation of micro-cracks on their surface and thickness of damaged surface layer. Calculations of road pavement have been carried out at various laws for temperature distribution in its depth. A finite difference method realized in PARUS software has been used for studying a stress state of cement-concrete auto-roads. Regularities for distribution of stresses in cement-concrete pavement of auto-roads have been obtained at various surface temperatures. Permissible temperature gradients in the upper pavement layer have been determined and thickness of the layer where micro-cracks are formed has been assessed in the paper. Strength criterion based on the process of micro-crack formation and development in the concrete has been used for calculations. Risk of micro-crack formation on the auto-road pavement depends on material strength, conditions of plate fixing and temperature gradients.

  18. The Existence Of Leading Islands Securing And The Border Areas Unitary State Of Indonesia An Analysis In Law Perspective

    Directory of Open Access Journals (Sweden)

    Nazali

    2015-08-01

    Full Text Available Abstract The research was carried with the aim to discover the existence of securing the foremost islands and state border region of the Republic of Indonesia reviewed from a legal perspective which is directly related to the existence of security and dispute resolution methods as well as the governance of the foremost islands and border region in Kalimantan which bordering Malaysia. This study was conducted in Nunukan district and the surrounding provinces of Kalimantan in this research method that used is normative legal analysis data with juridical and qualitative descriptive approach. The results showed that the security of foremost islands and border region of law perspective in accordance with the Law No. 34 of 2004 regarding the Indonesian National Army has not been implemented to the fullest to realize the security of foremost islands and border region as the frontline of the Republic of Indonesia. The existence of leading islands securing and the border region of the Republic of Indonesia still contain many weaknesses in terms of both governance and security.

  19. Stress and Cancer

    DEFF Research Database (Denmark)

    Christoffer, Johansen,; Sørensen, Ivalu; Lim Høeg, Beverly

    2017-01-01

    The role of stress in relation to cancer remains controversial. Stress is assumed to be an emerging public health problem in modern society. Still, we argue that it is relevant to view the role of stress in cancer from a scientific point of view. A critical overview of existing evidence...... is presented through previous review studies, and the importance of methodological challenges is highlighted. We summarize the evidence on the role of stress as a cause of cancer, on the impact of stress on cancer prognosis, and on how coping mechanisms may influence stress levels in cancer patients. Finally......, we describe the evidence on interventions to relieve stress in cancer patients for the purpose of improving both well-being and cancer prognosis. Against public opinion, we critically dismiss the evidence on psychotherapy as a tool to prolong life after cancer as inconsistent and unresolved....

  20. Applied rolling and sensitivity of Bi(2223)/Ag tapes on Ic degradation by mechanical stress

    International Nuclear Information System (INIS)

    Kovac, P.; Bukva, P.; Husek, I.; Richens, P.E.; Jones, H.

    1999-01-01

    An experimental study of multicore Bi(2223)/Ag tapes, roll-sintered by different methods and subjected to bending and tension stresses has been performed. The tapes, of various technological histories, were bent and tensioned and subsequently the transport current was measured at each stressed state. Comparison of I c degradation curves shows that applied rolling may influence the sensitivity of Bi-2223 filaments against the mechanical stress. The existence of transverse microcracks caused by intermediate rolling leads to a higher sensitivity of the tape to bending. A lowering of critical current degradation was observed for two-axially rolled tapes having a higher filament density and better homogeneity prior to sintering treatment. (author)

  1. Lithospheric Strength and Stress State: Persistent Challenges and New Directions in Geodynamics

    Science.gov (United States)

    Hirth, G.

    2017-12-01

    The strength of the lithosphere controls a broad array of geodynamic processes ranging from earthquakes, the formation and evolution of plate boundaries and the thermal evolution of the planet. A combination of laboratory, geologic and geophysical observations provides several independent constraints on the rheological properties of the lithosphere. However, several persistent challenges remain in the interpretation of these data. Problems related to extrapolation in both scale and time (rate) need to be addressed to apply laboratory data. Nonetheless, good agreement between extrapolation of flow laws and the interpretation of microstructures in viscously deformed lithospheric mantle rocks demonstrates a strong foundation to build on to explore the role of scale. Furthermore, agreement between the depth distribution of earthquakes and predictions based on extrapolation of high temperature friction relationships provides a basis to understand links between brittle deformation and stress state. In contrast, problems remain for rationalizing larger scale geodynamic processes with these same rheological constraints. For example, at face value the lab derived values for the activation energy for creep are too large to explain convective instabilities at the base of the lithosphere, but too low to explain the persistence of dangling slabs in the upper mantle. In this presentation, I will outline these problems (and successes) and provide thoughts on where new progress can be made to resolve remaining inconsistencies, including discussion of the role of the distribution of volatiles and alteration on the strength of the lithosphere, new data on the influence of pressure on friction and fracture strength, and links between the location of earthquakes, thermal structure, and stress state.

  2. Anxiety and psychosomatic symptoms in palliative care: from neuro-psychobiological response to stress, to symptoms' management with clinical hypnosis and meditative states.

    Science.gov (United States)

    Satsangi, Anirudh Kumar; Brugnoli, Maria Paola

    2018-01-01

    Psychosomatic disorder is a condition in which psychological stresses adversely affect physiological (somatic) functioning to the point of distress. It is a condition of dysfunction or structural damage in physical organs through inappropriate activation of the involuntary nervous system and the biochemical response. In this framework, this review will consider anxiety disorders, from the perspective of the psychobiological mechanisms of vulnerability to extreme stress in severe chronic illnesses. Psychosomatic medicine is a field of behavioral medicine and a part of the practice of consultation-liaison psychiatry. Psychosomatic medicine in palliative care, integrates interdisciplinary evaluation and management involving diverse clinical specialties including psychiatry, psychology, neurology, internal medicine, allergy, dermatology, psychoneuroimmunology, psychosocial oncology and spiritual care. Clinical conditions where psychological processes act as a major factor affecting medical outcomes are areas where psychosomatic medicine has competence. Thus, the psychosomatic symptom develops as a physiological connected of an emotional state. In a state of rage or fear, for example, the stressed person's blood pressure is likely to be elevated and his pulse and respiratory rate to be increased. When the fear passes, the heightened physiologic processes usually subside. If the person has a persistent fear (chronic anxiety), however, which he is unable to express overtly, the emotional state remains unchanged, though unexpressed in the overt behavior, and the physiological symptoms associated with the anxiety state persist. This paper wants highlight how clinical hypnosis and meditative states can be important psychosocial and spiritual care, for the symptom management on neuro-psychobiological response to stress.

  3. Effects of vacuum-ultraviolet irradiation on copper penetration into low-k dielectrics under bias-temperature stress

    Energy Technology Data Exchange (ETDEWEB)

    Guo, X.; Zheng, H.; Xue, P.; Shohet, J. L. [Plasma Processing and Technology Laboratory and Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); King, S. W. [Logic Technology Development, Intel Corporation, Hillsboro, Oregon 97124 (United States); Nishi, Y. [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States)

    2015-01-05

    The effects of vacuum-ultraviolet (VUV) irradiation on copper penetration into non-porous low-k dielectrics under bias-temperature stress (BTS) were investigated. By employing x-ray photoelectron spectroscopy depth-profile measurements on both as-deposited and VUV-irradiated SiCOH/Cu stacks, it was found that under the same BTS conditions, the diffusion depth of Cu into the VUV-irradiated SiCOH is higher than that of as-deposited SiCOH. On the other hand, under the same temperature-annealing stress (TS) without electric bias, the Cu distribution profiles in the VUV-irradiated SiCOH were same with that for the as-deposited SiCOH. The experiments suggest that in as-deposited SiCOH, the diffused Cu exists primarily in the atomic state, while in VUV-irradiated SiCOH, the diffused Cu is oxidized by the hydroxyl ions (OH{sup −}) generated from VUV irradiation and exists in the ionic state. The mechanisms for metal diffusion and ion injection in VUV irradiated low-k dielectrics are discussed.

  4. Fabrication of imitative stress corrosion cracking specimens suitable for electromagnetic nondestructive evaluations using solid state bonding

    International Nuclear Information System (INIS)

    Yusa, Noritaka; Hashizume, Hidetoshi; Uchimoto, Tetsuya; Takagi, Toshiyuki

    2010-01-01

    This study proposes a method to fabricate artificial defects that is almost identical to stress corrosion cracking from the viewpoint of electromagnetic nondestructive evaluations. The key idea is to realize a region having electrical resistance embedded inside a conductive materials using solid state bonding. A rough region is introduced into the surface of the materials so that the region is partially bonded to realize electrical resistance. The validity of the method is demonstrated using type 316L austenitic stainless steels. Eddy current tests and subsequent destructive tests confirm that signals due to the fabricated specimens are very similar to those due to stress corrosion cracks. (author)

  5. Why is everyone so anxious?: an exploration of stress and anxiety in genetic counseling graduate students.

    Science.gov (United States)

    Jungbluth, Chelsy; Macfarlane, Ian M; Veach, Patricia McCarthy; Leroy, Bonnie S

    2011-06-01

    Stress is an inevitable part of daily life. Studies of graduate student stress exist, but none include genetic counseling students. The present mixed-methods study investigated 225 genetic counseling students' stress and anxiety levels using the State-Trait Anxiety Inventory (STAI; Spielberger et al. 1983), frequency and intensity of stressors associated with their graduate experience, positive and challenging aspects of their experience, and their stress management advice for prospective students. Principal axis factor analysis yielded five conceptual factors underlying the stressors: Professional Uncertainty, Personal Life Events, Interpersonal Demands, Academic Demands, and Isolating Circumstances. Exploratory model fitting using regression yielded four significant predictors accounting for 19% of the variance in state anxiety: (1) trait anxiety, (2) the Interpersonal Demands factor, (3) the Isolating Circumstances factor, and (4) the interaction between the Professional Uncertainty factor and advanced student status. Content analysis of open-ended responses identified several themes. For instance, most students enjoyed what they were learning, interactions with colleagues, and affirmation of their career choice, while certain academic and professional challenges were particularly stressful (e.g., workload, time constraints, clinical rotations). Additional findings, program implications, and research recommendations are provided.

  6. Damage evolution under cyclic multiaxial stress state: A comparative analysis between glass/epoxy laminates and tubes

    DEFF Research Database (Denmark)

    Quaresimin, M.; Carraro, P.A.; Mikkelsen, Lars Pilgaard

    2014-01-01

    In this work an experimental investigation on damage initiation and evolution in laminates under cyclic loading is presented. The stacking sequence [0/θ2/0/-θ2]s has been adopted in order to investigate the influence of the local multiaxial stress state in the off-axis plies and the possible effect...

  7. THE CALCULATION OF STRESS-STRAIN STATE OF THREE-LAYER BEAM TAKING INTO ACCOUNT EDGE EFFECTS

    Directory of Open Access Journals (Sweden)

    Kh. M. Muselemov

    2015-01-01

    Full Text Available The work is dedicated to the calculation of the stress-strain state (SSS of the three-layer beam (TLB subject to boundary effects.In this paper, a system of differential equations of equilibrium of the threelayer beam. To solve these equations, it is necessary to know the 12 boundary conditions, co-which depend on support conditions and loading of sandwich beams under study. This system of equations is solved by the application package of mathematical modeling "Maple 5.4." The solution of this system we obtain expressions for determining de-formations and stress all components (bearing layers and filler, a three-layer beam anywhere under specified conditions of fastening the ends of the beam and its loading. 

  8. Job-Related Stress among Mass Communication Faculty.

    Science.gov (United States)

    Endres, Fred F.; Wearden, Stanley T.

    1996-01-01

    Questions 600 full-time faculty members teaching journalism and/or mass communication about job-related stress. Finds faculty members suffer from job-related stress; differences exist in the way men and women view, experience, and cope with stress; anxiety and stress are shared by teachers at all grade levels; and times when faculty and students…

  9. No evidence for local adaptation to salt stress in the existing populations of invasive Solidago canadensis in China.

    Science.gov (United States)

    Li, Junmin; Liu, Haiyan; Yan, Ming; Du, Leshan

    2017-01-01

    Local adaptation is an important mechanism underlying the adaptation of plants to environmental heterogeneity, and the toxicity of salt results in strong selection pressure on salt tolerance in plants and different ecotypes. Solidago canadensis, which is invasive in China, has spread widely and has recently colonized alkali sandy loams with a significant salt content. A common greenhouse experiment was conducted to test the role of local adaptation in the successful invasion of S. canadensis into salty habitats. Salt treatment significantly decreased the growth of S. canadensis, including rates of increase in the number of leaves and plant height; the root, shoot, and total biomass. Furthermore, salt stress significantly reduced the net photosynthetic rate, stomatal conductance, transpiration rate and relative chlorophyll content but significantly increased peroxidase activity and the proline content of S. canadensis and the root/shoot ratio. Two-way analysis of variance showed that salt treatment had a significant effect on the physiological traits of S. canadensis, except for the intercellular CO2 concentration, whereas the population and the salt × population interaction had no significant effect on any physiological traits. Most of the variation in plasticity existed within and not among populations, excep for the root/shoot ratio. S. canadensis populations from soil with moderate/high salt levels grew similarly to S. canadensis populations from soils with low salt levels. No significant correlation between salt tolerance indices and soil salinity levels was observed. The plasticity of the proline content, intercellular CO2 concentration and chlorophyll content had significant correlations with the salt tolerance index. These findings indicate a lack of evidence for local adaption in the existing populations of invasive S. canadensis in China; instead, plasticity might be more important than local adaptation in influencing the physiological traits and salt

  10. No evidence for local adaptation to salt stress in the existing populations of invasive Solidago canadensis in China.

    Directory of Open Access Journals (Sweden)

    Junmin Li

    Full Text Available Local adaptation is an important mechanism underlying the adaptation of plants to environmental heterogeneity, and the toxicity of salt results in strong selection pressure on salt tolerance in plants and different ecotypes. Solidago canadensis, which is invasive in China, has spread widely and has recently colonized alkali sandy loams with a significant salt content. A common greenhouse experiment was conducted to test the role of local adaptation in the successful invasion of S. canadensis into salty habitats. Salt treatment significantly decreased the growth of S. canadensis, including rates of increase in the number of leaves and plant height; the root, shoot, and total biomass. Furthermore, salt stress significantly reduced the net photosynthetic rate, stomatal conductance, transpiration rate and relative chlorophyll content but significantly increased peroxidase activity and the proline content of S. canadensis and the root/shoot ratio. Two-way analysis of variance showed that salt treatment had a significant effect on the physiological traits of S. canadensis, except for the intercellular CO2 concentration, whereas the population and the salt × population interaction had no significant effect on any physiological traits. Most of the variation in plasticity existed within and not among populations, excep for the root/shoot ratio. S. canadensis populations from soil with moderate/high salt levels grew similarly to S. canadensis populations from soils with low salt levels. No significant correlation between salt tolerance indices and soil salinity levels was observed. The plasticity of the proline content, intercellular CO2 concentration and chlorophyll content had significant correlations with the salt tolerance index. These findings indicate a lack of evidence for local adaption in the existing populations of invasive S. canadensis in China; instead, plasticity might be more important than local adaptation in influencing the physiological

  11. Possible Existence of (cc¯)–Nucleus Bound States

    International Nuclear Information System (INIS)

    Yokota, Akira; Oka, Makoto; Hiyama, Emiko

    2014-01-01

    Charmonium (cc¯) bound states in few-nucleon systems, 2 H, 4 He and 8 Be, are studied via Gaussian Expansion Method (GEM). We adopt a Gaussian potential as an effective (cc¯)–nucleon (N) interaction. The relation between two-body (cc¯)–N scattering length a cc¯−N and the binding energies B of (cc¯)–nucleus bound states are given. Recent lattice QCD data of a cc¯−N corresponds to B≃0.5 MeV for (cc¯)− 4 He and 2 MeV for (cc¯)− 8 Be in our results. (author)

  12. Status of nuclear data needed for radiation therapy and existing data development activities in Member States. Summary report of a consultants' meeting

    International Nuclear Information System (INIS)

    Kocherov, N.P.

    1997-01-01

    The present report contains the summary of the IAEA Consultants' Meeting on the ''Status of nuclear data needed for radiation therapy and existing data development activities in Member States'' held at the IAEA Headquarters, Vienna, 9-11 December 1996. The present activities on nuclear data for radiotherapy are summarized in Member States, the present status of nuclear data for photon, neutron and proton therapy is reviewed and topics which are not presently covered by other institutions are identified. (author). 4 refs, 2 figs

  13. Irradiation creep, stress relaxation and a mechanical equation of state

    International Nuclear Information System (INIS)

    Foster, J.P.

    1976-01-01

    Irradiation creep and stress relaxation data are available from the United Kingdom for 20 percent CW M316, 20 percent CW FV 548 and FHT PE16 using pure torsion in the absence of swelling at 300 0 C. Irradiation creep models were used to calculate the relaxation and permanent deflection of the stress relaxation tests. Two relationships between irradiation creep and stress relaxation were assessed by comparing the measured and calculated stress relaxation and permanent deflection. The results show that for M316 and FV548, the stress relaxation and deflection may be calculated using irradiation creep models when the stress rate term arising from the irradiation creep model is set equal to zero. In the case of PE16, the inability to calculate the stress relaxation and permanent deflection from the irradiation creep data was attributed to differences in creep behavior arising from lot-to-lot variations in alloying elements and impurity content. A modification of the FV548 and PE16 irradiation creep coefficients was necessary in order to calculate the stress relaxation and deflection. The modifications in FV548 and PE16 irradiation creep properties reduces the large variation in the transient or incubation parameter predicted by irradiation creep tests for M316, FV548 and PE16

  14. 12 CFR 563b.435 - What happens to my corporate existence after conversion?

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 5 2010-01-01 2010-01-01 false What happens to my corporate existence after... What happens to my corporate existence after conversion? Your corporate existence will continue following your conversion, unless you convert to a state-chartered stock savings association and state law...

  15. Overview of Existing Wind Energy Ordinances

    Energy Technology Data Exchange (ETDEWEB)

    Oteri, F.

    2008-12-01

    Due to increased energy demand in the United States, rural communities with limited or no experience with wind energy now have the opportunity to become involved in this industry. Communities with good wind resources may be approached by entities with plans to develop the resource. Although these opportunities can create new revenue in the form of construction jobs and land lease payments, they also create a new responsibility on the part of local governments to ensure that ordinances will be established to aid the development of safe facilities that will be embraced by the community. The purpose of this report is to educate and engage state and local governments, as well as policymakers, about existing large wind energy ordinances. These groups will have a collection of examples to utilize when they attempt to draft a new large wind energy ordinance in a town or county without existing ordinances.

  16. Stress Managment and Health Promotion

    Directory of Open Access Journals (Sweden)

    Asghar Dadkhah

    2004-09-01

    Full Text Available Health promotion approach is utilized to address the prevention, management and early intervention for stress management and also to promote positive mental and psychological health. Stress affects everyone and must be managed effectively to reduce its chronic and deleterious effects this study consists of two sections: in first section the principals of health promotion in different human existence levels, prevention of disease related to stress, the effect of stress on human well-being, and stress management were discussed. In second section the role of rehabilitation specialists (Medical technologist, nurses, occupational therapists, physiotherapists, respiratory therapists, and social workers in stress management were counted.

  17. Stressed and strained state for cermetic-rod-type fuel element

    International Nuclear Information System (INIS)

    Kulikov, I.S.

    1987-01-01

    Calculation technique for designing the stress-strained state of a cermetic rod-type fuel element has been proposed. The technique is based on the time-dependent step-by-step method and the solution of the deformation equilibrium equation for continuous and thick-wall long cylinders at every temporal step by the finite difference method. Additional strains, caused by thermal expansion and radiation swelling, have been taken into account. The transion from the non-contact model to the stiff-contact model has been provided in the case of cladding-fuel gap dissappearing in one or a number of cross-sections along the fuel element height. The method is supplemented by the formula for fuel cans stability estimation in the case of high coolant external pressure. The example of estimation of the cermetic-rod-type fuel elements are considered as an example

  18. Remaining stress-state and strain-energy in tempered glass fragments

    DEFF Research Database (Denmark)

    Nielsen, Jens Henrik

    2016-01-01

    to the fragmentation process and some authors e.g. Barsom (J Am Ceram Soc 51(2):75, 1968), Gulati (Glass processing days, Tamglass Engineering Oy, Tampere, 1997), Warren (Fractography of glasses and ceramics IV, Alfred University, Alfred, 2001) and Tandon and Glass (Fracture mechanics of ceramics—active materials......When tempered glass breaks, it shatters into relatively small pieces depending on the residual stress state in the glass. This has been known for centuries and is currently used in standards for classifying whether a piece of glass is tempered or not. However, the process of fragmentation...... is complex and only a few, relatively simple, models have been suggested for predicting the fragment size. The full theoretical explanation is still to be found and this work aims at providing another brick to the puzzle. The strain-energy present in tempered glass is obviously contributing...

  19. Ceramic Composite Intermediate Temperature Stress-Rupture Properties Improved Significantly

    Science.gov (United States)

    Morscher, Gregory N.; Hurst, Janet B.

    2002-01-01

    Silicon carbide (SiC) composites are considered to be potential materials for future aircraft engine parts such as combustor liners. It is envisioned that on the hot side (inner surface) of the combustor liner, composites will have to withstand temperatures in excess of 1200 C for thousands of hours in oxidizing environments. This is a severe condition; however, an equally severe, if not more detrimental, condition exists on the cold side (outer surface) of the combustor liner. Here, the temperatures are expected to be on the order of 800 to 1000 C under high tensile stress because of thermal gradients and attachment of the combustor liner to the engine frame (the hot side will be under compressive stress, a less severe stress-state for ceramics). Since these composites are not oxides, they oxidize. The worst form of oxidation for strength reduction occurs at these intermediate temperatures, where the boron nitride (BN) interphase oxidizes first, which causes the formation of a glass layer that strongly bonds the fibers to the matrix. When the fibers strongly bond to the matrix or to one another, the composite loses toughness and strength and becomes brittle. To increase the intermediate temperature stress-rupture properties, researchers must modify the BN interphase. With the support of the Ultra-Efficient Engine Technology (UEET) Program, significant improvements were made as state-of-the-art SiC/SiC composites were developed during the Enabling Propulsion Materials (EPM) program. Three approaches were found to improve the intermediate-temperature stress-rupture properties: fiber-spreading, high-temperature silicon- (Si) doped boron nitride (BN), and outside-debonding BN.

  20. Perceived stress and anxiety among Ghanaian pregnant women ...

    African Journals Online (AJOL)

    Perceived stress and anxiety among Ghanaian pregnant women. ... Abstract. The aim of the study was to assess the prevalence of stress and anxiety, as well as the association that exists between stress/anxiety and ... from 32 Countries:.

  1. Interindividual differences in stress sensitivity: basal and stress-induced cortisol levels differentially predict neural vigilance processing under stress.

    Science.gov (United States)

    Henckens, Marloes J A G; Klumpers, Floris; Everaerd, Daphne; Kooijman, Sabine C; van Wingen, Guido A; Fernández, Guillén

    2016-04-01

    Stress exposure is known to precipitate psychological disorders. However, large differences exist in how individuals respond to stressful situations. A major marker for stress sensitivity is hypothalamus-pituitary-adrenal (HPA)-axis function. Here, we studied how interindividual variance in both basal cortisol levels and stress-induced cortisol responses predicts differences in neural vigilance processing during stress exposure. Implementing a randomized, counterbalanced, crossover design, 120 healthy male participants were exposed to a stress-induction and control procedure, followed by an emotional perception task (viewing fearful and happy faces) during fMRI scanning. Stress sensitivity was assessed using physiological (salivary cortisol levels) and psychological measures (trait questionnaires). High stress-induced cortisol responses were associated with increased stress sensitivity as assessed by psychological questionnaires, a stronger stress-induced increase in medial temporal activity and greater differential amygdala responses to fearful as opposed to happy faces under control conditions. In contrast, high basal cortisol levels were related to relative stress resilience as reflected by higher extraversion scores, a lower stress-induced increase in amygdala activity and enhanced differential processing of fearful compared with happy faces under stress. These findings seem to reflect a critical role for HPA-axis signaling in stress coping; higher basal levels indicate stress resilience, whereas higher cortisol responsivity to stress might facilitate recovery in those individuals prone to react sensitively to stress. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  2. Strategy for a Rock Mechanics Site Descriptive Model. Development and testing of an approach to modelling the state of stress

    Energy Technology Data Exchange (ETDEWEB)

    Hakami, Eva; Hakami, Hossein [Itasca Geomekanik AB, Solna (Sweden); Cosgrove, John [Imperial College of Science and Technology, London (United Kingdom)

    2002-05-01

    stress field is recommended. Different numerical models (i.e. alternative geological concepts) can be analysed to provide possible explanations for observed stress patterns. The orientation of fracture zones with respect to the applied stresses determines the direction of fracture zone deformation. Stress measurement results and observations from the site concerning slip directions must be used in the evaluation of the modelling The mean orientation for the maximum principal stress may be predicted with a fairly high degree of certainty because both regional stress pattern and the site-specific measurements can be used. The same general trend is expected for the whole central and southern Sweden, but local deviations caused by topography and faults could exist. This prediction applies to rock mass blocks away from major fracture zones. The local spatial variation around the mean can be predicted based on measurement data. The confidence in the prediction of the stress magnitudes will be dependent on the measurement results and the complexity of the site. Inside, and also in the vicinity of major fracture zones, both the stress magnitudes and stress orientation are expected to vary strongly from point to point. The prediction of the mean stress inside a fracture zone is therefore more uncertain and the predicted local variation will be larger. The stress prediction should include a quantitative estimation of the uncertainty and the variability. Two parameters, u for uncertainty and v for local variability, are proposed. The aim of a stress model process is to minimize the u-parameter, in rock units where the stress level is of importance for the design and safety assessment. In the future stress measurement programmes, consideration should be given to the geological model of the site, such that measurement located inside or close to fracture zone units can be distinguished from measurements taken in more intact rock mass units. The measurements should preferably be

  3. Strategy for a Rock Mechanics Site Descriptive Model. Development and testing of an approach to modelling the state of stress

    International Nuclear Information System (INIS)

    Hakami, Eva; Hakami, Hossein; Cosgrove, John

    2002-05-01

    recommended. Different numerical models (i.e. alternative geological concepts) can be analysed to provide possible explanations for observed stress patterns. The orientation of fracture zones with respect to the applied stresses determines the direction of fracture zone deformation. Stress measurement results and observations from the site concerning slip directions must be used in the evaluation of the modelling The mean orientation for the maximum principal stress may be predicted with a fairly high degree of certainty because both regional stress pattern and the site-specific measurements can be used. The same general trend is expected for the whole central and southern Sweden, but local deviations caused by topography and faults could exist. This prediction applies to rock mass blocks away from major fracture zones. The local spatial variation around the mean can be predicted based on measurement data. The confidence in the prediction of the stress magnitudes will be dependent on the measurement results and the complexity of the site. Inside, and also in the vicinity of major fracture zones, both the stress magnitudes and stress orientation are expected to vary strongly from point to point. The prediction of the mean stress inside a fracture zone is therefore more uncertain and the predicted local variation will be larger. The stress prediction should include a quantitative estimation of the uncertainty and the variability. Two parameters, u for uncertainty and v for local variability, are proposed. The aim of a stress model process is to minimize the u-parameter, in rock units where the stress level is of importance for the design and safety assessment. In the future stress measurement programmes, consideration should be given to the geological model of the site, such that measurement located inside or close to fracture zone units can be distinguished from measurements taken in more intact rock mass units. The measurements should preferably be performed using overcoring

  4. Surface Wave Velocity-Stress Relationship in Uniaxially Loaded Concrete

    DEFF Research Database (Denmark)

    Shokouhi, Parisa; Zoëga, Andreas; Wiggenhauser, Herbert

    2012-01-01

    The sonic surface wave (or Rayleigh wave) velocity measured on prismatic concrete specimens under uniaxial compression was found to be highly stress-dependent. At low stress levels, the acoustoelastic effect and the closure of existing microcracks results in a gradual increase in surface wave...... velocities. At higher stress levels, concrete suffers irrecoverable damage: the existing microcracks widen and coalesce and new microcracks form. This progressive damage process leads first to the flattening and eventually the drop in the velocity-stress curves. Measurements on specimens undergoing several...... loading cycles revealed that the velocities show a stress-memory effect in good agreement with the Kaiser effect. Comparing the velocities measured during loading and unloading, the effects of stress and damage on the measured velocities could be differentiated. Moreover, the stress dependency of surface...

