WorldWideScience

Sample records for stress restrained specimen

  1. Thermal stress estimation in relation to spalling of HSC restrained with steel rings at high temperatures

    Directory of Open Access Journals (Sweden)

    Tanibe T.

    2013-09-01

    Full Text Available This paper reports on an experimental study regarding the behavior of steel ring-restrained concrete in response to fire exposure. The study was conducted to enable estimation of thermal stress based on steel ring strain in such concrete under the conditions of a RABT 30 heating curve. The specimens used were made from high-strength concrete (Fc: 80 MPa restrained using steel rings with thicknesses of 0.5, 8 and 18 mm.

  2. Stress-induced release of GUT peptides in young women classified as restrained or unrestrained eaters.

    Science.gov (United States)

    Hilterscheid, Esther; Laessle, Reinhold

    2015-12-01

    Basal release of GUT peptides has been found to be altered in restrained eaters. Stress-induced secretion, however, has not yet been described, but could be a biological basis of overeating that exposes restrained eaters to a higher risk of becoming obese. The aim of the present study was to compare restrained and unrestrained eaters with respect to stress-induced release of the GUT peptides ghrelin and PYY. 46 young women were studied. Blood sampling for peptides was done before and after the Trier Social Stress Test. Ghrelin secretion after stress was significantly elevated in the restrained eaters, whereas no significant differences were detected for PYY. Stress-induced release of GUT peptides can be interpreted as a cause as well as a consequence of restrained eating.

  3. Simplified elastic-plastic analysis of reinforced concrete structures - design method for self-restraining stress

    International Nuclear Information System (INIS)

    Aihara, S.; Atsumi, K.; Ujiie, K.; Satoh, S.

    1981-01-01

    Self-restraining stresses generate not only moments but also axial forces. Therefore the moment and force equilibriums of cross section are considered simultaneously, in combination with other external forces. Thus, under this theory, two computer programs are prepared for. Using these programs, the design procedures which considered the reduction of self-restraining stress, become easy if the elastic design stresses, which are separated normal stresses and self-restraining stresses, are given. Numerical examples are given to illustrate the application of the simplified elastic-plastic analysis and to study its effectiveness. First this method is applied to analyze an upper shielding wall in MARK-2 type's Reactor building. The results are compared with those obtained by the elastic-plastic analysis of Finite Element Method. From this comparison it was confirmed that the method described, had adequate accuracy for re-bar design. As a second example, Mat slab of Reactor building is analyzed. The quantity of re-bars calculated by this method, comes to about two third of re-bars less than those required when self-restraining stress is considered as normal stress. Also, the self-restraining stress reduction factor is about 0.5. (orig./HP)

  4. Behaviour of biaxially restrained concretes under high temperature

    International Nuclear Information System (INIS)

    Thienel, K.-Ch.; Rostasy, F.S.

    1993-01-01

    Under asymmetric biaxial loading the major restraining stresses of concrete made with expanded shale or quarzite aggregates change between both loading axis. Differences between uniaxial and biaxial restraint vanish, if the restraint is normalized with respect to the ultimate strength at ambient temperature of the same stress ratio K. The type of aggregate and the mix proportions do affect the restraining stresses irrespective of the initial stress ratio K 0 . (author)

  5. Design of specimen for weld residual stress simulation

    International Nuclear Information System (INIS)

    Kim, Jin Weon; Park, Jong Sun; Lee, Kyung Soo

    2008-01-01

    The objective of this study is to design a laboratory specimen for simulating residual stress of circumferential butt welding of pipe. Specimen type and method for residual stress generation were proposed based on the review of prior studies and parametric finite element simulation. To prove the proposed specimen type and loading method, the residual stress was generated using the designed specimen by applying proposed method and was measured. The measured residual stress using X-ray diffraction reasonably agreed with the results of finite element simulation considered in the specimen design. Comparison of residual strains measured at several locations of specimen and given by finite element simulation also showed good agreement. Therefore, it is indicated that the designed specimen can reasonably simulate the residual stress of circumferential butt welding of pipe

  6. Parametric Assessment of Stress Development and Cracking in Internally Cured Restrained Mortars Experiencing Autogenous Deformations and Thermal Loading

    Directory of Open Access Journals (Sweden)

    Kambiz Raoufi

    2011-01-01

    Full Text Available A finite element model is used to examine how the properties of cementitious mortar are related to the stress development in the dual ring test. The results of this investigation are used to explain the thermal cracking behavior of mixtures containing prewetted lightweight aggregates (LWA by quantifying the contribution of several material properties individually. In addition to the beneficial effects of using the LWA as an internal curing agent to reduce the autogenous shrinkage of concrete, the LWA also helps to reduce the potential for thermal cracking due to a lower elastic modulus and increased stress relaxation. The rate of stress development, age of cracking, and magnitude of the temperature drop necessary to induce cracking in a dual ring specimen are dependent on a variety of factors, including the coefficient of thermal expansion of both the cementitious mortar and the restraining rings, elastic modulus of the mortar, creep effect of the mortar, and rate of thermal loading. Depending on the rate of cooling, cracking may or may not occur. The slowest rate of cooling (2.5∘C/h minimizes the effects of creep while cooling rates faster than 8∘C/h can produce a thermal gradient through the mortar cross-section that needs to be considered.

  7. Investigation of smooth specimen scc test procedures; variations in environment, specimen size, stressing frame, and stress state. [for high strength aluminum alloys

    Science.gov (United States)

    Lifka, B. W.; Sprowls, D. O.; Kelsey, R. A.

    1975-01-01

    The variables studied in the stress-corrosion cracking performance of high strength aluminum alloys were: (1) corrosiveness of the environment, (2) specimen size and stiffness of the stressing system, (3) interpretation of transgranular cracking, and (4) interaction of the state of stress and specimen orientation in a product with an anisotropic grain structure. It was shown that the probability of failure and time to fracture for a specimen loaded in direct tension are influenced by corrosion pattern, the stressing assembly stiffness, and the notch tensile strength of the alloy. Results demonstrate that the combination of a normal tension stress and a shear stress acting on the plane of maximum susceptibility in a product with a highly directional grain cause the greatest tendency for stress-corrosion cracking.

  8. Assessment of early-age cracking of high-performance concrete in restrained ring specimens

    Directory of Open Access Journals (Sweden)

    Quang-phu Nguyen

    2010-03-01

    Full Text Available High-performance concrete (HPC is stronger and more durable than conventional concrete. However, shrinkage and shrinkage cracking are common phenomena in HPC, especially early-age cracking. This study assessed early-age cracking of HPC for two mixtures using restrained ring tests. The two mixtures were produced with water/binder mass ratio (mW/mB of 0.22 and 0.40, respectively. The results show that, with greater steel thickness, the higher degree of restraint resulted in a higher interface pressure and earlier cracking. With steel thickness of 6 mm, 19 mm, and 30 mm, the age of cracking were, respectively, 12 days, 8 days, and 5.4 days with the mW/mB = 0.22 mixture; and 22.5 days, 12.6 days, and 7.1 days with the mW/mB = 0.40 mixture. Cases of the same steel thickness show that the ring specimens with a thicker concrete wall crack later. With the mW/mB = 0.22 mixture, concrete walls with thicknesses of 37.5 mm, 75 mm, and 112.5 mm cracked at 3.4 days, 8.0 days, and 9.8 days, respectively; with the mW/mB = 0.40 mixture, the ages of cracking were 7.1 days, 12.6 days, and 16.0 days, respectively.

  9. Restrained Shrinkage Cracking of Fiber-Reinforced High-Strength Concrete

    Directory of Open Access Journals (Sweden)

    Ashkan Saradar

    2018-02-01

    Full Text Available Concrete shrinkage and volume reduction happens due to the loss of moisture, which eventually results in cracks and more concrete deformation. In this study, the effect of polypropylene (PP, steel, glass, basalt, and polyolefin fibers on compressive and flexural strength, drying shrinkage, and cracking potential, using the ring test at early ages of high-strength concrete mixtures, was investigated. The restrained shrinkage test was performed on concrete ring specimens according to the ASTM C1581 standard. The crack width and age of restrained shrinkage cracking were the main parameters studied in this research. The results indicated that the addition of fiber increases the compressive strength by 16%, 20%, and 3% at the age of 3, 7, and 28 days, respectively, and increases the flexural toughness index up to 7.7 times. Steel and glass fibers had a better performance in flexural strength, but relatively poor action in the velocity reduction and cracking time of the restrained shrinkage. Additionally, cracks in all concrete ring specimens except for the polypropylene-containing mixture, was developed to a full depth crack. The mixture with polypropylene fiber indicated a reduction in crack width up to 62% and an increasing age cracking up to 84%.

  10. Stress-deformed state of cylindrical specimens during indirect tensile strength testing

    Directory of Open Access Journals (Sweden)

    Levan Japaridze

    2015-10-01

    Full Text Available In this study, the interaction between cylindrical specimen made of homogeneous, isotropic, and linearly elastic material and loading jaws of any curvature is considered in the Brazilian test. It is assumed that the specimen is diametrically compressed by elliptic normal contact stresses. The frictional contact stresses between the specimen and platens are neglected. The analytical solution starts from the contact problem of the loading jaws of any curvature and cylindrical specimen. The contact width, corresponding loading angle (2θ0, and elliptical stresses obtained through solution of the contact problems are used as boundary conditions for a cylindrical specimen. The problem of the theory of elasticity for a cylinder is solved using Muskhelishvili's method. In this method, the displacements and stresses are represented in terms of two analytical functions of a complex variable. In the main approaches, the nonlinear interaction between the loading bearing blocks and the specimen as well as the curvature of their surfaces and the elastic parameters of their materials are taken into account. Numerical examples are solved using MATLAB to demonstrate the influence of deformability, curvature of the specimen and platens on the distribution of the normal contact stresses as well as on the tensile and compressive stresses acting across the loaded diameter. Derived equations also allow calculating the modulus of elasticity, total deformation modulus and creep parameters of the specimen material based on the experimental data of radial contraction of the specimen.

  11. Standard practice for preparation and use of Bent-Beam stress-corrosion test specimens

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This practice covers procedures for designing, preparing, and using bent-beam stress-corrosion specimens. 1.2 Different specimen configurations are given for use with different product forms, such as sheet or plate. This practice applicable to specimens of any metal that are stressed to levels less than the elastic limit of the material, and therefore, the applied stress can be accurately calculated or measured (see Note 1). Stress calculations by this practice are not applicable to plastically stressed specimens. Note 1—It is the nature of these practices that only the applied stress can be calculated. Since stress-corrosion cracking is a function of the total stress, for critical applications and proper interpretation of results, the residual stress (before applying external stress) or the total elastic stress (after applying external stress) should be determined by appropriate nondestructive methods, such as X-ray diffraction (1). 1.3 Test procedures are given for stress-corrosion testing by ex...

  12. Quantification of Applied Stresses of C-Ring Specimens for Stress Corrosion Cracking Tests

    International Nuclear Information System (INIS)

    Kim, Woo Gon; Kim, Sun Jae; Rhee, Chang Kyu; Kuk, Il Hiun; Choi, Jong Ho

    1997-01-01

    For comparing their resistances for stress-corrosion cracking(SCC) in the K600-MA, K690-MA, and K600-TT tubes, C-ring specimens were fabricated with the various thermal-treatments to control the distributions of the precipitates like Cr-carbides. The bending stresses were analyzed to determine the amounts to make the stress quantitatively to all the C-ring samples, and then the stresses were calculated with the relation to the outer diameter(O.D) deflection(δ) of the C-rings. To measure accurately the bending strains of the C-ring specimens, the strain gauges were used and the compression test was also carried out. In the elastic region, the stresses in both the transverse and the circumferential directions were different with the locations of the strain gauges as attached at α= 30 .deg., 45 .deg., and 90 .deg. to the principal stress direction, but those in the longitudinal direction were independent of their attached locations. Calculated stresses from the strains obtained using the strain gauges were well agreed with the theoretical. In the plastic region over δ=1.0mm, the stresses for the TT tubes showed lower values of about 400MPa than those for the MA tubes. However, the stresses among the TT tubes showed almost the similar values in this region. Therefore, the states of the stresses applied to the C-ring specimens would be different with the material conditions, i.e, the chemical compositions, the thermal treatments such as MA and TT

  13. Development of stress relaxation measurement by a small size C-ring specimen method

    International Nuclear Information System (INIS)

    Shimanuki, Shizuka; Nakata, Kiyotomo; Kasahara, Shigeki; Kuniya, Jiro

    2002-01-01

    A stress relaxation measurement method has been developed by using C-ring specimens, and a specimen size effect has been evaluated taking radiation-induced stress relaxation into consideration. C-ring specimens were stressed by forcing a wedge in the gap. Giving an appropriate eccentric configuration in the half of the ring opposite the gap, the stress gradient along the circumference was eliminated in the section and the stress level could be varied by changing the gap spacing. The validity of the C-ring test method was confirmed by thermally stress relaxation experiments at annealing temperatures from 300 to 600degC for 1 min to 200 h in carbon steel: considerable stress relaxation could be measured for all levels of applied stress even at relatively low annealing temperatures. The relaxation results obtained from the C-ring test were in good agreement with those from a uniaxial tensile stress relaxation test. The smaller C-ring specimen with about 40 mm diameter, which is required for radiation-induced stress relaxation test, also showed adequate accuracy on stress relaxation at 600 to 830degC in stainless steel, compared with the large size C-ring specimen test. (author)

  14. Residual stress state in pipe cut ring specimens for fracture toughness testing

    Energy Technology Data Exchange (ETDEWEB)

    Damjanovic, Darko [J.J. Strossmayer Univ. of Osijek, Slavonski Brod (Croatia). Mechanical Engineering Faculty; Kozak, Drazan [Zagreb Univ. (Croatia). Dept. for Mechanical Design; Marsoner, Stefan [Materials Center, Leoben (Austria).; Gubeljak, Nenad [Maribor Univ. (Slovenia). Chair of Mechanics

    2017-07-01

    Thin-walled pipes are not suitable for measuring fracture toughness parameters of vital importance because longitudinal crack failure is the most common failure mode in pipes. This is due to the impossibility to manufacture standard specimens for measuring fracture toughness, such as SENB or CT specimens, from the thin wall of the pipe. Previous works noticed this problem, but until now, a good and convenient solution has not been found or developed. To overcome this problem, very good alternative solution was proposed, the so-called pipe ring notched bend specimen (PRNB) [1-5]. Until now, only the idealized geometry PRNB specimen is analyzed, i. e., a specimen which is not cut out from an actual pipe but produced from steel plate. Based on that, residual stresses are neglected along with the imperfections in geometry (elliptical and eccentricity). The aim of this research is to estimate the residual stress state(s) in real pipes used in the boiler industry produced by hot rolling technique. These types of pipes are delivered only in normalized condition, but not stress relieved. Therefore, there are residual stresses present due to the manufacturing technique, but also due to uneven cooling after the production process. Within this paper, residual stresses are estimated by three methods: the incremental hole drilling method (IHMD), X-ray diffraction (XRD) and the splitting method (SM). Knowing the residual stress state in the ring specimen, it is possible to assess their impact on fracture toughness measured on the corresponding PRNB specimen(s).

  15. Residual stress state in pipe cut ring specimens for fracture toughness testing

    International Nuclear Information System (INIS)

    Damjanovic, Darko; Kozak, Drazan; Marsoner, Stefan; Gubeljak, Nenad

    2017-01-01

    Thin-walled pipes are not suitable for measuring fracture toughness parameters of vital importance because longitudinal crack failure is the most common failure mode in pipes. This is due to the impossibility to manufacture standard specimens for measuring fracture toughness, such as SENB or CT specimens, from the thin wall of the pipe. Previous works noticed this problem, but until now, a good and convenient solution has not been found or developed. To overcome this problem, very good alternative solution was proposed, the so-called pipe ring notched bend specimen (PRNB) [1-5]. Until now, only the idealized geometry PRNB specimen is analyzed, i. e., a specimen which is not cut out from an actual pipe but produced from steel plate. Based on that, residual stresses are neglected along with the imperfections in geometry (elliptical and eccentricity). The aim of this research is to estimate the residual stress state(s) in real pipes used in the boiler industry produced by hot rolling technique. These types of pipes are delivered only in normalized condition, but not stress relieved. Therefore, there are residual stresses present due to the manufacturing technique, but also due to uneven cooling after the production process. Within this paper, residual stresses are estimated by three methods: the incremental hole drilling method (IHMD), X-ray diffraction (XRD) and the splitting method (SM). Knowing the residual stress state in the ring specimen, it is possible to assess their impact on fracture toughness measured on the corresponding PRNB specimen(s).

  16. Modelling of the Residual Stress State in a new Type of Residual Stress Specimen

    DEFF Research Database (Denmark)

    Jakobsen, Johnny; Andreasen, Jens Henrik

    2014-01-01

    forms the experimental case which is analysed. A FE model of the specimen is used for analysing the curing history and the residual stress build up. The model is validated against experimental strain data which are recorded by a Fibre Brag Grating sensor and good agreement has been achieved.......The paper presents a study on a new type residual stress specimen which is proposed as a simple way to conduct experimental validation for model predictions. A specimen comprising of a steel plate with circular hole embedded into a stack of CSM glass fibre and further infused with an epoxy resin...

  17. Prediction of retained residual stresses in laboratory fracture mechanics specimens extracted from welded components

    International Nuclear Information System (INIS)

    Hurlston, R.G.; Sherry, A.H.; James, P.; Sharples, J.K.

    2015-01-01

    The measurement of weld material fracture toughness properties is important for the structural integrity assessment of engineering components. However, welds can contain high levels of residual stress and these can be retained in fracture mechanics specimens, particularly when machined from non-stress relieved welds. Retained residual stresses can make the measurement of valid fracture toughness properties difficult. This paper describes the results of analytical work undertaken to investigate factors that can influence the magnitude and distribution of residual stresses retained in fracture mechanics specimen blanks extracted from as-welded ferritic and austenitic stainless steel plates. The results indicate that significant levels of residual stress can be retained in specimen blanks prior to notching, and that the magnitude and distribution of stress is dependent upon material properties, specimen geometry and size, and extraction location through the thickness of the weld. Finite element modelling is shown to provide a useful approach for estimating the level and distributions of retained residual stresses. A new stress partitioning approach has been developed to estimate retained stress levels and results compare favourably with FE analysis and available experimental data. The approach can help guide the selection of specimen geometry and machining strategies to minimise the level of residual stresses retained in fracture mechanics specimen blanks extracted from non stress-relieved welds and thus improve the measurement of weld fracture toughness properties. - Highlights: • A simplified method for generating realistic weld residual stresses has been developed. • It has been shown that significant levels of residual stress can be retained within laboratory fracture mechanics specimens. • The level and distribution is dependant upon material, specimen type, specimen size and extraction location. • A method has been developed to allow estimates of the

  18. Restrained shrinkage experiments on coated particle fuel compacts in the temperature range 600-1200 deg C

    International Nuclear Information System (INIS)

    Blackstone, R.; Veringa, H.J.; Loelgen, R.

    1976-05-01

    Information on irradiation induced creep in reactor graphite and in fuel compact material is an essential ingredient in the design of any reactor core layout, because the creep plasticity of these materials diminishes the stresses which are built up in the fuel element during reactor operation. The restrained shrinkage method in which the shrinkage of a dumbbell shaped creep specimen is restrained by a graphite material which shows less irradiation shrinkage, offers a good possibility of performing a large series of tensile creep experiments in a limited irradiation volume. The irradiations, evaluations and the results of a series of restrained shrinkage experiments in which six different materials were tested, of which five were dummy coated particle compacts and one pure matrix material are described and discussed. These materials were irradiated in the High Flux Reactor of the Euratom Joint Research Centre in Petten/Netherlands. The irradiations were performed in three successive capsules at irradiation temperatures of 600 deg C, 900 deg C, 1050 deg C and 1200 deg C up to a neutron fluence of maximum 3x10 21 n.cm 2 (DNE). The post-irradiation examinations yielded plastic strains up to 2,3%, and values for the radiation creep coefficient were calculated, ranging from 4 to 8.10 -12 at 600 deg C and 8 to 30.10 -12 at 1200 deg C always given per dyn.cm -2 tensile stresses and per 10 20 n.cm -2 fluence units. Generally it was found that the creep behavior of these materials and the temperature dependence of the creep process could be compared with those for normal reactor graphites

  19. An acceleration test for stress corrosion cracking using humped specimen

    International Nuclear Information System (INIS)

    Kamaya, Masayuki; Fukumura, Takuya; Totsuka, Nobuo

    2003-01-01

    By using the humped specimen, which is processed by the humped die, in the slow strain rate technique (SSRT) test, fracture facet due to stress corrosion cracking (SCC) can be observed in relatively short duration. Although the cold work and concentrated stress and strain caused by the characteristic shape of the specimen accelerate the SCC, to date these acceleration effects have not been examined quantitatively. In the present study, the acceleration effects of the humped specimen were examined through experiments and finite element analyses (FEA). The experiments investigated the SCC of alloy 600 in the primary water environment of a pressurized water reactor. SSRT tests were conducted using two kinds of humped specimen: one was annealed after hump processing in order to eliminate the cold work, and the other was hump processed after the annealing treatment. The work ratio caused by the hump processing and stress/strain conditions during SSRT test were evaluated by FEA. It was found that maximum work ratio of 30% is introduced by the hump processing and that the distribution of the work ratio is not uniform. Furthermore, the work ratio is influenced by the friction between the specimen and dies as well as by the shape of dies. It was revealed that not only the cold work but also the concentrated stress and strain during SSRT test accelerate the crack initiation and growth of the SCC. (author)

  20. Laser quench hardening of steel: Effects of superimposed elastic pre-stress on the hardness and residual stress distribution

    Science.gov (United States)

    Meserve, Justin

    Cold drawn AISI 4140 beams were LASER surface hardened with a 2 kW CO2 LASER. Specimens were treated in the free state and while restrained in a bending fixture inducing surface tensile stresses of 94 and 230 MPa. Knoop hardness indentation was used to evaluate the through thickness hardness distribution, and a layer removal methodology was used to evaluate the residual stress distribution. Results showed the maximum surface hardness attained was not affected by pre-stress during hardening, and ranged from 513 to 676 kg/mm2. The depth of effective hardening varied at different magnitudes of pre-stress, but did not vary proportionately to the pre-stress. The surface residual stress, coinciding with the maximum compressive residual stress, increased as pre-stress was increased, from 1040 MPa for the nominally treated specimens to 1270 MPa for specimens pre-stressed to 230 MPa. The maximum tensile residual stress observed in the specimens decreased from 1060 MPa in the nominally treated specimens to 760 MPa for specimens pre-stressed to 230 MPa. Similarly, thickness of the compressive residual stress region increased and the depth at which maximum tensile residual stress occurred increased as the pre-stress during treatment was increased Overall, application of tensile elastic pre-stress during LASER hardening is beneficial to the development of compressive residual stress in AISI 4140, with minimal impact to the hardness attained from the treatment. The newly developed approach for LASER hardening may support efforts to increase both the wear and fatigue resistance of parts made from hardenable steels.

  1. Neuropeptide Y and nestin expression in the hippocampal CA3 region following restrained and inverted stress in rats

    Institute of Scientific and Technical Information of China (English)

    Guogang Sun; Ailing Li; Bo Chen; Guangbi Fan; Hongwen Xiao; Yue Chen; Jie Xu; Ye Nie; Bing Zhang; Lin Gong

    2011-01-01

    Our preliminary study demonstrated that neuropeptide Y (NPY)/nestin-positive cells exhibit a consistent spatial distribution in the hippocampus of normal adult rats. However, following severe acute and chronic stress-induced impaired learning and memory, synchronous decreased expression of nestin and NPY takes place in the hippocampus, and the underlying mechanisms remain unclear. In the present study, acute and chronic stress rat models were established using combined restrained and inverted stress. Results showed that learning and memory significantly decreased in acute and chronic stress rats. In addition, hippocampal cells were damaged, in particular in the acute stress rats, and nestin and NPY expression, as well as the number of NPY/nestin-positive cells in the CA3 region, significantly decreased. Furthermore, mature neurofilament 200-positive neurons were absent in the chronic stress rats. The NPY and cytoskeletal protein system equally contributed to stress-induced early learning and memory deficits, as well as sustained cerebral injury in the adult hippocampus.

  2. Analysis of stress intensity factors for a new mechanical corrosion specimen

    International Nuclear Information System (INIS)

    Rassineux, B.; Crouzet, D.; Le Hong, S.

    1996-03-01

    Electricite de France is conducting a research program to determine corrosion cracking rates in the steam generators Alloy 600 tubes of the primary system. The objective is to correlate the cracking rates with the specimen stress intensity factor K I . One of the samples selected for the purpose of this study is the longitudinal notched specimen TEL (TEL: ''Tubulaire a Entailles Longitudinales''). This paper presents the analysis of the stress intensity factor and its experimental validation. The stress intensity factor has been evaluated for different loads using 3D finite element calculations with the Hellen-Parks and G(θ) methods. Both crack initiation and propagation are considered. As an assessment of the method, the numerical simulations are in good agreement with the fatigue crack growth rates measured experimentally for TEL and compact tension (CT) specimens. (authors). 8 refs., 6 figs., 2 tabs

  3. Stress field determination in an alloy 600 stress corrosion crack specimen

    International Nuclear Information System (INIS)

    Rassineux, B.; Labbe, T.

    1995-05-01

    In the context of EDF studies on stress corrosion cracking rates in the Alloy 600 steam generators tubes, we studied the influence of strain hardened surface layers on the different stages of cracking for a tensile smooth specimen (TLT). The stress field was notably assessed to try and explain the slow/rapid-propagation change observed beyond the strain hardened layers. The main difficulty is to simulate in a finite element model the inner and outer surfaces of these strain hardened layers, produced by the final manufacturing stages of SG tubes which have not been heat treated. In the model, the strain hardening is introduced by simulating a multi-layer material. Residual stresses are simulated by an equivalent fictitious thermomechanical calculation, realigned with respect to X-ray measurements. The strain hardening introduction method was validated by an analytical calculation giving identical results. Stress field evolution induced by specimen tensile loading were studied using an elastoplastic 2D finite element calculations performed with the Aster Code. The stress profile obtained after load at 660 MPa shows no stress discontinuity at the boundary between the strain hardened layer and the rest of the tube. So we propose that a complementary calculation be performed, taking into account the multi-cracked state of the strain hardened zones by means of a damage variable. In fact, this state could induce stress redistribution in the un-cracked area, which would perhaps provide an explanation of the crack-ground rate change beyond the strain hardened zone. The calculations also evidence the harmful effects of plastic strains on a strain hardened layer due to the initial state of the tube (not heat-treated), to grit blasting or to shot peening. The initial compressive stress condition of this surface layer becomes, after plastic strain, a tensile stress condition. These results are confirmed by laboratory test. (author). 10 refs., 18 figs., 9 tabs., 2 appends

  4. The effect of residual stresses induced by prestraining on fatigue life of notched specimens

    Science.gov (United States)

    Sadeler, R.; Ozel, A.; Kaymaz, I.; Totik, Y.

    2005-06-01

    The effect of tensile prestraining-induced residual stress on the fatigue life of notched steel parts was investigated. The study was performed on AISI 4140 steel. Rotating bending fatigue tests were carried out on semicircular notched specimens with different notch radii in the as-quenched and tempered conditions. Metallography of the specimens was performed by means of light optical microscopy. The finite-element method was used to evaluate the residual stress distribution near the notch region. Fatigue tests revealed fatigue life improvement for notched specimens, which changes depending on the notch radii and applied stress. Scanning electron microscopy was used to examine the fracture surfaces of the specimens.

  5. PCA Based Stress Monitoring of Cylindrical Specimens Using PZTs and Guided Waves

    Directory of Open Access Journals (Sweden)

    Jabid Quiroga

    2017-12-01

    Full Text Available Since mechanical stress in structures affects issues such as strength, expected operational life and dimensional stability, a continuous stress monitoring scheme is necessary for a complete integrity assessment. Consequently, this paper proposes a stress monitoring scheme for cylindrical specimens, which are widely used in structures such as pipelines, wind turbines or bridges. The approach consists of tracking guided wave variations due to load changes, by comparing wave statistical patterns via Principal Component Analysis (PCA. Each load scenario is projected to the PCA space by means of a baseline model and represented using the Q-statistical indices. Experimental validation of the proposed methodology is conducted on two specimens: (i a 12.7 mm ( 1 / 2 ″ diameter, 0.4 m length, AISI 1020 steel rod, and (ii a 25.4 mm ( 1 ″ diameter, 6m length, schedule 40, A-106, hollow cylinder. Specimen 1 was subjected to axial loads, meanwhile specimen 2 to flexion. In both cases, simultaneous longitudinal and flexural guided waves were generated via piezoelectric devices (PZTs in a pitch-catch configuration. Experimental results show the feasibility of the approach and its potential use as in-situ continuous stress monitoring application.

  6. Study of residual stresses in CT test specimens welded by electron beam

    Science.gov (United States)

    Papushkin, I. V.; Kaisheva, D.; Bokuchava, G. D.; Angelov, V.; Petrov, P.

    2018-03-01

    The paper reports result of residual stress distribution studies in CT specimens reconstituted by electron beam welding (EBW). The main aim of the study is evaluation of the applicability of the welding technique for CT specimens’ reconstitution. Thus, the temperature distribution during electron beam welding of a CT specimen was calculated using Green’s functions and the residual stress distribution was determined experimentally using neutron diffraction. Time-of-flight neutron diffraction experiments were performed on a Fourier stress diffractometer at the IBR-2 fast pulsed reactor in FLNP JINR (Dubna, Russia). The neutron diffraction data estimates yielded a maximal stress level of ±180 MPa in the welded joint.

  7. Empathy and reversed empathy of stress in mice.

    Directory of Open Access Journals (Sweden)

    Shigeru Watanabe

    Full Text Available Empathy is an emotional response to display of distress in others and reversed-empathy is an emotional response to non-distressed others in distressed subjects. Stress has memory enhancing effect on aversive experience. Here, I examine empathy and reversed empathy using the memory enhancing effects of stress in mice. Restrain stress enhanced aversive memory of a floor with electric shock, but restrain stress, with cage mates also restrained, reduced the enhancing effect. On the other hand, restrain stress with free-moving cage mates increased the memory enhancing effect, suggesting the stronger stress. This is the reversed-empathy. Level of corticosterone is the highest after the restrain with free-moving mates and lowest after the restrain with restrained mates.

  8. Estimation of stress distribution in ferromagnetic tensile specimens using low cost eddy current stress measurement system and BP neural network.

    Science.gov (United States)

    Li, Jianwei; Zhang, Weimin; Zeng, Weiqin; Chen, Guolong; Qiu, Zhongchao; Cao, Xinyuan; Gao, Xuanyi

    2017-01-01

    Estimation of the stress distribution in ferromagnetic components is very important for evaluating the working status of mechanical equipment and implementing preventive maintenance. Eddy current testing technology is a promising method in this field because of its advantages of safety, no need of coupling agent, etc. In order to reduce the cost of eddy current stress measurement system, and obtain the stress distribution in ferromagnetic materials without scanning, a low cost eddy current stress measurement system based on Archimedes spiral planar coil was established, and a method based on BP neural network to obtain the stress distribution using the stress of several discrete test points was proposed. To verify the performance of the developed test system and the validity of the proposed method, experiment was implemented using structural steel (Q235) specimens. Standard curves of sensors at each test point were achieved, the calibrated data were used to establish the BP neural network model for approximating the stress variation on the specimen surface, and the stress distribution curve of the specimen was obtained by interpolating with the established model. The results show that there is a good linear relationship between the change of signal modulus and the stress in most elastic range of the specimen, and the established system can detect the change in stress with a theoretical average sensitivity of -0.4228 mV/MPa. The obtained stress distribution curve is well consonant with the theoretical analysis result. At last, possible causes and improving methods of problems appeared in the results were discussed. This research has important significance for reducing the cost of eddy current stress measurement system, and advancing the engineering application of eddy current stress testing.

  9. Standard practice for preparation and use of direct tension stress-corrosion test specimens

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1985-01-01

    1.1 This practice covers procedures for designing, preparing, and using ASTM standard tension test specimens for investigating susceptibility to stress-corrosion cracking. Axially loaded specimens may be stressed quantitatively with equipment for application of either a constant load, constant strain, or with a continuously increasing strain. 1.2 Tension test specimens are adaptable for testing a wide variety of product forms as well as parts joined by welding, riveting, or various other methods. 1.3 The exposure of specimens in a corrosive environment is treated only briefly because other standards are being prepared to deal with this aspect. Meanwhile, the investigator is referred to Practices G35, G36, G37, and G44, and to ASTM Special Technical Publication 425 (1).

  10. A novel biaxial specimen for inducing residual stresses in thermoset polymers and fibre composite material

    DEFF Research Database (Denmark)

    Jakobsen, Johnny; Andreasen, Jens Henrik; Jensen, Martin

    2015-01-01

    engineers when they challenge the material limits in present and future thermoset and composite component. In addition to the new specimen configuration, this paper presents an analytical solution for the residual stress state in the specimen. The analytical solution assumes linear elastic and isotropic......A new type of specimen configuration with the purpose of introducing a well-defined biaxial residual (axisymmetric) stress field in a neat thermoset or a fibre composite material is presented. The ability to experimentally validate residual stress predictions is an increasing need for design...

  11. Estimation of stress distribution in ferromagnetic tensile specimens using low cost eddy current stress measurement system and BP neural network.

    Directory of Open Access Journals (Sweden)

    Jianwei Li

    Full Text Available Estimation of the stress distribution in ferromagnetic components is very important for evaluating the working status of mechanical equipment and implementing preventive maintenance. Eddy current testing technology is a promising method in this field because of its advantages of safety, no need of coupling agent, etc. In order to reduce the cost of eddy current stress measurement system, and obtain the stress distribution in ferromagnetic materials without scanning, a low cost eddy current stress measurement system based on Archimedes spiral planar coil was established, and a method based on BP neural network to obtain the stress distribution using the stress of several discrete test points was proposed. To verify the performance of the developed test system and the validity of the proposed method, experiment was implemented using structural steel (Q235 specimens. Standard curves of sensors at each test point were achieved, the calibrated data were used to establish the BP neural network model for approximating the stress variation on the specimen surface, and the stress distribution curve of the specimen was obtained by interpolating with the established model. The results show that there is a good linear relationship between the change of signal modulus and the stress in most elastic range of the specimen, and the established system can detect the change in stress with a theoretical average sensitivity of -0.4228 mV/MPa. The obtained stress distribution curve is well consonant with the theoretical analysis result. At last, possible causes and improving methods of problems appeared in the results were discussed. This research has important significance for reducing the cost of eddy current stress measurement system, and advancing the engineering application of eddy current stress testing.

  12. Modelling and experimental characterisation of a residual stress field in a ferritic compact tension specimen

    International Nuclear Information System (INIS)

    Wenman, M.R.; Price, A.J.; Steuwer, A.; Chard-Tuckey, P.R.; Crocombe, A.

    2009-01-01

    The aim of the work is to elucidate the influence of plasticity behaviour on the residual stress field in a ferritic reactor pressure vessel steel. To this end, we investigate two compressively pre-loaded compact tension (CT) specimens to generate a mechanical residual stress field. One specimen was subsequently pre-cracked by fatigue before both specimens were measured using high-energy synchrotron X-ray diffraction. A fine grain size microstructure (∼5-10 μm grain size) allowed a small X-ray beam slit size and therefore gauge volume. The results provide an excellent data set for validation of finite element (FE) modelling predictions against which they have been compared. The results of both mechanical testing and modelling suggest that the use of a combined hardening model is needed to accurately predict the residual stress field present in the specimen after pre-loading. Some discrepancy between the modelled crack tip stress values and those found by X-ray diffraction remain which can be partly explained by volume averaging effects in the presence of very high stress/strain gradients.

  13. Stress corrosion cracking tests on electron beam welded carbon steel specimens in carbonate-bicarbonate solution

    International Nuclear Information System (INIS)

    Parkins, R.N.

    1985-04-01

    Stress corrosion cracking tests have been performed on tapered carbon steel test pieces containing electron beam welds with a view to defining susceptibility to such cracking in a carbonate-bicarbonate solution at 90 C and an appropriate electrode potential. The tests involved applying cyclic loads to the specimens and it is shown that the threshold stress for cracking reduces linearly with increase in the magnitude of the cyclic load component. Extrapolation of these trends to zero fluctuating stress indicates static load threshold stresses in the vicinity of the yield stress (i.e. about 300 N/mm 2 for parent plate without a weld, 400 N/mm 2 for specimens with welds on one side only and 600 N/mm 2 for specimens having welds penetrating through the thickness of the specimen). The averages of the maximum crack velocities observed were least for parent plate material and greatest for weld metal, the former being essentially intergranular in morphology and the latter mostly transgranular, with heat affected zone material being intermediate between these extremes. (author)

  14. Modelling and experimental characterisation of a residual stress field in a ferritic compact tension specimen

    Energy Technology Data Exchange (ETDEWEB)

    Wenman, M.R., E-mail: m.wenman@imperial.ac.u [Department of Materials, Imperial College London, London SW7 2AZ (United Kingdom); Price, A.J. [Faculty of Engineering and Physical Sciences (J5), University of Surrey, Guildford GU2 7XH (United Kingdom); Steuwer, A. [ESS Scandinavia, Stora Algatan 4, 22350 Lund (Sweden) and Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa); Chard-Tuckey, P.R. [Nuclear Department, Defence College of Management and Technology, HMS Sultan, Gosport, Hants PO12 3BY (United Kingdom); Crocombe, A. [Faculty of Engineering and Physical Sciences (J5), University of Surrey, Guildford GU2 7XH (United Kingdom)

    2009-12-15

    The aim of the work is to elucidate the influence of plasticity behaviour on the residual stress field in a ferritic reactor pressure vessel steel. To this end, we investigate two compressively pre-loaded compact tension (CT) specimens to generate a mechanical residual stress field. One specimen was subsequently pre-cracked by fatigue before both specimens were measured using high-energy synchrotron X-ray diffraction. A fine grain size microstructure (approx5-10 mum grain size) allowed a small X-ray beam slit size and therefore gauge volume. The results provide an excellent data set for validation of finite element (FE) modelling predictions against which they have been compared. The results of both mechanical testing and modelling suggest that the use of a combined hardening model is needed to accurately predict the residual stress field present in the specimen after pre-loading. Some discrepancy between the modelled crack tip stress values and those found by X-ray diffraction remain which can be partly explained by volume averaging effects in the presence of very high stress/strain gradients.

  15. The inhibiting effect of dislocation helices on the stress-induced orientation of S' precipitates in Al–Cu–Mg alloy

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Xiaobin [School of Materials Science and Engineering, Central South University, Changsha (China); Deng, Yunlai, E-mail: luckdeng@csu.edu.cn [School of Materials Science and Engineering, Central South University, Changsha (China); State Key Laboratory of High Performance and Complex Manufacturing, Central South University, Changsha (China); Zhang, Jin [State Key Laboratory of High Performance and Complex Manufacturing, Central South University, Changsha (China); Light Alloy Research Institute, Central South University, Changsha (China); Zhang, Xinming [School of Materials Science and Engineering, Central South University, Changsha (China); State Key Laboratory of High Performance and Complex Manufacturing, Central South University, Changsha (China)

    2015-09-15

    The phenomenon of restrained stress-induced preferential orientation of S′ precipitates is investigated using a single-crystal of Al–1.23Cu–0.43 Mg alloy. Al–1.23Cu–0.43 Mg single-crystal specimens are subjected to stress aging, and the microstructure is analyzed by transmission electron microscopy (TEM). It is found that the stress-induced preferential orientation of S′ precipitates is restrained owing to the dislocations produced by a higher stress. The effect of dislocations on the oriented precipitates depends on the total length of the intersection lines for precipitate habit planes and dislocation glide planes. This investigation not only provides important insight into solving the anisotropy problem attributed to precipitation strengthening, but also offers a benchmark for choosing the appropriate stress range in manufacturing of Al–Cu–Mg alloys. - Highlights: • Single crystals of an Al–Cu–Mg alloy were prepared for the investigations. • A phenomenon of restrained stress-induced preferential orientation of S′ precipitates was found. • The influence of dislocation helices on precipitation during stress-aging was studied. • Difference of orientation degree of S′ precipitates and θ′ precipitates was explained. • A basis for choosing the appropriate stress range in manufacturing of Al–Cu–Mg alloys is provided.

  16. Analysis of crack opening stresses for center- and edge-crack tension specimens

    Directory of Open Access Journals (Sweden)

    Tong Di-Hua

    2014-04-01

    Full Text Available Accurate determination of crack opening stress is of central importance to fatigue crack growth analysis and life prediction based on the crack-closure model. This paper studies the crack opening behavior for center- and edge-crack tension specimens. It is found that the crack opening stress is affected by the crack tip element. By taking the crack tip element into account, a modified crack opening stress equation is given for the center-crack tension specimen. Crack surface displacement equations for an edge crack in a semi-infinite plate under remote uniform tension and partially distributed pressure are derived by using the weight function method. Based on these displacements, a crack opening stress equation for an edge crack in a semi-infinite plate under uniform tension has been developed. The study shows that the crack opening stress is geometry-dependent, and the weight function method provides an effective and reliable tool to deal with such geometry dependence.

  17. Axial Fatigue Tests at Zero Mean Stress of 24S-T Aluminum-alloy Sheet with and Without a Circular Hole

    Science.gov (United States)

    Brueggeman, W C; Mayer, M JR; Smith, W H

    1944-01-01

    Axial fatigue tests were made on 189 coupon specimens of 0.032-inch 24S-T aluminum-alloy sheet and a few supplementary specimens of 0.004-inch sheet. The mean load was zero. The specimens were restrained against lateral buckling by lubricated solid guides described in a previous report on this project. About two-thirds of the 0.032-inch specimens were plain coupons nominally free from stress raisers. The remainder contained a 0.1285-inch drilled hole at the center where the reduced section was 0.5 inch wide. S-N diagrams were obtained for cycles to failure between about 1000 and 10 to the 7th power cycles for the plain specimens and 17 and 10 to the 7th power cycles for the drilled specimens. The fatigue stress concentration factor increased from about 1.08 for a stress amplitude causing failure at 0.25 cycles (static) to a maximum of 1.83 at 15,000 cycles and then decreased gradually. The graph for the drilled specimens showed less scatter than that for the plain specimens.

  18. Patient restraining strap for scintiphotography

    International Nuclear Information System (INIS)

    Kay, T.D.; Harper, J.W.

    1976-01-01

    A patient restraining strap for scintiphotography having a pair of expandable cloth-like bags joined together is presented. The strap encompasses the head of a patient and is then secured to a Gamma Scintillation Camera. Once inflated the restraining strap immobilizes the head without discomfort to the patient during the scintiphotography procedure. 1 claim, 1 drawing figure

  19. Material Stress Fringe Constant Measurement of Specimen under Pure Bending Load by Use of Photoelastic Phase Shifting Method

    International Nuclear Information System (INIS)

    Liu, Guan Yong; Kim, Myung Soo; Baek, Tae Hyun

    2014-01-01

    In a photoelastic experiment, it is necessary to know the material stress fringe constant of the photoelastic specimen to determine the stresses from the measured isochromatic fringe orders. The material stress fringe constant can be obtained using a simple tension specimen and/or a circular disk under diametric compression. In these methods, there is generally a need to apply numerous loads to the specimen in response to the relationship of the fringe order. Then, the least squares method is used to obtain the material constant. In this paper, the fringe orders that appear on a four-point bending specimen are used to determine the fringe constant. This method requires four photoelastic fringes obtained from a circular polariscope by rotating the analyzer to 0, π/4, π/2, and 3π/4 radians. Using the four-point bending specimen to determine the material stress fringe constant has an advantage because measurements can be made at different locations by applying a constant load. The stress fringe constant measured with this method is within the range suggested by the manufacturer of the photoelastic material

  20. Fabrication and loading of long-term stress corrosion cracking surveillance specimens for the Dresden 1 decontamination program

    International Nuclear Information System (INIS)

    Walker, W.L.

    1979-10-01

    Stress-corrosion cracking test specimens were prepared for Dow Nuclear Services for insertion in the Dresden 1 reactor during the chemical decontamination of the primary system, and for subsequent exposure under operating conditions when the station returns to service. The specimens consist of pressurized tubes fabricated from Type-304 and -304L stainless steel, Inconel 600, Incoloy 800, and Zircaloy 2. In addition, constant radius bent-beam specimens of 3/4 hard Type-410 stainless steel were also included. All specimens were stressed to, or slightly above, their respective 0.2% offset yield strengths at the temperatures of interest

  1. Investigation of the Residual Stress State in an Epoxy Based Specimen

    DEFF Research Database (Denmark)

    Baran, Ismet; Jakobsen, Johnny; Andreasen, Jens Henrik

    2015-01-01

    Abstract. Process induced residual stresses may play an important role under service loading conditions for fiber reinforced composite. They may initiate premature cracks and alter the internal stress level. Therefore, the developed numerical models have to be validated with the experimental...... observations. In the present work, the formation of the residual stresses/strains are captured from experimental measurements and numerical models. An epoxy/steel based sample configuration is considered which creates an in-plane biaxial stress state during curing of the resin. A hole drilling process...... material models, i.e. cure kinetics, elastic modulus, CTE, chemical shrinkage, etc. together with the drilling process using the finite element method. The measured and predicted in-plane residual strain states are compared for the epoxy/metal biaxial stress specimen....

  2. Thermal Behavior of Cylindrical Buckling Restrained Braces at Elevated Temperatures

    Directory of Open Access Journals (Sweden)

    Elnaz Talebi

    2014-01-01

    Full Text Available The primary focus of this investigation was to analyze sequentially coupled nonlinear thermal stress, using a three-dimensional model. It was meant to shed light on the behavior of Buckling Restraint Brace (BRB elements with circular cross section, at elevated temperature. Such bracing systems were comprised of a cylindrical steel core encased in a strong concrete-filled steel hollow casing. A debonding agent was rubbed on the core’s surface to avoid shear stress transition to the restraining system. The numerical model was verified by the analytical solutions developed by the other researchers. Performance of BRB system under seismic loading at ambient temperature has been well documented. However, its performance in case of fire has yet to be explored. This study showed that the failure of brace may be attributed to material strength reduction and high compressive forces, both due to temperature rise. Furthermore, limiting temperatures in the linear behavior of steel casing and concrete in BRB element for both numerical and analytical simulations were about 196°C and 225°C, respectively. Finally it is concluded that the performance of BRB at elevated temperatures was the same as that seen at room temperature; that is, the steel core yields prior to the restraining system.

  3. Thermal behavior of cylindrical buckling restrained braces at elevated temperatures.

    Science.gov (United States)

    Talebi, Elnaz; Tahir, Mahmood Md; Zahmatkesh, Farshad; Yasreen, Airil; Mirza, Jahangir

    2014-01-01

    The primary focus of this investigation was to analyze sequentially coupled nonlinear thermal stress, using a three-dimensional model. It was meant to shed light on the behavior of Buckling Restraint Brace (BRB) elements with circular cross section, at elevated temperature. Such bracing systems were comprised of a cylindrical steel core encased in a strong concrete-filled steel hollow casing. A debonding agent was rubbed on the core's surface to avoid shear stress transition to the restraining system. The numerical model was verified by the analytical solutions developed by the other researchers. Performance of BRB system under seismic loading at ambient temperature has been well documented. However, its performance in case of fire has yet to be explored. This study showed that the failure of brace may be attributed to material strength reduction and high compressive forces, both due to temperature rise. Furthermore, limiting temperatures in the linear behavior of steel casing and concrete in BRB element for both numerical and analytical simulations were about 196°C and 225°C, respectively. Finally it is concluded that the performance of BRB at elevated temperatures was the same as that seen at room temperature; that is, the steel core yields prior to the restraining system.

  4. Modeling Restrained Shrinkage Induced Cracking in Concrete Rings Using the Thick Level Set Approach

    Directory of Open Access Journals (Sweden)

    Rebecca Nakhoul

    2018-03-01

    Full Text Available Modeling restrained shrinkage-induced damage and cracking in concrete is addressed herein. The novel Thick Level Set (TLS damage growth and crack propagation model is used and adapted by introducing shrinkage contribution into the formulation. The TLS capacity to predict damage evolution, crack initiation and growth triggered by restrained shrinkage in absence of external loads is evaluated. A study dealing with shrinkage-induced cracking in elliptical concrete rings is presented herein. Key results such as the effect of rings oblateness on stress distribution and critical shrinkage strain needed to initiate damage are highlighted. In addition, crack positions are compared to those observed in experiments and are found satisfactory.

  5. Stress Wave Attenuation in Aluminum Alloy and Mild Steel Specimens Under SHPB Tensile Testing

    Science.gov (United States)

    Pothnis, J. R.; Ravikumar, G.; Arya, H.; Yerramalli, Chandra S.; Naik, N. K.

    2018-02-01

    Investigations on the effect of intensity of incident pressure wave applied through the striker bar on the specimen force histories and stress wave attenuation during split Hopkinson pressure bar (SHPB) tensile testing are presented. Details of the tensile SHPB along with Lagrangian x- t diagram of the setup are included. Studies were carried out on aluminum alloy 7075 T651 and IS 2062 mild steel. While testing specimens using the tensile SHPB setup, it was observed that the force calculated from the transmitter bar strain gauge was smaller than the force obtained from the incident bar strain gauge. This mismatch between the forces in the incident bar and the transmitter bar is explained on the basis of stress wave attenuation in the specimens. A methodology to obtain force histories using the strain gauges on the specimen during SHPB tensile testing is also presented. Further, scanning electron microscope images and photomicrographs are given. Correlation between the microstructure and mechanical properties is explained. Further, uncertainty analysis was conducted to ascertain the accuracy of the results.

  6. Temporal attention for visual food stimuli in restrained eaters.

    Science.gov (United States)

    Neimeijer, Renate A M; de Jong, Peter J; Roefs, Anne

    2013-05-01

    Although restrained eaters try to limit their food intake, they often fail and indulge in exactly those foods that they want to avoid. A possible explanation is a temporal attentional bias for food cues. It could be that for these people food stimuli are processed relatively efficiently and require less attentional resources to enter awareness. Once a food stimulus has captured attention, it may be preferentially processed and granted prioritized access to limited cognitive resources. This might help explain why restrained eaters often fail in their attempts to restrict their food intake. A Rapid Serial Visual Presentation task consisting of dual and single target trials with food and neutral pictures as targets and/or distractors was administered to restrained (n=40) and unrestrained (n=40) eaters to study temporal attentional bias. Results indicated that (1) food cues did not diminish the attentional blink in restrained eaters when presented as second target; (2) specifically restrained eaters showed an interference effect of identifying food targets on the identification of preceding neutral targets; (3) for both restrained and unrestrained eaters, food cues enhanced the attentional blink; (4) specifically in restrained eaters, food distractors elicited an attention blink in the single target trials. In restrained eaters, food cues get prioritized access to limited cognitive resources, even if this processing priority interferes with their current goals. This temporal attentional bias for food stimuli might help explain why restrained eaters typically have difficulties maintaining their diet rules. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Social factors modulate restraint stress induced hyperthermia in mice.

    Science.gov (United States)

    Watanabe, Shigeru

    2015-10-22

    Stress-induced hyperthermia (SIH) was examined in three different social conditions in mice by thermographic measurement of the body surface temperature. Placing animals in cylindrical holders induced restraint stress. I examined the effect of the social factors in SIH using the thermograph (body surface temperature). Mice restrained in the holders alone showed SIH. Mice restrained in the holders at the same time as other similarly restrained cage mates (social equality condition) showed less hyperthermia. Interestingly, restrained mice with free moving cage mates (social inequality condition) showed the highest hyperthermia. These results are consistent with a previous experiment measuring the memory-enhancing effects of stress and the stress-induced elevation of corticosterone, and suggest that social inequality enhances stress. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. How restrained eaters perceive the amount they eat.

    Science.gov (United States)

    Jansen, A

    1996-09-01

    The cognitive model of binge eating states that it is the awareness of a broken diet that disinhibits the restrained eater. It is, according to that model, the perception of having overeaten that triggers disinhibited eating. However, although the perception of the amount eaten plays a central role in cognitive restraint theory, it has never directly been tested how restrained subjects perceive the amount of food they eat. In the present studies, participants were given ad libitum access to large amounts of palatable food and both their perception of the amount eaten and their estimated caloric intake were compared with the amount they actually ate. The restrained participants in these studies ate more than the unrestrained participants. In the first and second studies, the restrained participants consumed 571 and 372 'forbidden' calories respectively, without having the feeling that they had eaten very much, let alone too much. Moreover in both studies, the restrained eaters underestimated their caloric intake, whereas unrestrained eaters estimated their caloric intake quite well. The potential implications of the present findings for the cognitive restraint model are discussed.

  9. Critical assessment of precracked specimen configuration and experimental test variables for stress corrosion testing of 7075-T6 aluminum alloy plate

    Science.gov (United States)

    Domack, M. S.

    1985-01-01

    A research program was conducted to critically assess the effects of precracked specimen configuration, stress intensity solutions, compliance relationships and other experimental test variables for stress corrosion testing of 7075-T6 aluminum alloy plate. Modified compact and double beam wedge-loaded specimens were tested and analyzed to determine the threshold stress intensity factor and stress corrosion crack growth rate. Stress intensity solutions and experimentally determined compliance relationships were developed and compared with other solutions available in the literature. Crack growth data suggests that more effective crack length measurement techniques are necessary to better characterize stress corrosion crack growth. Final load determined by specimen reloading and by compliance did not correlate well, and was considered a major source of interlaboratory variability. Test duration must be determined systematically, accounting for crack length measurement resolution, time for crack arrest, and experimental interferences. This work was conducted as part of a round robin program sponsored by ASTM committees G1.06 and E24.04 to develop a standard test method for stress corrosion testing using precracked specimens.

  10. Residual Stress State in Single-Edge Notched Tension Specimen Caused by the Local Compression Technique

    Directory of Open Access Journals (Sweden)

    Huang Yifan

    2016-12-01

    Full Text Available Three-dimensional (3D finite element analyses (FEA are performed to simulate the local compression (LC technique on the clamped single-edge notched tension (SE(T specimens. The analysis includes three types of indenters, which are single pair of cylinder indenters (SPCI, double pairs of cylinder indenters (DPCI and single pair of ring indenters (SPRI. The distribution of the residual stress in the crack opening direction in the uncracked ligament of the specimen is evaluated. The outcome of this study can facilitate the use of LC technique on SE(T specimens.

  11. Restrained eating and self-esteem in premenopausal and postmenopausal women.

    Science.gov (United States)

    Drobnjak, Suzana; Atsiz, Semra; Ditzen, Beate; Tuschen-Caffier, Brunna; Ehlert, Ulrike

    2014-01-01

    There has been limited research about disordered eating in middle-aged women, and to date, few data exist about restrained eating behavior in postmenopausal women. Therefore, the aim of this study was to examine eating behavior with a specific focus on menopause as an associated factor in restrained eating. Beyond this, we were interested in how postmenopausal status and self-esteem would interact to determine eating patterns in women in middle age. We conducted an online survey in women aged between 40 and 66. Eating behavior was assessed with the Eating Disorder Examination-Questionnaire (EDE-Q) in premenopausal (N = 318) and postmenopausal women (N = 250). All participants rated their self-esteem using the Rosenberg Self-Esteem Scale (RSE) and reported their weight, height, waist circumference, and hip circumference. 15.7% of all participants showed clinically meaningful scores on restrained eating. Postmenopausal women showed significantly higher scores on the EDE-Q subscale of restrained eating as compared to premenopausal women, but when controlling for body mass index, however, this finding was no longer significant. Further exploratory analyses suggest that particularly low or high self-esteem levels are associated with restrained eating. Self-esteem might serve as a mediator between menopausal status and restrained eating, however results of these additional analyses were inconsistent. Restrained eating may appear in middle-aged women. Particularly in postmenopausal women, restrained eating might be associated with lower and higher self-esteem.

  12. Evaluation of impacts of stress triaxiality on plastic deformability of RAFM steel using various types of tensile specimen

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Taichiro, E-mail: kato.taichiro@jaea.go.jp [Japan Atomic Energy Agency, 2-166, Obuchi-omotedate, Rokkasho, Aomori 039-3212 (Japan); Ohata, Mitsuru [Osaka University, 2-1, Yamada-Oka, Suita, Osaka 565-0871 (Japan); Nogami, Shuhei [Tohoku University, 6-6-01-2, Aramaki-aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Tanigawa, Hiroyasu [Japan Atomic Energy Agency, 2-166, Obuchi-omotedate, Rokkasho, Aomori 039-3212 (Japan)

    2016-11-01

    Highlights: • The fracture ductility is lower as the stress triaxiality is higher. • Voids of the interrupted RB1 specimen were observed along grain boundaries and expanded parallel to the tensile axis. • Voids of interrupted R0.2 specimen were rounded shape than those of RB1. • The fracture surface of specimens were observed the elongated and the equiaxed dimples. • The decrease of plastic deformability of the notched specimen was caused by the process of voids formation and crack growth due to the effect of plastic constraint of the notch. - Abstract: A case study on a fusion blanket design such as DEMO indicated that there could be some sections with high stress triaxiality, a parameter to evaluate the magnitude of plastic constraint, in the case of plasma disruption or coolant loss accident. Therefore, it is necessary to accurately understand the ductility loss limit of structural material in order to conduct the structural design assessment of the irradiated and embrittled fusion reactor blanket. Tensile tests were conducted by using three kinds of tensile specimen shapes to investigate of the plastic deformability of F82H. From the results, the fracture ductility is lower as the stress triaxiality is higher. Voids of the interrupted RB1 specimen were observed along grain boundaries and expanded parallel to the tensile axis. That of interrupted R0.2 specimen was rounded shape compared with those of RB1. The fracture surface of RB1 and R0.2 specimens were observed the elongated dimples and the equiaxed dimples without so much elongation, respectively. It is considered that the decrease of plastic deformability for the notched specimen was caused by the process of voids formation and crack growth due to the effect of plastic constraint of the notch.

  13. 49 CFR 1103.22 - Restraining clients from improprieties.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 8 2010-10-01 2010-10-01 false Restraining clients from improprieties. 1103.22... Practitioner's Duties and Responsibilities Toward A Client § 1103.22 Restraining clients from improprieties. A practitioner should see that his clients act with the same restraint that the practitioner himself uses...

  14. Estimation of residual stresses in reactor pressure vessel steel specimens clad by stainless steel strip electrodes

    International Nuclear Information System (INIS)

    Schimmoeller, H.A.; Ruge, J.L.

    1978-01-01

    The equations to determine a two-dimensional state of residual stress in flat laminated plates are well known from an earlier work by one of the authors. The derivation of these equations leads to a linear, inhomogeneous system of Volterra's integral equations of the second kind. To ascertain the unknown residual stresses from these equations it is necessary to cut down the thickness of the test plate layer by layer. This results in two-dimensional deformation reactions in the rest of the test plate, which can be measured, e.g. by a strain gauge rosette applied to the opposite side of the plate. The above-mentioned stress analysis has been transferred to 86mm thick reactor pressure vessel steel specimens (Type 22NiMoCr 37, DIN-No. 1.6751, similar to ASTM A508, Class 2) double-run clad by austenitic stainless steel strip electrodes (first layer 24/13 Cr-Ni steel, second layer 21/10 Cr-Ni steel). The overall dimensions of the clad specimens investigated amounted to 200 x 200 x (86+4.5+4.5)mm. At the surface of the austenitic cladding there is a two-dimensional tensile normal stress state of about 200N/mm 2 parallel, and about 300N/mm 2 transverse, to the welding direction. The maximum tensile stress was 8mm below the interface (fusion line, material transition) in the parent material. The stress distributions of the specimens investigated, determined on the basis of the above-mentioned combined experimental mathematical procedure, are presented graphically for the as-welded (as-delivered) and annealed (600 0 C/12hr) conditions. (author)

  15. Study on fatigue strength of specimens with stress concentrators accounting for inelastic cyclic strains

    International Nuclear Information System (INIS)

    Troshchenko, V.T.; Khamaza, L.A.; Mishchenko, Yu.D.

    1978-01-01

    A possibility of plotting the fatigue curves for structural elements with stress concentrators was examined according to the results of testing smooth specimens made of 1Kh2M steel. The technique has been suggested, based on using the Neuber formula, while taking into account the dependence of the effective coefficient of stresses concentration on the number of cycles prior to failure. A good agreement between the calculated and the experimental data has been obtained

  16. Analysis on the stress corrosion crack inception based on pit shape and size of the FV520B tensile specimen

    Science.gov (United States)

    Xiang, Longhao; Pan, Juyi; Chen, Songying

    2018-06-01

    The influence of pit shape and size on local stress concentration in the tensile specimen and the stress corrosion cracks inception was studied by employing the element remove technique. The maximum stress located in the bottom of pit on FV520B tensile specimen. The location of maximum strain was near the mouth of the pit or the shoulder and plastic strain existed in this region. Stress concentration factor and plastic deformation on four different geometrical shape pits of hemisphere, semi-ellipsoid, bullet and butterfly were numerically investigated, respectively. The simulation results showed that butterfly pit got the biggest stress concentration factor. The plastic strain rate during pit growth was in the sensitivity range of stress corrosion cracks inception, indicating that stress corrosion cracks were more likely to nucleate near the pit tip or the shoulder.

  17. Evaluation of fracture toughness of vessel materials using small-size specimens and full stress-strain curves

    Energy Technology Data Exchange (ETDEWEB)

    Lebedev, A A; Chausov, N G [Akademyiya Nauk Ukrayini, Kiev (Ukraine)

    1994-12-31

    Physically substantiated dependences between crack resistance characteristics determined by the parameters of descending sections of full stress-strain curves and stressed state rigidity at crack initiation moment, have been experimentally obtained. The possibility of crack resistance reliable estimation based on full stress-strain obtained using small-size specimens with different concentrators, has thus been experimentally substantiated. Results obtained by the method and actual temperature dependence of irradiated steel 15X2NMFA crack resistance characteristics, agreed well. 2 refs., 7 figs.

  18. A general mixed mode fracture mechanics test specimen: The DCB-specimen loaded with uneven bending moments

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, B.F.; Joergensen, K.; Oestergaard, R.C. [Risoe National Lab., Materials Dept., Roskilde (Denmark); Jacobsen, T.K. [LM Glasfiber A/S, Lunderskov (Denmark)

    2004-03-01

    A mixed mode specimen is proposed for fracture mechanics characterisation of adhesive joints, laminates and multilayers. The specimen is a double cantilever beam specimen loaded with uneven bending moments at the two free beams. By varying the ratio between the two applied moments, the full mode mixity range from pure mode I to pure mode II can be generated for the same specimen geometry. The specimen allows stable crack growth. In case of large scale crack bridging, mixed mode cohesive laws can be obtained by a J integral based approach. As a preliminary example, fracture of adhesive joints between two glass-fibre laminates was studied. The mixed mode fracture resistance increased with increasing crack length due to fibre cross over bridging, eventually reaching a steady-state level (R-curve behaviour). The steady-state fracture toughness level increased with increasing tangential crack opening displacement. Cohesive stresses were determined by a J integral approach. The deducted shear stress was found to be relative high ({approx} = 20 MPa) in comparison with the normal stress ({approx} = 1 MPa). (au)

  19. Multi-parameter approximation of stress field in a cracked specimen using purpose-built Java applications

    Czech Academy of Sciences Publication Activity Database

    Veselý, V.; Sopek, J.; Tesař, D.; Frantík, P.; Pail, T.; Seitl, Stanislav

    2015-01-01

    Roč. 9, č. 33 (2015), s. 120-133 ISSN 1971-8993 Institutional support: RVO:68081723 Keywords : Cracked specimen * Near-crack-tip fields * Williams expansion * Higher order terms * Stress field reconstruction * Finite element analysis * Java application Subject RIV: JL - Materials Fatigue, Friction Mechanics

  20. Conformationally restrained aromatic analogues of fosmidomycin and FR900098.

    Science.gov (United States)

    Kurz, Thomas; Schlüter, Katrin; Pein, Miriam; Behrendt, Christoph; Bergmann, Bärbel; Walter, Rolf D

    2007-07-01

    The synthesis and in-vitro antimalarial activity of conformationally restrained bis(pivaloyloxymethyl) ester analogues of the natural product fosmidomycin is presented. In contrast to alpha-aryl-substituted analogues, conformationally restrained aromatic analogues exhibit only moderate in-vitro antimalarial activity against the chloroquine-sensitive strain 3D7 of Plasmodium falciparum. The most active derivative displays an IC(50) value of 47 microM.

  1. Effect of CT Specimen Thickness on the Mechanical Characteristics at the Crack Tip of Stress Corrosion Cracking in Ni-based Alloys

    Science.gov (United States)

    Yinghao, Cui; He, Xue; Lingyan, Zhao

    2017-12-01

    It’s important to obtain accurate stress corrosion crack(SCC) growth rate for quantitative life prediction of components in nuclear power plants. However, the engineering practice shows that the crack tip constraint effect has a great influence on the mechanical properties and crack growth rate of SCC at crack tip. To study the influence of the specimen thickness on the crack tip mechanical properties of SCC, the stress, strain and C integral at creep crack tip are analyzed under different specimens thickness. Results show that the cracked specimen is less likely to crack due to effect of crack tip constraint. When the thickness ratio B/W is larger than 0.1, the crack tip constraint is almost ineffective. Value of C integral is the largest when B/W is 0.25. Then specimen thickness has little effect on the value of C integral. The effect of specimen thickness on the value of C integral is less significant at higher thickness ratio.

  2. Cognitive and weight-related correlates of flexible and rigid restrained eating behaviour

    DEFF Research Database (Denmark)

    Westenhoefer, Joachim; Engel, Daniel; Holst, Claus

    2013-01-01

    Examine the association between components of restrained eating, cognitive performance and weight loss maintenance.......Examine the association between components of restrained eating, cognitive performance and weight loss maintenance....

  3. Housing in Pyramid Counteracts Neuroendocrine and Oxidative Stress Caused by Chronic Restraint in Rats

    Directory of Open Access Journals (Sweden)

    M. Surekha Bhat

    2007-01-01

    Full Text Available The space within the great pyramid and its smaller replicas is believed to have an antistress effect. Research has shown that the energy field within the pyramid can protect the hippocampal neurons of mice from stress-induced atrophy and also reduce neuroendocrine stress, oxidative stress and increase antioxidant defence in rats. In this study, we have, for the first time, attempted to study the antistress effects of pyramid exposure on the status of cortisol level, oxidative damage and antioxidant status in rats during chronic restraint stress. Adult female Wistar rats were divided into four groups as follows: normal controls (NC housed in home cage and left in the laboratory; restrained rats (with three subgroups subject to chronic restraint stress by placing in a wire mesh restrainer for 6 h per day for 14 days, the restrained controls (RC having their restrainers kept in the laboratory; restrained pyramid rats (RP being kept in the pyramid; and restrained square box rats (RS in the square box during the period of restraint stress everyday. Erythrocyte malondialdehyde (MDA and plasma cortisol levels were significantly increased and erythrocyte-reduced glutathione (GSH levels, erythrocyte glutathione peroxidase (GSH-Px and superoxide dismutase (SOD activities were significantly decreased in RC and RS rats as compared to NC. However, these parameters were maintained to near normal levels in RP rats which showed significantly decreased erythrocyte MDA and plasma cortisol and significantly increased erythrocyte GSH levels, erythrocyte GSH-Px and SOD activities when compared with RS rats. The results showed that housing in pyramid counteracts neuroendocrine and oxidative stress caused by chronic restraint in rats.

  4. Specimen size effects in Charpy impact testing

    International Nuclear Information System (INIS)

    Alexander, D.J.; Klueh, R.L.

    1989-01-01

    Full-size , half-size, and third-size specimens from several different steels have been tested as part of an ongoing alloy development program. The smaller specimens permit more specimens to be made from small trail heats and are much more efficient for irradiation experiments. The results of several comparisons between the different specimen sizes have shown that the smaller specimens show qualitatively similar behavior to large specimens, although the upper-shelf energy level and ductile-to-ductile transition temperature are reduced. The upper-shelf energy levels from different specimen sizes can be compared by using a simple volume normalization method. The effect of specimen size and geometry on the ductile-to-ductile transition temperature is more difficult to predict, although the available data suggest a simple shift in the transition temperature due to specimen size changes.The relatively shallower notch used in smaller specimens alters the deformation pattern, and permits yielding to spread back to the notched surface as well as through to the back. This reduces the constraint and the peak stresses, and thus the initiation of cleavage is more difficult. A better understanding of the stress and strain distributions is needed. 19 refs., 3 figs., 3 tabs

  5. Behavioral and Neurochemical Studies in Stressed and Unstressed Rats Fed on Protein, Carbohydrate and Fat Rich Diet

    Directory of Open Access Journals (Sweden)

    Samia Moin§, Saida Haider*, Saima Khaliq1, Saiqa Tabassum and Darakhshan J. Haleem

    2012-05-01

    Full Text Available Stress produces behavioral and neurochemical deficits. To study the relationship between adaptation to stress and macronutrient intake, the present study was designed to monitor the effects of different diets on feed intake, growth rate and serotonin (5-Hydroxytryptamine, 5-HT metabolism following exposure to restraint stress in rats. Rats were divided into four groups (n=12 as control, sugar, protein and fat rich diet fed rats. After 5 weeks of treatment animals of each group were divided into unrestrained and restrained animals (n=6. Rats of restrained group were given immobilization stress for 2 hours/day for 5 days. Food intake and growth rates of unrestrained and restrained rats were monitored daily. Rats were decapitated on 6th day to collect brain samples for neurochemical estimation. Results show that sugar diet fed rats produced adaptation to stress early as compared to normal diet fed rats. Food intake and growth rates of unrestrained and restrained rats were comparable on 3rd day in sugar diet fed rats and on 4th day in normal diet fed rats. Stress decreased food intake and growth rates of protein and fat treated rats. Repeated stress did not alter brain 5-HT and 5-HIAA levels of normal diet fed rats and sugar diet fed rats. Protein diet fed restrained rats showed elevated brain 5-HT levels. Fat diet fed restrained rats significantly decreased brain TRP and 5-HIAA levels. Finding suggested that carbohydrate diet might protect against stressful conditions. Study also showed that nutritional status could alter different behaviors in response to a stressful environment.

