WorldWideScience

Sample records for stress sensitizes amygdala

  1. Stress, memory and the amygdala.

    Science.gov (United States)

    Roozendaal, Benno; McEwen, Bruce S; Chattarji, Sumantra

    2009-06-01

    Emotionally significant experiences tend to be well remembered, and the amygdala has a pivotal role in this process. But the efficient encoding of emotional memories can become maladaptive - severe stress often turns them into a source of chronic anxiety. Here, we review studies that have identified neural correlates of stress-induced modulation of amygdala structure and function - from cellular mechanisms to their behavioural consequences. The unique features of stress-induced plasticity in the amygdala, in association with changes in other brain regions, could have long-term consequences for cognitive performance and pathological anxiety exhibited in people with affective disorders.

  2. Stress, memory and the amygdala

    NARCIS (Netherlands)

    Roozendaal, Benno; McEwen, Bruce S.; Chattarji, Sumantra

    Emotionally significant experiences tend to be well remembered, and the amygdala has a pivotal role in this process. But the efficient encoding of emotional memories can become maladaptive - severe stress often turns them into a source of chronic anxiety. Here, we review studies that have identified

  3. Central amygdala, stress and adaption

    NARCIS (Netherlands)

    Roozendaal, Benno

    1992-01-01

    In this thesis the results were presented of studies that were designed to provide more insight in the role of the central nucleus of the amygdala (CEA) in the adaptation to environmental demands. The experiments were performed in several situations, in which rats react either directly to aversive

  4. Stress Sensitive Healthy Females Show Less Left Amygdala Activation in Response to Withdrawal-Related Visual Stimuli under Passive Viewing Conditions

    Science.gov (United States)

    Baeken, Chris; Van Schuerbeek, Peter; De Raedt, Rudi; Vanderhasselt, Marie-Anne; De Mey, Johan; Bossuyt, Axel; Luypaert, Robert

    2012-01-01

    The amygdalae are key players in the processing of a variety of emotional stimuli. Especially aversive visual stimuli have been reported to attract attention and activate the amygdalae. However, as it has been argued that passively viewing withdrawal-related images could attenuate instead of activate amygdalae neuronal responses, its role under…

  5. Prenatal stress alters amygdala functional connectivity in preterm neonates.

    Science.gov (United States)

    Scheinost, Dustin; Kwon, Soo Hyun; Lacadie, Cheryl; Sze, Gordon; Sinha, Rajita; Constable, R Todd; Ment, Laura R

    2016-01-01

    Exposure to prenatal and early-life stress results in alterations in neural connectivity and an increased risk for neuropsychiatric disorders. In particular, alterations in amygdala connectivity have emerged as a common effect across several recent studies. However, the impact of prenatal stress exposure on the functional organization of the amygdala has yet to be explored in the prematurely-born, a population at high risk for neuropsychiatric disorders. We test the hypothesis that preterm birth and prenatal exposure to maternal stress alter functional connectivity of the amygdala using two independent cohorts. The first cohort is used to establish the effects of preterm birth and consists of 12 very preterm neonates and 25 term controls, all without prenatal stress exposure. The second is analyzed to establish the effects of prenatal stress exposure and consists of 16 extremely preterm neonates with prenatal stress exposure and 10 extremely preterm neonates with no known prenatal stress exposure. Standard resting-state functional magnetic resonance imaging and seed connectivity methods are used. When compared to term controls, very preterm neonates show significantly reduced connectivity between the amygdala and the thalamus, the hypothalamus, the brainstem, and the insula (p amygdala and the thalamus, the hypothalamus, and the peristriate cortex (p amygdala connectivity associated with preterm birth. Functional connectivity from the amygdala to other subcortical regions is decreased in preterm neonates compared to term controls. In addition, these data, for the first time, suggest that prenatal stress exposure amplifies these decreases.

  6. Fear extinction deficits following acute stress associate with increased spine density and dendritic retraction in basolateral amygdala neurons.

    Science.gov (United States)

    Maroun, Mouna; Ioannides, Pericles J; Bergman, Krista L; Kavushansky, Alexandra; Holmes, Andrew; Wellman, Cara L

    2013-08-01

    Stress-sensitive psychopathologies such as post-traumatic stress disorder are characterized by deficits in fear extinction and dysfunction of corticolimbic circuits mediating extinction. Chronic stress facilitates fear conditioning, impairs extinction, and produces dendritic proliferation in the basolateral amygdala (BLA), a critical site of plasticity for extinction. Acute stress impairs extinction, alters plasticity in the medial prefrontal cortex-to-BLA circuit, and causes dendritic retraction in the medial prefrontal cortex. Here, we examined extinction learning and basolateral amygdala pyramidal neuron morphology in adult male rats following a single elevated platform stress. Acute stress impaired extinction acquisition and memory, and produced dendritic retraction and increased mushroom spine density in basolateral amygdala neurons in the right hemisphere. Unexpectedly, irrespective of stress, rats that underwent fear and extinction testing showed basolateral amygdala dendritic retraction and altered spine density relative to non-conditioned rats, particularly in the left hemisphere. Thus, extinction deficits produced by acute stress are associated with increased spine density and dendritic retraction in basolateral amygdala pyramidal neurons. Furthermore, the finding that conditioning and extinction as such was sufficient to alter basolateral amygdala morphology and spine density illustrates the sensitivity of basolateral amygdala morphology to behavioral manipulation. These findings may have implications for elucidating the role of the amygdala in the pathophysiology of stress-related disorders. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  7. Fear extinction deficits following acute stress associate with increased spine density and dendritic retraction in basolateral amygdala neurons

    Science.gov (United States)

    Maroun, Mouna; Ioannides, Pericles J.; Bergman, Krista L.; Kavushansky, Alexandra; Holmes, Andrew; Wellman, Cara L.

    2013-01-01

    Stress-sensitive psychopathologies such as post-traumatic stress disorder are characterized by deficits in fear extinction and dysfunction of corticolimbic circuits mediating extinction. Chronic stress facilitates fear conditioning, impairs extinction, and produces dendritic proliferation in the basolateral amygdala (BLA), a critical site of plasticity for extinction. Acute stress impairs extinction, alters plasticity in the medial prefrontal cortex-to-BLA circuit, and causes dendritic retraction in the medial prefrontal cortex. Here, we examined extinction learning and basolateral amygdala pyramidal neuron morphology in adult male rats following a single elevated platform stress. Acute stress impaired extinction acquisition and memory, and produced dendritic retraction and increased mushroom spine density in basolateral amygdala neurons in the right hemisphere. Unexpectedly, irrespective of stress, rats that underwent fear and extinction testing showed basolateral amygdala dendritic retraction and altered spine density relative to non-conditioned rats, particularly in the left hemisphere. Thus, extinction deficits produced by acute stress are associated with increased spine density and dendritic retraction in basolateral amygdala pyramidal neurons. Furthermore, the finding that conditioning and extinction as such was sufficient to alter basolateral amygdala morphology and spine density illustrates the sensitivity of basolateral amygdala morphology to behavioral manipulation. These findings may have implications for elucidating the role of the amygdala in the pathophysiology of stress-related disorders. PMID:23714419

  8. A neuroplasticity hypothesis of chronic stress in the basolateral amygdala.

    Science.gov (United States)

    Boyle, Lara M

    2013-06-01

    Chronic stress plays a role in the etiology of several affective and anxiety-related disorders. Despite this, its mechanistic effects on the brain are still unclear. Of particular interest is the effect of chronic stress on the amygdala, which plays a key role in the regulation of emotional responses and memory consolidation. This review proposes a neuroplasticity model for the effects of chronic stress in this region, emphasizing the roles of glutamate and BDNF signaling. This model provides a review of recent discoveries of the effects of chronic stress in the amygdala and reveals pathways for future research.

  9. Increased in vivo release of neuropeptide S in the amygdala of freely moving rats after local depolarisation and emotional stress.

    Science.gov (United States)

    Ebner, Karl; Rjabokon, Alesja; Pape, Hans-Christian; Singewald, Nicolas

    2011-10-01

    Intracerebral microdialysis in conjunction with a highly sensitive radioimmunoassay was used to study the in vivo release of neuropeptide S (NPS) within the amygdala of freely moving rats. NPS was consistently detected in basolateral amygdala dialysates and the release considerably enhanced in response to local depolarisation as well as exposure to forced swim stress. Thus, our data demonstrate for the first time emotional stress-induced release of NPS in the amygdala supporting a functional role of endogenous NPS in stress/anxiety-related phenomena.

  10. Trauma exposure relates to heightened stress, altered amygdala morphology and deficient extinction learning: Implications for psychopathology.

    Science.gov (United States)

    Cacciaglia, Raffaele; Nees, Frauke; Grimm, Oliver; Ridder, Stephanie; Pohlack, Sebastian T; Diener, Slawomira J; Liebscher, Claudia; Flor, Herta

    2017-02-01

    Stress exposure causes a structural reorganization in neurons of the amygdala. In particular, animal models have repeatedly shown that both acute and chronic stress induce neuronal hypertrophy and volumetric increase in the lateral and basolateral nuclei of amygdala. These effects are visible on the behavioral level, where stress enhances anxiety behaviors and provokes greater fear learning. We assessed stress and anxiety levels in a group of 18 healthy human trauma-exposed individuals (TR group) compared to 18 non-exposed matched controls (HC group), and related these measurements to amygdala volume. Traumas included unexpected adverse experiences such as vehicle accidents or sudden loss of a loved one. As a measure of aversive learning, we implemented a cued fear conditioning paradigm. Additionally, to provide a biological marker of chronic stress, we measured the sensitivity of the hypothalamus-pituitary-adrenal (HPA) axis using a dexamethasone suppression test. Compared to the HC, the TR group showed significantly higher levels of chronic stress, current stress and trait anxiety, as well as increased volume of the left amygdala. Specifically, we observed a focal enlargement in its lateral portion, in line with previous animal data. Compared to HC, the TR group also showed enhanced late acquisition of conditioned fear and deficient extinction learning, as well as salivary cortisol hypo-suppression to dexamethasone. Left amygdala volumes positively correlated with suppressed morning salivary cortisol. Our results indicate differences in trauma-exposed individuals which resemble those previously reported in animals exposed to stress and in patients with post-traumatic stress disorder and depression. These data provide new insights into the mechanisms through which traumatic stress might prompt vulnerability for psychopathology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Association between neuroticism and amygdala responsivity emerges under stressful conditions

    NARCIS (Netherlands)

    Everaerd, Daphne; Klumpers, Floris; van Wingen, Guido; Tendolkar, Indira; Fernández, Guillén

    2015-01-01

    Increased amygdala reactivity in response to salient stimuli is seen in patients with affective disorders, in healthy subjects at risk for these disorders, and in stressed individuals, making it a prime target for mechanistic studies into the pathophysiology of affective disorders. However, whereas

  12. Decreased expression of extracellular matrix proteins and trophic factors in the amygdala complex of depressed mice after chronic immobilization stress

    Directory of Open Access Journals (Sweden)

    Jung Soonwoong

    2012-06-01

    Full Text Available Abstract Background The amygdala plays an essential role in controlling emotional behaviors and has numerous connections to other brain regions. The functional role of the amygdala has been highlighted by various studies of stress-induced behavioral changes. Here we investigated gene expression changes in the amygdala in the chronic immobilization stress (CIS-induced depression model. Results Eight genes were decreased in the amygdala of CIS mice, including genes for neurotrophic factors and extracellular matrix proteins. Among these, osteoglycin, fibromodulin, insulin-like growth factor 2 (Igf2, and insulin-like growth factor binding protein 2 (Igfbp2 were further analyzed for histological expression changes. The expression of osteoglycin and fibromodulin simultaneously decreased in the medial, basolateral, and central amygdala regions. However, Igf2 and Igfbp2 decreased specifically in the central nucleus of the amygdala. Interestingly, this decrease was found only in the amygdala of mice showing higher immobility, but not in mice displaying lower immobility, although the CIS regimen was the same for both groups. Conclusions These results suggest that the responsiveness of the amygdala may play a role in the sensitivity of CIS-induced behavioral changes in mice.

  13. Evidence for smaller right amygdala volumes in posttraumatic stress disorder following childhood trauma

    NARCIS (Netherlands)

    Veer, I.M.; Oei, N.Y.L.; van Buchem, M.A.; Spinhoven, Ph.; Elzinga, B.M.; Rombouts, S.A.R.B.

    2015-01-01

    Hippocampus and amygdala volumes in posttraumatic stress disorder (PTSD) related to childhood trauma are relatively understudied, albeit the potential importance to the disorder. Whereas some studies reported smaller hippocampal volumes, little evidence was found for abnormal amygdala volumes. Here

  14. Fear extinction deficits following acute stress associate with increased spine density and dendritic retraction in basolateral amygdala neurons

    OpenAIRE

    Maroun, Mouna; Ioannides, Pericles J.; Bergman, Krista L.; Kavushansky, Alexandra; Holmes, Andrew; Wellman, Cara L.

    2013-01-01

    Stress-sensitive psychopathologies such as post-traumatic stress disorder are characterized by deficits in fear extinction and dysfunction of corticolimbic circuits mediating extinction. Chronic stress facilitates fear conditioning, impairs extinction, and produces dendritic proliferation in the basolateral amygdala (BLA), a critical site of plasticity for extinction. Acute stress impairs extinction, alters plasticity in the medial prefrontal cortex-to-BLA circuit, and causes dendritic retrac...

  15. Effects of Repeated Stress on Age-Dependent GABAergic Regulation of the Lateral Nucleus of the Amygdala.

    Science.gov (United States)

    Zhang, Wei; Rosenkranz, J Amiel

    2016-08-01

    The adolescent age is associated with lability of mood and emotion. The onset of depression and anxiety disorders peaks during adolescence and there are differences in symptomology during adolescence. This points to differences in the adolescent neural circuitry that underlies mood and emotion, such as the amygdala. The human adolescent amygdala is more responsive to evocative stimuli, hinting to less local inhibitory regulation of the amygdala, but this has not been explored in adolescents. The amygdala, including the lateral nucleus (LAT) of the basolateral amygdala complex, is sensitive to stress. The amygdala undergoes maturational processes during adolescence, and therefore may be more vulnerable to harmful effects of stress during this time period. However, little is known about the effects of stress on the LAT during adolescence. GABAergic inhibition is a key regulator of LAT activity. Therefore, the purpose of this study was to test whether there are differences in the local GABAergic regulation of the rat adolescent LAT, and differences in its sensitivity to repeated stress. We found that LAT projection neurons are subjected to weaker GABAergic inhibition during adolescence. Repeated stress reduced in vivo endogenous and exogenous GABAergic inhibition of LAT projection neurons in adolescent rats. Furthermore, repeated stress decreased measures of presynaptic GABA function and interneuron activity in adolescent rats. In contrast, repeated stress enhanced glutamatergic drive of LAT projection neurons in adult rats. These results demonstrate age differences in GABAergic regulation of the LAT, and age differences in the mechanism for the effects of repeated stress on LAT neuron activity. These findings provide a substrate for increased mood lability in adolescents, and provide a substrate by which adolescent repeated stress can induce distinct behavioral outcomes and psychiatric symptoms.

  16. Effects of early life stress on amygdala and striatal development.

    Science.gov (United States)

    Fareri, Dominic S; Tottenham, Nim

    2016-06-01

    Species-expected caregiving early in life is critical for the normative development and regulation of emotional behavior, the ability to effectively evaluate affective stimuli in the environment, and the ability to sustain social relationships. Severe psychosocial stressors early in life (early life stress; ELS) in the form of the absence of species expected caregiving (i.e., caregiver deprivation), can drastically impact one's social and emotional success, leading to the onset of internalizing illness later in life. Development of the amygdala and striatum, two key regions supporting affective valuation and learning, is significantly affected by ELS, and their altered developmental trajectories have important implications for cognitive, behavioral and socioemotional development. However, an understanding of the impact of ELS on the development of functional interactions between these regions and subsequent behavioral effects is lacking. In this review, we highlight the roles of the amygdala and striatum in affective valuation and learning in maturity and across development. We discuss their function separately as well as their interaction. We highlight evidence across species characterizing how ELS induced changes in the development of the amygdala and striatum mediate subsequent behavioral changes associated with internalizing illness, positing a particular import of the effect of ELS on their interaction. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Effects of early life stress on amygdala and striatal development

    Directory of Open Access Journals (Sweden)

    Dominic S. Fareri

    2016-06-01

    Full Text Available Species-expected caregiving early in life is critical for the normative development and regulation of emotional behavior, the ability to effectively evaluate affective stimuli in the environment, and the ability to sustain social relationships. Severe psychosocial stressors early in life (early life stress; ELS in the form of the absence of species expected caregiving (i.e., caregiver deprivation, can drastically impact one’s social and emotional success, leading to the onset of internalizing illness later in life. Development of the amygdala and striatum, two key regions supporting affective valuation and learning, is significantly affected by ELS, and their altered developmental trajectories have important implications for cognitive, behavioral and socioemotional development. However, an understanding of the impact of ELS on the development of functional interactions between these regions and subsequent behavioral effects is lacking. In this review, we highlight the roles of the amygdala and striatum in affective valuation and learning in maturity and across development. We discuss their function separately as well as their interaction. We highlight evidence across species characterizing how ELS induced changes in the development of the amygdala and striatum mediate subsequent behavioral changes associated with internalizing illness, positing a particular import of the effect of ELS on their interaction.

  18. Effects of early life stress on amygdala and striatal development

    Science.gov (United States)

    Fareri, Dominic S.; Tottenham, Nim

    2016-01-01

    Species-expected caregiving early in life is critical for the normative development and regulation of emotional behavior, the ability to effectively evaluate affective stimuli in the environment, and the ability to sustain social relationships. Severe psychosocial stressors early in life (early life stress; ELS) in the form of the absence of species expected caregiving (i.e., caregiver deprivation), can drastically impact one’s social and emotional success, leading to the onset of internalizing illness later in life. Development of the amygdala and striatum, two key regions supporting affective valuation and learning, is significantly affected by ELS, and their altered developmental trajectories have important implications for cognitive, behavioral and socioemotional development. However, an understanding of the impact of ELS on the development of functional interactions between these regions and subsequent behavioral effects is lacking. In this review, we highlight the roles of the amygdala and striatum in affective valuation and learning in maturity and across development. We discuss their function separately as well as their interaction. We highlight evidence across species characterizing how ELS induced changes in the development of the amygdala and striatum mediate subsequent behavioral changes associated with internalizing illness, positing a particular import of the effect of ELS on their interaction. PMID:27174149

  19. Basolateral amygdala and stress-induced hyperexcitability affect motivated behaviors and addiction

    OpenAIRE

    Sharp, B M

    2017-01-01

    The amygdala integrates and processes incoming information pertinent to reward and to emotions such as fear and anxiety that promote survival by warning of potential danger. Basolateral amygdala (BLA) communicates bi-directionally with brain regions affecting cognition, motivation and stress responses including prefrontal cortex, hippocampus, nucleus accumbens and hindbrain regions that trigger norepinephrine-mediated stress responses. Disruption of intrinsic amygdala and BLA regulatory neuro...

  20. Bi-Directional Tuning of Amygdala Sensitivity in Combat Veterans Investigated with fMRI

    Science.gov (United States)

    Brashers-Krug, Tom; Jorge, Ricardo

    2015-01-01

    Objectives Combat stress can be followed by persistent emotional consequences. It is thought that these emotional consequences are caused in part by increased amygdala reactivity. It is also thought that amygdala hyper-reactivity results from decreased inhibition from portions of the anterior cingulate cortex (ACC) in which activity is negatively correlated with activity in the amygdala. However, experimental support for these proposals has been inconsistent. Methods We showed movies of combat and civilian scenes during a functional magnetic resonance imaging (fMRI) session to 50 veterans of recent combat. We collected skin conductance responses (SCRs) as measures of emotional arousal. We examined the relation of blood oxygenation-level dependent (BOLD) signal in the amygdala and ACC to symptom measures and to SCRs. Results Emotional arousal, as measured with SCR, was greater during the combat movie than during the civilian movie and did not depend on symptom severity. As expected, amygdala signal during the less-arousing movie increased with increasing symptom severity. Surprisingly, during the more-arousing movie amygdala signal decreased with increasing symptom severity. These differences led to the unexpected result that amygdala signal in highly symptomatic subjects was lower during the more-arousing movie than during the less-arousing movie. Also unexpectedly, we found no significant inverse correlation between any portions of the amygdala and ACC. Rather, signal throughout more than 80% of the ACC showed a strong positive correlation with signal throughout more than 90% of the amygdala. Conclusions Amygdala reactivity can be tuned bi-directionally, either up or down, in the same person depending on the stimulus and the degree of post-traumatic symptoms. The exclusively positive correlations in BOLD activity between the amygdala and ACC contrast with findings that have been cited as evidence for inhibitory control of the amygdala by the ACC. The

  1. Amygdala and auditory cortex exhibit distinct sensitivity to relevant acoustic features of auditory emotions.

    Science.gov (United States)

    Pannese, Alessia; Grandjean, Didier; Frühholz, Sascha

    2016-12-01

    Discriminating between auditory signals of different affective value is critical to successful social interaction. It is commonly held that acoustic decoding of such signals occurs in the auditory system, whereas affective decoding occurs in the amygdala. However, given that the amygdala receives direct subcortical projections that bypass the auditory cortex, it is possible that some acoustic decoding occurs in the amygdala as well, when the acoustic features are relevant for affective discrimination. We tested this hypothesis by combining functional neuroimaging with the neurophysiological phenomena of repetition suppression (RS) and repetition enhancement (RE) in human listeners. Our results show that both amygdala and auditory cortex responded differentially to physical voice features, suggesting that the amygdala and auditory cortex decode the affective quality of the voice not only by processing the emotional content from previously processed acoustic features, but also by processing the acoustic features themselves, when these are relevant to the identification of the voice's affective value. Specifically, we found that the auditory cortex is sensitive to spectral high-frequency voice cues when discriminating vocal anger from vocal fear and joy, whereas the amygdala is sensitive to vocal pitch when discriminating between negative vocal emotions (i.e., anger and fear). Vocal pitch is an instantaneously recognized voice feature, which is potentially transferred to the amygdala by direct subcortical projections. These results together provide evidence that, besides the auditory cortex, the amygdala too processes acoustic information, when this is relevant to the discrimination of auditory emotions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Dysfunctional or hyperfunctional? The amygdala in posttraumatic stress disorder is the bull in the evolutionary China shop.

    Science.gov (United States)

    Diamond, David M; Zoladz, Phillip R

    2016-06-01

    Our motivation in writing this Review arose not only from the great value in contributing to this special issue of the Journal of Neuroscience Research but also from the desire to express our opinion that the description of the amygdala as "dysfunctional" in posttraumatic stress disorder (PTSD) might not be appropriate. We acknowledge that excessive activation of the amygdala contributes to the cluster of PTSD symptoms, including hypervigilance, intrusive memories, and impaired sleep, that underlies the devastating mental and physical outcomes in trauma victims. The issue that we address is whether the symptoms of PTSD represent an impaired (dysfunctional) or sensitized (hyperfunctional) amygdala status. We propose that the amygdala in PTSD is hyperfunctional rather than dysfunctional in recognition of the fact that the individual has already survived one life-threatening attack and that another may be forthcoming. We therefore consider PTSD to be a state in which the amygdala is functioning optimally if the goal is to ensure a person's survival. The misery caused by a hyperfunctional amygdala in PTSD is the cost of inheriting an evolutionarily primitive mechanism that considers survival more important than the quality of one's life. © 2015 Wiley Periodicals, Inc.

  3. Intranasal Oxytocin Normalizes Amygdala Functional Connectivity in Posttraumatic Stress Disorder.

    Science.gov (United States)

    Koch, Saskia B J; van Zuiden, Mirjam; Nawijn, Laura; Frijling, Jessie L; Veltman, Dick J; Olff, Miranda

    2016-07-01

    The neuropeptide oxytocin (OT) has been suggested as a promising pharmacological agent for medication-enhanced psychotherapy in posttraumatic stress disorder (PTSD) because of its anxiolytic and prosocial properties. We therefore investigated the behavioral and neurobiological effects of a single intranasal OT administration (40 IU) in PTSD patients. We conducted a randomized, placebo-controlled, cross-over resting-state fMRI study in male and female police officers with (n=37, 21 males) and without PTSD (n=40, 20 males). We investigated OT administration effects on subjective anxiety and functional connectivity of basolateral (BLA) and centromedial (CeM) amygdala subregions with prefrontal and salience processing areas. In PTSD patients, OT administration resulted in decreased subjective anxiety and nervousness. Under placebo, male PTSD patients showed diminished right CeM to left ventromedial prefrontal cortex (vmPFC) connectivity compared with male trauma-exposed controls, which was reinstated after OT administration. Additionally, female PTSD patients showed enhanced right BLA to bilateral dorsal anterior cingulate cortex (dACC) connectivity compared with female trauma-exposed controls, which was dampened after OT administration. Although caution is warranted, our findings tentatively suggest that OT has the potential to diminish anxiety and fear expression of the amygdala in PTSD, either via increased control of the vmPFC over the CeM (males) or via decreased salience processing of the dACC and BLA (females). Our findings add to accumulating evidence that OT administration could potentially enhance treatment response in PTSD.

  4. Prevention of Stress-Impaired Fear Extinction Through Neuropeptide S Action in the Lateral Amygdala

    OpenAIRE

    Chauveau, Frédéric; Lange, Maren Denise; Jüngling, Kay; Lesting, Jörg; Seidenbecher, Thomas; Pape, Hans-Christian

    2012-01-01

    Stressful and traumatic events can create aversive memories, which are a predisposing factor for anxiety disorders. The amygdala is critical for transforming such stressful events into anxiety, and the recently discovered neuropeptide S transmitter system represents a promising candidate apt to control these interactions. Here we test the hypothesis that neuropeptide S can regulate stress-induced hyperexcitability in the amygdala, and thereby can interact with stress-induced alterations of fe...

  5. Increased amygdala reactivity following early life stress: a potential resilience enhancer role.

    Science.gov (United States)

    Yamamoto, Tetsuya; Toki, Shigeru; Siegle, Greg J; Takamura, Masahiro; Takaishi, Yoshiyuki; Yoshimura, Shinpei; Okada, Go; Matsumoto, Tomoya; Nakao, Takashi; Muranaka, Hiroyuki; Kaseda, Yumiko; Murakami, Tsuneji; Okamoto, Yasumasa; Yamawaki, Shigeto

    2017-01-18

    Amygdala hyper-reactivity is sometimes assumed to be a vulnerability factor that predates depression; however, in healthy people, who experience early life stress but do not become depressed, it may represent a resilience mechanism. We aimed to test these hypothesis examining whether increased amygdala activity in association with a history of early life stress (ELS) was negatively or positively associated with depressive symptoms and impact of negative life event stress in never-depressed adults. Twenty-four healthy participants completed an individually tailored negative mood induction task during functional magnetic resonance imaging (fMRI) assessment along with evaluation of ELS. Mood change and amygdala reactivity were increased in never-depressed participants who reported ELS compared to participants who reported no ELS. Yet, increased amygdala reactivity lowered effects of ELS on depressive symptoms and negative life events stress. Amygdala reactivity also had positive functional connectivity with the bilateral DLPFC, motor cortex and striatum in people with ELS during sad memory recall. Increased amygdala activity in those with ELS was associated with decreased symptoms and increased neural features, consistent with emotion regulation, suggesting that preservation of robust amygdala reactions may reflect a stress buffering or resilience enhancing factor against depression and negative stressful events.

  6. Molecular Mechanisms of Stress-Induced Increases in Fear Memory Consolidation within the Amygdala.

    Science.gov (United States)

    Aubry, Antonio V; Serrano, Peter A; Burghardt, Nesha S

    2016-01-01

    Stress can significantly impact brain function and increase the risk for developing various psychiatric disorders. Many of the brain regions that are implicated in psychiatric disorders and are vulnerable to the effects of stress are also involved in mediating emotional learning. Emotional learning has been a subject of intense investigation for the past 30 years, with the vast majority of studies focusing on the amygdala and its role in associative fear learning. However, the mechanisms by which stress affects the amygdala and amygdala-dependent fear memories remain unclear. Here we review the literature on the enhancing effects of acute and chronic stress on the acquisition and/or consolidation of a fear memory, as measured by auditory Pavlovian fear conditioning, and discuss potential mechanisms by which these changes occur in the amygdala. We hypothesize that stress-mediated activation of glucocorticoid receptors (GR) and norepinephrine release within the amygdala leads to the mobilization of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors to the synapse, which underlies stress-induced increases in fear memory. We discuss the implications of this hypothesis for evaluating the effects of stress on extinction and for developing treatments for anxiety disorders. Understanding how stress-induced changes in glucocorticoid and norepinephrine signaling might converge to affect emotional learning by increasing the trafficking of AMPA receptors and enhancing amygdala excitability is a promising area for future research.

  7. Molecular Mechanisms of Stress-Induced Increases in Fear Memory Consolidation Within the Amygdala

    Directory of Open Access Journals (Sweden)

    Antonio Aubry

    2016-10-01

    Full Text Available Stress can significantly impact brain function and increase the risk for developing various psychiatric disorders. Many of the brain regions that are implicated in psychiatric disorders and are vulnerable to the effects of stress are also involved in mediating emotional learning. Emotional learning has been a subject of intense investigation for the past 30 years, with the vast majority of studies focusing on the amygdala and its role in associative fear learning. However, the mechanisms by which stress affects the amygdala and amygdala-dependent fear memories remain unclear. Here we review the literature on the enhancing effects of acute and chronic stress on the acquisition and/or consolidation of a fear memory, as measured by auditory Pavlovian fear conditioning, and discuss potential mechanisms by which these changes occur in the amygdala. We hypothesize that stress-mediated activation of glucocorticoid receptors (GR and norepinephrine release within the amygdala leads to the mobilization of AMPA receptors to the synapse, which underlies stress-induced increases in fear memory. We discuss the implications of this hypothesis for evaluating the effects of stress on extinction and for developing treatments for anxiety disorders. Understanding how stress-induced changes in glucocorticoid and norepinephrine signaling might converge to affect emotional learning by increasing the trafficking of AMPA receptors and enhancing amygdala excitability is a promising area for future research.

  8. Intrinsic functional connectivity between amygdala and hippocampus during rest predicts enhanced memory under stress.

    Science.gov (United States)

    de Voogd, Lycia D; Klumpers, Floris; Fernández, Guillén; Hermans, Erno J

    2017-01-01

    Declarative memories of stressful events are less prone to forgetting than mundane events. Animal research has demonstrated that such stress effects on consolidation of hippocampal-dependent memories require the amygdala. In humans, it has been shown that during learning, increased amygdala-hippocampal interactions are related to more efficient memory encoding. Animal models predict that following learning, amygdala-hippocampal interactions are instrumental to strengthening the consolidation of such declarative memories. Whether this is the case in humans is unknown and remains to be empirically verified. To test this, we analyzed data from a sample of 120 healthy male participants who performed an incidental encoding task and subsequently underwent resting-state functional MRI in a stressful and a neutral context. Stress was assessed by measures of salivary cortisol, blood pressure, heart rate, and subjective ratings. Memory was tested afterwards outside of the scanner. Our data show that memory was stronger in the stress context compared to the neutral context and that stress-induced cortisol responses were associated with this memory enhancement. Interestingly, amygdala-hippocampal connectivity during post-encoding awake rest regardless of context (stress or neutral) was associated with the enhanced memory performance under stress. Thus, our findings are in line with a role for intrinsic functional connectivity during rest between the amygdala and the hippocampus in the state effects of stress on strengthening memory. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Impact of sleep quality on amygdala reactivity, negative affect, and perceived stress.

    Science.gov (United States)

    Prather, Aric A; Bogdan, Ryan; Hariri, Ahmad R

    2013-05-01

    Research demonstrates a negative impact of sleep disturbance on mood and affect; however, the biological mechanisms mediating these links are poorly understood. Amygdala reactivity to negative stimuli has emerged as one potential pathway. Here, we investigate the influence of self-reported sleep quality on associations between threat-related amygdala reactivity and measures of negative affect and perceived stress. Analyses on data from 299 participants (125 men, 50.5% white, mean [standard deviation] age = 19.6 [1.3] years) who completed the Duke Neurogenetics Study were conducted. Participants completed several self-report measures of negative affect and perceived stress. Threat-related (i.e., angry and fearful facial expressions) amygdala reactivity was assayed using blood oxygen level-dependent functional magnetic resonance imaging. Global sleep quality was assessed using the Pittsburgh Sleep Quality Index. Amygdala reactivity to fearful facial expressions predicted greater depressive symptoms and higher perceived stress in poor (β values = 0.18-1.86, p values .05). In sex-specific analyses, men reporting poorer global sleep quality showed a significant association between amygdala reactivity and levels of depression and perceived stress (β values = 0.29-0.44, p values sleep quality or in women, irrespective of sleep quality. This study provides novel evidence that self-reported sleep quality moderates the relationships between amygdala reactivity, negative affect, and perceived stress, particularly among men.

  10. Mindfulness meditation training alters stress-related amygdala resting state functional connectivity: a randomized controlled trial.

    Science.gov (United States)

    Taren, Adrienne A; Gianaros, Peter J; Greco, Carol M; Lindsay, Emily K; Fairgrieve, April; Brown, Kirk Warren; Rosen, Rhonda K; Ferris, Jennifer L; Julson, Erica; Marsland, Anna L; Bursley, James K; Ramsburg, Jared; Creswell, J David

    2015-12-01

    Recent studies indicate that mindfulness meditation training interventions reduce stress and improve stress-related health outcomes, but the neural pathways for these effects are unknown. The present research evaluates whether mindfulness meditation training alters resting state functional connectivity (rsFC) of the amygdala, a region known to coordinate stress processing and physiological stress responses. We show in an initial discovery study that higher perceived stress over the past month is associated with greater bilateral amygdala-subgenual anterior cingulate cortex (sgACC) rsFC in a sample of community adults (n = 130). A follow-up, single-blind randomized controlled trial shows that a 3-day intensive mindfulness meditation training intervention (relative to a well-matched 3-day relaxation training intervention without a mindfulness component) reduced right amygdala-sgACC rsFC in a sample of stressed unemployed community adults (n = 35). Although stress may increase amygdala-sgACC rsFC, brief training in mindfulness meditation could reverse these effects. This work provides an initial indication that mindfulness meditation training promotes functional neuroplastic changes, suggesting an amygdala-sgACC pathway for stress reduction effects. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  11. Blunted amygdala functional connectivity during a stress task in alcohol dependent individuals: A pilot study

    Directory of Open Access Journals (Sweden)

    Natasha E. Wade, M.S.

    2017-12-01

    Full Text Available Background: Scant research has been conducted on neural mechanisms underlying stress processing in individuals with alcohol dependence (AD. We examined neural substrates of stress in AD individuals compared with controls using an fMRI task previously shown to induce stress, assessing amygdala functional connectivity to medial prefrontal cortex (mPFC. Materials and methods: For this novel pilot study, 10 abstinent AD individuals and 11 controls completed a modified Trier stress task while undergoing fMRI acquisition. The amygdala was used as a seed region for whole-brain seed-based functional connectivity analysis. Results: After controlling for family-wise error (p = 0.05, there was significantly decreased left and right amygdala connectivity with frontal (specifically mPFC, temporal, parietal, and cerebellar regions. Subjective stress, but not craving, increased from pre-to post-task. Conclusions: This study demonstrated decreased connectivity between the amygdala and regions important for stress and emotional processing in long-term abstinent individuals with AD. These results suggest aberrant stress processing in individuals with AD even after lengthy periods of abstinence. Keywords: Alcohol dependence, fMRI, Stress task, Functional connectivity, Amygdala

  12. Prevention of stress-impaired fear extinction through neuropeptide s action in the lateral amygdala.

    Science.gov (United States)

    Chauveau, Frédéric; Lange, Maren Denise; Jüngling, Kay; Lesting, Jörg; Seidenbecher, Thomas; Pape, Hans-Christian

    2012-06-01

    Stressful and traumatic events can create aversive memories, which are a predisposing factor for anxiety disorders. The amygdala is critical for transforming such stressful events into anxiety, and the recently discovered neuropeptide S transmitter system represents a promising candidate apt to control these interactions. Here we test the hypothesis that neuropeptide S can regulate stress-induced hyperexcitability in the amygdala, and thereby can interact with stress-induced alterations of fear memory. Mice underwent acute immobilization stress (IS), and neuropeptide S and a receptor antagonist were locally injected into the lateral amygdala (LA) during stress exposure. Ten days later, anxiety-like behavior, fear acquisition, fear memory retrieval, and extinction were tested. Furthermore, patch-clamp recordings were performed in amygdala slices prepared ex vivo to identify synaptic substrates of stress-induced alterations in fear responsiveness. (1) IS increased anxiety-like behavior, and enhanced conditioned fear responses during extinction 10 days after stress, (2) neuropeptide S in the amygdala prevented, while an antagonist aggravated, these stress-induced changes of aversive behaviors, (3) excitatory synaptic activity in LA projection neurons was increased on fear conditioning and returned to pre-conditioning values on fear extinction, and (4) stress resulted in sustained high levels of excitatory synaptic activity during fear extinction, whereas neuropeptide S supported the return of synaptic activity during fear extinction to levels typical of non-stressed animals. Together these results suggest that the neuropeptide S system is capable of interfering with mechanisms in the amygdala that transform stressful events into anxiety and impaired fear extinction.

  13. Post-traumatic stress and age variation in amygdala volumes among youth exposed to trauma.

    Science.gov (United States)

    Weems, Carl F; Klabunde, Megan; Russell, Justin D; Reiss, Allan L; Carrión, Victor G

    2015-12-01

    Theoretically, normal developmental variation in amygdala volumes may be altered under conditions of severe stress. The purpose of this article was to examine whether posttraumatic stress moderates the association between age and amygdala volumes in youth exposed to traumatic events who are experiencing symptoms of post-traumatic stress disorder (PTSD). Volumetric imaging was conducted on two groups of youth aged 9-17 years: 28 with exposure to trauma and PTSD symptoms (boys = 15, girls = 13) and 26 matched (age, IQ) comparison youth (Controls; boys = 12, girls = 14). There was a significant group by age interaction in predicting right amygdala volumes. A positive association between age and right amygdala volumes was observed, but only in PTSD youth. These associations with age remained when controlling for IQ, total brain volumes and sex. Moreover, older youth with PTSD symptoms had relatively larger right amygdala volumes than controls. Findings provide evidence that severe stress may influence age-related variation in amygdala volumes. Results further highlight the importance of utilizing age as an interactive variable in pediatric neuroimaging research, in so far as age may act as an important moderator of group differences. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  14. Neuroimaging study of the human amygdala. Toward an understanding of emotional and stress responses

    International Nuclear Information System (INIS)

    Iidaka, Tetsuya

    2007-01-01

    The amygdala plays a critical role in the neural system involved in emotional responses and conditioned fear. The dysfunction of this system is thought to be a cause of several neuropsychiatric disorders. A neuroimaging study provides a unique opportunity for noninvasive investigation of the human amygdala. We studied the activity of this structure in normal subjects and patients with schizophrenia by using the face recognition task. Our results showed that the amygdala was activated by presentation of face stimuli, and negative face activated the amygdala to a greater extent than a neutral face. Under the happy face condition, the activation of the amygdala was higher in the schizophrenic patients than in control subjects. A single nucleotide polymorphism in the regulatory region of the serotonin type 3 receptor gene had modulatory effects on the amygdaloid activity. The emotion regulation had a significant impact on neural interaction between the amygdala and prefrontal cortices. Thus, studies on the human amygdala would greatly contribute to the elucidation of the neural system that determines emotional and stress responses. To clarify the relevance of the neural dysfunction and neuropsychiatric disorders, further studies using physiological, genetic, and hormonal approaches are essential. (author)

  15. Neuroimaging Study of the Human Amygdala - Toward an Understanding of Emotional and Stress Responses -

    Science.gov (United States)

    Iidaka, Tetsuya

    The amygdala plays a critical role in the neural system involved in emotional responses and conditioned fear. The dysfunction of this system is thought to be a cause of several neuropsychiatric disorders. A neuroimaging study provides a unique opportunity for noninvasive investigation of the human amygdala. We studied the activity of this structure in normal subjects and patients with schizophrenia by using the face recognition task. Our results showed that the amygdala was activated by presentation of face stimuli, and negative face activated the amygdala to a greater extent than a neutral face. Under the happy face condition, the activation of the amygdala was higher in the schizophrenic patients than in control subjects. A single nucleotide polymorphism in the regulatory region of the serotonin type 3 receptor gene had modulatory effects on the amygdaloid activity. The emotion regulation had a significant impact on neural interaction between the amygdala and prefrontal cortices. Thus, studies on the human amygdala would greatly contribute to the elucidation of the neural system that determines emotional and stress responses. To clarify the relevance of the neural dysfunction and neuropsychiatric disorders, further studies using physiological, genetic, and hormonal approaches are essential.

  16. Lateralized kappa opioid receptor signaling from the amygdala central nucleus promotes stress-induced functional pain.

    Science.gov (United States)

    Nation, Kelsey M; De Felice, Milena; Hernandez, Pablo I; Dodick, David W; Neugebauer, Volker; Navratilova, Edita; Porreca, Frank

    2018-05-01

    The response of diffuse noxious inhibitory controls (DNIC) is often decreased, or lost, in stress-related functional pain syndromes. Because the dynorphin/kappa opioid receptor (KOR) pathway is activated by stress, we determined its role in DNIC using a model of stress-induced functional pain. Male, Sprague-Dawley rats were primed for 7 days with systemic morphine resulting in opioid-induced hyperalgesia. Fourteen days after priming, when hyperalgesia was resolved, rats were exposed to environmental stress and DNIC was evaluated by measuring hind paw response threshold to noxious pressure (test stimulus) after capsaicin injection in the forepaw (conditioning stimulus). Morphine priming without stress did not alter DNIC. However, stress produced a loss of DNIC in morphine-primed rats in both hind paws that was abolished by systemic administration of the KOR antagonist, nor-binaltorphimine (nor-BNI). Microinjection of nor-BNI into the right, but not left, central nucleus of the amygdala (CeA) prevented the loss of DNIC in morphine-primed rats. Diffuse noxious inhibitory controls were not modulated by bilateral nor-BNI in the rostral ventromedial medulla. Stress increased dynorphin content in both the left and right CeA of primed rats, reaching significance only in the right CeA; no change was observed in the rostral ventromedial medulla or hypothalamus. Although morphine priming alone is not sufficient to influence DNIC, it establishes a state of latent sensitization that amplifies the consequences of stress. After priming, stress-induced dynorphin/KOR signaling from the right CeA inhibits DNIC in both hind paws, likely reflecting enhanced descending facilitation that masks descending inhibition. Kappa opioid receptor antagonists may provide a new therapeutic strategy for stress-related functional pain disorders.

  17. Intrinsic functional connectivity between amygdala and hippocampus during rest predicts enhanced memory under stress

    NARCIS (Netherlands)

    Voogd, L.D. de; Klumpers, F.; Fernandez, G.; Hermans, E.

    2017-01-01

    Declarative memories of stressful events are less prone to forgetting than mundane events. Animal research has demonstrated that such stress effects on consolidation of hippocampal-dependent memories require the amygdala. In humans, it has been shown that during learning, increased

  18. Hypothalamic-pituitary-adrenal axis genetic variation and early stress moderates amygdala function.

    Science.gov (United States)

    Di Iorio, Christina R; Carey, Caitlin E; Michalski, Lindsay J; Corral-Frias, Nadia S; Conley, Emily Drabant; Hariri, Ahmad R; Bogdan, Ryan

    2017-06-01

    Early life stress may precipitate psychopathology, at least in part, by influencing amygdala function. Converging evidence across species suggests that links between childhood stress and amygdala function may be dependent upon hypothalamic-pituitary-adrenal (HPA) axis function. Using data from college-attending non-Hispanic European-Americans (n=308) who completed the Duke Neurogenetics Study, we examined whether early life stress (ELS) and HPA axis genetic variation interact to predict threat-related amygdala function as well as psychopathology symptoms. A biologically-informed multilocus profile score (BIMPS) captured HPA axis genetic variation (FKBP5 rs1360780, CRHR1 rs110402; NR3C2 rs5522/rs4635799) previously associated with its function (higher BIMPS are reflective of higher HPA axis activity). BOLD fMRI data were acquired while participants completed an emotional face matching task. ELS and depression and anxiety symptoms were measured using the childhood trauma questionnaire and the mood and anxiety symptom questionnaire, respectively. The interaction between HPA axis BIMPS and ELS was associated with right amygdala reactivity to threat-related stimuli, after accounting for multiple testing (empirical-p=0.016). Among individuals with higher BIMPS (i.e., the upper 21.4%), ELS was positively coupled with threat-related amygdala reactivity, which was absent among those with average or low BIMPS. Further, higher BIMPS were associated with greater self-reported anxious arousal, though there was no evidence that amygdala function mediated this relationship. Polygenic variation linked to HPA axis function may moderate the effects of early life stress on threat-related amygdala function and confer risk for anxiety symptomatology. However, what, if any, neural mechanisms may mediate the relationship between HPA axis BIMPS and anxiety symptomatology remains unclear. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Adrenal stress hormones, amygdala activation, and memory for emotionally arousing experiences.

    Science.gov (United States)

    Roozendaal, Benno; Barsegyan, Areg; Lee, Sangkwan

    2008-01-01

    Extensive evidence indicates that stress hormones released from the adrenal glands are critically involved in memory consolidation of emotionally arousing experiences. Epinephrine or glucocorticoids administered after exposure to emotionally arousing experiences enhance the consolidation of long-term memories of these experiences. Our findings indicate that adrenal stress hormones influence memory consolidation via interactions with arousal-induced activation of noradrenergic mechanisms within the amygdala. In turn, the amygdala regulates memory consolidation via its efferent projections to many other brain regions. In contrast to the enhancing effects on consolidation, high circulating levels of stress hormones impair memory retrieval and working memory. Such effects also require noradrenergic activation of the amygdala and interactions with other brain regions.

  20. Blunted amygdala functional connectivity during a stress task in alcohol dependent individuals: A pilot study.

    Science.gov (United States)

    Wade, Natasha E; Padula, Claudia B; Anthenelli, Robert M; Nelson, Erik; Eliassen, James; Lisdahl, Krista M

    2017-12-01

    Scant research has been conducted on neural mechanisms underlying stress processing in individuals with alcohol dependence (AD). We examined neural substrates of stress in AD individuals compared with controls using an fMRI task previously shown to induce stress, assessing amygdala functional connectivity to medial prefrontal cortex (mPFC). For this novel pilot study, 10 abstinent AD individuals and 11 controls completed a modified Trier stress task while undergoing fMRI acquisition. The amygdala was used as a seed region for whole-brain seed-based functional connectivity analysis. After controlling for family-wise error (p = 0.05), there was significantly decreased left and right amygdala connectivity with frontal (specifically mPFC), temporal, parietal, and cerebellar regions. Subjective stress, but not craving, increased from pre-to post-task. This study demonstrated decreased connectivity between the amygdala and regions important for stress and emotional processing in long-term abstinent individuals with AD. These results suggest aberrant stress processing in individuals with AD even after lengthy periods of abstinence.

  1. Posttraumatic stress disorder: the role of medial prefrontal cortex and amygdala.

    Science.gov (United States)

    Koenigs, Michael; Grafman, Jordan

    2009-10-01

    Posttraumatic stress disorder (PTSD) is characterized by recurrent distressing memories of an emotionally traumatic event. In this review, the authors present neuroscientific data highlighting the function of two brain areas--the amygdala and ventromedial prefrontal cortex (vmPFC)--in PTSD and related emotional processes. A convergent body of human and nonhuman studies suggests that the amygdala mediates the acquisition and expression of conditioned fear and the enhancement of emotional memory, whereas the vmPFC mediates the extinction of conditioned fear and the volitional regulation of negative emotion. It has been theorized that the vmPFC exerts inhibition on the amygdala, and that a defect in this inhibition could account for the symptoms of PTSD. This theory is supported by functional imaging studies of PTSD patients, who exhibit hypoactivity in the vmPFC but hyperactivity in the amygdala. A recent study of brain-injured and trauma-exposed combat veterans confirms that amygdala damage reduces the likelihood of developing PTSD. But contrary to the prediction of the top-down inhibition model, vmPFC damage also reduces the likelihood of developing PTSD. The putative roles of the amygdala and the vmPFC in the pathophysiology of PTSD, as well as implications for potential treatments, are discussed in light of these results.

  2. Impairment of fear memory consolidation in maternally stressed male mouse offspring: evidence for nongenomic glucocorticoid action on the amygdala.

    Science.gov (United States)

    Lee, Eun Jeong; Son, Gi Hoon; Chung, Sooyoung; Lee, Sukwon; Kim, Jeongyeon; Choi, Sukwoo; Kim, Kyungjin

    2011-05-11

    The environment in early life elicits profound effects on fetal brain development that can extend into adulthood. However, the long-lasting impact of maternal stress on emotional learning remains largely unknown. Here, we focus on amygdala-related learning processes in maternally stressed mice. In these mice, fear memory consolidation and certain related signaling cascades were significantly impaired, though innate fear, fear memory acquisition, and synaptic NMDA receptor expression in the amygdala were unaltered. In accordance with these findings, maintenance of long-term potentiation (LTP) at amygdala synapses, but not its induction, was significantly impaired in the maternally stressed animals. Interestingly, amygdala glucocorticoid receptor expression was reduced in the maternally stressed mice, and administration of glucocorticoids (GCs) immediately after fear conditioning and LTP induction restored memory consolidation and LTP maintenance, respectively, suggesting that a weakening of GC signaling was responsible for the observed impairment. Furthermore, microinfusion of a membrane-impermeable form of GC (BSA-conjugated GC) into the amygdala mimicked the restorative effects of GC, indicating that a nongenomic activity of GC mediates the restorative effect. Together, these findings suggest that prenatal stress induces long-term dysregulation of nongenomic GC action in the amygdala of adult offspring, resulting in the impairment of fear memory consolidation. Since modulation of amygdala activity is known to alter the consolidation of emotionally influenced memories allocated in other brain regions, the nongenomic action of GC on the amygdala shown herein may also participate in the amygdala-dependent modulation of memory consolidation.

  3. Amygdala functional connectivity, HPA axis genetic variation, and life stress in children and relations to anxiety and emotion regulation.

    Science.gov (United States)

    Pagliaccio, David; Luby, Joan L; Bogdan, Ryan; Agrawal, Arpana; Gaffrey, Michael S; Belden, Andrew C; Botteron, Kelly N; Harms, Michael P; Barch, Deanna M

    2015-11-01

    Internalizing pathology is related to alterations in amygdala resting state functional connectivity, potentially implicating altered emotional reactivity and/or emotion regulation in the etiological pathway. Importantly, there is accumulating evidence that stress exposure and genetic vulnerability impact amygdala structure/function and risk for internalizing pathology. The present study examined whether early life stress and genetic profile scores (10 single nucleotide polymorphisms within 4 hypothalamic-pituitary-adrenal axis genes: CRHR1, NR3C2, NR3C1, and FKBP5) predicted individual differences in amygdala functional connectivity in school-age children (9- to 14-year-olds; N = 120). Whole-brain regression analyses indicated that increasing genetic "risk" predicted alterations in amygdala connectivity to the caudate and postcentral gyrus. Experience of more stressful and traumatic life events predicted weakened amygdala-anterior cingulate cortex connectivity. Genetic "risk" and stress exposure interacted to predict weakened connectivity between the amygdala and the inferior and middle frontal gyri, caudate, and parahippocampal gyrus in those children with the greatest genetic and environmental risk load. Furthermore, amygdala connectivity longitudinally predicted anxiety symptoms and emotion regulation skills at a later follow-up. Amygdala connectivity mediated effects of life stress on anxiety and of genetic variants on emotion regulation. The current results suggest that considering the unique and interacting effects of biological vulnerability and environmental risk factors may be key to understanding the development of altered amygdala functional connectivity, a potential factor in the risk trajectory for internalizing pathology. (c) 2015 APA, all rights reserved).

  4. Amygdala functional connectivity, HPA axis genetic variation, and life stress in children and relations to anxiety and emotion regulation

    Science.gov (United States)

    Pagliaccio, David; Luby, Joan L.; Bogdan, Ryan; Agrawal, Arpana; Gaffrey, Michael S.; Belden, Andrew C.; Botteron, Kelly N.; Harms, Michael P.; Barch, Deanna M.

    2015-01-01

    Internalizing pathology is related to alterations in amygdala resting state functional connectivity, potentially implicating altered emotional reactivity and/or emotion regulation in the etiological pathway. Importantly, there is accumulating evidence that stress exposure and genetic vulnerability impact amygdala structure/function and risk for internalizing pathology. The present study examined whether early life stress and genetic profile scores (10 single nucleotide polymorphisms within four hypothalamic-pituitary-adrenal axis genes: CRHR1, NR3C2, NR3C1, and FKBP5) predicted individual differences in amygdala functional connectivity in school-age children (9–14 year olds; N=120). Whole-brain regression analyses indicated that increasing genetic ‘risk’ predicted alterations in amygdala connectivity to the caudate and postcentral gyrus. Experience of more stressful and traumatic life events predicted weakened amygdala-anterior cingulate cortex connectivity. Genetic ‘risk’ and stress exposure interacted to predict weakened connectivity between the amygdala and the inferior and middle frontal gyri, caudate, and parahippocampal gyrus in those children with the greatest genetic and environmental risk load. Furthermore, amygdala connectivity longitudinally predicted anxiety symptoms and emotion regulation skills at a later follow-up. Amygdala connectivity mediated effects of life stress on anxiety and of genetic variants on emotion regulation. The current results suggest that considering the unique and interacting effects of biological vulnerability and environmental risk factors may be key to understanding the development of altered amygdala functional connectivity, a potential factor in the risk trajectory for internalizing pathology. PMID:26595470

  5. Impact of Sleep Quality on Amygdala Reactivity, Negative Affect, and Perceived Stress

    Science.gov (United States)

    Prather, Aric A.; Bogdan, Ryan; Ahmad R. Hariri, PhD

    2013-01-01

    Objective Research demonstrates a negative impact of sleep disturbance on mood and affect; however, the biological mechanisms mediating these links are poorly understood. Amygdala reactivity to negative stimuli has emerged as one potential pathway. Here, we investigate the influence of self-reported sleep quality on associations between threat-related amygdala reactivity and measures of negative affect and perceived stress. Methods Analyses on data from 299 participants (125 men, 50.5% white, mean [standard deviation] age = 19.6 [1.3] years) who completed the Duke Neurogenetics Study were conducted. Participants completed several self-report measures of negative affect and perceived stress. Threat-related (i.e., angry and fearful facial expressions) amygdala reactivity was assayed using blood oxygen level–dependent functional magnetic resonance imaging. Global sleep quality was assessed using the Pittsburgh Sleep Quality Index. Results Amygdala reactivity to fearful facial expressions predicted greater depressive symptoms and higher perceived stress in poor (β values = 0.18–1.86, p values .05). In sex-specific analyses, men reporting poorer global sleep quality showed a significant association between amygdala reactivity and levels of depression and perceived stress (β values = 0.29–0.44, p values < .05). In contrast, no significant associations were observed in men reporting good global sleep quality or in women, irrespective of sleep quality. Conclusions This study provides novel evidence that self-reported sleep quality moderates the relationships between amygdala reactivity, negative affect, and perceived stress, particularly among men. PMID:23592753

  6. Interindividual differences in stress sensitivity: basal and stress-induced cortisol levels differentially predict neural vigilance processing under stress.

    Science.gov (United States)

    Henckens, Marloes J A G; Klumpers, Floris; Everaerd, Daphne; Kooijman, Sabine C; van Wingen, Guido A; Fernández, Guillén

    2016-04-01

    Stress exposure is known to precipitate psychological disorders. However, large differences exist in how individuals respond to stressful situations. A major marker for stress sensitivity is hypothalamus-pituitary-adrenal (HPA)-axis function. Here, we studied how interindividual variance in both basal cortisol levels and stress-induced cortisol responses predicts differences in neural vigilance processing during stress exposure. Implementing a randomized, counterbalanced, crossover design, 120 healthy male participants were exposed to a stress-induction and control procedure, followed by an emotional perception task (viewing fearful and happy faces) during fMRI scanning. Stress sensitivity was assessed using physiological (salivary cortisol levels) and psychological measures (trait questionnaires). High stress-induced cortisol responses were associated with increased stress sensitivity as assessed by psychological questionnaires, a stronger stress-induced increase in medial temporal activity and greater differential amygdala responses to fearful as opposed to happy faces under control conditions. In contrast, high basal cortisol levels were related to relative stress resilience as reflected by higher extraversion scores, a lower stress-induced increase in amygdala activity and enhanced differential processing of fearful compared with happy faces under stress. These findings seem to reflect a critical role for HPA-axis signaling in stress coping; higher basal levels indicate stress resilience, whereas higher cortisol responsivity to stress might facilitate recovery in those individuals prone to react sensitively to stress. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  7. Opiate sensitization induces FosB/ΔFosB expression in prefrontal cortical, striatal and amygdala brain regions.

    Directory of Open Access Journals (Sweden)

    Gary B Kaplan

    Full Text Available Sensitization to the effects of drugs of abuse and associated stimuli contributes to drug craving, compulsive drug use, and relapse in addiction. Repeated opiate exposure produces behavioral sensitization that is hypothesized to result from neural plasticity in specific limbic, striatal and cortical systems. ΔFosB and FosB are members of the Fos family of transcription factors that are implicated in neural plasticity in addiction. This study examined the effects of intermittent morphine treatment, associated with motor sensitization, on FosB/ΔFosB levels using quantitative immunohistochemistry. Motor sensitization was tested in C57BL/6 mice that received six intermittent pre-treatments (on days 1, 3, 5, 8, 10, 12 with either subcutaneous morphine (10 mg/kg or saline followed by a challenge injection of morphine or saline on day 16. Mice receiving repeated morphine injections demonstrated significant increases in locomotor activity on days 8, 10, and 12 of treatment (vs. day 1, consistent with development of locomotor sensitization. A morphine challenge on day 16 significantly increased locomotor activity of saline pre-treated mice and produced even larger increases in motor activity in the morphine pre-treated mice, consistent with the expression of opiate sensitization. Intermittent morphine pre-treatment on these six pre-treatment days produced a significant induction of FosB/ΔFosB, measured on day 16, in multiple brain regions including prelimbic (PL and infralimbic (IL cortex, nucleus accumbens (NAc core, dorsomedial caudate-putamen (CPU, basolateral amygdala (BLA and central nucleus of the amygdala (CNA but not in a motor cortex control region. Opiate induced sensitization may develop via Fos/ΔFosB plasticity in motivational pathways (NAc, motor outputs (CPU, and associative learning (PL, IL, BLA and stress pathways (CNA.

  8. Endocannabinoid signaling within the basolateral amygdala integrates multiple stress hormone effects on memory consolidation

    NARCIS (Netherlands)

    Atsak, P.; Hauer, D.; Campolongo, P.; Schelling, G.; Fornari, R.V.; Roozendaal, B.

    2015-01-01

    Glucocorticoid hormones are known to act synergistically with other stress-activated neuromodulatory systems, such as norepinephrine and corticotropin-releasing factor (CRF), within the basolateral complex of the amygdala (BLA) to induce optimal strengthening of the consolidation of long-term memory

  9. Neonatal Amygdala Lesions and Stress Responsivity in Rats : Relevance to schizophrenia

    NARCIS (Netherlands)

    Terpstra, Jeroen

    2004-01-01

    "Stress responsiveness in an animal model with relevance to schizophrenia” Rats bearing lesions of the amygdala made on postnatal day 7 (D7 AMX) model aspects of neurodevelopmental psychopathologies, such as schizophrenia. Adult D7 AMX rats display impaired pre-pulse inhibition, impaired

  10. Glucocorticoid receptor number predicts increase in amygdala activity after severe stress

    NARCIS (Netherlands)

    Geuze, Elbert; van Wingen, Guido A.; van Zuiden, Mirjam; Rademaker, Arthur R.; Vermetten, Eric; Kavelaars, Annemieke; Fernández, Guillén; Heijnen, Cobi J.

    2012-01-01

    Introduction: Individuals who are exposed to a traumatic event are at increased risk of developing psychiatric disorders such as posttraumatic stress disorder (PTSD). Studies have shown that increased amygdala activity is frequently found in patients with PTSD. In addition, pre-trauma glucocorticoid

  11. Time-dependent effects of corticosteroids on human amygdala processing

    NARCIS (Netherlands)

    Henckens, M.J.A.G.; van Wingen, G.A.; Joëls, M.; Fernández, G.

    2010-01-01

    Acute stress is associated with a sensitized amygdala. Corticosteroids, released in response to stress, are suggested to restore homeostasis by normalizing/desensitizing brain processing in the aftermath of stress. Here, we investigated the effects of corticosteroids on amygdala processing using

  12. Molecular Mechanisms of Stress-Induced Increases in Fear Memory Consolidation within the Amygdala

    OpenAIRE

    Aubry, Antonio V.; Serrano, Peter A.; Burghardt, Nesha S.

    2016-01-01

    Stress can significantly impact brain function and increase the risk for developing various psychiatric disorders. Many of the brain regions that are implicated in psychiatric disorders and are vulnerable to the effects of stress are also involved in mediating emotional learning. Emotional learning has been a subject of intense investigation for the past 30 years, with the vast majority of studies focusing on the amygdala and its role in associative fear learning. However, the mechanisms by w...

  13. Molecular Mechanisms of Stress-Induced Increases in Fear Memory Consolidation Within the Amygdala

    OpenAIRE

    Antonio Aubry; Antonio Aubry; Peter Serrano; Peter Serrano; Nesha Burghardt; Nesha Burghardt

    2016-01-01

    Stress can significantly impact brain function and increase the risk for developing various psychiatric disorders. Many of the brain regions that are implicated in psychiatric disorders and are vulnerable to the effects of stress are also involved in mediating emotional learning. Emotional learning has been a subject of intense investigation for the past 30 years, with the vast majority of studies focusing on the amygdala and its role in associative fear learning. However, the mechanisms by...

  14. Basolateral amygdala and stress-induced hyperexcitability affect motivated behaviors and addiction.

    Science.gov (United States)

    Sharp, B M

    2017-08-08

    The amygdala integrates and processes incoming information pertinent to reward and to emotions such as fear and anxiety that promote survival by warning of potential danger. Basolateral amygdala (BLA) communicates bi-directionally with brain regions affecting cognition, motivation and stress responses including prefrontal cortex, hippocampus, nucleus accumbens and hindbrain regions that trigger norepinephrine-mediated stress responses. Disruption of intrinsic amygdala and BLA regulatory neurocircuits is often caused by dysfunctional neuroplasticity frequently due to molecular alterations in local GABAergic circuits and principal glutamatergic output neurons. Changes in local regulation of BLA excitability underlie behavioral disturbances characteristic of disorders including post-traumatic stress syndrome (PTSD), autism, attention-deficit hyperactivity disorder (ADHD) and stress-induced relapse to drug use. In this Review, we discuss molecular mechanisms and neural circuits that regulate physiological and stress-induced dysfunction of BLA/amygdala and its principal output neurons. We consider effects of stress on motivated behaviors that depend on BLA; these include drug taking and drug seeking, with emphasis on nicotine-dependent behaviors. Throughout, we take a translational approach by integrating decades of addiction research on animal models and human trials. We show that changes in BLA function identified in animal addiction models illuminate human brain imaging and behavioral studies by more precisely delineating BLA mechanisms. In summary, BLA is required to promote responding for natural reward and respond to second-order drug-conditioned cues; reinstate cue-dependent drug seeking; express stress-enhanced reacquisition of nicotine intake; and drive anxiety and fear. Converging evidence indicates that chronic stress causes BLA principal output neurons to become hyperexcitable.

  15. Amphetamine sensitization alters reward processing in the human striatum and amygdala.

    Directory of Open Access Journals (Sweden)

    Owen G O'Daly

    Full Text Available Dysregulation of mesolimbic dopamine transmission is implicated in a number of psychiatric illnesses characterised by disruption of reward processing and goal-directed behaviour, including schizophrenia, drug addiction and impulse control disorders associated with chronic use of dopamine agonists. Amphetamine sensitization (AS has been proposed to model the development of this aberrant dopamine signalling and the subsequent dysregulation of incentive motivational processes. However, in humans the effects of AS on the dopamine-sensitive neural circuitry associated with reward processing remains unclear. Here we describe the effects of acute amphetamine administration, following a sensitising dosage regime, on blood oxygen level dependent (BOLD signal in dopaminoceptive brain regions during a rewarded gambling task performed by healthy volunteers. Using a randomised, double-blind, parallel-groups design, we found clear evidence for sensitization to the subjective effects of the drug, while rewarded reaction times were unchanged. Repeated amphetamine exposure was associated with reduced dorsal striatal BOLD signal during decision making, but enhanced ventromedial caudate activity during reward anticipation. The amygdala BOLD response to reward outcomes was blunted following repeated amphetamine exposure. Positive correlations between subjective sensitization and changes in anticipation- and outcome-related BOLD signal were seen for the caudate nucleus and amygdala, respectively. These data show for the first time in humans that AS changes the functional impact of acute stimulant exposure on the processing of reward-related information within dopaminoceptive regions. Our findings accord with pathophysiological models which implicate aberrant dopaminergic modulation of striatal and amygdala activity in psychosis and drug-related compulsive disorders.

  16. Intranasal Oxytocin Normalizes Amygdala Functional Connectivity in Posttraumatic Stress Disorder

    NARCIS (Netherlands)

    Koch, Saskia B. J.; van Zuiden, Mirjam; Nawijn, Laura; Frijling, Jessie L.; Veltman, Dick J.; Olff, Miranda

    2016-01-01

    The neuropeptide oxytocin (OT) has been suggested as a promising pharmacological agent for medication-enhanced psychotherapy in posttraumatic stress disorder (PTSD) because of its anxiolytic and prosocial properties. We therefore investigated the behavioral and neurobiological effects of a single

  17. The Role of the Subgenual Anterior Cingulate Cortex and Amygdala in Environmental Sensitivity to Infant Crying

    Science.gov (United States)

    Mutschler, Isabella; Ball, Tonio; Kirmse, Ursula; Wieckhorst, Birgit; Pluess, Michael; Klarhöfer, Markus; Meyer, Andrea H.; Wilhelm, Frank H.; Seifritz, Erich

    2016-01-01

    Newborns and infants communicate their needs and physiological states through crying and emotional facial expressions. Little is known about individual differences in responding to infant crying. Several theories suggest that people vary in their environmental sensitivity with some responding generally more and some generally less to environmental stimuli. Such differences in environmental sensitivity have been associated with personality traits, including neuroticism. This study investigated whether neuroticism impacts neuronal, physiological, and emotional responses to infant crying by investigating blood-oxygenation-level dependent (BOLD) responses using functional magnetic resonance imaging (fMRI) in a large sample of healthy women (N = 102) with simultaneous skin conductance recordings. Participants were repeatedly exposed to a video clip that showed crying infants and emotional responses (valence, arousal, and irritation) were assessed after every video clip presentation. Increased BOLD signal during the perception of crying infants was found in brain regions that are associated with emotional responding, the amygdala and anterior insula. Significant BOLD signal decrements (i.e., habituation) were found in the fusiform gyrus, middle temporal gyrus, superior temporal gyrus, Broca’s homologue on the right hemisphere, (laterobasal) amygdala, and hippocampus. Individuals with high neuroticism showed stronger activation in the amygdala and subgenual anterior cingulate cortex (sgACC) when exposed to infant crying compared to individuals with low neuroticism. In contrast to our prediction we found no evidence that neuroticism impacts fMRI-based measures of habituation. Individuals with high neuroticism showed elevated skin conductance responses, experienced more irritation, and perceived infant crying as more unpleasant. The results support the hypothesis that individuals high in neuroticism are more emotionally responsive, experience more negative emotions, and

  18. Chronic stress exacerbates neuropathic pain via the integration of stress-affect-related information with nociceptive information in the central nucleus of the amygdala.

    Science.gov (United States)

    Li, Ming-Jia; Liu, Ling-Yu; Chen, Lin; Cai, Jie; Wan, You; Xing, Guo-Gang

    2017-04-01

    Exacerbation of pain by chronic stress and comorbidity of pain with stress-related psychiatric disorders, including anxiety and depression, represent significant clinical challenges. However, the underlying mechanisms still remain unclear. Here, we investigated whether chronic forced swim stress (CFSS)-induced exacerbation of neuropathic pain is mediated by the integration of stress-affect-related information with nociceptive information in the central nucleus of the amygdala (CeA). We first demonstrated that CFSS indeed produces both depressive-like behaviors and exacerbation of spared nerve injury (SNI)-induced mechanical allodynia in rats. Moreover, we revealed that CFSS induces both sensitization of basolateral amygdala (BLA) neurons and augmentation of long-term potentiation (LTP) at the BLA-CeA synapse and meanwhile, exaggerates both SNI-induced sensitization of CeA neurons and LTP at the parabrachial (PB)-CeA synapse. In addition, we discovered that CFSS elevates SNI-induced functional up-regulation of GluN2B-containing NMDA (GluN2B-NMDA) receptors in the CeA, which is proved to be necessary for CFSS-induced augmentation of LTP at the PB-CeA synapse and exacerbation of pain hypersensitivity in SNI rats. Suppression of CFSS-elicited depressive-like behaviors by antidepressants imipramine or ifenprodil inhibits the CFSS-induced exacerbation of neuropathic pain. Collectively, our findings suggest that CFSS potentiates synaptic efficiency of the BLA-CeA pathway, leading to the activation of GluN2B-NMDA receptors and sensitization of CeA neurons, which subsequently facilitate pain-related synaptic plasticity of the PB-CeA pathway, thereby exacerbating SNI-induced neuropathic pain. We conclude that chronic stress exacerbates neuropathic pain via the integration of stress-affect-related information with nociceptive information in the CeA.

  19. Amygdala Reactivity and Anterior Cingulate Habituation Predict Posttraumatic Stress Disorder Symptom Maintenance After Acute Civilian Trauma.

    Science.gov (United States)

    Stevens, Jennifer S; Kim, Ye Ji; Galatzer-Levy, Isaac R; Reddy, Renuka; Ely, Timothy D; Nemeroff, Charles B; Hudak, Lauren A; Jovanovic, Tanja; Rothbaum, Barbara O; Ressler, Kerry J

    2017-06-15

    Studies suggest that exaggerated amygdala reactivity is a vulnerability factor for posttraumatic stress disorder (PTSD); however, our understanding is limited by a paucity of prospective, longitudinal studies. Recent studies in healthy samples indicate that, relative to reactivity, habituation is a more reliable biomarker of individual differences in amygdala function. We investigated reactivity of the amygdala and cortical areas to repeated threat presentations in a prospective study of PTSD. Participants were recruited from the emergency department of a large level I trauma center within 24 hours of trauma. PTSD symptoms were assessed at baseline and approximately 1, 3, 6, and 12 months after trauma. Growth curve modeling was used to estimate symptom recovery trajectories. Thirty-one individuals participated in functional magnetic resonance imaging around the 1-month assessment, passively viewing fearful and neutral face stimuli. Reactivity (fearful > neutral) and habituation to fearful faces was examined. Amygdala reactivity, but not habituation, 5 to 12 weeks after trauma was positively associated with the PTSD symptom intercept and predicted symptoms at 12 months after trauma. Habituation in the ventral anterior cingulate cortex was positively associated with the slope of PTSD symptoms, such that decreases in ventral anterior cingulate cortex activation over repeated presentations of fearful stimuli predicted increasing symptoms. Findings point to neural signatures of risk for maintaining PTSD symptoms after trauma exposure. Specifically, chronic symptoms were predicted by amygdala hyperreactivity, and poor recovery was predicted by a failure to maintain ventral anterior cingulate cortex activation in response to fearful stimuli. The importance of identifying patients at risk after trauma exposure is discussed. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  20. Disrupted amygdala-prefrontal connectivity during emotion regulation links stress-reactive rumination and adolescent depressive symptoms

    Directory of Open Access Journals (Sweden)

    Carina H. Fowler

    2017-10-01

    Full Text Available Rumination in response to stress (stress-reactive rumination has been linked to higher levels of depressive symptoms in adolescents. However, no work to date has examined the neural mechanisms connecting stress-reactive rumination and adolescent depressive symptoms. The present work attempted to bridge this gap through an fMRI study of 41 adolescent girls (Mage = 15.42, SD = 0.33 – a population in whom elevated levels of depressive symptoms, rumination, and social stress sensitivity are displayed. During the scan, participants completed two tasks: an emotion regulation task and a social stress task. Using psychophysiological interaction (PPI analyses, we found that positive functional connectivity between the amygdala and ventrolateral prefrontal cortex (VLPFC during the emotion regulation task mediated the association between stress-reactive rumination and depressive symptoms. These results suggest that stress-reactive rumination may interfere with the expression and development of neural connectivity patterns associated with effective emotion regulation, which may contribute, in turn, to heightened depressive symptoms.

  1. Acute Stress Suppresses Synaptic Inhibition and Increases Anxiety via Endocannabinoid Release in the Basolateral Amygdala.