  5. Evaluation of stress intensity factors due to welding residual stresses for circumferential cracked pipes

    International Nuclear Information System (INIS)

    Oh, Chang-Young; Kim, Yun-Jae; Oh, Young-Jin; Kim, Jong-Sung; Song, Tae-Kwang; Kim, Yong-Beum

    2013-01-01

    To investigate the applicability of existing methods to estimate stress intensity factors due to welding residual stresses, comparisons with finite element (FE) solutions are made for two types of generic welding residual stress profiles, generated by simulating repair welds. It is found that fitting residual stresses over the crack depth using third-order polynomials gives good estimates of stress intensity factors but fitting over the entire thickness can result in inaccurate estimates even with fourth-order polynomials. Noting that welding residual stresses are often determined from FE analyses, linearization of residual stresses to estimate stress intensity factors is proposed. Comparison with FE solutions shows good agreements. -- Highlights: ► Applicability of K estimation methods is investigated for welding residual stresses. ► Two types of generic residual stress profiles with repair welds are considered. ► Fitting residual stresses over the crack depth gives good estimates of K. ► A method to estimate K by linearising residual stress profiles is proposed

  6. Wind/seismic comparison for upgrading existing structures

    International Nuclear Information System (INIS)

    Giller, R.A.

    1989-01-01

    This paper depicts the analysis procedures and methods used to evaluate three existing building structures for extreme wind loads. The three structures involved in this evaluation are located at the US Department of Energy's Hanford Site near Richland, Washington. This site is characterized by open flat grassland with few surrounding obstructions and has extreme winds in lieu of tornados as a design basis accident condition. This group of buildings represents a variety of construction types, including a concrete stack, a concrete load-bearing wall structure, and a rigid steel-frame building. The three structures included in this group have recently been evaluated for response to the design basis earthquake that included non-linear time history effects. The resulting loads and stresses from the wind analyses were compared to the loads and stresses resulting from seismic analyses. This approach eliminated the need to prepare additional capacity calculations that were already contained in the seismic evaluations

  7. Thermal stress state of cryogenic HP vessels under freezing and pressurization

    International Nuclear Information System (INIS)

    Tsybenko, A.S.; Kuranov, B.A.; Chepurnoj, A.D.; Shaposhnikov, V.A.; Krishchuk, N.G.

    1986-01-01

    A mathematical model is developed for thermomechanical processes in cryogenic HP vessels under freezing either by liquid and (or) gaseous cryogen and under pressurization. Equations of nonlinear nonstationary thermal conductivity and nonisothermal thermoelastoplasticity are used for the case of the theory off low with isotropic hardening. Semiempiricaldependences of nonstationary heat exchange for gaseous medium, experimental curves of cryogenic liquid boiling, mass exchange relationships are allowed for when formulating boundary conditions. The mathematical modelis realized on the basi of the finite element method in the form of highly automated program complex TERSOD (heat resistanceof vessels), oriented for computer of the Unified System. Heat and stress-strained states for three constructions of vessels are thoroughly studied under different conditions of gaseous, liquid and combined freezing with subsequent pressurization

  8. Elevated oxidative stress monitored via the albumin-thiol redox state is correlated with matrix metalloproteinase-3 elevation in patients with rheumatoid arthritis.

    Science.gov (United States)

    Kizaki, Kazuha; Yoshizumi, Yusuke; Takahashi, Teppei; Era, Seiichi

    2015-01-01

    In rheumatoid arthritis (RA), matrix metalloproteinase-3 (MMP-3) and oxidative stress contribute to joint destruction. However, little is known about the relationship between MMP-3 and oxidative stress in RA. We measured the albumin-thiol redox state as a marker of oxidative stress, MMP-3, and the DAS-28 score calculated using CRP values among forty-seven patients (9 males and 38 females) with RA. According to the serum MMP-3 levels, they were divided into two groups (group A: within normal ranges of 36.9-121.0 ng/mL for men and 17.3-59.7 ng/mL for women; group B: above normal ranges). The albumin-thiol redox state in group B was significantly oxidized compared with that in group A (p < 0.01). The percentage of oxidized albumin-thiol showed a positive correlation with serum MMP-3 (r = 0.52). DAS-28 and CRP were also correlated with the percentage of oxidized albumin-thiol (r = 0.46, r = 0.44). The albumin-thiol redox state was significantly oxidized in correlation with serum MMP-3 elevation in RA.

  9. Periodic and chaotic psychological stress variations as predicted by a social support buffered response model

    Science.gov (United States)

    Field, Richard J.; Gallas, Jason A. C.; Schuldberg, David

    2017-08-01

    Recent work has introduced social dynamic models of people's stress-related processes, some including amelioration of stress symptoms by support from others. The effects of support may be ;direct;, depending only on the level of support, or ;buffering;, depending on the product of the level of support and level of stress. We focus here on the nonlinear buffering term and use a model involving three variables (and 12 control parameters), including stress as perceived by the individual, physical and psychological symptoms, and currently active social support. This model is quantified by a set of three nonlinear differential equations governing its stationary-state stability, temporal evolution (sometimes oscillatory), and how each variable affects the others. Chaos may appear with periodic forcing of an environmental stress parameter. Here we explore this model carefully as the strength and amplitude of this forcing, and an important psychological parameter relating to self-kindling in the stress response, are varied. Three significant observations are made: 1. There exist many complex but orderly regions of periodicity and chaos, 2. there are nested regions of increasing number of peaks per cycle that may cascade to chaos, and 3. there are areas where more than one state, e.g., a period-2 oscillation and chaos, coexist for the same parameters; which one is reached depends on initial conditions.

  10. Life estimation of low-cycle fatigue of pipe elbows. Proposed criteria of low-cycle fatigue life under the multi-axial stress field

    International Nuclear Information System (INIS)

    Ando, Kotoji; Takahashi, Koji; Matsuo, Kazuya; Urabe, Yoshio

    2013-01-01

    Pipe elbows were important parts frequently used in the pipelines of nuclear power, thermal power and chemical plants, and their integrity needed to be assured under seismic loads and thermal stresses considering local wall thinning or complex stress distribution due to special configuration different from straight pipe. This article investigated in details elastic-plastic stress-strain state of pipe elbow using finite element analysis and clarified there existed high bi-axial stress field at side inner surface of pipe elbow axial cracks initiated. Bi-axial stress factor was around 0.6 for sound elbow and up to 0.95 for local wall thinning at crown. Fracture strain of 1.15 was reduced to around 0.15 for bi-axial stress factor from 0.6 to 0.9. Normalized fatigue life for bi-axial stress field (0.6 - 0.8) was largely reduced to around 15, 19 and 10% of fatigue life of uni-axial state dependent on material strength level. Proposed revised universal slopes taking account of multi-axial stress factor could explain qualitatively effects of strain range, internal pressure and ratchet strain (pre-strain) on low-cycle fatigue life of pipe elbow. (T. Tanaka)

  11. Review of possible correlations between in situ stress and PFL fracture transmissivity data at Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Derek (University of Alberta (United States)); Follin, Sven (SF GeoLogic AB (Sweden))

    2011-11-15

    In laboratory samples, the fracture transmissivity decreases significantly as the confining stress increases. While these experimental relationships are widely accepted and validated on laboratory samples, it is unknown if such relationships exist in situ or if these relationships can be scaled from the centimetre-scale laboratory tests to the metre-scale of in situ fractures. The purpose of this work is to assess the relationship between the structural-hydraulic data gathered in deep, cored boreholes at Forsmark and the in situ stress state acting on the these fractures. In conclusion, there does not appear to be sufficient evidence from these analyses to support the notion that the magnitude of the flow along the fractures at Forsmark is solely controlled by the in situ stress acting on the fracture. This should not be surprising because the majority of the fractures formed more than 1 billion years ago and the current in situ stress state has only been active for the past 12 million years. It is more likely that the transmissivity values are controlled by fracture roughness, open channels within the fracture, fracture stiffness and fracture infilling material

  12. Stress free configuration of the human eye.

    Science.gov (United States)

    Elsheikh, Ahmed; Whitford, Charles; Hamarashid, Rosti; Kassem, Wael; Joda, Akram; Büchler, Philippe

    2013-02-01

    Numerical simulations of eye globes often rely on topographies that have been measured in vivo using devices such as the Pentacam or OCT. The topographies, which represent the form of the already stressed eye under the existing intraocular pressure, introduce approximations in the analysis. The accuracy of the simulations could be improved if either the stress state of the eye under the effect of intraocular pressure is determined, or the stress-free form of the eye estimated prior to conducting the analysis. This study reviews earlier attempts to address this problem and assesses the performance of an iterative technique proposed by Pandolfi and Holzapfel [1], which is both simple to implement and promises high accuracy in estimating the eye's stress-free form. A parametric study has been conducted and demonstrated reliance of the error level on the level of flexibility of the eye model, especially in the cornea region. However, in all cases considered 3-4 analysis iterations were sufficient to produce a stress-free form with average errors in node location <10(-6)mm and a maximal error <10(-4)mm. This error level, which is similar to what has been achieved with other methods and orders of magnitude lower than the accuracy of current clinical topography systems, justifies the use of the technique as a pre-processing step in ocular numerical simulations. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  13. An improved Corten-Dolan's model based on damage and stress state effects

    International Nuclear Information System (INIS)

    Gao, Huiying; Huang, Hong Zhong; Lv, Zhiqiang; Zuo, Fang Jun; Wang, Hai Kun

    2015-01-01

    The value of exponent d in Corten-Dolan's model is generally considered to be a constant. Nonetheless, the results predicted on the basis of this statement deviate significantly from the real values. In consideration of the effects of damage and stress state on fatigue life prediction, Corten-Dolan's model is improved by redefining the exponent d used in the traditional model. The improved model performs better than the traditional one with respect to the demonstration of a fatigue failure mechanism. Predictions of fatigue life on the basis of investigations into three metallic specimens indicate that the errors caused by the improved model are significantly smaller than those induced by the traditional model. Meanwhile, predictions derived according to the improved model fall into a narrower dispersion zone than those made as per Miner's rule and the traditional model. This finding suggests that the proposed model improves the life prediction accuracy of the other two models. The predictions obtained using the improved Corten-Dolan's model differ slightly from those derived according to a model proposed in previous literature; a few life predictions obtained on the basis of the former are more accurate than those derived according to the latter. Therefore, the improved model proposed in this paper is proven to be rational and reliable given the proven validity of the existing model. Therefore, the improved model can be feasibly and credibly applied to damage accumulation and fatigue life prediction to some extent.

  14. An improved Corten-Dolan's model based on damage and stress state effects

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Huiying; Huang, Hong Zhong; Lv, Zhiqiang; Zuo, Fang Jun; Wang, Hai Kun [University of Electronic Science and Technology of China, Chengdu (China)

    2015-08-15

    The value of exponent d in Corten-Dolan's model is generally considered to be a constant. Nonetheless, the results predicted on the basis of this statement deviate significantly from the real values. In consideration of the effects of damage and stress state on fatigue life prediction, Corten-Dolan's model is improved by redefining the exponent d used in the traditional model. The improved model performs better than the traditional one with respect to the demonstration of a fatigue failure mechanism. Predictions of fatigue life on the basis of investigations into three metallic specimens indicate that the errors caused by the improved model are significantly smaller than those induced by the traditional model. Meanwhile, predictions derived according to the improved model fall into a narrower dispersion zone than those made as per Miner's rule and the traditional model. This finding suggests that the proposed model improves the life prediction accuracy of the other two models. The predictions obtained using the improved Corten-Dolan's model differ slightly from those derived according to a model proposed in previous literature; a few life predictions obtained on the basis of the former are more accurate than those derived according to the latter. Therefore, the improved model proposed in this paper is proven to be rational and reliable given the proven validity of the existing model. Therefore, the improved model can be feasibly and credibly applied to damage accumulation and fatigue life prediction to some extent.

  15. 40 CFR 60.2992 - What is an existing incineration unit?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What is an existing incineration unit... Times for Other Solid Waste Incineration Units That Commenced Construction On or Before December 9, 2004 Applicability of State Plans § 60.2992 What is an existing incineration unit? An existing incineration unit is...

  16. Evaluation of stresses generated in steel finger joint of bridge by X-ray stress measurement

    International Nuclear Information System (INIS)

    Kohri, Ami; Kawano, Yutaka; Nishido, Takayuki

    2017-01-01

    In a steel bridge, the evaluation of the stress generated in the finger joint without a gap to absorb temperature change can be an index when evaluating the remaining life. This study chose as the object the finger joint of a diagonal bridge, where the generated stress state is considered to be more complicated, prepared a finger joint test specimen that simulated an actual part, and performed a load test. For judgment, FEM analysis, non-destructive X-ray stress measurement, and measurement of the generated stress using strain gauge were applied. Compared with the FEM analysis results, the difference in the stress value was generated due to the difference in the contact state, but the trends of the stress distribution were equivalent. In addition, the same measurement value as the strain gauge was obtained, and the validity of the X-ray stress measurement method was confirmed. As a result, it was found that the stress measurement method by X-ray is effective for measuring the generated stress including the residual stress of the finger joint without gap at a bridge. (A.O.)

  17. Generalized Unsafety Theory of Stress: Unsafe Environments and Conditions, and the Default Stress Response.

    Science.gov (United States)

    Brosschot, Jos F; Verkuil, Bart; Thayer, Julian F

    2018-03-07

    Prolonged physiological stress responses form an important risk factor for disease. According to neurobiological and evolution-theoretical insights the stress response is a default response that is always "on" but inhibited by the prefrontal cortex when safety is perceived. Based on these insights the Generalized Unsafety Theory of Stress (GUTS) states that prolonged stress responses are due to generalized and largely unconsciously perceived unsafety rather than stressors. This novel perspective necessitates a reconstruction of current stress theory, which we address in this paper. We discuss a variety of very common situations without stressors but with prolonged stress responses, that are not, or not likely to be caused by stressors, including loneliness, low social status, adult life after prenatal or early life adversity, lack of a natural environment, and less fit bodily states such as obesity or fatigue. We argue that in these situations the default stress response may be chronically disinhibited due to unconsciously perceived generalized unsafety. Also, in chronic stress situations such as work stress, the prolonged stress response may be mainly caused by perceived unsafety in stressor-free contexts. Thus, GUTS identifies and explains far more stress-related physiological activity that is responsible for disease and mortality than current stress theories.

  18. Generalized Unsafety Theory of Stress: Unsafe Environments and Conditions, and the Default Stress Response

    Directory of Open Access Journals (Sweden)

    Jos F. Brosschot

    2018-03-01

    Full Text Available Prolonged physiological stress responses form an important risk factor for disease. According to neurobiological and evolution-theoretical insights the stress response is a default response that is always “on” but inhibited by the prefrontal cortex when safety is perceived. Based on these insights the Generalized Unsafety Theory of Stress (GUTS states that prolonged stress responses are due to generalized and largely unconsciously perceived unsafety rather than stressors. This novel perspective necessitates a reconstruction of current stress theory, which we address in this paper. We discuss a variety of very common situations without stressors but with prolonged stress responses, that are not, or not likely to be caused by stressors, including loneliness, low social status, adult life after prenatal or early life adversity, lack of a natural environment, and less fit bodily states such as obesity or fatigue. We argue that in these situations the default stress response may be chronically disinhibited due to unconsciously perceived generalized unsafety. Also, in chronic stress situations such as work stress, the prolonged stress response may be mainly caused by perceived unsafety in stressor-free contexts. Thus, GUTS identifies and explains far more stress-related physiological activity that is responsible for disease and mortality than current stress theories.

  19. Analytical realization of finite-size scaling for Anderson localization. Does the band of critical states exist for d > 2?

    International Nuclear Information System (INIS)

    Suslov, I. M.

    2006-01-01

    An analytical realization is suggested for the finite-size scaling algorithm based on the consideration of auxiliary quasi-1D systems. Comparison of the obtained analytical results with the results of numerical calculations indicates that the Anderson transition point splits into the band of critical states. This conclusion is supported by direct numerical evidence (Edwards, Thouless, 1972; Last, Thouless, 1974; Schreiber, 1985). The possibility of restoring the conventional picture still exists but requires a radical reinterpretation of the raw numerical data

  20. Resting state functional connectivity of the anterior cingulate cortex in veterans with and without post-traumatic stress disorder

    NARCIS (Netherlands)

    Kennis, Mitzy; Rademaker, Arthur R.; van Rooij, Sanne J H; Kahn, René S.; Geuze, Elbert

    2015-01-01

    Post-traumatic stress disorder (PTSD) is an anxiety disorder that is associated with structural and functional alterations in several brain areas, including the anterior cingulate cortex (ACC). Here, we examine resting state functional connectivity of ACC subdivisions in PTSD, using a seed-based

  1. Does the excited state of the 3He nucleus exist?

    International Nuclear Information System (INIS)

    Barabanov, A.L.

    1994-01-01

    The suggestion is made that the excited state of the 3 He nucleus found out recently in the reaction has spin and parity 1/2 + and the same configuration that the ground open of 6 He. It is shown that in an elastic nd-scattering a resonance associated with the excited state may be absent due to destructive interference of potential and resonant scattering phases

  2. Modelling of the influence of the vacancy source and sink activity and the stress state on diffusion in crystalline solids

    International Nuclear Information System (INIS)

    Svoboda, J.; Fischer, F.D.

    2011-01-01

    Diffusion in solids is a well-known phenomenon that has many consequences in technology and material science. Modelling of diffusion-controlled processes requires both a reliable theory of diffusion and reliable kinetic coefficients, as well as other thermodynamic data. Often the classical Darken theory, valid for stress-free systems with ideal vacancy source and sink activity, is generalized to multicomponent systems with ideal vacancy source and sink activity. Nazarov and Gurov presented a theory for stress-free systems with no vacancy source and sink activity. Recently we published a general theory of diffusion that accounted for the role of non-ideal vacancy source and sink activity, as well as the stress state. Since diffusion theories are tested and diffusion coefficients measured usually on diffusion couples, this paper presents evolution equations based on that general theory for a diffusion couple. In the limit, the equations of the Darken theory and the Nazarov and Gurov theory are valid for ideal vacancy source and sink activity and no vacancy source and sink activity, respectively. Simulations for binary and ternary diffusion couples demonstrate the influence of the vacancy source and sink activity and the stress state on evolution of site fraction profiles of components and vacancies, and on the Kirkendall effect.

  3. Evaluation of the residual stress field in a steam generator end tube after hydraulic expansion

    International Nuclear Information System (INIS)

    Thiel, F.; Kang, S.; Chabrerie, J.

    1994-01-01

    This paper presents a finite element elastoplastic model of a nuclear steam generator end tube, used to evaluate the residual stress field existing after hydraulic expansion of the tube into the tubesheet of the heat exchanger. This model has been tested against an experimental hydraulic expansion, carried out on full scale end tubes. The operation was monitored thanks to strain gages localized on the outer surface of the tubes, subjected to elastoplastic deformations. After a presentation of the expansion test and the description of the numerical model, the authors compare the stress fields issues from the gages and from the model. The comparison shows a good agreement. These results allow them to calculate the stress field resulting from normal operating conditions, while taking into account a correct initial state of stress. Therefore the authors can improve the understanding of the behavior of a steam generator end tube, with respect to stress corrosion cracking and crack growth

  4. Forecasting Financial Stress

    OpenAIRE

    Jan Willem Slingenberg; Jakob de Haan

    2011-01-01

    This paper uses a Financial Stress Index (FSI) for 13 OECD countries to examine which variables can help predicting financial stress. A stress index measures the current state of stress in the financial system and summarizes it in a single statistic. We employ three criteria for indicators to be used in constructing a multi-country FSI (the index covers the entire financial system, indicators used are available at a high frequency for many countries for a long period, and are comparable) to c...

  5. In-situ stress measurements in the earth's crust in the eastern United States

    International Nuclear Information System (INIS)

    Rundle, T.A.; Singh, M.M.; Baker, C.H.

    1987-04-01

    The US Nuclear Regulatory Commission requires that the design basis for vibratory ground motion should be determined through correlation of seismicity with tectonic structures or provinces (10CFR100, Appendix A). Such criteria are difficult to apply in the eastern United States, which experiences persistent low level seismicity, with occasional moderate to large earthquakes. This report presents the results of in-situ stress measurements conducted towards reducing this uncertainty at three (3) seismically active sites in the region, namely, near Moodus, Connecticut, around the Ramapo fault zone in New York and New Jersey, and in central Virginia. As far as possible, at each location one bore hole was drilled close to the ''apparent'' epicenter of the seismic activity and one outside the ''known'' seismic zone, so that the data obtained could be compared. The results obtained were very consistent both as to magnitude and direction. No attempt was made to correlate the in-situ stress measurements with the tectonic setting or seismic activity, since this was beyond the scope of this project. Extensive appendices report experimental data. 35 refs

  6. The impact of balance-focused attitudes on job stress: Gender differences evidenced in American and Chinese samples.

    Science.gov (United States)

    Li, Chenwei; Wu, Keke 'Coco'; Johnson, Diane E

    2018-02-01

    Based on gender role expectations model, we examined how balance-focused attitudes would affect job stress by influencing individuals' perceptions of family interference with work (FIW), and investigated whether a gender difference would exist in the relationships among balance-focused attitudes, FIW and job stress. Using two independent samples from the United States and China, we found support for the indirect influence of balance-focused attitudes on job stress, through FIW. Participants with balance-focused attitudes experienced lower levels of job stress as they perceived less interference from family to work. As expected, such indirect effect was more pronounce among male participants, meaning that the male participants benefited more from having balance-focused attitudes. Discussion, theoretical and practical implications are provided. © 2016 International Union of Psychological Science.

  7. The stress shadow induced by the 1975-1984 Krafla rifting episode

    KAUST Repository

    Maccaferri, F.

    2013-03-01

    It has been posited that the 1975–1984 Krafla rifting episode in northern Iceland was responsible for a significant drop in the rate of earthquakes along the Húsavík-Flatey Fault (HFF), a transform fault that had previously been the source of several magnitude 6–7 earthquakes. This compelling case of the existence of a stress shadow has never been studied in detail, and the implications of such a stress shadow remain an open question. According to rate-state models, intense stress shadows cause tens of years of low seismicity rate followed by a faster recovery phase of rate increase. Here, we compare the long-term predictions from a Coulomb stress model of the rifting episode with seismological observations from the SIL catalog (1995–2011) in northern Iceland. In the analyzed time frame, we find that the rift-induced stress shadow coincides with the eastern half of the fault where the observed seismicity rates are found to be significantly lower than expected, given the historical earthquake activity there. We also find that the seismicity rates on the central part of the HFF increased significantly in the last 17 years, with the seismicity progressively recovering from west to east. Our observations confirm that rate-state theory successfully describes the long-term seismic rate variation during the reloading phase of a fault invested by a negative Coulomb stress. Coincident with this recovery, we find that the b-value of the frequency-magnitude distribution changed significantly over time. We conclude that the rift-induced stress shadow not only decreased the seismic rate on the eastern part of the HFF but also temporarily modified how the system releases seismic energy, with more large magnitude events in proportion to small ones. This behavior is currently being overturned, as rift-induced locking is now being compensated by tectonic forcing.

  8. The stress shadow induced by the 1975-1984 Krafla rifting episode

    Science.gov (United States)

    Maccaferri, F.; Rivalta, E.; Passarelli, L.; Jónsson, S.