  6. Transversely Compressed- and Restrained Shear Joints

    DEFF Research Database (Denmark)

    Schmidt, Jacob Wittrup; Hansen, Christian Skodborg

    2013-01-01

    Anchorage of FRP strengthening systems where the deformation perpendicular to the FRP material is restrained or a compressive force is applied on the strengthening, seems to provide ductility, increased utilization of the FRP and failure modes which can be controlled through the anchorage method....

  7. High-disinhibition restrained eaters are disinhibited by self-regulatory depletion in the food-related inhibitory control.

    Science.gov (United States)

    Zhou, Yizhou; Gao, Xiao; Chen, Hong; Kong, Fanchang

    2017-08-01

    Restrained eating for weight control and loss is becoming highly prevalent in many affluent societies, while most of the restrained eaters are rather unsuccessful in the long term. According to the strength model of self-control, the disinhibition effect of restrained eaters may occur after the depletion of self-control resources. However, no work has examined the direct impact of self-control resources on inhibitory control ability of restrained eaters. This study investigated the influences of self-control resources on the food-related inhibitory control among high-restraint/low-disinhibition restrained eaters, high-restraint/high-disinhibition restrained eaters and unrestrained eaters using stop signal task. Results reveal that there's no difference of food-related inhibitory control between three groups when the self-control resources are non-depleted, while high-restraint/high-disinhibition restrained eaters showing a decrease of food-related inhibitory control after ego-depletion. This disinhibition effect only seems to occur in samples of restrained eaters with a high tendency toward overeating. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Determination of a cohesive law for delamination modelling - Accounting for variation in crack opening and stress state across the test specimen width

    DEFF Research Database (Denmark)

    Joki, R. K.; Grytten, F.; Hayman, Brian

    2016-01-01

    by differentiating the fracture resistance with respect to opening displacement at the initial location of the crack tip, measured at the specimen edge. 2) Extend the bridging law to a cohesive law by accounting for crack tip fracture energy. 3) Fine-tune the cohesive law through an iterative modelling approach so......The cohesive law for Mode I delamination in glass fibre Non-Crimped Fabric reinforced vinylester is determined for use in finite element models. The cohesive law is derived from a delamination test based on DCB specimens loaded with pure bending moments taking into account the presence of large...... that the changing state of stress and deformation across the width of the test specimen is taken into account. The changing state of stress and deformation across the specimen width is shown to be significant for small openings (small fracture process zone size). This will also be important for the initial part...

  9. Splitting tests on rock specimens

    Energy Technology Data Exchange (ETDEWEB)

    Davies, J D; Stagg, K G

    1970-01-01

    Splitting tests are described for a square-section sandstone specimens line loaded through steel or timber packings on the top face and supported on the bottom face either on similar packings (type A specimen) or directly on the lower platen plate of the testing machine (type B specimens). The stress distribution across the vertical central plane and the horizontal central plane were determined from a linear elastic finite element analysis for both types. Two solutions were obtained for the type B specimen: one assuming no friction between the base of the specimen and the platen plate and the other assuming no relative slip between the surfaces. Vertical and horizontal strains were measured at the center of the specimens for all loads up to failure.

  10. Determination of necking time in tensile test specimens, under high-temperature creep conditions, subjected to distribution of stresses over the cross-section

    Science.gov (United States)

    Lokoshchenko, A.; Teraud, W.

    2018-04-01

    The work describes an experimental research of creep of cylindrical tensile test specimens made of aluminum alloy D16T at a constant temperature of 400°C. The issue to be examined was the necking at different values of initial tensile stresses. The use of a developed noncontacting measuring system allowed us to see variations in the specimen shape and to estimate the true stress in various times. Based on the obtained experimental data, several criteria were proposed for describing the point of time at which the necking occurs (necking point). Calculations were carried out at various values of the parameters in these criteria. The relative interval of deformation time in which the test specimen is uniformly stretched was also determined.

  11. EXPERIMENTAL TESTING OF DRAW-BEAD RESTRAINING FORCE IN SHEET METAL FORMING

    Institute of Scientific and Technical Information of China (English)

    J.H. Yang; J. Chen; D.N. He; X. Y. Ruan

    2003-01-01

    Due to complexities of draw-bead restraining force calculated according to theory anddepending on sheet metal forming properties experiment testing system, a simplifiedmethod to calculate draw-bead restraining force is put forward by experimental methodin cup-shaped drawing process. The experimental results were compared with numer-ical results and proved agreement. It shows the method is effective.

  12. Experimental and Numerical Investigations on Feasibility and Validity of Prismatic Rock Specimen in SHPB

    Directory of Open Access Journals (Sweden)

    Xibing Li

    2016-01-01

    Full Text Available The paper presents experimental and numerical studies on the feasibility and validity of using prismatic rock specimens in split Hopkinson pressure bar (SHPB test. Firstly, the experimental tests are conducted to evaluate the stress and strain uniformity in the prismatic specimens during impact loading. The stress analysis at the ends of the specimen shows that stress equilibrium can be achieved after about three wave reflections in the specimen, and the balance can be well maintained for a certain time after peak stress. The strain analysis reveals that the prismatic specimen deforms uniformly during the dynamic loading period. Secondly, numerical simulation is performed to further verify the stress and strain uniformity in the prismatic specimen in SHPB test. It indicates that the stress equilibrium can be achieved in prismatic specimen despite a certain degree of stress concentration at the corners. The comparative experiments demonstrate that the change of specimen shape has no significant effect on dynamic responses and failure patterns of the specimen. Finally, a dynamic crack propagation test is presented to show the application of the present work in studying fracturing mechanisms under dynamic loading.

  13. Social ultrasonic vocalization in awake head-restrained mouse

    Directory of Open Access Journals (Sweden)

    Benjamin Weiner

    2016-12-01

    Full Text Available Numerous animal species emit vocalizations in response to various social stimuli. The neural basis of vocal communication has been investigated in monkeys, songbirds, rats, bats and invertebrates resulting in deep insights into motor control, neural coding and learning. Mice, which recently became very popular as a model system for mammalian neuroscience, also utilize ultrasonic vocalizations (USVs during mating behavior. However, our knowledge is lacking of both the behavior and its underlying neural mechanism. We developed a novel method for head-restrained male mice (HRMM to interact with non-restrained female mice (NRFM and show that mice can emit USVs in this context. We first recorded USVs in free arena with non-restrained male mice (NRMM and NRFM. Of the NRMM, which vocalized in the free arena, the majority could be habituated to also vocalize while head-restrained but only when a female mouse was present in proximity. The USVs emitted by HRMM are similar to the USVs of NRMM in the presence of a female mouse in their spectral structure, inter syllable interval distribution and USV sequence length, and therefore are interpreted as social USVs. By analyzing vocalizations of NRMM, we established criteria to predict which individuals are likely to vocalize while head fixed based on the USV rate and average syllable duration. To characterize the USVs emitted by HRMM, we analyzed the syllable composition of HRMM and NRMM and found that USVs emitted by HRMM have higher proportions of USVs with complex spectral representation, supporting previous studies showing that mice social USVs are context dependent. Our results suggest a way to study the neural mechanisms of production and control of social vocalization in mice using advanced methods requiring head fixation.

  14. Social Ultrasonic Vocalization in Awake Head-Restrained Mouse.

    Science.gov (United States)

    Weiner, Benjamin; Hertz, Stav; Perets, Nisim; London, Michael

    2016-01-01

    Numerous animal species emit vocalizations in response to various social stimuli. The neural basis of vocal communication has been investigated in monkeys, songbirds, rats, bats, and invertebrates resulting in deep insights into motor control, neural coding, and learning. Mice, which recently became very popular as a model system for mammalian neuroscience, also utilize ultrasonic vocalizations (USVs) during mating behavior. However, our knowledge is lacking of both the behavior and its underlying neural mechanism. We developed a novel method for head-restrained male mice (HRMM) to interact with non-restrained female mice (NRFM) and show that mice can emit USVs in this context. We first recorded USVs in a free arena with non-restrained male mice (NRMM) and NRFM. Of the NRMM, which vocalized in the free arena, the majority could be habituated to also vocalize while head-restrained but only when a female mouse was present in proximity. The USVs emitted by HRMM are similar to the USVs of NRMM in the presence of a female mouse in their spectral structure, inter-syllable interval distribution, and USV sequence length, and therefore are interpreted as social USVs. By analyzing the vocalizations of NRMM, we established criteria to predict which individuals are likely to vocalize while head fixed based on the USV rate and average syllable duration. To characterize the USVs emitted by HRMM, we analyzed the syllable composition of HRMM and NRMM and found that USVs emitted by HRMM have a higher proportion of USVs with complex spectral representation, supporting previous studies showing that mice social USVs are context dependent. Our results suggest a way to study the neural mechanisms of production and control of social vocalization in mice using advanced methods requiring head fixation.

  15. EXPERIMENTAL TESTING OF DRAW—BEAD RESTRAINING FORCE IN SHEET METAL FORMING

    Institute of Scientific and Technical Information of China (English)

    J.H.Yang; J.Chen; 等

    2003-01-01

    Due to complexities of draw-bead restraining force calculated according to theory and depending on sheet metal forming properties experiment testing system,a simplified method to calculate draw-bead restraining force is put forward by experimental method in cup-shaped drawing process.The experimental results were compared with numer-ical results and proved agreement.It shows the method is effective.

  16. Restrained eating and self-esteem in premenopausal and postmenopausal women

    OpenAIRE

    Drobnjak, Suzana; Atsiz, Semra; Ditzen, Beate; Tuschen-Caffier, Brunna; Ehlert, Ulrike

    2014-01-01

    BACKGROUND: There has been limited research about disordered eating in middle-aged women, and to date, few data exist about restrained eating behavior in postmenopausal women. Therefore, the aim of this study was to examine eating behavior with a specific focus on menopause as an associated factor in restrained eating. Beyond this, we were interested in how postmenopausal status and self-esteem would interact to determine eating patterns in women in middle age. METHODS: We conducted an online...

  17. Deformation Characteristics of Ultrahigh-Strength Concrete under Unrestrained and Restrained States

    Directory of Open Access Journals (Sweden)

    Joo-Ha Lee

    2017-01-01

    Full Text Available As structures like skyscrapers and long-span bridges become larger, the demand for higher strength of concrete is increasing. However, research on ultrahigh-strength concrete (UHSC is still in its infancy. In particular, UHSC is known to have a considerably higher level of autogenous shrinkage than normal strength concrete (NSC, and the possibility of cracking at an early age is very high. Therefore, in this study, shrinkage and cracking behavior of high-strength concrete (HSC, very-high-strength concrete (VHSC, and UHSC were evaluated through unrestrained shrinkage test and restrained shrinkage test (ring test. The primary experimental variables are the compressive strength level according to the water-to-binder ratio (W/B, fly ash content, and concrete specimen thickness. The experimental results demonstrated that the drying shrinkage decreased as the W/B ratio and the fly ash replacement ratio increased, and the restraint cracks appeared to be the earliest and most brittle in the UHSC with the smallest W/B. Increased concrete thickness and incorporation of fly ash were observed to inhibit crack initiation effectively.

  18. Analysis of stress intensity factors for a new mechanical corrosion specimen; Analyse du facteur d`intensite de contrainte pour une nouvelle eprouvette de mecanique corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Rassineux, B; Crouzet, D; Le Hong, S

    1996-03-01

    Electricite de France is conducting a research program to determine corrosion cracking rates in the steam generators Alloy 600 tubes of the primary system. The objective is to correlate the cracking rates with the specimen stress intensity factor K{sub I}. One of the samples selected for the purpose of this study is the longitudinal notched specimen TEL (TEL: ``Tubulaire a Entailles Longitudinales``). This paper presents the analysis of the stress intensity factor and its experimental validation. The stress intensity factor has been evaluated for different loads using 3D finite element calculations with the Hellen-Parks and G({theta}) methods. Both crack initiation and propagation are considered. As an assessment of the method, the numerical simulations are in good agreement with the fatigue crack growth rates measured experimentally for TEL and compact tension (CT) specimens. (authors). 8 refs., 6 figs., 2 tabs.

  19. Effectiveness of somatodendritic and/or postsynaptic 5-ht-1A receptors following exposure to single restraint stress

    International Nuclear Information System (INIS)

    Samad, N.; Haleem, D.J.

    2012-01-01

    Effects of a selected dose of 8-hydroxy-2-(di-n-propylamino)tetralin (8-0H-DPAT) were studied on somatodendritic and/or postsynaptic S-hydroxytryptamine (S-HT; serotonin)-) A receptors responsiveness following exposure to single restraint stress. Rats were restrained for 2.h. 24-h after the termination of restraint period, 8-OH-DPAT at the doses of 0.25 mg/kg and saline (1 ml/kg), was injected to unrestrained and restrained animals. Activity in a light dark box was monitored. Intensity of 8-0H-DPAT-induced serotonin syndrome was monitored for 5-30 min post injection. Rats were decapitated I-h post-injection to collect brain samples for neurochemical estimation by high performance liquid chromatography with electrochemical detection (HPLC-EC). An episode of 2-h restraint stress decreased 24-h cumulative food intakes and changes in growth rates. Administration of 8-0H-DPAT increased time spent in light compartment in both unrestrained and restrained animals. Time spent in light compartment was smaller in 8-0H-DPAT injected restrained than unrestrained animals. Intensity of 8-0H-DPAT-induced serotonin syndrome monitored next day was smaller in restrained than unrestrained animals. Restrained animals injected with saline exhibited an increase in S-HT and S hydroxyindolacetic acid (S-HIAA) levels in the hippocampus, hypothalamus, midbrain and cortex but not in the striatum. 8-OH-DPAT decreased 5-HT and S-HIAA levels in different brain regions of unrestrained and restrained animals. The decreases were greater in restrained than unrestrained animals, suggesting a supersensitivity of somatodendritic S-HT -I A receptors. Stimulation of somatodendritic S-HT -I A receptor following exposure to an episode of 2-h restraint stress decreased the functional activity of postsynaptic S-HT -I A dependent responses. 8-OH-DP A T decreased S-HT and S-HIAA levels more in restrained than unrestrained animals, suggesting an increase in the effectiveness of somatodendritc 5-HT-IAA receptor

  20. Neutron diffraction measurements for the determination of residual stresses in MMC tensile and fatigue specimens

    DEFF Research Database (Denmark)

    Fiori, F.; Girardin, E.; Giuliani, A.

    2000-01-01

    have been performed at RISO (Roskilde, DK) and HMI-BENSC (Berlin, D), for the determination of residual stress in AA2124 + 17% SiCp and AA359 + 20% SiCp specimens, submitted to tensile and fatigue tests. For each of the investigated samples, the macrostress has been separated from the elastic......, residual stresses are present in both the matrix and the particles microstructure, prior to any macroscopic loading. They vary with the temperature and with the type and level of loading imposed to the material, having a strong influence on the mechanical behaviour of MMCs. Neutron diffraction measurements...... and thermal mismatch microstresses. The results show that, in general, the main contribution to the stress state of both matrix and reinforcement is given by the thermal microstresses, already existing due to heat treatment prior to mechanical tests. (C) 2000 Elsevier Science B.V. All rights reserved....

  1. Effects of Specimen Diameters on the Distribution of Corrosion Fatigue Cracks

    OpenAIRE

    石原, 外美; 塩澤, 和章; 宮尾, 嘉寿

    1988-01-01

    The distribution of corrosion fatigue cracks observed on the un-notched round specimen surface differs with specimen diameter, especially in the low stress amplitude region. At a constant fatigue life ratio, many long cracks are initiated on the larger specimen, 12 mm (diameter), in comparison with the smaller specimen, 6 mm (diameter). On the other hand, in the high stress amplitude region of corrosion fatigue and fatigue in laboratory air, the distribution of cracks during the fatigue proce...

  2. Fabrication of imitative stress corrosion cracking specimens suitable for electromagnetic nondestructive evaluations using solid state bonding

    International Nuclear Information System (INIS)

    Yusa, Noritaka; Hashizume, Hidetoshi; Uchimoto, Tetsuya; Takagi, Toshiyuki

    2010-01-01

    This study proposes a method to fabricate artificial defects that is almost identical to stress corrosion cracking from the viewpoint of electromagnetic nondestructive evaluations. The key idea is to realize a region having electrical resistance embedded inside a conductive materials using solid state bonding. A rough region is introduced into the surface of the materials so that the region is partially bonded to realize electrical resistance. The validity of the method is demonstrated using type 316L austenitic stainless steels. Eddy current tests and subsequent destructive tests confirm that signals due to the fabricated specimens are very similar to those due to stress corrosion cracks. (author)

  3. Patient restraining device for the pinhole collimator and gamma scintillation camera

    International Nuclear Information System (INIS)

    Kay, T.D.

    1977-01-01

    A patient restraining device for use with the pinhole collimator of a conventional Gamma Scintillation Camera, the restraining device being made of an adapter ring and a patient holder. The adapter ring is secured directly to the pinhole collimator while the holder is adjustably mounted on the adapter. The adapter ring is so designed to accommodate a variety of holders so as to enable the scanning of many different areas of a patient's anatomy by the scintillation camera

  4. Smoking for weight control: effect of priming for body image in female restrained eaters.

    Science.gov (United States)

    McKee, Sherry A; Nhean, Siphannay; Hinson, Riley E; Mase, Tricia

    2006-12-01

    Women are more likely than men to believe that smoking helps to control their weight, and this relationship may be more pronounced in those with eating disturbances, such as eating restraint. Restrained eaters have been shown to be more susceptible to media portrayals of idealized body image, like those used in tobacco advertising. The primary aim of this study was to examine the effect of an implicit prime for body image on expectations that smoking can control weight in restrained and non-restrained eaters. Participants were 40 females, who smoked an average of 7.65 (S.D.=4.38) cigarettes per day. Participants were presented with a bogus task of rating slides; either participants viewed 30 slides of nature scenes (neutral prime); or viewed 30 slides depicting fashion models (body image prime). Participants then completed questionnaires that assessed smoking expectancies, smoking history, and eating restraint. As hypothesized, restrained eaters who viewed the slides depicting models had greater likelihood ratings that smoking helps to control appetite and manage weight, in comparison to restrained eaters who viewed the control slides and non-restrained eaters who viewed either type of slides. There were no other group differences across the remaining smoking expectancy factors. Images similar to those used in tobacco advertising targeting women had the ability to elicit stronger beliefs that smoking is beneficial for weight control in a group of women who are at heightened risk for such beliefs.

  5. Modelling of the deformation of shot peened cylindrical specimens of 42 CrMo4 in uniaxial tension and deformation and of the resulting macro residual stresses

    International Nuclear Information System (INIS)

    Schulze, V.; Voehringer, O.; Macherauch, E.

    1998-01-01

    Tensile and compressive stress-strain-curves of shot peened and unpeened specimens of quenched and tempered 42 CrMo 4 (AISI 4140) with a diameter of 5 mm only differ in the yield strengths and in the Lueders-deformation. In comparison to the core the regions close to the surface of shot peened cylindrical specimens bear relatively large axial and tangential residual stresses and show different deformation properties. A multi-layer-model was developed to describe both the tensile as well as the compressive deformation behaviour of shot peened cylindrical specimens quantitatively. The calculated transitions from the elastic to the elastic-plastic deformation state during tensile and compressive loading agree quite well with the experimental observations. Also the changes of axial and tangential macro residual stresses after distinct tensile or compressive deformations are in best agreement with the measurements. (orig.)

  6. Capacitive Sensing for Non-Invasive Breathing and Heart Monitoring in Non-Restrained, Non-Sedated Laboratory Mice.

    Science.gov (United States)

    González-Sánchez, Carlos; Fraile, Juan-Carlos; Pérez-Turiel, Javier; Damm, Ellen; Schneider, Jochen G; Zimmermann, Heiko; Schmitt, Daniel; Ihmig, Frank R

    2016-07-07

    Animal testing plays a vital role in biomedical research. Stress reduction is important for improving research results and increasing the welfare and the quality of life of laboratory animals. To estimate stress we believe it is of great importance to develop non-invasive techniques for monitoring physiological signals during the transport of laboratory animals, thereby allowing the gathering of information on the transport conditions, and, eventually, the improvement of these conditions. Here, we study the suitability of commercially available electric potential integrated circuit (EPIC) sensors, using both contact and contactless techniques, for monitoring the heart rate and breathing rate of non-restrained, non-sedated laboratory mice. The design has been tested under different scenarios with the aim of checking the plausibility of performing contactless capture of mouse heart activity (ideally with an electrocardiogram). First experimental results are shown.

  7. Capacitive Sensing for Non-Invasive Breathing and Heart Monitoring in Non-Restrained, Non-Sedated Laboratory Mice

    Directory of Open Access Journals (Sweden)

    Carlos González-Sánchez

    2016-07-01

    Full Text Available Animal testing plays a vital role in biomedical research. Stress reduction is important for improving research results and increasing the welfare and the quality of life of laboratory animals. To estimate stress we believe it is of great importance to develop non-invasive techniques for monitoring physiological signals during the transport of laboratory animals, thereby allowing the gathering of information on the transport conditions, and, eventually, the improvement of these conditions. Here, we study the suitability of commercially available electric potential integrated circuit (EPIC sensors, using both contact and contactless techniques, for monitoring the heart rate and breathing rate of non-restrained, non-sedated laboratory mice. The design has been tested under different scenarios with the aim of checking the plausibility of performing contactless capture of mouse heart activity (ideally with an electrocardiogram. First experimental results are shown.

  8. Configuration Synthesis for Fully Restrained 7-Cable-Driven Manipulators

    Directory of Open Access Journals (Sweden)

    Xiaoqiang Tang

    2012-10-01

    Full Text Available Cable distribution plays a vital role in Cable Driven Parallel Manipulators (CDPMs regarding tension and workspace quality, especially in fully restrained CDPMs. This paper focuses on three typical configurations of fully restrained CDPMs with 7 cables in order to introduce an approach for configuration synthesis. Firstly, the kinematic models of three types of CDPMs with 7 cables are set up. Then, in order to evaluate workspace quality, two new indices are proposed by using tensions along each cable, which are the All Cable Tension Distribution Index (ACTDI and Global Tension Distribution Index (GTDI. Next, the three types of CDPMs with 7 cables are analysed with the two indices. At the end, according to different performance requirements, the configurations of cable distribution are discussed and selected.

  9. An experimental study of an energy absorbing restrainer for piping systems

    International Nuclear Information System (INIS)

    Sone, A.; Suzuki, K.

    1989-01-01

    Recently, in the seismic design methodology of the piping systems in nuclear power plants, new and improved design criteria and calculation techniques which will lead to more reliable and cost saving design products have been investigated. For instance, problems for reducing the snubbers in nuclear power plants which provide high costs for their inspections and maintenances and related flexible design problems for the dynamic piping systems have been investigated. Thus, in order to replace snubbers, various types of alternative supporting devices such as dynamic absorbers, gapped support and energy absorbing support devices have been proposed. A number of energy absorbing restrainers have been designed in Japan and United-States by allowing yield to occur during strong earthquakes. Advantages and disadvantages of these restrainers were examined analytically and experimentally. In order to overcome the disadvantages, the authors introduced new absorbing material LSPZ (laminated super plastic zinc) in which SPZ is expected to have reliable ductility and also efficient energy absorbability still under the normal temperature condition. This paper is devoted to an experimental works for this updated absorbing restrainer

  10. Orthorexic and restrained eating behaviour in vegans, vegetarians, and individuals on a diet.

    Science.gov (United States)

    Barthels, Friederike; Meyer, Frank; Pietrowsky, Reinhard

    2018-04-01

    Orthorexic eating behaviour, restrained eating, and veganism/vegetarianism are food selection strategies sharing several characteristics. Since there are no studies investigating their interrelationships, aim of the present study was to analyse orthorexic and restrained eating behaviour in (1) a sample of vegans and vegetarians and (2) a sample of individuals on a diet to lose weight. Division of samples according to pre-defined criteria in (1) vegans (n = 114), vegetarians (n = 63), individuals with rare meat consumption (n = 83) and individuals with frequent meat consumption (n = 91) and in (2) participants on a diet with dietary change (n = 104), without dietary change (n = 37) and a control group of individuals not on a diet (n = 258). Orthorexic eating behaviour was assessed with the Düsseldorfer Orthorexie Skala and restrained eating was assessed with the Restraint Eating Scale. Vegans and vegetarians do not differ in orthorexic eating behaviour, but both groups score higher in orthorexic eating behaviour than individuals consuming red meat. There are no differences regarding restrained eating. Individuals on a diet with dietary change score higher in both orthorexic and restrained eating, than individuals without dietary change and individuals not on a diet. Individuals who restrict their eating behaviour, either predominantly due to ethical reasons or with the intention to lose weight, display more orthorexic eating behaviour than individuals not limiting their food consumption. Further research is needed to investigate whether veganism, vegetarianism, or frequent dieting behaviour serve as risk factors for orthorexia. Level V, cross-sectional descriptive study.

  11. Stress field determination in an alloy 600 stress corrosion crack specimen; Determination du champ de contraintes dans une eprouvette de corrosion sous contrainte de l`alliage 600

    Energy Technology Data Exchange (ETDEWEB)

    Rassineux, B.; Labbe, T.

    1995-05-01

    In the context of EDF studies on stress corrosion cracking rates in the Alloy 600 steam generators tubes, we studied the influence of strain hardened surface layers on the different stages of cracking for a tensile smooth specimen (TLT). The stress field was notably assessed to try and explain the slow/rapid-propagation change observed beyond the strain hardened layers. The main difficulty is to simulate in a finite element model the inner and outer surfaces of these strain hardened layers, produced by the final manufacturing stages of SG tubes which have not been heat treated. In the model, the strain hardening is introduced by simulating a multi-layer material. Residual stresses are simulated by an equivalent fictitious thermomechanical calculation, realigned with respect to X-ray measurements. The strain hardening introduction method was validated by an analytical calculation giving identical results. Stress field evolution induced by specimen tensile loading were studied using an elastoplastic 2D finite element calculations performed with the Aster Code. The stress profile obtained after load at 660 MPa shows no stress discontinuity at the boundary between the strain hardened layer and the rest of the tube. So we propose that a complementary calculation be performed, taking into account the multi-cracked state of the strain hardened zones by means of a damage variable. In fact, this state could induce stress redistribution in the un-cracked area, which would perhaps provide an explanation of the crack-ground rate change beyond the strain hardened zone. The calculations also evidence the harmful effects of plastic strains on a strain hardened layer due to the initial state of the tube (not heat-treated), to grit blasting or to shot peening. The initial compressive stress condition of this surface layer becomes, after plastic strain, a tensile stress condition. These results are confirmed by laboratory test. (author). 10 refs., 18 figs., 9 tabs., 2 appends.

  12. Response, thermal regulatory threshold and thermal breakdown threshold of restrained RF-exposed mice at 905 MHz

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, S [Swiss Federal Institute of Technology (ETH), Zurich, 8092 Zurich (Switzerland); Eom, S J [Swiss Federal Institute of Technology (ETH), Zurich, 8092 Zurich (Switzerland); Schuderer, J [Foundation for Research on Information Technologies in Society (IT' IS), Zeughausstrasse 43, 8004 Zurich (Switzerland); Apostel, U [Fraunhofer Institute for Toxicology and Experimental Medicine, Nicolai-Fuchs-Strasse 1, 30625 Hannover (Germany); Tillmann, T [Fraunhofer Institute for Toxicology and Experimental Medicine, Nicolai-Fuchs-Strasse 1, 30625 Hannover (Germany); Dasenbrock, C [Fraunhofer Institute for Toxicology and Experimental Medicine, Nicolai-Fuchs-Strasse 1, 30625 Hannover (Germany); Kuster, N [Swiss Federal Institute of Technology (ETH), Zurich, 8092 Zurich (Switzerland)

    2005-11-07

    The objective of this study was the determination of the thermal regulatory and the thermal breakdown thresholds for in-tube restrained B6C3F1 and NMRI mice exposed to radiofrequency electromagnetic fields at 905 MHz. Different levels of the whole-body averaged specific absorption rate (SAR 0, 2, 5, 7.2, 10, 12.6 and 20 W kg{sup -1}) have been applied to the mice inside the 'Ferris Wheel' exposure setup at 22 {+-} 2 {sup 0}C and 30-70% humidity. The thermal responses were assessed by measurement of the rectal temperature prior, during and after the 2 h exposure session. For B6C3F1 mice, the thermal response was examined for three different weight groups (20 g, 24 g, 29 g), both genders and for pregnant mice. Additionally, NMRI mice with a weight of 36 g were investigated for an interstrain comparison. The thermal regulatory threshold of in-tube restrained mice was found at SAR levels between 2 W kg{sup -1} and 5 W kg{sup -1}, whereas the breakdown of regulation was determined at 10.1 {+-} 4.0 W kg{sup -1}(K = 2) for B6C3F1 mice and 7.7 {+-} 1.6 W kg{sup -1}(K = 2) for NMRI mice. Based on a simplified power balance equation, the thresholds show a clear dependence upon the metabolic rate and weight. NMRI mice were more sensitive to thermal stress and respond at lower SAR values with regulation and breakdown. The presented data suggest that the thermal breakdown for in-tube restrained mice, whole-body exposed to radiofrequency fields, may occur at SAR levels of 6 W kg{sup -1}(K = 2) at laboratory conditions.

  13. Restraining and neck cutting or stunning and neck cutting of veal calves.

    Science.gov (United States)

    Lambooij, E; van der Werf, J T N; Reimert, H G M; Hindle, V A

    2012-05-01

    Brain and heart activities were measured in 31 veal calves during restraining and rotating followed by neck cutting with or without stunning to evaluate welfare. After neck cutting correlation dimension analyses and %power of EEG beta wave fraction decreased gradually to lower values resulting in an induction of unconsciousness lasting on average 80s. Corneal reflex response ceased 135±57s after neck cutting. The CD scores and the %power of beta waves fell immediately after post-cut captive bolt and pre-cut electrical stunning to levels indicating unconsciousness. Heart rate in lairage increased upon entrance to the restrainer and again after rotation, heart rate variability decreased. Rotating the restrainer 90°, 120° or 180° compromised veal calf welfare and should be avoided. It is recommended to use post-cut captive bolt stunning or pre-cut electrical stunning inducing immediate unconsciousness. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. The influence of specimen size on creep crack growth rate in cross-weld CT specimens cut out from a welded component

    International Nuclear Information System (INIS)

    Andersson, Peder; Segle, Peter; Samuelson, Lars Aa.

    1999-04-01

    A 3D finite element study of creep crack growth in cross-weld CT specimens with material properties of 2.25Cr1Mo at 550 deg C is carried out, where large strain and displacement theory is used. The creep crack growth rate is calculated using a creep ductility based damage model, in which the creep strain rate perpendicular to the crack plane ahead of the crack tip is integrated, considering the multiaxial stress state. The influence of specimen size on creep crack growth rate under constant load is given special attention, but the possibility to transfer results from cross-weld CT specimens to welded high temperature components is also investigated. The creep crack growth rate of a crack in a circumferentially welded pipe is compared with the creep crack growth rate of cross-weld CT specimens of three different sizes, cut out from the pipe. Although the constraint ahead of the crack tip is higher for a larger CT specimen, the creep crack growth rate is higher for a smaller specimen than for a larger one if they are loaded to attain the same stress intensity factor. If the specimens are loaded to the same C* value, however, a more complicated pattern occurs; depending on the material properties of the weldment constituents, the CT specimen with the intermediate size will either yield the highest or the lowest creep crack growth rate

  15. Comparison of oxygen saturation values obtained from fingers on physically restrained or unrestrained sides of the body.

    Science.gov (United States)

    Korhan, Esra Akin; Yönt, Gülendam Hakverdioğlu; Khorshid, Leyla

    2011-01-01

    The aim of this study was to compare semiexperimentally the pulse oximetry values obtained from a finger on restrained or unrestrained sides of the body. The pulse oximeter provides a noninvasive measurement of the oxygen saturation of hemoglobin in arterial blood. One of the procedures most frequently applied to patients in intensive care units is the application of physical restraint. Circulation problems are the most important complication in patients who are physically restrained. Evaluation of oxygen saturation from body parts in which circulation is impeded or has deteriorated can cause false results. The research sample consisted of 30 hospitalized patients who participated in the study voluntarily and who were concordant with the inclusion criteria of the study. Patient information and patient follow-up forms were used for data collection. Pulse oximetry values were measured simultaneously using OxiMax Nellcor finger sensors from fingers on the restrained and unrestrained sides of the body. Numeric and percentile distributions were used in evaluating the sociodemographic properties of patients. A significant difference was found between the oxygen saturation values obtained from a finger of an arm that had been physically restrained and a finger of an arm that had not been physically restrained. The mean oxygen saturation value measured from a finger of an arm that had been physically restrained was found to be 93.40 (SD, 2.97), and the mean oxygen saturation value measured from a finger of an arm that had not been physically restrained was found to be 95.53 (SD, 2.38). The results of this study indicate that nurses should use a finger of an arm that is not physically restrained when evaluating oxygen saturation values to evaluate them correctly.

  16. Influence of specimen size on the creep of rock salt

    International Nuclear Information System (INIS)

    Senseny, P.E.

    1982-01-01

    Triaxial compression creep data for Avery Island dome salt are analyzed to determine the influence of specimen size on creep deformation. Laboratory experiments were performed on 50- and 100-mm-diameter specimens in the temperature range from 25 to 200 0 C and the axial stress difference range from 2.5 to 31.0 MPa. The strain-vs-time data from each test are divided into transient and steady-state components. Results of statistical analysis of these data show that transient creep of the small specimens is a stronger function of stress, temperature, and time than is transient creep of the larger specimens. Analysis of the steady-state data show no size effect, however. 14 references, 7 figures, 3 tables

  17. Elastic-plastic analysis of the SS-3 tensile specimen

    International Nuclear Information System (INIS)

    Majumdar, S.

    1998-01-01

    Tensile tests of most irradiated specimens of vanadium alloys are conducted using the miniature SS-3 specimen which is not ASTM approved. Detailed elastic-plastic finite element analysis of the specimen was conducted to show that, as long as the ultimate to yield strength ratio is less than or equal to 1.25 (which is satisfied by many irradiated materials), the stress-plastic strain curve obtained by using such a specimen is representative of the true material behavior

  18. Influence of specimen size and grain orientation to the life of a polycrystalline Ni-base alloy at LCF stress

    International Nuclear Information System (INIS)

    Seibel, Thomas

    2014-01-01

    In the present work the LCF (Low Cycle Fatigue) crack initiation life of the conventionally cast Ni-base alloy RENE 80 was analyzed as a function of specimen size and grain orientation. Five specimen geometries with distinctly different gauge sections were used: 3 geometries with cylindrical gauge section (G1-G3) and two notched geometries with a stress concentration factor of α 1 = 1,62 (KG1) and α 2 = 2,60 (KG2), resulting in a maximum difference of the damage relevant surface area up to a factor of approximately 72. Correction factors were determined by FEM calculations for all specimen geometries with highly reduced gauge sections where direct strain measurement was not possible. Additionally a uniform failure criterion with a relatively small crack size of 0,962 mm 2 was defined. Totally, 116 isothermal LCF tests were carried out at the different specimen types at a temperature of 850 C in total strain control with a load ratio (minimum strain / maximum strain) of R ε = -1. The load cycles were applied with triangular waveform at a frequency of 0.1 Hz for high strain amplitudes and 1 Hz for low strain amplitudes, respectively. After the LCF-Tests the fracture surfaces of all samples were analyzed in more detail by SEM to identify the crack initiation mechanisms as well as the crack initiation sites. In this context it could be shown, that fatigue cracks were generally initiated at slip bands in surface grains. Accordingly, the grain orientations at the crack initiation sites were measured by electron back scatter diffraction (EBSD) and the maximum shear stresses in the respective principal slip system (111) <110> was calculated using the Schmid approach. For this, longitudinal sections were be prepared exactly at the crack initiation sites of samples loaded with low strain amplitudes where clearly defined single crack initiation sites were observed. Afterwards the maximum shear stress in the principal slip system at the crack initiation site was correlated

  19. Development of fatigue life evaluation method using small specimen

    International Nuclear Information System (INIS)

    Nogami, Shuhei; Nishimura, Arata; Wakai, Eichi; Tanigawa, Hiroyasu; Itoh, Takamoto; Hasegawa, Akira

    2013-01-01

    For developing the fatigue life evaluation method using small specimen, the effect of specimen size and shape on the fatigue life of the reduced activation ferritic/martensitic steels (F82H-IEA, F82H-BA07 and JLF-1) was investigated by the fatigue test at room temperature in air using round-bar and hourglass specimens with various specimen sizes (test section diameter: 0.85–10 mm). The round-bar specimen showed no specimen size and no specimen shape effects on the fatigue life, whereas the hourglass specimen showed no specimen size effect and obvious specimen shape effect on it. The shorter fatigue life of the hourglass specimen observed under low strain ranges could be attributed to the shorter micro-crack initiation life induced by the stress concentration dependent on the specimen shape. On the basis of this study, the small round-bar specimen was an acceptable candidate for evaluating the fatigue life using small specimen

  20. Experimental and Numerical Evaluation of Direct Tension Test for Cylindrical Concrete Specimens

    Directory of Open Access Journals (Sweden)

    Jung J. Kim

    2014-01-01

    Full Text Available Concrete cracking strength can be defined as the tensile strength of concrete subjected to pure tension stress. However, as it is difficult to apply direct tension load to concrete specimens, concrete cracking is usually quantified by the modulus of rupture for flexural members. In this study, a new direct tension test setup for cylindrical specimens (101.6 mm in diameter and 203.2 mm in height similar to those used in compression test is developed. Double steel plates are used to obtain uniform stress distributions. Finite element analysis for the proposed test setup is conducted. The uniformity of the stress distribution along the cylindrical specimen is examined and compared with rectangular cross section. Fuzzy image pattern recognition method is used to assess stress uniformity along the specimen. Moreover, the probability of cracking at different locations along the specimen is evaluated using probabilistic finite element analysis. The experimental and numerical results of the cracking location showed that gravity effect on fresh concrete during setting time might affect the distribution of concrete cracking strength along the height of the structural elements.

  1. AGC-2 Specimen Post Irradiation Data Package Report

    Energy Technology Data Exchange (ETDEWEB)

    Windes, William Enoch [Idaho National Lab. (INL), Idaho Falls, ID (United States); Swank, W. David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rohrbaugh, David T. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cottle, David L. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-08-01

    This report documents results of the post-irradiation examination material property testing of the creep, control, and piggyback specimens from the irradiation creep capsule Advanced Graphite Creep (AGC)-2 are reported. This is the second of a series of six irradiation test trains planned as part of the AGC experiment to fully characterize the neutron irradiation effects and radiation creep behavior of current nuclear graphite grades. The AGC-2 capsule was irradiated in the Idaho National Laboratory Advanced Test Reactor at a nominal temperature of 600°C and to a peak dose of 5 dpa (displacements per atom). One-half of the creep specimens were subjected to mechanical stresses (an applied stress of either 13.8, 17.2, or 20.7 MPa) to induce irradiation creep. All post-irradiation testing and measurement results are reported with the exception of the irradiation mechanical strength testing, which is the last destructive testing stage of the irradiation testing program. Material property tests were conducted on specimens from 15 nuclear graphite grades using a similar loading configuration as the first AGC capsule (AGC-1) to provide easy comparison between the two capsules. However, AGC-2 contained an increased number of specimens (i.e., 487 total specimens irradiated) and replaced specimens of the minor grade 2020 with the newer grade 2114. The data reported include specimen dimensions for both stressed and unstressed specimens to establish the irradiation creep rates, mass and volume data necessary to derive density, elastic constants (Young’s modulus, shear modulus, and Poisson’s ratio) from ultrasonic time-of-flight velocity measurements, Young’s modulus from the fundamental frequency of vibration, electrical resistivity, and thermal diffusivity and thermal expansion data from 100–500°C. No data outliers were determined after all measurements were completed. A brief statistical analysis was performed on the irradiated data and a limited comparison between

  2. Experimental procedure for the characterization of cyclic behavior from very thin plate specimens

    International Nuclear Information System (INIS)

    Maury, A.; Moulin, D.

    1983-01-01

    Many investigators, including those involved in the INTERNATIONAL BENCHMARK PROJECT ON SIMPLIFIED METHODS FOR ELEVATED TEMPERATURE DESIGN AND ANALYSIS - PROBLEM II, have tried to reproduce experimentally observed behavior by inelastic calculations. Unfortunately, the material characteristics used in the computer code were established from monotonic tensile tests performed with specimens extracted from the plate product itself (1.45 mm thick) employed to construct the ratchetting specimen. It now appears that the cyclic behavior of the material is much more relevant to the phenomenon observed. Hence the need to make this kind of characterization. Nevertheless, the practical problem is to produce cyclic stresses, i.e. tensile and compressive stresses, with very thin specimens. The main difficulty is to prevent the buckling effect. A new special device set up for this particular purpose is described here. The solution adopted was to create uniformly distributed alternative pure bending stresses in the thin plate specimen. Bending moments were produced by two end-grips fixed to the specimen, and these grips were mounted on a conventional test-machine which was displacement-controlled. To reduce tensile and compressive membrane stresses inside the specimen, the grips had two parallel axles of rotation. The forces produced by the machine and the displacements of a number of points of the specimen were continuously recorded during the test, so that cyclically stabilized, bending moments could be evaluated easily for each curvature variation imposed. The very first cyclic experimental data obtained, at room temperature, for the material of the sodium test specimen, a 316 type stainless steel, are presented. It may be noted that the simple specimens were very easy to prepare and hence inexpensive. (orig.)

  3. Numerical simulation and experiments of precision bar cutting based on high speed and restrained state

    International Nuclear Information System (INIS)

    Song, J.L.; Li, Y.T.; Liu, Z.Q.; Fu, J.H.; Ting, K.L.

    2009-01-01

    According to the disadvantages of conventional bar cutting technology such as low-cutting speed, inferior section quality, high-processing cost and so on, a kind of novel precision bar cutting technology has been proposed. The cutting mechanism has also been analyzed. Finite element numerical simulation of the bar cutting process under different working conditions has been carried out with DEFORM. The stress and strain fields at different cutting speed and the variation curves of the cutting force and appropriate cutting parameters have been obtained. Scanning electron microscopy analysis of the cutting surface showed that the finite-element simulation result is correct and better cutting quality can be obtained with the developed bar cutting technology and equipment based on high speed and restrained state

  4. Temporal attention for visual food stimuli in restrained eaters

    NARCIS (Netherlands)

    Neimeijer, Renate A. M.; de Jong, Peter J.; Roefs, Anne

    2013-01-01

    Although restrained eaters try to limit their food intake, they often fail and indulge in exactly those foods that they want to avoid. A possible explanation is a temporal attentional bias for food cues. It could be that for these people food stimuli are processed relatively efficiently and require

  5. Longitudinal association between child stress and lifestyle.

    Science.gov (United States)

    Michels, Nathalie; Sioen, Isabelle; Boone, Liesbet; Braet, Caroline; Vanaelst, Barbara; Huybrechts, Inge; De Henauw, Stefaan

    2015-01-01

    Psychosocial stress has been linked with an unhealthy lifestyle but the relation's direction remains unclear. Does stress induce sleeping problems, comfort food consumption, and lower physical activity, or do these unhealthy lifestyle factors enhance stress? This study examined the bidirectional stress-lifestyle relation in children. The relation between stress and lifestyle was examined over 2 years in 312 Belgian children 5-12 years old as part of the Children's Body Composition and Stress study. Stress-related aspects were measured by questionnaires concerning negative events, negative emotions, and behavioral problems. The following lifestyle factors were assessed: physical activity (by accelerometers), sleep duration, food consumption (sweet food, fatty food, snacks, fruits and vegetables), and eating behavior (emotional, external, restrained). Bidirectional relations were examined with cross-lagged analyses. Certain stress aspects increased physical activity, sweet food consumption, emotional eating, restrained eating, and external eating (βs = .140-.319). All relations were moderated by sex and age: Dietary effects were mainly in the oldest children and girls; stress increased physical activity in the youngest, whereas it tended to decrease physical activity in the oldest. One reversed direction effect was found: Maladaptive eating behaviors increased anxiety feelings. Relations were mainly unidirectional: Stress influenced children's lifestyle. Stress stimulated eating in the absence of hunger, which could facilitate overweight. Consequently, families should realize that stress may influence children's diet, and problem-solving coping skills should be acquired. In contrast to recent findings, stress might also stimulate physical activity in the youngest as positive stress coping style.

  6. Finite Element Analysis for Bending Process of U-Bending Specimens

    Energy Technology Data Exchange (ETDEWEB)

    Park, Won Dong; Bahn, Chi Bum [Pusan National University, Busan (Korea, Republic of)

    2015-10-15

    ASTM G30 suggests that the applied strain can be calculated by dividing thickness by a bend radius. It should be noted, however, that the formula is reliable under an assumption that the ratio of thickness to bend radius is less than 0.2. Typically, to increase the applied stress/strain, the ratio of thickness to bend radius becomes larger than 0.2. This suggests that the estimated strain values by ASTM G30 are not reliable to predict the actual residual strain state of the highly deformed U-bend specimen. For this reason, finite element analysis (FEA) for the bending process of Ubend specimens was conducted by using a commercial finite element analysis software ABAQUS. ver.6.14- 2;2014. From the results of FEA, PWSCC initiation time and U-bend specimen size can be determined exactly. Since local stress and strain have a significant effect on the initiation of PWSCC, it was inappropriate to apply results of ASTM G30 to the PWSCC test directly. According to results of finite element analysis (FEA), elastic relaxation can cause inaccuracy in intended final residual stress. To modify this inaccuracy, additional process reducing the spring back is required. However this additional process also may cause uncertainty of stress/strain state. Therefore, the U-bending specimen size which is not creating uncertainty should be optimized and selected. With the bending radius of 8.3 mm, the thickness of 3 mm and the roller distance of 32.6 mm, calculated maximum stress and strain were 670 MPa and 0.21, respectively.

  7. Progress Report on Alloy 617 Notched Specimen Testing

    Energy Technology Data Exchange (ETDEWEB)

    McMurtrey, Michael David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wright, Richard Neil [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lillo, Thomas Martin [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-08-01

    Creep behavior of Alloy 617 has been extensively characterized to support the development of a draft Code Case to qualify Alloy 617 in Section III division 5 of the ASME Boiler and Pressure Vessel Code. This will allow use of Alloy 617 in construction of nuclear reactor components at elevated temperatures and longer periods of time (up to 950°C and 100,000 hours). Prior to actual use, additional concerns not considered in the ASME code need to be addressed. Code Cases are based largely on uniaxial testing of smooth gage specimens. In service conditions, components will generally be under multi axial loading. There is also the concern of the behavior at discontinuities, such as threaded components. To address the concerns of multi axial creep behavior and at geometric discontinuities, notched specimens have been designed to create conditions representative of the states that service components experience. Two general notch geometries have been used for these series of tests: U notch and V notch specimens. The notches produce a tri axial stress state, though not uniform across the specimen. Characterization of the creep behavior of the U notch specimens and the creep rupture behavior of the V notch specimens provides a good approximation of the behavior expected of actual components. Preliminary testing and analysis have been completed and are reported in this document. This includes results from V notch specimens tested at 900°C and 800°C. Failure occurred in the smooth gage section of the specimen rather than at the root of the notch, though some damage was present at the root of the notch, where initial stress was highest. This indicates notch strengthening behavior in this material at these temperatures.

  8. Early age damage quantification of actively restrained concrete using inverse analysis

    Science.gov (United States)

    Albanna, Ali

    Early-age cracking can be a significant problem in concrete pavements, floors, and bridge decks. Cracking occurs when the volumetric changes associated with drying, hydration, and temperature reduction are prevented. Good knowledge about the characteristics of early age concrete is necessary to achieve reliable crack control. Volumetric changes due to shrinkage depend on the type of concrete and its components. It has been found that light weight aggregates can work as internal reservoir to supply the concrete matrix with water that is needed during the early age; this process is called internal curing. Also fibers can give more ductility to the concrete and produce less shrinkage. There is a need to better understand the effects of early age uniaxial restraint on long term concrete mechanical performance. In this study, two types of concrete were studied (high performance fiber reinforced concrete and ordinary concrete) under actively restrained loading conditions to assess the effect on the long term fracture toughness and energy. Single edge notched specimens having dimensions of 250 mm x 150 mm x 75 mm and a notch to depth ratio of 0.33 were caste and used in both direct tension and three point bending. The direct tension tests were carried out on a direct tension loading frame constructed in house that was supplied with two mechanical jacks and load cell.

  9. Music for untying restrained patients.

    Science.gov (United States)

    Janelli, L M; Kanski, G

    1998-03-01

    The purpose of this descriptive pilot study was two-fold: (a) to test psychometrically an observational instrument designed to measure patient behaviors displayed while unrestrained and receiving a musical intervention; and (b) to determine the effect of a musical intervention on the behavioral reactions of physically restrained patients. The Restraint-Music Response Instrument (RMRI) is a 40-item observational checklist consisting of 22 positive and 18 negative responses developed by the researchers. Content validity was assessed by a panel of experts. The RMRI was tested for interrater reliability using three simulated and 10 actual patients. Results suggest that the RMRI is a valid and reliable measure of patients' responses to music but requires additional study with a control group not receiving the intervention.

  10. Fracture toughness evaluation of small notched specimen in consideration of notch effect and loading rate

    International Nuclear Information System (INIS)

    Lee, Baik Woo; Kwon, Dong Il; Jang, Jae Il

    2000-01-01

    Notch effect and loading rate dependency on fracture toughness were considered when evaluating fracture toughness of small notched specimens using the instrumented impact test. Notch effect was analyzed into stress redistribution effect and stress relaxation with a viewpoint of stress triaxiality. Stress redistribution effect was corrected by introducing effective crack length, which was the sum of actual crack length and plastic zone size. Stress relaxation effect was also corrected using elastic stress concentration factor, which would decrease if plastic deformation occurred. As a result, corrected fracture toughness of the notched specimen was very consistent with the reference fracture toughness obtained using precracked specimen. In addition, limiting notch root radius, below which fracture toughness was independent of notch radius, was observed and discussed. Loading rate dependency on fracture toughness, which was obtained from the static three point bending test and the instrumented impact test, was also discussed with stress field in plastic zone ahead of a notch and fracture based on stress control mechanism. (author)

  11. Healthy cognition: Processes of self-regulatory success in restrained eating

    NARCIS (Netherlands)

    Papies, Esther K.; Stroebe, Wolfgang; Aarts, Henk

    2008-01-01

    Two studies examined self-regulatory success in dieting. Previous research has indicated that restrained eaters (i.e., chronic dieters) might fail in their attempts at weight control because the perception of attractive food cues triggers hedonic thoughts about food and inhibits their dieting goal.

  12. Effect of aggregate type, casting, thickness and curing condition on restrained strain of mass concrete

    Directory of Open Access Journals (Sweden)

    Pongsak Choktaweekarn

    2010-08-01

    Full Text Available In this paper, a three-dimensional finite element analysis is used for computing temperature and restrained strain inmass concrete. The model takes into account time, material properties, and mix proportion dependent behavior of concrete.The hydration heat and thermal properties used in the finite element analysis are obtained from our previously proposedadiabatic temperature rise model and are used as the input in the analysis. The analysis was done by varying size of massconcrete (especially thickness and the casting method in order to explain their effect on temperature and restrained strain inmass concrete. The casting methods used in the analysis are continuous and discontinuous casting. The discontinuouscasting consists of layer casting and block casting. Different types of aggregate were used in the analysis for studying theeffect of thermal properties of aggregate on temperature and restrained strain in mass concrete. Different conditions of curing(insulation and normal curing were also studied and compared. It was found from the analytical results that the maximumtemperature increases with the increase of the thickness of structure. The use of layer casting is more effective for thermalcracking control of mass concrete. The insulation curing method is preferable for mass concrete. Aggregate with low coefficientof thermal expansion is beneficial to reduce the restrained strain.

  13. A proposed standard round compact specimen for plane strain fracture toughness testing

    Science.gov (United States)

    Underwood, J. H.; Newman, J. C., Jr.; Seeley, R. R.

    1980-01-01

    A round, disk-shaped specimen is proposed as a standard test specimen for addition to ASTM Test for Plane-Strain Fracture Toughness of Metallic Materials (E 399-78A). The specimen is diametrically cracked, and loaded in the same way as the existing standard compact specimen. Tests and analyses were performed to verify that the proposed round compact specimen and associated stress intensity factor K solution are appropriate for a standard plane strain fracture toughness test. The use of the round compact specimen for other fracture tests is described.

  14. Upgrading the seismic capacity of existing RC buildings using buckling restrained braces

    Directory of Open Access Journals (Sweden)

    Hamdy Abou-Elfath

    2017-06-01

    Full Text Available Many existing RC buildings do not meet the lateral strength requirements of current seismic codes and are vulnerable to significant damage or collapse in the event of future earthquakes. In the past few decades, buckling-restrained braces have become increasingly popular as a lateral force resisting system because of their capability of improving the strength, the stiffness and the energy absorbing capacity of structures. This study evaluates the seismic upgrading of a 6-story RC-building using single diagonal buckling restrained braces. Seismic evaluation in this study has been carried out by static pushover analysis and time history earthquake analysis. Ten ground motions with different PGA levels are used in the analysis. The mean plus one standard deviation values of the roof-drift ratio, the maximum story drift ratio, the brace ductility factors and the member strain responses are used as the basis for the seismic performance evaluations. The results obtained in this study indicate that strengthening of RC buildings with buckling restrained braces is an efficient technique as it significantly increases the PGA capacity of the RC buildings. The results also indicate the increase in the PGA capacity of the RC building with the increase in the amount of the braces.

  15. Maternal mental health symptoms are positively related to emotional and restrained eating attitudes in a statewide sample of mothers participating in a supplemental nutrition program for women, infants and young children.

    Science.gov (United States)

    Emerson, Jillian A; Hurley, Kristen M; Caulfield, Laura E; Black, Maureen M

    2017-01-01

    Postpartum, low-income mothers are at risk for mental health symptoms and obesity, and disordered eating attitudes may be associated with both mental health and obesity in this vulnerable population. The study objective is to determine whether higher levels of mental health symptoms are associated with increased odds of emotional and restrained eating attitudes in this sample of Special Supplemental Nutrition Program for Women, Infants and Children (WIC) participants. Data on 711 mothers of infants Maternal mental health symptoms were measured on continuous scales for depression (PRIME-MD), stress (Perceived Stress Scale) and anxiety (Spielberger State-Trait Anxiety Inventory). Emotional and restrained eating attitudes were measured with questions adapted from the Dutch Eating Behavior Questionnaire. Multivariate logistic regression analysis was used. Obesity [body mass index (BMI) ≥ 30] was explored as a moderating variable. Mothers reporting higher levels of depression symptoms [odds ratio (OR) = 3.93, 95%CI: 2.71-5.69], anxiety symptoms (OR = 1.96, 95%CI: 1.47-2.65), stress symptoms (OR = 2.09, 95%CI: 1.67-2.61) and high overall mental health symptomatology (OR = 3.51, 95%CI: 2.43-5.3) had increased odds of emotional eating attitudes. There were significant associations between symptoms of depression (OR = 1.59, 95% CI: 1.12-2.25) and increased odds of restrained eating attitudes. Obesity did not moderate the association. Mothers with mental health symptoms are at risk for disordered eating attitudes, which may increase risk of poor diet. These findings underscore the need for greater focus on addressing maternal mental health status and eating attitudes in the postpartum period. © 2016 John Wiley & Sons Ltd.

  16. Conversion of fracture toughness testing values from small scale three point bending test specimens to small scale yielding state (SSY) by elastic-plastic stress analysis

    International Nuclear Information System (INIS)

    Ikonen, K.

    1993-07-01

    The report describes the work performed for achieving readiness to calculate fracture toughness dependence on dimension effects and loading conditions in fracture test specimens and real structures. In the report two- and three-dimensional computer codes developed and calculational methods applied are described. One of the main goals is to converse fracture toughness from small scale three point bending test specimens to case of a depth crack in plane strain i.e. to small scale yielding state (SSY) by numerical elastic-plastic stress analysis. Thickness effect of a test specimens and effect of a crack depth are separately investigated. Tests of three point bending specimens with and without sidegrooves and curved crack front are numerically simulated and experimental and computed results are compared. J-integral is calculated along crack front and also from force-deflection dependence of the beam. For the analyses the computing system was thoroughly automatized. Measuring capacity of three point bending test specimens was tried to evaluate. (orig.) (7 refs., 54 figs.)

  17. Failure mechanism of resistance-spot-welded specimens impacted on base material by bullets

    Science.gov (United States)

    Fan, Chunlei; Ma, Bohan; Chen, Danian; Wang, Huanran; Ma, Dongfang

    2018-01-01

    The tests of bullet impact on the base material (BM) of a simple specimen with a single resistance-spot-welded (RSW) nugget of TRIP800 steel are performed to investigate the response of the RSW specimen to the ballistic debris impact on the RSW specimen. A one-stage gas gun is used to fire the bullets while a laser velocity interferometer system for any reflector (VISAR) is used to measure the velocity histories of the free surfaces of the RSW specimen. The recovered RSW specimens are examined with the three-dimensional super depth digital microscope (SDDM) and the scanning electro microscope (SEM). For the tests of small multiple-bullet impact, it is revealed that the wave train of the VISAR measured results and the detachment of the base material interfaces in the recovered RSW specimens are directly related to the reflection and refraction of the curved stress waves incoming to the interfaces and the free surfaces in the RSW specimens. The detachment of BM interfaces can lead to the impact failure of the RSW joints for the larger multiple-bullet impact at higher velocity, the mechanism of which is different from the case for normal incidence (spalling). For the tests of single large bullet impact, it is brought to light experimentally that the plastic strain concentration at the "notch tip" spurs either the crack near the RSW joint or the split of the nugget. The numerical simulation shows up the process of splitting the nugget: a crack initiates at the "notch tip", propagates across the nugget interface and splits the nugget into two parts. It is indicated that the interaction between the stress waves and many interfaces/free surfaces in the RSW specimen under ballistic impact causes variable local stress triaxialities and stress Lode angles, which affects the deformation and fracture mechanism of the RSW specimen including stretching and shearing failure. It is shown that the impact failure of the RSW joints is a mixture of brittle fracture and ductile

  18. Make up your mind about food: A healthy mindset attenuates attention for high-calorie food in restrained eaters.

    Science.gov (United States)

    Werthmann, Jessica; Jansen, Anita; Roefs, Anne

    2016-10-01

    Attention bias for food could be a cognitive pathway to overeating in obesity and restrained eating. Yet, empirical evidence for individual differences (e.g., in restrained eating and body mass index) in attention bias for food is mixed. We tested experimentally if temporarily induced health versus palatability mindsets influenced attention bias for food, and whether restrained eating moderated this relation. After manipulating mindset (health vs. palatability) experimentally, food-related attention bias was measured by eye-movements (EM) and response latencies (RL) during a visual probe task depicting high-calorie food and non-food. Restrained eating was assessed afterwards. A significant interaction of mindset and restrained eating on RL bias emerged, β = 0.36, t(58) = 2.05, p = 0.045: A health mindset - as compared to a palatability mindset - attenuated attention bias for high-caloric food only in participants with higher eating restraint. No effects were observed on EM biases. The current results demonstrate that state differences in health versus palatability mindsets can cause attenuated attention bias for high-calorie food cues in participants with higher eating restraint. Our findings add to emerging evidence that state differences in mindsets can bias attention for food, above the influence of trait differences. Copyright © 2016. Published by Elsevier Ltd.

  19. Post-deformation examination of specimens subjected to SCC testing

    Energy Technology Data Exchange (ETDEWEB)

    Gussev, Maxim N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Field, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Busby, Jeremy T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Leonard, Keith J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-09-01

    This report details the results of post-radiation and post-deformation characterizations performed during FY 2015–FY 2016 on a subset of specimens that had previously been irradiated at high displacement per atom (dpa) damage doses. The specimens, made of commercial austenitic stainless steels and alloys, were subjected to stress-corrosion cracking tests (constant extension rate testing and crack growth testing) at the University of Michigan under conditions typical of nuclear power plants. After testing, the specimens were returned to Oak Ridge National Laboratory (ORNL) for further analysis and evaluation.

  20. Mere exposure to palatable food cues reduces restrained eaters' physical effort to obtain healthy food.

    Science.gov (United States)

    van Koningsbruggen, Guido M; Stroebe, Wolfgang; Aarts, Henk

    2012-04-01

    We examined whether exposure to cues of attractive food reduces effortful behavior toward healthy foods for restrained eaters. After manipulating food pre-exposure, we recorded handgrip force while presenting participants with pictures of healthy food objects. Because participants were led to expect that they could obtain each object (not specified beforehand) by squeezing the handgrip as forcefully as possible while the object was displayed on the screen, the recorded handgrip force constitutes a measure of spontaneous effortful behavior. Results show that restrained eaters, but not unrestrained eaters, displayed less forceful action toward healthy food objects (i.e., lower exertion of force) when pre-exposed to tempting food cues. No effects were found on palatability perceptions of the healthy foods. The results provide further insight into why restrained eaters have difficulties in maintaining a low-calorie diet in food-rich environments. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Laser weld reconstitution of conventional Charpy and Miniaturized Notch Test (MNT) specimens

    International Nuclear Information System (INIS)

    Manahan, M.P.; Williams, J.; Martukanitz, R.P.

    1993-01-01

    As nuclear power plants approach end-of-license (EOL) and consideration is given to license renewal, there is an ever increasing need to expand the amount of data obtainable from the original surveillance specimens. A laser welding technique to reconstitute broken Charpy specimens is being developed to produce both conventional and miniaturized Charpy specimens. This paper reports on early laser welding development efforts and summarizes previous proof-of-principle experiments on a 1/16 scale miniaturized Charpy test. In order to benchmark the laser welding procedure, the laser-reconstituted specimen data have been compared with the original specimen data. In addition, the microstructure after welding has been examined to ensure that the material in the vicinity of the notch is essentially unchanged after the welding process. Data which characterize the thermal transient during welding are obtained by attaching thermocouples to the specimens. Other important considerations include perturbation of the stress field near the notch, dynamic stress waves, and contact of the weld region with the tup. Precise control of welding parameters has been demonstrated, heat-affected zones as small as 0.25 mm can be achieved, and sufficient penetration depth can be obtained to enable welding thick sections (1T or greater) to yield conventional Charpy specimens or fracture toughness specimens and thin sections (∼5 mm) to yield Miniaturized Notch Test (MNT) specimens

  2. A thermal active restrained shrinkage ring test to study the early age concrete behaviour of massive structures

    International Nuclear Information System (INIS)

    Briffaut, M.; Benboudjema, F.; Torrenti, J.M.; Nahas, G.

    2011-01-01

    In massive concrete structures, cracking may occur during hardening, especially if autogenous and thermal strains are restrained. The concrete permeability due to this cracking may rise significantly and thus increase leakage (in tank, nuclear containment...) and reduce the durability. The restrained shrinkage ring test is used to study the early age concrete behaviour (delayed strains evolution and cracking). This test shows, at 20 o C and without drying, for a concrete mix which is representative of a French nuclear power plant containment vessel (w/c ratio equal to 0.57), that the amplitude of autogenous shrinkage (about 40 μm/m for the studied concrete mix) is not high enough to cause cracking. Indeed, in this configuration, thermal shrinkage is not significant, whereas this is a major concern for massive structures. Therefore, an active test has been developed to study cracking due to restrained thermal shrinkage. This test is an evolution of the classical restrained shrinkage ring test. It allows to take into account both autogenous and thermal shrinkages. Its principle is to create the thermal strain effects by increasing the temperature of the brass ring (by a fluid circulation) in order to expand it. With this test, the early age cracking due to restrained shrinkage, the influence of reinforcement and construction joints have been experimentally studied. It shows that, as expected, reinforcement leads to an increase of the number of cracks but a decrease of crack widths. Moreover, cracking occurs preferentially at the construction joint.

  3. The effect of brand and caloric information on flavor perception and food consumption in restrained and unrestrained eaters.

    Science.gov (United States)

    Cavanagh, Kevin V; Kruja, Blina; Forestell, Catherine A

    2014-11-01

    The goal of the current study was to determine whether provision of brand and caloric information affects sensory perception and consumption of a food in restrained (n=84) and unrestrained eaters (n=104). Using a between-subjects 2 × 2 × 3 design, female restrained and unrestrained eaters were asked to taste and rate a cookie that was labeled with a brand associated with healthful eating (Kashi(®)) or one associated with unhealthful eating (Nabisco(®)). Additionally, some participants were presented with a nutrition label alongside the brand name indicating that one serving contained 130 calories (Low-Calorie Condition), or 260 calories (High-Calorie Condition). The remaining participants were not shown a nutrition label (No Label Condition). Results indicated that those in the No Label or the High-Calorie Condition perceived the healthful branded cookie to have a better flavor than those who received the unhealthful branded cookie regardless of their restraint status. However, restrained eaters in the No Label Condition consumed more of the healthful than the unhealthful branded cookie, whereas those in the Low-Calorie Condition consumed more of the unhealthful than the healthful branded cookie. In contrast, unrestrained eaters ate more of the healthful branded cookie regardless of the caloric information provided. Thus, although restrained and unrestrained eaters' perceptions are similarly affected by branding and caloric information, brands and caloric information interact to affect restrained eaters' consumption. This study reveals that labeling foods as low calorie may create a halo effect which may lead to over-consumption of these foods in restrained eaters. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. The specific heat loss combined with the thermoelastic effect for an experimental analysis of the mean stress influence on axial fatigue of stainless steel plain specimens

    Directory of Open Access Journals (Sweden)

    G. Meneghetti

    2014-10-01

    Full Text Available The energy dissipated to the surroundings as heat in a unit volume of material per cycle, Q, was recently proposed by the authors as fatigue damage index and it was successfully applied to correlate fatigue data obtained by carrying out fully reversed stress- and strain-controlled fatigue tests on AISI 304L stainless steel plain and notched specimens. The use of the Q parameter to analyse the experimental results led to the definition of a scatter band having constant slope from the low- to the high-cycle fatigue regime. In this paper the energy approach is extended to analyse the influence of mean stress on the axial fatigue behaviour of unnotched cold drawn AISI 304L stainless steel bars. In view of this, stress controlled fatigue tests on plain specimens at different load ratios R (R=-1; R=0.1; R=0.5 were carried out. A new energy parameter is defined to account for the mean stress effect, which combines the specific heat loss Q and the relative temperature variation due to the thermoelastic effect corresponding to the achievement of the maximum stress level of the stress cycle. The new two-parameter approach was able to rationalise the mean stress effect observed experimentally. It is worth noting that the results found in the present contribution are meant to be specific for the material and testing condition investigated here.

  5. Some recent innovations in small specimen testing

    International Nuclear Information System (INIS)

    Odette, G.R.; He, M.; Gragg, D.; Klingensmith, D.; Lucas, G.E.

    2002-01-01

    New innovative small specimen test techniques are described. Finite element simulations show that combinations of cone indentation pile-up geometry and load-penetration depth relations can be used to determine both the yield stress and strain-hardening behavior of a material. Techniques for pre-cracking and testing sub-miniaturized fracture toughness bend bars, with dimensions of 1.65x1.65x9 mm 3 , or less, are described. The corresponding toughness-temperature curves have a very steep transition slope, primarily due to rapid loss of constraint, which has advantages in some experiments to characterize the effects of specified irradiation variables. As one example of using composite specimens, an approach to evaluating helium effects is proposed, involving diffusion bonding small wires of a 54 Fe-based ferritic-martensitic alloy to a surrounding fracture specimen composed of an elemental Fe-based alloy. Finally, we briefly outline some potential approaches to multipurpose specimens and test automation

  6. True Triaxial Strength and Failure Modes of Cubic Rock Specimens with Unloading the Minor Principal Stress

    Science.gov (United States)

    Li, Xibing; Du, Kun; Li, Diyuan

    2015-11-01

    True triaxial tests have been carried out on granite, sandstone and cement mortar using cubic specimens with the process of unloading the minor principal stress. The strengths and failure modes of the three rock materials are studied in the processes of unloading σ 3 and loading σ 1 by the newly developed true triaxial test system under different σ 2, aiming to study the mechanical responses of the rock in underground excavation at depth. It shows that the rock strength increases with the raising of the intermediate principal stress σ 2 when σ 3 is unloaded to zero. The true triaxial strength criterion by the power-law relationship can be used to fit the testing data. The "best-fitting" material parameters A and n ( A > 1.4 and n plastic deformation. The maximum extension strain criterion Stacey (Int J Rock Mech Min Sci Geomech Abstr 651 18(6):469-474, 1981) can be used to explain the change of failure mode from shear to slabbing for strong and hard rocks under true triaxial unloading test condition.

  7. The research of SSR which can be restrained by photovoltaic grid connected

    Science.gov (United States)

    Li, Kuan; Liu, Meng; Zheng, Wei; Li, Yudun; Wang, Xin

    2018-02-01

    Utilization of photovoltaic power generation has attracted considerable attention, and it is growing rapidly due to its environmental benefits. The series capacitive compensation is needed to be introduced into the lines which could improve the transmission capacity. However, the series capacitive compensation may lead to sub-synchronous resonance(SSR). This paper proposes a method to restrain the SSR based on photovoltaic grid connected which is caused by series capacitive compensation. Sub-synchronous oscillation damping controller (SSDC) is designed based on complex torque coefficient approach, and the SSDC is added to the PV power station’s main controller to damp SSR. IEEE Second benchmark model is used as simulation model based on PSCAD/EMTDC. The results show that the designed SSDC could restrain SSR and improve stability in PV grid connected effectively.