    Science.gov (United States)

    Di, Shi; Itoga, Christy A; Fisher, Marc O; Solomonow, Jonathan; Roltsch, Emily A; Gilpin, Nicholas W; Tasker, Jeffrey G

    2016-08-10

    Stress and glucocorticoids stimulate the rapid mobilization of endocannabinoids in the basolateral amygdala (BLA). Cannabinoid receptors in the BLA contribute to anxiogenesis and fear-memory formation. We tested for rapid glucocorticoid-induced endocannabinoid regulation of synaptic inhibition in the rat BLA. Glucocorticoid application to amygdala slices elicited a rapid, nonreversible suppression of spontaneous, but not evoked, GABAergic synaptic currents in BLA principal neurons; the effect was also seen with a membrane-impermeant glucocorticoid, but not with intracellular glucocorticoid application, implicating a membrane-associated glucocorticoid receptor. The glucocorticoid suppression of GABA currents was not blocked by antagonists of nuclear corticosteroid receptors, or by inhibitors of gene transcription or protein synthesis, but was blocked by inhibiting postsynaptic G-protein activity, suggesting a postsynaptic nongenomic steroid signaling mechanism that stimulates the release of a retrograde messenger. The rapid glucocorticoid-induced suppression of inhibition was prevented by blocking CB1 receptors and 2-arachidonoylglycerol (2-AG) synthesis, and it was mimicked and occluded by CB1 receptor agonists, indicating it was mediated by the retrograde release of the endocannabinoid 2-AG. The rapid glucocorticoid effect in BLA neurons in vitro was occluded by prior in vivo acute stress-induced, or prior in vitro glucocorticoid-induced, release of endocannabinoid. Acute stress also caused an increase in anxiety-like behavior that was attenuated by blocking CB1 receptor activation and inhibiting 2-AG synthesis in the BLA. Together, these findings suggest that acute stress causes a long-lasting suppression of synaptic inhibition in BLA neurons via a membrane glucocorticoid receptor-induced release of 2-AG at GABA synapses, which contributes to stress-induced anxiogenesis. We provide a cellular mechanism in the basolateral amygdala (BLA) for the rapid stress

  2. ADRA2B genotype differentially modulates stress-induced neural activity in the amygdala and hippocampus during emotional memory retrieval.

    Science.gov (United States)

    Li, Shijia; Weerda, Riklef; Milde, Christopher; Wolf, Oliver T; Thiel, Christiane M

    2015-02-01

    Noradrenaline interacts with stress hormones in the amygdala and hippocampus to enhance emotional memory consolidation, but the noradrenergic-glucocorticoid interaction at retrieval, where stress impairs memory, is less understood. We used a genetic neuroimaging approach to investigate whether a genetic variation of the noradrenergic system impacts stress-induced neural activity in amygdala and hippocampus during recognition of emotional memory. This study is based on genotype-dependent reanalysis of data from our previous publication (Li et al. Brain Imaging Behav 2014). Twenty-two healthy male volunteers were genotyped for the ADRA2B gene encoding the α2B-adrenergic receptor. Ten deletion carriers and 12 noncarriers performed an emotional face recognition task, while their brain activity was measured with fMRI. During encoding, 50 fearful and 50 neutral faces were presented. One hour later, they underwent either an acute stress (Trier Social Stress Test) or a control procedure which was followed immediately by the retrieval session, where participants had to discriminate between 100 old and 50 new faces. A genotype-dependent modulation of neural activity at retrieval was found in the bilateral amygdala and right hippocampus. Deletion carriers showed decreased neural activity in the amygdala when recognizing emotional faces in control condition and increased amygdala activity under stress. Noncarriers showed no differences in emotional modulated amygdala activation under stress or control. Instead, stress-induced increases during recognition of emotional faces were present in the right hippocampus. The genotype-dependent effects of acute stress on neural activity in amygdala and hippocampus provide evidence for noradrenergic-glucocorticoid interaction in emotional memory retrieval.

  3. Human amygdala engagement moderated by early life stress exposure is a biobehavioral target for predicting recovery on antidepressants.

    Science.gov (United States)

    Goldstein-Piekarski, Andrea N; Korgaonkar, Mayuresh S; Green, Erin; Suppes, Trisha; Schatzberg, Alan F; Hastie, Trevor; Nemeroff, Charles B; Williams, Leanne M

    2016-10-18

    Amygdala circuitry and early life stress (ELS) are both strongly and independently implicated in the neurobiology of depression. Importantly, animal models have revealed that the contribution of ELS to the development and maintenance of depression is likely a consequence of structural and physiological changes in amygdala circuitry in response to stress hormones. Despite these mechanistic foundations, amygdala engagement and ELS have not been investigated as biobehavioral targets for predicting functional remission in translational human studies of depression. Addressing this question, we integrated human neuroimaging and measurement of ELS within a controlled trial of antidepressant outcomes. Here we demonstrate that the interaction between amygdala activation engaged by emotional stimuli and ELS predicts functional remission on antidepressants with a greater than 80% cross-validated accuracy. Our model suggests that in depressed people with high ELS, the likelihood of remission is highest with greater amygdala reactivity to socially rewarding stimuli, whereas for those with low-ELS exposure, remission is associated with lower amygdala reactivity to both rewarding and threat-related stimuli. This full model predicted functional remission over and above the contribution of demographics, symptom severity, ELS, and amygdala reactivity alone. These findings identify a human target for elucidating the mechanisms of antidepressant functional remission and offer a target for developing novel therapeutics. The results also offer a proof-of-concept for using neuroimaging as a target for guiding neuroscience-informed intervention decisions at the level of the individual person.

  4. Nesfatin-1/NUCB2 in the amygdala influences visceral sensitivity via glucocorticoid and mineralocorticoid receptors in male maternal separation rats.

    Science.gov (United States)

    Zhou, X-P; Sha, J; Huang, L; Li, T-N; Zhang, R-R; Tang, M-D; Lin, L; Li, X-L

    2016-10-01

    Nesfatin-1, a recently identified satiety molecule derived from nucleobindin 2 (NUCB2), is associated with visceral hypersensitivity in rats and is expressed in the amygdala. We tested the hypothesis that nesfatin-1 expression in the amygdala is involved in the pathogenesis of irritable bowel syndrome (IBS) visceral hypersensitivity. An animal model of IBS-like visceral hypersensitivity was established using maternal separation (MS) during postnatal days 2-16. The role of nesfatin-1 in the amygdala on visceral sensitivity was evaluated. Rats subjected to MS showed a significantly increased mean abdominal withdrawal reflex (AWR) score and electromyographic (EMG) activity at 40, 60, and 80 mmHg colorectal distension. Plasma concentrations of nesfatin-1 and corticosterone were significantly higher than in non-handled (NH) rats. mRNA and protein expression of nesfatin-1/NUCB2 in the amygdala were increased in MS rats, but not in NH rats. In MS rats, AWR scores and EMG activity were significantly decreased after anti-nesfatin-1/NUCB2 injection. In normal rats, mean AWR score, EMG activity, and corticosterone expression were significantly increased after nesfatin-1 injection into the amygdala. Nesfatin-1-induced visceral hypersensitivity was abolished following application of glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) antagonists. Elevated expression of nesfatin-1/NUCB2 in the amygdala in MS rats suggests a potential role in the pathogenesis of visceral hypersensitivity, which could potentially take place via activation of GR and MR signaling pathways. © 2016 John Wiley & Sons Ltd.

  5. Posttraumatic stress and alcohol use among veterans: Amygdala and anterior cingulate activation to emotional cues.

    Science.gov (United States)

    Simons, Raluca M; Simons, Jeffrey S; Olson, Dawne; Baugh, Lee; Magnotta, Vincent; Forster, Gina

    2016-11-01

    This fMRI study tested a model of combat trauma, posttraumatic stress symptoms (PTSS), alcohol use, and behavioral and neural responses to emotional cues in 100 OIF/OEF/OND veterans. Multilevel structural equation models were tested for left and right dorsal ACC (dACC), rostral ACC (rACC), and amygdala blood-oxygen- level dependent responses during the emotional counting Stroop test and masked faces task. In the Stroop task, combat exposure moderated the effect of combat stimuli resulting in hyperactivation in the rACC and dACC. Activation in the left amygdala also increased in response to combat stimuli, but effects did not vary as a function of combat severity. In the masked faces task, activation patterns did not vary as a function of stimulus. However, at the between-person level, amygdala activation during the masked faces task was inversely associated with PTSS. In respect to behavioral outcomes, higher PTSS were associated with a stronger Stroop effect, suggesting greater interference associated with combat words. Results are consistent with the premise that combat trauma results in hyperactivation in the ACC in response to combat stimuli, and, via its effect on PTSS, is associated with deficits in cognitive performance in the presence of combat stimuli. Across tasks, predeployment drinking was inversely associated with activation in the dACC but not the rACC or amygdala. Drinking may be a buffering factor, or negatively reinforcing in part because of its effects on normalizing brain response following trauma exposure. Alternatively, drinking may undermine adaptive functioning of the dACC when responding to traumatic stress cues. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  6. Neurobiological Programming of Early Life Stress: Functional Development of Amygdala-Prefrontal Circuitry and Vulnerability for Stress-Related Psychopathology.

    Science.gov (United States)

    VanTieghem, Michelle R; Tottenham, Nim

    2017-04-25

    Early adverse experiences are associated with heighted vulnerability for stress-related psychopathology across the lifespan. While extensive work has investigated the effects of early adversity on neurobiology in adulthood, developmental approaches can provide further insight on the neurobiological mechanisms that link early experiences and long-term mental health outcomes. In the current review, we discuss the role of emotion regulation circuitry implicated in stress-related psychopathology from a developmental and transdiagnostic perspective. We highlight converging evidence suggesting that multiple forms of early adverse experiences impact the functional development of amygdala-prefrontal circuitry. Next, we discuss how adversity-induced alterations in amygdala-prefrontal development are associated with symptoms of emotion dysregulation and psychopathology. Additionally, we discuss potential mechanisms through which protective factors may buffer the effects of early adversity on amygdala-prefrontal development to confer more adaptive long-term outcomes. Finally, we consider limitations of the existing literature and make suggestions for future longitudinal and translational research that can better elucidate the mechanisms linking early adversity, neurobiology, and emotional phenotypes. Together, these findings may provide further insight into the neuro-developmental mechanisms underlying the emergence of adversity-related emotional disorders and facilitate the development of targeted interventions that can ameliorate risk for psychopathology in youth exposed to early life stress.

  7. Preferential recruitment of the basolateral amygdala during memory encoding of negative scenes in posttraumatic stress disorder.

    Science.gov (United States)

    Patel, Ronak; Girard, Todd A; Pukay-Martin, Nicole; Monson, Candice

    2016-04-01

    The vast majority of functional neuroimaging studies in posttraumatic stress disorder (PTSD) have examined the amygdala as a unitary structure. However, an emerging body of studies indicates that separable functions are subserved by discrete amygdala subregions. The basolateral subdivision (BLA), as compared with the centromedial amygdala (CMA), plays a unique role in learning and memory-based processes for threatening events, and alterations to the BLA have been implicated in the pathogenesis of PTSD. We assessed whether PTSD is associated with differential involvement of the BLA versus the CMA during successful encoding of emotionally charged events. Participants with PTSD (n=11) and a trauma-exposed comparison (TEC) group (n=11) viewed a series of photos that varied in valence (negative versus positive) and arousal (high versus low) while undergoing functional magnetic resonance imaging (fMRI). Subsequently, participants completed an old/new recognition memory test. Using analytic methods based on probabilistic cytoarchitectonic mapping, PTSD was associated with greater activation of the BLA, as compared to the CMA, during successful encoding of negative scenes, a finding which was not observed in the TEC group. Moreover, this memory-related activity in the BLA independently predicted PTSD status. Contrary to hypotheses, there was no evidence of altered BLA activity during memory encoding of high arousing relative to low arousing scenes. Task-related brain activation in PTSD does not appear to be consistent across the entire amygdala. Importantly, memory-related processing of negative information in PTSD is associated with preferential recruitment of the BLA. Copyright © 2016. Published by Elsevier Inc.

  8. Hypothalamic vasopressinergic projections innervate central amygdala GABAergic neurons: implications for anxiety and stress coping

    Directory of Open Access Journals (Sweden)

    Vito Salvador Hernandez

    2016-11-01

    Full Text Available The arginine-vasopressin (AVP-containing hypothalamic magnocellular neurosecretory neurons (VPMNNs are known for their role in hydro-electrolytic balance control via their projections to neurohypophysis. Recently, projections from these same neurons to hippocampus, habenula, and other brain regions, in which vasopressin infusion modulates contingent social and emotionally-affected behaviors, have been reported. Here, we present evidence that VPMNN collaterals also project to the amygdaloid complex, and establish synaptic connections with neurons in central amygdala (CeA. The density of AVP innervation in amygdala was substantially increased in adult rats that had experienced neonatal maternal separation (MS, consistent with our previous observations that MS enhances VPMNN number in the paraventricular (PVN and supraoptic (SON nuclei of the hypothalamus. In the CeA, V1a AVP receptor mRNA was only observed in GABAergic neurons, demonstrated by complete co-localization of V1a transcripts in neurons expressing Gad1 and Gad2 transcripts in CeA using the RNAscope method. V1b and V2 receptors mRNA were not detected, using the same method. Water-deprivation for 24 hrs, which increased the metabolic activity of VPMNNs, also increased anxiety-like behavior measured using the elevated plus maze test, and this effect was mimicked by bilateral microinfusion of VP into the CeA. Anxious behavior induced by either water deprivation or VP infusion was reversed by CeA infusion of V1a antagonist. VPMNNs are thus a newly discovered source of central amygdala inhibitory circuit modulation, through which both early-life and adult stress coping signals are conveyed from the hypothalamus to the amygdala.

  9. Abnormal functional architecture of amygdala-centered networks in adolescent posttraumatic stress disorder.

    Science.gov (United States)

    Aghajani, Moji; Veer, Ilya M; van Hoof, Marie-José; Rombouts, Serge A R B; van der Wee, Nic J; Vermeiren, Robert R J M

    2016-03-01

    Posttraumatic stress disorder (PTSD) is a prevalent, debilitating, and difficult to treat psychiatric disorder. Very little is known of how PTSD affects neuroplasticity in the developing adolescent brain. Whereas multiple lines of research implicate amygdala-centered network dysfunction in the pathophysiology of adult PTSD, no study has yet examined the functional architecture of amygdala subregional networks in adolescent PTSD. Using intrinsic functional connectivity analysis, we investigated functional connectivity of the basolateral (BLA) and centromedial (CMA) amygdala in 19 sexually abused adolescents with PTSD relative to 23 matched controls. Additionally, we examined whether altered amygdala subregional connectivity coincides with abnormal grey matter volume of the amygdaloid complex. Our analysis revealed abnormal amygdalar connectivity and morphology in adolescent PTSD patients. More specifically, PTSD patients showed diminished right BLA connectivity with a cluster including dorsal and ventral portions of the anterior cingulate and medial prefrontal cortices (p < 0.05, corrected). In contrast, PTSD patients showed increased left CMA connectivity with a cluster including the orbitofrontal and subcallosal cortices (p < 0.05, corrected). Critically, these connectivity changes coincided with diminished grey matter volume within BLA and CMA subnuclei (p < 0.05, corrected), with CMA connectivity shifts additionally relating to more severe symptoms of PTSD. These findings provide unique insights into how perturbations in major amygdalar circuits could hamper fear regulation and drive excessive acquisition and expression of fear in PTSD. As such, they represent an important step toward characterizing the neurocircuitry of adolescent PTSD, thereby informing the development of reliable biomarkers and potential therapeutic targets. © 2016 Wiley Periodicals, Inc.

  10. Stress impairs reconsolidation of drug memory via glucocorticoid receptors in the basolateral amygdala.

    Science.gov (United States)

    Wang, Xiao-Yi; Zhao, Mei; Ghitza, Udi E; Li, Yan-Qin; Lu, Lin

    2008-05-21

    Relapse to drug taking induced by exposure to cues associated with drugs of abuse is a major challenge to the treatment of drug addiction. Previous studies indicate that drug seeking can be inhibited by disrupting the reconsolidation of a drug-related memory. Stress plays an important role in modulating different stages of memory including reconsolidation, but its role in the reconsolidation of a drug-related memory has not been investigated. Here, we examined the effects of stress and corticosterone on reconsolidation of a drug-related memory using a conditioned place preference (CPP) procedure. We also determined the role of glucocorticoid receptors (GRs) in the basolateral amygdala (BLA) in modulating the effects of stress on reconsolidation of this memory. We found that rats acquired morphine CPP after conditioning, and that this CPP was inhibited by stress given immediately after re-exposure to a previously morphine-paired chamber (a reconsolidation procedure). The disruptive effect of stress on reconsolidation of morphine related memory was prevented by inhibition of corticosterone synthesis with metyrapone or BLA, but not central amygdala (CeA), injections of the glucocorticoid (GR) antagonist RU38486 [(11,17)-11-[4-(dimethylamino)phenyl]-17-hydroxy-17-(1-propynyl)estra-4,9-dien-3-one]. Finally, the effect of stress on drug related memory reconsolidation was mimicked by systemic injections of corticosterone or injections of RU28362 [11,17-dihydroxy-6-methyl-17-(1-propynyl)androsta-1,4,6-triene-3-one] (a GR agonist) into BLA, but not the CeA. These results show that stress blocks reconsolidation of a drug-related memory, and this effect is mediated by activation of GRs in the BLA.

  11. Repeated social stress leads to contrasting patterns of structural plasticity in the amygdala and hippocampus.

    Science.gov (United States)

    Patel, D; Anilkumar, S; Chattarji, S; Buwalda, B

    2018-03-23

    Previous studies have demonstrated that repeated immobilization and restraint stress cause contrasting patterns of dendritic reorganization as well as alterations in spine density in amygdalar and hippocampal neurons. Whether social and ethologically relevant stressors can induce similar patterns of morphological plasticity remains largely unexplored. Hence, we assessed the effects of repeated social defeat stress on neuronal morphology in basolateral amygdala (BLA), hippocampal CA1 and infralimbic medial prefrontal cortex (mPFC). Male Wistar rats experienced social defeat stress on 5 consecutive days during confrontation in the resident-intruder paradigm with larger and aggressive Wild-type Groningen rats. This resulted in clear social avoidance behavior one day after the last confrontation. To assess the morphological consequences of repeated social defeat, 2 weeks after the last defeat, animals were sacrificed and brains were stained using a Golgi-Cox procedure. Morphometric analyses revealed that, compared to controls, defeated Wistar rats showed apical dendritic decrease in spine density on CA1 but not BLA. Sholl analysis demonstrated a significant dendritic atrophy of CA1 basal dendrites in defeated animals. In contrast, basal dendrites of BLA pyramidal neurons exhibited enhanced dendritic arborization in defeated animals. Social stress failed to induce lasting structural changes in mPFC neurons. Our findings demonstrate for the first time that social defeat stress elicits divergent patterns of structural plasticity in the hippocampus versus amygdala, similar to what has previously been reported with repeated physical stressors. Therefore, brain region specific variations may be a universal feature of stress-induced plasticity that is shared by both physical and social stressors. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Evidence of an IFN-γ by early life stress interaction in the regulation of amygdala reactivity to emotional stimuli.

    Science.gov (United States)

    Redlich, Ronny; Stacey, David; Opel, Nils; Grotegerd, Dominik; Dohm, Katharina; Kugel, Harald; Heindel, Walter; Arolt, Volker; Baune, Bernhard T; Dannlowski, Udo

    2015-12-01

    Since numerous studies have found that exposure to early life stress leads to increased peripheral inflammation and psychiatric disease, it is thought that peripheral immune activation precedes and possibly mediates the onset of stress-associated psychiatric disease. Despite early studies, IFNγ has received little attention relative to other inflammatory cytokines in the context of the pathophysiology of affective disorders. Neuroimaging endophenotypes have emerged recently as a promising means of elucidating these types of complex relationships including the modeling of the interaction between environmental factors and genetic predisposition. Here we investigate the GxE relationship between early-life stress and genetic variants of IFNγ on emotion processing. To investigate the impact of the relationship between genetic variants of IFNγ (rs1861494, rs2069718, rs2430561) and early life stress on emotion processing, a sample of healthy adults (n=409) undergoing an emotional faces paradigm in an fMRI study were genotyped and analysed. Information on early life stress was obtained via Childhood Trauma Questionnaire (CTQ). A positive association between early life stress and amygdala reactivity was found. Specifically, the main effect of genotype of rs1861494 on amygdala reactivity indicates a higher neural response in C allele carriers compared to T homozygotes, while we did not find main effects of rs2069718 and rs2430561. Importantly, interaction analyses revealed a specific interaction between IFNγ genotype (rs1861494) and early life stress affecting amygdala reactivity to emotional faces, resulting from a positive association between CTQ scores and amygdala reactivity in C allele carriers while this association was absent in T homozygotes. Our findings indicate that firstly the genetic variant of IFNγ (rs1861494) is involved with the regulation of amygdala reactivity to emotional stimuli and secondly, that this genetic variant moderates effects of early life

  13. Hypofunction of prefrontal cortex NMDA receptors does not change stress-induced release of dopamine and noradrenaline in amygdala but disrupts aversive memory.

    Science.gov (United States)

    Del Arco, Alberto; Ronzoni, Giacomo; Mora, Francisco

    2015-07-01

    A dysfunction of prefrontal cortex has been associated with the exacerbated response to stress observed in schizophrenic patients and high-risk individuals to develop psychosis. The hypofunction of NMDA glutamatergic receptors induced by NMDA antagonists produces cortico-limbic hyperactivity, and this is used as an experimental model to resemble behavioural abnormalities observed in schizophrenia. The aim of the present study was to investigate whether injections of NMDA antagonists into the medial prefrontal cortex of the rat change (1) the increases of dopamine, noradrenaline and corticosterone concentrations produced by acute stress in amygdala, and (2) the acquisition of aversive memory related to a stressful event. Male Wistar rats were implanted with guide cannulae to perform microdialysis and bilateral microinjections (0.5 μl/side) of the NMDA antagonist 3-[(R)-2-carboxypiperazin-4-yl]-propyl-1-phophonic acid (CPP) (25 and 100 ng). Prefrontal injections were performed 60 min before restraint stress in microdialysis experiments, or training (footshock; 0.6 mA, 2 s) in inhibitory avoidance test. Retention latency was evaluated 24 h after training as an index of aversive memory. Acute stress increased amygdala dialysate concentrations of dopamine (160% of baseline), noradrenaline (145% of baseline) and corticosterone (170% of baseline). Prefrontal injections of CPP did not change the increases of dopamine, noradrenaline or corticosterone produced by stress. In contrast, CPP significantly reduced the retention latency in the inhibitory avoidance test. These results suggest that the hypofunction of prefrontal NMDA receptors does not change the sensitivity to acute stress of dopamine and noradrenaline projections to amygdala but impairs the acquisition of aversive memory.

  14. Smaller amygdala volume and reduced anterior cingulate gray matter density associated with history of post-traumatic stress disorder.

    Science.gov (United States)

    Rogers, Mark A; Yamasue, Hidenori; Abe, Osamu; Yamada, Haruyasu; Ohtani, Toshiyuki; Iwanami, Akira; Aoki, Shigeki; Kato, Nobumasa; Kasai, Kiyoto

    2009-12-30

    Although post-traumatic stress disorder (PTSD) may be seen to represent a failure to extinguish learned fear, significant aspects of the pathophysiology relevant to this hypothesis remain unknown. Both the amygdala and hippocampus are necessary for fear extinction occur, and thus both regions may be abnormal in PTSD. Twenty-five people who experienced the Tokyo subway sarin attack in 1995, nine who later developed PTSD and 16 who did not, underwent magnetic resonance imaging (MRI) with manual tracing to determine bilateral amygdala and hippocampus volumes. At the time of scanning, one had PTSD and eight had a history of PTSD. Results indicated that the group with a history of PTSD had significantly smaller mean bilateral amygdala volume than did the group that did not develop PTSD. Furthermore, left amygdala volume showed a significant negative correlation with severity of PTSD symptomatology as well as reduced gray matter density in the left anterior cingulate cortex. To our knowledge, this is the first observation of an association between PTSD and amygdala volume. Furthermore the apparent interplay between amygdala and anterior cingulate cortex represents support at the level of gross brain morphology for the theory of PTSD as a failure of fear extinction.

  15. High early life stress and aberrant amygdala activity: risk factors for elevated neuropsychiatric symptoms in HIV+ adults.

    Science.gov (United States)

    Clark, Uraina S; Sweet, Lawrence H; Morgello, Susan; Philip, Noah S; Cohen, Ronald A

    2017-06-01

    Relative to HIV-negative adults, HIV+ adults report elevated levels of early life stress (ELS). In non-HIV samples, high ELS has been linked to abnormalities in brain structure and function, as well as increased risk of neuropsychiatric symptoms. Yet, little is known about the neural effects of high ELS, and their relation to elevated neuropsychiatric symptoms, in HIV+ adults. Recent studies have revealed combined effects of HIV and high ELS on amygdala morphometry. Aberrant amygdala activity is prominently implicated in studies of neuropsychiatric symptomology in non-HIV samples. Hence, this preliminary study examined: 1) the combined effects of HIV and high ELS on amygdala activity, and 2) the relation between amygdala activity and neuropsychiatric symptoms in HIV+ adults. We included 28 HIV+ adults and 25 demographically-matched HIV-negative control (HC) adults. ELS exposure was quantified using a retrospective ELS questionnaire, which defined four groups: HIV+ Low-ELS (N = 15); HIV+ High-ELS (N = 13); HC Low-ELS (N = 16); and HC High-ELS (N = 9). Participants completed a battery of neuropsychiatric measures. BOLD fMRI assessed amygdala reactivity during explicit observation of fearful/angry faces. High-ELS participants demonstrated reduced levels of amygdala reactivity relative to Low-ELS participants. HIV+ High-ELS participants reported higher levels of neuropsychiatric symptoms than all other groups. In the HIV+ group, lower amygdala responses were associated with higher neuropsychiatric symptoms, particularly depression, anxiety, and alexithymia. Collectively, these results suggest that high ELS exposure is a significant risk factor for neuropsychiatric symptoms in HIV+ adults. Furthermore, our results implicate ELS-related abnormalities in amygdala activity in the etiology of neuropsychiatric symptoms in HIV+ adults.

  16. Unpredictable neonatal stress enhances adult anxiety and alters amygdala gene expression related to serotonin and GABA.

    Science.gov (United States)

    Sarro, E C; Sullivan, R M; Barr, G

    2014-01-31

    Anxiety-related disorders are among the most common psychiatric illnesses, thought to have both genetic and environmental causes. Early-life trauma, such as abuse from a caregiver, can be predictable or unpredictable, each resulting in increased prevalence and severity of a unique set of disorders. In this study, we examined the influence of early unpredictable trauma on both the behavioral expression of adult anxiety and gene expression within the amygdala. Neonatal rats were exposed to unpaired odor-shock conditioning for 5 days, which produces deficits in adult behavior and amygdala dysfunction. In adulthood, we used the Light/Dark box test to measure anxiety-related behaviors, measuring the latency to enter the lit area and quantified urination and defecation. The amygdala was then dissected and a microarray analysis was performed to examine changes in gene expression. Animals that had received early unpredictable trauma displayed significantly longer latencies to enter the lit area and more defecation and urination. The microarray analysis revealed over-represented genes related to learning and memory, synaptic transmission and trans-membrane transport. Gene ontology and pathway analysis identified highly represented disease states related to anxiety phenotypes, including social anxiety, obsessive-compulsive disorders, post-traumatic stress disorder and bipolar disorder. Addiction-related genes were also overrepresented in this analysis. Unpredictable shock during early development increased anxiety-like behaviors in adulthood with concomitant changes in genes related to neurotransmission, resulting in gene expression patterns similar to anxiety-related psychiatric disorders. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. Prenatal stress, regardless of concurrent escitalopram treatment, alters behavior and amygdala gene expression of adolescent female rats

    Science.gov (United States)

    Ehrlich, David E.; Neigh, Gretchen N.; Bourke, Chase H.; Nemeth, Christina L.; Hazra, Rimi; Ryan, Steven J.; Rowson, Sydney; Jairam, Nesha; Sholar, Courtney; Rainnie, Donald G.; Stowe, Zachary N.; Owens, Michael J.

    2015-01-01

    Depression during pregnancy has been linked to in utero stress and is associated with long-lasting symptoms in offspring, including anxiety, helplessness, attentional deficits, and social withdrawal. Depression is diagnosed in 10-20% of expectant mothers, but the impact of antidepressant treatment on offspring development is not well documented, particularly for females. Here, we used a prenatal stress model of maternal depression to test the hypothesis that in utero antidepressant treatment could mitigate the effects of prenatal stress. We also investigated the effects of prenatal stress and antidepressant treatment on gene expression related to GABAergic and serotonergic neurotransmission in the amygdala, which may underlie behavioral effects of prenatal stress. Nulliparous female rats were implanted with osmotic minipumps delivering clinically-relevant concentrations of escitalopram and mated. Pregnant dams were exposed to 12 days of mixed-modality stressors, and offspring were behaviorally assessed in adolescence (postnatal day 28) and adulthood (beyond day 90) to determine the extent of behavioral change. We found that in utero stress exposure, regardless of escitalopram treatment, increased anxiety-like behavior in adolescent females and profoundly influenced amygdala expression of the chloride transporters KCC2 and NKCC1, which regulate GABAergic function. In contrast, prenatal escitalopram exposure alone elevated amygdala expression of 5-HT1A receptors. In adulthood, anxiety-like behavior returned to baseline and gene expression effects in the amygdala abated, whereas deficits emerged in novel object recognition for rats exposed to stress during gestation. These findings suggest prenatal stress causes age-dependent deficits in anxiety-like behavior and amygdala function in female offspring, regardless of antidepressant exposure. PMID:26032436

  18. CORTICOTROPIN-RELEASING HORMONE MICROINFUSION IN THE CENTRAL AMYGDALA DIMINISHES A CARDIAC PARASYMPATHETIC OUTFLOW UNDER STRESS-FREE CONDITIONS

    NARCIS (Netherlands)

    WIERSMA, A; BOHUS, B; KOOLHAAS, JM

    1993-01-01

    The central nucleus of the amygdala (CeA) is known to be involved in the regulation of autonomic, neuroendocrine and behavioural responses in stress situations. The CeA contains large numbers of corticotropin-releasing hormone (CRH) cell bodies. Neuroanatomical studies revealed that the majority of

  19. Unique insula subregion resting-state functional connectivity with amygdala complexes in posttraumatic stress disorder and its dissociative subtype.

    Science.gov (United States)

    Nicholson, Andrew A; Sapru, Iman; Densmore, Maria; Frewen, Paul A; Neufeld, Richard W J; Théberge, Jean; McKinnon, Margaret C; Lanius, Ruth A

    2016-04-30

    The insula and amygdala are implicated in the pathophysiology of posttraumatic stress disorder (PTSD), where both have been shown to be hyper/hypoactive in non-dissociative (PTSD-DS) and dissociative subtype (PTSD+DS) PTSD patients, respectively, during symptom provocation. However, the functional connectivity between individual insula subregions and the amygdala has not been investigated in persons with PTSD, with or without the dissociative subtype. We examined insula subregion (anterior, mid, and posterior) functional connectivity with the bilateral amygdala using a region-of-interest seed-based approach via PickAtlas and SPM8. Resting-state fMRI was conducted with (n=61) PTSD patients (n=44 PTSD-DS; n=17 PTSD+DS), and (n=40) age-matched healthy controls. When compared to controls, the PTSD-DS group displayed increased insula connectivity (bilateral anterior, bilateral mid, and left posterior) to basolateral amygdala clusters in both hemispheres, and the PTSD+DS group displayed increased insula connectivity (bilateral anterior, left mid, and left posterior) to the left basolateral amygdala complex. Moreover, as compared to PTSD-DS, increased insula subregion connectivity (bilateral anterior, left mid, and right posterior) to the left basolateral amygdala was found in PTSD+DS. Depersonalization/derealization symptoms and PTSD symptom severity correlated with insula subregion connectivity to the basolateral amygdala within PTSD patients. This study is an important first step in elucidating patterns of neural connectivity associated with unique symptoms of arousal/interoception, emotional processing, and awareness of bodily states, in PTSD and its dissociative subtype. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Stress leads to contrasting effects on the levels of brain derived neurotrophic factor in the hippocampus and amygdala.

    Directory of Open Access Journals (Sweden)

    Harini Lakshminarasimhan

    Full Text Available Recent findings on stress induced structural plasticity in rodents have identified important differences between the hippocampus and amygdala. The same chronic immobilization stress (CIS, 2 h/day causes growth of dendrites and spines in the basolateral amygdala (BLA, but dendritic atrophy in hippocampal area CA3. CIS induced morphological changes also differ in their temporal longevity--BLA hypertrophy, unlike CA3 atrophy, persists even after 21 days of stress-free recovery. Furthermore, a single session of acute immobilization stress (AIS, 2 h leads to a significant increase in spine density 10 days, but not 1 day, later in the BLA. However, little is known about the molecular correlates of the differential effects of chronic and acute stress. Because BDNF is known to be a key regulator of dendritic architecture and spines, we investigated if the levels of BDNF expression reflect the divergent effects of stress on the hippocampus and amygdala. CIS reduces BDNF in area CA3, while it increases it in the BLA of male Wistar rats. CIS-induced increase in BDNF expression lasts for at least 21 days after the end of CIS in the BLA. But CIS-induced decrease in area CA3 BDNF levels, reverses to normal levels within the same period. Finally, BDNF is up regulated in the BLA 1 day after AIS and this increase persists even 10 days later. In contrast, AIS fails to elicit any significant change in area CA3 at either time points. Together, these findings demonstrate that both acute and chronic stress trigger opposite effects on BDNF levels in the BLA versus area CA3, and these divergent changes also follow distinct temporal profiles. These results point to a role for BDNF in stress-induced structural plasticity across both hippocampus and amygdala, two brain areas that have also been implicated in the cognitive and affective symptoms of stress-related psychiatric disorders.

  1. Basolateral amygdala GABA-A receptors mediate stress-induced memory retrieval impairment in rats.

    Science.gov (United States)

    Sardari, Maryam; Rezayof, Ameneh; Khodagholi, Fariba; Zarrindast, Mohammad-Reza

    2014-04-01

    The present study was designed to investigate the involvement of GABA-A receptors of the basolateral amygdala (BLA) in the impairing effect of acute stress on memory retrieval. The BLAs of adult male Wistar rats were bilaterally cannulated and memory retrieval was measured in a step-through type passive avoidance apparatus. Acute stress was evoked by placing the animals on an elevated platform for 10, 20 and 30 min. The results indicated that exposure to 20 and 30 min stress, but not 10 min, before memory retrieval testing (pre-test exposure to stress) decreased the step-through latency, indicating stress-induced memory retrieval impairment. Intra-BLA microinjection of a GABA-A receptor agonist, muscimol (0.005-0.02 μg/rat), 5 min before exposure to an ineffective stress (10 min exposure to stress) induced memory retrieval impairment. It is important to note that pre-test intra-BLA microinjection of the same doses of muscimol had no effect on memory retrieval in the rats unexposed to 10 min stress. The blockade of GABA-A receptors of the BLA by injecting an antagonist, bicuculline (0.4-0.5 μg/rat), 5 min before 20 min exposure to stress, prevented stress-induced memory retrieval. Pre-test intra-BLA microinjection of the same doses of bicuculline (0.4-0.5 μg/rat) in rats unexposed to 20 min stress had no effect on memory retrieval. In addition, pre-treatment with bicuculline (0.1-0.4 μg/rat, intra-BLA) reversed muscimol (0.02 μg/rat, intra-BLA)-induced potentiation on the effect of stress in passive avoidance learning. It can be concluded that pre-test exposure to stress can induce memory retrieval impairment and the BLA GABA-A receptors may be involved in stress-induced memory retrieval impairment.

  2. Stress enhances fear by forming new synapses with greater capacity for long-term potentiation in the amygdala.

    Science.gov (United States)

    Suvrathan, Aparna; Bennur, Sharath; Ghosh, Supriya; Tomar, Anupratap; Anilkumar, Shobha; Chattarji, Sumantra

    2014-01-05

    Prolonged and severe stress leads to cognitive deficits, but facilitates emotional behaviour. Little is known about the synaptic basis for this contrast. Here, we report that in rats subjected to chronic immobilization stress, long-term potentiation (LTP) and NMDA receptor (NMDAR)-mediated synaptic responses are enhanced in principal neurons of the lateral amygdala, a brain area involved in fear memory formation. This is accompanied by electrophysiological and morphological changes consistent with the formation of 'silent synapses', containing only NMDARs. In parallel, chronic stress also reduces synaptic inhibition. Together, these synaptic changes would enable amygdalar neurons to undergo further experience-dependent modifications, leading to stronger fear memories. Consistent with this prediction, stressed animals exhibit enhanced conditioned fear. Hence, stress may leave its mark in the amygdala by generating new synapses with greater capacity for plasticity, thereby creating an ideal neuronal substrate for affective disorders. These findings also highlight the unique features of stress-induced plasticity in the amygdala that are strikingly different from the stress-induced impairment of structure and function in the hippocampus.

  3. The Dissociative Subtype of Posttraumatic Stress Disorder: Unique Resting-State Functional Connectivity of Basolateral and Centromedial Amygdala Complexes.

    Science.gov (United States)

    Nicholson, Andrew A; Densmore, Maria; Frewen, Paul A; Théberge, Jean; Neufeld, Richard Wj; McKinnon, Margaret C; Lanius, Ruth A

    2015-09-01

    Previous studies point towards differential connectivity patterns among basolateral (BLA) and centromedial (CMA) amygdala regions in patients with posttraumatic stress disorder (PTSD) as compared with controls. Here we describe the first study to compare directly connectivity patterns of the BLA and CMA complexes between PTSD patients with and without the dissociative subtype (PTSD+DS and PTSD-DS, respectively). Amygdala connectivity to regulatory prefrontal regions and parietal regions involved in consciousness and proprioception were expected to differ between these two groups based on differential limbic regulation and behavioral symptoms. PTSD patients (n=49) with (n=13) and without (n=36) the dissociative subtype and age-matched healthy controls (n=40) underwent resting-state fMRI. Bilateral BLA and CMA connectivity patterns were compared using a seed-based approach via SPM Anatomy Toolbox. Among patients with PTSD, the PTSD+DS group exhibited greater amygdala functional connectivity to prefrontal regions involved in emotion regulation (bilateral BLA and left CMA to the middle frontal gyrus and bilateral CMA to the medial frontal gyrus) as compared with the PTSD-DS group. In addition, the PTSD+DS group showed greater amygdala connectivity to regions involved in consciousness, awareness, and proprioception-implicated in depersonalization and derealization (left BLA to superior parietal lobe and cerebellar culmen; left CMA to dorsal posterior cingulate and precuneus). Differences in amygdala complex connectivity to specific brain regions parallel the unique symptom profiles of the PTSD subgroups and point towards unique biological markers of the dissociative subtype of PTSD.

  4. Individual modulation of pain sensitivity under stress.

    Science.gov (United States)

    Reinhardt, Tatyana; Kleindienst, Nikolaus; Treede, Rolf-Detlef; Bohus, Martin; Schmahl, Christian

    2013-05-01

    Stress has a strong influence on pain sensitivity. However, the direction of this influence is unclear. Recent studies reported both decreased and increased pain sensitivities under stress, and one hypothesis is that interindividual differences account for these differences. The aim of our study was to investigate the effect of stress on individual pain sensitivity in a relatively large female sample. Eighty female participants were included. Pain thresholds and temporal summation of pain were tested before and after stress, which was induced by the Mannheim Multicomponent Stress Test. In an independent sample of 20 women, correlation coefficients between 0.45 and 0.89 indicated relatively high test-retest reliability for pain measurements. On average, there were significant differences between pain thresholds under non-stress and stress conditions, indicating an increased sensitivity to pain under stress. No significant differences between non-stress and stress conditions were found for temporal summation of pain. On an individual basis, both decreased and increased pain sensitivities under stress conditions based on Jacobson's criteria for reliable change were observed. Furthermore, we found significant negative associations between pain sensitivity under non-stress conditions and individual change of pain sensitivity under stress. Participants with relatively high pain sensitivity under non-stress conditions became less sensitive under stress and vice versa. These findings support the view that pain sensitivity under stress shows large interindividual variability, and point to a possible dichotomy of altered pain sensitivity under stress. Wiley Periodicals, Inc.

  5. Neurofascin Knock Down in the Basolateral Amygdala Mediates Resilience of Memory and Plasticity in the Dorsal Dentate Gyrus Under Stress.

    Science.gov (United States)

    Saha, Rinki; Kriebel, Martin; Volkmer, Hansjürgen; Richter-Levin, Gal; Albrecht, Anne

    2018-02-05

    Activation of the amygdala is one of the hallmarks of acute stress reactions and a central element of the negative impact of stress on hippocampus-dependent memory and cognition. Stress-induced psychopathologies, such as posttraumatic stress disorder, exhibit a sustained hyperactivity of the amygdala, triggered at least in part by deficits in GABAergic inhibition that lead to shifts in amygdalo-hippocampal interaction. Here, we have utilized lentiviral knock down of neurofascin to reduce GABAergic inhibition specifically at the axon initial segment (AIS) of principal neurons within the basolateral amygdala (BLA) of rats. Metaplastic effects of such a BLA modulation on hippocampal synaptic function were assessed using BLA priming prior to the induction of long-term potentiation (LTP) on dentate gyrus synapses in anesthetized rats in vivo. The knock down of neurofascin in the BLA prevented a priming-induced impairment on LTP maintenance in the dentate gyrus. At the behavioral level, a similar effect was observable, with neurofascin knock down preventing the detrimental impact of acute traumatic stress on hippocampus-dependent spatial memory retrieval in a water maze task. These findings suggest that reducing GABAergic inhibition specifically at the AIS synapses of the BLA alters amygdalo-hippocampal interactions such that it attenuates the adverse impact of acute stress exposure on cognition-related hippocampal functions.

  6. Endocannabinoid signaling within the basolateral amygdala integrates multiple stress hormone effects on memory consolidation.

    Science.gov (United States)

    Atsak, Piray; Hauer, Daniela; Campolongo, Patrizia; Schelling, Gustav; Fornari, Raquel V; Roozendaal, Benno

    2015-05-01

    Glucocorticoid hormones are known to act synergistically with other stress-activated neuromodulatory systems, such as norepinephrine and corticotropin-releasing factor (CRF), within the basolateral complex of the amygdala (BLA) to induce optimal strengthening of the consolidation of long-term memory of emotionally arousing experiences. However, as the onset of these glucocorticoid actions appear often too rapid to be explained by genomic regulation, the neurobiological mechanism of how glucocorticoids could modify the memory-enhancing properties of norepinephrine and CRF remained elusive. Here, we show that the endocannabinoid system, a rapidly activated retrograde messenger system, is a primary route mediating the actions of glucocorticoids, via a glucocorticoid receptor on the cell surface, on BLA neural plasticity and memory consolidation. Furthermore, glucocorticoids recruit downstream endocannabinoid activity within the BLA to interact with both the norepinephrine and CRF systems in enhancing memory consolidation. These findings have important implications for understanding the fine-tuned crosstalk between multiple stress hormone systems in the coordination of (mal)adaptive stress and emotional arousal effects on neural plasticity and memory consolidation.

  7. Stress as a one-armed bandit: Differential effects of stress paradigms on the morphology, neurochemistry and behavior in the rodent amygdala

    Science.gov (United States)

    Wilson, Marlene A.; Grillo, Claudia A.; Fadel, Jim R.; Reagan, Lawrence P.

    2015-01-01

    Neuroplasticity may be defined as the ability of the central nervous system (CNS) to respond to changes in the internal and external environment and it is well established that some stimuli have the ability to facilitate or impair neuroplasticity depending on the pre-existing milieu. A classic example of a stimulus that can both facilitate and impair neuroplasticity is stress. Indeed, the ability of CNS to respond to acute stress is often dependent upon the prior stress history of the individual. While responses to acute stress are often viewed as adaptive in nature, stress reactivity in subjects with prior chronic stress experiences are often linked to neuropsychiatric disorders, including major depressive disorder, post-traumatic stress disorder (PTSD) and anxiety. In rodent studies, chronic stress exposure produces structural and functional alterations in the hippocampus and medial prefrontal cortex that are consistent across different types of stress paradigms. Conversely, the amygdala appears to exhibit differential structural and functional responses to stress that are dependent on a variety of factors, including the type of stressor performed and the duration of the stress paradigm. This is most evident in output measures including morphological analysis of amygdala neurons, measurement of glutamatergic tone in amygdalar subdivisions and the analysis of amygdala-centric behaviors. Accordingly, this review will provide an overview of the effects of stress on the structural and functional plasticity of the rodent amygdala, especially in relation to the differential effects of repeated or chronic stress paradigms on dendritic architecture, neurochemistry of the glutamatergic system and behavior. PMID:26844236

  8. Stress as a one-armed bandit: Differential effects of stress paradigms on the morphology, neurochemistry and behavior in the rodent amygdala

    Directory of Open Access Journals (Sweden)

    Marlene A. Wilson

    2015-01-01

    Full Text Available Neuroplasticity may be defined as the ability of the central nervous system (CNS to respond to changes in the internal and external environment and it is well established that some stimuli have the ability to facilitate or impair neuroplasticity depending on the pre-existing milieu. A classic example of a stimulus that can both facilitate and impair neuroplasticity is stress. Indeed, the ability of CNS to respond to acute stress is often dependent upon the prior stress history of the individual. While responses to acute stress are often viewed as adaptive in nature, stress reactivity in subjects with prior chronic stress experiences are often linked to neuropsychiatric disorders, including major depressive disorder, post-traumatic stress disorder (PTSD and anxiety. In rodent studies, chronic stress exposure produces structural and functional alterations in the hippocampus and medial prefrontal cortex that are consistent across different types of stress paradigms. Conversely, the amygdala appears to exhibit differential structural and functional responses to stress that are dependent on a variety of factors, including the type of stressor performed and the duration of the stress paradigm. This is most evident in output measures including morphological analysis of amygdala neurons, measurement of glutamatergic tone in amygdalar subdivisions and the analysis of amygdala-centric behaviors. Accordingly, this review will provide an overview of the effects of stress on the structural and functional plasticity of the rodent amygdala, especially in relation to the differential effects of repeated or chronic stress paradigms on dendritic architecture, neurochemistry of the glutamatergic system and behavior.

  9. The aqueous extract of Albizia adianthifolia leaves attenuates 6-hydroxydopamine-induced anxiety, depression and oxidative stress in rat amygdala.

    Science.gov (United States)

    Beppe, Galba Jean; Dongmo, Alain Bertrand; Foyet, Harquin Simplice; Dimo, Théophile; Mihasan, Marius; Hritcu, Lucian

    2015-10-19

    While the Albizia adianthifolia (Schumach.) W. Wright (Fabaceae) is a traditional herb largely used in the African traditional medicine as analgesic, purgative, antiinflammatory, antioxidant, antimicrobial, memory-enhancer, anxiolytic and antidepressant drug, there are no scientific data that clarify the anxiolytic and antidepressant-like effects in 6-hydroxydopamine (6-OHDA)-lesioned animal model of Parkinson's disease. This study was undertaken in order to identify the effects of aqueous extract of A. adianthifolia leaves on 6-hydroxydopamine-induced anxiety, depression and oxidative stress in the rat amygdala. The effect of the aqueous extract of A. adianthifolia leaves (150 and 300 mg/kg, orally, daily, for 21 days) on anxiety and depression was assessed using elevated plus-maze and forced swimming tests, as animal models of anxiety and depression. Also, the antioxidant activity in the rat amygdala was assessed using assessed using superoxide dismutase, glutathione peroxidase and catalase specific activities, the total content of the reduced glutathione, protein carbonyl and malondialdehyde levels. Statistical analyses were performed using by one-way analysis of variance (ANOVA). Significant differences were determined by Tukey's post hoc test. F values for which p amygdala. Our results suggest that the aqueous extract ameliorates 6-OHDA-induced anxiety and depression by attenuation of the oxidative stress in the rat amygdala. These pieces of evidence accentuate its use in traditional medicine.

  10. Stress during puberty boosts metabolic activation associated with fear-extinction learning in hippocampus, basal amygdala and cingulate cortex.

    Science.gov (United States)

    Toledo-Rodriguez, Maria; Pitiot, Alain; Paus, Tomáš; Sandi, Carmen

    2012-07-01

    Adolescence is characterized by major developmental changes that may render the individual vulnerable to stress and the development of psychopathologies in a sex-specific manner. Earlier we reported lower anxiety-like behavior and higher risk-taking and novelty seeking in rats previously exposed to peri-pubertal stress. Here we studied whether peri-pubertal stress affected the acquisition and extinction of fear memories and/or the associated functional engagement of various brain regions, as assessed with 2-deoxyglucose. We showed that while peri-pubertal stress reduced freezing during the acquisition of fear memories (training) in both sexes, it had a sex-specific effect on extinction of these memories. Moreover hippocampus, basal amygdala and cingulate and motor cortices showed higher metabolic rates during extinction in rats exposed to peri-pubertal stress. Interestingly, activation of the infralimbic cortex was negatively correlated with freezing during extinction only in control males, while only males stressed during puberty showed a significant correlation between behavior during extinction and metabolic activation of hippocampus, amygdala and paraventricular nucleus. No correlations between brain activation and behavior during extinction were observed in females (control or stress). These results indicate that exposure to peri-pubertal stress affects behavior and brain metabolism when the individual is exposed to an additional stressful challenge. Some of these effects are sex-specific. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Inactivation of basolateral amygdala prevents chronic immobilization stress-induced memory impairment and associated changes in corticosterone levels.

    Science.gov (United States)

    Tripathi, Sunil Jamuna; Chakraborty, Suwarna; Srikumar, B N; Raju, T R; Shankaranarayana Rao, B S

    2017-07-01

    Chronic stress causes detrimental effects on various forms of learning and memory. The basolateral amygdala (BLA) not only plays a crucial role in mediating certain forms of memory, but also in the modulation of the effects of stress. Chronic immobilization stress (CIS) results in hypertrophy of the BLA, which is believed to be one of the underlying causes for stress' effects on learning. Thus, it is plausible that preventing the effects of CIS on amygdala would preclude its deleterious cognitive effects. Accordingly, in the first part, we evaluated the effect of excitotoxic lesion of the BLA on chronic stress-induced hippocampal-dependent spatial learning using a partially baited radial arm maze task. The BLA was ablated bilaterally using ibotenic acid prior to CIS. Chronically stressed rats showed impairment in spatial learning with decreased percentage correct choice and increased reference memory errors. Excitotoxic lesion of the BLA prevented the impairment in spatial learning and reference memory. In the retention test, lesion of the BLA was able to rescue the chronic stress-induced impairment. Interestingly, stress-induced enhanced plasma corticosterone levels were partially prevented by the lesion of BLA. These results motivated us to evaluate if the same effects can be observed with temporary inactivation of BLA, only during stress. We found that chronic stress-induced spatial learning deficits were also prevented by temporary inactivation of the BLA. Additionally, temporary inactivation of BLA partially precluded the stress-induced increase in plasma corticosterone levels. Thus, inactivation of BLA precludes stress-induced spatial learning deficits, and enhanced plasma corticosterone levels. It is speculated that BLA inactivation-induced reduction in corticosterone levels during stress, might be crucial in restoring spatial learning impairments. Our study provides evidence that amygdalar modulation during stress might be beneficial for strategic

  12. The Role of the Medial Prefrontal Cortex-Amygdala Circuit in Stress Effects on the Extinction of Fear

    Directory of Open Access Journals (Sweden)

    Mouna Maroun

    2007-01-01

    Full Text Available Stress exposure, depending on its intensity and duration, affects cognition and learning in an adaptive or maladaptive manner. Studies addressing the effects of stress on cognitive processes have mainly focused on conditioned fear, since it is suggested that fear-motivated learning lies at the root of affective and anxiety disorders. Inhibition of fear-motivated response can be accomplished by experimental extinction of the fearful response to the fear-inducing stimulus. Converging evidence indicates that extinction of fear memory requires plasticity in both the medial prefrontal cortex and the amygdala. These brain areas are also deeply involved in mediating the effects of exposure to stress on memory. Moreover, extensive evidence indicates that gamma-aminobutyric acid (GABA transmission plays a primary role in the modulation of behavioral sequelae resulting from a stressful experience, and may also partially mediate inhibitory learning during extinction. In this review, we present evidence that exposure to a stressful experience may impair fear extinction and the possible involvement of the GABA system. Impairment of fear extinction learning is particularly important as it may predispose some individuals to the development of posttraumatic stress disorder. We further discuss a possible dysfunction in the medial prefrontal cortex-amygdala circuit following a stressful experience that may explain the impaired extinction caused by exposure to a stressor.

  13. Role of basal stress hormones and amygdala dimensions in stress coping strategies of male rhesus monkeys in response to a hazard-reward conflict

    Directory of Open Access Journals (Sweden)

    Elaheh Tekieh

    2017-08-01

    Full Text Available Objective(s: In the present study the effect of stress on monkeys that had learned to retrieve food from a five-chamber receptacle, as well as the relationship between their behavior and the serum cortisol and epinephrine levels and relative size of the amygdala was evaluated. Materials and Methods: Six male rhesus monkeys were individually given access to the food reward orderly. They could easily retrieve the rewards from all chambers except for the chamber 4, which a brief, mild electric shock (3 V was delivered to them upon touching the chamber’s interior. The coping behaviors were video-recorded and analyzed offline. Baseline serum cortisol and epinephrine levels were measured before the experiments using monkey enzyme-linked immunosorbent assay kit. One week after the behavioral experiment, the monkeys’ brains were scanned using magnetic resonance imaging under general anesthesia. The cross-sectional area of the left amygdala in sagittal plane relative to the area of the whole brain in the same slice was evaluated by the planimetric method using ImageJ software. Results: Exposure to the distressing condition caused different behavioral responses. Monkeys with higher baseline levels of serum cortisol and epinephrine and larger amygdala behaved more violently in the face of stress, indicating adopting emotion-focused stress-coping strategies. Conversely, those with low plasma epinephrine, moderate cortisol, and smaller amygdala showed perseverative behavior, indicating a problem-focused coping style. Conclusion: In dealing with the same stress, different responses might be observed from nonhuman primates according to their cortisol and epinephrine levels as well as their amygdala dimensions.

  14. Repeated homotypic stress elevates 2-arachidonoylglycerol levels and enhances short-term endocannabinoid signaling at inhibitory synapses in basolateral amygdala.

    Science.gov (United States)

    Patel, Sachin; Kingsley, Philip J; Mackie, Ken; Marnett, Lawrence J; Winder, Danny G

    2009-12-01

    Psychosocial stress is a risk factor for development and exacerbation of neuropsychiatric illness. Repeated stress causes biochemical adaptations in endocannabinoid (eCB) signaling that contribute to stress-response habituation, however, the synaptic correlates of these adaptations have not been examined. Here, we show that the synthetic enzyme for the eCB 2-arachidonoylglycerol (2-AG), diacylglycerol (DAG) lipase alpha, is heterogeneously expressed in the amygdala, and that levels of 2-AG and precursor DAGs are increased in the basolateral amygdala (BLA) after 10 days, but not 1 day, of restraint stress. In contrast, arachidonic acid was decreased after both 1 and 10 days of restraint stress. To examine the synaptic correlates of these alterations in 2-AG metabolism, we used whole-cell electrophysiology to determine the effects of restraint stress on depolarization-induced suppression of inhibition (DSI) in the BLA. A single restraint stress exposure did not alter DSI compared with control mice. However, after 10 days of restraint stress, DSI duration, but not magnitude, was significantly prolonged. Inhibition of 2-AG degradation with MAFP also prolonged DSI duration; the effects of repeated restraint stress and MAFP were mutually occlusive. These data indicate that exposure to repeated, but not acute, stress produces neuroadaptations that confer BLA neurons with an enhanced capacity to elevate 2-AG content and engage in 2-AG-mediated short-term retrograde synaptic signaling. We suggest stress-induced enhancement of eCB-mediated suppression of inhibitory transmission in the BLA could contribute to affective dysregulation associated with chronic stress.

  15. The effect of basolateral amygdala nucleus lesion on memory under acute,mid and chronic stress in male rats.

    Science.gov (United States)

    Ranjbar, Hoda; Radahmadi, Maryam; Alaei, Hojjatallah; Reisi, Parham; Karimi, Sara

    2016-12-20

    The basolateral amygdala (BLA) modulates memory for emotional events and is involved in both stress and memory. This study investigated different durations of stress and the role of BLA on serum corticosterone level and spatial and cognitive memory. Different durations of stress (acute, mid, and chronic stress), with and without BLA lesion were induced in rats by 6 h/day restraint stress for 1, 7, and 21 days. Memory functions were evaluated by novel object recognition (NOR) and object location test (OLT). The OLT findings showed locomotor activity and spatial memory slightly decreased with different durations of stress. The NOR findings significantly showed locomotor activity impairment in different durations of stress. Cognitive memory deficit was observed in mid stress. The corticosterone level significantly increased in the mid and chronic stress groups. Moreover, the mid stress was the strongest stress condition. There is a possibility that different stress durations act by different mechanisms. The recognition of a novel location decreased in all lesion groups. It was more severe in the NOR. The BLA lesion significantly decreased corticosterone level in the mid and chronic stress groups compared to similar groups without lesion. The BLA lesion caused more damage to cognitive than spatial memory in stressed groups.

  16. Disorganized Attachment in Infancy Predicts Greater Amygdala Volume in Adulthood

    Science.gov (United States)

    Lyons-Ruth, K.; Pechtel, P.; Yoon, S.A.; Anderson, C.M.; Teicher, M.H.

    2016-01-01

    Early life stress in rodents is associated with increased amygdala volume in adulthood. In humans, the amygdala develops rapidly during the first two years of life. Thus, disturbed care during this period may be particularly important to amygdala development. In the context of a 30-year longitudinal study of impoverished, highly stressed families, we assessed whether disorganization of the attachment relationship in infancy was related to amygdala volume in adulthood. Amygdala volumes were assessed among 18 low-income young adults (8M/10F, 29.33±0.49 years) first observed in infancy (8.5±5.6 months) and followed longitudinally to age 29. In infancy (18.58±1.02 mos), both disorganized infant attachment behavior and disrupted maternal communication were assessed in the standard Strange Situation Procedure (SSP). Increased left amygdala volume in adulthood was associated with both maternal and infant components of disorganized attachment interactions at 18 months of age (overall r = .679, p attachment disturbance in adolescence, were not significantly related to left amygdala volume. Left amygdala volume was further associated with dissociation and limbic irritability in adulthood. Finally, left amygdala volume mediated the prediction from attachment disturbance in infancy to limbic irritability in adulthood. Results point to the likely importance of quality of early care for amygdala development in human children as well as in rodents. The long-term prediction found here suggests that the first two years of life may be an early sensitive period for amygdala development during which clinical intervention could have particularly important consequences for later child outcomes. PMID:27060720

  17. TRH and TRH receptor system in the basolateral amygdala mediate stress-induced depression-like behaviors.

    Science.gov (United States)

    Choi, Juli; Kim, Ji-eun; Kim, Tae-Kyung; Park, Jin-Young; Lee, Jung-Eun; Kim, Hannah; Lee, Eun-Hwa; Han, Pyung-Lim

    2015-10-01

    Chronic stress is a potent risk factor for depression, but the mechanism by which stress causes depression is not fully understood. To investigate the molecular mechanism underlying stress-induced depression, C57BL/6 inbred mice were treated with repeated restraint to induce lasting depressive behavioral changes. Behavioral states of individual animals were evaluated using the forced swim test, which measures psychomotor withdrawals, and the U-field test, which measures sociability. From these behavioral analyses, individual mice that showed depression-like behaviors in both psychomotor withdrawal and sociability tests, and individuals that showed a resiliency to stress-induced depression in both tests were selected. Among the neuropeptides expressed in the amygdala, thyrotropin-releasing hormone (TRH) was identified as being persistently up-regulated in the basolateral amygdala (BLA) in individuals exhibiting severe depressive behaviors in the two behavior tests, but not in individuals displaying a stress resiliency. Activation of TRH receptors by local injection of TRH in the BLA in normal mice produced depressive behaviors, mimicking chronic stress effects, whereas siRNA-mediated suppression of either TRH or TRHR1 in the BLA completely blocked stress-induced depressive symptoms. The TRHR1 agonist, taltirelin, injection in the BLA increased the level of p-ERK, which mimicked the increased p-ERK level in the BLA that was induced by treatment with repeated stress. Stereotaxic injection of U0126, a potent inhibitor of the ERK pathway, within the BLA blocked stress-induced behavioral depression. These results suggest that repeated stress produces lasting depression-like behaviors via the up-regulation of TRH and TRH receptors in the BLA. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Genistein alleviates anxiety-like behaviors in post-traumatic stress disorder model through enhancing serotonergic transmission in the amygdala.

    Science.gov (United States)

    Wu, Zhong-Min; Ni, Gui-Lian; Shao, Ai-Min; Cui, Rong

    2017-09-01

    Post-traumatic stress disorder (PTSD) is a chronic psychiatric disorder, characterized by intense fear, and increased arousal and avoidance of traumatic events. The current available treatments for PTSD have limited therapeutic value. Genistein, a natural isoflavone, modulates a variety of cell functions. In this study, we tested anti-anxiety activity and underlying mechanisms of genistein in a PTSD rat model. The rats were trained to associate a tone with foot shock delivery on day 0, then fear conditioning was performed on day 7, 14 and 21. Genistein (2-8mg/kg) was injected intraperitoneally daily for 7 days. The anti-anxiety effects of genistein were measured by contextual freezing behavior and elevated plus maze. By the end of the experiments, the amygdala was extracted and subject to neurochemistry analysis. Genistein alleviated contextual freezing behavior and improved performance in elevated plus maze dose-dependently in PTSD rats. Furthermore, in these rats, genistein enhanced serotonergic transmission in the amygdala, including upregulation of tryptophan hydroxylase, serotonin, and phosphorylated (p)-CaMKII and p-CREB, as well. Genistein exerts anti-anxiety effects on a PTSD model probably through enhancing serotonergic system and CaMKII/CREB signaling pathway in the amygdala. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  19. Genetic Deletion of Neuronal PPARγ Enhances the Emotional Response to Acute Stress and Exacerbates Anxiety: An Effect Reversed by Rescue of Amygdala PPARγ Function.

    Science.gov (United States)

    Domi, Esi; Uhrig, Stefanie; Soverchia, Laura; Spanagel, Rainer; Hansson, Anita C; Barbier, Estelle; Heilig, Markus; Ciccocioppo, Roberto; Ubaldi, Massimo

    2016-12-14

    PPARγ is one of the three isoforms of the Peroxisome Proliferator-Activated Receptors (PPARs). PPARγ is activated by thiazolidinediones such as pioglitazone and is targeted to treat insulin resistance. PPARγ is densely expressed in brain areas involved in regulation of motivational and emotional processes. Here, we investigated the role of PPARγ in the brain and explored its role in anxiety and stress responses in mice. The results show that stimulation of PPARγ by pioglitazone did not affect basal anxiety, but fully prevented the anxiogenic effect of acute stress. Using mice with genetic ablation of neuronal PPARγ (PPARγ NestinCre ), we demonstrated that a lack of receptors, specifically in neurons, exacerbated basal anxiety and enhanced stress sensitivity. The administration of GW9662, a selective PPARγ antagonist, elicited a marked anxiogenic response in PPARγ wild-type (WT), but not in PPARγ NestinCre knock-out (KO) mice. Using c-Fos immunohistochemistry, we observed that acute stress exposure resulted in a different pattern of neuronal activation in the amygdala (AMY) and the hippocampus (HIPP) of PPARγ NestinCre KO mice compared with WT mice. No differences were found between WT and KO mice in hypothalamic regions responsible for hormonal response to stress or in blood corticosterone levels. Microinjection of pioglitazone into the AMY, but not into the HIPP, abolished the anxiogenic response elicited by acute stress. Results also showed that, in both regions, PPARγ colocalizes with GABAergic cells. These findings demonstrate that neuronal PPARγ is involved the regulation of the stress response and that the AMY is a key substrate for the anxiolytic effect of PPARγ. Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) is a classical target for antidiabetic therapies with thiazolidinedione compounds. PPARγ agonists such as rosiglitazone and pioglitazone are in clinical use for the treatment of insulin resistance. PPARγ has recently attracted

  20. Short-term environmental enrichment is sufficient to counter stress-induced anxiety and associated structural and molecular plasticity in basolateral amygdala.

    Science.gov (United States)

    Ashokan, Archana; Hegde, Akshaya; Mitra, Rupshi

    2016-07-01

    Moderate levels of anxiety enable individual animals to cope with stressors through avoidance, and could be an adaptive trait. However, repeated stress exacerbates anxiety to pathologically high levels. Dendritic remodeling in the basolateral amygdala is proposed to mediate potentiation of anxiety after stress. Similarly, modulation of brain-derived neurotrophic factor is thought to be important for the behavioral effects of stress. In the present study, we investigate if relatively short periods of environmental enrichment in adulthood can confer resilience against stress-induced anxiety and concomitant changes in neuronal arborisation and brain derived neurotrophic factor within basolateral amygdala. Two weeks of environmental enrichment countermanded the propensity of increased anxiety following chronic immobilization stress. Environmental enrichment concurrently reduced dendritic branching and spine density of projection neurons of the basolateral amygdala. Moreover, stress increased abundance of BDNF mRNA in the basolateral amygdala in agreement with the dendritic hypertrophy post-stress and role of BDNF in promoting dendritic arborisation. In contrast, environmental enrichment prevented stress-induced rise in the BDNF mRNA abundance. Gain in body weights and adrenal weights remained unaffected by exposure to environmental enrichment. These observations suggest that a short period of environmental enrichment can provide resilience against maladaptive effects of stress on hormonal, neuronal and molecular mediators of anxiogenesis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. NADPH oxidase and redox status in amygdala, hippocampus and cortex of male Wistar rats in an animal model of post-traumatic stress disorder.

    Science.gov (United States)

    Petrovic, Romana; Puskas, Laslo; Jevtic Dozudic, Gordana; Stojkovic, Tihomir; Velimirovic, Milica; Nikolic, Tatjana; Zivkovic, Milica; Djorovic, Djordje J; Nenadovic, Milutin; Petronijevic, Natasa

    2018-05-26

    Post-traumatic stress disorder (PTSD) is a highly prevalent and impairing disorder. Oxidative stress is implicated in its pathogenesis. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is an important source of free radicals. The aim of the study was to assess oxidative stress parameters, activities of respiratory chain enzymes, and the expression of NADPH oxidase subunits (gp91phox, p22phox, and p67phox) in the single prolonged stress (SPS) animal model of PTSD. Twenty-four (12 controls; 12 subjected to SPS), 9-week-old, male Wistar rats were used. SPS included physical restraint, forced swimming, and ether exposure. The rats were euthanized seven days later. Cortex, hippocampus, amygdala, and thalamus were dissected. Malondialdehyde (MDA), reduced glutathione (GSH), superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), Complex I, and cytochrome C oxidase were measured using spectrophotometric methods, while the expression of NADPH oxidase subunits was determined by Western blot. Increased MDA and decreased GSH concentrations were found in the amygdala and hippocampus of the SPS rats. SOD activity was decreased in amygdala and GPx was decreased in hippocampus. Increased expression of the NADPH oxidase subunits was seen in amygdala, while mitochondrial respiratory chain enzyme expression was unchanged both in amygdala and hippocampus. In the cortex concentrations of MDA and GSH were unchanged despite increased Complex I and decreased GPx, while in the thalamus no change of any parameter was noticed. We conclude that oxidative stress is present in hippocampus and amygdala seven days after the SPS procedure. NADPH oxidase seems to be a main source of free radicals in the amygdala.

  2. Neural responses to threat and reward interact to predict stress-related problem drinking: A novel protective role of the amygdala

    Science.gov (United States)

    2012-01-01

    Background Research into neural mechanisms of drug abuse risk has focused on the role of dysfunction in neural circuits for reward. In contrast, few studies have examined the role of dysfunction in neural circuits of threat in mediating drug abuse risk. Although typically regarded as a risk factor for mood and anxiety disorders, threat-related amygdala reactivity may serve as a protective factor against substance use disorders, particularly in individuals with exaggerated responsiveness to reward. Findings We used well-established neuroimaging paradigms to probe threat-related amygdala and reward-related ventral striatum reactivity in a sample of 200 young adult students from the ongoing Duke Neurogenetics Study. Recent life stress and problem drinking were assessed using self-report. We found a significant three-way interaction between threat-related amygdala reactivity, reward-related ventral striatum reactivity, and recent stress, wherein individuals with higher reward-related ventral striatum reactivity exhibit higher levels of problem drinking in the context of stress, but only if they also have lower threat-related amygdala reactivity. This three-way interaction predicted both contemporaneous problem drinking and problem drinking reported three-months later in a subset of participants. Conclusions These findings suggest complex interactions between stress and neural responsiveness to both threat and reward mediate problem drinking. Furthermore, they highlight a novel protective role for threat-related amygdala reactivity against drug use in individuals with high neural reactivity to reward. PMID:23151390

  3. Activation of ERK2 in basolateral amygdala underlies the promoting influence of stress on fear memory and anxiety: influence of midazolam pretreatment.

    Science.gov (United States)

    Maldonado, N M; Espejo, P J; Martijena, I D; Molina, V A

    2014-02-01

    Exposure to emotionally arousing experiences elicits a robust and persistent memory and enhances anxiety. The amygdala complex plays a key role in stress-induced emotional processing and in the fear memory formation. It is well known that ERK activation in the amygdala is a prerequisite for fear memory consolidation. Moreover, stress elevates p-ERK2 levels in several areas of the brain stress circuitry. Therefore, given that the ERK1/2 cascade is activated following stress and that the role of this cascade is critical in the formation of fear memory, the present study investigated the potential involvement of p-ERK2 in amygdala subnuclei in the promoting influence of stress on fear memory formation and on anxiety-like behavior. A robust and persistent ERK2 activation was noted in the Basolateral amygdala (BLA), which was evident at 5min after restraint and lasted at least one day after the stressful experience. Midazolam, a short-acting benzodiazepine ligand, administered prior to stress prevented the increase in the p-ERK2 level in the BLA. Pretreatment with intra-BLA infusion of U0126 (MEK inhibitor), but not into the adjacent central nucleus of the amygdala, attenuated the stress-induced promoting influence on fear memory formation. Finally, U0126 intra-BLA infusion prevented the enhancement of anxiety-like behavior in stressed animals. These findings suggest that the selective ERK2 activation in BLA following stress exposure is an important mechanism for the occurrence of the promoting influence of stress on fear memory and on anxiety-like behavior. © 2013 Published by Elsevier B.V. and ECNP.

  4. Amygdala, Hippocampus, and Ventral Medial Prefrontal Cortex Volumes Differ in Maltreated Youth with and without Chronic Posttraumatic Stress Disorder.

    Science.gov (United States)

    Morey, Rajendra A; Haswell, Courtney C; Hooper, Stephen R; De Bellis, Michael D

    2016-02-01

    Posttraumatic stress disorder (PTSD) is considered a disorder of recovery where individuals fail to learn and retain extinction of the traumatic fear response. In maltreated youth, PTSD is common, chronic, and associated with comorbidity. Studies of extinction-related structural volumes (amygdala, hippocampus, anterior cingulate cortex (ACC), and ventral medial prefrontal cortex (vmPFC)) and this stress diathesis, in maltreated youth were not previously investigated. In this cross-sectional study, neuroanatomical volumes associated with extinction in maltreated youth with PTSD (N=31), without PTSD (N=32), and in non-maltreated healthy volunteers (n=57) were examined using magnetic resonance imaging. Groups were sociodemographically similar. Participants underwent extensive assessments for strict inclusion/exclusion criteria and DSM-IV disorders. Maltreated youth with PTSD demonstrated decreased right vmPFC volumes compared with both maltreated youth without PTSD and non-maltreated controls. Maltreated youth without PTSD demonstrated larger left amygdala and right hippocampal volumes compared with maltreated youth with PTSD and non-maltreated control youth. PTSD symptoms inversely correlated with right and left hippocampal and left amygdala volumes. Confirmatory masked voxel base morphometry analyses demonstrated greater medial orbitofrontal cortex gray matter intensity in controls than maltreated youth with PTSD. Volumetric results were not influenced by psychopathology or maltreatment variables. We identified volumetric differences in extinction-related structures between maltreated youth with PTSD from those without PTSD. Alterations of the vmPFC may be one mechanism that mediates the pathway from PTSD to comorbidity. Further longitudinal work is needed to determine neurobiological factors related to chronic and persistent PTSD, and to PTSD resilience despite maltreatment.