    2013-03-01

    It has been posited that the 1975-1984 Krafla rifting episode in northern Iceland was responsible for a significant drop in the rate of earthquakes along the Húsavík-Flatey Fault (HFF), a transform fault that had previously been the source of several magnitude 6-7 earthquakes. This compelling case of the existence of a stress shadow has never been studied in detail, and the implications of such a stress shadow remain an open question. According to rate-state models, intense stress shadows cause tens of years of low seismicity rate followed by a faster recovery phase of rate increase. Here, we compare the long-term predictions from a Coulomb stress model of the rifting episode with seismological observations from the SIL catalog (1995-2011) in northern Iceland. In the analyzed time frame, we find that the rift-induced stress shadow coincides with the eastern half of the fault where the observed seismicity rates are found to be significantly lower than expected, given the historical earthquake activity there. We also find that the seismicity rates on the central part of the HFF increased significantly in the last 17 years, with the seismicity progressively recovering from west to east. Our observations confirm that rate-state theory successfully describes the long-term seismic rate variation during the reloading phase of a fault invested by a negative Coulomb stress. Coincident with this recovery, we find that the b-value of the frequency-magnitude distribution changed significantly over time. We conclude that the rift-induced stress shadow not only decreased the seismic rate on the eastern part of the HFF but also temporarily modified how the system releases seismic energy, with more large magnitude events in proportion to small ones. This behavior is currently being overturned, as rift-induced locking is now being compensated by tectonic forcing.

  9. The study of the stress - strain state of the tank with bottom water drainage during operation

    Science.gov (United States)

    Shchipkova, Yu V.; Tokarev, V. V.

    2018-04-01

    Bottom drainage from tank is a current problem in modern tank usage. This article proposes the use of the bottom drainage system from the tank with the shape of the sloped cone to the centre of it. Changing the bottom design alters the stress - strain state to be analyzed in the Ansys. The analysis concluded that the proposed drainage system should be applied.

  10. The Influence of Organizational Reconciliation Policies and Culture on Workers Stress Perceptions

    Directory of Open Access Journals (Sweden)

    Rosa Monteiro

    2017-10-01

    Full Text Available Work-family reconciliation plays a crucial role in the well-being of employees, having impacts at the individual, social and organizational level. Studies concluded that poor work-life balance as one of the ten predictors of psychosocial risks at work. A family-friendly culture relates to how an organization values and allows the articulation of the various spheres of its workers’ life. We intended to determine the effect of different variables like the existence of services, the organizational culture and the managers and colleagues support, on the stress experienced. A sample of 156 employees, from five organizations in the same region of Portugal, responded to a survey contributing to the empirical results of the study. We have conducted a structural equation model to test whether the factor solution of the perception of the reconciliation capability - STRESS model demonstrated a goodness of fit to the population studied. We’ve concluded that more important than the existence of reconciliation services, the perception of a supportive organizational culture, namely by colleagues and supervisors has great influence in reconciliation capability and by that way on work stress feelings. This might explain why workers do not use all the spectrum of resources provided by organizations and states to work-life reconciliation.

  11. Dehydroepiandrosterone in relation to other adrenal hormones during an acute inflammatory stressful disease state compared with chronic inflammatory disease: role of interleukin-6 and tumour necrosis factor.

    Science.gov (United States)

    Straub, Rainer H; Lehle, Karin; Herfarth, Hans; Weber, Markus; Falk, Werner; Preuner, Jurgen; Scholmerich, Jurgen

    2002-03-01

    Serum levels of dehydroepiandrosterone (DHEA) and DHEA sulphate (DHEAS) are low in chronic inflammatory diseases, although the reasons are unexplained. Furthermore, the behaviour of serum levels of these hormones during an acute inflammatory stressful disease state is not well known. In this study in patients with an acute inflammatory stressful disease state (13 patients undergoing cardiothoracic surgery) and patients with chronic inflammation (61 patients with inflammatory bowel diseases (IBD)) vs. 120 controls, we aimed to investigate adrenal hormone shifts looking at serum levels of DHEA in relation to other adrenal hormones. Furthermore, we tested the predictive role of serum tumour necrosis factor (TNF) and interleukin-6 (IL-6) for a change of serum levels of DHEA in relation to other adrenal hormones. The molar ratio of serum levels of DHEA/androstenedione (ASD) was increased in patients with an acute inflammatory stressful disease state and was decreased in patients with chronic inflammation. The molar ratio of serum levels of DHEAS/DHEA was reduced during an acute inflammatory stressful disease state and was increased in patients with chronic inflammation. A multiple linear regression analysis revealed that elevated serum levels of TNF were associated with a high ratio of serum levels of DHEA/ASD in all groups (for IL-6 in patients with an acute inflammatory stressful disease state only), and, similarly, elevated serum levels of TNF were associated with a high ratio of serum levels of DHEAS/DHEA only in IBD (for IL-6 only in healthy subjects). This study indicates that changes of serum levels of DHEA in relation to serum levels of other adrenal hormones are completely different in patients with an acute inflammatory stressful disease state compared with patients with chronic inflammation. The decrease of serum levels of DHEAS and DHEA is typical for chronic inflammation and TNF and IL-6 play a predictive role for these changes.

  12. On the determination of general plane stress states in orthotropic materials from ultrasonic velocity data in non symmetry planes

    International Nuclear Information System (INIS)

    Goncalves Filho, Orlando J.A.

    2015-01-01

    This work reports the progress in the development of a new experimental protocol for plane stress determination in orthotropic materials based on the ultrasonic velocity of bulk waves propagating in non symmetry planes with oblique incidence. The presence of stress-induced deformation introduces an acoustic anisotropy in the material in addition to that defined by its texture. Orthotropic materials under general plane stress states become acoustically monoclic and its orthotropic planes orthogonal to the stress plane become non symmetry planes. The inverse solution of the generalized Christoffel equation for ultrasonic bulk waves propagating in non symmetry planes of anisotropic bodies is known to be numerically unstable. The suggested protocol deals with this numerical instability without recourse to bulk wave propagation in the stress plane as proposed in the literature. Hence, it should be useful for plane stress analysis of thin wall pressure vessels where ultrasonic measurements in the direction of the wall plane are not possible. For the initial validation of the suggested protocol and verification of the stability of the inversion algorithm, computer simulation of stress determination have been performed from synthetic sets of velocity data obtained by the forward solution of the generalized Christoffel equation. Preliminary results for slightly orthotropic aluminium highlight the potential of the suggested protocol. (author)

  13. Does Absolute Synonymy exist in Owere-Igbo? | Omego | AFRREV ...

    African Journals Online (AJOL)

    Among Igbo linguistic researchers, determining whether absolute synonymy exists in Owere–Igbo, a dialect of the Igbo language predominantly spoken by the people of Owerri, Imo State, Nigeria, has become a thorny issue. While some linguistic scholars strive to establish that absolute synonymy exists in the lexical ...

  14. Stress assessment in piping under synthetic thermal loads emulating turbulent fluid mixing

    Energy Technology Data Exchange (ETDEWEB)

    Costa Garrido, Oriol, E-mail: oriol.costa@ijs.si; El Shawish, Samir, E-mail: samir.elshawish@ijs.si; Cizelj, Leon, E-mail: leon.cizelj@ijs.si

    2015-03-15

    Highlights: • Generation of complex space-continuous and time-dependent temperature fields. • 1D and 3D thermo-mechanical analyses of pipes under complex surface thermal loads. • Surface temperatures and stress fluctuations are highly linearly correlated. • 1D and 3D results agree for a wide range of Fourier and Biot numbers. • Global thermo-mechanical loading promotes non-equibiaxial stress state. - Abstract: Thermal fatigue assessment of pipes due to turbulent fluid mixing in T-junctions is a rather difficult task because of the existing uncertainties and variability of induced thermal stresses. In these cases, thermal stresses arise on three-dimensional pipe structures due to complex thermal loads, known as thermal striping, acting at the fluid-wall interface. A recently developed approach for the generation of space-continuous and time-dependent temperature fields has been employed in this paper to reproduce fluid temperature fields of a case study from the literature. The paper aims to deliver a detailed study of the three-dimensional structural response of piping under the complex thermal loads arising in fluid mixing in T-junctions. Results of three-dimensional thermo-mechanical analyses show that fluctuations of surface temperatures and stresses are highly linearly correlated. Also, surface stress fluctuations, in axial and hoop directions, are almost equi-biaxial. These findings, representative on cross sections away from system boundaries, are moreover supported by the sensitivity analysis of Fourier and Biot numbers and by the comparison with standard one-dimensional analyses. Agreement between one- and three-dimensional results is found for a wide range of studied parameters. The study also comprises the effects of global thermo-mechanical loading on the surface stress state. Implemented mechanical boundary conditions develop more realistic overall system deformation and promote non-equibiaxial stresses.

  15. Constraints on the stress state of the San Andreas Fault with analysis based on core and cuttings from San Andreas Fault Observatory at Depth (SAFOD) drilling phases 1 and 2

    Science.gov (United States)

    Tembe, S.; Lockner, D.; Wong, T.-F.

    2009-01-01

    Analysis of field data has led different investigators to conclude that the San Andreas Fault (SAF) has either anomalously low frictional sliding strength (?? 0.6). Arguments for the apparent weakness of the SAF generally hinge on conceptual models involving intrinsically weak gouge or elevated pore pressure within the fault zone. Some models assert that weak gouge and/or high pore pressure exist under static conditions while others consider strength loss or fluid pressure increase due to rapid coseismic fault slip. The present paper is composed of three parts. First, we develop generalized equations, based on and consistent with the Rice (1992) fault zone model to relate stress orientation and magnitude to depth-dependent coefficient of friction and pore pressure. Second, we present temperature-and pressure-dependent friction measurements from wet illite-rich fault gouge extracted from San Andreas Fault Observatory at Depth (SAFOD) phase 1 core samples and from weak minerals associated with the San Andreas Fault. Third, we reevaluate the state of stress on the San Andreas Fault in light of new constraints imposed by SAFOD borehole data. Pure talc (?????0.1) had the lowest strength considered and was sufficiently weak to satisfy weak fault heat flow and stress orientation constraints with hydrostatic pore pressure. Other fault gouges showed a systematic increase in strength with increasing temperature and pressure. In this case, heat flow and stress orientation constraints would require elevated pore pressure and, in some cases, fault zone pore pressure in excess of vertical stress. Copyright 2009 by the American Geophysical Union.

  16. Elastic constants of stressed and unstressed materials in the phase-field crystal model

    Science.gov (United States)

    Wang, Zi-Le; Huang, Zhi-Feng; Liu, Zhirong

    2018-04-01

    A general procedure is developed to investigate the elastic response and calculate the elastic constants of stressed and unstressed materials through continuum field modeling, particularly the phase-field crystal (PFC) models. It is found that for a complete description of system response to elastic deformation, the variations of all the quantities of lattice wave vectors, their density amplitudes (including the corresponding anisotropic variation and degeneracy breaking), the average atomic density, and system volume should be incorporated. The quantitative and qualitative results of elastic constant calculations highly depend on the physical interpretation of the density field used in the model, and also importantly, on the intrinsic pressure that usually pre-exists in the model system. A formulation based on thermodynamics is constructed to account for the effects caused by constant pre-existing stress during the homogeneous elastic deformation, through the introducing of a generalized Gibbs free energy and an effective finite strain tensor used for determining the elastic constants. The elastic properties of both solid and liquid states can be well produced by this unified approach, as demonstrated by an analysis for the liquid state and numerical evaluations for the bcc solid phase. The numerical calculations of bcc elastic constants and Poisson's ratio through this method generate results that are consistent with experimental conditions, and better match the data of bcc Fe given by molecular dynamics simulations as compared to previous work. The general theory developed here is applicable to the study of different types of stressed or unstressed material systems under elastic deformation.

  17. Non-yrast states and shape co-existence in 172Os

    International Nuclear Information System (INIS)

    Davidson, P.M.; Dracoulis, G.D.; Kibedi, T.; Byrne, A.P.; Anderssen, S.S.; Baxter, A.M.; Fabricius, B.; Lane, G.J.; Stuchbery, A.E.

    1994-01-01

    Previous studies of 172 Os noted an anomaly in the behaviour of the moment of inertia of the yrast band at low spin. A phenomenological model of shape coexistence based on interacting rotational bands was proposed to explain this anomaly and this model predicted low-lying non-yrast states. In order to test these predictions, the β-decay of 172 Ir has been used to populate 172 Os. Excited states have been observed and classified into positive-parity ''quasi-β'' and ''quasi-γ'' bands and a negative-parity band. The energies of the quasi-β band states are seen to be in general agreement with the predictions of the phenomenological model and the model is refined to take into account the new data. The bands involved are determined to have significantly different moments of inertia. (orig.)

  18. An examination of personality, emotional intelligence, coping, gender and subjective well-being with perceived stress (trait and state) in undergraduate students.

    OpenAIRE

    Osborne, Shona Elizabeth

    2009-01-01

    This multivariate study aimed to further understand student stress. Associations between personality, emotional intelligence, coping and subjective well-being with perceived stress (trait and state) were examined in 238 undergraduate students, using self-report measures. Gender differences in these variables were also investigated. The results showed that students low in emotional stability, extraversion, emotional intelligence, subjective well-being and those with a tendency to use emotion...

  19. Eternally existing self-reproducing inflationary universe

    International Nuclear Information System (INIS)

    Linde, A.D.

    1986-05-01

    It is shown that the large-scale quantum fluctuations of the scalar field φ generated in the chaotic inflation scenario lead to an infinite process of self-reproduction of inflationary mini-universes. A model of eternally existing chaotic inflationary universe is suggested. It is pointed out that whereas the universe locally is very homogeneous as a result of inflation, which occurs at the classical level, the global structure of the universe is determined by quantum effects and is highly non-trivial. The universe consists of exponentially large number of different mini-universes, inside which all possible (metastable) vacuum states and all possible types of compactification are realized. The picture differs crucially from the standard picture of a one-domain universe in a ''true'' vacuum state. Our results may serve as a justification of the anthropic principle in the inflationary cosmology. These results may have important implications for the elementary particle theory as well. Namely, since all possible types of mini-universes, in which inflation may occur, should exist in our universe, there is no need to insist (as it is usually done) that in realistic theories the vacuum state of our type should be the only possible one or the best one. (author)

  20. Thioredoxin and Cancer: A Role for Thioredoxin in all States of Tumor Oxygenation

    International Nuclear Information System (INIS)

    Karlenius, Therese Christina; Tonissen, Kathryn Fay

    2010-01-01

    Thioredoxin is a small redox-regulating protein, which plays crucial roles in maintaining cellular redox homeostasis and cell survival and is highly expressed in many cancers. The tumor environment is usually under either oxidative or hypoxic stress and both stresses are known up-regulators of thioredoxin expression. These environments exist in tumors because their abnormal vascular networks result in an unstable oxygen delivery. Therefore, the oxygenation patterns in human tumors are complex, leading to hypoxia/re-oxygenation cycling. During carcinogenesis, tumor cells often become more resistant to hypoxia or oxidative stress-induced cell death and most studies on tumor oxygenation have focused on these two tumor environments. However, recent investigations suggest that the hypoxic cycling occurring within tumors plays a larger role in the contribution to tumor cell survival than either oxidative stress or hypoxia alone. Thioredoxin is known to have important roles in both these cellular responses and several studies implicate thioredoxin as a contributor to cancer progression. However, only a few studies exist that investigate the regulation of thioredoxin in the hypoxic and cycling hypoxic response in cancers. This review focuses on the role of thioredoxin in the various states of tumor oxygenation

  1. Stress field determination in an alloy 600 stress corrosion crack specimen

    International Nuclear Information System (INIS)

    Rassineux, B.; Labbe, T.

    1995-05-01

    In the context of EDF studies on stress corrosion cracking rates in the Alloy 600 steam generators tubes, we studied the influence of strain hardened surface layers on the different stages of cracking for a tensile smooth specimen (TLT). The stress field was notably assessed to try and explain the slow/rapid-propagation change observed beyond the strain hardened layers. The main difficulty is to simulate in a finite element model the inner and outer surfaces of these strain hardened layers, produced by the final manufacturing stages of SG tubes which have not been heat treated. In the model, the strain hardening is introduced by simulating a multi-layer material. Residual stresses are simulated by an equivalent fictitious thermomechanical calculation, realigned with respect to X-ray measurements. The strain hardening introduction method was validated by an analytical calculation giving identical results. Stress field evolution induced by specimen tensile loading were studied using an elastoplastic 2D finite element calculations performed with the Aster Code. The stress profile obtained after load at 660 MPa shows no stress discontinuity at the boundary between the strain hardened layer and the rest of the tube. So we propose that a complementary calculation be performed, taking into account the multi-cracked state of the strain hardened zones by means of a damage variable. In fact, this state could induce stress redistribution in the un-cracked area, which would perhaps provide an explanation of the crack-ground rate change beyond the strain hardened zone. The calculations also evidence the harmful effects of plastic strains on a strain hardened layer due to the initial state of the tube (not heat-treated), to grit blasting or to shot peening. The initial compressive stress condition of this surface layer becomes, after plastic strain, a tensile stress condition. These results are confirmed by laboratory test. (author). 10 refs., 18 figs., 9 tabs., 2 appends

  2. Sequential Indentation Tests to Investigate the Influence of Confining Stress on Rock Breakage by Tunnel Boring Machine Cutter in a Biaxial State

    Science.gov (United States)

    Liu, Jie; Cao, Ping; Han, Dongya

    2016-04-01

    The influence of confining stress on rock breakage by a tunnel boring machine cutter was investigated by conducting sequential indentation tests in a biaxial state. Combined with morphology measurements of breaking grooves and an analysis of surface and internal crack propagation between nicks, the effects of maximum confining stress and minimum stress on indentation efficiency, crack propagation and chip formation were investigated. Indentation tests and morphology measurements show that increasing a maximum confining stress will result in increased consumed energy in indentations, enlarged groove volumes and promoted indentation efficiency when the corresponding minimum confining stress is fixed. The energy consumed in indentations will increase with increase in minimum confining stress, however, because of the decreased groove volumes as the minimum confining stress increases, the efficiency will decrease. Observations of surface crack propagation show that more intensive fractures will be induced as the maximum confining stress increases, whereas the opposite occurs for an increase of minimum confining stress. An observation of the middle section, cracks and chips shows that as the maximum confining stress increases, chips tend to form in deeper parts when the minimum confining stress is fixed, whereas they tend to formed in shallower parts as the minimum confining stress increases when the maximum confining stress is fixed.

  3. Structure of Unsteady Partially Premixed Flames and the Existence of State Relationships

    Directory of Open Access Journals (Sweden)

    Suresh K. Aggarwal

    2009-09-01

    Full Text Available In this study, we examine the structure and existence of state relationships in unsteady partially premixed flames (PPFs subjected to buoyancy-induced and external perturbations. A detailed numerical model is employed to simulate the steady and unsteady two-dimensional PPFs established using a slot burner under normal and zero-gravity conditions. The coflow velocity is parametrically varied. The methane-air chemistry is modeled using a fairly detailed mechanism that contains 81 elementary reactions and 24 species. Validation of the computational model is provided through comparisons of predictions with nonintrusive measurements. The combustion proceeds in two reaction zones, one a rich premixed zone and the other a nonpremixed zone. These reaction zones are spatially separated, but involve strong interactions between them due to thermochemistry and scalar transport. The fuel is mostly consumed in the premixed zone to produce CO and H2, which are transported to and consumed in the nonpremixed zone. The nonpremixed zone in turn provides heat and H-atoms to the premixed zone. For the range of conditions investigated, the zero-g partially premixed flames exhibit a stable behavior and a remarkably strong resistance to perturbations. In contrast, the corresponding normal-gravity flames exhibit oscillatory behavior at low coflow velocities but a stable behavior at high coflow velocities, and the behavior can be explained in terms of a global and convective instabilities. The effects of coflow and gravity on the flames are characterized through a parameter VR, defined as the ratio of coflow velocity to jet velocity. For VR ≤ 1 (low coflow velocity regime, the structures of both 0- and 1-g flames are strongly sensitive to changes in VR, while they are only mildly affected by coflow in the high coflow velocity regime (VR > 1. In addition, the spatio-temporal characteristics of the 0- and 1-g flames are markedly different in the first regime, but are

  4. Optimization of Bolt Stress

    DEFF Research Database (Denmark)

    Pedersen, Niels Leergaard

    2013-01-01

    The state of stress in bolts and nuts with ISO metric thread design is examined and optimized. The assumed failure mode is fatigue so the applied preload and the load amplitude together with the stress concentrations define the connection strength. Maximum stress in the bolt is found at, the fillet...... under the head, at the thread start or at the thread root. To minimize the stress concentration shape optimization is applied....

  5. Determination of stress-strain state of the wooden church log walls with software package

    Directory of Open Access Journals (Sweden)

    Chulkova Anastasia

    2016-01-01

    Full Text Available The restoration of architectural monuments is going on all over the world today. The main aim of restoration is the renewal of stable functioning of building constructions in normal state. In this article, we have tried to figure out with special software the bearing capacity of log cabins of the Church of Transfiguration on Kizhi island. As shown in research results, determination of stress-strain stage with software package is necessary for the bearing capacity computation as well as field tests.

  6. First-Principles and Thermodynamic Simulation of Elastic Stress Effect on Energy of Hydrogen Dissolution in Alpha Iron

    Science.gov (United States)

    Rakitin, M. S.; Mirzoev, A. A.; Mirzaev, D. A.

    2018-04-01

    Mobile hydrogen, when dissolving in metals, redistributes due to the density gradients and elastic stresses, and enables destruction processes or phase transformations in local volumes of a solvent metal. It is rather important in solid state physics to investigate these interactions. The first-principle calculations performed in terms of the density functional theory, are used for thermodynamic simulation of the elastic stress effect on the energy of hydrogen dissolution in α-Fe crystal lattice. The paper presents investigations of the total energy of Fe-H system depending on the lattice parameter. As a result, the relation is obtained between the hydrogen dissolution energy and stress. A good agreement is shown between the existing data and simulation results. The extended equation is suggested for the chemical potential of hydrogen atom in iron within the local stress field. Two parameters affecting the hydrogen distribution are compared, namely local stress and phase transformations.

  7. Steady-state creep of discontinuous fibre composites

    International Nuclear Information System (INIS)

    Boecker Pedersen, O.

    1975-07-01

    A review is given of the relevant literature on creep of composites, including a presentation of existing models for the steady-state creep of composites containing aligned discontinuous fibres where creep of the matrix and fibres is assumed to follow a power law. A model is suggested for predicting the composite creep law from a matrix creep law given in a general form, in the case where the fibres do not creep. The composite creep law predicted by this model is compared with those predicted by previous models, when these are extended to comprise a general matrix creep law. Experimentally, pure copper and composites consisting of aligned discontinuous tungsten fibres in a copper matrix were creep tested at a temperature of 500 deg C. The results indicate a relatively low stress sensitivity of the steady-state creep-rate for pure copper and relatively high stress sensitivity for the composites. This may be explained by the creep models based upon a general matrix creep law. A quantitative prediction shows promising agreement with the present experimental results. (author)

  8. Electromagnetic and ultrasonic techniques to evaluate stress states of components; Elektromagnetische und Ultraschallverfahren zur Spannungsanalyse an Bauteilen

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, E.; Kern, R.; Theiner, W.A. [Fraunhofer Inst. fuer Zerstoerungsfreie Pruefverfahren, IZFP, Saarbruecken (Germany)

    1999-08-01

    The electromagnetic and ultrasonic techniques are comparably recent NDT methods for determination of stress states of components. They are simple in application, but require pre-measurement preparation: Electromagnetic techniques need calibration, and quantitative stress analysis by ultrasonic techniques needs reference values, i.e. verified materials-specific quantities to be obtained with representative specimens. Electromagnetic and ultrasonic techniques have been developed for specific tests at defined components, and the corresponding instruments and sensors have been used in practice for several years now. The paper summarizes fundamental aspects and explains the state of the art by means of several examples. (orig./CB) [Deutsch] Elektromagnetische und Ultraschallverfahren sind vergleichsweise neue zerstoerungsfreie Verfahren zur Bestimmung von Eigenspannungen in Bauteilen. Ihre Anwendung ist einfach, setzt aber Vorarbeiten voraus: Elektromagnetische Verfahren muessen kalibriert und zur quantitativen Spannungsanalyse mittels Ultraschallverfahren muessen materialspezifische Kenngroessen an repraesentativen Materialproben ermittelt werden. Elektromagnetische und Ultraschallverfahren sind fuer konkrete Anwendungen an Bauteilen entwickelt, angepasste Geraete und Sensoren seit Jahren in der Nutzung. Der Beitrag fasst die Grundlagen zusammen und stellt den Stand der Technik anhand ausgewaehlter Anwendungen dar. (orig.)

  9. Testing the stress shadow hypothesis

    Science.gov (United States)

    Felzer, Karen R.; Brodsky, Emily E.