  8. Strategy of restraining ripple error on surface for optical fabrication.

    Science.gov (United States)

    Wang, Tan; Cheng, Haobo; Feng, Yunpeng; Tam, Honyuen

    2014-09-10

    The influence from the ripple error to the high imaging quality is effectively reduced by restraining the ripple height. A method based on the process parameters and the surface error distribution is designed to suppress the ripple height in this paper. The generating mechanism of the ripple error is analyzed by polishing theory with uniform removal character. The relation between the processing parameters (removal functions, pitch of path, and dwell time) and the ripple error is discussed through simulations. With these, the strategy for diminishing the error is presented. A final process is designed and demonstrated on K9 work-pieces using the optimizing strategy with magnetorheological jet polishing. The form error on the surface is decreased from 0.216λ PV (λ=632.8  nm) and 0.039λ RMS to 0.03λ PV and 0.004λ RMS. And the ripple error is restrained well at the same time, because the ripple height is less than 6 nm on the final surface. Results indicate that these strategies are suitable for high-precision optical manufacturing.

  9. Responsiveness to healthy advertisements in adults: An experiment assessing beyond brand snack selection and the impact of restrained eating.

    Science.gov (United States)

    Dovey, Terence M; Torab, Tina; Yen, Dorothy; Boyland, E J; Halford, Jason C G

    2017-05-01

    The objective of this study was to explore the impact of different advertising messages on adults' snack choice. Eighty participants (18-24 years old) were offered the choice between two snack packs following exposure to one of three advertising conditions. The snack packs contained either healthy or high fat, sugar or salt (HFSS) foods. Participants were exposed to commercials containing either non-food products, healthy food products or HFSS food products and their subsequent choice of snack pack was recorded. The Dutch Eating Behaviour Questionnaire (DEBQ) was used to assess the impact of external, restrained and emotional eating behaviour on snack pack selection following exposure to advertisements. The majority of unrestrained participants preferentially choose the HFSS snack pack irrespective of advertisement condition. In contrast, high restrained individuals exposed to the healthy eating advertisement condition preferentially selected the healthy snack pack while those in other advertisement conditions refused to take either snack pack. The healthy eating message, when distributed through mass media, resonated with restrained eaters only. Exposure to healthy food adverts provoked restrained eaters into choosing a snack pack; while exposure to other messages results in restrained eaters refusing to take any foods. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. A nudge in a healthier direction: How environmental cues help restrained eaters pursue their weight-control goal.

    Science.gov (United States)

    Stämpfli, Aline E; Stöckli, Sabrina; Brunner, Thomas A

    2017-03-01

    Losing weight is a goal for many people, but it is hard to pursue. However, dieting cues in the environment hold promise for improving individuals' eating behavior. For example, exposure to thin, human-like sculptures by the artist Alberto Giacometti has been found to promote healthy snack choices at a vending machine. Whether health- or weight-related processes drive such effects has not yet been determined. However, a detailed understanding of the content-related drivers of environmental cues' effects provides the first indications regarding a cue's possible use. Therefore, two laboratory studies were conducted. They examined the Giacometti sculptures' effects on unhealthy and healthy food intake (Study 1) and on the completion of weight- and health-related fragmented words (Study 2). Study 1 indicated that the sculptures are weight-related by showing that they reduced food intake independent of food healthiness. Furthermore, the "Giacometti effect" was moderated by restrained eating. Restrained eaters, who are known for their weight-control goal, ate less after having been exposed to the thin sculptures. The results of Study 2 pointed in the same direction. Restrained eaters completed more weight-related words after being exposed to the sculptures. Overall, these studies suggest that the thin sculptures are primarily weight-related cues and particularly helpful for restrained eaters. Environmental weight-control cues such as the Giacometti sculptures could act as a counterforce to our obesogenic environment and help restrained eaters pursue their weight-control goal. In this way, they could nudge food decisions in a healthier direction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Failure mechanism of resistance-spot-welded specimens impacted on base material by bullets

    Directory of Open Access Journals (Sweden)

    Chunlei Fan

    2018-01-01

    Full Text Available The tests of bullet impact on the base material (BM of a simple specimen with a single resistance-spot-welded (RSW nugget of TRIP800 steel are performed to investigate the response of the RSW specimen to the ballistic debris impact on the RSW specimen. A one-stage gas gun is used to fire the bullets while a laser velocity interferometer system for any reflector (VISAR is used to measure the velocity histories of the free surfaces of the RSW specimen. The recovered RSW specimens are examined with the three-dimensional super depth digital microscope (SDDM and the scanning electro microscope (SEM. For the tests of small multiple-bullet impact, it is revealed that the wave train of the VISAR measured results and the detachment of the base material interfaces in the recovered RSW specimens are directly related to the reflection and refraction of the curved stress waves incoming to the interfaces and the free surfaces in the RSW specimens. The detachment of BM interfaces can lead to the impact failure of the RSW joints for the larger multiple-bullet impact at higher velocity, the mechanism of which is different from the case for normal incidence (spalling. For the tests of single large bullet impact, it is brought to light experimentally that the plastic strain concentration at the “notch tip” spurs either the crack near the RSW joint or the split of the nugget. The numerical simulation shows up the process of splitting the nugget: a crack initiates at the “notch tip”, propagates across the nugget interface and splits the nugget into two parts. It is indicated that the interaction between the stress waves and many interfaces/free surfaces in the RSW specimen under ballistic impact causes variable local stress triaxialities and stress Lode angles, which affects the deformation and fracture mechanism of the RSW specimen including stretching and shearing failure. It is shown that the impact failure of the RSW joints is a mixture of brittle

  12. Method for measuring biaxial stress in a body subjected to stress inducing loads

    Science.gov (United States)

    Clotfelter, W. N. (Inventor)

    1977-01-01

    A method is described for measuring stress in test articles including the steps of obtaining for a calibrating specimen a series of transit time differentials between the second wave echo for a longitudinal wave and the first wave echo for each of a pair of shear waves propagated through the specimen as it is subjected to known stress load of a series of stress loads for thus establishing a series of indications of the magnitudes for stress loads induced in the specimen, and thereafter obtaining a transit time differential between the second wave echo for a longitudinal wave and the first wave echo for each of a pair of shear waves propagated in the planes of the stress axes of a test article and comparing the transit time differential thus obtained to the series of transit time differentials obtained for the specimen to determine the magnitude of biaxial stress in the test article.

  13. Seismic response of elastically restrained single bellows expansion joint in lateral mode

    International Nuclear Information System (INIS)

    Kameswara Rao, C.; Radhakrishna, M.

    2003-01-01

    The present paper attempts to derive an exact solution for the seismic response of U type of single bellows that are considered elastically restrained against rotation to classical fixed-fixed case considered by Morishita et al. (author)

  14. FRACTURE MECHANICS APPROACH TO ESTIMATE FATIGUE LIVES OF WELDED LAP-SHEAR SPECIMENS

    Energy Technology Data Exchange (ETDEWEB)

    Lam, P.; Michigan, J.

    2014-04-25

    A full range of stress intensity factor solutions for a kinked crack is developed as a function of weld width and the sheet thickness. When used with the associated main crack solutions (global stress intensity factors) in terms of the applied load and specimen geometry, the fatigue lives can be estimated for the laser-welded lap-shear specimens. The estimations are in good agreement with the experimental data. A classical solution for an infinitesimal kink is also employed in the approach. However, the life predictions tend to overestimate the actual fatigue lives. The traditional life estimations with the structural stress along with the experimental stress-fatigue life data (S-N curve) are also provided. In this case, the estimations only agree with the experimental data under higher load conditions.

  15. Deformation path effects on the internal stress development in cold worked austenitic steel deformed in tension

    International Nuclear Information System (INIS)

    Ahmed, I.I.; Grant, B.; Sherry, A.H.; Quinta da Fonseca, J.

    2014-01-01

    The effects of cold work level and strain paths on the flow stress of austenitic stainless steels, including Bauschinger effect and associated internal stresses were investigated with both mechanical testing and neutron diffraction techniques. The main objective was to assess the effects of cold rolling: to 5%, 10%, 20% and 40% reduction and uniaxial straining on the evolution of the internal strains during the re-straining to 5% tensile strain in-situ, which is relevant for stress corrosion cracking (SCC) studies. The results of mechanical testing showed that the yield strength of material increased when it was reloaded in the forward direction and decreased well below the flow stress when the loading direction was reversed, showing a strong Bauschinger effect. The magnitude of Bauschinger effect is independent on whether tensile or compressive prestraining comes first but rather on the amount of prestrain. The assessment of the effect of prestraining methods showed that the magnitude of yield asymmetry was higher in the material prestrained by uniaxial deformation than those prestrained by cold rolling. Neutron diffraction test results showed that the elastic lattice strain difference between the maximum and minimum strain values increased consistently with the applied stress during the re-straining to 5% tensile strain in-situ along the 3 orthogonal directions of the rolled plate. It also emerged that, following the in-situ loading of cold rolled materials to 5% tensile strain, the largest strain difference occurred in the material prestrained to 20% reduction. In cold rolled samples, the peak width increased with cold work levels and during re-straining to 5% along rolling, transverse to rolling and normal directions which simulated reversed condition. In contrast to the cold rolled samples, there was neither increase nor decrease in the peak width of samples prestrained by uniaxial deformation on re-straining in reverse direction. This was rationalised in

  16. 3D analyses of the effect of weld orientation in Charpy specimens

    DEFF Research Database (Denmark)

    Tvergaard, Viggo; Needleman, A.

    2004-01-01

    . The onset of cleavage is taken to occur when the average of the maximum principal stress over a specified volume attains a critical value. The weld analyzed here is overmatched, so that the yield strength for the weld is larger than that of the base material. Analyses are carried out for specimens where...... the notch is cut parallel to the surface of the test piece, as well as more complex geometries where the notched surface of the specimen is rotated relative to the surface of the test piece. It is found that even for a homogeneous material the brittle-ductile transition can be much affected by three...... dimensional effects; for example, curvature of the deformed free surface gives rise to a stress increase that promotes cleavage. Furthermore, for the rotated specimens the weld geometry relative to the notched specimen surface is so complex that only a full 3D analysis is able to account for the interaction...

  17. Examination of the fatigue life under combined loading of specimens

    Directory of Open Access Journals (Sweden)

    Fojtík F.

    2008-11-01

    Full Text Available This contribution describes experimental results under combined loading of specimens manufactured from common construction steel 11523. Specimens were gradually loaded by amplitude of the torque, then by combination of torque and tension prestress. The last set of specimens was loaded in combination of torque and inner overpressure. To obtain the required input values the stress-strain analysis of specimens by finite element method in software Ansys was performed within the last experiment. For evaluation of the results the Fuxa's criterion was applied. The performed experiments and their results embody a good agreement with bellow mentioned conjugated strength criterion. The experiments were performed on reconstructed testing machine equipped by pressure chamber.

  18. Design of a cruciform bend specimen for determination of out-of- plane biaxial tensile stress effects on fracture toughness for shallow cracks

    International Nuclear Information System (INIS)

    Bass, B.R.; Bryson, J.W.; Mcafee, W.J.; Pennell, W.E.; Theiss, T.J.

    1993-01-01

    Pressurized-thermal-shock loading in a reactor pressure vessel produces significant positive out-of-plane stresses along the crack front for both circumferential and axial cracks. Experimental evidence, while very limited, seems to indicate that a reduction in toughness is associated with out-of-plane biaxial loading when compared with toughness values obtained under uniaxial conditions. A testing program is described that seeks to determine the effects of out-of-plane biaxial tensile loading on fracture toughness of RPV steels. A cruciform bend specimen that meets specified criteria for the testing pregam is analyzed using three-dimensional elastic-plastic finite-element techniques. These analysis results provide the basis for proposed test conditions that are judged likely to produce a biaxial loading effect in the cruciform bend specimen

  19. Fracture Testing with Surface Crack Specimens. [especially the residual tensile strength test

    Science.gov (United States)

    Orange, T. W.

    1974-01-01

    Recommendations are given for the design, preparation, and static fracture testing of surface crack specimens. The recommendations are preceded by background information including discussions of stress intensity factors, crack opening displacements, and fracture toughness values associated with surface crack specimens. Cyclic load and sustained load tests are discussed briefly.

  20. Focusing on media body ideal images triggers food intake among restrained eaters: a test of restraint theory and the elaboration likelihood model.

    Science.gov (United States)

    Boyce, Jessica A; Kuijer, Roeline G

    2014-04-01

    Although research consistently shows that images of thin women in the media (media body ideals) affect women negatively (e.g., increased weight dissatisfaction and food intake), this effect is less clear among restrained eaters. The majority of experiments demonstrate that restrained eaters - identified with the Restraint Scale - consume more food than do other participants after viewing media body ideal images; whereas a minority of experiments suggest that such images trigger restrained eaters' dietary restraint. Weight satisfaction and mood results are just as variable. One reason for these inconsistent results might be that different methods of image exposure (e.g., slideshow vs. film) afford varying levels of attention. Therefore, we manipulated attention levels and measured participants' weight satisfaction and food intake. We based our hypotheses on the elaboration likelihood model and on restraint theory. We hypothesised that advertent (i.e., processing the images via central routes of persuasion) and inadvertent (i.e., processing the images via peripheral routes of persuasion) exposure would trigger differing degrees of weight dissatisfaction and dietary disinhibition among restrained eaters (cf. restraint theory). Participants (N = 174) were assigned to one of four conditions: advertent or inadvertent exposure to media or control images. The dependent variables were measured in a supposedly unrelated study. Although restrained eaters' weight satisfaction was not significantly affected by either media exposure condition, advertent (but not inadvertent) media exposure triggered restrained eaters' eating. These results suggest that teaching restrained eaters how to pay less attention to media body ideal images might be an effective strategy in media-literary interventions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. The effect of specimen and flaw dimensions on fracture toughness

    International Nuclear Information System (INIS)

    Nevalainen, M.J.

    1997-06-01

    The effect of the specimen size and geometry on fracture toughness has been investigated both by experimental tests and computational analyses. The methods for constraint description, namely T-stress, Q-parameter and Small-Scale Yielding Correction (SSYC) have been compared and applied for various geometries. A statistical treatment for the specimen thickness effect on cleavage fracture toughness has been investigated. Elliptical surface cracks were compared with straight-thickness cracks and a method for crack shape correction was presented. Based on the results, the differences in apparent fracture toughness values obtained from various specimen configurations can be better understood and taken into account

  2. Psychotropic Drug Use in Physically Restrained, Critically Ill Adults Receiving Mechanical Ventilation.

    Science.gov (United States)

    Guenette, Melanie; Burry, Lisa; Cheung, Alexandra; Farquharson, Tara; Traille, Marlene; Mantas, Ioanna; Mehta, Sangeeta; Rose, Louise

    2017-09-01

    Restraining therapies (physical or pharmacological) are used to promote the safety of both patients and health care workers. Some guidelines recommend nonpharmacological or pharmacological interventions be used before physical restraints in critically ill patients. To characterize psychotropic drug interventions before and after use of physical restraints in critically ill adults receiving mechanical ventilation. A single-center, prospective, observational study documenting psychotropic drug use and Sedation-Agitation Scale (SAS) scores in the 2 hours before and the 6 hours after application of physical restraints. Ninety-three patients were restrained for a median of 21 hours (interquartile range, 9-70 hours). Thirty percent of patients did not receive a psychotropic drug or had a drug stopped or decreased before physical restraints were applied. More patients received a psychotropic drug intervention after use of physical restraints than before (86% vs 56%, P = .001). Administration of opioids was more common after the use of physical restraints (54% vs 20% of patients, P = .001) and accounted for more drug interventions (45% vs 29%, P = .001). Fifty patients had SAS scores from both time periods; 16% remained oversedated, 24% were appropriately sedated, and 16% remained agitated in both time periods. Patients became oversedated (20%), more agitated (10%), less agitated (8%), and less sedated (6%) after restraint use. Psychotropic drug interventions (mostly using opioids) were more common after use of physical restraints. Some patients may be physically restrained for anticipated treatment interference without consideration of pharmacological options and without documented agitation. ©2017 American Association of Critical-Care Nurses.

  3. An Inset CT Specimen for Evaluating Fracture in Small Samples of Material

    Science.gov (United States)

    Yahyazadehfar, M.; Nazari, A.; Kruzic, J.J.; Quinn, G.D.; Arola, D.

    2013-01-01

    In evaluations on the fracture behavior of hard tissues and many biomaterials, the volume of material available to study is not always sufficient to apply a standard method of practice. In the present study an inset Compact Tension (inset CT) specimen is described, which uses a small cube of material (approximately 2×2×2 mm3) that is molded within a secondary material to form the compact tension geometry. A generalized equation describing the Mode I stress intensity was developed for the specimen using the solutions from a finite element model that was defined over permissible crack lengths, variations in specimen geometry, and a range in elastic properties of the inset and mold materials. A validation of the generalized equation was performed using estimates for the fracture toughness of a commercial dental composite via the “inset CT” specimen and the standard geometry defined by ASTM E399. Results showed that the average fracture toughness obtained from the new specimen (1.23 ± 0.02 MPa•m0.5) was within 2% of that from the standard. Applications of the inset CT specimen are presented for experimental evaluations on the crack growth resistance of dental enamel and root dentin, including their fracture resistance curves. Potential errors in adopting this specimen are then discussed, including the effects of debonding between the inset and molding material on the estimated stress intensity distribution. Results of the investigation show that the inset CT specimen offers a viable approach for studying the fracture behavior of small volumes of structural materials. PMID:24268892

  4. Effect of Inhaling Bergamot Oil on Depression-Related Behaviors in Chronic Stressed Rats.

    Science.gov (United States)

    Saiyudthong, Somrudee; Mekseepralard, Chantana

    2015-10-01

    Bergamot essential oil (BEO) possesses sedation and anxiolytic properties similar to diazepam. After long period of exposure to stressors, including restrained stress, depressive-like behavior can be produced. BEO has been suggested to reduce depression. However, there is no scientific evidence supporting this property. To investigate the effect of BEO in chronic stressed rats on: 1) behavior related depressive disorder, 2) hypothalamic pituitary adrenal (HPA) axis response, and iii) brain-derived neurotrophic factor (BDNF) protein levels in hippocampus. Male Wistar rats, weighing 200 to 250 g, were induced chronic restrained stress 15 minutes dailyfor two weeks. For the next two weeks, these rats were divided intofour groups, control-i.p., fluoxetine-i.p., control-inhale, and BEO-inhale. Fluoxetine (10 mg/kg i.p.) or saline was intraperitoneally administered daily while 2.5% BEO or saline was inhaled daily. At the end of the treatment, rats were assessed for depressive-like behavior using the forced swimming test (FST). After the behavioral test, the animals were immediately decapitated and trunk blood samples were collected for the measurement ofcorticosterone and adrenocorticotropic hormone (ACTH) levels and hippocampus was dissected and stored in afreezer at -80 °C until assay for BDNF protein. BEO andfluoxetine significantly decreased the immobility time in the FST (p BDNF protein determination, neither BEO norfluoxetine had any effect on BDNF protein levels in hippocampus compared to their controls. The inhalation ofBEO decrease behavior related depressive disorder similar tofluoxetine but has no effect on HPA axis response and BDNF protein levels in chronic restrained stress.

  5. Mood and restrained eating moderate food-associated response inhibition in obese individuals with binge eating disorder.

    Science.gov (United States)

    Loeber, Sabine; Rustemeier, Martina; Paslakis, Georgios; Pietrowsky, Reinhard; Müller, Astrid; Herpertz, Stephan

    2018-03-30

    Recent research suggests that obese individuals with binge eating disorder (BED) show deficits in response inhibition, but findings are not consistent, especially when food-associated stimuli are presented. The aim of the present study was to assess the role of moderating factors by taking into account restrained eating and mood. Seventeen obese women with BED, 20 obese women without BED and 20 normal-weight controls (NW) were recruited. A go/no-go task with food-associated and control stimuli and questionnaires were administered. Obese BED showed less impairment of response inhibition to food-associated than to control stimuli, while this pattern was reversed in NW; no differences were observed for obese participants. Interestingly, group differences were moderated by the interaction of restrained eating and mood, and obese BED made the most commission errors to food-associated stimuli when they were restrained eaters and in a very positive mood at the time of testing. Our results might explain why some studies did not observe deficits in response inhibition to food-associated cues in BED. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Associations between Restrained Eating and the Size and Frequency of Overall Intake, Meal, Snack and Drink Occasions in the UK Adult National Diet and Nutrition Survey

    Science.gov (United States)

    Olea López, Ana Lorena; Johnson, Laura

    2016-01-01

    Obesity is a global public health priority. Restrained eating is related to obesity and total energy intake but associations with the eating patterns are unclear. We examined the associations of restrained eating with the size and frequency of intake occasions among 1213 British adult (19–64 y) participants in a cross-sectional analysis of the UK National Diet and Nutrition Survey 2000. The Dutch Eating Behaviour Questionnaire assessed restrained eating. Overall intake occasions were all energy consumed in a 60 min period. A food-based classification separated intake occasions into meals, snacks, or drinks from seven-day weighed food diaries. Average daily frequency and size (kcal) of overall intake, meal, snack and drink occasions were calculated and associations with restrained eating were modelled using multiple linear regression including under-reporting of energy intake, age, gender, BMI, emotional eating, external eating and physical activity as covariates. Restrained eating was very weakly positively correlated with overall intake (r = 0.08, psnack or drink frequency (r = 0.02 and -0.02 respectively). Adjusted regressions showed a one-point change in restrained eating was associated with 0.07 (95% CI 0.03, 0.11) more meal occasions/day and 0.13 (95% CI 0.01, 0.25) extra overall intake occasions/day. Overall intake occasion size was weakly negatively correlated with restrained eating regardless of type (r = -0.16 to -0.20, all psnacks or overall intake occasions. Among a national sample of UK adults, greater restrained eating was associated with smaller and slightly more frequent eating, suggesting that restrained eaters restrict their energy intake by reducing meal/drink size rather than skipping snacks. PMID:27227409

  7. An implementation of the maximum-caliber principle by replica-averaged time-resolved restrained simulations.

    Science.gov (United States)

    Capelli, Riccardo; Tiana, Guido; Camilloni, Carlo

    2018-05-14

    Inferential methods can be used to integrate experimental informations and molecular simulations. The maximum entropy principle provides a framework for using equilibrium experimental data, and it has been shown that replica-averaged simulations, restrained using a static potential, are a practical and powerful implementation of such a principle. Here we show that replica-averaged simulations restrained using a time-dependent potential are equivalent to the principle of maximum caliber, the dynamic version of the principle of maximum entropy, and thus may allow us to integrate time-resolved data in molecular dynamics simulations. We provide an analytical proof of the equivalence as well as a computational validation making use of simple models and synthetic data. Some limitations and possible solutions are also discussed.

  8. Finite strain analyses of deformations in polymer specimens

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2016-01-01

    Analyses of the stress and strain state in test specimens or structural components made of polymer are discussed. This includes the Izod impact test, based on full 3D transient analyses. Also a long thin polymer tube under internal pressure has been studied, where instabilities develop, such as b...

  9. Friction Compensation in the Upsetting of Cylindrical Test Specimens

    DEFF Research Database (Denmark)

    Christiansen, Peter; Martins, P. A. F.; Bay, Niels Oluf

    2016-01-01

    This manuscript presents a combined numerical andexperimental methodology for determining the stress-straincurve of metallic materials from the measurements of forceand displacement obtained in the axial compression of cylindrical test specimens with friction between the specimens and the platens....... The methodology is based on minimizing the errorbetween the average surface pressure obtained from the experimental measurements of the force and displacement and thatobtained from the slab method of analysis of metal plasticity.Three different friction models based on Coulomb friction, the constant friction...... model or combined friction models are utilized .Experimental results obtained from cylindrical and Rastegaev test specimens with different lubricants combined with the experimental determination of friction by means of ring compression tests allows compensating the effect of friction...

  10. Specimen Machining for the Study of the Effect of Swelling on CGR in PWR Environment.

    Energy Technology Data Exchange (ETDEWEB)

    Teysseyre, Sebastien Paul [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-06-01

    This report describes the preparation of ten specimens to be used for the study of the effect of swelling on the propagation of irradiation assisted stress corrosion cracking cracks. Four compact tension specimens, four microscopy plates and two tensile specimens were machined from a AISI 304 material that was irradiated up to 33 dpa. The specimens had been machined such as to represent the behavior of materials with 3.7%swelling and <2% swelling.

  11. Associations between Restrained Eating and the Size and Frequency of Overall Intake, Meal, Snack and Drink Occasions in the UK Adult National Diet and Nutrition Survey.

    Science.gov (United States)

    Olea López, Ana Lorena; Johnson, Laura

    2016-01-01

    Obesity is a global public health priority. Restrained eating is related to obesity and total energy intake but associations with the eating patterns are unclear. We examined the associations of restrained eating with the size and frequency of intake occasions among 1213 British adult (19-64 y) participants in a cross-sectional analysis of the UK National Diet and Nutrition Survey 2000. The Dutch Eating Behaviour Questionnaire assessed restrained eating. Overall intake occasions were all energy consumed in a 60 min period. A food-based classification separated intake occasions into meals, snacks, or drinks from seven-day weighed food diaries. Average daily frequency and size (kcal) of overall intake, meal, snack and drink occasions were calculated and associations with restrained eating were modelled using multiple linear regression including under-reporting of energy intake, age, gender, BMI, emotional eating, external eating and physical activity as covariates. Restrained eating was very weakly positively correlated with overall intake (r = 0.08, pmeal frequency (r = 0.10, pfrequency (r = 0.02 and -0.02 respectively). Adjusted regressions showed a one-point change in restrained eating was associated with 0.07 (95% CI 0.03, 0.11) more meal occasions/day and 0.13 (95% CI 0.01, 0.25) extra overall intake occasions/day. Overall intake occasion size was weakly negatively correlated with restrained eating regardless of type (r = -0.16 to -0.20, all pmeals (-15 kcal 95% CI -5.9, -24.2) and drinks (-4 kcal 95%CI -0.1, -8), but not snacks or overall intake occasions. Among a national sample of UK adults, greater restrained eating was associated with smaller and slightly more frequent eating, suggesting that restrained eaters restrict their energy intake by reducing meal/drink size rather than skipping snacks.

  12. Analysis of the truth loading conditions of a austenitic CT specimen during a SCC experiment

    International Nuclear Information System (INIS)

    Marie, S.; Guerre, C.; Herms, E.

    2012-01-01

    With the aim to investigate the influence of strain hardening on the stainless steels susceptibility to stress corrosion cracking, tests were conducted in PWR environment on CT specimens, taken from a 316L stainless steel sheet cold rolled to 40% in thickness reduction. The initial cracks obtained by the fatigue pre-cracking have an atypical 'V' shape with smaller propagation in the center of the CT thickness compared to nominal propagation observed at both sides. The initial explanation was to consider a stress intensity factor derived from classical reference solution on the basis of a straight crack front, and considering the local value of the crack depth in the equation. This assumption raised several problems analyses in this paper. This particular shape of the initial defect may be related to several factors, and partly to the 40% cold rolling. It is likely that the hardening is not uniform, with a higher rate at the specimen sides than in the central area. In addition, significant residual stresses due to the gradient of mechanical properties are observed. Due to the high rate of work hardening by rolling of the sheet metal, a gradient of the mechanical properties through the thickness was determined, and the residual stresses profile induced by this process was measured. The variations obtained are consistent with each other: the material is more hardened in the vicinity of specimen surface and residual stresses are compressive in nature in the central part of the specimen and of tensile type on the flanks. All these data were firstly considered in order to assess their role regarding the particular form of the initial crack front obtained after fatigue: the 3D finite element calculations taking into account the true shape of the crack front demonstrate the relationship between the characteristics of the experimental crack front obtained after fatigue pre-cracking and the residual stresses. Moreover, from the residual stresses measured on the plate where

  13. The influence of the stress state on Ksub(Ic)

    International Nuclear Information System (INIS)

    Aurich, D.; Helms, R.; Schmidt, P.; Veith, H.; Ziebs, J.

    1977-01-01

    To get a first impression of the influence of stress states of higher multi-axiality than plane strain on Ksub(c) a specimen has been created, in which a bi-axial nominal stress state arises by uniaxial tension. This is attained by tension superimposed by transverse bending stress. The stress distribution without crack was analysed by photoelasticity as well as by finite element method. The results were identical. The stress distribution in the fracture (crack) plane was somewhat inhomogeneous, of course. But the ratio of the stress parallel to the tension axis to that perpendicular to it was max. 1:0.3 with a mean value 1:0.15. Specimens of this type were machined from a rolled sheet of the steel 22 NiMoCr 37, with specimen thickness of about 50 mm. For comparison single-edge notched specimens of the same cross section were prepared from the same material. Fatigue cracks were made following ASTM Recommendations. The fracture mechanics tests were carried out at a temperature of -100 0 C. Although valid Ksub(Ic)-values following the rigorous intention of the linear elastic fracture mechanics (ASTM Recommendations) were not obtained, the differences between the results of the two types of specimens and stress states were significant. The Ksub(Q)-values of the bi-axial stressed specimen were about 25% lower than that of the single-edge notched specimen. The deviation of the load-displacement trace from the linear elastic behavior was greater for the single-edge notched specimens than for the bi-axial stressed specimens. The consequences of these results for the assessment of flaws in pressure vessels are evident considering that bi-axial nominal stress states occur in pressure vessels

  14. Prediction of multiaxial fatigue life for notched specimens of titanium alloy TC4

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Z. R.; Li, Z. X. [Southeast University, Nanjing (China); Hu, X. T.; Song, Y. D. [Nanjing University, Nanjing (China)

    2016-05-15

    Both the proportional and nonproportional multiaxial fatigue tests were conducted on two kinds of notched specimens of titanium alloy TC4. The multiaxial fatigue critical area of notched specimen is considered as the location experiencing the maximum damage. It is unsatisfactory to predict the multiaxial fatigue life with the local stress and strain in the fatigue critical area. The critical distance concepts are employed in the multiaxial life prediction method for notched specimens. The proposed method was checked by the test data of TC4 notched specimens. The prediction results are almost within a factor of three scatter band of the test results.

  15. Influence of tensile stress on cavity growth in nickel under helium irradiation

    International Nuclear Information System (INIS)

    Kusanagi, Hideo; Hide, Koichiro; Takaku, Hiroshi

    1989-01-01

    The influence of tensile stress on cavity behavior in pure nickel under helium irradiation was investigated by in-situ observation using the transmission electron microscope (TEM) in which an ion gun is installed. Specimens were irradiated at 500 0 C with 20 keV helium in the TEM. The dose rate was about 10 14 He/cm 2 s, and the angle between the helium beam and the normal direction of the specimens was about 60 0 . The damage rate estimated by the E-DEP-1 code was about 0.6x10 -3 dpa/s at its peak position. The main results are as follows: (1) cavity nucleation was accelerated by applying tensile stress, and cavity size in stressed specimens was several times larger than that in stress-free specimens; (2) cavity density in the stressed specimen increased more rapidly than in the stress-free specimen, and then decreased by cavity coalescences; (3) depth of cavity nucleation in the stress-free specimen was about 160 nm, while that in the stressed specimen was about 320 nm; that is, cavities nucleated in deeper regions in the stressed specimen than in the stress-free specimen. This result indicates that helium atoms and vacancies can migrate into the deeper region by applying tensile stress. (4) The experimental results obtained in this study can be explained qualitatively by the mechanism that mobile dislocations drag He-V complexes to the deeper region. This implies that there are similar phenomena in the case of compressive stress. (orig.)

  16. Comparison of Analytical Methods for Estimation of Early-Age Thermal-Shrinkage Stresses in RC Walls

    Directory of Open Access Journals (Sweden)

    Klemczak B.

    2013-03-01

    Full Text Available The volume changes caused by coupled temperature and moisture variations in early-age concrete elements lead to formation of stresses. If a restraint exists along the contact surface of mature concrete against which a new concrete element has been cast, generated stresses are mostly of a restraint origin. In engineering practice a wide range of externally restrained concrete elements can be distinguished such as tank walls or bridge abutments cast against an old set foundation, in which early-age cracking may endanger their durability or functionality. Therefore, for years methods were being developed to predict early-age stresses and cracking risk of externally restrained concrete elements subjected to early-age thermal-moisture effects. The paper presents the comparative study of the most recognised analytical approaches: the method proposed in EC2, the method proposed by ACI Committee 207 and the method developed at the Luleå University of Technology.

  17. The effect of specimen and flaw dimensions on fracture toughness

    Energy Technology Data Exchange (ETDEWEB)

    Nevalainen, M.J. [VTT Manufacturing Technology, Espoo (Finland)

    1997-06-01

    The effect of the specimen size and geometry on fracture toughness has been investigated both by experimental tests and computational analyses. The methods for constraint description, namely T-stress, Q-parameter and Small-Scale Yielding Correction (SSYC) have been compared and applied for various geometries. A statistical treatment for the specimen thickness effect on cleavage fracture toughness has been investigated. Elliptical surface cracks were compared with straight-thickness cracks and a method for crack shape correction was presented. Based on the results, the differences in apparent fracture toughness values obtained from various specimen configurations can be better understood and taken into account. 64 refs. The thesis includes also four previous publications by author.

  18. Correlation of fracture parameters during onset of crack in middle tension specimen

    Directory of Open Access Journals (Sweden)

    M.S. Starvin

    2017-07-01

    Full Text Available The present study addresses the implementation of finite element analysis and the prediction of fracture parameters in a middle tension (MT specimen that was fabricated using AISI 4140 steel. The correlation of fracture parameters with external loads and crack sizes was investigated. A Finite Element code was developed to simulate the fracture model. The contour integral method was applied in the calculation of stress intensity factor and J-integral in the cracked specimen. The ASTM standard empirical formula was used to calculate the stress intensity factor (SIF and the numerical predictions were validated. A standard laboratory experiment was also carried out using the MT specimen to calculate the crack growth rate in this specific material. The SIF values were almost linear with external load but it was decreasing as the crack size increases. The crack requires minimum load for crack propagation as the crack size increases. Similarly the J-integral was accelerated with increase in crack size.

  19. Expansive stresses of a grout plug on the walls of borehole

    International Nuclear Information System (INIS)

    Licastro, P.H.; Malek, R.I.A.; Roy, D.M.

    1985-01-01

    The primary function of a concrete plug in a repository seal system is to provide a viable seal at the interface with the host rock by developing and maintaining a positive normal stress across the interface. While standards do exist for unrestrained and restrained expansion of mortar and concrete there are few systems that permit calculation of stress for a stimulated borehole geometry. A system was designed to determine the radial stresses introduced by expansive, cementitious grout on the borehole. It consists of a strain gage instrumented cell and its associated signal conditioner/amplifier. Cell material and thickness can be varied to simulate restraining conditions at given depths. Prior to sample emplacement the cell/system is calibrated by fluid pressurization. Special cell design eliminates the effects of longitudinal stresses during calibration. An analog output as a function of time is recorded, in conjunction with surface temperature of the cylinder. The cell containing grout is maintained under controlled temperature conditions which can be varied from 25 0 C to 90 0 C. Pressure can be applied to the grout column to simulate hydrostatic/geostatic load conditions. Using the equipment described, several expansive grout formulations were studied at 38 0 C. Results obtained for expansive stresses as a function of time are presented together with implications on repository-seal durability

  20. Experimental study on variations in Charpy impact energies of low carbon steel, depending on welding and specimen cutting method

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhaorui; Kang, Hansaem; Lee, Young Seog [Chung-Ang University, Seoul (Korea, Republic of)

    2016-05-15

    This paper presents an experimental study that examines variations of Charpy impact energy of a welded steel plate, depending upon the welding method and the method for obtaining the Charpy specimens. Flux cored arc welding (FCAW) and Gas tungsten arc welding (GTAW) were employed to weld an SA516 Gr. 70 steel plate. The methods of wire cutting and water-jet cutting were adopted to take samples from the welded plate. The samples were machined according to the recommendations of ASTM SEC. II SA370, in order to fit the specimen dimension that the Charpy impact test requires. An X-ray diffraction (XRD) method was used to measure the as-weld residual stress and its redistribution after the samples were cut. The Charpy impact energy of specimens was considerably dependent on the cutting methods and locations in the welded plate where the specimens were taken. The specimens that were cut by water jet followed by FCAW have the greatest resistance-to-fracture (Charpy impact energy). Regardless of which welding method was used, redistributed transverse residual stress becomes compressive when the specimens are prepared using water-jet cutting. Meanwhile, redistributed transverse residual stress becomes tensile when the specimens are prepared using wire cutting.

  1. Relationship of dieting and restrained eating to self-reported caloric intake in female college freshmen.

    Science.gov (United States)

    Goldstein, Stephanie P; Katterman, Shawn N; Lowe, Michael R

    2013-04-01

    Evidence indicates that restrained eaters do not eat less than unrestrained eaters in the natural environment. However, no study has examined caloric intake in those who are currently dieting to lose, or avoid gaining, weight. The current study examined caloric intake using 24-hour food recalls among individuals dieting to lose weight, dieting to avoid weight gain, restrained nondieters, and unrestrained nondieters. Participants were 246 female college students participating in a weight gain prevention trial. The predicted significant difference in caloric intake across the four groups was found for beverage but not for food intake. Results reinforce past literature indicating that dieting/restraint status does not reflect hypo-caloric intake in naturalistic settings. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Development of sacrificial specimen for fatigue damage prediction of structure (2nd report); Kozobutsu no hiro sonsho yochi no tameno giseishikenhen no kaihatsu ( 2 )

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Y.; Huang, F.; Hada, K.; Sato, A.; Hamada, K.; Iwata, M. [Hiroshima Univ. (Japan)

    1998-12-31

    The study aims at applying the sacrificial specimen developed by the authors of the paper on practical structures, the sacrificial specimens are secured to a smooth specimen and a boxing welded joint, and fatigue tests are performed under varying stress amplitude. The load is cyclic 8 stage block load that has load frequency distribution similar to exponential distribution. Then, a fatigue life prediction of structural element is studied based on monitoring results of the sacrificial specimen. The obtained results are as follows. The sacrificial specimen shows steady fatigue property without occurrence of peeling off or buckling even under varying stress amplitude. A limited accumulated damage value of the sacrificial specimen is obtained under the varying stress amplitude. While arranging the crack growth curve of the varying sacrificial specimen in N/Nf, they show almost the same shape not depending on the life. The prediction method of fatigue life of a structure is described based on monitoring results of the sacrificial specimen. 9 refs., 16 figs., 2 tabs.

  3. Testing machine for fatigue crack kinetic investigation in specimens under bending

    International Nuclear Information System (INIS)

    Panasyuk, V.V.; Ratych, L.V.; Dmytrakh, I.N.

    1978-01-01

    A kinematic diagram of testing mashine for the investigation of fatigue crack kinetics in prismatic specimens, subjected to pure bending is described. Suggested is a technique of choosing an optimum ratio of the parameters of ''the testing machine-specimen'' system, which provide the stabilization of the stress intensity coefficient for a certain region of crack development under hard loading. On the example of the 40KhS and 15Kh2MFA steel specimens the pliability of the machine constructed according to the described diagram and designed for the 30ONxm maximum bending moment. The results obtained can be used in designing of the testing machines for studying pure bending under hard loading and in choosing the sizes of specimens with rectangular cross sections for investigations into the kinetics of the fatigue crack

  4. Disarming Batterers through Restraining Orders: The Promise and the Reality in California

    Science.gov (United States)

    Seave, Paul L.

    2006-01-01

    Laws that prohibit persons under a domestic violence restraining order from purchasing or possessing a firearm are a primary way to keep guns out of the hands of batterers. In July 2005, the California Attorney General's Task Force on the Local Criminal Justice Response to Domestic Violence issued a report called Keeping the Promise: Victim Safety…

  5. Emotional arousal and overeating in restrained eaters.

    Science.gov (United States)

    Cools, J; Schotte, D E; McNally, R J

    1992-05-01

    We tested the effects of 3 mood inductions (neutral, positive, and negative) on food intake in 91 women of varying degrees of dietary restraint. Mood induction was accomplished by exposure to 1 of 3 film segments: a travelogue (neutral affect), a comedy film (positive affect), and a horror film (negative affect). In subjects exposed to the neutral film, food intake decreased with increasing levels of dietary restraint. Among subjects who viewed either the comedy film or the horror film, however, food intake increased with increasing restraint. Although the horror film appeared to be more disinhibiting than the comedy film, this effect may have resulted from a difference in the intensity of the emotions induced rather than from their valence. These results suggest that emotional arousal, regardless of valence, may trigger overeating among restrained eaters.

  6. Biaxial Stress Tests of Plain Concrete

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.K.; Cho, M.S.; Song, Y.C. [Korea Electric Power Research Institute, Taejon (Korea)

    2001-07-01

    Containment concrete specimens(4000, 5000psi) were tested under biaxial stress and presented basic physical properties and biaxial failure envelops for the concrete specimens. Failure behaviors of concrete under biaxial stress were assessed with stress-strain responses and failure modes. Here provided real test data to develop nonlinear finite element concrete models. (author). 15 refs., 46 figs., 4 tabs.

  7. Time, stress, and temperature-dependent deformation in nanostructured copper: Stress relaxation tests and simulations

    International Nuclear Information System (INIS)

    Yang, Xu-Sheng; Wang, Yun-Jiang; Wang, Guo-Yong; Zhai, Hui-Ru; Dai, L.H.; Zhang, Tong-Yi

    2016-01-01

    In the present work, stress relaxation tests, high-resolution transmission electron microscopy (HRTEM), and molecular dynamics (MD) simulations were conducted on coarse-grained (cg), nanograined (ng), and nanotwinned (nt) copper at temperatures of 22 °C (RT), 30 °C, 40 °C, 50 °C, and 75 °C. The comprehensive investigations provide sufficient information for the building-up of a formula to describe the time, stress, and temperature-dependent deformation and clarify the relationship among the strain rate sensitivity parameter, stress exponent, and activation volume. The typically experimental curves of logarithmic plastic strain rate versus stress exhibited a three staged relaxation process from a linear high stress relaxation region to a subsequent nonlinear stress relaxation region and finally to a linear low stress relaxation region, which only showed-up at the test temperatures higher than 22 °C, 22 °C, and 30 °C, respectively, in the tested cg-, ng-, and nt-Cu specimens. The values of stress exponent, stress-independent activation energy, and activation volume were determined from the experimental data in the two linear regions. The determined activation parameters, HRTEM images, and MD simulations consistently suggest that dislocation-mediated plastic deformation is predominant in all tested cg-, ng-, and nt-Cu specimens in the initial linear high stress relaxation region at the five relaxation temperatures, whereas in the linear low stress relaxation region, the grain boundary (GB) diffusion-associated deformation is dominant in the ng- and cg-Cu specimens, while twin boundary (TB) migration, i.e., twinning and detwinning with parallel partial dislocations, governs the time, stress, and temperature-dependent deformation in the nt-Cu specimens.

  8. 49 CFR 393.108 - How is the working load limit of a tiedown, or the load restraining value of a friction mat...

    Science.gov (United States)

    2010-10-01

    ... load restraining value of a friction mat, determined? 393.108 Section 393.108 Transportation Other... load restraining value of a friction mat, determined? (a) The working load limit (WLL) of a tiedown... load limits. (g) Friction mats which are not marked or rated by the manufacturer shall be considered to...

  9. Tensile tests and metallography of brazed AISI 316L specimens after irradiation

    International Nuclear Information System (INIS)

    Groot, P.; Franconi, E.

    1994-01-01

    Stainless steel type 316L tensile specimens were vacuum brazed with three kinds of alloys: BNi-5, BNi-6, and BNi-7. The specimens were irradiated up to 0.7 dpa at 353 K in the High Flux Reactor at JRC Petten, the Netherlands. Tensile tests were performed at a constant displacement rate of 10 -3 s -1 at room temperature in the ECN hot cell facility. BNi-5 brazed specimens showed ductile behaviour. Necking and fractures were localized in the plate material. BNi-6 and BNi-7 brazed specimens failed brittle in the brazed zone. This was preceded by uniform deformation of the plate material. Tensile test results of irradiated specimens showed higher stresses due to radiation hardening and a reduction of the elongation of the plate material compared to the reference. SEM examination of the irradiated BNi-6 and BNi-7 fracture surfaces showed nonmetallic phases. These phases were not found in the reference specimens. ((orig.))

  10. Design of steel energy-absorbing restrainers and their incorporation into nuclear power plants for enhanced safety. Progress report

    International Nuclear Information System (INIS)

    1980-03-01

    This program for the development of steel energy-absorbing restrainers originated as a five year multi-institutional, interdisciplinary program. The resources of the University of California, Berkeley (UCB), the Earthquake Engineering Research Center, Richmond (EERC), Massachusetts Institute of Technology (MIT), and Battelle Pacific Northwestern Laboratories (BPNL) are utilized as well as advisors from industry, the utilities and the US Nuclear Regulatory Commission. The present progress report involves the areas of experimental testing on the shaking table at the EERC, restrainer device design and testing, structural analyses and materials testing

  11. Effects of Shot-Peening and Stress Ratio on the Fatigue Crack Propagation of AL 7475-T7351 Specimens

    Directory of Open Access Journals (Sweden)

    Natália Ferreira

    2018-03-01

    Full Text Available Shot peening is an attractive technique for fatigue enhanced performance of metallic components, because it increases fatigue crack initiation life prevention and retards early crack growth. Engineering design based on fatigue crack propagation predictions applying the principles of fracture mechanics is commonly used in aluminum structures for aerospace engineering. The main purpose of present work was to analyze the effect of shot peening on the fatigue crack propagation of the 7475 aluminum alloy, under both constant amplitude loading and periodical overload blocks. The tests were performed on 4 and 8 mm thickness specimens with stress ratios of 0.05 and 0.4. The analysis of the shot-peened surface showed a small increase of the micro-hardness values due to the plastic deformations imposed by shot peening. The surface peening beneficial effect on fatigue crack growth is very limited; its main effect is more noticeable near the threshold. The specimen’s thickness only has marginal influence on the crack propagation, in opposite to the stress ratio. Periodic overload blocks of 300 cycles promotes a reduction of the fatigue crack growth rate for both intervals of 7500 and 15,000 cycles.

  12. Housing under the pyramid reduces susceptibility of hippocampal CA3 pyramidal neurons to prenatal stress in the developing rat offspring.

    Science.gov (United States)

    Murthy, Krishna Dilip; George, Mitchel Constance; Ramasamy, Perumal; Mustapha, Zainal Arifin

    2013-12-01

    Mother-offspring interaction begins before birth. The foetus is particularly vulnerable to environmental insults and stress. The body responds by releasing excess of the stress hormone cortisol, which acts on glucocorticoid receptors. Hippocampus in the brain is rich in glucocorticoid receptors and therefore susceptible to stress. The stress effects are reduced when the animals are placed under a model wooden pyramid. The present study was to first explore the effects of prenatal restraint-stress on the plasma corticosterone levels and the dendritic arborisation of CA3 pyramidal neurons in the hippocampus of the offspring. Further, to test whether the pyramid environment would alter these effects, as housing under a pyramid is known to reduce the stress effects, pregnant Sprague Dawley rats were restrained for 9 h per day from gestation day 7 until parturition in a wire-mesh restrainer. Plasma corticosterone levels were found to be significantly increased. In addition, there was a significant reduction in the apical and the basal total dendritic branching points and intersections of the CA3 hippocampal pyramidal neurons. The results thus suggest that, housing in the pyramid dramatically reduces prenatal stress effects in rats.

  13. Stress factors for the deformation systems of zirconium under multiaxial stress

    International Nuclear Information System (INIS)

    Hobson, D.O.

    1976-01-01

    Calculation of the resolved shear stresses (rss) that act on various deformation systems in metals and, in particular, the determination of those systems subjected to the highest rss by a given set of multiaxial stresses is of importance in the study of texture development, yielding and plastic flow. This study examines the geometrical influences of any stress state on the deformation modes of zirconium. One slip mode and three twinning modes, comprising twenty-one deformation systems, are considered. Stress factors computed for these systems are shown on a coordinate system that allows specimen orientation, most highly stressed deformation system, and stress factor to be shown without ambiguity. The information in this report allows the determination of the rss that results from any multiaxial stress state; this information also allows the prediction of the deformation modes that might operate for any specimen orientation in that strss state

  14. The feasibility of prefatigued sub size specimens to fracture mechanical studies in inert and in reactor environments

    International Nuclear Information System (INIS)

    Toivonen, A.; Moilanen, P.; Taehtinen, S.; Aaltonen, P.; Wallin, K.

    1998-01-01

    The feasibility of sub size specimens to fracture mechanical tests in inert and in reactor environment is studied in this paper. The need for using sub size specimens has arised from the need to study highly irradiated materials as well as to study localised stress corrosion cracking, i.e. stress corrosion cracking in very narrow heat affected zones for example in welded thin walled pipes. This paper focuses on the effects of high J-integral values on ductile tearing and on environmentally assisted crack growth rate. The main focus is on the stress corrosion tests. The subject is approached first by theoretical discussion. The experimental study consists of J-R tests in air and of slow J-R tests in simulated boiling water reactor (BWR) environment. In most cases the tests were continued until the J-integral level was significantly above the maximum allowable J values for ductile fracture toughness characterisation prescribed in test standards. The results indicate that the measurement capacity of the specimens depends on the specimen dimensions in J-R tests in air, as could be expected. The measurement capacity limitations are not necessarily important in stress corrosion testing as the environmentally assisted crack growth rate can be measured even without exceeding the J-integral limits given in J-R standards. The theoretical and experimental studies indicate that stress corrosion studies are not limited to linear elastic fracture mechanics approach, but elastic plastic fracture mechanics is applicable as well. (author)

  15. An Experimental Study of the Fracture Coalescence Behaviour of Brittle Sandstone Specimens Containing Three Fissures

    Science.gov (United States)

    Yang, S. Q.; Yang, D. S.; Jing, H. W.; Li, Y. H.; Wang, S. Y.

    2012-07-01

    To analyse the fracture coalescence behaviour of rock, rectangular prismatic sandstone specimens (80 × 160 × 30 mm in size) containing three fissures were tested under uniaxial compression. The strength and deformation behaviours of the specimens are first analysed by investigating the effects of the ligament angle β2 on the peak strength, peak strain and crack initiation stress of the specimens. To confirm the sequence of crack coalescence, a photographic monitoring technique is used throughout the entire period of deformation. Based on the results, the relationship between the real-time crack coalescence process and the axial stress-strain curve of brittle sandstone specimens is also developed, and this relationship can be used to evaluate the macroscopic deformation characteristics of pre-cracked rock. The equivalent strain evolution fields of the specimen, with α = β1 = 45° and β2 = 90°, are obtained using the digital image correlation technique and show good agreement with the experimental results of pre-cracked brittle sandstone. These experimental results are expected to improve the understanding of fracture mechanisms and be used in rock engineering with intermittent structures, such as deep underground excavated tunnels.

  16. The relation of hedonic hunger and restrained eating to lateralized frontal activation.

    Science.gov (United States)

    Winter, S R; Feig, E H; Kounios, J; Erickson, B; Berkowitz, S; Lowe, M R

    2016-09-01

    Asymmetrical alpha activation in the prefrontal cortex (frontal asymmetry) in electroencephalography (EEG) has been related to eating behavior. Prior studies linked dietary restraint with right frontal asymmetry [1] and disinhibition with left frontal asymmetry [2]. The current study simultaneously assessed restrained eating and hedonic hunger (drive for food reward in the absence of hunger) in relation to frontal asymmetry. Resting-state EEG and measures of restrained eating (Revised Restraint Scale; RRS) and hedonic hunger (Power of Food Scale; PFS) were assessed in 61 non-obese adults. Individually, hedonic hunger predicted left asymmetry. However, PFS and RRS were correlated (r=0.48, phunger exhibited left asymmetry irrespective of RRS scores; among those low in PFS, only those high in RRS showed right asymmetry. Results were consistent with literature linking avoidant behaviors (restraint) with right-frontal asymmetry and approach behaviors (binge eating) with left-frontal asymmetry. It appears that a strong drive toward palatable foods predominates at a neural level even when restraint is high. Findings suggest that lateralized frontal activity is an indicator of motivation both to consume and to avoid consuming highly palatable foods. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Monolithic integration of nanoscale tensile specimens and MEMS structures

    International Nuclear Information System (INIS)

    Yilmaz, Mehmet; Kysar, Jeffrey W

    2013-01-01

    Nanoscale materials often have stochastic material properties due to a random distribution of material defects and an insufficient number of defects to ensure a consistent average mechanical response. Current methods to measure the mechanical properties employ MEMS-based actuators. The nanoscale specimens are typically mounted manually onto the load platform, so the boundary conditions have random variations, complicating the experimental measurement of the intrinsic stochasticity of the material properties. Here we show methods for monolithic integration of a nanoscale specimen co-fabricated with the loading platform. The nanoscale specimen is gold with dimensions of ∼40 nm thickness, 350 ± 50 nm width, and 7 μm length and the loading platform is an interdigitated electrode electrostatic actuator. The experiment is performed in a scanning electron microscope and digital image correlation is employed to measure displacements to determine stress and strain. The ultimate tensile strength of the nanocrystalline nanoscale specimen approaches 1 GPa, consistent with measurements made by other nanometer scale sample characterization methods on other material samples at the nanometer scale, as well as gold samples at the nanometer scale. The batch-compatible microfabrication method can be used to create nominally identical nanoscale specimens and boundary conditions for a broad range of materials. (paper)

  18. On residual stresses and fatigue of laser hardened steels

    International Nuclear Information System (INIS)

    Lin, Ru.

    1992-01-01

    This thesis deals with studies on residual stresses and fatigue properties of laser-transformation hardened steels. Two types of specimens, cylinders and fatigue specimens were used in the studies. The cylinders, made of Swedish steels SS 2244 and SS 2258 which correspond to AISI 4140 and AISI 52100 respectively, were locally hardened by a single scan of laser beam in the longitudinal direction, with various laser parameters. Residual stress distributions across the hardened tracks were measured by means of X-ray diffraction. The origins of residual stresses were investigated and discussed. For the fatigue specimens, including smooth and notched types made of Swedish steels SS 2244, SS 2225 and SS 1572 (similar to AISI 4140, AISI 4130 and AISI 1035, respectively), laser hardening was carried out in the gauge section. The residual stress field induced by the hardening process and the fatigue properties by plane bending fatigue test were studied. In order to investigate the stability of the residual stress field, stress measurements were also made on specimens being loaded near the fatigue limits for over 10 7 cycles. Further the concept of local fatigue strength was employed to correlate quantitatively the effect of hardness and residual stress field on the fatigue limits. In addition a group of smooth specimens of SS 2244 was induction hardened and the hardening results were compared with the corresponding laser hardened ones in terms of residual stress and fatigue behaviour. It has been found that compressive stresses exist in the hardened zone of all the specimens studied. The laser hardening condition, the specimen and how the hardening is carried out can significantly affect the residual stress field. Laser hardening can greatly improve the fatigue properties by inducing a hardened and compressed surface layer. (112 refs.)(au)

  19. On residual stresses and fatigue of laser hardened steels

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Ru.

    1992-01-01

    This thesis deals with studies on residual stresses and fatigue properties of laser-transformation hardened steels. Two types of specimens, cylinders and fatigue specimens were used in the studies. The cylinders, made of Swedish steels SS 2244 and SS 2258 which correspond to AISI 4140 and AISI 52100 respectively, were locally hardened by a single scan of laser beam in the longitudinal direction, with various laser parameters. Residual stress distributions across the hardened tracks were measured by means of X-ray diffraction. The origins of residual stresses were investigated and discussed. For the fatigue specimens, including smooth and notched types made of Swedish steels SS 2244, SS 2225 and SS 1572 (similar to AISI 4140, AISI 4130 and AISI 1035, respectively), laser hardening was carried out in the gauge section. The residual stress field induced by the hardening process and the fatigue properties by plane bending fatigue test were studied. In order to investigate the stability of the residual stress field, stress measurements were also made on specimens being loaded near the fatigue limits for over 10[sup 7] cycles. Further the concept of local fatigue strength was employed to correlate quantitatively the effect of hardness and residual stress field on the fatigue limits. In addition a group of smooth specimens of SS 2244 was induction hardened and the hardening results were compared with the corresponding laser hardened ones in terms of residual stress and fatigue behaviour. It has been found that compressive stresses exist in the hardened zone of all the specimens studied. The laser hardening condition, the specimen and how the hardening is carried out can significantly affect the residual stress field. Laser hardening can greatly improve the fatigue properties by inducing a hardened and compressed surface layer. (112 refs.)(au).

  20. Strip specimen tests for pipeline materials and girth welds

    Energy Technology Data Exchange (ETDEWEB)

    Mohr, William C. [Edison Welding Institute (EWI), Columbus, Ohio (United States)

    2009-07-01

    Strip specimen testing of pipeline materials has been widely applied as a method of getting data relevant to the performance of pipelines under axial direction loading. Comparisons of strip specimen against smaller standard tests (round tensile bar, fracture toughness specimens, polished round bars) and against full-scale or large-scale testing will be explored. Data from early-generation pipe welds from the 1920's to the 1940's to the most recent materials for offshore reeled pipe will be used for examples. Strip samples can provide full thickness information to take account of varying material properties or imperfection distribution through the thickness. Strip samples can also accommodate measurement of effects of the original surface finish or weld surface shape. Strip samples have more design flexibility than standard tests, but must be designed to limit stress concentrations and effects of local bending. (author)

  1. Preliminary investigation of candidate specimens for the Egyptian environmental specimen bank

    International Nuclear Information System (INIS)

    Shawky, S.; Amer, H.; Schladot, J.D.; Ostapczuk, P.; Emons, H.; Abou El-Nour, F.

    2000-01-01

    In the frame of establishing an environmental monitoring program related to environmental specimen banking in egypt, some candidate specimens from the aquatic environment (Fish muscle, fish liver; mussels) were investigated. The selection of specimens and sampling sites is described. Specimens are chemically characterised with respect to some major and trace elements and the results are compared with data obtained from comparable specimens collected in aquatic ecosystems of germany

  2. Why Wet Kaolin can be used as a Crustal Analog and its Application to Fault Evolution at Restraining Bends

    Science.gov (United States)

    Cooke, M. L.; van der Elst, N.; Schottenfeld, M. T.

    2010-12-01

    To simulate geologic deformation on observable time and length scales within the lab, a subset of analog modelers have used wet kaolin. Unlike the more often used sand, wet kaolin beautifully exhibits detailed fault structures. Furthermore, faults within the kaolin are more readily reactivated than those in sand. The low plasticity of kaolin (compared to other clays) gives it low shear strength. Consequently, the clay is a suitable analog material if we assume that the wet kaolin deforms by coulomb frictional failure. Koalin generally deforms as a Bingham solid and exhibits more complex deformation than the perfectly plastic behavior assumed with Coulomb failure. We performed fall cone and rheometric tests on wet kaolin to refine our quantitative understanding of its rheology. We use North American wet kaolin with density 1.65-1.7 g/cm3 and water content of 37.5-38.5%. The fall cone tests reveal that the undrained shear strength (100-160 Pa) is greater than previously measured with a viscometer. The rheometer tests show that the wet koalin exhibits many of the same properties of crustal materials including: 1) elastic behavior at low strains, 2) stress relaxation at near-failure strains, 3) creep under static load, 4) yield strength sensitive to strain rate and 5) rate and state dependent failure. Armed with quantitative values for this complex deformation, we can better scale the length and strain rate of the wet koalin experiments to specific crustal settings. Experiments of deformation around restraining bends show features very similar to those found in natural examples. The detailed fault structures produced in the wet kaolin can be analyzed to understand the evolution of active faulting at restraining bends.

  3. The direct-stress fatigue strength of 17S-T aluminum alloy throughout the range from 1/2 to 500,000,000 cycles of stress

    Science.gov (United States)

    Hartmann, E C; Stickley, G W

    1942-01-01

    Fatigue-test were conducted on six specimens made from 3/4-inch-diameter 17S-T rolled-and-drawn rod for the purpose of obtaining additional data on the fatigue life of the material at stresses up to the static strength. The specimens were tested in direct tension using a stress range from zero to a maximum in tension. A static testing machine was used to apply repeated loads in the case of the first three specimens; the other three specimens were tested in a direct tension-compression fatigue machine. The direct-stress fatigue curve obtained for the material indicates that, in the range of stresses above about two-thirds the tensile strength, the fatigue strength is higher than might be expected by simply extrapolating the ordinary curve of stress plotted against the number of cycles determined at lower stresses.

  4. Effect of a shear modified Gurson model on damage development in a FSW tensile specimen

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau; Tvergaard, Viggo

    2009-01-01

    For a friction stir welded aluminum plate the resistance to ductile failure is studied by analyzing tensile test specimens cut out across the weldline. As the stress triaxiality is rather low in these tests, the Gurson material model is not expected to give a very accurate description of the void......, such that the damage parameter does not really represent the void volume fraction. Various amounts of the additional damage evolution are compared with predictions of the original Gurson model. The analyses are carried out for different yield stress profiles transverse to the weld and for different specimen widths....... It is found that the modification does provide additional damage development in the friction stir weld, which may help to fit experimental data. But the suggested modification depends strongly on the overall stress state, and may have a too strong effect in some cases where the stress triaxiality is rather...

  5. Miniaturized fatigue crack growth specimen technology and results

    International Nuclear Information System (INIS)

    Puigh, R.J.; Bauer, R.E.; Ermi, A.M.; Chin, B.A.

    1981-01-01

    The miniature fatigue crack propagation technology has been extended to in-cell fabrication of irradiated specimens. Baseline testing of selected titanium alloys has been performed at 25 0 C in air. At relatively small values for the stress intensity factor, ΔK, the crack growth rates for all titanium alloys investigated are within a factor of three. The crack growth rates for these titanium alloys are a factor of three greater than the crack growth rates of either 316SS (20% CW) or HT-9. Each of the titanium alloys has observable crack propagation for stress intensity factors as small as 4.2 MPa√m

  6. Development of resistance welding process. 4. Preparation of pressuring enclosed creep test specimen of 7A material

    International Nuclear Information System (INIS)

    Endo, Hideo; Seki, Masayuki; Ishibashi, Fujio; Hirako, Kazuhito; Tsukada, Tatsuya

    2001-02-01

    Mechanical strength in the position welded by resistance welding system was examined in 1999. The test specimens were destroyed in the welding position in a shorter time than expected in the creep test. Therefore, test specimens were prepared to evaluate the cause of destruction. Inner-pressure enclosed creep test specimens were prepared by resistance welding method. Cladding material with low deviation of thickness and high re-crystallization rate was used. Heat treatment after resistance welding was performed to remove the influence of residual stress and the precipitation of carbides. (1) Before preparation of specimens, the welding condition was fixed. Three test specimens were prepared. Two specimens without heat treatment were transported to MMS in Oarai Engineering Center on Aug. 4, 2000. One specimen with heat treatment was transported to MMS after evaluating the residual stress to get optimum heat treatment condition. (2) Specimens were prepared with welding end plugs to both ends of ferritic ODS cladding. Enclosing sides were welded with highly strong Ferritic/Martensitic steel end plugs. The other sides were welded with ferritic ODS end plugs. (3) Some kinds of electrical wave data were obtained during performing welding. Welding position was evaluated with supersonic detector after performing welding. (4) Mechanical strength of welding position in high temperature 800degC was confirmed to be equal to or larger than that of cladding material. The highly qualified specimens in the present were successfully prepared. (author)

  7. Multiaxial loading of large-diameter, thin-walled tube rock specimens

    International Nuclear Information System (INIS)

    Hecker, S.S.; Petrovic, J.J.

    1981-01-01

    A large-scale mechanical testing facility permits previously impossible thin-walled tube multiaxial loading experiments on rock materials. Constraints are removed regarding tube wall thickness in relation to rock microstructural features and tube diameter as well as test machine load capacity. Thin-walled tube studies clarify the influence of intermediate principal stress sigma 2 on rock fracture and help define a realistic rock fracture criterion for all multiaxial stressing situations. By comparing results of thin-walled and thick-walled tube fracture investigations, effects of stress gradients can be established. Finally, influence of stress path on rock fracture, an area largely ignored in current rock failure criteria, can be examined in detail using controlled loading changes as well as specimen prestrains

  8. Inspiration or deflation? Feeling similar or dissimilar to slim and plus-size models affects self-evaluation of restrained eaters.

    Science.gov (United States)

    Papies, Esther K; Nicolaije, Kim A H

    2012-01-01

    The present studies examined the effect of perceiving images of slim and plus-size models on restrained eaters' self-evaluation. While previous research has found that such images can lead to either inspiration or deflation, we argue that these inconsistencies can be explained by differences in perceived similarity with the presented model. The results of two studies (ns=52 and 99) confirmed this and revealed that restrained eaters with high (low) perceived similarity to the model showed more positive (negative) self-evaluations when they viewed a slim model, compared to a plus-size model. In addition, Study 2 showed that inducing in participants a similarities mindset led to more positive self-evaluations after viewing a slim compared to a plus-size model, but only among restrained eaters with a relatively high BMI. These results are discussed in the context of research on social comparison processes and with regard to interventions for protection against the possible detrimental effects of media images. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Hydrostatic Stress Effects in Metal Plasticity

    Science.gov (United States)

    Wilson, Christopher D.

    1999-01-01

    Since the 1940s, the theory of plasticity has assumed that hydrostatic stress does not affect the yield or postyield behavior of metals. This assumption is based on the early work of Bridgman. Bridgman found that hydrostatic pressure (compressive stress) does not affect yield behavior until a substantial amount of pressure (greater than 100 ksi) is present. The objective of this study was to determine the effect of hydrostatic tension on yield behavior. Two different specimen geometries were examined: an equal-arm bend specimen and a double edge notch specimen. The presence of a notch is sufficient to develop high enough hydrostatic tensile stresses to affect yield. The von Mises yield function, which does not have a hydrostatic component, and the Drucker-Prager yield function, which includes a hydrostatic component, were used in finite element analyses of the two specimen geometries. The analyses were compared to test data from IN 100 specimens. For both geometries, the analyses using the Drucker-Prager yield function more closely simulated the test data. The von Mises yield function lead to 5-10% overprediction of the force-displacement or force-strain response of the test specimens.

  10. The Sierra de Cabral range: a restraining bend related to the Sierra Ballena shear zone in Dom Feliciano belt

    International Nuclear Information System (INIS)

    Masquelin, H.

    2010-01-01

    Restraining and releasing bends occurring in all crustal environments are common but enigmatic features of strike-slip fault systems. They can be reported in all scales of observation. Regional-scale restraining bends are sites of mountain building, transpressional deformation and basement exhumation. Releasing bends are sites of subsidence, transtensional deformation and pull-apart basins. The Dom Feliciano Belt of Southern Uruguay has two main structures observed from the outer space: (i) the Sierra Ballena Shear Zone and (ii) the Sierra de Cabral flexure located to the SW of the former. Although a transpressional regime is commonly accepted for the Dom Feliciano Belt, the available tectonic models do not provide satisfactory explanations for its building mechanism. A restraining bend is proposed at the SW termination of Sierra Ballena strike-slip ductile shear zone. In a key-area (Alvariza Range) the relationship between the Zanja del Tigre volcanic-detritic and the calcareous succession shows three en-échelon upright bends of the same quartzite hanging-wall between two sub-vertical strike-slip faults, suggesting the existence of a shortened strike-slip duplex operating in viscous-elastic rheology. The deformation partitioning includes strike-slip and dip-slip simple-shear components as well as one contractional pure-shear component. Because restraining bends were scarcely described in Neoproterozoic low-grade regional exhumation conditions, this structural framework would be a natural laboratory to study fault kinematics, fault dynamics, their associated deformation and the tectonic and erosion constraints related to the exhumation of many crystalline terrains

  11. Evaluation of stresses in large diameter, thin walled piping at support locations

    International Nuclear Information System (INIS)

    Bryan, B.J.; Flanders, H.E. Jr.; Rawls, G.B. Jr.

    1992-01-01

    The highest stresses in many thin walled piping systems are the local stresses at the pipe supports. These secondary stresses are caused by saddles or other structural discontinuities that restrain pipe ovalization. A static analysis of a thin walled pipe supported on structural steel saddle under dead weight loading is presented. The finite element analysis is performed using a shell model with distributed gravity and hydrostatic pressure loading. Parametric studies on global and local stress are performed to determine the effect of the pipe diameter to thickness ratio. Two aspects of the saddle design are also investigated: the effect of saddle width, and the effect of saddle wrap angle. Additionally, the computed stresses are compared to closed form solutions

  12. Comparison of analysis and experimental data for a unique crack arrest specimen

    International Nuclear Information System (INIS)

    Ayres, D.J.; Fabi, R.J.; Schonenberg, R.Y.; Norris, D.M.