  5. Role of TLR4 in the Modulation of Central Amygdala GABA Transmission by CRF Following Restraint Stress.

    Science.gov (United States)

    Varodayan, F P; Khom, S; Patel, R R; Steinman, M Q; Hedges, D M; Oleata, C S; Homanics, G E; Roberto, M; Bajo, M

    2018-01-04

    Stress induces neuroimmune responses via Toll-like receptor 4 (TLR4) activation. Here, we investigated the role of TLR4 in the effects of the stress peptide corticotropin-releasing factor (CRF) on GABAergic transmission in the central nucleus of the amygdala (CeA) following restraint stress. Tlr4 knock out (KO) and wild-type rats were exposed to no stress (naïve), a single restraint stress (1 h) or repeated restraint stress (1 h per day for 3 consecutive days). After 1 h recovery from the final stress session, whole-cell patch-clamp electrophysiology was used to investigate the effects of CRF (200 nM) on CeA GABAA-mediated spontaneous inhibitory postsynaptic currents (sIPSCs). TLR4 does not regulate baseline GABAergic transmission in the CeA of naive and stress-treated animals. However, CRF significantly increased the mean sIPSC frequencies (indicating enhanced GABA release) across all genotypes and stress treatments, except for the Tlr4 KO rats that experienced repeated restraint stress. Overall, our results suggest a limited role for TLR4 in CRF's modulation of CeA GABAergic synapses in naïve and single stress rats, though TLR4-deficient rats that experienced repeated psychological stress exhibit a blunted CRF cellular response. TLR4 has a limited role in CRF's activation of the CeA under basal conditions, but interacts with the CRF system to regulate GABAergic synapse function in animals that experience repeated psychological stress. © The Author(s) 2018. Medical Council on Alcohol and Oxford University Press. All rights reserved.

  6. Prefrontal cortex or basolateral amygdala lesions blocked the stress-induced inversion of serial memory retrieval pattern in mice.

    Science.gov (United States)

    Chauveau, F; Piérard, C; Coutan, M; Drouet, I; Liscia, P; Béracochéa, D

    2008-09-01

    Previous data from our team have shown that pre-test stress in mice reversed the pattern of memory retrieval in a contextual serial spatial task (CSD; Celerier, A., Pierard, C., Rachbauer, D., Sarrieau, A., & Beracochea, D. (2004). Contextual and serial discriminations: A new learning paradigm to assess simultaneously the effects of acute stress on retrieval of flexible or stable information in mice. Learning and Memory, 11, 196-204). The present study is aimed at determining brain areas which might be critically involved in mediating the stress effect on memory retrieval in the CSD task. For that purpose, we studied hereby the effects of ibotenic acid lesions of either the prefrontal cortex (PFC) or the basolateral amygdala (BLA) in Stressed or Non-Stressed Balb/c mice on memory retrieval in the CSD task. In that task, mice learned two successive spatial discriminations (D1 and D2) within two different internal contexts in a four-hole board. The stressor (electric footshocks) was delivered 5 min before test, occurring 24 h after acquisition. During test, mice were relocated either on the floor of the first or of the second discrimination. Results showed that (i) spatial memory was substantial and remained unaffected both by lesions and stress; (ii) Non-Stressed controls as well as Non-Stressed or Stressed PFC and BLA-lesioned mice remembered accurately D1 but not D2; and (iii) in contrast, Stressed controls accurately remembered D2 but not D1. In parallel to behavioral experiments, we also showed that PFC and BLA lesions did not affect the stress-induced increase of plasma corticosterone levels. All together, PFC and BLA integrity are not necessary for retrieval processes per se; in contrast, the PFC and BLA are critically involved in the mediation of the deleterious stress effects on serial order memory retrieval.

  7. [Hormonal homeostasis and intraocular pressure in chronic emotional stress caused by influences acting on the amygdala].

    Science.gov (United States)

    Isakova, L S; Danilov, G E; Egorkina, S B; Butolin, E G

    1989-01-01

    Changes in intraocular pressure, eye hydrodynamics and the amount of hypophyseal, thyroid, adrenal and pancreatic hormones were studied during continuous stimulation of amygdaloid complex or after administration of angiotensin II into the structure in rabbits. The effects involved changes in hormonal homeostasis and elevation of intraocular pressure due to a hypersecretion of intraocular fluid. The administration of angiotensin II during the amygdala stimulation enhanced the changes.

  8. Hypertensive response to stress: the role of histaminergic H1 and H2 receptors in the medial amygdala.

    Science.gov (United States)

    de Almeida, Daniela Oliveira; Ferreira, Hilda Silva; Pereira, Luana Bomfim; Fregoneze, Josmara Bartolomei

    2015-05-15

    Different brain areas seem to be involved in the cardiovascular responses to stress. The medial amygdala (MeA) has been shown to participate in cardiovascular control, and acute stress activates the MeA to a greater extent than any of the other amygdaloid structures. It has been demonstrated that the brain histaminergic system may be involved in behavioral, autonomic and neuroendocrine responses to stressful situations. The aim of the present study was to investigate the role of the histaminergic receptors H1 and H2 in cardiovascular responses to acute restraint stress. Wistar rats (280-320g) received bilateral injections of cimetidine, mepyramine or saline into the MeA and were submitted to 45min of restraint stress. Mepyramine microinjections at doses of 200, 100 and 50nmol promoted a dose-dependent blockade of the hypertensive response induced by the restraint stress. Cimetidine (200 and 100nmol) promoted a partial blockade of the hypertensive response to stress only at the highest dose administered. Neither drugs altered the typical stress-evoked tachycardiac responses. Furthermore, mepyramine and cimetidine were unable to modify the mean arterial pressure or heart rate of freely moving rats under basal conditions (non-stressed rats). The data suggest that in the MeA the histaminergic H1 receptors appear to be more important than H2 receptors in the hypertensive response to stress. Furthermore, there appears to be no histaminergic tonus in the MeA controlling blood pressure during non-stress conditions. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Opposing effects of traumatic brain injury on excitatory synaptic function in the lateral amygdala in the absence and presence of preinjury stress.

    Science.gov (United States)

    Klein, Rebecca C; Acheson, Shawn K; Qadri, Laura H; Dawson, Alina A; Rodriguiz, Ramona M; Wetsel, William C; Moore, Scott D; Laskowitz, Daniel T; Dawson, Hana N

    2016-06-01

    Traumatic brain injury (TBI) is a leading cause of death and disability among young adults and is highly prevalent among recently deployed military personnel. Survivors of TBI often experience cognitive and emotional deficits, suggesting that long-term effects of injury may disrupt neuronal function in critical brain regions, including the amygdala, which is involved in emotion and fear memory. Amygdala hyperexcitability has been reported in both TBI and posttraumatic stress disorder patients, yet little is known regarding the effects of combined stress and TBI on amygdala structure and function at the neuronal level. The present study seeks to determine how the long-term effects of preinjury foot-shock stress and TBI interact to influence synaptic plasticity in the lateral amygdala (LA) of adult male C57BL/6J mice by using whole-cell patch clamp electrophysiology 2-3 months postinjury. In the absence of stress, TBI resulted in a significant increase in membrane excitability and spontaneous excitatory postsynaptic currents (sEPSCs) in LA pyramidal-like neurons. Foot-shock stress in the absence of TBI also resulted in increased sEPSC activity. In contrast, when preinjury stress and TBI occurred in combination, sEPSC activity was significantly decreased compared with either condition alone. There were no significant differences in inhibitory activity or total dendritic length among any of the treatment groups. These results demonstrate that stress and TBI may be contributing to amygdala hyperexcitability via different mechanisms and that these pathways may counterbalance each other with respect to long-term pathophysiology in the LA. © 2015 Wiley Periodicals, Inc.

  10. Stress-induced resistance to the fear memory labilization/reconsolidation process. Involvement of the basolateral amygdala complex.

    Science.gov (United States)

    Espejo, Pablo Javier; Ortiz, Vanesa; Martijena, Irene Delia; Molina, Victor Alejandro

    2016-10-01

    Consolidated memories can enter into a labile state after reactivation followed by a restabilization process defined as reconsolidation. This process can be interfered with Midazolam (MDZ), a positive allosteric modulator of the GABA-A receptor. The present study has evaluated the influence of prior stress on MDZ's interfering effect. We also assessed the influence of both systemic and intra-basolateral amygdala (BLA) infusion of d-cycloserine (DCS), a partial agonist of the NMDA receptors, on the MDZ effect in previously stressed rats. Furthermore, we analyzed the effect of stress on the expression of Zif-268 and the GluN2B sites, two molecular markers of the labilization/reconsolidation process, following reactivation. The results revealed that prior stress resulted into a memory trace that was insensitive to the MDZ impairing effect. Both systemic and intra-BLA DCS administration previous to reactivation restored MDZ's disruptive effect on memory reconsolidation in stressed animals. Further, reactivation enhanced Zif-268 expression in the BLA in control unstressed rats, whereas no elevation was observed in stressed animals. In agreement with the behavioral findings, DCS restored the increased level of Zif-268 expression in the BLA in stressed animals. Moreover, memory reactivation in unstressed animals elevated GluN2B expression in the BLA, thus suggesting that this effect is involved in memory destabilization, whereas stressed animals did not reveal any changes. These findings are consistent with resistance to the MDZ effect in these rats, indicating that stress exposure prevents the onset of destabilization following reactivation. In summary, prior stress limited both the occurrence of the reactivation-induced destabilization and restabilization. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Neuropeptide S and BDNF gene expression in the amygdala are influenced by social decision-making under stress

    Directory of Open Access Journals (Sweden)

    Justin P. Smith

    2014-04-01

    Full Text Available In a newly developed conceptual model of stressful social decision making, the Stress-Alternatives Model (SAM; used for the 1st time in mice elicits two types of response: escape or remain submissively. Daily (4d aggressive social interaction in a neutral arena between a C57BL6/N test mouse and a larger, novel aggressive CD1 mouse, begin after an audible tone (conditioned stimulus; CS. Although escape holes (only large enough for smaller test animals are available, and the aggressor is unremittingly antagonistic, only half of the mice tested utilize the possibility of escape. During training, for mice that choose to leave the arena and social interaction, latency to escape dramatically decreases over time; this is also true for control C57BL6/N mice which experienced no aggression. Therefore, the open field of the SAM apparatus is intrinsically anxiogenic. It also means that submission to the aggressor is chosen despite this anxiety and the high intensity of the aggressive attacks and defeat. While both groups that received aggression displayed stress responsiveness, corticosterone levels were significantly higher in animals that chose submissive coexistence. Although both escaping and non-escaping groups of animals experienced aggression and defeat, submissive animals also exhibited classic fear conditioning, freezing in response to the CS alone, while escaping animals did not. In the basolateral amygdala, gene expression of BDNF was diminished, but NPS expression was significantly elevated, but only in submissive animals. This increase in submission-evoked NPS mRNA expression was greatest in the central amygdala, which coincided with decreased BDNF expression. Reduced expression of BDNF is only in submissive animals that also exhibit elevated NPS expression, despite elevated corticosterone in all socially interacting animals. The results suggest an interwoven relationship, linked by social context, between amygdalar BDNF, NPS and plasma

  12. Basolateral amygdala bidirectionally modulates stress-induced hippocampal learning and memory deficits through a p25/Cdk5-dependent pathway.

    Science.gov (United States)

    Rei, Damien; Mason, Xenos; Seo, Jinsoo; Gräff, Johannes; Rudenko, Andrii; Wang, Jun; Rueda, Richard; Siegert, Sandra; Cho, Sukhee; Canter, Rebecca G; Mungenast, Alison E; Deisseroth, Karl; Tsai, Li-Huei

    2015-06-09

    Repeated stress has been suggested to underlie learning and memory deficits via the basolateral amygdala (BLA) and the hippocampus; however, the functional contribution of BLA inputs to the hippocampus and their molecular repercussions are not well understood. Here we show that repeated stress is accompanied by generation of the Cdk5 (cyclin-dependent kinase 5)-activator p25, up-regulation and phosphorylation of glucocorticoid receptors, increased HDAC2 expression, and reduced expression of memory-related genes in the hippocampus. A combination of optogenetic and pharmacosynthetic approaches shows that BLA activation is both necessary and sufficient for stress-associated molecular changes and memory impairments. Furthermore, we show that this effect relies on direct glutamatergic projections from the BLA to the dorsal hippocampus. Finally, we show that p25 generation is necessary for the stress-induced memory dysfunction. Taken together, our data provide a neural circuit model for stress-induced hippocampal memory deficits through BLA activity-dependent p25 generation.

  13. Basolateral amygdala bidirectionally modulates stress-induced hippocampal learning and memory deficits through a p25/Cdk5-dependent pathway

    Science.gov (United States)

    Rei, Damien; Mason, Xenos; Seo, Jinsoo; Gräff, Johannes; Rudenko, Andrii; Wang, Jun; Rueda, Richard; Siegert, Sandra; Cho, Sukhee; Canter, Rebecca G.; Mungenast, Alison E.; Deisseroth, Karl; Tsai, Li-Huei

    2015-01-01

    Repeated stress has been suggested to underlie learning and memory deficits via the basolateral amygdala (BLA) and the hippocampus; however, the functional contribution of BLA inputs to the hippocampus and their molecular repercussions are not well understood. Here we show that repeated stress is accompanied by generation of the Cdk5 (cyclin-dependent kinase 5)-activator p25, up-regulation and phosphorylation of glucocorticoid receptors, increased HDAC2 expression, and reduced expression of memory-related genes in the hippocampus. A combination of optogenetic and pharmacosynthetic approaches shows that BLA activation is both necessary and sufficient for stress-associated molecular changes and memory impairments. Furthermore, we show that this effect relies on direct glutamatergic projections from the BLA to the dorsal hippocampus. Finally, we show that p25 generation is necessary for the stress-induced memory dysfunction. Taken together, our data provide a neural circuit model for stress-induced hippocampal memory deficits through BLA activity-dependent p25 generation. PMID:25995364

  14. Rapid corticosteroid actions on synaptic plasticity in the mouse basolateral amygdala: relevance of recent stress history and β-adrenergic signaling.

    Science.gov (United States)

    Sarabdjitsingh, R A; Joëls, M

    2014-07-01

    The rodent stress hormone corticosterone rapidly enhances long-term potentiation in the CA1 hippocampal area, but leads to a suppression when acting in a more delayed fashion. Both actions are thought to contribute to stress effects on emotional memory. Emotional memory formation also involves the basolateral amygdala, an important target area for corticosteroid actions. We here (1) investigated the rapid effects of corticosterone on amygdalar synaptic potentiation, (2) determined to what extent these effects depend on the mouse's recent stress history or (3) on prior β-adrenoceptor activation; earlier studies at the single cell level showed that especially a recent history of stress changes the responsiveness of basolateral amygdala neurons to corticosterone. We report that, unlike the hippocampus, stress enhances amygdalar synaptic potentiation in a slow manner. In vitro exposure to 100 nM corticosterone quickly decreases synaptic potentiation, and causes only transient potentiation in tissue from stressed mice. This transient type of potentiation is also seen when β-adrenoceptors are blocked during stress and this is further exacerbated by subsequent in vitro administered corticosterone. We conclude that stress and corticosterone change synaptic potentiation in the basolateral amygdala in a manner opposite to that seen in the hippocampus and that renewed exposure to corticosterone only allows induction of non-persistent forms of synaptic potentiation. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. How acute stress may enhance subsequent memory for threat stimuli outside the focus of attention: DLPFC-amygdala decoupling.

    Science.gov (United States)

    Luo, Yu; Fernández, Guillén; Hermans, Erno; Vogel, Susanne; Zhang, Yu; Li, Hong; Klumpers, Floris

    2018-05-01

    Stress-related disorders, e.g., anxiety and depression, are characterized by decreased top-down control for distracting information, as well as a memory bias for threatening information. However, it is unclear how acute stress biases mnemonic encoding and leads to prioritized storage of threat-related information even if outside the focus of attention. In the current study, healthy adults (N = 53, all male) were randomly assigned to stress induction using the socially evaluated cold-pressor test (SECPT) or a control condition. Participants performed a task in which they were required to identify a target letter within a string of letters that were either identical to the target and thereby facilitating detection (low distractor load) or mixed with other letters to complicate the search (high load). Either a fearful or neutral face was presented on the background, outside the focus of attention. Twenty-four hours later, participants were asked to perform a surprise recognition memory test for those background faces. Stress induction resulted in increased cortisol and negative subjective mood ratings. Stress did not affect visual search performance, however, participants in the stress group showed stronger memory compared to the control group for fearful faces in the low attentional load condition. Critically, the stress induced memory bias was accompanied by decoupling between amygdala and DLFPC during encoding, which may represent a mechanism for decreased ability to filter task-irrelevant threatening background information. The current study provides a potential neural account for how stress can produce a negative memory bias for threatening information even if presented outside the focus of attention. Despite of an adaptive advantage for survival, such tendencies may ultimately also lead to generalized fear, a possibility requiring additional investigation. Copyright © 2018. Published by Elsevier Inc.

  16. Effects of fluoxetine on the amygdala and the hippocampus after administration of a single prolonged stress to male Wistar rates: In vivo proton magnetic resonance spectroscopy findings.

    Science.gov (United States)

    Han, Fang; Xiao, Bing; Wen, Lili; Shi, Yuxiu

    2015-05-30

    Posttraumatic stress disorder (PTSD) is an anxiety- and memory-based disorder. The hippocampus and amygdala are key areas in mood regulation. Fluoxetine was found to improve the anxiety-related symptoms of PTSD patients. However, little work has directly examined the effects of fluoxetine on the hippocampus and the amygdala. In the present study, male Wistar rats received fluoxetine or vehicle after exposure to a single prolonged stress (SPS), an animal model of PTSD. In vivo proton magnetic resonance spectroscopy ((1)H-MRS) was performed -1, 1, 4, 7 and 14 days after SPS to examine the effects of fluoxetine on neurometabolite changes in amygdala, hippocampus and thalamus. SPS increased the N-acetylaspartate (NAA)/creatine (Cr) and choline moieties (Cho)/Cr ratios in the bilateral amygdala on day 4, decreased the NAA/Cr ratio in the left hippocampus on day 1, and increased both ratios in the right hippocampus on day 14. But no significant change was found in the thalamus. Fluoxetine treatment corrected the SPS increases in the NAA/Cr and Cho/Cr levels in the amygdala on day 4 and in the hippocampus on day 14, but it failed to normalise SPS-associated decreases in NAA/Cr levels in the left hippocampus on day 1. These results suggested that metabolic abnormalities in the amygdala and the hippocampus were involved in SPS, and different effects of fluoxetine in correcting SPS-induced neurometabolite changes among the three areas. These findings have implications for fluoxetine treatment in PTSD. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Chronic stress disrupts fear extinction and enhances amygdala and hippocampal Fos expression in an animal model of post-traumatic stress disorder.

    Science.gov (United States)

    Hoffman, Ann N; Lorson, Nickolaus G; Sanabria, Federico; Foster Olive, M; Conrad, Cheryl D

    2014-07-01

    Chronic stress may impose a vulnerability to develop maladaptive fear-related behaviors after a traumatic event. Whereas previous work found that chronic stress impairs the acquisition and recall of extinguished fear, it is unknown how chronic stress impacts nonassociative fear, such as in the absence of the conditioned stimulus (CS) or in a novel context. Male rats were subjected to chronic stress (STR; wire mesh restraint 6 h/d/21d) or undisturbed (CON), then tested on fear acquisition (3 tone-footshock pairings), and two extinction sessions (15 tones/session) within the same context. Then each group was tested (6 tones) in the same context (SAME) or a novel context (NOVEL), and brains were processed for functional activation using Fos immunohistochemistry. Compared to CON, STR showed facilitated fear acquisition, resistance to CS extinction on the first extinction day, and robust recovery of fear responses on the second extinction day. STR also showed robust freezing to the context alone during the first extinction day compared to CON. When tested in the same or a novel context, STR exhibited higher freezing to context than did CON, suggesting that STR-induced fear was independent of context. In support of this, STR showed increased Fos-like expression in the basolateral amygdala and CA1 region of the hippocampus in both the SAME and NOVEL contexts. Increased Fos-like expression was also observed in the central amygdala in STR-NOVEL vs. CON-NOVEL. These data demonstrate that chronic stress enhances fear learning and impairs extinction, and affects nonassociative processes as demonstrated by enhanced fear in a novel context. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Prior stress promotes the generalization of contextual fear memories: Involvement of the gabaergic signaling within the basolateral amygdala complex.

    Science.gov (United States)

    Bender, C L; Otamendi, A; Calfa, G D; Molina, V A

    2018-04-20

    Fear generalization occurs when a response, previously acquired with a threatening stimulus, is transferred to a similar one. However, it could be maladaptive when stimuli that do not represent a real threat are appraised as dangerous, which is a hallmark of several anxiety disorders. Stress exposure is a major risk factor for the occurrence of anxiety disorders and it is well established that it influences different phases of fear memory; nevertheless, its impact on the generalization of contextual fear memories has been less studied. In the present work, we have characterized the impact of acute restraint stress prior to contextual fear conditioning on the generalization of this fear memory, and the role of the GABAergic signaling within the basolateral amygdala complex (BLA) on the stress modulatory effects. We have found that a single stress exposure promoted the generalization of this memory trace to a different context that was well discriminated in unstressed conditioned animals. Moreover, this effect was dependent on the formation of a contextual associative memory and on the testing order (i.e., conditioning context first vs generalization context first). Furthermore, we observed that increasing GABA-A signaling by intra-BLA midazolam administration prior to the stressful session exposure prevented the generalization of fear memory, whereas intra-BLA administration of the GABA-A antagonist (Bicuculline), prior to fear conditioning, induced the generalization of fear memory in unstressed rats. We concluded that stress exposure, prior to contextual fear conditioning, promotes the generalization of fear memory and that the GABAergic transmission within the BLA has a critical role in this phenomenon. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Effects of previous physical exercise to chronic stress on long-term aversive memory and oxidative stress in amygdala and hippocampus of rats.

    Science.gov (United States)

    Dos Santos, Tiago Marcon; Kolling, Janaína; Siebert, Cassiana; Biasibetti, Helena; Bertó, Carolina Gessinger; Grun, Lucas Kich; Dalmaz, Carla; Barbé-Tuana, Florencia María; Wyse, Angela T S

    2017-02-01

    Since stressful situations are considered risk factors for the development of depression and there are few studies evaluating prevention therapies for this disease, in the present study we evaluated the effect of previous physical exercise in animals subjected to chronic variable stress (CVS), an animal model of depression, on behavior tasks. We also investigated some parameters of oxidative stress and Na + , K + -ATPase activity, immunocontent and gene expression of alpha subunits in amygdala and hippocampus of rats. Young male rats were randomized into four study groups (control, exercised, stressed, exercised+stressed). The animals were subjected to controlled exercise treadmill for 20min,three times a week, for two months prior to submission to the CVS (40days). Results show that CVS impaired performance in inhibitory avoidance at 24h and 7days after training session. CVS induced oxidative stress, increasing reactive species, lipoperoxidation and protein damage, and decreasing the activity of antioxidant enzymes. The activity of Na + , K + -ATPase was decreased, but the immunocontents and gene expression of catalytic subunits were not altered. The previous physical exercise was able to improve performance in inhibitory avoidance at 24h after training; additionally, exercise prevented oxidative damage, but was unable to reverse completely the changes observed on the enzymatic activities. Our findings suggest that physical exercise during the developmental period may protect against aversive memory impairment and brain oxidative damage caused by chronic stress exposure later in life. Copyright © 2016 ISDN. Published by Elsevier Ltd. All rights reserved.

  20. Cannabinoids prevent the differential long-term effects of exposure to severe stress on hippocampal- and amygdala-dependent memory and plasticity.

    Science.gov (United States)

    Shoshan, Noa; Segev, Amir; Abush, Hila; Mizrachi Zer-Aviv, Tomer; Akirav, Irit

    2017-10-01

    Exposure to excessive or uncontrolled stress is a major factor associated with various diseases including posttraumatic stress disorder (PTSD). The consequences of exposure to trauma are affected not only by aspects of the event itself, but also by the frequency and severity of trauma reminders. It was suggested that in PTSD, hippocampal-dependent memory is compromised while amygdala-dependent memory is strengthened. Several lines of evidence support the role of the endocannabinoid (eCB) system as a modulator of the stress response. In this study we aimed to examine cannabinoids modulation of the long-term effects (i.e., 1 month) of exposure to a traumatic event on memory and plasticity in the hippocampus and amygdala. Following exposure to the shock and reminders model of PTSD in an inhibitory avoidance light-dark apparatus rats demonstrated: (i) enhanced fear retrieval and impaired inhibitory extinction (Ext), (ii) no long-term potentiation (LTP) in the CA1, (iii) impaired hippocampal-dependent short-term memory in the object location task, (iv) enhanced LTP in the amygdala, and (v) enhanced amygdala-dependent conditioned taste aversion memory. The cannabinoid CB1/2 receptor agonist WIN55-212,2 (0.5mg/kg, i.p.) and the fatty acid amide hydrolase (FAAH) inhibitor URB597 (0.3mg/kg, i.p.), administered 2 hr after shock exposure prevented these opposing effects on hippocampal- and amygdala-dependent processes. Moreover, the effects of WIN55-212,2 and URB597 on Ext and acoustic startle were prevented by co-administration of a low dose of the CB1 receptor antagonist AM251 (0.5mg/kg, i.p.), suggesting that the preventing effects of both drugs are mediated by CB1 receptors. Exposure to shock and reminders increased CB1 receptor levels in the CA1 and basolateral amygdala 1 month after shock exposure and this increase was also prevented by administering WIN55-212,2 or URB597. Taken together, these findings suggest the involvement of the eCB system, and specifically CB1

  1. Glucocorticoid receptors in the basolateral amygdala mediated the restraint stress-induced reinstatement of methamphetamine-seeking behaviors in rats.

    Science.gov (United States)

    Taslimi, Zahra; Sarihi, Abdolrahman; Haghparast, Abbas

    2018-04-21

    Methamphetamine (METH) addiction is a growing epidemic worldwide. It is a common psychiatric disease and stress has an important role in the drug seeking and relapse behaviors. The involvement of the basolateral amygdala (BLA) in effects of stress on the reward pathway has been discussed in several studies. In this study, we tried to find out the involvement of glucocorticoid receptors (GRs) in the BLA in stress-induced reinstatement of the extinguished METH-induced conditioned place preference (CPP) in rats. The CPP paradigm was done in eighty-one adult male Wistar rats weighing 220-250 g. The animals received a daily injection of methamphetamine (0.5 mg/kg), during the conditioning phase. In extinction phase, the rats were put in the CPP box for 30 min per day for 8 days. After the extinction, the animals were exposed to acute restraint stress (ARS), 3 h before subcutaneous administration of sub-threshold dose of methamphetamine (0.125 mg/kg), based on our previous study, in reinstatement phase. In separated groups, the rats were exposed to chronic restraint stress (CRS) for 1 h each day during the extinction phase. To block the GRs in BLA, the animals unilaterally received RU38486 as GRs antagonist (10, 30 and 90 ng/0.3 μl DMSO) in all ARS groups on reinstatement day. In separated experiments, RU38486 (3, 10 and 30 ng/0.3 μl DMSO) was microinjected into the BLA in CRS groups prior to exposure to stress every day in extinction phase. The results revealed that intra-BLA RU38486 in ARS (90 ng) and CRS (10 and 30 ng) groups significantly prevented the stress-induced reinstatement. It can be proposed that stress partially exerts its effect on the reward pathway via GRs in the BLA. This effect was not quite similar in acute and chronic stress conditions. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Amygdala Lesions Reduce Anxiety-like Behavior in a Human Benzodiazepine-Sensitive Approach-Avoidance Conflict Test.

    Science.gov (United States)

    Korn, Christoph W; Vunder, Johanna; Miró, Júlia; Fuentemilla, Lluís; Hurlemann, Rene; Bach, Dominik R

    2017-10-01

    Rodent approach-avoidance conflict tests are common preclinical models of human anxiety disorder. Their translational validity mainly rests on the observation that anxiolytic drugs reduce rodent anxiety-like behavior. Here, we capitalized on a recently developed approach-avoidance conflict computer game to investigate the impact of benzodiazepines and of amygdala lesions on putative human anxiety-like behavior. In successive epochs of this game, participants collect monetary tokens on a spatial grid while under threat of virtual predation. In a preregistered, randomized, double-blind, placebo-controlled trial, we tested the effect of a single dose (1 mg) of lorazepam (n = 59). We then compared 2 patients with bilateral amygdala lesions due to Urbach-Wiethe syndrome with age- and gender-matched control participants (n = 17). Based on a previous report, the primary outcome measure was the effect of intra-epoch time (i.e., an adaptation to increasing potential loss) on presence in the safe quadrant of the spatial grid. We hypothesized reduced loss adaptation in this measure under lorazepam and in patients with amygdala lesions. Lorazepam and amygdala lesions reduced loss adaptation in the primary outcome measure. We found similar results in several secondary outcome measures. The relative reduction of anxiety-like behavior in patients with amygdala lesions was qualitatively and quantitatively indistinguishable from an impact of anterior hippocampus lesions found in a previous report. Our results establish the translational validity of human approach-avoidance conflict tests in terms of anxiolytic drug action. We identified the amygdala, in addition to the hippocampus, as a critical structure in human anxiety-like behavior. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  3. Acute physical and psychological stress effects on visceral hypersensitivity in male rat: role of central nucleus of the amygdala

    Directory of Open Access Journals (Sweden)

    Hamideh Afzali

    2017-04-01

    Full Text Available Objective: The aim of this study was to investigate the effects of acute physical and psychological stress and temporary central nucleus of the amygdala (CeA block on stress-induced visceral hypersensitivity. Methods: Forty two male Wistar rats were used in this study. Animals were divided into 7 groups (n = 6; 1 – Control, 2 – physical stress, 3 – psychological stress, 4 – sham, 5 – lidocaine, 6 – lidocaine + physical stress and 7 – lidocaine + psychological stress. Stress induction was done using a communication box. Results: Abdominal withdrawal reflex (AWR score was monitored one hour after stress exposure. AWR score significantly heightened at 20, 40 and 60 mmHg in the psychological stress group compared with control (p < 0.05, while, it was almost unchanged in other groups. This score was strikingly decreased at 20, 40 and 60 mmHg in lidocaine + psychological stress group compared with psychological stress with no tangible response on physical stress. Total stool weight was significantly increased in psychological stress group compared with control (0.72 ± 0.15, 0.1 ± 0.06 g (p < 0.05, but it did not change in physical stress compared to control group (0.16 ± 0.12, 0.1 ± 0.06 g (p < 0.05. Concomitant use of lidocaine with stress followed the same results in psychological groups (0.18 ± 0.2, 0.72 ± 0.15 g (p < 0.05, while it did not have any effect on physical stress group (0.25 ± 0.1, 0.16 ± 0.12 g (p < 0.05. Conclusions: Psychological stress could strongly affect visceral hypersensitivity. This effect is statistically comparable with physical stress. Temporary CeA block could also reduce visceral hypersensitivity post-acute psychological stress. Resumen: Objetivo: O objetivo desse estudo foi investigar os efeitos do estresse físico e psicológico agudo e bloqueio temporário do núcleo central da amídala (CeA na hipersensibilidade visceral induzida por estresse. M

  4. Stress hormones receptors in the amygdala mediate the effects of stress on the consolidation, but not the retrieval, of a non aversive spatial task.

    Directory of Open Access Journals (Sweden)

    Amir Segev

    Full Text Available This study examined the effects of the arousal level of the rat and exposure to a behavioral stressor on acquisition, consolidation and retrieval of a non-aversive hippocampal-dependent learning paradigm, the object location task. Learning was tested under two arousal conditions: no previous habituation to the experimental context (high novelty stress/arousal level or extensive prior habituation (reduced novelty stress/arousal level. Results indicated that in the habituated rats, exposure to an out-of-context stressor (i.e, elevated platform stress impaired consolidation and retrieval, but not acquisition, of the task. Non-habituated animals under both stressed and control conditions did not show retention of the task. In habituated rats, RU-486 (10 ng/side, a glucocorticoid receptor (GR antagonist, or propranolol (0.75 µg/side, a beta-adrenergic antagonist, injected into the basolateral amygdala (BLA, prevented the impairing effects of the stressor on consolidation, but not on retrieval. The CB1/CB2 receptor agonist WIN55,212-2 (WIN, 5 µg/side microinjected into the BLA did not prevent the effects of stress on either consolidation or retrieval. Taken together the results suggest that: (i GR and β-adrenergic receptors in the BLA mediate the impairing effects of stress on the consolidation, but not the retrieval, of a neutral, non-aversive hippocampal-dependent task, (ii the impairing effects of stress on hippocampal consolidation and retrieval are mediated by different neural mechanisms (i.e., different neurotransmitters or different brain areas, and (iii the effects of stress on memory depend on the interaction between several main factors such as the stage of memory processing under investigation, the animal's level of arousal and the nature of the task (neutral or aversive.

  5. Stress hormones receptors in the amygdala mediate the effects of stress on the consolidation, but not the retrieval, of a non aversive spatial task.

    Science.gov (United States)

    Segev, Amir; Ramot, Assaf; Akirav, Irit

    2012-01-01

    This study examined the effects of the arousal level of the rat and exposure to a behavioral stressor on acquisition, consolidation and retrieval of a non-aversive hippocampal-dependent learning paradigm, the object location task. Learning was tested under two arousal conditions: no previous habituation to the experimental context (high novelty stress/arousal level) or extensive prior habituation (reduced novelty stress/arousal level). Results indicated that in the habituated rats, exposure to an out-of-context stressor (i.e, elevated platform stress) impaired consolidation and retrieval, but not acquisition, of the task. Non-habituated animals under both stressed and control conditions did not show retention of the task. In habituated rats, RU-486 (10 ng/side), a glucocorticoid receptor (GR) antagonist, or propranolol (0.75 µg/side), a beta-adrenergic antagonist, injected into the basolateral amygdala (BLA), prevented the impairing effects of the stressor on consolidation, but not on retrieval. The CB1/CB2 receptor agonist WIN55,212-2 (WIN, 5 µg/side) microinjected into the BLA did not prevent the effects of stress on either consolidation or retrieval. Taken together the results suggest that: (i) GR and β-adrenergic receptors in the BLA mediate the impairing effects of stress on the consolidation, but not the retrieval, of a neutral, non-aversive hippocampal-dependent task, (ii) the impairing effects of stress on hippocampal consolidation and retrieval are mediated by different neural mechanisms (i.e., different neurotransmitters or different brain areas), and (iii) the effects of stress on memory depend on the interaction between several main factors such as the stage of memory processing under investigation, the animal's level of arousal and the nature of the task (neutral or aversive).

  6. Effects of Optogenetic inhibition of BLA on Sleep Brief Optogenetic Inhibition of the Basolateral Amygdala in Mice Alters Effects of Stressful Experiences on Rapid Eye Movement Sleep.

    Science.gov (United States)

    Machida, Mayumi; Wellman, Laurie L; Fitzpatrick Bs, Mairen E; Hallum Bs, Olga; Sutton Bs, Amy M; Lonart, György; Sanford, Larry D

    2017-04-01

    Stressful events can directly produce significant alterations in subsequent sleep, in particular rapid eye movement sleep (REM); however, the neural mechanisms underlying the process are not fully known. Here, we investigated the role of the basolateral nuclei of the amygdala (BLA) in regulating the effects of stressful experience on sleep. We used optogenetics to briefly inhibit glutamatergic cells in BLA during the presentation of inescapable footshock (IS) and assessed effects on sleep, the acute stress response, and fear memory. c-Fos expression was also assessed in the amygdala and the medial prefrontal cortex (mPFC), both regions involved in coping with stress, and in brain stem regions implicated in the regulation of REM. Compared to control mice, peri-shock inhibition of BLA attenuated an immediate reduction in REM after IS and produced a significant overall increase in REM. Moreover, upon exposure to the shock context alone, mice receiving peri-shock inhibition of BLA during training showed increased REM without altered freezing (an index of fear memory) or stress-induced hyperthermia (an index of acute stress response). Inhibition of BLA during REM under freely sleeping conditions enhanced REM only when body temperature was high, suggesting the effect was influenced by stress. Peri-shock inhibition of BLA also led to elevated c-Fos expression in the central nucleus of the amygdala and mPFC and differentially altered c-Fos activity in the selected brain stem regions. Glutamatergic cells in BLA can modulate the effects of stress on REM and can mediate effects of fear memory on sleep that can be independent of behavioral fear. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  7. Amygdala, Anxiety and Alpha(1) Adrenoceptors: Investigations Utilizing a Rodent Model of Traumatic Stress

    Science.gov (United States)

    2006-08-23

    the effect of a variety of different modifiers to the startle response, from drugs to environmental conditions . It has repeatedly been seen that...in rats. J. Neurosci. 1999;19: 8696-8703. Maren,S. Neurobiology of Pavlovian fear conditioning . Annu. Rev. Neurosci. 2001;24: 897-931. Marmar,CR...stress can result in post-traumatic stress disorder (PTSD) and other pathophysiological conditions . PTSD is characterized by a number of

  8. Chronic stress enhanced fear memories are associated with increased amygdala zif268 mRNA expression and are resistant to reconsolidation.

    Science.gov (United States)

    Hoffman, Ann N; Parga, Alejandro; Paode, Pooja R; Watterson, Lucas R; Nikulina, Ella M; Hammer, Ronald P; Conrad, Cheryl D

    2015-04-01

    The chronically stressed brain may present a vulnerability to develop maladaptive fear-related behaviors in response to a traumatic event. In rodents, chronic stress leads to amygdala hyperresponsivity and dendritic hypertrophy and produces a post traumatic stress disorder (PTSD)-like phenotype that includes exaggerated fear learning following Pavlovian fear conditioning and resistance to extinction. It is unknown whether chronic stress-induced enhanced fear memories are vulnerable to disruption via reconsolidation blockade, as a novel therapeutic approach for attenuating exaggerated fear memories. We used a chronic stress procedure in a rat model (wire mesh restraint for 6h/d/21d) to create a vulnerable brain that leads to a PTSD-like phenotype. We then examined freezing behavior during acquisition, reactivation and after post-reactivation rapamycin administration (i.p., 40mg/kg) in a Pavlovian fear conditioning paradigm to determine its effects on reconsolidation as well as the subsequent functional activation of limbic structures using zif268 mRNA. Chronic stress increased amygdala zif268 mRNA during fear memory retrieval at reactivation. Moreover, these enhanced fear memories were unaffected by post reactivation rapamycin to disrupt long-term fear memory. Also, post-reactivation long term memory processing was also associated with increased amygdala (LA and BA), and decreased hippocampal CA1 zif268 mRNA expression. These results suggest potential challenges for reconsolidation blockade as an effective approach in treating exaggerated fear memories, as in PTSD. Our findings also support chronic stress manipulations combined with fear conditioning as a useful preclinical approach to study a PTSD-like phenotype. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Electroconvulsive stimulations prevent chronic stress-induced increases in L-type calcium channel mRNAs in the hippocampus and basolateral amygdala

    DEFF Research Database (Denmark)

    Maigaard, Katrine; Pedersen, Ida Hageman; Jørgensen, Anders

    2012-01-01

    Although affective disorders have high prevalence, morbidity and mortality, we do not fully understand disease etiopathology, nor have we determined the exact mechanisms by which treatment works. Recent research indicates that intracellular calcium ion dysfunction might be involved. Here we use...... the chronic restraint stress model of affective disorder (6 h restraint per day for 21 days) in combination with electroconvulsive stimulations to examine the effects of stress and an effective antidepressive treatment modality on L-type voltage gated calcium channel subunit mRNA expression patterns...... in the brain. We find that stress tended to upregulate Ca(v)1.2 and Ca(v)1.3 channels in a brain region specific manner, while ECS tended to normalise this effect. This was more pronounced for Ca(v)1.2 channels, where stress clearly increased expression in both the basolateral amygdala, dentate gyrus and CA3...

  10. Individual Differences in Animal Stress Models: Considering Resilience, Vulnerability, and the Amygdala in Mediating the Effects of Stress and Conditioned Fear on Sleep.

    Science.gov (United States)

    Wellman, Laurie L; Fitzpatrick, Mairen E; Hallum, Olga Y; Sutton, Amy M; Williams, Brook L; Sanford, Larry D

    2016-06-01

    To examine the REM sleep response to stress and fearful memories as a potential marker of stress resilience and vulnerability and to assess the role of the basolateral amygdala (BLA) in mediating the effects of fear memory on sleep. Outbred Wistar rats were surgically implanted with electrodes for recording EEG and EMG and with bilateral guide cannulae directed at the BLA. Data loggers were placed intraperitoneally to record core body temperature. After recovery from surgery, the rats received shock training (ST: 20 footshocks, 0.8 mA, 0.5-s duration, 60-s interstimulus interval) and afterwards received microinjections of the GABAA agonist muscimol (MUS; 1.0 μM) to inactivate BLA or microinjections of vehicle (VEH) alone. Subsequently, the rats were separated into 4 groups (VEH-vulnerable (VEH-Vul; n = 14), VEH-resilient (VEH-Res; n = 13), MUS-vulnerable (MUS-Vul; n = 8), and MUS-resilient (MUS-Res; n = 11) based on whether or not REM was decreased, compared to baseline, during the first 4 h following ST. We then compared sleep, freezing, and the stress response (stress-induced hyperthermia, SIH) across groups to determine the effects of ST and fearful context re-exposure alone (CTX). REM was significantly reduced on the ST day in both VEH-Vul and MUS-Vul rats; however, post-ST MUS blocked the reduction in REM on the CTX day in the MUS-Vul group. The VEH-Res and MUS-Res rats showed similar levels of REM on both ST and CTX days. The effects of post-ST inactivation of BLA on freezing and SIH were minimal. Outbred Wistar rats can show significant individual differences in the effects of stress on REM that are mediated by BLA. These differences in REM can be independent of behavioral fear and the peripheral stress response, and may be an important biomarker of stress resilience and vulnerability. © 2016 Associated Professional Sleep Societies, LLC.

  11. Noise stress changes mRNA expressions of corticotropin-releasing hormone, its receptors in amygdala, and anxiety-related behaviors

    Directory of Open Access Journals (Sweden)

    Evren Eraslan

    2015-01-01

    Full Text Available Noise is a psychological, environmental stressor that activates limbic sites in the brain. Limbic sites such as the amygdala and the amygdaloid corticotropin-releasing hormone (CRH system play an important role in integrating stress response. We investigated the association between noise exposures, CRH-related molecules in the amygdala, and behavioral alterations. In total 54 Sprague-Dawley rats were divided into the following three groups: Control (CON, acute noise exposure (ANE, and chronic noise exposure (CNE. The ANE group was exposed to 100 dB white noise only once in 4 h and the CNE group was exposed to the same for 4 h per day for 30 days. Expression profiles of CRH and its receptors CRH-R1 and CRH-R2 were analyzed by quantitative real-time polymerase chain reaction (qPCR. The same stress procedure was applied to the ANE and CNE groups for behavior testing. The anxiety responses of the animals after acute and chronic stress exposure were measured in the defensive withdrawal test. CNE upregulated CRH and CRH-R1 mRNA levels but downregulated CRH-R2 mRNA levels. ANE led to a decrease in both CRH-R1 and CRH-R2 expression. In the defensive withdrawal test, while the ANE increased, CNE reduced anxiety-like behaviors. The present study shows that the exposure of rats to white noise (100 dB leads to behavioral alterations and molecule-specific changes in the CRH system. Behavioral alterations can be related to these molecular changes in the amygdala.

  12. Noise stress changes mRNA expressions of corticotropin-releasing hormone, its receptors in amygdala, and anxiety-related behaviors.

    Science.gov (United States)

    Eraslan, Evren; Akyazi, Ibrahim; Erg L-Ekiz, Elif; Matur, Erdal

    2015-01-01

    Noise is a psychological, environmental stressor that activates limbic sites in the brain. Limbic sites such as the amygdala and the amygdaloid corticotropin-releasing hormone (CRH) system play an important role in integrating stress response. We investigated the association between noise exposures, CRH-related molecules in the amygdala, and behavioral alterations. In total 54 Sprague-Dawley rats were divided into the following three groups: Control (CON), acute noise exposure (ANE), and chronic noise exposure (CNE). The ANE group was exposed to 100 dB white noise only once in 4 h and the CNE group was exposed to the same for 4 h per day for 30 days. Expression profiles of CRH and its receptors CRH-R1 and CRH-R2 were analyzed by quantitative real-time polymerase chain reaction (qPCR). The same stress procedure was applied to the ANE and CNE groups for behavior testing. The anxiety responses of the animals after acute and chronic stress exposure were measured in the defensive withdrawal test. CNE upregulated CRH and CRH-R1 mRNA levels but downregulated CRH-R2 mRNA levels. ANE led to a decrease in both CRH-R1 and CRH-R2 expression. In the defensive withdrawal test, while the ANE increased, CNE reduced anxiety-like behaviors. The present study shows that the exposure of rats to white noise (100 dB) leads to behavioral alterations and molecule-specific changes in the CRH system. Behavioral alterations can be related to these molecular changes in the amygdala.

  13. Coping with stress in rats and mice : Differential peptidergic modulation of the amygdala-lateral septum complex

    NARCIS (Netherlands)

    Koolhaas, J.M.; Everts, H.G J; de Ruiter, A.J.H.; de Boer, S.F.; Bohus, B.G J

    1998-01-01

    This chapter focuses on the parvicellular vasopressin (VP) system originating from the medial nucleus of the amygdala (MeA) and bed nucleus of the stria terminalis (BNST). The vasopressinergic fibers of these nuclei innervate a number of limbic brain areas including the septum-hippocampal complex.

  14. The shape of change in perceived stress, negative affect, and stress sensitivity during mindfulness based stress reduction

    NARCIS (Netherlands)

    Snippe, E.; Dziak, J.J.; Lanza, S.T.; Nyklicek, I.; Wichers, M.

    2017-01-01

    Both daily stress and the tendency to react to stress with heightened levels of negative affect (i.e., stress sensitivity) are important vulnerability factors for adverse mental health outcomes. Mindfulness-based stress reduction (MBSR) may help to reduce perceived daily stress and stress

  15. The Shape of Change in Perceived Stress, Negative Affect, and Stress Sensitivity During Mindfulness-Based Stress Reduction

    NARCIS (Netherlands)

    Snippe, Evelien; Dziak, John J.; Lanza, Stephanie T.; Nykliek, Ivan; Wichers, Marieke

    Both daily stress and the tendency to react to stress with heightened levels of negative affect (i.e., stress sensitivity) are important vulnerability factors for adverse mental health outcomes. Mindfulness-based stress reduction (MBSR) may help to reduce perceived daily stress and stress

  16. Amygdala activation and GABAergic gene expression in hippocampal sub-regions at the interplay of stress and spatial learning

    Directory of Open Access Journals (Sweden)

    Osnat eHadad-Ophir

    2014-01-01

    Full Text Available Molecular processes in GABAergic local circuit neurons critically contribute to information processing in the hippocampus and to stress-induced activation of the amygdala. In the current study, we determined expression changes in GABA-related factors induced in subregions of the dorsal hippocampus as well as in the BLA of rats 5h after spatial learning in a Morris Water maze, using laser microdissection and quantitative real-time PCR. Spatial learning resulted in highly selective pattern of changes in hippocampal subregions: gene expression levels of neuropeptide Y were reduced in the hilus of the dentate gyrus, whereas somatostatin was increased in the stratum oriens of CA3. The GABA-synthesizing enzymes GAD65 and GAD67 as well as the neuropeptide cholecystokinin were reduced in stratum oriens of CA1. In the BLA, expression of GAD65 and GAD67 were reduced compared to a handled Control group. These expression patterns were further compared to alterations in a group of rats that have been exposed to the water maze but were not provided with an invisible escape platform. In this Water Exposure group, no expression changes were observed in any of the hippocampal subregions, but a differential regulation of all selected target genes was evident in the BLA. These findings suggest that expression changes of GABAergic factors in the hippocampus are associated with spatial learning, while additional stress effects modulate expression alterations in the BLA. Indeed, while in both experimental groups plasma corticosterone levels were enhanced, only Water Exposure stress activated the basolateral amygdala, as indicated by increased levels of phosphorylated ERK1/2. Altered GABAergic function in the BLA may thus contribute to memory consolidation in the hippocampus, in relation to levels of stress and emotionality associated with the experience.

  17. Women with multiple chemical sensitivity have increased harm avoidance and reduced 5-HT(1A receptor binding potential in the anterior cingulate and amygdala.

    Directory of Open Access Journals (Sweden)

    Lena Hillert

    Full Text Available Multiple chemical sensitivity (MCS is a common condition, characterized by somatic distress upon exposure to odors. As in other idiopathic environmental intolerances, the underlying mechanisms are unknown. Contrary to the expectations it was recently found that persons with MCS activate the odor-processing brain regions less than controls, while their activation of the anterior cingulate cortex (ACC is increased. The present follow-up study was designed to test the hypotheses that MCS subjects have increased harm avoidance and deviations in the serotonin system, which could render them intolerant to environmental odors. Twelve MCS and 11 control subjects, age 22-44, all working or studying females, were included in a PET study where 5-HT(1A receptor binding potential (BP was assessed after bolus injection of [(11C]WAY100635. Psychological profiles were assessed by the Temperament and Character Inventory and the Swedish universities Scales of Personality. All MCS and 12 control subjects were also tested for emotional startle modulation in an acoustic startle test. MCS subjects exhibited significantly increased harm avoidance, and anxiety compared to controls. They also had a reduced 5-HT(1A receptor BP in amygdala (p = 0.029, ACC (p = 0.005 (planned comparisons, significance level 0.05, and insular cortex (p = 0.003; significance level p<0.005 with Bonferroni correction, and showed an inverse correlation between degree of anxiety and the BP in the amygdala (planned comparison. No group by emotional category difference was found in the startle test. Increased harm avoidance and the observed changes in the 5-HT(1A receptor BP in the regions processing harm avoidance provides a plausible pathophysiological ground for the symptoms described in MCS, and yields valuable information for our general understanding of idiopathic environmental intolerances.

  18. Cannabinoid receptors activation and glucocorticoid receptors deactivation in the amygdala prevent the stress-induced enhancement of a negative learning experience.

    Science.gov (United States)

    Ramot, Assaf; Akirav, Irit

    2012-05-01

    The enhancement of emotional memory is clearly important as emotional stimuli are generally more significant than neutral stimuli for surviving and reproduction purposes. Yet, the enhancement of a negative emotional memory following exposure to stress may result in dysfunctional or intrusive memory that underlies several psychiatric disorders. Here we examined the effects of stress exposure on a negative emotional learning experience as measured by a decrease in the magnitude of the expected quantity of reinforcements in an alley maze. In contrast to other fear-related negative experiences, reward reduction is more associated with frustration and is assessed by measuring the latency to run the length of the alley to consume the reduced quantity of reward. We also examined whether the cannabinoid receptors agonist WIN55,212-2 (5 μg/side) and the glucocorticoid receptors (GRs) antagonist RU-486 (10 ng/side) administered into the rat basolateral amygdala (BLA) could prevent the stress-induced enhancement. We found that intra-BLA RU-486 or WIN55,212 before stress exposure prevented the stress-induced enhancement of memory consolidation for reduction in reward magnitude. These findings suggest that cannabinoid receptors and GRs in the BLA are important modulators of stress-induced enhancement of emotional memory. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Fluoxetine pretreatment promotes neuronal survival and maturation after auditory fear conditioning in the rat amygdala.

    Directory of Open Access Journals (Sweden)

    Lizhu Jiang

    Full Text Available The amygdala is a critical brain region for auditory fear conditioning, which is a stressful condition for experimental rats. Adult neurogenesis in the dentate gyrus (DG of the hippocampus, known to be sensitive to behavioral stress and treatment of the antidepressant fluoxetine (FLX, is involved in the formation of hippocampus-dependent memories. Here, we investigated whether neurogenesis also occurs in the amygdala and contributes to auditory fear memory. In rats showing persistent auditory fear memory following fear conditioning, we found that the survival of new-born cells and the number of new-born cells that differentiated into mature neurons labeled by BrdU and NeuN decreased in the amygdala, but the number of cells that developed into astrocytes labeled by BrdU and GFAP increased. Chronic pretreatment with FLX partially rescued the reduction in neurogenesis in the amygdala and slightly suppressed the maintenance of the long-lasting auditory fear memory 30 days after the fear conditioning. The present results suggest that adult neurogenesis in the amygdala is sensitive to antidepressant treatment and may weaken long-lasting auditory fear memory.

  20. Regulation of the fear network by mediators of stress: Norepinephrine alters the balance between Cortical and Subcortical afferent excitation of the Lateral Amygdala

    Directory of Open Access Journals (Sweden)

    Luke R Johnson

    2011-05-01

    Full Text Available Pavlovian auditory fear conditioning crucially involves the integration of information about and acoustic conditioned stimulus (CS and an aversive unconditioned stimulus (US in the lateral nucleus of the amygdala (LA. The auditory CS reaches the LA subcortically via a direct connection from the auditory thalamus and also from the auditory association cortex itself. How neural modulators, especially those activated during stress, such as norepinephrine (NE, regulate synaptic transmission and plasticity in this network is poorly understood. Here we show that NE inhibits synaptic transmission in both the subcortical and cortical input pathway but that sensory processing is biased towards the subcortical pathway. In addition binding of NE to β-adrenergic receptors further dissociates sensory processing in the LA. These findings suggest a network mechanism that shifts sensory balance towards the faster but more primitive subcortical input.

  1. MicroRNA-19b associates with Ago2 in the amygdala following chronic stress and regulates the adrenergic receptor beta 1.

    Science.gov (United States)

    Volk, Naama; Paul, Evan D; Haramati, Sharon; Eitan, Chen; Fields, Brandon K K; Zwang, Raaya; Gil, Shosh; Lowry, Christopher A; Chen, Alon

    2014-11-05

    Activation of the stress response in the presence of diverse challenges requires numerous adaptive molecular and cellular changes. To identify specific microRNA molecules that are altered following chronic stress, mice were subjected to the chronic social defeat procedure. The amygdala from these mice was collected and a screen for microRNAs that were recruited to the RNA-induced silencing complex and differentially expressed between the stressed and unstressed mice was conducted. One of the microRNAs that were significantly altered was microRNA-19b (miR-19b). Bioinformatics analysis revealed the adrenergic receptor β-1 (Adrb1) as a potential target for this microRNA with multiple conserved seed sites. Consistent with its putative regulation by miR-19b, Adrb1 levels were reduced in the basolateral amygdala (BLA) following chronic stress. In vitro studies using luciferase assays showed a direct effect of miR-19b on Adrb1 levels, which were not evident when miR-19b seed sequences at the Adrb1 transcript were mutated. To assess the role of miR-19b in memory stabilization, previously attributed to BLA-Adrb1, we constructed lentiviruses designed to overexpress or knockdown miR-19b. Interestingly, adult mice injected bilaterally with miR-19b into the BLA showed lower freezing time relative to control in the cue fear conditioning test, and deregulation of noradrenergic circuits, consistent with downregulation of Adrb1 levels. Knockdown of endogenous BLA-miR-19b levels resulted in opposite behavioral and noradrenergic profile with higher freezing time and increase 3-methoxy-4-hydroxyphenylglycol/noradrenaline ratio. These findings suggest a key role for miR-19b in modulating behavioral responses to chronic stress and Adrb1 as an important target of miR-19b in stress-linked brain regions. Copyright © 2014 the authors 0270-6474/14/3415070-13$15.00/0.

  2. Acute stress decreases but chronic stress increases myocardial sensitivity to ischemic injury in rodents

    Directory of Open Access Journals (Sweden)

    Eric D Eisenmann

    2016-04-01

    Full Text Available Cardiovascular disease is the largest cause of mortality worldwide, and stress is a significant contributor to the development of cardiovascular disease. The relationship between acute and chronic stress and cardiovascular disease is well-evidenced. Acute stress can lead to arrhythmias and ischemic injury. However, recent evidence in rodent models suggests that acute stress can decrease sensitivity to myocardial ischemia-reperfusion injury. Conversely, chronic stress is arrythmogenic and increases sensitivity to myocardial ischemia-reperfusion injury. Few studies have examined the impact of validated animal models of stress-related psychological disorders on the ischemic heart. This review examines the work that has been completed using rat models to study the effects of stress on myocardial sensitivity to ischemic injury. Utilization of animal models of stress-related psychological disorders is critical in the prevention and treatment of cardiovascular disorders in patients experiencing stress-related psychiatric conditions.

  3. Acute Stress Decreases but Chronic Stress Increases Myocardial Sensitivity to Ischemic Injury in Rodents.

    Science.gov (United States)

    Eisenmann, Eric D; Rorabaugh, Boyd R; Zoladz, Phillip R

    2016-01-01

    Cardiovascular disease (CVD) is the largest cause of mortality worldwide, and stress is a significant contributor to the development of CVD. The relationship between acute and chronic stress and CVD is well evidenced. Acute stress can lead to arrhythmias and ischemic injury. However, recent evidence in rodent models suggests that acute stress can decrease sensitivity to myocardial ischemia-reperfusion injury (IRI). Conversely, chronic stress is arrhythmogenic and increases sensitivity to myocardial IRI. Few studies have examined the impact of validated animal models of stress-related psychological disorders on the ischemic heart. This review examines the work that has been completed using rat models to study the effects of stress on myocardial sensitivity to ischemic injury. Utilization of animal models of stress-related psychological disorders is critical in the prevention and treatment of cardiovascular disorders in patients experiencing stress-related psychiatric conditions.

  4. Acute Stress Decreases but Chronic Stress Increases Myocardial Sensitivity to Ischemic Injury in Rodents

    Science.gov (United States)

    Eisenmann, Eric D.; Rorabaugh, Boyd R.; Zoladz, Phillip R.

    2016-01-01

    Cardiovascular disease (CVD) is the largest cause of mortality worldwide, and stress is a significant contributor to the development of CVD. The relationship between acute and chronic stress and CVD is well evidenced. Acute stress can lead to arrhythmias and ischemic injury. However, recent evidence in rodent models suggests that acute stress can decrease sensitivity to myocardial ischemia–reperfusion injury (IRI). Conversely, chronic stress is arrhythmogenic and increases sensitivity to myocardial IRI. Few studies have examined the impact of validated animal models of stress-related psychological disorders on the ischemic heart. This review examines the work that has been completed using rat models to study the effects of stress on myocardial sensitivity to ischemic injury. Utilization of animal models of stress-related psychological disorders is critical in the prevention and treatment of cardiovascular disorders in patients experiencing stress-related psychiatric conditions. PMID:27199778

  5. 5-HT1A receptor blockade targeting the basolateral amygdala improved stress-induced impairment of memory consolidation and retrieval in rats.

    Science.gov (United States)

    Sardari, M; Rezayof, A; Zarrindast, M-R

    2015-08-06

    The aim of the present study was to investigate the possible role of basolateral amygdala (BLA) 5-HT1A receptors in memory formation under stress. We also examined whether the blockade of these receptors is involved in stress-induced state-dependent memory. Adult male Wistar rats received cannula implants that bilaterally targeted the BLA. Long-term memory was examined using the step-through type of passive avoidance task. Behavioral stress was evoked by exposure to an elevated platform (EP) for 10, 20 and 30min. Post-training exposure to acute stress (30min) impaired the memory consolidation. In addition, pre-test exposure to acute stress-(20 and 30min) induced the impairment of memory retrieval. Interestingly, the memory impairment induced by post-training exposure to stress was restored in the animals that received 20- or 30-min pre-test stress exposure, suggesting stress-induced state-dependent memory retrieval. Post-training BLA-targeted injection of a selective 5-HT1A receptor antagonist, (S)-WAY-100135 (2μg/rat), prevented the impairing effect of stress on memory consolidation. Pre-test injection of the same doses of (S)-WAY-100135 that was targeted to the BLA also reversed stress-induced memory retrieval impairment. It should be considered that post-training or pre-test BLA-targeted injection of (S)-WAY-100135 (0.5-2μg/rat) by itself had no effect on the memory formation. Moreover, pre-test injection of (S)-WAY-100135 (2μg/rat) that targeted the BLA inhibited the stress-induced state-dependent memory retrieval. Taken together, our findings suggest that post-training or pre-test exposure to acute stress induced the impairment of memory consolidation, retrieval and state-dependent learning. The BLA 5-HT1A receptors have a critical role in learning and memory under stress. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Extending the amygdala in theories of threat processing

    Science.gov (United States)

    Fox, Andrew S.; Oler, Jonathan A.; Tromp, Do P.M.; Fudge, Julie L.; Kalin, Ned H.

    2015-01-01

    The central extended amygdala is an evolutionarily conserved set of interconnected brain regions that play an important role in threat processing to promote survival. Two core components of the central extended amygdala, the central nucleus of the amygdala (Ce) and the lateral bed nucleus of the stria terminalis (BST) are highly similar regions that serve complimentary roles by integrating fear- and anxiety-relevant information. Survival depends on the central extended amygdala's ability to rapidly integrate and respond to threats that vary in their immediacy, proximity, and characteristics. Future studies will benefit from understanding alterations in central extended amygdala function in relation to stress-related psychopathology. PMID:25851307

  7. Acute Stress Decreases but Chronic Stress Increases Myocardial Sensitivity to Ischemic Injury in Rodents

    OpenAIRE

    Eisenmann, Eric D.; Rorabaugh, Boyd R.; Zoladz, Phillip R.

    2016-01-01

    Cardiovascular disease is the largest cause of mortality worldwide, and stress is a significant contributor to the development of cardiovascular disease. The relationship between acute and chronic stress and cardiovascular disease is well-evidenced. Acute stress can lead to arrhythmias and ischemic injury. However, recent evidence in rodent models suggests that acute stress can decrease sensitivity to myocardial ischemia-reperfusion injury. Conversely, chronic stress is arrythmogenic and incr...

  8. Sensitivity of the prefrontal GABAergic system to chronic stress in male and female mice: Relevance for sex differences in stress-related disorders.

    Science.gov (United States)

    Shepard, Ryan; Page, Chloe E; Coutellier, Laurence

    2016-09-22

    Stress-induced modifications of the prefrontal cortex (PFC) are believed to contribute to the onset of mood disorders, such as depression and anxiety, which are more prevalent in women. In depression, the PFC is hypoactive; however the origin of this hypoactivity remains unclear. Possibly, stress could impact the prefrontal GABAergic inhibitory system that, as a result, impairs the functioning of downstream limbic structures controlling emotions. Preclinical evidence indicates that the female PFC is more sensitive to the effects of stress. These findings suggest that exposure to stress could lead to sex-specific alterations in prefrontal GABAergic signaling, which contribute to sex-specific abnormal functioning of limbic regions. These limbic changes could promote the onset of depressive and anxiety behaviors in a sex-specific manner, providing a possible mechanism mediating sex differences in the clinical presentation of stress-related mood disorders. We addressed this hypothesis using a mouse model of stress-induced depressive-like behaviors: the unpredictable chronic mild stress (UCMS) paradigm. We observed changes in prefrontal GABAergic signaling after exposure to UCMS most predominantly in females. Increased parvalbumin (PV) expression and decreased prefrontal neuronal activity were correlated in females with severe emotionality deficit following UCMS, and with altered activity of the amygdala. In males, small changes in emotionality following UCMS were associated with minor changes in prefrontal PV expression, and with hypoactivity of the nucleus accumbens. Our data suggest that prefrontal hypoactivity observed in stress-related mood disorders could result from stress-induced increases in PV expression, particularly in females. This increased vulnerability of the female prefrontal PV system to stress could underlie sex differences in the prevalence and symptomatology of stress-related mood disorders. Copyright © 2016 IBRO. Published by Elsevier Ltd. All

  9. Divergent responses of the amygdala and ventral striatum predict stress-related problem drinking in young adults: possible differential markers of affective and impulsive pathways of risk for alcohol use disorder.

    Science.gov (United States)

    Nikolova, Y S; Knodt, A R; Radtke, S R; Hariri, A R

    2016-03-01

    Prior work suggests that there may be two distinct pathways of alcohol use disorder (AUD) risk: one associated with positive emotion enhancement and behavioral impulsivity, and another associated with negative emotion relief and coping. We sought to map these two pathways onto individual differences in neural reward and threat processing assessed using blood-oxygen-level-dependent functional magnetic resonance imaging in a sample of 759 undergraduate students (426 women, mean age 19.65±1.24 years) participating in the Duke Neurogenetics Study. We demonstrate that problem drinking is highest in the context of stress and in those with one of two distinct neural phenotypes: (1) a combination of relatively low reward-related activity of the ventral striatum (VS) and high threat-related reactivity of the amygdala; or (2) a combination of relatively high VS activity and low amygdala reactivity. In addition, we demonstrate that the relationship between stress and problem alcohol use is mediated by impulsivity, as reflected in monetary delay discounting rates, for those with high VS-low amygdala reactivity, and by anxious/depressive symptomatology for those with the opposite neural risk phenotype. Across both neural phenotypes, we found that greater divergence between VS and amygdala reactivity predicted greater risk for problem drinking. Finally, for those individuals with the low VS-high amygdala risk phenotype we found that stress not only predicted the presence of AUD diagnosis at the time of neuroimaging but also subsequent problem drinking reported 3 months following study completion. These results offer new insight into the neural basis of AUD risk and suggest novel biological targets for early individualized treatment or prevention.

  10. Divergent responses of the amygdala and ventral striatum predict stress-related problem drinking in young adults: Possible differential markers of affective and impulsive pathways of risk for alcohol use disorder

    Science.gov (United States)

    Nikolova, Yuliya S.; Knodt, Annchen R.; Radtke, Spenser R.; Hariri, Ahmad R.

    2015-01-01

    Prior work suggests there may be two distinct pathways of alcohol use disorder (AUD) risk: one associated with positive emotion enhancement and behavioral impulsivity, and one associated with negative emotion relief and coping. We sought to map these two pathways onto individual differences in neural reward and threat processing assessed using BOLD fMRI in a sample of 759 undergraduate students (426 women, mean age 19.65±1.24) participating in the Duke Neurogenetics Study. We demonstrate that problem drinking is highest in the context of stress and in those with one of two distinct neural phenotypes: 1) a combination of relatively low reward-related activity of the ventral striatum (VS) and high threat-related reactivity of the amygdala; or 2) a combination of relatively high VS activity and low amygdala reactivity. In addition, we demonstrate that the relationship between stress and problem alcohol use is mediated by impulsivity, as reflected in monetary delay discounting rates, for those with high VS-low amygdala reactivity, and by anxious/depressive symptomatology for those with the opposite neural risk phenotype. Across both neural phenotypes, we found that greater divergence between VS and amygdala reactivity predicted greater risk for problem drinking. Finally, for those individuals with the low VS-high amygdala risk phenotype we found that stress not only predicted the presence of a DSM-IV diagnosed AUD at the time of neuroimaging, but also subsequent problem drinking reported three months following study completion. These results offer new insight into the neural basis of AUD risk and suggest novel biological targets for early individualized treatment or prevention. PMID:26122584

  11. Differential expression of molecular markers of synaptic plasticity in the hippocampus, prefrontal cortex, and amygdala in response to spatial learning, predator exposure, and stress-induced amnesia.

    Science.gov (United States)

    Zoladz, Phillip R; Park, Collin R; Halonen, Joshua D; Salim, Samina; Alzoubi, Karem H; Srivareerat, Marisa; Fleshner, Monika; Alkadhi, Karim A; Diamond, David M

    2012-03-01

    We have studied the effects of spatial learning and predator stress-induced amnesia on the expression of calcium/calmodulin-dependent protein kinase II (CaMKII), brain-derived neurotrophic factor (BDNF) and calcineurin in the hippocampus, basolateral amygdala (BLA), and medial prefrontal cortex (mPFC). Adult male rats were given a single training session in the radial-arm water maze (RAWM) composed of 12 trials followed by a 30-min delay period, during which rats were either returned to their home cages or given inescapable exposure to a cat. Immediately following the 30-min delay period, the rats were given a single test trial in the RAWM to assess their memory for the hidden platform location. Under control (no stress) conditions, rats exhibited intact spatial memory and an increase in phosphorylated CaMKII (p-CaMKII), total CaMKII, and BDNF in dorsal CA1. Under stress conditions, rats exhibited impaired spatial memory and a suppression of all measured markers of molecular plasticity in dorsal CA1. The molecular profiles observed in the BLA, mPFC, and ventral CA1 were markedly different from those observed in dorsal CA1. Stress exposure increased p-CaMKII in the BLA, decreased p-CaMKII in the mPFC, and had no effect on any of the markers of molecular plasticity in ventral CA1. These findings provide novel observations regarding rapidly induced changes in the expression of molecular plasticity in response to spatial learning, predator exposure, and stress-induced amnesia in brainregions involved in different aspects of memory processing. Copyright © 2011 Wiley Periodicals, Inc.

  12. Estrogen receptor-a in the medial amygdala prevents stress-induced elevations in blood pressure in females

    Science.gov (United States)

    Psychological stress contributes to the development of hypertension in humans. The ovarian hormone, estrogen, has been shown to prevent stress-induced pressor responses in females by unknown mechanisms. Here, we showed that the antihypertensive effects of estrogen during stress were blunted in femal...

  13. FKBP5 and specific microRNAs via glucocorticoid receptor in the basolateral amygdala involved in the susceptibility to depressive disorder in early adolescent stressed rats.

    Science.gov (United States)

    Xu, Jingjing; Wang, Rui; Liu, Yuan; Liu, Dexiang; Jiang, Hong; Pan, Fang

    2017-12-01

    Exposure to stressful events induces depressive-like symptoms and increases susceptibility to depression. However, the molecular mechanisms are not fully understood. Studies reported that FK506 binding protein51 (FKBP5), the co-chaperone protein of glucocorticoid receptors (GR), plays a crucial role. Further, miR-124a and miR-18a are involved in the regulation of FKBP5/GR function. However, few studies have referred to effects of early life stress on depressive-like behaviours, GR and FKBP5, as well as miR-124a and miR-18a in the basolateral amygdala (BLA) from adolescence to adulthood. This study aimed to examine the dynamic alternations of depressive-like behaviours, GR and FKBP5, as well as miR-124a and miR-18a expressions in the BLA of chronic unpredictable mild stress (CUMS) rats and dexamethasone administration rats during the adolescent period. Meanwhile, the GR antagonist, RU486, was used as a means of intervention. We found that CUMS and dexamethasone administration in the adolescent period induced permanent depressive-like behaviours and memory impairment, decreased GR expression, and increased FKBP5 and miR-124a expression in the BLA of both adolescent and adult rats. However, increased miR-18a expression in the BLA was found only in adolescent rats. Depressive-like behaviours were positively correlated with the level of miR-124a, whereas GR levels were negatively correlated with those in both adolescent and adult rats. Our results suggested FKBP5/GR and miR-124a in the BLA were associated with susceptibility to depressive disorder in the presence of stressful experiences in early life. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Electrodermal Activity Is Sensitive to Cognitive Stress under Water.

    Science.gov (United States)

    Posada-Quintero, Hugo F; Florian, John P; Orjuela-Cañón, Alvaro D; Chon, Ki H

    2017-01-01

    When divers are at depth in water, the high pressure and low temperature alone can cause severe stress, challenging the human physiological control systems. The addition of cognitive stress, for example during a military mission, exacerbates the challenge. In these conditions, humans are more susceptible to autonomic imbalance. Reliable tools for the assessment of the autonomic nervous system (ANS) could be used as indicators of the relative degree of stress a diver is experiencing, which could reveal heightened risk during a mission. Electrodermal activity (EDA), a measure of the changes in conductance at the skin surface due to sweat production, is considered a promising alternative for the non-invasive assessment of sympathetic control of the ANS. EDA is sensitive to stress of many kinds. Therefore, as a first step, we tested the sensitivity of EDA, in the time and frequency domains, specifically to cognitive stress during water immersion of the subject (albeit with their measurement finger dry for safety). The data from 14 volunteer subjects were used from the experiment. After a 4-min adjustment and baseline period after being immersed in water, subjects underwent the Stroop task, which is known to induce cognitive stress. The time-domain indices of EDA, skin conductance level (SCL) and non-specific skin conductance responses (NS.SCRs), did not change during cognitive stress, compared to baseline measurements. Frequency-domain indices of EDA, EDASymp (based on power spectral analysis) and TVSymp (based on time-frequency analysis), did significantly change during cognitive stress. This leads to the conclusion that EDA, assessed by spectral analysis, is sensitive to cognitive stress in water-immersed subjects, and can potentially be used to detect cognitive stress in divers.

  15. Electrodermal Activity Is Sensitive to Cognitive Stress under Water

    Directory of Open Access Journals (Sweden)

    Hugo F. Posada-Quintero

    2018-01-01

    Full Text Available When divers are at depth in water, the high pressure and low temperature alone can cause severe stress, challenging the human physiological control systems. The addition of cognitive stress, for example during a military mission, exacerbates the challenge. In these conditions, humans are more susceptible to autonomic imbalance. Reliable tools for the assessment of the autonomic nervous system (ANS could be used as indicators of the relative degree of stress a diver is experiencing, which could reveal heightened risk during a mission. Electrodermal activity (EDA, a measure of the changes in conductance at the skin surface due to sweat production, is considered a promising alternative for the non-invasive assessment of sympathetic control of the ANS. EDA is sensitive to stress of many kinds. Therefore, as a first step, we tested the sensitivity of EDA, in the time and frequency domains, specifically to cognitive stress during water immersion of the subject (albeit with their measurement finger dry for safety. The data from 14 volunteer subjects were used from the experiment. After a 4-min adjustment and baseline period after being immersed in water, subjects underwent the Stroop task, which is known to induce cognitive stress. The time-domain indices of EDA, skin conductance level (SCL and non-specific skin conductance responses (NS.SCRs, did not change during cognitive stress, compared to baseline measurements. Frequency-domain indices of EDA, EDASymp (based on power spectral analysis and TVSymp (based on time-frequency analysis, did significantly change during cognitive stress. This leads to the conclusion that EDA, assessed by spectral analysis, is sensitive to cognitive stress in water-immersed subjects, and can potentially be used to detect cognitive stress in divers.