    2005-05-01

    A fundamental question in earthquake physics is whether aftershocks are predominantly triggered by static stress changes (permanent stress changes associated with fault displacement) or dynamic stresses (temporary stress changes associated with earthquake shaking). Both classes of models provide plausible explanations for earthquake triggering of aftershocks, but only the static stress model predicts stress shadows, or regions in which activity is decreased by a nearby earthquake. To test for whether a main shock has produced a stress shadow, we calculate time ratios, defined as the ratio of the time between the main shock and the first earthquake to follow it and the time between the last earthquake to precede the main shock and the first earthquake to follow it. A single value of the time ratio is calculated for each 10 × 10 km bin within 1.5 fault lengths of the main shock epicenter. Large values of the time ratio indicate a long wait for the first earthquake to follow the main shock and thus a potential stress shadow, whereas small values indicate the presence of aftershocks. Simulations indicate that the time ratio test should have sufficient sensitivity to detect stress shadows if they are produced in accordance with the rate and state friction model. We evaluate the 1989 MW 7.0 Loma Prieta, 1992 MW 7.3 Landers, 1994 MW 6.7 Northridge, and 1999 MW 7.1 Hector Mine main shocks. For each main shock, there is a pronounced concentration of small time ratios, indicating the presence of aftershocks, but the number of large time ratios is less than at other times in the catalog. This suggests that stress shadows are not present. By comparing our results to simulations we estimate that we can be at least 98% confident that the Loma Prieta and Landers main shocks did not produce stress shadows and 91% and 84% confident that stress shadows were not generated by the Hector Mine and Northridge main shocks, respectively. We also investigate the long hypothesized existence

  10. Stress shadows - a controversial topic

    Science.gov (United States)

    Lasocki, Stanislaw; Karakostas, Vassilis G.; Papadimitriou, Eletheria E.; Orlecka-Sikora, Beata

    2010-05-01

    The spatial correlation between the positive Coulomb stress changes and the subsequent seismic activity has been firmly confirmed in many recent studies. If, however, the static stress transfer is a consistent expression of interaction between earthquakes one should also observe a decrease of the activity in the zones of negative stress changes. Instead, the existence of stress shadows is poorly evidenced and may be questioned. We tested the influence of the static stress changes associated with the coseismic slip of the 1995 Mw6.5 Kozani-Grevena (Greece) earthquake on locations of its aftershocks. The study was based on a detailed slip model for the main shock and accurate locations and reliable fault plane solutions of an adequate number of the aftershocks. We developed a statistical testing method, which tested whether the proportions of aftershocks located inside areas determined by a selected criterion on the static stress change could be attained if there were no effect of the stress change due to the main shock on aftershock locations. The areas of stress change were determined at the focus of every aftershock. The distribution of test statistic was constructed with the use of a two-dimensional nonparametric, kernel density estimator of the reference epicenter distribution. The tests highly confidently indicated a rise in probability to locate aftershocks inside areas of positive static stress change, which supported the hypothesis on the triggering effect in these areas. Furthermore, it was evidenced that a larger stress increase caused a stronger triggering effect. The analysis, however, did not evidence the existence of stress shadows inside areas of negative stress change. Contrary to expectations, the tests indicated a significant increase of the probability of event location in the areas of a stress decrease of more than or equal to 5.0 and 10.0 bar. It turned out that for areas of larger absolute stress change this probability increased regardless of

  11. The Autonomous Stress Indicator for Remotely Monitoring Power System State and Watching for Potential Instability

    Directory of Open Access Journals (Sweden)

    Geza Joos

    2009-02-01

    Full Text Available The proposed Autonomous Stress Indicator (ASI is a device that monitors the contents of the protection relays on a suspect weak power system bus and generates a performance level related to the degree of system performance degradation or instability. This gives the system operators some time (minutes to take corrective action. In a given operating area there would not likely be a need for an ASI on every bus. Note that the ASI does not trip any breakers; it is an INFORMATION ONLY device. An important feature is that the system operator can subsequently interrogate the ASI to determine the factor(s that led to the performance level that has been initially annunciated, thereby leading to a course of action. This paper traces the development of the ASI which is an ongoing project. The ASI could be also described as a stress-alert device whose function is to alert the System Operator of a stressful condition at its location. The characteristics (or essential qualities of this device are autonomy, selectivity, accuracy and intelligence. These will fulfill the requirements of the recommendation of the Canada –US Task Force in the August 2003 system collapse. Preliminary tests on the IEEE 39-bus model indicate that the concept has merit and development work is in progress. While the ASI can be applied to all power system operating conditions, its principal application is to the degraded state of the system where the System Operator must act to restore the system to the secure state before it migrates to a stage of collapse. The work of ASI actually begins with the Areas of Vulnerability and ends with the Predictive Module as described in detail in this paper. An application example of a degraded system using the IEEE 39-bus system is included.

  12. Determination of the plastic deformation and residual stress tensor distribution using surface and bulk intrinsic magnetic properties

    International Nuclear Information System (INIS)

    Hristoforou, E.; Svec, P. Sr.

    2015-01-01

    We have developed an unique method to provide the stress calibration curve in steels: performing flaw-less welding in the under examination steel, we obtained to determine the level of the local plastic deformation and the residual stress tensors. These properties where measured using both the X-ray and the neutron diffraction techniques, concerning their surface and bulk stresses type II (intra-grain stresses) respectively, as well as the stress tensor type III by using the electron diffraction technique. Measuring the distribution of these residual stresses along the length of a welded sample or structure, resulted in determining the local stresses from the compressive to tensile yield point. Local measurement of the intrinsic surface and bulk magnetic property tensors allowed for the un-hysteretic correlation. The dependence of these local magnetic tensors with the above mentioned local stress tensors, resulting in a unique and almost un-hysteretic stress calibration curve of each grade of steel. This calibration integrated the steel's mechanical and thermal history, as well as the phase transformations and the presence of precipitations occurring during the welding process.Additionally to that, preliminary results in different grade of steels reveal the existence of a universal law concerning the dependence of magnetic and magnetostrictive properties of steels on their plastic deformation and residual stress state, as they have been accumulated due to their mechanical and thermal fatigue and history. This universality is based on the unique dependence of the intrinsic magnetic properties of steels normalized with a certain magnetoelastic factor, upon the plastic deformation or residual stress state, which, in terms, is normalized with their yield point of stress. (authors)

  13. Recommendations for enforcing and administering lighting-efficiency standards in existing public buildings in New York State. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-09-30

    To determine the most efficient, cost-effective means of enforcing lighting standards in existing public buildings, various enforcement procedures were investigated. A summary of conclusions and recommendations are presented. In Chapter 1, the adoption of a modified version of the sections of the proposed ASHRAE 100 standards that relate to lighting is recommended. The basic features of the proposed ASHRAE 100 standards are described and compared with those of other types of standards, and the modifications recommended to facilitate implementation are then presented. In Chapter 2, the structure is outlined and the details are provided of the enforcement strategy devised based on self-certification and penalties for noncompliance. Chapter 3 is intended to guide the state in implementing that strategy; it is suggested that the State Energy Office begin to conduct inspections of buildings selected first randomly and then according to a specific discriminant-analysis scheme. The timetable that should be followed and the management responsibilities that should be assigned if the state is to meet its 1980 goals related to saving energy through the implementation of lighting-efficiency standards are delineated in Chapter 4. The appendixes provide additional information and data supporting the specific conclusions and recommendations presented throughout the text. (MCW)

  14. Self-assembly of silk fibroin under osmotic stress

    Science.gov (United States)

    Sohn, Sungkyun

    The supramolecular self-assembly behavior of silk fibroin was investigated using osmotic stress technique. In Chapter 2, a ternary phase diagram of water-silk-LiBr was constructed based on X-ray results on the osmotically stressed regenerated silk fibroin of Bombyx mori silkworm. Microscopic data indicated that silk I is a hydrated structure and a rough estimate of the number of water molecules lost by the structure upon converting from silk I to silk II has been made, and found to be about 2.2 per [GAGAGS] hexapeptide. In Chapter 3, wet-spinning of osmotically stressed, regenerated silk fibroin was performed, based on the prediction that the enhanced control over structure and phase behavior using osmotic stress method helps improve the physical properties of wet-spun regenerated silk fibroin fibers. The osmotic stress was applied in order to pre-structure the regenerated silk fibroin molecule from its original random coil state to more oriented state, manipulating the phase of the silk solution in the phase diagram before the start of spinning. Monofilament fiber with a diameter of 20 microm was produced. In Chapter 4, we investigated if there is a noticeable synergistic osmotic pressure increase between co-existing polymeric osmolyte and salt when extremely highly concentrated salt molecules are present both at sample subphase and stressing subphase, as is the case of silk fibroin self-assembly. The equilibration method that measures osmotic pressure relative to a reference with known osmotic pressure was introduced. Osmotic pressure of aqueous LiBr solution up to 2.75M was measured and it was found that the synergistic effect was insignificant up to this salt concentration. Solution parameters of stressing solutions and Arrhenius kinetics based on time-temperature relationship for the equilibration process were derived as well. In Chapter 5, self-assembly behavior of natural silk fibroin within the gland of Bombyx mori silkworm was investigated using osmotic

  15. Energetic stress: The reciprocal relationship between energy availability and the stress response.

    Science.gov (United States)

    Harrell, C S; Gillespie, C F; Neigh, G N

    2016-11-01

    The worldwide epidemic of metabolic syndromes and the recognized burden of mental health disorders have driven increased research into the relationship between the two. A maladaptive stress response is implicated in both mental health disorders and metabolic disorders, implicating the hypothalamic-pituitary-adrenal (HPA) axis as a key mediator of this relationship. This review explores how an altered energetic state, such as hyper- or hypoglycemia, as may be manifested in obesity or diabetes, affects the stress response and the HPA axis in particular. We propose that changes in energetic state or energetic demands can result in "energetic stress" that can, if prolonged, lead to a dysfunctional stress response. In this review, we summarize the role of the hypothalamus in modulating energy homeostasis and then briefly discuss the relationship between metabolism and stress-induced activation of the HPA axis. Next, we examine seven mechanisms whereby energetic stress interacts with neuroendocrine stress response systems, including by glucocorticoid signaling both within and beyond the HPA axis; by nutrient-induced changes in glucocorticoid signaling; by impacting the sympathetic nervous system; through changes in other neuroendocrine factors; by inducing inflammatory changes; and by altering the gut-brain axis. Recognizing these effects of energetic stress can drive novel therapies and prevention strategies for mental health disorders, including dietary intervention, probiotics, and even fecal transplant. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Are Geotehrmal Reservoirs Stressed Out?

    Science.gov (United States)

    Davatzes, N. C.; Laboso, R. C.; Layland-Bachmann, C. E.; Feigl, K. L.; Foxall, W.; Tabrez, A. R.; Mellors, R. J.; Templeton, D. C.; Akerley, J.

    2017-12-01

    Crustal permeability can be strongly influenced by developing connected networks of open fractures. However, the detailed evolution of a fracture network, its extent, and the persistence of fracture porosity are difficult to analyze. Even in fault-hosted geothermal systems, where heat is brought to the surface from depth along a fault, hydrothermal flow is heterogeneously distributed. This is presumably due to variations in fracture density, connectivity, and attitude, as well as variations in fracture permeability caused by sealing of fractures by precipitated cements or compaction. At the Brady Geothermal field in Nevada, we test the relationship between the modeled local stress state perturbed by dislocations representing fault slip or volume changes in the geothermal reservoir inferred from surface deformation measured by InSAR and the location of successful geothermal wells, hydrothermal activity, and seismicity. We postulate that permeability is favored in volumes that experience positive Coulomb stress changes and reduced compression, which together promote high densities of dilatant fractures. Conversely, permeability can be inhibited in locations where Coulomb stress is reduced, compression promotes compaction, or where the faults are poorly oriented in the stress field and consequently slip infrequently. Over geologic time scales spanning the development of the fault system, these local stress states are strongly influenced by the geometry of the fault network relative to the remote stress driving slip. At shorter time scales, changes in fluid pressure within the fracture network constituting the reservoir cause elastic dilations and contractions. We integrate: (1) direct observations of stress state and fractures in boreholes and the mapped geometry of the fault network; (2) evidence of permeability from surface hydrothermal features, production/injection wells and surface deformations related to pumping history; and (3) seismicity to test the

  17. Stress: a concept analysis.

    Science.gov (United States)

    Goodnite, Patricia M

    2014-01-01

    To analyze the concept of stress and provide an operational definition of stress. Literature review revealed that stress is a commonly used, but often ambiguous, term. Findings supported a definition of stress entailing an individual's perception of a stimulus as overwhelming, which in turn elicits a measurable response resulting in a transformed state. This analysis adopts a dynamic definition of stress that may serve to encourage communication, promote reflection, and enhance concept understanding. This definition may provide direction for future work, as well as enhance efforts to serve patients affected by stress. © 2013 Wiley Periodicals, Inc.

  18. Relationship of perceived stress with depression: complete mediation by perceived control and anxiety in Iran and the United States.

    Science.gov (United States)

    Ghorbani, Nima; Krauss, Stephen W; Watson, P J; Lebreton, Daniel

    2008-12-01

    This study sought to clarify the importance and cross-cultural relevance of associations between generalized perceived stress and depression. Also tested was the hypothesis that perceived stress would correlate more strongly with anxiety than with depression, whereas control would be more predictive of depression than of anxiety. Relationships between perceived stress, anxiety, depression, and perceived control were examined in samples of Iranian (n = 191) and American (n = 197) undergraduates. Correlations among these variables were generally similar across the two societies. Perceived stress did predict anxiety better than depression, but perceptions of control predicted depression significantly better than anxiety only in the United States. Best fitting structural equation models revealed that anxiety and perceived control completely accounted for the linkage between perceived stress and depression in both societies. An equally acceptable and more parsimonious model described perceived stress as a consequence rather than as an antecedent of anxiety and perceived control. Structural equation models were essentially identical across the two cultures except that internal control displayed a significant negative relationship with anxiety only in Iran. This result seemed to disconfirm any possible suggestion that a supposedly individualistic process like internal control could have no noteworthy role within a presumably more collectivistic Muslim society like Iran. Overall, these data documented the importance of anxiety and perceived control in explaining the perceived stress-depression relationship cross-culturally and therefore questioned the usefulness of perceived stress in predicting depression. Whether this understanding of the stress-depression relationship deserves general acceptance will require additional studies that measure the frequency of stressful life events and that utilize a longitudinal design.

  19. Impact of new traumatic or stressful life events on pre-existing PTSD in traumatized refugees: results of a longitudinal study

    Directory of Open Access Journals (Sweden)

    Katrin Schock

    2016-11-01

    Full Text Available Background: A significant proportion of trauma survivors experience an additional critical life event in the aftermath. These renewed experiences of traumatic and stressful life events may lead to an increase in trauma-related mental health symptoms.Method: In a longitudinal study, the effects of renewed experiences of a trauma or stressful life event were examined. For this purpose, refugees seeking asylum in Germany were assessed for posttraumatic stress symptoms (PTS, Posttraumatic Stress Diagnostic Scale (PDS, anxiety, and depression (Hopkins Symptom Checklist [HSCL-25] before treatment start as well as after 6 and 12 months during treatment (N=46. Stressful life events and traumatic events were recorded monthly. If a new event happened, PDS and HSCL were additionally assessed directly afterwards. Mann–Whitney U-tests were performed to calculate the differences between the group that experienced an additional critical event (stressful vs. trauma during treatment (n=23 and the group that did not (n=23, as well as differences within the critical event group between the stressful life event group (n=13 and the trauma group (n=10.Results: Refugees improved significantly during the 12-month period of our study, but remained severely distressed. In a comparison of refugees with a new stressful life event or trauma, significant increases in PTS, anxiety, and depressive symptoms were found directly after the experience, compared to the group without a renewed event during the 12 months of treatment. With regard to the different critical life events (stressful vs. trauma, no significant differences were found regarding overall PTS, anxiety, and depression symptoms. Only avoidance symptoms increased significantly in the group experiencing a stressful life event.Conclusion: Although all clinicians should be aware of possible PTS symptom reactivation, especially those working with refugees and asylum seekers, who often experience new critical life

  20. Impact of new traumatic or stressful life events on pre-existing PTSD in traumatized refugees: results of a longitudinal study.

    Science.gov (United States)

    Schock, Katrin; Böttche, Maria; Rosner, Rita; Wenk-Ansohn, Mechthild; Knaevelsrud, Christine

    2016-01-01

    A significant proportion of trauma survivors experience an additional critical life event in the aftermath. These renewed experiences of traumatic and stressful life events may lead to an increase in trauma-related mental health symptoms. In a longitudinal study, the effects of renewed experiences of a trauma or stressful life event were examined. For this purpose, refugees seeking asylum in Germany were assessed for posttraumatic stress symptoms (PTS), Posttraumatic Stress Diagnostic Scale (PDS), anxiety, and depression (Hopkins Symptom Checklist [HSCL-25]) before treatment start as well as after 6 and 12 months during treatment ( N =46). Stressful life events and traumatic events were recorded monthly. If a new event happened, PDS and HSCL were additionally assessed directly afterwards. Mann-Whitney U -tests were performed to calculate the differences between the group that experienced an additional critical event (stressful vs. trauma) during treatment ( n =23) and the group that did not ( n =23), as well as differences within the critical event group between the stressful life event group ( n =13) and the trauma group ( n =10). Refugees improved significantly during the 12-month period of our study, but remained severely distressed. In a comparison of refugees with a new stressful life event or trauma, significant increases in PTS, anxiety, and depressive symptoms were found directly after the experience, compared to the group without a renewed event during the 12 months of treatment. With regard to the different critical life events (stressful vs. trauma), no significant differences were found regarding overall PTS, anxiety, and depression symptoms. Only avoidance symptoms increased significantly in the group experiencing a stressful life event. Although all clinicians should be aware of possible PTS symptom reactivation, especially those working with refugees and asylum seekers, who often experience new critical life events, should understand symptom

  1. Pre-existing high glucocorticoid receptor number predicting development of posttraumatic stress symptoms after military deployment

    NARCIS (Netherlands)

    van Zuiden, Mirjam; Geuze, Elbert; Willemen, Hanneke L. D. M.; Vermetten, Eric; Maas, Mirjam; Heijnen, Cobi J.; Kavelaars, Annemieke

    2011-01-01

    The development of posttraumatic stress disorder (PTSD) is influenced by preexisting vulnerability factors. The authors aimed at identifying a preexisting biomarker representing a vulnerability factor for the development of PTSD. To that end, they determined whether the dexamethasone binding

  2. Applicability of initial stress measurement methods to Horonobe Siliceous rocks and initial stress state around Horonobe Underground Research Laboratory

    International Nuclear Information System (INIS)

    Sanada, Hiroyuki; Niunoya, Sumio; Matsui, Hiroya; Fujii, Yoshiaki

    2009-01-01

    Understanding initial stress condition in deep underground is important for such construction as rock cavern for geological disposal of HLW and underground power plant. Neogene sedimentary rock is widely distributed in Japan. There are only a few studies of initial stress measurement in Neogene sedimentary rock mass in Japan due to difficulty of measurement. Evaluation of initial stress condition around Horonobe Underground Research Laboratory Project was carried out in order to understand initial stress condition and applicability of AE, DSCA and hydraulic fracturing (HF) methods to Neogene sedimentary rock. Initial stress values obtained from AE method is smaller than overburden pressure due to time dependency of Kaizer effect. It would be difficult to use AE method as initial stress measurement method for Horonobe Siliceous rocks. Principal stress values by DSCA are similar to those by HF tests. Directions of maximum horizontal principal stresses are approximately in E-W and corresponded to HF results. In HF, rod type and wire-line type systems were compared. Workability of rod type was much better than wire-line type. However, re-opening pressure were not able to be precisely measured in case of rod type system due to the large compliance of the packers and rods. Horizontal maximum and minimum principal stresses increase linearly in HF results. Deviatoric stress is acting at shallow depth. Initial stress condition approaches hydrostatic condition with depth. Direction of maximum horizontal principal stress was in E-W direction which was similar to tectonic movement around Horonobe URL by triangular surveying. (author)

  3. Mathematic modeling of stress-deformed states of low jaw teeth while using combined removable splint-denture

    Directory of Open Access Journals (Sweden)

    Albert Ye.L.

    2013-06-01

    Full Text Available The article presents the results of mathematical modeling and analysis of the stress-strain states of the lower incisors in the 1-st, 2-nd and 3-d degrees of inflammatory degenerative process in the periodontium; and while using combined splint-denture with continuous vestibular-oral clasp and polyoxymethylene framework. It is proved that reduction in height of interdental septa observed in periodontitis increases tooth mobility by 2.75 times in the first degree of the pathological process; by 6.75 times - in the second degree; and by 9.0 times – in the third degree (p0.05. At the same time, the stress, transmitted on the alveolar bone tissue is near the values of intact periodontium (p>0.05, 1.6±0.50 Mpa on average.

  4. Experimental and Numerical Analysis of Microstructures and Stress States of Shot-Peened GH4169 Superalloys

    Science.gov (United States)

    Hu, Dianyin; Gao, Ye; Meng, Fanchao; Song, Jun; Wang, Rongqiao

    2018-04-01

    Combining experiments and finite element analysis (FEA), a systematic study was performed to analyze the microstructural evolution and stress states of shot-peened GH4169 superalloy over a variety of peening intensities and coverages. A dislocation density evolution model was integrated into the representative volume FEA model to quantitatively predict microstructural evolution in the surface layers and compared with experimental results. It was found that surface roughness and through-depth residual stress profile are more sensitive to shot-peening intensity compared to coverage due to the high kinetic energy involved. Moreover, a surface nanocrystallization layer was discovered in the top surface region of GH4169 for all shot-peening conditions. However, the grain refinement was more intensified under high shot-peening coverage, under which enough time was permitted for grain refinement. The grain size gradient predicted by the numerical framework showed good agreement with experimental observations.

  5. Oxidative Stress State Is Associated with Left Ventricular Mechanics Changes, Measured by Speckle Tracking in Essential Hypertensive Patients

    Directory of Open Access Journals (Sweden)

    Luis Antonio Moreno-Ruíz

    2015-01-01

    Full Text Available The oxidative stress state is characterized by an increase in oxygen reactive species that overwhelms the antioxidant defense; we do not know if these pathological changes are correlated with alterations in left ventricular mechanics. The aim was correlating the oxidative stress state with the left ventricular global longitudinal strain (GLS and the left ventricular end diastolic pressure (LVEDP. Twenty-five patients with essential hypertension and 25 controls paired by age and gender were studied. All of the participants were subjected to echocardiography and biochemical determination of oxidative stress markers. The hypertensive patients, compared with control subjects, had significantly (p<0.05 higher levels of oxidized proteins (5.03±1.05 versus 4.06±0.63 nmol/mg, lower levels of extracellular superoxide dismutase (EC-SOD activity (0.045±0.02 versus 0.082±0.02 U/mg, higher LVEDP (16.2±4.5 versus 11.3±1.6 mm Hg, and lower GLS (−12% versus −16%. Both groups had preserved ejection fraction and the results showed a positive correlation of oxidized proteins with GLS (r=0.386, p=0.006 and LVEDP (r=0.389, p=0.005; we also found a negative correlation of EC-SOD activity with GLS (r=-0.404, p=0.004 and LVEDP (r=-0.347, p=0.014.

  6. Wearable physiological sensors reflect mental stress state in office-like situations

    NARCIS (Netherlands)

    Wijsman, J.L.P; Grundlehner, Bernard; Liu, Hao; Penders, Julien; Hermens, Hermanus J.

    Timely mental stress detection can help to prevent stress-related health problems. The aim of this study was to identify those physiological signals and features suitable for detecting mental stress in office-like situations. Electrocardiogram (ECG), respiration, skin conductance and surface

  7. Academic Stress and Coping Strategies among Students with ...

    African Journals Online (AJOL)

    This study examined the level of academic stress among university students with disabilities and the nature of coping strategies they used to deal with stress. It also examined if there existed significant differences in stress and coping strategies among students with different disabilities and between students with and without ...

  8. Investigations of some rock stress measuring techniques and the stress field in Norway

    Energy Technology Data Exchange (ETDEWEB)

    Hanssen, Tor Harald

    1998-12-31

    Rock stresses are important to the safe construction and operation of all man-made structures in rock, whether In mining, civil or petroleum engineering. The crucial issue is their relative magnitude and orientation. This thesis develops equipment and methods for further rock stress assessment and reevaluates existing overcoring rock stress measurements, and relates this information to the present geological setting. Both laboratory work and field work are involved. In the field, rock stresses are measured by the overcoring and the hydraulic fracturing technique. An observation technique for assessing likely high stresses is developed. The field data refer to several hydropower projects and to some offshore hydrocarbon fields. The principal sections are: (1) Tectonic setting in the western Fennoscandia, (2) Triaxial rock stress measurements by overcoring using the NTH cell (a strain gauge cell developed at the Norwegian technical university in Trondheim and based on the CSIR cell of the South African Council for Scientific and Industrial Research), (3) Laboratory testing of the NTH cell, (4) Quality ranking of stresses measured by the NTH cell, (4) Recalculated rock stresses and implications to the regional stress field, (5) Hydraulic fracturing stress measurements. 113 refs., 98 figs., 62 tabs.

  9. Investigations of some rock stress measuring techniques and the stress field in Norway

    Energy Technology Data Exchange (ETDEWEB)

    Hanssen, Tor Harald

    1997-12-31

    Rock stresses are important to the safe construction and operation of all man-made structures in rock, whether In mining, civil or petroleum engineering. The crucial issue is their relative magnitude and orientation. This thesis develops equipment and methods for further rock stress assessment and reevaluates existing overcoring rock stress measurements, and relates this information to the present geological setting. Both laboratory work and field work are involved. In the field, rock stresses are measured by the overcoring and the hydraulic fracturing technique. An observation technique for assessing likely high stresses is developed. The field data refer to several hydropower projects and to some offshore hydrocarbon fields. The principal sections are: (1) Tectonic setting in the western Fennoscandia, (2) Triaxial rock stress measurements by overcoring using the NTH cell (a strain gauge cell developed at the Norwegian technical university in Trondheim and based on the CSIR cell of the South African Council for Scientific and Industrial Research), (3) Laboratory testing of the NTH cell, (4) Quality ranking of stresses measured by the NTH cell, (4) Recalculated rock stresses and implications to the regional stress field, (5) Hydraulic fracturing stress measurements. 113 refs., 98 figs., 62 tabs.

  10. Effect of insulin pump infusion on comprehensive stress state of ...

    African Journals Online (AJOL)

    a control group (120 cases), administered continuous intravenous insulin, and a ... oxidative stress and stress hormone levels were compared between the ... metabolic acidosis and ketonuria, as a result of .... This resulting energy insufficiency.

  11. On the solid stress in a fluidized bed

    International Nuclear Information System (INIS)

    Qassim, R.Y.; Souza, R. de.