    1988-01-01

    A new fracture test specimen has been developed to study crack extension and arrest in nuclear reactor vessel steels subject to stress-intensity factor and toughness gradients similar to those in postulated pressurized thermal shock situations. A summary of the results of all the tests performed is presented to illustrate the range of crack arrest and crack reinitiation conditions observed. One test of this specimen with the corresponding stress analysis is described in detail. During this test the crack initiated, extended, arrested, reinitiated, extended again, and reached a final arrest. Comparison of detailed dynamic elastic-plastic finite-element analyses and dynamic strain and displacement measurements of the crack extension, arrest, and reinitiation events, combined with topographic analysis of the future surfaces, has led to a new understanding of the crack extension and arrest process. The results of the tests demonstrate crack arrest in rising stress-intensity field at near-upper-shelf temperature conditions and show that the toughness required for arrest is lower than would be predicted by the analysis procedures usually employed for pressurized thermal shock evaluations

  13. Estimation of Fatigue Crack Growth Behavior of Cracked Specimen Under Mixed-mode Loads

    International Nuclear Information System (INIS)

    Han, Jeong Woo; Woo, Eun Taek; Han, Seung Ho

    2015-01-01

    To estimate the fatigue crack propagation behavior of compact tension shear (CTS) specimen under mixed-mode loads, crack path prediction theories and Tanaka’s equation were applied. The stress intensity factor at a newly created crack tip was calculated using a finite element method via ANSYS, and the crack path and crack increment were then obtained from the crack path prediction theories, Tanaka’s equation, and the Paris’ equation, which were preprogrammed in Microsoft Excel. A new method called the finite element crack tip updating method (FECTUM) was developed. In this method, the finite element method and Microsoft Excel are used to calculate the stress intensity factors and the crack path, respectively, at the crack tip per each crack increment. The developed FECTUM was applied to simulate the fatigue crack propagation of a single-edge notched bending (SENB) specimen under eccentric three-point bending loads. The results showed that the number of cycles to failure of the specimen obtained experimentally and numerically were in good agreement within an error range of less than 3%

  14. Estimation of Fatigue Crack Growth Behavior of Cracked Specimen Under Mixed-mode Loads

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jeong Woo [KIMM, Daejeon (Korea, Republic of); Woo, Eun Taek; Han, Seung Ho [Dong-A University, Busan (Korea, Republic of)

    2015-07-15

    To estimate the fatigue crack propagation behavior of compact tension shear (CTS) specimen under mixed-mode loads, crack path prediction theories and Tanaka’s equation were applied. The stress intensity factor at a newly created crack tip was calculated using a finite element method via ANSYS, and the crack path and crack increment were then obtained from the crack path prediction theories, Tanaka’s equation, and the Paris’ equation, which were preprogrammed in Microsoft Excel. A new method called the finite element crack tip updating method (FECTUM) was developed. In this method, the finite element method and Microsoft Excel are used to calculate the stress intensity factors and the crack path, respectively, at the crack tip per each crack increment. The developed FECTUM was applied to simulate the fatigue crack propagation of a single-edge notched bending (SENB) specimen under eccentric three-point bending loads. The results showed that the number of cycles to failure of the specimen obtained experimentally and numerically were in good agreement within an error range of less than 3%.

  15. Impact of specimen adequacy on the assessment of renal allograft biopsy specimens.

    Science.gov (United States)

    Cimen, S; Geldenhuys, L; Guler, S; Imamoglu, A; Molinari, M

    2016-01-01

    The Banff classification was introduced to achieve uniformity in the assessment of renal allograft biopsies. The primary aim of this study was to evaluate the impact of specimen adequacy on the Banff classification. All renal allograft biopsies obtained between July 2010 and June 2012 for suspicion of acute rejection were included. Pre-biopsy clinical data on suspected diagnosis and time from renal transplantation were provided to a nephropathologist who was blinded to the original pathological report. Second pathological readings were compared with the original to assess agreement stratified by specimen adequacy. Cohen's kappa test and Fisher's exact test were used for statistical analyses. Forty-nine specimens were reviewed. Among these specimens, 81.6% were classified as adequate, 6.12% as minimal, and 12.24% as unsatisfactory. The agreement analysis among the first and second readings revealed a kappa value of 0.97. Full agreement between readings was found in 75% of the adequate specimens, 66.7 and 50% for minimal and unsatisfactory specimens, respectively. There was no agreement between readings in 5% of the adequate specimens and 16.7% of the unsatisfactory specimens. For the entire sample full agreement was found in 71.4%, partial agreement in 20.4% and no agreement in 8.2% of the specimens. Statistical analysis using Fisher's exact test yielded a P value above 0.25 showing that - probably due to small sample size - the results were not statistically significant. Specimen adequacy may be a determinant of a diagnostic agreement in renal allograft specimen assessment. While additional studies including larger case numbers are required to further delineate the impact of specimen adequacy on the reliability of histopathological assessments, specimen quality must be considered during clinical decision making while dealing with biopsy reports based on minimal or unsatisfactory specimens.

  16. A Novel Piezo-Actuator-Sensor Micromachine for Mechanical Characterization of Micro-Specimens

    Directory of Open Access Journals (Sweden)

    Leila Ladani

    2010-12-01

    Full Text Available Difficulties associated with testing and characterization of materials at microscale demands for new technologies and devices that are capable of measuring forces and strains at microscale. To address this issue, a novel electroactive-based micro-electro-mechanical machine is designed. The micromachine is comprised of two electroactive (piezoelectric micro-elements mounted on a rigid frame. Electrical activation of one of the elements causes it to expand and induce a stress in the intervening micro-specimen. The response of the microspecimen to the stress is measured by the deformation and thereby voltage/resistance induced in the second electro-active element. The concept is theoretically proven using analytical modeling in conjunction with non-linear, three dimensional finite element analyses for the micromachine. Correlation of the output voltage to the specimen stiffness is shown. It is also demonstrated through finite element and analytical analysis that this technique is capable of detecting non-linear behavior of materials. A characteristic curve for an isotropic specimen exhibiting linear elastic behavior is developed. Application of the proposed device in measuring coefficient of thermal expansion is explored and analytical analysis is conducted.

  17. Personality and Cognitive Abilities: Predictors of Restrained, Uncontrolled and Emotional Eating Behaviours?

    OpenAIRE

    Howard, Kirstie

    2014-01-01

    Abstract The psychology of eating behaviour merits more attention, due to the increasing prevalence of eating disorders, obesity and other eating related issues. There is a need for a more grounded understanding of the behavioural, emotional and cognitive aspects of dietary habits. Aim: To examine the relationship between personality, cognitive abilities and eating behaviours; Restrained Eating (RE), Uncontrolled Eating (UE) and Emotional Eating (EE). This was based on a series of pre...

  18. Assessment of plastic flow and fracture properties with small specimens test techniques for IFMIF-designed specimens

    International Nuclear Information System (INIS)

    Spaetig, P.; Campitelli, E.N.; Bonade, R.; Baluc, N.

    2005-01-01

    The primary mission of the International Fusion Material Irradiation Facility (IFMIF) is to generate a material database to be used for the design of various components, for the licensing and for the assessment of the safe operation of a demonstration fusion reactor. IFMIF is an accelerator-based high-energy neutron source whose irradiation volume is quite limited (0.5 l for the high fluence volume). This requires the use of small specimens to measure the irradiation-induced changes on the physical and mechanical properties of materials. In this paper, we developed finite element models to better analyze the results obtained with two different small specimen test techniques applied to the tempered martensitic steel F82H-mod. First, one model was used to reconstruct the load-deflection curves of small ball punch tests, which are usually used to extract standard tensile parameters. It was shown that a reasonable assessment of the overall plastic flow can be done with small ball punch tests. Second, we investigated the stress field sensitivity at a crack tip to the constitutive behavior, for a crack modeled in plane strain, small-scale yielding and fracture mode I conditions. Based upon a local criterion for cleavage, that appears to be the basis to account for the size and geometry effects on fracture toughness, we showed that the details of the constitutive properties play a key role in modeling the irradiation-induced fracture toughness changes. Consequently, we suggest that much more attention and efforts have to be paid in investigating the post-yield behavior of the irradiated specimens and, in order to reach this goal, we recommend the use of not only tensile specimens but also that of compression ones in the IFMIF irradiation matrices. (author)

  19. Stress-related cortisol response and laboratory eating behavior in obese women.

    Science.gov (United States)

    Lorig, Fabian; Kießl, Gundula Rebecca Raphaela; Laessle, Reinhold Gustav

    2016-06-01

    Stress-related cortisol secretion has been linked to increased appetite and subsequent food intake in overweight individuals. The present study addresses this relationship in a repeated-measures randomized controlled laboratory experiment. Nineteen obese women were compared to 36 normal weight controls with respect to stress-induced salivary cortisol and laboratory eating behavior, measured by a universal eating monitor. The trier social stress test served as stressor. Stress-induced cortisol levels were significantly higher in the obese compared to the normal weight controls. Unexpectedly, a corresponding increase in laboratory food intake was not detected. The results are interpreted and discussed with regard to restrained eating, which was found to be present to a significant degree in the obese women.

  20. DFsn collaborates with Highwire to down-regulate the Wallenda/DLK kinase and restrain synaptic terminal growth

    Directory of Open Access Journals (Sweden)

    DiAntonio Aaron

    2007-08-01

    Full Text Available Abstract Background The growth of new synapses shapes the initial formation and subsequent rearrangement of neural circuitry. Genetic studies have demonstrated that the ubiquitin ligase Highwire restrains synaptic terminal growth by down-regulating the MAP kinase kinase kinase Wallenda/dual leucine zipper kinase (DLK. To investigate the mechanism of Highwire action, we have identified DFsn as a binding partner of Highwire and characterized the roles of DFsn in synapse development, synaptic transmission, and the regulation of Wallenda/DLK kinase abundance. Results We identified DFsn as an F-box protein that binds to the RING-domain ubiquitin ligase Highwire and that can localize to the Drosophila neuromuscular junction. Loss-of-function mutants for DFsn have a phenotype that is very similar to highwire mutants – there is a dramatic overgrowth of synaptic termini, with a large increase in the number of synaptic boutons and branches. In addition, synaptic transmission is impaired in DFsn mutants. Genetic interactions between DFsn and highwire mutants indicate that DFsn and Highwire collaborate to restrain synaptic terminal growth. Finally, DFsn regulates the levels of the Wallenda/DLK kinase, and wallenda is necessary for DFsn-dependent synaptic terminal overgrowth. Conclusion The F-box protein DFsn binds the ubiquitin ligase Highwire and is required to down-regulate the levels of the Wallenda/DLK kinase and restrain synaptic terminal growth. We propose that DFsn and Highwire participate in an evolutionarily conserved ubiquitin ligase complex whose substrates regulate the structure and function of synapses.

  1. Estimations of creep behavior and failure life for a circumferentially notched specimen

    International Nuclear Information System (INIS)

    Kobayashi, Ken-ichi; Yokobori, Toshimitsu; Kikuchi, Kenji.

    1997-01-01

    No method with which to characterize and/or illustrate total creep behavior for specimens with notches, holes or cracks has been proposed. In this paper it is proposed that most creep curves can be drawn with a master curve for each creep test whenever test conditions and failure modes are similar to each other, and the lifetime ratio normalized by the rupture time is introduced. Using smooth and circumferentially notched specimens of 2.25 Cr-1 Mo steel, creep tests were performed at 600degC for examination of this concept. Furthermore, a θ projection method was used to describe creep curves for notched specimens and to extrapolate longer creep lives. Then, the whole creep curve shape for notched specimens could be easily drawn, except for that in the vicinity of the rupture point. However, longer creep lives of notched specimens were underestimated in comparison with a simple extrapolation of the experimental data. This resulted from the negative dependence of the parameter of θ 3 on the applied stress. (author)

  2. Relationships between Loblolly Pine small clear specimens and Dimension Lumber Tested in Static Bending

    Science.gov (United States)

    Mark Alexander Butler; Joseph Dahlen; Finto Antony; Michael Kane; Thomas L. Eberhardt; Huizhe Jin; Kim Love-Myers; John Paul McTague

    2016-01-01

    Prior to the 1980s, the allowable stresses for lumber in North America were derived from testing of small clear specimens. However, the procedures were changed because these models were found to be inaccurate. Nevertheless, small clear testing continues to be used around the world for allowable stress determinations and in studies that examine forest management impacts...

  3. Effect of heat treatment on bend stress relaxation of pure tungsten

    International Nuclear Information System (INIS)

    Sasaki, Kenta; Nogami, Shuhei; Fukuda, Makoto; Katakai, Yasuyuki; Hasegawa, Akira

    2013-01-01

    Highlights: • Bend stress relaxation test was performed on the pure tungsten after heat treatment for stress relief. • The BSR ratio of the heat treated specimen was larger than that of the as-received specimen at this temperature region. • Small reduction in the BSR ratio was observed at the temperatures of 500–800 °C. • The BSR ratio of the heat treated specimen decreased significantly at the temperatures of 900–1000 °C. • The BSR ratio decreased significantly in a short time below 0.1 h, and then decreased slowly. -- Abstract: Bend stress relaxation (BSR) tests at temperatures of 500, 600, 800, 900 and 1000 °C for 0.1, 0.5 and 1 h in vacuum were performed on the pure tungsten after heat treatment for stress relief at 900 °C for 1 h. The degree of stress relaxation increased with test temperature. The BSR ratio of the heat treated specimen was larger than that of the as-received specimen at this temperature region. Small reduction in the BSR ratio was observed at the temperatures of 500, 600 and 800 °C. The BSR ratio of the heat treated specimen decreased significantly at the temperatures of 900 and 1000 °C and it was close to that of the as-received specimen. The BSR ratio of the heat treated specimen and the as-received specimen exhibited similar trend of time-evolution. The stress was exponentially relaxed with increasing test time. The BSR ratio decreased significantly in a short time below 0.1 h, and then decreased slowly. Higher activation energy of stress relaxation evaluated by cross-cut method was obtained for the higher temperature

  4. The effect of specimen thickness on the experimental and finite ...

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    as a fracture parameter and the J-CTOD relation for the determination of critical ... fracture behaviour of EDD (0·06%C) steel sheets with CT specimens and using ... On the other hand, in the predominantly plane stress region, if the toughness value ..... (iii) Hardness measurement – The plastic zone size and shape is also ...

  5. Effects of Consolidation Stress State on Normally Consolidated Clay

    DEFF Research Database (Denmark)

    Lade, Poul V.

    2000-01-01

    The effect of consolidation stress state on the stress-strain and strength characteristics has been studied from experiments on undisturbed block samples of a natural, normally consolidated clay known as San Francisco Bay Mud. The results of experiments on K0-consolidated, hollow cylinder specimens...... and on isotropically consolidated, cubical specimens, both tested in triaxial compression and extension, clearly showed the influence of the undisturbed fabric as well as the effect of the initial consolidation stress states. While the K0-consolidated specimens appeared to retain their original fabric and exhibit...

  6. Analytical modeling of the effect of crack depth, specimen size, and biaxial stress on the fracture toughness of reactor vessel steels

    International Nuclear Information System (INIS)

    Chao, Yuh-Jin

    1995-01-01

    Fracture, toughness values for A533-B reactor pressure vessel (RPV) steel obtained from test programs at Oak Ridge National Laboratory (ORNL) and University of Kansas (KU) are interpreted using the J-A 2 analytical model. The analytical model is based on the critical stress concept and takes into consideration the constraint effect using the second parameter A 2 in addition to the generally accepted first parameter J which represents the loading level. It is demonstrated that with the constraint level included in the model effects of crack depth (shallow vs deep), specimen size (small vs. large), and loading type (uniaxial vs biaxial) on the fracture toughness from the test programs can be interpreted and predicted

  7. Cavitation in the neck of a deformed Ti-47Al-2Nb-2Cr creep specimen

    International Nuclear Information System (INIS)

    Sneary, P.R.; Beals, R.S.; Bieler, T.R.

    1996-01-01

    In creep deformation, intergranular cavitation is the predominant damage process that leads to fracture. In addition to the strain rate, nucleation and growth of cavities are the most important issues to examine when considering material lifetimes. Cavities tend to grow on boundaries normal to the tensile stress axis. Constrained cavity growth models describe how the growth rate is retarded due to the need for the surrounding matrix to accommodate the volume increase. Near-γ TiAl has a microstructure that is very sensitive to heat treatment and deformation history. In this study, the authors investigate a necked creep specimen upon which creep rates were evaluated in a history that started with a large stress and steadily decreased by stress changes through the end of the experiment. Since creep rates at similar stresses are as much as an order of magnitude higher than in a specimen deformed in a generally increasing stress change history, the cavitation evident in the neck is expected to be strongly affected by the particular deformation history in the material

  8. Effect of holes on the room temperature tensile behaviors of thin wall specimens with (210) side surface of Ni-base single crystal superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Z.J.; Liu, T.; Pu, S. [Superalloys Division, Institute of Metal Research, Chinese Academy of Sciences, No. 72, Wenhua Road, Shenyang 110016 (China); Xu, H. [Materials Fatigue and Fracture Division, Institute of Metal Research, Chinese Academy of Sciences, No. 72, Wenhua Road, Shenyang 110016 (China); Wang, L., E-mail: wangli@imr.ac.cn [Superalloys Division, Institute of Metal Research, Chinese Academy of Sciences, No. 72, Wenhua Road, Shenyang 110016 (China); Lou, L.H. [Superalloys Division, Institute of Metal Research, Chinese Academy of Sciences, No. 72, Wenhua Road, Shenyang 110016 (China)

    2015-10-25

    Tensile properties of Ni-base single crystal superalloy plate specimens with and without a hole at room temperature were studied in the present paper. During the testing process, an ARAMIS system based on the digital image correlation technique and in-situ scanning electron microscopy were employed to in-situ observe the strain distribution and slip traces development on the sample surfaces. It was demonstrated that the yield stress was decreased with the appearance of a hole due to the stress concentration. The results were analyzed based on the stress and strain states of specimens and the slip traces development observed on specimen surfaces. - Graphical abstract: The strain distribution for samples without and with a hole, respectively. - Highlights: • Tensile tests of plate specimens without and with a hole were performed. • Surface strain fields were in-situ observed by ARAMIS system. • Slip traces development on sample surfaces was in-situ observed by SEM. • The hole deteriorated both the tensile strength and elongation of the samples. • Tensile strength of specimens without and with a hole was discussed respectively.

  9. Modelling of the deformation of shot peened cylindrical specimens of 42 CrMo4 in uniaxial tension and deformation and of the resulting macro residual stresses; Modellierung der einachsigen Zug- und Druck-Verformung kugelgestrahlter Zylinderproben aus verguetetem 42 CrMo4 und der dabei auftretenden Makroeigenspannungsaenderungen

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, V.; Voehringer, O.; Macherauch, E. [Karlsruhe Univ. (T.H.) (Germany). Inst. fuer Werkstoffkunde 1

    1998-10-01

    Tensile and compressive stress-strain-curves of shot peened and unpeened specimens of quenched and tempered 42 CrMo 4 (AISI 4140) with a diameter of 5 mm only differ in the yield strengths and in the Lueders-deformation. In comparison to the core the regions close to the surface of shot peened cylindrical specimens bear relatively large axial and tangential residual stresses and show different deformation properties. A multi-layer-model was developed to describe both the tensile as well as the compressive deformation behaviour of shot peened cylindrical specimens quantitatively. The calculated transitions from the elastic to the elastic-plastic deformation state during tensile and compressive loading agree quite well with the experimental observations. Also the changes of axial and tangential macro residual stresses after distinct tensile or compressive deformations are in best agreement with the measurements. (orig.) 29 refs.

  10. The response of pressure vessel steel specimens on drop weight loading

    International Nuclear Information System (INIS)

    Winkler, S.; Kalthoff, J.F.; Gerscha, A.

    1979-01-01

    Load records obtained in instrumented impact tests in general are disturbed by inertia effects. The influence of mechanical damping provisions on these disturbing inertia effects is investigated. Precracked bend specimens are dynamically loaded in a drop weight testing system. The specimens of size 620 mm x 150 mm (25 mm or 50 mm thick) were machined from the pressure vessel steel 22 NiMoCr 37 which was heat treated to achieve a specially hardened condition. The tests were performed at two different low temperatures. The impact velocity was about 4 m/s. As it is usual in instrumented impact testing, the load at the tup of the impining striker is recorded as a function of time during the impact process. In addition the specimen is instrumented by a strain gage close to the crack tip in order to directly measure the stress intensification. Experiments were performed under pure and damped impact conditions. Damping was achieved by utilizing a soft aluminum plate between the striker and the specimen. (orig.)

  11. Applicability of the Modified Ritchie-Knott-Rice Failure Criterion to Examine the Feasibility of Miniaturized Charpy Type SE(B Specimens

    Directory of Open Access Journals (Sweden)

    Toshiyuki Meshii

    2016-01-01

    Full Text Available This paper examined whether the modified Ritchie-Knott-Rice (RKR failure criterion can be applied to examine the feasibility of miniaturized Charpy type SE(B specimens of thickness-to-width ratio B/W=1. The modified RKR failure criterion considered in this paper is the (4δt,σ22c criterion which predicts the onset of cleavage fracture when the midplane crack-opening stress measured at a distance equal to four times the crack-tip opening displacement, denoted as σ22d, exceeds a critical stress σ22c. Specimens with B values of 25, 10, 3, and 2 mm (denoted as 25t, 10t, 3t, and 2t specimens, resp. manufactured with 0.55% carbon steel were tested at 20°C. The results showed that the modified RKR criterion could appropriately predict the occurrence of cleavage fracture accompanied by negligibly small stable crack extension (denoted as KJc fracture naturally for the 25t and 10t specimens. The modified RKR criterion could also predict that KJc fracture does not occur for the 2t specimen. The σ22c obtained from specimens for the 25t and 10t specimens exhibited only a small difference, indicating that the Jc obtained from the 10t specimens can be used to predict the Jc that will be obtained with the 25t specimens.

  12. Size effect studies on geometrically scaled three point bend type specimens with U-notches

    Energy Technology Data Exchange (ETDEWEB)

    Krompholz, K.; Kalkhof, D.; Groth, E

    2001-02-01

    One of the objectives of the REVISA project (REactor Vessel Integrity in Severe Accidents) is to assess size and scale effects in plastic flow and failure. This includes an experimental programme devoted to characterising the influence of specimen size, strain rate, and strain gradients at various temperatures. One of the materials selected was the forged reactor pressure vessel material 20 MnMoNi 55, material number 1.6310 (heat number 69906). Among others, a size effect study of the creep response of this material was performed, using geometrically similar smooth specimens with 5 mm and 20 mm diameter. The tests were done under constant load in an inert atmosphere at 700 {sup o}C, 800 {sup o}C, and 900 {sup o}C, close to and within the phase transformation regime. The mechanical stresses varied from 10 MPa to 30 MPa, depending on temperature. Prior to creep testing the temperature and time dependence of scale oxidation as well as the temperature regime of the phase transformation was determined. The creep tests were supplemented by metallographical investigations.The test results are presented in form of creep curves strain versus time from which characteristic creep data were determined as a function of the stress level at given temperatures. The characteristic data are the times to 5% and 15% strain and to rupture, the secondary (minimum) creep rate, the elongation at fracture within the gauge length, the type of fracture and the area reduction after fracture. From metallographical investigations the accent's phase contents at different temperatures could be estimated. From these data also the parameters of the regression calculation (e.g. Norton's creep law) were obtained. The evaluation revealed that the creep curves and characteristic data are size dependent of varying degree, depending on the stress and temperature level, but the size influence cannot be related to corrosion or orientation effects or to macroscopic heterogeneity (position effect

  13. Structural strength of cancellous specimens from bovine femur under cyclic compression

    Directory of Open Access Journals (Sweden)

    Kaori Endo

    2016-01-01

    Full Text Available The incidence of osteoporotic fractures was estimated as nine million worldwide in 2000, with particular occurrence at the proximity of joints rich in cancellous bone. Although most of these fractures spontaneously heal, some fractures progressively collapse during the early post-fracture period. Prediction of bone fragility during progressive collapse following initial fracture is clinically important. However, the mechanism of collapse, especially the gradual loss of the height in the cancellous bone region, is not clearly proved. The strength of cancellous bone after yield stress is difficult to predict since structural and mechanical strength cannot be determined a priori. The purpose of this study was to identify whether the baseline structure and volume of cancellous bone contributed to the change in cancellous bone strength under cyclic loading. A total of fifteen cubic cancellous bone specimens were obtained from two 2-year-old bovines and divided into three groups by collection regions: femoral head, neck, and proximal metaphysis. Structural indices of each 5-mm cubic specimen were determined using micro-computed tomography. Specimens were then subjected to five cycles of uniaxial compressive loading at 0.05 mm/min with initial 20 N loading, 0.3 mm displacement, and then unloading to 0.2 mm with 0.1 mm displacement for five successive cycles. Elastic modulus and yield stress of cancellous bone decreased exponentially during five loading cycles. The decrease ratio of yield stress from baseline to fifth cycle was strongly correlated with bone volume fraction (BV/TV, r = 0.96, p < 0.01 and structural model index (SMI, r = − 0.81, p < 0.01. The decrease ratio of elastic modulus from baseline to fifth cycle was also correlated with BV/TV (r = 0.80, p < 0.01 and SMI (r = − 0.78, p < 0.01. These data indicate that structural deterioration of cancellous bone is associated with bone strength after yield stress. This study suggests that

  14. Stress measurement by x-ray diffractometry

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, C M

    1985-10-22

    This invention relates to x-ray diffractometry and more particularly to apparatus and methods for the measurement of residual stress in polycrystalline, e.g. metallic, specimens. The procedure is based on measurement of the lattice strain of crystals by x-ray diffraction, in which change in the interplanar spacing of a set of crystal lattice planes due to strain causes a change in the diffraction angle of the scattered x-ray beam, from which latter change the magnitude of the strain can be determined. In a polycrystalline specimen, from well know relations for elastic behaviour in isotropic materials, the stress on a plane normal to a given direction in the surface has a component in the given direction which can be calculated from measurement of lattice strain in two directions in a plane containing the given direction and the normal to the specimen surface. In general three such stress components in three directions in the surface are required to determine the principal stresses and thus express the state of stress in the surface. (author). 2 tabs., 9 figs.

  15. Stress analysis of shear/compression test

    International Nuclear Information System (INIS)

    Nishijima, S.; Okada, T.; Ueno, S.

    1997-01-01

    Stress analysis has been made on the glass fiber reinforced plastics (GFRP) subjected to the combined shear and compression stresses by means of finite element method. The two types of experimental set up were analyzed, that is parallel and series method where the specimen were compressed by tilted jigs which enable to apply the combined stresses, to the specimen. Modified Tsai-Hill criterion was employed to judge the failure under the combined stresses that is the shear strength under the compressive stress. The different failure envelopes were obtained between the two set ups. In the parallel system the shear strength once increased with compressive stress then decreased. On the contrary in the series system the shear strength decreased monotonicly with compressive stress. The difference is caused by the different stress distribution due to the different constraint conditions. The basic parameters which control the failure under the combined stresses will be discussed

  16. Cone restraining and head-only electrical stunning in broilers: Effects on physiological responses and meat quality

    NARCIS (Netherlands)

    Lambooij, E.; Reimert, H.G.M.; Verhoeven, M.T.W.; Hindle, V.A.

    2014-01-01

    Two experiments were conducted to evaluate a new electrical stunning system for broilers. The objective of the first experiment was to evaluate the behavioral, neural, and physiological responses of 27 broilers after head-only electrical stunning while their bodies were restrained in cone-shaped

  17. Clinical evaluation of a mobile digital specimen radiography system for intraoperative specimen verification.

    Science.gov (United States)

    Wang, Yingbing; Ebuoma, Lilian; Saksena, Mansi; Liu, Bob; Specht, Michelle; Rafferty, Elizabeth

    2014-08-01

    Use of mobile digital specimen radiography systems expedites intraoperative verification of excised breast specimens. The purpose of this study was to evaluate the performance of a such a system for verifying targets. A retrospective review included 100 consecutive pairs of breast specimen radiographs. Specimens were imaged in the operating room with a mobile digital specimen radiography system and then with a conventional digital mammography system in the radiology department. Two expert reviewers independently scored each image for image quality on a 3-point scale and confidence in target visualization on a 5-point scale. A target was considered confidently verified only if both reviewers declared the target to be confidently detected. The 100 specimens contained a total of 174 targets, including 85 clips (49%), 53 calcifications (30%), 35 masses (20%), and one architectural distortion (1%). Although a significantly higher percentage of mobile digital specimen radiographs were considered poor quality by at least one reviewer (25%) compared with conventional digital mammograms (1%), 169 targets (97%), were confidently verified with mobile specimen radiography; 172 targets (98%) were verified with conventional digital mammography. Three faint masses were not confidently verified with mobile specimen radiography, and conventional digital mammography was needed for confirmation. One faint mass and one architectural distortion were not confidently verified with either method. Mobile digital specimen radiography allows high diagnostic confidence for verification of target excision in breast specimens across target types, despite lower image quality. Substituting this modality for conventional digital mammography can eliminate delays associated with specimen transport, potentially decreasing surgical duration and increasing operating room throughput.

  18. Studies on fatigue life enhancement of pre-fatigued spring steel specimens using laser shock peening

    International Nuclear Information System (INIS)

    Ganesh, P.; Sundar, R.; Kumar, H.; Kaul, R.; Ranganathan, K.; Hedaoo, P.; Raghavendra, G.; Anand Kumar, S.; Tiwari, P.; Nagpure, D.C.; Bindra, K.S.; Kukreja, L.M.; Oak, S.M.

    2014-01-01

    Highlights: • Laser peening significantly extended fatigue life of pre-fatigued spring steel. • Increase in fatigue life of laser peened specimens was more than 15 times. • Black PVC tape is an effective coating for laser peening of ground surfaces. • Repeat peening repaired local surface melted regions on laser peened surface. • Technique is effective for life extension of in-service automobile parts. - Abstract: SAE 9260 spring steel specimens after enduring 50% of their mean fatigue life were subjected to laser shock peening using an in-house developed 2.5 J/7 ns pulsed Neodymium-doped Yttrium Aluminum Garnet (Nd:YAG) laser for studying their fatigue life enhancement. In the investigated range of process parameters, laser shock peening resulted in the extension of fatigue life of these partly fatigue damaged specimens by more than 15 times. Contributing factors for the enhanced fatigue life of laser peened specimens are: about 400 μm thick compressed surface layer with magnitude of surface stress in the range of −600 to −700 MPa, about 20% increase in surface hardness and unaltered surface finish. For laser peening of ground steel surface, an adhesive-backed black polyvinyl chloride (PVC) tape has been found to be a superior sacrificial coating than conventionally used black paint. The effect of repeated laser peening treatment was studied to repair locally surface melted regions and the treatment has been found to be effective in re-establishing desired compressive stress pattern on the erstwhile tensile-stressed surface

  19. Neurofeedback reduces overeating episodes in female restrained eaters: a randomized controlled pilot-study.

    Science.gov (United States)

    Schmidt, Jennifer; Martin, Alexandra

    2015-12-01

    Overeating episodes, despite of intentions to control weight, are a common problem among women. Recurring episodes of overeating and dietary failure have been reported to result in higher Body Mass Indexes and to induce severe distress even in non-clinical groups. Based on findings from physiological research on eating behavior and craving, as well as previous biofeedback studies, we derived a cue exposure based EEG neurofeedback protocol to target overeating episodes. The treatment was evaluated in a randomized controlled trial, comparing a neurofeedback group (NFG; n = 14) with a waiting list control group (WLG; n = 13) in a sub-clinical sample of female restrained eaters. At post-treatment, the number of weekly overeating episodes and subsequent distress were significantly reduced in the NFG compared to the WLG (p  .50). In a 3 month follow-up, effects in the NFG remained stable. As secondary outcomes, perceived dieting success was enhanced after the treatment. At follow-up, additional beneficial effects on trait food craving were observed. Altogether, we found preliminary evidence for the cue exposure neurofeedback against overeating episodes in female restrained eaters, although specific effects and underlying mechanisms still have to be explored in future research.

  20. Induced dyadic stress and food intake: Examination of the moderating roles of body mass index and restraint.

    Science.gov (United States)

    Côté, Marilou; Gagnon-Girouard, Marie-Pierre; Provencher, Véronique; Bégin, Catherine

    2016-12-01

    Restrained eaters and overweight and obese people are prone to increase their food intake during stressful situations. This study examines the impact of a stressful couple discussion on food intake in both spouses, while simultaneously taking into account the effect of BMI and restraint on this association. For 15min, 80 heterosexual couples discussed an aspect that they wanted their partner to change followed by an individual bogus taste test for the purpose of measuring his or her stress-induced food intake. Prior to and after the discussion, subjective mood state was assessed, as well as appetite perceptions, and the mood change before and after the discussion was calculated. Multiple regression analyses with a three-way interaction between mood change, BMI, and restraint were used to predict food intake for both men and women, while controlling for appetite perceptions. Only restrained women with a high BMI ate more when their mood worsened. For men, only appetite perceptions significantly predicted food intake. These results suggest that an induced negative mood in the form of a stressful couple discussion impacts food intake differently for men and women, and that particular attention should be given to the concomitant effect of both restraint and BMI when studying stress-induced eating among women. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Validatin of miniaturised tensile testing on DMLS TI6AL4V (ELI specimens

    Directory of Open Access Journals (Sweden)

    Van Zyl, Ian

    2016-11-01

    Full Text Available Direct metal laser sintering (DMLS is a relatively new technology that is developing rapidly. Since DMLS material is created by melting/solidifying tracks and layers from powder, even building geometry can influence the mechanical properties. To certify a material, the testing specimens must be designed and manufactured according to the appropriate standards. Miniaturised tensile DMLS samples could be a good alternative for express quality control, and could reduce the cost of DMLS-specific testing. In this study, as-built and stress-relieved miniaturised tensile DMLS Ti6Al4V (ELI specimens with different surface qualities were investigated. The fracture surfaces and mechanical properties of the mini-tensile specimens were analysed and compared with standard full-sized specimens also manufactured by DMLS. The obtained data showed the applicability of mini-tensile tests for the express analysis of DMLS objects if a correction factor is applied for the calculation of the load-bearing cross-section of the specimen.

  2. Stress relaxation of thermally bowed fuel pins

    International Nuclear Information System (INIS)

    Crossland, I.G.; Speight, M.V.

    1983-01-01

    The presence of cross-pin temperature gradients in nuclear reactor fuel pins produces differential thermal expansion which, in turn, causes the fuel pin to bow elastically. If the pin is restrained in any way, such thermal bowing causes the pin to be stressed. At high temperatures these stresses can relax by creep and it is shown here that this causes the pin to suffer an additional permanent deflection, so that when the cross-pin temperature difference is removed the pin remains bowed. By representing the cylindrical pin by an equivalent I-beam, the present work examines this effect when it takes place by secondary creep. Two restraint systems are considered, and it is demonstrated that the rate of relaxation depends mainly upon the creep equation, and hence the temperature, and also the magnitude of the initial stresses. (author)

  3. Measurement and accompanying numerical simulation of fast crack propagation in modified DCB specimens made of Araldit B

    International Nuclear Information System (INIS)

    Stoeckl, H.

    1991-06-01

    Numerical simulations of fracture-mechanical experiments with the aim of determining the stress intensity factor and its relation to the fracture velocity from the measured data of the crack length are problematic with the conventional DCB specimen loaded through wedge and bolt namely because of the not clearly definable limiting conditions. Experiments were therefore carried out with modified DCB specimens made of ARALDIT B, with the loading wedge pressed directly into the crack mouth. In the case of suitable specimen dimensions, K I already in the initial phase of crack propagation before arrival of the first reflected waves covers a great part of the relevant range. Numerical simulations agree well with the shadow-optical measurements in this phase. A specimen variant with T-shaped extension at the counterbearing is suitable especially for crack arrest investigations, since high fracture velocities and brief crack jump lengths can be combined in tests with this specimen. The constant member in the series development of the stress distribution at the crack tip according to Williams determines the directional stability of the crack. The theories established by Cotterell, Schindler, Streit and Finnie are discussed by means of the kinking cracks observed during some experiments. (orig.) [de

  4. Fiber Bragg Gratings, IT Techniques and Strain Gauge Validation for Strain Calculation on Aged Metal Specimens

    Directory of Open Access Journals (Sweden)

    Ander Montero

    2011-01-01

    Full Text Available This paper studies the feasibility of calculating strains in aged F114 steel specimens with Fiber Bragg Grating (FBG sensors and infrared thermography (IT techniques. Two specimens have been conditioned under extreme temperature and relative humidity conditions making comparative tests of stress before and after aging using different adhesives. Moreover, a comparison has been made with IT techniques and conventional methods for calculating stresses in F114 steel. Implementation of Structural Health Monitoring techniques on real aircraft during their life cycle requires a study of the behaviour of FBG sensors and their wiring under real conditions, before using them for a long time. To simulate aging, specimens were stored in a climate chamber at 70 °C and 90% RH for 60 days. This study is framed within the Structural Health Monitoring (SHM and Non Destructuve Evaluation (NDE research lines, integrated into the avionics area maintained by the Aeronautical Technologies Centre (CTA and the University of the Basque Country (UPV/EHU.

  5. Experimental investigation of effect of specimen thickness on fracture toughness of Al-TiC composites

    Directory of Open Access Journals (Sweden)

    M. S. Raviraj

    2016-07-01

    Full Text Available In this paper, the macro and micro-mechanical fracture behavior was studied for aluminum (Al6061 alloy matrix, reinforced with various proportions of TiC particles such as 3wt%, 5wt% and 7wt%. The Al6061-TiC metal matrix composites were produced by stir casting method to ensure uniform distribution of the TiC particulates in the Al matrix. The compact tension (CT specimens were machined according to ASTM E399 specifications to evaluate the fracture toughness for Al6061-TiC metal matrix composites. The CT specimens were machined for crack to width (a/W ratio of 0.5 and thickness to width (B/W ratios of 0.2 to 0.7 with an increment of 0.1. Load versus crack mouth opening displacement (CMOD data was plotted to estimate stress intensity factor KQ for various thicknesses of the specimen. The fracture toughness KIC was obtained by plotting stress intensity factor versus thickness to width ratios of specimen data. The fracture toughness of these composites varied between 16.4-19.2 MPa√m. Scanning Electron Microscope (SEM studies was made on the fractured surface of the specimens to understand the micro-mechanisms of failure involved in these composites. Void initiation is more significant in the matrix near the interface. The micro-cracks grow from these micro-voids and crack propagates by linking these micro cracks locating the crack path preferentially in the matrix adjacent to the interface indicating ductile fracture.

  6. Effects of thermal aging and stress triaxiality on PWSCC initiation susceptibility of nickel-based Alloy 600

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Seung Chang; Choi, Kyoung Joon; Kim, Tae Ho; Kim, Ji Hyun [Dept. of Nuclear Science and Engineering, School of Mechanical and Nuclear Engineering, Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2016-10-15

    In present study, effects of thermal aging and triaxial stress were investigated in terms of primary water stress corrosion cracking susceptibility. The thermal aging was applied via heat treatment at 400°C and triaxial stress was applied via notched tensile test specimen. The crack initiation time of each specimen were then measured by direct current potential drop method during slow strain rate test at primary water environment. Alloys with 10 years thermal aging exhibited the highest susceptibility to stress corrosion cracking and asreceived specimen shows lowest susceptibility. The trend was different with triaxial stress applied; 20 years thermal aging specimen shows highest susceptibility and as-received specimen shows lowest. It would be owing to change of precipitate morphology during thermal aging and different activated slip system in triaxial stress state.

  7. Liquid salt environment stress-rupture testing

    Science.gov (United States)

    Ren, Weiju; Holcomb, David E.; Muralidharan, Govindarajan; Wilson, Dane F.

    2016-03-22

    Disclosed herein are systems, devices and methods for stress-rupture testing selected materials within a high-temperature liquid salt environment. Exemplary testing systems include a load train for holding a test specimen within a heated inert gas vessel. A thermal break included in the load train can thermally insulate a load cell positioned along the load train within the inert gas vessel. The test specimen can include a cylindrical gage portion having an internal void filled with a molten salt during stress-rupture testing. The gage portion can have an inner surface area to volume ratio of greater than 20 to maximize the corrosive effect of the molten salt on the specimen material during testing. Also disclosed are methods of making a salt ingot for placement within the test specimen.

  8. Evaluation of residual stresses in welded part using hard synchrotron x-rays

    International Nuclear Information System (INIS)

    Suzuki, Kenji; Shobu, Takahisa; Shiro, Ayumi; Zhang Shuoyuan

    2013-01-01

    The spiral slit-system and DSTM (diffraction spot trace method) are under development in order to evaluate internal stresses of materials with coarse grains. The spiral slit-system was improved so that the length of the gauge volume is independent of the diffraction angle. The bending stress in the specimen with coarse grains was measured in order to confirm performance of this advanced spiral slit-system. The distribution of the measured bending stress coincided with the applied bending stress. As a result, it was proved that the combination of the advanced spiral slit-system and the DSTM is useful for the internal stress measurement of materials with coarse grains. The welded specimen of a Mg-alloy plate was prepared by melt-run with TIG welding. The residual stress map in the cross-section of the specimen was made using the DSTM. On the other hand, the residual stresses of the welded specimen were simulated by a finite element method. Although the measured residual stresses were similar to the simulated results, the residual stresses due to extrusion were measured also using the DSTM. The DSTM is an excellent technique for the stress measurement of weld parts. (author)

  9. Analysis of anisotropic damage in forged Al–Cu–Mg–Si alloy based on creep tests, micrographs of fractured specimen and digital image correlations

    Energy Technology Data Exchange (ETDEWEB)

    Gariboldi, Elisabetta, E-mail: elisabetta.gariboldi@polimi.it [Politecnico di Milano, Department of Mechanical Engineering, Via La Masa 34 20156 Milano (Italy); Naumenko, Konstantin, E-mail: konstantin.naumenko@ovgu.de [Otto-von-Guericke-University Magdeburg, Institute of Mechanics, D-39106 Magdeburg (Germany); Ozhoga-Maslovskaja, Oksana, E-mail: oksana.ozhogamaslovskaja@gmail.com [Politecnico di Milano, Department of Mechanical Engineering, Via La Masa 34 20156 Milano (Italy); Zappa, Emanuele, E-mail: emanuele.zappa@polimi.it [Politecnico di Milano, Department of Mechanical Engineering, Via La Masa 34 20156 Milano (Italy)

    2016-01-15

    The aim of this paper is to analyze anisotropic damage mechanisms in forged Al–Cu–Mg–Si alloy based on the results of creep tests. Smooth specimens are sampled in three forging directions. Creep strain vs. time curves as well as light optical microscope and scanning electron microscope observations illustrate basic features of damage growth. Flat notch specimens are sampled in different directions to analyze stress redistributions and damage in zones of stress concentration. The digital image correlation technique has been applied in situ in order to extract the strain values on the surface of the notched specimens. All observations demonstrate that the principal origins of anisotropic creep and damage are associated with elongated grains and second phase clustered particles located at grain boundaries. Longitudinal specimens possess nucleations of decohesion sites and growth of voids around second phase particles at grain boundaries. Damage evolution for radial and transverse specimens is due to the formation and growth of cracks in second phase particles orthogonal to the principal stress axis. Residual strains are confined to the notch root as well as to the flanges of advanced macrocrack, indicating the small scale yielding during the creep fracture process.

  10. An inverse method based on finite element model to derive the plastic flow properties from non-standard tensile specimens of Eurofer97 steel

    Directory of Open Access Journals (Sweden)

    S. Knitel

    2016-12-01

    Full Text Available A new inverse method was developed to derive the plastic flow properties of non-standard disk tensile specimens, which were so designed to fit irradiation rods used for spallation irradiations in SINQ (Schweizer Spallations Neutronen Quelle target at Paul Scherrer Institute. The inverse method, which makes use of MATLAB and the finite element code ABAQUS, is based upon the reconstruction of the load-displacement curve by a succession of connected small linear segments. To do so, the experimental engineering stress/strain curve is divided into an elastic and a plastic section, and the plastic section is further divided into small segments. Each segment is then used to determine an associated pair of true stress/plastic strain values, representing the constitutive behavior. The main advantage of the method is that it does not rely on a hypothetic analytical expression of the constitutive behavior. To account for the stress/strain gradients that develop in the non-standard specimen, the stress and strain were weighted over the volume of the deforming elements. The method was validated with tensile tests carried out at room temperature on non-standard flat disk tensile specimens as well as on standard cylindrical specimens made of the reduced-activation tempered martensitic steel Eurofer97. While both specimen geometries presented a significant difference in terms of deformation localization during necking, the same true stress/strain curve was deduced from the inverse method. The potential and usefulness of the inverse method is outlined for irradiated materials that suffer from a large uniform elongation reduction.

  11. Acute stress does not affect the impairing effect of chronic stress on memory retrieval

    Science.gov (United States)

    Ozbaki, Jamile; Goudarzi, Iran; Salmani, Mahmoud Elahdadi; Rashidy-Pour, Ali

    2016-01-01

    Objective(s): Due to the prevalence and pervasiveness of stress in modern life and exposure to both chronic and acute stresses, it is not clear whether prior exposure to chronic stress can influence the impairing effects of acute stress on memory retrieval. This issue was tested in this study. Materials and Methods: Adult male Wistar rats were randomly assigned to the following groups: control, acute, chronic, and chronic + acute stress groups. The rats were trained with six trials per day for 6 consecutive days in the water maze. Following training, the rats were either kept in control conditions or exposed to chronic stress in a restrainer 6 hr/day for 21 days. On day 22, a probe test was done to measure memory retention. Time spent in target and opposite areas, platform location latency, and proximity were used as indices of memory retention. To induce acute stress, 30 min before the probe test, animals received a mild footshock. Results: Stressed animals spent significantly less time in the target quadrant and more time in the opposite quadrant than control animals. Moreover, the stressed animals showed significantly increased platform location latency and proximity as compared with control animals. No significant differences were found in these measures among stress exposure groups. Finally, both chronic and acute stress significantly increased corticosterone levels. Conclusion: Our results indicate that both chronic and acute stress impair memory retrieval similarly. Additionally, the impairing effects of chronic stress on memory retrieval were not influenced by acute stress. PMID:27635201

  12. Plastic deformation and failure mechanisms in nano-scale notched metallic glass specimens under tensile loading

    Science.gov (United States)

    Dutta, Tanmay; Chauniyal, Ashish; Singh, I.; Narasimhan, R.; Thamburaja, P.; Ramamurty, U.

    2018-02-01

    In this work, numerical simulations using molecular dynamics and non-local plasticity based finite element analysis are carried out on tensile loading of nano-scale double edge notched metallic glass specimens. The effect of acuteness of notches as well as the metallic glass chemical composition or internal material length scale on the plastic deformation response of the specimens are studied. Both MD and FE simulations, in spite of the fundamental differences in their nature, indicate near-identical deformation features. Results show two distinct transitions in the notch tip deformation behavior as the acuity is increased, first from single shear band dominant plastic flow localization to ligament necking, and then to double shear banding in notches that are very sharp. Specimens with moderately blunt notches and composition showing wider shear bands or higher material length scale characterizing the interaction stress associated with flow defects display profuse plastic deformation and failure by ligament necking. These results are rationalized from the role of the interaction stress and development of the notch root plastic zones.

  13. Behaviour of soil-cement specimens in unconfined dynamic compression

    Science.gov (United States)

    Davies, J.; Fendukly, L. M.

    1994-06-01

    The response of the cement-stabilized red marl to dynamic loading in compression has been investigated over a range of cement contents and curing times. Specimens were subjected to different stress levels below unconfined compressive strength, at a frequency of 5 Hz, and a fatigue relationship for the material was developed. The value of resilient modulus was found to be greater than the modulus of elasticity for the same cement content and curing time.

  14. The effect of single overloading on stress corrosion cracking

    International Nuclear Information System (INIS)

    Ito, Yuzuru; Saito, Masahiro

    2008-01-01

    In the normal course of nuclear power plant operation in Japan, proof testing has been performed after periodic plant inspections. In this proof test procedure, the reactor pressure vessel and pipes of the primary coolant loop are subjected to a specified overload with a slightly higher hydraulic pressure than during normal operation. This specified overload is so called a single overload' in material testing. It is well known that the fatigue crack growth rate is decreased after a single overload has been applied to the specimen. However, it is not clear whether the stress corrosion cracking rate is also decreased after a single overload. In this study, the effect of a single overload on the stress corrosion cracking rate under simulated boiling water reactor environment was evaluated by examining a singly overloaded WOL (wedge opening load) specimen. The WOL specimen for the stress corrosion cracking test was machined from sensitized 304 type austenitic stainless steel. Since the crack extension length was 3.2% longer in the case of a more severely overloaded specimen, it was observed than the stress corrosion cracking rate is also decreased after the single overload has been applied to the specimen. (author)

  15. Effect of surface treatments on stress corrosion cracking susceptibility of nickel base alloys

    International Nuclear Information System (INIS)

    Iwanami, Masaru; Kaneda, Junya; Tamako, Hiroaki; Hato, Hisamitsu; Takamoto, Shinichi

    2009-01-01

    Effect of surface treatment on SCC susceptibility of Ni base alloys was investigated. Cracks were observed in all grinding specimens in a creviced bent beam (CBB) test. On the other hand, no cracks occurred in shot peening (SP), water jet peening (WJP) specimens. It was indicated that these surface treatments effectively reduced the SCC susceptibility of nickel-base alloys. As a result of a residual stress test, the surface of specimens with grinding had high tensile residual stress. However, SP and WJP improved surface residual stress to compressive stress. The depth of the compressive effect of WJP was almost the same as that of SP. However, the surface hardness of WJP specimens differed from that of SP and it was found that WJP had less impact on surface hardening. This difference was consistent with their surface microstructures. The surface of SP specimens had clearly the deformation region, but the surface of WJP specimens was localized. (author)

  16. Effects of Range of Stress and of Special Notches on Fatigue Properties of Aluminum Alloys Suitable for Airplane Propellers

    Science.gov (United States)

    Dolan, Thomas J

    1942-01-01

    Laboratory tests were made to obtain information on the load-resisting properties of X76S-T aluminum alloy when subjected to static, impact, and repeated loads. Results are presented from static-load test of unnotched specimens in tension and in torsion and of notched specimens in tension. Charpy impact values obtained from bend tests on notched specimens and tension impact values for both notched and unnotched specimens tested at several different temperatures are included. The endurance limits obtained from repeated bending fatigue tests made on three different types of testing machine are given for unnotched polished specimens, and the endurance limits of notched specimens subjected to six different ranges of bending stress are also reported. The results indicated that: (a) polished rectangular specimens had an endurance limit about 30 percent less than that obtained for round specimens; (b) a comparison of endurance limits obtained from tests on three different types of machine indicated that there was no apparent effect of speed of testing on the endurance limit for the range of speeds used (1,750 to 13,000 rpm). (c) the fatigue strength (endurance limit) of the X76S-T alloy was greatly decreased by the presence of a notch in the specimens; (d) no complete fractures of the entire specimens occurred in notched fatigue specimens when subjected to stress cycles for which the mean stress at the notch during the cycle was a compressive stress; for this test condition a microscopic cracking occurred near the root of the notch and was used as a criterion of failure of the specimen. (e) as the mean stress at the notch was decreased from a tensile (+) stress to a compressive (-) stress, it was found that the alternating stress that could be superimposed on the mean stress in the cycle without causing failure of the specimens was increased.

  17. Diffraction stress analysis of thin films; investigating elastic grain interaction

    International Nuclear Information System (INIS)

    Kumar, A.

    2005-12-01

    This work is dedicated to the investigation of specimens exhibiting anisotropic microstructures (and thus macroscopic elastic anisotropy) and/or inhomogeneous microstructures, as met near surfaces and in textured materials. The following aspects are covered: (i) Analysis of specimens with direction-dependent (anisotropic) elastic grain-interaction. Elastic grain-interaction determines the distribution of stresses and strains over the (crystallographically) differently oriented grains of a mechanically stressed polycrystal and the mechanical and diffraction (X-ray) elastic constants (relating (diffraction) lattice strains to mechanical stresses). Grain interaction models that allow for anisotropic, direction-dependent grain interaction have been developed very recently. The notion 'direction-dependent' grain-interaction signifies that different grain-interaction constraints prevail along different directions in a specimen. Practical examples of direction-dependent grain interaction are the occurrence of surface anisotropy in thin films and the surface regions of bulk polycrystals and the occurrence of grain-shape (morphological) texture. In this work, for the first time, stress analyses of thin films have been performed on the basis of these newly developed grain-interaction models. It has also been demonstrated that the identification of the (dominant) source of direction-dependent grain interaction is possible. The results for the grain interaction have been discussed in the light of microstructural investigations of the specimens by microscopic techniques. (ii) Analysis of specimens with depth gradients: Diffraction stress analysis can be hindered if gradients of the stress state, the composition or the microstructure occur in the specimen under investigation, as the so-called information depth varies in the course of a traditional stress measurement: Ambiguous results are thus generally obtained. In this work, a strategy for stress measurements at fixed

  18. Use of Neuber's rule to estimate the fatigue life of notched specimens of ASME SA 106-B steel piping in 2880C air

    International Nuclear Information System (INIS)

    Terrell, J.B.

    1989-01-01

    Fatigue strain-life tests were conducted on notched specimens of ADMESA 106-B piping steel at PWR operating temperatures (288 0 C (550 0 F)), under completely reversed loading. Fatigue limits at 10 7 cycles were estimated for smooth specimens to be 185 M Pa (26.8 ksi) at 24 0 C and 232 MPa (33.7 ksi) at 288 0 C. The higher fatigue strength observed at the PWR temperature is postulated to be caused by dynamic strain aging processes. However, a reduction in fatigue strength in the low cycle fatigue regime was observed in 288 0 C air environment tests, which may indicate that the current ASME Section III design curve for carbon steels is nonconservative in its positioning. Notch strain histories were estimated for the notched specimen tests using various interpretations of Neuber's rule. It was concluded that the use of the fatigue notch concentration factor (K f ) in the Neuber relation in conjunction with the uniaxial cyclic stress-strain curve provided the best correlation of notched specimen fatigue data with results obtained from smooth specimen tests. The notched specimen strain-life results derived from the application of Neuber's rule alone proved to be conservative when compared with smooth specimen test results to such an extent that Neuber-generated notch stresses and strain amplitudes cannot accurately be compared with the mean data curves derived from the ASME Section III fatigue curves for carbon steels which are based on net section stress measurements. (author)

  19. Interference fit effect on holed single plates loaded with tension-tension stresses

    Directory of Open Access Journals (Sweden)

    D. Croccolo

    2012-07-01

    Full Text Available This paper deals with the influence of interference fit coupling on the fatigue strength of holed plates. The effect was investigated both experimentally and numerically. Axial fatigue tests have been carried out on holed specimens made of high performance steel (1075MPa of Ultimate strength and 990MPa of Yield strength with or without a pin, made of the same material, press fitted into their central hole. Three different conditions have been investigated: free hole specimens, specimens with 0.6% of nominal specific interference and specimens with 2% of nominal specific interference. The experimental stress-life (S–N curves pointed out an increased fatigue life of the interference fit specimens compared with the free hole ones. The numerical investigation was performed in order to analyse the stress fields by applying an elastic plastic 2D simulation with a commercial Finite Element software. The stress history and distribution along the contact interference of the fitted samples indicates a significant reduction of the local stress range due to the externally applied loading (remote stress since a residual and compressive stress field is generated by the pin insertion.

  20. Stress corrosion cracking behavior of Nd:YAG laser-treated aluminum alloy 7075

    International Nuclear Information System (INIS)

    Yue, T.M.; Yan, L.J.; Chan, C.P.

    2006-01-01

    Nd-YAG laser surface treatment was conducted on 7075-T651 aluminum alloy with the aim of improving the stress corrosion cracking resistance of the alloy. Laser surface treatment was performed under two different gas environments, air and nitrogen. After the laser treatment, coarse constituent particles were removed and fine cellular/dendritic structures had formed. In addition, for the N 2 -treated specimen, an AlN phase was detected. The results of the stress corrosion test showed that after 30 days of immersion, the untreated specimen had been severely attacked by corrosion, with intergranular cracks having formed along the planar grain boundaries of the specimen. For the air-treated specimen, some relatively long stress corrosion cracks and a small number of relatively large corrosion pits were found. The cracks mainly followed the interdendritic boundaries; the fusion boundary was found to be acting as an arrestor to corrosion attacks. In contrast, only few short stress corrosion cracks appeared in the N 2 -treated specimen, indicating an improvement in corrosion initiation resistance. The superior corrosion resistance was attributed to the formation of the AlN phase in the surface of the laser-melted layer, which is an electrical insulator. The electrochemical impedance measurements taken during the stress corrosion test showed that the film resistance of the laser-treated specimens was always higher than that of the untreated specimen, with the N 2 -treated specimen showing the highest resistance

  1. Mesh-morphing algorithms for specimen-specific finite element modeling.

    Science.gov (United States)

    Sigal, Ian A; Hardisty, Michael R; Whyne, Cari M

    2008-01-01

    Despite recent advances in software for meshing specimen-specific geometries, considerable effort is still often required to produce and analyze specimen-specific models suitable for biomechanical analysis through finite element modeling. We hypothesize that it is possible to obtain accurate models by adapting a pre-existing geometry to represent a target specimen using morphing techniques. Here we present two algorithms for morphing, automated wrapping (AW) and manual landmarks (ML), and demonstrate their use to prepare specimen-specific models of caudal rat vertebrae. We evaluate the algorithms by measuring the distance between target and morphed geometries and by comparing response to axial loading simulated with finite element (FE) methods. First a traditional reconstruction process based on microCT was used to obtain two natural specimen-specific FE models. Next, the two morphing algorithms were used to compute mappings from the surface of one model, the source, to the other, the target, and to use this mapping to morph the source mesh to produce a target mesh. The microCT images were then used to assign element-specific material properties. In AW the mappings were obtained by wrapping the source and target surfaces with an auxiliary triangulated surface. In ML, landmarks were manually placed on corresponding locations on the surfaces of both source and target. Both morphing algorithms were successful in reproducing the shape of the target vertebra with a median distance between natural and morphed models of 18.8 and 32.2 microm, respectively, for AW and ML. Whereas AW-morphing produced a surface more closely resembling that of the target, ML guaranteed correspondence of the landmark locations between source and target. Morphing preserved the quality of the mesh producing models suitable for FE simulation. Moreover, there were only minor differences between natural and morphed models in predictions of deformation, strain and stress. We therefore conclude that

  2. Charpy impact test of oxidized and hydrogenated zircaloy using a thin strip specimen

    International Nuclear Information System (INIS)

    Otsuka, Teppei; Hashizume, Kenichi; Sugisaki, Masayasu

    2004-01-01

    The impact properties of an oxidized and a hydrogenated Zircaloy have been studied with an instrumented Charpy machine by using a strip Charpy V-notch specimen (1 mm thick by 4mm wide). Fracture processes such as crack initiation and propagation were examined using load-displacement curves obtained in this study. In the case of the hydrogenated specimen containing preferentially oriented hydrides, an appreciable decrease in the absorbed energy was observed in the crack propagation rather than in the crack initiation. From results of fractographs of the specimen, it was suggested that the reduction of the crack propagation energy of hydrogenated specimen could be attributed to the change of the stress state in the Zircaloy matrix, which was caused by the fracture of hydride in the inner part of specimen. In the case of the specimen oxidized at 973k for 60 min, on which an oxide layer (4 μm in thickness) and oxygen incursion layer (4μm) were formed, the surface layers affected the crack initiation process. The growing oxygen incursion layer, in particular, resulted in the constraint of plastic deformation of the Zircaloy matrix not only in the crack initiation but also in the crack propagation as its thickness increased. (author)

  3. Assessment of stress in laboratory beagle dogs constrained by a Pavlov sling.

    Science.gov (United States)

    Stracke, Jenny; Bert, Bettina; Fink, Heidrun; Böhner, Jörg

    2011-01-01

    The 3Rs - Replacement, Reduction and Refinement - have become increasingly important in designing animal experiments. The Pavlov sling is thought to be a non-invasive method to restrain dogs for examinations. The aim of our study was to investigate whether laboratory Beagle dogs that had been trained to tolerate restraint by a Pavlov sling are stressed by this procedure and, furthermore, to analyze their behavior during this period. Five male and five female Beagle dogs were used, each three years of age. Animals were restrained in the Pavlov sling for 30 min on six days with an interval of at least two days. The following behaviors were recorded every minute for each session: postures of body, head, and ears, as well as state of eyes, tail, legs, and mouth. Additionally, the animals were observed for the occurrence of particular stress signs, including body shaking, sweating of the paws, increased saliva production, piloerection, blinking of eyes, snout licking, yawning, and panting. As an indicator for stress, salivary cortisol levels were measured before, during, and after each session. Our results show that for most behavioral parameters, e.g., body, leg, head, tail, and ear posture, the frequency of changes between different behavior patterns, as well as cortisol concentration, were not influenced by restraint in the Pavlov sling. Therefore, the Pavlov sling does not seem to be perceived as a stressful situation by the Beagle dogs. Our study demonstrates that under certain conditions the use of the Pavlov sling in trained dogs can substitute for more ordinary methods of immobilization, e.g., the use of narcotics.

  4. Numerical investigation of 3-D constraint effects on brittle fracture in SE(B) and C(T) specimens

    International Nuclear Information System (INIS)

    Nevalainen, M.; Dodds, R.H. Jr.

    1996-07-01

    This investigation employs 3-D nonlinear finite element analyses to conduct an extensive parametric evaluation of crack front stress triaxiality for deep notch SE(B) and C(T) specimens and shallow notch SE(B) specimens, with and without side grooves. Crack front conditions are characterized in terms of J-Q trajectories and the constraint scaling model for cleavage fracture toughness proposed previously by Dodds and Anderson. The 3-D computational results imply that a significantly less strict size/deformation limit, relative to the limits indicated by previous plane-strain computations, is needed to maintain small-scale yielding conditions at fracture by a stress- controlled, cleavage mechanism in deep notch SE(B) and C(T) specimens. Additional new results made available from the 3-D analyses also include revised η-plastic factors for use in experimental studies to convert measured work quantities to thickness average and maximum (local) J-values over the crack front

  5. LISSAC - size and geometry effects on the failure behaviour of notched specimens

    International Nuclear Information System (INIS)

    Seidenfuss, M.; Roos, E.

    2004-01-01

    In the current German design codes, mainly stress based concepts are used in the safety analysis of technical components. However, no reliable limit loads or safety margins can be defined with these concepts. Validated concepts on the basis of a tolerable limit strain are presently not available. In the context of the EU program LISSAC specimens with different geometry as well as geometrically similar specimens with a size ratio up to 1:50 are examined. On the basis of finite element simulations it is shown that damage models are able to predict the experimentally observed geometry and size effects on the failure strains. (orig.)

  6. Numerical Determination of Crack Opening and Closure Stress Intensity Factors

    DEFF Research Database (Denmark)

    Ricardo, Luiz Carlos Hernandes

    2009-01-01

    The present work shows the numerical determination of fatigue crack opening and closure stress intensity factors of a C(T) specimen under variable amplitude loading using a finite element method. A half compact tension C(T) specimen, assuming plane stress constraint was used by finite element...

  7. Bidirectional crosstalk between stress-induced gastric ulcer and depression under chronic stress.

    Directory of Open Access Journals (Sweden)

    Shuang Zhang

    Full Text Available Stress contributes to a variety of diseases and disorders such as depression and peptic ulcer. The present study aimed to investigate the correlation between stress ulcer and depression in pathogenesis and treatment by using chronic stress depression (CSD, chronic psychological stress ulcer (CPSU and water immersion restrain stress models in rats. Our data showed that the ulcer index of the animals after CSD exposure was significantly higher than that of controls. Depression-like behaviors were observed in rat after CPSU exposure. Fluoxetine hydrochloride significantly reduced the ulcer index of rats exposed to CPSU stress, while ranitidine inhibited depression-like behavior of the animals in CSD group. The ulcer index of rats administered with mifepristone after CPSU stress was markedly reduced compared to CPSU group, although there was no significant difference in the depression-like behavior between mifepristone-treated CSD group and naive controls. We also found that the rats exposed to CPSU or CSD stress displayed a lower level of corticosterone than naive controls, however, the acute stress (AS group showed an opposite result. Additionally, in order to study the relevance of H(2 receptors and depression, we treated the CSD group with cimetidine and famotidine respectively. The data showed that cimetidine inhibited depression-like behavior in CSD rats, and famotidine had no impact on depression. Overall our data suggested that the hypothalamic-pituitary-adrenal (HPA axis dysfunction may be the key role in triggering depression and stress ulcer. Acid-suppressing drugs and antidepressants could be used for treatment of depression and stress ulcer respectively. The occurrence of depression might be inhibited by blocking the central H(2 receptors.

  8. Acute restraint stress induces endothelial dysfunction: role of vasoconstrictor prostanoids and oxidative stress.

    Science.gov (United States)

    Carda, Ana P P; Marchi, Katia C; Rizzi, Elen; Mecawi, André S; Antunes-Rodrigues, José; Padovan, Claudia M; Tirapelli, Carlos R

    2015-01-01

    We hypothesized that acute stress would induce endothelial dysfunction. Male Wistar rats were restrained for 2 h within wire mesh. Functional and biochemical analyses were conducted 24 h after the 2-h period of restraint. Stressed rats showed decreased exploration on the open arms of an elevated-plus maze (EPM) and increased plasma corticosterone concentration. Acute restraint stress did not alter systolic blood pressure, whereas it increased the in vitro contractile response to phenylephrine and serotonin in endothelium-intact rat aortas. NG-nitro-l-arginine methyl ester (l-NAME; nitric oxide synthase, NOS, inhibitor) did not alter the contraction induced by phenylephrine in aortic rings from stressed rats. Tiron, indomethacin and SQ29548 reversed the increase in the contractile response to phenylephrine induced by restraint stress. Increased systemic and vascular oxidative stress was evident in stressed rats. Restraint stress decreased plasma and vascular nitrate/nitrite (NOx) concentration and increased aortic expression of inducible (i) NOS, but not endothelial (e) NOS. Reduced expression of cyclooxygenase (COX)-1, but not COX-2, was observed in aortas from stressed rats. Restraint stress increased thromboxane (TX)B(2) (stable TXA(2) metabolite) concentration but did not affect prostaglandin (PG)F2α concentration in the aorta. Restraint reduced superoxide dismutase (SOD) activity, whereas concentrations of hydrogen peroxide (H(2)O(2)) and reduced glutathione (GSH) were not affected. The major new finding of our study is that restraint stress increases vascular contraction by an endothelium-dependent mechanism that involves increased oxidative stress and the generation of COX-derived vasoconstrictor prostanoids. Such stress-induced endothelial dysfunction could predispose to the development of cardiovascular diseases.

  9. A study on the estimation method of internal stresses caused by the difference of thermal expansion coefficients between concrete and reinforcement at elevated temperatures

    International Nuclear Information System (INIS)

    Kanazu, Tsutomu

    1998-01-01

    When a reinforced concrete member is exposed to high temperature conditions over 100degC, tensile strain occurs in the concrete and compressive strain occurs in reinforcements due to a difference of thermal expansion coefficients between concrete and reinforcement. Its mechanism is the same as that of restrained stress caused by drying shrinkage of concrete; tensile stress occurs in the concrete because drying shrinkage strain is restrained by reinforcements, but there is a different point that the phenomenon at a high temperature condition includes the change of mechanical properties of concrete and reinforcement. In the study, the phenomenon is measured in the experiments and is clarified quantitatively. Moreover, the estimation method, which is derived from expanding the equation of average strain of reinforcement in the CEB Design Manual, is suggested and is verified by the comparison with the experimental results. (author)

  10. X-ray multiaxial stress analysis by means of polynomial approximation and an application to plane stress problem

    International Nuclear Information System (INIS)

    Yoshioka, Yasuo; Sasaki, Toshihiko; Kuramoto, Makoto.

    1984-01-01

    A new polynomial approximation method was proposed for the X-ray multiaxial stress analysis, in which the effect of stress gradient along the penetration depth of X-rays was taken into account. Three basic assumptions were made; (1) the stress gradient is linear in respect to the depth from the specimen surface, (2) the ponetration depth of X-rays is a function of Sin 2 phi and (3) the strain measured by X-rays corresponds to the weighted average strain on the intensity of the diffracted X-rays. Consequently, the stress state within the thin layer near the surface was expressed by making use of three surface stresses and six stress gradients in the present method. The average strains by X-rays were approximated by the third order polynomial equations of sin 2 phi using a least square method at several phi angles on the coordinate system of specimen. Since the coefficients of these polynomials include these nine stress components mentioned above, it is possible to solve them as simultaneous equations. The calculating process of this method is simpler than that of the integral method. An X-ray plane stress problem was analyzed as an application of the present method, and the residual stress distribution on a shot-peened steel plate was actually measured by use of Cr-Kα X-rays to verify the analysis. The result showed that the compressive residual stress near the surface determined by the present method was smaller than the weighted average stress by the Sin 2 phi method because of the steep stress gradient. The present method is useful to obtain a reasonable value of stress for such a specimen with steep stress gradients near the surface. (author)

  11. Fracture predictions for cracks exposed to superimposed normal and shear stresses

    International Nuclear Information System (INIS)

    Richard, H.A.

    1985-01-01

    The author developed a special device and a fracture mechanics specimen and proposed a procedure for determining the fracture toughness when Mixed Mode and Mode II stresses are applied. This device makes it possible to generate pure normal stresses, superimposed normal and shearing stresses as well as pure shearing stresses in the cross section of the crack in the specimen, as desired. The so-called CTS fracture mechanics specimen has an edge crack. The load is transferred statically determind from the device to the specimen by means of six studs altogether. The experiments described, which were carried out with specimens made of the brittle materials PMMA (Plexiglas) and Araldit B, clearly show that it is possible to evaluate the validity of the individual fracture hypotheses by suitable experiments. It is also found that the fracture behaviour of different materials varies considerably both in quality and quantity. In conclusion, a practice-oriented fracture criterion is indicated which enables a practice-conforming evaluation of Mixed-Mode crack problems, as is shown by way of examples. (orig./HP) [de

  12. 16 CFR Figure 3 to Part 1610 - Specimen Holder Supported in Specimen Rack

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Specimen Holder Supported in Specimen Rack 3 Figure 3 to Part 1610 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT... Holder Supported in Specimen Rack ER25MR08.002 ...

  13. Dynamic model and workspace analysis of novel incompletely restrained cable-suspension swing system driven by two cables

    Directory of Open Access Journals (Sweden)

    Naige Wang

    2017-03-01

    Full Text Available The incompletely restrained cable-suspension swing system driven by two cables is introduced in this article. Based on wrench of forces theory and Lagrange’s equation of first kind, the static and dynamics models of incompletely restrained cable-suspension swing system driven by two cables are established, respectively. In order to obtain an intuitive understanding of the trajectory analysis, a dynamics model consisting of governing equation and geometric constraint conditions which is a set of the mixed differential-algebraic equation in mathematics is established. A typical feedback controller and an inverse model were set up to estimate the driving function. The effective workspace, which is used to guarantee an efficient swing process, mostly depends on the geometrical shape rather than the volume itself which was calculated by trajectory analysis. In order to estimate system features and ensure a limited range of tension in underconstrained spatial cable system, the probable location of unbalanced loading was evaluated by pointwise evaluation techniques during normal work.