  16. Interindividual differences in stress sensitivity: basal and stress-induced cortisol levels differentially predict neural vigilance processing under stress

    NARCIS (Netherlands)

    Henckens, Marloes J. A. G.; Klumpers, Floris; Everaerd, Daphne; Kooijman, Sabine C.; van Wingen, Guido A.; Fernández, Guillén

    2016-01-01

    Stress exposure is known to precipitate psychological disorders. However, large differences exist in how individuals respond to stressful situations. A major marker for stress sensitivity is hypothalamus-pituitary-adrenal (HPA)-axis function. Here, we studied how interindividual variance in both

  17. How acute stress may enhance subsequent memory for threat stimuli outside the focus of attention: DLPFC-amygdala decoupling

    NARCIS (Netherlands)

    Luo, Y.; Fernandez, G.S.E.; Hermans, E.; Vogel, S.; Zhang, Y.; Li, H.; Klumpers, F.

    2018-01-01

    Stress-related disorders, e.g., anxiety and depression, are characterized by decreased top-down control for distracting information, as well as a memory bias for threatening information. However, it is unclear how acute stress biases mnemonic encoding and leads to prioritized storage of

  18. Transcriptional responses of the nerve agent-sensitive brain regions amygdala, hippocampus, piriform cortex, septum, and thalamus following exposure to the organophosphonate anticholinesterase sarin

    Directory of Open Access Journals (Sweden)

    Meyerhoff James L

    2011-07-01

    Full Text Available Abstract Background Although the acute toxicity of organophosphorus nerve agents is known to result from acetylcholinesterase inhibition, the molecular mechanisms involved in the development of neuropathology following nerve agent-induced seizure are not well understood. To help determine these pathways, we previously used microarray analysis to identify gene expression changes in the rat piriform cortex, a region of the rat brain sensitive to nerve agent exposure, over a 24-h time period following sarin-induced seizure. We found significant differences in gene expression profiles and identified secondary responses that potentially lead to brain injury and cell death. To advance our understanding of the molecular mechanisms involved in sarin-induced toxicity, we analyzed gene expression changes in four other areas of the rat brain known to be affected by nerve agent-induced seizure (amygdala, hippocampus, septum, and thalamus. Methods We compared the transcriptional response of these four brain regions to sarin-induced seizure with the response previously characterized in the piriform cortex. In this study, rats were challenged with 1.0 × LD50 sarin and subsequently treated with atropine sulfate, 2-pyridine aldoxime methylchloride, and diazepam. The four brain regions were collected at 0.25, 1, 3, 6, and 24 h after seizure onset, and total RNA was processed for microarray analysis. Results Principal component analysis identified brain region and time following seizure onset as major sources of variability within the dataset. Analysis of variance identified genes significantly changed following sarin-induced seizure, and gene ontology analysis identified biological pathways, functions, and networks of genes significantly affected by sarin-induced seizure over the 24-h time course. Many of the molecular functions and pathways identified as being most significant across all of the brain regions were indicative of an inflammatory response. There

  19. Time course analysis of baroreflex sensitivity during postural stress

    NARCIS (Netherlands)

    Westerhof, Berend E.; Gisolf, Janneke; Karemaker, John M.; Wesseling, Karel H.; Secher, Niels H.; van Lieshout, Johannes J.

    2006-01-01

    Postural stress requires immediate autonomic nervous action to maintain blood pressure. We determined time-domain cardiac baroreflex sensitivity (BRS) and time delay (tau) between systolic blood pressure and interbeat interval variations during stepwise changes in the angle of vertical body axis

  20. The relationship between perceived stress and cue sensitivity for alcohol.

    NARCIS (Netherlands)

    Snelleman, M.; Schoenmakers, T.M.; Mheen, D. van de

    2014-01-01

    Previous research has shown that cue sensitivity and stress affect the risk for relapse in alcohol-dependent patients. Theoretically, a link between the two can be expected. However, a clear overview of the interplay of these factors is not yet available. The purpose of this review was to examine

  1. The relationship between cognitive dysfunction and stress sensitivity in schizophrenia

    NARCIS (Netherlands)

    Morrens, M.; Krabbendam, L.; Bak, M.L.F.J.; Delespaul, P.A.E.G.; Mengelers, R.; Sabbe, B.G.C.; Hulstijn, W.; Os, J. van; Myin-Germeys, I.

    2007-01-01

    The aim of the current study was to replicate the finding that cognitive impairments are not or inversely associated with sensitivity to stress in a sample of 25 patients diagnosed with psychotic disorder. The results indicated that impairments in performance on the Trailmaking Test and the Stroop

  2. Noradrenergic enhancement of amygdala responses to fear

    NARCIS (Netherlands)

    Onur, Oezguer A; Walter, Henrik; Schlaepfer, Thomas E; Rehme, Anne K; Schmidt, Christoph; Keysers, Christian; Maier, Wolfgang; Hurlemann, René

    Multiple lines of evidence implicate the basolateral amygdala (BLA) and the noradrenergic (norepinephrine, NE) system in responding to stressful stimuli such as fear signals, suggesting hyperfunction of both in the development of stress-related pathologies including anxiety disorders. However, no

  3. Deep brain stimulation of the amygdala alleviates fear conditioning-induced alterations in synaptic plasticity in the cortical-amygdala pathway and fear memory.

    Science.gov (United States)

    Sui, Li; Huang, SiJia; Peng, BinBin; Ren, Jie; Tian, FuYing; Wang, Yan

    2014-07-01

    Deep brain stimulation (DBS) of the amygdala has been demonstrated to modulate hyperactivity of the amygdala, which is responsible for the symptoms of post-traumatic stress disorder (PTSD), and thus might be used for the treatment of PTSD. However, the underlying mechanism of DBS of the amygdala in the modulation of the amygdala is unclear. The present study investigated the effects of DBS of the amygdala on synaptic transmission and synaptic plasticity at cortical inputs to the amygdala, which is critical for the formation and storage of auditory fear memories, and fear memories. The results demonstrated that auditory fear conditioning increased single-pulse-evoked field excitatory postsynaptic potentials in the cortical-amygdala pathway. Furthermore, auditory fear conditioning decreased the induction of paired-pulse facilitation and long-term potentiation, two neurophysiological models for studying short-term and long-term synaptic plasticity, respectively, in the cortical-amygdala pathway. In addition, all these auditory fear conditioning-induced changes could be reversed by DBS of the amygdala. DBS of the amygdala also rescued auditory fear conditioning-induced enhancement of long-term retention of fear memory. These findings suggested that DBS of the amygdala alleviating fear conditioning-induced alterations in synaptic plasticity in the cortical-amygdala pathway and fear memory may underlie the neuromodulatory role of DBS of the amygdala in activities of the amygdala.

  4. Amygdala Functional Connectivity is Reduced After the Cold Pressor Task

    Science.gov (United States)

    Clewett, David; Schoeke, Andrej; Mather, Mara

    2013-01-01

    The amygdala forms a crucial link between central pain and stress systems. There is much evidence that psychological stress affects amygdala activity, but it is less clear how painful stressors influence subsequent amygdala functional connectivity. In the present study, we used pulsed arterial spin labeling (PASL) to investigate differences in healthy male adults’ resting-state amygdala functional connectivity following a cold pressor versus control task, with the stressor and control conditions conducted on different days. During the period of peak cortisol response to acute stress (approximately fifteen to thirty minutes after stressor onset), participants were asked to rest for six minutes with their eyes closed during a PASL scanning sequence. The cold pressor task led to reduced resting-state functional connectivity between the amygdalae and orbitofrontal cortex (OFC) and ventromedial prefrontal cortex (VMPFC), which occurred irrespective of cortisol release. The stressor also induced greater inverse connectivity between the left amygdala and dorsal anterior cingulate cortex (dACC), a brain region implicated in the down-regulation of amygdala responsivity. Furthermore, the degree of post-stressor left amygdala decoupling with the lateral OFC varied according to self-reported pain intensity during the cold pressor task. These findings indicate that the cold pressor task alters amygdala interactions with prefrontal and ACC regions 15–30 minutes after the stressor, and that these altered functional connectivity patterns are related to pain perception rather than cortisol feedback. PMID:23645370

  5. The basolateral amygdala can mediate the effects of fear memory on sleep independently of fear behavior and the peripheral stress response.

    Science.gov (United States)

    Wellman, Laurie L; Fitzpatrick, Mairen E; Hallum, Olga Y; Sutton, Amy M; Williams, Brook L; Sanford, Larry D

    2017-01-01

    Fear conditioning associated with inescapable shock training (ST) and fearful context re-exposure (CR) alone can produce significant behavioral fear, a stress response and alterations in subsequent REM sleep. These alterations may vary among animals and are mediated by the basolateral nucleus of the amygdala (BLA). Here, we used the GABA A agonist, muscimol (Mus), to inactivate BLA prior to CR and examined the effects on sleep, freezing and stress-induced hyperthermia (SIH). Wistar rats (n=28) were implanted with electrodes for recording sleep, data loggers for recording core body temperature, and with cannulae aimed bilaterally into BLA. After recovery, the animals were habituated to the injection procedure and baseline sleep was recorded. On experimental day 1, rats received ST (20 footshocks, 0.8mA, 0.5s duration, 60s interstimulus interval). On experimental day 7, the rats received microinjections (0.5μl) into BLA of either Mus (1.0μM; n=13) or vehicle (Veh; n=15) prior to CR (CR1). On experimental day 21, the animals experienced a second CR (CR2) without Mus. For analysis, the rats were separated into 4 groups: (Veh-vulnerable (Veh-Vul; n=8), Veh-resilient (Veh-Res; n=7), Mus-vulnerable (Mus-Vul; n=7), and Mus-resilient (Mus-Res; n=6)) based on whether or not REM was decreased, compared to baseline, during the first 4h following ST. Pre-CR1 inactivation of BLA did not alter freezing or SIH, but did block the reduction in REM in the Mus-Vul group compared to the Veh-Vul group. These data indicate that BLA is an important region for mediating the effects of fearful memories on sleep. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. The Role of Chronic Psychosocial Stress in Explaining Racial Differences in Stress Reactivity and Pain Sensitivity.

    Science.gov (United States)

    Gordon, Jennifer L; Johnson, Jacqueline; Nau, Samantha; Mechlin, Beth; Girdler, Susan S

    To examine the role of psychosocial factors in mediating the relationship between African American (AA) race and both increased pain sensitivity and blunted stress reactivity. Participants included 133 AA and non-Hispanic white (nHW) individuals (mean [SD] age, 37 [9]) matched for age, sex, and socioeconomic status. Participants underwent mental stress testing (Trier Social Stress Test) while cardiovascular, hemodynamic, and neuroendocrine reactivity were measured. Participants completed questionnaires assessing potential sources of psychosocial stress and were tested for pain responses to cold pain and the temporal summation of heat pulses. Mediation analyses were used to determine the extent to which exposure to psychosocial stress accounted for the observed racial differences in stress reactivity and pain. Chronic stress exposure and reactivity to mental stress was largely similar among AAs and nHWs; however, AAs exhibited heightened pain to both cold (p = .012) and heat (p = .004). Racial differences in the relationship between stress reactivity and pain were also observed: while greater stress reactivity was associated with decreased pain among nHWs, reactivity was either unrelated to or even positively associated with pain among AAs (e.g., r = -.21 among nHWs and r = .41 among AAs for stroke volume reactivity and cold pressor intensity). Adjusting for minor racial differences in chronic psychosocial stress did not change these findings. Accounting for psychosocial factors eliminated racial differences in stress reactivity but not racial differences in sensitivity to experimental pain tasks. Increased exposure to chronic stress may not explain AAs' increased pain sensitivity in laboratory settings.

  7. Peripuberty stress leads to abnormal aggression, altered amygdala and orbitofrontal reactivity and increased prefrontal MAOA gene expression

    DEFF Research Database (Denmark)

    Márquez, C; Poirier, G L; Cordero, M I

    2013-01-01

    Although adverse early life experiences have been found to increase lifetime risk to develop violent behaviors, the neurobiological mechanisms underlying these long-term effects remain unclear. We present a novel animal model for pathological aggression induced by peripubertal exposure to stress ...

  8. Early life trauma exposure and stress sensitivity in young children.

    Science.gov (United States)

    Grasso, Damion J; Ford, Julian D; Briggs-Gowan, Margaret J

    2013-01-01

    The current study replicates and extends work with adults that highlights the relationship between trauma exposure and distress in response to subsequent, nontraumatic life stressors. The sample included 213 2-4-year-old children in which 64.3% had a history of potential trauma exposure. Children were categorized into 4 groups based on trauma history and current life stress. In a multivariate analysis of variance, trauma-exposed children with current life stressors had elevated internalizing and externalizing problems compared with trauma-exposed children without current stress and nontrauma-exposed children with and without current stressors. The trauma-exposed groups with or without current stressors did not differ on posttraumatic stress disorder symptom severity. Accounting for number of traumatic events did not change these results. These findings suggest that early life trauma exposure may sensitize young children and place them at risk for internalizing or externalizing problems when exposed to subsequent, nontraumatic life stressors.

  9. The interplay between the hippocampus and the amygdala in regulating aberrant hippocampal neurogenesis during protracted abstinence from alcohol dependence

    Directory of Open Access Journals (Sweden)

    Chitra D Mandyam

    2013-06-01

    Full Text Available The development of alcohol dependence involves elevated anxiety, low mood, and increased sensitivity to stress, collectively labeled negative affect. Particularly interesting is the recent accumulating evidence that sensitized extrahypothalamic stress systems (e.g., hyperglutamatergic activity, blunted hypothalamic-pituitary-adrenal [HPA] hormonal levels, altered corticotropin-releasing factor signaling, and altered glucocorticoid receptor signaling in the extended amygdala are evident in withdrawn dependent rats, supporting the hypothesis that pathological neuroadaptations in the extended amygdala contribute to the negative affective state. Notably, hippocampal neurotoxicity observed as aberrant dentate gyrus (DG neurogenesis (neurogenesis is a process where neural stem cells in the adult hippocampal subgranular zone generate DG granule cell neurons and DG neurodegeneration are observed in withdrawn dependent rats. These correlations between withdrawal and aberrant neurogenesis in dependent rats suggest that alterations in the DG could be hypothesized to be due to compromised HPA axis activity and associated hyperglutamatergic activity originating from the basolateral amygdala in withdrawn dependent rats. This review discusses a possible link between the neuroadaptations in the extended amygdala stress systems and the resulting pathological plasticity that could facilitate recruitment of new emotional memory circuits in the hippocampus as a function of aberrant DG neurogenesis.

  10. How Human Amygdala and Bed Nucleus of the Stria Terminalis May Drive Distinct Defensive Responses.

    Science.gov (United States)

    Klumpers, Floris; Kroes, Marijn C W; Baas, Johanna M P; Fernández, Guillén

    2017-10-04

    The ability to adaptively regulate responses to the proximity of potential danger is critical to survival and imbalance in this system may contribute to psychopathology. The bed nucleus of the stria terminalis (BNST) is implicated in defensive responding during uncertain threat anticipation whereas the amygdala may drive responding upon more acute danger. This functional dissociation between the BNST and amygdala is however controversial, and human evidence scarce. Here we used data from two independent functional magnetic resonance imaging studies [ n = 108 males and n = 70 (45 females)] to probe how coordination between the BNST and amygdala may regulate responses during shock anticipation and actual shock confrontation. In a subset of participants from Sample 2 ( n = 48) we demonstrate that anticipation and confrontation evoke bradycardic and tachycardic responses, respectively. Further, we show that in each sample when going from shock anticipation to the moment of shock confrontation neural activity shifted from a region anatomically consistent with the BNST toward the amygdala. Comparisons of functional connectivity during threat processing showed overlapping yet also consistently divergent functional connectivity profiles for the BNST and amygdala. Finally, childhood maltreatment levels predicted amygdala, but not BNST, hyperactivity during shock anticipation. Our results support an evolutionary conserved, defensive distance-dependent dynamic balance between BNST and amygdala activity. Shifts in this balance may enable shifts in defensive reactions via the demonstrated differential functional connectivity. Our results indicate that early life stress may tip the neural balance toward acute threat responding and via that route predispose for affective disorder. SIGNIFICANCE STATEMENT Previously proposed differential contributions of the BNST and amygdala to fear and anxiety have been recently debated. Despite the significance of understanding their

  11. 15. Amygdala pain mechanisms

    Science.gov (United States)

    Neugebauer, Volker

    2015-01-01

    A limbic brain area the amygdala plays a key role in emotional responses and affective states and disorders such as learned fear, anxiety and depression. The amygdala has also emerged as an important brain center for the emotional-affective dimension of pain and for pain modulation. Hyperactivity in the laterocapsular division of the central nucleus of the amygdala (CeLC, also termed the “nociceptive amygdala”) accounts for pain-related emotional responses and anxiety-like behavior. Abnormally enhanced output from the CeLC is the consequence of an imbalance between excitatory and inhibitory mechanisms. Impaired inhibitory control mediated by a cluster of GABAergic interneurons in the intercalated cell masses (ITC) allows the development of glutamate- and neuropeptide-driven synaptic plasticity of excitatory inputs from the brainstem (parabrachial area) and from the lateral-basolateral amygdala network (LA-BLA, site of integration of polymodal sensory information). BLA hyperactivity also generates abnormally enhanced feedforward inhibition of principal cells in the medial prefrontal cortex (mPFC), a limbic cortical area that is strongly interconnected with the amygdala. Pain-related mPFC deactivation results in cognitive deficits and failure to engage cortically driven ITC-mediated inhibitory control of amygdala processing. Impaired cortical control allows the uncontrolled persistence of amygdala pain mechanisms. PMID:25846623

  12. Expectancy of Stress-Reducing Aromatherapy Effect and Performance on a Stress-Sensitive Cognitive Task

    Directory of Open Access Journals (Sweden)

    Irina Chamine

    2015-01-01

    Full Text Available Objective. Stress-reducing therapies help maintain cognitive performance during stress. Aromatherapy is popular for stress reduction, but its effectiveness and mechanism are unclear. This study examined stress-reducing effects of aromatherapy on cognitive function using the go/no-go (GNG task performance and event related potentials (ERP components sensitive to stress. The study also assessed the importance of expectancy in aromatherapy actions. Methods. 81 adults were randomized to 3 aroma groups (active experimental, detectable, and undetectable placebo and 2 prime subgroups (prime suggesting stress-reducing aroma effects or no-prime. GNG performance, ERPs, subjective expected aroma effects, and stress ratings were assessed at baseline and poststress. Results. No specific aroma effects on stress or cognition were observed. However, regardless of experienced aroma, people receiving a prime displayed faster poststress median reaction times than those receiving no prime. A significant interaction for N200 amplitude indicated divergent ERP patterns between baseline and poststress for go and no-go stimuli depending on the prime subgroup. Furthermore, trends for beneficial prime effects were shown on poststress no-go N200/P300 latencies and N200 amplitude. Conclusion. While there were no aroma-specific effects on stress or cognition, these results highlight the role of expectancy for poststress response inhibition and attention.

  13. Expectancy of Stress-Reducing Aromatherapy Effect and Performance on a Stress-Sensitive Cognitive Task

    Science.gov (United States)

    Chamine, Irina; Oken, Barry S.

    2015-01-01

    Objective. Stress-reducing therapies help maintain cognitive performance during stress. Aromatherapy is popular for stress reduction, but its effectiveness and mechanism are unclear. This study examined stress-reducing effects of aromatherapy on cognitive function using the go/no-go (GNG) task performance and event related potentials (ERP) components sensitive to stress. The study also assessed the importance of expectancy in aromatherapy actions. Methods. 81 adults were randomized to 3 aroma groups (active experimental, detectable, and undetectable placebo) and 2 prime subgroups (prime suggesting stress-reducing aroma effects or no-prime). GNG performance, ERPs, subjective expected aroma effects, and stress ratings were assessed at baseline and poststress. Results. No specific aroma effects on stress or cognition were observed. However, regardless of experienced aroma, people receiving a prime displayed faster poststress median reaction times than those receiving no prime. A significant interaction for N200 amplitude indicated divergent ERP patterns between baseline and poststress for go and no-go stimuli depending on the prime subgroup. Furthermore, trends for beneficial prime effects were shown on poststress no-go N200/P300 latencies and N200 amplitude. Conclusion. While there were no aroma-specific effects on stress or cognition, these results highlight the role of expectancy for poststress response inhibition and attention. PMID:25802539

  14. Impact of family history and depression on amygdala volume.

    LENUS (Irish Health Repository)

    Saleh, Karim

    2012-07-30

    Family history of depression significantly impacts life-long depression risk. Family history could impact the stress and emotion regulation system that involves the amygdala. This study\\'s purpose was to investigate family history\\'s effect on amygdala volumes, and differences in first degree relatives with and without major depressive disorder (MDD). Participants, aged 18-65, were healthy volunteers (N=52) with (n=26) and without (n=26) first degree family history, and patients with MDD (N=48) with (n=27) and without (n=21)first-degree family history recruited for structural magnetic resonance imaging (MRI). Participants underwent clinical assessment followed by manual amygdala tracing. Patients with MDD without family history showed significantly larger right amygdala without a family history of MDD. These effects had larger right amygdala than healthy controls without MDD family history. These effects were pronounced in females. Family history and gender impacted amygdala volumes in all participants, providing a rationale for the inconsistent results in MDD amygdala studies. Higher familial risk in depression seems to be associated with smaller amygdala volumes, whereas depression alone is associated with larger amygdala volumes. Ultimately, these findings highlight consideration of family history and gender in research and treatment strategies.

  15. Negative allosteric modulation of the mGlu7 receptor reduces visceral hypersensitivity in a stress-sensitive rat strain

    Directory of Open Access Journals (Sweden)

    Rachel D. Moloney

    2015-01-01

    Full Text Available Glutamate, the main excitatory neurotransmitter in the central nervous system, exerts its effect through ionotropic and metabotropic receptors. Of these, group III mGlu receptors (mGlu 4, 6, 7, 8 are among the least studied due to a lack of pharmacological tools. mGlu7 receptors, the most highly conserved isoform, are abundantly distributed in the brain, especially in regions, such as the amygdala, known to be crucial for the emotional processing of painful stimuli. Visceral hypersensitivity is a poorly understood phenomenon manifesting as an increased sensitivity to visceral stimuli. Glutamate has long been associated with somatic pain processing leading us to postulate that crossover may exist between these two modalities. Moreover, stress has been shown to exacerbate visceral pain. ADX71743 is a novel, centrally penetrant, negative allosteric modulator of mGlu7 receptors. Thus, we used this tool to explore the possible involvement of this receptor in the mediation of visceral pain in a stress-sensitive model of visceral hypersensitivity, namely the Wistar Kyoto (WKY rat. ADX71743 reduced visceral hypersensitivity in the WKY rat as exhibited by increased visceral sensitivity threshold with concomitant reductions in total number of pain behaviours. Moreover, AD71743 increased total distance and distance travelled in the inner zone of the open field. These findings show, for what is to our knowledge, the first time, that mGlu7 receptor signalling plays a role in visceral pain processing. Thus, negative modulation of the mGlu7 receptor may be a plausible target for the amelioration of stress-induced visceral pain where there is a large unmet medical need.

  16. Cytokine production as a putative biological mechanism underlying stress sensitization in high combat exposed soldiers

    NARCIS (Netherlands)

    Smid, Geert E.; van Zuiden, Mirjam; Geuze, Elbert; Kavelaars, Annemieke; Heijnen, Cobi J.; Vermetten, Eric

    2015-01-01

    Objective: Combat stress exposed soldiers may respond to post-deployment stressful life events (SLE) with increases in symptoms of posttraumatic stress disorder (PTSD), consistent with a model of stress sensitization. Several lines of research point to sensitization as a model to describe the

  17. Cytokine production as a putative biological mechanism underlying stress sensitization in high combat exposed soldiers

    NARCIS (Netherlands)

    Smid, Geert E.; van Zuiden, Mirjam; Geuze, Elbert; Kavelaars, Annemieke; Heijnen, Cobi J.; Vermetten, Eric

    2015-01-01

    Combat stress exposed soldiers may respond to post-deployment stressful life events (SLE) with increases in symptoms of posttraumatic stress disorder (PTSD), consistent with a model of stress sensitization. Several lines of research point to sensitization as a model to describe the relations between

  18. A BDNF sensitive mechanism is involved in the fear memory resulting from the interaction between stress and the retrieval of an established trace.

    Science.gov (United States)

    Giachero, Marcelo; Bustos, Silvia G; Calfa, Gaston; Molina, Victor A

    2013-04-15

    The present study investigates the fear memory resulting from the interaction of a stressful experience and the retrieval of an established fear memory trace. Such a combination enhanced both fear expression and fear retention in adult Wistar rats. Likewise, midazolam intra-basolateral amygdala (BLA) infusion prior to stress attenuated the enhancement of fear memory thus suggesting the involvement of a stress-induced reduction of the GABAergic transmission in BLA in the stress-induced enhancing effect. It has been suggested that, unlike the immediate-early gene Zif268 which is related to the reconsolidation process, the expression of hippocampal brain-derived neurotrophic factor (BDNF) is highly correlated with consolidation. We therefore evaluate the relative contribution of these two neurobiological processes to the fear memory resulting from the above-mentioned interaction. Intra-dorsal hippocampus (DH) infusions of either the antisense Zif268 or the inhibitor of the protein degradation (Clasto-Lactacystin β-Lactone), suggested to be involved in the retrieval-dependent destabilization process, did not affect the resulting contextual memory. In contrast, the knockdown of hippocampal BDNF mitigated the stress-induced facilitating influence on fear retention. In addition, the retrieval experience elevated BDNF level in DH at 60 min after recall exclusively in stressed animals. These findings suggest the involvement of a hippocampal BDNF sensitive mechanism in the stress-promoting influence on the fear memory following retrieval.

  19. Amygdala signals subjective appetitiveness and aversiveness of mixed gambles

    DEFF Research Database (Denmark)

    Gelskov, Sofie V.; Henningsson, Susanne; Madsen, Kristoffer Hougaard

    2015-01-01

    People are more sensitive to losses than to equivalent gains when making financial decisions. We used functional magnetic resonance imaging (fMRI) to illuminate how the amygdala contributes to loss aversion. The blood oxygen level dependent (BOLD) response of the amygdala was mapped while healthy...... individuals were responding to 50/50 gambles with varying potential gain and loss amounts. Overall, subjects demanded twice as high potential gain as loss to accept a gamble. The individual level of loss aversion was expressed by the decision boundary, i.e., the gain-loss ratio at which subjects accepted...... and rejected gambles with equal probability. Amygdala activity increased the more the gain-loss ratio deviated from the individual decision boundary showing that the amygdala codes action value. This response pattern was more strongly expressed in loss aversive individuals, linking amygdala activity...

  20. Chemosensory function of the amygdala.

    Science.gov (United States)

    Gutiérrez-Castellanos, Nicolás; Martínez-Marcos, Alino; Martínez-García, Fernando; Lanuza, Enrique

    2010-01-01

    The chemosensory amygdala has been traditionally divided into two divisions based on inputs from the main (olfactory amygdala) or accessory (vomeronasal amygdala) olfactory bulbs, supposedly playing different and independent functional roles detecting odors and pheromones, respectively. Recently, there has been increased anatomical evidence of convergence inputs from the main and accessory bulbs in some areas of the amygdala, and this is correlated with functional evidence of interrelationships between the olfactory and the vomeronasal systems. This has lead to the characterization of a third division of the chemosensory amygdala, the mixed chemosensory amygdala, providing a new perspective of how chemosensory information is processed in the amygdaloid complex, in particular in relation to emotional behaviors. In this chapter, we analyze the anatomical and functional organization of the chemosensory amygdala from this new perspective. Finally, the evolutionary changes of the chemosensory nuclei of the mammalian amygdala are discussed, paying special attention to the case of primates, including humans. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. Annealing effects on strain and stress sensitivity of polymer optical fibre based sensors

    DEFF Research Database (Denmark)

    Pospori, A.; Marques, C. A. F.; Zubel, M. G.

    2016-01-01

    The annealing effects on strain and stress sensitivity of polymer optical fibre Bragg grating sensors after their photoinscription are investigated. PMMA optical fibre based Bragg grating sensors are first photo-inscribed and then they were placed into hot water for annealing. Strain, stress...... fibre tends to increase the strain, stress and force sensitivity of the photo-inscribed sensor....

  2. Annealing and etching effects on strain and stress sensitivity of polymer optical fibre Bragg grating sensors

    DEFF Research Database (Denmark)

    Pospori, A.; Marques, C. A.F.; Sáez-Rodríguez, D.

    2017-01-01

    Thermal annealing and chemical etching effects on the strain and stress sensitivity of polymer optical fibre based sensors are investigated. Bragg grating sensors have been photo-inscribed in PMMA optical fibre and their strain and stress sensitivity has been characterised before and after any...... annealing or etching process. The annealing and etching processes have been tried in different sequence in order to investigate their impact on the sensor's performance. Results show with high confidence that fibre annealing can improve both strain and stress sensitivities. The fibre etching can also...... provide stress sensitivity enhancement, however the strain sensitivity changes seems to be random....

  3. Pressure pain sensitivity as a marker for stress and pressure pain sensitivity-guided stress management in women with primary breast cancer

    DEFF Research Database (Denmark)

    Axelsson, Christen K; Ballegaard, Søren; Karpatschof, Benny

    2014-01-01

    employees was divided in a High Stress Group (HSG, n = 37) and a Low Stress Group (LSG, n = 128) to evaluate the association between PPS, questionnaire-related Quality of Life (QOL) and self-evaluated stress. (2) A PPS-guided stress management program (n = 40) was compared to a Psychosocial Group......OBJECTIVES: To validate (1) Pressure Pain Sensitivity (PPS) as a marker for stress and (2) a PPS-guided intervention in women with primary Breast Cancer (BC). METHODS: (1) A total of 58 women with BC were examined before and after 6 months of intervention. A control group of 165 women office...... scores: (all p stress scores (all p

  4. Depression/anxiety disorder and amygdala

    International Nuclear Information System (INIS)

    Iidaka, Tetsuya

    2007-01-01

    Described and discussed are neuro-imaging studies on the amygdala (Am) concerning its volume, neuro-active drug effect on it and its response to repulsive and attractive stress-evoked character/temperament tests in patients mainly with major depression (MD) and anxiety disorder (AD), by functional MRI (fMRI) and positron emission tomography (PET). A recent trend of volumetry of Am is the voxel-based morphometry by MRI, of which results are still controversial in MD. In contrast, many studies by PET and fMRI using neuro-active drugs have revealed that Am activity in MD is stimulated, and this hyperactivity can be improved by anti-depressive drugs. In addition, difference of activities is suggested in Am left and right hemispheres. The hyperactivity in Am has been reported also in AD and phobic disorders, of which symptoms are conceivably expressed by the sensitivity changes in the cerebral limbic system involving Am. The author considers the central region responsible for the depressive mood is present around cortex of anteroinferior genu of corpus callosum where neuro-network with Am is dense. (R.T.)

  5. Pain sensitivity mediates the relationship between stress and headache intensity in chronic tension-type headache.

    Science.gov (United States)

    Cathcart, Stuart; Bhullar, Navjot; Immink, Maarten; Della Vedova, Chris; Hayball, John

    2012-01-01

    A central model for chronic tension-type headache (CTH) posits that stress contributes to headache, in part, by aggravating existing hyperalgesia in CTH sufferers. The prediction from this model that pain sensitivity mediates the relationship between stress and headache activity has not yet been examined. To determine whether pain sensitivity mediates the relationship between stress and prospective headache activity in CTH sufferers. Self-reported stress, pain sensitivity and prospective headache activity were measured in 53 CTH sufferers recruited from the general population. Pain sensitivity was modelled as a mediator between stress and headache activity, and tested using a nonparametric bootstrap analysis. Pain sensitivity significantly mediated the relationship between stress and headache intensity. The results of the present study support the central model for CTH, which posits that stress contributes to headache, in part, by aggravating existing hyperalgesia in CTH sufferers. Implications for the mechanisms and treatment of CTH are discussed.

  6. Spider phobia is associated with decreased left amygdala volume: a cross-sectional study

    Science.gov (United States)

    2013-01-01

    Background Evidence from animal and human studies imply the amygdala as the most critical structure involved in processing of fear-relevant stimuli. In phobias, the amygdala seems to play a crucial role in the pathogenesis and maintenance of the disorder. However, the neuropathology of specific phobias remains poorly understood. In the present study, we investigated whether patients with spider phobia show altered amygdala volumes as compared to healthy control subjects. Methods Twenty female patients with spider phobia and twenty age-matched healthy female controls underwent magnetic resonance imaging to investigate amygdala volumes. The amygdalae were segmented using an automatic, model-based segmentation tool (FSL FIRST). Differences in amygdala volume were investigated by multivariate analysis of covariance with group as between-subject factor and left and right amygdala as dependent factors. The relation between amygdala volume and clinical features such as symptom severity, disgust sensitivity, trait anxiety and duration of illness was investigated by Spearman correlation analysis. Results Spider phobic patients showed significantly smaller left amygdala volume than healthy controls. No significant difference in right amygdala volume was detected. Furthermore, the diminished amygdala size in patients was related to higher symptom severity, but not to higher disgust sensitivity or trait anxiety and was independent of age. Conclusions In summary, the results reveal a relation between higher symptom severity and smaller left amygdala volume in patients with spider phobia. This relation was independent of other potential confounders such as the disgust sensitivity or trait anxiety. The findings suggest that greater spider phobic fear is associated with smaller left amygdala. However, the smaller left amygdala volume may either stand for a higher vulnerability to develop a phobic disorder or emerge as a consequence of the disorder. PMID:23442196

  7. Influence of Pre-Training Predator Stress on the Expression of c-fos mRNA in the Hippocampus, Amygdala, and Striatum Following Long-Term Spatial Memory Retrieval.

    Science.gov (United States)

    Vanelzakker, Michael B; Zoladz, Phillip R; Thompson, Vanessa M; Park, Collin R; Halonen, Joshua D; Spencer, Robert L; Diamond, David M

    2011-01-01

    We have studied the influence of pre-training psychological stress on the expression of c-fos mRNA following long-term spatial memory retrieval. Rats were trained to learn the location of a hidden escape platform in the radial-arm water maze, and then their memory for the platform location was assessed 24 h later. Rat brains were extracted 30 min after the 24-h memory test trial for analysis of c-fos mRNA. Four groups were tested: (1) Rats given standard training (Standard); (2) Rats given cat exposure (Predator Stress) 30 min prior to training (Pre-Training Stress); (3) Rats given water exposure only (Water Yoked); and (4) Rats given no water exposure (Home Cage). The Standard trained group exhibited excellent 24 h memory which was accompanied by increased c-fos mRNA in the dorsal hippocampus and basolateral amygdala (BLA). The Water Yoked group exhibited no increase in c-fos mRNA in any brain region. Rats in the Pre-Training Stress group were classified into two subgroups: good and bad memory performers. Neither of the two Pre-Training Stress subgroups exhibited a significant change in c-fos mRNA expression in the dorsal hippocampus or BLA. Instead, stressed rats with good memory exhibited significantly greater c-fos mRNA expression in the dorsolateral striatum (DLS) compared to stressed rats with bad memory. This finding suggests that stressed rats with good memory used their DLS to generate a non-spatial (cue-based) strategy to learn and subsequently retrieve the memory of the platform location. Collectively, these findings provide evidence at a molecular level for the involvement of the hippocampus and BLA in the retrieval of spatial memory and contribute novel observations on the influence of pre-training stress in activating the DLS in response to long-term memory retrieval.

  8. Influence of Pre-Training Predator Stress on the Expression of c-fos mRNA in the Hippocampus, Amygdala and Striatum Following Long-Term Spatial Memory Retrieval

    Directory of Open Access Journals (Sweden)

    Michael B VanElzakker

    2011-06-01

    Full Text Available We have studied the influence of pre-training psychological stress on the expression of c-fos mRNA following long-term spatial memory retrieval. Rats were trained to learn the location of a hidden escape platform in the radial-arm water maze, and then their memory for the platform location was assessed 24 hr later. Rat brains were extracted 30 min after the 24 hr memory test trial for analysis of c-fos mRNA. Four groups were tested: 1 Rats given standard training (Standard; 2 Rats given cat exposure (Predator Stress 30 min prior to training (Pre-Training Stress; 3 Rats given water exposure only (Water Yoked; and 4 Rats given no water exposure (Home Cage. The Standard trained group exhibited excellent 24 hr memory which was accompanied by increased c-fos mRNA in the dorsal hippocampus and basolateral amygdala (BLA. The Water Yoked group exhibited no increase in c-fos mRNA in any brain region. Rats in the Pre-Training Stress group were classified into two subgroups: good and bad memory performers. Neither of the two Pre-Training Stress subgroups exhibited a significant change in c-fos mRNA expression in the dorsal hippocampus or BLA. Instead, stressed rats with good memory exhibited significantly greater c-fos mRNA expression in the dorsolateral striatum (DLS compared to stressed rats with bad memory. This finding suggests that stressed rats with good memory used their DLS to generate a non-spatial (cue-based strategy to learn and subsequently retrieve the memory of the platform location. Collectively, these findings provide evidence at a molecular level for the involvement of the hippocampus and BLA in the retrieval of spatial memory and contribute novel observations on the influence of pre-training stress in activating the DLS in response to long-term memory retrieval.

  9. Influence of Pre-Training Predator Stress on the Expression of c-fos mRNA in the Hippocampus, Amygdala, and Striatum Following Long-Term Spatial Memory Retrieval

    Science.gov (United States)

    VanElzakker, Michael B.; Zoladz, Phillip R.; Thompson, Vanessa M.; Park, Collin R.; Halonen, Joshua D.; Spencer, Robert L.; Diamond, David M.

    2011-01-01

    We have studied the influence of pre-training psychological stress on the expression of c-fos mRNA following long-term spatial memory retrieval. Rats were trained to learn the location of a hidden escape platform in the radial-arm water maze, and then their memory for the platform location was assessed 24 h later. Rat brains were extracted 30 min after the 24-h memory test trial for analysis of c-fos mRNA. Four groups were tested: (1) Rats given standard training (Standard); (2) Rats given cat exposure (Predator Stress) 30 min prior to training (Pre-Training Stress); (3) Rats given water exposure only (Water Yoked); and (4) Rats given no water exposure (Home Cage). The Standard trained group exhibited excellent 24 h memory which was accompanied by increased c-fos mRNA in the dorsal hippocampus and basolateral amygdala (BLA). The Water Yoked group exhibited no increase in c-fos mRNA in any brain region. Rats in the Pre-Training Stress group were classified into two subgroups: good and bad memory performers. Neither of the two Pre-Training Stress subgroups exhibited a significant change in c-fos mRNA expression in the dorsal hippocampus or BLA. Instead, stressed rats with good memory exhibited significantly greater c-fos mRNA expression in the dorsolateral striatum (DLS) compared to stressed rats with bad memory. This finding suggests that stressed rats with good memory used their DLS to generate a non-spatial (cue-based) strategy to learn and subsequently retrieve the memory of the platform location. Collectively, these findings provide evidence at a molecular level for the involvement of the hippocampus and BLA in the retrieval of spatial memory and contribute novel observations on the influence of pre-training stress in activating the DLS in response to long-term memory retrieval. PMID:21738501

  10. Pain Sensitivity Mediates The Relationship between Stress and Headache Intensity in Chronic Tension-Type Headache

    OpenAIRE

    Stuart Cathcart; Navjot Bhullar; Maarten Immink; Chris Della Vedova; John Hayball

    2012-01-01

    BACKGROUND: A central model for chronic tension-type headache (CTH) posits that stress contributes to headache, in part, by aggravating existing hyperalgesia in CTH sufferers. The prediction from this model that pain sensitivity mediates the relationship between stress and headache activity has not yet been examined.OBJECTIVE: To determine whether pain sensitivity mediates the relationship between stress and prospective headache activity in CTH sufferers.METHOD: Self-reported stress, pain sen...

  11. Growth hormone biases amygdala network activation after fear learning.

    Science.gov (United States)

    Gisabella, B; Farah, S; Peng, X; Burgos-Robles, A; Lim, S H; Goosens, K A

    2016-11-29

    Prolonged stress exposure is a risk factor for developing posttraumatic stress disorder, a disorder characterized by the 'over-encoding' of a traumatic experience. A potential mechanism by which this occurs is through upregulation of growth hormone (GH) in the amygdala. Here we test the hypotheses that GH promotes the over-encoding of fearful memories by increasing the number of neurons activated during memory encoding and biasing the allocation of neuronal activation, one aspect of the process by which neurons compete to encode memories, to favor neurons that have stronger inputs. Viral overexpression of GH in the amygdala increased the number of amygdala cells activated by fear memory formation. GH-overexpressing cells were especially biased to express the immediate early gene c-Fos after fear conditioning, revealing strong autocrine actions of GH in the amygdala. In addition, we observed dramatically enhanced dendritic spine density in GH-overexpressing neurons. These data elucidate a previously unrecognized autocrine role for GH in the regulation of amygdala neuron function and identify specific mechanisms by which chronic stress, by enhancing GH in the amygdala, may predispose an individual to excessive fear memory formation.

  12. A BDNF Sensitive Mechanism Is Involved in the Fear Memory Resulting from the Interaction between Stress and the Retrieval of an Established Trace

    Science.gov (United States)

    Giachero, Marcelo; Bustos, Silvia G.; Calfa, Gaston; Molina, Victor A.

    2013-01-01

    The present study investigates the fear memory resulting from the interaction of a stressful experience and the retrieval of an established fear memory trace. Such a combination enhanced both fear expression and fear retention in adult Wistar rats. Likewise, midazolam intra-basolateral amygdala (BLA) infusion prior to stress attenuated the…

  13. Involvement of the amygdala in memory storage: Interaction with other brain systems

    Science.gov (United States)

    McGaugh, James L.; Cahill, Larry; Roozendaal, Benno

    1996-01-01

    There is extensive evidence that the amygdala is involved in affectively influenced memory. The central hypothesis guiding the research reviewed in this paper is that emotional arousal activates the amygdala and that such activation results in the modulation of memory storage occurring in other brain regions. Several lines of evidence support this view. First, the effects of stress-related hormones (epinephrine and glucocorticoids) are mediated by influences involving the amygdala. In rats, lesions of the amygdala and the stria terminalis block the effects of posttraining administration of epinephrine and glucocorticoids on memory. Furthermore, memory is enhanced by posttraining intra-amygdala infusions of drugs that activate β-adrenergic and glucocorticoid receptors. Additionally, infusion of β-adrenergic blockers into the amygdala blocks the memory-modulating effects of epinephrine and glucocorticoids, as well as those of drugs affecting opiate and GABAergic systems. Second, an intact amygdala is not required for expression of retention. Inactivation of the amygdala prior to retention testing (by posttraining lesions or drug infusions) does not block retention performance. Third, findings of studies using human subjects are consistent with those of animal experiments. β-Blockers and amygdala lesions attenuate the effects of emotional arousal on memory. Additionally, 3-week recall of emotional material is highly correlated with positron-emission tomography activation (cerebral glucose metabolism) of the right amygdala during encoding. These findings provide strong evidence supporting the hypothesis that the amygdala is involved in modulating long-term memory storage. PMID:8942964

  14. Plane-stress fields for sharp notches in pressure-sensitive materials

    International Nuclear Information System (INIS)

    Al-Abduljabbar, Abdulhamid

    2003-01-01

    The effect of pressure sensitive yield on materials toughness can be determined by investigating stress fields around cracks and notches. In this work, fully-developed plastic stress fields around sharp wedge-shaped notches of perfectly-plastic pressure-sensitive materials are investigated for plane-stress case and Mode 1 loading condition. The pressure-sensitive yielding behavior is represented using the Drucker-Prager criterion. Using equilibrium equations, boundary conditions, and the yield criterion, closed-form expressions for stress fields are derived. The analysis covers the gradual change in the notch angle and compares it with the limiting case of a pure horizontal crack. Effects of notch geometry and pressure sensitivity on stress fields are examined by considering different specimen geometries, as well as different levels of pressure sensitivity. Results indicate that while the stress values directly ahead of the notch-tip are not affected, the extent of stress sector at notch front is reduced, thereby causing increase in the radial stress value around the notch. As the pressure sensitivity increases the reduction of the stress sector directly ahead of the notch tip is more evident. Also, for high pressure sensitivity values, introduction of the notch angle reduces the variation of the stress levels. Results are useful for design of structural components. (author)

  15. Dysregulated stress signal sensitivity and inflammatory disinhibition as a pathophysiological mechanism of stress-related chronic fatigue.

    Science.gov (United States)

    Strahler, Jana; Skoluda, Nadine; Rohleder, Nicolas; Nater, Urs M

    2016-09-01

    Chronic stress and its subsequent effects on biological stress systems have long been recognized as predisposing and perpetuating factors in chronic fatigue, although the exact mechanisms are far from being completely understood. In this review, we propose that sensitivity of immune cells to glucocorticoids (GCs) and catecholamines (CATs) may be the missing link in elucidating how stress turns into chronic fatigue. We searched for in vitro studies investigating the impact of GCs or CATs on mitogen-stimulated immune cells in chronically stressed or fatigued populations, with 34 original studies fulfilling our inclusion criteria. Besides mixed cross-sectional findings for stress- and fatigue-related changes of GC sensitivity under basal conditions or acute stress, longitudinal studies indicate a decrease with ongoing stress. Research on CATs is still scarce, but initial findings point towards a reduction of CAT sensitivity under chronic stress. In the long run, resistance of immune cells to stress signals under conditions of chronic stress might translate into self-maintaining inflammation and inflammatory disinhibition under acute stress, which in turn lead to fatigue. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Stress Sensitivity and Psychotic Experiences in 39 Low- and Middle-Income Countries.

    Science.gov (United States)

    DeVylder, Jordan E; Koyanagi, Ai; Unick, Jay; Oh, Hans; Nam, Boyoung; Stickley, Andrew

    2016-11-01

    Stress has a central role in most theories of psychosis etiology, but the relation between stress and psychosis has rarely been examined in large population-level data sets, particularly in low- and middle-income countries. We used data from 39 countries in the World Health Survey (n = 176 934) to test the hypothesis that stress sensitivity would be associated with psychotic experiences, using logistic regression analyses. Respondents in low-income countries reported higher stress sensitivity (P countries. Greater stress sensitivity was associated with increased odds for psychotic experiences, even when adjusted for co-occurring anxiety and depressive symptoms: adjusted odds ratio (95% CI) = 1.17 (1.15-1.19) per unit increase in stress sensitivity (range 2-10). This association was consistent and significant across nearly every country studied, and translated into a difference in psychotic experience prevalence ranging from 6.4% among those with the lowest levels of stress sensitivity up to 22.2% among those with the highest levels. These findings highlight the generalizability of the association between psychosis and stress sensitivity in the largest and most globally representative community-level sample to date, and support the targeting of stress sensitivity as a potential component of individual- and population-level interventions for psychosis. © The Author 2016. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  17. The amygdala, reward and emotion.

    Science.gov (United States)

    Murray, Elisabeth A

    2007-11-01

    Recent research provides new insights into amygdala contributions to positive emotion and reward. Studies of neuronal activity in the monkey amygdala and of autonomic responses mediated by the monkey amygdala show that, contrary to a widely held view, the amygdala is just as important for processing positive reward and reinforcement as it is for negative. In addition, neuropsychological studies reveal that the amygdala is essential for only a fraction of what might be considered 'stimulus-reward processing', and that the neural substrates for emotion and reward are partially nonoverlapping. Finally, evidence suggests that two systems within the amygdala, operating in parallel, enable reward-predicting cues to influence behavior; one mediates a general, arousing effect of reward and the other links the sensory properties of reward to emotion.

  18. Optogenetic dissection of amygdala functioning

    Directory of Open Access Journals (Sweden)

    Ryan eLalumiere

    2014-03-01

    Full Text Available Studies of amygdala functioning have occupied a significant place in the history of understanding how the brain controls behavior and cognition. Early work on the amygdala placed this small structure as a key component in the regulation of emotion and affective behavior. Over time, our understanding of its role in brain processes has expanded, as we have uncovered amygdala influences on memory, reward behavior, and overall functioning in many other brain regions. Studies have indicated that the amygdala has widespread connections with a variety of brain structures, from the prefrontal cortex to regions of the brainstem, that explain its powerful influence on other parts of the brain and behaviors mediated by those regions. Thus, many optogenetic studies have focused on harnessing the powers of this technique to elucidate the functioning of the amygdala in relation to motivation, fear, and memory as well as to determine how the amygdala regulates activity in other structures. For example, studies using optogenetics have examined how specific circuits within amygdala nuclei regulate anxiety. Other work has provided insight into how the basolateral and central amygdala nuclei regulate memory processing underlying aversive learning. Many experiments have taken advantage of optogenetics’ ability to target either genetically distinct subpopulations of neurons or the specific projections from the amygdala to other brain regions. Findings from such studies have provided evidence that particular patterns of activity in basolateral amygdala glutamatergic neurons are related to memory consolidation processes, while other work has indicated the critical nature of amygdala inputs to the prefrontal cortex and nucleus accumbens in regulating behavior dependent on those downstream structures. This review will examine the recent discoveries on amygdala functioning made through experiments using optogenetics, placing these findings in the context of the major

  19. STRESS MODELING IN COMPOSITE PRODUCTS USING STANDARD OPTICALLY SENSITIVE MATERIAL

    Directory of Open Access Journals (Sweden)

    Elifkhan K. Agakhanov

    2017-01-01

    Full Text Available Abstract. Objectives The problem of physically modelling stresses in a compound solid body of revolution having a complex shape and with a complex load distribution is considered. According to the similarity criteria of stress, deformations and displacements from the volume forces decrease proportionally to the scale of similarity of geometric dimensions, which complicates their direct modelling by the photoelasticity method typically using models made from epoxy materials. Methods Based on the principle of the independent action of the forces, the initial problem is represented as the sum of two problems. In the first uniform problem, the stresses in the body of revolution from the centrifugal forces are simulated by the conventional “freezing” method. In order to solve the second nonuniform problem, the stresses in the region of the model, corresponding to the acting centrifugal forces, are “frozen”. The models are glued in a natural state at room temperature, and the compound model is annealed. Results The band patterns in sections as well as components of radial, tangential and axial stresses on contours and in sections of models are obtained by the methods of normal transmission and numerical integration of the equilibrium equation. According to the modelling criteria, the formula for the transition from stresses in models to stresses in the natural structure is established. The results of the analysis of the effect of a body's material density ratio on the stress state of the entire structure are obtained. Conclusion  Axial stresses have insignificant value as compared to radial and tangential stresses; in addition, the ratio of the densities of the compound body has both a quantitative and qualitative influence on the stress state of the structure.

  20. Anxiety, Anxiety Sensitivity, and Perceived Stress as Predictors of Recent Drinking, Alcohol Craving, and Social Stress Response in Heavy Drinkers

    OpenAIRE

    McCaul, Mary E.; Hutton, Heidi E.; Stephens, Mary Ann C.; Xu, Xiaoqiang; Wand, Gary S.

    2017-01-01

    Background Stress and anxiety are widely considered to be causally related to alcohol craving and consumption, as well as development and maintenance of alcohol use disorder (AUD). However, numerous preclinical and human studies examining effects of stress or anxiety on alcohol use and alcohol?related problems have been equivocal. This study examined relationships between scores on self?report anxiety, anxiety sensitivity, and stress measures and frequency and intensity of recent drinking, al...

  1. The Effect of Applied Tensile Stress on Localized Corrosion in Sensitized AA5083

    Science.gov (United States)

    2015-09-01

    corrosion, but if exposed to elevated temperature for prolonged periods of time the alloy becomes sensitized. Since the β phase is more anodic than the...degree of localized corrosion for sensitized AA5083 under an applied tensile stress. AA5083 is an aluminum -magnesium alloy that experiences severe...direction. 14. SUBJECT TERMS Aluminum alloy , AA5083, IGSCC, intergranular stress corrosion cracking, localized corrosion, sensitized aluminum 15

  2. Child anxiety symptoms related to longitudinal cortisol trajectories and acute stress responses: evidence of developmental stress sensitization.

    Science.gov (United States)

    Laurent, Heidemarie K; Gilliam, Kathryn S; Wright, Dorianne B; Fisher, Philip A

    2015-02-01

    Cross-sectional research suggests that individuals at risk for internalizing disorders show differential activation levels and/or dynamics of stress-sensitive physiological systems, possibly reflecting a process of stress sensitization. However, there is little longitudinal research to clarify how the development of these systems over time relates to activation during acute stress, and how aspects of such activation map onto internalizing symptoms. We investigated children's (n = 107) diurnal hypothalamic-pituitary-adrenal activity via salivary cortisol (morning and evening levels) across 29 assessments spanning 6+ years, and related longitudinal patterns to acute stress responses at the end of this period (age 9-10). Associations with child psychiatric symptoms at age 10 were also examined to determine internalizing risk profiles. Increasing morning cortisol levels across assessments predicted less of a cortisol decline following interpersonal stress at age 9, and higher cortisol levels during performance stress at age 10. These same profiles of high and/or sustained cortisol elevation during psychosocial stress were associated with child anxiety symptoms. Results suggest developmental sensitization to stress-reflected in rising morning cortisol and eventual hyperactivation during acute stress exposure-may distinguish children at risk for internalizing disorders. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  3. 杏仁核内去甲肾上腺素在应激激素调控记忆保持过程中的作用%Role of amygdala norepinephrine in mediating stress hormone regu-lation of memory storage

    Institute of Scientific and Technical Information of China (English)

    Barbara FERRY; James L McGAUGH

    2000-01-01

    There is extensive evidence indicating that the noradrenergic system of the amygdala, particularly the basolateral nucleus of the amygdala (BLA), is involved in memory consolidation. This article reviews the central hypothesis that stress hormones released during emotionally arousing experiences activate noradrenergic mechanisms in the BLA, resulting in enhanced memory for those events. Findings from expenments using rats have shown that the memory-modulatory effects of the adrenocortical stress hormones epinephrine and glucocorficoids involve activation of β-adrenoceptors in the BLA. In addition, both behavioral and microdialysis studies have shown that the noradrenergic system of the BLA also mediates the influences of other neuromodulatory systems such as opioid peptidergic and GABAergic systems on memory storage. Other findings indicate that this stress hormone-induced activation of noradrenergic mechanisms in the BLA regulates memory storage in other brain regions.

  4. Serotonin-related gene expression in female monkeys with individual sensitivity to stress.

    Science.gov (United States)

    Bethea, C L; Streicher, J M; Mirkes, S J; Sanchez, R L; Reddy, A P; Cameron, J L

    2005-01-01

    Female cynomolgus monkeys exhibit different degrees of reproductive dysfunction with moderate metabolic and psychosocial stress. In this study, the expression of four genes pivotal to serotonin neural function was assessed in monkeys previously categorized as highly stress resistant (n=3; normal menstrual cyclicity through two stress cycles), medium stress resistant (n=5; ovulatory in the first stress cycle but anovulatory in the second stress cycle), or low stress resistant (i.e. stress-sensitive; n=4; anovulatory as soon as stress is initiated). In situ hybridization and quantitative image analysis was used to measure mRNAs coding for SERT (serotonin transporter), 5HT1A autoreceptor, MAO-A and MAO-B (monoamine oxidases) at six levels of the dorsal raphe nucleus (DRN). Optical density (OD) and positive pixel area were measured with NIH Image software. In addition, serotonin neurons were immunostained and counted at three levels of the DRN. Finally, each animal was genotyped for the serotonin transporter long polymorphic region (5HTTLPR). Stress sensitive animals had lower expression of SERT mRNA in the caudal region of the DRN (PMAO-A mRNA signal in the stress-sensitive group (PMAO-A OD was positively correlated with progesterone from a pre-stress control cycle (PMAO-B mRNA exhibited a similar downward trend in the stress-sensitive group. MAO-B OD also correlated with control cycle progesterone (PMAO-A) or exhibited a lower trend (5HT1A, MAO-B) in the stress sensitive animals, which probably reflects the lower number of serotonin neurons present.

  5. Serotonin transporter genotype (5-HTTLPR): effects of neutral and undefined conditions on amygdala activation.

    Science.gov (United States)

    Heinz, Andreas; Smolka, Michael N; Braus, Dieter F; Wrase, Jana; Beck, Anne; Flor, Herta; Mann, Karl; Schumann, Gunter; Büchel, Christian; Hariri, Ahmad R; Weinberger, Daniel R

    2007-04-15

    A polymorphism of the human serotonin transporter gene (SCL6A4) has been associated with serotonin transporter expression and with processing of aversive stimuli in the amygdala. Functional imaging studies show that during the presentation of aversive versus neutral cues, healthy carriers of the short (s) allele showed stronger amygdala activation than long (l) carriers. However, a recent report suggested that this interaction is driven by amygdala deactivation during presentation of neutral stimuli in s carriers. Functional MRI was used to assess amygdala activation during the presentation of a fixation cross or affectively aversive or neutral visual stimuli in 29 healthy men. Amygdala activation was increased in s carriers during undefined states such as the presentation of a fixation cross compared with emotionally neutral conditions. This finding suggests that s carriers show stronger amygdala reactivity to stimuli and contexts that are relatively uncertain, which we propose are stressful.

  6. Enhanced noradrenergic activity in the amygdala contributes to hyperarousal in an animal model of PTSD

    NARCIS (Netherlands)

    Ronzoni, G.; Arco, A. Del; Mora, F.; Segovia, G.

    2016-01-01

    Increased activity of the noradrenergic system in the amygdala has been suggested to contribute to the hyperarousal symptoms associated with post-traumatic stress disorder (PTSD). However, only two studies have examined the content of noradrenaline or its metabolites in the amygdala of rats

  7. Study of laminated anisotropic cylindrical shells sensitive to transverse stresses

    International Nuclear Information System (INIS)

    Massard, Thierry

    1979-01-01

    A variational method for the determination of stresses and displacements in a multilayered cylindrical shell is presented. All included materials are linearly anisotropic (monoclinic) - i.e. directional fibres reinforced materials. This study uses a functional which is derived from the potential energy of the structure. The incoming stresses are σ RR , σ Rθ , σ RZ , and the displacements are u θ and u Z . This mixed group is the main variables of the formulation. It is shown that the stationarity conditions of the functional are the equilibrium equations and the associated boundary conditions. An approximate solution can be found using a finite element method which realizes a tridimensional discretization of the structure. The program issued is a specific mean for studying the transverse shear stresses in laminated cylindrical structures. From the results obtained it can be concluded that it meets all requirements for the purposes of this range of problems. (author) [fr

  8. Threat-related amygdala functional connectivity is associated with 5-HTTLPR genotype and neuroticism

    DEFF Research Database (Denmark)

    Madsen, Martin Korsbak; Mc Mahon, Brenda; Andersen, Sofie Bech

    2016-01-01

    between right amygdala and mPFC and visual cortex, and between both amygdalae and left lateral orbitofrontal (lOFC) and ventrolateral prefrontal cortex (vlPFC). Notably, 5-HTTLPR moderated the association between neuroticism and functional connectivity between both amygdalae and left l...... is not fully understood. Using functional magnetic resonance imaging, we evaluated independent and interactive effects of the 5-HTTLPR genotype and neuroticism on amygdala functional connectivity during an emotional faces paradigm in 76 healthy individuals. Functional connectivity between left amygdala......Communication between the amygdala and other brain regions critically regulates sensitivity to threat, which has been associated with risk for mood and affective disorders. The extent to which these neural pathways are genetically determined or correlate with risk-related personality measures...

  9. Intergranular stress corrosion cracking of sensitized stainless steels. Final report

    International Nuclear Information System (INIS)

    Vyas, B.; Isaacs, H.S.; Weeks, J.R.

    1976-12-01

    A study was conducted of the intergranular stress corrosion cracking of materials used in Boiling Water Reactors (BWR) aimed at developing an understanding of the mechanism(s) of this mode of failure and at developing tests to determine the susceptibility of a given material to this form of attack

  10. The Role of Oxidative Stress in the Etiopathogenesis of Gluten-Sensitive Enteropathy Disease

    Directory of Open Access Journals (Sweden)

    Kaplan Mustafa

    2017-09-01

    Full Text Available Background: The objective here is to examine the role of overall oxidative stress in the etiopathogenesis of gluten-sensitive enteropathy disease and its relationship with gluten free diet and autoantibodies.

  11. Relations among child negative emotionality, parenting stress, and maternal sensitive responsiveness in early childhood

    NARCIS (Netherlands)

    Paulussen-Hoogeboom, M.C.; Stams, G.J.J.M.; Hermanns, J.M.A.; Peetsma, T.T.D.

    2008-01-01

    This short-term longitudinal study focuses on relations between preschool-aged childrens' perceived "difficult" temperament (defined as high negative emotionality) and observed maternal sensitive responsiveness in the context of maternal parenting stress. Design. Participants were fifty-nine

  12. Amygdala damage eliminates monetary loss aversion.

    Science.gov (United States)

    De Martino, Benedetto; Camerer, Colin F; Adolphs, Ralph

    2010-02-23

    Losses are a possibility in many risky decisions, and organisms have evolved mechanisms to evaluate and avoid them. Laboratory and field evidence suggests that people often avoid risks with losses even when they might earn a substantially larger gain, a behavioral preference termed "loss aversion." The cautionary brake on behavior known to rely on the amygdala is a plausible candidate mechanism for loss aversion, yet evidence for this idea has so far not been found. We studied two rare individuals with focal bilateral amygdala lesions using a series of experimental economics tasks. To measure individual sensitivity to financial losses we asked participants to play a variety of monetary gambles with possible gains and losses. Although both participants retained a normal ability to respond to changes in the gambles' expected value and risk, they showed a dramatic reduction in loss aversion compared to matched controls. The findings suggest that the amygdala plays a key role in generating loss aversion by inhibiting actions with potentially deleterious outcomes.

  13. Pressure pain sensitivity as a marker for stress and pressure pain sensitivity-guided stress management in women with primary breast cancer.

    Science.gov (United States)

    Axelsson, Christen K; Ballegaard, Søren; Karpatschof, Benny; Schousen, Peer

    2014-08-01

    To validate (1) Pressure Pain Sensitivity (PPS) as a marker for stress and (2) a PPS-guided intervention in women with primary Breast Cancer (BC). (1) A total of 58 women with BC were examined before and after 6 months of intervention. A control group of 165 women office employees was divided in a High Stress Group (HSG, n = 37) and a Low Stress Group (LSG, n = 128) to evaluate the association between PPS, questionnaire-related Quality of Life (QOL) and self-evaluated stress. (2) A PPS-guided stress management program (n = 40) was compared to a Psychosocial Group Intervention (PGI, n = 91) and no treatment (n = 86) with respect to a European Organization for Research and Treatment of Cancer (EORTC) questionnaire measured QOL. (1) Resting PPS and changes in PPS during the intervention period correlated significantly to EORTC and Short Form 36 (SF 36) main scores: (all p stress scores (all p stress. (2) The PPS-guided intervention group improved EORTC main score, pain and nausea, when compared to the control groups (all p stress. PPS-guided intervention improved QOL in women with breast cancer.

  14. Ex-vivo diffusion MRI reveals microstructural alterations in stress-sensitive brain regions: A chronic mild stress recovery study

    DEFF Research Database (Denmark)

    Khan, Ahmad Raza; Hansen, Brian; Wiborg, Ove

    Depression is a leading cause of disability worldwide and causes significant microstructural alterations in stress-sensitive brain regions. However, the potential recovery of these microstructural alterations has not previously been investigated, which we, therefore, set out to do using diffusion...... MRI (d-MRI) in the chronic mild stress (CMS) rat model of depression. This study reveals significant microstructural alterations after 8 weeks of recovery, in the opposite direction to change induced by stress in the acute phase of the experiment. Such findings may be useful in the prognosis...... of depression or for monitoring treatment response....

  15. Attachment Representation and Sensitivity : The Moderating Role of Posttraumatic Stress Disorder in a Refugee Sample

    NARCIS (Netherlands)

    van Ee, Elisa; Jongmans, Marian J; van der Aa, Niels; Kleber, Rolf J

    2016-01-01

    It has been hypothesized that adult attachment representations guide caregiving behavior and influence parental sensitivity, and thus affect the child's socio-emotional development. Several studies have shown a link between posttraumatic stress disorder (PTSD) and reduced parental sensitivity, so it

  16. Early Life Trauma Exposure and Stress Sensitivity in Young Children

    OpenAIRE

    Grasso, Damion J.; Ford, Julian D.; Briggs-Gowan, Margaret J.

    2012-01-01

    Objective The current study replicates and extends work with adults that highlights the relationship between trauma exposure and distress in response to subsequent, nontraumatic life stressors. Methods The sample included 213 2–4-year-old children in which 64.3% had a history of potential trauma exposure. Children were categorized into 4 groups based on trauma history and current life stress. Results In a multivariate analysis of variance, trauma-exposed children with current life stressors h...

  17. Corticosteroid Induced Decoupling of the Amygdala in Men

    NARCIS (Netherlands)

    Henckens, Marloes J. A. G.; van Wingen, Guido A.; Joëls, Marian; Fernández, Guillén

    2012-01-01

    The amygdala is a key regulator of vigilance and heightens attention toward threat. Its activity is boosted upon threat exposure and contributes to a neuroendocrine stress response via the hypothalamic-pituitary-adrenal (HPA) axis. Corticosteroids are known to control brain activity as well as HPA

  18. Deep brain stimulation of the basolateral amygdala for treatment-refractory combat post-traumatic stress disorder (PTSD): study protocol for a pilot randomized controlled trial with blinded, staggered onset of stimulation.

    Science.gov (United States)

    Koek, Ralph J; Langevin, Jean-Philippe; Krahl, Scott E; Kosoyan, Hovsep J; Schwartz, Holly N; Chen, James W Y; Melrose, Rebecca; Mandelkern, Mark J; Sultzer, David

    2014-09-10

    Combat post-traumatic stress disorder (PTSD) involves significant suffering, impairments in social and occupational functioning, substance use and medical comorbidity, and increased mortality from suicide and other causes. Many veterans continue to suffer despite current treatments. Deep brain stimulation (DBS) has shown promise in refractory movement disorders, depression and obsessive-compulsive disorder, with deep brain targets chosen by integration of clinical and neuroimaging literature. The basolateral amygdala (BLn) is an optimal target for high-frequency DBS in PTSD based on neurocircuitry findings from a variety of perspectives. DBS of the BLn was validated in a rat model of PTSD by our group, and limited data from humans support the potential safety and effectiveness of BLn DBS. We describe the protocol design for a first-ever Phase I pilot study of bilateral BLn high-frequency DBS for six severely ill, functionally impaired combat veterans with PTSD refractory to conventional treatments. After implantation, patients are monitored for a month with stimulators off. An electroencephalographic (EEG) telemetry session will test safety of stimulation before randomization to staggered-onset, double-blind sham versus active stimulation for two months. Thereafter, patients will undergo an open-label stimulation for a total of 24 months. Primary efficacy outcome is a 30% decrease in the Clinician Administered PTSD Scale (CAPS) total score. Safety outcomes include extensive assessments of psychiatric and neurologic symptoms, psychosocial function, amygdala-specific and general neuropsychological functions, and EEG changes. The protocol requires the veteran to have a cohabiting significant other who is willing to assist in monitoring safety and effect on social functioning. At baseline and after approximately one year of stimulation, trauma script-provoked 18FDG PET metabolic changes in limbic circuitry will also be evaluated. While the rationale for studying DBS

  19. Modification of COMT-dependent pain sensitivity by psychological stress and sex.

    Science.gov (United States)

    Meloto, Carolina B; Bortsov, Andrey V; Bair, Eric; Helgeson, Erika; Ostrom, Cara; Smith, Shad B; Dubner, Ronald; Slade, Gary D; Fillingim, Roger B; Greenspan, Joel D; Ohrbach, Richard; Maixner, William; McLean, Samuel A; Diatchenko, Luda

    2016-04-01

    Catecholamine-O-methyltransferase (COMT) is a polymorphic gene whose variants affect enzymatic activity and pain sensitivity via adrenergic pathways. Although COMT represents one of the most studied genes in human pain genetics, findings regarding its association with pain phenotypes are not always replicated. Here, we investigated if interactions among functional COMT haplotypes, stress, and sex can modify the effect of COMT genetic variants on pain sensitivity. We tested these interactions in a cross-sectional study, including 2 cohorts, one of 2972 subjects tested for thermal pain sensitivity (Orofacial Pain: Prospective Evaluation and Risk Assessment) and one of 948 subjects with clinical acute pain after motor vehicle collision (post-motor vehicle collision). In both cohorts, the COMT high-pain sensitivity (HPS) haplotype showed robust interaction with stress and number of copies of the HPS haplotype was positively associated with pain sensitivity in nonstressed individuals, but not in stressed individuals. In the post-motor vehicle collision cohort, there was additional modification by sex: the HPS-stress interaction was apparent in males, but not in females. In summary, our findings indicate that stress and sex should be evaluated in association studies aiming to investigate the effect of COMT genetic variants on pain sensitivity.

  20. Understanding amygdala responsiveness to fearful expressions through the lens of psychopathy and altruism.

    Science.gov (United States)

    Marsh, Abigail A

    2016-06-01

    Because the face is the central focus of human social interactions, emotional facial expressions provide a unique window into the emotional lives of others. They play a particularly important role in fostering empathy, which entails understanding and responding to others' emotions, especially distress-related emotions such as fear. This Review considers how fearful facial as well as vocal and postural expressions are interpreted, with an emphasis on the role of the amygdala. The amygdala may be best known for its role in the acquisition and expression of conditioned fear, but it also supports the perception and recognition of others' fear. Various explanations have been supplied for the amygdala's role in interpreting and responding to fearful expressions. They include theories that amygdala responses to fearful expressions 1) reflect heightened vigilance in response to uncertain danger, 2) promote heightened attention to the eye region of faces, 3) represent a response to an unconditioned aversive stimulus, or 4) reflect the generation of an empathic fear response. Among these, only empathic fear explains why amygdala lesions would impair fear recognition across modalities. Supporting the possibility of a link between fundamental empathic processes and amygdala responses to fear is evidence that impaired fear recognition in psychopathic individuals results from amygdala dysfunction, whereas enhanced fear recognition in altruistic individuals results from enhanced amygdala function. Empathic concern and caring behaviors may be fostered by sensitivity to signs of acute distress in others, which relies on intact functioning of the amygdala. © 2015 Wiley Periodicals, Inc.

  1. Germination sensitivity to water stress in four shrubby species across the Mediterranean Basin.

    Science.gov (United States)

    Chamorro, D; Luna, B; Ourcival, J-M; Kavgacı, A; Sirca, C; Mouillot, F; Arianoutsou, M; Moreno, J M

    2017-01-01

    Mediterranean shrublands are generally water-limited and fire-driven ecosystems. Seed-based post-fire regeneration may be affected by varying rainfall patterns, depending on species sensitivity to germinate under water stress. In our study, we considered the germination response to water stress in four species from several sites across the Mediterranean Basin. Seeds of species with a hard coat (Cistus monspeliensis, C. salviifolius, Cistaceae, Calicotome villosa, Fabaceae) or soft coat (Erica arborea, Ericaceae), which were exposed or not to a heat shock and smoke (fire cues), were made to germinate under water stress. Final germination percentage, germination speed and viability of seeds were recorded. Germination was modelled using hydrotime analysis and correlated to the water balance characteristics of seed provenance. Water stress was found to decrease final germination in the three hard-seeded species, as well as reduce germination speed. Moreover, an interaction between fire cues and water stress was found, whereby fire cues increased sensitivity to water stress. Seed viability after germination under water stress also declined in two hard-seeded species. Conversely, E. arborea showed little sensitivity to water stress, independent of fire cues. Germination responses varied among populations of all species, and hydrotime parameters were not correlated to site water balance, except in E. arborea when not exposed to fire cues. In conclusion, the species studied differed in germination sensitivity to water stress; furthermore, fire cues increased this sensitivity in the three hard-seeded species, but not in E. arborea. Moreover, populations within species consistently differed among themselves, but these differences could only be related to the provenance locality in E. arborea in seeds not exposed to fire cues. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  2. Lakes sensitivity to climatic stress – a sociological assessment

    Directory of Open Access Journals (Sweden)

    Lackowska Marta

    2016-12-01

    Full Text Available One of the conditions for effective water resources management in protected areas is local decision makers’ knowledge about potential threats caused by climate changes. Our study, conducted in the UNESCO Biosphere Reserve of Tuchola Forest in Poland, analyses the perception of threats by local stakeholders. Their assessments of the sensitivity of four lakes to the extreme weather events are compared with hydrological studies. The survey shows that the lakes’ varying responses to extreme weather conditions is rarely noticed by ordinary observers. Their perception is usually far from the hydrological facts, which indicates a lack of relevant information or a failure in making it widely accessible and understandable. Moreover, it is rather the human impact, not climate change, which is seen as the biggest threat to the lakes. Insufficient environmental knowledge may hinder the effective protection and management of natural resources, due to bad decisions and lack of the local communities’ support for adaptation and mitigation policies.