    1980-09-01

    The existence of solid stress in an incipiently gas-fluidized bed is shown by experimental measurement. This stress is shown to have two components: an isotropic pressure and an extra stress which depends on the relative velocity between fluid and solid. Both the solid pressure and the solid extra stress component are found to be of the same order of magnitude as the fluid pressure. (Author) [pt

  12. Analysis of rock stress and rock stress measurements with application to Aespoe HRL

    International Nuclear Information System (INIS)

    Lundholm, Beatrice

    2000-11-01

    The process of choosing a site for a nuclear waste repository means that many aspects have to be taken into consideration. One of these is that the repository has to be mechanically stable for a long time. The mechanical stability of the rock is very difficult to determine. One of several factors, which determine the mechanical stability, is the virgin state of stress. The thesis project consists of two parts. In the first part the state of stress at Aespoe Hard Rock Laboratory had to be defined. This was done based on earlier rock stress measurements conducted during the years 1988 to 1997. Two different measurement techniques have been used, hydraulic fracturing and overcoring. During the overcoring two types of cells have been used, CSIRO HI-cell and a cell developed by the Swedish State Power Board (SSPB). In the second part of the project, investigation of the correlation between the stress and geological structures are made using numerical modelling tools such as FLAC, UDEC and 3DEC. The rock stress measurements using the hydraulic fracturing gave orientations of the horizontal stress that coincide with earlier hydraulic fracturing measurements conducted in Scandinavia. The magnitudes of rock stresses are slightly lower than the earlier reported stress magnitudes for the Scandinavian part of the earth crust. The rock stresses obtained from the overcoring resulted in higher stresses than what was predicted by the hydraulic fracturing measurements. However, the orientation of the maximum horizontal stresses coincides well between the two techniques. The orientation is also more or less constant with respect to increasing depth. The state of stress at Aespoe is defined by using the results from the hydraulic fracturing and the measurements conducted by SSPB-cell. The measurements from the SSPB-cell are used since these have a Poisson's ratio that corresponds well with the uniaxial tests of rock samples and since the measurements have been done at a distance from

  13. Comfort food is comforting to those most stressed: evidence of the chronic stress response network in high stress women.

    Science.gov (United States)

    Tomiyama, A Janet; Dallman, Mary F; Epel, Elissa S

    2011-11-01

    Chronically stressed rodents who are allowed to eat calorie-dense "comfort" food develop greater mesenteric fat, which in turn dampens hypothalamic-pituitary-adrenocortical (HPA) axis activity. We tested whether similar relations exist in humans, at least cross-sectionally. Fifty-nine healthy premenopausal women were exposed to a standard laboratory stressor to examine HPA response to acute stress and underwent diurnal saliva sampling for basal cortisol and response to dexamethasone administration. Based on perceived stress scores, women were divided into extreme quartiles of low versus high stress categories. We found as hypothesized that the high stress group had significantly greater BMI and sagittal diameter, and reported greater emotional eating. In response to acute lab stressor, the high stress group showed a blunted cortisol response, lower diurnal cortisol levels, and greater suppression in response to dexamethasone. These cross-sectional findings support the animal model, which suggests that long-term adaptation to chronic stress in the face of dense calories result in greater visceral fat accumulation (via ingestion of calorie-dense food), which in turn modulates HPA axis response, resulting in lower cortisol levels. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Effect of uniaxial stress on the acceptor ground state and on the hopping conduction in p-type germanium and silicon

    International Nuclear Information System (INIS)

    Buczko, R.; Chroboczek, J.A.

    1983-08-01

    We constructed variational wave functions, with correct asymptotic behaviour, for the ground state of shallow acceptors in Ge and Si, utilizing the spherical tensor representation of the effective mass hamiltonian of Baldereschi and Lipari (1973), at uniaxial stress, X, resulting from the application of a tensile or compressive force along the [001] orientation (respectively X 0). Energies of the components of the ground state, computed variationally, account very well for the X-induced displacements of the binding energies and the stress splitting of shallow acceptors in both Ge and Si, at X>0 (no data for X 0. However, they account only qualitatively for the rho(X) data available for Si (X>0 only), probably because of a larger chemical shift of the acceptor ground state in Si and its possible variation with X. At larger acceptor concentrations rho(X) decreases, at large X, much stronger than predicted for both Ge and Si. We attribute this discrepancy to the increase of the contribution to electron transport of multiple hopping transitions at large X values. (author)

  15. Assessment of Eco-Environmental Stress in the Western Taiwan Straits Economic Zone

    Directory of Open Access Journals (Sweden)

    Longyu Shi

    2015-03-01

    Full Text Available Eco-environmental stress refers to the pressure borne by the environment in sustaining the pre-existing non-industrialized state and/or in counteracting adverse impacts caused by natural and human factors. The present article introduces the concept, research progress, and method for assessing eco-environmental stress. An eco-environmental stress index (ESI is established to assess the eco-environmental stress of 13 cities in the Western Taiwan Straits Economic Zone (hereafter referred to as the Economic Zone during the period from 2000 to 2010. The research provides a reference for the strategic planning of industrial development and environmental protection. The results show that the overall eco-environmental stress of the Economic Zone was slight and did not have significant change during the past 10 years. The cities with the most severe eco-environmental stress are distributed in the north and south of the Economic Zone. Most areas of Fujian Province have a low degree of eco-environmental stress, a situation that is being constantly improved. The regions with high atmospheric and water pollutant emissions are concentrated in the northern, middle, and southern coastal regions of the Economic Zone. The pollutant emissions of coastal cities are higher than those of inland cities. In the future, ecological restoration and compensation mechanisms should be established for regions where environmental protection and remediation is urgently needed.

  16. Learning During Stressful Times

    Science.gov (United States)

    Shors, Tracey J.

    2012-01-01

    Stressful life events can have profound effects on our cognitive and motor abilities, from those that could be construed as adaptive to those not so. In this review, I discuss the general notion that acute stressful experience necessarily impairs our abilities to learn and remember. The effects of stress on operant conditioning, that is, learned helplessness, as well as those on classical conditioning procedures are discussed in the context of performance and adaptation. Studies indicating sex differences in learning during stressful times are discussed, as are those attributing different responses to the existence of multiple memory systems and nonlinear relationships. The intent of this review is to highlight the apparent plasticity of the stress response, how it might have evolved to affect both performance and learning processes, and the potential problems with interpreting stress effects on learning as either good or bad. An appreciation for its plasticity may provide new avenues for investigating its underlying neuronal mechanisms. PMID:15054128

  17. Propagation of edge waves in a thinly layered laminated medium with stress couples under initial stresses

    Directory of Open Access Journals (Sweden)

    Pijush Pal Roy

    1987-01-01

    Full Text Available The propagation of edge waves in a thinly layered laminated medium with stress couples under initial stresses is examined. Based upon an approximate representation of a laminated medium by an equivalent anisotropic continuum with average initial and couple stresses, an explicit form of frequency equation is obtained to derive the phase velocity of edge waves. Edge waves exist under certain conditions. The inclusion of couple stresses increases the velocity of wave propagation. For a specific compression, the presence of couple stresses increases the velocity of wave propagation with the increase of wave number, whereas the reverse is the case when there is no couple stress. Numerical computation is performed with graphical representations. Several special cases are also examined.

  18. A Piezoelectroluminescent Fiber-Optical Sensor for Diagnostics of the 3D Stress State in Composite Structures

    Science.gov (United States)

    Pan'kov, A. A.

    2018-05-01

    The mathematical model of a piezoelectroluminescent fiber-optical sensor is developed for diagnostics of the 3D stress state of composite structures. The sensor model is a coaxial sector-compound layered cylinder consisting of a central optical fiber with electroluminescent and piezoelectric layers and an external uniform elastic buffer layer. The electroluminescent and piezoelectric layers are separated by radial-longitudinal boundaries, common for both layers, into geometrically equal six "measuring elements" — cylindrical two-layered sectors. The directions of 3D polarization of the piezoelectric phases and the frequencies of luminous efficacy of the electroluminescent phases are different in each sector. In the sensor, a thin translucent "internal" controlling electrode is located between the optical fiber and the electroluminescent layer, and the piezoelectric layer is coated by a thin "external" controlling electrode. The results of numerical modeling of the nonuniform coupled electroelastic fields of the piezoelectroluminescent fiber-optical sensor in the loaded "representative volume" of a composite, taking into account the action of the controlling voltage on the internal and external electrodes, of a numerical calculation of "informative and controlling coefficients" of the sensor, and of testing of an arbitrary 3D stress of state of a unidirectional glass-fiber plastic by the finite-element method are presented.

  19. Composite Overwrap Pressure Vessels: Mechanics and Stress Rupture Lifting Philosophy

    Science.gov (United States)

    Thesken, John C.; Murthy, Pappu L. N.; Phoenix, S. L.

    2009-01-01

    The NASA Engineering and Safety Center (NESC) has been conducting an independent technical assessment to address safety concerns related to the known stress rupture failure mode of filament wound pressure vessels in use on Shuttle and the International Space Station. The Shuttle s Kevlar-49 (DuPont) fiber overwrapped tanks are of particular concern due to their long usage and the poorly understood stress rupture process in Kevlar-49 filaments. Existing long term data show that the rupture process is a function of stress, temperature and time. However due to the presence of load sharing liners and the complex manufacturing procedures, the state of actual fiber stress in flight hardware and test articles is not clearly known. Indeed nonconservative life predictions have been made where stress rupture data and lifing procedures have ignored the contribution of the liner in favor of applied pressure as the controlling load parameter. With the aid of analytical and finite element results, this paper examines the fundamental mechanical response of composite overwrapped pressure vessels including the influence of elastic plastic liners and degraded/creeping overwrap properties. Graphical methods are presented describing the non-linear relationship of applied pressure to Kevlar-49 fiber stress/strain during manufacturing, operations and burst loadings. These are applied to experimental measurements made on a variety of vessel systems to demonstrate the correct calibration of fiber stress as a function of pressure. Applying this analysis to the actual qualification burst data for Shuttle flight hardware revealed that the nominal fiber stress at burst was in some cases 23 percent lower than what had previously been used to predict stress rupture life. These results motivate a detailed discussion of the appropriate stress rupture lifing philosophy for COPVs including the correct transference of stress rupture life data between dissimilar vessels and test articles.

  20. Composite Overwrap Pressure Vessels: Mechanics and Stress Rupture Lifing Philosophy

    Science.gov (United States)

    Thesken, John C.; Murthy, Pappu L. N.; Phoenix, Leigh

    2007-01-01

    The NASA Engineering and Safety Center (NESC) has been conducting an independent technical assessment to address safety concerns related to the known stress rupture failure mode of filament wound pressure vessels in use on Shuttle and the International Space Station. The Shuttle's Kevlar-49 fiber overwrapped tanks are of particular concern due to their long usage and the poorly understood stress rupture process in Kevlar-49 filaments. Existing long term data show that the rupture process is a function of stress, temperature and time. However due to the presence of load sharing liners and the complex manufacturing procedures, the state of actual fiber stress in flight hardware and test articles is not clearly known. Indeed non-conservative life predictions have been made where stress rupture data and lifing procedures have ignored the contribution of the liner in favor of applied pressure as the controlling load parameter. With the aid of analytical and finite element results, this paper examines the fundamental mechanical response of composite overwrapped pressure vessels including the influence of elastic-plastic liners and degraded/creeping overwrap properties. Graphical methods are presented describing the non-linear relationship of applied pressure to Kevlar-49 fiber stress/strain during manufacturing, operations and burst loadings. These are applied to experimental measurements made on a variety of vessel systems to demonstrate the correct calibration of fiber stress as a function of pressure. Applying this analysis to the actual qualification burst data for Shuttle flight hardware revealed that the nominal fiber stress at burst was in some cases 23% lower than what had previously been used to predict stress rupture life. These results motivate a detailed discussion of the appropriate stress rupture lifing philosophy for COPVs including the correct transference of stress rupture life data between dissimilar vessels and test articles.

  1. Natural fiber composite design and characterization for limit stress prediction in multiaxial stress state

    Directory of Open Access Journals (Sweden)

    Christopher C. Ihueze

    2015-07-01

    Full Text Available This paper focuses on the design of natural fiber composites and analysis of multiaxial stresses in relation to yield limit stresses of composites loaded off the fibers axis. ASTM D638-10 standard for tensile test was used to design and compose composites of plantain fiber reinforced polyester (PFRP. While the rule of mixtures was used in the evaluation of properties of composites in the fiber direction the evaluation of properties perpendicular or transverse to the fiber direction was done based on the value of the orthogonal stresses evaluated using ANSYS finite element software, the application of the Brintrup equation and Halpin–Tai equation. The yield strength for the plantain empty fruit bunch fiber reinforced polyester resin (PEFBFRP was estimated as 33.69 MPa while the yield strength of plantain pseudo stem fiber reinforced polyester resin (PPSFRP was estimated as 29.24 MPa. Above all, the PEFBFRP with average light absorbance peak of 45.47 was found to have better mechanical properties than the PPSFRP with average light absorbance peak of 45.77.

  2. Aseismic and seismic slip induced by fluid injection from poroelastic and rate-state friction modeling

    Science.gov (United States)

    Liu, Y.; Deng, K.; Harrington, R. M.; Clerc, F.

    2016-12-01

    Solid matrix stress change and pore pressure diffusion caused by fluid injection has been postulated as key factors for inducing earthquakes and aseismic slip on pre-existing faults. In this study, we have developed a numerical model that simulates aseismic and seismic slip in a rate-and-state friction framework with poroelastic stress perturbations from multi-stage hydraulic fracturing scenarios. We apply the physics-based model to the 2013-2015 earthquake sequences near Fox Creek, Alberta, Canada, where three magnitude 4.5 earthquakes were potentially induced by nearby hydraulic fracturing activity. In particular, we use the relocated December 2013 seismicity sequence to approximate the fault orientation, and find the seismicity migration spatiotemporally correlate with the positive Coulomb stress changes calculated from the poroelastic model. When the poroelastic stress changes are introduced to the rate-state friction model, we find that slip on the fault evolves from aseismic to seismic in a manner similar to the onset of seismicity. For a 15-stage hydraulic fracturing that lasted for 10 days, modeled fault slip rate starts to accelerate after 3 days of fracking, and rapidly develops into a seismic event, which also temporally coincides with the onset of induced seismicity. The poroelastic stress perturbation and consequently fault slip rate continue to evolve and remain high for several weeks after hydraulic fracturing has stopped, which may explain the continued seismicity after shut-in. In a comparison numerical experiment, fault slip rate quickly decreases to the interseismic level when stress perturbations are instantaneously returned to zero at shut-in. Furthermore, when stress perturbations are removed just a few hours after the fault slip rate starts to accelerate (that is, hydraulic fracturing is shut down prematurely), only aseismic slip is observed in the model. Our preliminary results thus suggest the design of fracturing duration and flow

  3. Environmental stresses can alleviate the average deleterious effect of mutations

    Directory of Open Access Journals (Sweden)

    Leibler Stanislas

    2003-05-01

    Full Text Available Abstract Background Fundamental questions in evolutionary genetics, including the possible advantage of sexual reproduction, depend critically on the effects of deleterious mutations on fitness. Limited existing experimental evidence suggests that, on average, such effects tend to be aggravated under environmental stresses, consistent with the perception that stress diminishes the organism's ability to tolerate deleterious mutations. Here, we ask whether there are also stresses with the opposite influence, under which the organism becomes more tolerant to mutations. Results We developed a technique, based on bioluminescence, which allows accurate automated measurements of bacterial growth rates at very low cell densities. Using this system, we measured growth rates of Escherichia coli mutants under a diverse set of environmental stresses. In contrast to the perception that stress always reduces the organism's ability to tolerate mutations, our measurements identified stresses that do the opposite – that is, despite decreasing wild-type growth, they alleviate, on average, the effect of deleterious mutations. Conclusions Our results show a qualitative difference between various environmental stresses ranging from alleviation to aggravation of the average effect of mutations. We further show how the existence of stresses that are biased towards alleviation of the effects of mutations may imply the existence of average epistatic interactions between mutations. The results thus offer a connection between the two main factors controlling the effects of deleterious mutations: environmental conditions and epistatic interactions.

  4. Pilot Study of A Novel Biobehavioral Intervention’s Effect on Physiologic State, Perceived Stress and Affect: An Investigation of the Health Benefits of Laughter Yoga Participational

    Science.gov (United States)

    2017-03-25

    Intervention’s Effect on Physiologic State, Perceived Stress and Affect: An Investigation of the Health Benefits of Laughter Yoga Participation presented at...Pilot Study of a Novel Biobehavioral lntervention’s Effect on Physiologic State, Perceived Stress and Affect: An Investigation of Laughter Yoga MHSRS...was to explore the practice of the evidence-based biobehavioral interv~ntion, laughter yoga, as a means to lessen the physiologic and psychological

  5. Predicting the stability of horizontal wells and multi-laterals - the role of in situ stress and rock properties

    Energy Technology Data Exchange (ETDEWEB)

    Moos, A.; Peska, P. [GeoMechanics International (United States); Zoback, M. D. [Stanford Univ., CA (United States)

    1998-12-31

    A new suite of software tools, developed to study wellbore stability in a wide variety of geologic environments is introduced as means by which to accurately predict optimally-stable wellbore trajectories from knowledge of the stress tensor. In step one of the process stress, is determined from observations of failure in existing wells; in step two, this knowledge is applied to predict the stability of proposed wells while drilling, as well as later during production. Three case studies are presented to illustrate use of this approach. The examples concentrate on issues related to the stability of highly inclined wells, but the approach can be used to determine the state of stress for other purposes as well. 21 refs., 8 figs.

  6. Mean stress and the exhaustion of fatigue-damage resistance

    Science.gov (United States)

    Berkovits, Avraham

    1989-01-01

    Mean-stress effects on fatigue life are critical in isothermal and thermomechanically loaded materials and composites. Unfortunately, existing mean-stress life-prediction methods do not incorporate physical fatigue damage mechanisms. An objective is to examine the relation between mean-stress induced damage (as measured by acoustic emission) and existing life-prediction methods. Acoustic emission instrumentation has indicated that, as with static yielding, fatigue damage results from dislocation buildup and motion until dislocation saturation is reached, after which void formation and coalescence predominate. Correlation of damage processes with similar mechanisms under monotonic loading led to a reinterpretation of Goodman diagrams for 40 alloys and a modification of Morrow's formulation for life prediction under mean stresses. Further testing, using acoustic emission to monitor dislocation dynamics, can generate data for developing a more general model for fatigue under mean stress.

  7. Modelling of the Residual Stress State in a new Type of Residual Stress Specimen

    DEFF Research Database (Denmark)

    Jakobsen, Johnny; Andreasen, Jens Henrik

    2014-01-01

    forms the experimental case which is analysed. A FE model of the specimen is used for analysing the curing history and the residual stress build up. The model is validated against experimental strain data which are recorded by a Fibre Brag Grating sensor and good agreement has been achieved.......The paper presents a study on a new type residual stress specimen which is proposed as a simple way to conduct experimental validation for model predictions. A specimen comprising of a steel plate with circular hole embedded into a stack of CSM glass fibre and further infused with an epoxy resin...

  8. A methodology for interpretation of overcoring stress measurements in anisotropic rock

    International Nuclear Information System (INIS)

    Hakala, M.; Sjoeberg, J.

    2006-11-01

    The in situ state of stress is an important parameter for the design of a repository for final disposal of spent nuclear fuel. This report presents work conducted to improve the quality of overcoring stress measurements, focused on the interpretation of overcoring rock stress measurements when accounting for possible anisotropic behavior of the rock. The work comprised: (i) development/upgrading of a computer code for calculating stresses from overcoring strains for anisotropic materials and for a general overcoring probe configuration (up to six strain rosettes with six gauges each), (ii) development of a computer code for determining elastic constants for transversely isotropic rocks from biaxial testing, and (iii) analysis of case studies of selected overcoring measurements in both isotropic and anisotropic rocks from the Posiva and SKB sites in Finland and Sweden, respectively. The work was principally limited to transversely isotropic materials, although the stress calculation code is applicable also to orthotropic materials. The developed computer codes have been geared to work primarily with the Borre and CSIRO HI three-dimensional overcoring measurement probes. Application of the codes to selected case studies, showed that the developed tools were practical and useful for interpreting overcoring stress measurements conducted in anisotropic rock. A quantitative assessment of the effects of anisotropy may thus be obtained, which provides increased reliability in the stress data. Potential gaps in existing data and/or understanding can also be identified. (orig.)

  9. Multilayer Finite-Element Model Application to Define the Bearing Structure Element Stress State of Launch Complexes

    Directory of Open Access Journals (Sweden)

    V. A. Zverev

    2016-01-01

    Full Text Available The article objective is to justify the rationale for selecting the multilayer finite element model parameters of the bearing structure of a general-purpose launch complex unit.A typical design element of the launch complex unit, i.e. a mount of the hydraulic or pneumatic cylinder, block, etc. is under consideration. The mount represents a set of the cantilevered axis and external structural cage. The most loaded element of the cage is disk to which a moment is transferred from the cantilevered axis due to actuator effort acting on it.To calculate the stress-strain state of disk was used a finite element method. Five models of disk mount were created. The only difference in models was the number of layers of the finite elements through the thickness of disk. There were models, which had one, three, five, eight, and fourteen layers of finite elements through the thickness of disk. For each model, we calculated the equivalent stresses arising from the action of the test load. Disk models were formed and calculated using the MSC Nastran complex software.The article presents results in the table to show data of equivalent stresses in each of the multi-layered models and graphically to illustrate the changing equivalent stresses through the thickness of disk.Based on these results we have given advice on selecting the proper number of layers in the model allowing a desirable accuracy of results with the lowest run time. In addition, it is concluded that there is a need to use the multi-layer models in assessing the performance of structural elements in case the stress exceeds the allowable one in their surface layers.

  10. Finite element analysis of metallurgical phase transformations in AA 6056-T4 and their effects upon the residual stress and distortion states of a laser welded T-joint

    International Nuclear Information System (INIS)

    Zain-ul-abdein, Muhammad; Nelias, Daniel; Jullien, Jean-Francois; Boitout, Frederic; Dischert, Luc; Noe, Xavier

    2011-01-01

    Aircraft industry makes extensive use of aluminium alloy AA 6056-T4 in the fabrication of fuselage panels using laser beam welding technique. Since high temperatures are involved in the manufacturing process, the precipitation/dissolution occurrences are expected as solid state phase transformations. These transformations are likely to affect the residual distortion and stress states of the component. The present work investigates the effect of metallurgical phase transformations upon the residual stresses and distortions induced by laser beam welding in a T-joint configuration using the finite element method. Two separate models were studied using different finite element codes, where the first one describes a thermo-mechanical analysis using Abaqus; while the second one discusses a thermo-metallo-mechanical analysis using Sysweld. A comparative analysis of experimentally validated finite element models has been performed and the residual stress states with and without the metallurgical phase transformations are predicted. The results show that the inclusion of phase transformations has a negligible effect on predicted distortions, which are in agreement with the experimental data, but an effect on predicted residual stresses, although the experimentally measured residual stresses are not available to support the analyses.

  11. Force Lines in Plane Stress

    DEFF Research Database (Denmark)

    Rathkjen, Arne

    A state of plane stress is illustrated by means of two families of curves, each family representing constant values of a derivative of Airy's stress function. The two families of curves form a map giving in the first place an overall picture of regions of high and low stress, and in the second...

  12. Dry fracture method for simultaneous measurement of in-situ stress state and material properties

    International Nuclear Information System (INIS)

    Serata, S.; Oka, S.; Kikuchi, S.

    1996-01-01

    Based on the dry fracture principle, a computerized borehole probe has been developed to measure stress state and material properties, simultaneously. The probe is designed to obtain a series of measurements in a continuing sequence along a borehole length, without any interruptive measures, such as resetting packers, taking indentation of borehole wall, overcoming, etc. The new dry fracture probe for the single fracture method is designed to overcome the difficulties posed by its ancestor which was based on the double fracture method. The accuracy of the single fracture method is confirmed by a close agreement with the theory, FE modeling and laboratory testing

  13. Existence of traveling waves for diffusive-dispersive conservation laws

    Directory of Open Access Journals (Sweden)

    Cezar I. Kondo

    2013-02-01

    Full Text Available In this work we show the existence existence and uniqueness of traveling waves for diffusive-dispersive conservation laws with flux function in $C^{1}(mathbb{R}$, by using phase plane analysis. Also we estimate the domain of attraction of the equilibrium point attractor corresponding to the right-hand state. The equilibrium point corresponding to the left-hand state is a saddle point. According to the phase portrait close to the saddle point, there are exactly two semi-orbits of the system. We establish that only one semi-orbit come in the domain of attraction and converges to $(u_{-},0$ as $yo -infty$. This provides the desired saddle-attractor connection.

  14. Sources and effects of work-related stress among employees in foreign-owned manufacturing companies in Ogun state, Nigeria

    Directory of Open Access Journals (Sweden)

    Ajibade David

    2016-12-01

    Full Text Available This study investigates the sources and effects of work-related stress among employees in foreign owned manufacturing companies in Ogun State, Nigeria. The study used cross sectional descriptive design and a total of three hundred and two (302 respondents were selected using stratified random sampling technique from five randomly selected foreign-owned manufacturing companies. Data were collected using questionnaire and statistically analysed using frequencies, percentages and weighted means. The study reveals factors such as unfavourable physical working conditions, job insecurity, poor career development, and long working hours fostering stress on employees in the sampled companies. The study further reveals that respondents suffered consequences such as restlessness, anxiety and nervous indigestion, headache, neck ache, and inability to concentrate. This study however has implication for management of foreign-owned manufacturing organization. Based on this, appropriate recommendations were made application of which will help to ensure enabling workplace environment and thus reduce the effects of stress on employees.

  15. Mindfulness-based stress reduction teachers, practice characteristics, cancer incidence, and health: a nationwide ecological description.