  14. Effects of Changing Stress Amplitude on the Rate of Fatigue-Crack Propagation in Two Aluminum Alloys

    Science.gov (United States)

    Hudson, C. Michael; Hardrath, Herbert F.

    1961-01-01

    A series of fatigue tests with specimens subjected to constant amplitude and two-step axial loads were conducted on 12-inch-wide sheet specimens of 2024-T3 and 7075-T6 aluminum alloy to study the effects of a change in stress level on fatigue-crack propagation. Comparison of the results of the tests in which the specimens were tested at first a high and then a low stress level with those of the constant-stress- amplitude tests indicated that crack propagation was generally delayed after the transition to the lower stress level. In the tests in which the specimens were tested at first a low and then a high stress level, crack propagation continued at the expected rate after the change in stress levels.

  15. Sequencing historical specimens: successful preparation of small specimens with low amounts of degraded DNA.

    Science.gov (United States)

    Sproul, John S; Maddison, David R

    2017-11-01

    Despite advances that allow DNA sequencing of old museum specimens, sequencing small-bodied, historical specimens can be challenging and unreliable as many contain only small amounts of fragmented DNA. Dependable methods to sequence such specimens are especially critical if the specimens are unique. We attempt to sequence small-bodied (3-6 mm) historical specimens (including nomenclatural types) of beetles that have been housed, dried, in museums for 58-159 years, and for which few or no suitable replacement specimens exist. To better understand ideal approaches of sample preparation and produce preparation guidelines, we compared different library preparation protocols using low amounts of input DNA (1-10 ng). We also explored low-cost optimizations designed to improve library preparation efficiency and sequencing success of historical specimens with minimal DNA, such as enzymatic repair of DNA. We report successful sample preparation and sequencing for all historical specimens despite our low-input DNA approach. We provide a list of guidelines related to DNA repair, bead handling, reducing adapter dimers and library amplification. We present these guidelines to facilitate more economical use of valuable DNA and enable more consistent results in projects that aim to sequence challenging, irreplaceable historical specimens. © 2017 John Wiley & Sons Ltd.

  16. Effect of applied stress on the compressive residual stress introduced by laser peening

    International Nuclear Information System (INIS)

    Sumiya, Rie; Tazawa, Toshiyuki; Narazaki, Chihiro; Saito, Toshiyuki; Kishimoto, Kikuo

    2016-01-01

    Peening is the process which is able to be generated compressive residual stress and is known to be effective for preventing SCC initiation and improvement of fatigue strength. Laser peening is used for the nuclear power plant components in order to prevent SCC initiation. Although it is reported that the compressive residual stress decreases due to applied stresses under general operating condition, the change of residual stress might be large under excessive loading such as an earthquake. The objectives of this study are to evaluate the relaxation behavior of the compressive residual stress due to laser peening and to confirm the surface residual stress after loading. Therefore laser peened round bar test specimens of SUS316L which is used for the reactor internals of nuclear power plant were loaded at room temperature and elevated temperature and then surface residual stresses were measured by X-ray diffraction method. In the results of this test, it was confirmed that the compressive residual stress remained after applying uniform stress larger than 0.2% proof stress, and the effect of cyclic loading on the residual stress was small. The effect of applying compressive stress on the residual stress relaxation was confirmed to be less than that of applying tensile stress. Plastic deformation through a whole cross section causes the change in the residual stress distribution. As a result, the surface compressive residual stress is released. It was shown that the effect of specimen size on residual stress relaxation and the residual stress relaxation behavior in the stress concentration region can be explained by assumed stress relaxation mechanism. (author)

  17. Residual stress analysis in carbon fiber-reinforced SiC ceramics

    International Nuclear Information System (INIS)

    Broda, M.

    1998-01-01

    Systematic residual stress analyses are reported, carried out in long-fiber reinforced SiC ceramics. The laminated C fiber /SiC matrix specimens used were prepared by polymer pyrolysis, and the structural component specimens used are industrial products. Various diffraction methods have been applied for non-destructive evaluation of residual stress fields, so as to completely detect the residual stresses and their distribution in the specimens. The residual stress fields at the surface (μm) have been measured using characteristic X-radiation and applying the sin 2 ψ method as well as the scatter vector method. For residual stress field analysis in the mass volume (cm), neutron diffraction has been applied. The stress fields in the fiber layers (approx. 250μm) have been measured as a function of their location within the laminated composite by using an energy-dispersive method and synchrotron radiation. By means of the systematic, process-accompanying residual stress and phase analyses, conclusions can be drawn as to possible approaches for optimization of fabrication parameters. (orig./CB) [de

  18. Anti-stress effect of ethyl acetate soluble fraction of Morus alba in chronic restraint stress.

    Science.gov (United States)

    Nade, Vandana S; Yadav, Adhikrao V

    2010-09-01

    Restraint stress is a well-known method to induce chronic stress which leads to alterations in various behavioral and biochemical parameters. The present work was designed to study anti-stress effects of Morus alba in chronic restraint stress (RS)-induced perturbations in behavioral, biochemical and brain oxidative stress status. The stress was produced by restraining the animals inside an adjustable cylindrical plastic tube for 3 h once daily for ten consecutive days. The ethyl acetate soluble fraction of Morus alba (EASF) 25, 50, 100 mg/kg and diazepam (1 mg/kg) per day was administered 60 min prior to the stress procedure. The behavioral and biochemical parameters such as open field, cognitive dysfunction; leucocytes count; blood glucose and corticosteroid levels were determined. On day 10, the rats were sacrificed and biochemical assessment of superoxide dismutase (SOD), lipid peroxidation (LPO), catalase (CAT), and glutathione reductase (GSH) in whole rat brain were performed. Chronic restraint stress produced cognitive dysfunction, altered behavioral parameters, increased leucocytes count, SOD, LPO, glucose and corticosterone levels, with concomitant decrease in CAT and GSH activities. Gastric ulceration, adrenal gland and spleen weights were also used as the stress indices. All these RS induced perturbations were attenuated by EASF of Morus alba. The results of the study suggest that in addition to its classically established pharmacological activities, the plant also has immense potential as an anti-stress agent of great therapeutic relevance. This study indicates the beneficial role of Morus alba for the treatment of oxidative stress-induced disorders.

  19. [Tests and scales: restrains to use them by general practitioners. Descriptive transversal study].

    Science.gov (United States)

    Cario, Camille; Levesque, Jean-Louis; Bouche, Gauthier

    2010-12-20

    Tests, even though recommended, are only few used by general practitioners (GP's). The aim of this study was to understand the reasons of this underuse. Descriptive transversal study, to explore knowledge, use and restrains to using ten tests related in the first 50 results of consultation in general practice. We questioned 121 GP's from Charente, selected ad random. The oldest tests (MMS, MNA, Fagerström, mini-GDS, IPSS, depression) are known by more than half of the GP's. Only one third is familiar with more recent tests devoted to ambulatory care (TSTS, FACE, venous thromboembolic risk), which are also used less (20% at most). Systematic use of all tests mixed up, never exceeds 30% of all GP's. The principal restrain to use these tests is lack of training (53%), which seems indeed to be inefficient in this domain; 20 to 60% of GP's who know the tests, do not use them, mainly because of doubts regarding their usefulness (38%). What really is the utility of these tests in ambulatory care? Their validity in general practice shows some gaps: their validation results seldom on studies conducted in primary care, impact studies to evaluate the benefits for patients are lacking, and tests designed for specific use by GP's are rare and lacking in validity. Development of research in primary care in this field would be desirable in order to develop relevant, feasible and acceptable tools to help decision making in general practice.

  20. Residual stresses in a weldment of pressure vessel steel

    International Nuclear Information System (INIS)

    Gott, K.E.

    1978-01-01

    A study was made of the distribution of residual stresses around a typical weld from a light water reactor pressure vessel by an X-ray double-exposure camera technique. So that the magnitude, sign, and distribution of the residual stresses were as similar as possible to those found in practice, a wide, full-thickness specimen of A533B Cl 1 steel containing a submerged-arc weld was stress-relief annealed. To obtain a three-dimensional distribution of the stresses the specimen was examined at different levels through the thickness. Following the removal of material by milling, the specimen surface was electropolished to free it from cold work. Corrections have been made to take into account specimen relaxation. To completely define the original stress system it is desirable also to measure the change in curvature on removing a layer of material. Unless this is done assumptions must be made which complicate the calculations unnecessarily. This became apparent after the experimental work was completed. In the centre of the plate the methods of correction which can be used are sensitive to errors in the measurements. The corrected results show that the dominant residual stress is perpendicular to the weld. It is positive at the surfaces and negative in the centre of the plate. The maximum value can reach the yield stress. The residual stresses in the weld metal can locally vary considerably: from 100 to 350N/mm 2 over a distance of 5mm. Such large variations have been found to coincide with the heat-affected zones of the individual weld runs. (author)

  1. Load bearing and deformation behaviour of dynamically loaded wide plate specimens

    International Nuclear Information System (INIS)

    Julisch, P.; Haedrich, H.J.; Stadtmueller, W.; Sturm, D.

    1989-01-01

    For the testing of large-scale specimens, a 12 MN-High Loading Rate Tensile Testing Machine was designed and built at MPA Stuttgart. The aim was to determine the influence of high loading rates on the stress and strain behaviour of unwelded and welded components of ferritic and austenitic materials. This new generation of testing machines is driven by a propellant charge, and generates a maximum tensile force of 12 MN with a piston velocity of 25 m/s after a stroke of 20 mm, or a maximum velocity of 60 m/s after a stroke of 400 mm. In a first test programme, welded and unwelded wide plate specimens made of material X 6 CrNi 18 11 were tested at room temperature with different strain rates from 10 -3 /s to 63/s. In addition to a description of the 12 MN-High Loading Rate Tensile Testing Machine, the results of the high loading rate tensile tests performed will be presented and compared with quasistatically tested wide plate specimens. (orig.)

  2. THEORETICAL COMPUTATION OF A STRESS FIELD IN A CYLINDRICAL GLASS SPECIMEN

    Directory of Open Access Journals (Sweden)

    NORBERT KREČMER

    2011-03-01

    Full Text Available This work deals with the computation of the stress field generated in an infinitely high glass cylinder while cooling. The theory of structural relaxation is used in order to compute the heat capacity, the thermal expansion coefficient, and the viscosity. The relaxation of the stress components is solved in the frame of the Maxwell viscoelasticity model. The obtained results were verified by the sensitivity analysis and compared with some experimental data.

  3. Fatigue-creep life prediction for a notched specimen of 2[1]/[4]Cr-1Mo steel at 600 C

    International Nuclear Information System (INIS)

    Inoue, Tatsuo; Sakane, Masao; Fukuda, Yoshio; Igari, Toshihide; Miyahara, Mitsuo; Okazaki, Masakazu

    1994-01-01

    This paper presents the life prediction of 2[1]/[4]Cr-1Mo notched specimens subjected to fast-fast, slow-slow and hold-time loadings at 600 C. The crack initiation lives of notched specimens were estimated based on the local stress-strain calculated by inelastic finite element analyses. For the life prediction, combinations of seven different constitutive models and five fatigue-creep damage laws were used. The applicability of the constitutive model and damage law is discussed. The constitutive models predict similar stress-strain relations at the notch root, leading to similar predicted lives. The damage model, however, has a much larger influence on the life prediction. ((orig.))

  4. Effects of stress concentration on low-temperature fracture behavior of A356 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Guanghui; Li, Runxia; Li, Rongde

    2016-06-14

    The effect of stress concentration on the dislocation motion, the Si particles and the crack propagation path in A356 alloy at the temperature of 20 °C to −60 °C was analyzed by scanning electron microscope and optical microscope using a series of notched tensile specimens and normal tensile specimens. The results show that the sensitivity of A356 alloy to the stress concentration increases, the tensile strength and yield strength of normal specimens and notched specimens increase, and the elongation shows a decreasing trend with the decrease of test temperature from 20 °C to −60 °C. The yield strength is not affected by the notch, and the tensile strength is sensitive to the stress concentration. Stress concentration leads to a large number of dislocation generation. Local plastic deformation occurred in the stress concentration region during the tensile process firstly. With the stress concentration in the aluminum matrix between the Si phase and the crack further increasing, the distribution of cracks along the Si phase leads to the cracking of aluminum matrix particle.

  5. Investigations on the influence of the stress state on fracture-mechanical values

    International Nuclear Information System (INIS)

    Schmidt, P.

    1979-01-01

    Fracture toughness obtained from specimen can be applied to construction elements only when the same stress state exists. In standardised fracture-mechanical tests plain strain is realised. Using the stress intensity factor, a critical crack length or a critical load can be obtained. Above these values a crack propagates in an unstable way. The specimen are tested under uni-axial load. In this paper investigations have been made whether a biaxial load increases the stress state over the plain strain and whether consequently a decrease of the critical fracture toughness and a shift of the temperatures Tsub(g)sub(y) and Tsub(s) results which characterise the fracture behaviour of steel. In order to answer these questions the tests were made which induced due to their geometry an additional nominal stress parallel to the crack front in spite of uni-axial loading. The results were compared with those from specimen without an additional nominal stress and having in their cross section under same test conditions nearly the same plain strain. The fracture toughness of both specimen types were compared at temperatures between 142 K and 252 K and correlated to other material-characterising values. The tests were completed by stress analysis and by comparing the crack opening displacement. Due to the additional stress, Tsub(g)sub(y) was found to be 20 K higher than for the reference specimen. The fracture toughness decreases significantly in certain temperature ranges. The plastic stress concentration factor was comperatively higher and the remaining plastic crack opening decreases up to 25%. (orig.) [de

  6. Stress relaxation in 'aged high-purity aluminium at room temperature

    International Nuclear Information System (INIS)

    Butt, M.Z.; Haq, I.U.

    1993-01-01

    Stress relaxation in 99.996% Al polycrystals of average grain diameter 0.30, 0.42 and 0.51 mm, annealed at 500 deg. C and 'aged' for six months at room temperature, have been studied as a function of initial stress level from which relaxation at constant strain was allowed to start. The results obtained were compared with those for 'un-aged' Al specimens of the same purity and grain size. The intrinsic height of the thermally activable energy barrier (1.6 eV) evaluated for 'aged' Al is comparable with that (1.9 eV) for 'un-aged' Al, and is of the order of magnitude for recovery processes. In 'aged' specimens, the relaxation rate at a given stress level is larger and associated activation volume is smaller than that in 'un-aged' specimens. This is probably due to the diffusion of vacancies and/or residual impurity atoms to the cores to edge dislocations in 'aged' specimens; the length of dislocation segment involved in unit activation process therefore gets shortened compared with that in 'un-aged' specimens. (author)

  7. Surface Wave Velocity-Stress Relationship in Uniaxially Loaded Concrete

    DEFF Research Database (Denmark)

    Shokouhi, Parisa; Zoëga, Andreas; Wiggenhauser, Herbert

    2012-01-01

    The sonic surface wave (or Rayleigh wave) velocity measured on prismatic concrete specimens under uniaxial compression was found to be highly stress-dependent. At low stress levels, the acoustoelastic effect and the closure of existing microcracks results in a gradual increase in surface wave...... velocities. At higher stress levels, concrete suffers irrecoverable damage: the existing microcracks widen and coalesce and new microcracks form. This progressive damage process leads first to the flattening and eventually the drop in the velocity-stress curves. Measurements on specimens undergoing several...... loading cycles revealed that the velocities show a stress-memory effect in good agreement with the Kaiser effect. Comparing the velocities measured during loading and unloading, the effects of stress and damage on the measured velocities could be differentiated. Moreover, the stress dependency of surface...

  8. Fatigue crack closure behavior at high stress ratios

    Science.gov (United States)

    Turner, C. Christopher; Carman, C. Davis; Hillberry, Ben M.

    1988-01-01

    Fatigue crack delay behavior at high stress ratio caused by single peak overloads was investigated in two thicknesses of 7475-T731 aluminum alloy. Closure measurements indicated no closure occurred before or throughout the overload plastic zones following the overload. This was further substantiated by comparing the specimen compliance following the overload with the compliance of a low R ratio test when the crack was fully open. Scanning electron microscope studies revealed that crack tunneling and possibly reinitiation of the crack occurred, most likely a result of crack-tip blunting. The number of delay cycles was greater for the thinner mixed mode stress state specimen than for the thicker plane strain stress state specimen, which is similar to low R ratio test results and may be due to a larger plastic zone for the mixed mode cased.

  9. Influence of Nutrition Claims on Appetite Sensations according to Sex, Weight Status, and Restrained Eating

    Science.gov (United States)

    Doucet, Éric; Pomerleau, Sonia

    2016-01-01

    Nutrition claims may help people to adopt healthier eating habits, but little is known about the potential cognitive effects of such claims on appetite sensations. The main purpose of this study was to evaluate the impact of nutrition claims and individual factors on perceived appetite sensations. According to a three (“healthy” versus “diet” (i.e., satiating) versus “hedonic”) by two (restrained or not restrained) by two (normal-weight or overweight/obese) by two (men versus women) factorial design, 164 males and 188 females aged 18–65 were invited to taste an oatmeal-raisin snack in a blinded and ad libitum context. Visual analog scales (150 mm) were used to evaluate appetite sensations before and over 1 h after consumption period. BMI and Restraint Scale were used to categorize participants according to their weight and restraint status. No main condition effect was observed for any of the four appetite sensations. However, subgroups analysis revealed significant differences among specific subgroups. A main effect of sex was also observed for all appetite sensations with men reporting higher levels of desire to eat, hunger and prospective food consumption, and lower levels of fullness than women. These findings highlight the importance of considering individual characteristics in interaction when studying appetite sensations. PMID:27725885

  10. Influence of Nutrition Claims on Appetite Sensations according to Sex, Weight Status, and Restrained Eating

    Directory of Open Access Journals (Sweden)

    Geneviève Painchaud Guérard

    2016-01-01

    Full Text Available Nutrition claims may help people to adopt healthier eating habits, but little is known about the potential cognitive effects of such claims on appetite sensations. The main purpose of this study was to evaluate the impact of nutrition claims and individual factors on perceived appetite sensations. According to a three (“healthy” versus “diet” (i.e., satiating versus “hedonic” by two (restrained or not restrained by two (normal-weight or overweight/obese by two (men versus women factorial design, 164 males and 188 females aged 18–65 were invited to taste an oatmeal-raisin snack in a blinded and ad libitum context. Visual analog scales (150 mm were used to evaluate appetite sensations before and over 1 h after consumption period. BMI and Restraint Scale were used to categorize participants according to their weight and restraint status. No main condition effect was observed for any of the four appetite sensations. However, subgroups analysis revealed significant differences among specific subgroups. A main effect of sex was also observed for all appetite sensations with men reporting higher levels of desire to eat, hunger and prospective food consumption, and lower levels of fullness than women. These findings highlight the importance of considering individual characteristics in interaction when studying appetite sensations.

  11. Investigation of Tensile Creep of a Normal Strength Overlay Concrete.

    Science.gov (United States)

    Drexel, Martin; Theiner, Yvonne; Hofstetter, Günter

    2018-06-12

    The present contribution deals with the experimental investigation of the time-dependent behavior of a typical overlay concrete subjected to tensile stresses. The latter develop in concrete overlays, which are placed on existing concrete structures as a strengthening measure, due to the shrinkage of the young overlay concrete, which is restrained by the substrate concrete. Since the tensile stresses are reduced by creep, creep in tension is investigated on sealed and unsealed specimens, loaded at different concrete ages. The creep tests as well as the companion shrinkage tests are performed in a climatic chamber at constant temperature and constant relative humidity. Since shrinkage depends on the change of moisture content, the evolution of the mass water content is determined at the center of each specimen by means of an electrolytic resistivity-based system. Together with the experimental results for compressive creep from a previous study, a consistent set of time-dependent material data, determined for the same composition of the concrete mixture and on identical specimens, is now available. It consists of the hygral and mechanical properties, creep and shrinkage strains for both sealed and drying conditions, the respective compliance functions, and the mass water contents in sealed and unsealed, loaded and load-free specimens.

  12. Laparoscopic specimen retrieval bags.

    Science.gov (United States)

    Smorgick, Noam

    2014-10-01

    Specimen retrieval bags have long been used in laparoscopic gynecologic surgery for contained removal of adnexal cysts and masses. More recently, the concerns regarding spread of malignant cells during mechanical morcellation of myoma have led to an additional use of specimen retrieval bags for contained "in-bag" morcellation. This review will discuss the indications for use retrieval bags in gynecologic endoscopy, and describe the different specimen bags available to date.

  13. Effects of residual stress on irradiation hardening in stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Okubo, N.; Kondo, K.; Kaji, Y. [Japan Atomic Energy Agency, Tokai-mura, Naga-gun, Ibaraki-ken (Japan); Miwa, Y. [Nuclear Energy and Science Directorate, Japan Atomic Energy Agency, Tokai-mura, Ibaraki-ken (Japan)

    2007-07-01

    Full text of publication follows: Structural materials in fusion reactor with water cooling system will undergo corrosion in aqueous environment and heavier irradiation than that in LWR. Irradiation assisted stress corrosion (IASCC) may be induced in stainless steels exposed in these environment for a long term of reactor operation. The IASCC is considered to be caused in a welding zone. It is difficult to predict and estimate the IASCC, because several irradiation effects (irradiation hardening, swelling, irradiation induced stress relaxation, etc) work intricately. Firstly, effects of residual stress on irradiation hardening were investigated in stainless steels. Specimens used in this study were SUS316 and SUS316L. By bending deformation, the specimens with several % plastic strain, which corresponds to weld residual stress, were prepared. Ion irradiations of 12 MeV Ni{sup 3+} were performed at 330, 400 and 550 deg. C to 45 dpa in TIARA facility at JAEA. No bent specimen was simultaneously irradiated with the bent specimen. The residual stress was estimated by X-ray residual stress measurements before and after the irradiation. The micro-hardness was measured by using nano-indenter. The irradiation hardening and the stress relaxation were changed by irradiation under bending deformation. The residual stress did not relax even for the case of the higher temperature aging at 500 deg. C for the same time of irradiation. The residual stress after ion irradiation, however, relaxed at these experimental temperatures in SUS316L. The hardness was obviously suppressed in bent SUS316L irradiated at 300 deg. C to 6 or 12 dpa. It was evident that irradiation induced stress relaxation occasionally suppressed the irradiation hardening in SUS316L. (authors)

  14. Use of globally unique identifiers (GUIDs) to link herbarium specimen records to physical specimens.

    Science.gov (United States)

    Nelson, Gil; Sweeney, Patrick; Gilbert, Edward

    2018-02-01

    With the advent of the U.S. National Science Foundation's Advancing Digitization of Biodiversity Collections program and related worldwide digitization initiatives, the rate of herbarium specimen digitization in the United States has expanded exponentially. As the number of electronic herbarium records proliferates, the importance of linking these records to the physical specimens they represent as well as to related records from other sources will intensify. Although a rich and diverse literature has developed over the past decade that addresses the use of specimen identifiers for facilitating linking across the internet, few implementable guidelines or recommended practices for herbaria have been advanced. Here we review this literature with the express purpose of distilling a specific set of recommendations especially tailored to herbarium specimen digitization, curation, and management. We argue that associating globally unique identifiers (GUIDs) with physical herbarium specimens and including these identifiers in all electronic records about those specimens is essential to effective digital data curation. We also address practical applications for ensuring these associations.

  15. Cracking and Failure in Rock Specimen Containing Combined Flaw and Hole under Uniaxial Compression

    Directory of Open Access Journals (Sweden)

    Xiang Fan

    2018-01-01

    Full Text Available Flaw is a key factor influencing failure behavior of a fractured specimen. In the present study, rectangular-flawed specimens were prepared using sandstone to investigate the effect of flaw on failure behavior of rock. Open flaw and cylindrical hole were simultaneously precut within rock specimens using high-pressure water jet cutting technology. Five series of specimens including intact, single-hole-alone, two-hole-alone, single-hole and two-flaw, and two-hole and single-flaw blocks were prepared. Uniaxial compressive tests using a rigid servo control instrument were carried out to investigate the fracture processes of these flawed specimens. It is observed that during loading, internal stress always intensively distributed at both sidewalls of open hole, especially at midpoint of sidewalls, so rock crumb flaking was firstly observed among all sandstone specimens containing single hole or two holes. Cracking around open hole is associated with the flaw inclination angle which was observed in Series III and V. Crack easily initiated at the tips of flaw with inclination angles of 0°, 30°, and 60° but hard for 90° in Series III and V. Rock burst was the major failure mode among most tested specimens, which generally induced new cracks and finally created crater shape. Additionally, due to extrusion between blocks, new shear or tensile cracks were generated and the rock specimen surface spalled. Eventually, four typical failure processes including rock crumb flaking, crack initiation and propagation, rock burst, and second rupture, were summarized.

  16. Cyclic fatigue of near-isotopic graphite: influence of stress cycle and neutron irradiation

    International Nuclear Information System (INIS)

    Price, R.J.

    1977-11-01

    Near-isotropic graphites H-451 and PGX were tested in uniaxial cyclic fatigue, and fatigue life (S-N) curves were generated to a maximum of 10 5 cycles. The stress ratio, R (minimum stress during a cycle divided by maximum stress) ranged from -1 to +0.5. With R = - 1, the homologous stress limits (maximum applied fatigue stress divided by the tensile strength) for 50% specimen survival to 10 5 cycles averaged 0.63 in the axial direction and 0.74 in the radial direction. Corresponding homologous stress limits for 99% specimen survival (99/95 tolerance limits) were 0.48 and 0.53. Higher R-values resulted in longer fatigue lives and increased stress limits. H-451 graphite specimens irradiated with fast neutrons at 1173 to 1263 0 K at fluences of up to 10 26 n/m 2 (equivalent fission fluence) showed fatigue stress limits of about twice the unirradiated levels when the unirradiated tensile strength was used as the basis for normalization

  17. Urine culture - catheterized specimen

    Science.gov (United States)

    Culture - urine - catheterized specimen; Urine culture - catheterization; Catheterized urine specimen culture ... urinary tract infections may be found in the culture. This is called a contaminant. You may not ...

  18. Growth behavior of fatigue cracks in ultrafine grained Cu smooth specimens with a small hole

    Directory of Open Access Journals (Sweden)

    Masahiro Goto

    2015-10-01

    Full Text Available In order to study the growth mechanism of fatigue cracks in ultrafine grained copper, stresscontrolled fatigue tests of round-bar specimens with a small blind hole as a crack starter were conducted. The hole was drilled on the surface where an intersection between the shear plane of the final ECAP processing and the specimen surface makes an angle of 45° or 90° with respect to the loading axis. At a low stress (  a = 90 MPa, the direction of crack paths was nearly perpendicular to the loading direction regardless of the location of the hole. Profile of crack face was examined, showing the aspect ratio (b/a of b/a = 0.82. At a high stress (  a = 240 MPa, although the growth directions inclined 45° and 90° to the loading-axis were observed depending on the location of the drilling hole, crack faces in these cracks were extended along one set of maximum shear stress planes, corresponding to the final ECAP shear plane. The value of aspect ratios was b/a = 0.38 and 1.10 for the cracks with 45° and 90° inclined path directions, respectively. The role of deformation mode at the crack tip areas on crack growth behavior were discussed in terms of the mixed-mode stress intensity factor. The crack path formation at high stress amplitudes was affected by the in-plane shear-mode deformation at the crack tip.

  19. HMSRP Hawaiian Monk Seal Specimen Data (includes physical specimens, collection information, status, storage locations, and laboratory results associated with individual specimens)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set includes physical specimens, paper logs and Freezerworks database of all logged information on specimens collected from Hawaiian monk seals since 1975....

  20. Effects of stress on the oxide layer thickness and post-oxidation creep strain of zircaloy-4

    International Nuclear Information System (INIS)

    Lim, Sang Ho; Yoon, Young Ku

    1986-01-01

    Effects of compressive stress generated in the oxide layer and its subsequent relief on oxidation rate and post-oxidation creep characteristics of zircaloy-4 were investigated by oxidation studies in steam with and without applied tensile stress and by creep testing at 700 deg C in high purity argon. The thickness of oxide layer increased with the magnitude of tensile stress applied during oxidation at 650 deg C in steam whereas similar phenomenon was not observed during oxidation at 800 deg C. Zircaloy-4 specimens oxidized at 600 deg C in steam without applied stress exhibited higher creep strain than that shown by unoxidized specimens when creep-tested in argon. Zircaloy-4 specimens oxidized at 600 deg C steam under the applied stress of 8.53MPa and oxidized at 800 deg C under the applied stress of 0 and 8.53MPa exhibited lower strain than that shown by unoxidized specimen. The above experimental results were accounted for on the basis of interactions among applied stress during oxidation, compressive stress generated in the oxide layer and elasticity of zircaloy-4 matrix. (Author)

  1. Comparison of Thoracic Injury Risk in Frontal Car Crashes for Occupant Restrained without Belt Load Limiters and Those Restrained with 6 kN and 4 kN Belt Load Limiters.

    Science.gov (United States)

    Foret-Bruno, J Y; Trosseille, X; Page, Y; Huère, J F; Le Coz, J Y; Bendjellal, F; Diboine, A; Phalempin, T; Villeforceix, D; Baudrit, P; Guillemot, H; Coltat, J C

    2001-11-01

    In France, as in other countries, accident research studies show that a large proportion of restrained occupants who sustain severe or fatal injuries are involved in frontal impacts (65% and 50%, respectively). In severe frontal impacts with restrained occupants and where intrusion is not preponderant, the oldest occupants very often sustain severe thoracic injuries due to the conventional seat belt. As we have been observing over the last years, we will expect in the coming years developments which include more solidly-built cars, as offset crash test procedures are widely used to evaluate the passive safety of production vehicles. The reduction of intrusion for the most severe frontal impacts, through optimization of car deformation, usually translates into an increase in restraint forces and hence thoracic injury risk with a conventional retractor seat belt for a given impact severity. It is, therefore essential to limit the restraint forces exerted by the seat belt on the thorax in order to reduce the number of road casualties. In order to address thoracic injury risk in frontal impact, Renault cars have been equipped with the Programmed Restraint System (PRS) since 1995. The PRS is a restraint system that combines belt load limitation and pyrotechnic belt pretension. In an initial design of the Programmed Restraint System (PRS1), the belt load limiter was a steel component designed to shear at a given shoulder force, namely 6 kN. It was mounted between the retractor and the lower anchorage point of the belt. The design of the PRS was modified in 1998 (PRS2), but the principle of load limitation was maintained. The threshold was decreased to 4 kN and this lower belt belt-force limiter has been combined with a specially designed airbag. This paper reports on 347 real-world frontal accidents where the EES (Equivalent Energy Speed) ranged from 35 to 75 km/h. One hundred and ninety-eight (198) of these accidents involved cars equipped with the 6 kN load limiter

  2. Numerical simulation of transformation-induced microscopic residual stress in ferrite-martensite lamellar steel

    International Nuclear Information System (INIS)

    Mikami, Y; Inao, A; Mochizuki, M; Toyoda, M

    2009-01-01

    The effect of transformation-induced microscopic residual stress on fatigue crack propagation behavior of ferrite-martensite lamellar steel was discussed. Fatigue tests of prestrained and non-prestrained specimens were performed. Inflections and branches at ferrite-martensite boundaries were observed in the non-prestrained specimens. On the other hand, less inflections and branches were found in the prestrained specimens. The experimental results showed that the transformation induced microscopic residual stress has influence on the fatigue crack propagation behavior. To estimate the microscopic residual, a numerical simulation method for the calculation of microscopic residual stress stress induced by martensitic transformation was performed. The simulation showed that compressive residual stress was generated in martensite layer, and the result agree with the experimental result that inflections and branches were observed at ferrite-martensite boundaries.

  3. Improved method for determining the stress relaxation at the crack tip

    Science.gov (United States)

    Grinevich, A. V.; Erasov, V. S.; Avtaev, V. V.

    2017-10-01

    A technique is suggested to determine the stress relaxation at the crack tip during tests of a specimen of a new type at a constant crack opening fixed by a stay bolt. The shape and geometry of the specimen make it possible to set the load and to determine the crack closure force after long-term exposure using the force transducer of a tensile-testing machine. The stress relaxation at the crack tip is determined in a V95pchT2 alloy specimen at elevated temperatures.

  4. Specimen alignment in an axial tensile test of thin films using direct imaging and its influence on the mechanical properties of BeCu

    International Nuclear Information System (INIS)

    Kang, Dong-Joong; Park, Jun-Hyub; Shin, Myung-Soo; Ha, Jong-Eun; Lee, Hak-Joo

    2010-01-01

    This paper proposes a new system for verification of the alignment of loading fixtures and test specimens during tensile testing of thin film with a micrometer size through direct imaging. The novel and reliable image recognition system to evaluate the misalignment between the load train and the specimen axes during tensile test of thin film was developed using digital image processing technology with CCD. The decision of whether alignment of the tensile specimen is acceptable or not is based on a probabilistic analysis through the edge feature extraction of digital imaging. In order to verify the performance of the proposed system and investigate the effect of the misalignment of the specimen on tensile properties, the tensile tests were performed as displacement control in air and at room temperature for metal thin film, the beryllium copper (BeCu) alloys. In the case of the metal thin films, bending stresses caused by misalignment are insignificant because the films are easily bent during tensile tests to eliminate the bending stresses. And it was observed that little effects and scatters on tensile properties occur by stress gradient caused by twisting at in-plane misalignment, and the effects and scatters on tensile properties are insignificant at out-of-plane misalignment, in the case of the BeCu thin film.

  5. Neutron diffraction measurements of residual stress in additively manufactured stainless steel

    International Nuclear Information System (INIS)

    Brown, D.W.; Bernardin, J.D.; Carpenter, J.S.; Clausen, B.; Spernjak, D.; Thompson, J.M.

    2016-01-01

    Charpy test specimens were additively manufactured (AM) on a single stainless steel plate from a 17–4 class stainless steel using a powder-bed, laser melting technique on an EOS M280 direct metal laser sintering (DMLS) machine. Cross-hatched mesh support structures for the Charpy test specimens were varied in strut width and density to parametrically study their influence on the build stability and accuracy as the DMLS process has been known to generate parts with large amounts of residual stress. Neutron diffraction was used to profile the residual stresses in several of the AM samples before and after the samples were removed from the support structure for the purpose of determining residual stresses. The residual stresses were found to depend very little on the properties of the support structure over the limited range studied here. The largest stress component was in the long direction of each of the samples studied and was roughly 2/3 of the yield stress of the material. The stress field was altered considerably when the specimen was removed from the support structure. It was noted in this study that a single Charpy specimen developed a significant tear between the growth plate and support structure. The presence of the tear in the support structure strongly affected the observed stress field: the asymmetric tear resulted in a significantly asymmetric stress field that propagated through removal of the sample from the base plate. The altered final residual stress state of the sample as well as its observed final shape indicates that the tear initiated during the build and developed without disrupting the fabrication process, suggesting a need for in-situ monitoring.

  6. Neutron diffraction measurements of residual stress in additively manufactured stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D.W.; Bernardin, J.D.; Carpenter, J.S.; Clausen, B.; Spernjak, D.; Thompson, J.M.

    2016-12-15

    Charpy test specimens were additively manufactured (AM) on a single stainless steel plate from a 17–4 class stainless steel using a powder-bed, laser melting technique on an EOS M280 direct metal laser sintering (DMLS) machine. Cross-hatched mesh support structures for the Charpy test specimens were varied in strut width and density to parametrically study their influence on the build stability and accuracy as the DMLS process has been known to generate parts with large amounts of residual stress. Neutron diffraction was used to profile the residual stresses in several of the AM samples before and after the samples were removed from the support structure for the purpose of determining residual stresses. The residual stresses were found to depend very little on the properties of the support structure over the limited range studied here. The largest stress component was in the long direction of each of the samples studied and was roughly 2/3 of the yield stress of the material. The stress field was altered considerably when the specimen was removed from the support structure. It was noted in this study that a single Charpy specimen developed a significant tear between the growth plate and support structure. The presence of the tear in the support structure strongly affected the observed stress field: the asymmetric tear resulted in a significantly asymmetric stress field that propagated through removal of the sample from the base plate. The altered final residual stress state of the sample as well as its observed final shape indicates that the tear initiated during the build and developed without disrupting the fabrication process, suggesting a need for in-situ monitoring.

  7. Correlation between passive film-induced stress and stress corrosion cracking of α-Ti in a methanol solution at various potentials

    International Nuclear Information System (INIS)

    Guo, X.Z.; Gao, K.W.; Chu, W.Y.; Qiao, L.J.

    2003-01-01

    The flow stress of a specimen of α-Ti before unloading is different with the yield stress of the same specimen after unloading and forming a passive film through immersing in a methanol solution at various constant potentials. The difference is the passive film-induced stress. The film-induced stress and susceptibility to stress corrosion cracking (SCC) in the methanol solution at various potentials were measured. At the stable open-circuit potential and under anodic polarization, both film-induced tensile stress σ p and susceptibility to SCC had a maximum value. The film-induced stress and SCC susceptibility, however, decreased steeply with a decrease in potential under cathodic polarization. When the potential V≤-280 mV SCE , the film-induced stress became compressive; correspondingly, susceptibility to SCC was zero. Therefore, the variation of film-induced stress with potential was consistent with that of susceptibility to SCC. A large film-induced tensile stress is the necessary condition for SCC of α-Ti in the methanol solution. The symbol and amount of the film-induced stress were related to the compositions of the passive film, which have been analyzed using the X-ray photoelectron spectrum (XPS)

  8. Effects of external stresses on hot corrosion behavior of stainless steel TP347HFG

    International Nuclear Information System (INIS)

    Fu, Jiapeng; Zhou, Qulan; Li, Na; Liu, Zhuhan; Liu, Taisheng

    2016-01-01

    Highlights: • Hot corrosion tests of TP347HFG under different stresses were conducted. • The corrosion resistance was strengthened by the exertion of tensile stresses. • External stresses promoted faster formation of the protective Cr_2O_3 layer. • Specimens under critical stress 40 MPa condition present the best resistance. - Abstract: Hot corrosion experiments of alloy TP347HFG under different stresses were conducted. Corroded specimens were examined by means of corrosion products, morphology and compositional changes in corrosion scales. The corrosion behavior was strongly associated with the formation of oxides layers. The corrosion resistance was strengthened by the external stress. It seemed that the exertion of stresses caused many micro cracks and defects, which acted as faster and easier diffusion paths for Cr atoms to diffuse to the surface, and thus, promote faster formation of the protective Cr_2O_3 oxide layer. Critical stress 40 MPa was found, specimens under which present the best resistance.

  9. Effect of residual stresses on fatigue strength of plasma nitrided 4140 steel

    International Nuclear Information System (INIS)

    Aghazadeh, J.; Amidi, M.R.

    2004-01-01

    Almost every method that has been presented to determine residual stress has some limitation and complexities. The aim of this work is to present a new, yet simple method so called strain indentation for measuring the residual stresses particularly in thin layers. In this method in addition to the precision measurements, components of residual stress at different directions may be determined. AISI 4140 steel specimens nitrided at 350 d ig C , 450 d ig C and 550 d ig C for 5 hours in the mixture of 75% nitrogen- 25% hydrogen gas. The, components of residual stress in the radials axial and hoop directions in the nitrided layer were determined considering the elastic strain recovery after removal of residual stress inducer(i.e. the nitrided layer). Fatigue strength of the nitrided specimens was obtained by plotting the S-N curves and fractographic studies carried out on the fracture surface of the specimens. The effect of residual stress on the stress pattern was simulated. The calculated residual stress components were in the range of 40-210 Mpa and the radial components of residual stress were more than the other two directions. Maximum fatigue strength improvement of up to 110% was observed in the plasma nitrided specimens at 550 d ig C and also 40% improvement in fatigue strength was detected by increasing the nitriding temperature from 350 d ig C to 550 d ig C . This was due to 100% increase in residual stress. Fatigue crack growth velocity in the hoop direction was more than that of radial direction. This seems to be due to higher radial residual stress component compared with the hoop stress component in the sub layer

  10. Influence of specimen size and grain orientation to the life of a polycrystalline Ni-base alloy at LCF stress; Einfluss der Probengroesse und der Kornorientierung auf die Lebensdauer einer polykristallinen Ni-Basislegierung bei LCF-Beanspruchung

    Energy Technology Data Exchange (ETDEWEB)

    Seibel, Thomas

    2014-07-01

    In the present work the LCF (Low Cycle Fatigue) crack initiation life of the conventionally cast Ni-base alloy RENE 80 was analyzed as a function of specimen size and grain orientation. Five specimen geometries with distinctly different gauge sections were used: 3 geometries with cylindrical gauge section (G1-G3) and two notched geometries with a stress concentration factor of α{sub 1} = 1,62 (KG1) and α{sub 2} = 2,60 (KG2), resulting in a maximum difference of the damage relevant surface area up to a factor of approximately 72. Correction factors were determined by FEM calculations for all specimen geometries with highly reduced gauge sections where direct strain measurement was not possible. Additionally a uniform failure criterion with a relatively small crack size of 0,962 mm{sup 2} was defined. Totally, 116 isothermal LCF tests were carried out at the different specimen types at a temperature of 850 C in total strain control with a load ratio (minimum strain / maximum strain) of R{sub ε} = -1. The load cycles were applied with triangular waveform at a frequency of 0.1 Hz for high strain amplitudes and 1 Hz for low strain amplitudes, respectively. After the LCF-Tests the fracture surfaces of all samples were analyzed in more detail by SEM to identify the crack initiation mechanisms as well as the crack initiation sites. In this context it could be shown, that fatigue cracks were generally initiated at slip bands in surface grains. Accordingly, the grain orientations at the crack initiation sites were measured by electron back scatter diffraction (EBSD) and the maximum shear stresses in the respective principal slip system (111) <110> was calculated using the Schmid approach. For this, longitudinal sections were be prepared exactly at the crack initiation sites of samples loaded with low strain amplitudes where clearly defined single crack initiation sites were observed. Afterwards the maximum shear stress in the principal slip system at the crack initiation

  11. Dynamic Failure Processes Under Confining Stress in AlON, a Transparent Polycrystalline Ceramic

    Science.gov (United States)

    2009-09-01

    homogeneous compressive stress state in the specimen, a 500 µm thick, soft-annealed AISI 4140 steel ‘cushion’ is sandwiched between the specimen and the...1. The AlON prismatic specimen (shown in green in the figure) is placed between two very hard steel “T-blocks” made from ~ HRC 55 hardened AISI ... 4140 steel alloy. The blocks were polished to obtain precise dimensions and a mirror surface finish. Compressive stress was generated by tightening

  12. Protective effects of carnosol against oxidative stress induced brain damage by chronic stress in rats.

    Science.gov (United States)

    Samarghandian, Saeed; Azimi-Nezhad, Mohsen; Borji, Abasalt; Samini, Mohammad; Farkhondeh, Tahereh

    2017-05-04

    Oxidative stress through chronic stress destroys the brain function. There are many documents have shown that carnosol may have a therapeutic effect versus free radical induced diseases. The current research focused the protective effect of carnosol against the brain injury induced by the restraint stress. The restraint stress induced by keeping animals in restrainers for 21 consecutive days. Thereafter, the rats were injected carnosol or vehicle for 21 consecutive days. At the end of experiment, all the rats were subjected to his open field test and forced swimming test. Afterwards, the rats were sacrificed for measuring their oxidative stress parameters. To measure the modifications in the biochemical aspects after the experiment, the activities of malondialdehyde (MDA), reduced glutathione (GSH), as well as superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR) and catalase (CAT) were evaluated in the whole brain. Our data showed that the animals received chronic stress had a raised immobility time versus the non-stressed animals (p < 0.01). Furthermore, chronic stress diminished the number of crossing in the animals that were subjected to the chronic stress versus the non-stressed rats (p < 0.01). Carnosol ameliorated this alteration versus the non-treated rats (p < 0.05). In the vehicle treated rats that submitted to the stress, the level of MDA levels was significantly increased (P < 0.001), and the levels of GSH and antioxidant enzymes were significantly decreased versus the non-stressed animals (P < 0.001). Carnosol treatment reduced the modifications in the stressed animals as compared with the control groups (P < 0.001). All of these carnosol effects were nearly similar to those observed with fluoxetine. The current research shows that the protective effects of carnosol may be accompanied with enhanced antioxidant defenses and decreased oxidative injury.

  13. Screen-film specimen radiography

    International Nuclear Information System (INIS)

    Shepard, S.J.; Hogan, J.; Schreck, B.

    1990-01-01

    This paper reports on the reproducibility and quality of biopsy specimen radiographs, a unique phototimed cabinet x-ray system is being developed. The system utilizes specially modified Kodal Min-R cassettes and will be compatible with current mammographic films. Tube voltages are in the 14-20-kVp range with 0.1-1.0-second exposure times. A top-hat type compression device is used (1) to compress the specimen to uniform thickness, (2) to measure the specimen thickness and determine optimum kVp, and (3) to superimpose a grid over the specimen for identification of objects of radiographic interest. The phototiming circuit developed specifically for this purpose will be described along with the modified Min-R cassette. Characteristics of the generator and cabinet will also be described. Tests will be performed on phantoms to evaluate the system limitations

  14. Fracture assessment of HSST Plate 14 shallow-flaw cruciform bend specimens tested under biaxial loading conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bass, B.R.; McAfee, W.J.; Williams, P.T.; Pennell, W.E.

    1998-06-01

    A technology to determine shallow-flaw fracture toughness of reactor pressure vessel (RPV) steels is being developed for application to the safety assessment of RPVs containing postulated shallow surface flaws. Matrices of cruciform beam tests were developed to investigate and quantify the effects of temperature, biaxial loading, and specimen size on fracture initiation toughness of two-dimensional (constant depth), shallow, surface flaws. The cruciform beam specimens were developed at Oak Ridge National Laboratory (ORNL) to introduce a far-field, out-of-plane biaxial stress component in the test section that approximates the nonlinear stresses resulting from pressurized-thermal-shock or pressure-temperature loading of an RPV. Tests were conducted under biaxial load ratios ranging from uniaxial to equibiaxial. These tests demonstrated that biaxial loading can have a pronounced effect on shallow-flaw fracture toughness in the lower transition temperature region for an RPV material. The cruciform fracture toughness data were used to evaluate fracture methodologies for predicting the observed effects of biaxial loading on shallow-flaw fracture toughness. Initial emphasis was placed on assessment of stress-based methodologies, namely, the J-Q formulation, the Dodds-Anderson toughness scaling model, and the Weibull approach. Applications of these methodologies based on the hydrostatic stress fracture criterion indicated an effect of loading-biaxiality on fracture toughness; the conventional maximum principal stress criterion indicated no effect. A three-parameter Weibull model based on the hydrostatic stress criterion is shown to correlate the experimentally observed biaxial effect on cleavage fracture toughness by providing a scaling mechanism between uniaxial and biaxial loading states.

  15. Different stress modalities result in distinct steroid hormone responses by male rats

    Directory of Open Access Journals (Sweden)

    M.L. Andersen

    2004-06-01

    Full Text Available Since both paradoxical sleep deprivation (PSD and stress alter male reproductive function, the purpose of the present study was to examine the influence of PSD and other stressors (restraint, electrical footshock, cold and forced swimming, N = 10 per group on steroid hormones in adult Wistar male rats. Rats were submitted to chronic stress for four days. The stressors (footshock, cold and forced swimming were applied twice a day, for periods of 1 h at 9:00 and 16:00 h. Restrained animals were maintained in plastic cylinders for 22 h/day whereas PSD was continuous. Hormone determination was measured by chemiluminescent enzyme immunoassay (testosterone, competitive immunoassay (progesterone and by radioimmunoassay (corticosterone, estradiol, estrone. The findings indicate that PSD (13.7 ng/dl, footshock (31.7 ng/dl and cold (35.2 ng/dl led to lower testosterone levels compared to the swimming (370.4 ng/dl and control (371.4 ng/dl groups. However, progesterone levels were elevated in the footshock (4.5 ng/ml and PSD (5.4 ng/ml groups compared to control (1.6 ng/ml, swimming (1.1 ng/ml, cold (2.3 ng/ml, and restrained (1.2 ng/ml animals. Estrone and estradiol levels were reduced in the PSD, footshock and restraint groups compared to the control, swimming and cold groups. A significant increase in corticosterone levels was found only in the PSD (299.8 ng/ml and footshock (169.6 ng/ml groups. These changes may be thought to be the full steroidal response to stress of significant intensity. Thus, the data suggest that different stress modalities result in distinct steroid hormone responses, with PSD and footshock being the most similar.

  16. Discussion on accuracy of weld residual stress measurement by neutron diffraction. Influence of strain free reference

    International Nuclear Information System (INIS)

    Suzuki, Hiroshi; Akita, Koichi

    2012-01-01

    It is required to evaluate a strain-free reference, α 0 , to perform accurate stress measurement using neutron diffraction. In this study, accuracy of neutron stress measurement was quantitatively discussed from α 0 evaluations on a dissimilar metal butt-weld between a type 304 austenitic stainless steel and an A533B low alloy ferritic steel. A strain-free standard specimen and a sliced specimen with 10 mm thickness taken from the dissimilar metal butt-weld were utilized. In the lattice constant evaluation using the standard specimen, average lattice constant derived from multiple hkl reflections was evaluated as the stress-free reference with cancelling out an intergranular strain. Comparing lattice constant distributions in each reflection with average lattice constant distribution in the standard specimen, αFe211 and γFe311 reflections were judged as a suitable reflection for neutron strain measurement to reduce intergranular strain effects. Residual stress distribution in the sliced specimen evaluated using α 0 measured here exhibited higher accuracy than that measured using strain gauges. On the other hand, α 0 distributions were evaluated using the sliced specimen under the plane-stress condition. Existence of slight longitudinal residual stresses near the weld center decreased accuracy of the α 0 evaluations, which means that it is required to optimize the thickness of the sliced specimen for accurate α 0 evaluation under plane strain condition. As a conclusion of this study, it was confirmed that procedures of accurate α 0 evaluation, optimization of the measurement condition, and multiple evaluations on the results play an important role to improve accuracy of the residual stress measurement using neutron diffraction. (author)

  17. Evaluation of constraint methodologies applied to a shallow-flaw cruciform bend specimen tested under biaxial loading conditions

    International Nuclear Information System (INIS)

    Bass, B.R.; McAfee, W.J.; Williams, P.T.; Pennell, W.E.

    1998-01-01

    A technology to determine shallow-flaw fracture toughness of reactor pressure vessel (RPV) steels is being developed for application to the safety assessment of RPVs containing postulated shallow surface flaws. Matrices of cruciform beam tests were developed to investigate and quantify the effects of temperature, biaxial loading, and specimen size on fracture initiation toughness of two-dimensional (constant depth), shallow surface flaws. The cruciform beam specimens were developed at Oak Ridge National Laboratory (ORNL) to introduce a prototypic, far-field. out-of-plane biaxial stress component in the test section that approximates the nonlinear stresses resulting from pressurized-thermal-shock or pressure-temperature loading of an RPV. Tests were conducted under biaxial load ratios ranging from uniaxial to equibiaxial. These tests demonstrated that biaxial loading can have a pronounced effect on shallow-flaw fracture toughness in the lower transition temperature region for RPV materials. The cruciform fracture toughness data were used to evaluate fracture methodologies for predicting the observed effects of biaxial loading on shallow-flaw fracture toughness. Initial emphasis was placed on assessment of stress-based methodologies. namely, the J-Q formulation, the Dodds-Anderson toughness scaling model, and the Weibull approach. Applications of these methodologies based on the hydrostatic stress fracture criterion indicated an effect of loading-biaxiality on fracture toughness, the conventional maximum principal stress criterion indicated no effect

  18. Nordic numerical round robin for a side-grooved ct-specimen

    International Nuclear Information System (INIS)

    Talja, H.

    1989-11-01

    The reliability of fracture mechanics assessments based on finite element method calculations has to be confirmed before making safety assessments for critical components like nuclear pressure vessels. Calculations for simulation of fracture mechanics tests and numerical round robin programmes are useful methods in such verification. In this report the results of Nordic finite element round robin calculations for a side-grooved CT-specimen are presented and compared with experimental results. The round robin consisted of two parts. In the first part two-dimensional calculations assuming plane strain and plane stress behaviour were made. In the second part extensive three-dimensional calculations were performed for best-estimate analysis of the specimen behaviour. The differences between the solutions were comparatively small. Only one two-dimensional solution, where lower order finite elements were used, deviated clearly from the other ones. A good agreement was seen between two-dimensional plane strain results and experimental results. Three-dimensional calculations corresponded very accurately with each others and the experiment

  19. Residual stress investigation of copper plate and canister EB-Welds Complementary Results

    International Nuclear Information System (INIS)

    Gripenberg, H.

    2009-03-01

    The residual stresses in copper as induced by EB-welding were studied by specimens where the weld had two configurations: either a linear or a circumferential weld. This report contains the residual stress measurements of two plates, containing linear welds, and the full-scale copper lid specimen to which a hollow cylinder section had been joined by a circumferential EB-weld. The residual stress state of the EB-welded copper specimens was investigated by X-ray diffraction (XRD), hole drilling (HD) ring core (RC) and contour method (CM). Three specimens, canister XK010 and plates X251 and X252, were subjected to a thorough study aiming at quantitative determination of the residual stress state in and around the EB-welds using XRD for surface and HD and RC for spatial stress analysis. The CM maps one stress component over a whole cross section. The surface residual stresses measured by XRD represent the machined condition of the copper material. The XRD study showed that the stress changes towards compression close to the weld in the hollow cylinder, which indicates shrinkage in the hoop direction. According to the same analogy, the shrinkage in the axial direction is much smaller. The HD measurements showed that the stress state in the base material is bi-axial and, in terms of von Mises stress, 50 MPa for the plates and 20 MPa for the cylinder part of the canister. The stress state in the EB-welds of all specimens differs clearly from the stress state in the base material being more tensile, with higher magnitudes of von Mises stress in the plate than in the canister welds. The HD and RC results were obtained using linear elastic theory. The RC measurements showed that the maximum principal stress in the BM is close to zero near the surface and it becomes slightly tensile, 10 MPa, deeper under the surface. Welding pushed the general stress state towards tension with the maximum principal stress reaching 50 MPa, deeper than 5 mm below the surface in the weld. The

  20. Crack initiation and propagation on the polymeric material ABS (Acrylonitrile Butadiene Styrene, under ultrasonic fatigue testing

    Directory of Open Access Journals (Sweden)

    G. M. Domínguez Almaraz

    2015-10-01

    Full Text Available Crack initiation and propagation have been investigated on the polymeric material ABS (Acrylonitrile Butadiene Styrene, under ultrasonic fatigue testing. Three controlled actions were implemented in order to carry out fatigue tests at very high frequency on this material of low thermal conductivity, they are: a The applying load was low to limit heat dissipation at the specimen neck section, b The dimensions of testing specimen were small (but fitting the resonance condition, in order to restraint the temperature gradient at the specimen narrow section, c Temperature at the specimen neck section was restrained by immersion in water or oil during ultrasonic fatigue testing. Experimental results are discussed on the basis of thermo-mechanical behaviour: the tail phenomenon at the initial stage of fatigue, initial shear yielding deformation, crazed development on the later stage, plastic strain on the fracture surface and the transition from low to high crack growth rate. In addition, a numerical analysis is developed to evaluate the J integral of energy dissipation and the stress intensity factor K, with the crack length

  1. Study of microstructure and fracture properties of blunt notched and sharp cracked high density polyethylene specimens.

    Science.gov (United States)

    Pan, Huanyu; Devasahayam, Sheila; Bandyopadhyay, Sri

    2017-07-21

    This paper examines the effect of a broad range of crosshead speed (0.05 to 100 mm/min) and a small range of temperature (25 °C and 45 °C) on the failure behaviour of high density polyethylene (HDPE) specimens containing a) standard size blunt notch and b) standard size blunt notch plus small sharp crack - all tested in air. It was observed that the yield stress properties showed linear increase with the natural logarithm of strain rate. The stress intensity factors under blunt notch and sharp crack conditions also increased linearly with natural logarithm of the crosshead speed. The results indicate that in the practical temperature range of 25 °C and 45 °C under normal atmosphere and increasing strain rates, HDPE specimens with both blunt notches and sharp cracks possess superior fracture properties. SEM microstructure studies of fracture surfaces showed craze initiation mechanisms at lower strain rate, whilst at higher strain rates there is evidence of dimple patterns absorbing the strain energy and creating plastic deformation. The stress intensity factor and the yield strength were higher at 25 °C compared to those at 45 °C.

  2. Use of pressurized eccentric tubes to study the effect of hydrostatic stress on swelling

    International Nuclear Information System (INIS)

    Wolfer, W.G.; Reiley, T.C.

    1977-05-01

    A technique for measuring the effect of hydrostatic stress on radiation-induced swelling is presented. This technique is based on the nonuniform hydrostatic stress that arises when an eccentric tube (a tube with inner and outer surfaces having dissimilar centers of revolution) is internally pressurized. The elastic analyses of the thin- and thick-walled eccentric tube are given. The elastic stress state is allowed to relax plastically, based on a constitutive law for deformation during neutron irradiation. In this case, the constitutive law contains a linearly stress-dependent deviatoric strain rate and a dilatation rate that is linearly dependent on hydrostatic stress. Emphasis is placed on the specimen design and experimental procedure for in-reactor experiments in which the coefficient relating hydrostatic stress and swelling is sought. It is shown that, for the 316L stainless steel specimens placed in EBR-II, we may expect that any appreciable effect of hydrostatic stress on swelling will be observable through changes in specimen curvature

  3. Acoustic emission under biaxial stresses in unflawed 21-6-9 and 304 stainless steel

    International Nuclear Information System (INIS)

    Hamstad, M.A.; Leon, E.M.; Mukherjee, A.K.

    1980-01-01

    Acoustic emission (AE) testing has been carried out with uniaxial and biaxial (2:1 stress ratio) stressing of smooth samples of 21-6-9 and 304 stainless steel (SS). Uniaxial testing was done with simple tensile and compression samples as well as with the special biaxial specimens. Biaxial tensile stressing was accomplished with a specially designed specimen, which had been used previously to characterize AE in 7075 aluminum under biaxial stressing. Results were obtained for air-melt and for vacuum-melt samples of 21-6-9 SS. The air-melt samples contain considerably more inclusion particles than the vacuum-melt samples. For the 304 SS, as received material was examined. To allow AE correlations with microstructure, extensive characterization of the 21-6-9 microstructure was carried out. Significant differences in AE occur in biaxially stressed specimens as compared to uniaxially stressed samples. 15 figures, 3 tables

  4. The PACE-1450 experiment - Crack and leakage behavior of a pre-stressed concrete containment wall considering ageing

    International Nuclear Information System (INIS)

    Hermann, N.; Mueller, H.S.; Niklasch, C.; Michel-Ponnelle, S.; Bento, C.; Masson, B.

    2015-01-01

    As an intermediate sized experiment the PACE-1450 experiment aims to investigate the behavior of a curved specimen (length: 3.5 m, width: 1.8 m, height: 1.2 m) which is representative for a 1450 MWe nuclear power plant containment under accidental loading conditions. One focus of this experimental test campaign is the consideration of the ageing of the structure which among other effects leads to a pre-stressing loss. The crack behavior of the realistically reinforced specimen is of as much interest as it is the leakage behavior when an inner pressure occurs within the containment. The reinforcement layout of the specimen is very similar to the original geometry and consists mainly of reinforcement meshes of bars near the inner and outer surface and four pre-stressing cables in the circumferential direction. During the tests the specimen is loaded by pressure which simulates the internal accidental containment pressure of up to 6 bars (absolute pressure). The resulting ring tensile stress in the cylindrical part of the containment is externally applied by hydraulic jacks. An initial pre-stressing of the specimen of 12 MPa is realized in such a way that decreasing the pre-stressing force for the purpose of simulating the ageing of the structure is possible. The facility allows for the cracking of the pre-stressed specimen and for leakage measurements at different controlled crack widths. The specimen is equipped with embedded optical fiber strain and temperature sensors and a sound detection system to record the initiation of cracks. The paper explains the test set-up and presents results of the ongoing test series regarding the cracking and leakage behavior of the specimen

  5. Children's coping after psychological stress. Choices among food, physical activity, and television.

    Science.gov (United States)

    Balantekin, Katherine N; Roemmich, James N

    2012-10-01

    Children's stress-coping behaviors and their determinants have not been widely studied. Some children eat more after stress and dietary restraint moderates stress eating in youth, but eating has been studied in isolation of other coping behaviors. Children may not choose to eat when stressed if other behavioral alternatives are available. The purpose was to determine individual difference factors that moderate the duration of stress coping choices and to determine if stress-induced eating in youth persists when other stress coping behaviors are available. Thirty children (8-12 years) completed a speech stressor on one day and read magazines on another day. They completed a free-choice period with access to food, TV, and physical activity on both days. Dietary restraint moderated changes in time spent eating and energy consumed from the control to stress day. Children high in restraint increased their energy intake on the stress day. Changes in the time spent watching TV were moderated by usual TV time, as children higher in usual TV increased their TV time after stress. Thus, dietary restrained children eat more when stressed when other common stress coping behaviors are freely available. These results extend the external validity of laboratory studies of stress-induced eating. Published by Elsevier Ltd.

  6. Residual stresses in surface induction hardening of steels: Comparison between experiment and simulation

    International Nuclear Information System (INIS)

    Coupard, Dominique; Palin-luc, Thierry; Bristiel, Philippe; Ji, Vincent; Dumas, Christian

    2008-01-01

    Deep induction hardening has been performed on two batches of smooth cylindrical specimens with a hardening depth respectively around 2 mm and 3 mm. The distributions of axial and circumferential residual stresses are analysed for the two specimen batches by X-ray diffraction technique. The radial normal stress field is estimated through the use of the well known Moore and Evans correction. Finally, the experimental residual stresses are compared with those obtained from a multiphysic finite element modelling of the whole induction treatment process, including electromagnetic, thermal, metallurgical and mechanical phenomena. The simulated residual stress field is in good agreement with X-ray analysis especially at depths lower than one-tenth the specimen diameter. At deeper depths, a correction of the experimental X-ray analysis has been done to obtain realistic values

  7. Acute Restraint Stress Alters Wheel-Running Behavior Immediately Following Stress and up to 20 Hours Later in House Mice.

    Science.gov (United States)

    Malisch, Jessica L; deWolski, Karen; Meek, Thomas H; Acosta, Wendy; Middleton, Kevin M; Crino, Ondi L; Garland, Theodore

    In vertebrates, acute stressors-although short in duration-can influence physiology and behavior over a longer time course, which might have important ramifications under natural conditions. In laboratory rats, for example, acute stress has been shown to increase anxiogenic behaviors for days after a stressor. In this study, we quantified voluntary wheel-running behavior for 22 h following a restraint stress and glucocorticoid levels 24 h postrestraint. We utilized mice from four replicate lines that have been selectively bred for high voluntary wheel-running activity (HR mice) for 60 generations and their nonselected control (C) lines to examine potential interactions between exercise propensity and sensitivity to stress. Following 6 d of wheel access on a 12L∶12D photo cycle (0700-1900 hours, as during the routine selective breeding protocol), 80 mice were physically restrained for 40 min, beginning at 1400 hours, while another 80 were left undisturbed. Relative to unrestrained mice, wheel running increased for both HR and C mice during the first hour postrestraint (P Wheel running was also examined at four distinct phases of the photoperiod. Running in the period of 1600-1840 hours was unaffected by restraint stress and did not differ statistically between HR and C mice. During the period of peak wheel running (1920-0140 hours), restrained mice tended to run fewer revolutions (-11%; two-tailed P = 0.0733), while HR mice ran 473% more than C (P = 0.0008), with no restraint × line type interaction. Wheel running declined for all mice in the latter part of the scotophase (0140-0600 hours), restraint had no statistical effect on wheel running, but HR again ran more than C (+467%; P = 0.0122). Finally, during the start of the photophase (0720-1200 hours), restraint increased running by an average of 53% (P = 0.0443) in both line types, but HR and C mice did not differ statistically. Mice from HR lines had statistically higher plasma corticosterone concentrations

  8. The feasibility of small size specimens for testing of environmentally assisted cracking of irradiated materials and of materials under irradiation in reactor core

    International Nuclear Information System (INIS)

    Toivonen, A.; Moilanen, P.; Pyykkoenen, M.; Taehtinen, S.; Rintamaa, R.; Saario, T.

    1998-01-01

    Environmentally assisted cracking (EAC) of core materials has become an increasingly important issue of downtime and maintenance costs in nuclear power plants. Small size specimens are necessary in stress corrosion testing of irradiated materials because of difficulties in handling high dose rate materials and because of restricted availability of the materials. The drawback of using small size specimens is that in some cases they do not fulfil the requirements of the relevant testing standards. Recently VTT has developed J-R testing with irradiated and non-irradiated sub size 3 PB specimens, both in inert and in LWR environments. Also, a new materials testing system which will enable simultaneous multiple specimen testing both in laboratory conditions and in operating reactor core is under development. The new testing system will utilize Charpy and sub size 3 PB specimens. The feasibility study of the system has been carried out using different materials. Fracture resistance curves of a Cu-Zr-Cr alloy are shown to be independent of the specimen geometry and size, to some extent. Results gained from tests in simulated boiling water reactor (BWR) water are presented for sensitized SIS 2333 stainless steel. The experimental results indicate that the size of the plastic zone or stress triaxiality must be further studied although no significant effect on the environmentally assisted crack growth rate was observed. (orig.)

  9. The feasibility of small size specimens for testing of environmentally assisted cracking of irradiated materials and of materials under irradiation in reactor core

    Energy Technology Data Exchange (ETDEWEB)

    Toivonen, A.; Moilanen, P.; Pyykkoenen, M.; Taehtinen, S.; Rintamaa, R.; Saario, T. [Valtion Teknillinen Tutkimuskeskus, Espoo (Finland)

    1998-11-01

    Environmentally assisted cracking (EAC) of core materials has become an increasingly important issue of downtime and maintenance costs in nuclear power plants. Small size specimens are necessary in stress corrosion testing of irradiated materials because of difficulties in handling high dose rate materials and because of restricted availability of the materials. The drawback of using small size specimens is that in some cases they do not fulfil the requirements of the relevant testing standards. Recently VTT has developed J-R testing with irradiated and non-irradiated sub size 3 PB specimens, both in inert and in LWR environments. Also, a new materials testing system which will enable simultaneous multiple specimen testing both in laboratory conditions and in operating reactor core is under development. The new testing system will utilize Charpy and sub size 3 PB specimens. The feasibility study of the system has been carried out using different materials. Fracture resistance curves of a Cu-Zr-Cr alloy are shown to be independent of the specimen geometry and size, to some extent. Results gained from tests in simulated boiling water reactor (BWR) water are presented for sensitized SIS 2333 stainless steel. The experimental results indicate that the size of the plastic zone or stress triaxiality must be further studied although no significant effect on the environmentally assisted crack growth rate was observed. (orig.)

  10. Janka hardness using nonstandard specimens

    Science.gov (United States)

    David W. Green; Marshall Begel; William Nelson

    2006-01-01

    Janka hardness determined on 1.5- by 3.5-in. specimens (2×4s) was found to be equivalent to that determined using the 2- by 2-in. specimen specified in ASTM D 143. Data are presented on the relationship between Janka hardness and the strength of clear wood. Analysis of historical data determined using standard specimens indicated no difference between side hardness...

  11. Sustainability of compressive residual stress by stress improvement processes

    International Nuclear Information System (INIS)

    Nishikawa, Satoru; Okita, Shigeru; Yamaguchi, Atsunori

    2013-01-01

    Stress improvement processes are countermeasures against stress corrosion cracking in nuclear power plant components. It is necessary to confirm whether compressive residual stress induced by stress improvement processes can be sustained under operation environment. In order to evaluate stability of the compressive residual stress in 60-year operating conditions, the 0.07% cyclic strains of 200 times at 593 K were applied to the welded specimens, then a thermal aging treatment for 1.66x10 6 s at 673 K was carried out. As the result, it was confirmed that the compressive residual stresses were sustained on both surfaces of the dissimilar welds of austenitic stainless steel (SUS316L) and nickel base alloy (NCF600 and alloy 182) processed by laser peening (LP), water jet peening (WJP), ultrasonic shot peening (USP), shot peening (SP) and polishing under 60-year operating conditions. (author)

  12. Effects of stress on swelling in reactor fuel cladding

    International Nuclear Information System (INIS)

    Bates, J.F.; Gilbert, E.R.

    1977-01-01

    The purpose of this report is to describe the effect of stress on swelling in both annealed and 20% cold worked 316 stainless steel. An effect of stress on swelling in irradiated metals has been postulated for some time. Low fluence data confirmed that indeed a tensile stress can increase swelling in irradiated annealed 316 stainless steel and that the maximum swelling occurs at an intermediate stress level which is approximately equal to the proportional elastic limit of the material. The specimens discussed above were examined by transmission electron microscopy and an effect of stress on the microstructure of the annealed and 20% cold worked 316 specimens has been observed. Howver, as yet, copious swelling had not occurred in the 20% cold worked material. Specimens of 20% cold worked 316 fabricated from the same heat of material as those described above have now been irradiated to sufficiently high neutron fluences that swelling has occurred in both the annealed and cold worked conditions. Swelling increases linearly with stress for both materials. However, for solution annealed 316, swelling reaches a maximum at approximately 136 MPa, whereupon further increases in stress result in reduced swelling. It is felt that this reduction in swelling is related to the onset of plastic yielding in the material. The swelling observed in the 20% CW 316 and the solution annealed 316 below the maximum swelling stress can be adequately described by an equation of the form: S = S 0 (1 + Psigma). No strong effect of stress on changing the incubation period associated with void nucleation was found. (Auth.)

  13. LPTR irradiation of LLL vanadium tensile specimens and LLL Nb--1Zr tensile specimens

    International Nuclear Information System (INIS)

    MacLean, S.C.; Rowe, C.L.