  3. Perinatal maternal stress and serotonin signaling: effects on pain sensitivity in offspring.

    Science.gov (United States)

    Knaepen, Liesbeth; Pawluski, Jodi L; Patijn, Jacob; van Kleef, Maarten; Tibboel, Dick; Joosten, Elbert A

    2014-07-01

    It has been estimated that 20% of pregnant women are facing perinatal stress and depression. Perinatal maternal stress has been shown to increase pain sensitivity in offspring. For the treatment of their depressive symptoms, pregnant women are frequently prescribed selective serotonin reuptake inhibitors (SSRIs). Since the descending pain inhibitory circuit matures perinatally, perinatal SSRI exposure has been shown to affect pain sensitivity in offspring. In the present review, we summarize experimental and clinical evidence for the effect of perinatal maternal stress and SSRI exposure on pain sensitivity in offspring. Both experimental and clinical studies show the effect of perinatal maternal stress on regulation of the hypothalamic-pituitary-adrenal (HPA) system and the serotonin pain inhibitory system. Alterations in these two systems likely underlie long-term alterations in the development of pain sensitivity. This review sheds light on the effect of perinatal maternal stress and treatment with SSRIs on offspring pain sensitivity, in relation to the developing HPA system and 5-HT signaling. © 2013 Wiley Periodicals, Inc.

  4. The influence of quench sensitivity on residual stresses in the aluminium alloys 7010 and 7075

    International Nuclear Information System (INIS)

    Robinson, J.S.; Tanner, D.A.; Truman, C.E.; Paradowska, A.M.; Wimpory, R.C.

    2012-01-01

    The most critical stage in the heat treatment of high strength aluminium alloys is the rapid cooling necessary to form a supersaturated solid solution. A disadvantage of quenching is that the thermal gradients can be sufficient to cause inhomogeneous plastic deformation which in turn leads to the development of large residual stresses. Two 215 mm thick rectilinear forgings have been made from 7000 series alloys with widely different quench sensitivity to determine if solute loss in the form of precipitation during quenching can significantly affect residual stress magnitudes. The forgings were heat treated and immersion quenched using cold water to produce large magnitude residual stresses. The through thickness residual stresses were measured by neutron diffraction and incremental deep hole drilling. The distribution of residual stresses was found to be similar for both alloys varying from highly triaxial and tensile in the interior, to a state of biaxial compression in the surface. The 7010 forging exhibited larger tensile stresses in the interior. The microstructural variation from surface to centre for both forgings was determined using optical and transmission electron microscopy. These observations were used to confirm the origin of the hardness variation measured through the forging thickness. When the microstructural changes were accounted for in the through thickness lattice parameter, the residual stresses in the two forgings were found to be very similar. Solute loss in the 7075 forging appeared to have no significant effect on the residual stress magnitudes when compared to 7010. - Highlights: ► Through thickness residual stress measurements made on large Al alloy forgings. ► Residual stress characterised using neutron diffraction and deep hole drilling. ► Biaxial compressive surface and triaxial subsurface residual stresses. ► Quench sensitivity of 7075 promotes significant microstructural differences to 7010. ► When precipitation is

  5. Growth hormone biases amygdala network activation after fear learning

    OpenAIRE

    Gisabella, Barbara; Farah, Shadia; Peng, Xiaoyu; Burgos-Robles, Anthony Noel; Lim, Seh Hong; Goosens, Ki Ann

    2016-01-01

    Prolonged stress exposure is a risk factor for developing posttraumatic stress disorder, a disorder characterized by the ?over-encoding' of a traumatic experience. A potential mechanism by which this occurs is through upregulation of growth hormone (GH) in the amygdala. Here we test the hypotheses that GH promotes the over-encoding of fearful memories by increasing the number of neurons activated during memory encoding and biasing the allocation of neuronal activation, one aspect of the proce...

  6. The scars of childhood adversity : Minor stress sensitivity and depressive symptoms in remitted recurrently depressed adult patients

    NARCIS (Netherlands)

    Kok, Gemma; van Rijsbergen, Gerard; Burger, Huibert; Elgersma, Hermien; Riper, Heleen; Cuijpers, Pim; Dekker, Jack; Smit, Filip; Bockting, Claudi

    2014-01-01

    Background: Childhood adversity may lead to depressive relapse through its long-lasting influence on stress sensitivity. In line with the stress sensitization hypothesis, minor (daily) stress is associated with depressive relapse. Therefore, we examine the impact of childhood adversity on daily

  7. Transgenic tobacco plants having a higher level of methionine are more sensitive to oxidative stress.

    Science.gov (United States)

    Hacham, Yael; Matityahu, Ifat; Amir, Rachel

    2017-07-01

    Methionine is an essential amino acid the low level of which limits the nutritional quality of plants. We formerly produced transgenic tobacco (Nicotiana tabacum) plants overexpressing CYSTATHIONE γ-SYNTHASE (CGS) (FA plants), methionine's main regulatory enzyme. These plants accumulate significantly higher levels of methionine compared with wild-type (WT) plants. The aim of this study was to gain more knowledge about the effect of higher methionine content on the metabolic profile of vegetative tissue and on the morphological and physiological phenotypes. FA plants exhibit slightly reduced growth, and metabolic profiling analysis shows that they have higher contents of stress-related metabolites. Despite this, FA plants were more sensitive to short- and long-term oxidative stresses. In addition, compared with WT plants and transgenic plants expressing an empty vector, the primary metabolic profile of FA was altered less during oxidative stress. Based on morphological and metabolic phenotypes, we strongly proposed that FA plants having higher levels of methionine suffer from stress under non-stress conditions. This might be one of the reasons for their lesser ability to cope with oxidative stress when it appeared. The observation that their metabolic profiling is much less responsive to stress compared with control plants indicates that the delta changes in metabolite contents between non-stress and stress conditions is important for enabling the plants to cope with stress conditions. © 2017 Scandinavian Plant Physiology Society.

  8. Childhood Poverty Predicts Adult Amygdala and Frontal Activity and Connectivity in Response to Emotional Faces

    Directory of Open Access Journals (Sweden)

    Arash eJavanbakht

    2015-06-01

    Full Text Available Childhood poverty negatively impacts physical and mental health in adulthood. Altered brain development in response to social and environmental factors associated with poverty likely contributes to this effect, engendering maladaptive patterns of social attribution and/or elevated physiological stress. In this fMRI study, we examined the association between childhood poverty and neural processing of social signals (i.e., emotional faces in adulthood. 52 subjects from a longitudinal prospective study recruited as children, participated in a brain imaging study at 23-25 years of age using the Emotional Faces Assessment Task (EFAT. Childhood poverty, independent of concurrent adult income, was associated with higher amygdala and mPFC responses to threat vs. happy faces. Also, childhood poverty was associated with decreased functional connectivity between left amygdala and mPFC. This study is unique because it prospectively links childhood poverty to emotional processing during adulthood, suggesting a candidate neural mechanism for negative social-emotional bias. Adults who grew up poor appear to be more sensitive to social threat cues and less sensitive to positive social cues.

  9. Increased sensitivity to salt stress in tocopherol-deficient Arabidopsis mutants growing in a hydroponic system

    Science.gov (United States)

    Ellouzi, Hasna; Hamed, Karim Ben; Cela, Jana; Müller, Maren; Abdelly, Chedly; Munné-Bosch, Sergi

    2013-01-01

    Recent studies suggest that tocopherols could play physiological roles in salt tolerance but the mechanisms are still unknown. In this study, we analyzed changes in growth, mineral and oxidative status in vte1 and vte4 Arabidopsis thaliana mutants exposed to salt stress. vte1 and vte4 mutants lack α-tocopherol, but only the vte1 mutant is additionally deficient in γ-tocopherol. Results showed that a deficiency in vitamin E leads to reduced growth and increased oxidative stress in hydroponically-grown plants. This effect was observed at early stages, not only in rosettes but also in roots. The vte1 mutant was more sensitive to salt-induced oxidative stress than the wild type and the vte4 mutant. Salt sensitivity was associated with (i) high contents of Na+, (ii) reduced efficiency of PSII photochemistry (Fv/Fm ratio) and (iii) more pronounced oxidative stress as indicated by increased hydrogen peroxide and malondialdeyde levels. The vte 4 mutant, which accumulates γ- instead of α-tocopherol showed an intermediate sensitivity to salt stress between the wild type and the vte1 mutant. Contents of abscisic acid, jasmonic acid and the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid were higher in the vte1 mutant than the vte4 mutant and wild type. It is concluded that vitamin E-deficient plants show an increased sensitivity to salt stress both in rosettes and roots, therefore indicating the positive role of tocopherols in stress tolerance, not only by minimizing oxidative stress, but also controlling Na+/K+ homeostasis and hormonal balance. PMID:23299430

  10. Effects of low strength pedaling exercise on stress sensitivity and pain threshold

    OpenAIRE

    坂野, 裕洋

    2017-01-01

     This study conducted a comparative assessment of the effects of low intensity lower limb pedaling exercise on the stress sensitivity and pain threshold in healthy subjects and those with chronic stiff neck or lower back pain. The results showed a reduction in pain threshold depending on the applied mechanical stress in both healthy and chronic pain groups. The individuals with chronic pain felt pain more intensely compared to the healthy individuals, and showed a significant reduction in pai...

  11. Impact of chronic maternal stress during early gestation on maternal-fetal stress transfer and fetal stress sensitivity in sheep.

    Science.gov (United States)

    Dreiling, Michelle; Schiffner, Rene; Bischoff, Sabine; Rupprecht, Sven; Kroegel, Nasim; Schubert, Harald; Witte, Otto W; Schwab, Matthias; Rakers, Florian

    2018-01-01

    Acute stress-induced reduction of uterine blood flow (UBF) is an indirect mechanism of maternal-fetal stress transfer during late gestation. Effects of chronic psychosocial maternal stress (CMS) during early gestation, as may be experienced by many working women, on this stress signaling mechanism are unclear. We hypothesized that CMS in sheep during early gestation augments later acute stress-induced decreases of UBF, and aggravates the fetal hormonal, cardiovascular, and metabolic stress responses during later development. Six pregnant ewes underwent repeated isolation stress (CMS) between 30 and 100 days of gestation (dGA, term: 150 dGA) and seven pregnant ewes served as controls. At 110 dGA, ewes were chronically instrumented and underwent acute isolation stress. The acute stress decreased UBF by 19% in both the CMS and control groups (p stress-induced cortisol and norepinephrine concentrations indicating a hyperactive hypothalamus-pituitary-adrenal (HPA)-axis and sympathetic-adrenal-medullary system. Increased fetal norepinephrine is endogenous as maternal catecholamines do not cross the placenta. Cortisol in the control but not in the CMS fetuses was correlated with maternal cortisol blood concentrations; these findings indicate: (1) no increased maternal-fetal cortisol transfer with CMS, (2) cortisol production in CMS fetuses when the HPA-axis is normally inactive, due to early maturation of the fetal HPA-axis. CMS fetuses were better oxygenated, without shift towards acidosis compared to the controls, potentially reflecting adaptation to repeated stress. Hence, CMS enhances maternal-fetal stress transfer by prolonged reduction in UBF and increased fetal HPA responsiveness.

  12. Cultivation of shear stress sensitive microorganisms in disposable bag reactor systems.

    Science.gov (United States)

    Jonczyk, Patrick; Takenberg, Meike; Hartwig, Steffen; Beutel, Sascha; Berger, Ralf G; Scheper, Thomas

    2013-09-20

    Technical scale (≥5l) cultivations of shear stress sensitive microorganisms are often difficult to perform, as common bioreactors are usually designed to maximize the oxygen input into the culture medium. This is achieved by mechanical stirrers, causing high shear stress. Examples for shear stress sensitive microorganisms, for which no specific cultivation systems exist, are many anaerobic bacteria and fungi, such as basidiomycetes. In this work a disposable bag bioreactor developed for cultivation of mammalian cells was investigated to evaluate its potential to cultivate shear stress sensitive anaerobic Eubacterium ramulus and shear stress sensitive basidiomycetes Flammulina velutipes and Pleurotus sapidus. All cultivations were compared with conventional stainless steel stirred tank reactors (STR) cultivations. Good growth of all investigated microorganisms cultivated in the bag reactor was found. E. ramulus showed growth rates of μ=0.56 h⁻¹ (bag) and μ=0.53 h⁻¹ (STR). Differences concerning morphology, enzymatic activities and growth in fungal cultivations were observed. In the bag reactor growth in form of small, independent pellets was observed while STR cultivations showed intense aggregation. F. velutipes reached higher biomass concentrations (21.2 g l⁻¹ DCW vs. 16.8 g l⁻¹ DCW) and up to 2-fold higher peptidolytic activities in comparison to cell cultivation in stirred tank reactors. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. [Impact of Socioeconomic Risk Exposure on Maternal Sensitivity, Stress and Family Functionality].

    Science.gov (United States)

    Sidor, Anna; Köhler, Hubert; Cierpka, Manfred

    2018-03-01

    Impact of Socioeconomic Risk Exposure on Maternal Sensitivity, Stress and Family Functionality Parental stress exposure can influence the parent-child relationship, child development and child wellbeing in negative ways. The aim of this study was to investigate the impact of socio-economic risk exposure on the quality of the mother-child-interaction and family functionality. A sample of 294 mother-infant dyads at psychosocial risk was compared with a lower-risk, middle-class sample of 125 mother-infant-dyads in regard to maternal sensitivity/child's cooperation (CARE-Index), maternal stress (PSI-SF) and family functionality (FB-K). Lower levels of maternal sensitivity/child's cooperation and by trend also of the family functionality were found among the mothers from the at-risk sample in comparison to the low-risk sample. The level of maternal stress was similar in both samples. The results underpin the negative effects of a socio-economic risk exposure on the mother-child relationship. An early, sensitivity-focused family support could be encouraged to counteract the negative effects of early socioeconomic stress.

  14. Corrosion Behavior of the Stressed Sensitized Austenitic Stainless Steels of High Nitrogen Content in Seawater

    Directory of Open Access Journals (Sweden)

    A. Almubarak

    2013-01-01

    Full Text Available The purpose of this paper is to study the effect of high nitrogen content on corrosion behavior of austenitic stainless steels in seawater under severe conditions such as tensile stresses and existence of sensitization in the structure. A constant tensile stress has been applied to sensitized specimens types 304, 316L, 304LN, 304NH, and 316NH stainless steels. Microstructure investigation revealed various degrees of stress corrosion cracking. SCC was severe in type 304, moderate in types 316L and 304LN, and very slight in types 304NH and 316NH. The electrochemical polarization curves showed an obvious second current peak for the sensitized alloys which indicated the existence of second phase in the structure and the presence of intergranular stress corrosion cracking. EPR test provided a rapid and efficient nondestructive testing method for showing passivity, degree of sensitization and determining IGSCC for stainless steels in seawater. A significant conclusion was obtained that austenitic stainless steels of high nitrogen content corrode at a much slower rate increase pitting resistance and offer an excellent resistance to stress corrosion cracking in seawater.

  15. Sex differences in the functional connectivity of the amygdalae in association with cortisol.

    Science.gov (United States)

    Kogler, Lydia; Müller, Veronika I; Seidel, Eva-Maria; Boubela, Roland; Kalcher, Klaudius; Moser, Ewald; Habel, Ute; Gur, Ruben C; Eickhoff, Simon B; Derntl, Birgit

    2016-07-01

    Human amygdalae are involved in various behavioral functions such as affective and stress processing. For these behavioral functions, as well as for psychophysiological arousal including cortisol release, sex differences are reported. Here, we assessed cortisol levels and resting-state functional connectivity (rsFC) of left and right amygdalae in 81 healthy participants (42 women) to investigate potential modulation of amygdala rsFC by sex and cortisol concentration. Our analyses revealed that rsFC of the left amygdala significantly differed between women and men: Women showed stronger rsFC than men between the left amygdala and left middle temporal gyrus, inferior frontal gyrus, postcentral gyrus and hippocampus, regions involved in face processing, inner-speech, fear and pain processing. No stronger connections were detected for men and no sex difference emerged for right amygdala rsFC. Also, an interaction of sex and cortisol appeared: In women, cortisol was negatively associated with rsFC of the amygdalae with striatal regions, mid-orbital frontal gyrus, anterior cingulate gyrus, middle and superior frontal gyri, supplementary motor area and the parietal-occipital sulcus. Contrarily in men, positive associations of cortisol with rsFC of the left amygdala and these structures were observed. Functional decoding analyses revealed an association of the amygdalae and these regions with emotion, reward and memory processing, as well as action execution. Our results suggest that functional connectivity of the amygdalae as well as the regulatory effect of cortisol on brain networks differs between women and men. These sex-differences and the mediating and sex-dependent effect of cortisol on brain communication systems should be taken into account in affective and stress-related neuroimaging research. Thus, more studies including both sexes are required. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  16. The human amygdala parametrically encodes the intensity of specific facial emotions and their categorical ambiguity

    Science.gov (United States)

    Wang, Shuo; Yu, Rongjun; Tyszka, J. Michael; Zhen, Shanshan; Kovach, Christopher; Sun, Sai; Huang, Yi; Hurlemann, Rene; Ross, Ian B.; Chung, Jeffrey M.; Mamelak, Adam N.; Adolphs, Ralph; Rutishauser, Ueli

    2017-01-01

    The human amygdala is a key structure for processing emotional facial expressions, but it remains unclear what aspects of emotion are processed. We investigated this question with three different approaches: behavioural analysis of 3 amygdala lesion patients, neuroimaging of 19 healthy adults, and single-neuron recordings in 9 neurosurgical patients. The lesion patients showed a shift in behavioural sensitivity to fear, and amygdala BOLD responses were modulated by both fear and emotion ambiguity (the uncertainty that a facial expression is categorized as fearful or happy). We found two populations of neurons, one whose response correlated with increasing degree of fear, or happiness, and a second whose response primarily decreased as a linear function of emotion ambiguity. Together, our results indicate that the human amygdala processes both the degree of emotion in facial expressions and the categorical ambiguity of the emotion shown and that these two aspects of amygdala processing can be most clearly distinguished at the level of single neurons. PMID:28429707

  17. Characterization of sensitization and stress corrosion cracking behavior of stabilized stainless steels under BWR conditions

    International Nuclear Information System (INIS)

    Kilian, R.; Ilg, U.; Meier, V.; Teichmann, H.; Wachter, O.

    1995-01-01

    Stress corrosion cracking occurs if the three parameters -- material condition, tensile stress and water chemistry -- are in a critical range. In this study the material conditions especially of Ti- and Nb-stabilized steels are considered. The purpose of this work is to show the influence of the degree of sensitization of Ti- and Nb-stabilized stainless steels on stress corrosion cracking susceptibility in BWR water chemistry. This is an on-going research program. Preliminary results will be presented. Different types of stabilized, and for comparison unstabilized, stainless steels are examined in various heat treatment conditions with regard to their sensitization behavior by EPR tests (double loop) and TEM. The results are plotted in sensitization diagrams. The sensitization behavior depends on many parameters such as carbon content, stabilization element, stabilization ratio and materials history, e.g. solution heat treatment or cold working. The obtained EPR sensitization diagrams are compared with the well known sensitization diagrams from the literature, which were determined by standard IC test according to e.g. German standard DIN 50914 (equivalent to ASTM A 262, Pract. E). Based on the obtained EPR sensitization diagrams material conditions for SSRT tests were selected. The EPR values (Ir/Ia x 100%) of the tested Ti-stabilized stainless steel are in the range of ∼ 0.1--20%. The SSRT tests are carried out in high-temperature water with 0.4 ppm O 2 , a conductivity of 0.5 microS/cm and a strain rate of 1x10 -6-1 . The test temperature is 280 C. Ti-stabilized stainless steel with Ir/Ia x 100% > 1% suffered intergranular stress corrosion cracking under these conditions. The SCC tests for Nb-stabilized stainless steel are still in progress. The correlation between EPR value, chromium depletion and SSRT result will be shown for a selected material condition of sensitized Ti-stabilized stainless steel

  18. Anxiety, Anxiety Sensitivity, and Perceived Stress as Predictors of Recent Drinking, Alcohol Craving, and Social Stress Response in Heavy Drinkers.

    Science.gov (United States)

    McCaul, Mary E; Hutton, Heidi E; Stephens, Mary Ann C; Xu, Xiaoqiang; Wand, Gary S

    2017-04-01

    Stress and anxiety are widely considered to be causally related to alcohol craving and consumption, as well as development and maintenance of alcohol use disorder (AUD). However, numerous preclinical and human studies examining effects of stress or anxiety on alcohol use and alcohol-related problems have been equivocal. This study examined relationships between scores on self-report anxiety, anxiety sensitivity, and stress measures and frequency and intensity of recent drinking, alcohol craving during early withdrawal, as well as laboratory measures of alcohol craving and stress reactivity among heavy drinkers with AUD. Media-recruited, heavy drinkers with AUD (N = 87) were assessed for recent alcohol consumption. Anxiety and stress levels were characterized using paper-and-pencil measures, including the Beck Anxiety Inventory (BAI), the Anxiety Sensitivity Index-3 (ASI-3), and the Perceived Stress Scale (PSS). Eligible subjects (N = 30) underwent alcohol abstinence on the Clinical Research Unit; twice daily measures of alcohol craving were collected. On day 4, subjects participated in the Trier Social Stress Test; measures of cortisol and alcohol craving were collected. In multivariate analyses, higher BAI scores were associated with lower drinking frequency and reduced drinks/drinking day; in contrast, higher ASI-3 scores were associated with higher drinking frequency. BAI anxiety symptom and ASI-3 scores also were positively related to Alcohol Use Disorders Identification Test total scores and AUD symptom and problem subscale measures. Higher BAI and ASI-3 scores but not PSS scores were related to greater self-reported alcohol craving during early alcohol abstinence. Finally, BAI scores were positively related to laboratory stress-induced cortisol and alcohol craving. In contrast, the PSS showed no relationship with most measures of alcohol craving or stress reactivity. Overall, clinically oriented measures of anxiety compared with perceived stress were more

  19. Stress-induced sensitization: the hypothalamic-pituitary-adrenal axis and beyond.

    Science.gov (United States)

    Belda, Xavier; Fuentes, Silvia; Daviu, Nuria; Nadal, Roser; Armario, Antonio

    2015-01-01

    Exposure to certain acute and chronic stressors results in an immediate behavioral and physiological response to the situation followed by a period of days when cross-sensitization to further novel stressors is observed. Cross-sensitization affects to different behavioral and physiological systems, more particularly to the hypothalamus-pituitary-adrenal (HPA) axis. It appears that the nature of the initial (triggering) stressor plays a major role, HPA cross-sensitization being more widely observed with systemic or high-intensity emotional stressors. Less important appears to be the nature of the novel (challenging) stressor, although HPA cross-sensitization is better observed with short duration (5-15 min) challenging stressors. In some studies with acute immune stressors, HPA sensitization appears to develop over time (incubation), but most results indicate a strong initial sensitization that progressively declines over the days. Sensitization can affect other physiological system (i.e. plasma catecholamines, brain monoamines), but it is not a general phenomenon. When studied concurrently, behavioral sensitization appears to persist longer than that of the HPA axis, a finding of interest regarding long-term consequences of traumatic stress. In many cases, behavioral and physiological consequences of prior stress can only be observed following imposition of a new stressor, suggesting long-term latent effects of the initial exposure.

  20. Pressure pain sensitivity: A new method of stress measurement in patients with ischemic heart disease

    DEFF Research Database (Denmark)

    Bergmann, Natasha; Ballegaard, Søren; Holmager, Pernille

    2013-01-01

    to induce hyperalgesia.The aim of the present study was to evaluate hyperalgesia by pressure pain sensitivity (PPS) in patients with IHD, and compare PPS to questionnaires measuring depressive symptoms, reduced psychological wellbeing, and QOL as markers of stress. Design. A cross-sectional study of 361......Abstract Background. Chronic stress is prevalent in patients with ischemic heart disease (IHD) and worsens the long-term prognosis. Chronic stress is vaguely defined, but is associated with depressive symptoms, reduced psychological wellbeing, and reduced quality of life (QOL). Stress seems...... subjects with IHD. Methods. PPS was measured on the sternum, and compared to the questionnaires: Clinical stress symptoms score (CSS), Major Depression Inventory (MDI), WHO-5 Wellbeing Index, and SF-36 QOL score. Results. PPS correlated to CSS (r = 0.20, p

  1. Effects of fluoxetine on changes of pain sensitivity in chronic stress model rats.

    Science.gov (United States)

    Lian, Yan-Na; Chang, Jin-Long; Lu, Qi; Wang, Yi; Zhang, Ying; Zhang, Feng-Min

    2017-06-09

    Exposure to stress could facilitate or inhibit pain responses (stress-induced hyperalgesia or hypoalgesia, respectively). Fluoxetine is a selective serotonin (5-HT) reuptake inhibitor antidepressant. There have been contradictory reports on whether fluoxetine produces antinociceptive effects. The purpose of this study was to elucidate changes in pain sensitivity after chronic stress exposure, and the effects of fluoxetine on these changes. We measured thermal, mechanical, and formalin-induced acute and inflammatory pain by using the tail-flick, von Frey, and formalin tests respectively. The results showed that rats exposed to chronic stress exhibited thermal and formalin-induced acute and inflammatory hypoalgesia and transient mechanical hyperalgesia. Furthermore, fluoxetine promoted hypoalgesia in thermal and inflammatory pain and induced mechanical hyperalgesia. Our results indicate that the 5-HT system could be involved in hypoalgesia of thermal and inflammatory pain and induce transient mechanical hyperalgesia after stress exposure. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Analysis of stress sensitivity and its influence on oil productionfrom tight reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Qun; Xiong, Wei; Yuan, Cui; Wu, Yu-Shu

    2007-08-28

    This paper presents a study of the relationship betweenpermeability and effective stress in tight petroleum reservoirformations. Specifically, a quantitative method is developed to describethe correlation between permeability and effective stress, a method basedon the original in situ reservoir effective stress rather than ondecreased effective stress during development. The experimental resultsshow that the relationship between intrinsic permeability and effectivestress in reservoirs in general follows a quadratic polynomial functionalform, found to best capture how effective stress influences formationpermeability. In addition, this experimental study reveals that changesin formation permeability, caused by both elastic and plasticdeformation, are permanent and irreversible. Related pore-deformationtests using electronic microscope scanning and constant-rate mercuryinjection techniques show that while stress variation generally has smallimpact onrock porosity, the size and shape of pore throats have asignificant impact on permeability-stress sensitivity. Based on the testresults and theoretical analyses, we believe that there exists a cone ofpressure depression in the area near production within suchstress-sensitive tight reservoirs, leading to a low-permeability zone,and that well production will decrease under the influence of stresssensitivity.

  3. Selective bilateral amygdala lesions in rhesus monkeys fail to disrupt object reversal learning.

    Science.gov (United States)

    Izquierdo, Alicia; Murray, Elisabeth A

    2007-01-31

    Neuropsychological studies in nonhuman primates have led to the view that the amygdala plays an essential role in stimulus-reward association. The main evidence in support of this idea is that bilateral aspirative or radiofrequency lesions of the amygdala yield severe impairments on object reversal learning, a task that assesses the ability to shift choices of objects based on the presence or absence of food reward (i.e., reward contingency). The behavioral effects of different lesion techniques, however, can vary. The present study therefore evaluated the effects of selective, excitotoxic lesions of the amygdala in rhesus monkeys on object reversal learning. For comparison, we tested the same monkeys on a task known to be sensitive to amygdala damage, the reinforcer devaluation task. Contrary to previous results based on less selective lesion techniques, monkeys with complete excitotoxic amygdala lesions performed object reversal learning as quickly as controls. As predicted, however, the same operated monkeys were impaired in making object choices after devaluation of the associated food reinforcer. The results suggest two conclusions. First, the results demonstrate that the amygdala makes a selective contribution to stimulus-reward association; the amygdala is critical for guiding object choices after changes in reward value but not after changes in reward contingency. Second, the results implicate a critical contribution to object reversal learning of structures nearby the amygdala, perhaps the subjacent rhinal cortex.

  4. From circuits to behaviour in the amygdala

    Science.gov (United States)

    Janak, Patricia H.; Tye, Kay M.

    2015-01-01

    The amygdala has long been associated with emotion and motivation, playing an essential part in processing both fearful and rewarding environmental stimuli. How can a single structure be crucial for such different functions? With recent technological advances that allow for causal investigations of specific neural circuit elements, we can now begin to map the complex anatomical connections of the amygdala onto behavioural function. Understanding how the amygdala contributes to a wide array of behaviours requires the study of distinct amygdala circuits. PMID:25592533

  5. Juvenile obesity enhances emotional memory and amygdala plasticity through glucocorticoids.

    Science.gov (United States)

    Boitard, Chloé; Maroun, Mouna; Tantot, Frédéric; Cavaroc, Amandine; Sauvant, Julie; Marchand, Alain; Layé, Sophie; Capuron, Lucile; Darnaudery, Muriel; Castanon, Nathalie; Coutureau, Etienne; Vouimba, Rose-Marie; Ferreira, Guillaume

    2015-03-04

    In addition to metabolic and cardiovascular disorders, obesity is associated with adverse cognitive and emotional outcomes. Its growing prevalence during adolescence is particularly alarming since recent evidence indicates that obesity can affect hippocampal function during this developmental period. Adolescence is a decisive period for maturation of the amygdala and the hypothalamic-pituitary-adrenal (HPA) stress axis, both required for lifelong cognitive and emotional processing. However, little data are available on the impact of obesity during adolescence on amygdala function. Herein, we therefore evaluate in rats whether juvenile high-fat diet (HFD)-induced obesity alters amygdala-dependent emotional memory and whether it depends on HPA axis deregulation. Exposure to HFD from weaning to adulthood, i.e., covering adolescence, enhances long-term emotional memories as assessed by odor-malaise and tone-shock associations. Juvenile HFD also enhances emotion-induced neuronal activation of the basolateral complex of the amygdala (BLA), which correlates with protracted plasma corticosterone release. HFD exposure restricted to adulthood does not modify all these parameters, indicating adolescence is a vulnerable period to the effects of HFD-induced obesity. Finally, exaggerated emotional memory and BLA synaptic plasticity after juvenile HFD are alleviated by a glucocorticoid receptor antagonist. Altogether, our results demonstrate that juvenile HFD alters HPA axis reactivity leading to an enhancement of amygdala-dependent synaptic and memory processes. Adolescence represents a period of increased susceptibility to the effects of diet-induced obesity on amygdala function. Copyright © 2015 the authors 0270-6474/15/354092-12$15.00/0.

  6. Mechanical stress regulates insulin sensitivity through integrin-dependent control of insulin receptor localization.

    Science.gov (United States)

    Kim, Jung; Bilder, David; Neufeld, Thomas P

    2018-01-15

    Insulin resistance, the failure to activate insulin signaling in the presence of ligand, leads to metabolic diseases, including type 2 diabetes. Physical activity and mechanical stress have been shown to protect against insulin resistance, but the molecular mechanisms remain unclear. Here, we address this relationship in the Drosophila larval fat body, an insulin-sensitive organ analogous to vertebrate adipose tissue and livers. We found that insulin signaling in Drosophila fat body cells is abolished in the absence of physical activity and mechanical stress even when excess insulin is present. Physical movement is required for insulin sensitivity in both intact larvae and fat bodies cultured ex vivo. Interestingly, the insulin receptor and other downstream components are recruited to the plasma membrane in response to mechanical stress, and this membrane localization is rapidly lost upon disruption of larval or tissue movement. Sensing of mechanical stimuli is mediated in part by integrins, whose activation is necessary and sufficient for mechanical stress-dependent insulin signaling. Insulin resistance develops naturally during the transition from the active larval stage to the immotile pupal stage, suggesting that regulation of insulin sensitivity by mechanical stress may help coordinate developmental programming with metabolism. © 2018 Kim et al.; Published by Cold Spring Harbor Laboratory Press.

  7. Stream mesocosm response sensitivities to simulated ion stress in produced waters from resource extraction activities

    Science.gov (United States)

    To increase the ecological relevance of laboratory exposures intent on determining species sensitivity to ion stress from resource extraction activities we have conducted several stream mesocosm dosing studies that pair single-species and community-level responses in-situ and all...

  8. Is sensitivity to daily stress predictive of onset or persistence of psychopathology?

    NARCIS (Netherlands)

    Vaessen, T.; van Nierop, M.; Decoster, J.; Delespaul, P.; Derom, C.; de Hert, M.; Jacobs, N.; Menne-Lothmann, C.; Rutten, B.; Thiery, E.; van Os, J.; van Winkel, R.; Wichers, M.; Myin-Germeys, I.

    Purpose: The aim of the current study was to replicate findings in adults indicating that higher sensitivity to stressful events is predictive of both onset and persistence of psychopathological symptoms in a sample of adolescents and young adults. In addition, we tested the hypothesis that

  9. Ageing increases the sensitivity of neem (Azadirachta indica) seeds to imbibitional stress

    NARCIS (Netherlands)

    Neya, O.; Golovina, E.A.; Nijsse, J.; Hoekstra, F.A.

    2004-01-01

    Imbibitional stress was imposed on neem (Azadirachta indica) seeds by letting them soak for 1 h in water at unfavourable, low temperatures before further incubation at 30degreesC. Sensitivity to low imbibition temperatures increased with a decrease in seed moisture content (MC). To investigate a

  10. Role of anxiety in the pathophysiology of irritable bowel syndrome: importance of the amygdala

    Directory of Open Access Journals (Sweden)

    Brent Myers

    2009-06-01

    Full Text Available A common characteristic of irritable bowel syndrome (IBS is that symptoms, including abdominal pain and abnormal bowel habits, are often triggered or exacerbated during periods of stress and anxiety. However, the impact of anxiety and affective disorders on the gastrointestinal (GI tract is poorly understood and may in part explain the lack of effective therapeutic approaches to treat IBS. The amygdala is an important structure for regulating anxiety with the central nucleus of the amygdala (CeA facilitating the activation of the hypothalamic-pituitary-adrenal (HPA axis and the autonomic nervous system in response to stress. Moreover, chronic stress enhances function of the amygdala and promotes neural plasticity throughout the amygdaloid complex. This review outlines the latest findings obtained from human studies and animal models related to the role of the emotional brain in the regulation of enteric function, specifically how increasing the gain of the amygdala to induce anxiety-like behavior using corticosterone (CORT or chronic stress increases responsiveness to both visceral and somatic stimuli in rodents. A focus of the review is the relative importance of mineralocorticoid receptor (MR and glucocorticoid receptor (GR-mediated mechanisms within the amygdala in the regulation of anxiety and nociceptive behaviors that are characteristic features of IBS. This review also discusses several outstanding questions important for future research on the role of the amygdala in the generation of abnormal GI function that may lead to potential targets for new therapies to treat functional bowel disorders such as IBS.

  11. Applied rolling and sensitivity of Bi(2223)/Ag tapes on Ic degradation by mechanical stress

    International Nuclear Information System (INIS)

    Kovac, P.; Bukva, P.; Husek, I.; Richens, P.E.; Jones, H.

    1999-01-01

    An experimental study of multicore Bi(2223)/Ag tapes, roll-sintered by different methods and subjected to bending and tension stresses has been performed. The tapes, of various technological histories, were bent and tensioned and subsequently the transport current was measured at each stressed state. Comparison of I c degradation curves shows that applied rolling may influence the sensitivity of Bi-2223 filaments against the mechanical stress. The existence of transverse microcracks caused by intermediate rolling leads to a higher sensitivity of the tape to bending. A lowering of critical current degradation was observed for two-axially rolled tapes having a higher filament density and better homogeneity prior to sintering treatment. (author)

  12. Stress and skin disease quality of life: the moderating role of anxiety sensitivity social concerns.

    Science.gov (United States)

    Dixon, L J; Witcraft, S M; McCowan, N K; Brodell, R T

    2018-04-01

    Stress is an important factor in the onset, exacerbation and reoccurrence of many skin diseases. Little is known about psychological risk factors that affect the association between stress and dermatological conditions. One relevant factor that may modulate this link is anxiety sensitivity (AS) social concerns - the propensity to respond fearfully to anxiety-related sensations (e.g. sweating, flushing) owing to perceived social consequences (e.g. rejection or humiliation). To gain insight into psychological factors affecting skin disease, we examined the moderating role of AS social concerns in the relationship between stress and skin disease quality of life (QoL). Participants [n = 237 (161 female), mean ± SD age 34·18 ± 9·57 years] with active skin disease symptoms were recruited online and completed questionnaires assessing stress, AS social concerns, skin disease QoL and global skin disease symptom severity. AS social concerns moderated the association between stress and skin-related emotional and social functioning in adults with skin disease. Stress was a significant predictor of the impairment associated with skin disease. Stress was linked to skin disease-related emotional and functional impairment associated with skin disease among individuals with high AS social concerns. These results highlight the potential for AS reduction interventions to break the vicious cycle of stress and skin disease symptoms and to improve psychosocial well-being in dermatology patients. © 2017 British Association of Dermatologists.

  13. Design and optimization of stress centralized MEMS vector hydrophone with high sensitivity at low frequency

    Science.gov (United States)

    Zhang, Guojun; Ding, Junwen; Xu, Wei; Liu, Yuan; Wang, Renxin; Han, Janjun; Bai, Bing; Xue, Chenyang; Liu, Jun; Zhang, Wendong

    2018-05-01

    A micro hydrophone based on piezoresistive effect, "MEMS vector hydrophone" was developed for acoustic detection application. To improve the sensitivity of MEMS vector hydrophone at low frequency, we reported a stress centralized MEMS vector hydrophone (SCVH) mainly used in 20-500 Hz. Stress concentration area was actualized in sensitive unit of hydrophone by silicon micromachining technology. Then piezoresistors were placed in stress concentration area for better mechanical response, thereby obtaining higher sensitivity. Static analysis was done to compare the mechanical response of three different sensitive microstructure: SCVH, conventional micro-silicon four-beam vector hydrophone (CFVH) and Lollipop-shaped vector hydrophone (LVH) respectively. And fluid-structure interaction (FSI) was used to analyze the natural frequency of SCVH for ensuring the measurable bandwidth. Eventually, the calibration experiment in standing wave field was done to test the property of SCVH and verify the accuracy of simulation. The results show that the sensitivity of SCVH has nearly increased by 17.2 dB in contrast to CFVH and 7.6 dB in contrast to LVH during 20-500 Hz.

  14. Study of the effects of stress sensitivity on the permeability and porosity of fractal porous media

    International Nuclear Information System (INIS)

    Tan, Xiao-Hua; Li, Xiao-Ping; Liu, Jian-Yi; Zhang, Lie-Hui; Fan, Zhou

    2015-01-01

    Flow in porous media under stress is very important in various scientific and engineering fields. It has been shown that stress plays an important role in effect of permeability and porosity of porous media. In this work, novel predictive models for permeability and porosity of porous media considering stress sensitivity are developed based on the fractal theory and mechanics of materials. Every parameter in the proposed models has clear physical meaning. The proposed models are evaluated using previously published data for permeability and porosity measured in various natural materials. The predictions of permeability and porosity show good agreement with those obtained by the available experimental data and illustrate that the proposed models can be used to characterize the flow in porous media under stress accurately. - Highlights: • Predictive models for permeability and porosity of porous media considering stress sensitivity are developed. • The fractal theory and mechanics of materials are used in these models. • The predictions of permeability and porosity show good agreement with those obtained by the available experimental data. • The proposed models can be used to characterize the flow in porous media under stress accurately

  15. Stress Sensitivity, Aberrant Salience, and Threat Anticipation in Early Psychosis: An Experience Sampling Study.

    Science.gov (United States)

    Reininghaus, Ulrich; Kempton, Matthew J; Valmaggia, Lucia; Craig, Tom K J; Garety, Philippa; Onyejiaka, Adanna; Gayer-Anderson, Charlotte; So, Suzanne H; Hubbard, Kathryn; Beards, Stephanie; Dazzan, Paola; Pariante, Carmine; Mondelli, Valeria; Fisher, Helen L; Mills, John G; Viechtbauer, Wolfgang; McGuire, Philip; van Os, Jim; Murray, Robin M; Wykes, Til; Myin-Germeys, Inez; Morgan, Craig

    2016-05-01

    While contemporary models of psychosis have proposed a number of putative psychological mechanisms, how these impact on individuals to increase intensity of psychotic experiences in real life, outside the research laboratory, remains unclear. We aimed to investigate whether elevated stress sensitivity, experiences of aberrant novelty and salience, and enhanced anticipation of threat contribute to the development of psychotic experiences in daily life. We used the experience sampling method (ESM) to assess stress, negative affect, aberrant salience, threat anticipation, and psychotic experiences in 51 individuals with first-episode psychosis (FEP), 46 individuals with an at-risk mental state (ARMS) for psychosis, and 53 controls with no personal or family history of psychosis. Linear mixed models were used to account for the multilevel structure of ESM data. In all 3 groups, elevated stress sensitivity, aberrant salience, and enhanced threat anticipation were associated with an increased intensity of psychotic experiences. However, elevated sensitivity to minor stressful events (χ(2)= 6.3,P= 0.044), activities (χ(2)= 6.7,P= 0.036), and areas (χ(2)= 9.4,P= 0.009) and enhanced threat anticipation (χ(2)= 9.3,P= 0.009) were associated with more intense psychotic experiences in FEP individuals than controls. Sensitivity to outsider status (χ(2)= 5.7,P= 0.058) and aberrantly salient experiences (χ(2)= 12.3,P= 0.002) were more strongly associated with psychotic experiences in ARMS individuals than controls. Our findings suggest that stress sensitivity, aberrant salience, and threat anticipation are important psychological processes in the development of psychotic experiences in daily life in the early stages of the disorder. © The Author 2016. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center.

  16. Stress Sensitivity, Aberrant Salience, and Threat Anticipation in Early Psychosis: An Experience Sampling Study

    Science.gov (United States)

    Reininghaus, Ulrich; Kempton, Matthew J.; Valmaggia, Lucia; Craig, Tom K. J.; Garety, Philippa; Onyejiaka, Adanna; Gayer-Anderson, Charlotte; So, Suzanne H.; Hubbard, Kathryn; Beards, Stephanie; Dazzan, Paola; Pariante, Carmine; Mondelli, Valeria; Fisher, Helen L.; Mills, John G.; Viechtbauer, Wolfgang; McGuire, Philip; van Os, Jim; Murray, Robin M.; Wykes, Til; Myin-Germeys, Inez; Morgan, Craig

    2016-01-01

    While contemporary models of psychosis have proposed a number of putative psychological mechanisms, how these impact on individuals to increase intensity of psychotic experiences in real life, outside the research laboratory, remains unclear. We aimed to investigate whether elevated stress sensitivity, experiences of aberrant novelty and salience, and enhanced anticipation of threat contribute to the development of psychotic experiences in daily life. We used the experience sampling method (ESM) to assess stress, negative affect, aberrant salience, threat anticipation, and psychotic experiences in 51 individuals with first-episode psychosis (FEP), 46 individuals with an at-risk mental state (ARMS) for psychosis, and 53 controls with no personal or family history of psychosis. Linear mixed models were used to account for the multilevel structure of ESM data. In all 3 groups, elevated stress sensitivity, aberrant salience, and enhanced threat anticipation were associated with an increased intensity of psychotic experiences. However, elevated sensitivity to minor stressful events (χ2 = 6.3, P = 0.044), activities (χ2 = 6.7, P = 0.036), and areas (χ2 = 9.4, P = 0.009) and enhanced threat anticipation (χ2 = 9.3, P = 0.009) were associated with more intense psychotic experiences in FEP individuals than controls. Sensitivity to outsider status (χ2 = 5.7, P = 0.058) and aberrantly salient experiences (χ2 = 12.3, P = 0.002) were more strongly associated with psychotic experiences in ARMS individuals than controls. Our findings suggest that stress sensitivity, aberrant salience, and threat anticipation are important psychological processes in the development of psychotic experiences in daily life in the early stages of the disorder. PMID:26834027

  17. Sex-dependent effects of chronic psychosocial stress on myocardial sensitivity to ischemic injury.

    Science.gov (United States)

    Rorabaugh, Boyd R; Krivenko, Anna; Eisenmann, Eric D; Bui, Albert D; Seeley, Sarah; Fry, Megan E; Lawson, Joseph D; Stoner, Lauren E; Johnson, Brandon L; Zoladz, Phillip R

    2015-01-01

    Individuals with post-traumatic stress disorder (PTSD) experience many debilitating symptoms, including intrusive memories, persistent anxiety and avoidance of trauma-related cues. PTSD also results in numerous physiological complications, including increased risk for cardiovascular disease (CVD). However, characterization of PTSD-induced cardiovascular alterations is lacking, especially in preclinical models of the disorder. Thus, we examined the impact of a psychosocial predator-based animal model of PTSD on myocardial sensitivity to ischemic injury. Male and female Sprague-Dawley rats were exposed to psychosocial stress or control conditions for 31 days. Stressed rats were given two cat exposures, separated by a period of 10 days, and were subjected to daily social instability throughout the paradigm. Control rats were handled daily for the duration of the experiment. Rats were tested on the elevated plus maze (EPM) on day 32, and hearts were isolated on day 33 and subjected to 20 min ischemia and 2 h reperfusion on a Langendorff isolated heart system. Stressed male and female rats gained less body weight relative to controls, but only stressed males exhibited increased anxiety on the EPM. Male, but not female, rats exposed to psychosocial stress exhibited significantly larger infarcts and attenuated post-ischemic recovery of contractile function compared to controls. Our data demonstrate that predator stress combined with daily social instability sex-dependently increases myocardial sensitivity to ischemic injury. Thus, this manipulation may be useful for studying potential mechanisms underlying cardiovascular alterations in PTSD, as well as sex differences in the cardiovascular stress response.

  18. Involvement of the amygdala in memory storage: Interaction with other brain systems

    OpenAIRE

    McGaugh, James L.; Cahill, Larry; Roozendaal, Benno

    1996-01-01

    There is extensive evidence that the amygdala is involved in affectively influenced memory. The central hypothesis guiding the research reviewed in this paper is that emotional arousal activates the amygdala and that such activation results in the modulation of memory storage occurring in other brain regions. Several lines of evidence support this view. First, the effects of stress-related hormones (epinephrine and glucocorticoids) are mediated by influences involving ...

  19. The basolateral amygdala modulates specific sensory memory representations in the cerebral cortex

    OpenAIRE

    Chavez, Candice M.; McGaugh, James L.; Weinberger, Norman M.

    2008-01-01

    Stress hormones released by an experience can modulate memory strength via the basolateral amygdala, which in turn acts on sites of memory storage such as the cerebral cortex [McGaugh, J. L. (2004). The amygdala modulates the consolidation of memories of emotionally arousing experiences. Annual Review of Neuroscience, 27, 1–28]. Stimuli that acquire behavioral importance gain increased representation in the cortex. For example, learning shifts the tuning of neurons in the primary auditory cor...

  20. Seismic sensitivity of normal-mode coupling to Lorentz stresses in the Sun

    Science.gov (United States)

    Hanasoge, Shravan M.

    2017-09-01

    Understanding the governing mechanism of solar magnetism remains an outstanding challenge in astrophysics. Seismology is the most compelling technique to infer the internal properties of the Sun and stars. Waves in the Sun, nominally acoustic, are sensitive to the emergence and cyclical strengthening of magnetic field, evidenced by measured changes in resonant oscillation frequencies that are correlated with the solar cycle. The inference of internal Lorentz stresses from these measurements has the potential to significantly advance our appreciation of the dynamo. Indeed, seismological inverse theory for the Sun is well understood for perturbations in composition, thermal structure and flows but, is not fully developed for magnetism, owing to the complexity of the ideal magnetohydrodynamic (MHD) equation. Invoking first-Born perturbation theory to characterize departures from spherically symmetric hydrostatic models of the Sun and applying the notation of generalized spherical harmonics, we calculate sensitivity functions of seismic measurements to the general time-varying Lorentz stress tensor. We find that eigenstates of isotropic (I.e. acoustic only) background models are dominantly sensitive to isotropic deviations in the stress tensor and much more weakly than anisotropic stresses (and therefore challenging to infer). The apple cannot fall far from the tree.

  1. Suicide Risk, Stress Sensitivity, and Self-Esteem among Young Adults Reporting Auditory Hallucinations.

    Science.gov (United States)

    DeVylder, Jordan E; Hilimire, Matthew R

    2015-08-01

    Individuals with subthreshold psychotic experiences are at increased risk for suicidal thoughts and behavior, similar to those with schizophrenia and other psychotic disorders. This may be explained by shared risk factors such as heightened stress sensitivity or low self-esteem. Understanding the nature of this relationship could inform suicide prevention in social work practice. In this study, authors examined the relationship between self-reported auditory hallucinations and suicidal thoughts, plans, and attempts, in a nonclinical sample of young adults, controlling for scores on the Psychological Stress Index and Rosenberg Self-Esteem Scale. Auditory hallucinations were associated with approximately double the odds of suicidal ideation and plans and four times the odds for suicide attempts. This relationship was not explained by stress sensitivity or self-esteem, which were independently related to hallucinations and suicidality, respectively. Subthreshold auditory hallucinations may be a useful indicator of suicide risk. This association may represent a clinically significant relationship that may be addressed through social work interventions intended to alleviate stress sensitivity or improve self-esteem.

  2. Genome-wide association for sensitivity to chronic oxidative stress in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Katherine W Jordan

    Full Text Available Reactive oxygen species (ROS are a common byproduct of mitochondrial energy metabolism, and can also be induced by exogenous sources, including UV light, radiation, and environmental toxins. ROS generation is essential for maintaining homeostasis by triggering cellular signaling pathways and host defense mechanisms. However, an imbalance of ROS induces oxidative stress and cellular death and is associated with human disease, including age-related locomotor impairment. To identify genes affecting sensitivity and resistance to ROS-induced locomotor decline, we assessed locomotion of aged flies of the sequenced, wild-derived lines from the Drosophila melanogaster Genetics Reference Panel on standard medium and following chronic exposure to medium supplemented with 3 mM menadione sodium bisulfite (MSB. We found substantial genetic variation in sensitivity to oxidative stress with respect to locomotor phenotypes. We performed genome-wide association analyses to identify candidate genes associated with variation in sensitivity to ROS-induced decline in locomotor performance, and confirmed the effects for 13 of 16 mutations tested in these candidate genes. Candidate genes associated with variation in sensitivity to MSB-induced oxidative stress form networks of genes involved in neural development, immunity, and signal transduction. Many of these genes have human orthologs, highlighting the utility of genome-wide association in Drosophila for studying complex human disease.

  3. Stress-sensitive tissue regeneration in viscoelastic biomaterials subjected to modulated tensile strain.

    Science.gov (United States)

    Belfiore, Laurence A; Floren, Michael L; Paulino, Alexandre T; Belfiore, Carol J

    2011-09-01

    This research contribution addresses the mechanochemistry of intra-tissue mass transfer for nutrients, oxygen, growth factors, and other essential ingredients that anchorage-dependent cells require for successful proliferation on biocompatible surfaces. The unsteady state reaction-diffusion equation (i.e., modified diffusion equation) is solved according to the von Kármán-Pohlhausen integral method of boundary layer analysis when nutrient consumption and tissue regeneration are stimulated by harmonically imposed stress. The mass balance with diffusion and stress-sensitive kinetics represents a rare example where the Damköhler and Deborah numbers appear together in an effort to simulate the development of mass transfer boundary layers in porous viscoelastic biomaterials. The Boltzmann superposition integral is employed to calculate time-dependent strain in terms of the real and imaginary components of dynamic compliance for viscoelastic solids that transmit harmonic excitation to anchorage-dependent cells. Rates of nutrient consumption under stress-free conditions are described by third-order kinetics which include local mass densities of nutrients, oxygen, and attached cells that maintain dynamic equilibrium with active protein sites in the porous matrix. Thinner nutrient mass transfer boundary layers are stabilized at shorter dimensionless diffusion times when the stress-free intra-tissue Damköhler number increases above its initial-condition-sensitive critical value. The critical stress-sensitive intra-tissue Damköhler number, above which it is necessary to consider the effect of harmonic strain on nutrient consumption and tissue regeneration, is proportional to the Deborah number and corresponds to a larger fraction of the stress-free intra-tissue Damköhler number in rigid biomaterials. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. The association between pressure pain sensitivity, and answers to questionnaires estimating psychological stress level in the workplace. A feasibility study

    DEFF Research Database (Denmark)

    Ballegaard, Søren; Petersen, Pernille; Gyntelberg, Finn

    2012-01-01

    To examine the association between pressure pain sensitivity (PPS) at the sternum as a measure of persistent stress assessed by questionnaires in a working population.......To examine the association between pressure pain sensitivity (PPS) at the sternum as a measure of persistent stress assessed by questionnaires in a working population....

  5. Age and puberty differences in stress responses during a public speaking task: do adolescents grow more sensitive to social evaluation

    NARCIS (Netherlands)

    Sumter, S.R.; Bokhorst, C.L.; Miers, A.C.; van Pelt, J.; Westerberg, P.M.

    2010-01-01

    During adolescence pubertal development is said to lead to an increase in general stress sensitivity which might create a vulnerability for the emergence of psychopathology during this period. However, the empirical evidence for increasing stress sensitivity is scarce and mixed. Biological responses

  6. Stress sensitivity and resilience in the chronic mild stress rat model of depression; an in situ hybridization study

    DEFF Research Database (Denmark)

    Bergström, A; Jayatissa, M N; Mørk, A

    2008-01-01

    in stress. Moreover, in the CA3 we found downregulation of vascular endothelial growth factor (VEGF) mRNA in the CMS sensitive group. Downregulation of VEGF suggests impaired hippocampal function, caused by loss of trophic factor neuroprotective support, as part of a previously uncharacterized mechanism...... for development of anhedonia. CMS induced anhedonia was not related to mRNA expression differences of the dopamine receptors D(1) and D(2), enkephalin, dynorphin, the NMDA receptor subtype NR2B in the ventral striatum, BDNF expression in the dentate gyrus, nor corticotrophin releasing hormone (CRH) and arginine...

  7. Stress sensitive electricity based on Ag/cellulose nanofiber aerogel for self-reporting.

    Science.gov (United States)

    Yao, Qiufang; Fan, Bitao; Xiong, Ye; Wang, Chao; Wang, Hanwei; Jin, Chunde; Sun, Qingfeng

    2017-07-15

    A self-reporting aerogel toward stress sensitive slectricity (SSE) was presented using an interconnected 3D fibrous network of Ag nanoparticles/cellulose nanofiber aerogel (Ag/CNF), which was prepared via combined routes of silver mirror reaction and ultrasonication. Sphere-like Ag nanoparticles (AgNPs) with mean diameter of 74nm were tightly anchored in the cellulose nanofiber through by the coherent interfaces as the conductive materials. The as-prepared Ag/CNF as a self-reporting material for SSE not only possessed quick response and sensitivity, but also be easily recovered after 100th compressive cycles without plastic deformation or degradation in compressive strength. Consequently, Ag/CNF could play a viable role in self-reporting materials as a quick electric-stress responsive sensor. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Evaluation of stress-corrosion cracking of sensitized 304SS in low-temperature borated water

    International Nuclear Information System (INIS)

    Jones, R.H.; Johnson, A.B. Jr.; Bruemmer, S.M.

    1981-05-01

    Intergranular stress corrosion cracking has been observed in constant extension rate tests, CERT and constant load tests of 304SS tested at 32 0 C in borated water plus 15 ppM C1 - . Evidence of IGSCC was obtained in CERT tests of welded pipe samples only when the original inner diameter surface was intact and with 15 ppM C1 - added to the borated water while IGSCC occurred in a furnace sensitized pipe sample after 500 h at a constant stress of 340 MPa in borated water containing 15 ppM C1 - . These results indicate that surface features associated with weld preparation grinding contributed to the susceptibility of sensitized 304SS to IGSCC in low temperature borated water; however, the constant load test indicates that such surface defects are not necessary for IGSCC in low temperature borated water

  9. Ropivacaine and Bupivacaine prevent increased pain sensitivity without altering neuroimmune activation following repeated social defeat stress.

    Science.gov (United States)

    Sawicki, Caroline M; Kim, January K; Weber, Michael D; Jarrett, Brant L; Godbout, Jonathan P; Sheridan, John F; Humeidan, Michelle

    2018-03-01

    Mounting evidence indicates that stress influences the experience of pain. Exposure to psychosocial stress disrupts bi-directional communication pathways between the central nervous system and peripheral immune system, and can exacerbate the frequency and severity of pain experienced by stressed subjects. Repeated social defeat (RSD) is a murine model of psychosocial stress that recapitulates the immune and behavioral responses to stress observed in humans, including activation of stress-reactive neurocircuitry and increased pro-inflammatory cytokine production. It is unclear, however, how these stress-induced neuroimmune responses contribute to increased pain sensitivity in mice exposed to RSD. Here we used a technique of regional analgesia with local anesthetics in mice to block the development of mechanical allodynia during RSD. We next investigated the degree to which pain blockade altered stress-induced neuroimmune activation and depressive-like behavior. Following development of a mouse model of regional analgesia with discrete sensory blockade over the dorsal-caudal aspect of the spine, C57BL/6 mice were divided into experimental groups and treated with Ropivacaine (0.08%), Liposomal Bupivacaine (0.08%), or Vehicle (0.9% NaCl) prior to exposure to stress. This specific region was selected for analgesia because it is the most frequent location for aggression-associated pain due to biting during RSD. Mechanical allodynia was assessed 12 h after the first, third, and sixth day of RSD after resolution of the sensory blockade. In a separate experiment, social avoidance behavior was determined after the sixth day of RSD. Blood, bone marrow, brain, and spinal cord were collected for immunological analyses after the last day of RSD in both experiments following behavioral assessments. RSD increased mechanical allodynia in an exposure-dependent manner that persisted for at least one week following cessation of the stressor. Mice treated with either Ropivacaine or

  10. A relative quantitative Methylation-Sensitive Amplified Polymorphism (MSAP) method for the analysis of abiotic stress

    OpenAIRE

    Bednarek, Piotr T.; Or?owska, Renata; Niedziela, Agnieszka

    2017-01-01

    Background We present a new methylation-sensitive amplified polymorphism (MSAP) approach for the evaluation of relative quantitative characteristics such as demethylation, de novo methylation, and preservation of methylation status of CCGG sequences, which are recognized by the isoschizomers HpaII and MspI. We applied the technique to analyze aluminum (Al)-tolerant and non-tolerant control and Al-stressed inbred triticale lines. The approach is based on detailed analysis of events affecting H...

  11. Anticipatory stress restores decision-making deficits in heavy drinkers by increasing sensitivity to losses.

    Science.gov (United States)

    Gullo, Matthew J; Stieger, Adam A

    2011-09-01

    Substance abusers are characterized by hypersensitivity to reward. This leads to maladaptive decisions generally, as well as those on laboratory-based decision-making tasks, such as the Iowa Gambling Task (IGT). Negative affect has also been shown to disrupt the decision-making of healthy individuals, particularly decisions made under uncertainty. Neuropsychological theories of learning, including the Somatic Marker Hypothesis (SMH), argue this occurs by amplifying affective responses to punishment. In substance abusers, this might serve to rebalance their sensitivity to reward with punishment, and improve decision-making. Before completing the IGT, 45 heavy and 47 light drinkers were randomly assigned to a control condition, or led to believe they had to give a stressful public speech. IGT performance was analyzed with the Expectancy-Valence (EV) learning model. Working memory and IQ were also assessed. Heavy drinkers made more disadvantageous decisions than light drinkers, due to higher attention to gains (versus losses) on the IGT. Anticipatory stress increased participants' attention to losses, significantly improving heavy drinkers' decision-making. Anticipatory stress increased attention to losses, effectively restoring decision-making deficits in heavy drinkers by rebalancing their reward sensitivity with punishment sensitivity. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  12. Relationship between the energy status of Daphnia magna and its sensitivity to environmental stress

    International Nuclear Information System (INIS)

    Smolders, Roel; Baillieul, Marc; Blust, Ronny

    2005-01-01

    This work tested the hypothesis that animals with a high energy status are more successful in dealing with stress than animals with a low energy status. Daphnids (Daphnia magna) were reared for 2 weeks in four different concentrations of food. Survival was not affected by food supply, and growth and reproduction increased with increasing food ration. This increase correlated well with the energy status, as was measured by scope for growth on day 15. After 2 weeks, the daphnids in the four different food ration groups were exposed for another 2 weeks to a range of increased salinities or cadmium concentrations, while remaining in their respective food concentrations. In the salinity groups, survival, growth, or reproduction were not influenced at low salinities. Exposure to higher salinity significantly decreased survival and reproduction, but this decrease was more pronounced in the highest food concentrations. In the cadmium exposed daphnids, cadmium content increased with increasing exposure concentrations, but accumulation was independent of food rations. Cadmium exposure significantly decreased survival, growth, and reproduction and this decrease again was more pronounced with increasing food concentration. Thus, the high energy status of the daphnids from the high food concentrations at the start of the exposure did not provide an increased capacity to cope with additional stress. Instead, the sensitivity of the daphnids to stress increased with increasing food ration. This increased sensitivity is likely to be the result of a change in life history from emphasizing survival at low food supply to stressing reproduction at high food supply

  13. Plasticity-related genes in brain development and amygdala-dependent learning.

    Science.gov (United States)

    Ehrlich, D E; Josselyn, S A

    2016-01-01

    Learning about motivationally important stimuli involves plasticity in the amygdala, a temporal lobe structure. Amygdala-dependent learning involves a growing number of plasticity-related signaling pathways also implicated in brain development, suggesting that learning-related signaling in juveniles may simultaneously influence development. Here, we review the pleiotropic functions in nervous system development and amygdala-dependent learning of a signaling pathway that includes brain-derived neurotrophic factor (BDNF), extracellular signaling-related kinases (ERKs) and cyclic AMP-response element binding protein (CREB). Using these canonical, plasticity-related genes as an example, we discuss the intersection of learning-related and developmental plasticity in the immature amygdala, when aversive and appetitive learning may influence the developmental trajectory of amygdala function. We propose that learning-dependent activation of BDNF, ERK and CREB signaling in the immature amygdala exaggerates and accelerates neural development, promoting amygdala excitability and environmental sensitivity later in life. © 2015 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  14. Stress-sensitive arterial hypertension, haemodynamic changes and brain metabolites in hypertensive ISIAH rats: MRI investigation.

    Science.gov (United States)

    Seryapina, A A; Shevelev, O B; Moshkin, M P; Markel, A L; Akulov, A E

    2017-05-01

    What is the central question of this study? Stress-sensitive arterial hypertension is considered to be controlled by changes in central and peripheral sympathetic regulating mechanisms, which eventually result in haemodynamic alterations and blood pressure elevation. Therefore, study of the early stages of development of hypertension is of particular interest, because it helps in understanding the aetiology of the disease. What is the main finding and its importance? Non-invasive in vivo investigation in ISIAH rats demonstrated that establishment of sustainable stress-sensitive hypertension is accompanied by a decrease in prefrontal cortex activity and mobilization of hypothalamic processes, with considerable correlations between haemodynamic parameters and individual metabolite ratios. The study of early development of arterial hypertension in association with emotional stress is of great importance for better understanding of the aetiology and pathogenesis of the hypertensive disease. Magnetic resonance imaging (MRI) was applied to evaluate the changes in haemodynamics and brain metabolites in 1- and 3-month-old inherited stress-induced arterial hypertension (ISIAH) rats (10 male rats) with stress-sensitive arterial hypertension and in control normotensive Wistar Albino Glaxo (WAG) rats (eight male rats). In the 3-month-old ISIAH rats, the age-dependent increase in blood pressure was associated with increased blood flow through the renal arteries and decreased blood flow in the lower part of the abdominal aorta. The renal vascular resistance in the ISIAH rats decreased during ageing, although at both ages it remained higher than the renal vascular resistance in WAG rats. An integral metabolome portrait demonstrated that development of hypertension in the ISIAH rats was associated with an attenuation of the excitatory and energetic activity in the prefrontal cortex, whereas in the WAG rats the opposite age-dependent changes were observed. In contrast, in the

  15. Amygdala modulation of memory-related processes in the hippocampus: potential relevance to PTSD.

    Science.gov (United States)

    Tsoory, M M; Vouimba, R M; Akirav, I; Kavushansky, A; Avital, A; Richter-Levin, G

    2008-01-01

    A key assumption in the study of stress-induced cognitive and neurobiological modifications is that alterations in hippocampal functioning after stress are due to an excessive activity exerted by the amygdala on the hippocampus. Research so far focused on stress-induced impairment of hippocampal plasticity and memory but an exposure to stress may simultaneously also result in strong emotional memories. In fact, under normal conditions emotionally charged events are better remembered compared with neutral ones. Results indicate that under these conditions there is an increase in activity within the amygdala that may lead to memory of a different quality. Studying the way emotionality activates the amygdala and the functional impact of this activation we found that the amygdala modulates memory-related processes in other brain areas, such as the hippocampus. However, this modulation is complex, involving both enhancing and suppressing effects, depending on the way the amygdala is activated and the hippocampal subregion examined. The current review summarizes our findings and attempts to put them in context with the impact of an exposure to a traumatic experience, in which there is a mixture of a strong memory of some aspects of the experience but impaired memory of other aspects of that experience. Toward that end, we have recently developed an animal model for the induction of predisposition to stress-related disorders, focusing on the consequences of exposure to stressors during juvenility on the ability to cope with stress in adulthood. Exposing juvenile-stressed rats to an additional stressful challenge in adulthood revealed their impairment to cope with stress and resulted in significant elevation of the amygdala. Interestingly, and similar to our electrophysiological findings, differential effects were observed between the impact of the emotional challenge on CA1 and dentate gyrus subregions of the hippocampus. Taken together, the results indicate that long

  16. Modeling a Negative Response Bias in the Human Amygdala by Noradrenergic-Glucocorticoid Interactions

    NARCIS (Netherlands)

    Kukolja, Juraj; Schlaepfer, Thomas E.; Keysers, Christian; Klingmueller, Dietrich; Maier, Wolfgang; Fink, Gereon R.; Hurlemann, Rene

    2008-01-01

    An emerging theme in the neuroscience of emotion is the question of how acute stress shapes, and distorts, social-emotional behavior. The prevailing neurocircuitry models of social-emotional behavior emphasize the central role of the amygdala. Acute stress leads to increased central levels of

  17. Stress-induced alterations in estradiol sensitivity increase risk for obesity in women.

    Science.gov (United States)

    Michopoulos, Vasiliki

    2016-11-01

    The prevalence of obesity in the United States continues to rise, increasing individual vulnerability to an array of adverse health outcomes. One factor that has been implicated causally in the increased accumulation of fat and excess food intake is the activity of the limbic-hypothalamic-pituitary-adrenal (LHPA) axis in the face of relentless stressor exposure. However, translational and clinical research continues to understudy the effects sex and gonadal hormones and LHPA axis dysfunction in the etiology of obesity even though women continue to be at greater risk than men for stress-induced disorders, including depression, emotional feeding and obesity. The current review will emphasize the need for sex-specific evaluation of the relationship between stress exposure and LHPA axis activity on individual risk for obesity by summarizing data generated by animal models currently being leveraged to determine the etiology of stress-induced alterations in feeding behavior and metabolism. There exists a clear lack of translational models that have been used to study female-specific risk. One translational model of psychosocial stress exposure that has proven fruitful in elucidating potential mechanisms by which females are at increased risk for stress-induced adverse health outcomes is that of social subordination in socially housed female macaque monkeys. Data from subordinate female monkeys suggest that increased risk for emotional eating and the development of obesity in females may be due to LHPA axis-induced changes in the behavioral and physiological sensitivity of estradiol. The lack in understanding of the mechanisms underlying these alterations necessitate the need to account for the effects of sex and gonadal hormones in the rationale, design, implementation, analysis and interpretation of results in our studies of stress axis function in obesity. Doing so may lead to the identification of novel therapeutic targets with which to combat stress-induced obesity

  18. Photosynthesis and chlorophyll fluorescence reaction to different shade stresses of weak light sensitive maize

    International Nuclear Information System (INIS)

    Wang, J.; Li, F.; Shi, Z.; Huang, H.; Jia, S.

    2017-01-01

    A split-plot experimental study was conducted to evaluate the effect of different shade stresses on photosynthesis and chlorophyll fluorescence of maize leaves.The experiment was designed on the south farm of Special Corn Institute, Shenyang Agricultural University, China.Data was collected from the day maize tasseled (Jul. 21) to the beginning of grouting (Aug.12 ) under 18%, 28%, 38%, 60%, and 75% shade stress to determine indexes such as photosynthesis and chlorophyll fluorescence after 15 days of shade treatment. Pairs of near-isogenic lines (NILs) of Shennong 98A (a barren stalk inbred line) and Shennong 98B (an un-barren stalk inbred line) were used as experimental materials to further reveal photosynthetic mechanisms of weak light sensitive maize when exposed to weak light conditions. Thus, a foundation was established for high density-resistant (shade resistant) corn breeding,while identifying weak light sensitive varieties. After shading treatment, chlorophyll a and total chlorophyll content of both varieties increased, chlorophyll b content first increased, followed by a decrease, while the net photosynthetic rate and stomatal conductance showed a gradually decreasing trend. The changing trends of photochemical quenching coefficient(qp) and effective quantum yield of PSII photochemistry (FPSII)were similar, FPSII and qP increased significantly as shading stress increased from 18% to 38%;however, FPSII and qP declined significantly under 60% and 75% shading stresses. The changing trend of NPQ was opposite to FPSII and qP. A comparison of both inbred lines showed that photosynthesis and chlorophyll fluorescence characteristics of Shennong 98B were superior to Shennong 98A. This study revealed the relationships between weak light sensitive lines and shade intensities by comparing differences in photosynthesis and chlorophyll fluorescence parameters. (author)

  19. Verification of intraspecimen method using constant stress tension test of sensitized alloy 600

    International Nuclear Information System (INIS)

    Lee, Seung Ki; Choi, Hoi Su; Hwang, Il Soon

    2005-01-01

    Stress corrosion cracking (SCC) occurring at the Nibase alloy 600 used in the nuclear power plant SG tubes and CRDM penetration nozzles had been reported after long-term operation in the harsh environment. Intraspecimen method was developed to predict the SCC initiation time statistically. [1] By dividing a test area into a number of smaller regions (intraspecimens) having homogeneous physical and chemical condition each SCC initiation in each intraspecimen could be counted as an independent outcome to provide enough number of statistical data. Earlier work of intraspecimen method had many problems in test method and didn't agree with Weibull statistics which is the theoretical base of intraspecimen method. The test method is improved in this intraspecimen test. To find out the root causes of the problems in earlier work and improve the accuracy of intraspecimen method, two kinds of materials are introduced, which are different in grain size but same in chemical composition. Ni-base alloy 600, heat no. J313 and J323 are used as test materials. Specimens of sensitized Alloy 600 are tested under the condition of constant tensile stress and well defined chemical environment therefore we can easily observe typical intergranular stress corrosion cracking (IGSCC). Material with finer grain (J323) showed the areadependence in agreement with theoretical prediction. But material with coarser grain (J313) did not show any significant area-dependence. While SCC initiates earlier at grain boundaries that are oriented close to normal to the stress axis, crack initiation time showed no correlation with grain boundary misorientation estimated by Electron Back Scattered Diffraction (EBSD). From the SCC initiation tests with two test materials, it is concluded that the number of grains in an intraspecimen, degree of sensitization and uniform stress distribution are important parameters to meet Weibull statistics

  20. A relative quantitative Methylation-Sensitive Amplified Polymorphism (MSAP) method for the analysis of abiotic stress.

    Science.gov (United States)

    Bednarek, Piotr T; Orłowska, Renata; Niedziela, Agnieszka

    2017-04-21

    We present a new methylation-sensitive amplified polymorphism (MSAP) approach for the evaluation of relative quantitative characteristics such as demethylation, de novo methylation, and preservation of methylation status of CCGG sequences, which are recognized by the isoschizomers HpaII and MspI. We applied the technique to analyze aluminum (Al)-tolerant and non-tolerant control and Al-stressed inbred triticale lines. The approach is based on detailed analysis of events affecting HpaII and MspI restriction sites in control and stressed samples, and takes advantage of molecular marker profiles generated by EcoRI/HpaII and EcoRI/MspI MSAP platforms. Five Al-tolerant and five non-tolerant triticale lines were exposed to aluminum stress using the physiologicaltest. Total genomic DNA was isolated from root tips of all tolerant and non-tolerant lines before and after Al stress following metAFLP and MSAP approaches. Based on codes reflecting events affecting cytosines within a given restriction site recognized by HpaII and MspI in control and stressed samples demethylation (DM), de novo methylation (DNM), preservation of methylated sites (MSP), and preservation of nonmethylatedsites (NMSP) were evaluated. MSAP profiles were used for Agglomerative hierarchicalclustering (AHC) based on Squared Euclidean distance and Ward's Agglomeration method whereas MSAP characteristics for ANOVA. Relative quantitative MSAP analysis revealed that both Al-tolerant and non-tolerant triticale lines subjected to Al stress underwent demethylation, with demethylation of CG predominating over CHG. The rate of de novo methylation in the CG context was ~3-fold lower than demethylation, whereas de novo methylation of CHG was observed only in Al-tolerant lines. Our relative quantitative MSAP approach, based on methylation events affecting cytosines within HpaII-MspI recognition sequences, was capable of quantifying de novo methylation, demethylation, methylation, and non-methylated status in control

  1. A Unique "Angiotensin-Sensitive" Neuronal Population Coordinates Neuroendocrine, Cardiovascular, and Behavioral Responses to Stress.