    Science.gov (United States)

    Robb, Sara Wagner; Benson, Kelsey; Middleton, Lauren; Meyers, Christine; Hébert, James R

    2015-02-14

    Studies have demonstrated the potential of the Mindfulness-Based Stress Reduction (MBSR) program to improve the condition of individuals with health outcomes such as hypertension, diabetes, and chronic pain; improve psychological well-being; reduce stress levels; and increase survival among cancer patients. To date, only one study has focused on the effect of long-term meditation on stress, showing a positive protective relationship. However, the relationship between meditation and cancer incidence remains unexplored. The objective of this study was to describe the state-level relationship between MBSR instructors and their practices and county-level health outcomes, including cancer incidence, in the United States. This ecologic study was performed using geospatial mapping and descriptive epidemiology of statewide MBSR characteristics and overall health, mental health state rankings, and age-adjusted cancer incidence rates. Weak to moderate state-level correlations between meditation characteristics and colorectal and cervical cancer incidence were detected, with states with more meditation (e.g., more MBSR teachers per population) correlated with a decreased cancer incidence. A negative correlation was detected between lung & bronchus cancer and years teaching MBSR only. Moderate positive correlations were detected between Hodgkin's Lymphoma and female breast cancer in relation to all meditation characteristics. Statistically significant correlations with moderate coefficients were detected for overall health ranks and all meditation characteristics, most strongly for total number of years teaching MBSR and total number of years of general meditation practice. Our analyses might suggest that a relationship exists between the total number of MBSR teachers per state and the total number of years of general meditation practice per state, and colorectal and cervical cancer incidence. Positive correlations were observed with overall health rankings. Despite this study

  16. Interfacial shear stress in stratified flow in a horizontal rectangular duct

    International Nuclear Information System (INIS)

    Lorencez, C.; Kawaji, M.; Murao, Y.

    1995-01-01

    Interfacial shear stress has been experimentally examined for both cocurrent and countercurrent stratified wavy flows in a horizontal interfacial shear stress from the measurements were examined and the results have been compared with existing correlations. Some differences were found in the estimated interfacial shear stress from the measurements were examined and the results have been compared with existing correlations. Some differences were found in the estimated interfacial shear stress values at high gas flow rates which could be attributed to the assumptions and procedures involved in each method. The interfacial waves and secondary motions were also found to have significant effects on the accuracy of Reynolds stress and turbulence kinetic energy extrapolation methods

  17. Interfacial shear stress in stratified flow in a horizontal rectangular duct

    Energy Technology Data Exchange (ETDEWEB)

    Lorencez, C.; Kawaji, M. [Univ. of Toronto (Canada); Murao, Y. [Tokushima Univ. (Japan)] [and others

    1995-09-01

    Interfacial shear stress has been experimentally examined for both cocurrent and countercurrent stratified wavy flows in a horizontal interfacial shear stress from the measurements were examined and the results have been compared with existing correlations. Some differences were found in the estimated interfacial shear stress from the measurements were examined and the results have been compared with existing correlations. Some differences were found in the estimated interfacial shear stress values at high gas flow rates which could be attributed to the assumptions and procedures involved in each method. The interfacial waves and secondary motions were also found to have significant effects on the accuracy of Reynolds stress and turbulence kinetic energy extrapolation methods.

  18. Effects of heat production on the temperature pattern and stresses on frictional hardening of cylindrical components

    International Nuclear Information System (INIS)

    Maksimovich, V.M.; Kratyuk, P.B.; Babei, Yu.I.; Maksimishin, M.D.

    1992-01-01

    Metal heating occurs during pulse hardening which influences the structure, state of strain, and physicomechanical properties, which in turn affects the viability. Difficulties exists in measuring the resulting temperature distributions because of the lag in existing methods. More accurate estimates of temperature distributions may often be obtained using theoretical methods, which involve solving coupled problems in the theory of elasticity and thermal conductivity. In this work, a planar contact case in thermoelasticity is considered for frictional hardening, in which the friction disk and the workpiece are represented as an elastic plunger and the body.It is assumed that the contact normal and tangential stresses are related by Coulomb's law. Also given is a method of solving which enables the definition of the thermoelastic state with a given accuracy in the contact region for high disk speeds. 5 refs., 2 figs., 1 tab

  19. An improved water budget for the El Yunque National Forest, Puerto Rico, as determined by the Water Supply Stress Index Model

    Science.gov (United States)

    Liangxia Zhang; Ge Sun; Erika Cohen; Steven McNulty; Peter Caldwell; Suzanne Krieger; Jason Christian; Decheng Zhou; Kai Duan; Keren J. Cepero-Pérez

    2018-01-01

    Quantifying the forest water budget is fundamental to making science-based forest management decisions. This study aimed at developing an improved water budget for the El Yunque National Forest (ENF) in Puerto Rico, one of the wettest forests in the United States. We modified an existing monthly scale water balance model, Water Supply Stress Index (WaSSI), to reflect...

  20. Numerical Analysis of Thermal Stresses around Fasteners in Composite Metal Foils

    Science.gov (United States)

    Nammi, S. K.; Butt, J.; –L Mauricette, J.; Shirvani, H.

    2017-12-01

    The process of composite metal foil manufacturing (CMFM) has reduced a number of limitations associated with commercial additive manufacturing (AM) methods. The existing metal AM machines are restricted by their build envelope and there is a growing market for the manufacture of large parts using AM. These parts are subsequently manufactured in fragments and are fastened together. This paper analyses the thermal stresses around cylindrical fasteners for three layered metal composite parts consisting of aluminium foil, brazing paste and copper foil layers. The investigation aims to examine the mechanical integrity of the metallurgically bonded aluminium/copper foils of 100 micron thickness manufactured in a disc shape. A cylindrical fastener set at an elevated temperature of 100 °C is fitted in the middle of the disc which results in a steady-state thermal distribution. Radial and shear stresses are computed using finite element method which shows that non-zero shear stresses developed by the copper layer inhibit the axial slippage of the fastener and thereby establishing the suitability of rivet joints for CMFM parts.

  1. An approach to an acute emotional stress reference scale.

    Science.gov (United States)

    Garzon-Rey, J M; Arza, A; de-la-Camara, C; Lobo, A; Armario, A; Aguilo, J

    2017-06-16

    The clinical diagnosis aims to identify the degree of affectation of the psycho-physical state of the patient as a guide to therapeutic intervention. In stress, the lack of a measurement tool based on a reference makes it difficult to quantitatively assess this degree of affectation. To define and perform a primary assessment of a standard reference in order to measure acute emotional stress from the markers identified as indicators of the degree. Psychometric tests and biochemical variables are, in general, the most accepted stress measurements by the scientific community. Each one of them probably responds to different and complementary processes related to the reaction to a stress stimulus. The reference that is proposed is a weighted mean of these indicators by assigning them relative weights in accordance with a principal components analysis. An experimental study was conducted on 40 healthy young people subjected to the psychosocial stress stimulus of the Trier Social Stress Test in order to perform a primary assessment and consistency check of the proposed reference. The proposed scale clearly differentiates between the induced relax and stress states. Accepting the subjectivity of the definition and the lack of a subsequent validation with new experimental data, the proposed standard differentiates between a relax state and an emotional stress state triggered by a moderate stress stimulus, as it is the Trier Social Stress Test. The scale is robust. Although the variations in the percentage composition slightly affect the score, but they do not affect the valid differentiation between states.

  2. The maximum possible stress intensity factor for a crack in an unknown residual stress field

    International Nuclear Information System (INIS)

    Coules, H.E.; Smith, D.J.

    2015-01-01

    Residual and thermal stress fields in engineering components can act on cracks and structural flaws, promoting or inhibiting fracture. However, these stresses are limited in magnitude by the ability of materials to sustain them elastically. As a consequence, the stress intensity factor which can be applied to a given defect by a self-equilibrating stress field is also limited. We propose a simple weight function method for determining the maximum stress intensity factor which can occur for a given crack or defect in a one-dimensional self-equilibrating stress field, i.e. an upper bound for the residual stress contribution to K I . This can be used for analysing structures containing defects and subject to residual stress without any information about the actual stress field which exists in the structure being analysed. A number of examples are given, including long radial cracks and fully-circumferential cracks in thick-walled hollow cylinders containing self-equilibrating stresses. - Highlights: • An upper limit to the contribution of residual stress to stress intensity factor. • The maximum K I for self-equilibrating stresses in several geometries is calculated. • A weight function method can determine this maximum for 1-dimensional stress fields. • Simple MATLAB scripts for calculating maximum K I provided as supplementary material.

  3. Fracture patterns and stresses in granite

    International Nuclear Information System (INIS)

    Price, N.J.

    1979-01-01

    If granite bodies are to be used as receptacles for toxic waste materials, the presence or absence of barren fractures and the virgin stresses in the granite are of fundamental importance. Unfortunately, very little is known regarding the incidence of fractures, or stresses, which exist at depths (of about 1 km) in granite bodies. A simple analysis is presented of a hypothetical intrusion which indicates the magnitudes of stresses and the possible fracture development which may be expected in such bodies. (auth)

  4. Mechanical stress induces neuroendocrine and immune responses of sea cucumber ( Apostichopus japonicus)

    Science.gov (United States)

    Tan, Jie; Li, Fenghui; Sun, Huiling; Gao, Fei; Yan, Jingping; Gai, Chunlei; Chen, Aihua; Wang, Qingyin

    2015-04-01

    Grading procedure in routine sea cucumber hatchery production is thought to affect juvenile sea cucumber immunological response. The present study investigated the impact of a 3-min mechanical perturbation mimicking the grading procedure on neuroendocrine and immune parameters of the sea cucumber Apostichopus japonicus. During the application of stress, concentrations of noradrenaline and dopamine in coelomic fluid increased significantly, indicating that the mechanical perturbation resulted in a transient state of stress in sea cucumbers. Coelomocytes concentration in coelomic fluid increased transiently after the beginning of stressing, and reached the maximum in 1 h. Whereas, coelomocytes phagocytosis at 3 min, superoxide anion production from 3 min to 0.5 h, acid phosphatase activity at 0.5 h, and phenoloxidase activity from 3 min to 0.5 h were all significantly down-regulated. All of the immune parameters recovered to baseline levels after the experiment was conducted for 8 h, and an immunostimulation occurred after the stress considering the phagocytosis and acid phosphatase activity. The results suggested that, as in other marine invertebrates, neuroendocrine/immune connections exist in sea cucumber A. japonicus. Mechanical stress can elicit a profound influence on sea cucumber neuroendocrine system. Neuroendocrine messengers act in turn to modulate the immunity functions. Therefore, these effects should be considered for developing better husbandry procedures.

  5. Biological Studies of Posttraumatic Stress Disorder

    Science.gov (United States)

    Pitman, Roger K.; Rasmusson, Ann M.; Koenen, Karestan C.; Shin, Lisa M.; Orr, Scott P.; Gilbertson, Mark W.; Milad, Mohammed R.; Liberzon, Israel

    2016-01-01

    Preface Posttraumatic stress disorder (PTSD) is the only major mental disorder for which a cause is considered to be known, viz., an event that involves threat to the physical integrity of oneself or others and induces a response of intense fear, helplessness, or horror. Although PTSD is still largely regarded as a psychological phenomenon, over the past three decades the growth of the biological PTSD literature has been explosive, and thousands of references now exist. Ultimately, the impact of an environmental event, such as a psychological trauma, must be understood at organic, cellular, and molecular levels. The present review attempts to present the current state of this understanding, based upon psychophysiological, structural and functional neuroimaging, endocrinological, genetic, and molecular biological studies in humans and in animal models. PMID:23047775

  6. Effects of a chronic stress treatment on vaccinal response in lambs.

    Science.gov (United States)

    Destrez, A; Boissy, A; Guilloteau, L; Andanson, S; Souriau, A; Laroucau, K; Chaillou, E; Deiss, V

    2017-05-01

    Farming systems can expose animals to chronic mild stress which is known to induce negative affective state. Affective state in animals, as in humans, can be assessed through behavioral cues. This study aimed to describe the effect of a chronic mild stress, known to induce a negative affective state, on sheep health through their response to vaccination. The study used 15 lambs subjected to a model of chronic mild stress for 15 weeks and 15 lambs reared under conventional farming as a control group. After 7 weeks of stressful treatment, the lambs were individually exposed to a judgment bias test to assess a putative stress-induced 'pessimism.' After 15 weeks of stressful treatment, antibody immune response was measured after an injection of a live vaccine challenge (Chlamydia abortus attenuated vaccine strain 1B). Stressed lambs displayed a pessimistic-like perception in the judgment bias test, revealing a negative affective state. Stressed and control animals showed different immunological reactions to vaccine challenge: stressed sheep had lower hemoglobin concentrations and higher platelet, granulocyte and acute-phase protein concentrations. Antibody response induced by the vaccine strain was not different between stressed and control sheep. Our results suggest that negative affective state induced by chronic stress treatment may induce a stronger inflammatory response to vaccine challenge in sheep. Improvement of animal health may be achieved through consideration of stressors that may affect the emotional and immunological state of sheep.

  7. Non-existence of bipartite bound entanglement with negative partial transposition

    OpenAIRE

    Sperling, J.; Vogel, W.

    2009-01-01

    Bound entanglement with a nonpositive partial transposition (NPT) does not exist. For any NPT entangled state a distillation procedure can be based on a certain number of copies. This number is the minimal Schmidt rank of a pure state needed to witness the NPT entanglement under study.

  8. Stress: Concepts and applications

    International Nuclear Information System (INIS)

    Nielsen, O.H.; Martin, R.M.

    1984-01-01

    The stress theorem determines the stress from the electronic ground state of any quantum system with arbitrary strains and atomic displacements. We derive this theorem in reciprocal space, within the local-density-functional approximation. The evaluation of stress, force and total energy permits, among other things, the determination of complete stress-strain relations including all microscopic internal strains. We describe results of ab-initio calculations for Si, Ge, and GaAs, giving the equilibrium lattice constant, all linear elastic constants c ij and the internal strain parameter ζ. (orig.)

  9. Imposition of defined states of stress on thin films by a wafer-curvature method; validation and application to aging Sn films

    Energy Technology Data Exchange (ETDEWEB)

    Stein, J., E-mail: Jendrik.Stein@de.bosch.com [Max Planck Institute for Intelligent Systems (formerly Max Planck Institute for Metals Research), Heisenbergstr. 3, 70569 Stuttgart (Germany); Robert Bosch GmbH, Automotive Electronics/Engineering Assembly and Interconnect Technology (AE/EAI2), Robert-Bosch-Str. 2, 71701 Schwieberdingen (Germany); Pascher, M. [Institute for Materials Science, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart (Germany); Welzel, U. [Max Planck Institute for Intelligent Systems (formerly Max Planck Institute for Metals Research), Heisenbergstr. 3, 70569 Stuttgart (Germany); Huegel, W. [Robert Bosch GmbH, Automotive Electronics/Engineering Assembly and Interconnect Technology (AE/EAI2), Robert-Bosch-Str. 2, 71701 Schwieberdingen (Germany); Mittemeijer, E.J. [Max Planck Institute for Intelligent Systems (formerly Max Planck Institute for Metals Research), Heisenbergstr. 3, 70569 Stuttgart (Germany); Institute for Materials Science, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart (Germany)

    2014-10-01

    A wafer-curvature method has been developed to subject thin films, deposited on (Si) substrates, to well defined and controllable loads in a contact-free manner. To this end, a custom-made glass pan (i.e. a roof-less cylinder with a connection piece for vacuum tubes) connected to a needle valve, a vacuum pump and a pressure gauge has been used as an experimental setup. By fixing the coated Si wafer on top of the glass cylinder and evacuating the glass cylinder to a defined low-pressure, a state of stress is imposed in the thin film due to bending of the wafer. It has been shown that the (initial) stress state of a film and its change, due to its bending with the help of the wafer-curvature method, can be analyzed accurately close to the wafer center by application of one of two independent X-ray diffraction techniques: i) conventional X-ray diffraction stress analysis (i.e. application of the well known sin{sup 2}ψ-method) to reflections originating from the film and ii) determination of the radii of curvature by rocking curve measurements utilizing reflections originating from the substrate. The validation of this stress-imposition method has been carried out with a tungsten film of 500 nm thickness, since tungsten is known to be (practically) intrinsically elastically isotropic. Further, the method has been applied to an electro-deposited, potentially whiskering, aging Sn film of 3 μm thickness where a combination of both stress-measurement techniques is essential for the determination of initial and (by wafer bending) imposed stresses. The results of the aging experiment of the Sn film under load have been discussed with respect to the current whisker-growth model. - Highlights: • A wafer-curvature method has been developed to subject thin films to defined loads. • Two X-ray diffraction techniques were employed for the analysis of stresses. • The wafer-curvature method was validated by application to a W film. • Application to a potentially whiskering

  10. Imposition of defined states of stress on thin films by a wafer-curvature method; validation and application to aging Sn films

    International Nuclear Information System (INIS)

    Stein, J.; Pascher, M.; Welzel, U.; Huegel, W.; Mittemeijer, E.J.

    2014-01-01

    A wafer-curvature method has been developed to subject thin films, deposited on (Si) substrates, to well defined and controllable loads in a contact-free manner. To this end, a custom-made glass pan (i.e. a roof-less cylinder with a connection piece for vacuum tubes) connected to a needle valve, a vacuum pump and a pressure gauge has been used as an experimental setup. By fixing the coated Si wafer on top of the glass cylinder and evacuating the glass cylinder to a defined low-pressure, a state of stress is imposed in the thin film due to bending of the wafer. It has been shown that the (initial) stress state of a film and its change, due to its bending with the help of the wafer-curvature method, can be analyzed accurately close to the wafer center by application of one of two independent X-ray diffraction techniques: i) conventional X-ray diffraction stress analysis (i.e. application of the well known sin 2 ψ-method) to reflections originating from the film and ii) determination of the radii of curvature by rocking curve measurements utilizing reflections originating from the substrate. The validation of this stress-imposition method has been carried out with a tungsten film of 500 nm thickness, since tungsten is known to be (practically) intrinsically elastically isotropic. Further, the method has been applied to an electro-deposited, potentially whiskering, aging Sn film of 3 μm thickness where a combination of both stress-measurement techniques is essential for the determination of initial and (by wafer bending) imposed stresses. The results of the aging experiment of the Sn film under load have been discussed with respect to the current whisker-growth model. - Highlights: • A wafer-curvature method has been developed to subject thin films to defined loads. • Two X-ray diffraction techniques were employed for the analysis of stresses. • The wafer-curvature method was validated by application to a W film. • Application to a potentially whiskering Sn

  11. Osmotic stress tolerance in semi-terrestrial tardigrades

    DEFF Research Database (Denmark)

    Heidemann, Nanna W T; Smith, Daniel K.; Hygum, Thomas L.

    2016-01-01

    Little is known about ionic and osmotic stress tolerance in tardigrades. Here, we examine salt stress tolerance in Ramazzottius oberhaeuseri and Echiniscus testudo from Nivå (Denmark) and address whether limno-terrestrial tardigrades can enter a state of quiescence (osmobiosis) in the face of high......-ionic osmolytes as compared to NaCl. Ramazzottius oberhaeuseri furthermore readily regained activity following gradual increases in non-ionic osmolytes and NaCl of up to 2434 ± 28 and 1905 ± 3 mOsm kg−1, respectively, showing that short-term acclimation promoted salt stress tolerance. Our results suggest...... that the limno-terrestrial R. oberhaeuseri enters a state of quiescence in the face of high external osmotic pressure and that it, in this state, is highly tolerant of ionic and osmotic stress....

  12. Overall bolt stress optimization

    DEFF Research Database (Denmark)

    Pedersen, Niels Leergaard

    2013-01-01

    The state of stress in bolts and nuts with International Organization for Standardization metric thread design is examined and optimized. The assumed failure mode is fatigue, so the applied preload and the load amplitude together with the stress concentrations define the connection strength....... Maximum stress in the bolt is found at the fillet under the head, at the thread start, or at the thread root. To minimize the stress concentration, shape optimization is applied. Nut shape optimization also has a positive effect on the maximum stress. The optimization results show that designing a nut......, which results in a more evenly distribution of load along the engaged thread, has a limited influence on the maximum stress due to the stress concentration at the first thread root. To further reduce the maximum stress, the transition from bolt shank to the thread must be optimized. Stress reduction...

  13. THE STRESS STATE OF THE RADIALLY INHOMOGENEOUS HEMISPHERICAL SHELL UNDER LOCALLY DISTRIBUTED VERTICAL LOAD

    Directory of Open Access Journals (Sweden)

    Andreev Vladimir Igorevich

    2018-01-01

    Full Text Available Subject: one of the promising trends in the development of structural mechanics is the development of methods for solving problems in the theory of elasticity for bodies with continuous inhomogeneity of any deformation characteristics: these methods make it possible to use the strength of the material most fully. In this paper, we consider the two-dimensional problem for the case when a vertical, locally distributed load acts on the hemisphere and the inhomogeneity is caused by the influence of the temperature field. Research objectives: derive governing system of equations in spherical coordinates for determination of the stress state of the radially inhomogeneous hemispherical shell under locally distributed vertical load. Materials and methods: as a mechanical model, we chose a thick-walled reinforced concrete shell (hemisphere with inner and outer radii a and b, respectively, b > a. The shell’s parameters are a = 3.3 m, b = 4.5 m, Poisson’s ratio ν = 0.16; the load parameters are f = 10MPa - vertical localized load distributed over the outer face, θ0 = 30°, temperature on the internal surface of the shell Ta = 500 °C, temperature on the external surface of the shell Tb = 0 °C. The resulting boundary-value problem (a system of differential equations with variable coefficients is solved using the Maple software package. Results: maximal compressive stresses σr with allowance for material inhomogeneity are reduced by 10 % compared with the case when the inhomogeneity is ignored. But it is not so important compared with a 3-fold decrease in the tensile stress σθ on the inner surface and a 2-fold reduction in the tensile stress σθ on the outer surface of the hemisphere as concretes generally have a tensile strength substantially smaller than the compressive strength. Conclusions: the method presented in this article makes it possible to reduce the deformation characteristics of the material, i.e. it leads to a reduction in stresses

  14. Water-use strategies of six co-existing Mediterranean woody species during a summer drought

    NARCIS (Netherlands)

    Quero, J.L.; Sterck, F.J.; Martínez-Vilalta, J.; Villar, R.

    2011-01-01

    Drought stress is known to limit plant performance in Mediterranean-type ecosystems. We have investigated the dynamics of the hydraulics, gas exchange and morphology of six co-existing Mediterranean woody species growing under natural field conditions during a drought that continued during the

  15. Cation interdependency in acute stressor states.

    Science.gov (United States)

    Khan, M Usman; Komolafe, Babatunde O; Weber, Karl T

    2013-05-01

    Acute stressor states are inextricably linked to neurohormonal activation which includes the adrenergic nervous system. Consequent elevations in circulating epinephrine and norepinephrine unmask an interdependency that exists between K+, Mg2+ and Ca2+. Catecholamines, for example, regulate the large number of Mg2+-dependent Na/K ATPase pumps present in skeletal muscle. A hyperadrenergic state accounts for a sudden translocation of K+ into muscle and rapid appearance of hypokalemia. In the myocardium, catecholamines promote Mg2+ efflux from cardiomyocytes, whereas intracellular Ca2+ influx and overloading account for the induction of oxidative stress and necrosis of these cells with leakage of their contents, including troponins. Accordingly, acute stressor states can be accompanied by nonischemic elevations in serum troponins, together with the concordant appearance of hypokalemia, hypomagnesemia and ionized hypocalcemia, causing a delay in myocardial repolarization and electrocardiographic QTc prolongation raising the propensity for arrhythmias, including atrial fibrillation and polymorphic ventricular tachycardia. In this review, we focus on the interdependency between K+, Mg2+ and Ca2+ which are clinically relevant to acute stressor states.

  16. Tensile stress in hard metal films

    NARCIS (Netherlands)

    Janssen, G.C.A.M.; Dammers, A.J.; Sivel, V.G.M.; Wang, W.R.

    2003-01-01

    Thin films on substrates are usually in a stressed state. An important, but trivial, contribution to that stress stems from the difference in thermal expansion coefficient of substrate and film. Much more interesting are the intrinsic stresses, resulting from the growth and/or microstructure of the

  17. Residual stresses around Vickers indents

    International Nuclear Information System (INIS)

    Pajares, A.; Guiberteau, F.; Steinbrech, R.W.

    1995-01-01

    The residual stresses generated by Vickers indentation in brittle materials and their changes due to annealing and surface removal were studied in 4 mol% yttria partially stabilized zirconia (4Y-PSZ). Three experimental methods to gain information about the residual stress field were applied: (i) crack profile measurements based on serial sectioning, (ii) controlled crack propagation in post indentation bending tests and (iii) double indentation tests with smaller secondary indents located around a larger primary impression. Three zones of different residual stress behavior are deduced from the experiments. Beneath the impression a crack free spherical zone of high hydrostatic stresses exists. This core zone is followed by a transition regime where indentation cracks develop but still experience hydrostatic stresses. Finally, in an outward third zone, the crack contour is entirely governed by the tensile residual stress intensity (elastically deformed region). Annealing and surface removal reduce this crack driving stress intensity. The specific changes of the residual stresses due to the post indentation treatments are described and discussed in detail for the three zones

  18. Resting-state functional connectivity of the bed nucleus of the stria terminalis in post-traumatic stress disorder and its dissociative subtype.