    1977-01-01

    The LPTR irradiation of 14 LLL vanadium tensile specimens and 14 LLL Nb-1Zr tensile specimens is described. Sample packaging, the irradiation schedule and neutron fluences for three energy ranges are given

  14. Residual-stress distributions near stainless steel butt weldments

    International Nuclear Information System (INIS)

    Elligson, W.A.; Shack, W.J.

    1978-01-01

    Concern for the integrity of stainless steel butt-weldments in boiling-water-reactor (BWR) piping systems has stimulated study of the conditions that cause stress corrosion cracking (SCC) in the heat-affected zones (HAZ) of the weldments. It is generally agreed that a high stress exceeding the initial yield strength is one of the essential elements for crack initiation. Since design procedures usually ensure that load stresses are below initial yield, the source of the high stresses necessary to produce SCC is thought to be the residual stresses due to welding. To examine the level of residual stresses in the weldments of interest, bulk residual stresses were measured on 100 mm (4-in.) and 254 mm (10-in.) diameter Schedule 80 piping weldments using strain relief techniques. Both laboratory welded specimens and field welded specimens from reactors in service were studied. Axial bulk residual stress distributions were obtained at 45 0 intervals around the circumference. At each azimuthal position, the residual stresses were measured at seven axial positions: on the weld centerline and 13, 20, and 25 mm on either side of the weld centerline on both the inside and outside surfaces

  15. Georeferencing Animal Specimen Datasets

    NARCIS (Netherlands)

    van Erp, M.G.J.; Hensel, R.; Ceolin, D.; van der Meij, M.

    2014-01-01

    For biodiversity research, the field of study that is concerned with the richness of species of our planet, it is of the utmost importance that the location of an animal specimen find is known with high precision. Due to specimens often having been collected over the course of many years, their

  16. Acoustic Emission Characteristics of Red Sandstone Specimens Under Uniaxial Cyclic Loading and Unloading Compression

    Science.gov (United States)

    Meng, Qingbin; Zhang, Mingwei; Han, Lijun; Pu, Hai; Chen, Yanlong

    2018-04-01

    To explore the acoustic emission (AE) characteristics of rock materials during the deformation and failure process under periodic loads, a uniaxial cyclic loading and unloading compression experiment was conducted based on an MTS 815 rock mechanics test system and an AE21C acoustic emissions test system. The relationships among stress, strain, AE activity, accumulated AE activity and duration for 180 rock specimens under 36 loading and unloading rates were established. The cyclic AE evolutionary laws with rock stress-strain variation at loading and unloading stages were analyzed. The Kaiser and Felicity effects of rock AE activity were disclosed, and the impact of the significant increase in the scale of AE events on the Felicity effect was discussed. It was observed that the AE characteristics are closely related to the stress-strain properties of rock materials and that they are affected by the developmental state and degree of internal microcracks. AE events occur in either the loading or unloading stages if the strain is greater than zero. Evolutionary laws of AE activity agree with changes in rock strain. Strain deformation is accompanied by AE activity, and the density and intensity of AE events directly reflect the damage degree of the rock mass. The Kaiser effect exists in the linear elastic stage of rock material, and the Felicity effect is effective in the plastic yield and post-peak failure stages, which are divided by the elastic yield strength. This study suggests that the stress level needed to determine a significant increase in AE activity was 70% of the i + 1 peak stress. The Felicity ratio of rock specimens decreases with the growth of loading-unloading cycles. The cycle magnitude and variation of the Felicity effect, in which loading and unloading rates play a weak role, are almost consistent.

  17. Effect of a new specimen size on fatigue crack growth behavior in thick-walled pressure vessels

    International Nuclear Information System (INIS)

    Shariati, Mahmoud; Mohammadi, Ehsan; Masoudi Nejad, Reza

    2017-01-01

    Fatigue crack growth in thick-walled pressure vessels is an important factor affecting their fracture. Predicting the path of fatigue crack growth in a pressure vessel is the main issue discussed in fracture mechanics. The objective of this paper is to design a new geometrical specimen in fatigue to define the behavior of semi-elliptical crack growth in thick-walled pressure vessels. In the present work, the importance of the behavior of fatigue crack in test specimen and real conditions in thick-walled pressure vessels is investigated. The results of fatigue loading on the new specimen are compared with the results of fatigue loading in a cylindrical pressure vessel and a standard specimen. Numerical and experimental methods are used to investigate the behavior of fatigue crack growth in the new specimen. For this purpose, a three-dimensional boundary element method is used for fatigue crack growth under stress field. The modified Paris model is used to estimate fatigue crack growth rates. In order to verify the numerical results, fatigue test is carried out on a couple of specimens with a new geometry made of ck45. A comparison between experimental and numerical results has shown good agreement. - Highlights: • This paper provides a new specimen to define the behavior of fatigue crack growth. • We estimate the behavior of fatigue crack growth in specimen and pressure vessel. • A 3D finite element model has been applied to estimate the fatigue life. • We compare the results of fatigue loading for cylindrical vessel and specimens. • Comparison between experimental and numerical results has shown a good agreement.

  18. An elastic solution for a new notched residual stess specimen subjected to an anti-clastic loading

    DEFF Research Database (Denmark)

    Jakobsen, Johnny; Lyckegaard, Anders

    A new test specimen has been proposed to explore the mechanical properties of thermoset resin exposed to residual stresses induced by curing and thermal expansion. The test principle is based on anti-clastic bending of a plate with a hole. An elastic solution to the bending problem is derived...

  19. DNA extraction from herbarium specimens.

    Science.gov (United States)

    Drábková, Lenka Záveská

    2014-01-01

    With the expansion of molecular techniques, the historical collections have become widely used. Studying plant DNA using modern molecular techniques such as DNA sequencing plays an important role in understanding evolutionary relationships, identification through DNA barcoding, conservation status, and many other aspects of plant biology. Enormous herbarium collections are an important source of material especially for specimens from areas difficult to access or from taxa that are now extinct. The ability to utilize these specimens greatly enhances the research. However, the process of extracting DNA from herbarium specimens is often fraught with difficulty related to such variables as plant chemistry, drying method of the specimen, and chemical treatment of the specimen. Although many methods have been developed for extraction of DNA from herbarium specimens, the most frequently used are modified CTAB and DNeasy Plant Mini Kit protocols. Nine selected protocols in this chapter have been successfully used for high-quality DNA extraction from different kinds of plant herbarium tissues. These methods differ primarily with respect to their requirements for input material (from algae to vascular plants), type of the plant tissue (leaves with incrustations, sclerenchyma strands, mucilaginous tissues, needles, seeds), and further possible applications (PCR-based methods or microsatellites, AFLP).

  20. Load-Unload Response Ratio (LURR), Accelerating Moment/Energy Release (AM/ER) and State Vector Saltation as Precursors to Failure of Rock Specimens

    Science.gov (United States)

    Yin, Xiang-Chu; Yu, Huai-Zhong; Kukshenko, Victor; Xu, Zhao-Yong; Wu, Zhishen; Li, Min; Peng, Keyin; Elizarov, Surgey; Li, Qi

    2004-12-01

    In order to verify some precursors such as LURR (Load/Unload Response Ratio) and AER (Accelerating Energy Release) before large earthquakes or macro-fracture in heterogeneous brittle media, four acoustic emission experiments involving large rock specimens under tri-axial stress, have been conducted. The specimens were loaded in two ways: monotonous or cycling. The experimental results confirm that LURR and AER are precursors of macro-fracture in brittle media. A new measure called the state vector has been proposed to describe the damage evolution of loaded rock specimens.

  1. Effect of NaCl Solution Spraying on Fatigue Lives of Smooth and Slit Specimens of 0.37% Carbon Steel

    Science.gov (United States)

    Makabe, Chobin; Ferdous, Md. Shafiul; Shimabukuro, Akimichi; Murdani, Anggit

    2017-07-01

    The fatigue crack initiation life and growth rate are affected by experimental conditions. A corrosive environment can be created in a laboratory by means of dropping salt water onto the specimen surface, spraying chloride mist into the experimental chamber, etc. In the case of smooth specimens of some metals, fatigue life is shortened and the fatigue limit disappears under such corrosive experimental conditions. In this study, the effects of intermittent spraying of 3% NaCl solution-mist on corrosion fatigue behavior were investigated. The material used was 0.37% carbon steel. This is called JIS S35C in Japan. Spraying of 3% NaCl solution-mist attacked the surface layer of the specimen. It is well known that the pitting, oxidation-reduction reaction, etc. affect the fatigue strength of metals in a corrosive environment. We carried out corrosion fatigue tests with smooth specimens, holed specimens and slit specimens. Then the effects of such specimen geometry on the fatigue strength were investigated when the NaCl solution-mist was sprayed onto the specimen surface. In the case of lower stress amplitude application in slit specimens, the fatigue life in a corrosive atmosphere was longer than that in the open air. It is discussed that the behavior is related to the crack closure which happens when the oxide builds up and clogs the crack or slit.

  2. Structural and kinematic evolution of a Miocene to Recent sinistral restraining bend: the Montejunto massif, Portugal

    Science.gov (United States)

    Curtis, Michael L.

    1999-01-01

    The Montejunto massif lies in the apex of a large-scale restraining bend at the southern termination of a sinistral transpressive fault system, in the Lusitanian basin of Portugal. Cenozoic deformation within the Montejunto massif initiated with southerly directed thrusting along the southern boundary of the massif, in association with the development of the E-W oriented Montejunto anticline, probably during the Langhian. Deformation switched to the northern boundary of the massif, in association with a change to NW-directed thrusting and continued development of the Montejunto anticline. The youngest set of structures within the massif is related to the sinistral reactivation of the Arieiro fault system, and steeply inclined bedding. This late phase of deformation represents the accommodation of a component of sinistral displacement across the restraining bend along mechanical anisotropies formed during this progressive Cenozoic deformation event. Variation in the kinematic style of the Main Arieiro fault is related to the angle ( α) between the fault plane and the displacement vector. Where α≈20°, abrupt pene-contemporaneous switches in displacement direction are recorded along the fault, whereas strike-slip kinematics predominate where α<20°. The timing of deformation events in the Montejunto massif is uncertain. However, correlation with the established Cenozoic Africa/Europe plate convergence directions may provide potential temporal constraints.

  3. Influence of specimen thickness on the fatigue behavior of notched steel plates subjected to laser shock peening

    Science.gov (United States)

    Granados-Alejo, V.; Rubio-González, C.; Vázquez-Jiménez, C. A.; Banderas, J. A.; Gómez-Rosas, G.

    2018-05-01

    The influence of specimen thickness on the fatigue crack initiation of 2205 duplex stainless steel notched specimens subjected to laser shock peening (LSP) was investigated. The purpose was to examine the effectiveness of LSP on flat components with different thicknesses. For the LSP treatment a Nd:YAG pulsed laser operating at 10 Hz with 1064 nm of wavelength was used; pulse density was 2500 pulses/cm2. The LSP setup was the waterjet arrangement without sample coating. Residual stress distribution as a function of depth was determined by the hole drilling method. Notched specimens 2, 3 and 4 mm thick were LSP treated on both faces and then fatigue loading was applied with R = 0.1. Experimental fatigue lives were compared with life predictions from finite element simulation. A good comparison of the predicted and experimental fatigue lives was observed. LSP finite element simulation helps in explaining the influence of thickness on fatigue lives in terms of equivalent plastic strain distribution variations associated with the change in thickness. It is demonstrated that specimen size effect is an important issue in applying LSP on real components. Reducing the specimen thickness, the fatigue life improvement induced by LSP is significantly increased. Fatigue life extension up to 300% is observed on thin specimens with LSP.

  4. Application of magnetomechanical hysteresis modeling of magnetic techniques for monitoring neutron embrittlement and biaxial stress

    International Nuclear Information System (INIS)

    Sablik, M.J.; Kwun, H.; Burkhardt, G.L.

    1993-01-01

    Research was done on the biaxial stress problem accomplished in the first half of the second year. All of the work done was preparatory to magnetic measurements. Issues addressed were: construction of a model for extracting changes in the magnetic properties of a specimen from the readings of an indirect sensor; initial development of a model for how biaxial stress alters the intrinsic magnetic properties of thespecimen; use of finite element stress analysis modeling to determine a detailed shape for the cruciform biaxial stress specimen; and construction of the biaxial stress loading apparatus

  5. Residual stress in silicon wafer using IR polariscope

    Science.gov (United States)

    Lu, Zhijia; Wang, Pin; Asundi, Anand

    2008-09-01

    The infrared phase shift polariscope (IR-PSP) is a full-field optical technique for stress analysis in Silicon wafers. Phase shift polariscope is preferred to a conventional polariscope, as it can provide quantitative information of the normal stress difference and the shear stress in the specimen. The method is based on the principles of photoelasticity, in which stresses induces temporary birefringence in materials which can be quantitatively analyzed using a phase shift polariscope. Compared to other stress analysis techniques such as x-ray diffraction or laser scanning, infrared photoelastic stress analysis provides full-field information with high resolution and in near real time. As the semiconductor fabrication is advancing, larger wafers, thinner films and more compact packages are being manufactured. This results in a growing demand of process control. Residual stress exist in silicon during semiconductor fabrication and these stresses may make cell processing difficult or even cause the failure of the silicon. Reducing these stresses would improve manufacturability and reliability. Therefore stress analysis is essential to trace the root cause of the stresses. The polariscope images are processed using MATLAB and four-step phase shifting method to provide quantitative as well as qualitative information regarding the residual stress of the sample. The system is calibrated using four-point bend specimen and then the residual stress distribution in a MEMS sample is shown.

  6. Protection of children restrained in child safety seats in side impact crashes.

    Science.gov (United States)

    Arbogast, Kristy B; Locey, Caitlin M; Zonfrillo, Mark R; Maltese, Matthew R

    2010-10-01

    The performance of child restraint systems (CRS) in side impact motor vehicle crashes has been under study due to the injury and fatality burden of these events. Although previous research has quantified injury risk or described injured body regions, safety advances require an understanding of injury causation. Therefore, the objective was to delineate injury causation scenarios for CRS-restrained children in side impacts and document probable contact points in the vehicle interior. Two in-depth crash investigation databases, the Crash Injury Research and Engineering Network and the Partners for Child Passenger Safety Study, were queried for rear-seated, CRS-restrained children in side impact crashes who sustained Abbreviated Injury Scale 2+ injury. These cases were reviewed by a multidisciplinary team of physicians and engineers to describe injury patterns, injury causation, and vehicle components that contributed to the injuries. Forty-one occupants (average age, 2.6 years) met the inclusion criteria. Twenty-four were near side to the crash, 7 were far side, and 10 were center seated. The most common injuries were to the skull and brain with an increasing proportion of skull fracture as age increased. Head and spine injuries without evidence of head contact were rare but present. All thoracic injuries were lung contusions and no rib fractures occurred. Near-side head and face contacts points were along the rear vertical plane of the window and the horizontal plane of the window sill. Head and face contact points for center- and far-side occupants were along the edges of the front seat back and front seat head restraint. Head injuries are the target for injury prevention for children in CRS in side impact crashes. Most of these injuries are due to the contact; for near-side occupants, contact with the CRS structure and the door interior, for far- or center-seated occupants, contact with the front seat back. These data are useful in developing both educational and

  7. Estimation of in-situ stresses in concrete members using polarized ultrasonic shear waves

    Science.gov (United States)

    Chen, Andrew; Schumacher, Thomas

    2014-02-01

    Ultrasonic testing is commonly used to detect flaws, estimate geometries, and characterize properties of materials and structures. Acoustoelasticity refers to the dependency of stress wave velocity with applied stresses and is a phenomenon that has been known by geophysicists since the 1960s. A way to capitalize on this effect for concrete applications is by using ultrasonic shear waves which are particularly sensitive to applied stresses when polarized in the direction of the applied stress. The authors conducted an experiment on a 150 mm (6 in.) diameter concrete cylinder specimen with a length of 305 mm (12 in.) that was loaded in discrete load steps to failure. At each load step two ultrasonic shear waves were transmitted through the specimen, one with the polarization perpendicular and the other transverse to the applied stress. The velocity difference between the two sets of polarized shear waves was found to correlate with the applied stress in the specimen. Two potential applications for this methodology include estimation of stresses in pre-stressed concrete bridge girders and investigation of load redistribution in structural support elements after extreme events. This paper introduces the background of the methodology, presents an analysis of the collected data, and discusses the relationship between the recorded signals and the applied stress.

  8. Iodine stress-corrosion cracking in irradiated Zircaloy cladding

    International Nuclear Information System (INIS)

    Mattas, R.F.; Yaggee, F.L.; Neimark, L.A.

    1979-01-01

    Irradiated Zircaloy cladding specimens, which had experienced fluences from 0.1 to 6 x 10 21 n/cm 2 (E>0.1 MeV), were gas-pressure tested in an iodine environment to investigate their stress-corrosion cracking (SCC) susceptibility. The test temperatures and hoop stresses ranged from 320 to 360 0 C and 150 to 500 MPa, respectively. The results indicate that irradiation, in general, increases the susceptibility of Zircaloy to iodine SCC. For specimens that experienced fluences >2 x 10 21 n/cm 2 (E>0.1 MeV), the 24-h failure stress was 177+-18 MPa, regardless of the preirradiation metallurgical condition. An analytical model for iodine SCC has been developed which agrees reasonably well with the test results

  9. High strain rate mechanical response of buttress-grooved tensile specimens which have undergone environmental exposure

    International Nuclear Information System (INIS)

    Weirick, L.J.

    1976-07-01

    The purpose of the corrosion compatibility program was to identify the effect of corrosion on the mechanical performance of the buttress-grooved section of the 105-mm penetrator, a section which must sustain a load during launch. It is important that the environment not deteriorate the mechanical integrity of these grooves during long-term storage. Both coated and uncoated test specimens which simulate both geometrical shape and residual stress patterns were exposed to corrosive environments of moist air, distilled water, and salt water. Some of these tests also incorporated the galvanic coupling caused by the aluminum sabot. After exposure to the corrosive environments, the specimens were pulled on a high strain rate tensile machine which simulated launch conditions. Results show that the galvanic coupling due to the aluminum sabot caused no deterioration of mechanical properties. Results do indicate that the coating applied caused a significant reduction in the fracture load. There was a dichotomy in the results as affected by the environment. Uncoated test specimens showed no change in fracture load with increasing severity of corrosion environment, whereas the coated specimens indicated a trend of decreasing load-bearing ability with increasing corrosion

  10. Dicer Is Required for Normal Cerebellar Development and to Restrain Medulloblastoma Formation.

    Directory of Open Access Journals (Sweden)

    Frederique Zindy

    Full Text Available Dicer, a ribonuclease III enzyme, is required for the maturation of microRNAs. To assess its role in cerebellar and medulloblastoma development, we genetically deleted Dicer in Nestin-positive neural progenitors and in mice lacking one copy for the Sonic Hedgehog receptor, Patched 1. We found that conditional loss of Dicer in mouse neural progenitors induced massive Trp53-independent apoptosis in all proliferative zones of the brain and decreased proliferation of cerebellar granule progenitors at embryonic day 15.5 leading to abnormal cerebellar development and perinatal lethality. Loss of one copy of Dicer significantly accelerated the formation of mouse medulloblastoma of the Sonic Hedgehog subgroup in Patched1-heterozygous mice. We conclude that Dicer is required for proper cerebellar development, and to restrain medulloblastoma formation.

  11. Development of Reconstitution Technology for Surveillance Specimens

    International Nuclear Information System (INIS)

    Yasushi Atago; Shunichi Hatano; Eiichiro Otsuka

    2002-01-01

    The Japan Power Engineering and Inspection Corporation (JAPEIC) has been carrying out the project titled 'Nuclear Power Plant Integrated Management Technology (PLIM)' consigned by Japanese Ministry of Economy, Trade and Industry (METI) since 1996FY as a 10-years project. As one of the project themes, development of reconstitution technology for reactor pressure vessel (RPV/RV) surveillance specimens, which are installed in RPVs to monitor the neutron irradiation embrittlement on RPV/RV materials, is now on being carried out to deal with the long-term operation of nuclear power plants. The target of this theme is to establish the technical standard for applicability of reconstituted surveillance specimens including the reconstitution of the Charpy specimens and Compact Tension (CT) specimens. With the Charpy specimen reconstitution, application of 10 mm length inserts is used, which enables the conversion of tests from the LT-direction to the TL-direction. This paper presents the basic data from Charpy and CT specimens of RPV materials using the surveillance specimens obtained for un-irradiated materials including the following. 1) Reconstitution Technology of Charpy Specimens. a) The interaction between plastic zone and Heat Affected Zone (HAZ). b) The effects of the possible deviations from the standard specimens for the reconstituted specimens. 2) Reconstitution Technology of CT specimens. a) The correlation between fracture toughness and plastic zone width. Because the project is now in progress, this paper describes the outline of the results obtained as of the end of 2000 FY. (authors)

  12. How Farm Animals React and Perceive Stressful Situations Such As Handling, Restraint, and Transport

    Directory of Open Access Journals (Sweden)

    Temple Grandin

    2015-12-01

    Full Text Available An animal that has been carefully acclimated to handling may willingly re-enter a restrainer. Another animal may have an intense agitated behavioral reaction or refuse to re-enter the handling facility. Physiological measures of stress such as cortisol may be very low in the animal that re-enters willingly and higher in animals that actively resist restraint. Carefully acclimating young animals to handling and restraint can help improve both productivity and welfare by reducing fear stress. Some of the topics covered in this review are: How an animal perceives handling and restraint, the detrimental effects of a sudden novel event, descriptions of temperament and aversion tests and the importance of good stockmanship.

  13. SMILE: test to validate the WPS effect with a cylindrical thick-walled specimen

    International Nuclear Information System (INIS)

    Bezdikian, G.; Moinereau, D.; Roos, E.; Kerkhof, K.; Taylor, N.

    2004-01-01

    The Reactor Pressure Vessel (RPV) is an essential component, which is liable to limit the lifetime duration of PWR plants. The assessment of defects in RPV subjected to pressurized thermal shock (PTS) transients made at an European level generally does not necessarily consider the beneficial effect of the load history (Warm Pre-stress, WPS). The SMILE project - Structural Margin Improvements in aged embrittled RPV with Load history Effects - aims to give sufficient elements to demonstrate, to model and to validate the beneficial WPS effect. It also aims to harmonize the different approaches in the national codes and standards regarding the inclusion of the WPS effect in a RPV structural integrity assessment. The project includes significant experimental work on WPS type experiments with C(T) specimens and a PTS type transient experiment on a large component. This paper deals with the results of the PTS type transient experiment on a component-like, specimen subjected to WPS-loading, the so called Validation Test, carried out within the framework of work package WP4. The test specimen consists of a cylindrical thickwalled specimen with a thickness of 40 mm and an outer diameter of 160 mm, provided with an internal fully circumferential crack with a depth of about 15 mm. The specified load path type is Load-Cool-Unload-Fracture (LCUF). (orig.)

  14. The influence of peak stress on the mechanical behavior and the substructural evolution in shock-prestrained zirconium

    International Nuclear Information System (INIS)

    Cerreta, E.; Gray, G.T. III; Henrie, B.L.; Brown, D.W.; Hixson, R.S.; Rigg, P.A.

    2004-01-01

    The post shock mechanical behavior and substructure evolution of zirconium (Zr) under shock prestrained at 5.8 and 8 GPa, above and below the pressure induced α-ω phase transition, has been quantified. The reload yield stress of Zr shock prestrained to 8 GPa was found to exhibit enhanced shock hardening when compared to the flow stress measured quasi-statically at an equivalent strain. In contrast, the reload yield behavior of Zr specimens shocked to 5.8 GPa did not exhibit enhanced shock hardening. The microstructure of the as-annealed and shock prestrained materials were examined. The presence of a reduced available glide distance due to a relatively more well developed dislocation substructure and increased twinning over quasi-static specimens deformed to comparable strains correlates with the increased yield stresses after shock prestraining at 8 GPa. Additionally, the retention of ∼ 40% by volume metastable high-pressure ω-phase in specimens shocked to 8 GPa and its absence in the 5.8 GPa specimen, is thought to contribute to the increased yield stress in the 8 GPa specimens

  15. Neutron and ultrasonic determination of residual stress in an aluminum ring-plug

    International Nuclear Information System (INIS)

    Prask, H.J.; Gnaeupel-Herold, T.; Clark, A.V.; Hehman, C.S.; Nguyen, T.N.

    2000-01-01

    Stress is a principal cause of material failure. This has been a well-recognized problem for decades, yet--in general--neutron diffraction remains the only way to measure sub-surface residual stresses without destroying the component. A field-portable ultrasonic strain-meter is being developed at NIST (Boulder) to determine residual stresses in engineering specimens, nondestructively. To test this and other techniques an array of stress-measurement standards are being prepared. These will be characterized by neutron diffraction and then used to evaluate, quantitatively, the potential of new methods. The first standard specimen produced for this purpose is a large shrink-fit ring-plug of 2024 aluminum (305 mm OD, 25.4 mm thick, 101.6 mm diameter plug). Because of large grain size, a sample-rotation averaging technique was developed to make reliable neutron measurements possible. A comparison of the neutron diffraction and ultrasonic results for this specimen will be presented, along with strain gauge results

  16. Quantitative X-ray microanalysis of biological specimens

    International Nuclear Information System (INIS)

    Roomans, G.M.

    1988-01-01

    Qualitative X-ray microanalysis of biological specimens requires an approach that is somewhat different from that used in the materials sciences. The first step is deconvolution and background subtraction on the obtained spectrum. The further treatment depends on the type of specimen: thin, thick, or semithick. For thin sections, the continuum method of quantitation is most often used, but it should be combined with an accurate correction for extraneous background. However, alternative methods to determine local mass should also be considered. In the analysis of biological bulk specimens, the ZAF-correction method appears to be less useful, primarily because of the uneven surface of biological specimens. The peak-to-local background model may be a more adequate method for thick specimens that are not mounted on a thick substrate. Quantitative X-ray microanalysis of biological specimens generally requires the use of standards that preferably should resemble the specimen in chemical and physical properties. Special problems in biological microanalysis include low count rates, specimen instability and mass loss, extraneous contributions to the spectrum, and preparative artifacts affecting quantitation. A relatively recent development in X-ray microanalysis of biological specimens is the quantitative determination of local water content

  17. Development of European creep crack growth testing code of practice for industrial specimens

    Energy Technology Data Exchange (ETDEWEB)

    Dogan, B.; Nikbin, K. [Imperial College, London (United Kingdom); Petrovski, B. [Technische Univ. Darmstadt (DE). Inst. fuer Werkstoffkunde (IFW)

    2004-07-01

    The integrity and residual life assessment of high temperature components require defects, detected or assumed to exist, through minimum allowable limits of detectable flaws using nondestructive testing methods. It relies on information obtained from the material's mechanical, uniaxial creep, creep crack initiation and growth properties. The information derived from experiments needs to be validated and harmonised following a Code of Practice that data variability between different institutions can be reduced to a minimum. The present paper reports on a Code of Practice (CoP) being prepared within the framework of the partially European Commission funded project CRETE. The novel aspect of the presented CoP is the inclusion of component relevant industrial specimen geometries. It covers testing and analysis of Creep Crack growth (CCG) in metallic materials at elevated temperature using six different cracked geometries that have been validated in. It aims to give advice on testing, measurements and analysis of creep crack growth data for a range of creep brittle to creep ductile materials using component service relevant specimen geometries and sizes. The CoP may be used for material selection criteria and inspection requirements for damage tolerant applications. In quantitative terms, these types of tests can be used to assess the individual and combined effects of metallurgical, fabrication, operating temperature, and loading conditions on creep crack growth life. Further issues will be addressed including material properties, damage and crack growth related constraint effect, stress relaxation and stress-strain fields, residual stresses, partitioning displacement, analysis of elasticcreep, elastic compliance measurements.

  18. Development of European creep crack growth testing code of practice for industrial specimens

    International Nuclear Information System (INIS)

    Dogan, B.; Nikbin, K.; Petrovski, B.

    2004-01-01

    The integrity and residual life assessment of high temperature components require defects, detected or assumed to exist, through minimum allowable limits of detectable flaws using nondestructive testing methods. It relies on information obtained from the material's mechanical, uniaxial creep, creep crack initiation and growth properties. The information derived from experiments needs to be validated and harmonised following a Code of Practice that data variability between different institutions can be reduced to a minimum. The present paper reports on a Code of Practice (CoP) being prepared within the framework of the partially European Commission funded project CRETE. The novel aspect of the presented CoP is the inclusion of component relevant industrial specimen geometries. It covers testing and analysis of Creep Crack growth (CCG) in metallic materials at elevated temperature using six different cracked geometries that have been validated in. It aims to give advice on testing, measurements and analysis of creep crack growth data for a range of creep brittle to creep ductile materials using component service relevant specimen geometries and sizes. The CoP may be used for material selection criteria and inspection requirements for damage tolerant applications. In quantitative terms, these types of tests can be used to assess the individual and combined effects of metallurgical, fabrication, operating temperature, and loading conditions on creep crack growth life. Further issues will be addressed including material properties, damage and crack growth related constraint effect, stress relaxation and stress-strain fields, residual stresses, partitioning displacement, analysis of elastic creep, elastic compliance measurements

  19. How to restrain electroplex emission and enhance red emission intensity of Eu 3+ complex?

    Science.gov (United States)

    Zhang, Fujun; Zhao, Suling; Xu, Zheng; Huang, Jinzhao; Yuan, Guancai; Li, Yuan; Wang, Yong; Xu, Xurong

    2007-11-01

    The electroluminescence (EL) of lanthanide complex profits from the intramolecular energy transfer from the triplet state of ligand to Ln (III) ions, but electroplex emission between ligand and host material may occur when the energy transfer is inefficient. The electroplex emission is completely restrained when 4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7,-tetramethyljulolidy-9-enyl)-4Hpyran (DCJTB) and Eu(o-BBA)3(phen) are co-doped in poly (N-vinycarbzaole) (PVK). There are great spectra overlapping between electroplex emission and the excitation of DCJTB. The chromaticity coordinates of EL of co-doped device is kept constant (x = 0.55, y = 0.37) under different driving voltage.

  20. A novel design for storage of inner stress by colloidal processing on rock-like materials

    Science.gov (United States)

    Chen, Weichang; Wang, Sijing; Lekan Olatayo, Afolagboye; Fu, Huanran

    2018-06-01

    Inner stress exists in rocks, affecting rock engineering, yet has received very little attention and quantitative investigation because of uncertainty about its characteristics. Previous studies have suggested that the inner stresses of rock materials are closely related to their physical state variation. In this work, a novel mold was designed to simulate the storage process of inner stress in specimens composed of quartz sands and epoxy. Then, thermal tests were carried out to change the physical state of the specimens, and expansion of the specimens was monitored. The results indicated that inner stress could be partly locked by the mold and it could also be released by heating. It can be inferred from the analysis that one necessary condition of storage and release of inner stress is physical state variation. Additionally, by using an XRD method, the variations in the interplanar spacing of the quartz sands were detected, and the results reflect that inner stress could be locked-in aggregates (quartz sands) by a cement constraint (solid epoxy). The inner stress stored in quartz sands was calculated using height and interplanar spacing variations.

  1. Repetitive stress leads to impaired cognitive function that is associated with DNA hypomethylation, reduced BDNF and a dysregulated HPA axis.

    Science.gov (United States)

    Makhathini, Khayelihle B; Abboussi, Oualid; Stein, Dan J; Mabandla, Musa V; Daniels, William M U

    2017-08-01

    Exposure to repetitive stress has a negative influence on cognitive-affective functioning, with growing evidence that these effects may be mediated by a dysregulated hypothalamic-pituitary-adrenal (HPA) axis, abnormal neurotrophic factor levels and its subsequent impact on hippocampal function. However, there are few data about the effect of repetitive stressors on epigenetic changes in the hippocampus. In the present study, we examine how repetitive restrain stress (RRS) affects cognitive-affective functioning, HPA axis regulation, brain-derived neurotrophic factor (BDNF) levels, and global hippocampal DNA methylation. RRS was induced in rats by restraining the animals for 6h per day for 28 days. The novel object recognition test (NORT) was used to assess cognitive functioning and the open field test (OFT) was performed to assess anxiety-like behavior during the last week of stress. Hippocampal BDNF levels, glucocorticoid (GR) and mineralocorticoid (MR) receptor mRNA were assessed using real-time PCR and confirmed with Western blot, while ELISAs were used to determine plasma corticosterone levels and the global methylation status of the hippocampus. Animals exposed to repetitive stress demonstrated significant alterations in the NORT and OFT, had significantly increased plasma corticosterone and significantly decreased hippocampal BDNF concentrations. The expression levels of GR and MR mRNA and protein levels of these genes were significantly decreased in the stressed group compared to control animals. The global DNA methylation of the hippocampal genome of stressed animals was also significantly decreased compared to controls. The data here are consistent with previous work emphasizing the role of the HPA axis and neurotrophic factors in mediating cognitive-affective changes after exposure to repetitive stressors. Our findings, however, extend the literature by indicating that epigenetic alterations in the hippocampal genome may also play an important role in the

  2. Controlled Environment Specimen Transfer

    DEFF Research Database (Denmark)

    Damsgaard, Christian Danvad; Zandbergen, Henny W.; Hansen, Thomas Willum

    2014-01-01

    an environmental transmission electron microscope to an in situ X-ray diffractometer through a dedicated transmission electron microscope specimen transfer holder, capable of sealing the specimen in a gaseous environment at elevated temperatures. Two catalyst material systems have been investigated; Cu/ZnO/Al2O3...... transferred in a reactive environment to the environmental transmission electron microscope where further analysis on the local scale were conducted. The Co/Al2O3 catalyst was reduced in the environmental microscope and successfully kept reduced outside the microscope in a reactive environment. The in situ......Specimen transfer under controlled environment conditions, such as temperature, pressure, and gas composition, is necessary to conduct successive complementary in situ characterization of materials sensitive to ambient conditions. The in situ transfer concept is introduced by linking...

  3. Prediction of crack growth direction by Strain Energy Sih's Theory on specimens SEN under tension-compression biaxial loading employing Genetic Algorithms

    International Nuclear Information System (INIS)

    Rodriguez-MartInez R; Lugo-Gonzalez E; Urriolagoitia-Calderon G; Urriolagoitia-Sosa G; Hernandez-Gomez L H; Romero-Angeles B; Torres-San Miguel Ch

    2011-01-01

    Crack growth direction has been studied in many ways. Particularly Sih's strain energy theory predicts that a fracture under a three-dimensional state of stress spreads in direction of the minimum strain energy density. In this work a study for angle of fracture growth was made, considering a biaxial stress state at the crack tip on SEN specimens. The stress state applied on a tension-compression SEN specimen is biaxial one on crack tip, as it can observed in figure 1. A solution method proposed to obtain a mathematical model considering genetic algorithms, which have demonstrated great capacity for the solution of many engineering problems. From the model given by Sih one can deduce the density of strain energy stored for unit of volume at the crack tip as dW = [1/2E(σ 2 x + σ 2 y ) - ν/E(σ x σy)]dV (1). From equation (1) a mathematical deduction to solve in terms of θ of this case was developed employing Genetic Algorithms, where θ is a crack propagation direction in plane x-y. Steel and aluminium mechanical properties to modelled specimens were employed, because they are two of materials but used in engineering design. Obtained results show stable zones of fracture propagation but only in a range of applied loading.

  4. Interactions between Temperament, Stress, and Immune Function in Cattle

    Directory of Open Access Journals (Sweden)

    N. C. Burdick

    2011-01-01

    Full Text Available The detrimental effects caused by stressors encountered by animals during routine handling can pose economic problems for the livestock industry due to increased costs ultimately borne by the producer and the consumer. Stress adversely affects key physiological processes of the reproductive and immune systems. In recent years stress responsiveness has been associated with cattle behavior, specifically temperament. Cattle with more excitable temperaments, as measured by chute score, pen score, and exit velocity (flight speed, exhibit greater basal concentrations of glucocorticoids and catecholamines. Similar to stressed cattle, more temperamental cattle (i.e., cattle exhibiting greater exit velocity or pen and chute scores have poorer growth performance, carcass characteristics, and immune responses. Thus, understanding the interrelationship of stress and temperament can help in the development of selection and management practices that reduce the negative influence of temperament on growth and productivity of cattle. This paper discusses the relationship between stress and temperament and the developing evidence of an effect of temperament on immune function of cattle that have been handled or restrained. Specifically, the paper discusses different methodologies used to measure temperament, including chute score, pen score, and exit velocity, and discusses the reaction of cattle to different stressors including handling and restraint.

  5. SCC of 2304 Duplex Stainless Steel-Microstructure, Residual Stress and Surface Grinding Effects.

    Science.gov (United States)

    Zhou, Nian; Peng, Ru Lin; Schönning, Mikael; Pettersson, Rachel

    2017-02-23

    The influence of surface grinding and microstructure on chloride induced stress corrosion cracking (SCC) behavior of 2304 duplex stainless steel has been investigated. Grinding operations were performed both parallel and perpendicular to the rolling direction of the material. SCC tests were conducted in boiling magnesium chloride according to ASTM G36; specimens were exposed both without external loading and with varied levels of four-point bend loading. Residual stresses were measured on selected specimens before and after exposure using the X-ray diffraction technique. In addition, in-situ surface stress measurements subjected to four-point bend loading were performed to evaluate the deviation between the actual applied loading and the calculated values according to ASTM G39. Micro-cracks, initiated by grinding induced surface tensile residual stresses, were observed for all the ground specimens but not on the as-delivered surfaces. Loading transverse to the rolling direction of the material increased the susceptibility to chloride induced SCC. Grinding induced tensile residual stresses and micro-notches in the as-ground surface topography were also detrimental.

  6. SCC of 2304 Duplex Stainless Steel—Microstructure, Residual Stress and Surface Grinding Effects

    Directory of Open Access Journals (Sweden)

    Nian Zhou

    2017-02-01

    Full Text Available The influence of surface grinding and microstructure on chloride induced stress corrosion cracking (SCC behavior of 2304 duplex stainless steel has been investigated. Grinding operations were performed both parallel and perpendicular to the rolling direction of the material. SCC tests were conducted in boiling magnesium chloride according to ASTM G36; specimens were exposed both without external loading and with varied levels of four-point bend loading. Residual stresses were measured on selected specimens before and after exposure using the X-ray diffraction technique. In addition, in-situ surface stress measurements subjected to four-point bend loading were performed to evaluate the deviation between the actual applied loading and the calculated values according to ASTM G39. Micro-cracks, initiated by grinding induced surface tensile residual stresses, were observed for all the ground specimens but not on the as-delivered surfaces. Loading transverse to the rolling direction of the material increased the susceptibility to chloride induced SCC. Grinding induced tensile residual stresses and micro-notches in the as-ground surface topography were also detrimental.

  7. SCC of 2304 Duplex Stainless Steel—Microstructure, Residual Stress and Surface Grinding Effects

    Science.gov (United States)

    Zhou, Nian; Peng, Ru Lin; Schönning, Mikael; Pettersson, Rachel

    2017-01-01

    The influence of surface grinding and microstructure on chloride induced stress corrosion cracking (SCC) behavior of 2304 duplex stainless steel has been investigated. Grinding operations were performed both parallel and perpendicular to the rolling direction of the material. SCC tests were conducted in boiling magnesium chloride according to ASTM G36; specimens were exposed both without external loading and with varied levels of four-point bend loading. Residual stresses were measured on selected specimens before and after exposure using the X-ray diffraction technique. In addition, in-situ surface stress measurements subjected to four-point bend loading were performed to evaluate the deviation between the actual applied loading and the calculated values according to ASTM G39. Micro-cracks, initiated by grinding induced surface tensile residual stresses, were observed for all the ground specimens but not on the as-delivered surfaces. Loading transverse to the rolling direction of the material increased the susceptibility to chloride induced SCC. Grinding induced tensile residual stresses and micro-notches in the as-ground surface topography were also detrimental. PMID:28772582

  8. Altered frontal inter-hemispheric resting state functional connectivity is associated with bulimic symptoms among restrained eaters.

    Science.gov (United States)

    Chen, Shuaiyu; Dong, Debo; Jackson, Todd; Su, Yanhua; Chen, Hong

    2016-01-29

    Theory and research have indicated that restrained eating (RE) increases risk for binge-eating and eating disorder symptoms. According to the goal conflict model, such risk may result from disrupted hedonic-feeding control and its interaction with reward-driven eating. However, RE-related alterations in functional interactions among associated underlying brain regions, especially between the cerebral hemispheres, have rarely been examined directly. Therefore, we investigated inter-hemispheric resting-state functional connectivity (RSFC) among female restrained eaters (REs) (n=23) and unrestrained eaters (UREs) (n=24) following food deprivation as well as its relation to overall bulimia nervosa (BN) symptoms using voxel-mirrored homotopic connectivity (VMHC). Seed-based RSFC associated with areas exhibiting significant VMHC differences was also assessed. Compared to UREs, REs showed reduced VMHC in the dorsal-lateral prefrontal cortex (DLPFC), an area involved in inhibiting hedonic overeating. REs also displayed decreased RSFC between the right DLPFC and regions associated with reward estimation--the ventromedial prefrontal cortex (VMPFC) and posterior cingulate cortex (PCC). Finally, bulimic tendencies had a negative correlation with VMHC in the DLPFC and a positive correlation with functional connectivity (DLPFC and VMPFC) among REs but not UREs. Findings suggested that reduced inter-hemispheric functional connectivity in appetite inhibition regions and altered functional connectivity in reward related regions may help to explain why some REs fail to control hedonically-motivated feeding and experience higher associated levels of BN symptomatology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Sodium Phenylbutyrate and Edaravone Abrogate Chronic Restraint Stress-Induced Behavioral Deficits: Implication of Oxido-Nitrosative, Endoplasmic Reticulum Stress Cascade, and Neuroinflammation.

    Science.gov (United States)

    Jangra, Ashok; Sriram, Chandra Shaker; Dwivedi, Shubham; Gurjar, Satendra Singh; Hussain, Md Iftikar; Borah, Probodh; Lahkar, Mangala

    2017-01-01

    Chronic stress exposure can produce deleterious effects on the hippocampus (HC) which eventually leads to cognitive impairment and depression. Endoplasmic reticulum (ER) stress has been reported as one of the major culprits in the development of stress-induced cognitive impairment and depression. We investigated the neuroprotective efficacy of sodium phenylbutyrate (SPB), an ER stress inhibitor, and edaravone, a free radical scavenger, against chronic restraint stress (CRS)-induced cognitive deficits and anxiety- and depressive-like behavior in mice. Adult male Swiss albino mice were restrained for 6 h/day for 28 days and injected (i.p.) with SPB (40 and 120 mg/kg) or edaravone (3 and 10 mg/kg) for the last seven days. After stress cessation, the anxiety- and depressive-like behavior along with spatial learning and memory were examined. Furthermore, oxido-nitrosative stress, proinflammatory cytokines, and gene expression level of ER stress-related genes were assessed in HC and prefrontal cortex (PFC). CRS-exposed mice showed anxiety- and depressive-like behavior, which was significantly improved by SPB and edaravone treatment. In addition, SPB and edaravone treatment significantly alleviated CRS-induced spatial learning and memory impairment. Furthermore, CRS-evoked oxido-nitrosative stress, neuroinflammation, and depletion of Brain-derived neurotrophic factor were significantly ameliorated by SPB and edaravone treatment. We found significant up-regulation of ER stress-related genes in both HC and PFC regions, which were suppressed by SPB and edaravone treatment in CRS mice. Our study provides evidence that SPB and edaravone exerted neuroprotective effects on CRS-induced cognitive deficits and anxiety- and depressive-like behavior, which is possibly coupled with inhibition of oxido-nitrosative stress, neuroinflammation, and ER stress cascade.

  10. Yield stress of duplex stainless steel specimens estimated using a compound Hall–Petch equation

    Directory of Open Access Journals (Sweden)

    Noriaki Hirota, Fuxing Yin, Tsukasa Azuma and Tadanobu Inoue

    2010-01-01

    Full Text Available In this study, the 0.2% yield stress of duplex stainless steel was evaluated using a compound Hall–Petch equation. The compound Hall–Petch equation was derived from four types of duplex stainless steel, which contained 0.2–64.4 wt% δ-ferrite phase, had different chemical compositions and were annealed at different temperatures. Intragranular yield stress was measured with an ultra-microhardness tester and evaluated with the yield stress model proposed by Dao et al. Grain size, volume fraction and texture were monitored by electron backscattering diffraction measurement. The kγ constant in the compound equation for duplex stainless steel agrees well with that for γ-phase SUS316L steel in the temperature range of 1323–1473 K. The derived compound Hall–Petch equation predicts that the yield stress will be in good agreement with the experimental results for the Cr, Mn, Si, Ni and N solid-solution states. We find that the intragranular yield stress of the δ-phase of duplex stainless steel is rather sensitive to the chemical composition and annealing conditions, which is attributed to the size misfit parameter.

  11. Identifying Armed Respondents to Domestic Violence Restraining Orders and Recovering Their Firearms: Process Evaluation of an Initiative in California

    Science.gov (United States)

    Frattaroli, Shannon; Claire, Barbara E.; Vittes, Katherine A.; Webster, Daniel W.

    2014-01-01

    Objectives. We evaluated a law enforcement initiative to screen respondents to domestic violence restraining orders for firearm ownership or possession and recover their firearms. Methods. The initiative was implemented in San Mateo and Butte counties in California from 2007 through 2010. We used descriptive methods to evaluate the screening process and recovery effort in each county, relying on records for individual cases. Results. Screening relied on an archive of firearm transactions, court records, and petitioner interviews; no single source was adequate. Screening linked 525 respondents (17.7%) in San Mateo County to firearms; 405 firearms were recovered from 119 (22.7%) of them. In Butte County, 88 (31.1%) respondents were linked to firearms; 260 firearms were recovered from 45 (51.1%) of them. Nonrecovery occurred most often when orders were never served or respondents denied having firearms. There were no reports of serious violence or injury. Conclusions. Recovering firearms from persons subject to domestic violence restraining orders is possible. We have identified design and implementation changes that may improve the screening process and the yield from recovery efforts. Larger implementation trials are needed. PMID:24328660

  12. Accelerated Stress-Corrosion Testing

    Science.gov (United States)

    1986-01-01

    Test procedures for accelerated stress-corrosion testing of high-strength aluminum alloys faster and provide more quantitative information than traditional pass/fail tests. Method uses data from tests on specimen sets exposed to corrosive environment at several levels of applied static tensile stress for selected exposure times then subsequently tensile tested to failure. Method potentially applicable to other degrading phenomena (such as fatigue, corrosion fatigue, fretting, wear, and creep) that promote development and growth of cracklike flaws within material.

  13. Neutron diffraction stress determination in W-laminates for structural divertor applications

    Directory of Open Access Journals (Sweden)

    R. Coppola

    2015-07-01

    Full Text Available Neutron diffraction measurements have been carried out to develop a non-destructive experimental tool for characterizing the crystallographic structure and the internal stress field in W foil laminates for structural divertor applications in future fusion reactors. The model sample selected for this study had been prepared by brazing, at 1085 °C, 13 W foils with 12 Cu foils. A complete strain distribution measurement through the brazed multilayered specimen and determination of the corresponding stresses has been obtained, assuming zero stress in the through-thickness direction. The average stress determined from the technique across the specimen (over both ‘phases’ of W and Cu is close to zero at −17 ± 32 MPa, in accordance with the expectations.

  14. Biaxial nominal state of stress at the crack front

    International Nuclear Information System (INIS)

    Dietmann, H.; Kussmaul, K.

    1979-01-01

    In fracture toughness testing with CT-specimens there is an unaxial nominal stress state caused by the nominal stress psub(y) perpendicular to the crack surface. This paper investigates the question whether the fracture toughness, or generally speaking, the fracture load, is influenced by additional nominal stresses psub(x) and psub(z) in the crack surface, i.e. by a multiaxial stress state. (orig.)

  15. The influence of texture on residual stress measurements

    International Nuclear Information System (INIS)

    Lima, N.B. de.

    1991-01-01

    A computer program to calculate the orientation distribution function (ODF) from incomplete pole figures has been developed for rolled materials with a cubic structure. This program is based on Bunge's series expansion. The use of incomplete pole figures results in the loss of orthogonality among symmetric spherical harmonic functions and makes it necessary to explicitly evaluate the integrals. The ODF has been used to quantitatively evaluate the influence of texture in determining residual stresses. This has been done by calculating theoretically the strain undergone by each cell as a function of its orientation to residual stress relationship. To test the ODF program, cold rolled Cu and Al specimens were used and to evaluate residual stresses as a function of texture, cold rolled AISI 430 and 324 specimens were used. Simulations have also be presented based on the texture for each of the materials, to verify the nature of the curve d x sin 2 ψ as a function of each stress tensor components. (author)

  16. High-energy x-ray scattering quantification of in-situ-loading-related strain gradients spanning the dentinoenamel junction (DEJ) in bovine tooth specimens

    International Nuclear Information System (INIS)

    Almer, J.D.; Stock, S.R.

    2010-01-01

    High energy X-ray scattering (80.7keV photons) at station 1-ID of the Advanced Photon Source quantified internal strains as a function of applied stress in mature bovine tooth. These strains were mapped from dentin through the dentinoenamel junction (DEJ) into enamel as a function of applied compressive stress in two small parallelepiped specimens. One specimen was loaded perpendicular to the DEJ and the second parallel to the DEJ. Internal strains in enamel and dentin increased and, as expected from the relative values of the Young's modulus, the observed strains were much higher in dentin than in enamel. Large strain gradients were observed across the DEJ, and the data suggest that the mantle dentin-DEJ-aprismatic enamel structure may shield the near-surface volume of the enamel from large strains. In the enamel, drops in internal strain for applied stresses above 40MPa also suggest that this structure had cracked.

  17. Notch size effects on high cycle fatigue limit stress of Udimet 720

    International Nuclear Information System (INIS)

    Ren Weiju; Nicholas, Theodore

    2003-01-01

    Notch size effects on the high cycle fatigue (HCF) limit stress of Ni-base superalloy Udimet 720 were investigated on cylindrical specimens with three notch sizes of the same stress concentration factor K t =2.74. The HCF limit stress corresponding to a life of 10 6 cycles was experimentally determined at a stress ratio of 0.1 and a frequency of 25 Hz at room temperature. The stresses were calculated using finite element analysis (FEA) and the specimens analyzed using scanning electron microscopy (SEM). Test results show that at the same K t value, notch size can slightly affect the HCF limit stress of U720 when notch root plasticity occurs. FEA and SEM results reveal that the notch size effects are influenced by a complicated combination of the stress and plastic strain fields at the notch tip, the nominal stress, and the effects of prior plastic deformation on fatigue crack initiation

  18. Specimen holder for an electron microscope and device and method for mounting a specimen in an electron microscope

    NARCIS (Netherlands)

    Zandbergen, H.W.; Latenstein van Voorst, A.; Westra, C.; Hoveling, G.H.

    1996-01-01

    A specimen holder for an electron microscope, comprising a bar-shaped body provided adjacent one end with means for receiving a specimen, with means being present for screening the specimen from the environment at least temporarily in airtight and moisture-proof manner in a first position, which

  19. The Hysteretic Behavior of Partially Pre-Stressed Beam-Column Joint Sub-assemblages Made of Reactive Powder Concrete

    Directory of Open Access Journals (Sweden)

    Siti Aisyah Nurjannah

    2016-11-01

    Full Text Available Reactive powder concrete (RPC is an alternative to normal concrete (NC allowing for significantly higher strength of partially pre-stressed concrete structures. In the Indonesian national standard SNI 03-2847-2013 (2013 and the American standard ACI 318-14 (2014, the partial pre-stressed ratio (PPR is limited to a maximum of 25.0 percent to ensure that pre-stressed concrete structures remain ductile and capable to dissipate seismic energy sufficiently. The objective of this experimental study was to investigate the hysteretic performance of partially pre-stressed-RPC (PP-RPC for both interior and exterior beam-column joint sub-assemblages. Four specimens with different levels of PPR were tested with a combination of constant axial compression and cyclic lateral loads. The PPR used for the first and the second two specimens were 22.8% and 33.8%, respectively. The strength of the RPC was 101.60 MPa for all specimens. The results showed that increasing the PPR of PP-RPC improves its hysteretic performance. The best performing specimen, with a PPR of 33.8%, had a ductility that was 1.97 times that of the specimen with a PPR of 22.8%.

  20. Residual stress development and relief in high strength aluminium alloys using standard and retrogression thermal treatments

    OpenAIRE

    Robinson, J.S; Tanner, D.A

    2003-01-01

    peer-reviewed Residual stresses develop in the aluminium alloy 7010 when the material is quenched from the solution heat treatment temperature. Residual stress measurements have been made using the X-ray diffraction technique and a longitudinal split sawcut method to determine the magnitude of residual stress that develops in specimens sectioned from large open die forgings as a result of (a) quenching these specimens into water at different temperatures, and (b) cold water quenching from ...

  1. J-integral analysis of heterogeneous mismatched girth welds in clamped single-edge notched tension specimens

    International Nuclear Information System (INIS)

    Hertelé, Stijn; De Waele, Wim; Verstraete, Matthias; Denys, Rudi; O'Dowd, Noel

    2014-01-01

    Flaw assessment procedures require a quantification of crack driving force, and such procedures are generally based on the assumption of weld homogeneity. However, welds generally have a heterogeneous microstructure, which will influence the crack driving force. This paper describes a stress-based methodology to assess complex heterogeneous welds using a J-based approach. Clamped single-edge notched tension specimens, representative of girth weld flaws, are analyzed and the influence of weld heterogeneity on crack driving force has been determined. The use of a modified limit load for heterogeneous welds is proposed, suitable for implementation in a ‘homogenized’ J-integral estimation scheme. It follows from an explicit modification of an existing solution for centre cracked tension specimens. The proposed solution provides a good estimate of crack driving force and any errors in the approximation may be accounted for by means of a small safety factor on load bearing capacity. - Highlights: • We present a crack driving force estimation procedure for heterogeneous welds. • The procedure is based on a ‘homogenized’ version of the EPRI equation. • Complex welds are translated into equivalent idealized mismatched welds. • The procedure is validated for clamped SE(T) specimens. • A mismatch limit load for clamped SE(T) specimens is developed

  2. Residual stress and crack initiation in laser clad composite layer with Co-based alloy and WC + NiCr

    International Nuclear Information System (INIS)

    Lee, Changmin; Park, Hyungkwon; Yoo, Jaehong; Lee, Changhee; Woo, WanChuck; Park, Sunhong

    2015-01-01

    Highlights: • Major problem, clad cracking in laser cladding process, was researched. • Residual stress measurements were performed quantitatively by neutron diffraction method along the surface of specimens. • Relationship between the residual stress and crack initiation was showed clearly. • Ceramic particle effect in the metal matrix was showed from the results of residual stress measurements. • Initiation sites of generating clad cracks were specifically studied in MMC coatings. - Abstract: Although laser cladding process has been widely used to improve the wear and corrosion resistance, there are unwanted cracking issues during and/or after laser cladding. This study investigates the tendency of Co-based WC + NiCr composite layers to cracking during the laser cladding process. Residual stress distributions of the specimen are measured using neutron diffraction and elucidate the correlation between the residual stress and the cracking in three types of cylindrical specimens; (i) no cladding substrate only, (ii) cladding with 100% stellite#6, and (iii) cladding with 55% stellite#6 and 45% technolase40s. The microstructure of the clad layer was composed of Co-based dendrite and brittle eutectic phases at the dendritic boundaries. And WC particles were distributed on the matrix forming intermediate composition region by partial melting of the surface of particles. The overlaid specimen exhibited tensile residual stress, which was accumulated through the beads due to contraction of the coating layer generated by rapid solidification, while the non-clad specimen showed compressive. Also, the specimen overlaid with 55 wt% stellite#6 and 45 wt% technolase40s showed a tensile stress higher than the specimen overlaid with 100% stellite#6 possibly, due to the difference between thermal expansion coefficients of the matrix and WC particles. Such tensile stresses can be potential driving force to provide an easy crack path ways for large brittle fractures

  3. Residual stress and crack initiation in laser clad composite layer with Co-based alloy and WC + NiCr

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Changmin; Park, Hyungkwon; Yoo, Jaehong [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Lee, Changhee, E-mail: chlee@hanyang.ac.kr [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Woo, WanChuck [Neutron Science Division, Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Park, Sunhong [Research Institute of Industrial Science & Technology, Hyo-ja-dong, Po-Hang, Kyoung-buk, San 32 (Korea, Republic of)

    2015-08-01

    Highlights: • Major problem, clad cracking in laser cladding process, was researched. • Residual stress measurements were performed quantitatively by neutron diffraction method along the surface of specimens. • Relationship between the residual stress and crack initiation was showed clearly. • Ceramic particle effect in the metal matrix was showed from the results of residual stress measurements. • Initiation sites of generating clad cracks were specifically studied in MMC coatings. - Abstract: Although laser cladding process has been widely used to improve the wear and corrosion resistance, there are unwanted cracking issues during and/or after laser cladding. This study investigates the tendency of Co-based WC + NiCr composite layers to cracking during the laser cladding process. Residual stress distributions of the specimen are measured using neutron diffraction and elucidate the correlation between the residual stress and the cracking in three types of cylindrical specimens; (i) no cladding substrate only, (ii) cladding with 100% stellite#6, and (iii) cladding with 55% stellite#6 and 45% technolase40s. The microstructure of the clad layer was composed of Co-based dendrite and brittle eutectic phases at the dendritic boundaries. And WC particles were distributed on the matrix forming intermediate composition region by partial melting of the surface of particles. The overlaid specimen exhibited tensile residual stress, which was accumulated through the beads due to contraction of the coating layer generated by rapid solidification, while the non-clad specimen showed compressive. Also, the specimen overlaid with 55 wt% stellite#6 and 45 wt% technolase40s showed a tensile stress higher than the specimen overlaid with 100% stellite#6 possibly, due to the difference between thermal expansion coefficients of the matrix and WC particles. Such tensile stresses can be potential driving force to provide an easy crack path ways for large brittle fractures

  4. Vanillin restrains non-enzymatic glycation and aggregation of albumin by chemical chaperone like function.

    Science.gov (United States)

    Awasthi, Saurabh; Saraswathi, N T

    2016-06-01

    Vanillin a major component of vanilla bean extract is commonly used a natural flavoring agent. Glycation is known to induce aggregation and fibrillation of globular proteins such as albumin, hemoglobin. Here we report the inhibitory potential of vanillin toward early and advanced glycation modification and amyloid like aggregation of albumin based on the determination of both early and advanced glycation and conformational changes in albumin using circular dichroism. Inhibition of aggregation and fibrillation of albumin was determined based on amyloid specific dyes i.e., Congo red and Thioflavin T and microscopic imaging. It was evident that vanillin restrains glycation of albumin and exhibits protective effect toward its native conformation. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Social exclusion intensifies anxiety-like behavior in adolescent rats.

    Science.gov (United States)

    Lee, Hyunchan; Noh, Jihyun

    2015-05-01

    Social connection reduces the physiological reactivity to stressors, while social exclusion causes emotional distress. Stressful experiences in rats result in the facilitation of aversive memory and induction of anxiety. To determine the effect of social interaction, such as social connection, social exclusion and equality or inequality, on emotional change in adolescent distressed rats, the emotional alteration induced by restraint stress in individual rats following exposure to various social interaction circumstances was examined. Rats were assigned to one of the following groups: all freely moving rats, all rats restrained, rats restrained in the presence of freely moving rats and freely moving rats with a restrained rat. No significant difference in fear-memory and sucrose consumption between all groups was found. Change in body weight significantly increased in freely moving rats with a restrained rat, suggesting that those rats seems to share the stressful experience of the restrained rat. Interestingly, examination of the anxiety-like behavior revealed only rats restrained in the presence of freely moving rats to have a significant increase, suggesting that emotional distress intensifies in positions of social exclusion. These results demonstrate that unequally excluded social interaction circumstances could cause the amplification of distressed status and anxiety-related emotional alteration. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. [The influence of meaning making following stressful life experiences on change of self-concept].

    Science.gov (United States)

    Horita, Ryo; Sugie, Masashi

    2013-10-01

    As interest in meaning making following stressful life experiences continues to grow, it is important to clarify the features and functions of the meaning- making process. We examined the influence of meaning making following stressful life experiences on change of self-concept. In two studies, university students selected their most stressful life experience and completed the Assimilation and Accommodation of Meaning Making Scale. In Study 1, 235 university students also completed questionnaires regarding post-traumatic growth and positive change of the sense of identity following their stressful life experience. The results of covariance structure analysis indicated that accommodation promoted a positive change of self-concept. In Study 2, 199 university students completed questionnaires regarding change of self-concept and emotion as a positive or negative change following stressful life experiences. The results of covariance structure analysis indicated that accommodation promoted a positive change, similar to the results of Study 1. In addition, accommodation also promoted negative change. However, assimilation did not promote positive change but did restrain negative change.

  7. The effects of cold rolling orientation and water chemistry on stress corrosion cracking behavior of 316L stainless steel in simulated PWR water environments

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Junjie [Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Mailbox 269, 149 Yanchang Road, Shanghai, 200072 (China); Lu, Zhanpeng, E-mail: zplu@t.shu.edu.cn [Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Mailbox 269, 149 Yanchang Road, Shanghai, 200072 (China); State Key Laboratory of Advanced Special Steels, Shanghai University, 149 Yanchang Road, Shanghai, 200072 (China); Xiao, Qian; Ru, Xiangkun; Han, Guangdong; Chen, Zhen [Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Mailbox 269, 149 Yanchang Road, Shanghai, 200072 (China); Zhou, Bangxin [Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Mailbox 269, 149 Yanchang Road, Shanghai, 200072 (China); State Key Laboratory of Advanced Special Steels, Shanghai University, 149 Yanchang Road, Shanghai, 200072 (China); Shoji, Tetsuo [New Industry Creation Hatchery Center, Tohoku University, Sendai 980-8579 (Japan)

    2016-04-15

    Stress corrosion cracking behaviors of one-directionally cold rolled 316L stainless steel specimens in T–L and L–T orientations were investigated in hydrogenated and deaerated PWR primary water environments at 310 °C. Transgranular cracking was observed during the in situ pre-cracking procedure and the crack growth rate was almost not affected by the specimen orientation. Locally intergranular stress corrosion cracks were found on the fracture surfaces of specimens in the hydrogenated PWR water. Extensive intergranular stress corrosion cracks were found on the fracture surfaces of specimens in deaerated PWR water. More extensive cracks were found in specimen T–L orientation with a higher crack growth rate than that in the specimen L–T orientation with a lower crack growth rate. Crack branching phenomenon found in specimen L–T orientation in deaerated PWR water was synergistically affected by the applied stress direction as well as the preferential oxidation path along the elongated grain boundaries, and the latter was dominant. - Highlights: • Transgranular fatigue crack growth rate was not affected by the cold rolling orientation. • Locally intergranular SCC was found in the hydrogenated PWR water. • Extensive intergranular SCC cracks were found in deaerated PWR water. • T–L specimen showed more extensive SCC cracks and a higher crack growth rate. • Crack branching related to the applied stress and the preferential oxidation path.

  8. A general mixed mode fracture mechanics test specimen: The DCB-specimen loaded with uneven bending moments

    DEFF Research Database (Denmark)

    Sørensen, Bent F.; Jørgensen, K.; Jacobsen, T.K.

    2004-01-01

    A mixed mode specimen is proposed for fracture mechanics characterisation of adhesive joints, laminates and multilayers. The specimen is a double cantilever beam specimen loaded with uneven bending moments at the two free beams. By varying the ratiobetween the two applied moments, the full mode...... glass-fibre laminates was studied. The mixed mode fracture resistance increased with increasing crack length due to fibre bridging, eventually reaching asteady-state level (R-curve behaviour). The steady-state fracture toughness level increased with increasing tangential crack opening displacement....

  9. Worry or craving? A selective review of evidence for food-related attention biases in obese individuals, eating-disorder patients, restrained eaters and healthy samples.

    Science.gov (United States)

    Werthmann, Jessica; Jansen, Anita; Roefs, Anne

    2015-05-01

    Living in an 'obesogenic' environment poses a serious challenge for weight maintenance. However, many people are able to maintain a healthy weight indicating that not everybody is equally susceptible to the temptations of this food environment. The way in which someone perceives and reacts to food cues, that is, cognitive processes, could underlie differences in susceptibility. An attention bias for food could be such a cognitive factor that contributes to overeating. However, an attention bias for food has also been implicated with restrained eating and eating-disorder symptomatology. The primary aim of the present review was to determine whether an attention bias for food is specifically related to obesity while also reviewing evidence for attention biases in eating-disorder patients, restrained eaters and healthy-weight individuals. Another aim was to systematically examine how selective attention for food relates (causally) to eating behaviour. Current empirical evidence on attention bias for food within obese samples, eating-disorder patients, and, even though to a lesser extent, in restrained eaters is contradictory. However, present experimental studies provide relatively consistent evidence that an attention bias for food contributes to subsequent food intake. This review highlights the need to distinguish not only between different (temporal) attention bias components, but also to take different motivations (craving v. worry) and their impact on attentional processing into account. Overall, the current state of research suggests that biased attention could be one important cognitive mechanism by which the food environment tempts us into overeating.

  10. Rapid exhumation of Cretaceous arc-rocks along the Blue Mountains restraining bend of the Enriquillo-Plantain Garden fault, Jamaica, using thermochronometry from multiple closure systems

    Science.gov (United States)

    Cochran, William J.; Spotila, James A.; Prince, Philip S.; McAleer, Ryan J.

    2017-01-01

    The effect of rapid erosion on kinematic partitioning along transpressional plate margins is not well understood, particularly in highly erosive climates. The Blue Mountains restraining bend (BMRB) of eastern Jamaica, bound to the south by the left-lateral Enriquillo-Plantain Garden fault (EPGF), offers an opportunity to test the effects of highly erosive climatic conditions on a 30-km-wide restraining bend system. No previous thermochronometric data exists in Jamaica to describe the spatial or temporal pattern of rock uplift and how oblique (> 20°) plate motion is partitioned into vertical strain. To define the exhumation history, we measured apatite (n = 10) and zircon (n = 6) (U-Th)/He ages, 40Ar/39Ar (n = 2; amphibole and K-spar) ages, and U/Pb zircon (n = 2) crystallization ages. Late Cretaceous U/Pb and 40Ar/39Ar ages (74–68 Ma) indicate rapid cooling following shallow emplacement of plutons during north-south subduction along the Great Caribbean Arc. Early to middle Miocene zircon helium ages (19–14 Ma) along a vertical transect suggest exhumation and island emergence at ~ 0.2 mm/yr. Older zircon ages 10–15 km to the north (44–35 Ma) imply less rock uplift. Apatite helium ages are young (6–1 Ma) across the entire orogen, suggesting rapid exhumation of the BMRB since the late Miocene. These constraints are consistent with previous reports of restraining bend formation and early emergence of eastern Jamaica. An age-elevation relationship from a vertical transect implies an exhumation rate of 0.8 mm/yr, while calculated closure depths and thermal modeling suggests exhumation as rapid as 2 mm/yr. The rapid rock uplift rates in Jamaica are comparable to the most intense transpressive zones worldwide, despite the relatively slow (5–7 mm/yr) strike-slip rate. We hypothesize highly erosive conditions in Jamaica enable a higher fraction of plate motion to be accommodated by vertical deformation. Thus, strike-slip restraining bends may evolve differently

  11. Stress intensity factors and constant stress terms for interface cracks

    International Nuclear Information System (INIS)

    Fett, T.; Rizzi, G.

    2004-01-01

    In bi-material joints cracks can propagate along the interface or kink into one of the two materials. Whereas the energy release rate can be applied for interface cracks in the same way as usual for homogeneous materials, the computation of stresses in the vicinity of the crack tip is significantly more complicated. In order to assess crack kinking, it is necessary to know the mixed-mode stress intensity factor contributions K I and K II as well as the constant stress terms in the two materials. Whereas the stress intensity factors are available for a large number of infinite and semi-infinite bodies, there is experimental interest in practically used test specimens. This especially holds for the constant x-stress terms. Finite element computations are performed for the special case of a disappearing second Dundurs parameter, i.e. β=0. The fracture mechanics parameters K I , K II , σ 0 for the interface crack are reported in the form of diagrams and approximate relations. (orig.)

  12. Study of The Effect of Draw-bead Geometry on Stretch Flange Formability

    Science.gov (United States)

    Orlov, O. S.; Winkler, S. L.; Worswick, M. J.; Lloyd, D. J.; Finn, M. J.

    2004-06-01

    A fully instrumented stretch flange press equipped with a back-up punch and draw-beads near the specimen cutout area is simulated. The utilization of different draw-bead geometries is examined numerically to determine the restraining forces, strains and amount of damage generated in stretch flanges during forming. Simulations of the forming process are conducted for 1mm AA5182 sheets with circular cutouts. The damage evolution with the deformed specimens is investigated using the explicit dynamic finite element code, LS-DYNA, with a modified Gurson-based material model. It was found that double draw-beads can provide the same amount of restraining force as single draw-beads, but at reduced levels of damage.

  13. Recent advances in FIB-TEM specimen preparation techniques

    International Nuclear Information System (INIS)

    Li Jian; Malis, T.; Dionne, S.