    Science.gov (United States)

    de Kloet, Annette D; Wang, Lei; Pitra, Soledad; Hiller, Helmut; Smith, Justin A; Tan, Yalun; Nguyen, Dani; Cahill, Karlena M; Sumners, Colin; Stern, Javier E; Krause, Eric G

    2017-03-29

    rouse psychological, cardiovascular, and metabolic impairments. As a consequence, there is an urgent need for the development of novel therapeutic approaches to prevent or dampen deleterious aspects of "stress." While the renin-angiotensin system has received some attention in this regard, the neural mechanisms by which this endocrine system may impact stress-related pathologies and consequently serve as targets for therapeutic intervention are not clear. The present studies provide substantial insight in this regard. That is, they reveal that a distinct population of angiotensin-sensitive neurons is integral to the coordination of stress responses. The implication is that this neuronal phenotype may serve as a target for stress-related disease. Copyright © 2017 the authors 0270-6474/17/373479-13$15.00/0.

  2. 3-D description of fracture surfaces and stress-sensitivity analysis for naturally fractured reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, S.Q.; Jioa, D.; Meng, Y.F.; Fan, Y.

    1997-08-01

    Three kinds of reservoir cores (limestone, sandstone, and shale with natural fractures) were used to study the effect of morphology of fracture surfaces on stress sensitivity. The cores, obtained from the reservoirs with depths of 2170 to 2300 m, have fractures which are mated on a large scale, but unmated on a fine scale. A specially designed photoelectric scanner with a computer was used to describe the topography of the fracture surfaces. Then, theoretical analysis of the fracture closure was carried out based on the fracture topography generated. The scanning results show that the asperity has almost normal distributions for all three types of samples. For the tested samples, the fracture closure predicted by the elastic-contact theory is different from the laboratory measurements because plastic deformation of the aspirates plays an important role under the testing range of normal stresses. In this work, the traditionally used elastic-contact theory has been modified to better predict the stress sensitivity of reservoir fractures. Analysis shows that the standard deviation of the probability density function of asperity distribution has a great effect on the fracture closure rate.

  3. Prenatal stress alters progestogens to mediate susceptibility to sex-typical, stress-sensitive disorders, such as drug abuse: a review

    Directory of Open Access Journals (Sweden)

    Cheryl A Frye

    2011-10-01

    Full Text Available Maternal-offspring interactions begin prior to birth. Experiences of the mother during gestation play a powerful role in determining the developmental programming of the central nervous system. In particular, stress during gestation alters developmental programming of the offspring resulting in susceptibility to sex-typical and stress-sensitive neurodevelopmental, neuropsychiatric and neurodegenerative disorders. However, neither these effects, nor the underlying mechanisms, are well understood. Our hypothesis is that allopregnanolone, during gestation, plays a particularly vital role in mitigating effects of stress on the developing fetus and may mediate, in part, alterations apparent throughout the lifespan. Specifically, altered balance between glucocorticoids and progestogens during critical periods of development (stemming from psychological, immunological, and/or endocrinological stressors during gestation may permanently influence behavior, brain morphology, and/or neuroendocrine-sensitive processes. 5α-reduced progestogens are integral in the developmental programming of sex-typical, stress-sensitive, and/or disorder-relevant phenotypes. Prenatal stress may alter these responses and dysregulate allopregnanolone and its normative effects on stress axis function. As an example of a neurodevelopmental, neuropsychiatric and/or neurodegenerative process, this review focuses on responsiveness to drugs of abuse, which is sensitive to prenatal stress and progestogen milieu. This review explores the notion that allopregnanolone may effect, or be influenced by, prenatal stress, with consequences for neurodevelopmental-, neuropsychiatric- and/or neurodegenerative- relevant processes, such as addiction.

  4. Single prolonged stress effects on sensitization to cocaine and cocaine self-administration in rats.

    Science.gov (United States)

    Eagle, Andrew L; Singh, Robby; Kohler, Robert J; Friedman, Amy L; Liebowitz, Chelsea P; Galloway, Matthew P; Enman, Nicole M; Jutkiewicz, Emily M; Perrine, Shane A

    2015-05-01

    Posttraumatic stress disorder (PTSD) is often comorbid with substance use disorders (SUD). Single prolonged stress (SPS) is a well-validated rat model of PTSD that provides a framework to investigate drug-induced behaviors as a preclinical model of the comorbidity. We hypothesized that cocaine sensitization and self-administration would be increased following exposure to SPS. Male Sprague-Dawley rats were exposed to SPS or control treatment. After SPS, cocaine (0, 10 or 20 mg/kg, i.p.) was administered for 5 consecutive days and locomotor activity was measured. Another cohort was assessed for cocaine self-administration (0.1 or 0.32 mg/kg/i.v.) after SPS. Rats were tested for acquisition, extinction and cue-induced reinstatement behaviors. Control animals showed a dose-dependent increase in cocaine-induced locomotor activity after acute cocaine whereas SPS rats did not. Using a sub-threshold sensitization paradigm, control rats did not exhibit enhanced locomotor activity at Day 5 and therefore did not develop behavioral sensitization, as expected. However, compared to control rats on Day 5 the locomotor response to 20mg/kg repeated cocaine was greatly enhanced in SPS-treated rats, which exhibited enhanced cocaine locomotor sensitization. The effect of SPS on locomotor activity was unique in that SPS did not modify cocaine self-administration behaviors under a simple schedule of reinforcement. These data show that SPS differentially affects cocaine-mediated behaviors causing no effect to cocaine self-administration, under a simple schedule of reinforcement, but significantly augmenting cocaine locomotor sensitization. These results suggest that SPS shares common neurocircuitry with stimulant-induced plasticity, but dissociable from that underlying psychostimulant-induced reinforcement. Copyright © 2015. Published by Elsevier B.V.

  5. Deformation and Failure Mechanism of Roadway Sensitive to Stress Disturbance and Its Zonal Support Technology

    Directory of Open Access Journals (Sweden)

    Qiangling Yao

    2016-01-01

    Full Text Available The 6163 haulage roadway in the Qidong coal mine passes through a fault zone, which causes severe deformation in the surrounding rock, requiring repeated roadway repairs. Based on geological features in the fault area, we analyze the factors affecting roadway deformation and failure and propose the concept of roadway sensitive to stress disturbance (RSSD. We investigate the deformation and failure mechanism of the surrounding rocks of RSSD using field monitoring, theoretical analysis, and numerical simulation. The deformation of the surrounding rocks involves dilatation of shallow rocks and separation of deep rocks. Horizontal and longitudinal fissures evolve to bed separation and fracture zones; alternatively, fissures can evolve into fracture zones with new fissures extending to deeper rock. The fault affects the stress field of the surrounding rock to ~27 m radius. Its maximum impact is on the vertical stress of the rib rock mass and its minimum impact is on the vertical stress of the floor rock mass. Based on our results, we propose a zonal support system for a roadway passing through a fault. Engineering practice shows that the deformation of the surrounding rocks of the roadway can be effectively controlled to ensure normal and safe production in the mine.

  6. The effect of mechanical stress on lateral-effect position-sensitive detector characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, H.A. [Department of Information Technology and Media, Mid-Sweden University, SE-85170 Sundsvall (Sweden)]. E-mail: Henrik.Andersson@miun.se; Mattsson, C.G. [Department of Information Technology and Media, Mid-Sweden University, SE-85170 Sundsvall (Sweden); Thungstroem, G. [Department of Information Technology and Media, Mid-Sweden University, SE-85170 Sundsvall (Sweden); Lundgren, A. [SiTek Electro Optics, Ogaerdesvaegen 13A 433 30 Partille (Sweden); Nilsson, H.-E. [Department of Information Technology and Media, Mid-Sweden University, SE-85170 Sundsvall (Sweden)

    2006-07-01

    Position-sensitive detectors (PSDs) are widely used in noncontact measurement systems. In order to minimize the size of such systems, interest has increased in mounting the PSD chip directly onto printed circuit boards (PCBs). Stress may be induced in the PSD because of the large differences in thermal expansion coefficients, as well as the long-term geometrical stability of the chip packaging. Mechanical stress has previously been shown to have an effect on the performance of semiconductors. The accuracy, or linearity, of a lateral effect PSD is largely dependent on the homogeneity of the resistive layer. Variations of the resistivity over the active area of the PSD will result in an uneven distribution of photo-generated current, and hence an error in the readout position. In this work experiments were performed to investigate the influence of anisotropic mechanical stress in terms of nonlinearity. PSD chips of 60x3 mm active area were subjected, respectively, to different amounts of compressive and tensile stress to determine the influence on the linearity.

  7. Sensitivity of anterior pituitary hormones to graded levels of psychological stress.

    Science.gov (United States)

    Armario, A; Lopez-Calderón, A; Jolin, T; Castellanos, J M

    1986-08-04

    The effect of graded levels of stressor intensity on anterior pituitary hormones was studied in adult male rats. Corticosterone, considered as a reflection of ACTH release, and prolactin responses showed a good correlation with the intensity of the stressors. On the contrary, neither LH, GH nor TSH release showed a parallelism with the intensity of the stressors in spite of the fact that they clearly responded to all the stimuli. It appears that the hormones of the anterior pituitary might be divided into two groups: those whose response is sensitive to the levels of emotional arousal elicited by stress, and those displaying a clear but stereotyped response during stress. However, other alternative explanations might exist to justify the present results. The neural mechanisms underlying the two types of response are at present unknown. These data indicate that only the pituitary-adrenal axis and prolactin have some potential utilities as quantitative indices of emotional arousal elicited by currently applied stressors in the rat.

  8. Are the neural substrates of memory the final common pathway in posttraumatic stress disorder (PTSD)?

    Science.gov (United States)

    Elzinga, B M; Bremner, J D

    2002-06-01

    A model for the posttraumatic stress disorder (PTSD) as a disorder of memory is presented drawing both on psychological and neurobiological data. Evidence on intrusive memories and deficits in declarative memory function in PTSD-patients is reviewed in relation to three brain areas that are involved in memory functioning and the stress response: the hippocampus, amygdala, and the prefrontal cortex. Neurobiological studies have shown that the noradrenergic stress-system is involved in enhanced encoding of emotional memories, sensitization, and fear conditioning, by way of its effects on the amygdala. Chronic stress also affects the hippocampus, a brain area involved in declarative memories, suggesting that hippocampal dysfunction may partly account for the deficits in declarative memory in PTSD-patients. Deficits in the medial prefrontal cortex, a structure that normally inhibits the amygdala, may further enhance the effects of the amygdala, thereby increasing the frequency and intensity of the traumatic memories. Thus, by way of its influence on these brain structures, exposure to severe stress may simultaneously result in strong emotional reactions and in difficulties to recall the emotional event. This model is also relevant for understanding the distinction between declarative and non-declarative memory-functions in processing trauma-related information in PTSD. Implications of our model are reviewed.

  9. The amygdala and decision-making.

    Science.gov (United States)

    Gupta, Rupa; Koscik, Timothy R; Bechara, Antoine; Tranel, Daniel

    2011-03-01

    Decision-making is a complex process that requires the orchestration of multiple neural systems. For example, decision-making is believed to involve areas of the brain involved in emotion (e.g., amygdala, ventromedial prefrontal cortex) and memory (e.g., hippocampus, dorsolateral prefrontal cortex). In this article, we will present findings related to the amygdala's role in decision-making, and differentiate the contributions of the amygdala from those of other structurally and functionally connected neural regions. Decades of research have shown that the amygdala is involved in associating a stimulus with its emotional value. This tradition has been extended in newer work, which has shown that the amygdala is especially important for decision-making, by triggering autonomic responses to emotional stimuli, including monetary reward and punishment. Patients with amygdala damage lack these autonomic responses to reward and punishment, and consequently, cannot utilize "somatic marker" type cues to guide future decision-making. Studies using laboratory decision-making tests have found deficient decision-making in patients with bilateral amygdala damage, which resembles their real-world difficulties with decision-making. Additionally, we have found evidence for an interaction between sex and laterality of amygdala functioning, such that unilateral damage to the right amygdala results in greater deficits in decision-making and social behavior in men, while left amygdala damage seems to be more detrimental for women. We have posited that the amygdala is part of an "impulsive," habit type system that triggers emotional responses to immediate outcomes. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Imaging Lysosomal pH Alteration in Stressed Cells with a Sensitive Ratiometric Fluorescence Sensor.

    Science.gov (United States)

    Xue, Zhongwei; Zhao, Hu; Liu, Jian; Han, Jiahuai; Han, Shoufa

    2017-03-24

    The organelle-specific pH is crucial for cell homeostasis. Aberrant pH of lysosomes has been manifested in myriad diseases. To probe lysosome responses to cell stress, we herein report the detection of lysosomal pH changes with a dual colored probe (CM-ROX), featuring a coumarin domain with "always-on" blue fluorescence and a rhodamine-lactam domain activatable to lysosomal acidity to give red fluorescence. With sensitive ratiometric signals upon subtle pH changes, CM-ROX enables discernment of lysosomal pH changes in cells undergoing autophagy, cell death, and viral infection.

  11. The Arctic Alzheimer mutation enhances sensitivity to toxic stress in human neuroblastoma cells

    DEFF Research Database (Denmark)

    Sennvik, Kristina; Nilsberth, Camilla; Stenh, Charlotte

    2002-01-01

    The E693G (Arctic) mutation of the amyloid precursor protein was recently found to lead to early-onset Alzheimer's disease in a Swedish family. In the present study, we report that the Arctic mutation decreases cell viability in human neuroblastoma cells. The cell viability, as measured by the MTT...... their secretion of beta-secretase cleaved amyloid precursor protein. The enhanced sensitivity to toxic stress in cells with the Arctic mutation most likely contributes to the pathogenic pathway leading to Alzheimer's disease....

  12. Dexamethasone Treatment Leads to Enhanced Fear Extinction and Dynamic Fkbp5 Regulation in Amygdala.

    Science.gov (United States)

    Sawamura, Takehito; Klengel, Torsten; Armario, Antonio; Jovanovic, Tanja; Norrholm, Seth D; Ressler, Kerry J; Andero, Raül

    2016-02-01

    Posttraumatic stress disorder (PTSD) is both a prevalent and debilitating trauma-related disorder associated with dysregulated fear learning at the core of many of its signs and symptoms. Improvements in the currently available psychological and pharmacological treatments are needed in order to improve PTSD treatment outcomes and to prevent symptom relapse. In the present study, we used a putative animal model of PTSD that included presentation of immobilization stress (IMO) followed by fear conditioning (FC) a week later. We then investigated the acute effects of GR receptor activation on the extinction (EXT) of conditioned freezing, using dexamethasone administered systemically which is known to result in suppression of the HPA axis. In our previous work, IMO followed by tone-shock-mediated FC was associated with impaired fear EXT. In this study, we administered dexamethasone 4 h before EXT training and then examined EXT retention (RET) 24 h later to determine whether dexamethasone suppression rescued EXT deficits. Dexamethasone treatment produced dose-dependent enhancement of both EXT and RET. Dexamethasone was also associated with reduced amygdala Fkbp5 mRNA expression following EXT and after RET. Moreover, DNA methylation of the Fkbp5 gene occurred in a dose-dependent and time course-dependent manner within the amygdala. Additionally, we found dynamic changes in epigenetic regulation, including Dnmt and Tet gene pathways, as a function of both fear EXT and dexamethasone suppression of the HPA axis. Together, these data suggest that dexamethasone may serve to enhance EXT by altering Fkbp5-mediated glucocorticoid sensitivity via epigenetic regulation of Fkbp5 expression.

  13. Sensitivity to neurotoxic stress is not increased in progranulin-deficient mice.

    Science.gov (United States)

    Petkau, Terri L; Zhu, Shanshan; Lu, Ge; Fernando, Sarah; Cynader, Max; Leavitt, Blair R

    2013-11-01

    Loss-of-function mutations in the progranulin (GRN) gene are a common cause of autosomal dominant frontotemporal lobar degeneration, a fatal and progressive neurodegenerative disorder common in people less than 65 years of age. In the brain, progranulin is expressed in multiple regions at varying levels, and has been hypothesized to play a neuroprotective or neurotrophic role. Four neurotoxic agents were injected in vivo into constitutive progranulin knockout (Grn(-/-)) mice and their wild-type (Grn(+/+)) counterparts to assess neuronal sensitivity to toxic stress. Administration of 3-nitropropionic acid, quinolinic acid, kainic acid, and pilocarpine induced robust and measurable neuronal cell death in affected brain regions, but no differential cell death was observed between Grn(+/+) and Grn(-/-) mice. Thus, constitutive progranulin knockout mice do not have increased sensitivity to neuronal cell death induced by the acute chemical models of neuronal injury used in this study. Copyright © 2013. Published by Elsevier Inc.

  14. Activation of ATP-sensitive potassium channel by iptakalim normalizes stress-induced HPA axis disorder and depressive behaviour by alleviating inflammation and oxidative stress in mouse hypothalamus.

    Science.gov (United States)

    Zhao, Xiao-Jie; Zhao, Zhan; Yang, Dan-Dan; Cao, Lu-Lu; Zhang, Ling; Ji, Juan; Gu, Jun; Huang, Ji-Ye; Sun, Xiu-Lan

    2017-04-01

    Stress-induced disturbance of the hypothalamic-pituitary-adrenal (HPA) axis is strongly implicated in incidence of mood disorders. A heightened neuroinflammatory response and oxidative stress play a fundamental role in the dysfunction of the HPA axis. We have previously demonstrated that iptakalim (Ipt), a new ATP-sensitive potassium (K-ATP) channel opener, could prevent oxidative injury and neuroinflammation against multiple stimuli-induced brain injury. The present study was to demonstrate the impacts of Ipt in stress-induced HPA axis disorder and depressive behavior. We employed 2 stress paradigms: 8 weeks of continuous restraint stress (chronic restraint stress, CRS) and 2h of restraint stress (acute restraint stress, ARS), to mimic both chronic stress and severe acute stress. Prolonged (4 weeks) and short-term (a single injection) Ipt treatment was administered 30min before each stress paradigm. We found that HPA axis was altered after stress, with different responses to CRS (lower ACTH and CORT, higher AVP, but normal CRH) and ARS (higher CRH, ACTH and CORT, but normal AVP). Both prolonged and short-term Ipt treatment normalized stress-induced HPA axis disorders and abnormal behaviors in mice. CRS and ARS up-regulated mRNA levels of inflammation-related molecules (TNFα, IL-1β, IL-6 and TLR4) and oxidative stress molecules (gp91phox, iNOS and Nrf2) in the mouse hypothalamus. Double immunofluorescence showed CRS and ARS increased microglia activation (CD11b and TNFα) and oxidative stress in neurons (NeuN and gp91phox), which were alleviated by Ipt. Therefore, the present study reveals that Ipt could prevent against stress-induced HPA axis disorders and depressive behavior by alleviating inflammation and oxidative stress in the hypothalamus. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Information Processing Bias in Post-traumatic Stress Disorder

    OpenAIRE

    Weber, Darren L

    2008-01-01

    This review considers theory and evidence for abnormal information processing in post-traumatic stress disorder (PTSD). Cognitive studies have indicated sensitivity in PTSD for traumatic information, more so than general emotional information. These findings were supported by neuroimaging studies that identify increased brain activity during traumatic cognition, especially in affective networks (including the amygdala, orbitofrontal and anterior cingulate cortex). In theory, it is proposed th...

  16. A-to-I RNA editing in the rat brain is age-dependent, region-specific and sensitive to environmental stress across generations.

    Science.gov (United States)

    Zaidan, Hiba; Ramaswami, Gokul; Golumbic, Yaela N; Sher, Noa; Malik, Assaf; Barak, Michal; Galiani, Dalia; Dekel, Nava; Li, Jin B; Gaisler-Salomon, Inna

    2018-01-08

    Adenosine-to-inosine (A-to-I) RNA editing is an epigenetic modification catalyzed by adenosine deaminases acting on RNA (ADARs), and is especially prevalent in the brain. We used the highly accurate microfluidics-based multiplex PCR sequencing (mmPCR-seq) technique to assess the effects of development and environmental stress on A-to-I editing at 146 pre-selected, conserved sites in the rat prefrontal cortex and amygdala. Furthermore, we asked whether changes in editing can be observed in offspring of stress-exposed rats. In parallel, we assessed changes in ADARs expression levels. In agreement with previous studies, we found editing to be generally higher in adult compared to neonatal rat brain. At birth, editing was generally lower in prefrontal cortex than in amygdala. Stress affected editing at the serotonin receptor 2c (Htr2c), and editing at this site was significantly altered in offspring of rats exposed to prereproductive stress across two generations. Stress-induced changes in Htr2c editing measured with mmPCR-seq were comparable to changes measured with Sanger and Illumina sequencing. Developmental and stress-induced changes in Adar and Adarb1 mRNA expression were observed but did not correlate with editing changes. Our findings indicate that mmPCR-seq can accurately detect A-to-I RNA editing in rat brain samples, and confirm previous accounts of a developmental increase in RNA editing rates. Our findings also point to stress in adolescence as an environmental factor that alters RNA editing patterns several generations forward, joining a growing body of literature describing the transgenerational effects of stress.

  17. MRI Amygdala Volume in Williams Syndrome

    Science.gov (United States)

    Capitao, Liliana; Sampaio, Adriana; Sampaio, Cassandra; Vasconcelos, Cristiana; Fernandez, Montse; Garayzabal, Elena; Shenton, Martha E.; Goncalves, Oscar F.

    2011-01-01

    One of the most intriguing characteristics of Williams Syndrome individuals is their hypersociability. The amygdala has been consistently implicated in the etiology of this social profile, particularly given its role in emotional and social behavior. This study examined amygdala volume and symmetry in WS individuals and in age and sex matched…

  18. Coconut oil supplementation and physical exercise improves baroreflex sensitivity and oxidative stress in hypertensive rats.

    Science.gov (United States)

    Alves, Naiane F B; Porpino, Suênia K P; Monteiro, Matheus M O; Gomes, Enéas R M; Braga, Valdir A

    2015-04-01

    The hypothesis that oral supplementation with virgin coconut oil (Cocos nucifera L.) and exercise training would improve impaired baroreflex sensitivity (BRS) and reduce oxidative stress in spontaneously hypertensive rats (SHR) was tested. Adult male SHR and Wistar Kyoto rats (WKY) were divided into 5 groups: WKY + saline (n = 8); SHR + saline (n = 8); SHR + coconut oil (2 mL·day(-1), n = 8); SHR + trained (n = 8); and SHR + trained + coconut oil (n = 8). Mean arterial pressure (MAP) was recorded and BRS was tested using phenylephrine (8 μg/kg, intravenous) and sodium nitroprusside (25 μg·kg(-1), intravenous). Oxidative stress was measured using dihydroethidium in heart and aorta. SHR + saline, SHR + coconut oil, and SHR + trained group showed higher MAP compared with WKY + saline (175 ± 6, 148 ± 6, 147 ± 7 vs. 113 ± 2 mm Hg; p coconut oil, SHR + trained group, and SHR + trained + coconut oil groups presented lower MAP compared with SHR + saline group (148 ± 6, 147 ± 7, 134 ± 8 vs. 175 ± 6 mm Hg; p Coconut oil combined with exercise training improved BRS in SHR compared with SHR + saline group (-2.47 ± 0.3 vs. -1.39 ± 0.09 beats·min(-1)·mm Hg(-1); p coconut oil group presented reduced oxidative stress compared with SHR + saline in heart (622 ± 16 vs. 774 ± 31 AU, p coconut oil reduced oxidative stress in SHR compared with SHR + saline group (454 ± 33 vs. 689 ± 29 AU, p coconut oil combined with exercise training improved impaired BRS and reduced oxidative stress in SHR.

  19. Amygdala-dependent fear is regulated by Oprl1 in mice and humans with PTSD.

    Science.gov (United States)

    Andero, Raül; Brothers, Shaun P; Jovanovic, Tanja; Chen, Yen T; Salah-Uddin, Hasib; Cameron, Michael; Bannister, Thomas D; Almli, Lynn; Stevens, Jennifer S; Bradley, Bekh; Binder, Elisabeth B; Wahlestedt, Claes; Ressler, Kerry J

    2013-06-05

    The amygdala-dependent molecular mechanisms driving the onset and persistence of posttraumatic stress disorder (PTSD) are poorly understood. Recent observational studies have suggested that opioid analgesia in the aftermath of trauma may decrease the development of PTSD. Using a mouse model of dysregulated fear, we found altered expression within the amygdala of the Oprl1 gene (opioid receptor-like 1), which encodes the amygdala nociceptin (NOP)/orphanin FQ receptor (NOP-R). Systemic and central amygdala infusion of SR-8993, a new highly selective NOP-R agonist, impaired fear memory consolidation. In humans, a single-nucleotide polymorphism (SNP) within OPRL1 is associated with a self-reported history of childhood trauma and PTSD symptoms (n = 1847) after a traumatic event. This SNP is also associated with physiological startle measures of fear discrimination and magnetic resonance imaging analysis of amygdala-insula functional connectivity. Together, these data suggest that Oprl1 is associated with amygdala function, fear processing, and PTSD symptoms. Further, our data suggest that activation of the Oprl1/NOP receptor may interfere with fear memory consolidation, with implications for prevention of PTSD after a traumatic event.

  20. Intranasal Oxytocin Administration Dampens Amygdala Reactivity towards Emotional Faces in Male and Female PTSD Patients.

    Science.gov (United States)

    Koch, Saskia Bj; van Zuiden, Mirjam; Nawijn, Laura; Frijling, Jessie L; Veltman, Dick J; Olff, Miranda

    2016-05-01

    Post-traumatic stress disorder (PTSD) is a disabling psychiatric disorder. As a substantial part of PTSD patients responds poorly to currently available psychotherapies, pharmacological interventions boosting treatment response are needed. Because of its anxiolytic and pro-social properties, the neuropeptide oxytocin (OT) has been proposed as promising strategy for treatment augmentation in PTSD. As a first step to investigate the therapeutic potential of OT in PTSD, we conducted a double-blind, placebo-controlled, cross-over functional MRI study examining OT administration effects (40 IU) on amygdala reactivity toward emotional faces in unmedicated male and female police officers with (n=37, 21 males) and without (n=40, 20 males) PTSD. Trauma-exposed controls were matched to PTSD patients based on age, sex, years of service and educational level. Under placebo, the expected valence-dependent amygdala reactivity (ie, greater activity toward fearful-angry faces compared with happy-neutral faces) was absent in PTSD patients. OT administration dampened amygdala reactivity toward all emotional faces in male and female PTSD patients, but enhanced amygdala reactivity in healthy male and female trauma-exposed controls, independent of sex and stimulus valence. In PTSD patients, greater anxiety prior to scanning and amygdala reactivity during the placebo session were associated with greater reduction of amygdala reactivity after OT administration. Taken together, our results indicate presumably beneficial neurobiological effects of OT administration in male and female PTSD patients. Future studies should investigate OT administration in clinical settings to fully appreciate its therapeutic potential.

  1. Features of amygdala in patients with mesial temporal lobe epilepsy and hippocampal sclerosis: An MRI volumetric and histopathological study.

    Science.gov (United States)

    Nakayama, Yoko; Masuda, Hiroshi; Shirozu, Hiroshi; Ito, Yosuke; Higashijima, Takefumi; Kitaura, Hiroki; Fujii, Yukihiko; Kakita, Akiyoshi; Fukuda, Masafumi

    2017-09-01

    It is well-known that there is a correlation between the neuropathological grade of hippocampal sclerosis (HS) and neuroradiological atrophy of the hippocampus in mesial temporal lobe epilepsy (mTLE) patients. However, there is no strict definition or criterion regarding neuron loss and atrophy of the amygdala neighboring the hippocampus. We examined the relationship between HS and neuronal loss in the amygdala. Nineteen mTLE patients with neuropathological proof of HS were assigned to Group A, while seven mTLE patients without HS were assigned to Group B. We used FreeSurfer software to measure amygdala volume automatically based on pre-operation magnetic resonance images. Neurons observed using Klüver-Barrera (KB) staining in resected amygdala tissue were counted. and the extent of immunostaining with stress marker antibodies was semiquantitatively evaluated. There was no significant difference in amygdala volume between the two groups (Group A: 1.41±0.24; Group B: 1.41±0.29cm 3 ; p=0.98), nor in the neuron cellularity of resected amygdala specimens (Group A: 3.98±0.97; Group B: 3.67±0.67 10× -4 number of neurons/μm 2 ; p=0.40). However, the HSP70 level, representing acute stress against epilepsy, in Group A patients was significantly larger than that in Group B. There was no significant difference in the level of Bcl-2, which is known as a protein that inhibits cell death, between the two groups. Neuronal loss and volume loss in the amygdala may not necessarily follow hippocampal sclerosis. From the analysis of stress proteins, epileptic attacks are as likely to damage the amygdala as the hippocampus but do not lead to neuronal death in the amygdala. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Exploratory rearing: a context- and stress-sensitive behavior recorded in the open-field test.

    Science.gov (United States)

    Sturman, Oliver; Germain, Pierre-Luc; Bohacek, Johannes

    2018-02-16

    Stressful experiences are linked to anxiety disorders in humans. Similar effects are observed in rodent models, where anxiety is often measured in classic conflict tests such as the open-field test. Spontaneous rearing behavior, in which rodents stand on their hind legs to explore, can also be observed in this test yet is often ignored. We define two forms of rearing, supported rearing (in which the animal rears against the walls of the arena) and unsupported rearing (in which the animal rears without contacting the walls of the arena). Using an automated open-field test, we show that both rearing behaviors appear to be strongly context dependent and show clear sex differences, with females rearing less than males. We show that unsupported rearing is sensitive to acute stress, and is reduced under more averse testing conditions. Repeated testing and handling procedures lead to changes in several parameters over varying test sessions, yet unsupported rearing appears to be rather stable within a given animal. Rearing behaviors could therefore provide an additional measure of anxiety in rodents relevant for behavioral studies, as they appear to be highly sensitive to context and may be used in repeated testing designs.

  3. The effects of nongenetic memory on population level sensitivity to stress

    Science.gov (United States)

    Adams, Rhys; Nevozhay, Dmitry; van Itallie, Elizabeth; Bennett, Matthew; Balazsi, Gabor

    2011-03-01

    While gene expression is often thought of as a unidirectional determinant of cellular fitness, recent studies have shown how growth retardation due to protein expression can affect gene expression levels in single cells. We developed two yeast strains carrying a drug resistance protein under the control of different synthetic gene constructs, one of which was monostable, while the other was bistable. The gene expression of these cell populations was tuned using a molecular inducer so that their respective means and noises were identical, while their nongenetic memory properties were different. We tested the sensitivity of these two cell population distributions to the antibiotic zeocin. We found that the gene expression distributions of bistable cell populations were sensitive to stressful environments, while the gene expression distribution of monostable cells were nearly unchanged by stress. We conclude that cell populations with high nongenetic memory are more adaptable to their environment. This work was funded by the National Institutes of Health through the NIH Director's New Innovator Award Program, 1-DP2- OD006481-01.

  4. CRFR1 in the ventromedial caudate putamen modulates acute stress-enhanced expression of cocaine locomotor sensitization.

    Science.gov (United States)

    Liu, Shuli; Wang, Zhiyan; Li, Yijing; Sun, Xiaowei; Ge, Feifei; Yang, Mingda; Wang, Xinjuan; Wang, Na; Wang, Junkai; Cui, Cailian

    2017-07-15

    Repeated exposure to psychostimulants induces a long-lasting enhancement of locomotor activity called behavioral sensitization, which is often reinforced by stress after drug withdrawal. The mechanisms underlying these phenomena remain elusive. Here we explored the effects of acute stress 3 or 14 days after the cessation of chronic cocaine treatment on the expression of locomotor sensitization induced by a cocaine challenge in rats and the key brain region and molecular mechanism underlying the phenomenon. A single session of forced swimming, as an acute stress (administered 2 days after the cessation of cocaine), significantly enhanced the expression of cocaine locomotor sensitization 14 days after the final cocaine injection (challenge at 12 days after acute stress) but not 3 days after the cessation of cocaine (challenge at 1 day after acute stress). The result indicated that acute stress enhanced the expression of cocaine locomotor sensitization after incubation for 12 days rather than 1 day after the last cocaine injection. Moreover, the enhancement in locomotor sensitization was paralleled by a selective increase in the number of the c-Fos + cells, the level of CRFR1 mRNA in the ventromedial caudate putamen (vmCPu). Furthermore, the enhancement was significantly attenuated by CRFR1 antagonist NBI-27914 into the vmCPu, implying that the up-regulation of CRFR1 in the vmCPu seems to be critical in the acute stress-enhanced expression of cocaine locomotor sensitization. The findings demonstrate that the long-term effect of acute stress on the expression of cocaine locomotor sensitization is partially mediated by CRFR1 in the vmCPu. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. The scars of childhood adversity: minor stress sensitivity and depressive symptoms in remitted recurrently depressed adult patients.

    Directory of Open Access Journals (Sweden)

    Gemma Kok

    Full Text Available Childhood adversity may lead to depressive relapse through its long-lasting influence on stress sensitivity. In line with the stress sensitization hypothesis, minor (daily stress is associated with depressive relapse. Therefore, we examine the impact of childhood adversity on daily stress and its predictive value on prospectively assessed depressive symptoms in recurrently depressed patients.Daily stress was assessed in recurrently depressed adult patients, enrolled into two randomized trials while remitted. The reported intensity and frequency of dependent and independent daily stress was assessed at baseline. Independent stress is externally generated, for example an accident happening to a friend, while dependent stress is internally generated, for example getting into a fight with a neighbor. Hierarchical regression analyses were performed with childhood adversity, independent and dependent daily stress as predictor variables of prospectively measured depressive symptoms after three months of follow-up (n = 138.We found that childhood adversity was not significantly associated with a higher frequency and intensity of daily stress. The intensity of both independent and dependent daily stress was predictive of depressive symptom levels at follow-up (unadjusted models respectively: B = 0.47, t = 2.05, p = 0.041, 95% CI = 0.02-0.92; B = 0.29, t = 2.20, p = 0.028, 95% CI = 0.03-0.55. No associations were found between childhood adversity and depressive symptoms at follow-up.No evidence was found supporting stress sensitization due to the experience of childhood adversity in this recurrently depressed but remitted patient group. Nevertheless, our research indicates that daily stress might be a target for preventive treatment.Trial A: Nederlands Trial Register NTR1907 Trial B: Nederlands Trial Register NTR2503.

  6. Prefrontal-amygdala fear networks come into focus

    Directory of Open Access Journals (Sweden)

    Maithe eArruda-Carvalho

    2015-10-01

    Full Text Available The ability to form associations between aversive threats and their predictors is fundamental to survival. However, fear and anxiety in excess are detrimental and are a hallmark of psychiatric diseases such as post-traumatic stress disorder (PTSD. PTSD symptomatology includes persistent and intrusive thoughts of an experienced trauma, suggesting an inability to downregulate fear when a corresponding threat has subsided. Convergent evidence from human and rodent studies supports a role for the medial prefrontal cortex (mPFC-amygdala network in both PTSD and the regulation of fear memory expression. In particular, current models stipulate that the prelimbic and infralimbic subdivisions of the rodent mPFC bidirectionally regulate fear expression via differential recruitment of amygdala neuronal subpopulations. However, an array of recent studies that employ new technical approaches has fundamentally challenged this interpretation. Here we explore how a new emphasis on the contribution of inhibitory neuronal populations, subcortical structures and the passage of time is reshaping our understanding of mPFC-amygdala circuits and their control over fear.

  7. Human Amygdala Tracks a Feature-Based Valence Signal Embedded within the Facial Expression of Surprise.

    Science.gov (United States)

    Kim, M Justin; Mattek, Alison M; Bennett, Randi H; Solomon, Kimberly M; Shin, Jin; Whalen, Paul J

    2017-09-27

    Human amygdala function has been traditionally associated with processing the affective valence (negative vs positive) of an emotionally charged event, especially those that signal fear or threat. However, this account of human amygdala function can be explained by alternative views, which posit that the amygdala might be tuned to either (1) general emotional arousal (activation vs deactivation) or (2) specific emotion categories (fear vs happy). Delineating the pure effects of valence independent of arousal or emotion category is a challenging task, given that these variables naturally covary under many circumstances. To circumvent this issue and test the sensitivity of the human amygdala to valence values specifically, we measured the dimension of valence within the single facial expression category of surprise. Given the inherent valence ambiguity of this category, we show that surprised expression exemplars are attributed valence and arousal values that are uniquely and naturally uncorrelated. We then present fMRI data from both sexes, showing that the amygdala tracks these consensus valence values. Finally, we provide evidence that these valence values are linked to specific visual features of the mouth region, isolating the signal by which the amygdala detects this valence information. SIGNIFICANCE STATEMENT There is an open question as to whether human amygdala function tracks the valence value of cues in the environment, as opposed to either a more general emotional arousal value or a more specific emotion category distinction. Here, we demonstrate the utility of surprised facial expressions because exemplars within this emotion category take on valence values spanning the dimension of bipolar valence (positive to negative) at a consistent level of emotional arousal. Functional neuroimaging data showed that amygdala responses tracked the valence of surprised facial expressions, unconfounded by arousal. Furthermore, a machine learning classifier identified

  8. Relative Sensitivity of Photosynthesis and Respiration to Freeze-Thaw Stress in Herbaceous Species 1

    Science.gov (United States)

    Steffen, Kenneth L.; Arora, Rajeev; Palta, Jiwan P.

    1989-01-01

    The relative effect of a freeze-thaw cycle on photosynthesis, respiration, and ion leakage of potato leaf tissue was examined in two potato species, Solanum acaule Bitt. and Solanum commersonii Dun. Photosynthesis was found to be much more sensitive to freezing stress than was respiration, and demonstrated more than a 60% inhibition before any impairment of respiratory function was observed. Photosynthesis showed a slight to moderate inhibition when only 5 to 10% of the total electrolytes had leaked from the tissue (reversible injury). This was in contrast to respiration which showed no impairment until temperatures at which about 50% ion leakage (irreversible injury) had occurred. The influence of freeze-thaw protocol was further examined in S. acaule and S. commersonii, in order to explore discrepancies in the literature as to the relative sensitivities of photosynthesis and respiration. As bath cooling rates increased from 1°C/hour to about 3 or 6°C/hour, there was a dramatic increase in the level of damage to all measured cellular functions. The initiation of ice formation in deeply supercooled tissue caused even greater damage. As the cooling rates used in stress treatments increased, the differential sensitivity between photosynthesis and respiration nearly disappeared. Examination of agriculturally relevant, climatological data from an 11 year period confirmed that air cooling rates in the freezing range do not exceed 2°C/hour. It was demonstrated, in the studies presented here, that simply increasing the actual cooling rate from 1.0 to 2.9°C/hour, in frozen tissue from paired leaflet halves, meant the difference between cell survival and cell death. Images Figure 4 Figure 5 PMID:16666712

  9. Critical features of acute stress-induced cross-sensitization identified through the hypothalamic-pituitary-adrenal axis output.

    Science.gov (United States)

    Belda, Xavier; Nadal, Roser; Armario, Antonio

    2016-08-11

    Stress-induced sensitization represents a process whereby prior exposure to severe stressors leaves animals or humans in a hyper-responsive state to further stressors. Indeed, this phenomenon is assumed to be the basis of certain stress-associated pathologies, including post-traumatic stress disorder and psychosis. One biological system particularly prone to sensitization is the hypothalamic-pituitary-adrenal (HPA) axis, the prototypic stress system. It is well established that under certain conditions, prior exposure of animals to acute and chronic (triggering) stressors enhances HPA responses to novel (heterotypic) stressors on subsequent days (e.g. raised plasma ACTH and corticosterone levels). However, such changes remain somewhat controversial and thus, the present study aimed to identify the critical characteristics of the triggering and challenging stressors that affect acute stress-induced HPA cross-sensitization in adult rats. We found that HPA cross-sensitization is markedly influenced by the intensity of the triggering stressor, whereas the length of exposure mainly affects its persistence. Importantly, HPA sensitization is more evident with mild than strong challenging stressors, and it may remain unnoticed if exposure to the challenging stressor is prolonged beyond 15 min. We speculate that heterotypic HPA sensitization might have developed to optimize biologically adaptive responses to further brief stressors.

  10. Methylation-sensitive amplified polymorphism analysis of Verticillium wilt-stressed cotton (Gossypium).

    Science.gov (United States)

    Wang, W; Zhang, M; Chen, H D; Cai, X X; Xu, M L; Lei, K Y; Niu, J H; Deng, L; Liu, J; Ge, Z J; Yu, S X; Wang, B H

    2016-10-06

    In this study, a methylation-sensitive amplification polymorphism analysis system was used to analyze DNA methylation level in three cotton accessions. Two disease-sensitive near-isogenic lines, PD94042 and IL41, and one disease-resistant Gossypium mustelinum accession were exposed to Verticillium wilt, to investigate molecular disease resistance mechanisms in cotton. We observed multiple different DNA methylation types across the three accessions following Verticillium wilt exposure. These included hypomethylation, hypermethylation, and other patterns. In general, the global DNA methylation level was significantly increased in the disease-resistant accession G. mustelinum following disease exposure. In contrast, there was no significant difference in the disease-sensitive accession PD94042, and a significant decrease was observed in IL41. Our results suggest that disease-resistant cotton might employ a mechanism to increase methylation level in response to disease stress. The differing methylation patterns, together with the increase in global DNA methylation level, might play important roles in tolerance to Verticillium wilt in cotton. Through cloning and analysis of differently methylated DNA sequences, we were also able to identify several genes that may contribute to disease resistance in cotton. Our results revealed the effect of DNA methylation on cotton disease resistance, and also identified genes that played important roles, which may shed light on the future cotton disease-resistant molecular breeding.

  11. Quantitative Genome-Wide Analysis of Yeast Deletion Strain Sensitivities to Oxidative and Chemical Stress

    Directory of Open Access Journals (Sweden)

    Stanley Fields

    2006-03-01

    Full Text Available Understanding the actions of drugs and toxins in a cell is of critical importance to medicine, yet many of the molecular events involved in chemical resistance are relatively uncharacterized. In order to identify the cellular processes and pathways targeted by chemicals, we took advantage of the haploid Saccharomyces cerevisiae deletion strains (Winzeler et al., 1999. Although ~4800 of the strains are viable, the loss of a gene in a pathway affected by a drug can lead to a synthetic lethal effect in which the combination of a deletion and a normally sublethal dose of a chemical results in loss of viability. WE carried out genome-wide screens to determine quantitative sensitivities of the deletion set to four chemicals: hydrogen peroxide, menadione, ibuprofen and mefloquine. Hydrogen peroxide and menadione induce oxidative stress in the cell, whereas ibuprofen and mefloquine are toxic to yeast by unknown mechanisms. Here we report the sensitivities of 659 deletion strains that are sensitive to one or more of these four compounds, including 163 multichemicalsensitive strains, 394 strains specific to hydrogen peroxide and/or menadione, 47 specific to ibuprofen and 55 specific to mefloquine.We correlate these results with data from other large-scale studies to yield novel insights into cellular function.

  12. Factors that Determine the Non-Linear Amygdala Influence on Hippocampus-Dependent Memory

    OpenAIRE

    Akirav, Irit; Richter-Levin, Gal

    2006-01-01

    Stressful experiences are known to either improve or impair hippocampal-dependent memory tasks and synaptic plasticity. These positive and negative effects of stress on the hippocampus have been largely documented, however little is known about the mechanism involved in the twofold influence of stress on hippocampal functioning and about what factors define an enhancing or inhibitory outcome. We have recently demonstrated that activation of the basolateral amygdala can produce a biphasic effe...

  13. Stimulus Intensity-dependent Modulations of Hippocampal Long-term Potentiation by Basolateral Amygdala Priming

    Directory of Open Access Journals (Sweden)

    Zexuan eLi

    2012-05-01

    Full Text Available There is growing realization that the relationship between memory and stress/emotionality is complicated, and may include both memory enhancing and memory impairing aspects. It has been suggested that the underlying mechanisms involve amygdalar modulation of hippocampal synaptic plasticity, such as long-term potentiation (LTP. We recently reported that while in CA1 basolateral amygdala (BLA priming impaired theta stimulation induced LTP, it enhanced LTP in the dentate gyrus (DG. However, emotional and stressfull experiences were found to activate synaptic plasticity within the BLA, rasing the possibility that BLA modulation of other brain regions may be altered as well, as it may depend on the way the BLA is activated or is responding. In previous studies BLA priming stimulation was relatively weak (1V, 50 µs pulse duration. In the present study we assessed the effects of two stronger levels of BLA priming stimulation (1V or 2V, 100 µs pulse duration on LTP induction in hippocampal DG and CA1, in anesthetized rats. Results show that 1V-BLA priming stimulation enhanced but 2V-BLA priming stimulation impaired DG LTP; however, both levels of BLA priming stimulation impaired CA1 LTP, suggesting that modulation of hippocampal synaptic plasticity by amygdala is dependent on the degree of amygdala activation. These findings suggest that plasticity induced within the amygdala, by stressful experiences induces a form of metaplasticity that would alter the way the amygdala may modulate memory-related processes in other brain areas, such as the hippocampus.

  14. Optogenetic Examination of Prefrontal-Amygdala Synaptic Development.

    Science.gov (United States)

    Arruda-Carvalho, Maithe; Wu, Wan-Chen; Cummings, Kirstie A; Clem, Roger L

    2017-03-15

    A brain network comprising the medial prefrontal cortex (mPFC) and amygdala plays important roles in developmentally regulated cognitive and emotional processes. However, very little is known about the maturation of mPFC-amygdala circuitry. We conducted anatomical tracing of mPFC projections and optogenetic interrogation of their synaptic connections with neurons in the basolateral amygdala (BLA) at neonatal to adult developmental stages in mice. Results indicate that mPFC-BLA projections exhibit delayed emergence relative to other mPFC pathways and establish synaptic transmission with BLA excitatory and inhibitory neurons in late infancy, events that coincide with a massive increase in overall synaptic drive. During subsequent adolescence, mPFC-BLA circuits are further modified by excitatory synaptic strengthening as well as a transient surge in feedforward inhibition. The latter was correlated with increased spontaneous inhibitory currents in excitatory neurons, suggesting that mPFC-BLA circuit maturation culminates in a period of exuberant GABAergic transmission. These findings establish a time course for the onset and refinement of mPFC-BLA transmission and point to potential sensitive periods in the development of this critical network. SIGNIFICANCE STATEMENT Human mPFC-amygdala functional connectivity is developmentally regulated and figures prominently in numerous psychiatric disorders with a high incidence of adolescent onset. However, it remains unclear when synaptic connections between these structures emerge or how their properties change with age. Our work establishes developmental windows and cellular substrates for synapse maturation in this pathway involving both excitatory and inhibitory circuits. The engagement of these substrates by early life experience may support the ontogeny of fundamental behaviors but could also lead to inappropriate circuit refinement and psychopathology in adverse situations. Copyright © 2017 the authors 0270-6474/17/372976-10$15.00/0.

  15. Attentional bias towards and away from fearful faces is modulated by developmental amygdala damage.

    Science.gov (United States)

    Pishnamazi, Morteza; Tafakhori, Abbas; Loloee, Sogol; Modabbernia, Amirhossein; Aghamollaii, Vajiheh; Bahrami, Bahador; Winston, Joel S

    2016-08-01

    The amygdala is believed to play a major role in orienting attention towards threat-related stimuli. However, behavioral studies on amygdala-damaged patients have given inconsistent results-variously reporting decreased, persisted, and increased attention towards threat. Here we aimed to characterize the impact of developmental amygdala damage on emotion perception and the nature and time-course of spatial attentional bias towards fearful faces. We investigated SF, a 14-year-old with selective bilateral amygdala damage due to Urbach-Wiethe disease (UWD), and ten healthy controls. Participants completed a fear sensitivity questionnaire, facial expression classification task, and dot-probe task with fearful or neutral faces for spatial cueing. Three cue durations were used to assess the time-course of attentional bias. SF expressed significantly lower fear sensitivity, and showed a selective impairment in classifying fearful facial expressions. Despite this impairment in fear recognition, very brief (100 msec) fearful cues could orient SF's spatial attention. In healthy controls, the attentional bias emerged later and persisted longer. SF's attentional bias was due solely to facilitated engagement to fear, while controls showed the typical phenomenon of difficulty in disengaging from fear. Our study is the first to demonstrate the separable effects of amygdala damage on engagement and disengagement of spatial attention. The findings indicate that multiple mechanisms contribute in biasing attention towards fear, which vary in their timing and dependence on amygdala integrity. It seems that the amygdala is not essential for rapid attention to emotion, but probably has a role in assessment of biological relevance. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. AMYGDALA MICROCIRCUITS CONTROLLING LEARNED FEAR

    Science.gov (United States)

    Duvarci, Sevil; Pare, Denis

    2014-01-01

    We review recent work on the role of intrinsic amygdala networks in the regulation of classically conditioned defensive behaviors, commonly known as conditioned fear. These new developments highlight how conditioned fear depends on far more complex networks than initially envisioned. Indeed, multiple parallel inhibitory and excitatory circuits are differentially recruited during the expression versus extinction of conditioned fear. Moreover, shifts between expression and extinction circuits involve coordinated interactions with different regions of the medial prefrontal cortex. However, key areas of uncertainty remain, particularly with respect to the connectivity of the different cell types. Filling these gaps in our knowledge is important because much evidence indicates that human anxiety disorders results from an abnormal regulation of the networks supporting fear learning. PMID:24908482

  17. Stress-induced phase sensitivity of small diameter polarization maintaining solid-core photonic crystal fibre

    Science.gov (United States)

    Zhang, Zhihao; Zhang, Chunxi; Xu, Xiaobin

    2017-09-01

    Small diameter (cladding and coating diameter of 100 and 135 μm) polarization maintaining photonic crystal fibres (SDPM-PCFs) possess many unique properties and are extremely suitable for applications in fibre optic gyroscopes. In this study, we have investigated and measured the stress characteristics of an SDPM-PCF using the finite-element method and a Mach-Zehnder interferometer, respectively. Our results reveal a radial and axial sensitivity of 0.315 ppm/N/m and 25.2 ppm per 1 × 105 N/m2, respectively, for the SDPM-PCF. These values are 40% smaller than the corresponding parameters of conventional small diameter (cladding and coating diameter of 80 and 135 μm) panda fibres.

  18. Mean stress sensitivity of ductile iron with respect to technological and statistical size effect considering defects

    Directory of Open Access Journals (Sweden)

    Kainzinger Paul

    2014-06-01

    Full Text Available Specimens of two sizes have been taken from two sampling locations within a wind turbine hub made of nodular cast iron (EN-GJS-400-18-LT for constant amplitude fatigue testing. The sampling positions exhibit varying cooling conditions, resulting in different microstructures. Fatigue tests have been carried out at R-ratios of R = −1 and R = 0. The coarse microstructure as well as the larger specimens yielded in lower fatigue strengths. No effect of the microstructure or the specimen size on the mean stress sensitivity has been found. Fractographic analysis of the fractured specimen's surface revealed micro-shrinkages to be the source of crack initiation for all specimens. Micro-shrinkage size increases from fine to coarse microstructure and with increasing specimen size. The El-Haddad equation using the √area parameter was used to describe the fatigue limit. The results were in good agreement with the experiments.

  19. Inhibition of intergranular stress corrosion cracking of sensitized type 304 stainless steel. Annual report

    International Nuclear Information System (INIS)

    Brown, B.F.

    1977-01-01

    The effectiveness of various inhibitors in mitigating stress corrosion cracking of stainless steel in hot aqueous environment was evaluated. The inhibitors studied were of three types: poly-oxy-anions, organic competitive absorbers, and simple cations; the corrosive medium was 4M NaCl acidified with H 2 SO 4 to ph of about 2.3. The following conclusions were reached: pH does not affect cracking kinetics in a sensitive way; cracking time is highly dependent on chloride concentrations; poly-oxy-anions do not perform well; organics offer some possibilities as inhibitors; cationic additives can have effects varying from trivial to total suppression of cracking--behavior is both cation and concentration dependent. 2 figures, 5 tables

  20. Sensitivity of total stress to changes in externally applied water pressure in KBS-3 buffer bentonite

    International Nuclear Information System (INIS)

    Harrington, J.F.; Birchall, D.J.

    2007-04-01

    In the current Swedish repository design concept, composite copper and steel canisters containing spent nuclear fuel will be placed in large diameter disposal boreholes drilled into the floor of the repository tunnels. The space around each canister will be filled with pre-compacted bentonite which over time will draw in the surrounding ground water and swell, closing up any construction joints. However, for the purposes of performance assessment, it is necessary to consider the effect of glacial loading of a future repository and its impact on the mechanical behaviour of the bentonite, in particular, the sensitivity of total stress to changes in porewater pressure (backpressure). Two experimental histories have been undertaken using a custom-designed constant volume and radial flow (CVRF) apparatus. In both tests backpressure was varied in a number of incremental and decremental cycles while total stress, porewater pressure and volumetric flow rate were continuously monitored. The swelling pressure of the buffer clay at dry densities of 1.8 Mg/m 3 and 1.61 Mg/m 3 was determined to be around 5.5 MPa and 7.2 MPa respectively. For initial ascending porewater pressure histories the average proportionality factor α ranged from 0.86 and 0.92. Data exhibited a general trend of increasing α with increasing backpressure. In test Mx80-11 this was supported by analysis of the water inflow data which indicated a reduction in system compressibility. Asymptotic values of porewater pressure within the clay are in good agreement with externally applied backpressure values. Inspection of data provides no evidence for the development of hydraulic thresholds within the clay, subject to the boundary conditions of this test geometry. Analysis of the stress data demonstrates significant hysteresis between ascending and descending porewater pressure histories. The amount of hysteresis appears to be linked to the magnitude of the backpressure applied to the specimen, suggesting some

  1. Sensitivity of total stress to changes in externally applied water pressure in KBS-3 buffer bentonite

    Energy Technology Data Exchange (ETDEWEB)

    Harrington, J.F.; Birchall, D.J. [British Geological Survey, Chemical and Biological Hazards Programme, Kingsley Dunham Centre (United Kingdom)

    2007-04-15

    In the current Swedish repository design concept, composite copper and steel canisters containing spent nuclear fuel will be placed in large diameter disposal boreholes drilled into the floor of the repository tunnels. The space around each canister will be filled with pre-compacted bentonite which over time will draw in the surrounding ground water and swell, closing up any construction joints. However, for the purposes of performance assessment, it is necessary to consider the effect of glacial loading of a future repository and its impact on the mechanical behaviour of the bentonite, in particular, the sensitivity of total stress to changes in porewater pressure (backpressure). Two experimental histories have been undertaken using a custom-designed constant volume and radial flow (CVRF) apparatus. In both tests backpressure was varied in a number of incremental and decremental cycles while total stress, porewater pressure and volumetric flow rate were continuously monitored. The swelling pressure of the buffer clay at dry densities of 1.8 Mg/m{sup 3} and 1.61 Mg/m{sup 3} was determined to be around 5.5 MPa and 7.2 MPa respectively. For initial ascending porewater pressure histories the average proportionality factor {alpha} ranged from 0.86 and 0.92. Data exhibited a general trend of increasing {alpha} with increasing backpressure. In test Mx80-11 this was supported by analysis of the water inflow data which indicated a reduction in system compressibility. Asymptotic values of porewater pressure within the clay are in good agreement with externally applied backpressure values. Inspection of data provides no evidence for the development of hydraulic thresholds within the clay, subject to the boundary conditions of this test geometry. Analysis of the stress data demonstrates significant hysteresis between ascending and descending porewater pressure histories. The amount of hysteresis appears to be linked to the magnitude of the backpressure applied to the specimen

  2. Hedonic sensitivity to natural rewards is affected by prenatal stress in a sex-dependent manner.

    Science.gov (United States)

    Reynaert, Marie-Line; Marrocco, Jordan; Mairesse, Jérôme; Lionetto, Luana; Simmaco, Maurizio; Deruyter, Lucie; Allorge, Delphine; Moles, Anna; Pittaluga, Anna; Maccari, Stefania; Morley-Fletcher, Sara; Van Camp, Gilles; Nicoletti, Ferdinando

    2016-11-01

    Palatable food is a strong activator of the reward circuitry and may cause addictive behavior leading to eating disorders. How early life events and sex interact in shaping hedonic sensitivity to palatable food is largely unknown. We used prenatally restraint stressed (PRS) rats, which show abnormalities in the reward system and anxious/depressive-like behavior. Some of the hallmarks of PRS rats are known to be sex-dependent. We report that PRS enhanced and reduced milk chocolate-induced conditioned place preference in males and females, respectively. Male PRS rats also show increases in plasma dihydrotestosterone (DHT) levels and dopamine (DA) levels in the nucleus accumbens (NAc), and reductions in 5-hydroxytryptamine (5-HT) levels in the NAc and prefrontal cortex (PFC). In male rats, systemic treatment with the DHT-lowering drug finasteride reduced both milk chocolate preference and NAc DA levels. Female PRS rats showed lower plasma estradiol (E 2 ) levels and lower DA levels in the NAc, and 5-HT levels in the NAc and PFC. E 2 supplementation reversed the reduction in milk chocolate preference and PFC 5-HT levels. In the hypothalamus, PRS increased ERα and ERβ estrogen receptor and CARTP (cocaine-and-amphetamine receptor transcript peptide) mRNA levels in males, and 5-HT 2 C receptor mRNA levels in females. Changes were corrected by treatments with finasteride and E 2 , respectively. These new findings show that early life stress has a profound impact on hedonic sensitivity to high-palatable food via long-lasting changes in gonadal hormones. This paves the way to the development of hormonal strategies aimed at correcting abnormalities in the response to natural rewards. © 2015 Society for the Study of Addiction.

  3. [Analysis of methylation-sensitive amplified polymorphism in wheat genome under the wheat leaf rust stress].

    Science.gov (United States)

    Fu, Sheng-Jie; Wang, Hui; Feng, Li-Na; Sun, Yi; Yang, Wen-Xiang; Liu, Da-Qun

    2009-03-01

    Intrinsic DNA methylation pattern is an integral component of the epigenetic network in many eukaryotes. DNA methylation plays an important role in regulating gene expression in eukaryotes. Biological stress in plant provides an inherent epigenetic driving force of evolution. Study of DNA methylation patterns arising from biological stress will help us fully understand the epigenetic regulation of gene expression and DNA methylation of biological functions. The wheat near-isogenic lines TcLr19 and TcLr41 were resistant to races THTT and TKTJ, respectively, and Thatcher is compatible in the interaction with Puccinia triticina THTT and TKTJ, respectively. By means of methylation-sensitive amplified polymorphism (MSAP) analysis, the patterns of cytosine methylation in TcLr19, TcLr41, and Thatcher inoculated with P. triticina THTT and TKTJ were compared with those of the untreated samples. All the DNA fragments, each representing a recognition site cleaved by each or both of isoschizomers, were amplified using 60 pairs of selective primers. The results indicated that there was no significant difference between the challenged and unchallenged plants at DNA methylation level. However, epigenetic difference between the near-isogenic line for wheat leaf rust resistance gene Lr41 and Thatcher was present.

  4. Resveratrol-Sensitized UVA Induced Apoptosis in Human Keratinocytes through Mitochondrial Oxidative Stress and Pore Opening

    Science.gov (United States)

    Boyer, Jean Z; Jandova, Jana; Janda, Jaroslav; Vleugels, Frank R; Elliott, David; Sligh, James E

    2012-01-01

    Resveratrol (3, 5, 4′-trihydroxy- trans- stilbene), a polyphenol compound, is derived from natural products such as the skin of red grapes, blueberries and cranberries. Resveratrol not only exhibits antioxidant, cardioprotection, and anti-aging properties, but can also inhibit cancer cell growth and induce apoptosis. It has been shown that resveratrol inhibits the activation of Nf-kB and subsequently down regulates the expression of Nf-kB regulated genes such as interleukin-2 and Bcl-2, leading to cell cycle arrest and increased apoptosis in multiple myeloma cells. In the skin, resveratrol has been reported to sensitize keratinocytes to UVA induced apoptosis. However, the effect of resveratrol on opening of the mitochondrial permeability transition pore has not been previously examined. Our data show that UVA (14J/cm2) along with resveratrol causes massive oxidative stress in mitochondria. As a consequence of oxidative stress, the mitochondrial membrane potential decreases which results in opening of the mitochondrial pores ultimately leading to apoptosis in human keratinocytes. These results may have clinical implications for development of future chemotherapeutic treatment for tumors of the skin. PMID:22673012

  5. Prion protein misfolding affects calcium homeostasis and sensitizes cells to endoplasmic reticulum stress.

    Directory of Open Access Journals (Sweden)

    Mauricio Torres

    2010-12-01

    Full Text Available Prion-related disorders (PrDs are fatal neurodegenerative disorders characterized by progressive neuronal impairment as well as the accumulation of an abnormally folded and protease resistant form of the cellular prion protein, termed PrP(RES. Altered endoplasmic reticulum (ER homeostasis is associated with the occurrence of neurodegeneration in sporadic, infectious and familial forms of PrDs. The ER operates as a major intracellular calcium store, playing a crucial role in pathological events related to neuronal dysfunction and death. Here we investigated the possible impact of PrP misfolding on ER calcium homeostasis in infectious and familial models of PrDs. Neuro2A cells chronically infected with scrapie prions showed decreased ER-calcium content that correlated with a stronger upregulation of UPR-inducible chaperones, and a higher sensitivity to ER stress-induced cell death. Overexpression of the calcium pump SERCA stimulated calcium release and increased the neurotoxicity observed after exposure of cells to brain-derived infectious PrP(RES. Furthermore, expression of PrP mutants that cause hereditary Creutzfeldt-Jakob disease or fatal familial insomnia led to accumulation of PrP(RES and their partial retention at the ER, associated with a drastic decrease of ER calcium content and higher susceptibility to ER stress. Finally, similar results were observed when a transmembrane form of PrP was expressed, which is proposed as a neurotoxic intermediate. Our results suggest that alterations in calcium homeostasis and increased susceptibility to ER stress are common pathological features of both infectious and familial PrD models.

  6. Input from the Medial Geniculate Nucleus Modulates Amygdala Encoding of Fear Memory Discrimination

    Science.gov (United States)

    Ferrara, Nicole C.; Cullen, Patrick K.; Pullins, Shane P.; Rotondo, Elena K.; Helmstetter, Fred J.

    2017-01-01

    Generalization of fear can involve abnormal responding to cues that signal safety and is common in people diagnosed with post-traumatic stress disorder. Differential auditory fear conditioning can be used as a tool to measure changes in fear discrimination and generalization. Most prior work in this area has focused on elevated amygdala activity…

  7. Meditation and yoga practice are associated with smaller right amygdala volume: the Rotterdam study

    NARCIS (Netherlands)

    R.A. Gotink (Rinske); M.W. Vernooij (Meike); M.K. Ikram (Kamran); W.J. Niessen (Wiro); Krestin, G.P. (Gabriel P.); A. Hofman (Albert); H.W. Tiemeier (Henning); M.G.M. Hunink (Myriam)

    2018-01-01

    textabstractTo determine the association between meditation and yoga practice, experienced stress, and amygdala and hippocampal volume in a large population-based study. This study was embedded within the population-based Rotterdam Study and included 3742 participants for cross-sectional

  8. Human amygdala reactivity is diminished by the beta-noradrenergic antagonist propranolol

    NARCIS (Netherlands)

    Hurlemann, R.; Walter, H.; Rehme, A. K.; Kukolja, J.; Santoro, S. C.; Schmidt, C.; Schnell, K.; Musshoff, F.; Keysers, C.; Maier, W.; Kendrick, K. M.; Onur, O. A.

    Background. Animal models of anxiety disorders emphasize the crucial role of locus ceruleus-noradrenergic (norepinephrine, NE) signaling, the basolateral amygdala (BLA) and their interactions in the expression of anxiety-like behavioral responses to stress. Despite clinical evidence for the efficacy

  9. Sleep deprivation affects fear memory consolidation: bi-stable amygdala connectivity with insula and ventromedial prefrontal cortex.

    Science.gov (United States)

    Feng, Pan; Becker, Benjamin; Zheng, Yong; Feng, Tingyong

    2018-02-01

    Sleep plays an important role for successful fear memory consolidation. Growing evidence suggests that sleep disturbances might contribute to the development and the maintenance of posttraumatic stress disorder (PTSD), a disorders characterized by dysregulations in fear learning mechanisms, as well as exaggerated arousal and salience processing. Against this background, the present study examined the effects of sleep deprivation (SD) on the acquisition of fear and the subsequent neural consolidation. To this end, the present study assessed fear acquisition and associated changes in fMRI-based amygdala-functional connectivity following 24 h of SD. Relative to non-sleep deprived controls, SD subjects demonstrated increased fear ratings and skin conductance responses (SCR) during fear acquisition. During fear consolidation SD inhibited increased amygdala-ventromendial prefrontal cortex (vmPFC) connectivity and concomitantly increased changes in amygdala-insula connectivity. Importantly, whereas in controls fear indices during acquisition were negatively associated with amygdala-vmPFC connectivity during consolidation, fear indices were positively associated with amygdala-insula coupling following SD. Together the findings suggest that SD may interfere with vmPFC control of the amygdala and increase bottom-up arousal signaling in the amygdala-insula pathway during fear consolidation, which might mediate the negative impact of sleep disturbances on PSTD symptomatology.

  10. Aberrant Functional Connectivity of the Amygdala Complexes in PTSD during Conscious and Subconscious Processing of Trauma-Related Stimuli.

    Directory of Open Access Journals (Sweden)

    Daniela Rabellino

    Full Text Available Post-traumatic stress disorder (PTSD is characterized by altered functional connectivity of the amygdala complexes at rest. However, amygdala complex connectivity during conscious and subconscious threat processing remains to be elucidated. Here, we investigate specific connectivity of the centromedial amygdala (CMA and basolateral amygdala (BLA during conscious and subconscious processing of trauma-related words among individuals with PTSD (n = 26 as compared to non-trauma-exposed controls (n = 20. Psycho-physiological interaction analyses were performed using the right and left amygdala complexes as regions of interest during conscious and subconscious trauma word processing. These analyses revealed a differential, context-dependent responses by each amygdala seed during trauma processing in PTSD. Specifically, relative to controls, during subconscious processing, individuals with PTSD demonstrated increased connectivity of the CMA with the superior frontal gyrus, accompanied by a pattern of decreased connectivity between the BLA and the superior colliculus. During conscious processing, relative to controls, individuals with PTSD showed increased connectivity between the CMA and the pulvinar. These findings demonstrate alterations in amygdala subregion functional connectivity in PTSD and highlight the disruption of the innate alarm network during both conscious and subconscious trauma processing in this disorder.

  11. Two Dimensional Array of Piezoresistive Nanomechanical Membrane-Type Surface Stress Sensor (MSS with Improved Sensitivity

    Directory of Open Access Journals (Sweden)

    Nico F. de Rooij

    2012-11-01

    Full Text Available We present a new generation of piezoresistive nanomechanical Membrane-type Surface stress Sensor (MSS chips, which consist of a two dimensional array of MSS on a single chip. The implementation of several optimization techniques in the design and microfabrication improved the piezoresistive sensitivity by 3~4 times compared to the first generation MSS chip, resulting in a sensitivity about ~100 times better than a standard cantilever-type sensor and a few times better than optical read-out methods in terms of experimental signal-to-noise ratio. Since the integrated piezoresistive read-out of the MSS can meet practical requirements, such as compactness and not requiring bulky and expensive peripheral devices, the MSS is a promising transducer for nanomechanical sensing in the rapidly growing application fields in medicine, biology, security, and the environment. Specifically, its system compactness due to the integrated piezoresistive sensing makes the MSS concept attractive for the instruments used in mobile applications. In addition, the MSS can operate in opaque liquids, such as blood, where optical read-out techniques cannot be applied.

  12. The impact of stress at different life stages on physical health and the buffering effects of maternal sensitivity.

    Science.gov (United States)

    Farrell, Allison K; Simpson, Jeffry A; Carlson, Elizabeth A; Englund, Michelle M; Sung, Sooyeon

    2017-01-01

    Many studies indicate that early life stress leads to negative health outcomes in adulthood, and some suggest that high-quality parenting might buffer these effects. Most prior research, however, has relied on cross-sectional retrospective reports of stress and parenting. Our study tests how coder-rated stress and parenting quality assessed at different life stages predict adult health outcomes in a prospective, longitudinal study. Participants were 163 individuals in the Minnesota Longitudinal Study of Risk and Adaptation studied since birth. Physical health was assessed at age 32 with body mass index, self-reports of symptoms and illnesses experienced, and self-ratings of overall physical health. Stress was assessed by coder-rated interviews involving participants or their mothers at 16 time points partitioned into 5 life stages: early childhood, middle childhood, adolescence, young adulthood, and at age 32 (when health was assessed). Parenting quality was measured by coder ratings of each mother's provision of sensitive, responsive support at 7 time points between birth and age 13. Early childhood, adolescent, and concurrent stress predicted adult health outcomes at age 32. Early childhood and adolescent stress, and adolescent and concurrent stress, both showed a "dual-risk" pattern, such that experiencing higher stress at both of these life stages predicted the worst health outcomes. Higher maternal sensitivity, however, buffered these deleterious effects. Our prospective data reveal that early childhood and adolescence are important developmental periods during which stress is influential for adult physical health. However, parenting interventions that promote greater sensitivity may help children in high-stress environments avoid negative adult health outcomes. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  13. The impact of stress at different life stages on physical health and the buffering effects of maternal sensitivity

    Science.gov (United States)

    Farrell, Allison K.; Simpson, Jeffry A.; Carlson, Elizabeth A.; Englund, Michelle M.; Sung, Sooyeon

    2016-01-01

    Objective Many studies indicate that early life stress leads to negative health outcomes in adulthood, and some suggest that high-quality parenting might buffer these effects. Most prior research, however, has relied on cross-sectional retrospective reports of stress and parenting. Our study tests how coder-rated stress and parenting quality assessed at different life stages predict adult health outcomes in a prospective, longitudinal study. Methods Participants were 163 individuals in the Minnesota Longitudinal Study of Risk and Adaptation (MLSRA) studied since birth. Physical health was assessed at age 32 with BMI, self-reports of symptoms and illnesses experienced, and self-ratings overall physical health. Stress was assessed by coder-rated interviews involving participants or their mothers at 16 time-points partitioned into five life stages: early childhood, middle childhood, adolescence, young adulthood, and at age 32 (when health was assessed). Parenting quality was measured by coder-ratings of each mother's provision of sensitive, responsive support at 7 time-points between birth and age 13. Results Early childhood, adolescent, and concurrent stress predicted adult health outcomes at age 32. Early childhood and adolescent stress, and adolescent and concurrent stress, both showed a “dual-risk” pattern, such that experiencing higher stress at both of these life stages predicted the worst health outcomes. Higher maternal sensitivity, however, buffered these deleterious effects. Conclusions Our prospective data reveals that early childhood and adolescence are important developmental periods during which stress is influential for adult physical health. However, parenting interventions that promote greater sensitivity may help children in high-stress environments avoid negative adult health outcomes. PMID:27669179

  14. Understanding DNA Under Oxidative Stress and Sensitization: The Role of Molecular Modeling

    Directory of Open Access Journals (Sweden)

    Antonio eMonari

    2015-07-01

    Full Text Available DNA is constantly exposed to damaging threats coming from oxidative stress, i.e. from the presence of free radicals and reactive oxygen species. Sensitization from exogenous and endogenous compounds that strongly enhance the frequency of light-induced lesions also plays an important role. The experimental determination of DNA lesions, though a difficult subject, is somehow well established and allows to elucidate even extremely rare DNA lesions. In parallel, molecular modeling has become fundamental to clearly understand the fine mechanisms related to DNA defects induction. Indeed, it offers an unprecedented possibility to get access to an atomistic or even electronic resolution. Ab initio molecular dynamics may also describe the time-evolution of the molecular system and its reactivity. Yet the modeling of DNA (photo-reactions does necessitate elaborate multi-scale methodologies to tackle a damage induction reactivity that takes place in a complex environment. The double-stranded DNA environment is first characterized by a very high flexibility, that dynamical effects are to be taken into account, but also a strongly inhomogeneous electrostatic embedding. Additionally, one aims at capturing more subtle effects, such as the sequence selectivity which is of critical important for DNA damage. The structure and dynamics of the DNA/sensitizers complexes, as well as the photo-induced electron- and energy-transfer phenomena taking place upon sensitization, should be carefully modeled. Finally the factors inducing different repair ratios for different lesions should also be rationalized.In this review we will critically analyze the different computational strategies used to model DNA lesions. A clear picture of the complex interplay between reactivity and structural factors will be sketched. The use of proper multi-scale modeling leads to the in-depth comprehension of DNA lesions mechanism and also to the rational design of new chemo-therapeutic agents.

  15. Measurements of skin friction in water using surface stress sensitive films

    International Nuclear Information System (INIS)

    Crafton, J W; Fonov, S D; Jones, E G; Goss, L P; Forlines, R A; Fontaine, A

    2008-01-01

    The measurement of skin friction on hydrodynamic surfaces is of significant value for the design of advanced naval technology, particularly at high Reynolds numbers. Here we report on the development of a new sensor for measurement of skin friction and pressure that operates in both air and water. This sensor is based on an elastic polymer film that deforms under the action of applied normal and tangential loads. Skin friction and pressure gradients are determined by monitoring these deformations and then solving an inverse problem using a finite element model of the elastic film. This technique is known as surface stress sensitive films. In this paper, we describe the development of a sensor package specifically designed for two-dimensional skin friction measurements at a single point. The package has been developed with the goal of making two-dimensional measurements of skin friction in water. Quantitative measurements of skin friction are performed on a high Reynolds number turbulent boundary layer in the 12 inch water tunnel at Penn State University. These skin friction measurements are verified by comparing them to measurements obtained with a drag plate as well as by performing two-dimensional velocity measurements above the sensor using a laser Doppler velocimetry system. The results indicate that the sensor skin friction measurements are accurate to better than 5% and repeatable to better than 2%. The directional sensitivity of the sensor is demonstrated by positioning the sensor at several orientations to the flow. A final interesting feature of this sensor is that it is sensitive to pressure gradients, not to static pressure changes. This feature should prove useful for monitoring the skin friction on a seafaring vessel as the operating depth is changed

  16. Relation between Amygdala Structure and Function in Adolescents with Bipolar Disorder

    Science.gov (United States)

    Kalmar, Jessica H.; Wang, Fei; Chepenik, Lara G.; Womer, Fay Y.; Jones, Monique M.; Pittman, Brian; Shah, Maulik P.; Martin, Andres; Constable, R. Todd; Blumberg, Hilary P.