    Science.gov (United States)

    Rabellino, Daniela; Densmore, Maria; Harricharan, Sherain; Jean, Théberge; McKinnon, Margaret C; Lanius, Ruth A

    2018-03-01

    The bed nucleus of the stria terminals (BNST) is a subcortical structure involved in anticipatory and sustained reactivity to threat and is thus essential to the understanding of anxiety and stress responses. Although chronic stress and anxiety represent a hallmark of post-traumatic stress disorder (PTSD), to date, few studies have examined the functional connectivity of the BNST in PTSD. Here, we used resting state functional Magnetic Resonance Imaging (fMRI) to investigate the functional connectivity of the BNST in PTSD (n = 70), its dissociative subtype (PTSD + DS) (n = 41), and healthy controls (n = 50). In comparison to controls, PTSD showed increased functional connectivity of the BNST with regions of the reward system (ventral and dorsal striatum), possibly underlying stress-induced reward-seeking behaviors in PTSD. By contrast, comparing PTSD + DS to controls, we observed increased functional connectivity of the BNST with the claustrum, a brain region implicated in consciousness and a primary site of kappa-opioid receptors, which are critical to the dynorphin-mediated dysphoric stress response. Moreover, PTSD + DS showed increased functional connectivity of the BNST with brain regions involved in attention and salience detection (anterior insula and caudate nucleus) as compared to PTSD and controls. Finally, BNST functional connectivity positively correlated with default-mode network regions as a function of state identity dissociation, suggesting a role of BNST networks in the disruption of self-relevant processing characterizing the dissociative subtype. These findings represent an important first step in elucidating the role of the BNST in aberrant functional networks underlying PTSD and its dissociative subtype. © 2017 Wiley Periodicals, Inc.

  19. Effect of Mechanical Stresses and Annealing on the Magnetic Structure and the Magnetic Impedance of Amorphous CoFeSiBCr Microwires

    Science.gov (United States)

    Nematov, M. G.; Salem, M. M.; Azim, U.; Akhmat, M.; Morchenko, A. T.; Yudanov, N. A.; Panina, L. V.

    2018-02-01

    The structural and magnetic properties of amorphous ferromagnetic microwires can undergo significant measurements under the action of external mechanical stresses and heat treatment. The study of transformations occurring in this case is important for designing various sensors of mechanical stresses, loading, and temperature and also for inducing in the wires a certain type of magnetic anisotropy that plays a significant role in the realization of various effects in them. In this work, the influence of external stresses and annealing on the processes of the magnetization and the magnetic impedance of Co71Fe5B11Si10Cr3 microwires having a low positive magnetostriction ( 10-8) in amorphous state has been studied. The influence of external stresses leads to a sharp change in the character of the magnetization reversal curve, which was due to the change in the sign of the magnetostriction and the type of magnetic anisotropy. The amplitude of higher harmonics and the value of the magnetic impedance, respectively, are sensitive to mechanical stresses. Elastic stresses in the wires with a partial crystallization do not lead to a marked change in the magnetic properties; however, annealing can lead to a substantial increase in the axial magnetic anisotropy of the wires existing in the stressed state. The experimental results are analyzed in the framework of a magnetostriction model of induced magnetic anisotropy.

  20. Compressive residual stresses as a preventive measure against stress corrosion cracking on turbine components

    International Nuclear Information System (INIS)

    Berger, C.; Ewald, J.; Fischer, K.; Gruendler, O.; Potthast, E.; Stuecker, E.; Winzen, G.

    1987-01-01

    Disk type low pressure turbine rotors have been designed for a large variety of power plant applications. Developing disk type rotors required a concerted effort to design a shaft/disk shrink fit with a minimum of tensile stress concentrations in order to aim for the lowest possible susceptibility to corrosive attack, i.e. stress corrosion cracking. As a result of stresses, the regions of greatest concern are the shrink fit boundaries and the keyways of turbine disks. These stresses are caused by service loading, i.e. centrifugal and shrinkage stresses and by manufacturing procedure, i.e. residual stresses. The compressive residual stresses partly compensate the tensile service stresses so that an increase of compressive residual stresses decreases the whole stress state of the component. Special manufacturing procedures, e.g. accelerated cooling after tempering can induce compressive residual stresses up to about 400 MPa in the hub bore region of turbine disk

  1. Antiferromagnetic character of workplace stress

    Science.gov (United States)

    Watanabe, Jun-Ichiro; Akitomi, Tomoaki; Ara, Koji; Yano, Kazuo

    2011-07-01

    We study the nature of workplace stress from the aspect of human-human interactions. We investigated the distribution of Center for Epidemiological Studies Depression Scale scores, a measure of the degree of stress, in workplaces. We found that the degree of stress people experience when around other highly stressed people tends to be low, and vice versa. A simulation based on a model describing microlevel human-human interaction reproduced this observed phenomena and revealed that the energy state of a face-to-face communication network correlates with workplace stress macroscopically.

  2. Ontological Proofs of Existence and Non-Existence

    Czech Academy of Sciences Publication Activity Database

    Hájek, Petr

    2008-01-01

    Roč. 90, č. 2 (2008), s. 257-262 ISSN 0039-3215 R&D Projects: GA AV ČR IAA100300503 Institutional research plan: CEZ:AV0Z10300504 Keywords : ontological proofs * existence * non-existence * Gödel * Caramuel Subject RIV: BA - General Mathematics

  3. Steady-State Creep of Asphalt Concrete

    Directory of Open Access Journals (Sweden)

    Alibai Iskakbayev

    2017-02-01

    Full Text Available This paper reports the experimental investigation of the steady-state creep process for fine-grained asphalt concrete at a temperature of 20 ± 2 °С and under stress from 0.055 to 0.311 MPa under direct tension and was found to occur at a constant rate. The experimental results also determined the start, the end point, and the duration of the steady-state creep process. The dependence of these factors, in addition to the steady-state creep rate and viscosity of the asphalt concrete on stress is satisfactorily described by a power function. Furthermore, it showed that stress has a great impact on the specific characteristics of asphalt concrete: stress variation by one order causes their variation by 3–4.5 orders. The described relations are formulated for the steady-state of asphalt concrete in a complex stressed condition. The dependence is determined between stress intensity and strain rate intensity.

  4. Neutron diffraction measurements for the determination of residual stresses in MMC tensile and fatigue specimens

    DEFF Research Database (Denmark)

    Fiori, F.; Girardin, E.; Giuliani, A.

    2000-01-01

    have been performed at RISO (Roskilde, DK) and HMI-BENSC (Berlin, D), for the determination of residual stress in AA2124 + 17% SiCp and AA359 + 20% SiCp specimens, submitted to tensile and fatigue tests. For each of the investigated samples, the macrostress has been separated from the elastic......, residual stresses are present in both the matrix and the particles microstructure, prior to any macroscopic loading. They vary with the temperature and with the type and level of loading imposed to the material, having a strong influence on the mechanical behaviour of MMCs. Neutron diffraction measurements...... and thermal mismatch microstresses. The results show that, in general, the main contribution to the stress state of both matrix and reinforcement is given by the thermal microstresses, already existing due to heat treatment prior to mechanical tests. (C) 2000 Elsevier Science B.V. All rights reserved....

  5. A kinetic model for stress generation in thin films grown from energetic vapor fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Chason, E.; Karlson, M. [School of Engineering, Brown University, Providence, Rhode Island 02912 (United States); Colin, J. J.; Abadias, G. [Institut P' , Département Physique et Mécanique des Matériaux, Université de Poitiers-CNRS-ENSMA, SP2MI, Téléport 2, Bd M. et P. Curie, F-86962 Chasseneuil-Futuroscope (France); Magnfält, D.; Sarakinos, K. [Nanoscale Engineering Division, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping (Sweden)

    2016-04-14

    We have developed a kinetic model for residual stress generation in thin films grown from energetic vapor fluxes, encountered, e.g., during sputter deposition. The new analytical model considers sub-surface point defects created by atomic peening, along with processes treated in already existing stress models for non-energetic deposition, i.e., thermally activated diffusion processes at the surface and the grain boundary. According to the new model, ballistically induced sub-surface defects can get incorporated as excess atoms at the grain boundary, remain trapped in the bulk, or annihilate at the free surface, resulting in a complex dependence of the steady-state stress on the grain size, the growth rate, as well as the energetics of the incoming particle flux. We compare calculations from the model with in situ stress measurements performed on a series of Mo films sputter-deposited at different conditions and having different grain sizes. The model is able to reproduce the observed increase of compressive stress with increasing growth rate, behavior that is the opposite of what is typically seen under non-energetic growth conditions. On a grander scale, this study is a step towards obtaining a comprehensive understanding of stress generation and evolution in vapor deposited polycrystalline thin films.

  6. Assessing the reactivation potential of pre-existing fractures in the southern Karoo, South Africa: Evaluating the potential for sustainable exploration across its Critical Zone

    Science.gov (United States)

    Dhansay, Taufeeq; Navabpour, Payman; de Wit, Maarten; Ustaszewski, Kamil

    2017-10-01

    Understanding the kinematics of pre-existing fractures under the present-day stress field is an indispensable prerequisite for hydraulically increasing fracture-induced rock permeability, i.e. through hydraulic stimulation, which forms the basis of economically viable exploitation of resources such as natural gas and geothermal energy. Predicting the likelihood of reactivating pre-existing fractures in a target reservoir at particular fluid injection pressures requires detailed knowledge of the orientations and magnitudes of the prevailing stresses as well as pore fluid pressures. In the absence of actual in-situ stress measurements, e.g. derived from boreholes, as is mostly the case in previously underexplored ;frontier areas;, such predictions are often difficult. In this study, the potential of reactivating pre-existing fractures in a likely exploration region of the southern Karoo of South Africa is investigated. The orientations of the present-day in-situ stresses were assessed from surrounding earthquake focal mechanisms, implying c. NW-SE oriented maximum horizontal stress and a stress regime changing between strike-slip and normal faulting. A comparison with paleo-stress axes derived from inverted fault-slip data suggests that the stress field very likely did not experience any significant reorientation since Cretaceous times. Maximum possible in-situ stress magnitudes are estimated by assuming that these are limited by frictional strength on pre-existing planes and subsequently, slip and dilation tendency calculations were performed, assuming hydrostatic pore fluid pressures of c. 32 MPa at targeted reservoir depth. The results suggest that prevalent E-W and NW-SE oriented sub-vertical fractures are likely to be reactivated at wellhead pressures exceeding hydrostatic pore fluid pressures by as little as 2-5 MPa, while less prevalent sub-horizontal and moderately inclined fractures require higher wellhead pressures that are still technically feasible

  7. Quantifying in situ stress magnitudes and orientations for Forsmark. Forsmark stage 2.2

    International Nuclear Information System (INIS)

    Martin, C. Derek

    2007-11-01

    Stephansson et al. concluded that in the Fennoscandia shield: (1) there is a large horizontal stress component in the uppermost 1,000 m of bedrock, and (2) the maximum and minimum horizontal stresses exceed the vertical stress assuming the vertical stress is estimated from the weight of the overburden. Several stress campaigns involving both overcoring and hydraulic fracturing, including the hydraulic testing of pre-existing fractures (HTPF), have been carried out at Forsmark to establish the in situ stress state. The results from the initial campaigns were summarised by Sjoeberg et al. which formed the bases for the stresses provided in the Site Descriptive Model version 1.2. Since then additional stress measurement campaigns have been completed. The results from these stress measurement campaigns support the conclusions from Stephansson et al. In addition to these in situ stress measurements the following additional studies were undertaken to aid in assessing the stress state at Forsmark. 1. A detailed televiewer survey of approximately 6,900 m of borehole walls to depths of 1,000 m was carried out to assess borehole wall damage, i.e. borehole breakouts. 2. Evaluation of nonlinear strains in laboratory samples to depths of approximately 800 m to assess if stress magnitudes were sufficient to create stress-induced microcracking. 3. Assessment of the magnitudes required to cause core disking and survey of core disking observed at Forsmark. The magnitudes and orientations from the stress measurement campaigns were analysed to establish the most likely stress magnitudes and orientations for Design Step D2 within the Target Area of the Complete Site Investigations. The maximum and minimum horizontal stress components are essentially the same as the maximum and intermediate principal stresses, σ1 and σ2, respectively. The minimum principal stress (σ3) is synonymous with the vertical stress. The most likely range in values to be used in the design is also shown. The

  8. Quantifying in situ stress magnitudes and orientations for Forsmark. Forsmark stage 2.2

    Energy Technology Data Exchange (ETDEWEB)

    Martin, C. Derek (Univ. of Alberta (Canada))

    2007-11-15

    Stephansson et al. concluded that in the Fennoscandia shield: (1) there is a large horizontal stress component in the uppermost 1,000 m of bedrock, and (2) the maximum and minimum horizontal stresses exceed the vertical stress assuming the vertical stress is estimated from the weight of the overburden. Several stress campaigns involving both overcoring and hydraulic fracturing, including the hydraulic testing of pre-existing fractures (HTPF), have been carried out at Forsmark to establish the in situ stress state. The results from the initial campaigns were summarised by Sjoeberg et al. which formed the bases for the stresses provided in the Site Descriptive Model version 1.2. Since then additional stress measurement campaigns have been completed. The results from these stress measurement campaigns support the conclusions from Stephansson et al. In addition to these in situ stress measurements the following additional studies were undertaken to aid in assessing the stress state at Forsmark. 1. A detailed televiewer survey of approximately 6,900 m of borehole walls to depths of 1,000 m was carried out to assess borehole wall damage, i.e. borehole breakouts. 2. Evaluation of nonlinear strains in laboratory samples to depths of approximately 800 m to assess if stress magnitudes were sufficient to create stress-induced microcracking. 3. Assessment of the magnitudes required to cause core disking and survey of core disking observed at Forsmark. The magnitudes and orientations from the stress measurement campaigns were analysed to establish the most likely stress magnitudes and orientations for Design Step D2 within the Target Area of the Complete Site Investigations. The maximum and minimum horizontal stress components are essentially the same as the maximum and intermediate principal stresses, sigma1 and sigma2, respectively. The minimum principal stress (sigma3) is synonymous with the vertical stress. The most likely range in values to be used in the design is also

  9. Financial Stress Indices and Financial Crises

    NARCIS (Netherlands)

    Vermeulen, Robert; Hoeberichts, Marco; Vasicek, Borek; Zigraiova, Diana; Smidkova, Katerina; de Haan, Jakob

    This paper develops a Financial Stress Index (FSI) for 28 OECD countries and examines its relationship to crises using a novel database for financial crises. A stress index measures the current state of stress in the financial system and summarizes it in a single statistic. Our results suggest that

  10. Determination of Temperature-Dependent Stress State in Thin AlGaN Layer of AlGaN/GaN HEMT Heterostructures by Near-Resonant Raman Scattering

    Directory of Open Access Journals (Sweden)

    Yanli Liu

    2015-01-01

    Full Text Available The temperature-dependent stress state in the AlGaN barrier layer of AlGaN/GaN heterostructure grown on sapphire substrate was investigated by ultraviolet (UV near-resonant Raman scattering. Strong scattering peak resulting from the A1(LO phonon mode of AlGaN is observed under near-resonance condition, which allows for the accurate measurement of Raman shifts with temperature. The temperature-dependent stress in the AlGaN layer determined by the resonance Raman spectra is consistent with the theoretical calculation result, taking lattice mismatch and thermal mismatch into account together. This good agreement indicates that the UV near-resonant Raman scattering can be a direct and effective method to characterize the stress state in thin AlGaN barrier layer of AlGaN/GaN HEMT heterostructures.

  11. [Nearby nature as a moderator of stress during childhood].

    Science.gov (United States)

    Corraliza, José Antonio; Collado, Silvia

    2011-04-01

    The aim of this investigation is to study the relation between the amount of nature existing in children's daily environments and the way children deal with stressful events. Every day, children are exposed to situations that cause stress. Taking into account previous studies, it is thought that the greener the place where children spend their time, the better they cope with adversities. Thus, when comparing the stress level of children who are exposed to the same amount of adverse situations, the children who have more frequent daily contact with nature will show less stress than those who do not spend time in nature. This effect from nearby nature is called a buffering effect. The present study provides empirical evidence of the buffering effect caused by the existence of Nature in the residential and the school environment. Therefore, our results show that children who have more access to nature increase their resilience, showing a lower stress level than children whose contact with nature is less frequent.

  12. Thermo-mechanical constitutive modeling of unsaturated clays based on the critical state concepts

    Directory of Open Access Journals (Sweden)

    Saeed Tourchi

    2015-04-01

    Full Text Available A thermo-mechanical constitutive model for unsaturated clays is constructed based on the existing model for saturated clays originally proposed by the authors. The saturated clays model was formulated in the framework of critical state soil mechanics and modified Cam-clay model. The existing model has been generalized to simulate the experimentally observed behavior of unsaturated clays by introducing Bishop's stress and suction as independent stress parameters and modifying the hardening rule and yield criterion to take into account the role of suction. Also, according to previous studies, an increase in temperature causes a reduction in specific volume. A reduction in suction (wetting for a given confining stress may induce an irreversible volumetric compression (collapse. Thus an increase in suction (drying raises a specific volume i.e. the movement of normal consolidation line (NCL to higher values of void ratio. However, some experimental data confirm the assumption that this reduction is dependent on the stress level of soil element. A generalized approach considering the effect of stress level on the magnitude of clays thermal dependency in compression plane is proposed in this study. The number of modeling parameters is kept to a minimum, and they all have clear physical interpretations, to facilitate the usefulness of model for practical applications. A step-by-step procedure used for parameter calibration is also described. The model is finally evaluated using a comprehensive set of experimental data for the thermo-mechanical behavior of unsaturated soils.

  13. Self-organizing map classifier for stressed speech recognition

    Science.gov (United States)

    Partila, Pavol; Tovarek, Jaromir; Voznak, Miroslav

    2016-05-01

    This paper presents a method for detecting speech under stress using Self-Organizing Maps. Most people who are exposed to stressful situations can not adequately respond to stimuli. Army, police, and fire department occupy the largest part of the environment that are typical of an increased number of stressful situations. The role of men in action is controlled by the control center. Control commands should be adapted to the psychological state of a man in action. It is known that the psychological changes of the human body are also reflected physiologically, which consequently means the stress effected speech. Therefore, it is clear that the speech stress recognizing system is required in the security forces. One of the possible classifiers, which are popular for its flexibility, is a self-organizing map. It is one type of the artificial neural networks. Flexibility means independence classifier on the character of the input data. This feature is suitable for speech processing. Human Stress can be seen as a kind of emotional state. Mel-frequency cepstral coefficients, LPC coefficients, and prosody features were selected for input data. These coefficients were selected for their sensitivity to emotional changes. The calculation of the parameters was performed on speech recordings, which can be divided into two classes, namely the stress state recordings and normal state recordings. The benefit of the experiment is a method using SOM classifier for stress speech detection. Results showed the advantage of this method, which is input data flexibility.

  14. Measuring Stress in Young Children Using Hair Cortisol: The State of the Science.

    Science.gov (United States)

    Bates, Randi; Salsberry, Pamela; Ford, Jodi

    2017-10-01

    Extensive literature suggests that adverse experiences in early childhood may deleteriously impact later health. These effects are thought to be related to the impact of persistent or chronic stress on various biological processes, mediated by dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, and ultimately irregularities in cortisol levels. Ameliorating persistent stress in young children requires accurately measuring the chronicity of physiologic stress, which is difficult in young children because of unreliable self-report and the burden and inaccuracy associated with using invasive acute-stress biomeasures. A better way to approximate persistent stress in young children is measuring hair cortisol concentration (HCC), as it only requires one noninvasive collection to measure months of HPA-axis activity or experienced stress. However, few studies measure HCC in young children despite wide use in adult stress research. This article reviews and synthesizes research that uses HCC to approximate persistent stress in healthy children, 12-60 months of age. Reviewed studies indicate that HCC is elevated in young children who are experiencing forms of persistent stress such as low socioeconomic status and maternal distress. Hair cortisol is thus a promising measure of early childhood persistent stress, but due to the limited use of HCC in this population, much research is still needed. Specifically, nurse researchers may need to measure several factors associated with early childhood persistent stress and HCC to identify which children are at risk for stress-related disease.

  15. Testing the Predictive Power of Coulomb Stress on Aftershock Sequences

    Science.gov (United States)

    Woessner, J.; Lombardi, A.; Werner, M. J.; Marzocchi, W.

    2009-12-01

    Empirical and statistical models of clustered seismicity are usually strongly stochastic and perceived to be uninformative in their forecasts, since only marginal distributions are used, such as the Omori-Utsu and Gutenberg-Richter laws. In contrast, so-called physics-based aftershock models, based on seismic rate changes calculated from Coulomb stress changes and rate-and-state friction, make more specific predictions: anisotropic stress shadows and multiplicative rate changes. We test the predictive power of models based on Coulomb stress changes against statistical models, including the popular Short Term Earthquake Probabilities and Epidemic-Type Aftershock Sequences models: We score and compare retrospective forecasts on the aftershock sequences of the 1992 Landers, USA, the 1997 Colfiorito, Italy, and the 2008 Selfoss, Iceland, earthquakes. To quantify predictability, we use likelihood-based metrics that test the consistency of the forecasts with the data, including modified and existing tests used in prospective forecast experiments within the Collaboratory for the Study of Earthquake Predictability (CSEP). Our results indicate that a statistical model performs best. Moreover, two Coulomb model classes seem unable to compete: Models based on deterministic Coulomb stress changes calculated from a given fault-slip model, and those based on fixed receiver faults. One model of Coulomb stress changes does perform well and sometimes outperforms the statistical models, but its predictive information is diluted, because of uncertainties included in the fault-slip model. Our results suggest that models based on Coulomb stress changes need to incorporate stochastic features that represent model and data uncertainty.

  16. Lost in Time and Space: States of High Arousal Disrupt Implicit Acquisition of Spatial and Sequential Context Information

    DEFF Research Database (Denmark)

    Maran, Thomas; Sachse, Pierre; Martini, Markus

    2017-01-01

    Biased cognition during high arousal states is a relevant phenomenon in a variety of topics: from the development of post-traumatic stress disorders or stress-triggered addictive behaviors to forensic considerations regarding crimes of passion. Recent evidence indicates that arousal modulates...... the engagement of a hippocampus-based “cognitive” system in favor of a striatum-based “habit” system in learning and memory, promoting a switch from flexible, contextualized to more rigid, reflexive responses. Existing findings appear inconsistent, therefore it is unclear whether and which type of context...

  17. On the skew-symmetric character of the couple-stress tensor

    OpenAIRE

    Hadjesfandiari, Ali R.

    2013-01-01

    In this paper, the skew-symmetric character of the couple-stress tensor is established as the result of arguments from tensor analysis. Consequently, the couple-stress pseudo-tensor has a true vectorial character. The fundamental step in this development is that the isotropic couple-stress tensor cannot exist.

  18. Effect of Thickness Stress in Stretch-Bending

    NARCIS (Netherlands)

    van den Boogaard, Antonius H.; Emmens, W.C.; Huetink, Han; Barlat, F; Moon, Y.H.; Lee, M.G.

    2010-01-01

    In any situation where a strip is pulled over a curved tool, locally a contact stress acts on the strip in thickness direction. This contact stress changes the stress state in the material, which will influence the deformation. One effect is that the yield stress in the plane of the strip is

  19. Proteomics and the search for welfare and stress biomarkers in animal production in the one-health context.

    Science.gov (United States)

    Marco-Ramell, A; de Almeida, A M; Cristobal, S; Rodrigues, P; Roncada, P; Bassols, A

    2016-06-21

    Stress and welfare are important factors in animal production in the context of growing production optimization and scrutiny by the general public. In a context in which animal and human health are intertwined aspects of the one-health concept it is of utmost importance to define the markers of stress and welfare. These are important tools for producers, retailers, regulatory agents and ultimately consumers to effectively monitor and assess the welfare state of production animals. Proteomics is the science that studies the proteins existing in a given tissue or fluid. In this review we address this topic by showing clear examples where proteomics has been used to study stress-induced changes at various levels. We adopt a multi-species (cattle, swine, small ruminants, poultry, fish and shellfish) approach under the effect of various stress inducers (handling, transport, management, nutritional, thermal and exposure to pollutants) clearly demonstrating how proteomics and systems biology are key elements to the study of stress and welfare in farm animals and powerful tools for animal welfare, health and productivity.

  20. 31 CFR 370.26 - What limitations exist on liability?

    Science.gov (United States)

    2010-07-01

    ... TRANSFERS RELATING TO UNITED STATES SECURITIES Debit Entries § 370.26 What limitations exist on liability? If we sustain a loss because a financial institution fails to handle an entry in accordance with this...

  1. Autonomic and Brain Morphological Predictors of Stress Resilience

    Directory of Open Access Journals (Sweden)

    Luca Carnevali

    2018-04-01

    Full Text Available Stressful life events are an important cause of psychopathology. Humans exposed to aversive or stressful experiences show considerable inter-individual heterogeneity in their responses. However, the majority does not develop stress-related psychiatric disorders. The dynamic processes encompassing positive and functional adaptation in the face of significant adversity have been broadly defined as resilience. Traditionally, the assessment of resilience has been confined to self-report measures, both within the general community and putative high-risk populations. Although this approach has value, it is highly susceptible to subjective bias and may not capture the dynamic nature of resilience, as underlying construct. Recognizing the obvious benefits of more objective measures of resilience, research in the field has just started investigating the predictive value of several potential biological markers. This review provides an overview of theoretical views and empirical evidence suggesting that individual differences in heart rate variability (HRV, a surrogate index of resting cardiac vagal outflow, may underlie different levels of resilience toward the development of stress-related psychiatric disorders. Following this line of thought, recent studies describing associations between regional brain morphometric characteristics and resting state vagally-mediated HRV are summarized. Existing studies suggest that the structural morphology of the anterior cingulated cortex (ACC, particularly its cortical thickness, is implicated in the expression of individual differences in HRV. These findings are discussed in light of emerging structural neuroimaging research, linking morphological characteristics of the ACC to psychological traits ascribed to a high-resilient profile and abnormal structural integrity of the ACC to the psychophysiological expression of stress-related mental health consequences. We conclude that a multidisciplinary approach

  2. Conduct disorder, war zone stress, and war-related posttraumatic stress disorder symptoms in American Indian Vietnam veterans.