    2006-01-01

    Preparing high-quality transmission electron microscopy (TEM) specimens is of paramount importance in TEM studies. The development of the focused ion beam (FIB) microscope has greatly enhanced TEM specimen preparation capabilities. In recent years, various FIB-TEM foil preparation techniques have been developed. However, the currently available techniques fail to produce TEM specimens from fragile and ultra-fine specimens such as fine fibers. In this paper, the conventional FIB-TEM specimen preparation techniques are reviewed, and their advantages and shortcomings are compared. In addition, a new technique suitable to prepare TEM samples from ultra-fine specimens is demonstrated

  14. Reliability of 46,XX results on miscarriage specimens: a review of 1,222 first-trimester miscarriage specimens.

    Science.gov (United States)

    Lathi, Ruth B; Gustin, Stephanie L F; Keller, Jennifer; Maisenbacher, Melissa K; Sigurjonsson, Styrmir; Tao, Rosina; Demko, Zach

    2014-01-01

    To examine the rate of maternal contamination in miscarriage specimens. Retrospective review of 1,222 miscarriage specimens submitted for chromosome testing with detection of maternal cell contamination (MCC). Referral centers requesting genetic testing of miscarriage specimens at a single reference laboratory. Women with pregnancy loss who desire complete chromosome analysis of the pregnancy tissue. Analysis of miscarriage specimens using single-nucleotide polymorphism (SNP) microarray technology with bioinformatics program to detect maternal cell contamination. Chromosome content of miscarriages and incidence of 46,XX results due to MCC. Of the 1,222 samples analyzed, 592 had numeric chromosomal abnormalities, and 630 were normal 46,XX or 46,XY (456 and 187, respectively). In 269 of the 46,XX specimens, MCC with no embryonic component was found. With the exclusion of maternal 46,XX results, the chromosomal abnormality rate increased from 48% to 62%, and the ratio for XX to XY results dropped from 2.6 to 1.0. Over half of the normal 46,XX results in miscarriage specimens were due to MCC. The use of SNPs in MCC testing allows for precise identification of chromosomal abnormalities in miscarriage as well as MCC, improving the accuracy of products of conception testing. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  15. Development of fatigue life evaluation technique using miniature specimen

    International Nuclear Information System (INIS)

    Nogami, Shuhei; Nishimura, Arata; Fujiwara, Masaharu; Hisaka, Tomoaki

    2012-01-01

    To develop the fatigue life evaluation technique using miniature specimen, the investigation of the effect of specimen size and specimen shape on the fatigue life and the development of the fatigue testing machine, especially the extensometer, were carried out. The effect of specimen size on the fatigue life was almost negligible for the round-bar specimens. The shorter fatigue life at relatively low strain range conditions for the hourglass specimen that the standard specimen were observed. Therefore the miniature round-bar specimen was considered to be adequate for the fatigue life evaluation using small specimen. Several types of the extensometer system using a strain gauge and a laser has been developed for realizing the fatigue test of the miniature round-bar specimen at high temperature in vacuum. (author)

  16. Model of the Evolution of Deformation Defects and Irreversible Strain at Thermal Cycling of Stressed TiNi Alloy Specimen

    Directory of Open Access Journals (Sweden)

    Volkov Aleksandr E.

    2015-01-01

    Full Text Available This microstructural model deals with simulation both of the reversible and irreversible deformation of a shape memory alloy (SMA. The martensitic transformation and the irreversible deformation due to the plastic accommodation of martensite are considered on the microscopic level. The irreversible deformation is described from the standpoint of the plastic flow theory. Isotropic hardening and kinematic hardening are taken into account and are related to the densities of scattered and oriented deformation defects. It is supposed that the phase transformation and the micro plastic deformation are caused by the generalized thermodynamic forces, which are the derivatives of the Gibbs’ potential of the two-phase body. In terms of these forces conditions for the phase transformation and for the micro plastic deformation on the micro level are formulated. The macro deformation of the representative volume of the polycrystal is calculated by averaging of the micro strains related to the evolution of the martensite Bain’s variants in each grain comprising this volume. The proposed model allowed simulating the evolution of the reversible and of the irreversible strains of a stressed SMA specimen under thermal cycles. The results show a good qualitative agreement with available experimental data. Specifically, it is shown that the model can describe a rather big irreversible strain in the first thermocycle and its fast decrease with the number of cycles.

  17. Residual stresses under quasi-static and cyclic loading in shot peened Inconel 718

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmeister, Juergen; Schulze, Volker [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany). Inst. for Applied Materials; Hessert, Roland; Koenig, Gerhard [MTU Aero Engines, Munich (Germany)

    2012-01-15

    The residual stress state induced by shot peening should be taken into account in the dimensioning of turbine components. Understanding the changes in the residual stress state caused by the application of quasi-static and cyclic loads is a prerequisite. In order to describe the residual stress state after quasi-static loading, several different shot peened Inconel 718 specimens were loaded isothermally up to specific tensile loadings. To analyze the residual stress state after cyclic loading, isothermal low cycle fatigue tests were performed. These tests were stopped after a defined number of cycles. Finally, after the specimens had been subjected to different loads, the surface residual stresses and - for special loadings - the residual stress depth distributions were determined experimentally by using X-ray diffraction. The surface - core model was adapted so that the complete residual stress depth distribution after quasi-static and cyclic loading can now be described. (orig.)

  18. Residual Stress Analysis Based on Acoustic and Optical Methods

    Directory of Open Access Journals (Sweden)

    Sanichiro Yoshida

    2016-02-01

    Full Text Available Co-application of acoustoelasticity and optical interferometry to residual stress analysis is discussed. The underlying idea is to combine the advantages of both methods. Acoustoelasticity is capable of evaluating a residual stress absolutely but it is a single point measurement. Optical interferometry is able to measure deformation yielding two-dimensional, full-field data, but it is not suitable for absolute evaluation of residual stresses. By theoretically relating the deformation data to residual stresses, and calibrating it with absolute residual stress evaluated at a reference point, it is possible to measure residual stresses quantitatively, nondestructively and two-dimensionally. The feasibility of the idea has been tested with a butt-jointed dissimilar plate specimen. A steel plate 18.5 mm wide, 50 mm long and 3.37 mm thick is braze-jointed to a cemented carbide plate of the same dimension along the 18.5 mm-side. Acoustoelasticity evaluates the elastic modulus at reference points via acoustic velocity measurement. A tensile load is applied to the specimen at a constant pulling rate in a stress range substantially lower than the yield stress. Optical interferometry measures the resulting acceleration field. Based on the theory of harmonic oscillation, the acceleration field is correlated to compressive and tensile residual stresses qualitatively. The acoustic and optical results show reasonable agreement in the compressive and tensile residual stresses, indicating the feasibility of the idea.

  19. TEM specimen preparation of semiconductor-PMMA-metal interfaces

    International Nuclear Information System (INIS)

    Thangadurai, P.; Lumelsky, Yulia; Silverstein, Michael S.; Kaplan, Wayne D.

    2008-01-01

    Transmission electron microscopy (TEM) cross-section specimens of PMMA in contact with gold and Si were prepared by focused ion beam (FIB) and compared with plan-view PMMA specimens prepared by a dip-coating technique. The specimens were characterized by TEM and electron energy loss spectroscopy (EELS). In the cross-section specimens, the thin films of PMMA were located in a Si-PMMA-Au multilayer. Different thicknesses of PMMA films were spin-coated on the Si substrates. The thickness of the TEM specimens prepared by FIB was estimated using EELS to be 0.65 of the plasmon mean-free-path. Along the PMMA-Au interface, Au particle diffusion into the PMMA was observed, and the size of the Au particles was in the range of 2-4 nm. Dip-coating of PMMA directly on Cu TEM grids resulted in thin specimens with a granular morphology, with a thickness of 0.58 of the plasmon mean-free-path. The dip-coated specimens were free from ion milling induced artifacts, and thus serve as control specimens for comparison with the cross-sectioned specimens prepared by FIB

  20. Restraining Na-Montmorillonite Delamination in Water by Adsorption of Sodium Dodecyl Sulfate or Octadecyl Trimethyl Ammonium Chloride on the Edges

    Directory of Open Access Journals (Sweden)

    Hongliang Li

    2016-08-01

    Full Text Available The delamination of montmorillonite in water leads to sliming in ore slurry, which is detrimental to mineral flotation and solid/water separation. In this work, the delamination of Na-montmorillonite (Na-MMT has been restrained by sodium dodecyl sulfate (SDS or octadecyl trimethyl ammonium chloride (1831 through the adsorption on the edge of the mineral. The experimental results have shown that the pretreatment by adding SDS and 1831 could greatly reduce the Stokes size percentage of −1.1 µm particles in the aqueous Na-MMT suspension. From the X-ray diffractometer (XRD results, the interlayer spacing of the MMT pre-treated by SDS and 1831 is smaller than that of original MMT particles. Adsorption position of SDS and 1831 on MMT surfaces was analyzed by the measurements of adsorption capacity of SDS and 1831, inductively-coupled plasma spectra, and zeta potential before and after the plane surface of MMT was covered with tetraethylenepentaminecopper ([Cu(tetren]2+. The results indicated that SDS and 1831 are adsorbed on the edge and the whole surface of Na-MMT, respectively. Delamination of MMT could be well restrained by the adsorption of SDS and 1831 on the edges of MMT.

  1. Lemon Odor Reduces Stress-induced Neuronal Activation in the Emotion Expression System: An Animal Model Study

    Science.gov (United States)

    Sanada, Kazue; Sugimoto, Koji; Shutoh, Fumihiro; Hisano, Setsuji

    Perception of particular sensory stimuli from the surroundings can influence emotion in individuals. In an uncomfortable situation, humans protect themselves from some aversive stimulus by acutely evoking a stress response. Animal model studies have contributed to an understanding of neuronal mechanisms underlying the stress response in humans. To study a possible anti-stressful effect of lemon odor, an excitation of neurons secreting corticotropin-releasing hormone (CRH) as a primary factor of the hypothalamic-pituitary-adrenal axis (HPA) was analyzed in animal model experiments, in which rats are restrained in the presence or absence of the odor. The effect was evaluated by measuring expression of c-Fos (an excited neuron marker) in the hypothalamic paraventricular nucleus (PVN), a key structure of the HPA in the brain. We prepared 3 animal groups: Groups S, L and I. Groups S and L were restrained for 30 minutes while being blown by air and being exposed to the lemon odor, respectively. Group I was intact without any treatment. Two hours later of the onset of experiments, brains of all groups were sampled and processed for microscopic examination. Brain sections were processed for c-Fos immunostaining and/or in situ hybridization for CRH. In Group S but not in Group I, c-Fos expression was found in the PVN. A combined in situ hybridization-immunohistochemical dual labeling revealed that CRH mRNA-expressing neurons express c-Fos. In computer-assisted automatic counting, the incidence of c-Fos-expressing neurons in the entire PVN was statistically lower in Group L than in Group S. Detailed analysis of PVN subregions demonstrated that c-Fos-expressing neurons are fewer in Group L than in Group S in the dorsal part of the medial parvocellular subregion. These results may suggest that lemon odor attenuates the restraint stress-induced neuronal activation including CRH neurons, presumably mimicking an aspect of stress responses in humans.

  2. Comparison of gross anatomy test scores using traditional specimens vs. QuickTime Virtual Reality animated specimens

    Science.gov (United States)

    Maza, Paul Sadiri

    In recent years, technological advances such as computers have been employed in teaching gross anatomy at all levels of education, even in professional schools such as medical and veterinary medical colleges. Benefits of computer based instructional tools for gross anatomy include the convenience of not having to physically view or dissect a cadaver. Anatomy educators debate over the advantages versus the disadvantages of computer based resources for gross anatomy instruction. Many studies, case reports, and editorials argue for the increased use of computer based anatomy educational tools, while others discuss the necessity of dissection for various reasons important in learning anatomy, such as a three-dimensional physical view of the specimen, physical handling of tissues, interactions with fellow students during dissection, and differences between specific specimens. While many articles deal with gross anatomy education using computers, there seems to be a lack of studies investigating the use of computer based resources as an assessment tool for gross anatomy, specifically using the Apple application QuickTime Virtual Reality (QTVR). This study investigated the use of QTVR movie modules to assess if using computer based QTVR movie module assessments were equal in quality to actual physical specimen examinations. A gross anatomy course in the College of Veterinary Medicine at Cornell University was used as a source of anatomy students and gross anatomy examinations. Two groups were compared, one group taking gross anatomy examinations in a traditional manner, by viewing actual physical specimens and answering questions based on those specimens. The other group took the same examinations using the same specimens, but the specimens were viewed as simulated three-dimensional objects in a QTVR movie module. Sample group means for the assessments were compared. A survey was also administered asking students' perceptions of quality and user-friendliness of the QTVR

  3. Evaluation of irradiated coating material specimens

    International Nuclear Information System (INIS)

    Lee, Yong Jin; Nam, Seok Woo; Cho, Lee Moon

    2007-12-01

    Evaluation result of irradiated coating material specimens - Coating material specimens radiated Gamma Energy(Co 60) in air condition. - Evaluation conditions was above 1 X 10 4 Gy/hr, and radiated TID 2.0 X 10 6 Gy. - The radiated coating material specimens, No Checking, Cracking, Flaking, Delamination, Peeling and Blistering. - Coating system at the Kori no. 1 and APR 1400 Nuclear power plant, evaluation of irradiated coating materials is in accordance with owner's requirement(2.0 X 10 6 Gy)

  4. Preparation of Shrinkage Compensating Concrete with HCSA Expansive Agent

    Science.gov (United States)

    Li, Changcheng; Jia, Fujia

    2017-10-01

    Shrinkage compensating concrete (SCC) has become one of the best effective methods of preventing and reducing concrete cracking. SCC is prepared by HCSA high performance expansive agent for concrete which restrained expansion rate is optimized by 0.057%. Slump, compressive strength, restrained expansion rate and cracking resistance test were carried out on SCC. The results show that the initial slump of fresh SCC was about 220mm-230mm, while slump after 2 hours was 180mm-200mm. The restrained expansion rate of SCC increased with the mixing amount of expansive agent. After cured in water for 14 days, the restrained expansion rate of C35 and C40 SCC were 0.020%-0.032%. With the dosage of expansive agent increasing, restrained expansion rate of SCC increased, maximum compressive stress and cracking stress improved, cracking temperature fell, thus cracking resistance got effectively improvement.

  5. Effect of Chronic Restraint Stress on HPA Axis Activity and Expression of BDNF and Trkb in the Hippocampus of Pregnant Rats: Possible Contribution in Depression during Pregnancy and Postpartum Period

    OpenAIRE

    Maghsoudi, Nader; Ghasemi, Rasoul; Ghaempanah, Zahra; Ardekani, Ali M.; Nooshinfar, Elahe; Tahzibi, Abbas

    2014-01-01

    Introduction Brain-Derived Neurotrophic Factor (BDNF) and its receptor, TrkB, in the hippocampus are targets for adverse effects of stress paradigms; in addition, BDNF and its receptor play key role in the pathology of brain diseases like depression. In the present study, we evaluated the possible role of hippocampal BDNF in depression during pregnancy, Methods To achieve the purpose, repeated restrain stress (1 or 3 hours daily for 7 days) during the last week of pregnancy was used and alter...

  6. Foxo4- and Stat3-dependent IL-10 production by progranulin in regulatory T cells restrains inflammatory arthritis

    Science.gov (United States)

    Fu, Wenyu; Hu, Wenhuo; Shi, Lei; Mundra, Jyoti Joshi; Xiao, GuoZhi; Dustin, Michael L.; Liu, Chuan-ju

    2017-01-01

    Progranulin (PGRN) restrains inflammation and is therapeutic against inflammatory arthritis; however, the underlying immunological mechanism remains unknown. In this study, we demonstrated that anti-inflammatory cytokine IL-10 was a critical mediator for PGRN-mediated anti-inflammation in collagen-induced arthritis by using PGRN and IL-10 genetically modified mouse models. IL-10 green fluorescent protein reporter mice revealed that regulatory T (Treg) cells were the predominant source of IL-10 in response to PGRN. In addition, PGRN-mediated expansion and activation of Treg cells, as well as IL-10 production, depends on JNK signaling, but not on known PGRN-activated ERK and PI3K pathways. Furthermore, microarray and chromatin immunoprecipitation sequencing screens led to the discovery of forkhead box protein O4 and signal transducer and activator of transcription 3 as the transcription factors required for PGRN induction of IL-10 in Treg cells. These findings define a previously unrecognized signaling pathway that underlies IL-10 production by PGRN in Treg cells and present new insights into the mechanisms by which PGRN resolves inflammation in inflammatory conditions and autoimmune diseases, particularly inflammatory arthritis.—Fu, W., Hu, W., Shi, L., Mundra, J. J. Xiao, G., Dustin, M. L., Liu, C. Foxo4- and Stat3-dependent IL-10 production by progranulin in regulatory T cells restrains inflammatory arthritis. PMID:28011648

  7. Measurements and Counts for Notacanthidae Specimens

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Taxonomic data were collected for specimens of deep-sea spiny eels (Notacanthidae) from the Hawaiian Ridge by Bruce C. Mundy. Specimens were collected off the north...

  8. Influence of fly ash, slag cement and specimen curing on shrinkage of bridge deck concrete.

    Science.gov (United States)

    2014-12-01

    Cracks occur in bridge decks due to restrained shrinkage of concrete materials. Concrete materials shrink as : cementitious materials hydrate and as water that is not chemically bonded to cementitious materials : migrates from the high humid environm...

  9. Prediction of crack growth direction by Strain Energy Sih's Theory on specimens SEN under tension-compression biaxial loading employing Genetic Algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-MartInez R; Lugo-Gonzalez E; Urriolagoitia-Calderon G; Urriolagoitia-Sosa G; Hernandez-Gomez L H; Romero-Angeles B; Torres-San Miguel Ch, E-mail: rrodriguezm@ipn.mx, E-mail: urrio332@hotmail.com, E-mail: guiurri@hotmail.com, E-mail: luishector56@hotmail.com, E-mail: romerobeatriz98@hotmail.com, E-mail: napor@hotmail.com [INSTITUTO POLITECNICO NACIONAL Seccion de Estudios de Posgrado e Investigacion (SEPI), Escuela Superior de Ingenieria Mecanica y Electrica (ESIME), Edificio 5. 2do Piso, Unidad Profesional Adolfo Lopez Mateos ' Zacatenco' Col. Lindavista, C.P. 07738, Mexico, D.F. (Mexico)

    2011-07-19

    Crack growth direction has been studied in many ways. Particularly Sih's strain energy theory predicts that a fracture under a three-dimensional state of stress spreads in direction of the minimum strain energy density. In this work a study for angle of fracture growth was made, considering a biaxial stress state at the crack tip on SEN specimens. The stress state applied on a tension-compression SEN specimen is biaxial one on crack tip, as it can observed in figure 1. A solution method proposed to obtain a mathematical model considering genetic algorithms, which have demonstrated great capacity for the solution of many engineering problems. From the model given by Sih one can deduce the density of strain energy stored for unit of volume at the crack tip as dW = [1/2E({sigma}{sup 2}{sub x} + {sigma}{sup 2}{sub y}) - {nu}/E({sigma}{sub x}{sigma}{sub y})]dV (1). From equation (1) a mathematical deduction to solve in terms of {theta} of this case was developed employing Genetic Algorithms, where {theta} is a crack propagation direction in plane x-y. Steel and aluminium mechanical properties to modelled specimens were employed, because they are two of materials but used in engineering design. Obtained results show stable zones of fracture propagation but only in a range of applied loading.

  10. Notch effects in uniaxial tension specimens

    International Nuclear Information System (INIS)

    Delph, T.J.

    1979-03-01

    Results of a literature survey on the effect of notches on the time-dependent failure of uniaxial tension specimens at elevated temperatures are presented. Particular attention is paid to the failure of notched specimens containing weldments

  11. A plastic collapse method for evaluating rotation capacity of full-restrained steel moment connections

    Directory of Open Access Journals (Sweden)

    Lee Kyungkoo

    2008-01-01

    Full Text Available An analytical method to model failure of steel beam plastic hinges due to local buckling and low-cycle fatigue is proposed herein. This method is based on the plastic collapse mechanism approach and a yield-line plastic hinge (YLPH model whose geometry is based on buckled shapes of beam plastic hinges observed in experiments. Two limit states, strength degradation failure induced by local buckling and low-cycle fatigue fracture, are considered. The proposed YLPH model was developed for FEMA-350 WUF-W, RBS and Free Flange connections and validated in comparisons to experimental data. This model can be used to estimate the seismic rotation capacity of fully restrained beam-column connections in special steel moment-resisting frames under both monotonic and cyclic loading conditions.

  12. Residual stresses relaxation in surface-hardened half-space under creep conditions

    Directory of Open Access Journals (Sweden)

    Vladimir P. Radchenko

    2015-09-01

    Full Text Available We developed the method for solving the problem of residual stresses relaxation in surface-hardened layer of half-space under creep conditions. At the first stage we made the reconstruction of stress-strain state in half-space after plastic surface hardening procedure based on partial information about distribution for one residual stress tensor component experimentally detected. At the second stage using a numerical method we solve the problem of relaxation of self-balanced residual stresses under creep conditions. To solve this problem we introduce the following Cartesian system: x0y plane is aligned with hardened surface of half-space and 0z axis is directed to the depth of hardened layer. We also introduce the hypotheses of plane sections parallel to x0z and y0z planes. Detailed analysis of the problem has been done. Comparison of the calculated data with the corresponding test data was made for plane specimens (rectangular parallelepipeds made of EP742 alloy during T=650°C after the ultrasonic hardening with four hardening modes. We use half-space to model these specimens because penetration's depth of residual stresses is less than specimen general size in two digit exponent. There is enough correspondence of experimental and calculated data. It is shown that there is a decay (in modulus of pressing residual stresses under creep in 1.4–1.6 times.

  13. Neuropharmacological Manipulation of Restrained and Free-flying Honey Bees, Apis mellifera.

    Science.gov (United States)

    Søvik, Eirik; Plath, Jenny A; Devaud, Jean-Marc; Barron, Andrew B

    2016-11-26

    Honey bees demonstrate astonishing learning abilities and advanced social behavior and communication. In addition, their brain is small, easy to visualize and to study. Therefore, bees have long been a favored model amongst neurobiologists and neuroethologists for studying the neural basis of social and natural behavior. It is important, however, that the experimental techniques used to study bees do not interfere with the behaviors being studied. Because of this, it has been necessary to develop a range of techniques for pharmacological manipulation of honey bees. In this paper we demonstrate methods for treating restrained or free-flying honey bees with a wide range of pharmacological agents. These include both noninvasive methods such as oral and topical treatments, as well as more invasive methods that allow for precise drug delivery in either systemic or localized fashion. Finally, we discuss the advantages and disadvantages of each method and describe common hurdles and how to best overcome them. We conclude with a discussion on the importance of adapting the experimental method to the biological questions rather than the other way around.

  14. Design of focused and restrained subsets from extremely large virtual libraries.

    Science.gov (United States)

    Jamois, Eric A; Lin, Chien T; Waldman, Marvin

    2003-11-01

    With the current and ever-growing offering of reagents along with the vast palette of organic reactions, virtual libraries accessible to combinatorial chemists can reach sizes of billions of compounds or more. Extracting practical size subsets for experimentation has remained an essential step in the design of combinatorial libraries. A typical approach to computational library design involves enumeration of structures and properties for the entire virtual library, which may be unpractical for such large libraries. This study describes a new approach termed as on the fly optimization (OTFO) where descriptors are computed as needed within the subset optimization cycle and without intermediate enumeration of structures. Results reported herein highlight the advantages of coupling an ultra-fast descriptor calculation engine to subset optimization capabilities. We also show that enumeration of properties for the entire virtual library may not only be unpractical but also wasteful. Successful design of focused and restrained subsets can be achieved while sampling only a small fraction of the virtual library. We also investigate the stability of the method and compare results obtained from simulated annealing (SA) and genetic algorithms (GA).

  15. Technique of manufacturing specimen of irradiated fuel rods

    International Nuclear Information System (INIS)

    Min, Duck Seok; Seo, Hang Seok; Min, Duck Kee; Koo, Dae Seo; Lee, Eun Pyo; Yang, Song Yeol

    1999-04-01

    Technique of manufacturing specimen of irradiated fuel rods to perform efficient PIE is developed by analyzing the relation between requiring time of manufacturing specimen and manufacturing method in irradiated fuel rods. It takes within an hour to grind 1 mm of specimen thickness under 150 rpm in speed of grinding, 600 g gravity in force using no.120, no.240, no.320 of grinding paper. In case of no.400 of grinding paper, it takes more an hour to grind the same thickness as above. It takes up to a quarter to grind 80-130 μm in specimen thickness using no.400 of grinding paper. When grinding time goes beyond 15 minutes, the grinding thickness of specimen does not exist. The polishing of specimen with 150 Rpms in speed of grinding machine, 600 g gravity in force, 10 minutes in polishing time using diamond paste 15 μm on polishing cloths amounts to 50 μm in specimen thickness. In case of diamond paste 9 μm on polishing cloth, the polishing of specimen amounts to 20 μm. The polishing thickness of specimen with 15 minutes in polishing time using 6 μm, 3 μm, 1 μm, 1/4 μm does not exist. Technique of manufacturing specimen of irradiated fuel rods will have application to the destructive examination of PIE. (author). 6 refs., 1 tab., 10 figs

  16. COMPARISON BETWEEN WOOD DRYING DEFECT SCORES: SPECIMEN TESTING X ANALYSIS OF KILN-DRIED BOARDS

    Directory of Open Access Journals (Sweden)

    Djeison Cesar Batista

    2015-04-01

    Full Text Available It is important to develop drying technologies for Eucalyptus grandis lumber, which is one of the most planted species of this genus in Brazil and plays an important role as raw material for the wood industry. The general aim of this work was to assess the conventional kiln drying of juvenile wood of three clones of Eucalyptus grandis. The specific aims were to compare the behavior between: i drying defects indicated by tests with wood specimens and conventional kiln-dried boards; and ii physical properties and the drying quality. Five 11-year-old trees of each clone were felled, and only flatsawn boards of the first log were used. Basic density and total shrinkage were determined, and the drying test with wood specimens at 100 °C was carried out. Kiln drying of boards was performed, and initial and final moisture content, moisture gradient in thickness, drying stresses and drying defects were assessed. The defect scoring method was used to verify the behavior between the defects detected by specimen testing and the defects detected in kiln-dried boards. As main results, the drying schedule was too severe for the wood, resulting in a high level of boards with defects. The behavior between the defects in the drying test with specimens and the defects of kiln-dried boards was different, there was no correspondence, according to the defect scoring method.

  17. Specimen loading list for the varying temperature experiment

    International Nuclear Information System (INIS)

    Qualls, A.L.; Sitterson, R.G.

    1998-01-01

    The varying temperature experiment HFIR-RB-13J has been assembled and inserted in the reactor. Approximately 5300 specimens were cleaned, inspected, matched, and loaded into four specimen holders. A listing of each specimen loaded into the steady temperature holder, its position in the capsule, and the identification of the corresponding specimen loaded into the varying temperature holder is presented in this report

  18. Perceived parental control of food intake is related to external, restrained and emotional eating in 7–12-year-old boys and girls

    NARCIS (Netherlands)

    Strien, T. van; Bazelier, F.G.

    2007-01-01

    This study examined the prevalence of external, restrained and emotional eating and the relationship of these disturbed types of eating behaviours with perceived parental control of food intake (pressure to eat and restriction) in a group of 7- to 12-year-old boys and girls (n=596). External eating

  19. Nuclear energy contribution to restraining greenhouse gas emissions and long-term energy production

    International Nuclear Information System (INIS)

    Khoda-Bakhsh, R.

    2004-01-01

    An important source of greenhouse gases, in particular Co 2 , is fossil fuel combustion for energy applications. Since nuclear power is an energy source that does not produce Co 2 , nuclear energy is already making a contribution to restraining greenhouse gas emissions. Because it has been internationally decided to reduce carbon dioxide emission before the year 2005 in order to avoid the green house catastrophy of the earth's atmosphere, and since there is an urgent need of energy especially in the developing countries, there is now a strong demand for alternative energy sources. While the established low cost energy production by light water nuclear fission reactors could be a solution for a period of transition (limited by resources of the light Uranium isotope), fusion energy is of interest for long- term and large scale energy production to provide the increased energy demand

  20. Contribution to the explanation of the spalling of small specimen without any mechanical restraint exposed to high temperature

    International Nuclear Information System (INIS)

    Morais, Marcus V.G. de; Pliya, Prosper; Noumowe, Albert; Beaucour, Anne-Lise; Ortola, Sophie

    2010-01-01

    The behaviour of concrete subjected to high temperature is studied. The aim of the study is to explain the spalling or bursting phenomenon observed during experimental studies in the laboratory. Mechanical computations are carried out with the finite element code CAST3M developed at the French Atomic Energy Agency (CEA). Heat gradient and water vapour pressure inside the concrete element are determined by using a thermo-hydrous model. Then, the mechanical stresses generated in the studied concrete element are calculated according to two behaviour assumptions: the linear isotropic elastic law and an elastoplastic model. Numerical simulations show that, during the heating cycles, tension stresses are developed in the central part and compression stresses at the surface of the cylindrical concrete element. The highest stresses appear when the surface temperature of the concrete element is about 300 o C. The tension stresses in the specimens then exceed the concrete tensile strength.

  1. Recent advances on Charpy specimen reconstitution techniques

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Arnaldo H.P.; Lobo, Raquel M.; Miranda, Carlos Alexandre J., E-mail: aandrade@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-07-01

    Charpy specimen reconstitution is widely used around the world as a tool to enhance or supplement surveillance programs of nuclear reactor pressure vessels. The reconstitution technique consists in the incorporation of a small piece from a previously tested specimen into a compound specimen, allowing to increase the number of tests. This is especially important if the available materials is restricted and fracture mechanics parameter have to be determined. The reconstitution technique must fulfill some demands, among them tests results like the original standard specimens and the loaded material of the insert must not be influenced by the welding and machining procedure. It is known that reconstitution of Charpy specimens may affect the impact energy in a consequence of the constraint of plastic deformation by the hardened weldment and HAZ. This paper reviews some recent advances of the reconstitution technique and its applications. (author)

  2. Recent advances on Charpy specimen reconstitution techniques

    International Nuclear Information System (INIS)

    Andrade, Arnaldo H.P.; Lobo, Raquel M.; Miranda, Carlos Alexandre J.

    2017-01-01

    Charpy specimen reconstitution is widely used around the world as a tool to enhance or supplement surveillance programs of nuclear reactor pressure vessels. The reconstitution technique consists in the incorporation of a small piece from a previously tested specimen into a compound specimen, allowing to increase the number of tests. This is especially important if the available materials is restricted and fracture mechanics parameter have to be determined. The reconstitution technique must fulfill some demands, among them tests results like the original standard specimens and the loaded material of the insert must not be influenced by the welding and machining procedure. It is known that reconstitution of Charpy specimens may affect the impact energy in a consequence of the constraint of plastic deformation by the hardened weldment and HAZ. This paper reviews some recent advances of the reconstitution technique and its applications. (author)

  3. Effect of Stress State on Fracture Features

    Science.gov (United States)

    Das, Arpan

    2018-02-01

    Present article comprehensively explores the influence of specimen thickness on the quantitative estimates of different ductile fractographic features in two dimensions, correlating tensile properties of a reactor pressure vessel steel tested under ambient temperature where the initial crystallographic texture, inclusion content, and their distribution are kept unaltered. It has been investigated that the changes in tensile fracture morphology of these steels are directly attributable to the resulting stress-state history under tension for given specimen dimensions.

  4. The influence of stress state on the reorientation of hydrides in a zirconium alloy

    International Nuclear Information System (INIS)

    Cinbiz, Mahmut N.; Koss, Donald A.; Motta, Arthur T.

    2016-01-01

    Hydride reorientation can occur in spent nuclear fuel cladding when subjected to a tensile hoop stress above a threshold value during cooling. Because in these circumstances the cladding is under a multiaxial stress state, the effect of stress biaxiality on the threshold stress for hydride reorientation is investigated using hydrided CWSR Zircaloy-4 sheet specimens containing ∼180 wt ppm of hydrogen and subjected to a two-cycle thermo-mechanical treatment. The study is based on especially designed specimens within which the stress biaxiality ratios range from uniaxial (σ_2/σ_1 = 0) to “near-equibiaxial” tension (σ_2/σ_1 = 0.8). The threshold stress is determined by mapping finite element calculations of the principal stresses and of the stress biaxiality ratio onto the hydride microstructure obtained after the thermo-mechanical treatment. The results show that the threshold stress (maximum principal stress) decreases from 155 to 75 MPa as the stress biaxiality increases from uniaxial to “near-equibiaxial” tension.

  5. Evolution of allowable stresses in shear for lumber

    Science.gov (United States)

    Robert L. Ethington; William L. Galligan; Henry M. Montrey; Alan D. Freas

    1979-01-01

    This paper surveys research leading to allowable shear stress parallel to grain for lumber. In early flexure tests of lumber, some pieces failed in shear. The estimated shear stress at time of failure was generally lower than shear strength measured on small, clear, straight-grained specimens. This and other engineering observations gave rise to adjustments that...

  6. Pilot evaluation of a fracture process zone in a modified compact tension specimen by X-ray tomography

    Czech Academy of Sciences Publication Activity Database

    Klon, J.; Seitl, S.; Šimonová, H.; Keršner, Z.; Kumpová, Ivana; Vavřík, Daniel

    2017-01-01

    Roč. 42, October (2017), s. 161-169 ISSN 1971-8993 R&D Projects: GA ČR(CZ) GA15-07210S Keywords : fracture process zone * X-ray * concrete * composites * stress intensity factor * compact tension specimen Subject RIV: JL - Materials Fatigue, Friction Mechanics OBOR OECD: Mechanical engineering http://www.fracturae.com/index.php/fis/article/view/IGF-ESIS.42.17

  7. Thermomechanical Stress in Cryopreservation Via Vitrification With Nanoparticle Heating as a Stress-Moderating Effect.

    Science.gov (United States)

    Eisenberg, David P; Bischof, John C; Rabin, Yoed

    2016-01-01

    This study focuses on thermomechanical effects in cryopreservation associated with a novel approach of volumetric heating by means on nanoparticles in an alternating electromagnetic field. This approach is studied for the application of cryopreservation by vitrification, where the crystalline phase is completely avoided-the cornerstone of cryoinjury. Vitrification can be achieved by quickly cooling the material to cryogenic storage, where ice cannot form. Vitrification can be maintained at the end of the cryogenic protocol by quickly rewarming the material back to room temperature. The magnitude of the rewarming rates necessary to maintain vitrification is much higher than the magnitude of the cooling rates that are required to achieve it in the first place. The most common approach to achieve the required cooling and rewarming rates is by exposing the specimen's surface to a temperature-controlled environment. Due to the underlying principles of heat transfer, there is a size limit in the case of surface heating beyond which crystallization cannot be prevented at the center of the specimen. Furthermore, due to the underlying principles of solid mechanics, there is a size limit beyond which thermal expansion in the specimen can lead to structural damage and fractures. Volumetric heating during the rewarming phase of the cryogenic protocol can alleviate these size limitations. This study suggests that volumetric heating can reduce thermomechanical stress, when combined with an appropriate design of the thermal protocol. Without such design, this study suggests that the level of stress may still lead to structural damage even when volumetric heating is applied. This study proposes strategies to harness nanoparticles heating in order to reduce thermomechanical stress in cryopreservation by vitrification.

  8. Synthetic sea water - An improved stress corrosion test medium for aluminum alloys

    Science.gov (United States)

    Humphries, T. S.; Nelson, E. E.

    1973-01-01

    A major problem in evaluating the stress corrosion cracking resistance of aluminum alloys by alternate immersion in 3.5 percent salt (NaCl) water is excessive pitting corrosion. Several methods were examined to eliminate this problem and to find an improved accelerated test medium. These included the addition of chromate inhibitors, surface treatment of specimens, and immersion in synthetic sea water. The results indicate that alternate immersion in synthetic sea water is a very promising stress corrosion test medium. Neither chromate inhibitors nor surface treatment (anodize and alodine) of the aluminum specimens improved the performance of alternate immersion in 3.5 percent salt water sufficiently to be classified as an effective stress corrosion test method.

  9. Magnetic property variation in carbon steel and chrome-molybdenum steel as a function of uniaxial stress noncoaxial with the magnetic field (abstract)

    International Nuclear Information System (INIS)

    Sablik, M.J.; Kaminski, D.A.; Jiles, D.C.; Biner, S.B.

    1993-01-01

    Magnescope 1 magnetic measurements were made on carbon steel specimens ranging from 0.1--0.8 wt %C and on chrome-molybdenum steel specimens cut from electric power plant pipes previously in service. The carbon steel specimens were heat-treated using three procedures: (1) spheroidization, (2) quenching, and (3) quench and tempering. The specimens were subjected to uniaxial tension up to 40 ksi. The inspection head was aligned so that the magnetic field was oriented at different angles with respect to the stress axis. Magnetic properties (such as coercivity and maximum differential permeability) were extracted from digitized magnetic hysteresis loop measurements. Magnetic properties were studied as a function of stress at each angle of stress-field orientation. To our knowledge, such a comprehensive study of noncoaxial stress and field effects has never been accomplished before for such a wide variety of steel specimens. Results for the various materials are presented for different orientation angles and compared to numerical results from the noncoaxial magnetomechanical hysteresis model of Sablik et al. 2

  10. Effects of High Mean Stress on High-cycle Fatigue Behavior of PWA 1480

    Science.gov (United States)

    Majumdar, S.; Antolovich, S. D.; Milligan, W. W.

    1985-01-01

    PWA 1480 is a potential candidate material for use in the high-pressure fuel turbine blade of the space shuttle main engine. As an engine material it will be subjected to high-cycle fatigue loading superimposed on a high mean stress due to combined centrifugal and thermal loadings. The present paper describes the results obtained in an ongoing program at the Argonne National Laboratory, sponsored by NASA Lewis, to determine the effects of a high mean stress on the high-cycle fatigue behavior of this material. Straight-gauge high-cycle fatigue specimens, 0.2 inch in diameter and with the specimen axis in the 001 direction, were supplied by NASA Lewis. The nominal room temperature yield and ultimate strength of the material were 146 and 154 ksi, respectively. Each specimen was polished with 1-micron diamond paste prior to testing. However, the surface of each specimen contained many pores, some of which were as large as 50 micron. In the initial tests, specimens were subjected to axial-strain-controlled cycles. However, very little cyclic plasticity was observed.

  11. Evaluation of Residual Stresses using Ring Core Method

    Directory of Open Access Journals (Sweden)

    Holý S.

    2010-06-01

    Full Text Available The method for measuring residual stresses using ring-core method is described. Basic relations are given for residual stress measurement along the specimen depth and simplified method is described for average residual stress estimation in the drilled layer for known principal stress directions. The estimation of calculated coefficients using FEM is described. Comparison of method sensitivity is made with hole-drilling method. The device for method application is described and an example of experiment is introduced. The accuracy of method is discussed. The influence of strain gauge rosette misalignment to the evaluated residual stresses is performed using FEM.

  12. Numerical Model of a Hybrid Damping System Composed of a Buckling Restrained Brace with a Magneto Rheological Damper

    Directory of Open Access Journals (Sweden)

    Filip-Vacarescu Norin

    2016-03-01

    Full Text Available This paper discusses the concept of a hybrid damper made from a combination of two dissipative devices. A passive hysteretic device like steel Buckling Restrained Brace (BRB can be combined with a magneto-rheological (MR Fluid Damper in order to obtain a hybrid dissipative system. This system can work either as a semi-active system, if the control unit is available, or as a passive system, tuned for working according to performance based seismic engineering (PBSE scale of reference parameters (i.e. interstory drift.

  13. Quantification of Residual Stress from Photonic Signatures of Fused Silica

    Science.gov (United States)

    Cramer, K. Elliott; Hayward, Maurice; Yost, William E.

    2013-01-01

    A commercially available grey-field polariscope (GFP) instrument for photoelastic examination is used to assess impact damage inflicted upon the outer-most pane of Space Shuttle windows made from fused silica. A method and apparatus for calibration of the stress-optic coefficient using four-point bending is discussed. The results are validated on known material (acrylic) and are found to agree with literature values to within 6%. The calibration procedure is then applied to fused-silica specimens and the stress-optic coefficient is determined to be 2.43 +/- 0.54 x 10(exp -12)/Pa. Fused silica specimens containing impacts artificially made at NASA's Hypervelocity Impact Technology Facility (HIT-F), to simulate damage typical during space flight, are examined. The damage sites are cored from fused silica window carcasses and examined with the GFP. The calibrated GFP measurements of residual stress patterns surrounding the damage sites are presented. Keywords: Glass, fused silica, photoelasticity, residual stress

  14. Interpretation of bend strength increase of graphite by the couple-stress theory

    International Nuclear Information System (INIS)

    Tang, P.Y.

    1981-05-01

    This paper presents a continued evaluation of the applicability of the couple-stress constitutive theory to graphite. The evaluation is performed by examining four-point bend and uniaxial tensile data of various sized cylindrical and square specimens for three grades of graphites. These data are superficially inconsistent and, usually, at variance with the predictions of classical theories. Nevertheless, this evaluation finds that they can be consistently interpreted by the couple-stress theory. This is compatible with results of an initial evaluation that considered one size of cylindrical specimen for H-451 graphite

  15. Specimen aspect ratio and progressive field strain development of sandstone under uniaxial compression by three-dimensional digital image correlation

    Directory of Open Access Journals (Sweden)

    H. Munoz

    2017-08-01

    Full Text Available The complete stress–strain characteristics of sandstone specimens were investigated in a series of quasi-static monotonic uniaxial compression tests. Strain patterns development during pre- and post-peak behaviours in specimens with different aspect ratios was also examined. Peak stress, post-peak portion of stress–strain, brittleness, characteristics of progressive localisation and field strain patterns development were affected at different extents by specimen aspect ratio. Strain patterns of the rocks were obtained by applying three-dimensional (3D digital image correlation (DIC technique. Unlike conventional strain measurement using strain gauges attached to specimen, 3D DIC allowed not only measuring large strains, but more importantly, mapping the development of field strain throughout the compression test, i.e. in pre- and post-peak regimes. Field strain development in the surface of rock specimen suggests that strain starts localising progressively and develops at a lower rate in pre-peak regime. However, in post-peak regime, strains increase at different rates as local deformations take place at different extents in the vicinity and outside the localised zone. The extent of localised strains together with the rate of strain localisation is associated with the increase in rate of strength degradation. Strain localisation and local inelastic unloading outside the localised zone both feature post-peak regime.

  16. Coherent gradient sensing method for measuring thermal stress field of thermal barrier coating structures

    Directory of Open Access Journals (Sweden)

    Kang Ma

    2017-01-01

    Full Text Available Coherent gradient sensing (CGS method can be used to measure the slope of a reflective surface, and has the merits of full-field, non-contact, and real-time measurement. In this study, the thermal stress field of thermal barrier coating (TBC structures is measured by CGS method. Two kinds of powders were sprayed onto Ni-based alloy using a plasma spraying method to obtain two groups of film–substrate specimens. The specimens were then heated with an oxy-acetylene flame. The resulting thermal mismatch between the film and substrate led to out-of-plane deformation of the specimen. The deformation was measured by the reflective CGS method and the thermal stress field of the structure was obtained through calibration with the help of finite element analysis. Both the experiment and numerical results showed that the thermal stress field of TBC structures can be successfully measured by CGS method.

  17. Fracture toughness measurements with subsize disk compact specimens

    International Nuclear Information System (INIS)

    Alexander, D.J.

    1992-01-01

    Special fixtures and test methods are necessary to facilitate the fracture toughness testing of small disk compact specimens of irradiated candidate materials for first-wall fusion applications. New methods have been developed for both the unloading compliance and potential drop techniques of monitoring crack growth. Provisions have been made to allow the necessary probes and instrumentation to be installed remotely using manipulators for testing of irradiated specimens in a hot cell. Laboratory trials showed that both unloading compliance and potential drop gave useful results. Both techniques gave similar data, and predicted the final crack extension within allowable limits. The results from the small disk compact specimens were similar to results from conventional compact specimen 12.7 mm thick. However, the slopes of the J-R curves from the larger specimens were lower, suggesting that the smaller disk compact specimens may have lost some constraint due to their size. The testing shows that it should be possible to generate useful J-R curve fracture toughness data from the small disk compact specimens

  18. Fracture toughness measurements with subsize disk compact specimens

    International Nuclear Information System (INIS)

    Alexander, D.J.

    1992-01-01

    Special fixtures and test methods have been developed for testing small disk compact specimens (12.5 mm diam by 4.6 mm thick). Both unloading compliance and potential drop methods have been used to monitor crack extension during the J-integral resistance (J-R) curve testing. Provisions have been made to allow the necessary probes and instrumentation to be installed remotely using manipulators for testing of irradiated specimens in a hat cell. Laboratory trials showed that both unloading compliance and potential drop gave useful results. Both techniques gave similar data, and predicted the final crack extension within allowable limits. The results from the small disk compact specimens were similar to results from conventional compact specimens 12.7-mm thick. However, the slopes of the J-R curves from the larger specimens were lower, suggesting that the smaller disk compact specimens may have lost some constraint due to their size. The testing shows that it should be possible to generate useful J-R curve fracture toughness data from the small disk compact specimens

  19. Effect of heating method on stress-rupture life

    Science.gov (United States)

    Bizon, P. T.; Calfo, F. D.

    1977-01-01

    The effect of radiant(furnace), resistance(electric current), burner(hot gas stream), and a combination of resistance and burner heating on intermediate time (100 to 300 hr) stress-rupture life and reduction of area was evaluated. All heating methods were studied using the nickel-based alloy Udimet 700 while all but burner heating were evaluated with the cobalt-based alloy Mar-M 509. Limited test results of eight other superalloys were also included in this study. Resistance heated specimens had about 20 to 30 percent of the stress-rupture life of radiant heated specimens. The limited burner heating data showed about a 50 percent life reduction as compared to the radiant heated tests. A metallurgical examination gave no explanation for these reductions.

  20. Fatigue behaviour of 304L steel welded structures: influence of residual stresses and surface mechanical finishing

    International Nuclear Information System (INIS)

    Magnier-Monin, L.

    2007-12-01

    This study focuses on the influence of residual stresses and surface mechanical finishing on lifetime of stainless steel 304L welded structures. Residual stresses are determined on specific specimens of three types: base-metal, as-welded and ground-welded specimens. Each type is submitted to fatigue tests in order to assess the influence of these parameters on the lifetime, and to determine their evolution. The experiments show that an important surface stress concentration is located in the weld root of as-welded structures, which has a negative effect on the fatigue life. The grinding operation generates high-level surface residual stresses but the lifetime is higher thanks to the reduction of the notch effect. The fatigue test results are compared to the nuclear industry best-fit S-N curves. This enables the determination of correction factors related to fatigue test results of polished specimens, and to assess the lifetime of structures. (author)

  1. Behavior of stressed and unstressed 304L specimens in tuff repository environmental conditions

    International Nuclear Information System (INIS)

    Juhas, M.C.; McCright, R.D.; Garrison, R.E.

    1984-11-01

    This paper presents preliminary results of an investigation of the behavior of candidate barrier material for high-level nuclear waste storage, Type 304L stainless steel, in tuff repository environmental conditions. Tuff is a densely welded, devitrified, igneous rock common to the proposed repository site at Yucca Mountain, Nevada. The results discussed include: irradiation corrosion tests, U-bend irradiation corrosion tests, slow strain rate tests, and bent beam stress corrosion tests. Results indicate that Type 304L stainless steel shows excellent resistance to general, localized, and stress corrosion under the environmental and microstructural conditions tested so far. The environmental test conditions are 50 to 100 0 C J-13 well water (non-saline, near neutral pH, and oxic in nature) and saturated steam at 100 0 C. Microstructural conditions include solution annealed and long furnace heat treatments to provoke a sensitized structure. However, this particular type of stainless steel may be susceptible to long-term, low-temperature sensitization because of the combination of expected time at elevated temperature and residual stress in the container after emplacement in the repository. Other grades of austenitic stainless steels are reported to be more resistant to low-temperature sensitization. Future work will therefore include more extensive testing of these grades. 15 references, 5 figures, 7 tables

  2. Stresses in sulfuric acid anodized coatings on aluminum

    Science.gov (United States)

    Alwitt, R. S.; Xu, J.; Mcclung, R. C.

    1993-01-01

    Stresses in porous anodic alumina coatings have been measured for specimens stabilized in air at different temperatures and humidities. In ambient atmosphere the stress is tensile after anodic oxidation and is compressive after sealing. Exposure to dry atmosphere causes the stress to change to strongly tensile, up to 110 MPa. The stress increase is proportional to the loss of water from the coating. These changes are reversible with changes in humidity. Similar reversible effects occur upon moderate temperature changes. The biaxial modulus of the coating is about 100 GPa.

  3. 7 CFR 97.8 - Specimen requirements.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Specimen requirements. 97.8 Section 97.8 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... required by the examiner to furnish representative specimens of the variety, or its flower, fruit, or seeds...

  4. Standard test method for determining a threshold stress intensity factor for environment-assisted cracking of metallic materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2003-01-01

    1.1 This test method covers the determination of the environment-assisted cracking threshold stress intensity factor parameters, KIEAC and KEAC, for metallic materials from constant-force testing of fatigue precracked beam or compact fracture specimens and from constant-displacement testing of fatigue precracked bolt-load compact fracture specimens. 1.2 This test method is applicable to environment-assisted cracking in aqueous or other aggressive environments. 1.3 Materials that can be tested by this test method are not limited by thickness or by strength as long as specimens are of sufficient thickness and planar size to meet the size requirements of this test method. 1.4 A range of specimen sizes with proportional planar dimensions is provided, but size may be variable and adjusted for yield strength and applied force. Specimen thickness is a variable independent of planar size. 1.5 Specimen configurations other than those contained in this test method may be used, provided that well-established stress ...

  5. The influence of microstructure on surface strain distributions in a nickel micro-tension specimen

    International Nuclear Information System (INIS)

    Turner, T J; Shade, P A; Schuren, J C; Groeber, M A

    2013-01-01

    This work presents an integrated experimental and modeling approach for examining the deformation of a pure nickel polycrystal utilizing micro-mechanical testing and a crystal-based elasto-viscoplastic finite-element model (CPFEM). The objective is to study the influence of microstructure on the heterogeneous deformation in polycrystalline materials, and to utilize a modeling framework to explore aspects of the deformation that are difficult or impossible to measure experimentally. To accomplish this, a micro-tension specimen containing 259 grains was created from a pure nickel foil material and deformed in uniaxial tension. After the deformation, the specimen was destructively serial sectioned in concert with electron back scattering diffraction, and these data were used to instantiate a CPFEM simulation. The material parameters in the CPFEM model were calibrated by matching the experimental macroscopic stress-strain response of the micro-tension specimen, and then the simulation results were compared with experimental surface deformations measured with digital image correlation. After validating the simulation results by comparing measured and predicted surface strain distributions, a parametric study of the influence of both crystallographic texture and grain morphology is presented to better understand the influence of microstructure on the development of heterogeneous deformation in the pure nickel polycrystalline material. (paper)

  6. Manufacturing method for intragranular stress corrosion cracking-induced test specimen for stainless steel pipeline

    International Nuclear Information System (INIS)

    Futagawa, Kiyoshi.

    1994-01-01

    In a manufacturing step for intragranular stress corrosion cracking-induced for stainless steel pipelines, pipe are abutted against with each other and welded, and a heat affected portion is applied with a sensitizing heat treatment. Further, a crevice jig is attached near the heat affected portion at the inner surface of the pipe and kept in a chlorine ion added water under high temperature and high pressure at a predetermined period of time. If tap water is used instead of purified water for C.P.T. test in a step of forming sample of IGSCC (intergranular stress corrosion cracking), since the chlorine ion concentration in the tap water is relatively high, TGSCC (intragranular stress corrosion crackings caused in all of the samples. A heat input and an interlayer temperature are determined for the material of stainless pipe having a carbon content of more than 0.05% so that the welding residual stress on the inner surface is applied as tension. The condition for the heat treatment is determined as, for example, 500degC x 24hr, and the samples are kept under water at high temperature and high pressure applied with chlorine ions for 500 to 200hours. As a result, since samples of TGSCC can be formed by utilizing the manufacturing step for IGSCC, there is no requirement for providing devices for applying environmental factors separately. (N.H.)

  7. Welding-induced local maximum residual stress in heat affected zone of low-carbon austenitic stainless steel with machined surface layer and its influential factors

    International Nuclear Information System (INIS)

    Okano, Shigetaka; Ihara, Ryohei; Kanamaru, Daisuke; Mochizuki, Masahito

    2015-01-01

    In this study, the effects of work-hardening and pre-existing stress in the machined surface layer of low-carbon austenitic stainless steel on the welding-induced residual stress were experimentally investigated through the use of weld specimens with three different surface layers; as-cutout, mechanically-polished and electrolytically-polished. The high tensile and compressive stresses exist in the work-hardened surface layer of the as-cutout and mechanically-polished specimens, respectively. Meanwhile, no stress and work-hardened surface layer exist in the electrolytically-polished specimen. TIG bead-on-plate welding under the same welding heat input conditions was performed to introduce the residual stress into these specimens. Using these welded specimens, the distributions of welding-induced residual stress were measured by the X-ray diffraction method. Similarly, the distributions of hardness in welds were estimated by the Vickers hardness test. And then, these distributions were compared with one another. Based on the results, the residual stress in the weld metal (WM) is completely unaffected by the machined surface layer because the work-hardened surface layer disappears through the processes of melting and solidification during welding. The local maximum longitudinal tensile residual stress in the heat affected zone (HAZ) depends on the work-hardening but not on the existing stress, regardless of whether tensile or compressive, in the machined surface layer before welding. At the base metal far from WM and HAZ, the residual stress is formed by the addition of the welding-induced residual stress to the pre-existing stress in the machined surface layer before welding. The features of the welding-induced residual stress in low-carbon austenitic stainless steel with the machined surface layer and their influential factors were thus clarified. (author)

  8. Measurement of heat treatment induced residual stresses by using ESPI combined with hole-drilling method

    Directory of Open Access Journals (Sweden)

    Jie Cheng

    2010-08-01

    Full Text Available In this study, residual stresses in heat treated specimen were measured by using ESPI (Electronic Speckle-Pattern Interferometry combined with the hole-drilling method. The specimen, made of SUS 304 austenitic stainless steel, was quenched and water cooled to room temperature. Numerical simulation using a hybrid FDM/FEM package was also carried out to simulate the heat treatment process. As a result, the thermal stress fields were obtained from both the experiment and the numerical simulation. By comparision of stress fields, results from the experimental method and numerical simulation well agreed to each other, therefore, it is proved that the presented experimental method is applicable and reliable for heat treatment induced residual stress measurement.

  9. HER2 testing on core needle biopsy specimens from primary breast cancers: interobserver reproducibility and concordance with surgically resected specimens

    International Nuclear Information System (INIS)

    Tsuda, Hitoshi; Kurosumi, Masafumi; Umemura, Shinobu; Yamamoto, Sohei; Kobayashi, Takayuki; Osamura, Robert Yoshiyuki

    2010-01-01

    Accurate evaluation of human epidermal growth factor receptor type-2 (HER2) status based on core needle biopsy (CNB) specimens is mandatory for identification of patients with primary breast cancer who will benefit from primary systemic therapy with trastuzumab. The aim of the present study was to validate the application of HER2 testing with CNB specimens from primary breast cancers in terms of interobserver reproducibility and comparison with surgically resected specimens. A total of 100 pairs of archival formalin-fixed paraffin-embedded CNB and surgically resected specimens of invasive breast carcinomas were cut into sections. All 100 paired sections were subjected to HER2 testing by immunohistochemistry (IHC) and 27 paired sections were subjected to that by fluorescence in situ hybridization (FISH), the results being evaluated by three and two observers, respectively. Interobserver agreement levels in terms of judgment and the concordance of consensus scores between CNB samples and the corresponding surgically resected specimens were estimated as the percentage agreement and κ statistic. In CNB specimens, the percentage interobserver agreement of HER2 scoring by IHC was 76% (κ = 0.71) for 3 × 3 categories (0-1+ versus 2+ versus 3+) and 90% (κ = 0.80) for 2 × 2 categories (0-2+ versus 3+). These levels were close to the corresponding ones for the surgically resected specimens: 80% (κ = 0.77) for 3 × 3 categories and 92% (κ = 0.88) for 2 × 2 categories. Concordance of consensus for HER2 scores determined by IHC between CNB and the corresponding surgical specimens was 87% (κ = 0.77) for 3 × 3 categories, and 94% (κ = 0.83) for 2 × 2 categories. Among the 13 tumors showing discordance in the mean IHC scores between the CNB and surgical specimens, the results of consensus for FISH results were concordant in 11. The rate of successful FISH analysis and the FISH positivity rate in cases with a HER2 IHC score of 2+ differed among specimens processed at

  10. HER2 testing on core needle biopsy specimens from primary breast cancers: interobserver reproducibility and concordance with surgically resected specimens

    Directory of Open Access Journals (Sweden)

    Yamamoto Sohei

    2010-10-01

    Full Text Available Abstract Background Accurate evaluation of human epidermal growth factor receptor type-2 (HER2 status based on core needle biopsy (CNB specimens is mandatory for identification of patients with primary breast cancer who will benefit from primary systemic therapy with trastuzumab. The aim of the present study was to validate the application of HER2 testing with CNB specimens from primary breast cancers in terms of interobserver reproducibility and comparison with surgically resected specimens. Methods A total of 100 pairs of archival formalin-fixed paraffin-embedded CNB and surgically resected specimens of invasive breast carcinomas were cut into sections. All 100 paired sections were subjected to HER2 testing by immunohistochemistry (IHC and 27 paired sections were subjected to that by fluorescence in situ hybridization (FISH, the results being evaluated by three and two observers, respectively. Interobserver agreement levels in terms of judgment and the concordance of consensus scores between CNB samples and the corresponding surgically resected specimens were estimated as the percentage agreement and κ statistic. Results In CNB specimens, the percentage interobserver agreement of HER2 scoring by IHC was 76% (κ = 0.71 for 3 × 3 categories (0-1+ versus 2+ versus 3+ and 90% (κ = 0.80 for 2 × 2 categories (0-2+ versus 3+. These levels were close to the corresponding ones for the surgically resected specimens: 80% (κ = 0.77 for 3 × 3 categories and 92% (κ = 0.88 for 2 × 2 categories. Concordance of consensus for HER2 scores determined by IHC between CNB and the corresponding surgical specimens was 87% (κ = 0.77 for 3 × 3 categories, and 94% (κ = 0.83 for 2 × 2 categories. Among the 13 tumors showing discordance in the mean IHC scores between the CNB and surgical specimens, the results of consensus for FISH results were concordant in 11. The rate of successful FISH analysis and the FISH positivity rate in cases with a HER2 IHC score of

  11. Agreement for HPV genotyping detection between self-collected specimens on a FTA cartridge and clinician-collected specimens

    Science.gov (United States)

    Guan, YaoYao; Gravitt, Patti E.; Howard, Roslyn; Eby, Yolanda J.; Wang, Shaoming; Li, Belinda; Feng, Changyan; Qiao, You-Lin; Castle, Philip E.

    2016-01-01

    The current method of transporting self-collected cervicovaginal specimen for HPV DNA testing relies on liquid based medium, which is challenging and expensive to transport. A novel, dry storage and transportation device, Whatman indicating FTA™ Elute Cartridge, avoids some of the pitfalls of liquid-based medium. This method has been shown to be comparable to liquid-based collection medium, but relative performance of self-collected (SC) and clinician-collected (CC) samples onto FTA cards has not been reported. The objective of this study is to compare the analytic performance of self- and clinician-collected samples onto FTA cartridges for the detection of carcinogenic HPV using Linear Array. There was a 91% agreement, 69% positive agreement, and kappa of 0.75 between the clinician-collected and self-collected specimens for detection of any carcinogenic HPV genotype. When the HPV results were categorized hierarchically according to cervical cancer risk, there was no difference in the distribution of the HPV results for the clinician- and self-collected specimens (p = 0.7). This study concludes that FTA elute cartridge is a promising method of specimen transport for cervical cancer screening programs considering using self-collected specimen and HPV testing. Larger studies with clinical endpoints are now needed to assess the clinical performance. PMID:23370404

  12. Molecular Auditing: An Evaluation of Unsuspected Tissue Specimen Misidentification.

    Science.gov (United States)

    Demetrick, Douglas J

    2018-06-18

    Context Specimen misidentification is the most significant error in laboratory medicine, potentially accounting for hundreds of millions of dollars in extra health care expenses and significant morbidity in patient populations in the United States alone. New technology allows the unequivocal documentation of specimen misidentification or contamination; however, the value of this technology currently depends on suspicion of the specimen integrity by a pathologist or other health care worker. Objective To test the hypothesis that there is a detectable incidence of unsuspected tissue specimen misidentification among cases submitted for routine surgical pathology examination. Design To test this hypothesis, we selected specimen pairs that were obtained at different times and/or different hospitals from the same patient, and compared their genotypes using standardized microsatellite markers used commonly for forensic human DNA comparison in order to identify unsuspected mismatches between the specimen pairs as a trial of "molecular auditing." We preferentially selected gastrointestinal, prostate, and skin biopsies because we estimated that these types of specimens had the greatest potential for misidentification. Results Of 972 specimen pairs, 1 showed an unexpected discordant genotype profile, indicating that 1 of the 2 specimens was misidentified. To date, we are unable to identify the etiology of the discordance. Conclusions These results demonstrate that, indeed, there is a low level of unsuspected tissue specimen misidentification, even in an environment with careful adherence to stringent quality assurance practices. This study demonstrates that molecular auditing of random, routine biopsy specimens can identify occult misidentified specimens, and may function as a useful quality indicator.

  13. Residual stresses due to weld repairs, cladding and electron beam welds and effect of residual stresses on fracture behavior. Annual report, September 1, 1977--November 30, 1978

    International Nuclear Information System (INIS)

    Rybicki, E.F.

    1978-11-01

    The study is divided into three tasks. Task I is concerned with predicting and understanding the effects of residual stresses due to weld repairs of pressure vessels. Task II examines residual stresses due to an electron beam weld. Task III addresses the problem of residual stresses produced by weld cladding at a nozzle vessel intersection. The objective of Task I is to develop a computational model for predicting residual stress states due to a weld repair of pressure vessel and thereby gain an understanding of the mechanisms involved in the creation of the residual stresses. Experimental data from the Heavy Section Steel Technology (HSST) program at Oak Ridge National Laboratories (ORNL) is used to validate the computational model. In Task II, the residual stress model is applied to the case of an electron beam weld of a compact tension freacture specimen. The results in the form of residual stresses near the weld are then used to explain unexpected fracture behavior which is observed in the testing of the specimen. For Task III, the residual stress model is applied to the cladding process used in nozzle regions of nuclear pressure vessels. The residual stresses obtained from this analysis are evaluated to determine their effect on the phenomena of under-clad cracking

  14. Contribution to the explanation of the spalling of small specimen without any mechanical restraint exposed to high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Morais, Marcus V.G. de, E-mail: mvmorais@unb.b [Cergy-Pontoise University - L2MGC, 5 mail Gay-Lussac Neuville sur Oise, 95031 Cergy-Pontoise Cedex (France); Pliya, Prosper [Cergy-Pontoise University - L2MGC, 5 mail Gay-Lussac Neuville sur Oise, 95031 Cergy-Pontoise Cedex (France); Noumowe, Albert, E-mail: Albert.Noumowe@u-cergy.f [Cergy-Pontoise University - L2MGC, 5 mail Gay-Lussac Neuville sur Oise, 95031 Cergy-Pontoise Cedex (France); Beaucour, Anne-Lise; Ortola, Sophie [Cergy-Pontoise University - L2MGC, 5 mail Gay-Lussac Neuville sur Oise, 95031 Cergy-Pontoise Cedex (France)

    2010-10-15

    The behaviour of concrete subjected to high temperature is studied. The aim of the study is to explain the spalling or bursting phenomenon observed during experimental studies in the laboratory. Mechanical computations are carried out with the finite element code CAST3M developed at the French Atomic Energy Agency (CEA). Heat gradient and water vapour pressure inside the concrete element are determined by using a thermo-hydrous model. Then, the mechanical stresses generated in the studied concrete element are calculated according to two behaviour assumptions: the linear isotropic elastic law and an elastoplastic model. Numerical simulations show that, during the heating cycles, tension stresses are developed in the central part and compression stresses at the surface of the cylindrical concrete element. The highest stresses appear when the surface temperature of the concrete element is about 300 {sup o}C. The tension stresses in the specimens then exceed the concrete tensile strength.

  15. Effect of the combined stress on the life of components under thermal cycling conditions

    International Nuclear Information System (INIS)

    Zuchowski, R.; Zietkowski, L.

    1987-01-01

    The life of structural components subjected to temperature changes is affected, among other factors, by the nature of the stress field. If life prediction for axially stressed components can be accomplished with a number of well established techniques, the behaviour under a complex state of stress and varying temperature conditions still is the object of intensive research. The present study was aimed at assessing the influence of the stress field upon the life of specimens made of chromium-nickel H23N18 steel under thermal cycling conditions. The designation of steel is in accordance with Polish Standards. The experiments were made on thin-walled tubular specimens loaded with various combinations of a static axial force and a static torque. (orig./GL)

  16. Thermal property testing technique on micro specimen

    International Nuclear Information System (INIS)

    Baba, Tetsuya; Kishimoto, Isao; Taketoshi, Naoyuki

    2000-01-01

    This study aims at establishment of further development on some testing techniques on the nuclear advanced basic research accumulated by the National Research Laboratory of Metrology for ten years. For this purpose, a technology to test heat diffusion ratio and specific heat capacity of less than 3 mm in diameter and 1 mm in thickness of micro specimen and technology to test heat diffusion ratio at micro area of less than 1 mm in area along cross section of less than 10 mm in diameter of column specimen were developed to contribute to common basic technology supporting the nuclear power field. As a result, as an element technology to test heat diffusion ratio and specific heat capacity of the micro specimen, a specimen holding technique stably to hold a micro specimen with 3 mm in diameter could be developed. And, for testing the specific heat capacity by using the laser flush differential calorimetry, a technique to hold two specimen of 5 mm in diameter at their proximities was also developed. In addition, by promoting development of thermal property data base capable of storing thermal property data obtained in this study and with excellent workability in this 1998 fiscal year a data in/out-put program with graphical user interface could be prepared. (G.K.)

  17. Comparative study on Charpy specimen reconstitution techniques

    International Nuclear Information System (INIS)

    Bourdiliau, B.; Decroix, G.-M.; Averty, X.; Wident, P.; Bienvenu, Y.

    2011-01-01

    Highlights: → Welding processes are used to reconstitute previously tested Charpy specimens. → Stud welding is preferred for a quick installation, almost immediately operational. → Friction welding produces better quality welds, but requires a development effort. - Abstract: Reconstitution techniques are often used to allow material from previously fractured Charpy-V specimens to be reused for additional experiments. This paper presents a comparative experimental study of various reconstitution techniques and evaluates the feasibility of these methods for future use in shielded cells. The following techniques were investigated: arc stud welding, 6.0 kW CO 2 continuous wave laser welding, 4.5 kW YAG continuous wave laser welding and friction welding. Subsize Charpy specimens were reconstituted using a 400 W YAG pulsed wave laser. The best result was obtained with arc stud welding; the resilience of the reconstituted specimens and the load-displacement curves agreed well with the reference specimens, and the temperature elevation caused by the welding process was limited to the vicinity of the weld. Good results were also obtained with friction welding; this process led to the best quality welds. Laser welding seems to have affected the central part of the specimens, thus leading to different resilience values and load-displacement curves.

  18. Ageing under mechanical stress: first experiments for a silver based multilayer mirror

    Science.gov (United States)

    Lalo, Arnaud; Ravel, Guillaume; Ignat, Michel; Cousin, Bernard; Swain, Michael V.

    2017-11-01

    Improving materials and devices reliability is a major concern to the spatial industry. Results are reported for satellite mirrors-like specimens consisting in oxide-protected metal systems. Optical coatings were deposited by electron beam evaporation. Mechanical stress fields in multi-layered materials play an important role. The stress state can have far-reaching implications both in kinetics and thermodynamics. Therefore an integrated apparatus with four-point bending equipment was designed. The technique allowed us to exert stress into a film or a system of films on a substrate concurrently with thermal treatment. In order to achieve the first tests performed with the help of the apparatus, various preliminary characterizations were required. The article reports the preliminary micro-mechanical testing of the materials (ultra micro-indentation to evaluate the elastic modulus of the samples materials and wafer curvature technique to determine the specimen residual stress) and the first ageing experiment. Experimental evidence of accelerated ageing under stress is successfully reported.

  19. Enzymatic detection of formalin-fixed museum specimens for DNA analysis and enzymatic maceration of formalin-fixed specimens

    DEFF Research Database (Denmark)

    Sørensen, Margrethe; Redsted Rasmussen, Arne; Simonsen, Kim Pilkjær

    2016-01-01

    % ethanol. The method was subsequently tested on wild-living preserved specimens and an archived specimen. The protease enzyme used was SavinaseH 16 L, Type EX from Novozymes A/S. The enzymatic screening test demands only simple laboratory equipment. The method is useful for natural history collections...

  20. Evaluation of stresses generated in steel finger joint of bridge by X-ray stress measurement

    International Nuclear Information System (INIS)

    Kohri, Ami; Kawano, Yutaka; Nishido, Takayuki

    2017-01-01

    In a steel bridge, the evaluation of the stress generated in the finger joint without a gap to absorb temperature change can be an index when evaluating the remaining life. This study chose as the object the finger joint of a diagonal bridge, where the generated stress state is considered to be more complicated, prepared a finger joint test specimen that simulated an actual part, and performed a load test. For judgment, FEM analysis, non-destructive X-ray stress measurement, and measurement of the generated stress using strain gauge were applied. Compared with the FEM analysis results, the difference in the stress value was generated due to the difference in the contact state, but the trends of the stress distribution were equivalent. In addition, the same measurement value as the strain gauge was obtained, and the validity of the X-ray stress measurement method was confirmed. As a result, it was found that the stress measurement method by X-ray is effective for measuring the generated stress including the residual stress of the finger joint without gap at a bridge. (A.O.)

  1. Pacific Northwest National Laboratory Investigation of the Stress Corrosion Cracking in Nickel-Base Alloys, Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Bruemmer, Stephen M.; Toloczko, Mychailo B.; Olszta, Matthew J.