    2009-01-01

    Adolescents with bipolar disorder showed decreased amygdala volume and increased amygdala response to emotional faces. Amygdala volume is inversely related to activation during emotional face processing.

  17. Testosterone reduces amygdala-orbitofrontal cortex coupling

    NARCIS (Netherlands)

    van Wingen, Guido; Mattern, Claudia; Verkes, Robbert Jan; Buitelaar, Jan; Fernández, Guillén

    2010-01-01

    Testosterone influences various aspects of affective behavior, which is mediated by different brain regions within the emotion circuitry. Previous neuroimaging studies have demonstrated that testosterone increases neural activity in the amygdala. To investigate whether this could be due to altered

  18. Preschoolers’ Genetic, Physiological, and Behavioral Sensitivity Factors Moderate Links Between Parenting Stress and Child Internalizing, Externalizing, and Sleep Problems

    Science.gov (United States)

    Davis, Molly; Thomassin, Kristel; Bilms, Joanie; Suveg, Cynthia; Shaffer, Anne; Beach, Steven R. H.

    2017-01-01

    This study examined three potential moderators of the relations between maternal parenting stress and preschoolers’ adjustment problems: a genetic polymorphism - the short allele of the serotonin transporter (5-HTTLPR, ss/sl allele) gene, a physiological indicator - children’s baseline respiratory sinus arrhythmia (RSA), and a behavioral indicator - mothers’ reports of children’s negative emotionality. A total of 108 mothers (Mage = 30.68 years, SDage = 6.06) reported on their parenting stress as well as their preschoolers’ (Mage = 3.50 years, SDage = .51, 61% boys) negative emotionality and internalizing, externalizing, and sleep problems. Results indicated that the genetic sensitivity variable functioned according to a differential susceptibility model; however, the results involving physiological and behavioral sensitivity factors were most consistent with a diathesis-stress framework. Implications for prevention and intervention efforts to counter the effects of parenting stress are discussed. PMID:28295263

  19. Red blood cells sensitivity to oxidative stress in the presence of low concentrations of uranium compound

    Energy Technology Data Exchange (ETDEWEB)

    Shevchenko, O.G. [Institute of Biology, Komi Scientific Centre, Ural Branch of Russian Academy of Sciences, 167982, Syktyvkar (Russian Federation)

    2014-07-01

    Uranium is a natural radioactive element widespread in biosphere. There are a few works that examined cellular and molecular mechanisms of uranium toxicity. Red blood cells are classical model to investigate toxicity mechanisms on cell membrane system. The aim of present work is to study the effect of uranyl ion in nano-molar concentrations on erythrocytes sensitivity (in vitro) to factors provoking acute oxidative stress. Uranyl ions were added to suspension of mice red blood cells in PBS as UO{sub 2}Cl{sub 2} solution. Samples were incubated in a thermostatic shaker at 37 deg. C during 3-5 hours. Than acute oxidative stress was induced by H{sub 2}O{sub 2} (0.9 mM) or AAPH (5 mM) solutions. Destabilization of the membrane was induced by nonionic detergent Triton X-100. The hemolysis degree and the content of LPO secondary products reacting with 2-thiobarbituric acid in the incubation mixture were determined spectrophotometrically. The ratio of hemoglobin various forms (oxyHb, metHb and ferrylHb) was calculated taking into account extinction coefficients. It was shown that uranyl chloride enhances cell sensitivity to nonionic detergent Triton X-100 effects, indicating alterations of membrane acyl chain order due to contact with the radionuclide ions. Uranium exposure also caused an increase in the cell sensitivity to the AAPH effects, resulted in a decrease in red cell survival rate, a sharp increase in accumulation of hemoglobin oxidation products and a slight increase in the concentration of LPO secondary products. Thus, uranyl ions change physicochemical properties of the erythrocyte membranes that resulted in increased sensitivity to effects of peroxyl radicals formed by thermal decomposition of AAPH. On the contrary, use of another source of free radicals - H{sub 2}O{sub 2} - after uranyl ions exposure resulted in marked decrease of oxidative hemolysis, inhibition of LPO and hemoglobin oxidation. Since the uranium chemical properties similar to properties of

  20. Association between Depression, Pressure Pain Sensitivity, Stress and Autonomous Nervous System Function in Stable Ischemic Heart Disease

    DEFF Research Database (Denmark)

    Ballegaard, Søren; Bergmann, Natasha; Karpatschof, Benny

    2016-01-01

    Background: Depression and ischemic heart disease (IHD) are associated with persistent stress and autonomic nervous system (ANS) dysfunction. The former can be measured by pressure pain sensitivity (PPS) of the sternum, and the latter by the PPS and systolic blood pressure (SBP) response to a til...... in depression, reduction in persistent stress, and restoration of ANS dysfunction was only seen in non-users, suggesting a central role of beta-adrenergic receptors in the association between these factors....

  1. The amygdala: securing pleasure and avoiding pain

    Directory of Open Access Journals (Sweden)

    Anushka B P Fernando

    2013-12-01

    Full Text Available The amygdala has traditionally been associated with fear, mediating the impact of negative emotions on memory. However, this view does not fully encapsulate the function of the amygdala, nor the impact that processing in this structure has on the motivational limbic corticostriatal circuitry of which it is an important structure. Here we discuss the interactions between different amygdala nuclei with cortical and striatal regions involved in motivation; interconnections and parallel circuitries that have become increasingly understood in recent years. We review the evidence that the amygdala stores memories that allow initially motivationally neutral stimuli to become associated through pavlovian conditioning with motivationally relevant outcomes which, importantly, can be either appetitive (e.g. food or aversive (e.g. electric shock. We also consider how different psychological processes supported by the amygdala such as conditioned reinforcement and punishment, conditioned motivation and suppression, and conditioned approach and avoidance behavior, are not only psychologically but also neurobiologically dissociable, being mediated by distinct yet overlapping neural circuits within the limbic corticostriatal circuitry. Clearly the role of the amygdala goes beyond encoding aversive stimuli to also encode the appetitive, requiring an appreciation of the amygdala’s mediation of both appetitive and fearful behavior through diverse psychological processes.

  2. Structural Connectivity of the Developing Human Amygdala

    Science.gov (United States)

    Saygin, Zeynep M.; Osher, David E.; Koldewyn, Kami; Martin, Rebecca E.; Finn, Amy; Saxe, Rebecca; Gabrieli, John D.E.; Sheridan, Margaret

    2015-01-01

    A large corpus of research suggests that there are changes in the manner and degree to which the amygdala supports cognitive and emotional function across development. One possible basis for these developmental differences could be the maturation of amygdalar connections with the rest of the brain. Recent functional connectivity studies support this conclusion, but the structural connectivity of the developing amygdala and its different nuclei remains largely unstudied. We examined age related changes in the DWI connectivity fingerprints of the amygdala to the rest of the brain in 166 individuals of ages 5-30. We also developed a model to predict age based on individual-subject amygdala connectivity, and identified the connections that were most predictive of age. Finally, we segmented the amygdala into its four main nucleus groups, and examined the developmental changes in connectivity for each nucleus. We observed that with age, amygdalar connectivity becomes increasingly sparse and localized. Age related changes were largely localized to the subregions of the amygdala that are implicated in social inference and contextual memory (the basal and lateral nuclei). The central nucleus’ connectivity also showed differences with age but these differences affected fewer target regions than the basal and lateral nuclei. The medial nucleus did not exhibit any age related changes. These findings demonstrate increasing specificity in the connectivity patterns of amygdalar nuclei across age. PMID:25875758

  3. Sociability Deficits and Altered Amygdala Circuits in Mice Lacking Pcdh10, an Autism Associated Gene.

    Science.gov (United States)

    Schoch, Hannah; Kreibich, Arati S; Ferri, Sarah L; White, Rachel S; Bohorquez, Dominique; Banerjee, Anamika; Port, Russell G; Dow, Holly C; Cordero, Lucero; Pallathra, Ashley A; Kim, Hyong; Li, Hongzhe; Bilker, Warren B; Hirano, Shinji; Schultz, Robert T; Borgmann-Winter, Karin; Hahn, Chang-Gyu; Feldmeyer, Dirk; Carlson, Gregory C; Abel, Ted; Brodkin, Edward S

    2017-02-01

    Behavioral symptoms in individuals with autism spectrum disorder (ASD) have been attributed to abnormal neuronal connectivity, but the molecular bases of these behavioral and brain phenotypes are largely unknown. Human genetic studies have implicated PCDH10, a member of the δ2 subfamily of nonclustered protocadherin genes, in ASD. PCDH10 expression is enriched in the basolateral amygdala, a brain region implicated in the social deficits of ASD. Previous reports indicate that Pcdh10 plays a role in axon outgrowth and glutamatergic synapse elimination, but its roles in social behaviors and amygdala neuronal connectivity are unknown. We hypothesized that haploinsufficiency of Pcdh10 would reduce social approach behavior and alter the structure and function of amygdala circuits. Mice lacking one copy of Pcdh10 (Pcdh10 +/- ) and wild-type littermates were assessed for social approach and other behaviors. The lateral/basolateral amygdala was assessed for dendritic spine number and morphology, and amygdala circuit function was studied using voltage-sensitive dye imaging. Expression of Pcdh10 and N-methyl-D-aspartate receptor (NMDAR) subunits was assessed in postsynaptic density fractions of the amygdala. Male Pcdh10 +/- mice have reduced social approach behavior, as well as impaired gamma synchronization, abnormal spine morphology, and reduced levels of NMDAR subunits in the amygdala. Social approach deficits in Pcdh10 +/- male mice were rescued with acute treatment with the NMDAR partial agonist d-cycloserine. Our studies reveal that male Pcdh10 +/- mice have synaptic and behavioral deficits, and establish Pcdh10 +/- mice as a novel genetic model for investigating neural circuitry and behavioral changes relevant to ASD. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  4. Unified Hall-Petch description of nano-grain nickel hardness, flow stress and strain rate sensitivity measurements

    Science.gov (United States)

    Armstrong, R. W.; Balasubramanian, N.

    2017-08-01

    It is shown that: (i) nano-grain nickel flow stress and hardness data at ambient temperature follow a Hall-Petch (H-P) relation over a wide range of grain size; and (ii) accompanying flow stress and strain rate sensitivity measurements follow an analogous H-P relationship for the reciprocal "activation volume", (1/v*) = (1/A*b) where A* is activation area. Higher temperature flow stress measurements show a greater than expected reduction both in the H-P kɛ and in v*. The results are connected with smaller nano-grain size (tested at very low imposed strain rates.

  5. The probability distribution of intergranular stress corrosion cracking life for sensitized 304 stainless steels in high temperature, high purity water

    International Nuclear Information System (INIS)

    Akashi, Masatsune; Kenjyo, Takao; Matsukura, Shinji; Kawamoto, Teruaki

    1984-01-01

    In order to discuss the probability distribution of intergranular stress corrsion carcking life for sensitized 304 stainless steels, a series of the creviced bent beem (CBB) and the uni-axial constant load tests were carried out in oxygenated high temperature, high purity water. The following concludions were resulted; (1) The initiation process of intergranular stress corrosion cracking has been assumed to be approximated by the Poisson stochastic process, based on the CBB test results. (2) The probability distribution of intergranular stress corrosion cracking life may consequently be approximated by the exponential probability distribution. (3) The experimental data could be fitted to the exponential probability distribution. (author)

  6. The effects of neonatal amygdala or hippocampus lesions on adult social behavior.

    Science.gov (United States)

    Bliss-Moreau, Eliza; Moadab, Gilda; Santistevan, Anthony; Amaral, David G

    2017-03-30

    The present report details the final phase of a longitudinal evaluation of the social behavior in a cohort of adult rhesus monkeys that received bilateral neurotoxic lesions of the amygdala or hippocampus, or sham operations at 2 weeks of age. Results were compared to previous studies in which adult animals received amygdala lesions and were tested in a similar fashion. Social testing with four novel interaction partners occurred when the animals were between 7 and 8 years of age. Experimental animals interacted with two male and two female partners in two conditions - one in which physical access was restricted (the constrained social access condition) and a second in which physical access was unrestricted (the unconstrained social access condition). Across conditions and interaction partners, there were no significant effects of lesion condition on the frequency or duration of social interactions. As a group, the hippocampus-lesioned animals generated the greatest number of communicative signals during the constrained social access condition. Amygdala-lesioned animals generated more frequent stress-related behaviors and were less exploratory. Amygdala and hippocampus-lesioned animals demonstrated greater numbers of stereotypies than control animals. Subtle, lesion-based differences in the sequencing of behaviors were observed. These findings suggest that alterations of adult social behavior are much less prominent when damage to the amygdala occurs early in life rather than in adulthood. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. The association between changes in pressure pain sensitivity and changes in cardiovascular physiological factors associated with persistent stress

    DEFF Research Database (Denmark)

    Ballegaard, Søren; Petersen, Pernille B.; Harboe, Gitte S.

    2014-01-01

    Abstract Objectives. To evaluate the possible association between pressure pain sensitivity of the chest bone (PPS) and cardiovascular physiological factors related to persistent stress in connection with a three-month PPS-guided stress-reducing experimental intervention programme. Methods. Forty......-two office workers with an elevated PPS (≥ 60 arbitrary units) as a sign of increased level of persistent stress, completed a single-blinded cluster randomized controlled trial. The active treatment was a PPS (self-measurement)-guided stress management programme. Primary endpoints: Blood pressure (BP), heart...... between-group reductions were observed in respect to BP, HR, PRP, total and LDL cholesterol, and total number of elevated risk factors (p stress intervention method applied in this study induced a decrease in PPS which was associated with a clinically relevant decrease in resting...

  8. Sensitivity of calcification to thermal stress varies among genera of massive reef-building corals.

    Directory of Open Access Journals (Sweden)

    Juan P Carricart-Ganivet

    Full Text Available Reductions in calcification in reef-building corals occur when thermal conditions are suboptimal, but it is unclear how they vary between genera in response to the same thermal stress event. Using densitometry techniques, we investigate reductions in the calcification rate of massive Porites spp. from the Great Barrier Reef (GBR, and P. astreoides, Montastraea faveolata, and M. franksi from the Mesoamerican Barrier Reef (MBR, and correlate them to thermal stress associated with ocean warming. Results show that Porites spp. are more sensitive to increasing temperature than Montastraea, with calcification rates decreasing by 0.40 g cm(-2 year(-1 in Porites spp. and 0.12 g cm(-2 year(-1 in Montastraea spp. for each 1°C increase. Under similar warming trends, the predicted calcification rates at 2100 are close to zero in Porites spp. and reduced by 40% in Montastraea spp. However, these predictions do not account for ocean acidification. Although yearly mean aragonite saturation (Ω(ar at MBR sites has recently decreased, only P. astreoides at Chinchorro showed a reduction in calcification. In corals at the other sites calcification did not change, indicating there was no widespread effect of Ω(ar changes on coral calcification rate in the MBR. Even in the absence of ocean acidification, differential reductions in calcification between Porites spp. and Montastraea spp. associated with warming might be expected to have significant ecological repercussions. For instance, Porites spp. invest increased calcification in extension, and under warming scenarios it may reduce their ability to compete for space. As a consequence, shifts in taxonomic composition would be expected in Indo-Pacific reefs with uncertain repercussions for biodiversity. By contrast, Montastraea spp. use their increased calcification resources to construct denser skeletons. Reductions in calcification would therefore make them more susceptible to both physical and biological

  9. Awareness of Emotional Stimuli Determines the Behavioral Consequences of Amygdala Activation and Amygdala-Prefrontal Connectivity

    Science.gov (United States)

    Lapate, R. C.; Rokers, B.; Tromp, D. P. M.; Orfali, N. S.; Oler, J. A.; Doran, S. T.; Adluru, N.; Alexander, A. L.; Davidson, R. J.

    2016-01-01

    Conscious awareness of negative cues is thought to enhance emotion-regulatory capacity, but the neural mechanisms underlying this effect are unknown. Using continuous flash suppression (CFS) in the MRI scanner, we manipulated visual awareness of fearful faces during an affect misattribution paradigm, in which preferences for neutral objects can be biased by the valence of a previously presented stimulus. The amygdala responded to fearful faces independently of awareness. However, when awareness of fearful faces was prevented, individuals with greater amygdala responses displayed a negative bias toward unrelated novel neutral faces. In contrast, during the aware condition, inverse coupling between the amygdala and prefrontal cortex reduced this bias, particularly among individuals with higher structural connectivity in the major white matter pathway connecting the prefrontal cortex and amygdala. Collectively, these results indicate that awareness promotes the function of a critical emotion-regulatory network targeting the amygdala, providing a mechanistic account for the role of awareness in emotion regulation. PMID:27181344

  10. Preregistered Replication of "Affective Flexibility: Evaluative Processing Goals Shape Amygdala Activity".

    Science.gov (United States)

    Lumian, Daniel S; McRae, Kateri

    2017-09-01

    The human amygdala is sensitive to stimulus characteristics, and growing evidence suggests that it is also responsive to cognitive framing in the form of evaluative goals. To examine whether different evaluations of stimulus characteristics shape amygdala activation, we conducted a preregistered replication of Cunningham, Van Bavel, and Johnsen's (2008) study demonstrating flexible mapping of amygdala activation to stimulus characteristics, depending on evaluative goals. Participants underwent functional MRI scanning while viewing famous names under three conditions: They were asked to report their overall attitude toward each name, their positive associations only, or their negative associations only. We observed an interaction between condition and rating type, identified as the effect of interest in Cunningham et al. (2008). Specifically, postscan positivity, but not negativity, ratings predicted left amygdala activation when participants were asked to evaluate positive, but not negative, associations with the names. These results provide convergent evidence that cognitive framing, in the form of evaluative goals, can significantly alter whether amygdala activation indexes positivity or negativity.

  11. Amygdala response to negative images in postpartum vs nulliparous women and intranasal oxytocin.

    Science.gov (United States)

    Rupp, Heather A; James, Thomas W; Ketterson, Ellen D; Sengelaub, Dale R; Ditzen, Beate; Heiman, Julia R

    2014-01-01

    The neuroendocrine state of new mothers may alter their neural processing of stressors in the environment through modulatory actions of oxytocin on the limbic system. We predicted that amygdala sensitivity to negatively arousing stimuli would be suppressed in postpartum compared to nulliparous women and that this suppression would be modulated by administration of oxytocin nasal spray. We measured brain activation (fMRI) and subjective arousal in response to negatively arousing pictures in 29 postpartum and 30 nulliparous women who received either oxytocin nasal spray or placebo before scanning. Pre- and post-exposure urinary cortisol levels were also measured. Postpartum women (placebo) demonstrated lower right amygdala activation in response to negative images, lower cortisol and lower negative photo arousal ratings to nulliparous women. Nulliparous women receiving oxytocin had lower right amygdala activation compared to placebo. Cortisol levels in the placebo group, and ratings of arousal across all women, were positively associated with right amygdala activation. Together, these findings demonstrate reductions in both amygdala activation and subjective negative arousal in untreated postpartum vs nulliparous women, supporting the hypothesis of an attenuated neural response to arousing stimuli in postpartum women. A causal role of oxytocin and the timing of potential effects require future investigation.

  12. Robust Selectivity for Faces in the Human Amygdala in the Absence of Expressions

    Science.gov (United States)

    Mende-Siedlecki, Peter; Verosky, Sara C.; Turk-Browne, Nicholas B.; Todorov, Alexander

    2014-01-01

    There is a well-established posterior network of cortical regions that plays a central role in face processing and that has been investigated extensively. In contrast, although responsive to faces, the amygdala is not considered a core face-selective region, and its face selectivity has never been a topic of systematic research in human neuroimaging studies. Here, we conducted a large-scale group analysis of fMRI data from 215 participants. We replicated the posterior network observed in prior studies but found equally robust and reliable responses to faces in the amygdala. These responses were detectable in most individual participants, but they were also highly sensitive to the initial statistical threshold and habituated more rapidly than the responses in posterior face-selective regions. A multivariate analysis showed that the pattern of responses to faces across voxels in the amygdala had high reliability over time. Finally, functional connectivity analyses showed stronger coupling between the amygdala and posterior face-selective regions during the perception of faces than during the perception of control visual categories. These findings suggest that the amygdala should be considered a core face-selective region. PMID:23984945

  13. SIRT1 sensitizes hepatocellular carcinoma cells expressing hepatitis B virus X protein to oxidative stress-induced apoptosis

    International Nuclear Information System (INIS)

    Srisuttee, Ratakorn; Koh, Sang Seok; Malilas, Waraporn; Moon, Jeong; Cho, Il-Rae; Jhun, Byung Hak; Horio, Yoshiyuki; Chung, Young-Hwa

    2012-01-01

    Highlights: ► Up-regulation of SIRT1 protein and activity sensitizes Hep3B-HBX cells to oxidative stress-induced apoptosis. ► Nuclear localization of SIRT1 is not required for oxidation-induced apoptosis. ► Ectopic expression and enhanced activity of SIRT1 attenuate JNK phosphorylation. ► Inhibition of SIRT1 activity restores resistance to oxidation-induced apoptosis through JNK activation. -- Abstract: We previously showed that SIRT1 deacetylase inhibits proliferation of hepatocellular carcinoma cells expressing hepatitis B virus (HBV) X protein (HBX), by destabilization of β-catenin. Here, we report another role for SIRT1 in HBX-mediated resistance to oxidative stress. Ectopic expression and enhanced activity of SIRT1 sensitize Hep3B cells stably expressing HBX to oxidative stress-induced apoptosis. SIRT1 mutant analysis showed that nuclear localization of SIRT1 is not required for sensitization of oxidation-mediated apoptosis. Furthermore, ectopic expression of SIRT1 and treatment with resveratrol (a SIRT1 activator) attenuated JNK phosphorylation, which is a prerequisite for resistance to oxidative stress-induced apoptosis. Conversely, suppression of SIRT1 activity with nicotinamide inhibited the effect of resveratrol on JNK phosphorylation, leading to restoration of resistance to oxidation-induced apoptosis. Taken together, these results suggest that up-regulation of SIRT1 under oxidative stress may be a therapeutic strategy for treatment of hepatocellular carcinoma cells related to HBV through inhibition of JNK activation.

  14. Clarifying the relation of acculturative stress and anxiety/depressive symptoms: The role of anxiety sensitivity among Hispanic college students.

    Science.gov (United States)

    Jardin, Charles; Mayorga, Nubia A; Bakhshaie, Jafar; Garey, Lorra; Viana, Andres G; Sharp, Carla; Cardoso, Jodi Berger; Zvolensky, Michael J

    2018-04-01

    Recent work has highlighted the link between acculturative stress and depression/anxiety symptoms among Hispanic young adults, but the nature of these relations is not well understood. The present study aimed to clarify the relation between acculturative stress and depression/anxiety symptoms by examining anxiety sensitivity, globally and via subfactors, as an explanatory variable. A cross-sectional sample of 788 Hispanic college students (80.8% female; M age = 20.83 years, SD = 1.93) was recruited from a southwestern public university and completed an online self-report assessment battery. Acculturative stress exerted an indirect effect, via the global construct of anxiety sensitivity, on depression symptoms, suicidality, anxious arousal, and social anxiety symptoms. Follow-up simultaneous analytic models demonstrated indirect effects via the anxiety sensitivity subfactors that were pathognomonic with each of the specific affective outcomes. These findings suggest the utility of assessing and targeting anxiety sensitivity in the treatment of acculturative stress-related depression/anxiety problems among Hispanic college students. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  15. Pattern of distribution of serotonergic fibers to the amygdala and extended amygdala in the rat.

    Science.gov (United States)

    Linley, Stephanie B; Olucha-Bordonau, Francisco; Vertes, Robert P

    2017-01-01

    As is well recognized, serotonergic (5-HT) fibers distribute widely throughout the forebrain, including the amygdala. Although a few reports have examined the 5-HT innervation of select nuclei of the amygdala in the rat, no previous report has described overall 5-HT projections to the amygdala in the rat. Using immunostaining for the serotonin transporter, SERT, we describe the complete pattern of distribution of 5-HT fibers to the amygdala (proper) and to the extended amygdala in the rat. Based on its ontogenetic origins, the amygdala was subdivided into two major parts, pallial and subpallial components, with the pallial component further divided into superficial and deep nuclei (Olucha-Bordonau et al. 2015). SERT + fibers were shown to distributed moderately to densely to the deep and cortical pallial nuclei, but, by contrast, lightly to the subpallial nuclei. Specifically, 1) of the deep pallial nuclei, the lateral, basolateral, and basomedial nuclei contained a very dense concentration of 5-HT fibers; 2) of the cortical pallial nuclei, the anterior cortical and amygdala-cortical transition zone rostrally and the posteromedial and posterolateral nuclei caudally contained a moderate concentration of 5-HT fibers; and 3) of the subpallial nuclei, the anterior nuclei and the rostral part of the medial (Me) nuclei contained a moderate concentration of 5-HT fibers, whereas caudal regions of Me as well as the central nuclei and the intercalated nuclei contained a sparse/light concentration of 5-HT fibers. With regard to the extended amygdala (primarily the bed nucleus of stria terminalis; BST), on the whole, the BST contained moderate numbers of 5-HT fibers, spread fairly uniformly throughout BST. The findings are discussed with respect to a critical serotonergic influence on the amygdala, particularly on the basal complex, and on the extended amygdala in the control of states of fear and anxiety. J. Comp. Neurol. 525:116-139, 2017. © 2016 Wiley Periodicals, Inc.

  16. Early life stress sensitizes the renal and systemic sympathetic system in rats.

    Science.gov (United States)

    Loria, Analia S; Brands, Michael W; Pollock, David M; Pollock, Jennifer S

    2013-08-01

    We hypothesized that maternal separation (MS), an early life stress model, induces a sensitization of the sympathetic system. To test this hypothesis, we evaluated the renal and systemic sympathetic system in 12- to 14-wk-old male control or MS rats with the following parameters: 1) effect of renal denervation on conscious renal filtration capacity, 2) norepinephrine (NE) content in key organs involved in blood pressure control, and 3) acute systemic pressor responses to adrenergic stimulation or ganglion blockade. MS was performed by separating pups from their mothers for 3 h/day from day 2 to 14; controls were nonhandled littermates. Glomerular filtration rate (GFR) was examined in renal denervated (DnX; within 2 wk) or sham rats using I¹²⁵-iothalamate plasma clearance. MS-DnX rats showed significantly increased GFR compared with MS-SHAM rats (3.8 ± 0.4 vs. 2.4 ± 0.2 ml/min, respectively, P renal nerves regulate GFR in MS rats. NE content was significantly increased in organ tissues from MS rats (P renal and systemic sympathetic system. Conscious MS rats displayed a significantly greater increase in mean arterial pressure (MAP) in response to NE (2 μg/kg ip) and a greater reduction in MAP in response to mecamylamine (2 mg/kg ip, P renal and systemic sympathetic system ultimately impairing blood pressure regulation.

  17. Neurogenetics of depression: a focus on reward processing and stress sensitivity.

    Science.gov (United States)

    Bogdan, Ryan; Nikolova, Yuliya S; Pizzagalli, Diego A

    2013-04-01

    Major depressive disorder (MDD) is etiologically complex and has a heterogeneous presentation. This heterogeneity hinders the ability of molecular genetic research to reliably detect the small effects conferred by common genetic variation. As a result, significant research efforts have been directed at investigating more homogenous intermediate phenotypes believed to be more proximal to gene function and lie between genes and/or environmental effects and disease processes. In the current review we survey and integrate research on two promising intermediate phenotypes linked to depression: reward processing and stress sensitivity. A synthesis of this burgeoning literature indicates that a molecular genetic approach focused on intermediate phenotypes holds significant promise to fundamentally improve our understanding of the pathophysiology and etiology of depression, which will be required for improved diagnostic definitions and the development of novel and more efficacious treatment and prevention strategies. We conclude by highlighting challenges facing intermediate phenotype research and future development that will be required to propel this pivotal research into new directions. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Stability of dye-sensitized solar cells under extended thermal stress.

    Science.gov (United States)

    Yadav, Surendra K; Ravishankar, Sandheep; Pescetelli, Sara; Agresti, Antonio; Fabregat-Santiago, Francisco; Di Carlo, Aldo

    2017-08-23

    In the last few decades, dye-sensitized solar cell (DSC) technology has been demonstrated to be a promising candidate for low cost energy production due to cost-effective materials and fabrication processes. Arguably, DSC stability is the biggest challenge for making this technology appealing for industrial exploitation. This work provides further insight into the stability of DSCs by considering specific dye-electrolyte systems characterized by Raman and impedance spectroscopy analysis. In particular, two ruthenium-based dyes, Z907 and Ru505, and two commercially available electrolytes, namely, the high stability electrolyte (HSE) and solvent-free Livion 12 (L-12), were tested. After 4700 h of thermal stress at 85 °C, the least stable device composed of Z907/HSE showed an efficiency degradation rate of ∼14%/1000 h, while the Ru505/L-12 system retained 96% of its initial efficiency by losing ∼1% each 1000 h. The present results show a viable route to stabilize the DSC technology under prolonged annealing conditions complying with the IEC standard requirements.

  19. Associations between lower order anxiety sensitivity dimensions and DSM-5 posttraumatic stress disorder symptoms.

    Science.gov (United States)

    Raines, Amanda M; Walton, Jessica L; McManus, Eliza S; Cuccurullo, Lisa-Ann J; Chambliss, Jessica; Uddo, Madeline; Franklin, C Laurel

    2017-03-01

    Anxiety sensitivity (AS), a well-established individual difference variable reflecting a tendency to fear bodily sensations associated with arousal, has been implicated in the development and maintenance of posttraumatic stress disorder (PTSD). Despite these associations, little research has examined the relations between AS subfactors (eg physical, cognitive, and social) and PTSD symptoms and none have examined these associations in the context of DSM-5 (Diagnostic Statistical Manual of Mental Disorders, Fifth Edition) PTSD clusters (ie intrusion, avoidance, negative alterations in cognitions/mood, and arousal). Participants included 50 veterans presenting to an outpatient Veteran Affairs Clinic for psychological services. Upon intake, veterans completed a brief battery of self-report questionnaires to assist with differential diagnosis and treatment planning. Results revealed unique associations between lower order AS dimensions, in particular the cognitive concerns dimension, and all four DSM-5 PTSD symptom clusters. Given the malleable nature of AS cognitive concerns, as well as the growing number of veterans in need of care, future research should determine the extent to which targeting this cognitive risk factor reduces PTSD symptom severity among veterans.

  20. Stress Enables Reinforcement-Elicited Serotonergic Consolidation of Fear Memory.

    Science.gov (United States)

    Baratta, Michael V; Kodandaramaiah, Suhasa B; Monahan, Patrick E; Yao, Junmei; Weber, Michael D; Lin, Pei-Ann; Gisabella, Barbara; Petrossian, Natalie; Amat, Jose; Kim, Kyungman; Yang, Aimei; Forest, Craig R; Boyden, Edward S; Goosens, Ki A

    2016-05-15

    Prior exposure to stress is a risk factor for developing posttraumatic stress disorder (PTSD) in response to trauma, yet the mechanisms by which this occurs are unclear. Using a rodent model of stress-based susceptibility to PTSD, we investigated the role of serotonin in this phenomenon. Adult mice were exposed to repeated immobilization stress or handling, and the role of serotonin in subsequent fear learning was assessed using pharmacologic manipulation and western blot detection of serotonin receptors, measurements of serotonin, high-speed optogenetic silencing, and behavior. Both dorsal raphe serotonergic activity during aversive reinforcement and amygdala serotonin 2C receptor (5-HT2CR) activity during memory consolidation were necessary for stress enhancement of fear memory, but neither process affected fear memory in unstressed mice. Additionally, prior stress increased amygdala sensitivity to serotonin by promoting surface expression of 5-HT2CR without affecting tissue levels of serotonin in the amygdala. We also showed that the serotonin that drives stress enhancement of associative cued fear memory can arise from paired or unpaired footshock, an effect not predicted by theoretical models of associative learning. Stress bolsters the consequences of aversive reinforcement, not by simply enhancing the neurobiological signals used to encode fear in unstressed animals, but rather by engaging distinct mechanistic pathways. These results reveal that predictions from classical associative learning models do not always hold for stressed animals and suggest that 5-HT2CR blockade may represent a promising therapeutic target for psychiatric disorders characterized by excessive fear responses such as that observed in PTSD. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  1. Framing effect following bilateral amygdala lesion.

    Science.gov (United States)

    Talmi, Deborah; Hurlemann, René; Patin, Alexandra; Dolan, Raymond J

    2010-05-01

    A paradigmatic example of an emotional bias in decision making is the framing effect, where the manner in which a choice is posed--as a potential loss or a potential gain--systematically biases an ensuing decision. Two fMRI studies have shown that the activation in the amygdala is modulated by the framing effect. Here, contrary to an expectation based on these studies, we show that two patients with Urbach-Wiethe (UW) disease, a rare condition associated with congenital, complete bilateral amygdala degeneration, exhibit an intact framing effect. However, choice preference in these patients did show a qualitatively distinct pattern compared to controls evident in an increased propensity to gamble, indicating that loss of amygdala function does exert an overall influence on risk-taking. These findings suggest either that amygdala does contribute to decision making but does not play a causal role in framing, or that UW is not a pure lesion model of amygdala function. 2010 Elsevier Ltd. All rights reserved.

  2. Facilitating influence of stress on the consolidation of fear memory induced by a weak training: reversal by midazolam pretreatment.

    Science.gov (United States)

    Maldonado, Noelia Martina; Martijena, Irene Delia; Molina, Víctor Alejandro

    2011-11-20

    It is well known that an emotionally arousing experience usually results in a robust and persistent memory trace. The present study explored the potential mechanisms involved in the influence of stress on the consolidation of a contextual fear memory in animals subjected to a weak fear training protocol, and whether pretreatment with intra-basolateral amygdala or systemic administration of midazolam (MDZ) prevents the potential stress-induced influence on fear memory formation. A previous restraint session facilitated fear retention, this effect was not due to a sensitized effect of restraint on the footshock experience. MDZ, both systemically or intra-basolateral amygdala infusion prior to the restraint, attenuated the stress-induced promoting influence on fear memory formation. In addition, stress exposure activated the ERK1/2 pathway in basolateral amygdala (BLA) after the weak training procedure but not after the immediate footshock protocol. Similar to our behavioral findings, MDZ attenuated stress-induced elevation of phospho-ERK2 (p-ERK2) in BLA following the acquisition session. Given that the activation of ERK1/2 pathway is essential for associative learning, we propose that stress-induced facilitation of p-ERK2 in BLA is an important mechanism for the promoting influence of stress on the consolidation of contextual fear memory. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Nicotine withdrawal and stress-induced changes in pain sensitivity: a cross-sectional investigation between abstinent smokers and nonsmokers.

    Science.gov (United States)

    Nakajima, Motohiro; Al'Absi, Mustafa

    2014-10-01

    Chronic smoking has been linked with alterations in endogenous pain regulation. These alterations may be pronounced when individuals quit smoking because nicotine withdrawal produces a variety of psychological and physiological symptoms. Smokers interested in quitting (n = 98) and nonsmokers (n = 37) completed a laboratory session including cold pressor test (CPT) and heat thermal pain. Smokers set a quit date and completed the session after 48 h of abstinence. Participants completed the pain assessments once after rest and once after stress. Cardiovascular and nicotine withdrawal measures were collected. Smokers showed blunted cardiovascular responses to stress relative to nonsmokers. Only nonsmokers had greater pain tolerance to CPT after stress than after rest. Lower systolic blood pressure was related to lower pain tolerance. These findings suggest that smoking withdrawal is associated with blunted stress response and increased pain sensitivity. Copyright © 2014 Society for Psychophysiological Research.

  4. Association between depression, pressure pain sensitivity, stress and autonomous nervous system function in stable ischemic heart disease

    DEFF Research Database (Denmark)

    Ballegaard, Søren; Bergmann, Natasha; Karpatschof, Benny

    2016-01-01

    Background: Depression and ischemic heart disease (IHD) are associated with persistent stress and autonomic nervous system (ANS) dysfunction. The former can be measured by pressure pain sensitivity (PPS) of the sternum, and the latter by the PPS and systolic blood pressure (SBP) response to a tilt...... table test (TTT). Beta-blocker treatment reduces the efferent beta-adrenergic ANS function, and thus, the physiological stress response. Objective: To test the effect of beta-blockers on changes in depression score in patients with IHD, as well as the influence on persistent stress and ANS dysfunction...... PPS score correlated in non-users, only (r = 0.69, p = 0.007). Reduction in resting PPS correlated with an increase in PPS and SBP response to TTT. Conclusions: Stress intervention in patients with IHD was anti-depres- sive in non-users, only. Similarly, the association between the reduction...

  5. Low tryptophan diet increases stress-sensitivity, but does not affect habituation in rats

    NARCIS (Netherlands)

    Tanke, Marit A. C.; Alserda, Edwin; Doornbos, Bennard; van der Most, Peter J.; Goeman, Kitty; Postema, Folkert; Korf, Jakob

    Cerebral dysfunction of 5-HT (serotonin) has been associated with stress response and with affective disorders. Stress alone is insufficient to induce depression, since only a minor proportion of subjects that have experienced stressful life events develop depressive episodes. We investigated

  6. Proteomic responses of drought-tolerant and drought-sensitive cotton varieties to drought stress.

    Science.gov (United States)

    Zhang, Haiyan; Ni, Zhiyong; Chen, Quanjia; Guo, Zhongjun; Gao, Wenwei; Su, Xiujuan; Qu, Yanying

    2016-06-01

    Drought, one of the most widespread factors reducing agricultural crop productivity, affects biological processes such as development, architecture, flowering and senescence. Although protein analysis techniques and genome sequencing have made facilitated the proteomic study of cotton, information on genetic differences associated with proteomic changes in response to drought between different cotton genotypes is lacking. To determine the effects of drought stress on cotton seedlings, we used two-dimensional polyacrylamide gel electrophoresis (2-DE) and matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry to comparatively analyze proteome of drought-responsive proteins during the seedling stage in two cotton (Gossypium hirsutum L.) cultivars, drought-tolerant KK1543 and drought-sensitive Xinluzao26. A total of 110 protein spots were detected on 2-DE maps, of which 56 were identified by MALDI-TOF and MALDI-TOF/TOF mass spectrometry. The identified proteins were mainly associated with metabolism (46.4 %), antioxidants (14.2 %), and transport and cellular structure (23.2 %). Some key proteins had significantly different expression patterns between the two genotypes. In particular, 5-methyltetrahydropteroyltriglutamate-homocysteine methyltransferase, UDP-D-glucose pyrophosphorylase and ascorbate peroxidase were up-regulated in KK1543 compared with Xinluzao26. Under drought stress conditions, the vacuolar H(+)-ATPase catalytic subunit, a 14-3-3g protein, translation initiation factor 5A and pathogenesis-related protein 10 were up-regulated in KK1543, whereas ribosomal protein S12, actin, cytosolic copper/zinc superoxide dismutase, protein disulfide isomerase, S-adenosylmethionine synthase and cysteine synthase were down-regulated in Xinluzao26. This work represents the first characterization of proteomic changes that occur in response to drought in roots of cotton plants. These differentially expressed proteins may be related to

  7. The central amygdala circuits in fear regulation

    Science.gov (United States)

    Li, Bo

    The amygdala is essential for fear learning and expression. The central amygdala (CeA), once viewed as a passive relay between the amygdala complex and downstream fear effectors, has emerged as an active participant in fear conditioning. However, how the CeA contributes to the learning and expression of fear remains unclear. Our recent studies in mice indicate that fear conditioning induces robust plasticity of excitatory synapses onto inhibitory neurons in the lateral subdivision of CeA (CeL). In particular, this plasticity is cell-type specific and is required for the formation of fear memory. In addition, sensory cues that predict threat can cause activation of the somatostatin-positive CeL neurons, which is sufficient to drive freezing behavior. Here I will report our recent findings regarding the circuit and cellular mechanisms underlying CeL function in fear processing.

  8. Acute Stress Dysregulates the LPP ERP Response to Emotional Pictures and Impairs Sustained Attention: Time-Sensitive Effects.

    Science.gov (United States)

    Alomari, Rima A; Fernandez, Mercedes; Banks, Jonathan B; Acosta, Juliana; Tartar, Jaime L

    2015-05-20

    Stress can increase emotional vigilance at the cost of a decrease in attention towards non-emotional stimuli. However, the time-dependent effects of acute stress on emotion processing are uncertain. We tested the effects of acute stress on subsequent emotion processing up to 40 min following an acute stressor. Our measure of emotion processing was the late positive potential (LPP) component of the visual event-related potential (ERP), and our measure of non-emotional attention was the sustained attention to response task (SART). We also measured cortisol levels before and after the socially evaluated cold pressor test (SECPT) induction. We found that the effects of stress on the LPP ERP emotion measure were time sensitive. Specifically, the LPP ERP was only altered in the late time-point (30-40 min post-stress) when cortisol was at its highest level. Here, the LPP no longer discriminated between the emotional and non-emotional picture categories, most likely because neutral pictures were perceived as emotional. Moreover, compared to the non-stress condition, the stress-condition showed impaired performance on the SART. Our results support the idea that a limit in attention resources after an emotional stressor is associated with the brain incorrectly processing non-emotional stimuli as emotional and interferes with sustained attention.

  9. A Unique Fungal Two-Component System Regulates Stress Responses, Drug Sensitivity, Sexual Development, and Virulence of Cryptococcus neoformans

    Science.gov (United States)

    Bahn, Yong-Sun; Kojima, Kaihei; Cox, Gary M.

    2006-01-01

    The stress-activated mitogen-activated protein kinase (MAPK) pathway is widely used by eukaryotic organisms as a central conduit via which cellular responses to the environment effect growth and differentiation. The basidiomycetous human fungal pathogen Cryptococcus neoformans uniquely uses the stress-activated Pbs2-Hog1 MAPK system to govern a plethora of cellular events, including stress responses, drug sensitivity, sexual reproduction, and virulence. Here, we characterized a fungal “two-component” system that controls these fundamental cellular functions via the Pbs2-Hog1 MAPK cascade. A typical response regulator, Ssk1, modulated all Hog1-dependent phenotypes by controlling Hog1 phosphorylation, indicating that Ssk1 is the major upstream signaling component of the Pbs2-Hog1 pathway. A second response regulator, Skn7, governs sensitivity to Na+ ions and the antifungal agent fludioxonil, negatively controls melanin production, and functions independently of Hog1 regulation. To control these response regulators, C. neoformans uses multiple sensor kinases, including two-component–like (Tco) 1 and Tco2. Tco1 and Tco2 play shared and distinct roles in stress responses and drug sensitivity through the Hog1 MAPK system. Furthermore, each sensor kinase mediates unique cellular functions for virulence and morphological differentiation. Our findings highlight unique adaptations of this global two-component MAPK signaling cascade in a ubiquitous human fungal pathogen. PMID:16672377

  10. Increased amygdala response to shame in remitted major depressive disorder.

    Directory of Open Access Journals (Sweden)

    Erdem Pulcu

    Full Text Available Proneness to self-blaming moral emotions such as shame and guilt is increased in major depressive disorder (MDD, and may play an important role in vulnerability even after symptoms have subsided. Social psychologists have argued that shame-proneness is relevant for depression vulnerability and is distinct from guilt. Shame depends on the imagined critical perception of others, whereas guilt results from one's own judgement. The neuroanatomy of shame in MDD is unknown. Using fMRI, we compared 21 participants with MDD remitted from symptoms with no current co-morbid axis-I disorders, and 18 control participants with no personal or family history of MDD. The MDD group exhibited higher activation of the right amygdala and posterior insula for shame relative to guilt (SPM8. This neural difference was observed despite equal levels of rated negative emotional valence and frequencies of induced shame and guilt experience across groups. These same results were found in the medication-free MDD subgroup (N = 15. Increased amygdala and posterior insula activations, known to be related to sensory perception of emotional stimuli, distinguish shame from guilt responses in remitted MDD. People with MDD thus exhibit changes in the neural response to shame after symptoms have subsided. This supports the hypothesis that shame and guilt play at least partly distinct roles in vulnerability to MDD. Shame-induction may be a more sensitive probe of residual amygdala hypersensitivity in MDD compared with facial emotion-evoked responses previously found to normalize on remission.

  11. FKBP5 and emotional neglect interact to predict individual differences in amygdala reactivity.

    Science.gov (United States)

    White, M G; Bogdan, R; Fisher, P M; Muñoz, K E; Williamson, D E; Hariri, A R

    2012-10-01

    Individual variation in physiological responsiveness to stress mediates risk for mental illness and is influenced by both experiential and genetic factors. Common polymorphisms in the human gene for FK506 binding protein 5 (FKBP5), which is involved in transcriptional regulation of the hypothalamic-pituitary-adrenal (HPA) axis, have been shown to interact with childhood abuse and trauma to predict stress-related psychopathology. In the current study, we examined if such gene-environment interaction effects may be related to variability in the threat-related reactivity of the amygdala, which plays a critical role in mediating physiological and behavioral adaptations to stress including modulation of the HPA axis. To this end, 139 healthy Caucasian youth completed a blood oxygen level-dependent functional magnetic resonance imaging probe of amygdala reactivity and self-report assessments of emotional neglect (EN) and other forms of maltreatment. These individuals were genotyped for 6 FKBP5 polymorphisms (rs7748266, rs1360780, rs9296158, rs3800373, rs9470080 and rs9394309) previously associated with psychopathology and/or HPA axis function. Interactions between each SNP and EN emerged such that risk alleles predicted relatively increased dorsal amygdala reactivity in the context of higher EN, even after correcting for multiple testing. Two different haplotype analyses confirmed this relationship as haplotypes with risk alleles also exhibited increased amygdala reactivity in the context of higher EN. Our results suggest that increased threat-related amygdala reactivity may represent a mechanism linking psychopathology to interactions between common genetic variants affecting HPA axis function and childhood trauma. © 2012 The Authors. Genes, Brain and Behavior © 2012 Blackwell Publishing Ltd and International Behavioural and Neural Genetics Society.

  12. Beyond the Classic VTA: Extended Amygdala Projections to DA-Striatal Paths in the Primate.

    Science.gov (United States)

    Fudge, Julie L; Kelly, Emily A; Pal, Ria; Bedont, Joseph L; Park, Lydia; Ho, Brian

    2017-07-01

    The central extended amygdala (CEA) has been conceptualized as a 'macrosystem' that regulates various stress-induced behaviors. Consistent with this, the CEA highly expresses corticotropin-releasing factor (CRF), an important modulator of stress responses. Stress alters goal-directed responses associated with striatal paths, including maladaptive responses such as drug seeking, social withdrawal, and compulsive behavior. CEA inputs to the midbrain dopamine (DA) system are positioned to influence striatal functions through mesolimbic DA-striatal pathways. However, the structure of this amygdala-CEA-DA neuron path to the striatum has been poorly characterized in primates. In primates, we combined neuronal tracer injections into various arms of the circuit through specific DA subpopulations to assess: (1) whether the circuit connecting amygdala, CEA, and DA cells follows CEA intrinsic organization, or a more direct topography involving bed nucleus vs central nucleus divisions; (2) CRF content of the CEA-DA path; and (3) striatal subregions specifically involved in CEA-DA-striatal loops. We found that the amygdala-CEA-DA path follows macrostructural subdivisions, with the majority of input/outputs converging in the medial central nucleus, the sublenticular extended amygdala, and the posterior lateral bed nucleus of the stria terminalis. The proportion of CRF+ outputs is >50%, and mainly targets the A10 parabrachial pigmented nucleus (PBP) and A8 (retrorubal field, RRF) neuronal subpopulations, with additional inputs to the dorsal A9 neurons. CRF-enriched CEA-DA projections are positioned to influence outputs to the 'limbic-associative' striatum, which is distinct from striatal regions targeted by DA cells lacking CEA input. We conclude that the concept of the CEA is supported on connectional grounds, and that CEA termination over the PBP and RRF neuronal populations can influence striatal circuits involved in associative learning.

  13. Smoking before isometric exercise amplifies myocardial stress and dysregulates baroreceptor sensitivity and cerebral oxygenation.

    Science.gov (United States)

    Anyfanti, Panagiota; Triantafyllidou, Eleftheria; Papadopoulos, Stavros; Triantafyllou, Areti; Nikolaidis, Michalis G; Kyparos, Antonios; Vrabas, Ioannis S; Douma, Stella; Zafeiridis, Andreas; Dipla, Konstantina

    2017-06-01

    This crossover study examined whether acute cardiovascular responses, baroreceptor sensitivity (BRS), and brain oxygenation during isometric exercise are altered after cigarette smoking. Twelve young, habitual smokers randomly performed a smoking and a control protocol, during which participants smoked one cigarette (0.9 mg nicotine) or a sham cigarette, before exercise. Testing involved baseline, a 5-minute smoking, a 10-minute post-smoking rest, 3-minute handgrip exercise (30% maximum voluntary contraction), and recovery. Beat-to-beat blood pressure, heart rate (HR), and cerebral oxygenation (near infrared spectroscopy) were continuously monitored. Double-product, stroke volume (SV), cardiac output, systemic vascular resistance and BRS were assessed. During post-smoking rest, systolic or diastolic blood pressure (140.8 ± 12.1/87.0 ± 6.9 vs. 125.9 ± 7.1/77.3 ± 5.5 mm Hg), HR, and double product were higher in the smoking versus the control protocol, whereas BRS was lower (P exercise, smoking resulted in greater HR and double product (17,240 ± 3893 vs. 15,424 ± 3173 mm Hg·bpm) and lower BRS versus the control protocol (P smoking elicited a delayed return of brain oxygenation indices, lower BRS, and higher double product. Smoking a cigarette shortly before the exercise session amplifies myocardial stress and dysregulates autonomic function and cerebral oxygenation during exercise and recovery, even in young habitual smokers, perceived as free from long-term cardiovascular effects of smoking. Copyright © 2017 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.

  14. Impaired Emotional Declarative Memory Following Unilateral Amygdala Damage

    OpenAIRE

    Adolphs, Ralph; Tranel, Daniel; Denburg, Natalie

    2000-01-01

    Case studies of patients with bilateral amygdala damage and functional imaging studies of normal individuals have demonstrated that the amygdala plays a critical role in encoding emotionally arousing stimuli into long-term declarative memory. However, several issues remain poorly understood: the separate roles of left and right amygdala, the time course over which the amygdala participates in memory consolidation, and the type of knowledge structures it helps consolidate. We investigated thes...

  15. The amygdala complex: multiple roles in associative learning and attention.

    OpenAIRE

    Gallagher, M; Holland, P C

    1994-01-01

    Although certain neurophysiological functions of the amygdala complex in learning seem well established, the purpose of this review is to propose that an additional conceptualization of amygdala function is now needed. The research we review provides evidence that a subsystem within the amygdala provides a coordinated regulation of attentional processes. An important aspect of this additional neuropsychology of the amygdala is that it may aid in understanding the importance of connections bet...

  16. Effects of neonatal pain, stress and their interrelation on pain sensitivity in later life in male rats.

    Science.gov (United States)

    Butkevich, Irina P; Mikhailenko, Viktor A; Vershinina, Elena A; Aloisi, Anna Maria

    2016-08-31

    Neonatal pain and stress induce long-term changes in pain sensitivity. Therefore their interrelation is a topical subject of clinical and basic research. The present study investigated the effects of inflammatory peripheral pain and stress of maternal deprivation (MD)-isolation in 1-2- and 7-8-day-old Wistar rats (P1,2 and P7,8 respectively, ages comparable to preterm and full-term human babies) on basal pain and pain sensitivity in conditions of inflammatory pain (formalin test) during adolescence. The neonatal impacts were: pain (formalin injection, FOR in the paw), stress (a short 60-min MD), or pain+stress combination (FOR+MD), and appropriate controls. We found that stress of short-term maternal deprivation-isolation and inflammatory pain on P1,2 and P7,8 significantly increased the vulnerability of the nociceptive system to inflammatory pain. Maternal deprivation-isolation on P1,2 as compared with a similar impact on P7,8 had a greater effect on pain sensitivity of the adolescent rats, but the influence of early pain was independent of the injury age. Only adolescent rats with an early combination of pain and maternal deprivation-isolation showed hypoalgesia in the hot plate (HP) test. However licking duration (reflecting pain sensitivity) in these rats did not exceed licking duration in animals exposed only to maternal deprivation-isolation or pain. This study adds new data to the growing body of work demonstrating that early noxious impacts have long-term consequences for the functional activity of the nociceptive system. Our new findings may help to understand the impact of pain and maternal separation in the neonatal intensive care unit.

  17. Mapping the diatom redox-sensitive proteome provides insight into response to nitrogen stress in the marine environment.

    Science.gov (United States)

    Rosenwasser, Shilo; Graff van Creveld, Shiri; Schatz, Daniella; Malitsky, Sergey; Tzfadia, Oren; Aharoni, Asaph; Levin, Yishai; Gabashvili, Alexandra; Feldmesser, Ester; Vardi, Assaf

    2014-02-18

    Diatoms are ubiquitous marine photosynthetic eukaryotes responsible for approximately 20% of global photosynthesis. Little is known about the redox-based mechanisms that mediate diatom sensing and acclimation to environmental stress. Here we used a quantitative mass spectrometry-based approach to elucidate the redox-sensitive signaling network (redoxome) mediating the response of diatoms to oxidative stress. We quantified the degree of oxidation of 3,845 cysteines in the Phaeodactylum tricornutum proteome and identified approximately 300 redox-sensitive proteins. Intriguingly, we found redox-sensitive thiols in numerous enzymes composing the nitrogen assimilation pathway and the recently discovered diatom urea cycle. In agreement with this finding, the flux from nitrate into glutamine and glutamate, measured by the incorporation of (15)N, was strongly inhibited under oxidative stress conditions. Furthermore, by targeting the redox-sensitive GFP sensor to various subcellular localizations, we mapped organelle-specific oxidation patterns in response to variations in nitrogen quota and quality. We propose that redox regulation of nitrogen metabolism allows rapid metabolic plasticity to ensure cellular homeostasis, and thus is essential for the ecological success of diatoms in the marine ecosystem.

  18. Emotional Memory Formation Under Lower Versus Higher Stress Conditions

    OpenAIRE

    Kogan, Inna; Richter-Levin, Gal

    2010-01-01

    An exposure to stress can enhance memory for emotionally arousing experiences. The phenomenon is suggested to be amygdala-dependent and in accordance with that view the amygdala was found to modulate mnemonic processes in other brain regions. Previously, we illustrated increased amygdala activation and reduced activation of CA1 following spatial learning under higher versus lower stress conditions. When spatial learning was followed by reversal training interference, impaired retention was de...

  19. The Association of PTSD Symptom Severity with Localized Hippocampus and Amygdala Abnormalities

    Science.gov (United States)

    Akiki, Teddy J.; Averill, Christopher L.; Wrocklage, Kristen M.; Schweinsburg, Brian; Scott, J. Cobb; Martini, Brenda; Averill, Lynnette A.; Southwick, Steven M.; Krystal, John H.; Abdallah, Chadi G.

    2017-01-01

    Background The hippocampus and amygdala have been repeatedly implicated in the psychopathology of posttraumatic stress disorder (PTSD). While numerous structural neuroimaging studies examined these two structures in PTSD, these analyses have largely been limited to volumetric measures. Recent advances in vertex-based neuroimaging methods have made it possible to identify specific locations of subtle morphometric changes within a structure of interest. Methods In this cross-sectional study, we used high-resolution magnetic resonance imaging to examine the relationship between PTSD symptomatology, as measured using the Clinician Administered PTSD Scale for the DSM-IV (CAPS), and structural shape of the hippocampus and amygdala using vertex-wise shape analyses in a group of combat-exposed US Veterans (N = 69). Results Following correction for multiple comparisons and controlling for age and cranial volume, we found that participants with more severe PTSD symptoms showed an indentation in the anterior half of the right hippocampus and an indentation in the dorsal region of the right amygdala (corresponding to the centromedial amygdala). Post hoc analysis using stepwise regression suggest that among PTSD symptom clusters, arousal symptoms explain most of the variance in the hippocampal abnormality, whereas re-experiencing symptoms explain most of the variance in the amygdala abnormality. Conclusion The results provide evidence of localized abnormalities in the anterior hippocampus and centromedial amygdala in combat-exposed US Veterans suffering from PTSD symptoms. This novel finding provides a more fine-grained analysis of structural abnormalities in PTSD and may be informative for understanding the neurobiology of the disorder. PMID:28825050

  20. Contribution of amygdala CRF neurons to chronic pain.

    Science.gov (United States)

    Andreoli, Matthew; Marketkar, Tanvi; Dimitrov, Eugene

    2017-12-01

    We investigated the role of amygdala corticotropin-releasing factor (CRF) neurons in the perturbations of descending pain inhibition caused by neuropathic pain. Forced swim increased the tail-flick response latency in uninjured mice, a phenomenon known as stress-induced analgesia (SIA) but did not change the tail-flick response latency in mice with neuropathic pain caused by sciatic nerve constriction. Neuropathic pain also increased the expression of CRF in the central amygdala (CeAmy) and ΔFosB in the dorsal horn of the spinal cord. Next, we injected the CeAmy of CRF-cre mice with cre activated AAV-DREADD (Designer Receptors Exclusively Activated by Designer Drugs) vectors. Activation of CRF neurons by DREADD/Gq did not affect the impaired SIA but inhibition of CRF neurons by DREADD/Gi restored SIA and decreased allodynia in mice with neuropathic pain. The possible downstream circuitry involved in the regulation of SIA was investigated by combined injections of retrograde cre-virus (CAV2-cre) into the locus ceruleus (LC) and cre activated AAV-diphtheria toxin (AAV-FLEX-DTX) virus into the CeAmy. The viral injections were followed by a sciatic nerve constriction ipsilateral or contralateral to the injections. Ablation of amygdala projections to the LC on the side of injury but not on the opposite side, completely restored SIA, decreased allodynia and decreased ΔFosB expression in the spinal cord in mice with neuropathic pain. The possible lateralization of SIA impairment to the side of injury was confirmed by an experiment in which unilateral inhibition of the LC decreased SIA even in uninjured mice. The current view in the field of pain research attributes the process of pain chronification to abnormal functioning of descending pain inhibition. Our results demonstrate that the continuous activity of CRF neurons brought about by persistent pain leads to impaired SIA, which is a symptom of dysregulation of descending pain inhibition. Therefore, an over

  1. Analysis of DNA methylation of maize in response to osmotic and salt stress based on methylation-sensitive amplified polymorphism.

    Science.gov (United States)

    Tan, Ming-pu

    2010-01-01

    Water stress is known to alter cytosine methylation, which generally represses transcription. However, little is known about the role of methylation alteration in maize under osmotic stress. Here, methylation-sensitive amplified polymorphism (MSAP) was used to screen PEG- or NaCl-induced methylation alteration in maize seedlings. The sequences of 25 differentially amplified fragments relevant to stress were successfully obtained. Two stress-specific fragments from leaves, LP166 and LPS911, shown to be homologous to retrotransposon Gag-Pol protein genes, suggested that osmotic stress-induced methylation of retrotransposons. Three MSAP fragments, representing drought-induced or salt-induced methylation in leaves, were homologous to a maize aluminum-induced transporter. Besides these, heat shock protein HSP82, Poly [ADP-ribose] polymerase 2, Lipoxygenase, casein kinase (CK2), and dehydration-responsive element-binding (DREB) factor were also homologs of MSAP sequences from salt-treated roots. One MSAP fragment amplified from salt-treated roots, designated RS39, was homologous to the first intron of maize protein phosphatase 2C (zmPP2C), whereas - LS103, absent from salt-treated leaves, was homologous to maize glutathione S-transferases (zmGST). Expression analysis showed that salt-induced intron methylation of root zmPP2C significantly downregulated its expression, while salt-induced demethylation of leaf zmGST weakly upregulated its expression. The results suggested that salinity-induced methylation downregulated zmPP2C expression, a negative regulator of the stress response, while salinity-induced demethylation upregulated zmGST expression, a positive effecter of the stress response. Altered methylation, in response to stress, might also be involved in stress acclimation. Copyright 2009 Elsevier Masson SAS. All rights reserved.

  2. Systematic Review of Uit Parameters on Residual Stresses of Sensitized AA5456 and Field Based Residual Stress Measurements for Predicting and Mitigating Stress Corrosion Cracking

    Science.gov (United States)

    2014-03-01

    University Press, 2009, pp. 820–824. [30] S. Kou, Welding Metallurgy , 2nd ed. Hoboken, NJ: John Wiley and Sons, Inc., 2003. [31] M. N.James et al...around welds in aluminum ship structures both in the laboratory and in the field. Tensile residual stresses are often generated during welding and, in...mitigate and even reverse these tensile residual stresses. This research uses x-ray diffraction to measure residual stresses around welds in AA5456 before

  3. Fear processing and social networking in the absence of a functional amygdala.

    Science.gov (United States)

    Becker, Benjamin; Mihov, Yoan; Scheele, Dirk; Kendrick, Keith M; Feinstein, Justin S; Matusch, Andreas; Aydin, Merve; Reich, Harald; Urbach, Horst; Oros-Peusquens, Ana-Maria; Shah, Nadim J; Kunz, Wolfram S; Schlaepfer, Thomas E; Zilles, Karl; Maier, Wolfgang; Hurlemann, René

    2012-07-01

    The human amygdala plays a crucial role in processing social signals, such as face expressions, particularly fearful ones, and facilitates responses to them in face-sensitive cortical regions. This contributes to social competence and individual amygdala size correlates with that of social networks. While rare patients with focal bilateral amygdala lesion typically show impaired recognition of fearful faces, this deficit is variable, and an intriguing possibility is that other brain regions can compensate to support fear and social signal processing. To investigate the brain's functional compensation of selective bilateral amygdala damage, we performed a series of behavioral, psychophysiological, and functional magnetic resonance imaging experiments in two adult female monozygotic twins (patient 1 and patient 2) with equivalent, extensive bilateral amygdala pathology as a sequela of lipoid proteinosis due to Urbach-Wiethe disease. Patient 1, but not patient 2, showed preserved recognition of fearful faces, intact modulation of acoustic startle responses by fear-eliciting scenes, and a normal-sized social network. Functional magnetic resonance imaging revealed that patient 1 showed potentiated responses to fearful faces in her left premotor cortex face area and bilaterally in the inferior parietal lobule. The premotor cortex face area and inferior parietal lobule are both implicated in the cortical mirror-neuron system, which mediates learning of observed actions and may thereby promote both imitation and empathy. Taken together, our findings suggest that despite the pre-eminent role of the amygdala in processing social information, the cortical mirror-neuron system may sometimes adaptively compensate for its pathology. Copyright © 2012 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  4. Intercultural communication between patients and health care providers: an exploration of intercultural communication effectiveness, cultural sensitivity, stress, and anxiety.

    Science.gov (United States)

    Ulrey, K L; Amason, P

    2001-01-01

    Cultural diversity is becoming increasingly more important in the workplace. This is particularly true in health care organizations facing demographic shifts in the patients served and their families. This study serves to aid the development of intercultural communication training programs for health care providers by examining how cultural sensitivity and effective intercultural communication, besides helping patients, personally benefit health care providers by reducing their stress. Effective intercultural communication and cultural sensitivity were found to be related. Health care providers' levels of intercultural anxiety also were found to correlate with effective intercultural communication.

  5. Effects of cyclic tensile loading on stress corrosion cracking susceptibility for sensitized Type 304 stainless steel in 290 C high purity water

    International Nuclear Information System (INIS)

    Takaku, H.; Tokiwai, M.; Hirano, H.

    1979-01-01

    The effects of load waveform on intergranular stress corrosion cracking (IGSCC) susceptibility have been examined for sensitized Type 304 stainless steels in a 290 C high purity water loop. Concerning the strain rate in the trapezoidal stress waveform, it was found that IGSCC susceptibility was higher for smaller values of the strain rate. It was also shown that IGSCC susceptibility became higher when the holding time at the upper stress was prolonged, and when the upper stress was high. The occurrence of IGSCC for sensitized Type 304 stainless steel became easy due to the application of cyclic tensile stress in 290 C high purity water

  6. Differential sensitization of parenting on early adolescent cortisol: Moderation by profiles of maternal stress.

    Science.gov (United States)

    Martin, Christina Gamache; Kim, Hyoun K; Fisher, Philip A

    2016-05-01

    The hypothalamic-pituitary-adrenal (HPA) axis is a critical component of the body's stress-response neurobiological system, and its development and functioning are shaped by the social environment. Much of our understanding of the effects of the caregiving environment on the HPA axis is based on (a) parenting in young children and (b) individual maternal stressors, such as depression. Yet, less is known about how parenting behaviors and maternal stressors interact to influence child cortisol regulation, particularly in older children. With an ethnically diverse sample of 199 mothers and their early adolescent children (M=11.00years; 54% female), a profile analytic approach was used to investigate how multiple phenotypes of maternal stress co-occur and moderate the relation between parenting behaviors and youths' diurnal cortisol rhythms. Latent profile analysis yielded 4 profiles: current parenting stress, concurrent parenting and childhood stress, childhood stress, and low stress. For mothers with the concurrent parenting and childhood stress profile, inconsistent discipline, poor parental supervision, and harsh caregiving behaviors each were related to flattened diurnal cortisol rhythms in their adolescents. For mothers with the current parenting stress and childhood stress profiles, their use of inconsistent discipline was associated with flattened diurnal cortisol rhythms in their adolescents. For mothers with the low stress profile, none of the parenting behaviors was related to their adolescents' cortisol regulation. Findings suggest that based on mothers' stress profile, parenting behaviors are differentially related to youths' diurnal cortisol rhythms. Implications for parenting interventions are discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. SIRT1 sensitizes hepatocellular carcinoma cells expressing hepatitis B virus X protein to oxidative stress-induced apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Srisuttee, Ratakorn [WCU, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Koh, Sang Seok [Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, University of Science and Technology, Daejeon 305-333 (Korea, Republic of); Department of Functional Genomics, University of Science and Technology, Daejeon 305-333 (Korea, Republic of); Malilas, Waraporn; Moon, Jeong; Cho, Il-Rae [WCU, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Jhun, Byung Hak [Department of Applied Nanoscience, Pusan National University, Busan 609-735 (Korea, Republic of); Horio, Yoshiyuki [Department of Pharmacology, Sapporo Medical University, Sapporo 060-8556 (Japan); Chung, Young-Hwa, E-mail: younghc@pusan.ac.kr [WCU, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735 (Korea, Republic of)

    2012-12-07

    Highlights: Black-Right-Pointing-Pointer Up-regulation of SIRT1 protein and activity sensitizes Hep3B-HBX cells to oxidative stress-induced apoptosis. Black-Right-Pointing-Pointer Nuclear localization of SIRT1 is not required for oxidation-induced apoptosis. Black-Right-Pointing-Pointer Ectopic expression and enhanced activity of SIRT1 attenuate JNK phosphorylation. Black-Right-Pointing-Pointer Inhibition of SIRT1 activity restores resistance to oxidation-induced apoptosis through JNK activation. -- Abstract: We previously showed that SIRT1 deacetylase inhibits proliferation of hepatocellular carcinoma cells expressing hepatitis B virus (HBV) X protein (HBX), by destabilization of {beta}-catenin. Here, we report another role for SIRT1 in HBX-mediated resistance to oxidative stress. Ectopic expression and enhanced activity of SIRT1 sensitize Hep3B cells stably expressing HBX to oxidative stress-induced apoptosis. SIRT1 mutant analysis showed that nuclear localization of SIRT1 is not required for sensitization of oxidation-mediated apoptosis. Furthermore, ectopic expression of SIRT1 and treatment with resveratrol (a SIRT1 activator) attenuated JNK phosphorylation, which is a prerequisite for resistance to oxidative stress-induced apoptosis. Conversely, suppression of SIRT1 activity with nicotinamide inhibited the effect of resveratrol on JNK phosphorylation, leading to restoration of resistance to oxidation-induced apoptosis. Taken together, these results suggest that up-regulation of SIRT1 under oxidative stress may be a therapeutic strategy for treatment of hepatocellular carcinoma cells related to HBV through inhibition of JNK activation.

  8. Parenting Stress Mediates between Maternal Maltreatment History and Maternal Sensitivity in a Community Sample

    Science.gov (United States)

    Pereira, Jessica; Vickers, Kristin; Atkinson, Leslie; Gonzalez, Andrea; Wekerle, Christine; Levitan, Robert

    2012-01-01

    Objective: Maternal maltreatment history and current parenting stress are associated with parenting difficulties. However, researchers have not investigated the mechanism by which these variables are interlinked. We hypothesized that parenting stress mediates the relation between history of maltreatment and parenting behavior. Methods: We assessed…

  9. Different patterns of amygdala priming differentially affect dentate gyrus plasticity and corticosterone, but not CA1 plasticity.

    Directory of Open Access Journals (Sweden)

    Rose-Marie eVouimba

    2013-05-01

    Full Text Available Stress-induced activation of the amygdala is involved in the modulation of memory processes in the hippocampus. However, stress effects on amygdala and memory remain complex. The activation of the basolateral amygdala (BLA was found to modulate plasticity in other brain areas, including the hippocampus. We previously demonstrated a differential effect of BLA priming on LTP in the CA1 and the dentate gyrus (DG. While BLA priming suppressed long term potentiation (LTP in CA1, it was found to enhance it in the DG. However, since the amygdala itself is amenable to experience-induced plasticity it is thus conceivable that when activity within the amygdala is modified this will have impact on the way the amygdala modulates activity and plasticity in other brain areas. In the current study we examined the effects of different patterns of BLA activation on the modulation of LTP in the DG and CA1, as well as on serum corticosterone (CORT. In CA1, BLA priming impaired LTP induction as was reported before. In contrast, in the DG, varying BLA stimulation intensity and frequency resulted in differential effects on LTP, ranging from no effect to strong impairment or enhancement. Varying BLA stimulation patterns resulted in also differential alterations in Serum CORT, leading to higher CORT levels being positively correlated with LTP magnitude in DG but not in CA1.The results support the notion of a differential role for the DG in aspects of memory, and add to this view the possibility that DG-associated aspects of memory will be enhanced under more emotional or stressful conditions. It is interesting to think of BLA patterns of activation and the differential levels of circulating CORT as two arms of the emotional and stress response that attempt to synchronize brain activity to best meet the challenge. It is foreseeable to think of abnormal such synchronization under extreme conditions, which would lead to the development of maladaptive behavior.

  10. Consumption of NADPH for 2-HG Synthesis Increases Pentose Phosphate Pathway Flux and Sensitizes Cells to Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Susan J. Gelman

    2018-01-01

    Full Text Available Summary: Gain-of-function mutations in isocitrate dehydrogenase 1 (IDH1 occur in multiple types of human cancer. Here, we show that these mutations significantly disrupt NADPH homeostasis by consuming NADPH for 2-hydroxyglutarate (2-HG synthesis. Cells respond to 2-HG synthesis, but not exogenous administration of 2-HG, by increasing pentose phosphate pathway (PPP flux. We show that 2-HG production competes with reductive biosynthesis and the buffering of oxidative stress, processes that also require NADPH. IDH1 mutants have a decreased capacity to synthesize palmitate and an increased sensitivity to oxidative stress. Our results demonstrate that, even when NADPH is limiting, IDH1 mutants continue to synthesize 2-HG at the expense of other NADPH-requiring pathways that are essential for cell viability. Thus, rather than attempting to decrease 2-HG synthesis in the clinic, the consumption of NADPH by mutant IDH1 may be exploited as a metabolic weakness that sensitizes tumor cells to ionizing radiation, a commonly used anti-cancer therapy. : Using liquid chromatography/mass spectrometry (LC/MS and stable isotope tracing, Gelman et al. find that 2-HG production in cells with IDH1 mutations leads to increased pentose phosphate pathway activity to generate NADPH. Production of 2-HG competes with other NADPH-dependent pathways and sensitizes cells to redox stress. Keywords: 2-hydroxyglutarate, cancer metabolism, LC/MS, metabolomcis, pentose phosphate pathway, redox regulation

  11. DNA methylation changes detected by methylation-sensitive amplified polymorphism in two contrasting rice genotypes under salt stress.