    Science.gov (United States)

    Dillard, Denise; Jacobsen, Clemma; Ramsey, Scott; Manson, Spero

    2007-02-01

    This study examined whether conduct disorder (CD) was associated with war zone stress and war-related post-traumatic stress disorder (PTSD) symptoms in American Indian (AI) Vietnam veterans. Cross-sectional lay-interview data was analyzed for 591 male participants from the American Indian Vietnam Veterans Project. Logistic regression evaluated the association of CD with odds of high war zone stress and linear regression evaluated the association of CD and PTSD symptom severity. Childhood CD was not associated with increased odds of high war zone stress. Conduct disorder was associated with elevated war-related PTSD symptoms among male AI Vietnam Veterans independent of war zone stress level and other mediators. Future efforts should examine reasons for this association and if the association exists in other AI populations.

  3. 3D Centrifuge Modeling of the Effect of Twin Tunneling to an Existing Pile Group

    Directory of Open Access Journals (Sweden)

    M. A. Soomr

    2017-10-01

    Full Text Available In densely built urban areas, it is inevitable that tunnels will be constructed near existing pile groups. The bearing capacity of a pile group depends on shear stress along the soil-pile interface and normal stress underneath the pile toe while the two would be adversely affected by the unloading process of tunneling. Although extensive studies have been conducted to investigate the effects of tunnel construction on existing single piles, the influence of twin tunnel advancement on an existing pile group is merely reported in the literature. In this study, a series of three-dimensional centrifuge tests were carried out to investigate the response of an existing pile group under working load subjected to twin tunneling at various locations in dry Toyoura sand. In each twin tunneling test, the first tunnel is constructed near the mid-depth of the pile shaft, while the second tunnel is subsequently constructed either next to, below or right underneath the pile toe (Tests G_ST, G_SB and G_SU, respectively. Among the three tests, the 2nd tunnel excavated near the pile toe (Test G_ST results in the smallest settlement but the largest transverse tilting (0.2% of pile group. Significant bending moment was induced at the pile head (1.4 times of its bending moment capacity due to the 2nd tunnel T. On the contrary, tunneling right underneath the toe of pile (i.e., Test G_SU results in the smallest tilting but largest settlement of the pile group (4.6% of pile diameter and incremental mobilisation of shaft resistance (13%. Due to stress release by the twin tunneling, the axial force taken by the front piles close to tunnels was reduced and partially transferred to the rear piles. This load transfer can increase the axial force in rear piles by 24%.

  4. Emotionality Modulates the Effect of Chronic Stress on Feeding Behaviour in Birds

    Science.gov (United States)

    Favreau-Peigné, Angélique; Calandreau, Ludovic; Constantin, Paul; Gaultier, Bernard; Bertin, Aline; Arnould, Cécile; Laurence, Agathe; Richard-Yris, Marie-Annick; Houdelier, Cécilia; Lumineau, Sophie; Boissy, Alain; Leterrier, Christine

    2014-01-01

    Chronic stress is a long-lasting negative emotional state that induces negative consequences on animals’ psycho-physiological state. This study aimed at assessing whether unpredictable and repeated negative stimuli (URNS) influence feeding behaviour in quail. Sixty-four quail were exposed to URNS from day 17 to 40, while 64 quail were undisturbed. Two lines divergently selected on their inherent emotionality were used to assess the effect of genetic factors on the sensitivity to URNS. All quail were submitted to a sequential feeding procedure (using two diets of different energetic values) which placed them in a contrasting situation. Behavioural tests were performed to assess the emotional reactivity of the two lines. Results confirmed that differences exist between them and that their emotional reactivity was enhanced by URNS. Diet preferences, motivation and daily intake were also measured. URNS did not change the preferences for the hypercaloric diet compared to the hypocaloric diet in choice tests, but they reduced daily intakes in both lines. Motivations for each diet were differently affected by URNS: they decreased the motivation to eat the hypercaloric diet in quail selected for their low inherent fearfulness whereas they increased the motivation to eat the hypocaloric diet in quail selected for their high inherent fearfulness, which suggested a devaluation process in the former and a compensatory behaviour in the later. Growth was furthermore reduced and laying delayed by URNS in both lines. In conclusion, the exposure to URNS induced interesting changes in feeding behaviour added with an increase in emotional reactivity and an alteration of production parameters. This confirms that both lines of quail experienced a chronic stress state. However differences in feed motivation and emotional reactivity between lines under chronic stress suggested that they experienced different emotional state and use different ways to cope with it depending on their

  5. Emotionality modulates the effect of chronic stress on feeding behaviour in birds.

    Directory of Open Access Journals (Sweden)

    Angélique Favreau-Peigné

    Full Text Available Chronic stress is a long-lasting negative emotional state that induces negative consequences on animals' psycho-physiological state. This study aimed at assessing whether unpredictable and repeated negative stimuli (URNS influence feeding behaviour in quail. Sixty-four quail were exposed to URNS from day 17 to 40, while 64 quail were undisturbed. Two lines divergently selected on their inherent emotionality were used to assess the effect of genetic factors on the sensitivity to URNS. All quail were submitted to a sequential feeding procedure (using two diets of different energetic values which placed them in a contrasting situation. Behavioural tests were performed to assess the emotional reactivity of the two lines. Results confirmed that differences exist between them and that their emotional reactivity was enhanced by URNS. Diet preferences, motivation and daily intake were also measured. URNS did not change the preferences for the hypercaloric diet compared to the hypocaloric diet in choice tests, but they reduced daily intakes in both lines. Motivations for each diet were differently affected by URNS: they decreased the motivation to eat the hypercaloric diet in quail selected for their low inherent fearfulness whereas they increased the motivation to eat the hypocaloric diet in quail selected for their high inherent fearfulness, which suggested a devaluation process in the former and a compensatory behaviour in the later. Growth was furthermore reduced and laying delayed by URNS in both lines. In conclusion, the exposure to URNS induced interesting changes in feeding behaviour added with an increase in emotional reactivity and an alteration of production parameters. This confirms that both lines of quail experienced a chronic stress state. However differences in feed motivation and emotional reactivity between lines under chronic stress suggested that they experienced different emotional state and use different ways to cope with it

  6. Numerical simulation of stress-strain state of electrophoretic shell molds

    Science.gov (United States)

    Sviridov, A. V.; Odinokov, V. I.; Dmitriev, E. A.; Evstigneev, A. I.; Bashkov, O. V.

    2017-10-01

    In the foundry engineering, castings obtained in one-piece non-gas-generating high-refractory electrophoretic shell molds (ShM) by investment patterns (IP) have an increased rejects percentage associated with low deformation resistance and crack resistance of the SM at different stages of their formation and manufacturing. Crack resistance of the ShM based on IP depends mainly on their stress-strain state (SSS) at various stages of mold forming. SSS decrease significantly improves their crack resistance and decreases their rejects percentage of castings occurring due to clogging and surface defects. In addition, the known methods of decreasing the SSS are still poorly understood. Thus, current research trends are to determine SSS at each stage of ShM forming and develop the ways to decrease it. Theoretical predicting of crack formation in multiple-layer axisymmetric shell molds is given in the work [1], and SSS of multiple-layer axisymmetric shell molds is given in the work [2]. Monolayer electrophoretic ShM had a lack of concern in this field, thus it became an argument for the present workMathematical Model of ShM SSS

  7. Stress state estimation in multilayer support of vertical shafts, considering off-design cross-sectional deformation

    Science.gov (United States)

    Antsiferov, SV; Sammal, AS; Deev, PV

    2018-03-01

    To determine the stress-strain state of multilayer support of vertical shafts, including cross-sectional deformation of the tubing rings as against the design, the authors propose an analytical method based on the provision of the mechanics of underground structures and surrounding rock mass as the elements of an integrated deformable system. The method involves a rigorous solution of the corresponding problem of elasticity, obtained using the mathematical apparatus of the theory of analytic functions of a complex variable. The design method is implemented as a software program allowing multivariate applied computation. Examples of the calculation are given.

  8. Stress-induced formation mechanism of stacking fault tetrahedra in nano-cutting of single crystal copper

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Quanlong [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China); Center for Precision Engineering, Harbin Institute of Technology, Harbin 150001 (China); Bai, Qingshun [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China); Chen, Jiaxuan, E-mail: wangquanlong0@hit.edu.cn [Center for Precision Engineering, Harbin Institute of Technology, Harbin 150001 (China); Guo, Yongbo [Center for Precision Engineering, Harbin Institute of Technology, Harbin 150001 (China); Xie, Wenkun [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China); Center for Precision Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2015-11-15

    Graphical abstract: In this paper, molecular dynamics simulation is performed to study the distribution of dislocation defects and local atomic crystal structure of single crystal copper. The stress distribution is investigated which is calculated by virial stress and analyzed by static pressure. The results are shown in (a)–(d). It is indicated that the compressive stress mainly spreads over the shear-slip zone, and the tensile stress is consisted in flank friction zone, shown in (a). The high tensile stress in subsurface is the source of stress, shown in (b). By the driven action of the stress source, the initial stair-rod dislocation nucleates. Then the dislocation climbs along four {1 1 1} planes under the stress driven action, shown in (d). Finally, the SFT is formed by the interaction of the compressive stress and the tensile stress which come from the shear-slip zone and friction zone, respectively. Besides, stair-rod dislocation, stacking faults and dislocation loop are also nucleated in the subsurface, shown in (c). Dislocation distribution, local atomic crystal structure state and stress-induced formation process of SFT by atomic. - Highlights: • A novel defect structure “stress-induced stacking fault tetrahedra” is revealed. • Atomic structural evolution and stress state distribution of the SFT are studied. • The stress-induced formation mechanism of the SFT is proposed. - Abstract: Stacking fault tetrahedra commonly existed in subsurface of deformed face center cubic metals, has great influence on machining precision and surface roughness in nano-cutting. Here we report, a stacking fault tetrahedra is formed in subsurface of workpiece during nano-cutting. The variation of cutting force and subsurface defects distribution are studied by using molecular dynamics simulation. The stress distribution is investigated which is calculated by virial stress and analyzed by static compression. The result shows that the cutting force has a rapidly

  9. Stress-induced formation mechanism of stacking fault tetrahedra in nano-cutting of single crystal copper

    International Nuclear Information System (INIS)

    Wang, Quanlong; Bai, Qingshun; Chen, Jiaxuan; Guo, Yongbo; Xie, Wenkun

    2015-01-01

    Graphical abstract: In this paper, molecular dynamics simulation is performed to study the distribution of dislocation defects and local atomic crystal structure of single crystal copper. The stress distribution is investigated which is calculated by virial stress and analyzed by static pressure. The results are shown in (a)–(d). It is indicated that the compressive stress mainly spreads over the shear-slip zone, and the tensile stress is consisted in flank friction zone, shown in (a). The high tensile stress in subsurface is the source of stress, shown in (b). By the driven action of the stress source, the initial stair-rod dislocation nucleates. Then the dislocation climbs along four {1 1 1} planes under the stress driven action, shown in (d). Finally, the SFT is formed by the interaction of the compressive stress and the tensile stress which come from the shear-slip zone and friction zone, respectively. Besides, stair-rod dislocation, stacking faults and dislocation loop are also nucleated in the subsurface, shown in (c). Dislocation distribution, local atomic crystal structure state and stress-induced formation process of SFT by atomic. - Highlights: • A novel defect structure “stress-induced stacking fault tetrahedra” is revealed. • Atomic structural evolution and stress state distribution of the SFT are studied. • The stress-induced formation mechanism of the SFT is proposed. - Abstract: Stacking fault tetrahedra commonly existed in subsurface of deformed face center cubic metals, has great influence on machining precision and surface roughness in nano-cutting. Here we report, a stacking fault tetrahedra is formed in subsurface of workpiece during nano-cutting. The variation of cutting force and subsurface defects distribution are studied by using molecular dynamics simulation. The stress distribution is investigated which is calculated by virial stress and analyzed by static compression. The result shows that the cutting force has a rapidly

  10. Tonic immobility differentiates stress responses in PTSD

    NARCIS (Netherlands)

    Fragkaki, I; Stins, J.F.; Roelofs, K.; Jongedijk, R.A.; Hagenaars, M.A.

    2016-01-01

    Background: Tonic immobility (TI) is a state of physical immobility associated with extreme stress and the development of posttraumatic stress disorder (PTSD). However, it is unknown whether TI is associated with a distinct actual stress response, i.e., objective immobility measured by a

  11. STRESS IN ORGANIZATIONS

    Directory of Open Access Journals (Sweden)

    Maria-Elena, GHEORDUNESCU

    2014-11-01

    Full Text Available Taking into account the changes that are currently taking place in our country, it is clear that these changes, which occur in almost all companies, lead to new stress factors for both employees and the organization. Occupational stress is a major problem for employees and managers, but also for the whole society. The issue of stress in organizations has given birth to many debates and studies. It is a common theme that is addressed by managers, employees and consultants from different perspectives. According to a study by the European Agency for Safety and Health at Work, in the European Union, work-related stress is the second work-related health issue after dorsal disorders. It affects 28% of EU employees. The European Parliament is fully involved in addressing issues related to the psychological support of the staff. Preventing work-related stress is one of the objectives set out in the Communique of the European Commission for Employment and Social Affairs regarding their new health and safety at work strategy. Manifestations of stress in organizations are easily observable, being manifested by behaviors such as: difficulties in adapting to the changes required to work or the dramatic drop in labor productivity. Also a double action is met: both the person who passes through the stressful situation and at the organization level on which it is reflected the existence of a stressful environment. This paper aims to address the implications of workplace stress, symptoms of stress in the workplace and strategies to eliminate and prevent stress at work This paper represents an exploratory research based on qualitative methods, being consulted various sources of information: the literature, case studies, media articles, reports of relevant organizations, etc.

  12. Bridging scales of crustal stress patterns using the new World Stress Map

    Science.gov (United States)

    Heidbach, O.; Rajabi, M.; Cui, X.; Fuchs, K. W.; Mueller, B.; Reinecker, J.; Reiter, K.; Tingay, M. R. P.; Wenzel, F.; Xie, F.; Ziegler, M.; Zoback, M. D.; Zoback, M. L.

    2017-12-01

    geomechanical-numerical model workflow based on the WSM data to describe the in situ stress tensor. 3D Geomechanical-numerical modelling of the in situ stress state is essential to derive a continuous description of the stress tensor e.g. in order to estimate the distance to a critical stress state.

  13. Stress-deformed state of cylindrical specimens during indirect tensile strength testing

    Directory of Open Access Journals (Sweden)

    Levan Japaridze

    2015-10-01

    Full Text Available In this study, the interaction between cylindrical specimen made of homogeneous, isotropic, and linearly elastic material and loading jaws of any curvature is considered in the Brazilian test. It is assumed that the specimen is diametrically compressed by elliptic normal contact stresses. The frictional contact stresses between the specimen and platens are neglected. The analytical solution starts from the contact problem of the loading jaws of any curvature and cylindrical specimen. The contact width, corresponding loading angle (2θ0, and elliptical stresses obtained through solution of the contact problems are used as boundary conditions for a cylindrical specimen. The problem of the theory of elasticity for a cylinder is solved using Muskhelishvili's method. In this method, the displacements and stresses are represented in terms of two analytical functions of a complex variable. In the main approaches, the nonlinear interaction between the loading bearing blocks and the specimen as well as the curvature of their surfaces and the elastic parameters of their materials are taken into account. Numerical examples are solved using MATLAB to demonstrate the influence of deformability, curvature of the specimen and platens on the distribution of the normal contact stresses as well as on the tensile and compressive stresses acting across the loaded diameter. Derived equations also allow calculating the modulus of elasticity, total deformation modulus and creep parameters of the specimen material based on the experimental data of radial contraction of the specimen.

  14. Managing workplace stress in community pharmacy organisations: lessons from a review of the wider stress management and prevention literature.

    Science.gov (United States)

    Jacobs, Sally; Johnson, Sheena; Hassell, Karen

    2018-02-01

    Workplace stress in community pharmacy is increasing internationally due, in part, to pharmacists' expanding roles and escalating workloads. Whilst the business case for preventing and managing workplace stress by employers is strong, there is little evidence for the effectiveness of organisational stress management interventions in community pharmacy settings. To identify and synthesise existing evidence for the effectiveness of organisational solutions to workplace stress from the wider organisational literature which may be adaptable to community pharmacies. A secondary synthesis of existing reviews. Publications were identified through keyword searches of electronic databases and the internet; inclusion and exclusion criteria were applied; data about setting, intervention, method of evaluation, effectiveness and conclusions (including factors for success) were extracted and synthesised. Eighteen reviews of the stress management and prevention literature were identified. A comprehensive list of organisational interventions to prevent or manage workplace stress, ordered by prevalence of evidence of effectiveness, was produced, together with an ordered list of the benefits both to the individual and employing organisation. An evidence-based model of best practice was derived specifying eight factors for success: top management support, context-specific interventions, combined organisational and individual interventions, a participative approach, clearly delineated tasks and responsibilities, buy-in from middle management, change agents as facilitators and change in organisational culture. This literature review provides community pharmacy organisations with evidence from which to develop effective and successful stress management strategies to support pharmacists and pharmacy staff. Well-designed trials of stress management interventions in community pharmacy organisations are still required. © 2017 Royal Pharmaceutical Society.

  15. HPA axis response to social stress is attenuated in schizophrenia but normal in depression: evidence from a meta-analysis of existing studies.

    Science.gov (United States)

    Ciufolini, Simone; Dazzan, Paola; Kempton, Matthew J; Pariante, Carmine; Mondelli, Valeria

    2014-11-01

    We conducted a meta-analysis to investigate the HPA axis response to social stress in studies that used the Trier Social Stress Test (TSST), or comparable distressing paradigms, in individuals with either depression or schizophrenia. Sample size-adjusted effect sizes (Hedge's g statistic) were calculated to estimate the HPA axis stress response to social stress. We used a meta-regression model to take into account the moderating effect of the baseline cortisol level. Participants with depression show an activation pattern to social stress similar to that of healthy controls. Despite a normal cortisol production rate, individuals with schizophrenia have lower cortisol levels than controls both in anticipation and after exposure to social stress. Participants with depression and higher cortisol levels before the task have an increased cortisol production and reached higher cortisol levels during the task. This may be explained by the presence of an impaired negative feedback. The activation pattern present in schizophrenia may explain the reduced ability to appropriately contextualize past experiences shown by individuals with psychosis in social stressful situation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Plasma. beta. -endorphin and stress hormone levels during adaptation and stress

    Energy Technology Data Exchange (ETDEWEB)

    Lishmanov, Yu.B.; Trifonova, Zh.V.; Tsibin, A.N.; Maslova, L.V.; Dement' eva, L.A.

    1987-09-01

    This paper describes a comparative study of ..beta..-endorphin and stress hormone levels in the blood plasma of rats during stress and adaptation. Immunoreactive ..beta..-endorphin in the blood plasma was assayed by means of a kit after preliminary isolation of the ..beta..-endorphin fraction by affinity chromatography on sepharose; ACTH was assayed with a kit and cortisol, insulin, thyroxine and tri-iodothyronine by means of kits from Izotop. Determination of plasma levels of ..beta..-endorphin and other opioids could evidently be an important method of assessing the state of resistance of the organism to stress.

  17. Functional State of Rat’s Erythrocytes Under Different Stress Conditions

    Directory of Open Access Journals (Sweden)

    A.A. Martusevich

    2016-08-01

    Full Text Available Background: In our early publications was shown that electrophorhetic motility of erythrocytes (EPME is a high effective criteria of adaptation response. This correlation is based on parallel development of adaptation syndrome and activation of the main organism regulatory systems, such as sympatoadrenalic and hypotalamo-hypophosial-adrenal ones. Objective: study of the influence of physical exercises and adrenaline injections on electrophorhetic motility, membrahes phospholipids spectrum and oxidative metabolism of the rats’ erythrocytes. Methods: Rats were divided into three equal groups. First group of animals was control (n=10; without any manipulations. Rats of second group were subjected to physical load in the form of a sailing duration of 15 minutes with a cargo amounting to 10% of animal body weight (water temperature – 26-280C. Rats of third group were intraperitoneally injected with adrenaline hydrochloride (0.1 mg/kg. Blood sampling was made from the sublingual vein in 15, 30, 60, 120 minutes and 24 hours after exposure. We estimated the dynamics of the electrophorhetic motility of erythrocytes (EPME, the phospholipid spectrum of erythrocytes membranes, the concentration of malonic dialdehyde (MDA and the state of the glutathione system. Results and conclusions: The study suggests that red blood cell as a biological system is capable for realization of stress response may develop a special “alarm reaction” after action of the stress agent. This response initiates activation of free radical processes and phospholipids profile in erythrocyte membranes with reducing of its electronegativity. This stage enhances the activity of the antioxidant system, is limiting the development of lipid peroxidation processes, and leads to the development of "adaptation stage" of the cellular system, coupled with the restoration of the electronegativity of the membrane and the mobilization of reserves of low molecular antioxidants, particularly

  18. Increased component safety through improved methods for residual stress analysis. Subprojects. Consideration of real component geometries (phase 1). Final report

    International Nuclear Information System (INIS)

    Nau, Andreas; Scholtes, B.

    2014-01-01

    Residual stresses can be result in both detrimental as well as beneficial consequences on the component's strength and lifetime. A most detailed knowledge of the residual stress state is a pre-requisite for the assessment of the component's performance. The mechanical methods for residual stress measurements are classified in non-destructive, destructive and semi-destructive methods. The two commonly used (semi-destructive) mechanical methods are the hole drilling and the ring core method. In the context of reactor safety research of the Federal Ministry of Economic Affairs and Energy (BMWi), two fundamental and interacting weak points of the hole drilling as well as of the ring core method are investigated. On the one hand, there are effects concerning geometrical boundary conditions of the components and on the other hand, there are influences of plasticity due to notch effects. Both aspects affect the released strain field, when the material is removed and finally, the calculated residual stresses. The first issue mentioned above is under the responsibility of Institute of Materials Engineering - Metallic Materials (Kassel University) and the last one will be investigated by University of Stuttgart-Otto-Graf-Institut - materials testing institute. Within the framework of this project it could be demonstrated that updated calibration coefficients lead to more reliable residual stress calculation in contrast to existing ones. These findings are valid for points of measurements on components without geometrical boundary effects like edges or shoulders. Reasons are high developed Finite-Element software packages and the opportunity of modelling the point of measurement (hole geometry, layout of the strain gauges) and its vicinity more in detail. Special challenges are multi-axial residual stress depth distributions and the geometry of components composing edges and claddings. Unlike existing analyses considering uni-axial and homogeneous stress states, bi

  19. Stress and food deprivation: linking physiological state to migration success in a teleost fish.

    Science.gov (United States)

    Midwood, Jonathan D; Larsen, Martin H; Aarestrup, Kim; Cooke, Steven J

    2016-12-01

    Food deprivation is a naturally occurring stressor that is thought to influence the ultimate life-history strategy of individuals. Little is known about how food deprivation interacts with other stressors to influence migration success. European populations of brown trout (Salmo trutta) exhibit partial migration, whereby a portion of the population smoltifies and migrates to the ocean, and the rest remain in their natal stream. This distinct, natural dichotomy of life-history strategies provides an excellent opportunity to explore the roles of energetic state (as affected by food deprivation) and activation of the glucocorticoid stress response in determining life-history strategy and survival of a migratory species. Using an experimental approach, the relative influences of short-term food deprivation and experimental cortisol elevation (i.e. intra-coelomic injection of cortisol suspended in cocoa butter) on migratory status, survival and growth of juvenile brown trout relative to a control were evaluated. Fewer fish migrated in both the food deprivation and cortisol treatments; however, migration of fish in cortisol and control treatments occurred at the same time while that of fish in the food deprivation treatment was delayed for approximately 1 week. A significantly greater proportion of trout in the food deprivation treatment remained in their natal stream, but unlike the cortisol treatment, there were no long-term negative effects of food deprivation on growth, relative to the control. Overall survival rates were comparable between the food deprivation and control treatments, but significantly lower for fish in the cortisol treatment. Food availability and individual energetic state appear to dictate the future life-history strategy (migrate or remain resident) of juvenile salmonids while experimental elevation of the stress hormone cortisol causes impaired growth and reduced survival of both resident and migratory individuals. © 2016. Published by The

  20. Identifying Differences in Abiotic Stress Gene Networks between Lowland and Upland Ecotypes of Switchgrass (DE-SC0008338)

    Energy Technology Data Exchange (ETDEWEB)

    Childs, Kevin [Michigan State Univ., East Lansing, MI (United States); Buell, Robin [Michigan State Univ., East Lansing, MI (United States); Zhao, Bingyu [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Zhang, Xunzhong [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2016-11-10

    Switchgrass (Panicum virgatum) is a warm-season C4 grass that is a target lignocellulosic biofuel species for use in the United States due to its local adaption capabilities and high biomass accumulation. Two ecotypes of switchgrass have been described. Members of the lowland ecotype are taller, have narrower leaf blades and generate more biomass compared to individuals from the upland ecotype. Additionally, lowland plants are generally found in the southern United States while upland switchgrass is more typically present in the northern United States. These differences are important as it is envisioned that switchgrass for biofuel production will typically be grown on marginal lands in the northern United States to supplement and diversify farmers' traditional crop incomes. While lowland switchgrass is more productive, it has poor winter survivability in northern latitudes where upland switchgrass is expected to be grown for biofuel use. Abiotic stresses likely to be encountered by switchgrass include drought and salinity. Despite initially being described as preferring wetter environments, members of the lowland ecotype have been characterized as being more drought tolerant than plants of the upland ecotype. Nonetheless, direct trials have indicated that variation for drought tolerance exists in both ecotypes, but prior to this project, only a relatively small number of switchgrass lines had been tested for drought responses. Similarly, switchgrass cultivars have not been widely tested for salt tolerance, but a few studies have shown that even mild salt stress can inhibit growth. The effects of drought and salt stress on plant growth are complex. Both drought and salinity affect the osmotic potential of plant cells and negatively affect plant growth due to reduced water potential and reduced photosynthesis that results from lower stomatal conductance of CO2. Plants respond to drought and salt stress by activating genes that directly attempt to