    2012-03-01

    The objective of this program is to evaluate the primary water stress corrosion cracking (PWSCC) susceptibility of high chromium alloy 690 and its weld metals, establish quantitative measurements of crack-growth rates and determine relationships among cracking susceptibility, environmental conditions and metallurgical characteristics. Stress-corrosion, crack-growth rates have been determined for 12 alloy 690 specimens, 11 alloy 152/52/52M weld metal specimens, 4 alloy 52M/182 overlay specimens and 2 alloy 52M/82 inlay specimens in simulated PWR primary water environments. The alloy 690 test materials included three different heats of extruded control-rod-drive mechanism (CRDM) tubing with variations in the initial material condition and degree of cold work for one heat. Two cold-rolled (CR) alloy 690 plate heats were also obtained and evaluated enabling comparisons to the CR CRDM materials. Weld metal, overlay and inlay specimens were machined from industry mock ups to provide plant-representative materials for testing. Specimens have been tested for one alloy 152 weld, two alloy 52 welds and three alloy 52M welds. The overlay and inlay specimens were prepared to propagate stress-corrosion cracks from the alloy 182 or 82 material into the more resistant alloy 52M. In all cases, crack extension was monitored in situ by direct current potential drop (DCPD) with length resolution of about +1 µm making it possible to measure extremely low growth rates approaching 5x10-10 mm/s. Most SCC tests were performed at 325-360°C with hydrogen concentrations from 11-29 cc/kg; however, environmental conditions were modified during a few experiments to evaluate the influence of temperature, water chemistry or electrochemical potential on propagation rates. In addition, low-temperature (~50°C) cracking behavior was examined for selected alloy 690 and weld metal specimens. Extensive characterizations have been performed on material microstructures and stress-corrosion cracks by

  2. Closeout of JOYO-1 Specimen Fabrication Efforts

    International Nuclear Information System (INIS)

    ME Petrichek; JL Bump; RF Luther

    2005-01-01

    Fabrication was well under way for the JOYO biaxial creep and tensile specimens when the NR Space program was canceled. Tubes of FS-85, ASTAR-811C, and T-111 for biaxial creep specimens had been drawn at True Tube (Paso Robles, CA), while tubes of Mo-47.5 Re were being drawn at Rhenium Alloys (Cleveland, OH). The Mo-47.5 Re tubes are now approximately 95% complete. Their fabrication and the quantities produced will be documented at a later date. End cap material for FS-85, ASTAR-811C, and T-111 had been swaged at Pittsburgh Materials Technology, Inc. (PMTI) (Large, PA) and machined at Vangura (Clairton, PA). Cutting of tubes, pickling, annealing, and laser engraving were in process at PMTI. Several biaxial creep specimen sets of FS-85, ASTAR-811C, and T-111 had already been sent to Pacific Northwest National Laboratory (PNNL) for weld development. In addition, tensile specimens of FS-85, ASTAR-811C, T-111, and Mo-47.5 Re had been machined at Kin-Tech (North Huntington, PA). Actual machining of the other specimen types had not been initiated. Flowcharts 1-3 detail the major processing steps each piece of material has experienced. A more detailed description of processing will be provided in a separate document [B-MT(SRME)-51]. Table 1 lists the in-process materials and finished specimens. Also included are current metallurgical condition of these materials and specimens. The available chemical analyses for these alloys at various points in the process are provided in Table 2

  3. Crack propagation under thermal cycling loading inducing a thermal gradient in the specimen thickness

    International Nuclear Information System (INIS)

    Le, H.N.

    2009-05-01

    This study aims to figure out the crack growth phenomenon by thermal fatigue induced by thermal gradient through thickness of specimen. Firstly, an experimental facility has been developed: a rectangular parallelepiped specimen is subjected to thermal cycling between 350 C and 100 C; the specimen is freed to expand and contract. Two semi-circular notches (0,1 mm depth and 4 mm length) have been machined on the surface of the specimen. A series of interrupted tests has been carried out to characterize and quantify the crack growth in depth and surface of the pre-existing crack. Next, a three-dimensional crack growth simulation has been implemented in ABAQUS. Automation using Python was used to simulate the propagation of a crack under thermal cycling, with re-meshing at crack front after each calculation step. No assumption has been taken on the crack front during the crack propagation. A comparison with test results showed very good agreement on the evolution of crack front shape and on the kinetics of propagation on the edge and the heart of pre-existing crack. An analytical approach was also developed based on the calculation of stress intensity factors (SIC). A two-dimensional approach was first introduced enabling us to better understand the influence of various thermal and geometric parameters. Finally, a three dimensional approach, with an elliptical assumption crack shape during the propagation, leading to a prediction of crack growth on the surface and in depth which is very similar to that obtained numerically, but with computational time much lower. (author)

  4. Stress and flow analyses of ultraviolet-curable resin during curing

    Science.gov (United States)

    Umezaki, Eisaku; Okano, Akira; Koyama, Hiroto

    2014-06-01

    The stress and flow generated in ultraviolet (UV)-curable resin during curing in molds were measured to investigate their relationship. The specimens were molds consisting of glass plates and acrylic bars, and UV-curable liquid resin. The specimens were illuminated from above with UV rays. Photoelastic and visual images were separately obtained at a constant time interval using cameras during curing. To help obtain the visual images, acrylic powder was mixed with the liquid resin. The stress was obtained from the photoelastic images by a digital photoelastic technique with phase stepping, and the flow was obtained from the visual images by a particle-tracking velocimetry technique. Results indicate that the stress generated in the UV-curable resin during curing depends on the degree of contact between the mold and the cured area of the resin, and is hardly related to the flow.

  5. Historical development and future perspectives of Environmental Specimen Bank in China: a mini review.

    Science.gov (United States)

    Qiu, Fang; Meng, Xiang-Zhou; Qiu, Yan-Ling; Huang, Qing-Hui; Liu, Ying; Wu, Ling-Ling; Xiao, Qian-Fen; Sun, Ya-Jie; Wang, Rui; Zhou, Yi-Hui; Yu, Zhen-Yang; Yin, Da-Qiang; Zhu, Zhi-Liang; Zhao, Jian-Fu

    2015-02-01

    Environmental problems as well as their related ecosystem stress and human health risk in China have raised wide concerns along with the rapid economic development in recent years. Numerous studies with a sharp increase in publication number have addressed the ubiquitous of anthropogenic chemicals in various environmental compartments and human tissues. However, very few data were available to clarify the temporal trend and to give the retrospective analysis of chemical pollution in China. Environmental Specimen Bank (ESB) is a system for the systematic collection and long-term storage of specimens, which has been established since the 1970s in developed counties and recognized as a fundamental complement for environmental monitoring and scientific research. Currently, the value of ESB is becoming more broadly recognized globally, and China is still at the early stage. This article described the history and status and put forwarded the future key points of Chinese ESB development for illustrating the intensive environmental changes in China and the world.

  6. Effect of tensile stress on the annealed structure of a metallic glass

    International Nuclear Information System (INIS)

    Vianco, P.T.; Li, J.C.M.

    1987-01-01

    The low-temperature (120 0 --245 0 C) structural relaxation of Metglas/sup R/ 2826B (Ni 49 Fe 29 P 14 B 6 Si 2 ) amorphous alloy was investigated for samples subjected to a tensile stress in the range of 20--400 MPa during annealing. The stress-annealed samples demonstrated a much smaller increase of microhardness than was observed in similarly annealed ribbons without a stress. Further heat treatment of the stress-annealed specimens, this time without the stress, was capable of increasing the microhardnesses of only some ribbons to values equal to those of samples similarly heat treated initially without a stress. An additional exothermic peak in the differential scanning calorimetry (DSC) thermograms of the stress-annealed specimens indicated the presence of a more disordered structure at room temperature, which was found to correlate with the lower microhardness values. Otherwise, those artifacts of the DSC thermograms that were characteristic of samples annealed without a stress were still present in the stress-annealed ribbons. No effect on the crystallization temperature was noted but the glass transition temperature was increased in the stress-annealed case with respect to values attained when the stress was absent during heat treatment. A reduction in the degree of embrittlement of those samples annealed with a tensile stress was a further indication of more disorder in the stress-annealed ribbons

  7. Folate Deficiency Could Restrain Decidual Angiogenesis in Pregnant Mice

    Directory of Open Access Journals (Sweden)

    Yanli Li

    2015-08-01

    Full Text Available The mechanism of birth defects induced by folate deficiency was focused on mainly in fetal development. Little is known about the effect of folate deficiency on the maternal uterus, especially on decidual angiogenesis after implantation which establishes vessel networks to support embryo development. The aim of this study was to investigate the effects of folate deficiency on decidual angiogenesis. Serum folate levels were measured by electrochemiluminescence. The status of decidual angiogenesis was examined by cluster designation 34 (CD34 immunohistochemistry and the expression of angiogenic factors, including vascular endothelial growth factor A (VEGFA, placental growth factor (PLGF, and VEGF receptor 2 (VEGFR2 were also tested. Serum levels of homocysteine (Hcy, follicle stimulating hormone (FSH, luteinizing hormone (LH, prolactin (PRL, progesterone (P4, and estradiol (E2 were detected by Enzyme-linked immunosorbent assay. The folate-deficient mice had a lower folate level and a higher Hcy level. Folate deficiency restrained decidual angiogenesis with significant abnormalities in vascular density and the enlargement and elongation of the vascular sinus. It also showed a reduction in the expressions of VEGFA, VEGFR2, and PLGF. In addition, the serum levels of P4, E2, LH, and PRL were reduced in folate-deficient mice, and the expression of progesterone receptor (PR and estrogen receptor α (ERα were abnormal. These results indicated that folate deficiency could impaire decidual angiogenesis and it may be related to the vasculotoxic properties of Hcy and the imbalance of the reproductive hormone.

  8. Simultaneous specimen and stage cleaning device for analytical electron microscope

    Science.gov (United States)

    Zaluzec, Nestor J.

    1996-01-01

    An improved method and apparatus are provided for cleaning both a specimen stage, a specimen and an interior of an analytical electron microscope (AEM). The apparatus for cleaning a specimen stage and specimen comprising a plasma chamber for containing a gas plasma and an air lock coupled to the plasma chamber for permitting passage of the specimen stage and specimen into the plasma chamber and maintaining an airtight chamber. The specimen stage and specimen are subjected to a reactive plasma gas that is either DC or RF excited. The apparatus can be mounted on the analytical electron microscope (AEM) for cleaning the interior of the microscope.

  9. Finite element prediction of elastic strains in beryllium compact tension specimens

    International Nuclear Information System (INIS)

    Guerra, F.; Varma, R.; Bourke, M.

    1997-01-01

    Three-dimensional finite element (FE) calculations using ABAQUS version 5.5.9 were compared to neutron diffraction measurements of a loaded, pre-cracked beryllium compact tension (CT) specimens. The objective was to validate the FE results with the experimental open-quotes elastic strainclose quotes measurements. Then the FE calculations could be used to study residual stress and other aspects of these problems in the unloaded state and the crack tip stress in the loaded state which is hard to measure experimentally. A graded FE mesh was focused on the regions containing high strain gradients, the smallest elements were approximately 0.5 mm x 0.5 mm x 0.4 mm. A standard 20-node brick element model was complemented by a model with 1/4-point elements at the crack tip. Since the neutron diffraction measurements provided a volume average of approximately a cube of edge 3.0 mm, various averaging (or integrating) techniques were used on the FE results. Several integration schemes showed good agreement with the experimental results

  10. Agreement for HPV genotyping detection between self-collected specimens on a FTA cartridge and clinician-collected specimens.

    Science.gov (United States)

    Guan, Yaoyao; Gravitt, Patti E; Howard, Roslyn; Eby, Yolanda J; Wang, Shaoming; Li, Belinda; Feng, Changyan; Qiao, You-Lin; Castle, Philip E

    2013-04-01

    The current method of transporting self-collected cervicovaginal specimen for HPV DNA testing relies on liquid based medium, which is challenging and expensive to transport. A novel, dry storage and transportation device, Whatman indicating FTA™ Elute Cartridge, avoids some of the pitfalls of liquid-based medium. This method has been shown to be comparable to liquid-based collection medium, but relative performance of self-collected (SC) and clinician-collected (CC) samples onto FTA cards has not been reported. The objective of this study is to compare the analytic performance of self- and clinician-collected samples onto FTA cartridges for the detection of carcinogenic HPV using Linear Array. There was a 91% agreement, 69% positive agreement, and kappa of 0.75 between the clinician-collected and self-collected specimens for detection of any carcinogenic HPV genotype. When the HPV results were categorized hierarchically according to cervical cancer risk, there was no difference in the distribution of the HPV results for the clinician- and self-collected specimens (p=0.7). This study concludes that FTA elute cartridge is a promising method of specimen transport for cervical cancer screening programs considering using self-collected specimen and HPV testing. Larger studies with clinical endpoints are now needed to assess the clinical performance. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. A cylindrical specimen holder for electron cryo-tomography

    International Nuclear Information System (INIS)

    Palmer, Colin M.; Löwe, Jan

    2014-01-01

    The use of slab-like flat specimens for electron cryo-tomography restricts the range of viewing angles that can be used. This leads to the “missing wedge” problem, which causes artefacts and anisotropic resolution in reconstructed tomograms. Cylindrical specimens provide a way to eliminate the problem, since they allow imaging from a full range of viewing angles around the tilt axis. Such specimens have been used before for tomography of radiation-insensitive samples at room temperature, but never for frozen-hydrated specimens. Here, we demonstrate the use of thin-walled carbon tubes as specimen holders, allowing the preparation of cylindrical frozen-hydrated samples of ribosomes, liposomes and whole bacterial cells. Images acquired from these cylinders have equal quality at all viewing angles, and the accessible tilt range is restricted only by the physical limits of the microscope. Tomographic reconstructions of these specimens demonstrate that the effects of the missing wedge are substantially reduced, and could be completely eliminated if a full tilt range was used. The overall quality of these tomograms is still lower than that obtained by existing methods, but improvements are likely in future. - Highlights: • The missing wedge is a serious problem for electron cryo-tomography. • Cylindrical specimens allow the missing wedge to be eliminated. • Carbon nanopipettes can be used as cylindrical holders for tomography of frozen-hydrated specimens. • Cryo-tomography of cylindrical biological samples demonstrates a reduction of deleterious effects associated with the missing wedge

  12. Development of in-situ rock shear test under low compressive to tensile normal stress

    International Nuclear Information System (INIS)

    Nozaki, Takashi; Shin, Koichi

    2003-01-01

    The purpose of this study is to develop an in-situ rock shear testing method to evaluate the shear strength under low normal stress condition including tensile stress, which is usually ignored in the assessment of safety factor of the foundations for nuclear power plants against sliding. The results are as follows. (1) A new in-situ rock shear testing method is devised, in which tensile normal stress can be applied on the shear plane of a specimen by directly pulling up a steel box bonded to the specimen. By applying the counter shear load to cancel the moment induced by the main shear load, it can obtain shear strength under low normal stress. (2) Some model tests on Oya tuff and diatomaceous mudstone have been performed using the developed test method. The shear strength changed smoothly from low values at tensile normal stresses to higher values at compressive normal stresses. The failure criterion has been found to be bi-linear on the shear stress vs normal stress plane. (author)

  13. Residual stress improvement in multi-layer welded plates using water-shower cooling during welding process

    International Nuclear Information System (INIS)

    Yanagida, Nobuyoshi; Koide, Hiroo

    2006-01-01

    To reduce tensile residual stress in a welded region, we developed a new welding method that applies a water-shower behind the welding torch. When this method is applied to welding of austenitic stainless steel plates, cooling conditions mainly determine how much the residual stress can be reduced. To determine the conditions, we first used FEM to evaluate the effects of interpass temperature on the residual stress. And we found effective conditions for reducing tensile residual stress. To verify the validity of the conditions, specimens welded with or without water shower cooling were manufactured. Residual stresses of the specimens were experimentally measured. It was found that tensile residual stresses were generated on the surface of the welds and those were reduced in the case that the water-shower was applied. These measurement results agree well with the FEM analyses. It can therefore be concluded that the water-shower cooling during welding is appropriate for reducing tensile residual stress in austenitic stainless steel welding. (author)

  14. ''C-ring'' stress corrosion cracking scoping experiment for Zircaloy spent fuel cladding

    International Nuclear Information System (INIS)

    Smith, H.D.

    1986-03-01

    This document describes the purpose and execution of the stress corrosion cracking scoping experiment using ''C-ring'' cladding specimens. The design and operation of the ''C-ring'' stressing apparatus is described and discussed. The experimental procedures and post-experiment sample evaluation are described

  15. Effects of laser peening treatment on high cycle fatigue and crack propagation behaviors in austenitic stainless steel

    International Nuclear Information System (INIS)

    Masaki, Kiyotaka; Ochi, Yasuo; Matsumura, Takashi; Ikarashi, Takaaki; Sano, Yuji

    2010-01-01

    Laser peening without protective coating (LPwC) treatment is one of surface enhancement techniques using an impact wave of high pressure plasma induced by laser pulse irradiation. High compressive residual stress was induced by the LPwC treatment on the surface of low-carbon type austenitic stainless steel SUS316L. The affected depth reached about 1mm from the surface. High cycle fatigue tests with four-points rotating bending loading were carried out to confirm the effects of the LPwC treatment on fatigue strength and surface fatigue crack propagation behaviors. The fatigue strength was remarkably improved by the LPwC treatment over the whole regime of fatigue life up to 10 8 cycles. Specimens with a pre-crack from a small artificial hole due to fatigue loading were used for the quantitative study on the effect of the LPwC treatment. The fracture mechanics investigation on the pre-cracked specimens showed that the LPwC treatment restrained the further propagation of the pre-crack if the stress intensity factor range ΔK on the crack tip was less than 7.6 MPa√m. Surface cracks preferentially propagated into the depth direction as predicted through ΔK analysis on the crack by taking account of the compressive residual stresses due to the LPwC treatment. (author)

  16. Chronic Stress Impairs Prefrontal Cortex-Dependent Response Inhibition and Spatial Working Memory

    Science.gov (United States)

    Mika, Agnieszka; Mazur, Gabriel J.; Hoffman, Ann N.; Talboom, Joshua S.; Bimonte-Nelson, Heather A.; Sanabria, Federico; Conrad, Cheryl D.

    2012-01-01

    Chronic stress leads to neurochemical and structural alterations in the prefrontal cortex (PFC) that correspond to deficits in PFC-mediated behaviors. The present study examined the effects of chronic restraint stress on response inhibition (using a response-withholding task, fixed-minimum interval schedule of reinforcement, or FMI), and working memory (using a radial arm water maze, RAWM). Adult male Sprague Dawley rats were first trained on the RAWM and subsequently trained on FMI. Following acquisition of FMI, rats were assigned to a restraint stress (6h/d/28d in wire mesh restrainers) or control condition. Immediately after chronic stress, rats were tested on FMI and subsequently on RAWM. FMI results suggest that chronic stress reduces response inhibition capacity and motivation to initiate the task on selective conditions when food reward was not obtained on the preceding trial. RAWM results suggest that chronic stress produces transient deficits in working memory without altering previously consolidated reference memory. Behavioral measures from FMI failed to correlate with metrics from RAWM except for one in which changes in FMI timing precision negatively correlated with changes in RAWM working memory errors for the controls, a finding that was not observed following chronic stress. Fisher’s r to z transformation revealed no significant differences between control and stress with correlation coefficients. These findings are the first to show that chronic stress impairs both response inhibition and working memory, two behaviors that have never been direct compared within the same animals following chronic stress, using FMI, an appetitive task, and RAWM, a non-appetitive task. PMID:22905921

  17. Fatigue Crack Propagation Simulation in Plane Stress Constraint

    DEFF Research Database (Denmark)

    Ricardo, Luiz Carlos Hernandes; Spinelli, Dirceu

    2010-01-01

    Nowadays, structural and materials engineers develop structures and materials properties using finite element method. This work presents a numerical determination of fatigue crack opening and closure stress intensity factors of a C(T) specimen. Two different standard variable spectrum loadings...... are utilized, Mini-Falstaff and Wisper. The effects in two-dimensional (2D) small scale yielding models of fatigue crack growth were studied considering plane stress constraint....

  18. Replacement/Refurbishment of JSC/NASA POD Specimens

    Science.gov (United States)

    Castner, Willard L.

    2010-01-01

    The NASA Special NDE certification process requires demonstration of NDE capability by test per NASA-STD-5009. This test is performed with fatigue cracked specimens containing very small cracks. The certification test results are usually based on binomial statistics and must meet a 90/95 Probability of Detection (POD). The assumption is that fatigue cracks are tightly closed, difficult to detect, and inspectors and processes passing such a test are well qualified for inspecting NASA fracture critical hardware. The JSC NDE laboratory has what may be the largest inventory that exists of such fatigue cracked NDE demonstration specimens. These specimens were produced by the hundreds in the late 1980s and early 1990s. None have been produced since that time and the condition and usability of the specimens are questionable.

  19. Experimental determination of the yield stress curve of the scotch pine wood materials

    Science.gov (United States)

    Günay, Ezgi; Aygün, Cevdet; Kaya, Şükrü Tayfun

    2013-12-01

    Yield stress curve is determined for the pine wood specimens by conducting a series of tests. In this work, pinewood is modeled as a composite material with transversely isotropic fibers. Annual rings (wood grain) of the wood specimens are taken as the major fiber directions with which the strain gauge directions are aligned. For this purpose, three types of tests are arranged. These are tensile, compression and torsion loading tests. All of the tests are categorized with respect to fiber orientations and their corresponding loading conditions. Each test within these categories is conducted separately. Tensile and compression tests are conducted in accordance with standards of Turkish Standards Institution (TSE) whereas torsion tests are conducted in accordance with Standards Australia. Specimens are machined from woods of Scotch pine which is widely used in boat building industries and in other structural engineering applications. It is determined that this species behaves more flexibly than the others. Strain gauges are installed on the specimen surfaces in such a way that loading measurements are performed along directions either parallel or perpendicular to the fiber directions. During the test and analysis phase of yield stress curve, orientation of strain gauge directions with respect to fiber directions are taken into account. The diagrams of the normal stress vs. normal strain or the shear stress vs. shear strain are plotted for each test. In each plot, the yield stress is determined by selecting the point on the diagram, the tangent of which is having a slope of 5% less than the slope of the elastic portion of the diagram. The geometric locus of these selected points constitutes a single yield stress curve on σ1-σ2 principal plane. The resulting yield stress curve is plotted as an approximate ellipse which resembles Tsai-Hill failure criterion. The results attained in this work, compare well with the results which are readily available in the literature.

  20. Effect of Environment on Stress-Rupture Behavior of a Carbon Fiber-Reinforced Silicon Carbide (C/SiC) Ceramic Matrix Composite

    Science.gov (United States)

    Verrilli, Michael J.; Opila, Elizabeth J.; Calomino, Anthony; Kiser, J. Douglas

    2002-01-01

    Stress-rupture tests were conducted in air, vacuum, and steam-containing environments to identify the failure modes and degradation mechanisms of a carbon fiber-reinforced silicon carbide (C/SiC) composite at two temperatures, 600 and 1200 C. Stress-rupture lives in air and steam containing environments (50 - 80% steam with argon) are similar for a composite stress of 69 MPa at 1200 C. Lives of specimens tested in a 20% steam/argon environment were about twice as long. For tests conducted at 600 C, composite life in 20% steam/argon was 20 times longer than life in air. Thermogravimetric analysis of the carbon fibers was conducted under similar conditions to the stress-rupture tests. The oxidation rate of the fibers in the various environments correlated with the composite stress-rupture lives. Examination of the failed specimens indicated that oxidation of the carbon fibers was the primary damage mode for specimens tested in air and steam environments at both temperatures.

  1. Study of fatigue resistance for different steel specimens under conditions of combined action of cyclic bending and torsion

    International Nuclear Information System (INIS)

    Belkin, L.M.; Filimonov, G.N.; Belkin, M.Ya.; Vishnevskij, A.P.; Volkov, I.B.

    1986-01-01

    VP6 alloy is studied for its relaxation stability and fatigue strength. Results of the study are presented. Tests are carried out on the specimens with smooth working part to study relaxation properties of the material, with thread working part to determine stress relaxation in a loose thread, on the thread joints to study relaxation in the working thread. All the studied members of the thread joint under cyclic loading are shown to obey a common regularity. Characteristics of the relaxation material stability under different values on an average stress cycle are presented. Stress concentration associated with inhomogeneity in distribution of axial tensile stresses in a loose thread and nonuniformity in the working thread. All the studied members of the thread joint under cyclic loading are shown to obey a common regularity. Characteristics of the relaxation material stability under different values on an average stress cycle are presented. Stress concentration associated with inhomogeneity in distribution of axial tensile stresses in a loose thread and nonuniformity in the load on the working thread turns along the nut length are studied for their effect on the stress relaxation in the thread joint. Ultimate longevity of the materials under conditions of cyclic stress relaxation is evaluated allowing for relaxation and fatigue characteristics of the material

  2. Fatigue assessment of laserbeam welded PM steel components by the notch stress approach

    Energy Technology Data Exchange (ETDEWEB)

    Waterkotte, R. [Schaeffler Technologies GmbH and Co. KG, Herzogenaurach (Germany); Sonsino, C.M. [Fraunhofer Institute for Structural Durability and System Reliability LBF, Darmstadt (Germany); Baumgartner, J.

    2011-10-15

    The local fatigue strength of a laserbeam weld of a complex engine component, which joins a PM with a formed sheet component, was assessed by the notch stress concept with the fictitious reference radius of r{sub ref}= 0.05 mm. First, simplified specimens, following the main geometric dimensions of the parts, were manufactured. On these specimens the fatigue strength was identified by tests and the notch stresses calculated by finite element analysis. Based on these results a design SN-curve was derived to assess the fatigue strength of the engine component. The numerical assessment of the welded joint was verified by proof tests with the component. The assessment could be improved by considering statistical and stress gradient dependent size effects according to the concept of the highly stressed volume. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Stress studies in EFG

    Science.gov (United States)

    1983-01-01

    Stress distributions were calculated for a creep law to predict a rate of plastic deformation. The expected reduction in stresses is obtained. Improved schemes for calculating growth system temperature distributions were evaluated. Temperature field modeling examined the possibility of using horizontal temperature gradients to influence stress distribution in ribbon. The defect structure of 10 cm wide ribbon grown in the cartridge system was examined. A new feature is identified from an examination of cross sectional micrographs. It consists of high density dislocation bands extending through the ribbon thickness. A four point bending apparatus was constructed for high temperature study of the creep response of silicon, to be used to generate defects for comparison with as grown defects in ribbon. The feasibility of laser interferometric techniques for sheet residual stress distribution measurement is examined. The mathematical formalism for calculating residual stress from changes in surface topology caused by an applied stress in a rectangular specimen was developed, and the system for laser interferometric measurement to obtain surface topology data was tested on CZ silicon.

  4. Experimental evidence for stress enhanced swelling

    International Nuclear Information System (INIS)

    Bates, J.F.; Gilbert, E.R.

    1976-01-01

    Experimental evidence is presented which shows that the application of a biaxial stress during irradiation can increase the magnitude of irradiation-induced swelling observed in tubular specimens. It is shown that this increase in swelling is linear below the proportional elastic limit of the material and decreases above this value of stress. In the linear region a relationship is found between total swelling and stress free swelling. The phenomenon of reduced swelling is evaluated on the basis of increased cold work due to pre-irradiation straining. This analysis yields a relationship of dislocation density proportional to stress to the 3.82 power. Additional analyses using dislocation density proportional to sigma 2 (sigma = hoop stress) yield a similar but sharper decrease in swelling after the proportional elastic limit is reached. (Auth.)

  5. Finite Element Modeling of Compressive and Splitting Tensile Behavior of Plain Concrete and Steel Fiber Reinforced Concrete Cylinder Specimens

    Directory of Open Access Journals (Sweden)

    Md. Arman Chowdhury

    2016-01-01

    Full Text Available Plain concrete and steel fiber reinforced concrete (SFRC cylinder specimens are modeled in the finite element (FE platform of ANSYS 10.0 and validated with the experimental results and failure patterns. Experimental investigations are conducted to study the increase in compressive and tensile capacity of cylindrical specimens made of stone and brick concrete and SFRC. Satisfactory compressive and tensile capacity improvement is observed by adding steel fibers of 1.5% volumetric ratio. A total of 8 numbers of cylinder specimens are cast and tested in 1000 kN capacity digital universal testing machine (UTM and also modeled in ANSYS. The enhancement of compressive strength and splitting tensile strength of SFRC specimen is achieved up to 17% and 146%, respectively, compared to respective plain concrete specimen. Results gathered from finite element analyses are validated with the experimental test results by identifying as well as optimizing the controlling parameters to make FE models. Modulus of elasticity, Poisson’s ratio, stress-strain behavior, tensile strength, density, and shear transfer coefficients for open and closed cracks are found to be the main governing parameters for successful model of plain concrete and SFRC in FE platform. After proper evaluation and logical optimization of these parameters by extensive analyses, finite element (FE models showed a good correlation with the experimental results.

  6. Restraint stress in lactating mice alters the levels of sulfur-containing amino acids in milk.

    Science.gov (United States)

    Nishigawa, Takuma; Nagamachi, Satsuki; Ikeda, Hiromi; Chowdhury, Vishwajit S; Furuse, Mitsuhiro

    2018-03-30

    It is well known that maternal stress during the gestation and lactation periods induces abnormal behavior in the offspring and causes a lowering of the offspring's body weight. Various causes of maternal stress during the lactation period, relating to, for example, maternal nutritional status and reduced maternal care, have been considered. However, little is known about the effects on milk of maternal stress during the lactation period. The current study aimed to determine whether free amino acids, with special reference to sulfur-containing amino acids in milk, are altered by restraint stress in lactating mice. The dams in the stress group were restrained for 30 min at postnatal days 2, 4, 6, 8, 10 and 12. Restraint stress caused a reduction in the body weight of lactating mice. The concentration of taurine and cystathionine in milk was significantly higher in the stress group, though stress did not alter their concentration in maternal plasma. The ratio of taurine concentration in milk to its concentration in maternal plasma was significantly higher in the stress group, suggesting that stress promoted taurine transportation into milk. Furthermore, taurine concentration in milk was positively correlated with corticosterone levels in plasma. In conclusion, restraint stress in lactating mice caused the changes in the metabolism and in the transportation of sulfur-containing amino acids and resulted in higher taurine concentration in milk. Taurine concentration in milk could also be a good parameter for determining stress status in dams.

  7. Bifurcations of a periodically forced microbial continuous culture model with restrained growth rate

    Science.gov (United States)

    Ren, Jingli; Yuan, Qigang

    2017-08-01

    A three dimensional microbial continuous culture model with a restrained microbial growth rate is studied in this paper. Two types of dilution rates are considered to investigate the dynamic behaviors of the model. For the unforced system, fold bifurcation and Hopf bifurcation are detected, and numerical simulations reveal that the system undergoes degenerate Hopf bifurcation. When the system is periodically forced, bifurcation diagrams for periodic solutions of period-one and period-two are given by researching the Poincaré map, corresponding to different bifurcation cases in the unforced system. Stable and unstable quasiperiodic solutions are obtained by Neimark-Sacker bifurcation with different parameter values. Periodic solutions of various periods can occur or disappear and even change their stability, when the Poincaré map of the forced system undergoes Neimark-Sacker bifurcation, flip bifurcation, and fold bifurcation. Chaotic attractors generated by a cascade of period doublings and some phase portraits are given at last.

  8. On impact testing of subsize Charpy V-notch type specimens

    International Nuclear Information System (INIS)

    Mikhail, A.S.; Nanstad, R.K.

    1994-01-01

    The potential for using subsize specimens to determine the actual properties of reactor pressure vessel steels is receiving increasing attention for improved vessel condition monitoring that could be beneficial for light-water reactor plant-life extension. This potential is made conditional upon, on the one hand, by the possibility of cutting samples of small volume from the internal surface of the pressure vessel for determination of actual properties of the operating pressure vessel. The plant-life extension will require supplemental surveillance data that cannot be provided by the existing surveillance programs. Testing of subsize specimens manufactured from broken halves of previously tested surveillance Charpy V-notch (CVN) specimens offers an attractive means of extending existing surveillance programs. Using subsize CVN type specimens requires the establishment of a specimen geometry that is adequate to obtain a ductile-to-brittle transition curve similar to that obtained from full-size specimens. This requires the development of a correlation of transition temperature and upper-shelf toughness between subsize and full-size specimens. The present study was conducted under the Heavy-Section Steel Irradiation Program. Different published approaches to the use of subsize specimens were analyzed and five different geometries of subsize specimens were selected for testing and evaluation. The specimens were made from several types of pressure vessel steels with a wide range of yield strengths, transition temperatures, and upper-shelf energies (USEs). Effects of specimen dimensions, including depth, angle, and radius of notch have been studied. The correlation of transition temperature determined from different types of subsize specimens and the full-size specimen is presented. A new procedure for transforming data from subsize specimens was developed and is presented

  9. Irradiation-induced stress relaxation of Eurofer97 steel

    International Nuclear Information System (INIS)

    Luzginova, N.V.; Jong, M.; Rensman, J.W.; Hegeman, J.B.J.; Laan, J.G. van der

    2011-01-01

    The irradiation-induced stress relaxation behavior of Eurofer97 at 300 deg. C up to 3.4 dpa and under pre-stress loads typical for the ITER applications is investigated. The bolt specimens are pre-loaded from 30% to 90% of the yield strength. To verify the results obtained with the pre-stressed bolts, bent strips were investigated as well. The strips are bent into a pre-defined radius in order to achieve similar pre-stress levels. The irradiation-induced stress relaxation is found to be independent of the pre-stress level. 10-12% of the stress relaxation in Eurofer97 may be reached after a dose of 0.1 dpa, and after an irradiation dose of 2.7 dpa 42-47% of the original pre-stress is retained.

  10. Test and Analysis Correlation for a Y-Joint Specimen for a Composite Cryotank

    Science.gov (United States)

    Mason, Brian H.; Sleight, David W.; Grenoble, Ray

    2015-01-01

    The Composite Cryotank Technology Demonstration (CCTD) project under NASA's Game Changing Development Program (GCDP) developed space technologies using advanced composite materials. Under CCTD, NASA funded the Boeing Company to design and test a number of element-level joint specimens as a precursor to a 2.4-m diameter composite cryotank. Preliminary analyses indicated that the y-joint in the cryotank had low margins of safety; hence the y-joint was considered to be a critical design region. The y-joint design includes a softening strip wedge to reduce localized shear stresses at the skirt/dome interface. In this paper, NASA-developed analytical models will be correlated with the experimental results of a series of positive-peel y-joint specimens from Boeing tests. Initial analytical models over-predicted the experimental strain gage readings in the far-field region by approximately 10%. The over-prediction was attributed to uncertainty in the elastic properties of the laminate and a mismatch between the thermal expansion of the strain gages and the laminate. The elastic properties of the analytical model were adjusted to account for the strain gage differences. The experimental strain gages also indicated a large non-linear effect in the softening strip region that was not predicted by the analytical model. This non-linear effect was attributed to delamination initiating in the softening strip region at below 20% of the failure load for the specimen. Because the specimen was contained in a thermally insulated box during cryogenic testing to failure, delamination initiation and progression was not visualized during the test. Several possible failure initiation locations were investigated, and a most likely failure scenario was determined that correlated well with the experimental data. The most likely failure scenario corresponded to damage initiating in the softening strip and delamination extending to the grips at final failure.

  11. Precursor Evolution and Stress Corrosion Cracking Initiation of Cold-Worked Alloy 690 in Simulated Pressurized Water Reactor Primary Water

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Ziqing [Pacific Northwest National Laboratory, 622 Horn Rapids Road, P.O. Box 999, Richland, Washington 99352.; Toloczko, Mychailo [Pacific Northwest National Laboratory, 622 Horn Rapids Road, P.O. Box 999, Richland, Washington 99352.; Kruska, Karen [Pacific Northwest National Laboratory, 622 Horn Rapids Road, P.O. Box 999, Richland, Washington 99352.; Bruemmer, Stephen [Pacific Northwest National Laboratory, 622 Horn Rapids Road, P.O. Box 999, Richland, Washington 99352.

    2017-05-22

    Stress corrosion crack initiation of two thermally-treated, cold-worked (CW) alloy 690 (UNS N06690) materials was investigated in 360oC simulated PWR primary water using constant load tensile (CLT) tests and blunt notch compact tension (BNCT) tests equipped with direct current potential drop (DCPD) for in-situ detection of cracking. SCC initiation was not detected by DCPD for either the 21% or 31%CW CLT specimens loaded at their yield stress after ~9,220 hours, however intergranular (IG) precursor damage and isolated surface cracks were observed on the specimens. The two 31%CW BNCT specimens loaded at moderate stress intensity after several cyclic loading ramps showed DCPD-indicated crack initiation after 10,400 hours of exposure at constant stress intensity, which was resulted from significant growth of IG cracks. The 21%CW BNCT specimens only exhibited isolated small IG surface cracks and showed no apparent DCPD change throughout the test. Post-test cross-section examinations revealed many grain boundary (GB) nano-cavities in the bulk of all the CLT and BNCT specimens particularly for the 31%CW materials. Cavities were also found along GBs extending to the surface suggesting an important role in crack nucleation. This paper provides an overview of the evolution of GB cavities and discusses their effects on crack initiation in CW alloy 690.

  12. 3D FDM production and mechanical behavior of polymeric sandwich specimens embedding classical and honeycomb cores

    Science.gov (United States)

    Brischetto, Salvatore; Ferro, Carlo Giovanni; Torre, Roberto; Maggiore, Paolo

    2018-04-01

    Desktop 3D FDM (Fused Deposition Modelling) printers are usually employed for the production of nonstructural objects. In recent years, the present authors tried to use this technology also to produce structural elements employed in the construction of small UAVs (Unmanned Aerial Vehicles). Mechanical stresses are not excessive for small multirotor UAVs. Therefore, the FDM technique combined with polymers, such as the ABS (Acrylonitrile Butadiene Styrene) and the PLA(Poly Lactic Acid), can be successfully employed to produce structural components. The present new work is devoted to the production and preliminary structural analysis of sandwich configurations. These new lamination schemes could lead to an important weight reduction without significant decreases of mechanical properties. Therefore, it could be possible, for the designed application (e.g., a multifunctional small UAV produced via FDM), to have stiffener and lighter structures easy to be manufactured with a low-cost 3D printer. The new sandwich specimens here proposed are PLA sandwich specimens embedding a PLA honeycomb core produced by means of the same extruder, multilayered specimens with ABS external layers and an internal homogeneous PLA core using different extruders for the two materials, sandwich specimens with external ABS skins and an internal PLA honeycomb core using different extruders for the two materials, and sandwich specimens where two different extruders have been employed for PLA material used for skins and for the internal honeycomb core. For all the proposed configurations, a detailed description of the production activity is given.Moreover, several preliminary results about three-point bending tests, different mechanical behaviors and relative delamination problems for each sandwich configuration will be discussed in depth.

  13. Application of subsize specimens in nuclear plant life extension

    International Nuclear Information System (INIS)

    Rosinski, S.T.; Kumar, A.S.; Cannon, N.S.; Hamilton, M.L.

    1993-01-01

    The US Department of Energy is sponsoring a research effort through Sandia National Laboratories and the University of Missouri-Rolla to test a correlation for the upper shelf energy (USE) values obtained from the impact testing of subsize Charpy V-notch specimens to those obtained from the testing of full-size samples. The program involves the impact testing of unirradiated and irradiated full-, half-, and third-size Charpy V-notch specimens. To verify the applicability of the correlation on LWR materials, unirradiated and irradiated full-, half-, and third-size Charpy V-notch specimens of a commercial pressure vessel steel (ASTM A533 Grade B) will be tested. The correlation methodology is based on the partitioning of the USE into crack initiation and crack propagation energies. To accomplish this partition, both precracked and notched-only specimens will be used. Whereas the USE of notched-only specimens is the sum of both crack initiation and crack propagation energies, the USE of precracked specimens reflects only the crack propagation component. The difference in the USE of the two types of specimens represents a measure of the crack initiation energy. Normalizing the values of the crack initiation energy to the fracture volume of the sample produces similar values for the full-, half-, and third-size specimens. In addition, the ratios of the USE and the crack propagation energy are also in agreement for full-, half-, and third-size specimens. These two observations will be used to predict the USE of full-size specimens based on subsize USE data. This paper provides details of the program and presents results obtained from the application of the developed correlation methodology to the impact testing of the unirradiated full-, half-, and third-size A533 Grade B Charpy V-notch specimens

  14. Assessment of Gastroprotective Potential of Delonix regia (Boj Ex ...

    African Journals Online (AJOL)

    HP

    (EDR) on ethanol and cold restrain stress-induced ulcer in experimental rats. Methods: EDR (100, 200 and 400 mg/kg doses, orally) was evaluated on ethanol and cold restrain ..... immune system leading to the release of the pro- inflammatory ...

  15. Stress-stain relations of irradiated stainless steels below 673 K

    International Nuclear Information System (INIS)

    Jitsukawa, S.; Hishinuma, A.; Grossbeck, M.L.

    1992-01-01

    Most specimens, irrespective of thermo-mechnaical treatment, exhibited proof stress levels of above 800 MPa and uniform elongations below 1% after irradiation in the the High Flux Isotope Reactor (HFIR). Only the solution annealed specimens irradiated at a low temperature of 328 k showed uniform elongations larger than 5% and proof stresses smaller than 800 MPa. Irradiation in the High Flux Reactor (HFR) caused more hardening than did irradiation in the HFIR. Ductility loss and change in work hardening characteristics by HFR irradiation were evaluated from reduction of area values. Residual ductility was revealed to be larger than 0.5 in natural strain, and the irradiation was estimated to have a small effect on work hardening characteristics and on fracture stress. The ductility of the irradiated alloys was found to be about 58% of that for the unirradiated alloys, as has been previously reported for irradiation in the HFIR. It was also demonstrated that true stress-strain relations, except for the fracture conditions, could be represented by Swift's type constitutive equation. (orig.)

  16. The Role of Endoplasmic Reticulum Stress in Diabetic Nephropathy.

    Science.gov (United States)

    Fan, Ying; Lee, Kyung; Wang, Niansong; He, John Cijiang

    2017-03-01

    Diabetic nephropathy (DN) has become the leading cause of end-stage renal disease (ESRD) worldwide. Accumulating evidence suggests that endoplasmic reticulum (ER) stress plays a major role in the development and progression of DN. Recent findings suggested that many attributes of DN, such as hyperglycemia, proteinuria, and increased advanced glycation end products and free fatty acids, can all trigger unfolded protein response (UPR) in kidney cells. Herein, we review the current knowledge on the role of ER stress in the setting of kidney injury with a specific emphasis on DN. As maladaptive ER stress response caused by excessively prolonged UPR will eventually cause cell death and increase kidney injury, several ER stress inhibitors have been shown to improve DN in animal models, albeit blocking both adaptive and maladaptive UPR. More recently, reticulon-1A (RTN1A), an ER-associated protein, was shown to be increased in both human and mouse diabetic kidneys. Its expression correlates with the progression of DN, and its polymorphisms are associated with kidney disease in people with diabetes. Increased RTN1A expression heightened the ER stress response and renal cell apoptosis, and conversely reduced RTN1A in renal cells decreased apoptosis and ameliorated kidney injury and DN progression, suggesting that RTN1A may be a novel target to specifically restrain the maladaptive UPR. These findings suggest that ER stress response in renal cells is a key driver of progression of DN and that the inhibition of the unchecked ER stress response in DN, such as by inhibition of RTN1A function, may be a promising therapeutic approach against DN.

  17. Fluid-structure interaction of a rolling restrained body of revolution at high angles of attack

    Science.gov (United States)

    Degani, D.; Ishay, M.; Gottlieb, O.

    2017-03-01

    The current work investigates numerically rolling instabilities of a free-to-roll slender rigid-body of revolution placed in a wind tunnel at a high angle of attack. The resistance to the roll moment is represented by a linear torsion spring and equivalent linear damping representing friction in the bearings of a simulated wind tunnel model. The body is subjected to a three-dimensional, compressible, laminar flow. The full Navier-Stokes equations are solved using the second-order implicit finite difference Beam-Warming scheme, adapted to a curvilinear coordinate system, whereas the coupled structural second order equation of motion for roll is solved by a fourth-order Runge-Kutta method. The body consists of a 3.5-diameter tangent ogive forebody with a 7.0-diameter long cylindrical afterbody extending aft of the nose-body junction to x/D = 10.5. We describe in detail the investigation of three angles of attack 20°, 40°, and 65°, at a Reynolds number of 30 000 (based on body diameter) and a Mach number of 0.2. Three distinct configurations are investigated as follows: a fixed body, a free-to-roll body with a weak torsion spring, and a free-to-roll body with a strong torsion spring. For each angle of attack the free-to-roll configuration portrays a distinct and different behavior pattern, including bi-stable limit-cycle oscillations. The bifurcation structure incorporates both large and small amplitude periodic roll oscillations where the latter lose their periodicity with increasing stiffness of the restraining spring culminating with distinct quasiperiodic oscillations. We note that removal of an applied upstream disturbance for a restrained body does not change the magnitude or complexity of the oscillations or of the flow patterns along the body. Depending on structure characteristics and flow conditions even a small rolling moment coefficient at the relatively low angle of attack of 20° may lead to large amplitude resonant roll oscillations.

  18. Surface crack growth in cylindrical hollow specimen subject to tension and torsion

    Directory of Open Access Journals (Sweden)

    V. Shlyannikov

    2015-07-01

    Full Text Available The subject for studies is an aluminium cylindrical hollow specimen with external axial and part circumferential semi-elliptical surface crack undergoing fatigue loads. Both the optical microscope measurements and the crack opening displacement (COD method are used to monitor and calculate both crack depth and crack length during the tests. The variation of crack growth behaviour is studied under cyclic axial tension, pure torsion and combined tension+torsion fatigue loading. For the particular surface flaw geometries considered, the elastic and plastic in-plane and out-of-plane constraint parameters, as well as the governing parameter for stress fields in the form of In-integral and plastic stress intensity factor, are obtained as a function of the aspect ratio, dimensionless crack length and crack depth. The combined effect of tension and torsion loading and initial surface flaw orientation on the crack growth for two type of aluminium alloys is made explicit. The experimental and numerical results of the present study provided the opportunity to explore the suggestion that fatigue crack propagation may be governed more strongly by the plastic stress intensity factor rather than the magnitude of the elastic SIFs alone. One advantage of the plastic SIF is its sensitivity to combined loading due to accounting for the plastic properties of the material.

  19. Agmatine attenuates stress- and lipopolysaccharide-induced fever in rats

    Science.gov (United States)

    Aricioglu, Feyza; Regunathan, Soundar

    2010-01-01

    Physiological stress evokes a number of responses, including a rise in body temperature, which has been suggested to be the result of an elevation in the thermoregulatory set point. This response seems to share similar mechanisms with infectious fever. The aim of the present study was to investigate the effect of agmatine on different models of stressors [(restraint and lipopolysaccaride (LPS)] on body temperature. Rats were either restrained for 4 h or injected with LPS, both of these stressors caused an increase in body temperature. While agmatine itself had no effect on body temperature, treatment with agmatine (20, 40, 80 mg/kg intraperitoneally) dose dependently inhibited stress- and LPS-induced hyperthermia. When agmatine (80 mg/kg) was administered 30 min later than LPS (500 μg/kg) it also inhibited LPS-induced hyperthermia although the effect became significant only at later time points and lower maximal response compared to simultaneous administration. To determine if the decrease in body temperature is associated with an anti-inflammatory effect of agmatine, the nitrite/nitrate levels in plasma was measured. Agmatine treatment inhibited LPS-induced production of nitrates dose dependently. As an endogenous molecule, agmatine has the capacity to inhibit stress- and LPS-induced increases in body temperature. PMID:15936786

  20. A non-destructive DNA sampling technique for herbarium specimens.

    Science.gov (United States)

    Shepherd, Lara D

    2017-01-01

    Herbarium specimens are an important source of DNA for plant research but current sampling methods require the removal of material for DNA extraction. This is undesirable for irreplaceable specimens such as rare species or type material. Here I present the first non-destructive sampling method for extracting DNA from herbarium specimens. DNA was successfully retrieved from robust leaves and/or stems of herbarium specimens up to 73 years old.

  1. Miniature tensile test specimens for fusion reactor irradiation studies

    International Nuclear Information System (INIS)

    Klueh, R.L.

    1985-01-01

    Three miniature sheet-type tensile specimens and a miniature rod-type specimen are being used to determine irradiated tensile properties for alloy development for fusion reactors. The tensile properties of type 316 stainless steel were determined with these different specimens, and the results were compared. Reasonably good agreement was observed. However, there were differences that led to recommendations on which specimens are preferred. 4 references, 9 figures, 6 tables

  2. Study Under AC Stimulation on Excitement Properties of Weighted Small-World Biological Neural Networks with Side-Restrain Mechanism

    International Nuclear Information System (INIS)

    Yuan Wujie; Luo Xiaoshu; Jiang Pinqun

    2007-01-01

    In this paper, we propose a new model of weighted small-world biological neural networks based on biophysical Hodgkin-Huxley neurons with side-restrain mechanism. Then we study excitement properties of the model under alternating current (AC) stimulation. The study shows that the excitement properties in the networks are preferably consistent with the behavior properties of a brain nervous system under different AC stimuli, such as refractory period and the brain neural excitement response induced by different intensities of noise and coupling. The results of the study have reference worthiness for the brain nerve electrophysiology and epistemological science.

  3. Comparison of fracture toughness values from large-scale pipe system tests and C(T) specimens

    International Nuclear Information System (INIS)

    Olson, R.; Scott, P.; Marschall, C.; Wilkowski, G.

    1993-01-01

    Within the International Piping Integrity Research Group (IPIRG) program, pipe system experiments involving dynamic loading with intentionally circumferentially cracked pipe were conducted. The pipe system was fabricated from 406-mm (16-inch) diameter Schedule 100 pipe and the experiments were conducted at 15.5 MPa (2,250 psi) and 288 C (550 F). The loads consisted of pressure, dead-weight, thermal expansion, inertia, and dynamic anchor motion. Significant instrumentation was used to allow the material fracture resistance to be calculated from these large-scale experiments. A comparison of the toughness values from the stainless steel base metal pipe experiment of standard quasi-static and dynamic C(T) specimen tests showed the pipe toughness value was significantly lower than that obtained from C(T) specimens. It is hypothesized that the cyclic loading from inertial stresses in this pipe system experiment caused local degradation of the material toughness. Such effects are not considered in current LBB or pipe flaw evaluation criteria. 4 refs., 14 figs., 1 tab

  4. 10 CFR 26.165 - Testing split specimens and retesting single specimens.

    Science.gov (United States)

    2010-01-01

    ... (c), as applicable. If the specimen in Bottle A is free of any evidence of drugs or drug metabolites... suitable inquiry conducted under the provisions of § 26.63 or to any other inquiry or investigation... records must be provided to personnel conducting reviews, inquiries into allegations, or audits under the...

  5. Design of creep machine and creep specimen chamber for carrying out creep tests in flowing liquid sodium

    Energy Technology Data Exchange (ETDEWEB)

    Ravi, S., E-mail: sravi@igcar.gov.in; Laha, K.; Sakthy, S.; Mathew, M.D.; Jayakumar, T.

    2014-02-15

    Highlights: • Design of a lever type creep machine for carrying out creep test in flowing sodium. • Leveling of lever during creep was achieved by automated movement of fulcrum. • Design of creep chamber for providing constant sodium flow rate across creep specimen. • Minimum use of bellow in chamber for sodium containment and mechanical isolation. • Mini-lever mechanism to counter balance load reduction on specimen due to bellow stiffness. - Abstract: A creep testing system has been designed, fabricated, installed and validated for carrying out creep tests in flowing liquid sodium. The testing system consists of two sections namely creep testing machine and an environmental chamber. The testing system has the ability of (i) applying tensile load to the test specimen through a lever, (ii) monitoring continuously the creep elongation and (iii) allowing sodium to flow around the creep specimen at constant velocity. The annular space between the creep specimen and the environmental chamber has been suitably designed to maintain constant sodium flow velocity. Primary and secondary bellows are employed in the environmental chamber to (i) mechanically isolate the creep specimen, (ii) prevent the flowing sodium in contact with air and (iii) maintain an argon gas cover to the leaking sodium if any from primary bellow, with a provision to an alarm get activated by a spark plug. The lever-horizontality during creep test has been maintained by automatically lifting up the fulcrum instead of lowering down the pull rod as conventionally used. A mini lever mechanism has been incorporated in the load train to counter balance the load reduction on specimen from the changing stiffness of the bellows. The validation of the testing system has been established by carrying out creep tests on 316L(N) stainless steel at 873 K over a wide stress range and comparing the results with those obtained in air by employing the developed and conventional creep testing machines.

  6. Effects of aspect ratio and specimen size on uniaxial failure stress of iron green bodies at high strain rates

    Directory of Open Access Journals (Sweden)

    Kuroyanagi Yuki

    2015-01-01

    Full Text Available Powder metallurgy is used for the production of a number of mechanical parts and is an essential production method. These are great advantages such as product cost effectiveness and product uniqueness. In general, however parts created by powder metallurgy have low strength because of low density. In order to increase strength as well as density, new techniques such as high-velocity-compaction (HVC was developed and further investigation has been conducted on improvement of techniques and optimum condition using computer simulation. In this study, the effects of aspect ratio and specimen size of iron green bodies on failure strength of uniaxial compression and failure behavior were examined using a split Hopkinson pressure Bar. The diameters of specimens were 12.5 mm and 25 mm the aspect ratios (thickness/diameter were 0.8 and 1.2.

  7. Characterization of Residual Stress Effects on Fatigue Crack Growth of a Friction Stir Welded Aluminum Alloy

    Science.gov (United States)

    Newman, John A.; Smith, Stephen W.; Seshadri, Banavara R.; James, Mark A.; Brazill, Richard L.; Schultz, Robert W.; Donald, J. Keith; Blair, Amy

    2015-01-01

    An on-line compliance-based method to account for residual stress effects in stress-intensity factor and fatigue crack growth property determinations has been evaluated. Residual stress intensity factor results determined from specimens containing friction stir weld induced residual stresses are presented, and the on-line method results were found to be in excellent agreement with residual stress-intensity factor data obtained using the cut compliance method. Variable stress-intensity factor tests were designed to demonstrate that a simple superposition model, summing the applied stress-intensity factor with the residual stress-intensity factor, can be used to determine the total crack-tip stress-intensity factor. Finite element, VCCT (virtual crack closure technique), and J-integral analysis methods have been used to characterize weld-induced residual stress using thermal expansion/contraction in the form of an equivalent delta T (change in local temperature during welding) to simulate the welding process. This equivalent delta T was established and applied to analyze different specimen configurations to predict residual stress distributions and associated residual stress-intensity factor values. The predictions were found to agree well with experimental results obtained using the crack- and cut-compliance methods.

  8. Creep properties of phosphorus alloyed oxygen free copper under multiaxial stress state

    International Nuclear Information System (INIS)

    Rui Wu; Sandstroem, Rolf; Seitisleam, Facredin

    2009-10-01

    Phosphorus alloyed oxygen free copper (Cu-OFP) canisters are planned to be used for spent nuclear fuel in Sweden. The copper canisters will be subjected to creep under multiaxial stress states in the repository. Creep tests have therefore been carried out at 75 deg C using double notch specimens with notch acuities of 0.5, 2, 5, and 18.8, respectively. The creep lifetime for notched specimens is considerably longer than that for the smooth one at a given net section stress, indicating that the investigated Cu-OFP is notch insensitive (notch strengthening). The notch strengthening factor in time is, for instance, greater than 70 at 180 MPa for the bluntest notch (notch acuity = 0.5). The creep lifetime is notch acuity dependent. The sharper the notch, the longer the creep lifetime is. The creep deformation is to a significant extent concentrated to the region around the notches. Different deformation on the two notches is observed. Both axial and radial strains on the failed notch are several times larger than those on the unbroken one. Linear relation between the axial and the radial strains on the notches is found. Transgranular failure is predominant, independent of stress, rupture time, and notch acuity. Adjacent to fracture, elongated grains along the stress direction, separate pores and cavities are often visible. On the unbroken notch, fewer separate cavities and cracks are only seen intergranularly for the sharper notches (notch acuity > 2). To interpret the tests for the notched creep specimens, finite element computations have been performed. A fundamental model for primary and secondary creep without fitting parameters has been used as constitutive equation. The FEM-modelling could represent the creep strain versus time curves for the notched specimens in a satisfactory way. In these curves the strain on loading is included. From the FEM-computations a stationary creep stress could be assessed, which is close to the reference stress. For a given

  9. Inhibition of stress corrosion cracking of Alloy X-750 by prestrain

    International Nuclear Information System (INIS)

    Mills, W.J.; Lebo, M.R.; Kearns, J.J.

    1997-03-01

    Tests of precracked and as-notched compact tension specimens were conducted in 3600C hydrogenated water to determine the effect of prestrain on the stress corrosion cracking (SCC) resistance of Alloy X-750 in the HTH, AH and HOA heat treated conditions. Prestraining is defined as the intentional application of an initial load (or strain) that is higher than the final test load. Prestrain was varied from 10% to 40% (i.e., the initial to final load ratios ranged from 1.1 to 1.4). Other variables included notch root radius, stress level and irradiation. Specimens were bolt-loaded to maintain essentially constant displacement conditions during the course of the test. The frequent heat up and cooldown cycles that were necessary for periodic inspections provided an opportunity to evaluate the effect of test variables on rapid low temperature crack propagation to which this alloy is subject. For Condition HTH, application of 20% to 40% prestrain either eliminates or significantly retards SCC initiation in as-notched specimens and the onset of crack growth in precracked specimens. In addition, this procedure reduces the propensity for low temperature crack growth during cooldown. Similar results were observed for precracked HOA specimens. Application of 20% prestrain also retards SCC in as-notched and precracked AH specimens, but the effects are not as great as in Condition HTH. Prestraining at the 10% level was found to produce an inconsistent benefit. In-reactor SCC testing shows that prestrain greatly improves the in-flux and out-of-flux SCC resistance of Condition HTH material. No SCC was observed in precracked specimens prestrained 30%, whereas extensive cracking was observed in their nonprestrain counterparts

  10. Thick Concrete Specimen Construction, Testing, and Preliminary Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, Dwight A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hoegh, Kyle [Univ. of Minnesota, Minneapolis, MN (United States); Khazanovich, Lev [Univ. of Minnesota, Minneapolis, MN (United States)

    2015-03-01

    The purpose of the U.S. Department of Energy Office of Nuclear Energy’s Light Water Reactor Sustainability (LWRS) Program is to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the operating lifetimes of nuclear power plants (NPPs) beyond 60 years. Since many important safety structures in an NPP are constructed of concrete, inspection techniques must be developed and tested to evaluate the internal condition. In-service containment structures generally do not allow for the destructive measures necessary to validate the accuracy of these inspection techniques. This creates a need for comparative testing of the various nondestructive evaluation (NDE) measurement techniques on concrete specimens with known material properties, voids, internal microstructure flaws, and reinforcement locations. A preliminary report detailed some of the challenges associated with thick reinforced concrete sections and prioritized conceptual designs of specimens that could be fabricated to represent NPP concrete structures for using in NDE evaluation comparisons. This led to the construction of the concrete specimen presented in this report, which has sufficient reinforcement density and cross-sectional size to represent an NPP containment wall. Details on how a suitably thick concrete specimen was constructed are presented, including the construction materials, final nominal design schematic, as well as formwork and rigging required to safely meet the desired dimensions of the concrete structure. The report also details the type and methods of forming the concrete specimen as well as information on how the rebar and simulated defects were embedded. Details on how the resulting specimen was transported, safely anchored, and marked to allow access for systematic comparative NDE testing of defects in a representative NPP containment wall concrete specimen are also given. Data collection using the MIRA Ultrasonic NDE equipment and

  11. A new system for crack closure of cementitious materials using shrinkable polymers

    International Nuclear Information System (INIS)

    Jefferson, Anthony; Joseph, Christopher; Lark, Robert; Isaacs, Ben; Dunn, Simon; Weager, Brendon

    2010-01-01

    This paper presents details of an original crack-closure system for cementitious materials using shrinkable polymer tendons. The system involves the incorporation of unbonded pre-oriented polymer tendons in cementitious beams. Crack closure is achieved by thermally activating the shrinkage mechanism of the restrained polymer tendons after the cement-based material has undergone initial curing. The feasibility of the system is demonstrated in a series of small scale experiments on pre-cracked prismatic mortar specimens. The results from these tests show that, upon activation, the polymer tendon completely closes the preformed macro-cracks and imparts a significant stress across the crack faces. The potential of the system to enhance the natural autogenous crack healing process and generally improve the durability of concrete structures is addressed.

  12. Restraint stress and social defeat: What they have in common.

    Science.gov (United States)

    Motta, Simone Cristina; Canteras, Newton Sabino

    2015-07-01

    Bob Blanchard was a great inspiration for our studies on the neural basis of social defense. In the present study, we compared the hypothalamic pattern of activation between social defeat and restraint stress. As important stress situations, both defeated and immobilized animals displayed a substantial increase in Fos in the parvicellular part of the paraventricular nucleus,mostly in the region that contains the CRH neurons. In addition, socially defeated animals, but not restrained animals, recruited elements of the medial hypothalamic conspecific-responsive circuit, a region also engaged in other forms of social behavior. Of particular interest, both defeated and immobilized animals presented a robust increase in Fos expression in specific regions of the lateral hypothalamic area (i.e., juxtaparaventricular and juxtadorsomedial regions) likely to convey septo-hippocampal information encoding the environmental boundary restriction observed in both forms of stress, and in the dorsomedial part of the dorsal premammillary nucleus which seems to work as a key player for the expression of, at least, part of the behavioral responses during both restraint and social defeat. These results indicate interesting commonalities between social defeat and restraint stress, suggesting, for the first time, a septo-hippocampal–hypothalamic path likely to respond to the environmental boundary restriction that may act as common stressor component for both types of stress. Moreover, the comparison of the neural circuits mediating physical restraint and social defense revealed a possible path for encoding the entrapment component during social confrontation.

  13. Influence of local microplastic strains on stress corrosion of 08Kh18N10T steel

    International Nuclear Information System (INIS)

    Moskvin, L.N.; Efimov, A.A.; Sherman, Ya.I.; Fedorova, T.I.

    1987-01-01

    Study on specific features of microhomogeneous strain in the process of plastic strain development and their role in stress corrosion of 08Kh18N10T steel sheet specimens subject to preliminary strain by 1, 3, 6, 16 and 23% and subsequent tests of stress corrosion in magnesium chloride solution at 150 deg C 140 MPa has been carried out. Analysis of test results has shown that microplastic strain is distributed over a specimen nonuniformly and is accompanied with the slip bands formation which are sources of corrosion crack origination and development. 08Kh18N10T steel manifests the highest trend to stress corrosion under 1% microplastic strain

  14. Handling of biological specimens for electron microscopy

    International Nuclear Information System (INIS)

    Bullock, G.

    1987-01-01

    There are many different aspects of specimen preparation procedure which need to be considered in order to achieve good results. Whether using the scanning or transmission microscope, the initial handling procedures are very similar and are selected for the information required. Handling procedures and techniques described are: structural preservation; immuno-and histo-chemistry; x-ray microanalysis and autoradiography; dehydration and embedding; mounting and coating specimens for scanning electron microscopy; and sectioning of resin embedded material. With attention to detail and careful choice of the best available technique, excellent results should be obtainable whatever the specimen. 6 refs

  15. Fractal and probability analysis of creep crack growth behavior in 2.25Cr–1.6W steel incorporating residual stresses

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Mengjia; Xu, Jijin, E-mail: xujijin_1979@sjtu.edu.cn; Lu, Hao; Chen, Jieshi; Chen, Junmei; Wei, Xiao

    2015-12-30

    Graphical abstract: - Highlights: • Statistical and fractal analysis is applied to study the creep fracture surface. • The tensile residual stresses promote the initiation of creep crack. • The fractal dimension of a mixed mode fracture surface shows a wavy variation. • The fractal dimension increases with increasing intergranular fracture percentage. • Height coordinates of intergranular fracture surface fit Gaussian distribution. - Abstract: In order to clarify creep crack growth behavior in 2.25Cr–1.6W steel incorporating residual stresses, creep crack tests were carried out on the tension creep specimens, in which the residual stresses were generated by local remelting and cooling. Residual stresses in the specimens were measured using Synchrotron X-ray diffraction techniques. The fracture surface of the creep specimen was analyzed using statistical methods and fractal analysis. The relation between fractal dimension of the fracture surface and fracture mode of the creep specimen was discussed. Due to different fracture mechanisms, the probability density functions of the height coordinates vary with the intergranular crack percentage. Good fitting was found between Gaussian distribution and the probability function of height coordinates of the high percentage intergranular crack surface.

  16. Fractal and probability analysis of creep crack growth behavior in 2.25Cr–1.6W steel incorporating residual stresses

    International Nuclear Information System (INIS)

    Xu, Mengjia; Xu, Jijin; Lu, Hao; Chen, Jieshi; Chen, Junmei; Wei, Xiao

    2015-01-01

    Graphical abstract: - Highlights: • Statistical and fractal analysis is applied to study the creep fracture surface. • The tensile residual stresses promote the initiation of creep crack. • The fractal dimension of a mixed mode fracture surface shows a wavy variation. • The fractal dimension increases with increasing intergranular fracture percentage. • Height coordinates of intergranular fracture surface fit Gaussian distribution. - Abstract: In order to clarify creep crack growth behavior in 2.25Cr–1.6W steel incorporating residual stresses, creep crack tests were carried out on the tension creep specimens, in which the residual stresses were generated by local remelting and cooling. Residual stresses in the specimens were measured using Synchrotron X-ray diffraction techniques. The fracture surface of the creep specimen was analyzed using statistical methods and fractal analysis. The relation between fractal dimension of the fracture surface and fracture mode of the creep specimen was discussed. Due to different fracture mechanisms, the probability density functions of the height coordinates vary with the intergranular crack percentage. Good fitting was found between Gaussian distribution and the probability function of height coordinates of the high percentage intergranular crack surface.

  17. The combined effect of gamma radiation and stress cracking in polycarbonate;Efeito combinado da radiacao gama e stress cracking no policarbonato

    Energy Technology Data Exchange (ETDEWEB)

    Melo, Raphaela N. de; Rabello, Marcelo S., E-mail: marcelo@dema.ufcg.edu.b [Universidade Federal de Campina Grande (DEMa/UFCG), PB (Brazil). Dept. de Engenharia de Materiais; Silva, Leonardo G.A. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2009-07-01

    In this work the combined effect of gamma irradiation and stress cracking was studied in polycarbonate (PC). Tensile test bars were produced by injection moulding and then exposed to different doses of gamma radiation. After that they were submitted to the contact with isopropanol, the stress cracking agent used in this work. The specimens were tested for mechanical properties, viscosity molecular weight and fractography. The results indicated that the previous radiation intensified the stress cracking effects, as evidenced by the reduction in tensile properties and surface damage caused to the samples. (author)

  18. The relative stress-corrosion-cracking susceptibility of candidate aluminum-lithium alloys for aerospace applications

    Science.gov (United States)

    Pizzo, P. P.

    1982-01-01

    Stress corrosion tests of Al-Li-Cu powder metallurgy alloys are described. Alloys investigated were Al-2.6% Li-1.4% and Al-2.6% Li-1.4% Cu-1.6% Mg. The base properties of the alloys were characterized. Process, heat treatment, and size/orientational effects on the tensile and fracture behavior were investigated. Metallurgical and electrochemical conditions are identified which provide reproducible and controlled parameters for stress corrosion evaluation. Preliminary stress corrosion test results are reported. Both Al-Li-Cu alloys appear more susceptible to stress corrosion crack initiation than 7075-T6 aluminum, with the magnesium bearing alloy being the most susceptible. Tests to determine the threshold stress intensity for the base and magnesium bearing alloys are underway. Twelve each, bolt loaded DCB type specimens are under test (120 days) and limited crack growth in these precracked specimens has been observed. General corrosion in the aqueous sodium chloride environment is thought to be obscuring results through crack tip blunting.

  19. Experimental determination of the micro-scale strength and stress-strain relation of an epoxy resin

    DEFF Research Database (Denmark)

    Zike, Sanita; Sørensen, Bent F.; Mikkelsen, Lars Pilgaard

    2016-01-01

    An approach is developed for determining the stress-strain law and a failure stress appropriate for micro-mechanical models of polymer materials. Double cantilever beam test specimens, made of an epoxy polymer with notches having finite root radius, were subjected to pure bending moments in an en......An approach is developed for determining the stress-strain law and a failure stress appropriate for micro-mechanical models of polymer materials. Double cantilever beam test specimens, made of an epoxy polymer with notches having finite root radius, were subjected to pure bending moments......-scale (5–6%). The hardening exponent of a power law hardening material was obtained by the use of the J-integral, estimating the strain energy density around the notch. The hardening exponent was found to be within the range of 5–6 and the corresponding micro-scale failure stress was in the range of 220...

  20. Scanning transmission ion micro-tomography (STIM-T) of biological specimens

    International Nuclear Information System (INIS)

    Schwertner, Michael; Sakellariou, Arthur; Reinert, Tilo; Butz, Tilman

    2006-01-01

    Computed tomography (CT) was applied to sets of Scanning Transmission Ion Microscopy (STIM) projections recorded at the LIPSION ion beam laboratory (Leipzig) in order to visualize the 3D-mass distribution in several specimens. Examples for a test structure (copper grid) and for biological specimens (cartilage cells, cygospore) are shown. Scanning Transmission Micro-Tomography (STIM-T) at a resolution of 260 nm was demonstrated for the first time. Sub-micron features of the Cu-grid specimen were verified by scanning electron microscopy. The ion energy loss measured during a STIM-T experiment is related to the mass density of the specimen. Typically, biological specimens can be analysed without staining. Only shock freezing and freeze-drying is required to preserve the ultra-structure of the specimen. The radiation damage to the specimen during the experiment can be neglected. This is an advantage compared to other techniques like X-ray micro-tomography. At present, the spatial resolution is limited by beam position fluctuations and specimen vibrations