    Science.gov (United States)

    Wang, Wensheng; Zhao, Xiuqin; Pan, Yajiao; Zhu, Linghua; Fu, Binying; Li, Zhikang

    2011-09-20

    DNA methylation, one of the most important epigenetic phenomena, plays a vital role in tuning gene expression during plant development as well as in response to environmental stimuli. In the present study, a methylation-sensitive amplified polymorphism (MSAP) analysis was performed to profile DNA methylation changes in two contrasting rice genotypes under salt stress. Consistent with visibly different phenotypes in response to salt stress, epigenetic markers classified as stable inter-cultivar DNA methylation differences were determined between salt-tolerant FL478 and salt-sensitive IR29. In addition, most tissue-specific DNA methylation loci were conserved, while many of the growth stage-dependent DNA methylation loci were dynamic between the two genotypes. Strikingly, salt stress induced a decrease in DNA methylation specifically in roots at the seedling stage that was more profound in IR29 than in the FL478. This result may indicate that demethylation of genes is an active epigenetic response to salt stress in roots at the seedling stage, and helps to further elucidate the implications of DNA methylation in crop growth and development. Copyright © 2011. Published by Elsevier Ltd.

  12. Preschoolers' genetic, physiological, and behavioral sensitivity factors moderate links between parenting stress and child internalizing, externalizing, and sleep problems.

    Science.gov (United States)

    Davis, Molly; Thomassin, Kristel; Bilms, Joanie; Suveg, Cynthia; Shaffer, Anne; Beach, Steven R H

    2017-05-01

    This study examined three potential moderators of the relations between maternal parenting stress and preschoolers' adjustment problems: a genetic polymorphism-the short allele of the serotonin transporter (5-HTTLPR, ss/sl allele) gene, a physiological indicator-children's baseline respiratory sinus arrhythmia (RSA), and a behavioral indicator-mothers' reports of children's negative emotionality. A total of 108 mothers (M age  = 30.68 years, SD age  = 6.06) reported on their parenting stress as well as their preschoolers' (M age  = 3.50 years, SD age  = 0.51, 61% boys) negative emotionality and internalizing, externalizing, and sleep problems. Results indicated that the genetic sensitivity variable functioned according to a differential susceptibility model; however, the results involving physiological and behavioral sensitivity factors were most consistent with a diathesis-stress framework. Implications for prevention and intervention efforts to counter the effects of parenting stress are discussed. © 2017 Wiley Periodicals, Inc.

  13. NRSF-dependent epigenetic mechanisms contribute to programming of stress-sensitive neurons by neonatal experience, promoting resilience.

    Science.gov (United States)

    Singh-Taylor, A; Molet, J; Jiang, S; Korosi, A; Bolton, J L; Noam, Y; Simeone, K; Cope, J; Chen, Y; Mortazavi, A; Baram, T Z

    2018-03-01

    Resilience to stress-related emotional disorders is governed in part by early-life experiences. Here we demonstrate experience-dependent re-programming of stress-sensitive hypothalamic neurons, which takes place through modification of neuronal gene expression via epigenetic mechanisms. Specifically, we found that augmented maternal care reduced glutamatergic synapses onto stress-sensitive hypothalamic neurons and repressed expression of the stress-responsive gene, Crh. In hypothalamus in vitro, reduced glutamatergic neurotransmission recapitulated the repressive effects of augmented maternal care on Crh, and this required recruitment of the transcriptional repressor repressor element-1 silencing transcription factor/neuron restrictive silencing factor (NRSF). Increased NRSF binding to chromatin was accompanied by sequential repressive epigenetic changes which outlasted NRSF binding. chromatin immunoprecipitation-seq analyses of NRSF targets identified gene networks that, in addition to Crh, likely contributed to the augmented care-induced phenotype, including diminished depression-like and anxiety-like behaviors. Together, we believe these findings provide the first causal link between enriched neonatal experience, synaptic refinement and induction of epigenetic processes within specific neurons. They uncover a novel mechanistic pathway from neonatal environment to emotional resilience.

  14. Input from the medial geniculate nucleus modulates amygdala encoding of fear memory discrimination.

    Science.gov (United States)

    Ferrara, Nicole C; Cullen, Patrick K; Pullins, Shane P; Rotondo, Elena K; Helmstetter, Fred J

    2017-09-01

    Generalization of fear can involve abnormal responding to cues that signal safety and is common in people diagnosed with post-traumatic stress disorder. Differential auditory fear conditioning can be used as a tool to measure changes in fear discrimination and generalization. Most prior work in this area has focused on elevated amygdala activity as a critical component underlying generalization. The amygdala receives input from auditory cortex as well as the medial geniculate nucleus (MgN) of the thalamus, and these synapses undergo plastic changes in response to fear conditioning and are major contributors to the formation of memory related to both safe and threatening cues. The requirement for MgN protein synthesis during auditory discrimination and generalization, as well as the role of MgN plasticity in amygdala encoding of discrimination or generalization, have not been directly tested. GluR1 and GluR2 containing AMPA receptors are found at synapses throughout the amygdala and their expression is persistently up-regulated after learning. Some of these receptors are postsynaptic to terminals from MgN neurons. We found that protein synthesis-dependent plasticity in MgN is necessary for elevated freezing to both aversive and safe auditory cues, and that this is accompanied by changes in the expressions of AMPA receptor and synaptic scaffolding proteins (e.g., SHANK) at amygdala synapses. This work contributes to understanding the neural mechanisms underlying increased fear to safety signals after stress. © 2017 Ferrara et al.; Published by Cold Spring Harbor Laboratory Press.

  15. Pulvinar projections to the striatum and amygdala

    Directory of Open Access Journals (Sweden)

    Jonathan D Day-Brown

    2010-11-01

    Full Text Available Visually-guided movement is possible in the absence of conscious visual perception, a phenomenon referred to as blindsight. Similarly, fearful images can elicit emotional responses in the absence of their conscious perception. Both capabilities are thought to be mediated by pathways from the retina through the superior colliculus (SC and pulvinar nucleus. To define potential pathways that underlie behavioral responses to unperceived visual stimuli, we examined the projections from the pulvinar nucleus to the striatum and amygdala in the tree shrew (Tupaia belangeri, a species considered to be a protypical primate. The tree shrew brain has a large pulvinar nucleus that contains two SC-recipient subdivisions; the dorsal (Pd and central (Pc pulvinar both receive topographic (specific projections from SC, and Pd receives an additional nontopographic (diffuse projection from SC (Chomsung et al., 2008; JCN 510:24-46. Anterograde and retrograde tract tracing revealed that both Pd and Pc project to the caudate and putamen, and Pd, but not Pc, additionally projects to the lateral amygdala. Using immunocytochemical staining for substance P (SP and parvalbumin (PV to reveal the patch/matrix organization of tree shrew striatum, we found that SP-rich/PV-poor patches interlock with a PV-rich/SP-poor matrix. Confocal microscopy revealed that tracer-labeled pulvinostriatal terminals preferentially innervate the matrix. Electron microscopy revealed that the postsynaptic targets of tracer-labeled pulvino-striatal and pulvino-amygdala terminals are spines, demonstrating that the pulvinar nucleus projects to the spiny output cells of the striatum matrix and the lateral amygdala, potentially relaying: 1 topographic visual information from SC to striatum to aid in guiding precise movements, and 2 nontopographic visual information from SC to the amygdala alerting the animal to potentially dangerous visual images.

  16. The effect of chronic stress in pregnant mothers on the responsiveness to morphine in mice: a behavioral sensitization study

    Directory of Open Access Journals (Sweden)

    zahra Nazari

    2008-10-01

    Full Text Available Nazari Z1, Sahraei H2, Sadoughi M3 1. MSc in Animal Biology (physiology trend, Lorestan Education Organization, Khorramabad, Iran 2. Assistant Professor, Department of Physiology, Faculty of Medicine, Baghyatallah University of Mesical Sciences, Tehran, Iran 3. Assistant Professor, Department of Biology, Faculty of Science, North Tehran Branch, Islamic Azad University, Tehran, Iran Abstract Background: The mechanisms which are plots for individuals willing to use Morphine are not yet recognized. Carried out researches indicated that tendency to narcotics is increased during stress or after it. In this research we studied the desire change of the second generation to morphine using induced restraint stress which is a kind of behavioral sensitization. Materials and methods: This research was a kind of experimental interferer. At first mice were crossed after insuring about their pregnancy, Sub stress was put on them using special instruments. Some of the embryos head was cut to be studied histologically. After maturing their embryos in order to clarify their left and right handedness to be studied using T-Maze and they were compared with the control group. In order to find the effectiveness of the administrated acute morphine, five groups of stressed and non-stressed were chosen Both groups were divided into five: a control (without being injected, saline, Morphine 1 mg/kg, morphine 10 mg/kg and morphine 50 mg/kg. They were studied. Movement measuring done after being injected by open filled. Mentioned groups in the previous experiment, In order to determine their previous induced sensitization, were reexamined 48 hours after being injected 1 mg/kg morphine. Results: Findings showed that the tissue thickness on the frontal cortex in stressed group was less than the control group (p<0.01 And also the number of stressed right handedness in males was less, but the number of left handedness in female ones was higher. Injection low dose morphine in

  17. Sensitization behaviour of modified 316N and 316L stainless steel weld metals after complex annealing and stress relieving cycles

    International Nuclear Information System (INIS)

    Parvathavarthini, N.; Dayal, R.K.; Khatak, H.S.; Shankar, V.; Shanmugam, V.

    2006-01-01

    Sensitization behaviour of austenitic stainless steel weld metals prepared using indigenously developed modified 316N (C = 0.05%; N = 0.12%) and 316L (C = 0.02%; N = 0.07%) electrodes was studied. Detailed optical and scanning electron microscopic examination was carried out to understand the microstructural changes occurring in the weld metal during isothermal exposure at various temperatures ranging from 500 deg. C to 850 deg. C (773-1123 K). Based on these studies the mechanism of sensitization in the austenite-ferrite weld metal has been explained. Time-temperature-sensitization (TTS) diagrams were established using ASTM A262 Practice E test. From the TTS diagrams, critical cooling rate (CCR) above which there is no risk of sensitization was calculated for both materials. The heating/cooling rates to be followed for avoiding sensitization during heat treatment cycles consisting of solution-annealing and stress-relieving in fabrication of welded components of AISI 316LN stainless steel (SS) were estimated taking into account the soaking time and the number of times the component undergoes thermal excursions in the sensitization regime. The results were validated by performing controlled heating and cooling heat treatment trials on welded specimens

  18. Attentional Avoidance is Associated with Increased Pain Sensitivity in Patients with Chronic Posttraumatic Pain and Comorbid Posttraumatic Stress

    DEFF Research Database (Denmark)

    Harvold, Mathea; MacLeod, Colin; Vaegter, Henrik Bjarke

    2018-01-01

    posttraumatic pain patients is unknown. This study investigated AB for linguistic pain- and trauma-related stimuli, and clinical and thermal sensitivity in patients with chronic posttraumatic pain with and without PTSD. METHODS: Thirty-four patients with chronic posttraumatic cervical pain performed the visual......OBJECTIVES: Posttraumatic stress disorder (PTSD) is common in chronic posttraumatic pain. Theoretical models suggest that attentional biases (AB) contribute to the development and maintenance of chronic pain and PTSD, however, the influence of AB on clinical and heat pain sensitivity in chronic...... attentional probe task assessing patterns of selective attentional responding to trauma cues and to pain cues. The task used short (500 ms) and long (1250 ms) stimulus exposure durations to ensure sensitivity to both the orienting and maintenance of attention. Heat pain threshold (HPT) was assessed at the non-painful...

  19. Anxiolytic-Like Effects of Increased Ghrelin Receptor Signaling in the Amygdala

    DEFF Research Database (Denmark)

    Jensen, Morten; Ratner, Cecilia; Rudenko, Olga

    2016-01-01

    BACKGROUND: Besides the well-known effects of ghrelin on adiposity and food intake regulation, the ghrelin system has been shown to regulate aspects of behavior including anxiety and stress. However, the effect of virus-mediated overexpression of the ghrelin receptor in the amygdala has...... not previously been addressed directly. METHOD: First, we examined the acute effect of peripheral ghrelin administration on anxiety- and depression-like behavior using the open field, elevated plus maze, forced swim and tail suspension tests. Next, we examined the effect of peripheral ghrelin administration...... and ghrelin receptor deficiency on stress in a familiar and social environment using the Intellicage system. Importantly, we also used a novel approach to study ghrelin receptor signaling in the brain by overexpressing the ghrelin receptor in the amygdala. We examined the effect of ghrelin receptor...

  20. Oxidative stress provokes distinct transcriptional responses in the stress-tolerant atr7 and stress-sensitive loh2 Arabidopsis thaliana mutants as revealed by multi-parallel quantitative real-time PCR analysis of ROS marker and antioxidant genes

    NARCIS (Netherlands)

    Mehterov, Nikolay; Balazadeh, Salma; Hille, Jacques; Toneva, Valentina; Mueller-Roeber, Bernd; Gechev, Tsanko

    2012-01-01

    The Arabidopsis thaliana atr7 mutant is tolerant to oxidative stress induced by paraquat (PQ) or the catalase inhibitor aminotriazole (AT), while its original background loh2 and wild-type plants are sensitive. Both, AT and PQ which stimulate the intracellular formation of H2O2 or superoxide anions,

  1. Down-regulation of OsSPX1 causes high sensitivity to cold and oxidative stresses in rice seedlings.

    Directory of Open Access Journals (Sweden)

    Chunchao Wang

    Full Text Available Rice SPX domain gene, OsSPX1, plays an important role in the phosphate (Pi signaling network. Our previous work showed that constitutive overexpression of OsSPX1 in tobacco and Arabidopsis plants improved cold tolerance while also decreasing total leaf Pi. In the present study, we generated rice antisense and sense transgenic lines of OsSPX1 and found that down-regulation of OsSPX1 caused high sensitivity to cold and oxidative stresses in rice seedlings. Compared to wild-type and OsSPX1-sense transgenic lines, more hydrogen peroxide accumulated in seedling leaves of OsSPX1-antisense transgenic lines for controls, cold and methyl viologen (MV treatments. Glutathione as a ROS scavenger could protect the antisense transgenic lines from cold and MV stress. Rice whole genome GeneChip analysis showed that some oxidative-stress marker genes (e.g. glutathione S-transferase and P450s and Pi-signaling pathway related genes (e.g. OsPHO2 were significantly down-regulated by the antisense of OsSPX1. The microarray results were validated by real-time RT-PCR. Our study indicated that OsSPX1 may be involved in cross-talks between oxidative stress, cold stress and phosphate homeostasis in rice seedling leaves.

  2. Emotion and cognition in high and low stress sensitive mouse strains: a combined neuroendocrine and behavioral study in BALB/c and C57BL/6J mice

    Directory of Open Access Journals (Sweden)

    Vera Brinks

    2007-12-01

    Full Text Available Emotionally arousing experiences and stress influence cognitive processes and vice versa. Understanding the relations and interactions between these three systems forms the core of this study. We tested two inbred mouse strains (BALB/c, C57BL/6J; male; 3-month-old for glucocorticoid stress system markers (expression of MR and GR mRNA and protein in hippocampus, amygdala, and prefrontal cortex; blood plasma corticosterone, used behavioral tasks for emotions and cognitive performance (elevated plus maze, holeboard to assess the interdependence of these factors. We hypothesize that BALB/c mice have a stress-vulnerable neuroendocrine phenotype and that emotional expressions in BALB/c and C57BL/6J mice will differentially contribute to learning and memory. We applied factor analyses on emotional and cognitive parameters to determine the behavioral structure of BALB/c and C57BL/6J mice. Glucocorticoid stress system markers indeed show that BALB/c mice are more stress-vulnerable than C57BL/6J mice. Moreover, emotional and explorative factors differed between naïve BALB/c and C57BL/6J mice. BALB/c mice display high movement in anxiogenic zones and high risk assessment, while C57BL/6J mice show little movement in anxiogenic zones and display high vertical exploration. Furthermore, BALB/c mice are superior learners, showing learning related behavior which is highly structured and emotionally biased when exposed to a novel or changing situation. In contrast, C57BL/6J mice display a rather ‘‘chaotic’’ behavioral structure during learning in absence of an emotional factor. These results show that stress vulnerability coincides with more emotionality, which drives well orchestrated goal directed behavior to the benefit of cognition. Both phenotypes have their advantage depending on environmental demands.

  3. [Role of the Periaqueductal Gray Matter of the Midbrain in Regulation of Somatic Pain Sensitivity During Stress: Participation of Corticotropin-Releasing Factor and Glucocorticoid Hormones].

    Science.gov (United States)

    Yarushkina, N I; Filaretova, L P

    2015-01-01

    Periaqueductal gray matter of the midbrain (PAGM) plays a crucial role in the regulation of pain sensitivity under stress, involving in the stress-induced analgesia. A key hormonal system of adaptation under stress is the hypothalamic-pituitary-adrenocortical (HPA) axis. HPA axis's hormones, corticotropin-releasing factor (CRF) and glucocorticoids, are involved in stress-induced analgesia. Exogenous hormones of the HPA axis, similarly to the hormones produced under stress, may cause an analgesic effect. CRF-induced analgesia may be provided by glucocorticoid hormones. CRF and glucocorticoids-induced effects on somatic pain sensitivity may be mediated by PAGM. The aim of the review was to analyze the data of literature on the role of PAGM in the regulation of somatic pain sensitivity under stress and in providing of CRF and glucocorticoid-induced analgesia.

  4. The Effect of Sensitization on the Stress Corrosion Cracking of Aluminum Alloy 5456

    Science.gov (United States)

    2012-06-01

    hydrolysis of the aluminum and magnesium produced by the reactions shown in Equations (6–7) can lead to acidification within the crack, and as a...addition of a residual compressive stress. There are several ways of adding residual compressive stresses by way of permanent plastic deformation to...was to propagate the initial crack outside of any plastic zone created by the cyclic loading at the higher ∆K. The fatigue crack propagation was

  5. Sensitivity Analysis for Residual Stress on DVI (Direct Vessel Injection) Nozzle Welded Joint

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Byeong Wook; Chung, Sung Ho; Lee, Jung Hun; Kim, Oak Sug [DOOSAN Heavy Industries and Construction Co. LTD, Reactor Design Team, 555 Guygok-dong Changwon (Korea, Republic of)

    2008-07-01

    Generally, any welding process produces high compressive or tensile residual stresses in the heat affected zone depending on the method, shape and procedures of the weldment. In particular, the tensile residual stresses have a considerable effect on the material strength, fatigue strength and corrosion cracking. For this reason, it is important that some knowledge of the internal stress state be deduced either from measurements or from modeling predictions. In this study, the residual stresses after a multi-pass welding process for DVI nozzle welding joint were evaluated by a numerical simulation method. The welding joint considered three weld joint angles of 40 deg., 6 deg. and 2 deg. Computations were made using a 2-D finite element model based on the simulation of cooling from the heat treatment temperature to room temperature with two cooling conditions at the inside surface. In these results, it is shown that the residual stress increased at the inner surface, when water cooling was applied to the inner surface, and axial compressive residual stress increased at the inner surface when the joint angle was decreased. (authors)

  6. Sensitivity Analysis for Residual Stress on DVI (Direct Vessel Injection) Nozzle Welded Joint

    International Nuclear Information System (INIS)

    Noh, Byeong Wook; Chung, Sung Ho; Lee, Jung Hun; Kim, Oak Sug

    2008-01-01

    Generally, any welding process produces high compressive or tensile residual stresses in the heat affected zone depending on the method, shape and procedures of the weldment. In particular, the tensile residual stresses have a considerable effect on the material strength, fatigue strength and corrosion cracking. For this reason, it is important that some knowledge of the internal stress state be deduced either from measurements or from modeling predictions. In this study, the residual stresses after a multi-pass welding process for DVI nozzle welding joint were evaluated by a numerical simulation method. The welding joint considered three weld joint angles of 40 deg., 6 deg. and 2 deg. Computations were made using a 2-D finite element model based on the simulation of cooling from the heat treatment temperature to room temperature with two cooling conditions at the inside surface. In these results, it is shown that the residual stress increased at the inner surface, when water cooling was applied to the inner surface, and axial compressive residual stress increased at the inner surface when the joint angle was decreased. (authors)

  7. Stress

    Science.gov (United States)

    ... can be life-saving. But chronic stress can cause both physical and mental harm. There are at least three different types of stress: Routine stress related to the pressures of work, family, and other daily responsibilities Stress brought about ...

  8. 1HNMR-Based metabolomic profiling method to develop plasma biomarkers for sensitivity to chronic heat stress in growing pigs.

    Directory of Open Access Journals (Sweden)

    Samir Dou

    Full Text Available The negative impact of heat stress (HS on the production performances in pig faming is of particular concern. Novel diagnostic methods are needed to predict the robustness of pigs to HS. Our study aimed to assess the reliability of blood metabolome to predict the sensitivity to chronic HS of 10 F1 (Large White × Creole sire families (SF reared in temperate (TEMP and in tropical (TROP regions (n = 56±5 offsprings/region/SF. Live body weight (BW and rectal temperature (RT were recorded at 23 weeks of age. Average daily feed intake (AFDI and average daily gain were calculated from weeks 11 to 23 of age, together with feed conversion ratio. Plasma blood metabolome profiles were obtained by Nuclear Magnetic Resonance spectroscopy (1HNMR from blood samples collected at week 23 in TEMP. The sensitivity to hot climatic conditions of each SF was estimated by computing a composite index of sensitivity (Isens derived from a linear combination of t statistics applied to familial BW, ADFI and RT in TEMP and TROP climates. A model of prediction of sensitivity was established with sparse Partial Least Square Discriminant Analysis (sPLS-DA between the two most robust SF (n = 102 and the two most sensitive ones (n = 121 using individual metabolomic profiles measured in TEMP. The sPLS-DA selected 29 buckets that enabled 78% of prediction accuracy by cross-validation. On the basis of this training, we predicted the proportion of sensitive pigs within the 6 remaining families (n = 337. This proportion was defined as the predicted membership of families to the sensitive category. The positive correlation between this proportion and Isens (r = 0.97, P < 0.01 suggests that plasma metabolome can be used to predict the sensitivity of pigs to hot climate.

  9. Impaired fear extinction in serotonin transporter knockout rats is associated with increased 5-hydroxymethylcytosine in the amygdala

    NARCIS (Netherlands)

    Shan, L.; Guo, Hang-Yuan; van den Heuvel, Corina N A M; van Heerikhuize, J.J.; Homberg, Judith R

    2018-01-01

    AIMS: One potential risk factor for posttraumatic stress disorder (PTSD) involves the low activity (short; s) allelic variant of the serotonin transporter-linked polymorphic region (5-HTTLPR), possibly due to reduced prefrontal control over the amygdala. Evidence shows that DNA

  10. Mitochondrial Gene Expression Profiles and Metabolic Pathways in the Amygdala Associated with Exaggerated Fear in an Animal Model of PTSD.

    Science.gov (United States)

    Li, He; Li, Xin; Smerin, Stanley E; Zhang, Lei; Jia, Min; Xing, Guoqiang; Su, Yan A; Wen, Jillian; Benedek, David; Ursano, Robert

    2014-01-01

    The metabolic mechanisms underlying the development of exaggerated fear in post-traumatic stress disorder (PTSD) are not well defined. In the present study, alteration in the expression of genes associated with mitochondrial function in the amygdala of an animal model of PTSD was determined. Amygdala tissue samples were excised from 10 non-stressed control rats and 10 stressed rats, 14 days post-stress treatment. Total RNA was isolated, cDNA was synthesized, and gene expression levels were determined using a cDNA microarray. During the development of the exaggerated fear associated with PTSD, 48 genes were found to be significantly upregulated and 37 were significantly downregulated in the amygdala complex based on stringent criteria (p metabolism, one with transcriptional factors, and one with chromatin remodeling. Thus, informatics of a neuronal gene array allowed us to determine the expression profile of mitochondrial genes in the amygdala complex of an animal model of PTSD. The result is a further understanding of the metabolic and neuronal signaling mechanisms associated with delayed and exaggerated fear.

  11. The influence of negative life events on hippocampal and amygdala volumes in old age: a life-course perspective

    NARCIS (Netherlands)

    Gerritsen, L.; Kalpouzos, G.; Westman, E.; Simmons, A.; Wahlund, L.O.; Backman, L.; Fratiglioni, L.; Wang, H.X.

    2015-01-01

    Background. Psychosocial stress has been related to changes in the nervous system, with both adaptive and maladaptive consequences. The aim of this study was to examine the relationship of negative events experienced throughout the entire lifespan and hippocampal and amygdala volumes in older

  12. Altered cortical-amygdala coupling in social anxiety disorder during the anticipation of giving a public speech

    NARCIS (Netherlands)

    Cremers, H.R.; Veer, I.M.; Spinhoven, P.; Rombouts, S.A.R.B.; Yarkoni, T.; Wager, T.D.; Roelofs, K.

    2015-01-01

    Background. Severe stress in social situations is a core symptom of social anxiety disorder (SAD). Connectivity between the amygdala and cortical regions is thought to be important for emotion regulation, a function that is compromised in SAD. However, it has never been tested if and how this

  13. Emotional conflict and neuroticism: personality-dependent activation in the amygdala and subgenual anterior cingulate.

    Science.gov (United States)

    Haas, Brian W; Omura, Kazufumi; Constable, R Todd; Canli, Turhan

    2007-04-01

    The amygdala and subgenual anterior cingulate (AC) have been associated with anxiety and mood disorders, for which trait neuroticism is a risk factor. Prior work has not related individual differences in amygdala or subgenual AC activation with neuroticism. Functional magnetic resonance imaging was used to investigate changes in blood oxygen level-dependent signal within the amygdala and subgenual AC associated with trait neuroticism in a nonclinical sample of 36 volunteers during an emotional conflict task. Neuroticism correlated positively with amygdala and subgenual AC activation during trials of high emotional conflict, compared with trials of low emotional conflict. The subscale of neuroticism that reflected the anxious form of neuroticism (N1) explained a greater proportion of variance within the observed clusters than the subscale of neuroticism that reflected the depressive form of neuroticism (N3). Using a task that is sensitive to individual differences in the detection of emotional conflict, the authors have provided a neural correlate of the link between neuroticism and anxiety and mood disorders. This effect was driven to a greater extent by the anxious relative to the depressive characteristics of neuroticism and may constitute vulnerability markers for anxiety-related disorders. (c) 2007 APA, all rights reserved

  14. Reference frames for spatial frequency in face representation differ in the temporal visual cortex and amygdala.

    Science.gov (United States)

    Inagaki, Mikio; Fujita, Ichiro

    2011-07-13

    Social communication in nonhuman primates and humans is strongly affected by facial information from other individuals. Many cortical and subcortical brain areas are known to be involved in processing facial information. However, how the neural representation of faces differs across different brain areas remains unclear. Here, we demonstrate that the reference frame for spatial frequency (SF) tuning of face-responsive neurons differs in the temporal visual cortex and amygdala in monkeys. Consistent with psychophysical properties for face recognition, temporal cortex neurons were tuned to image-based SFs (cycles/image) and showed viewing distance-invariant representation of face patterns. On the other hand, many amygdala neurons were influenced by retina-based SFs (cycles/degree), a characteristic that is useful for social distance computation. The two brain areas also differed in the luminance contrast sensitivity of face-responsive neurons; amygdala neurons sharply reduced their responses to low luminance contrast images, while temporal cortex neurons maintained the level of their responses. From these results, we conclude that different types of visual processing in the temporal visual cortex and the amygdala contribute to the construction of the neural representations of faces.

  15. Mesolimbic dopaminergic supersensitivity following electrical kindling of the amygdala

    International Nuclear Information System (INIS)

    Csernansky, J.G.; Mellentin, J.; Beauclair, L.; Lombrozo, L.

    1988-01-01

    Limbic seizures developed in rats following daily electrical stimulation of the basolateral nucleus of the amygdala. Animals were designated as kindled after five complete (stage 5) behavioral seizures were observed. A subgroup, designated as superkindled, received three additional weeks of electrical stimulations. Kindled rats were significantly subsensitive to the stereotypy-inducing effects of apomorphine, a direct dopamine agonist, compared to controls. Superkindled rats were supersensitive to the effects of apomorphine. However, both kindled and superkindled rats demonstrated an increase in 3 H-spiperone Bmax values, reflecting dopamine D2-receptor densities, in the nucleus accumbens ipsilateral to the stimulating electrode. The number of interictal spikes recorded from the stimulating amygdaloid electrode during the last week of kindling was correlated with changes in apomorphine sensitivity in individual animals

  16. Genetic component of sensitivity to heat stress for nonreturn rate of Brazilian Holstein cattle.

    Science.gov (United States)

    Santana, M L; Bignardi, A B; Stefani, G; El Faro, L

    2017-08-01

    The objectives of the present study were: 1) to investigate variation in the genetic component of heat stress for nonreturn rate at 56 days after first artificial insemination (NR56); 2) to identify and characterize the genotype by environment interaction (G × E) due to heat stress for NR56 of Brazilian Holstein cattle. A linear random regression model (reaction norm model) was applied to 51,748 NR56 records of 28,595 heifers and multiparous cows. The decline in NR56 due to heat stress was more pronounced in milking cows compared to heifers. The age of females at first artificial insemination and temperature-humidity index (THI) exerted an important influence on the genetic parameters of NR56. Several evidence of G × E on NR56 were found as the high slope/intercept ratio and frequent intersection of reaction norms. Additionally, the genetic correlation between NR56 at opposite extremes of the THI scale reached estimates below zero, indicating that few of the same genes are responsible for NR56 under conditions of thermoneutrality and heat stress. The genetic evaluation and selection for NR56 in Holstein cattle reared under (sub)tropical conditions should therefore take into consideration the genetic variation on age at insemination and G × E due to heat stress. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. World Trade Center disaster and sensitization to subsequent life stress: A longitudinal study of disaster responders.

    Science.gov (United States)

    Zvolensky, Michael J; Farris, Samantha G; Kotov, Roman; Schechter, Clyde B; Bromet, Evelyn; Gonzalez, Adam; Vujanovic, Anka; Pietrzak, Robert H; Crane, Michael; Kaplan, Julia; Moline, Jacqueline; Southwick, Steven M; Feder, Adriana; Udasin, Iris; Reissman, Dori B; Luft, Benjamin J

    2015-06-01

    The current study examined the role of World Trade Center (WTC) disaster exposure (hours spent working on the site, dust cloud exposure, and losing friend/loved one) in exacerbating the effects of post-disaster life stress on posttraumatic stress disorder (PTSD) symptoms and overall functioning among WTC responders. Participants were 18,896 responders (8466 police officers and 10,430 non-traditional responders) participating in the WTC Health Program who completed an initial examination between July, 2002 and April, 2010 and were reassessed an average of two years later. Among police responders, there was a significant interaction, such that the effect of post-disaster life stress on later PTSD symptoms and overall functioning was stronger among police responders who had greater WTC disaster exposure (β's=.029 and .054, respectively, for PTSD symptoms and overall functioning). This moderating effect was absent in non-traditional responders. Across both groups, post-disaster life stress also consistently was related to the dependent variables in a more robust manner than WTC exposure. The present findings suggest that WTC exposure may compound post-disaster life stress, thereby resulting in a more chronic course of PTSD symptoms and reduced functioning among police responders. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Effect of nitrogen concentration and temperature on the critical resolved shear stress and strain rate sensitivity of vanadium

    International Nuclear Information System (INIS)

    Rehbein, D.K.

    1980-08-01

    The critical resolved shear stress and strain rate sensitivity were measured over the temperature range from 77 to 400 0 K for vanadium-nitrogen alloys containing from 0.0004 to 0.184 atom percent nitrogen. These properties were found to be strongly dependent on both the nitrogen concentration and temperature. The following observations were seen in this investigation: the overall behavior of the alloys for the temperature and concentration range studied follows a form similar to that predicted; the concentration dependence of the critical resolved shear stress after subtracting the hardening due to the pure vanadium lattice obeys Labusch's c/sup 2/3/ relationship above 200 0 K and Fleischer's c/sup 1/2/ relationship below 200 0 K; the theoretical predictions of Fleischer's model for the temperature dependence of the critical resolved shear stress are in marked disagreement with the behavior found; and the strain rate sensitivity, par. delta tau/par. deltaln γ, exhibits a peak at approximately 100 0 K that decreases in height as the nitrogen concentration increases. A similar peak has been observed in niobium by other investigators but the effect of concentration on the peak height is quite different

  19. Stress sensitivity interacts with depression history to predict depressive symptoms among youth: prospective changes following first depression onset.

    Science.gov (United States)

    Technow, Jessica R; Hazel, Nicholas A; Abela, John R Z; Hankin, Benjamin L

    2015-04-01

    Predictors of depressive symptoms may differ before and after the first onset of major depression due to stress sensitization. Dependent stressors, or those to which characteristics of individuals contribute, have been shown to predict depressive symptoms in youth. The current study sought to clarify how stressors' roles may differ before and after the first depressive episode. Adolescents (N = 382, aged 11 to 15 at baseline) were assessed at baseline and every 3 months over the course of 2 years with measures of stressors and depressive symptoms. Semi-structured interviews were conducted every 6 months to assess for clinically significant depressive episodes. Hierarchical linear modeling showed a significant interaction between history of depression and idiographic fluctuations in dependent stressors to predict prospective elevations of symptoms, such that dependent stressors were more predictive of depressive symptoms after onset of disorder. Independent stressors predicted symptoms, but the strength of the association did not vary by depression history. These results suggest a synthesis of dependent stress and stress sensitization processes that might maintain inter-episode depressive symptoms among youth with a history of clinical depression.

  20. Na/K-ATPase Signaling and Salt Sensitivity: The Role of Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Jiang Liu

    2017-03-01

    Full Text Available Other than genetic regulation of salt sensitivity of blood pressure, many factors have been shown to regulate renal sodium handling which contributes to long-term blood pressure regulation and have been extensively reviewed. Here we present our progress on the Na/K-ATPase signaling mediated sodium reabsorption in renal proximal tubules, from cardiotonic steroids-mediated to reactive oxygen species (ROS-mediated Na/K-ATPase signaling that contributes to experimental salt sensitivity.

  1. Amygdala habituation to emotional faces in adolescents with internalizing disorders, adolescents with childhood sexual abuse related PTSD and healthy adolescents

    Directory of Open Access Journals (Sweden)

    Bianca G. van den Bulk

    2016-10-01

    Full Text Available Adolescents with internalizing disorders and adolescents with childhood sexual abuse related post-traumatic stress disorder (CSA-related PTSD show a large overlap in symptomatology. In addition, brain research indicated hyper-responsiveness and sustained activation instead of habituation of amygdala activation to emotional faces in both groups. Little is known, however, about whether the same patterns of amygdala habituation are present in these two groups. The current study examined habituation patterns of amygdala activity to emotional faces (fearful, happy and neutral in adolescents with a DSM-IV depressive and/or anxiety disorder (N = 25, adolescents with CSA-related PTSD (N = 19 and healthy controls (N = 26. Behaviourally, the adolescents from the internalizing and CSA-related PTSD group reported more anxiety to fearful and neutral faces than adolescents from the control group and adolescents from the CSA-related PTSD group reacted slower compared to the internalizing group. At the whole brain level, there was a significant interaction between time and group within the left amygdala. Follow-up ROI analysis showed elevated initial activity in the amygdala and rapid habituation in the CSA-related PTSD group compared to the internalizing group. These findings suggest that habituation patterns of amygdala activation provide additional information on problems with emotional face processing. Furthermore, the results suggest there are differences in the underlying neurobiological mechanisms related to emotional face processing for adolescents with internalizing disorders and adolescents with CSA-related PTSD. Possibly CSA-related PTSD is characterized by a stronger primary emotional response driven by the amygdala.

  2. Amygdala habituation to emotional faces in adolescents with internalizing disorders, adolescents with childhood sexual abuse related PTSD and healthy adolescents.

    Science.gov (United States)

    van den Bulk, Bianca G; Somerville, Leah H; van Hoof, Marie-José; van Lang, Natasja D J; van der Wee, Nic J A; Crone, Eveline A; Vermeiren, Robert R J M

    2016-10-01

    Adolescents with internalizing disorders and adolescents with childhood sexual abuse related post-traumatic stress disorder (CSA-related PTSD) show a large overlap in symptomatology. In addition, brain research indicated hyper-responsiveness and sustained activation instead of habituation of amygdala activation to emotional faces in both groups. Little is known, however, about whether the same patterns of amygdala habituation are present in these two groups. The current study examined habituation patterns of amygdala activity to emotional faces (fearful, happy and neutral) in adolescents with a DSM-IV depressive and/or anxiety disorder (N=25), adolescents with CSA-related PTSD (N=19) and healthy controls (N=26). Behaviourally, the adolescents from the internalizing and CSA-related PTSD group reported more anxiety to fearful and neutral faces than adolescents from the control group and adolescents from the CSA-related PTSD group reacted slower compared to the internalizing group. At the whole brain level, there was a significant interaction between time and group within the left amygdala. Follow-up ROI analysis showed elevated initial activity in the amygdala and rapid habituation in the CSA-related PTSD group compared to the internalizing group. These findings suggest that habituation patterns of amygdala activation provide additional information on problems with emotional face processing. Furthermore, the results suggest there are differences in the underlying neurobiological mechanisms related to emotional face processing for adolescents with internalizing disorders and adolescents with CSA-related PTSD. Possibly CSA-related PTSD is characterized by a stronger primary emotional response driven by the amygdala. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Development of a stress-mode sensitive viscoelastic constitutive relationship for asphalt concrete: experimental and numerical modeling

    Science.gov (United States)

    Karimi, Mohammad M.; Tabatabaee, Nader; Jahanbakhsh, H.; Jahangiri, Behnam

    2017-08-01

    Asphalt binder is responsible for the thermo-viscoelastic mechanical behavior of asphalt concrete. Upon application of pure compressive stress to an asphalt concrete specimen, the stress is transferred by mechanisms such as aggregate interlock and the adhesion/cohesion properties of asphalt mastic. In the pure tensile stress mode, aggregate interlock plays a limited role in stress transfer, and the mastic phase plays the dominant role through its adhesive/cohesive and viscoelastic properties. Under actual combined loading patterns, any coordinate direction may experience different stress modes; therefore, the mechanical behavior is not the same in the different directions and the asphalt specimen behaves as an anisotropic material. The present study developed an anisotropic nonlinear viscoelastic constitutive relationship that is sensitive to the tension/compression stress mode by extending Schapery's nonlinear viscoelastic model. The proposed constitutive relationship was implemented in Abaqus using a user material (UMAT) subroutine in an implicit scheme. Uniaxial compression and indirect tension (IDT) testing were used to characterize the viscoelastic properties of the bituminous materials and to calibrate and validate the proposed constitutive relationship. Compressive and tensile creep compliances were calculated using uniaxial compression, as well as IDT test results, for different creep-recovery loading patterns at intermediate temperature. The results showed that both tensile creep compliance and its rate were greater than those of compression. The calculated deflections based on these IDT test simulations were compared with experimental measurements and were deemed acceptable. This suggests that the proposed viscoelastic constitutive relationship correctly demonstrates the viscoelastic response and is more accurate for analysis of asphalt concrete in the laboratory or in situ.

  4. Sensitivity to Temporal Reward Structure in Amygdala Neurons

    OpenAIRE

    Bermudez, Maria A.; Göbel, Carl; Schultz, Wolfram

    2012-01-01

    Summary The time of reward and the temporal structure of reward occurrence fundamentally influence behavioral reinforcement and decision processes [1–11]. However, despite knowledge about timing in sensory and motor systems [12–17], we know little about temporal mechanisms of neuronal reward processing. In this experiment, visual stimuli predicted different instantaneous probabilities of reward occurrence that resulted in specific temporal reward structures. Licking behavior demonstrated that...

  5. Reduced amygdala reactivity and impaired working memory during dissociation in borderline personality disorder.

    Science.gov (United States)

    Krause-Utz, Annegret; Winter, Dorina; Schriner, Friederike; Chiu, Chui-De; Lis, Stefanie; Spinhoven, Philip; Bohus, Martin; Schmahl, Christian; Elzinga, Bernet M

    2017-05-19

    Affective hyper-reactivity and impaired cognitive control of emotional material are core features of borderline personality disorder (BPD). A high percentage of individuals with BPD experience stress-related dissociation, including emotional numbing and memory disruptions. So far little is known about how dissociation influences the neural processing of emotional material in the context of a working memory task in BPD. We aimed to investigate whole-brain activity and amygdala functional connectivity (FC) during an Emotional Working Memory Task (EWMT) after dissociation induction in un-medicated BPD patients compared to healthy controls (HC). Using script-driven imagery, dissociation was induced in 17 patients ('BPD_D'), while 12 patients ('BPD_N') and 18 HC were exposed to neutral scripts during fMRI. Afterwards, participants performed the EWMT with neutral vs. negative IAPS pictures vs. no distractors. Main outcome measures were behavioral performance (reaction times, errors) and whole-brain activity during the EWMT. Psychophysiological interaction analysis was used to examine amygdala connectivity during emotional distraction. BPD patients after dissociation induction showed overall WM impairments, a deactivation in bilateral amygdala, and lower activity in left cuneus, lingual gyrus, and posterior cingulate than BPD_N, along with stronger left inferior frontal gyrus activity than HC. Furthermore, reduced amygdala FC with fusiform gyrus and stronger amygdala FC with right middle/superior temporal gyrus and left inferior parietal lobule was observed in BPD_D. Findings suggest that dissociation affects reactivity to emotionally salient material and WM. Altered activity in areas associated with emotion processing, memory, and self-referential processes may contribute to dissociative states in BPD.

  6. Amygdala response to negative images in postpartum vs nulliparous women and intranasal oxytocin

    OpenAIRE

    Rupp, Heather A.; James, Thomas W.; Ketterson, Ellen D.; Sengelaub, Dale R.; Ditzen, Beate; Heiman, Julia R.

    2012-01-01

    The neuroendocrine state of new mothers may alter their neural processing of stressors in the environment through modulatory actions of oxytocin on the limbic system. We predicted that amygdala sensitivity to negatively arousing stimuli would be suppressed in postpartum compared to nulliparous women and that this suppression would be modulated by administration of oxytocin nasal spray. We measured brain activation (fMRI) and subjective arousal in response to negatively arousing pictures in 29...

  7. Microstructural sensitivity of 316H austenitic stainless steel: Residual stress relaxation and grain boundary fracture

    Energy Technology Data Exchange (ETDEWEB)

    Chen, B., E-mail: b.chen@bristol.ac.uk [Department of Mechanical Engineering, University of Bristol, Bristol BS8 1TR (United Kingdom); Flewitt, P.E.J. [Interface Analysis Centre, University of Bristol, 121 St Michael' s Hill, Bristol BS2 8BS (United Kingdom); H.H. Wills Physics Laboratory, School of Physics, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Smith, D.J. [Department of Mechanical Engineering, University of Bristol, Bristol BS8 1TR (United Kingdom)

    2010-10-25

    Research highlights: {yields} Triaxial residual macro-stresses have been measured by neutron diffraction. {yields} Rates of stress relaxation are shown to be a function of the microstructure. {yields} Quantification of M{sub 23}C{sub 6} precipitation was undertaken by a novel approach. {yields} Intergranular M{sub 23}C{sub 6} precipitation promotes the potential to intergranular fracture. {yields} Phosphorous segregation further enhances the potential to intergranular fracture. - Abstract: The present work considers the role of thermo-mechanical history on the generation and relaxation of residual stresses, typical of those encountered in Type 316H austenitic stainless steel thick section weldments. A series of thermo-mechanical pre-treatments have been developed and applied to simulate the critical microstructures observed within the heat affected zone of the thick section parent material. The through thickness distributions of the residual macro-stresses in cylindrical specimens have been measured by neutron diffraction and then the rates of the relaxation are shown to be a function of microstructure. The susceptibility to intergranular brittle fracture at a temperature of -196 deg. C is shown to be a function of M{sub 23}C{sub 6} carbide precipitates and phosphorous segregation at the grain boundaries. Finally, the link of the present study to the understanding of the reheat cracking is briefly discussed.

  8. Neural mechanisms underlying changes in stress-sensitivity across the menstrual cycle

    NARCIS (Netherlands)

    Ossewaarde, Lindsey; Hermans, Erno J.; van Wingen, Guido A.; Kooijman, Sabine C.; Johansson, Inga-Maj; Bäckström, Torbjörn; Fernández, Guillén

    2010-01-01

    Hormonal fluctuations across the menstrual cycle are thought to play a central role in premenstrual mood symptoms. In agreement, fluctuations in gonadal hormone levels affect brain processes in regions involved in emotion regulation. Recent findings, however, implicate psychological stress as a

  9. Neural mechanisms underlying changes in stress-sensitivity across the menstrual cycle.

    NARCIS (Netherlands)

    Ossewaarde, L.; Hermans, E.J.; Wingen, G.A. van; Kooijman, S.C.; Johansson, I.M.; Backstrom, T.; Fernandez, G.S.E.

    2010-01-01

    Hormonal fluctuations across the menstrual cycle are thought to play a central role in premenstrual mood symptoms. In agreement, fluctuations in gonadal hormone levels affect brain processes in regions involved in emotion regulation. Recent findings, however, implicate psychological stress as a

  10. Framing effect following bilateral amygdala lesion

    OpenAIRE

    Talmi, Deborah; Hurlemann, Ren?; Patin, Alexandra; Dolan, Raymond J.

    2010-01-01

    A paradigmatic example of an emotional bias in decision making is the framing effect, where the manner in which a choice is posed ? as a potential loss or a potential gain ? systematically biases an ensuing decision. Two fMRI studies have shown that the activation in the amygdala is modulated by the framing effect. Here, contrary to an expectation based on these studies, we show that two patients with Urbach-Wiethe (UW) disease, a rare condition associated with congenital, complete bilateral ...

  11. Low-power millimeter wave radiations do not alter stress-sensitive gene expression of chaperone proteins.

    Science.gov (United States)

    Zhadobov, M; Sauleau, R; Le Coq, L; Debure, L; Thouroude, D; Michel, D; Le Dréan, Y

    2007-04-01

    This article reports experimental results on the influence of low-power millimeter wave (MMW) radiation at 60 GHz on a set of stress-sensitive gene expression of molecular chaperones, namely clusterin (CLU) and HSP70, in a human brain cell line. Selection of the exposure frequency is determined by its near-future applications for the new broadband civil wireless communication systems including wireless local area networks (WLAN) for domestic and professional uses. Frequencies around 60 GHz are strongly attenuated in the earth's atmosphere and such radiations represent a new environmental factor. An exposure system operating in V-band (50-75 GHz) was developed for cell exposure. U-251 MG glial cell line was sham-exposed or exposed to MMW radiation for different durations (1-33 h) and two different power densities (5.4 microW/cm(2) or 0.54 mW/cm(2)). As gene expression is a multiple-step process, we analyzed chaperone proteins induction at different levels. First, using luciferase reporter gene, we investigated potential effect of MMWs on the activation of transcription factors (TFs) and gene promoter activity. Next, using RT-PCR and Western blot assays, we verified whether MMW exposure could alter RNA accumulation, translation, or protein stability. Experimental data demonstrated the absence of significant modifications in gene transcription, mRNA, and protein amount for the considered stress-sensitive genes for the exposure durations and power densities investigated. The main results of this study suggest that low-power 60 GHz radiation does not modify stress-sensitive gene expression of chaperone proteins. (c) 2006 Wiley-Liss, Inc.

  12. [MR spectroscopy of amygdala: investigation of methodology].

    Science.gov (United States)

    Tang, Hehan; Yue, Qiang; Gong, Qiyong

    2013-08-01

    This study was aimed to optimize the methods of magnetic resonance spectroscopy (MRS) to improve its quality in amygdala. Forty-three volunteers were examined at right and left amygdala using stimulated-echo acquisition mode (STEAM), and point-resolved spectroscopy series (PRESS) with and without saturation bands. The Cr-SNR, water-suppression level, water full width at half maximum (FWHM) and RMS noise of three sequences were compared. The results showed that (1) the Cr-SNR and water-suppression lelvel of PRESS with saturation bands were better than that of PRESS without saturation bands and STEAM (P<0.001); (2) the left and right RMS noise was significantly different both using PRESS with saturation bands and using STEAM (P<0.05); (3) there was a positive, significant correlation between Cr-SNR and voxel size (P<0.05). Therefore, PRESS with saturation bands is better than PRESS without saturation bands or STEAM for the spectroscopy of amygdala. It is also useful to make the voxel as big as possible to improve the spectral quality.

  13. Sensitivity analyses of finite element method for estimating residual stress of dissimilar metal multi-pass weldment in nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Song, Tae Kwang; Bae, Hong Yeol; Kim, Yun Jae [Korea Unviersity, Seoul (Korea, Republic of); Lee, Kyoung Soo; Park, Chi Yong [Korea Electric Power Research Institute, Daejeon (Korea, Republic of)

    2008-09-15

    In nuclear power plants, ferritic low alloy steel components were connected with austenitic stainless steel piping system through alloy 82/182 butt weld. There have been incidents recently where cracking has been observed in the dissimilar metal weld. Alloy 82/182 is susceptible to primary water stress corrosion cracking. Weld-induced residual stress is main factor for crack growth. Therefore exact estimation of residual stress is important for reliable operating. This paper presents residual stress computation performed by 6'' safety and relief nozzle. Based on 2 dimensional and 3 dimensional finite element analyses, effect of welding variables on residual stress variation is estimated for sensitivity analysis.

  14. The influence of negative life events on hippocampal and amygdala volumes in old age: a life-course perspective.

    Science.gov (United States)

    Gerritsen, L; Kalpouzos, G; Westman, E; Simmons, A; Wahlund, L O; Bäckman, L; Fratiglioni, L; Wang, H X

    2015-04-01

    Psychosocial stress has been related to changes in the nervous system, with both adaptive and maladaptive consequences. The aim of this study was to examine the relationship of negative events experienced throughout the entire lifespan and hippocampal and amygdala volumes in older adults. In 466 non-demented old adults (age range 60-96 years, 58% female), hippocampal and amygdala volumes were segmented using Freesurfer. Negative life events and the age at which these events occurred were assessed by means of a structured questionnaire. Using generalized linear models, hippocampal and amygdala volumes were estimated with life events as independent variables. The statistical analyses were adjusted for age, gender, intracranial volume, lifestyle factors, cardiovascular risk factors, depressive symptoms, and cognitive functioning. Total number of negative life events and of late-life events, but not of early-life, early-adulthood, or middle-adulthood events, was related to larger amygdala volume. There were interactions of early-life events with age and gender. Participants who reported two or more early-life events had significantly smaller amygdala and hippocampal volumes with increasing age. Furthermore, smaller hippocampal volume was found in men who reported two or more early-life events, but not in women. These results suggest that the effect of negative life events on the brain depends on the time when the events occurred, with the strongest effects observed during the critical time periods of early and late life.

  15. Amygdala lesions in rhesus macaques decrease attention to threat

    Science.gov (United States)

    Dal Monte, Olga; Costa, Vincent D.; Noble, Pamela L.; Murray, Elisabeth A.; Averbeck, Bruno B.

    2015-01-01

    Evidence from animal and human studies has suggested that the amygdala plays a role in detecting threat and in directing attention to the eyes. Nevertheless, there has been no systematic investigation of whether the amygdala specifically facilitates attention to the eyes or whether other features can also drive attention via amygdala processing. The goal of the present study was to examine the effects of amygdala lesions in rhesus monkeys on attentional capture by specific facial features, as well as gaze patterns and changes in pupil dilation during free viewing. Here we show reduced attentional capture by threat stimuli, specifically the mouth, and reduced exploration of the eyes in free viewing in monkeys with amygdala lesions. Our findings support a role for the amygdala in detecting threat signals and in directing attention to the eye region of faces when freely viewing different expressions. PMID:26658670

  16. Activation of NF-κB in basolateral amygdala is required for memory reconsolidation in auditory fear conditioning.

    Science.gov (United States)

    Si, Jijian; Yang, Jianli; Xue, Lifen; Yang, Chenhao; Luo, Yixiao; Shi, Haishui; Lu, Lin

    2012-01-01

    Posttraumatic stress disorder (PTSD) is characterized by acute and chronic changes in the stress response, manifested as conditioned fear memory. Previously formed memories that are susceptible to disruption immediately after retrieval undergo a protein synthesis-dependent process to become persistent, termed reconsolidation, a process that is regulated by many distinct molecular mechanisms that control gene expression. Increasing evidence supports the participation of the transcription factor NF-κB in the different phases of memory. Here, we demonstrate that inhibition of NF-κB in the basolateral amygdala (BLA), but not central nucleus of the amygdala, after memory reactivation impairs the retention of amygdala-dependent auditory fear conditioning (AFC). We used two independent pharmacological strategies to disrupt the reconsolidation of AFC. Bilateral intra-BLA infusion of sulfasalazine, an inhibitor of IκB kinase that activates NF-κB, and bilateral intra-BLA infusion of SN50, a direct inhibitor of the NF-κB DNA-binding complex, immediately after retrieval disrupted the reconsolidation of AFC. We also found that systemic pretreatment with sodium butyrate, a histone deacetylase inhibitor that enhances histone acetylation, in the amygdala rescued the disruption of reconsolidation induced by NF-κB inhibition in the BLA. These findings indicate that NF-κB activity in the BLA is required for memory reconsolidation in AFC, suggesting that NF-κB might be a potential pharmacotherapy target for posttraumatic stress disorder.

  17. Activation of NF-κB in basolateral amygdala is required for memory reconsolidation in auditory fear conditioning.

    Directory of Open Access Journals (Sweden)

    Jijian Si

    Full Text Available Posttraumatic stress disorder (PTSD is characterized by acute and chronic changes in the stress response, manifested as conditioned fear memory. Previously formed memories that are susceptible to disruption immediately after retrieval undergo a protein synthesis-dependent process to become persistent, termed reconsolidation, a process that is regulated by many distinct molecular mechanisms that control gene expression. Increasing evidence supports the participation of the transcription factor NF-κB in the different phases of memory. Here, we demonstrate that inhibition of NF-κB in the basolateral amygdala (BLA, but not central nucleus of the amygdala, after memory reactivation impairs the retention of amygdala-dependent auditory fear conditioning (AFC. We used two independent pharmacological strategies to disrupt the reconsolidation of AFC. Bilateral intra-BLA infusion of sulfasalazine, an inhibitor of IκB kinase that activates NF-κB, and bilateral intra-BLA infusion of SN50, a direct inhibitor of the NF-κB DNA-binding complex, immediately after retrieval disrupted the reconsolidation of AFC. We also found that systemic pretreatment with sodium butyrate, a histone deacetylase inhibitor that enhances histone acetylation, in the amygdala rescued the disruption of reconsolidation induced by NF-κB inhibition in the BLA. These findings indicate that NF-κB activity in the BLA is required for memory reconsolidation in AFC, suggesting that NF-κB might be a potential pharmacotherapy target for posttraumatic stress disorder.

  18. The Mediating Roles of Rejection Sensitivity and Proximal Stress in the Association Between Discrimination and Internalizing Symptoms Among Sexual Minority Women.

    Science.gov (United States)

    Dyar, Christina; Feinstein, Brian A; Eaton, Nicholas R; London, Bonita

    2018-01-01

    The negative impact of discrimination on mental health among lesbian, gay, and bisexual populations has been well documented. However, the possible mediating roles of sexual orientation rejection sensitivity and rejection-based proximal stress in the association between discrimination and internalizing symptoms remain unclear. Rejection-based proximal stress is a subset of proximal stressors that are theorized to arise from concerns about and expectations of sexual orientation-based rejection and discrimination. Drawing on minority stress theory, we tested potential mediating effects using indirect effects structural equation modeling in a sample of 300 sexual minority women. Results indicated that the indirect effect of discrimination on internalizing symptoms (a latent variable indicated by depression and anxiety symptoms) through sexual orientation rejection sensitivity and rejection-based proximal stress (a latent variable indicated by preoccupation with stigma, concealment motivation, and difficulty developing a positive sexual identity) was significant. Additionally, the indirect effects of discrimination on rejection-based proximal stress through sexual orientation rejection sensitivity and of sexual orientation rejection sensitivity on internalizing symptoms through rejection-based proximal stress were also significant. These findings indicate that sexual orientation rejection sensitivity plays an important role in contributing to rejection-based proximal stress and internalizing symptoms among sexual minority women.

  19. Fear extinction requires infralimbic cortex projections to the basolateral amygdala.

    Science.gov (United States)

    Bloodgood, Daniel W; Sugam, Jonathan A; Holmes, Andrew; Kash, Thomas L

    2018-03-06

    Fear extinction involves the formation of a new memory trace that attenuates fear responses to a conditioned aversive memory, and extinction impairments are implicated in trauma- and stress-related disorders. Previous studies in rodents have found that the infralimbic prefrontal cortex (IL) and its glutamatergic projections to the basolateral amygdala (BLA) and basomedial amygdala (BMA) instruct the formation of fear extinction memories. However, it is unclear whether these pathways are exclusively involved in extinction, or whether other major targets of the IL, such as the nucleus accumbens (NAc) also play a role. To address this outstanding issue, the current study employed a combination of electrophysiological and chemogenetic approaches in mice to interrogate the role of IL-BLA and IL-NAc pathways in extinction. Specifically, we used patch-clamp electrophysiology coupled with retrograde tracing to examine changes in neuronal activity of the IL and prelimbic cortex (PL) projections to both the BLA and NAc following fear extinction. We found that extinction produced a significant increase in the intrinsic excitability of IL-BLA projection neurons, while extinction appeared to reverse fear-induced changes in IL-NAc projection neurons. To establish a causal counterpart to these observations, we then used a pathway-specific Designer Receptors Exclusively Activated by Designer Drugs (DREADD) strategy to selectively inhibit PFC-BLA projection neurons during extinction acquisition. Using this approach, we found that DREADD-mediated inhibition of PFC-BLA neurons during extinction acquisition impaired subsequent extinction retrieval. Taken together, our findings provide further evidence for a critical contribution of the IL-BLA neural circuit to fear extinction.

  20. Acute sensitivity of three Cladoceran species to different types of microplastics in combination with thermal stress.

    Science.gov (United States)

    Jaikumar, Gayathri; Baas, Jan; Brun, Nadja R; Vijver, Martina G; Bosker, Thijs

    2018-08-01

    Microplastics (microplastics on freshwater ecosystems, especially under different environmental conditions. In the present study, the sensitivity of two temperate Cladoceran species, Daphnia magna and Daphnia pulex, and a smaller tropical species Ceriodaphnia dubia, to primary microplastics (PMP) and secondary (weathered) microplastics (SMP) was assessed. A prolonged acute toxicity assay (up to 72 or 96 h) was performed at 18°, 22°, and 26 °C, to determine the influence of temperature as an additional stressor and survival data were analysed using toxicokinetic-toxicodynamic (TK-TD) model. Acute sensitivity of D. magna and D. pulex to both PMP and SMP increased sharply with temperature, whereas that of C. dubia remained relatively stable across temperatures. C. dubia was the most sensitive species at 18 °C, followed by D. pulex and D. magna, which were of comparable sensitivity. However, this ranking was reversed at 26 °C as could be seen from the No Effect Concentration (NEC) estimates of the TK-TD model. In addition, SMP and PMP had a similar effect on D. magna and D. pulex, but PMP was more toxic to C. dubia. Effects on survival were strongly time-dependent and became substantially more severe after the standard 48 h test period. Our results indicate that sensitivity to microplastics may differ between species for different types of microplastics, and could be drastically influenced by temperature albeit at high exposure concentrations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Surface morphology of amygdala is associated with trait anxiety.

    Directory of Open Access Journals (Sweden)

    Shuyu Li

    Full Text Available Previous neuroimaging studies have suggested a role of amygdala in trait anxiety level, in which amygdala was typically treated as a whole. To date, it remains unknown whether the morphology of specific subregions of amygdala are associated with trait anxiety. Here, we employed a shape analysis approach to locate the association between its morphology and trait anxiety on the surface of amygdala. 24 healthy young participants were included. The boundary of amygdala for each subject was first manually outlined using high-resolution magnetic resonance (MR image, followed by 3D surface reconstruction and parameterization using spherical harmonic description. Two point-wise metrics, direct displacement between the individual surface and atlas surface and its normal projection, were used to quantify the surface morphology of amygdala. Statistical analysis revealed significant correlations between the two surface metrics and trait anxiety levels, which were located around the lateral and central nucleus of right amygdala. Our results provided localized information for the association between amygdala and trait anxiety, and suggested a central role of the lateral and central nucleus of right amygdala on trait anxiety.

  2. Amygdala Hyperactivity at Rest in Paranoid Individuals With Schizophrenia.

    Science.gov (United States)

    Pinkham, Amy E; Liu, Peiying; Lu, Hanzhang; Kriegsman, Michael; Simpson, Claire; Tamminga, Carol

    2015-08-01

    The amygdala's role in threat perception suggests that increased activation of this region may be related to paranoid ideation. However, investigations of amygdala function in paranoid individuals with schizophrenia, compared with both healthy individuals and nonparanoid individuals with schizophrenia, have consistently reported reduced task-related activation. The reliance of blood-oxygen-level-dependent functional MRI on a contrast between events and baseline, and the inability to quantitatively measure this baseline, may account for these counterintuitive findings. The present study tested for differences in baseline levels of amygdala activity in paranoid and nonparanoid individuals with schizophrenia using arterial spin labeling perfusion MRI. Resting cerebral blood flow (CBF) and task-related activation of the amygdala were measured in 25 healthy individuals, 16 individuals with schizophrenia who were actively paranoid at the time of scanning, and 16 individuals with schizophrenia who were not paranoid. Analysis of relative CBF values extracted from the amygdala bilaterally revealed significantly increased activity in the left amygdala in paranoid patient volunteers compared with healthy comparison subjects and nonparanoid patient volunteers. Increased CBF was also evident in the right amygdala but did not reach the level of statistical significance. Paranoid volunteers also showed significantly decreased task-related activation of the amygdala compared with the two other groups. These findings suggest that amygdala hyperactivation may underlie paranoia in schizophrenia. Additionally, the reported differences between paranoid and nonparanoid patient volunteers emphasize the importance of considering symptom-based subgroups and baseline levels of activity in future investigations of neural activation in schizophrenia.

  3. Dysfunctional amygdala activation and connectivity with the prefrontal cortex in current cocaine users

    NARCIS (Netherlands)

    Crunelle, C.L.; Kaag, A.M.; van den Munkhof, H.E.; Reneman, L.; Homberg, J.R.; Sabbe, B.; van den Brink, W.; van Wingen, G.

    2015-01-01

    OBJECTIVES: Stimulant use is associated with increased anxiety and a single administration of dexamphetamine increases amygdala activation to biologically salient stimuli in healthy individuals. Here, we investigate how current cocaine use affects amygdala activity and amygdala connectivity with the

  4. Dysfunctional amygdala activation and connectivity with the prefrontal cortex in current cocaine users

    NARCIS (Netherlands)

    Crunelle, Cleo L.; Kaag, Anne Marije; van den Munkhof, Hanna E.; Reneman, Liesbeth; Homberg, Judith R.; Sabbe, Bernard; van den Brink, Wim; van Wingen, Guido

    2015-01-01

    Stimulant use is associated with increased anxiety and a single administration of dexamphetamine increases amygdala activation to biologically salient stimuli in healthy individuals. Here, we investigate how current cocaine use affects amygdala activity and amygdala connectivity with the prefrontal

  5. Diffusion-weighted MRI and quantitative biophysical modeling of hippocampal neurite loss in chronic stress.

    Directory of Open Access Journals (Sweden)

    Peter Vestergaard-Poulsen

    Full Text Available Chronic stress has detrimental effects on physiology, learning and memory and is involved in the development of anxiety and depressive disorders. Besides changes in synaptic formation and neurogenesis, chronic stress also induces dendritic remodeling in the hippocampus, amygdala and the prefrontal cortex. Investigations of dendritic remodeling during development and treatment of stress are currently limited by the invasive nature of histological and stereological methods. Here we show that high field diffusion-weighted MRI combined with quantitative biophysical modeling of the hippocampal dendritic loss in 21 day restraint stressed rats highly correlates with former histological findings. Our study strongly indicates that diffusion-weighted MRI is sensitive to regional dendritic loss and thus a promising candidate for non-invasive studies of dendritic plasticity in chronic stress and stress-related disorders.

  6. Stress sensitivity interacts with depression history to predict depressive symptoms among youth: Prospective changes following first depression onset

    Science.gov (United States)

    Technow, Jessica R.; Hazel, Nicholas A.; Abela, John R. Z.; Hankin, Benjamin L.

    2015-01-01

    Predictors of depressive symptoms may differ before and after the first onset of major depression due to stress sensitization. Dependent stressors, or those to which characteristics of individuals contribute, have been shown to predict depressive symptoms in youth. The current study sought to clarify how stressors’ roles may differ before and after the first depressive episode. Adolescents (N = 382, aged 11 to 15 at baseline) were assessed at baseline and every three months over the course of two years with measures of stressors and depressive symptoms. Semi-structured interviews were conducted every 6 months to assess for clinically significant depressive episodes. Hierarchical linear modeling showed a significant interaction between history of depression and idiographic fluctuations in dependent stressors to predict prospective elevations of symptoms, such that dependent stressors were more predictive of depressive symptoms after onset of disorder. Independent stressors predicted symptoms, but the strength of the association did not vary by depression history. These results suggest a synthesis of stress sensitization and generation processes that might maintain inter-episode depressive symptoms among youth with a history of clinical depression. PMID:25123081

  7. Age-Associated Impairments in Mitochondrial ADP Sensitivity Contribute to Redox Stress in Senescent Human Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Graham P. Holloway

    2018-03-01

    Full Text Available Summary: It remains unknown if mitochondrial bioenergetics are altered with aging in humans. We established an in vitro method to simultaneously determine mitochondrial respiration and H2O2 emission in skeletal muscle tissue across a range of biologically relevant ADP concentrations. Using this approach, we provide evidence that, although the capacity for mitochondrial H2O2 emission is not increased with aging, mitochondrial ADP sensitivity is impaired. This resulted in an increase in mitochondrial H2O2 and the fraction of electron leak to H2O2, in the presence of virtually all ADP concentrations examined. Moreover, although prolonged resistance training in older individuals increased muscle mass, strength, and maximal mitochondrial respiration, exercise training did not alter H2O2 emission rates in the presence of ADP, the fraction of electron leak to H2O2, or the redox state of the muscle. These data establish that a reduction in mitochondrial ADP sensitivity increases mitochondrial H2O2 emission and contributes to age-associated redox stress. : Holloway et al. show that an inability of ADP to decrease mitochondrial reactive oxygen species emission contributes to redox stress in skeletal muscle tissue of older individuals and that this process is not recovered following prolonged resistance-type exercise training, despite the general benefits of resistance training for muscle health. Keywords: mitochondria, aging, muscle, ROS, H2O2, ADP, respiration, bioenergetics, exercise, resistance training

  8. Sleep disturbances and severe stress as glial activators: key targets for treating central sensitization in chronic pain patients?

    Science.gov (United States)

    Nijs, Jo; Loggia, Marco L; Polli, Andrea; Moens, Maarten; Huysmans, Eva; Goudman, Lisa; Meeus, Mira; Vanderweeën, Luc; Ickmans, Kelly; Clauw, Daniel

    2017-08-01

    The mechanism of sensitization of the central nervous system partly explains the chronic pain experience in many patients, but the etiological mechanisms of this central nervous system dysfunction are poorly understood. Recently, an increasing number of studies suggest that aberrant glial activation takes part in the establishment and/or maintenance of central sensitization. Areas covered: This review focused on preclinical work and mostly on the neurobiochemistry studied in animals, with limited human studies available. Glial overactivation results in a low-grade neuroinflammatory state, characterized by high levels of BDNF, IL-1β, TNF-α, which in turn increases the excitability of the central nervous system neurons through mechanisms like long-term potentiation and increased synaptic efficiency. Aberrant glial activity in chronic pain might have been triggered by severe stress exposure, and/or sleeping disturbances, each of which are established initiating factors for chronic pain development. Expert opinion: Potential treatment avenues include several pharmacological options for diminishing glial activity, as well as conservative interventions like sleep management, stress management and exercise therapy. Pharmacological options include propentofylline, minocycline, β -adrenergic receptor antagonists, and cannabidiol. Before translating these findings from basic science to clinical settings, more human studies exploring the outlined mechanisms in chronic pain patients are needed.

  9. Extending the bounds of ‘steady’ RANS closures: Toward an instability-sensitive Reynolds stress model

    International Nuclear Information System (INIS)

    Jakirlić, S.; Maduta, R.

    2015-01-01

    Highlights: • A grid-spacing free, instability-sensitive Reynolds stress model is formulated. • The model is capable of capturing turbulence fluctuations. • Substantial improvement concerning proper turbulence activity enhancement is achieved. • The model is intensively validated in a series of 2D and 3D separating flows. • The model feasibility is also checked in some attached flows. - Abstract: The incapability of the conventional Unsteady RANS (Reynolds–Averaged Navier Stokes) models to adequately capture turbulence unsteadiness presents the prime motivation of the present work, which focuses on formulating an instability-sensitive, eddy-resolving turbulence model on the Second-Moment Closure level. The model scheme adopted, functioning as a ‘sub-scale’ model in the Unsteady RANS framework, represents a differential near-wall Reynolds stress model formulated in conjunction with the scale-supplying equation governing the homogeneous part of the inverse turbulent time scale ω h (ω h = ε h /k). The latter equation was straightforwardly obtained from the model equation describing the dynamics of the homogeneous part of the total viscous dissipation rate ε, defined as ε h = ε − 0.5ν∂ 2 k/(∂x j ∂x j ) (Jakirlic and Hanjalic, 2002), by applying the derivation rules to the expression for ω h . The model capability to account for vortex length and time scales variability was enabled through an additional term in the corresponding length-scale determining equation, providing a selective enhancement of its production, pertinent particularly to the highly unsteady separated shear layer region, modeled in terms of the von Karman length scale (comprising the second derivative of the velocity field) in line with the SAS (Scale-Adaptive Simulation) proposal (Menter and Egorov, 2010). The present model formulation, termed as SRANS model (Sensitized RANS), does not comprise any parameter depending explicitly on grid spacing. The predictive

  10. Epigenetic basis of sensitization to stress, affective episodes, and stimulants: implications for illness progression and prevention.

    Science.gov (United States)

    Post, Robert M

    2016-06-01

    The process of sensitization (increased responsivity) to the recurrence of stressors, affective episodes, and bouts of substance abuse that can drive illness progression in the recurrent affective disorders requires a memory of and increased reactivity to the prior exposures. A wealth of studies now supports the postulate that epigenetic mechanisms underlie both normal and pathological memory processes. We selectively reviewed the literature pertinent to the role of epigenetics in behavioral sensitization phenomena and discuss its clinical implications. Epigenetics means above genetics and refers to environmental effects on the chemistry of DNA, histones (around which DNA is wound), and microRNA that change how easily genes are turned on and off. The evidence supports that sensitization to repeated stressor, affective episodes, and substance is likely based on epigenetic mechanisms and that these environmentally based processes can then become targets for prevention, early intervention, and ongoing treatment. Sensitization processes are remediable or preventable risk factors for a poor illness outcome and deserve increased clinical, public health, and research attention in the hopes of making the recurrent unipolar and bipolar affective disorders less impairing, disabling, and lethal by suicide and increased medical mortality. The findings that epigenetic chemical marks, which change in the most fundamental way how genes are regulated, mediate the long-term increased responsivity to recurrent stressors, mood episodes, and bouts of substance abuse should help change how the affective disorders are conceptualized and move treatment toward earlier, more comprehensive, and sustained pharmacoprophylaxis. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. A Sensitive Sensor Cell Line for the Detection of Oxidative Stress Responses in Cultured Human Keratinocytes

    Directory of Open Access Journals (Sweden)

    Ute Hofmann

    2014-06-01

    Full Text Available In the progress of allergic and irritant contact dermatitis, chemicals that cause the generation of reactive oxygen species trigger a heat shock response in keratinocytes. In this study, an optical sensor cell line based on cultured human keratinocytes (HaCaT cells expressing green fluorescent protein (GFP under the control of the stress-inducible HSP70B’ promoter were constructed. Exposure of HaCaT sensor cells to 25 µM cadmium, a model substance for oxidative stress induction, provoked a 1.7-fold increase in total glutathione and a ~300-fold induction of transcript level of the gene coding for heat shock protein HSP70B’. An extract of Arnica montana flowers resulted in a strong induction of the HSP70B’ gene and a pronounced decrease of total glutathione in keratinocytes. The HSP70B’ promoter-based sensor cells conveniently detected cadmium-induced stress using GFP fluorescence as read-out with a limit of detection of 6 µM cadmium. In addition the sensor cells responded to exposure of cells to A. montana extract with induction of GFP fluorescence. Thus, the HaCaT sensor cells provide a means for the automated detection of the compromised redox status of keratinocytes as an early indicator of the development of human skin disorders and could be applied for the prediction of skin irritation in more complex in vitro 3D human skin models and in the development of micro-total analysis systems (µTAS that may be utilized in dermatology, toxicology, pharmacology and drug screenings.

  12. Fetal Stress and Programming of Hypoxic/Ischemic-Sensitive Phenotype in the Neonatal Brain: Mechanisms and Possible Interventions

    Science.gov (United States)

    Li, Yong; Gonzalez, Pablo; Zhang, Lubo

    2012-01-01

    Growing evidence of epidemiological, clinical and experimental studies has clearly shown a close link between adverse in utero environment and the increased risk of neurological, psychological and psychiatric disorders in later life. Fetal stresses, such as hypoxia, malnutrition, and fetal exposure to nicotine, alcohol, cocaine and glucocorticoids may directly or indirectly act at cellular and molecular levels to alter the brain development and result in programming of heightened brain vulnerability to hypoxic-ischemic encephalopathy and the development of neurological diseases in the postnatal life. The underlying mechanisms are not well understood.